
GAUSS
TM

Language Reference

Aptech Systems, Inc. — Mathematical and Statistical System

Information in this document is subject to change without notice and does not represent
a commitment on the part of Aptech Systems, Inc. The software described in this
document is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.
The purchaser may make one copy of the software for backup purposes. No part of
this manual may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose other than the
purchaser’s personal use without the written permission of Aptech Systems, Inc.

c©Copyright Aptech Systems, Inc. Black Diamond WA 1984-2010
All Rights Reserved Worldwide.

SuperLU. c©Copyright 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required approvals
from U.S. Dept. of Energy). All Rights Reserved. See GAUSS Software Product
License for additional terms and conditions.

TAUCS Version 2.0, November 29, 2001. c©Copyright 2001, 2002, 2003 by Sivan
Toledo, Tel-Aviv University, stoledo@tau.ac.il. All Rights Reserved. See GAUSS
Software License for additional terms and conditions.

Econotron Software, Inc. beta, polygamma, zeta, gammacplx, lngammacplx, erfcplx,
erfccplx, psi, gradcp, hesscp Functions: c©Copyright 2009 by Econotron Software,
Inc. All Rights Reserved Worldwide.

GAUSS, GAUSS Engine and GAUSS Light are trademarks of Aptech Systems, Inc.
GEM is a trademark of Digital Research, Inc.
Lotus is a trademark of Lotus Development Corp.
HP LaserJet and HP-GL are trademarks of Hewlett-Packard Corp.
PostScript is a trademark of Adobe Systems Inc.
IBM is a trademark of International Business Machines Corporation
Hercules is a trademark of Hercules Computer Technology, Inc.
GraphiC is a trademark of Scientific Endeavors Corporation
Tektronix is a trademark of Tektronix, Inc.
Windows is a registered trademark of Microsoft Corporation.
Other trademarks are the property of their respective owners.
The Java API for the GAUSS Engine uses the JNA library. The JNA library is
covered under the LGPL license version 3.0 or later at the discretion of the

user. A full copy of this license and the JNA source code have been included
with the distribution.

Part Numbers: 007429, 007430
Version 11
Documentation Revision: 1056 August 4, 2011

Contents

Contents

1 Introduction

1.1 Product Overview . 1-1
1.2 Documentation Conventions . 1-2

2 Getting Started

2.1 Installation Under UNIX/Linux . 2-1
2.2 Installation Under Windows . 2-2

2.2.1 Machine Requirements . 2-2
2.2.2 Installation from Download . 2-2
2.2.3 Installation from CD . 2-2

3 Introduction to the GAUSS Graphical User Interface

3.1 Page Organization Concept . 3-1
3.2 Command Page . 3-2

3.2.1 Menus and Toolbars . 3-3
3.2.2 Command Page Toolbar . 3-4
3.2.3 Working Directory Toolbar . 3-4
3.2.4 Command History Toolbar . 3-5
3.2.5 The Run, Debug, and Edit Buttons 3-6

3.3 Layout . 3-6
3.3.1 Command History Window . 3-7
3.3.2 The Command Input Window . 3-8

3.4 Command Line History and Command Line Editing 3-8
3.4.1 Movement . 3-8
3.4.2 Error Output Window . 3-9

3.5 Source Page: Editing Programs . 3-9
3.5.1 Menus and Toolbars . 3-9
3.5.2 Layout and Usage . 3-10

v

GAUSS Language Reference

3.5.3 Find and Replace . 3-14
3.5.4 Changing Editor Properties . 3-15
3.5.5 Command Input Window . 3-16
3.5.6 Error Output Window . 3-16

3.6 Data Page . 3-17
3.6.1 Menu Bar . 3-17
3.6.2 Layout . 3-18
3.6.3 Symbol Editor . 3-20

3.7 Debug Page . 3-21
3.7.1 Menus and Toolbars . 3-21
3.7.2 Using Breakpoints . 3-23
3.7.3 Setting and Clearing Breakpoints . 3-23
3.7.4 Stepping Through a Program . 3-23
3.7.5 Viewing and Editing Variables . 3-24

3.8 Help Page . 3-25
3.8.1 Hot Keys . 3-26

4 Navigating the GAUSS Graphical User Interface

4.1 Hot Keys and Shortcuts . 4-2
4.2 Navigating Between Pages . 4-2
4.3 Focus Program Output on I/O . 4-3
4.4 Viewing Program Output from Other Pages 4-3
4.5 F1 Help . 4-4
4.6 CTRL+F1 Source Browsing . 4-4

5 Using the Command Line Interface

5.1 Viewing Graphics . 5-2
5.2 Command Line History and Command Line Editing 5-2

5.2.1 Movement . 5-2
5.2.2 Editing . 5-3
5.2.3 History Retrieval . 5-3

vi

Contents

5.3 Interactive Commands . 5-4
5.3.1 quit . 5-4
5.3.2 ed . 5-5
5.3.3 browse . 5-5
5.3.4 config . 5-5

5.4 Debugging . 5-7
5.4.1 General Functions . 5-7
5.4.2 Listing Functions . 5-7
5.4.3 Execution Functions . 5-7
5.4.4 View Commands . 5-9
5.4.5 Breakpoint Commands . 5-9

5.5 Using the Source Browser in TGAUSS . 5-10

6 Language Fundamentals

6.1 Expressions . 6-1
6.2 Statements . 6-2

6.2.1 Executable Statements . 6-3
6.2.2 Nonexecutable Statements . 6-3

6.3 Programs . 6-4
6.3.1 Main Section . 6-4
6.3.2 Secondary Sections . 6-5

6.4 Compiler Directives . 6-5
6.5 Procedures . 6-8
6.6 Data Types . 6-9

6.6.1 Constants . 6-9
6.6.2 Matrices . 6-11
6.6.3 Sparse Matrices . 6-18
6.6.4 N-dimensional Arrays . 6-19
6.6.5 Strings . 6-20
6.6.6 String Arrays . 6-24
6.6.7 Character Matrices . 6-26
6.6.8 Date and Time Formats . 6-27

vii

GAUSS Language Reference

6.6.9 Special Data Types . 6-28

6.7 Operator Precedence . 6-30

6.8 Flow Control . 6-31

6.8.1 Looping . 6-32

6.8.2 Conditional Branching . 6-34

6.8.3 Unconditional Branching . 6-35

6.9 Functions . 6-37

6.10 Rules of Syntax . 6-37

6.10.1 Statements . 6-37

6.10.2 Case . 6-38

6.10.3 Comments . 6-38

6.10.4 Extraneous Spaces . 6-38

6.10.5 Symbol Names . 6-39

6.10.6 Labels . 6-39

6.10.7 Assignment Statements . 6-39

6.10.8 Function Arguments . 6-40

6.10.9 Indexing Matrices . 6-40

6.10.10 Arrays of Matrices and Strings . 6-41

6.10.11 Arrays of Procedures . 6-42

7 Operators

7.1 Element-by-Element Operators . 7-1

7.2 Matrix Operators . 7-4

7.2.1 Numeric Operators . 7-4

7.2.2 Other Matrix Operators . 7-8

7.3 Relational Operators . 7-9

7.4 Logical Operators . 7-13

7.5 Other Operators . 7-15

7.6 Using Dot Operators with Constants . 7-20

7.7 Operator Precedence . 7-22

viii

Contents

8 Procedures and Keywords

8.1 Defining a Procedure . 8-2
8.1.1 Procedure Declaration . 8-3
8.1.2 Local Variable Declarations . 8-3
8.1.3 Body of Procedure . 8-4
8.1.4 Returning from the Procedure . 8-5
8.1.5 End of Procedure Definition . 8-5

8.2 Calling a Procedure . 8-6
8.3 Keywords . 8-7

8.3.1 Defining a Keyword . 8-7
8.3.2 Calling a Keyword . 8-8

8.4 Passing Procedures to Procedures . 8-9
8.5 Indexing Procedures . 8-10
8.6 Multiple Returns from Procedures . 8-11
8.7 Saving Compiled Procedures . 8-13

9 Sparse Matrices

9.1 Defining Sparse Matrices . 9-1
9.2 Creating and Using Sparse Matrices . 9-2
9.3 Sparse Support in Matrix Functions and Operators 9-3

9.3.1 Return Types for Dyadic Operators 9-5

10 N-Dimensional Arrays

10.1 Bracketed Indexing . 10-3
10.2 E×E Conformability . 10-5
10.3 Glossary of Terms . 10-5

11 Working with Arrays

11.1 Initializing Arrays . 11-1
11.1.1 areshape . 11-2

ix

GAUSS Language Reference

11.1.2 aconcat . 11-4
11.1.3 aeye . 11-6
11.1.4 arrayinit . 11-6
11.1.5 arrayalloc . 11-7

11.2 Assigning to Arrays . 11-8
11.2.1 index operator . 11-9
11.2.2 getArray . 11-12
11.2.3 getMatrix . 11-13
11.2.4 getMatrix4D . 11-13
11.2.5 getScalar3D, getScalar4D . 11-14
11.2.6 putArray . 11-15
11.2.7 setArray . 11-16

11.3 Looping with Arrays . 11-17
11.3.1 loopnextindex . 11-19

11.4 Miscellaneous Array Functions . 11-21
11.4.1 atranspose . 11-21
11.4.2 amult . 11-23
11.4.3 amean, amin, amax . 11-25
11.4.4 getDims . 11-27
11.4.5 getOrders . 11-27
11.4.6 arraytomat . 11-28
11.4.7 mattoarray . 11-28

11.5 Using Arrays with GAUSS functions . 11-28
11.6 A Panel Data Model . 11-32
11.7 Appendix . 11-35

12 Structures

12.1 Basic Structures . 12-1
12.1.1 Structure Definition . 12-1
12.1.2 Declaring an Instance . 12-2
12.1.3 Initializing an Instance . 12-3
12.1.4 Arrays of Structures . 12-4

x

Contents

12.1.5 Structure Indexing . 12-5

12.1.6 Saving an Instance to the Disk . 12-8

12.1.7 Loading an Instance from the Disk 12-9

12.1.8 Passing Structures to Procedures 12-9

12.2 Structure Pointers . 12-10

12.2.1 Creating and Assigning Structure Pointers 12-10

12.2.2 Structure Pointer References . 12-11

12.2.3 Using Structure Pointers in Procedures 12-13

12.3 Special Structures . 12-15

12.3.1 The DS Structure . 12-15

12.3.2 The PV Structure . 12-16

12.3.3 Miscellaneous PV Procedures . 12-20

12.3.4 Control Structures . 12-22

12.4 sqpSolvemt . 12-23

12.4.1 Input Arguments . 12-24

12.4.2 Output Argument . 12-27

12.4.3 Example . 12-29

12.4.4 The Command File . 12-30

13 Run-Time Library Structures

13.1 The PV Parameter Structure . 13-1

13.2 Fast Pack Functions . 13-6

13.3 The DS Data Structure . 13-7

14 Multi-Threaded Programming in GAUSS

14.1 The Functions . 14-1

14.2 GAUSS Threading Concepts . 14-3

14.3 Coding With Threads . 14-4

14.4 Coding Restrictions . 14-6

xi

GAUSS Language Reference

15 Libraries

15.1 Autoloader . 15-1
15.1.1 Forward References . 15-2
15.1.2 The Autoloader Search Path . 15-3

15.2 Global Declaration Files . 15-9
15.3 Troubleshooting . 15-12

15.3.1 Using .dec Files . 15-13

16 Compiler

16.1 Compiling Programs . 16-2
16.1.1 Compiling a File . 16-2

16.2 Saving the Current Workspace . 16-2
16.3 Debugging . 16-3

17 File I/O

17.1 ASCII Files . 17-3
17.1.1 Matrix Data . 17-3
17.1.2 General File I/O . 17-6

17.2 Data Sets . 17-7
17.2.1 Layout . 17-7
17.2.2 Creating Data Sets . 17-8
17.2.3 Reading and Writing . 17-8
17.2.4 Distinguishing Character and Numeric Data 17-9

17.3 GAUSS Data Archives . 17-11
17.3.1 Creating and Writing Variables to GDA’s 17-11
17.3.2 Reading Variables from GDA’s . 17-12
17.3.3 Updating Variables in GDA’s . 17-13

17.4 Matrix Files . 17-13
17.5 File Formats . 17-14

17.5.1 Small Matrix v89 (Obsolete) . 17-15
17.5.2 Extended Matrix v89 (Obsolete) . 17-16

xii

Contents

17.5.3 Small String v89 (Obsolete) . 17-16

17.5.4 Extended String v89 (Obsolete) . 17-17

17.5.5 Small Data Set v89 (Obsolete) . 17-17

17.5.6 Extended Data Set v89 (Obsolete) 17-19

17.5.7 Matrix v92 (Obsolete) . 17-20

17.5.8 String v92 (Obsolete) . 17-20

17.5.9 Data Set v92 (Obsolete) . 17-21

17.5.10 Matrix v96 . 17-22

17.5.11 Data Set v96 . 17-23

17.5.12 GAUSS Data Archive . 17-24

18 Foreign Language Interface

18.1 Writing FLI Functions . 18-2

18.2 Creating Dynamic Libraries . 18-3

19 Data Transformations

19.1 Data Loop Statements . 19-2

19.2 Using Other Statements . 19-3

19.3 Debugging Data Loops . 19-3

19.3.1 Translation Phase . 19-3

19.3.2 Compilation Phase . 19-3

19.3.3 Execution Phase . 19-4

19.4 Reserved Variables . 19-4

20 The GAUSS Profiler

20.1 Using the GAUSS Profiler . 20-1

20.1.1 Collection . 20-1

20.1.2 Analysis . 20-2

xiii

GAUSS Language Reference

21 Publication Quality Graphics

21.1 General Design . 21-1

21.2 Using Publication Quality Graphics . 21-2

21.2.1 Getting Started . 21-2

21.2.2 Graphics Coordinate System . 21-6

21.3 Graphic Panels . 21-7

21.3.1 Tiled Graphic Panels . 21-7

21.3.2 Overlapping Graphic Panels . 21-7

21.3.3 Nontransparent Graphic Panels . 21-8

21.3.4 Transparent Graphic Panels . 21-8

21.3.5 Using Graphic Panel Functions . 21-8

21.3.6 Inch Units in Graphic Panels . 21-10

21.3.7 Saving Graphic Panel Configurations 21-10

21.4 Graphics Text Elements . 21-10

21.4.1 Selecting Fonts . 21-11

21.4.2 Greek and Mathematical Symbols 21-12

21.5 Colors . 21-14

21.6 Global Control Variables . 21-14

22 Time and Date

22.1 Time and Date Formats . 22-2

22.2 Time and Date Functions . 22-4

22.2.1 Timed Iterations . 22-6

23 ATOG

23.1 Command Summary . 23-1

23.2 Commands . 23-3

23.3 Examples . 23-12

23.4 Error Messages . 23-15

xiv

Contents

24 Error Messages

25 Maximizing Performance

25.1 Library System . 25-1
25.2 Loops . 25-2
25.3 Memory Usage . 25-3

25.3.1 Hard Disk Maintenance . 25-4
25.3.2 CPU Cache . 25-4

A Fonts

A.1 Simplex . A-2
A.2 Simgrma . A-3
A.3 Microb . A-4
A.4 Complex . A-5

B Reserved Words Appendix

C Singularity Tolerance Appendix

C.1 Reading and Setting the Tolerance . C-2
C.2 Determining Singularity . C-2

26 Command Reference Introduction

26.1 Documentation Conventions . 26-2
26.2 Command Components . 26-3
26.3 Using This Manual . 26-4
26.4 Global Control Variables . 26-5

26.4.1 Changing the Default Values . 26-5
26.4.2 The Procedure gausset . 26-6

xv

GAUSS Language Reference

27 Commands by Category

27.1 Mathematical Functions . 27-1
27.2 Finance Functions . 27-23
27.3 Matrix Manipulation . 27-24
27.4 Sparse Matrix Handling . 27-29
27.5 N-Dimensional Array Handling . 27-30
27.6 Structures . 27-32
27.7 Data Handling (I/0) . 27-33
27.8 Compiler Control . 27-42
27.9 Multi-Threading . 27-43
27.10 Program Control . 27-44
27.11 OS Functions and File Management . 27-49
27.12 Workspace Management . 27-50
27.13 Error Handling and Debugging . 27-50
27.14 String Handling . 27-51
27.15 Time and Date Functions . 27-53
27.16 Console I/O . 27-55
27.17 Output Functions . 27-56
27.18 Graphics . 27-57

28 Command Reference

D Obsolete Commands

E Colors

Index

xvi

List of Figures

List of Figures
3.1 Command Page . 3-2
3.2 Command Page Toolbar . 3-4
3.3 Working Directory Toolbar . 3-5
3.4 Command History Toolbar . 3-5
3.5 Run, Debug, and Edit Buttons . 3-6
3.6 Command Page Widgets . 3-7
3.7 Command History Window . 3-8
3.8 Source Page . 3-11
3.9 Programming Editor . 3-11
3.10 Autocomplete . 3-12
3.11 Tooltips . 3-12
3.12 Find and Replace . 3-14
3.13 Find and Replace Regular Expression . 3-16
3.14 Data Page . 3-17
3.15 Data Page Toolbar . 3-18
3.16 The Struct Editor . 3-20
3.17 Debug Toolbar . 3-21
3.18 Debug Window . 3-22
3.19 Watch Window . 3-25
3.20 Help Page . 3-26
12.1 Structure tree for e1 . 12-7

xvii

Introduction

Command Reference
Introduction 26

The GAUSS L R describes each of the commands, procedures and functions
available in the GAUSSTM programming language. These functions can be divided into four
categories:

• Mathematical, statistical and scientific functions.

• Data handling routines, including data matrix manipulation and description routines, and file
I/O.

• Programming statements, including branching, looping, display features, error checking,
and shell commands.

• Graphics functions.

The first category contains those functions to be expected in a high level mathematical language:
trigonometric functions and other transcendental functions, distribution functions, random number
generators, numerical differentiation and integration routines, Fourier transforms, Bessel functions
and polynomial evaluation routines. And, as a matrix programming language, GAUSS includes a
variety of routines that perform standard matrix operations. Among these are routines to calculate

26-1

GAUSS Language Reference

determinants, matrix inverses, decompositions, eigenvalues and eigenvectors, and condition
numbers.

Data handling routines include functions which return dimensions of matrices, and information
about elements of data matrices, including functions to locate values lying in specific ranges or
with certain values. Also under data handling routines fall all those functions that create, save,
open and read from and write to GAUSS data sets and GAUSS Data Archives. A variety of
sorting routines which will operate on both numeric and character data are also available.

Programming statements are all of the commands that make it possible to write complex programs
in GAUSS. These include conditional and unconditional branching, looping, file I/O, error
handling, and system-related commands to execute OS shells and access directory and
environment information.

The graphics functions of GAUSS Publication Quality Graphics (PQG) are a set of routines
built on the graphics functions in GraphiC by Scientific Endeavors Corporation. GAUSS PQG
consists of a set of main graphing procedures and several additional procedures and global
variables for customizing the output.

26.1 Documentation Conventions

The following table describes how text formatting is used to identify GAUSS programming
elements.

Text Style Use Example

regular text narrative “... text formatting is used ...”

bold text emphasis “...not supported under UNIX.”

italic text variables “... If vnames is a string or has
fewer elements than x has
columns, it will be ...”

26-2

Introduction

Command Reference Introduction

Text Style Use Example

monospace code example if scalerr(cm);

cm = inv(x);

endif;

monospace filename, path, etc. “...is located in the examples
subdirectory...”

monospace

bold

reference to a GAUSS
command or other
programming element
within a narrative
paragraph

“...as explained under create...”

S C reference to section of
the manual

“...see O P,
Section 7.7...”

26.2 Command Components

The following list describes each of the components used in the C R, Chapter 28.

PURPOSE Describes what the command or function does.

LIBRARY Lists the library that needs to be activated to access the function.

INCLUDE Lists files that need to be included to use the function.

FORMAT Illustrates the syntax of the command or function.

INPUT Describes the input parameters of the function.

GLOBAL
INPUT

Describes the global variables that are referenced by the function.

OUTPUT Describes the return values of the function.

26-3

GAUSS Language Reference

GLOBAL
OUTPUT

Describes the global variables that are updated by the function.

PORTABILITY Describes differences under various operating systems.

REMARKS Explanatory material pertinent to the command.

EXAMPLE Sample code using the command or function.

SOURCE The source file in which the function is defined, if applicable.

GLOBALS Global variables that are accessed by the command.

SEE ALSO Other related commands.

TECHNICAL
NOTES

Technical discussion and reference source citations.

REFERENCES Reference material citations.

26.3 Using This Manual

Users who are new to GAUSS should make sure they have familiarized themselves with L
F, Chapter 6, before proceeding here. That chapter contains the basics of GAUSS
programming.

In all, there are over 700 routines described in this GAUSS L R. We suggest that
new GAUSS users skim through Chapter 27, and then browse through Chapter 28, the main part
of this manual. Here, users can familiarize themselves with the kinds of tasks that GAUSS can
handle easily.

Chapter 27 gives a categorical listing of all functions in this GAUSS L R, and a
short discussion of the functions in each category. Complete syntax, description of input and
output arguments, and general remarks regarding each function are given in Chapter 28.

26-4

Introduction

Command Reference Introduction

If a function is an “extrinsic” (that is, part of the Run-Time Library), its source code can be
found on the src subdirectory. The name of the file containing the source code is given in Chapter
28 under the discussion of that function.

26.4 Global Control Variables

Several GAUSS functions use global variables to control various aspects of their performance.
The files gauss.ext, gauss.dec and gauss.lcg contain the external statements, declare
statements, and library references to these globals. All globals used by the GAUSS Run-Time
Library begin with an underscore ‘_’.

Default values for these common globals can be found in the file gauss.dec, located on the src
subdirectory. The default values can be changed by editing this file.

26.4.1 Changing the Default Values

To permanently change the default setting of a common global, two files need to be edited:
gauss.dec and gauss.src.

To change the value of the common global __output from 1 to 0, for example, edit the file
gauss.dec and change the statement

declare matrix __output = 1;

so it reads:

declare matrix __output = 0;

Also, edit the procedure gausset, located in the file gauss.src, and modify the statement

__output = 1;

similarly.

26-5

GAUSS Language Reference

26.4.2 The Procedure gausset

The global variables affect your program, even if you have not set them directly in a particular
command file. If you have changed them in a previous run, they will retain their changed values
until you exit GAUSS or execute the new command.

The procedure gausset will reset the Run-Time Library globals to their default values.

gausset;

If your program changes the values of these globals, you can use gausset to reset them whenever
necessary. gausset resets the globals as a whole; you can write your own routine to reset specific
ones. pagetabsCommands by Category

26-6

Introduction

Commands by Category 27
27.1 Mathematical Functions

Scientific Functions

abs Returns absolute value of argument.

arccos Computes inverse cosine.

arcsin Computes inverse sine.

atan Computes inverse tangent.

atan2 Computes angle given a point x,y.

besselj Computes Bessel function, first kind.

bessely Computes Bessel function, second kind.

beta Computes the complete Beta function, also called the Euler integral.

boxcox Computes the Box-Cox function.

27-1

GAUSS Language Reference

cos Computes cosine.

cosh Computes hyperbolic cosine.

curve Computes a one-dimensional smoothing curve.

digamma Computes the digamma function.

exp Computes the exponential function of x.

fmod Computes the floating-point remainder of x/y.

gamma Computes gamma function value.

gammacplx Computes gamma function for complex inputs.

gammaii Compute the inverse incomplete gamma function.

ln Computes the natural log of each element.

lnfact Computes natural log of factorial function.

lngammacplx Computes the natural log of the gamma function for complex inputs.

log Computes the log10 of each element.

mbesseli Computes modified and exponentially scaled modified Bessels of
the first kind of the nth order.

nextn, Returns allowable matrix dimensions for computing FFT’s.
nextnevn

optn, Returns optimal matrix dimensions for computing FFT’s.
optnevn

pi Returns π.

polar Graphs data using polar coordinates.

polygamma Computes the polygamma function of order n.

psi Computes the psi (or digamma) function.

sin Computes sine.

27-2

Introduction

Commands by Category

sinh Computes the hyperbolic sine.

spline Computes a two-dimensional interpolatory spline.

sqrt Computes the square root of each element.

tan Computes tangent.

tanh Computes hyperbolic tangent.

tocart Converts from polar to Cartesian coordinates.

topolar Converts from Cartesian to polar coordinates.

trigamma Computes trigamma function.

zeta Computes the Rieman zeta function.

All trigonometric functions take or return values in radian units.

Differentiation and Integration

gradMT Computes numerical gradient.

gradMTm Computes numerical gradient with mask.

gradMTT Computes numerical gradient using available threads.

gradMTTm Computes numerical gradient with mask using available
threads.

gradp, Computes first derivative of a function; gradcplx
allows

gradcplx for complex arguments.

hessMT Computes numerical Hessian.

hessMTg Computes numerical Hessian using gradient procedure.

hessMTgw Computes numerical Hessian using gradient procedure
with weights.

27-3

GAUSS Language Reference

hessMTm Computes numerical Hessian with mask.

hessMTmw Computes numerical Hessian with mask and weights.

hessMTT Computes numerical Hessian using available threads.

hessMTTg Computes numerical Hessian using gradient procedure
with available threads.

hessMTTgw Computes numerical Hessian using gradient procedure
with weights and using available threads.

hessMTTm Computes numerical Hessian with mask and available
threads.

hessMTw Computes numerical Hessian with weights.

hessp, Computes second derivative of a function; hesscplx
hesscplx allows for complex arguments.

intgrat2 Integrates a 2-dimensional function over a user-defined
region.

intgrat3 Integrates a 3-dimensional function over a user-defined
region.

inthp1 Integrates a user-defined function over an infinite
interval.

inthp2 Integrates a user-defined function over the [a,+∞)
interval.

inthp3 Integrates a user-defined function over the [a,+∞)
interval that is oscillatory.

inthp4 Integrates a user-defined function over the [a,b] interval.

inthpControlCreate Creates default inthpControl structure.

intquad1 Integrates a 1-dimensional function.

intquad2 Integrates a 2-dimensional function over a user-defined
rectangular region.

27-4

Introduction

Commands by Category

intquad3 Integrates a 3-dimensional function over a user-defined
rectangular region.

intsimp Integrates by Simpson’s method.

gradp and hessp use a finite difference approximation to compute the first and
second derivatives. Use gradp to calculate a Jacobian.

intquad1, intquad2, and intquad3 use Gaussian quadrature to calculate the
integral of the user-defined function over a rectangular region.

To calculate an integral over a region defined by functions of x and y, use intgrat2
and intgrat3.

To get a greater degree of accuracy than that provided by intquad1, use intsimp for
1-dimensional integration.

Linear Algebra

balance Balances a matrix.

band Extracts bands from a symmetric banded matrix.

bandchol Computes the Cholesky decomposition of a positive definite banded
matrix.

bandcholsol Solves the system of equations Ax = b for x, given the lower triangle
of the Cholesky decomposition of a positive definite banded matrix
A.

bandltsol Solves the system of equations Ax = b for x, where A is a lower
triangular banded matrix.

bandrv Creates a symmetric banded matrix, given its compact form.

bandsolpd Solves the system of equations Ax = b for x, where A is a positive
definite banded matrix.

27-5

GAUSS Language Reference

chol Computes Cholesky decomposition, X = Y ′Y .

choldn Performs Cholesky downdate on an upper triangular matrix.

cholsol Solves a system of equations given the Cholesky factorization of a
matrix.

cholup Performs Cholesky update on an upper triangular matrix.

cond Computes condition number of a matrix.

crout Computes Crout decomposition, X = LU (real matrices only).

croutp Computes Crout decomposition with row pivoting (real matrices
only).

det Computes determinant of square matrix.

detl Computes determinant of decomposed matrix.

hess Computes upper Hessenberg form of a matrix (real matrices only).

inv Inverts a matrix.

invpd Inverts a positive definite matrix.

invswp Computes a generalized sweep inverse.

lapeighb Computes eigenvalues only of a real symmetric or complex
Hermitian matrix selected by bounds.

lapeighi Computes eigenvalues only of a real symmetric or complex
Hermitian matrix selected by index.

lapeighvb Computes eigenvalues and eigenvectors of a real symmetric or
complex Hermitian matrix selected by bounds.

lapeighvi Computes selected eigenvalues and eigenvectors of a real symmetric
or complex Hermitian matrix.

lapgeig Computes generalized eigenvalues for a pair of real or complex
general matrices.

27-6

Introduction

Commands by Category

lapgeigh Computes generalized eigenvalues for a pair of real symmetric or
Hermitian matrices.

lapgeighv Computes generalized eigenvalues and eigenvectors for a pair of real
symmetric or Hermitian matrices.

lapgeigv Computes generalized eigenvalues, left eigenvectors, and right
eigenvectors for a pair of real or complex general matrices.

lapgschur Computes the generalized Schur form of a pair of real or complex
general matrices.

lapgsvdcst Computes the generalized singular value decomposition of a pair of
real or complex general matrices.

lapgsvds Computes the generalized singular value decomposition of a pair of
real or complex general matrices.

lapgsvdst Computes the generalized singular value decomposition of a pair of
real or complex general matrices.

lapsvdcusv Computes the singular value decomposition a real or complex
rectangular matrix, returns compact u and v.

lapsvds Computes the singular values of a real or complex rectangular
matrix.

lapsvdusv Computes the singular value decomposition a real or complex
rectangular matrix.

lu Computes LU decomposition with row pivoting (real and complex
matrices).

null Computes orthonormal basis for right null space.

null1 Computes orthonormal basis for right null space.

orth Computes orthonormal basis for column space x.

pinv Generalized pseudo-inverse: Moore-Penrose.

pinvmt Generalized pseudo-inverse: Moore-Penrose.

27-7

GAUSS Language Reference

qqr QR decomposition: returns Q1 and R.

qqre QR decomposition: returns Q1, R and a permutation vector, E.

qqrep QR decomposition with pivot control: returns Q1, R and E.

qr QR decomposition: returns R.

qre QR decomposition: returns R and E.

qrep QR decomposition with pivot control: returns R and E.

qrsol Solves a system of equations Rx = b given an upper triangular
matrix, typically the R matrix from a QR decomposition.

qrtsol Solves a system of equations R′x = b given an upper triangular
matrix, typically the R matrix from a QR decomposition.

qtyr QR decomposition: returns Q′Y and R.

qtyre QR decomposition: returns Q′Y ,R and E.

qtyrep QR decomposition with pivot control: returns Q′Y ,R and E.

qyr QR decomposition: returns QY and R.

qyre QR decomposition: returns QY, R and E.

qyrep QR decomposition with pivot control: returns QY, R and E.

rank Computes rank of a matrix.

rref Computes reduced row echelon form of a matrix.

schtoc Reduces any 2×2 blocks on the diagonal of the real Schur matrix
returned from schur. The transformation matrix is also updated.

schur Computes Schur decomposition of a matrix (real matrices only).

solpd Solves a system of positive definite linear equations.

svd Computes the singular values of a matrix.

svd1 Computes singular value decomposition, X = US V ′.

27-8

Introduction

Commands by Category

svd2 Computes svd1 with compact U.

svdcusv Computes the singular value decomposition of a matrix so that:
x = u ∗ s ∗ v′ (compact u).

svds Computes the singular values of a matrix.

svdusv Computes the singular value decomposition of a matrix so that:
x = u ∗ s ∗ v′.

The decomposition routines are chol for Cholesky decomposition, crout and
croutp for Crout decomposition, qqr–qyrep for QR decomposition, and
svd–svdusv for singular value decomposition.

null, null1, and orth calculate orthonormal bases.

inv, invpd, solpd, cholsol, qrsol and the “/” operator can all be used to solve
linear systems of equations.

rank and rref will find the rank and reduced row echelon form of a matrix.

det, detl and cond will calculate the determinant and condition number of a matrix.

Eigenvalues

eig Computes eigenvalues of general matrix.

eigh Computes eigenvalues of complex Hermitian or real symmetric
matrix.

eighv Computes eigenvalues and eigenvectors of complex Hermitian or
real symmetric matrix.

eigv Computes eigenvalues and eigenvectors of general matrix.

27-9

GAUSS Language Reference

There are four eigenvalue-eigenvector routines. Two calculate eigenvalues only, and
two calculate eigenvalues and eigenvectors. The three types of matrices handled by
these routines are:

General: eig, eigv
Symmetric or Hermitian: eigh, eighv

Polynomial Operations

polychar Computes characteristic polynomial of a square matrix.

polyeval Evaluates polynomial with given coefficients.

polyint Calculates Nth order polynomial interpolation given known point
pairs.

polymake Computes polynomial coefficients from roots.

polymat Returns sequence powers of a matrix.

polymult Multiplies two polynomials together.

polyroot Computes roots of polynomial from coefficients.

See also recserrc, recsercp, and conv.

Fourier Transforms

dfft Computes discrete 1-D FFT.

dffti Computes inverse discrete 1-D FFT.

fft Computes 1- or 2-D FFT.

ffti Computes inverse 1- or 2-D FFT.

fftm Computes multi-dimensional FFT.

27-10

Introduction

Commands by Category

fftmi Computes inverse multi-dimensional FFT.

fftn Computes 1- or 2-D FFT using prime factor algorithm.

rfft Computes real 1- or 2-D FFT.

rffti Computes inverse real 1- or 2-D FFT.

rfftip Computes inverse real 1- or 2-D FFT from packed format FFT.

rfftn Computes real 1- or 2-D FFT using prime factor algorithm.

rfftnp Computes real 1- or 2-D FFT using prime factor algorithm, returns
packed format FFT.

rfftp Computes real 1- or 2-D FFT, returns packed format FFT.

Random Numbers

rndbeta Computes random numbers with beta distribution.

rndcon Changes constant of the LC random number generator.

rndgam Computes random numbers with gamma distribution.

rndi Returns random integers, 0 <= y < 232.

rndKMbeta Computes beta pseudo-random numbers.

rndKMgam Computes gamma pseudo-random numbers.

rndKMi Returns random integers, 0 <= y < 232.

rndKMn Computes standard normal pseudo-random numbers.

rndKMnb Computes negative binomial pseudo-random numbers.

rndKMp Computes Poisson pseudo-random numbers.

rndKMu Computes uniform pseudo-random numbers.

rndKMvm Computes von Mises pseudo-random numbers.

27-11

GAUSS Language Reference

rndLCbeta Computes beta pseudo-random numbers.

rndLCgam Computes gamma pseudo-random numbers.

rndLCi Returns random integers, 0 <= y < 232.

rndLCn Computes standard normal pseudo-random numbers.

rndLCnb Computes negative binomial pseudo-random numbers.

rndLCp Computes Poisson pseudo-random numbers.

rndLCu Computes uniform pseudo-random numbers.

rndLCvm Computes von Mises pseudo-random numbers.

rndmult Changes multiplier of the LC random number generator.

rndn Computes random numbers with Normal distribution.

rndnb Computes random numbers with negative binomial distribution.

rndp Computes random numbers with Poisson distribution.

rndseed Changes seed of the LC random number generator.

rndu Computes random numbers with uniform distribution.

The random number generator can be seeded. Set the seed using rndseed. For
example:

rndseed 44435667;

x = rndu(1,1);

Fuzzy Conditional Functions

dotfeq Fuzzy . ==

dotfeqmt Fuzzy . ==

27-12

Introduction

Commands by Category

dotfge Fuzzy . >=

dotfgemt Fuzzy . >=

dotfgt Fuzzy . >

dotfgtmt Fuzzy . >

dotfle Fuzzy . <=

dotflemt Fuzzy . <=

dotflt Fuzzy . <

dotfltmt Fuzzy . <

dotfne Fuzzy ./ =

dotfnemt Fuzzy ./ =

feq Fuzzy ==

feqmt Fuzzy ==

fge Fuzzy >=

fgemt Fuzzy >=

fgt Fuzzy >

fgtmt Fuzzy >

fle Fuzzy <=

flemt Fuzzy <=

flt Fuzzy <

fltmt Fuzzy <

fne Fuzzy / =

fnemt Fuzzy / =

27-13

GAUSS Language Reference

The mt commands use an fcmptol argument to control the tolerance used for
comparison.

The non-mt commands use the global variable _fcmptol to control the tolerance used
for comparison. By default, this is 1e-15. The default can be changed by editing the
file fcompare.dec.

Statistical Functions

acf Computes sample autocorrelations.

astd Computes the standard deviation of the elements across
one dimension of an N-dimensional array.

astds Computes the ‘sample’standard deviation of the
elements across one dimension of an N-dimensional
array.

chiBarSquare Computes probability of chi-bar-square statistic.

combinate Computes combinations of n things taken k at a time.

combinated Writes combinations of n things taken k at a time to a
GAUSS data set.

ConScore Computes constrained score statistic and its probability.

conv Computes convolution of two vectors.

corrm Computes correlation matrix of a moment matrix.

corrms Computes sample correlation matrix of a moment
matrix.

corrvc Computes correlation matrix from a variance-
covariance matrix.

corrx Computes correlation matrix.

corrxs Computes sample correlation matrix.

27-14

Introduction

Commands by Category

crossprd Computes cross product.

design Creates a design matrix of 0’s and 1’s.

dstat Computes descriptive statistics of a data set or matrix.

dstatmt Computes descriptive statistics of a data set or matrix.

dstatmtControlCreate Creates default dstatmtControl structure.

gdaDStat Computes descriptive statistics on multiple N×1
variables in a GDA.

gdaDStatMat Computes descriptive statistics on a selection of
columns in a variable in a GDA.

loess Computes coefficients of locally weighted regression.

loessmt Computes coefficients of locally weighted regression.

loessmtControlCreate Creates default loessmtControl structure.

meanc Computes mean value of each column of a matrix.

median Computes medians of the columns of a matrix.

moment Computes moment matrix (x′x) with special handling of
missing values.

momentd Computes moment matrix from a data set.

movingave Computes moving average of a series.

movingaveExpwgt Computes exponentially weighted moving average of a
series.

movingaveWgt Computes weighted moving average of a series.

numCombinations Computes number of combinations of n things taken k
at a time.

ols Computes least squares regression of data set or matrix.

olsmt Computes least squares regression of data set or matrix.

27-15

GAUSS Language Reference

olsmtControlCreate Creates default olsmtControl structure.

olsqr Computes OLS coefficients using QR decomposition.

olsqr2 Computes OLS coefficients, residuals, and predicted
values using QR decomposition.

olsqrmt Computes OLS coefficients using QR decomposition.

pacf Computes sample partial autocorrelations.

princomp Computes principal components of a data matrix.

quantile Computes quantiles from data in a matrix, given
specified probabilities.

quantiled Computes quantiles from data in a data set, given
specified probabilities.

rndvm Computes von Mises pseudo-random numbers.

stdc Computes standard deviation of the columns of a
matrix.

stdsc Computes the ‘sample’ standard deviation of the
elements in each column of a matrix.

toeplitz Computes Toeplitz matrix from column vector.

varmall Computes the log-likelihood of a Vector ARMA model.

varmares Computes the residuals of a Vector ARMA model.

vcm Computes a variance-covariance matrix from a moment
matrix.

vcms Computes a sample variance-covariance matrix from a
moment matrix.

vcx Computes a variance-covariance matrix from a data
matrix.

vcxs Computes a sample variance-covariance matrix from a
data matrix.

27-16

Introduction

Commands by Category

Advanced statistics and optimization routines are available in the GAUSS
Applications programs. (Contact Aptech Systems for more information.)

Optimization and Solution

eqsolve Solves a system of nonlinear equations.

eqSolvemt Solves a system of nonlinear equations.

eqSolvemtControlCreate Creates default eqSolvemtControl structure.

eqSolvemtOutCreate Creates default eqSolvemtOut structure.

eqSolveSet Sets global input used by eqSolve to default values.

linsolve Solves Ax = b using the inverse function.

ltrisol Computes the solution of Lx = b where L is a lower
triangular matrix.

lusol Computes the solution of LUx = b where L is a lower
triangular matrix and U is an upper triangular matrix.

QNewton Optimizes a function using the BFGS descent
algorithm.

QNewtonmt Minimizes an arbitrary function.

QNewtonmtControlCreate Creates default QNewtonmtControl structure.

QNewtonmtOutCreate Creates default QNewtonmtOut structure.

QProg Solves the quadratic programming problem.

QProgmt Solves the quadratic programming problem.

QProgmtInCreate Creates an instance of a structure of type
QProgmtInCreate with the maxit member set to a
default value.

27-17

GAUSS Language Reference

sqpSolve Solves the nonlinear programming problem using a
sequential quadratic programming method.

sqpSolveMT Solves the nonlinear programming problem using a
sequential quadratic programming method.

sqpSolveMTControlCreate Creates an instance of a structure of type
sqpSolveMTcontrol set to default values.

sqpSolveMTlagrangeCreate Creates an instance of a structure of type
sqpSolveMTlagrange set to default values.

sqpSolveMToutCreate Creates an instance of a structure of type
sqpSolveMTout set to default values.

sqpSolveSet Resets global variables used by sqpSolve to default
values.

utrisol Computes the solution of Ux = b where U is an upper
triangular matrix.

Statistical Distributions

cdfBeta Computes integral of beta function.

cdfBetaInv Computes the quantile or inverse of the beta cumulative distribution
function.

cdfBinomial Computes the binomial cumulative distribution function.

cdfBinomialInv Computes the binomial quantile or inverse cumulative distribution
function.

cdfBvn Computes lower tail of bivariate Normal cdf.

cdfBvn2 Returns cdfbvn of a bounded rectangle.

cdfBvn2e Returns cdfbvn of a bounded rectangle.

cdfCauchy Computes the cumulative distribution function for the Cauchy
distribution.

27-18

Introduction

Commands by Category

cdfCauchyinv Computes the Cauchy inverse cumulative distribution function.

cdfChic Computes complement of cdf of χ2.

cdfChii Computes χ2 abscissae values given probability and degrees of
freedom.

cdfChinc Computes integral of noncentral χ2.

cdfExp Computes the cumulative distribution function for the exponential
distribution.

cdfExpInv Computes the exponential inverse cumulative distribution function.

cdfFc Computes complement of cdf of F.

cdfFnc Computes integral of noncentral F.

cdfFncInv Computes the quantile or inverse of noncentral F cumulative
distribution function.

cdfGam Computes integral of incomplete Γ function.

cdfGenPareto Computes the cumulative distribution function for the Generalized
Pareto distribution.

cdfLaplace Computes the cumulative distribution function for the Laplace
distribution.

cdfLaplaceInv Computes the Laplace inverse cumulative distribution function.

cdfMvn Computes multivariate Normal cdf.

cdfMvnce Computes the complement of the multivariate Normal cumulative
distribution function with error management

cdfMvne Computes multivariate Normal cumulative distribution function
with error management

cdfMvn2e Computes the multivariate Normal cumulative distribution function
with error management over the range [a,b]

cdfMvtce Computes complement of multivariate Student’s t cumulative
distribution function with error management

27-19

GAUSS Language Reference

cdfMvte Computes multivariate Student’s t cumulative distribution function
with error management

cdfMvt2e Computes multivariate Student’s t cumulative distribution function
with error management over [a,b]

cdfN Computes integral of Normal distribution: lower tail, or cdf.

cdfN2 Computes interval of Normal cdf.

cdfNc Computes complement of cdf of Normal distribution (upper tail).

cdfNegBinomial Computes the cumulative distribution function for the negative
binomial distribution.

cdfNegBinomialInv Computes the quantile or inverse negative binomial cumulative
distribution function.

cdfNi Computes the inverse of the cdf of the Normal distribution.

cdfRayleigh Computes the Rayleigh cumulative distribution function.

cdfRayleighinv Computes the Rayleigh inverse cumulative distribution function.

cdftc Computes complement of cdf of t-distribution.

cdftci Computes the inverse of the complement of the Student’s t cdf.

cdftnc Computes integral of noncentral t-distribution.

cdftvn Computes lower tail of trivariate Normal cdf.

cdfWeibull Computes the cumulative distribution function for the Weibull
distribution.

cdfWeibullinv Computes the Weibull inverse cumulative distribution function.

erf Computes Gaussian error function.

erfc Computes complement of Gaussian error function.

erfccplx Computes complement of Gaussian error function for complex
inputs.

27-20

Introduction

Commands by Category

erfcplx Computes Gaussian error function for complex inputs.

lncdfbvn Computes natural log of bivariate Normal cdf.

lncdfbvn2 Returns log of cdfbvn of a bounded rectangle.

lncdfmvn Computes natural log of multivariate Normal cdf.

lncdfn Computes natural log of Normal cdf.

lncdfn2 Computes natural log of interval of Normal cdf.

lncdfnc Computes natural log of complement of Normal cdf.

lnpdfmvn Computes multivariate Normal log-probabilities.

lnpdfmvt Computes multivariate Student’s t log-probabilities.

lnpdfn Computes Normal log-probabilities.

lnpdft Computes Student’s t log-probabilities.

pdfCauchy Computes the probability density function for the Cauchy
distribution.

pdfexp Computes the probability density function for the exponential
distribution.

pdfgam Computes the probability density function for the Gamma
distribution.

pdfGenPareto Computes the probability density function for the Generalized
Pareto distribution.

pdfLaplace Computes the probability density function for the Laplace
distribution.

pdflogistic Computes the probability density function for the logistic
distribution.

pdfn Computes standard Normal probability density function.

pdfPoisson Computes the probability density function for the Poisson
distribution.

27-21

GAUSS Language Reference

pdfPoissonInv Computes the quantile or inverse Poisson cumulative distribution
function.

pdfRayleigh Computes the probability density function of the Rayleigh
distribution.

pdfWeibull Computes the probability density function of a Weibull random
variable.

Series and Sequence Functions

recserar Computes autoregressive recursive series.

recsercp Computes recursive series involving products.

recserrc Computes recursive series involving division.

seqa Creates an additive sequence.

seqm Creates a multiplicative sequence.

Precision Control

base10 Converts number to x.xxx and a power of 10.

ceil Rounds up towards +∞.

floor Rounds down towards −∞.

machEpsilon Returns the smallest number such that 1+eps>1.

round Rounds to the nearest integer.

trunc Converts numbers to integers by truncating the fractional portion.

round, trunc, ceil and floor convert floating point numbers into integers. The
internal representation for the converted integer is double precision (64 bits).

Each matrix element in memory requires 8 bytes of memory.

27-22

Introduction

Commands by Category

27.2 Finance Functions

AmericanBinomCall American binomial method Call.

AmericanBinomCall_Greeks American binomial method call Delta, Gamma, Theta,
Vega, and Rho.

AmericanBinomCall_ImpVol Implied volatilities for American binomial method
calls.

AmericanBinomPut American binomial method Put.

AmericanBinomPut_Greeks American binomial method put Delta, Gamma, Theta,
Vega, and Rho.

AmericanBinomPut_ImpVol Implied volatilities for American binomial method puts.

AmericanBSCall American Black and Scholes Call.

AmericanBSCall_Greeks American Black and Scholes call Delta, Gamma,
Omega, Theta, and Vega.

AmericanBSCall_ImpVol Implied volatilities for American Black and Scholes
calls.

AmericanBSPut American Black and Scholes Put.

AmericanBSPut_Greeks American Black and Scholes put Delta, Gamma,
Omega, Theta, and Vega.

AmericanBSPut_ImpVol Implied volatilities for American Black and Scholes
puts.

annualTradingDays Computes number of trading days in a given year.

elapsedTradingDays Computes number of trading days between two dates
inclusively.

EuropeanBinomCall European binomial method call.

EuropeanBinomCall_Greeks European binomial method call Delta, Gamma, Theta,
Vega and Rho.

27-23

GAUSS Language Reference

EuropeanBinomCall_ImpVol Implied volatilities for European binomial method calls.

EuropeanBinomPut European binomial method Put.

EuropeanBinomPut_Greeks European binomial method put Delta, Gamma, Theta,
Vega, and Rho.

EuropeanBinomPut_ImpVol Implied volatilities for European binomial method puts.

EuropeanBSCall European Black and Scholes Call.

EuropeanBSCall_Greeks European Black and Scholes call Delta, Gamma,
Omega, Theta, and Vega.

EuropeanBSCall_ImpVol Implied volatilities for European Black and Scholes
calls.

EuropeanBSPut European Black and Scholes Put.

EuropeanBSPut_Greeks European Black and Scholes put Delta, Gamma,
Omega, Theta, and Vega.

EuropeanBSPut_ImpVol Implied volatilities for European Black and Scholes
puts.

getNextTradingDay Returns the next trading day.

getNextWeekDay Returns the next day that is not on a weekend.

getPreviousTradingDay Returns the previous trading day.

getPreviousWeekDay Returns the previous day that is not on a weekend.

27.3 Matrix Manipulation

Creating Vectors and Matrices

eye Creates identity matrix.

let Creates matrix from list of constants.

27-24

Introduction

Commands by Category

matalloc Allocates a matrix with unspecified contents.

matinit Allocates a matrix with specified fill value.

ones Creates a matrix of ones.

zeros Creates a matrix of zeros.

Use zeros, ones, or matinit to create a constant vector or matrix.

Matrices can also be loaded from an ASCII file, from a GAUSS matrix file, or from a
GAUSS data set. (See F I/0, Chapter 17, for more information.)

Loading and Storing Matrices

asciiload Loads data from a delimited ASCII text file into an N×1 vector.

dataload Loads matrices, N-dimensional arrays, strings and string arrays from
a disk file.

datasave Saves matrices, N-dimensional arrays, strings and string arrays to a
disk file.

load, Loads matrix from ASCII or matrix file.
loadm

loadd Loads matrix from data set.

loadf Loads function from disk file.

loadk Loads keyword from disk file.

save Saves symbol to disk file.

saved Saves matrix to data set.

27-25

GAUSS Language Reference

Size, Ranking, and Range

cols Returns number of columns in a matrix.

colsf Returns number of columns in an open data set.

counts Returns number of elements of a vector falling in specified ranges.

countwts Returns weighted count of elements of a vector falling in specified
ranges.

cumprodc Computes cumulative products of each column of a matrix.

cumsumc Computes cumulative sums of each column of a matrix.

indexcat Returns indices of elements falling within a specified range.

maxc Returns largest element in each column of a matrix.

maxindc Returns row number of largest element in each column of a matrix.

minc Returns smallest element in each column of a matrix.

minindc Returns row number of smallest element in each column of a matrix.

prodc Computes the product of each column of a matrix.

rankindx Returns rank index of N×1 vector. (Rank order of elements in
vector).

rows Returns number of rows in a matrix.

rowsf Returns number of rows in an open data set.

sumc Computes the sum of each column of a matrix.

sumr Computes the sum of each row of a matrix.

These functions are used to find the minimum, maximum and frequency counts of
elements in matrices.

Use rows and cols to find the number of rows or columns in a matrix. Use rowsf
and colsf to find the numbers of rows or columns in an open GAUSS data set.

27-26

Introduction

Commands by Category

Miscellaneous Matrix Manipulation

complex Creates a complex matrix from two real matrices.

delif Deletes rows from a matrix using a logical expression.

diag Extracts the diagonal of a matrix.

diagrv Puts a column vector into the diagonal of a matrix.

exctsmpl Creates a random subsample of a data set, with replacement.

imag Returns the imaginary part of a complex matrix.

indcv Checks one character vector against another and returns the indices
of the elements of the first vector in the second vector.

indnv Checks one numeric vector against another and returns the indices
of the elements of the first vector in the second vector.

intrsect Returns the intersection of two vectors.

lowmat Returns the main diagonal and lower triangle.

lowmat1 Returns a main diagonal of 1’s and the lower triangle.

putvals Inserts values into a matrix or N-dimensional array.

real Returns the real part of a complex matrix.

reshape Reshapes a matrix to new dimensions.

rev Reverses the order of rows of a matrix.

rotater Rotates the rows of a matrix, wrapping elements as necessary.

selif Selects rows from a matrix using a logical expression.

setdif Returns elements of one vector that are not in another.

shiftr Shifts rows of a matrix, filling in holes with a specified value.

submat Extracts a submatrix from a matrix.

subvec Extracts an N×1 vector of elements from an N×K matrix.

27-27

GAUSS Language Reference

trimr Trims rows from top or bottom of a matrix.

union Returns the union of two vectors.

upmat Returns the main diagonal and upper triangle.

upmat1 Returns a main diagonal of 1’s and the upper triangle.

vec Stacks columns of a matrix to form a single column.

vech Reshapes the lower triangular portion of a symmetric matrix into a
column vector.

vecr Stacks rows of a matrix to form a single column.

vget Extracts a matrix or string from a data buffer constructed with vput.

vlist Lists the contents of a data buffer constructed with vput.

vnamecv Returns the names of the elements of a data buffer constructed with
vput.

vput Inserts a matrix or string into a data buffer.

vread Reads a string or matrix from a data buffer constructed with vput.

vtypecv Returns the types of the elements of a data buffer constructed with
vput.

xpnd Expands a column vector into a symmetric matrix.

vech and xpnd are complementary functions. vech provides an efficient way to store
a symmetric matrix; xpnd expands the stored vector back to its original symmetric
matrix.

delif and selif are complementary functions. delif deletes rows of a matrix
based on a logical comparison; selif selects rows based on a logical comparison.

lowmat, lowmat1, upmat, and upmat1 extract triangular portions of a matrix.

To delete rows which contain missing values from a matrix in memory, see packr.

27-28

Introduction

Commands by Category

27.4 Sparse Matrix Handling

denseToSp Converts a dense matrix to a sparse matrix.

denseToSpRE Converts a dense matrix to a sparse matrix using a relative epsilon.

packedToSp Creates a sparse matrix from a packed matrix of non-zero values and
row and column indices.

spBiconjGradSol Solves the system of linear equations Ax=b using the biconjugate
gradient method.

spChol Computes the LL′ decomposition of a sparse matrix.

spConjGradSol Solves the system of linear equations Ax=b for symmetric matrices
using the conjugate gradient method.

spCreate Creates a sparse matrix from vectors of non-zero values, row
indices, and column indices.

spDenseSubmat Returns a dense submatrix of a sparse matrix.

spDiagRvMat Inserts submatrices along the diagonal of a sparse matrix.

spEigv Computes a specified number of eigenvalues and eigenvectors of a
square, sparse matrix.

spEye Creates a sparse identity matrix.

spGetNZE Returns the non-zero values in a sparse matrix, as well as their
corresponding row and column indices.

spGetNumNZE Returns the number of non-zero elements in a sparse matrix.

spLDL Computes the LDL decomposition of a symmetric sparse matrix.

spLU Computes the LU decomposition of a sparse matrix with partial
pivoting.

spOnes Generates a sparse matrix containing only ones and zeros

spSubmat Returns a sparse submatrix of sparse matrix.

27-29

GAUSS Language Reference

spToDense Converts a sparse matrix to a dense matrix.

spTrTDense Multiplies a sparse matrix transposed by a dense matrix.

spTScalar Multiplies a sparse matrix by a scalar.

spZeros Creates a sparse matrix containing no non-zero values.

27.5 N-Dimensional Array Handling

Creating Arrays

aconcat Concatenates conformable matrices and arrays in a user-specified
dimension.

aeye Creates an N-dimensional array in which the planes described by the
two trailing dimensions of the array are equal to the identity.

areshape Reshapes a scalar, matrix, or array into an array of user-specified
size.

arrayalloc Creates an N-dimensional array with unspecified contents.

arrayinit Creates an N-dimensional array with a specified fill value.

mattoarray Converts a matrix to a type array.

Size, Ranking and Range

amax Moves across one dimension of an N-dimensional array and finds
the largest element.

amin Moves across one dimension of an N-dimensional array and finds
the smallest element.

asum Computes the sum across one dimension of an N-dimensional array.

getdims Gets the number of dimensions in an array.

getorders Gets the vector of orders corresponding to an array.

27-30

Introduction

Commands by Category

Setting and Retrieving Data in an Array

aconcat Concatenates conformable matrices and arrays in a user-specified
dimension.

areshape Reshapes a scalar, matrix, or array into an array of user-specified
size.

arraytomat Changes an array to type matrix.

getarray Gets a contiguous subarray from an N-dimensional array.

getmatrix Gets a contiguous matrix from an N-dimensional array.

getmatrix4D Gets a contiguous matrix from a 4-dimensional array.

getscalar3D Gets a scalar from a 3-dimensional array.

getscalar4D Gets a scalar form a 4-dimensional array.

putarray Puts a contiguous subarray into an N-dimensional array and returns
the resulting array.

setarray Sets a contiguous subarray of an N-dimensional array.

Miscellaneous Array Functions

amean Computes the mean across one dimension of an N-dimensional
array.

amult Performs matrix multiplication on the planes described by the two
trailing dimensions of N-dimensional arrays.

arrayindex Saves a matrix of structures to a file on the disk.

atranspose Transposes an N-dimensional array.

loopnextindex Increments an index vector to the next logical index and jumps to
the specified label if the index did not wrap to the beginning.

nextindex Returns the index of the next element or subarray in an array.

27-31

GAUSS Language Reference

previousindex Returns the index of the previous element or subarray in an array.

singleindex Converts a vector of indices for an N-dimensional array to a scalar
vector index.

walkindex Walks the index of an array forward or backward through a specified
dimension.

27.6 Structures

dsCreate Creates an instance of a structure of type DS set to default values.

loadstruct Loads a structure into memory from a file on the disk.

pvCreate Returns an initialized an instance of structure of type PV.

pvGetIndex Gets row indices of a matrix in a parameter vector.

pvGetParNames Generates names for parameter vector stored in structure of type PV.

pvGetParVector Retrieves parameter vector from structure of type PV.

pvLength Returns the length of a parameter vector.

pvList Retrieves names of packed matrices in structure of type PV.

pvPack Packs general matrix into a structure of type PV with matrix name.

pvPacki Packs general matrix or array into a PV instance with name and
index.

pvPackm Packs general matrix into a structure of type PV with a mask and
matrix name.

pvPackmi Packs general matrix or array into a PV instance with a mask, name,
and index.

pvPacks Packs symmetric matrix into a structure of type PV.

pvPacksi Packs symmetric matrix into a PV instance with matrix name and
index.

27-32

Introduction

Commands by Category

pvPacksm Packs symmetric matrix into a structure of type PV with a mask.

pvPacksmi Packs symmetric matrix into a PV instance with a mask, matrix
name, and index.

pvPutParVector Inserts parameter vector into structure of type PV.

pvTest Tests an instance of structure of type PV to determine if it is a proper
structure of type PV.

pvUnpack Unpacks matrices stored in a structure of type PV.

savestruct Saves a matrix of structures to a file on the disk.

27.7 Data Handling (I/0)

Spreadsheets

SpreadsheetReadM Reads and writes Excel files.

SpreadsheetReadSA Reads and writes Excel files.

SpreadsheetWrite Reads and writes Excel files.

xlsGetSheetCount Gets the number of sheets in an Excel spreadsheet.

xlsGetSheetSize Gets the size (rows and columns) of a specified sheet in
an Excel spreadsheet.

xlsGetSheetTypes Gets the cell format types of a row in an Excel
spreadsheet.

xlsMakeRange Builds an Excel range string from a row/column pair.

xlsreadm Reads from an Excel spreadsheet, into a GAUSS
matrix.

xlsreadsa Reads from an Excel spreadsheet, into a GAUSS string
array or string.

27-33

GAUSS Language Reference

xlsWrite Writes a GAUSS matrix, string, or string array to an
Excel spreadsheet.

xlswritem Writes a GAUSS matrix to an Excel spreadsheet.

xlswritesa Writes a GAUSS string or string array to an Excel
spreadsheet.

Text Files

fcheckerr Gets the error status of a file.

fclearerr Gets the error status of a file, then clears it.

fflush Flushes a file’s output buffer.

fgets Reads a line of text from a file.

fgetsa Reads lines of text from a file into a string array.

fgetsat Reads lines of text from a file into a string array.

fgetst Reads a line of text from a file.

fopen Opens a file.

fputs Writes strings to a file.

fputst Writes strings to a file.

fseek Positions the file pointer in a file.

fstrerror Returns an error message explaining the cause of the most recent file
I/O error.

ftell Gets the position of the file pointer in a file.

27-34

Introduction

Commands by Category

GAUSS Data Archives

gdaAppend Appends data to a variable in a GDA.

gdaCreate Creates a GDA.

gdaDStat Computes descriptive statistics on multiple N×1
variables in a GDA.

gdaDStatMat Computes descriptive statistics on a selection of
columns in a variable in a GDA.

gdaGetIndex Gets the index of a variable in a GDA.

gdaGetName Gets the name of a variable in a GDA.

gdaGetNames Gets the names of all the variables in a GDA.

gdaGetOrders Gets the orders of a variable in a GDA.

gdaGetType Gets the type of a variable in a GDA.

gdaGetTypes Gets the types of all the variables in a GDA.

gdaGetVarInfo Gets information about all of the variables in a GDA.

gdaIsCplx Checks to see if a variable in a GDA is complex.

gdaLoad Loads variables in a GDA into the workspace.

gdaPack Packs the data in a GDA, removing all empty bytes

gdaRead Gets a variable from a GDA.

gdaReadByIndex Gets a variable from a GDA, given a variable index.

gdaReadSome Reads part of a variable from a GDA.

gdaReadSparse Gets a sparse matrix from a GAUSS Data Archive.

gdaReadStruct Gets a structure from a GAUSS Data Archive.

27-35

GAUSS Language Reference

gdaReportVarInfo Gets information about all of the variables in a GAUSS
Data Archive and returns it in a string array formatted
for printing.

gdaSave Writes variables in a workspace to a GDA.

gdaUpdate Updates a variable in a GDA.

gdaUpdateAndPack Updates a variable in a GDA, leaving no empty bytes if
the updated variable is smaller or larger than the
variable it is replacing.

gdaWrite Writes a variable to a GDA.

gdaWrite32 Writes a variable to a GDA using 32-bit system file
write commands.

gdaWriteSome Overwrites part of a variable in a GDA.

These functions all operate on GAUSS Data Archives (GDA’s). For more information, see
GAUSS D A, Section 17.3.

Data Sets

close Closes an open data set (.dat file).

closeall Closes all open data sets.

create Creates and opens a data set.

datacreate Creates a v96 real data set.

datacreatecomplex Creates a v96 complex data set.

datalist Lists selected variables from a data set.

dataopen Opens a data set.

eof Tests for end of file.

27-36

Introduction

Commands by Category

getnr Computes number of rows to read per iteration for a
program that reads data from a disk file in a loop.

getnrmt Computes number of rows to read per iteration for a
program that reads data from a disk file in a loop.

iscplxf Returns whether a data set is real or complex.

loadd Loads a small data set.

open Opens an existing data set.

readr Reads rows from open data set.

saved Creates small data sets.

seekr Moves pointer to specified location in open data set.

tempname Creates a temporary file with a unique name.

typef Returns the element size (2, 4 or 8 bytes) of data in
open data set.

writer Writes matrix to an open data set.

These functions all operate on GAUSS data sets (.dat files). For more information,
see F I/O, Chapter 17.

To create a GAUSS data set from a matrix in memory, use saved. To create a data set
from an existing one, use create. To create a data set from a large ASCII file, use the
ATOG utility (see ATOG, Chapter 23).

Data sets can be opened, read from, and written to using open, readr, seekr and
writer. Test for the end of a file using eof, and close the data set using close or
closeall.

The data in data sets may be specified as character or numeric. (See File I/O,
Chapter 17.) See also create and vartypef.

typef returns the element size of the data in an open data set.

27-37

GAUSS Language Reference

Data Set Variable Names

getname Returns column vector of variable names in a data set.

getnamef Returns string array of variable names in a data set.

indices Retrieves column numbers and names from a data set.

indices2 Similar to indices, but matches columns with names for dependent
and independent variables.

indicesf Retrieves column numbers and names from a data set.

indicesfn Retrieves column numbers and names from a data set.

makevars Decomposes matrix to create column vectors.

setvars Creates globals using the names in a data set.

vartypef Returns column vector of variable types (numeric/character) in a
data set.

Use getnamef to retrieve the variable names associated with the columns of a
GAUSS data set and vartypef to retrieve the variable types. Use makevars and
setvars to create global vectors from those names. Use indices and indices2 to
match names with column numbers in a data set.

Data Coding

code Codes the data in a vector by applying a logical set of rules to assign
each data value to a category.

code Creates new variables with different values based on a set of logical
(dataloop) expressions.

dataloop Specifies the beginning of a data loop.
(dataloop)

delete Removes specific rows in a data loop based on a logical expression.

27-38

Introduction

Commands by Category

(dataloop)

drop Specifies columns to be dropped from the ouput data set in a data
(dataloop) loop.

dummy Creates a dummy matrix, expanding values in vector to rows with
ones in columns corresponding to true categories and zeros
elsewhere.

dummybr Similar to dummy.

dummydn Similar to dummy.

extern Allows access to matrices or strings in memory from inside a data
(dataloop) loop.

isinfnanmiss Returns true if the argument contains an infinity, NaN, or missing
value.

ismiss Returns 1 if matrix has any missing values, 0 otherwise.

keep Specifies columns (variables) to be saved to the output data set in a
(dataloop) data loop.

lag Lags variables a specified number of periods.
(dataloop)

lag1 Lags a matrix by one time period for time series analysis.

lagn Lags a matrix a specified number of time periods for time series
analysis.

listwise Controls listwise deletion of missing values.
(dataloop)

make Specifies the creation of a new variable within a data loop.
(dataloop)

miss Changes specified values to missing value code.

missex Changes elements to missing value using logical expression.

missrv Changes missing value codes to specified values.

27-39

GAUSS Language Reference

msym Sets symbol to be interpreted as missing value.

outtyp Specifies the precision of the output data set.

(dataloop)

packr Delete rows with missing values.

recode Similar to code, but leaves the original data in place if no condition
is met.

recode Changes the value of a variable with different values based on a set

(dataloop) of logical expressions.

scalinfnanmiss Returns true if the argument is a scalar infinity, NaN, or missing
value.

scalmiss Tests whether a scalar is the missing value code.

select Selects specific rows (observations) in a data loop based on a logical

(dataloop) expression.

subscat Simpler version of recode, but uses ascending bins instead of
logical conditions.

substute Similar to recode, but operates on matrices.

vector Specifies the creation of a new variable within a data loop.

(dataloop)

code, recode, and subscat allow the user to code data variables and operate on
vectors in memory. substute operates on matrices, and dummy, dummybr and
dummydn create matrices.

missex, missrv and miss should be used to recode missing values.

27-40

Introduction

Commands by Category

Sorting and Merging

intrleav Produces one large sorted data file from two smaller sorted files
having the same keys.

intrleavsa Interleaves the rows of two string arrays that have been sorted on a
common column.

mergeby Produces one large sorted data file from two smaller sorted files
having a single key column in common.

mergevar Accepts a list of names of global matrices, and concatenates the
corresponding matrices horizontally to form a single matrix.

sortc Quick-sorts rows of matrix based on numeric key.

sortcc Quick-sorts rows of matrix based on character key.

sortd Sorts data set on a key column.

sorthc Heap-sorts rows of matrix based on numeric key.

sorthcc Heap-sorts rows of matrix based on character key.

sortind Returns a sorted index of a numeric vector.

sortindc Returns a sorted index of a character vector.

sortmc Sorts rows of matrix on the basis of multiple columns.

sortr Sorts rows of a matrix of numeric data.

sortrc Sorts rows of a matrix of character data.

uniqindx Returns a sorted unique index of a vector.

uniqindxsa Computes the sorted index of a string vector, omitting duplicate
elements.

unique Removes duplicate elements of a vector.

uniquesa Removes duplicate elements from a string vector.

27-41

GAUSS Language Reference

sortc, sorthc, and sortind operate on numeric data only. sortcc, sorthcc, and
sortindc operate on character data only.

sortd, sortmc, unique, and uniqindx operate on both numeric and character data.

Use sortd to sort the rows of a data set on the basis of a key column.

Both intrleav and mergeby operate on data sets.

27.8 Compiler Control

#define Defines a case-insensitive text-replacement or flag variable.

#definecs Defines a case-sensitive text-replacement or flag variable.

#else Alternates clause for #if-#else-#endif code block.

#endif End of #if-#else-#endif code block.

#ifdef Compiles code block if a variable has been #define’d.

#iflight Compiles code block if running GAUSS Light.

#ifndef Compiles code block if a variable has not been #define’d.

#ifos2win Compiles code block if running Windows.

#ifunix Compiles code block if running UNIX.

#include Includes code from another file in program.

#linesoff Compiles program without line number and file name records.

#lineson Compiles program with line number and file name records.

#srcfile Inserts source file name record at this point (currently used when
doing data loop translation).

#srcline Inserts source file line number record at this point (currently used
when doing data loop translation).

27-42

Introduction

Commands by Category

#undef Undefines a text-replacement or flag variable.

These commands are compiler directives. That is, they do not generate GAUSS
program instructions; rather, they are instructions that tell GAUSS how to process a
program during compilation. They determine what the final compiled form of a
program will be. They are not executable statements and have no effect at run-time.
(See C D, Section 6.4, for more information.)

27.9 Multi-Threading

ThreadBegin Marks beginning of a block of code to be executed as a thread.

ThreadEnd Marks end of a block of code to be executed as a thread.

ThreadJoin Completes definition of a set of threads, waits for their work.

ThreadStat Marks a single statement to be executed as a thread.

Together, ThreadBegin/ThreadEnd and ThreadStat define a set of threads that will
execute simultaneously. ThreadJoin completes the definition of that set.
ThreadJoin waits for the threads in the set to finish their calculations, the results of
which are then available for further use.

ThreadBegin; // Thread 1

y = x’x;

z = y’y;

ThreadEnd;

ThreadBegin; // Thread 2

q = r’r;

r = q’q;

ThreadEnd;

ThreadStat n = m’m; // Thread 3

ThreadStat p = o’o; // Thread 4

ThreadJoin; // waits for Threads 1-4 to finish

b = z + r + n’p; // Using the results

27-43

GAUSS Language Reference

27.10 Program Control

Execution Control

call Calls function and discards return values.

end Terminates a program and closes all files.

pause Pauses for the specified time.

run Runs a program in a text file.

sleep Sleeps for the specified time.

stop Stops a program and leaves files open.

system Quits and returns to the OS.

Both stop and end will terminate the execution of a program; end will close all open
files, and stop will leave those files open. Neither stop nor end is required in a
GAUSS program.

Branching

goto Unconditional branching.

if...endif Conditional branching.

pop Retrieves goto arguments.

if iter > itlim;

goto errout("Iteration limit exceeded");

elseif iter =\,= 1;

j = setup(x,y);

else;

j = iterate(x,y);

27-44

Introduction

Commands by Category

endif;

.

.

.

errout:

pop errmsg;

print errmsg;

end;

Looping

break Jumps out the bottom of a do or for loop.

continue Jumps to the top of a do or for loop.

do while...endo Executes a series of statements in a loop as long as a given
expression is TRUE (or FALSE).

do until...endo Loops if FALSE.

for...endfor Loops with integer counter.

iter = 0;

do while dif > tol;

{ x,x0 } = eval(x,x0);

dif = abs(x-x0);

iter = iter + 1;

if iter > maxits;

break;

endif;

if not prtiter;

continue;

endif;

format /rdn 1,0;

print "Iteration: " iter;;

format /re 16,8;

27-45

GAUSS Language Reference

print ", Error: " maxc(dif);

endo;

for i (1, cols(x), 1);

for j (1, rows(x), 1);

x[i,j] = x[i,j] + 1;

endfor;

endfor;

Subroutines

gosub Branches to subroutine.

pop Retrieves gosub arguments.

return Returns from subroutine.

Arguments can be passed to subroutines in the branch to the subroutine label and then
popped, in first-in-last-out order, immediately following the subroutine label
definition. See gosub.

Arguments can then be returned in an analogous fashion through the return
statement.

Procedures, Keywords, and Functions

endp Terminates a procedure definition.

fn Allows user to create one-line functions.

keyword Begins the definition of a keyword procedure. Keywords are
user-defined functions with local or global variables.

local Declares variables local to a procedure.

proc Begins definition of multi-line procedure.

27-46

Introduction

Commands by Category

retp Returns from a procedure.

Here is an example of a GAUSS procedure:

proc (3) = crosprod(x,y);

local r1, r2, r3;

r1 = x[2,.].*y[3,.]-x[3,.].*y[2,.];

r2 = x[3,.].*y[1,.]-x[1,.].*y[3,.];

r3 = x[1,.].*y[2,.]-x[2,.].*y[1,.];

retp(r1,r2,r3);

endp;

The “(3) = ” indicates that the procedure returns three arguments. All local variables,
except those listed in the argument list, must appear in the local statement.
Procedures may reference global variables. There may be more than one retp per
procedure definition; none is required if the procedure is defined to return 0
arguments. The endp is always necessary and must appear at the end of the procedure
definition. Procedure definitions cannot be nested. The syntax for using this example
function is

{ a1,a2,a3 } = crosprod(u,v);

See P K, Chapter 8, and L, Chapter 15, for details.

Libraries

declare Initializes variables at compile time.

external External symbol definitions.

lib Builds or updates a GAUSS library.

library Sets up list of active libraries.

27-47

GAUSS Language Reference

call allows functions to be called when return values are not needed. This is
especially useful if a function produces printed output (dstat, ols for example) as
well as return values.

Compiling

compile Compiles and saves a program to a .gcg file.

#include Inserts code from another file into a GAUSS program.

loadp Loads compiled procedure.

save Saves the compiled image of a procedure to disk.

saveall Saves the contents of the current workspace to a file.

use Loads previously compiled code.

GAUSS procedures and programs may be compiled to disk files. By then using this
compiled code, the time necessary to compile programs from scratch is eliminated.
Use compile to compile a command file. All procedures, matrices and strings
referenced by that program will be compiled as well.

Stand-alone applications may be created by running compiled code under the GAUSS
Run-Time Module. Contact Aptech Systems for more information on this product.

To save the compiled images of procedures that do not make any global references,
use save. This will create an .fcg file. To load the compiled procedure into memory,
use loadp. (This is not recommended because of the restriction on global references
and the need to explicitly load the procedure in each program that references it. It is
included here to maintain backward compatibility with previous versions.)

Miscellaneous Program Control

gausset Resets the global control variables declared in gauss.dec.

sysstate Gets or sets general system parameters.

27-48

Introduction

Commands by Category

27.11 OS Functions and File Management

cdir Returns current directory.

ChangeDir Changes directory in program.

chdir Changes directory interactively.

DeleteFile Deletes files.

dlibrary Dynamically links and unlinks shared libraries.

dllcall Calls functions located in dynamic libraries.

dos Provides access to the operating system from within
GAUSS.

envget Gets an environment string.

exec Executes an executable program file.

execbg Provides access to the operating system from within
GAUSS.

fileinfo Takes a file specification, returns names and
information of files that match.

filesa Takes a file specification, returns names of files that
match.

getpath Returns an expanded filename including the drive and
path.

searchsourcepath Searches the source path and (if specified) the src
subdirectory of the GAUSS installation directory for a
specified file.

shell Shells to OS.

27-49

GAUSS Language Reference

27.12 Workspace Management

clear Sets matrices equal to 0.

clearg Sets global symbols to 0.

delete Deletes specified global symbols.

hasimag Examines matrix for nonzero imaginary part.

iscplx Returns whether a matrix is real or complex.

maxbytes Returns maximum memory to be used.

maxvec Returns maximum allowed vector size.

new Clears current workspace.

show Displays global symbol table.

type Returns type of argument (matrix or string).

typecv Returns types of symbols (argument contains the names of the
symbols to be checked).

When working with limited workspace, it is a good idea to clear large matrices that
are no longer needed by your program.

27.13 Error Handling and Debugging

debug Executes a program under the source level debugger.

error Creates user-defined error code.

errorlog Sends error message to screen and log file.

#linesoff Omits line number and file name records from program.

#lineson Includes line number and file name records in program.

27-50

Introduction

Commands by Category

scalerr Tests for a scalar error code.

trace Traces program execution for debugging.

trap Controls trapping of program errors.

trapchk Examines the trap flag.

To trace the execution of a program, use trace.

User-defined error codes may be generated using error.

27.14 String Handling

chrs Converts ASCII values to a string.

convertsatostr Converts a 1×1 string array to a string.

convertstrtosa Converts a string to a 1×1 string array.

cvtos Converts a character vector to a string.

ftocv Converts an N×K matrix to a character matrix.

ftos Converts a floating point scalar to string.

ftostrC Converts a matrix to a string array using a C language format
specification.

getf Loads ASCII or binary file into string.

indsav Checks one string array against another and returns

intrsectsa Returns the intersection of two string vectors, with duplicates
removed. the indices of the first string array in the second string
array.

loads Loads a string file (.fst file).

27-51

GAUSS Language Reference

lower Converts a string to lowercase.

parse Parses a string, returning a character vector of tokens.

putf Writes a string to disk file.

stocv Converts a string to a character vector.

stof Converts a string to floating point numbers.

strcombine Converts an N×M string array to an N×1 string vector by combining
each element in a column separated by a user-defined delimiter
string.

strindx Finds starting location of one string in another string.

strlen Returns length of a string.

strput Lays a substring over a string.

strrindx Finds starting location of one string in another string, searching
from the end to the start of the string.

strsect Extracts a substring of a string.

strsplit Splits an N×1 string vector into an N×K string array of the
individual tokens.

strsplitPad Splits an N×1 string vector into an N×K string array of the
individual tokens. Pads on the right with null strings.

strtof Converts a string array to a numeric matrix.

strtofcplx Converts a string array to a complex numeric matrix.

strtriml Strips all whitespace characters from the left side of each element in
a string array.

strtrimr Strips all whitespace characters from the right side of each element
in a string array.

strtrunc Truncates all elements of a string array to not longer than the
specified number of characters.

27-52

Introduction

Commands by Category

strtruncl Truncates the left side of all elements of a string array by a
user-specified number of characters.

strtruncpad Truncates all elements of a string array to the specified number of
characters, adding spaces on the end as needed to achieve the exact
length.

strtruncr Truncates the right side of all elements of a string array by a
user-specified number of characters.

token Extracts the leading token from a string.

upper Changes a string to uppercase.

vals Converts a string to ASCII values.

varget Accesses the global variable named by a string.

vargetl Accesses the local variable named by a string.

varput Assigns a global variable named by a string.

varputl Assigns a local variable named by a string.

strlen, strindx, strrindx, and strsect can be used together to parse strings.

Use ftos to print to a string.

To create a list of generic variable names (X1,X2,X3,X4,... for example), use ftocv.

27.15 Time and Date Functions

date Returns current system date.

datestr Formats date as “mm/dd/yy”.

datestring Formats date as “mm/dd/yyyy”.

datestrymd Formats date as “yyyymmdd”.

27-53

GAUSS Language Reference

dayinyr Returns day number of a date.

dayofweek Returns day of week.

dtdate Creates a matrix in DT scalar format.

dtday Creates a matrix in DT scalar format containing only the year,
month, and day. Time of day information is zeroed out.

dttime Creates a matrix in DT scalar format containing only the hour,
minute, and second. The date information is zeroed out.

dttodtv Converts DT scalar format to DTV vector format.

dttostr Converts a matrix containing dates in DT scalar format to a string
array.

dttoutc Converts DT scalar format to UTC scalar format.

dtvnormal Normalizes a date and time (DTV) vector.

dtvtodt Converts DTV vector format to DT scalar format.

dtvtoutc Converts DTV vector format to UTC scalar format.

etdays Difference between two times in days.

ethsec Difference between two times in hundredths of a second.

etstr Converts elapsed time to string.

hsec Returns elapsed time since midnight in hundredths of a second.

strtodt Converts a string array of dates to a matrix in DT scalar format.

time Returns current system time.

timedt Returns system date and time in DT scalar format.

timestr Formats time as “hh:mm:ss”.

timeutc Returns the number of seconds since January 1, 1970 Greenwich
Mean Time.

27-54

Introduction

Commands by Category

todaydt Returns system date in DT scalar format. The time returned is
always midnight (00:00:00), the beginning of the returned day.

utctodt Converts UTC scalar format to DT scalar format.

utctodtv Converts UTC scalar format to DTV vector format.

Use hsec to time segments of code. For example,

et = hsec;

x = y*y;

et = hsec - et;

will time the GAUSS multiplication operator.

27.16 Console I/O

con Requests console input, creates matrix.

cons Requests console input, creates string.

key Gets the next key from the keyboard buffer. If buffer is empty,
returns a 0.

keyav Checks if keystroke is available.

keyw Gets the next key from the keyboard buffer. If buffer is empty, waits
for a key.

wait Waits for a keystroke.

waitc Flushes buffer, then waits for a keystroke.

key can be used to trap most keystrokes. For example, the following loop will trap the
ALT-H key combination:

27-55

GAUSS Language Reference

kk = 0;

do until kk =\,= 1035;

kk = key;

endo;

Other key combinations, function keys and cursor key movement can also be trapped.
See key.

cons and con can be used to request information from the console. keyw, wait, and
waitc will wait for a keystroke.

27.17 Output Functions

Text Output

cls Clears the window.

comlog Controls interactive command logging.

csrcol Gets column position of cursor on window.

csrlin Gets row position of cursor on window.

ed Accesses an alternate editor.

edit Edits a file with the GAUSS editor.

format Defines format of matrix printing.

formatcv Sets the character data format used by printfmt.

formatnv Sets the numeric data format used by printfmt.

header Prints a header for a report.

headermt Prints a header for a report.

locate Positions the cursor on the window.

27-56

Introduction

Commands by Category

output Redirects print statements to auxiliary output.

outwidth Sets line width of auxiliary output.

print Prints to window.

printdos Prints a string for special handling by the OS.

printfm Prints matrices using a different format for each column.

printfmt Prints character, numeric, or mixed matrix using a default format
controlled by the functions formatcv and formatnv.

satostrC Copies from one string array to another using a C language format
specifier string for each element.

screen [[on|off]] Directs/suppresses print statements to window.

tab Positions the cursor on the current line.

The results of all printing can be sent to an output file using output. This file can
then be printed or ported as an ASCII file to other software.

To produces boxes, etc. using characters from the extended ASCII set, use chrs.

DOS Compatibility Windows

doswin Opens the DOS compatibility window with default settings.

DOSWinCloseall Closes the DOS compatibility window.

DOSWinOpen Opens the DOS compatibility window and gives it the specified title
and attributes.

27.18 Graphics

This section summarizes all procedures and global variables available within the Publication
Quality Graphics (PQG) System. A general usage description will be found in P
Q G, Chapter 21.

27-57

GAUSS Language Reference

Graph Types

bar Generates bar graph.

box Graphs data using the box graph percentile method.

contour Graphs contour data.

draw Supplies additional graphic elements to graphs.

hist Computes and graphs frequency histogram.

histf Graphs a histogram given a vector of frequency counts.

histp Graphs a percent frequency histogram of a vector.

loglog Graphs X,Y using logarithmic X and Y axes.

logx Graphs X,Y using logarithmic X axis.

logy Graphs X,Y using logarithmic Y axis.

surface Graphs a 3-D surface.

xy Graphs X,Y using Cartesian coordinate system.

xyz Graphs X,Y,Z using 3-D Cartesian coordinate system.

Axes Control and Scaling

_paxes Turns axes on or off.

_pcross Controls where axes intersect.

_pgrid Controls major and minor grid lines.

_pticout Controls direction of tick marks on axes.

_pxpmax Controls precision of numbers on X axis.

_pxsci Controls use of scientific notation on X axis.

_pypmax Controls precision of numbers on Y axis.

27-58

Introduction

Commands by Category

_pysci Controls use of scientific notation on Y axis.

_pzpmax Controls precision of numbers on Z axis.

_pzsci Controls use of scientific notation on Z axis.

scale Scales X,Y axes for 2-D plots.

scale3d Scales X,Y, and Z axes for 3-D plots.

xtics Scales X axis and controls tick marks.

ytics Scales Y axis and controls tick marks.

ztics Scales Z axis and controls tick marks.

Text, Labels, Titles, and Fonts

_paxht Controls size of axes labels.

_pdate Controls date string contents.

_plegctl Sets location and size of plot legend.

_plegstr Specifies legend text entries.

_pmsgctl Controls message position.

_pmsgstr Specifies message text.

_pnum Axes numeric label control and orientation.

_pnumht Controls size of axes numeric labels.

_ptitlht Controls main title size.

asclabel Defines character labels for tick marks.

fonts Loads fonts for labels, titles, messages, and legend.

title Specifies main title for graph.

xlabel Specifies X axis label.

27-59

GAUSS Language Reference

ylabel Specifies Y axis label.

zlabel Specifies Z axis label.

Main Curve Lines and Symbols

_pboxctl Controls box plotter.

_pboxlim Outputs percentile matrix from box plotter.

_pcolor Controls line color for main curves.

_plctrl Controls main curve and frequency of data symbols.

_pltype Controls line style for main curves.

_plwidth Controls line thickness for main curves.

_pstype Controls symbol type for main curves.

_psymsiz Controls symbol size for main curves.

_pzclr Z level color control for contour and surface.

Extra Lines and Symbols

_parrow Creates arrows.

_parrow3 Creates arrows for 3-D graphs.

_perrbar Plots error bars.

_pline Plots extra lines and circles.

_pline3d Plots extra lines for 3-D graphs.

_psym Plots extra symbols.

_psym3d Plots extra symbols for 3-D graphs.

27-60

Introduction

Commands by Category

Graphic Panel, Page, and Plot Control

_pageshf Shifts the graph for printer output.

_pagesiz Controls size of graph for printer output.

_plotshf Controls plot area position.

_plotsiz Controls plot area size.

_protate Rotates the graph 90 degrees.

axmargin Controls axes margins and plot size.

begwind Graphic panel initialization procedure.

endwind Ends graphic panel manipulation; displays graphs.

getwind Gets current graphic panel number.

loadwind Loads a graphic panel configuration from a file.

makewind Creates graphic panel with specified size and position.

margin Controls graph margins.

nextwind Sets to next available graphic panel number.

savewind Saves graphic panel configuration to a file.

setwind Sets to specified graphic panel number.

window Creates tiled graphic panels of equal size.

axmargin is preferred to the older _plotsiz and _plotshf globals for establishing
an absolute plot size and position.

27-61

GAUSS Language Reference

Output Options

_pscreen Controls graphics output to window.

_psilent Controls final beep.

_ptek Controls creation and name of graphics.tkf file.

_pzoom Specifies zoom parameters.

graphprt Generates print, conversion file.

pqgwin Sets the graphics viewer mode.

setvwrmode Sets the graphics viewer mode.

tkf2eps Converts .tkf file to Encapsulated PostScript file.

tkf2ps Converts .tkf file to PostScript file.

Miscellaneous

_pbox Draws a border around graphic panel/window.

_pcrop Controls cropping of graphics data outside axes area.

_pframe Draws a frame around 2-D, 3-D plots.

_pmcolor Controls colors to be used for axes, title, x and y labels, date, box,
and background.

graphset Resets all PQG globals to default values.

rerun Displays most recently created graph.

view Sets 3-D observer position in workbox units.

viewxyz Sets 3-D observer position in plot coordinates.

27-62

Introduction

Commands by Category

volume Sets length, width, and height ratios of 3-D workbox.

27-63

a

Command Reference 28
abs

PURPOSE Returns the absolute value or complex modulus of x.

FORMAT y = abs(x);

INPUT x N×K matrix or sparse matrix or N-dimensional array.

OUTPUT y N×K matrix or sparse matrix or N-dimensional array containing
absolute values of x.

EXAMPLE x = rndn(2,2);

y = abs(x);

x =
0.675243 1.053485
−0.190746 −1.229539

28-1

acf

y =
0.675243 1.053485
0.190746 1.229539

In this example, a 2×2 matrix of Normal random numbers is generated and the
absolute value of the matrix is computed.

acf

PURPOSE Computes sample autocorrelations.

FORMAT rk = acf(y,k,d);

INPUT y N×1 vector, data.

k scalar, maximum number of autocorrelations to compute.

d scalar, order of differencing.

OUTPUT rk K×1 vector, sample autocorrelations.

EXAMPLE x = { 20.80,

18.58,

23.39,

20.47,

21.78,

19.56,

19.58,

18.91,

20.08,

21.88 };

rk = acf(x,4,2);

print rk;

28-2 GAUSS L R

a
aconcat

-0.74911771

0.48360914

-0.34229330

0.17461180

SOURCE tsutil.src

aconcat

PURPOSE Concatenates conformable matrices and arrays in a user-specified dimension.

FORMAT y = aconcat(a,b,dim);

INPUT a matrix or N-dimensional array.

b matrix or K-dimensional array, conformable with a.

dim scalar, dimension in which to concatenate.

OUTPUT y M-dimensional array, the result of the concatenation.

REMARKS a and b are conformable only if all of their dimensions except dim have the
same sizes. If a or b is a matrix, then the size of dimension 1 is the number of
columns in the matrix, and the size of dimension 2 is the number of rows in the
matrix.

EXAMPLE a = arrayinit(2|3|4,0);

b = 3*ones(3,4);

y = aconcat(a,b,3);

y will be a 3×3×4 array, where [1,1,1] through [2,3,4] are zeros and [3,1,1]
through [3,2,4] are threes.

a = reshape(seqa(1,1,20),4,5);

GAUSS L R 28-3

aconcat

b = zeros(4,5);

y = aconcat(a,b,3);

y will be a 2×4×5 array, where [1,1,1] through [1,4,5] are sequential integers
beginning with 1, and [2,1,1] through [2,4,5] are zeros.

a = arrayinit(2|3|4,0);

b = seqa(1,1,24);

b = areshape(b,2|3|4);

y = aconcat(a,b,5);

y will be a 2×1×2×3×4 array, where [1,1,1,1,1] through [1,1,2,3,4] are zeros,
and [2,1,1,1,1] through [2,1,2,3,4] are sequential integers beginning with 1.

a = arrayinit(2|3|4,0);

b = seqa(1,1,6);

b = areshape(b,2|3|1);

y = aconcat(a,b,1);

y will be a 2×3×5 array, such that:

[1,1,1] through [1,3,5] =

0 0 0 0 1
0 0 0 0 2
0 0 0 0 3

[2,1,1] through [2,3,5] =

0 0 0 0 4
0 0 0 0 5
0 0 0 0 6

28-4 GAUSS L R

a
aeye

SEE ALSO areshape

aeye

PURPOSE Creates an N-dimensional array in which the planes described by the two
trailing dimensions of the array are equal to the identity.

FORMAT a = aeye(o);

INPUT o N×1 vector of orders, the sizes of the dimensions of a.

OUTPUT a N-dimensional array, containing 2-dimensional identity arrays.

REMARKS If o contains numbers that are not integers, they will be truncated to integers.

The planes described by the two trailing dimensions of a will contain 1’s down
the diagonal and 0’s everywhere else.

EXAMPLE o = { 2,3,4 };

a = aeye(o);

a will be a 2×3×4 array, such that:

[1,1,1] through [1,3,4] =

1 0 0 0
0 1 0 0
0 0 1 0

GAUSS L R 28-5

amax

[2,1,1] through [2,3,4] =

1 0 0 0
0 1 0 0
0 0 1 0

SEE ALSO eye

amax

PURPOSE Moves across one dimension of an N-dimensional array and finds the largest
element.

FORMAT y = amax(x,dim);

INPUT x N-dimensional array.

dim scalar, number of dimension across which to find the maximum
value.

OUTPUT y N-dimensional array.

REMARKS The output y, will have the same sizes of dimensions as x, except that the
dimension indicated by dim will be collapsed to 1.

EXAMPLE x = round(10*rndn(24,1));

x = areshape(x,2|3|4);

dim = 2;

y = amax(x,dim);

x is a 2×3×4 array, such that:

28-6 GAUSS L R

a
amax

[1,1,1] through [1,3,4] =

−14 3 3 −9
−7 21 −4 21
7 −5 20 −2

[2,1,1] through [2,3,4] =

10 −12 −9 −4
1 −6 −10 0
−8 9 8 −6

y will be a 2×1×4 array, such that:

[1,1,1] through [1,1,4] =

7 21 20 21

[2,1,1] through [2,1,4] =

10 9 8 0

y = amax(x,1);

Using the same array x as the above example, this example finds the maximum
value across the first dimension.

y will be a 2×3×1 array, such that:

GAUSS L R 28-7

amean

[1,1,1] through[1,3,1] =

3
21
20

[2,1,1] through [2,3,1] =

10
1
9

SEE ALSO amin, maxc

amean

PURPOSE Computes the mean across one dimension of an N-dimensional array.

FORMAT y = amean(x,dim);

INPUT x N-dimensional array.

dim scalar, number of dimension to compute the mean across.

OUTPUT y [N-1]-dimensional array.

REMARKS The output y, will be have the same sizes of dimensions as x, except that the
dimension indicated by dim will be collapsed to 1.

EXAMPLE x = seqa(1,1,24);

x = areshape(x,2|3|4);

28-8 GAUSS L R

a
amean

y = amean(x,3);

x is a 2×3×4 array, such that:

[1,1,1] through [1,3,4] =

1 2 3 4
5 6 7 8
9 10 11 12

[2,1,1] through [2,3,4] =

13 14 15 16
17 18 19 20
21 22 23 24

y will be a 1×3×4 array, such that:

[1,1,1] through [1,3,4] =

7 8 9 10
11 12 13 14
15 16 17 18

y = amean(x,1);

Using the same array x as the above example, this example computes the mean
across the first dimension. y will be a 2×3×1 array, such that:

GAUSS L R 28-9

AmericanBinomCall

[1,1,1] through [1,3,1] =

2.5
6.5

10.5

[2,1,1] through [2,3,1] =

14.5
18.5
22.5

SEE ALSO asum

AmericanBinomCall

PURPOSE Prices American call options using binomial method.

FORMAT c = AmericanBinomCall(S0,K,r,div,tau,sigma,N);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

N number of time segments.

OUTPUT c M×1 vector, call premiums.

28-10 GAUSS L R

a
AmericanBinomCall Greeks

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

c = AmericanBinomCall(S0,K,r,0,tau,sigma,60);

print c;

17.344044

15.058486

12.817427

SOURCE finprocs.src

AmericanBinomCall Greeks

PURPOSE Computes Delta, Gamma, Theta, Vega, and Rho for American call options
using binomial method.

FORMAT { d,g,t,v,rh } =
AmericanBinomCall_Greeks(S0,K,r,div,tau,sigma,N);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

GAUSS L R 28-11

AmericanBinomCall Greeks

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

N number of time segments.

GLOBAL
INPUT

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal. Default
= 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

OUTPUT d M×1 vector, delta.

g M×1 vector, gamma.

t M×1 vector, theta.

v M×1 vector, vega.

rh M×1 vector, rho.

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE S0 = 305;

K = 300;

r = .08;

sigma = .25;

tau = .33;

div = 0;

print AmericanBinomcall_Greeks (S0,K,r,0,tau,sigma,30);

0.70631204

0.00076381912

-17.400851

68.703851

76.691829

SOURCE finprocs.src

28-12 GAUSS L R

a
AmericanBinomCall ImpVol

SEE ALSO AmericanBinomCall_Impvol, AmericanBinomCall,
AmericanBinomPut_Greeks, AmericanBSCall_Greeks

AmericanBinomCall ImpVol

PURPOSE Computes implied volatilities for American call options using binomial method.

FORMAT sigma = AmericanBinomCall_ImpVol(c,S0,K,r,div,tau,N);

INPUT c M×1 vector, call premiums

S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

N number of time segments.

OUTPUT sigma M×1 vector, volatility.

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE c = { 13.70, 11.90, 9.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

div = 0;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

GAUSS L R 28-13

AmericanBinomPut

sigma = AmericanBinomCall_ImpVol(c,S0,K,r,0,tau,30);

print sigma;

0.19629517

0.16991943

0.12874756

SOURCE finprocs.src

AmericanBinomPut

PURPOSE Prices American put options using binomial method.

FORMAT c = AmericanBinomPut(S0,K,r,div,tau,sigma,N);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

N number of time segments.

OUTPUT c M×1 vector, put premiums.

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE S0 = 718.46;

28-14 GAUSS L R

a
AmericanBinomPut Greeks

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

c = AmericanBinomPut(S0,K,r,0,tau,sigma,60);

print c;

16.986117

19.729923

22.548538

SOURCE finprocs.src

AmericanBinomPut Greeks

PURPOSE Computes Delta, Gamma, Theta, Vega, and Rho for American put options using
binomial method.

FORMAT { d,g,t,v,rh } =
AmericanBinomPut_Greeks(S0,K,r,div,tau,sigma,N);

INPUT S0 scalar, current price.
K M×1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of trading.
sigma scalar, volatility.
N number of time segments.

GLOBAL
INPUT

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal. Default
= 0.

GAUSS L R 28-15

AmericanBinomPut ImpVol

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

OUTPUT d M×1 vector, delta.

g M×1 vector, gamma.

t M×1 vector, theta.

v M×1 vector, vega.

rh M×1 vector, rho.

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE S0 = 305;

K = 300;

r = .08;

div = 0;

sigma = .25;

tau = .33;

print AmericanBinomPut_Greeks(S0,K,r,0,tau,sigma,60);

-0.38324908

0.00076381912

8.1336630

68.337294

-27.585043

SOURCE finprocs.src

SEE ALSO AmericanBinomPut_Impvol, AmericanBinomPut,
AmericanBinomCall_Greeks, AmericanBSPut_Greeks

28-16 GAUSS L R

a
AmericanBinomPut ImpVol

AmericanBinomPut ImpVol

PURPOSE Computes implied volatilities for American put options using binomial method.

FORMAT sigma = AmericanBinomPut_ImpVol(c,S0,K,r,div,tau,N);

INPUT c M×1 vector, put premiums

S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

N number of time segments.

OUTPUT sigma M×1 vector, volatility.

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE p = { 14.60, 17.10, 20.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

div = 0;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

sigma = AmericanBinomPut_ImpVol(p,S0,K,r,0,tau,30);

print sigma;

GAUSS L R 28-17

AmericanBSCall

0.12466064

0.16583252

0.21203735

SOURCE finprocs.src

AmericanBSCall

PURPOSE Prices American call options using Black, Scholes and Merton method.

FORMAT c = AmericanBSCall(S0,K,r,div,tau,sigma);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

OUTPUT c M×1 vector, call premiums.

EXAMPLE S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

c = AmericanBSCall(S0,K,r,0,tau,sigma);

print c;

32.005720

28-18 GAUSS L R

a
AmericanBSCall Greeks

31.083232

30.367548

SOURCE finprocs.src

AmericanBSCall Greeks

PURPOSE Computes Delta, Gamma, Theta, Vega, and Rho for American call options
using Black, Scholes, and Merton method.

FORMAT { d,g,t,v,rh } = AmericanBSCall_Greeks(S0,K,r,div,tau,sigma);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

GLOBAL
INPUT

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal. Default
= 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

OUTPUT d M×1 vector, delta.

g M×1 vector, gamma.

t M×1 vector, theta.

v M×1 vector, vega.

rh M×1 vector, rho.

EXAMPLE S0 = 305;

GAUSS L R 28-19

AmericanBSCall ImpVol

K = 300;

r = .08;

sigma = .25;

tau = .33;

print AmericanBSCall_Greeks(S0,K,r,0,tau,sigma);

0.40034039

0.016804021

-55.731079

115.36906

46.374528

SOURCE finprocs.src

SEE ALSO AmericanBSCall_Impvol, AmericanBSCall, AmericanBSPut_Greeks,
AmericanBinomCall_Greeks

AmericanBSCall ImpVol

PURPOSE Computes implied volatilities for American call options using Black, Scholes,
and Merton method.

FORMAT sigma = AmericanBSCall_ImpVol(c,S0,K,r,div,tau);

INPUT c M×1 vector, call premiums

S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

OUTPUT sigma M×1 vector, volatility.

28-20 GAUSS L R

a
AmericanBSPut

EXAMPLE c = { 13.70, 11.90, 9.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

sigma = AmericanBSCall_ImpVol(c,S0,K,r,0,tau);

print sigma;

0.10259888

0.088370361

0.066270752

SOURCE finprocs.src

AmericanBSPut

PURPOSE Prices American put options using Black, Scholes, and Merton method.

FORMAT c = AmericanBSPut(S0,K,r,div,tau,sigma);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

OUTPUT c M×1 vector, put premiums.

EXAMPLE S0 = 718.46;

GAUSS L R 28-21

AmericanBSPut Greeks

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

c = AmericanBSPut(S0,K,r,0,tau,sigma);

print c;

16.870783

19.536842

22.435487

SOURCE finprocs.src

AmericanBSPut Greeks

PURPOSE Computes Delta, Gamma, Theta, Vega, and Rho for American put options using
Black, Scholes, and Merton method.

FORMAT { d,g,t,v,rh } = AmericanBSPut_Greeks(S0,K,r,div,tau,sigma);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

GLOBAL
INPUT

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal. Default
= 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

28-22 GAUSS L R

a
AmericanBSPut ImpVol

OUTPUT d M×1 vector, delta.

g M×1 vector, gamma.

t M×1 vector, theta.

v M×1 vector, vega.

rh M×1 vector, rho.

EXAMPLE S0 = 305;

K = 300;

r = .08;

sigma = .25;

tau = .33;

print AmericanBSPut_Greeks (S0,K,r,0,tau,sigma);

-0.33296721

0.0091658294

-17.556118

77.614237

-40.575963

SOURCE finprocs.src

SEE ALSO AmericanBSPut_Impvol, AmericanBSPut, AmericanBSCall_Greeks,
AmericanBinomPut_Greeks

AmericanBSPut ImpVol

PURPOSE Computes implied volatilities for American put options using Black, Scholes,
and Merton method.

FORMAT sigma = AmericanBSPut_ImpVol(c,S0,K,r,div,tau);

INPUT c M×1 vector, put premiums

GAUSS L R 28-23

amin

S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

OUTPUT sigma M×1 vector, volatility.

EXAMPLE p = { 14.60, 17.10, 20.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

sigma = AmericanBSPut_ImpVol(p,S0,K,r,0,tau);

print sigma;

0.12753662

0.16780029

0.21396729

SOURCE finprocs.src

amin

PURPOSE Moves across one dimension of an N-dimensional array and finds the smallest
element.

FORMAT y = amin(x,dim);

INPUT x N-dimensional array.

28-24 GAUSS L R

a
amin

dim scalar, number of dimension across which to find the minimum
value.

OUTPUT y N-dimensional array.

REMARKS The output y, will have the same sizes of dimensions as x, except that the
dimension indicated by dim will be collapsed to 1.

EXAMPLE x = round(10*rndn(24,1));

x = areshape(x,2|3|4);

dim = 2;

y = amin(x,dim);

x is a 2×3×4 array, such that:

[1,1,1] through [1,3,4] =

−14 3 3 −9
−7 21 −4 21
7 −5 20 −2

[2,1,1] through [2,3,4] =

10 −12 −9 −4
1 −6 −10 0
−8 9 8 −6

y will be a 2×1×4 array, such that:

[1,1,1] through [1,1,4] =

−14 −5 −4 −9

GAUSS L R 28-25

amult

[2,1,1] through [2,1,4] =

−8 −12 −10 −6

y = amin(x,1);

Using the same array x as the above example, this example finds the minimum
value across the first dimension.

y will be a 2×3×1 array, such that:

[1,1,1] through[1,3,1] =

−14
−7
−5

[2,1,1] through [2,3,1] =

−12
−10
−8

SEE ALSO amax, minc

amult

PURPOSE Performs matrix multiplication on the planes described by the two trailing
dimensions of N-dimensional arrays.

28-26 GAUSS L R

a
amult

FORMAT y = amult(a,b);

INPUT a N-dimensional array.

b N-dimensional array.

OUTPUT y N-dimensional array, containing the product of the matrix
multiplication of the planes described by the two trailing dimensions
of a and b.

REMARKS All leading dimensions must be strictly conformable, and the two trailing
dimensions of each array must be matrix-product conformable.

EXAMPLE a = areshape(seqa(1,1,12),2|3|2);

b = areshape(seqa(1,1,16),2|2|4);

y = amult(a,b);

a is a 2×3×2 array, such that:

[1,1,1] through [1,3,2] =

1 2
3 4
5 6

[2,1,1] through [2,3,2] =

7 8
9 10

11 12

b is a 2×2×4 array, such that:

GAUSS L R 28-27

annualTradingDays

[1,1,1] through [1,2,4] =

1 2 3 4
5 6 7 8

[2,1,1] through [2,2,4] =

9 10 11 12
13 14 15 16

y will be a 2×3×4 array, such that:

[1,1,1] through [1,3,4] =

11 14 17 20
23 30 37 44
35 46 57 68

[2,1,1] through [2,3,4] =

167 182 197 212
211 230 249 268
255 278 301 324

annualTradingDays

PURPOSE Compute number of trading days in a given year.

FORMAT n = annualTradingDays(a);

28-28 GAUSS L R

a
arccos

INPUT a scalar, year.

OUTPUT n number of trading days in year

REMARKS A trading day is a weekday that is not a holiday as defined by the New York
Stock Exchange from 1888 through 2011. Holidays are defined in
holidays.asc. You may edit that file to modify or add holidays.

SOURCE finutils.src

GLOBALS _fin_annualTradingDays, _fin_holidays

SEE ALSO elapsedTradingDays, getNextTradingDay, getPreviousTradingDay,
getNextWeekDay, getPreviousWeekDay

arccos

PURPOSE Computes the inverse cosine.

FORMAT y = arccos(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array containing the angle in radians
whose cosine is x.

REMARKS If x is complex or has any elements whose absolute value is greater than 1,
complex results are returned.

EXAMPLE x = { -1, -0.5, 0, 0.5, 1 };

y = arccos(x);

GAUSS L R 28-29

arcsin

x =

−1.000000
−0.500000

0.000000
0.500000
1.000000

y =

3.141593
2.094395
1.570796
1.047198
0.000000

SOURCE trig.src

arcsin

PURPOSE Computes the inverse sine.

FORMAT y = arcsin(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array, the angle in radians whose sine
is x.

REMARKS If x is complex or has any elements whose absolute value is greater than 1,
complex results are returned.

EXAMPLE x = { -1, -0.5, 0, 0.5, 1 };

y = arcsin(x);

28-30 GAUSS L R

a
areshape

x =

−1.000000
−0.500000

0.000000
0.500000
1.000000

y =

−1.570796
−0.523599

0.000000
0.523599
1.570796

SOURCE trig.src

areshape

PURPOSE Reshapes a scalar, matrix, or array into an array of user-specified size.

FORMAT y = areshape(x,o);

INPUT x scalar, matrix, or N-dimensional array.

o M×1 vector of orders, the sizes of the dimensions of the new array.

OUTPUT y M-dimensional array, created from data in x.

REMARKS If there are more elements in x than in y, the remaining elements are discarded.
If there are not enough elements in x to fill y, then when areshape runs out of
elements, it goes back to the first element of x and starts getting additional
elements from there.

EXAMPLE x = 3;

orders = { 2,3,4 };

GAUSS L R 28-31

arrayalloc

y = areshape(x,orders);

y will be a 2×3×4 array of threes.

x = reshape(seqa(1,1,90),30,3);

orders = { 2,3,4,5 };

y = areshape(x,orders);

y will be a 2×3×4×5 array. Since y contains 120 elements and x contains only
90, the first 90 elements of y will be set to the sequence of integers from 1 to 90
that are contained in x, and the last 30 elements of y will be set to the sequence
of integers from 1 to 30 contained in the first 30 elements of x.

x = reshape(seqa(1,1,60),20,3);

orders = { 3,2,4 };

y = areshape(x,orders);

y will be a 3×2×4 array. Since y contains 24 elements, and x contains 60, the
elements of y will be set to the sequence of integers from 1 to 24 contained in
the first 24 elements of x.

SEE ALSO aconcat

arrayalloc

PURPOSE Creates an N-dimensional array with unspecified contents.

FORMAT y = arrayalloc(o,cf);

INPUT o N×1 vector of orders, the sizes of the dimensions of the array.

cf scalar, 0 to allocate real array, or 1 to allocate complex array.

28-32 GAUSS L R

a
arrayindex

OUTPUT y N-dimensional array.

REMARKS The contents are unspecified. This function is used to allocate an array that will
be written to in sections using setarray.

EXAMPLE orders = { 2,3,4 };

y = arrayalloc(orders, 1);

y will be a complex 2×3×4 array with unspecified contents.

SEE ALSO arrayinit, setarray

arrayindex

PURPOSE Converts a scalar vector index to a vector of indices for an N-dimensional array.

FORMAT i = arrayindex(si,o);

INPUT si scalar, index into vector or 1-dimensional array.

o N×1 vector of orders of an N-dimensional array.

OUTPUT i N×1 vector of indices, index of corresponding element in
N-dimensional array.

REMARKS This function and its opposite, singleindex, allow you to easily convert
between an N-dimensional index and its corresponding location in a
1-dimensional object of the same size.

EXAMPLE orders = { 2,3,4,5 };

v = rndu(prodc(orders),1);

a = areshape(v,orders);

vi = 50;

ai = arrayindex(vi,orders);

GAUSS L R 28-33

arrayinit

print vi;

print ai;

print v[vi];

print getarray(a,ai);

vi = 50

ai =

1
3
2
5

v[vi] = 0.13220899

getarray(a,ai) = 0.13220899

getarray(a,ai) = 0.13220899

This example allocates a vector of random numbers and creates a 4-dimensional
array using the same data. The 50th element of the vector v corresponds to the
element of array a that is indexed with ai.

SEE ALSO singleindex

arrayinit

PURPOSE Creates an N-dimensional array with a specified fill value.

FORMAT y = arrayinit(o,v);

28-34 GAUSS L R

a
arraytomat

INPUT o N×1 vector of orders, the sizes of the dimensions of the array.
v scalar, value to initialize. If v is complex the result will be complex.

OUTPUT y N-dimensional array with each element equal to the value of v.

EXAMPLE orders = { 2,3,4 };

y = arrayinit(orders, 0);

y will be a 2×3×4 array of zeros.

SEE ALSO arrayalloc

arraytomat

PURPOSE Converts an array to type matrix.

FORMAT y = arraytomat(a);

INPUT a N-dimensional array.

OUTPUT y K×L or 1×L matrix or scalar, where L is the size of the fastest
moving dimension of the array and K is the size of the second fastest
moving dimension.

REMARKS arraytomat will take an array of 1 or 2 dimensions or an N-dimensional array,
in which the N-2 slowest moving dimensions each have a size of 1.

EXAMPLE a = arrayinit(3|4,2);

y = arraytomat(a);

y =

2 2 2 2
2 2 2 2
2 2 2 2

GAUSS L R 28-35

asciiload

SEE ALSO mattoarray

asciiload

PURPOSE Loads data from a delimited ASCII text file into an N×1 vector.

FORMAT y = asciiload(filename);

INPUT filename string, name of data file.

OUTPUT y N×1 vector.

REMARKS The file extension must be included in the file name.

Numbers in ASCII files must be delimited with spaces, commas, tabs, or
newlines.

This command loads as many elements as possible from the file into an N×1
vector. This allows you to verify if the load was successful by calling rows(y)
after asciiload to see how many elements were actually loaded. You may
then reshape the N×1 vector to the desired form. You could, for instance, put
the number of rows and columns of the matrix right in the file as the first and
second elements and reshape the remainder of the vector to the desired form
using those values.

EXAMPLE To load the file myfile.asc, containing the following data:

2.805 16.568

-4.871 3.399

17.361 -12.725

you may use the command:

28-36 GAUSS L R

a
asclabel

y = asciiload("myfile.asc");

y =

2.805
16.568
−4.871

3.399
17.361
−12.725

SEE ALSO load, dataload

asclabel

PURPOSE To set up character labels for the X and Y axes.

LIBRARY pgraph

FORMAT asclabel(xl,yl);

INPUT xl string or N×1 character vector, labels for the tick marks on the X
axis. Set to 0 if no character labels for this axis are desired.

yl string or M×1 character vector, labels for the tick marks on the Y
axis. Set to 0 if no character labels for this axis are desired.

EXAMPLE This illustrates how to label the X axis with the months of the year:

let lab = JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC;

asclabel(lab,0);

This will also work:

GAUSS L R 28-37

astd

lab = "JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC";

asclabel(lab,0);

If the string format is used, then escape characters may be embedded in the
labels. For example, the following produces character labels that are multiples
of λ. The font Simgrma must be previously loaded in a fonts command.

fonts("simplex simgrma");

lab = "\2010.25\202l \2010.5\202l \2010.75\202l l";

asclabel(lab,0);

Here, the “\202l” produces the “λ” symbol from Simgrma.

SOURCE pgraph.src

SEE ALSO xtics, ytics, scale, scale3d, fonts

astd

PURPOSE Computes the standard deviation of the elements across one dimension of an
N-dimensional array.

FORMAT y = astd(x,dim);

INPUT x N-dimensional array.

dim scalar, number of dimension to sum across.

OUTPUT y N-dimensional array, standard deviation across specified dimension
of x.

28-38 GAUSS L R

a
astd

REMARKS The output y, will have the same sizes of dimensions as x, except that the
dimension indicated by dim will be collapsed to 1.

This function essentially computes:

sqrt(1/(N-1)*sumc((x-meanc(x)’)2))

Thus, the divisor is N-1 rather than N, where N is the number of elements being
summed. See astds for the alternate definition.

EXAMPLE a = areshape(25*rndn(16,1),4|2|2);

y = astd(a,3);

If a =

[1,1,1] through [1,2,2] =

−38.357528 2.0560337
−21.331064 32.500431

[2,1,1] through [2,2,2] =

−6.7540544 16.374989
−15.245137 21.824196

[3,1,1] through [3,2,2] =

18.636931 35.264181
−21.137995 −33.715808

GAUSS L R 28-39

astds

[4,1,1] through [4,2,2] =

23.008600 −15.933576
54.852400 −7.8360916

then y =

[1,1,1] through [1,2,2] =

28.229091 21.705020
37.152755 29.944103

In this example, 16 standard Normal random variables are generated. They are
multiplied by 25 and areshape’d into a 4×2×2 array, and the standard
deviation is computed across the third dimension of the array.

SEE ALSO astds, stdc

astds

PURPOSE Computes the ‘sample’ standard deviation of the elements across one dimension
of an N-dimensional array.

FORMAT y = astds(x,dim);

INPUT x N-dimensional array.

dim scalar, number of dimension to sum across.

OUTPUT y N-dimensional array, standard deviation across specified dimension
of x.

28-40 GAUSS L R

a
astds

REMARKS The output y, will have the same sizes of dimensions as x, except that the
dimension indicated by dim will be collapsed to 1.

This function essentially computes:

sqrt(1/(N)*sumc((x-meanc(x)’)2))

Thus, the divisor is N rather than N-1, where N is the number of elements being
summed. See astd for the alternate definition.

EXAMPLE a = areshape(25*rndn(16,1),4|2|2);

y = astds(a,3);

If a =

[1,1,1] through [1,2,2] =

−38.357528 2.0560337
−21.331064 32.500431

[2,1,1] through [2,2,2] =

−6.7540544 16.374989
−15.245137 21.824196

[3,1,1] through [3,2,2] =

18.636931 35.264181
−21.137995 −33.715808

GAUSS L R 28-41

asum

[4,1,1] through [4,2,2] =

23.008600 −15.933576
54.852400 −7.8360916

then y =

[1,1,1] through [1,2,2] =

24.447110 18.797099
32.175230 25.932354

In this example, 24 standard Normal random variables are generated. They are
multiplied by 10 and areshape’d into a 4×3×2 array, and the standard
deviation is computed across the third dimension of the array.

SEE ALSO astd, stdsc

asum

PURPOSE Computes the sum across one dimension of an N-dimensional array.

FORMAT y = asum(x,dim);

INPUT x N-dimensional array.

dim scalar, number of dimension to sum across.

OUTPUT y N-dimensional array.

REMARKS The output y, will have the same sizes of dimensions as x, except that the
dimension indicated by dim will be collapsed to 1.

28-42 GAUSS L R

a
asum

EXAMPLE x = seqa(1,1,24);

x = areshape(x,2|3|4);

y = asum(x,3);

x is a 2×3×4 array, such that:

[1,1,1] through [1,3,4] =

1 2 3 4
5 6 7 8
9 10 11 12

[2,1,1] through [2,3,4] =

13 14 15 16
17 18 19 20
21 22 23 24

y will be a 1×3×4 array, such that:

[1,1,1] through [1,3,4] =

14 16 18 20
22 24 26 28
30 32 34 36

y = asum(x,1);

Using the same array x as the above example, this example computes the sum
across the first dimension. y will be a 2×3×1 array, such that:

GAUSS L R 28-43

atan

[1,1,1] through [1,3,1] =

10
26
42

[2,1,1] through [2,3,1] =

58
74
90

SEE ALSO amean

atan

PURPOSE Returns the arctangent of its argument.

FORMAT y = atan(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array containing the arctangents of x
in radians.

REMARKS y will be the same size as x, containing the arctangents of the corresponding
elements of x.

For real x, the arctangent of x is the angle whose tangent is x. The result is a
value in radians in the range −π2 to +π2 . To convert radians to degrees, multiply
by 180

π
.

28-44 GAUSS L R

a
atan2

For complex x, the arctangent is defined everywhere except i and -i. If x is
complex, y will be complex.

EXAMPLE x = { 2, 4, 6, 8 };

z = x/2;

y = atan(z);

y =

0.785398
1.107149
1.249046
1.325818

SEE ALSO atan2, sin, cos, pi, tan

atan2

PURPOSE Computes an angle from an x,y coordinate.

FORMAT z = atan2(y,x);

INPUT y N×K matrix or P-dimensional array where the last two dimensions
are N×K, the Y coordinate.

x L×M matrix or P-dimensional array where the last two dimensions
are L×M, E×E conformable with y, the X coordinate.

OUTPUT z max(N,L) by max(K,M) matrix or P-dimensional array where the
last two dimensions are max(N,L) by max(K,M).

REMARKS Given a point x,y in a Cartesian coordinate system, atan2 will give the correct
angle with respect to the positive X axis. The answer will be in radians from −π
to +π.

GAUSS L R 28-45

atranspose

To convert radians to degrees, multiply by 180
π

.

atan2 operates only on the real component of x, even if x is complex.

EXAMPLE x = 2;

y = { 2, 4, 6, 8 };

z = atan2(y,x);

z =

0.785398
1.107149
1.249046
1.325818

SEE ALSO atan, sin, cos, pi, tan, arcsin, arccos

atranspose

PURPOSE Transposes an N-dimensional array.

FORMAT y = atranspose(x,nd);

INPUT x N-dimensional array.

nd N×1 vector of dimension indices, the new order of dimensions.

OUTPUT y N-dimensional array, transposed according to nd.

REMARKS The vector of dimension indices must be a unique vector of integers, 1-N, where
1 corresponds to the first element of the vector of orders.

EXAMPLE x = seqa(1,1,24);

x = areshape(x,2|3|4);

nd = { 2,1,3 };

28-46 GAUSS L R

a
atranspose

y = atranspose(x,nd);

This example transposes the dimensions of x that correspond to the first and
second elements of the vector of orders. x is a 2×3×4 array, such that:

[1,1,1] through [1,3,4] =

1 2 3 4
5 6 7 8
9 10 11 12

[2,1,1] through [2,3,4] =

13 14 15 16
17 18 19 20
21 22 23 24

y will be a 3×2×4 array such that:

[1,1,1] through [1,2,4] =

1 2 3 4
13 14 15 16

[2,1,1] through [2,2,4] =

5 6 7 8
17 18 19 20

GAUSS L R 28-47

atranspose

[3,1,1] through [3,2,4] =

9 10 11 12
21 22 23 24

nd = { 2,3,1 };

y = atranspose(x,nd);

Using the same array x as the example above, this example transposes all three
dimensions of x, returning a 3×4×2 array y, such that:

[1,1,1] through [1,4,2] =

1 13
2 14
3 15
4 16

[2,1,1] through [2,4,2] =

5 17
6 18
7 19
8 20

[3,1,1] through [3,4,2] =

9 21
10 22
11 23
12 24

28-48 GAUSS L R

a
axmargin

SEE ALSO areshape

axmargin

PURPOSE Sets absolute margins for the plot axes which control placement and size of plot.

LIBRARY pgraph

FORMAT axmargin(l,r,t,b);

INPUT l scalar, the left margin in inches.
r scalar, the right margin in inches.
t scalar, the top margin in inches.
b scalar, the bottom margin in inches.

REMARKS axmargin sets an absolute distance from the axes to the edge of the graphic
panel. Note that the user is responsible for allowing enough space in the margin
if axes labels, numbers and title are used on the graph, since axmargin does not
size the plot automatically as in the case of margin.

All input inch values for this procedure are based on a full size window of
9×6.855 inches. If this procedure is used within a graphic panel, the values will
be scaled to window inches automatically.

If both margin and axmargin are used for a graph, axmargin will override any
sizes specified by margin.

EXAMPLE The statement:

axmargin(1,1,.5,.855);

will create a plot area of 7 inches horizontally by 5.5 inches vertically, and

GAUSS L R 28-49

balance

positioned 1 inch right and .855 up from the lower left corner of the graphic
panel/page.

SOURCE pgraph.src

balance

PURPOSE Balances a square matrix.

FORMAT { b,z } = balance(x)

INPUT x K×K matrix or N-dimensional array where the last two dimensions
are K×K .

OUTPUT b K×K matrix or N-dimensional array where the last two dimenstions
are K×K, balanced matrix.

z K×K matrix or N-dimensional array where the last two dimensions
are K×K, diagonal scale matrix.

REMARKS balance returns a balanced matrix b and another matrix z with scale factors in
powers of two on its diagonal. b is balanced in the sense that the absolute sums
of the magnitudes of elements in corresponding rows and columns are nearly
equal.

balance is most often used to scale matrices to improve the numerical stability
of the calculation of their eigenvalues. It is also useful in the solution of matrix
equations.

In particular,

b = z−1xz

balance uses the BALANC function from EISPACK.

28-50 GAUSS L R

b

band

EXAMPLE let x[3,3] = 100 200 300

40 50 60

7 8 9;

{ b,z } = balance(x);

b =

100.0 100.0 37.5
80.0 50.0 15.0
56.0 32.0 9.0

z =

4.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 0.5

band

PURPOSE Extracts bands from a symmetric banded matrix.

FORMAT a = band(y,n);

INPUT y K×K symmetric banded matrix.

n scalar, number of subdiagonals.

OUTPUT a K×(N+1) matrix, 1 subdiagonal per column.

REMARKS y can actually be a rectangular P×Q matrix. K is then defined as min(P,Q). It
will be assumed that a is symmetric about the principal diagonal for y[1:K,1:K].

The subdiagonals of y are stored right to left in a, with the principal diagonal in

GAUSS L R 28-51

bandchol

the rightmost or (N+1)th column of a. The upper left corner of a is unused; it is
set to 0.

This compact form of a banded matrix is what bandchol expects.

EXAMPLE x = { 1 2 0 0,

2 8 1 0,

0 1 5 2,

0 0 2 3 };

bx = band(x,1);

bx =

0.0000000 1.0000000
2.0000000 8.0000000
1.0000000 5.0000000
2.0000000 3.0000000

SEE ALSO bandchol, bandcholsol, bandltsol, bandrv, bandsolpd

bandchol

PURPOSE Computes the Cholesky decomposition of a positive definite banded matrix.

FORMAT l = bandchol(a);

INPUT a K×N compact form matrix.

OUTPUT l K×N compact form matrix, lower triangle of the Cholesky
decomposition of a.

REMARKS Given a positive definite banded matrix A, there exists a matrix L, the lower
triangle of the Cholesky decomposition of A, such that A = L × L′. a is the
compact form of A; see band for a description of the format of a.

28-52 GAUSS L R

b

bandcholsol

l is the compact form of L. This is the form of matrix that bandcholsol
expects.

EXAMPLE x = { 1 2 0 0,

2 8 1 0,

0 1 5 2,

0 0 2 3 };

bx = band(x,1);

bx =

0.0000000 1.0000000
2.0000000 8.0000000
1.0000000 5.0000000
2.0000000 3.0000000

cx = bandchol(bx);

cx =

0.0000000 1.0000000
2.0000000 2.0000000

0.50000000 2.1794495
0.91766294 1.4689774

SEE ALSO band, bandcholsol, bandltsol, bandrv, bandsolpd

bandcholsol

PURPOSE Solves the system of equations Ax = b for x, given the lower triangle of the
Cholesky decomposition of a positive definite banded matrix A.

FORMAT x = bandcholsol(b,l);

GAUSS L R 28-53

bandcholsol

INPUT b K×M matrix.

l K×N compact form matrix.

OUTPUT x K×M matrix.

REMARKS Given a positive definite banded matrix A, there exists a matrix L, the lower
triangle of the Cholesky decomposition of A, such that A = L × L′. l is the
compact form of L; see band for a description of the format of l.

b can have more than one column. If so, Ax = b is solved for each column. That
is,

A ∗ x[., i] = b[., i]

EXAMPLE x = { 1 2 0 0,

2 8 1 0,

0 1 5 2,

0 0 2 3 };

bx = band(x,1);

bx =

0.0000000 1.0000000
2.0000000 8.0000000
1.0000000 5.0000000
2.0000000 3.0000000

cx = bandchol(bx);

cx =

0.0000000 1.0000000
2.0000000 2.0000000

0.50000000 2.1794495
0.91766294 1.4689774

28-54 GAUSS L R

b

bandltsol

xi = bandcholsol(eye(4),cx);

xi =

2.0731707 −0.53658537 0.14634146 −0.097560976
−0.53658537 0.26829268 −0.073170732 0.048780488

0.14634146 −0.073170732 0.29268293 −0.19512195
−0.097560976 0.048780488 −0.19512195 0.46341463

SEE ALSO band, bandchol, bandltsol, bandrv, bandsolpd

bandltsol

PURPOSE Solves the system of equations Ax = b for x, where A is a lower triangular
banded matrix.

FORMAT x = bandltsol(b,A);

INPUT b K×M matrix.

A K×N compact form matrix.

OUTPUT x K×M matrix.

REMARKS A is a lower triangular banded matrix in compact form. See band for a
description of the format of A.

b can have more than one column. If so, Ax = b is solved for each column. That
is,

A ∗ x[., i] = b[., i]

EXAMPLE x = { 1 2 0 0,

GAUSS L R 28-55

bandrv

2 8 1 0,

0 1 5 2,

0 0 2 3 };

bx = band(x,1);

bx =

0.0000000 1.0000000
2.0000000 8.0000000
1.0000000 5.0000000
2.0000000 3.0000000

cx = bandchol(bx);

cx =

0.0000000 1.0000000
2.0000000 2.0000000

0.50000000 2.1794495
0.91766294 1.4689774

xci = bandltsol(eye(4),cx);

xci =

1.0000000 0.00000000 0.00000000 0.00000000
−1.0000000 0.50000000 0.00000000 0.00000000
0.22941573 −0.11470787 0.45883147 0.00000000
−0.14331487 0.071657436 −0.28662975 0.68074565

SEE ALSO band, bandchol, bandcholsol, bandrv, bandsolpd

bandrv

PURPOSE Creates a symmetric banded matrix, given its compact form.

28-56 GAUSS L R

b

bandsolpd

FORMAT y = bandrv(a);

INPUT a K×N compact form matrix.

OUTPUT y K×K symmetrix banded matrix.

REMARKS a is the compact form of a symmetric banded matrix, as generated by band. a
stores subdiagonals right to left, with the principal diagonal in the rightmost
(Nth) column. The upper left corner of a is unused. bandchol expects a matrix
of this form.

y is the fully expanded form of a, a K×K matrix with N-1 subdiagonals.

EXAMPLE x = { 1 2 0 0,

2 8 1 0,

0 1 5 2,

0 0 2 3 };

bx = band(x,1);

bx =

0.0000000 1.0000000
2.0000000 8.0000000
1.0000000 5.0000000
2.0000000 3.0000000

x = bandrv(bx);

x =

1.0000000 2.0000000 0.00000000 0.00000000
2.0000000 8.0000000 1.0000000 0.00000000

0.00000000 1.0000000 5.0000000 2.0000000
0.00000000 0.00000000 2.0000000 3.0000000

SEE ALSO band, bandchol, bandcholsol, bandltsol, bandsolpd

GAUSS L R 28-57

bar

bandsolpd

PURPOSE Solves the system of equations Ax = b for x, where A is a positive definite
banded matrix.

FORMAT x = bandsolpd(b,A);

INPUT b K×M matrix.

A K×N compact form matrix.

OUTPUT x K×M matrix.

REMARKS A is a positive definite banded matrix in compact form. See band for a
description of the format of A.

b can have more than one column. If so, Ax = b is solved for each column. That
is,

A ∗ x[., i] = b[., i]

SEE ALSO band, bandchol, bandcholsol, bandltsol, bandrv

bar

PURPOSE Generates a bar graph.

LIBRARY pgraph

FORMAT bar(val,ht);

28-58 GAUSS L R

b

bar

INPUT val N×1 numeric vector, bar labels. If scalar 0, a sequence from 1 to
rows(ht) will be created.

ht N×K numeric vector, bar heights.
K overlapping or side-by-side sets of N bars will be graphed.
For overlapping bars, the first column should contain the set of bars
with the greatest height and the last column should contain the set of
bars with the least height. Otherwise the bars which are drawn first
may be obscured by the bars drawn last. This is not a problem if the
bars are plotted side-by-side.

GLOBAL
INPUT

_pbarwid scalar, width and type of bars in bar graphs and histograms.
The valid range is 0-1. If this is 0, the bars will be a single
pixel wide. If this is 1, the bars will touch each other.
If this value is positive, the bars will overlap. If negative, the
bars will be plotted side-by-side. The default is 0.5.

_pbartyp K×2 matrix.
The first column controls the bar shading:

0 no shading.
1 dots.
2 vertical cross-hatch.
3 diagonal lines with positive slope.
4 diagonal lines with negative slope.
5 diagonal cross-hatch.
6 solid.

The second column controls the bar color.

REMARKS Use scale or ytics to fix the scaling for the bar heights.

EXAMPLE In this example, three overlapping sets of bars will be created. The three heights
for the ith bar are stored in x[i,.].

library pgraph;

graphset;

GAUSS L R 28-59

base10

t = seqa(0,1,10);

x = (tˆ2/2).*(1˜0.7˜0.3);

_plegctl = { 1 4 };

_plegstr = "Accnt #1\000Accnt #2\000Accnt #3";

title("Theoretical Savings Balance");

xlabel("Years");

ylabel("Dollars x 1000");

_pbartyp = { 1 10 }; /* Set color of the bars to */

/* 10 (magenta) */

_pnum = 2;

bar(t,x); /* Use t vector to label X axis. */

SOURCE pbar.src

SEE ALSO asclabel, xy, logx, logy, loglog, scale, hist

base10

PURPOSE Breaks number into a number of the form #.####... and a power of 10.

FORMAT { M,P } = base10(x);

INPUT x scalar, number to break down.

OUTPUT M scalar, in the range −10 < M < 10.

P scalar, integer power such that:

M ∗ 10P = x

EXAMPLE { b, e } = base10(4500);

28-60 GAUSS L R

b

begwind

b = 4.5000000

e = 3.0000000

SOURCE base10.src

begwind

PURPOSE Initializes global graphic panel variables.

LIBRARY pgraph

FORMAT begwind;

REMARKS This procedure must be called before any other graphic panel functions are
called.

SOURCE pwindow.src

SEE ALSO endwind, window, makewind, setwind, nextwind, getwind

besselj

PURPOSE Computes a Bessel function of the first kind, Jn(x).

FORMAT y = besselj(n,x);

INPUT n N×K matrix or P-dimensional array where the last two dimensions

GAUSS L R 28-61

bessely

are N×K, the order of the Bessel function. Nonintegers will be
truncated to an integer.

x L×M matrix or P-dimensional array where the last two dimensions
are L×M, E×E conformable with n.

OUTPUT y max(N,L) by max(K,M) matrix or P-dimensional array where the
last two dimensions are max(N,L) by max(K,M).

EXAMPLE n = { 0, 1 };

x = { 0.1 1.2, 2.3 3.4 };

y = besselj(n,x);

y =
0.99750156 0.67113274
0.53987253 0.17922585

SEE ALSO bessely, mbesseli

bessely

PURPOSE Computes a Bessel function of the second kind (Weber’s function), Yn(x).

FORMAT y = bessely(n,x);

INPUT n N×K matrix or P-dimensional array where the last two dimensions
are N×K, the order of the Bessel function. Nonintegers will be
truncated to an integer.

x L×M matrix or P-dimensional array where the last two dimensions
are L×M, E×E conformable with n.

OUTPUT y max(N,L) by max(K,M) matrix or P-dimensional array where the
last two dimensions are max(N,L) by max(K,M).

28-62 GAUSS L R

b

beta

EXAMPLE n = { 0, 1 };

x = { 0.1 1.2, 2.3 3.4 };

y = bessely(n,x);

y =
−1.5342387 0.22808351

0.052277316 0.40101529

SEE ALSO besselj, mbesseli

beta

PURPOSE Computes the standard Beta function, also called the Euler integral. The beta
function is defined as:

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt

FORMAT f = beta(x,y);

INPUT x scalar or N×K matrix; x may be real or complex.

y L×M matrix, E×E conformable with x.

OUTPUT f N×K matrix.

TECHNICAL
NOTES

The Beta function’s relationship with the Gamma function is:

gamma(x) × gamma(y)
gamma(x + y)

SEE ALSO cdfBeta, gamma, gammacplx, zeta

GAUSS L R 28-63

box

box

PURPOSE Graphs data using the box graph percentile method.

LIBRARY pgraph

FORMAT box(grp,y);

INPUT grp 1×M vector. This contains the group numbers corresponding to each
column of y data. If scalar 0, a sequence from 1 to cols(y) will be
generated automatically for the X axis.

y N×M matrix. Each column represents the set of y values for an
individual percentiles box symbol.

GLOBAL
INPUT

_pboxctl 5×1 vector, controls box style, width, and color.

[1] box width between 0 and 1. If zero, the box plot is
drawn as two vertical lines representing the quartile
ranges with a filled circle representing the 50th

percentile.
[2] box color. If this is set to 0, the colors may be

individually controlled using the global variable
_pcolor.

[3] Min/max style for the box symbol. One of the
following:

1 Minimum and maximum taken from the actual
limits of the data. Elements 4 and 5 are ignored.

2 Statistical standard with the minimum and
maximum calculated according to interquartile
range as follows:

intqrange = 75th - 25th

min = 25th - 1.5intqrange
max = 75th + 1.5intqrange

Elements 4 and 5 are ignored.

28-64 GAUSS L R

b

boxcox

3 Minimum and maximum percentiles taken from
elements 4 and 5.

[4] Minimum percentile value (0-100) if
_pboxctl[3] = 3.

[5] Maximum percentile value (0-100) if
_pboxctl[3] = 3.

_plctrl 1×M vector or scalar as follows:

0 Plot boxes only, no symbols.
1 Plot boxes and plot symbols which lie outside the min

and max box values.
2 Plot boxes and all symbols.
-1 Plot symbols only, no boxes.

These capabilities are in addition to the usual line control
capabilities of _plctrl.

_pcolor 1×M vector or scalar for symbol colors. If scalar, all symbols
will be one color.

REMARKS If missing values are encountered in the y data, they will be ignored during
calculations and will not be plotted.

SOURCE pbox.src

boxcox

PURPOSE Computes the Box-Cox function.

FORMAT y = boxcox (x,lambda);

INPUT x M×N matrix or P-dimensional array where the last two dimensions
are M×N.

lambda K×L matrix or P-dimensional array where the last two dimensions
are K×L, E×E conformable to x.

GAUSS L R 28-65

break

OUTPUT y max(M,L)×max(N,K) or P-dimensional array where the last two
dimensions are max(M,L)×max(N,K).

REMARKS Allowable range for x is:

x > 0

The boxcox function computes

boxcox(x) =
xλ − 1
λ

EXAMPLE x = { .2 .3, 1.5 2.5 };

lambda = { .4, 2 };

y = boxcox(x,lambda)

y =
−1.1867361 −0.95549787
0.62500000 2.62500000

break

PURPOSE Breaks out of a do or for loop.

FORMAT break;

EXAMPLE x = rndn(4,4);

r = 0;

do while r < rows(x);

r = r + 1;

28-66 GAUSS L R

b

call

c = 0;

do while c < cols(x);

c = c + 1;

if c =\,= r;

x[r,c] = 1;

elseif c > r;

break; /* terminate inner do loop */

else;

x[r,c] = 0;

endif;

endo; /* break jumps to the statement after this endo */

endo;

x =

1.000 0.326 −2.682 −0.594
0.000 1.000 −0.879 0.056
0.000 0.000 1.000 −0.688
0.000 0.000 0.000 1.000

REMARKS This command works just like in C.

SEE ALSO continue, do, for

call

PURPOSE Calls a function or procedure when the returned value is not needed and can be
ignored, or when the procedure is defined to return nothing.

FORMAT call function name(argument list);
call function name;

REMARKS This is useful when you need to execute a function or procedure and do not
need the value that it returns. It can also be used for calling procedures that have
been defined to return nothing.

GAUSS L R 28-67

cdfBeta

function name can be any intrinsic GAUSS function, a procedure (proc), or
any valid expression.

EXAMPLE call chol(x);

y = detl;

The above example is the fastest way to compute the determinant of a positive
definite matrix. The result of chol is discarded and detl is used to retrieve the
determinant that was computed during the call to chol.

SEE ALSO proc

cdfBeta

PURPOSE Computes the incomplete beta function (i.e., the cumulative distribution
function of the beta distribution).

FORMAT y = cdfBeta(x,a,b);

INPUT x N×K matrix.
a L×M matrix, E×E conformable with x.
b P×Q matrix, E×E conformable with x and a.

OUTPUT y max(N,L,P) by max(K,M,Q) matrix.

REMARKS y is the integral from 0 to x of the beta distribution with parameters a and b.
Allowable ranges for the arguments are:

0 ≤ x ≤ 1

a > 0

b > 0

28-68 GAUSS L R

c

cdfBetaInv

A -1 is returned for those elements with invalid inputs.

EXAMPLE x = { .1, .2, .3, .4 };

a = 0.5;

b = 0.3;

y = cdfBeta(x,a,b);

y =

0.142285
0.206629
0.260575
0.310875

SEE ALSO cdfChic, cdfFc, cdfN, cdfNc, cdfTc, gamma

TECHNICAL
NOTES

cdfBeta has the following approximate accuracy:

max(a,b) ≤ 500 absolute error is approx. ±5e-13
500 < max(a,b) ≤ 10,000 absolute error is approx. ±5e-11

10,000 < max(a,b) ≤ 200,000 absolute error is approx. ±1e-9

REFERENCES 1. Bol’shev, L.N.“Asymptotically Perason’s Transformations.” Teor. Veroyat.
Primen. Theory of Probability and its Applications. Vol. 8, No. 2, 1963,
129-55.

2. Boston N.E. and E.L. Battiste. “Remark on Algorithm 179 Incomplete
Beta Ratio.” Comm. ACM. Vol. 17, No. 3, March 1974, 156-57.

3. Ludwig, O.G. “Algorithm 179 Incomplete Beta Ratio.” Comm. ACM. Vol.
6, No. 6, June 1963, 314.

4. Mardia, K.V. and P.J. Zemroch. Tables of the F- and related distributions
with algorithms. Academic Press, New York, 1978. ISBN 0-12-471140-5.

5. Peizer, D.B. and J.W. Pratt. “A Normal Approximation for Binomial, F,
Beta, and Other Common, Related Tail Probabilities, I.” Journal of the
American Statistical Association. Vol. 63, Dec. 1968, 1416-56.

6. Pike, M.C. and J.W. Pratt. “Remark on Algorithm 179 Incomplete Beta
Ratio.” Comm. ACM. Vol. 10, No. 6, June 1967, 375-76.

GAUSS L R 28-69

cdfBinomial

cdfBetaInv

PURPOSE Computes the quantile or inverse of the beta cumulative distribution function.

FORMAT x = cdfBetaInv(p,a,b);

INPUT p N×K matrix, N×1 vector or scalar. 0 < p < 1.

a E×E conformable with p. 0 < a.

b E×E conformable with p. 0 < b.

OUTPUT x N×K matrix, N×1 vector or scalar.

REMARKS For invalid inputs, cdfBeta will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the
first input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

SEE ALSO cdfBeta, cdfBinomial, cdfNegBinomial

cdfBinomial

PURPOSE Computes the binomial cumulative distribution function.

FORMAT p = cdfBinomial(successes,trials,prob);

INPUT successes N×K matrix, N×1 vector or scalar. successes must be a positive
number and < trials

trials E×E conformable with successes. trials must be > successes.

prob The probability of success on any given trial. E×E conformable with
successes. 0 < prob < 1.

28-70 GAUSS L R

c

cdfBinomialInv

OUTPUT p N×K matrix, N×1 vector or scalar.

EXAMPLE What are the chances that a baseball player with a long-term batting average of
.317 could break Ichiro Suziki’s record of 270 hits in a season if he had as many
at bats as Ichiro had that year, 704?

p = cdfBinomial(270,704,.317); /* The cumulative

probability of our

player getting 270

or fewer hits in the

season */

p = 0.9999199430052614

Therefore the odds of this player breaking Ichiro’s record:

= 1-p

= 0.0000000000037863 or 0.0000000003786305%

REMARKS For invalid inputs, cdfBinomial will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the
first input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

SEE ALSO cdfBinomialInv, cdfNegBinomial

cdfBinomialInv

PURPOSE Computes the binomial quantile or inverse cumulative distribution function.

FORMAT s = cdfBinomialInv(p,trials,prob);

GAUSS L R 28-71

cdfBvn

INPUT p N×K matrix, N×1 vector or scalar. 0 < p < 1.
trials E×E conformable with p. trials > 0.
prob The probability of success on any given trial. E×E conformable with

p. 0 < prob < 1.

OUTPUT s The number of successes. NxK matrix, Nx1 vector or scalar.

EXAMPLE What is a reasonable range of wins for a basketball team playing 82 games in a
season with a 60% chance of winning any game?

range = { .10, .9 };

s = cdfBinomialInv(range,82,.6);

s = 43 55

This means that a team with a 60% chance of winning any one game would win
between 43 and 55 games in 80% of seasons.

REMARKS For invalid inputs, cdfBinomialInv will return a scalar error code which,
when its value is assessed by function scalerr, corresponds to the invalid
input. If the first input is out of range, scalerr will return a 1; if the second is
out of range, scalerr will return a 2; etc.

SEE ALSO cdfBinomial, cdfNegBinomial, cdfNegBinomialInv

cdfBvn

PURPOSE Computes the cumulative distribution function of the standardized bivariate
Normal density (lower tail).

FORMAT c = cdfBvn(h,k,r);

INPUT h N×K matrix, the upper limits of integration for variable 1.

28-72 GAUSS L R

c

cdfBvn

k L×M matrix, E×E conformable with h, the upper limits of
integration for variable 2.

r P×Q matrix, E×E conformable with h and k, the correlation
coefficients between the two variables.

OUTPUT c max(N,L,P) by max(K,M,Q) matrix, the result of the double integral
from −∞ to h and −∞ to k of the standardized bivariate Normal
density f (x, y, r).

REMARKS The function integrated is:

f (x, y, r) =
e−0.5w

2π
√

1 − r2

with

w =
x2 − 2rxy + y2

1 − r2

Thus, x and y have 0 means, unit variances, and correlation = r.

Allowable ranges for the arguments are:

−∞ < h < +∞

−∞ < k < +∞

−1 ≤ r ≤ 1

A -1 is returned for those elements with invalid inputs.

To find the integral under a general bivariate density, with x and y having
nonzero means and any positive standard deviations, use the transformation

GAUSS L R 28-73

cdfBvn2

equations:

h = (ht − ux)./sx;

k = (kt − uy)./sy;

where ux and uy are the (vectors of) means of x and y, sx and sy are the (vectors
of) standard deviations of x and y, and ht and kt are the (vectors of) upper
integration limits for the untransformed variables, respectively.

SEE ALSO cdfN, cdfTvn

TECHNICAL
NOTES

The absolute error for cdfBvn is approximately ±5.0e-9 for the entire range of
arguments.

REFERENCES 1. Daley, D.J. “Computation of Bi- and Tri-variate Normal Integral.” Appl.
Statist. Vol. 23, No. 3, 1974, 435-38.

2. Owen, D.B. “A Table of Normal Integrals.” Commun. Statist.-Simula.
Computa., B9(4). 1980, 389-419.

cdfBvn2

PURPOSE Returns the bivariate Normal cumulative distribution function of a bounded
rectangle.

FORMAT y = cdfBvn2(h,dh,k,dk,r);

INPUT h N×1 vector, starting points of integration for variable 1.

dh N×1 vector, increments for variable 1.

k N×1 vector, starting points of integration for variable 2.

dk N×1 vector, increments for variable 2.

28-74 GAUSS L R

c

cdfBvn2

r N×1 vector, correlation coefficients between the two variables.

OUTPUT y N×1 vector, the integral over the rectangle bounded by h, h + dh, k,
and k + dk of the standardized bivariate Normal distribution.

REMARKS Scalar input arguments are okay; they will be expanded to N×1 vectors.

cdfBvn2 computes:

cdfBvn(h+dh,k+dk,r) + cdfBvn(h,k,r) -
cdfBvn(h,k+dk,r) - cdfBvn(h+dh,k,r)

cdfBvn2 computes an error estimate for each set of inputs. The size of the error
depends on the input arguments. If trap 2 is set, a warning message is
displayed when the error reaches 0.01*abs(y). For an estimate of the actual
error, see cdfBvn2e.

EXAMPLE Example 1

print cdfBvn2(1,-1,1,-1,0.5);

1.4105101488974692e-001

Example 2

print cdfBvn2(1,-1e-15,1,-1e-15,0.5);

4.9303806576313238e-32

Example 3

print cdfBvn2(1,-1e-45,1,-1e-45,0.5);

GAUSS L R 28-75

cdfBvn2e

0.0000000000000000e+000

Example 4

trap 2,2;

print cdfBvn2(1,-1e-45,1,1e-45,0.5);

WARNING: Dubious accuracy from cdfBvn2:

0.000e+000 +/- 2.8e-060

0.0000000000000000e+000

SOURCE lncdfn.src

SEE ALSO cdfBvn2e, lncdfbvn2

cdfBvn2e

PURPOSE Returns the bivariate Normal cumulative distribution function of a bounded
rectangle.

FORMAT { y,e } = cdfBvn2e(h,dh,k,dk,r);

INPUT h N×1 vector, starting points of integration for variable 1.

dh N×1 vector, increments for variable 1.

k N×1 vector, starting points of integration for variable 2.

dk N×1 vector, increments for variable 2.

r N×1 vector, correlation coefficients between the two variables.

OUTPUT y N×1 vector, the integral over the rectangle bounded by h, h + dh, k,
and k + dk of the standardized bivariate Normal distribution.

e N×1 vector, an error estimate.

28-76 GAUSS L R

c

cdfCauchy

REMARKS Scalar input arguments are okay; they will be expanded to N×1 vectors.
cdfBvn2e computes:

cdfBvn(h+dh,k+dk,r) + cdfBvn(h,k,r) -
cdfBvn(h,k+dk,r) - cdfBvn(h+dh,k,r)

The real answer is y ± e. The size of the error depends on the input arguments.

EXAMPLE Example 1

print cdfBvn2e(1,-1,1,-1,0.5);

1.4105101488974692e-001

1.9927918166193113e-014

Example 2

print cdfBvn2e(1,-1e-15,1,-1e-15,0.5);

7.3955709864469857e-032

2.8306169312687801e-030

Example 3

print cdfBvn2e(1,-1e-45,1,-1e-45,0.5);

0.0000000000000000e+000

2.8306169312687770e-060

SEE ALSO cdfBvn2, lncdfbvn2

GAUSS L R 28-77

cdfCauchyInv

cdfCauchy

PURPOSE Computes the cumulative distribution function for the Cauchy distribution.

FORMAT y = cdfCauchy(x,a,b);

INPUT x N×K matrix, an N×1 vector or scalar.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x.

b Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The cumulative distribution function for the Cauchy distribution is defined as

1
2
+

1
π

arctan
(x − a

b

)

SEE ALSO pdfCauchy

cdfCauchyInv

PURPOSE Computes the Cauchy inverse cumulative distribution function.

FORMAT y = cdfCauchyInv(p,a,b);

INPUT p N×K matrix, N×1 vector or scalar. p must be greater than zero and
less than 1.

28-78 GAUSS L R

c

cdfChic

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with p.

b Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with p. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

SEE ALSO pdfCauchy, cdfCauchy

cdfChic

PURPOSE Computes the complement of the cdf of the chi-square distribution.

FORMAT y = cdfChic(x,n)

INPUT x N×K matrix.

n L×M matrix, E×E conformable with x.

OUTPUT y max(N,L) by max(K,M) matrix.

REMARKS y is the integral from x to∞ of the chi-square distribution with n degrees of
freedom.

The elements of n must all be positive integers. The allowable ranges for the
arguments are:

x ≥ 0

n > 0

A -1 is returned for those elements with invalid inputs.

GAUSS L R 28-79

cdfChii

This equals 1 − χ2
n(x), Thus, to get the chi-squared cdf, subtract cdfChic(x,n)

from 1. The complement of the cdf is computed because this is what is most
commonly needed in statistical applications, and because it can be computed
with fewer problems of roundoff error.

EXAMPLE x = { .1, .2, .3, .4 };

n = 3;

y = cdfChic(x,n);

y =

0.991837
0.977589
0.960028
0.940242

SEE ALSO cdfBeta, cdfFc, cdfN, cdfNc, cdfTc, gamma

TECHNICAL
NOTES

For n ≤ 1000, the incomplete gamma function is used and the absolute error is
approx. ±6e-13.

For n > 1000, a Normal approximation is used and the absolute error is ±2e-8.

For higher accuracy when n > 1000, use: 1 - cdfGam(0.5*x,0.5*n);

REFERENCES 1. Bhattacharjee, G.P. “Algorithm AS 32, the Incomplete Gamma Integral.”
Applied Statistics. Vol. 19, 1970, 285-87.

2. Mardia K.V. and P.J. Zemroch. Tables of the F- and related distributions
with algorithms. Academic Press, New York, 1978. ISBN 0-12-471140-5.

3. Peizer, D.B. and J.W. Pratt. “A Normal Approximation for Binomial, F,
Beta, and other Common, Related Tail Probabilities, I.” Journal of the
American Statistical Association. Vol. 63, Dec. 1968, 1416-56.

cdfChii

28-80 GAUSS L R

c

cdfChinc

PURPOSE Compute chi-square abscissae values given probability and degrees of freedom.

FORMAT c = cdfChii(p,n);

INPUT p M×N matrix, probabilities.

n L×K matrix, E×E conformable with p, degrees of freedom.

OUTPUT c max(M,L) by max(N,K) matrix, abscissae values for chi-squared
distribution.

EXAMPLE The following generates a 3×3 matrix of pseudo-random numbers with a
chi-squared distribution with expected value of 4:

rndseed 464578;

x = cdfChii(rndu(3,3),4+zeros(3,3));

x =

2.1096456 1.9354989 1.7549182
4.4971008 9.2643386 4.3639694
4.5737473 1.3706243 2.5653688

SOURCE cdfchii.src

SEE ALSO gammaii

cdfChinc

PURPOSE Computes the cumulative distribution function for the noncentral chi-square
distribution.

FORMAT y = cdfChinc(x,v,d);

GAUSS L R 28-81

cdfChincInv

INPUT x N×1 vector, values of upper limits of integrals, must be greater than
0.

v scalar, degrees of freedom, v > 0.

d scalar, noncentrality parameter, d > 0.
This is the square root of the noncentrality parameter that sometimes
goes under the symbol lambda. (See Scheffe, The Analysis of
Variance, App. IV, 1959.)

OUTPUT y N×1 vector.

REMARKS y is the integral from 0 to x of the noncentral chi-square distribution with v
degrees of freedom and noncentrality d.

cdfChinc can return a vector of values, but the degrees of freedom and
noncentrality parameter must be the same for all values of x.

For invalid inputs, cdfChinc will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the
first input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

• Relation to cdfChic:
cdfChic(x,v) = 1 - cdfChinc(x,v,0);

• The formula used is taken from Abramowitz and Stegun, Handbook of
Mathematical Functions, 1970, 942, formula 26.4.25.

EXAMPLE x = { .5, 1, 5, 25 };

print cdfChinc(x,4,2);

0.0042086234

0.016608592

0.30954232

0.99441140

SEE ALSO cdfFnc, cdfTnc

28-82 GAUSS L R

c

cdfExp

cdfChincInv

PURPOSE Computes the quantile or inverse of noncentral chi-square cumulative
distribution function.

FORMAT x = cdfChincInv(y, df, nonc);

INPUT y N×K matrix, N×1 vector or scalar. The integral from 0 to x.

df E×E conformable with y. The degrees of freedom. df > 0.

nonc E×E conformable with y. The noncentrality parameter. Note: This is
the square root of the noncentrality parameter that sometimes goes
under the symbol lambda. nonc > 0.

OUTPUT x N×K matrix, N×1 vector or scalar. The upper limit of the integrals
of the noncentral chi-square distribution with df degrees of freedom
and noncentrality nonc.

REMARKS Note: Input nonc is the square root of the noncentrality parameter that
sometimes goes under the symbol lambda.

For invalid inputs, cdfChincinv will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the
first input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

SEE ALSO cdfChinc, cdfChic, cdfFnc, cdfTnc

cdfExp

PURPOSE Computes the cumulative distribution function for the exponential distribution.

GAUSS L R 28-83

cdfExpInv

FORMAT y = cdfExp(x,a,m);

INPUT x N×K matrix, an N×1 vector or scalar.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. a must be less than x.

m Mean parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. m must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The cumulative distribution function for the exponential distribution is defined
as

1 − exp
(
−

x − a
b

)

SEE ALSO pdfExp

cdfExpInv

PURPOSE Computes the exponential inverse cumulative distribution function.

FORMAT y = cdfExpInv(p,a,b);

INPUT p N×K matrix, N×1 vector or scalar. p must be greater than zero and
less than 1.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with p.

b Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with p. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

28-84 GAUSS L R

c

cdfFc

SEE ALSO pdfExp, cdfExp

cdfFc

PURPOSE Computes the complement of the cumulative distribution function of the F
distribution.

FORMAT y = cdfFc(x,n1,n2);

INPUT x N×K matrix.
n1 L×M matrix, E×E conformable with x.
n2 P×Q matrix, E×E conformable with x and n1.

OUTPUT y max(N,L,P) by max(K,M,Q) matrix

REMARKS y is the integral from x to∞ of the F distribution with n1 and n2 degrees of
freedom.

This equals 1-G(x,n1,n2), where G is the F cdf with n1 and n2 degrees of
freedom. Thus, to get the F cdf, subtract cdfFc(x,n1,n2) from 1. The
complement of the cdf is computed because this is what is most commonly
needed in statistical applications, and because it can be computed with fewer
problems of roundoff error.

Allowable ranges for the arguments are:

x ≥ 0

n1 > 0

n2 > 0

A -1 is returned for those elements with invalid inputs.

GAUSS L R 28-85

cdfFnc

For max(n1,n2) ≤ 1000, the absolute error is approx. ±5e-13. For
max(n1,n2) > 1000, Normal approximations are used and the absolute error is
approx. ±2e-6.

For higher accuracy when max(n1,n2) > 1000, use cdfBeta(n2/(n2+n1*x),
n2/2, n1/2);

EXAMPLE x = { .1, .2, .3, .4 };

n1 = 0.5;

n2 = 0.3;

print cdfFc(x,n1,n2);

0.751772

0.708152

0.680365

0.659816

SEE ALSO cdfBeta, cdfChic, cdfN, cdfNc, cdfTc, gamma

REFERENCES 1. Bol’shev, L.N. “Asymptotically Perason’s Transformations.” Teor.
Veroyat. Primen. Theory of Probability and its Applications. Vol. 8, No.
2, 1963, 129-55.

2. Bosten, N.E. and E.L. Battiste. “Remark on Algorithm 179 Incomplete
Beta Ratio.” Comm. ACM. Vol. 17, No. 3, March 1974, 156-57.

3. Kennedy, W.J., Jr. and J.E. Gentle. Statistical Computing. Marcel Dekker,
Inc., New York, 1980.

4. Ludwig, O.G. “Algorithm 179 Incomplete Beta Ratio.” Comm. ACM. Vol.
6, No. 6, June 1963, 314.

5. Mardia, K.V. and P.J. Zemroch. Tables of the F- and related distributions
with algorithms. Academic Press, New York, 1978. ISBN 0-12-471140-5.

6. Peizer, D.B. and J.W. Pratt. “A Normal Approximation for Binomial, F,
Beta, and other Common, Related Tail Probabilities, I.” Journal of the
American Statistical Association. Vol. 63, Dec. 1968, 1416-56.

7. Pike, M.C. and I.D. Hill, “Remark on Algorithm 179 Incomplete Beta
Ratio.” Comm. ACM. Vol. 10, No. 6, June 1967, 375-76.

28-86 GAUSS L R

c

cdfFncInv

cdfFnc

PURPOSE Computes the cumulative distribution function of the noncentral F distribution.

FORMAT y = cdfFnc(x,n1,n2,d);

INPUT x N×1 vector, values of upper limits of integrals, x > 0.

v1 scalar, degrees of freedom of numerator, n1 > 0.

v2 scalar, degrees of freedom of denominator, n2 > 0.

d scalar, noncentrality parameter, d > 0.

This is the square root of the noncentrality parameter that sometimes
goes under the symbol lambda. (See Scheffe, The Analysis of
Variance, App. IV, 1959.)

OUTPUT y N×1 vector.

REMARKS For invalid inputs, cdfFnc will return a scalar error code which, when its value
is assessed by function scalerr, corresponds to the invalid input. If the first
input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

TECHNICAL
NOTES

• Relation to cdfFc:

cdfFc(x,n1,n2) = 1 - cdfFnc(x,n1,n2,0);

• The formula used is taken from Abramowitz and Stegun, Handbook of
Mathematical Functions, 1970, 947, formula 26.6.20.

SEE ALSO cdfTnc, cdfChinc

GAUSS L R 28-87

cdfGam

cdfFncInv

PURPOSE Computes the quantile or inverse of noncentral f cumulative distribution
function.

FORMAT x = cdfFncInv(y, dfn, dfd, nonc);

INPUT y N×K matrix, N×1 vector or scalar.

dfn E×E conformable with y. The degrees of freedom numerator. dfn >
0.

dfd E×E conformable with y. The degrees of freedom denominator. dfd
> 0.

nonc E×E conformable with y. The noncentrality parameter. Note: This is
the square root of the noncentrality parameter that sometimes goes
under the symbol lambda. nonc > 0.

OUTPUT x N×K matrix, N×1 vector or scalar. The upper limit of the integrals
of the noncentral f distribution.

REMARKS Note: Input nonc is the square root of the noncentrality parameter that
sometimes goes under the symbol lambda.

For invalid inputs, cdfFncInv will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the
first input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

SEE ALSO cdfFnc, cdfChinc, cdfChic, cdfTnc

28-88 GAUSS L R

c

cdfGam

cdfGam

PURPOSE Computes the incomplete gamma function.

FORMAT g = cdfGam(x,intlim);

INPUT x N×K matrix of data.

intlim L×M matrix, E×E compatible with x, containing the integration
limit.

OUTPUT g max(N,L) by max(K,M) matrix.

REMARKS The incomplete gamma function returns the integral

∫ intlim

0

e−tt(x−1)

gamma(x)
dt

The allowable ranges for the arguments are:

x > 0

intlim ≥ 0

A -1 is returned for those elements with invalid inputs.

EXAMPLE x = { 0.5 1 3 10 };

intlim = seqa(0,.2,6);

g = cdfGam(x,intlim);

GAUSS L R 28-89

cdfGenPareto

x = 0.500000 1.00000 3.00000 10.0000

intlim =

0.000000
0.200000
0.400000
0.600000
0.800000
1.000000

g =

0.000000 0.000000 0.000000 0.000000
0.472911 0.181269 0.00114848 2.35307E − 014
0.628907 0.329680 0.00792633 2.00981E − 011
0.726678 0.451188 0.0231153 9.66972E − 010
0.794097 0.550671 0.0474226 1.43310E − 008
0.842701 0.632120 0.0803014 1.11425E − 007

This computes the integrals over the range from 0 to 1, in increments of .2, at
the parameter values 0.5, 1, 3, 10.

TECHNICAL
NOTES

cdfGam has the following approximate accuracy:

x < 500 the absolute error is approx. ±6e-13
500 ≤ x ≤ 10,000 the absolute error is approx. ±3e-11

10,000 < x a Normal approximation is used and
the absolute error is approx. ±3e-10

REFERENCES 1. Bhattacharjee, G.P. “Algorithm AS 32, the Incomplete Gamma Integral.”
Applied Statistics. Vol. 19, 1970, 285-87.

2. Mardia, K.V. and P.J. Zemroch. Tables of the F- and Related Distributions
with Algorithms. Academic Press, New York, 1978. ISBN 0-12-471140-5.

3. Peizer, D.B. and J.W. Pratt. “A Normal Approximation for Binomial, F,
Beta, and other Common, Related Tail Probabilities, I.” Journal of the
American Statistical Association. Vol. 63, Dec. 1968, 1416-56.

28-90 GAUSS L R

c

cdfLaplace

cdfGenPareto

PURPOSE Computes the cumulative distribution function for the Generalized Pareto
distribution.

FORMAT y = cdfGenPareto(x,a,o,k);

INPUT x N×K matrix, an N×1 vector or scalar.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x.

o Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. o must be greater than 0.

k Shape parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The cumulative distribution function for the Generalized Pareto distribution is
defined as

f (x) =

 1 −
(
1 + k (x−µ)

σ

)−1/k
k , 0

1 − exp
(
−

(x−µ)
σ

)
k = 0

SEE ALSO pdfGenPareto

cdfLaplace

PURPOSE Computes the cumulative distribution function for the Laplace distribution.

GAUSS L R 28-91

cdfLaplaceInv

FORMAT y = cdfLaplace(x,a,b);

INPUT x N×K matrix, an N×1 vector or scalar.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x.

b Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The cumulative distribution function for the Laplace distribution is defined as

F(x) =
{ 1

2 exp(−λ(µ − x)) X ≤ µ
1 − 1

2 exp(−λ(µ − x)) X > µ

SEE ALSO cdfLaplaceInv, pdfLaplace

cdfLaplaceInv

PURPOSE Computes the Laplace inverse cumulative distribution function.

FORMAT y = cdfLaplaceInv(p,a,b);

INPUT p N×K matrix, N×1 vector or scalar. p must be greater than 0 and less
than 1.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with p.

b Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with p. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

28-92 GAUSS L R

c

cdfLogistic

SEE ALSO cdfLaplace, pdfLaplace

cdfLogistic

PURPOSE Computes the cumulative distribution function for the logistic distribution.

FORMAT y = cdfLogistic(x,a,b);

INPUT x N×K matrix, an N×1 vector or scalar.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x.

b Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The cumulative distribution function for the logistic distribution is defined as

F(x) =
1

1 + exp(−z)

where

z ≡
x − µ
σ

SEE ALSO pdfLogistic

GAUSS L R 28-93

cdfMvn

cdfLogisticInv

PURPOSE Computes the logistic inverse cumulative distribution function.

FORMAT y = cdfLogisticInv(p,a,b);

INPUT p N×K matrix, N×1 vector or scalar. p must be greater than 0 and less
than 1.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with p.

b Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with p. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

SEE ALSO pdfLogistic, cdfLogistic

cdfMvn

PURPOSE Computes multivariate Normal cumulative distribution function.

FORMAT y = cdfMvn(x,r);

INPUT x K×L matrix, abscissae.

r K×K matrix, correlation matrix.

OUTPUT y L×1 vector, Pr(X < x|r).

SOURCE lncdfn.src

28-94 GAUSS L R

c

cdfMvnce

SEE ALSO cdfBvn, cdfN, lncdfMvn

cdfMvnce

PURPOSE Computes the complement of the multivariate Normal cumulative distribution
function with error management.

FORMAT {y,err,retcode} = cdfMvnce(ctl,x,r,m);

INPUT ctl instance of a cdfmControl structure with members.

ctl.maxEvaluations scalar, maximum number of evaluations.
ctl.absErrorTolerance scalar absolute error tolerance.
ctl.relative error tolerance.

x N×K matrix, abscissae.
r K×K matrix, correlation matrix.
m K×1 vector, means.

OUTPUT y L×1 vector, Pr(X > x|r,m).
err L×1 vector, estimates of absolute error.
retcode L×1 vector, return codes,

0 normal completion with err < ctl.absErrorTolerance.
1 err > ctl.absErrorTolerance and ctl.maxEvaluations exceeded;

increase ctl.maxEvaluations to decrease error.
2 K > 100 or K < 1.
3 R not positive semi-definite.
missing R not properly defined.

REMARKS cdfMvne evaluates the following integral

Φ(xi,R,m) =
1

√
|R|(2π)m

∫ ∞

xi1

∫ ∞

xi2

· · ·

∫ ∞

xiK

e−
1
2 (z−m′)′R−1

(z−m′)dz

GAUSS L R 28-95

cdfMvne

SOURCE cdfm.src

SEE ALSO cdfMvn2e, cdfMvnce, cdfMvte

REFERENCES 1. Genz, A. and F. Bretz,“Numerical computation of multivariate
t-probabilities with application to power calculation of multiple contrasts”,
Journal of Statistical Computation and Simulation, 63:361-378, 1999.
Genz, A., “Numerical computation of multivariate normal probabilities”,
Journal of Computational and Graphical Statistics, 1:141-149, 1992.

cdfMvne

PURPOSE Computes multivariate Normal cumulative distribution function with error
management.

FORMAT {y,err,retcode} = cdfMvne(ctl,x,r,m);

INPUT ctl instance of a cdfmControl structure with members.

ctl.maxEvaluations scalar, maximum number of evaluations.
ctl.absErrorTolerance scalar absolute error tolerance.
ctl.relative error tolerance.

x N×K matrix, abscissae.

r K×K matrix, correlation matrix.

m K×1 vector, means.

OUTPUT y L×1 vector, Pr(X < x|r,m).

err L×1 vector, estimates of absolute error.

retcode L×1 vector, return codes.

0 normal completion with err < ctl.absErrorTolerance.
1 err > ctl.absErrorTolerance and ctl.maxEvaluations exceeded;

increase ctl.maxEvaluations to decrease error

28-96 GAUSS L R

c

cdfMvn2e

2 K > 100 or K < 1
3 R not positive semi-definite
missing R not properly defined

REMARKS cdfMvne evaluates the following integral

Φ(xi,R,m) =
1

√
|R|(2π)m

∫ xi1

−∞

∫ xi2

−∞

· · ·

∫ xiK

−∞

e−
1
2 (z−m′)′R−1

(z−m′)dz

SOURCE cdfm.src

SEE ALSO cdfMvne, cdfMvn2e, cdfMvtce

REFERENCES 1. Genz, A. and F. Bretz,“Numerical computation of multivariate
t-probabilities with application to power calculation of multiple contrasts,”
Journal of Statistical Computation and Simulation, 63:361-378, 1999.
Genz, A., “Numerical computation of multivariate normal probabilities,”
Journal of Computational and Graphical Statistics, 1:141-149, 1992.

cdfMvn2e

PURPOSE Computes the multivariate Normal cumulative distribution function with error
management over the range [a,b].

FORMAT {y,err,retcode} = cdfMvn2e(ctl,a,b,r,m);

INPUT ctl instance of a cdfmControl structure with members.

ctl.maxEvaluations scalar, maximum number of evaluations.
ctl.absErrorTolerance scalar absolute error tolerance.
ctl.relative error tolerance.

a N×K matrix, lower limits.

GAUSS L R 28-97

cdfMvtce

b N×K matrix, upper limits.

r K×K matrix, correlation matrix.

m K×1 vector, means.

OUTPUT y L×1 vector, Pr(X > a and X < b|r,m).

err L×1 vector, estimates of absolute error.

retcode L×1 vector, return codes.

0 normal completion with err < ctl.absErrorTolerance.

1 err > ctl.absErrorTolerance and ctl.maxEvaluations exceeded;
increase ctl.maxEvaluations to decrease error.

2 K > 100 or K < 1.

3 R not positive semi-definite.

missing R not properly defined.

REMARKS cdfMvne evaluates the following integral

Φ(ai, bi,R,m) =
1

√
|R|(2π)m

∫ bi1

ai1

∫ bi2

ai2

· · ·

∫ biK

aiK

e−
1
2 (z−m′)′R−1

(z−m′)dz

SOURCE cdfm.src

SEE ALSO cdfMvne, cdfMvnce, cdfMvt2e

REFERENCES 1. Genz, A. and F. Bretz,“Numerical computation of multivariate
t-probabilities with application to power calculation of multiple contrasts,”
Journal of Statistical Computation and Simulation, 63:361-378, 1999.

Genz, A., “Numerical computation of multivariate normal probabilities,”
Journal of Computational and Graphical Statistics, 1:141-149, 1992.

28-98 GAUSS L R

c

cdfMvtce

cdfMvtce

PURPOSE Computes complement of multivariate Student’s t cumulative distribution
function with error management.

FORMAT {y,err,retcode} = cdfMvtce(ctl,x,R,m,n);

INPUT ctl instance of a cdfmControl structure with members.

ctl.maxEvaluations scalar, maximum number of evaluations.

ctl.absErrorTolerance scalar absolute error tolerance.

ctl.relative error tolerance.

x N×K matrix, abscissae.

R K×K matrix, correlation matrix.

m K×1 vector, noncentralities.

n scalar, degrees of freedom.

OUTPUT y L×1 vector, Pr(X > x|r,m).

err L×1 vector, estimates of absolute error.

retcode L×1 vector, return codes.

0 normal completion with err < ctl.absErrorTolerance.

1 err > ctl.absErrorTolerance and ctl.maxEvaluations exceeded;
increase ctl.maxEvaluations to decrease error.

2 K > 100 or K < 1.

3 R not positive semi-definite.

missing R not properly defined.

REMARKS The central multivariate Student’s t cdf for the i-th row of x is defined by

GAUSS L R 28-99

cdfMvte

T (xi,R, n) =
Γ(n+K

2)

Γ(n
2)

√
|R|(nπ)K

∫ ∞

xi1

∫ ∞

xi2

· · ·

∫ ∞

x
iK

(
1 +

z′Σ−1z
n

)−n+K
2

dz

≡
21−n

2

Γ(n
2)

∫ ∞

0
sn−1e−

s2
2 Φ

(
−∞,

sxi
√

n
,R

)
ds

where

Φ(xi,R) =
1

√
|R|(2π)m

∫ ∞

xi1

∫ ∞

xi2

· · ·

∫ ∞

xiK

e−
1
2 z′R−1

zdz

For the noncentral cdf we have

T (xi,R, n,m) =
21−n

2

Γ(n
2)

∫ ∞

0
sn−1e−

s2
2 Φ

(
sxi
√

n
− m′,∞,R

)
ds

SOURCE cdfm.src

SEE ALSO cdfMvt2e, cdfMvtce, cdfMvne

1. Genz, A. and F. Bretz,“Numerical computation of multivariate
t-probabilities with application to power calculation of multiple contrasts,”
Journal of Statistical Computation and Simulation, 63:361-378, 1999.

Genz, A., “Numerical computation of multivariate normal probabilities,”
Journal of Computational and Graphical Statistics, 1:141-149, 1992.

28-100 GAUSS L R

c

cdfMvte

cdfMvte

PURPOSE Computes multivariate Student’s t cumulative distribution function with error
management.

FORMAT {y,err,retcode} = cdfMvte(ctl,x,R,m,n);

INPUT ctl instance of a cdfmControl structure with members.

ctl.maxEvaluations scalar, maximum number of evaluations.

ctl.absErrorTolerance scalar absolute error tolerance.

ctl.relative error tolerance.

x N×K matrix, abscissae.

R K×K matrix, correlation matrix.

m K×1 vector, noncentralities.

n scalar, degrees of freedom.

OUTPUT y L×1 vector, Pr(X < x|r,m).

err L×1 vector, estimates of absolute error.

retcode L×1 vector, return codes.

0 normal completion with err < ctl.absErrorTolerance.

1 err > ctl.absErrorTolerance and ctl.maxEvaluations exceeded;
increase ctl.maxEvaluations to decrease error.

2 K > 100 or K < 1.

3 R not positive semi-definite.

missing R not properly defined.

REMARKS The central multivariate Student’s t cdf for the i-th row of x is defined by

GAUSS L R 28-101

cdfMvt2e

T (xi,R, n) =
Γ(n+K

2)

Γ(n
2)

√
|R|(nπ)K

∫ xi1

−∞

∫ xi2

−∞

· · ·

∫ x
iK

−∞

(
1 +

z′Σ−1z
n

)−n+K
2

dz

≡
21−n

2

Γ(n
2)

∫ ∞

0
sn−1e−

s2
2 Φ

(
−∞,

sxi
√

n
,R

)
ds

where

Φ(xi,R) =
1

√
|R|(2π)m

∫ xi1

−∞

∫ xi2

−∞

· · ·

∫ xiK

−∞

e−
1
2 z′R−1

zdz

For the noncentral cdf we have

T (xi,R, n,m) =
21−n

2

Γ(n
2)

∫ ∞

0
sn−1e−

s2
2 Φ

(
−∞,

sxi
√

n
− m′,R

)
ds

SOURCE cdfm.src

SEE ALSO cdfMvte, cdfMvt2e, cdfMvnce

1. Genz, A. and F. Bretz,“Numerical computation of multivariate
t-probabilities with application to power calculation of multiple contrasts,”
Journal of Statistical Computation and Simulation, 63:361-378, 1999.

Genz, A., “Numerical computation of multivariate normal probabilities,”
Journal of Computational and Graphical Statistics, 1:141-149, 1992.

28-102 GAUSS L R

c

cdfMvt2e

cdfMvt2e

PURPOSE Computes multivariate Student’s t cumulative distribution function with error
management over [a,b].

FORMAT {y,err,retcode} = cdfMvt2e(ctl,a,b,R,m,n);

INPUT ctl instance of a cdfmControl structure with members.

ctl.maxEvaluations scalar, maximum number of evaluations.

ctl.absErrorTolerance scalar absolute error tolerance.

ctl.relative error tolerance.

a N×K matrix, lower limits.

b N×K matrix, upper limits.

R K×K matrix, correlation matrix.

m K×1 vector, noncentralities.

n scalar, degrees of freedom.

OUTPUT y L×1 vector, Pr(X > a and X < b|r,m).

err L×1 vector, estimates of absolute error.

retcode L×1 vector, return codes.

0 normal completion with err < ctl.absErrorTolerance.

1 err > ctl.absErrorTolerance and ctl.maxEvaluations exceeded;
increase ctl.maxEvaluations to decrease error.

2 K > 100 or K < 1.

3 R not positive semi-definite.

missing R not properly defined.

REMARKS The central multivariate Student’s t cdf for the i-th row of x is defined by

GAUSS L R 28-103

cdfN, cdfNc

T (xi,R, n) =
Γ(n+K

2)

Γ(n
2)

√
|R|(nπ)K

∫ bi1

ai1

∫ bi2

ai2

· · ·

∫ b
iK

a
iK

(
1 +

z′Σ−1z
n

)−n+K
2

dz

≡
21−n

2

Γ(n
2)

∫ ∞

0
sn−1e−

s2
2 Φ

(
−∞,

sxi
√

n
,R

)
ds

where

Φ(xi,R) =
1

√
|R|(2π)m

∫ bi1

ai1

∫ bi2

ai2

· · ·

∫ b
iK

a
iK

e−
1
2 z′R−1

zdz

For the noncentral cdf we have

T (xi,R, n,m) =
21−n

2

Γ(n
2)

∫ ∞

0
sn−1e−

s2
2 Φ

(
sai
√

n
− m′,

sbi
√

n
− m′,R

)
ds

SEE ALSO cdfMvte, cdfMvtce, cdfMvn2e

SOURCE cdfm.src

1. Genz, A. and F. Bretz,“Numerical computation of multivariate
t-probabilities with application to power calculation of multiple contrasts,”
Journal of Statistical Computation and Simulation, 63:361-378, 1999.

Genz, A., “Numerical computation of multivariate normal probabilities,”
Journal of Computational and Graphical Statistics, 1:141-149, 1992.

28-104 GAUSS L R

c

cdfN, cdfNc

cdfN, cdfNc

PURPOSE cdfN computes the cumulative distribution function (cdf) of the Normal
distribution. cdfNc computes 1 minus the cdf of the Normal distribution.

FORMAT n = cdfN(x);
nc = cdfNc(x);

INPUT x N×K matrix.

OUTPUT n N×K matrix.

nc N×K matrix.

REMARKS n is the integral from −∞ to x of the Normal density function, and nc is the
integral from x to +∞.

Note that: cdfN(x) + cdfNc(x) = 1. However, many applications expect
cdfN(x) to approach 1, but never actually reach it. Because of this, we have
capped the return value of cdfN at 1 - machine epsilon, or approximately 1 -
1.11e-16. As the relative error of cdfN is about ±5e-15 for cdfN(x) around 1,
this does not invalidate the result. What it does mean is that for abs(x) >
(approx.) 8.2924, the identity does not hold true. If you have a need for the
uncapped value of cdfN, the following code will return it:

n = cdfN(x);

if n >= 1-eps;

n = 1;

endif;

where the value of machine epsilon is obtained as follows:

x = 1;

GAUSS L R 28-105

cdfN, cdfNc

do while 1-x /= 1;

eps = x;

x = x/2;

endo;

Note that this is an alternate definition of machine epsilon. Machine epsilon is
usually defined as the smallest number such that 1 + machine epsilon > 1,
which is about 2.23e-16. This defines machine epsilon as the smallest number
such that 1 - machine epsilon < 1, or about 1.11e-16.

The erf and erfc functions are also provided, and may sometimes be more
useful than cdfN and cdfNc.

EXAMPLE x = { -2 -1 0 1 2 };

n = cdfN(x);

nc = cdfNc(x);

x = −2.00000 −1.00000 0.00000 1.00000 2.00000
n = 0.02275 0.15866 0.50000 0.84134 0.97725
nc = 0.97725 0.84134 0.50000 0.15866 0.02275

SEE ALSO erf, erfc, cdfBeta, cdfChic, cdfTc, cdfFc, gamma

TECHNICAL
NOTES

For the integral from −∞ to x:

x ≤ -37 cdfN underflows and 0.0 is returned
-36 < x < -10 cdfN has a relative error of approx. ±5e-12
-10 < x < 0 cdfN has a relative error of approx. ±1e-13

0 < x cdfN has a relative error of approx. ±5e-15

For cdfNc, i.e., the integral from x to +∞, use the above accuracies but change
x to -x.

REFERENCES 1. Adams, A.G. “Remark on Algorithm 304 Normal Curve Integral.” Comm.
ACM. Vol. 12, No. 10, Oct. 1969, 565-66.

28-106 GAUSS L R

c

cdfNegBinomial

2. Hill, I.D. and S.A. Joyce. “Algorithm 304 Normal Curve Integral.” Comm.
ACM. Vol. 10, No. 6, June 1967, 374-75.

3. Holmgren, B. “Remark on Algorithm 304 Normal Curve Integral.” Comm.
ACM. Vol. 13, No. 10, Oct. 1970.

4. Mardia, K.V. and P.J. Zemroch. Tables of the F- and Related Distributions
with Algorithms. Academic Press, New York, 1978, ISBN 0-12-471140-5.

cdfNegBinomial

PURPOSE Computes the cumulative distribution function for the negative binomial
distribution.

FORMAT p = cdfNegBinomial(f,s,prob);

INPUT f N×K matrix, N×1 vector or scalar. 0 < f.

s E×E conformable with f. 0 < s.

prob The probability of success on any given trial. E×E conformable with
f. 0 < prob < 1.

OUTPUT p N×K matrix, N×1 vector or scalar. The probability of observing f
failures before observing s s.

REMARKS For invalid inputs, cdfNegBinomial will return a scalar error code which,
when its value is assessed by function scalerr, corresponds to the invalid
input. If the first input is out of range, scalerr will return a 1; if the second is
out of range, scalerr will return a 2; etc.

SEE ALSO cdfBinomial, cdfBinomialInv, cdfNegBinomialInv

GAUSS L R 28-107

cdfN2

cdfNegBinomialInv

PURPOSE Computes the quantile or inverse negative binomial cumulative distribution
function.

FORMAT f = cdfNegBinomialInv(p,s,prob);

INPUT p N×K matrix, N×1 vector or scalar. 0 < f < 1.

s E×E conformable with p. 0 < s.

prob The probability of success on any given trial. E×E conformable with
p. 0 < prob < 1.

OUTPUT f N×K matrix, N×1 vector or scalar.

REMARKS For invalid inputs, cdfNegBinomialInv will return a scalar error code which,
when its value is assessed by function scalerr, corresponds to the invalid
input. If the first input is out of range, scalerr will return a 1; if the second is
out of range, scalerr will return a 2; etc.

SEE ALSO cdfBinomial, cdfBinomialInv, cdfNegBinomial

cdfN2

PURPOSE Computes interval of Normal cumulative distribution function.

FORMAT y = cdfN2(x,dx);

INPUT x M×N matrix, abscissae.

dx K×L matrix, E×E conformable to x, intervals.

28-108 GAUSS L R

c

cdfNi

OUTPUT y max(M,K) by max(N,L) matrix, the integral from x to x+dx of the
Normal distribution, i.e., Pr(x ≤ X ≤ x + dx).

REMARKS The relative error is:

|x| ≤ 1 and dx ≤ 1 ±1e − 14
1 < |x| < 37 and |dx| < 1/|x| ±1e − 13

min(x, x + dx) > −37 and y > 1e − 300 ±1e − 11 or better

A relative error of ±1e-14 implies that the answer is accurate to better than ±1
in the 14th digit.

EXAMPLE print cdfN2(1,0.5);

9.1848052662599017e-02

print cdfN2(20,0.5);

2.7535164718736454e-89

print cdfN2(20,1e-2);

5.0038115018684521e-90

print cdfN2(-5,2);

1.3496113800582164e-03

print cdfN2(-5,0.15);

3.3065580013000255e-07

SOURCE lncdfn.src

SEE ALSO lncdfn2

GAUSS L R 28-109

cdfPoisson

cdfNi

PURPOSE Computes the inverse of the cdf of the Normal distribution.

FORMAT x = cdfNi(p);

INPUT p N×K real matrix, Normal probability levels, 0 ≤ p ≤ 1.

OUTPUT x N×K real matrix, Normal deviates, such that cdfN(x) = p.

REMARKS cdfN(cdfNi(p)) = p to within the errors given below:

p ≤ 4.6e-308 -37.5 is returned
4.6e-308 < p < 5e-24 accurate to ±5 in 12th digit

5e-24 < p < 0.5 accurate to ±1 in 13th digit
0.5 < p < 1 - 2.22045e-16 accurate to ±5 in 15th digit

p ≥ 1 - 2.22045e-16 8.12589. . . is returned

SEE ALSO cdfN

cdfPoisson

PURPOSE Computes the Poisson cumulative distribution function.

FORMAT p = cdfPoisson(x,lambda);

INPUT x N×K matrix, N×1 vector or scalar. x must be a positive whole
number.

lambda E×E conformable with x. The mean parameter.

OUTPUT p N×K matrix, N×1 vector or scalar.

28-110 GAUSS L R

c

cdfPoissonInv

REMARKS For invalid inputs, cdfPoisson will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the
first input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

EXAMPLE Suppose that a hospital emergency department sees and average of 200 patients
during the Friday evening shift. What is the probability that they will see fewer
than 250 patients during any one Friday evening shift.

p = cdfPoisson(250,200);

p = 0.99971538 or 99.715%

SEE ALSO cdfPoissonInv, cdfBinomial, cdfNegBinomial

cdfPoissonInv

PURPOSE Computes the quantile or inverse Poisson cumulative distribution function.

FORMAT x = cdfPoissonInv(p,lambda);

INPUT p N×K matrix, N×1 vector or scalar. 0 < p < 1.

lambda E×E conformable with p. The mean parameter.

OUTPUT x N×K matrix, N×1 vector or scalar.

EXAMPLE Suppose that a hospital emergency department sees an average of 200 patients
during the Friday evening shift. If the hospital wants to have enough staff on
hand to handle the patient load on 95% of Friday evenings, how many patients
do they need staff on hand for?

x = cdfPoissonInv(.95,200);

GAUSS L R 28-111

cdfRayleigh

p = 224

The hospital should expect to see 224 or few patients on 95% of Friday
evenings.

REMARKS For invalid inputs, cdfPoissoninv will return a scalar error code which, when
its value is assessed by function scalerr, corresponds to the invalid input. If
the first input is out of range, scalerr will return a 1; if the second is out of
range, scalerr will return a 2; etc.

SEE ALSO cdfPoisson, cdfBinomial, cdfNegBinomial

cdfRayleigh

PURPOSE Computes the Rayleigh cumulative distribution function.

FORMAT y = cdfRayleigh(x,b);

INPUT x N×K matrix, an N×1 vector or scalar. x must be greater than 0.

b Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The Rayleigh cumulative distribution function is defined as

1 − exp
(
−x2

2σ2

)

SEE ALSO cdfRayleighInv, pdfRayleigh

28-112 GAUSS L R

c

cdfTc

cdfRayleighInv

PURPOSE Computes the Rayleigh inverse cumulative distribution function.

FORMAT y = cdfRayleighInv(p,b);

INPUT p N×K matrix, N×1 vector or scalar. p must be greater than 0 and less
than 1.

b Shape parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with p. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

SEE ALSO pdfRayleigh, cdfRayleigh

cdfTc

PURPOSE Computes the complement of the cdf of the Student’s t distribution.

FORMAT y = cdfTc(x,n);

INPUT x N×K matrix.

n L×M matrix, E×E conformable with x.

OUTPUT y max(N,L) by max(K,M) matrix.

REMARKS y is the integral from x to∞ of the t distribution with n degrees of freedom.

Allowable ranges for the arguments are:

GAUSS L R 28-113

cdfTc

−∞ < x < +∞

n > 0

A -1 is returned for those elements with invalid inputs.

This equals 1-F(x,n), where F is the t cdf with n degrees of freedom. Thus, to
get the t cdf, subtract cdfTc(x,n) from 1. The complement of the cdf is
computed because this is what is most commonly needed in statistical
applications, and because it can be computed with fewer problems of roundoff
error.

EXAMPLE x = { .1, .2, .3, .4 };

n = 0.5;

y = cdfTc(x,n);

y =

0.473165
0.447100
0.422428
0.399555

SEE ALSO cdfTci

TECHNICAL
NOTES

For results greater than 0.5e-30, the absolute error is approx. ±1e-14 and the
relative error is approx. ±1e-12. If you multiply the relative error by the result,
then take the minimum of that and the absolute error, you have the maximum
actual error for any result. Thus, the actual error is approx. ±1e-14 for results
greater than 0.01. For results less than 0.01, the actual error will be less. For
example, for a result of 0.5e-30, the actual error is only ±0.5e-42.

REFERENCES 1. Abramowitz, M. and I.A. Stegun, eds. Handbook of Mathematical
Functions. 7th ed. Dover, New York, 1970. ISBN 0-486-61272-4.

28-114 GAUSS L R

c

cdfTci

2. Hill, G.W. “Algorithm 395 Student’s t-Distribution.” Comm. ACM. Vol.
13, No. 10, Oct. 1970.

3. Hill, G.W. “Reference Table: Student’s t-Distribution Quantiles to 20D.”
Division of Mathematical Statistics Technical Paper No. 35.
Commonwealth Scientific and Industrial Research Organization,
Australia, 1972.

cdfTci

PURPOSE Computes the inverse of the complement of the Student’s t cdf.

FORMAT x = cdfTci(p,n);

INPUT p N×K real matrix, complementary Student’s t probability levels, 0 ≤
p ≤ 1.

n L×M real matrix, degrees of freedom, n ≥ 1, n need not be integral.
E×E conformable with p.

OUTPUT x max(N,L) by max(K,M) real matrix, Student’s t deviates, such that
cdfTc(x,n) = p.

REMARKS cdfTc(cdfTci(p,n)) = p to within the errors given below:

0.5e-30 < p < 0.01 accurate to ±1 in 12th digit
0.01 < p accurate to ±1e-14

Extreme values of arguments can give rise to underflows, but no overflows are
generated.

SEE ALSO cdfTc

GAUSS L R 28-115

cdfTvn

cdfTnc

PURPOSE The integral under noncentral Student’s t distribution, from −∞ to x. It can
return a vector of values, but the degrees of freedom and noncentrality
parameter must be the same for all values of x.

FORMAT y = cdfTnc(x,v,d);

INPUT x N×1 vector, values of upper limits of integrals.

v scalar, degrees of freedom, v > 0.

d scalar, noncentrality parameter.

This is the square root of the noncentrality parameter that sometimes
goes under the symbol lambda. (See Scheffe, The Analysis of
Variance, App. IV, 1959.)

OUTPUT y N×1 vector, integrals from −∞ to x of noncentral t.

REMARKS cdfTc(x,v) = 1 - cdfTnc(x,v,0).

The formula used is based on the formula in SUGI Supplemental Library User’s
Guide, SAS Institute, 1983, 232 (which is attributed to Johnson and Kotz,
1970).

The formula used here is a modification of that formula. It has been tested
against direct numerical integration, and against simulation experiments in
which noncentral t random variates were generated and the cdf found directly.

SEE ALSO cdfFnc, cdfChinc

28-116 GAUSS L R

c

cdfTvn

cdfTvn

PURPOSE Computes the cumulative distribution function of the standardized trivariate
Normal density (lower tail).

FORMAT c = cdfTvn(x1,x2,x3,rho12,rho23,rho13);

INPUT x1 N×1 vector of upper limits of integration for variable 1.
x2 N×1 vector of upper limits of integration for variable 2.
x3 N×1 vector of upper limits of integration for variable 3.
rho12 scalar or N×1 vector of correlation coefficients between the two

variables x1 and x2.
rho23 scalar or N×1 vector of correlation coefficients between the two

variables x2 and x3.
rho13 scalar or N×1 vector of correlation coefficients between the two

variables x1 and x3.

OUTPUT c N×1 vector containing the result of the triple integral from −∞ to x1,
−∞ to x2, and −∞ to x3 of the standardized trivariate Normal
density.

REMARKS Allowable ranges for the arguments are:

−∞ < x1 < +∞

−∞ < x2 < +∞

−∞ < x3 < +∞

−1 < rho12 < 1

−1 < rho23 < 1

−1 < rho13 < 1

GAUSS L R 28-117

cdfWeibull

In addition, rho12, rho23 and rho13 must come from a legitimate positive
definite matrix. A -1 is returned for those rows with invalid inputs.

A separate integral is computed for each row of the inputs.

The first 3 arguments (x1,x2,x3) must be the same length, N. The second 3
arguments (rho12,rho23,rho13) must also be the same length, and this length
must be N or 1. If it is 1, then these values will be expanded to apply to all
values of x1,x2,x3. All inputs must be column vectors.

To find the integral under a general trivariate density, with x1, x2, and x3 having
nonzero means and any positive standard deviations, transform by subtracting
the mean and dividing by the standard deviation. For example:

x1 = (x1 - meanc(x1)) / stdc(x1);

The absolute error for cdfTvn is approximately ±2.5e-8 for the entire range of
arguments.

SEE ALSO cdfN, cdfBvn

REFERENCES 1. Daley, D.J. “Computation of Bi- and Tri-variate Normal Integral.” Appl.
Statist. Vol. 23, No. 3, 1974, 435-38.

2. Steck, G.P. “A Table for Computing Trivariate Normal Probabilities.” Ann.
Math. Statist. Vol. 29, 780-800.

cdfWeibull

PURPOSE Computes the cumulative distribution function for the Weibull distribution.

FORMAT y = cdfWeibull(x,k,lambda);

INPUT x N×K matrix, N×1 vector or scalar. x must be greater than 0.

28-118 GAUSS L R

c

cdfWeibullInv

k Shape parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. k must be greater than 0.

lambda Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. lambda must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The Weibull cumulative distribution function is defined as:

f (x; k, λ) = 1 − e−(x/λ)k

SEE ALSO pdfWeibull, cdfWeibullInv

cdfWeibullInv

PURPOSE Computes the Weibull inverse cumulative distribution function.

FORMAT y = cdfWeibullInv(p,k,lambda);

INPUT p N×K matrix, N×1 vector or scalar. p must be greater than 0 and less
than 1.

k Shape parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. k must be greater than 0.

lambda Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. lambda must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

SEE ALSO pdfWeibull, cdfWeibull

GAUSS L R 28-119

ceil

cdir

PURPOSE Returns the current directory.

FORMAT y = cdir(s);

INPUT s string, if the first character is ‘A’-‘Z’ and the second character is a
colon ‘:’ then that drive will be used. If not, the current default drive
will be used.

OUTPUT y string containing the drive and full path name of the current
directory on the specified drive.

REMARKS If the current directory is the root directory, the returned string will end with a
backslash, otherwise it will not.

A null string or scalar zero can be passed in as an argument to obtain the current
drive and path name.

EXAMPLE x = cdir(0);

y = cdir("d:");

print x;

print y;

C:\\gauss{}

D:\

ceil

PURPOSE Round up toward +∞.

28-120 GAUSS L R

c

ChangeDir

FORMAT y = ceil(x);

INPUT x N×K matrix.

OUTPUT y N×K matrix.

REMARKS This rounds every element in the matrix x to an integer. The elements are
rounded up toward +∞.

EXAMPLE x = 100*rndn(2,2);

y = ceil(x);

x =
77.68 −14.10

4.73 −158.88

y =
78.00 −14.00

5.00 −158.00

SEE ALSO floor, trunc

ChangeDir

PURPOSE Changes the working directory.

FORMAT d = ChangeDir(s);

INPUT s string, directory to change to.

OUTPUT d string, new working directory, or null string if change failed.

SEE ALSO chdir cdir

GAUSS L R 28-121

chiBarSquare

chdir

PURPOSE Changes working directory.

FORMAT chdir dirstr;

INPUT dirstr literal or ˆstring, directory to change to.

REMARKS This is for interactive use. Use ChangeDir in a program.

If the directory change fails, chdir prints an error message.

The working directory is listed in the status report on UNIX.

SEE ALSO changedir cdir

chiBarSquare

PURPOSE Compute compute the probability for a chi-bar square statistic from an
hypothesis involving parameters under constraints.

FORMAT SLprob = chiBarSquare(SL,H,a,b,c,d,bounds);

INPUT SL scalar, chi-bar square statistic

H K×K matrix, positive covariance matrix

a M×K matrix, linear equality constraint coefficients

b M×1 vector, linear equality constraint constants
These arguments specify the linear equality constraints of the
following type:

a * X = b

28-122 GAUSS L R

c

chiBarSquare

where X is the K×1 parameter vector.

c M×K matrix, linear inequality constraint coefficients.

d M×1 vector, linear inequality constraint constants.
These arguments specify the linear inequality constraints of the
following type:

c * X >= d

where X is the K×1 parameter vector.

bounds K×2 matrix, bounds on parameters. The first column contains the
lower bounds, and the second column the upper bounds.

OUTPUT SLprob scalar, probability of SL.

REMARKS See Silvapulle and Sen, Constrained Statistical Inference, page 75 for further
details about this function. Let Zp×1 N(0,V) where V is a positive definite
covariance matrix. Define

χ̄2(V,C) = Z′V−1Z −min
θ∈C

(Z − θ)′V−1(Z − θ)

C is a closed convex cone describing a set of constraints. ChiBarSquare
computes the probability of this statistic given V and C.

EXAMPLE
V = {

0.0005255598 -0.0006871606 -0.0003191342,

-0.0006871606 0.0037466205 0.0012285813,

-0.0003191342 0.0012285813 0.0009081412 };

SL = 3.860509;

Bounds = { 0 200, 0 200, 0 200 };

vi = invpd(v);

GAUSS L R 28-123

chol

SLprob = chiBarSquare(SL,Vi,0,0,0,0,bounds);

slprob = 0.10885000

SOURCE hypotest.src

chol

PURPOSE Computes the Cholesky decomposition of a symmetric, positive definite square
matrix.

FORMAT y = chol(x);

INPUT x N×N matrix.

OUTPUT y N×N matrix containing the Cholesky decomposition of x.

REMARKS y is the “square root” matrix of x. That is, it is an upper triangular matrix such
that x = y′y.

chol does not check to see that the matrix is symmetric. chol will look only at
the upper half of the matrix including the principal diagonal.

If the matrix x is symmetric but not positive definite, either an error message or
an error code will be generated, depending on the lowest order bit of the trap
flag:

trap 0 Print error message and terminate program.
trap 1 Return scalar error code 10.

See scalerr and trap for more details about error codes.

EXAMPLE x = moment(rndn(100,4),0);

28-124 GAUSS L R

c

choldn

y = chol(x);

ypy = y’y;

x =

90.746566 −6.467195 −1.927489 −15.696056
−6.467195 87.806557 6.319043 −2.435953
−1.927489 6.319043 101.973276 4.355520
−15.696056 −2.435953 4.355520 99.042850

y =

9.526099 −0.678892 −0.202338 −1.647690
0.000000 9.345890 0.661433 −0.380334
0.000000 0.000000 10.074465 0.424211
0.000000 0.000000 0.000000 9.798130

ypy =

90.746566 −6.467195 −1.927489 −15.696056
−6.467195 87.806557 6.319043 −2.435953
−1.927489 6.319043 101.973276 4.355520
−15.696056 −2.435953 4.355520 99.042850

SEE ALSO crout, solpd

choldn

PURPOSE Performs a Cholesky downdate of one or more rows on an upper triangular
matrix.

FORMAT r = choldn(C,x);

INPUT C K×K upper triangular matrix.
x N×K matrix, the rows to downdate C with.

OUTPUT r K×K upper triangular matrix, the downdated matrix.

GAUSS L R 28-125

cholsol

REMARKS C should be a Cholesky factorization.

choldn(C,x) is equivalent to chol(C′C - x′x), but choldn is numerically
much more stable.

WARNING: it is possible to render a Cholesky factorization non-positive
definite with choldn. You should keep an eye on the ratio of the largest
diagonal element of r to the smallest—if it gets very large, r may no longer be
positive definite. This ratio is a rough estimate of the condition number of the
matrix.

EXAMPLE let C[3,3] = 20.16210005 16.50544413 9.86676135

0 11.16601462 2.97761666

0 0 11.65496052;

let x[2,3] = 1.76644971 7.49445820 9.79114666

6.87691156 4.41961438 4.32476921;

r = choldn(C,x);

r =

18.87055964 15.32294435 8.04947012
0.00000000 9.30682813 −2.12009339
0.00000000 0.00000000 7.62878355

SEE ALSO cholup chol

cholsol

PURPOSE Solves a system of linear equations given the Cholesky factorization of the
system.

FORMAT x = cholsol(b,C);

INPUT b N×K matrix.

28-126 GAUSS L R

c

cholup

C N×N matrix.

OUTPUT x N×K matrix.

REMARKS C is the Cholesky factorization of a linear system of equations A. x is the
solution for Ax = b. b can have more than one column. If so, the system is
solved for each column, i.e., A*x[.,i] = b[.,i].

cholsol(eye(N),C) is equivalent to invpd(A). Thus, if you have the
Cholesky factorization of A, cholsol is the most efficient way to obtain the
inverse of A.

EXAMPLE let b[3,1] = 0.03177513 0.41823100 1.70129375;

let C[3,3] = 1.73351215 1.53201723 1.78102499

0 1.09926365 0.63230050

0 0 0.67015361;

x = cholsol(b,C);

x =

−1.94396905
−1.52686768

3.21579513

A0 =

3.00506436 2.65577048 3.08742844
2.65577048 3.55545737 3.42362593
3.08742844 3.42362593 4.02095978

SEE ALSO chol

cholup

PURPOSE Performs a Cholesky update of one or more rows on an upper triangular matrix.

GAUSS L R 28-127

chrs

FORMAT r = cholup(C,x);

INPUT C K×K upper triangular matrix.

x N×K matrix, the rows to update C with.

OUTPUT r K×K upper triangular matrix, the updated matrix.

REMARKS C should be a Cholesky factorization.

cholup(C,x) is equivalent to chol(C′C + x′x), but cholup is numerically
much more stable.

EXAMPLE let C[3,3] = 18.87055964 15.32294435 8.04947012

0 9.30682813 -2.12009339

0 0 7.62878355;

let x[2,3] = 1.76644971 7.49445820 9.79114666

6.87691156 4.41961438 4.32476921;

r = cholup(C,x);

r =

20.16210005 16.50544413 9.86676135
0.00000000 11.16601462 2.97761666
0.00000000 0.00000000 11.65496052

SEE ALSO choldn

chrs

PURPOSE Converts a matrix of ASCII values into a string containing the appropriate
characters.

FORMAT y = chrs(x);

28-128 GAUSS L R

c

clear

INPUT x N×K matrix.

OUTPUT y string of length N*K containing the characters whose ASCII values
are equal to the values in the elements of x.

REMARKS This function is useful for embedding control codes in strings and for creating
variable length strings when formatting printouts, reports, etc.

EXAMPLE n = 5;

print chrs(ones(n,1)*42);

Since the ASCII value of the asterisk character is 42, the program above will
print a string of n asterisks.

y = chrs(67˜65˜84);

print y;

CAT

SEE ALSO vals, ftos, stof

clear

PURPOSE Clears space in memory by setting matrices equal to scalar zero.

FORMAT clear x,y;

REMARKS clear x; is equivalent to x = 0;.

Matrix names are retained in the symbol table after they are cleared.

GAUSS L R 28-129

clearg

Matrices can be clear’ed even though they have not previously been defined.
clear can be used to initialize matrices to scalar 0.

EXAMPLE clear x;

SEE ALSO clearg, new, show, delete

clearg

PURPOSE Clears global symbols by setting them equal to scalar zero.

FORMAT clearg a,b,c;

OUTPUT a,b,c scalar global matrices containing 0.

REMARKS clearg x; is equivalent to x = 0;, where x is understood to be a global
symbol. clearg can be used to initialize symbols not previously referenced.
This command can be used inside of procedures to clear global matrices. It will
ignore any locals by the same name.

EXAMPLE x = 45;

clearg x;

x = 0.0000000

SEE ALSO clear, delete, new, show, local

close

28-130 GAUSS L R

c

close

PURPOSE Closes a GAUSS file.

FORMAT y = close(handle);

INPUT handle scalar, the file handle given to the file when it was opened with the
open, create, or fopen command.

OUTPUT y scalar, 0 if successful, -1 if unsuccessful.

REMARKS handle is the scalar file handle created when the file was opened. It will contain
an integer which can be used to refer to the file.

close will close the file specified by handle, and will return a 0 if successful
and a -1 if not successful. The handle itself is not affected by close unless the
return value of close is assigned to it.

If f1 is a file handle and it contains the value 7, then after:

call close(f1);

the file will be closed but f1 will still have the value 7. The best procedure is to
do the following:

f1 = close(f1);

This will set f1 to 0 upon a successful close.

It is important to set unused file handles to zero because both open and create
check the value that is in a file handle before they proceed with the process of
opening a file. During open or create, if the value that is in the file handle
matches that of an already open file, the process will be aborted and a File
already open error message will be given. This gives you some protection
against opening a second file with the same handle as a currently open file. If
this happened, you would no longer be able to access the first file.

GAUSS L R 28-131

closeall

An advantage of the close function is that it returns a result which can be
tested to see if there were problems in closing a file. The most common reason
for having a problem in closing a file is that the disk on which the file is located
is no longer in the disk drive—or the handle was invalid. In both of these cases,
close will return a -1.

Files are not automatically closed when a program terminates. This allows users
to run a program that opens files, and then access the files from interactive mode
after the program has been run. Files are automatically closed when GAUSS
exits to the operating system or when a program is terminated with the end
statement. stop will terminate a program but not close files.

As a rule it is good practice to make end the last statement in a program, unless
further access to the open files is desired from interactive mode. You should
close files as soon as you are done writing to them to protect against data loss in
the case of abnormal termination of the program due to a power or equipment
failure.

The danger in not closing files is that anything written to the files may be lost.
The disk directory will not reflect changes in the size of a file until the file is
closed and system buffers may not be flushed.

EXAMPLE open f1 = dat1 for append;

y = writer(f1,x);

f1 = close(f1);

SEE ALSO closeall

closeall

PURPOSE Closes all currently open GAUSS files.

FORMAT closeall;

closeall list of handles;

28-132 GAUSS L R

c

closeall

REMARKS list of handles is a comma-delimited list of file handles.

closeall with no specified list of handles will close all files. The file handles
will not be affected. The main advantage of using closeall is ease of use; the
file handles do not have to be specified, and one statement will close all files.

When a list of handles follows closeall, all files are closed and the file
handles listed are set to scalar 0. This is safer than closeall without a list of
handles because the handles are cleared.

It is important to set unused file handles to zero because both open and create
check the value that is in a file handle before they proceed with the process of
opening a file. During open or create, if the value that is in the file handle
matches that of an already open file, the process will be aborted and a File
already open error message will be given. This gives you some protection
against opening a second file with the same handle as a currently open file. If
this happened, you would no longer be able to access the first file.

Files are not automatically closed when a program terminates. This allows users
to run a program that opens files, and then access the files from interactive mode
after the program has been run. Files are automatically closed when GAUSS
exits to the operating system or when a program is terminated with the end
statement. stop will terminate a program but not close files.

As a rule it is good practice to make end the last statement in a program, unless
further access to the open files is desired from interactive mode. You should
close files as soon as you are done writing to them to protect against data loss in
the case of abnormal termination of the program due to a power or equipment
failure.

The danger in not closing files is that anything written to the files may be lost.
The disk directory will not reflect changes in the size of a file until the file is
closed and system buffers may not be flushed.

EXAMPLE open f1 = dat1 for read;

open f2 = dat1 for update;

x = readr(f1,rowsf(f1));

x = sqrt(x);

GAUSS L R 28-133

cls

call writer(f2,x);

closeall f1,f2;

SEE ALSO close, open

cls

PURPOSE Clears the window.

FORMAT cls;

PORTABILITY Windows

cls clears the Command window if you’re in Cmnd I/O mode, the Output
window if you’re in Split I/O mode.

REMARKS This command clears the window and locates the cursor at the upper left hand
corner of the window.

SEE ALSO locate

code

PURPOSE Allows a new variable to be created (coded) with different values depending
upon which one of a set of logical expressions is true.

FORMAT y = code(e,v);

INPUT e N×K matrix of 1’s and 0’s. Each column of this matrix is created by
a logical expression using “dot” conditional and boolean operators.

28-134 GAUSS L R

c

code

Each of these expressions should return a column vector result. The
columns are horizontally concatenated to produce e. If more than
one of these vectors contains a 1 in any given row, the code function
will terminate with an error message.

v (K+1)×1 vector containing the values to be assigned to the new
variable.

OUTPUT y N×1 vector containing the new values.

REMARKS If none of the K expressions is true, the new variable is assigned the default
value, which is given by the last element of v.

EXAMPLE let x1 = 0 /* column vector of original values */

5

10

15

20;

let v = 1 /* column vector of new values */

2

3; /* the last element of v is the "default" */

e1 = (0 .lt x1) .and (x1 .le 5); /* expression 1 */

e2 = (5 .lt x1) .and (x1 .le 25); /* expression 2 */

e = e1˜e2; /* concatenate e1 & e2 to make a 1,0 mask

:: with one less column than the number

:: of new values in v.

*/

y = code(e,v);

GAUSS L R 28-135

code (dataloop)

x1[5,1] =

0
5

10
15
20

(column vector of original values)

v[3,1] = 1 2 3 (Note: v is a column vector)

e[5,2] =

0 0
1 0
0 1
0 1
0 1

y[5,1] =

3
1
2
2
2

For every row in e, if a 1 is in the first column, the first element of v is used. If a
1 is in the second column, the second element of v is used, and so on. If there
are only zeros in the row, the last element of v is used. This is the default value.

If there is more than one 1 in any row of e, the function will terminate with an
error message.

SOURCE datatran.src

SEE ALSO recode, substute

28-136 GAUSS L R

c

code (dataloop)

code (dataloop)

PURPOSE Creates new variables with different values based on a set of logical expressions.

FORMAT code [[#]] [[$]] var [[default defval]] with
val 1 for expression 1,
val 2 for expression 2,
.

.

.

val n for expression n;

INPUT var literal, the new variable name.

defval scalar, the default value if none of the expressions are TRUE.

val scalar, value to be used if corresponding expression is TRUE.

expression logical scalar-returning expression that returns nonzero TRUE or
zero FALSE.

REMARKS If ‘$’ is specified, the new variable will be considered a character variable. If
‘#’ or nothing is specified, the new variable will be considered numeric.

The logical expressions must be mutually exclusive, i.e., only one may return
TRUE for a given row (observation).

Any variables referenced must already exist, either as elements of the source
data set, as externs, or as the result of a previous make, vector, or code
statement.

If no default value is specified, 999 is used.

EXAMPLE code agecat default 5 with

1 for age < 21,

2 for age >= 21 and age < 35,

3 for age >= 35 and age < 50,

GAUSS L R 28-137

cols

4 for age >= 50 and age < 65;

code $ sex with

"MALE" for gender =\,= 1,

"FEMALE" for gender =\,= 0;

SEE ALSO recode (dataloop)

cols

PURPOSE Returns the number of columns in a matrix.

FORMAT y = cols(x);

INPUT x N×K matrix or sparse matrix.

OUTPUT y number of columns in x.

REMARKS If x is an empty matrix, rows(x) and cols(x) both return 0.

EXAMPLE x = rndn(100,3);

y = cols(x);

y = 3.000000

SEE ALSO rows, colsf, show

28-138 GAUSS L R

c

combinate

colsf

PURPOSE Returns the number of columns in a GAUSS data (.dat) file or GAUSS matrix
(.fmt) file.

FORMAT yf = colsf(fh);

INPUT fh file handle of an open file.

OUTPUT yf number of columns in the file that has the handle fh.

REMARKS In order to call colsf on a file, the file must be open.

EXAMPLE create fp = myfile with x,10,4;

b = colsf(fp);

b = 10.000000

SEE ALSO rowsf, cols, show

combinate

PURPOSE Computes combinations of N things taken K at a time.

FORMAT y = combinate(N,K);

INPUT N scalar.

K scalar.

GAUSS L R 28-139

combinated

OUTPUT y M×K matrix, where M is the number of combinations of N things
taken K at a time.

REMARKS “Things” are represented by a sequence of integers from 1 to N, and the integers
in each row of Y are the combinations of those integers taken K at a time.

EXAMPLE n = 4;

k = 2;

y = combinate(n,k);

print y;

1.0000 2.0000

1.0000 3.0000

1.0000 4.0000

2.0000 3.0000

2.0000 4.0000

3.0000 4.0000

SEE ALSO combinated, numCombinations

combinated

PURPOSE Writes combinations of N things taken K at a time to a GAUSS data set.

FORMAT ret = combinated(fname,vnames,N,K);

INPUT fname string, file name.

vname 1×1 or K×1 string array, names of columns in data set. If 1×1 string,
names will have column number appended. If null string, names will
be X1, X2, . . .

N scalar.

K scalar.

28-140 GAUSS L R

c

combinated

OUTPUT ret scalar, if data set was successfully written, ret = number of rows
written to data set. Otherwise, one of the following:

0 file already exists.
-1 data set couldn’t be created.
-n the (n-1)th write to the data set failed.

REMARKS The rows of the data set in fname contain sequences of the integers from 1 to N
in combinations taken K at a time.

EXAMPLE vnames = "Jim"$|"Harry"$|"Susan"$|"Wendy";

k = 2;

m = combinated("couples",vnames,rows(vnames),k);

print m;

6.0000

open f0 = "couples";

y = readr(f0,m);

names = getnamef(f0);

f0=close(f0);

for i(1,rows(y),1);

print names[y[i,.]]’;

endfor;

Jim Harry

Jim Susan

Jim Wendy

Harry Susan

Harry Wendy

Susan Wendy

print y;

GAUSS L R 28-141

comlog

1.0000 2.0000

1.0000 3.0000

1.0000 4.0000

2.0000 3.0000

2.0000 4.0000

3.0000 4.0000

SEE ALSO combinate, numCombinations

comlog

PURPOSE Controls logging of interactive mode commands to a disk file.

FORMAT comlog [[file=filename]] [[on|off|reset]];

INPUT filename literal or ˆstring.
The file=filename subcommand selects the file to log interactive
mode statements to. This can be any legal file name.
If the name of the file is to be taken from a string variable, the name
of the string must be preceded by the ˆ (caret) operator.
There is no default file name.

REMARKS comlog on turns on command logging to the current file. If the file already
exists, subsequent commands will be appended.

comlog off closes the log file and turns off command logging.

comlog reset turns on command logging to the current log file, resetting the
log file by deleting any previous commands.

Interactive mode statements are always logged into the file specified in the
log_file configuration variable, regardless of the state of comlog.

28-142 GAUSS L R

c

compile

The command comlog file=filename selects the file but does not turn on
logging.

The command comlog off will turn off logging. The filename will remain the
same. A subsequent comlog on will cause logging to resume. A subsequent
comlog reset will cause the existing contents of the log file to be destroyed
and a new file created.

The command comlog by itself will cause the name and status of the current
log file to be printed in the window.

compile

PURPOSE Compiles a source file to a compiled code file. See also Chapter 16.

FORMAT compile source fname;

INPUT source literal or ˆstring, the name of the file to be compiled.

fname literal or ˆstring, optional, the name of the file to be created. If not
given, the file will have the same filename and path as source. It will
have a .gcg extension.

REMARKS The source file will be searched for in the src_path if the full path is not
specified and it is not present in the current directory.

The source file is a regular text file containing a GAUSS program. There can be
references to global symbols, Run-Time Library references, etc.

If there are library statements in source, they will be used during the
compilation to locate various procedures and symbols used in the program.
Since all of these library references are resolved at compile time, the library
statements are not transferred to the compiled file. The compiled file can be run
without activating any libraries.

GAUSS L R 28-143

complex

If you do not want extraneous stuff saved in the compiled image, put a new at
the top of the source file or execute a new in interactive mode before compiling.

The program saved in the compiled file can be run with the run command. If no
extension is given, the run command will look for a file with the correct
extension for the version of GAUSS. The src_path will be used to locate the
file if the full path name is not given and it is not located on the current
directory.

When the compiled file is run, all previous symbols and procedures are deleted
before the program is loaded. It is therefore unnecessary to execute a new
before run’ning a compiled file.

If you want line number records in the compiled file you can put a #lineson
statement in the source file or turn line tracking on from the Options menu.

Don’t try to include compiled files with #include.

EXAMPLE compile qxy.e;

In this example, the src_path would be searched for qxy.e, which would be
compiled to a file called qxy.gcg on the same subdirectory qxy.e was found.

compile qxy.e xy;

In this example, the src_path would be searched for qxy.e which would be
compiled to a file called xy.gcg on the current subdirectory.

SEE ALSO run, use, saveall

complex

PURPOSE Converts a pair of real matrices to a complex matrix.

28-144 GAUSS L R

c

con

FORMAT z = complex(xr,xi);

INPUT xr N×K real matrix, the real elements of z.

xi N×K real matrix or scalar, the imaginary elements of z.

OUTPUT z N×K complex matrix.

EXAMPLE x = { 4 6,

9 8 };

y = { 3 5,

1 7 };

t = complex(x,y);

t =
4.0000000 + 3.0000000i 6.0000000 + 5.0000000i
9.0000000 + 1.0000000i 8.0000000 + 7.0000000i

SEE ALSO imag, real

con

PURPOSE Requests input from the keyboard (console), and returns it in a matrix.

FORMAT x = con(r,c);

INPUT r scalar, row dimension of matrix.

c scalar, column dimension of matrix.

OUTPUT x r×c matrix.

GAUSS L R 28-145

con

REMARKS con gets input from the active window. GAUSS will not “see” any input until
you press ENTER, so follow each entry with an ENTER.

r and c may be any scalar-valued expressions. Nonintegers will be truncated to
an integer.

If r and c are both set to 1, con will cause a question mark to appear in the
window, indicating that it is waiting for a scalar input.

Otherwise, con will cause the following prompt to appear in the window:

- [1,1]

indicating that it is waiting for the [1,1] element of the matrix to be inputted.
The - means that con will move horizontally through the matrix as you input
the matrix elements. To change this or other options, or to move to another part
of the matrix, use the following commands:

28-146 GAUSS L R

c

con

u up one row U first row
d down one row D last row
l left one column L first column
r right one column R last column

t first element
b last element

g #, # goto element
g # goto element of vector

h move horizontally, default
v move vertically, default
\ move diagonally, default

s show size of matrix
n display element as numeric, default
c display element as character

e exp(1)
p pi
. missing value

? show help screen
x exit

If the desired matrix is 1×N or N×1, then con will automatically exit after the
last element has been entered, allowing you to input the vector quickly.

If the desired matrix is N×K, you will need to type ‘x’ to exit when you have
finished entering the matrix data. If you exit before all elements have been
entered, unspecified elements will be zeroed out.

Use a leading single quote for character input.

EXAMPLE n = con(1,1);

print rndn(n,n);

GAUSS L R 28-147

cond

? 2

−0.148030 0.861562
1.791516 −0.663392

In this example, the con function is used to obtain the size of a square matrix of
Normal random variables which is to be printed out.

SEE ALSO cons, let, load,

cond

PURPOSE Computes the condition number of a matrix using the singular value
decomposition.

FORMAT c = cond(x);

INPUT x N×K matrix.

OUTPUT c scalar, an estimate of the condition number of x. This equals the
ratio of the largest singular value to the smallest. If the smallest
singular value is zero or not all of the singular values can be
computed, the return value is 10300.

EXAMPLE x = { 4 2 6,

8 5 7,

3 8 9 };

y = cond(x);

y = 9.8436943

28-148 GAUSS L R

c

conj

SOURCE svd.src

conj

PURPOSE Returns the complex conjugate of a matrix.

FORMAT y = conj(x);

INPUT x N×K matrix.

OUTPUT y N×K matrix, the complex conjugate of x.

REMARKS Compare conj with the transpose (′) operator.

EXAMPLE x = { 1+9i 2,

4+4i 5i,

7i 8-2i };

y = conj(x);

x =

1.0000000 + 9.0000000i 2.0000000
4.0000000 + 4.0000000i 0.0000000 + 5.0000000i
0.0000000 + 7.0000000i 8.0000000 − 2.0000000i

y =

1.0000000 − 9.0000000i 2.0000000
4.0000000 − 4.0000000i 0.0000000 − 5.0000000i
0.0000000 − 7.0000000i 8.0000000 + 2.0000000i

GAUSS L R 28-149

ConScore

cons

PURPOSE Retrieves a character string from the keyboard.

FORMAT x = cons;

OUTPUT x string, the characters entered from the keyboard

REMARKS x is assigned the value of a character string typed in at the keyboard. The
program will pause to accept keyboard input. The maximum length of the string
that can be entered is 254 characters. The program will resume execution when
the ENTER key is pressed.

EXAMPLE x = cons;

At the cursor enter:

probability

x = “probability”

SEE ALSO con

ConScore

PURPOSE Compute local score statistic and its probability for hypotheses involving
parameters under constraints

FORMAT { SL, SLprob } = ConScore(H,G,grad,a,b,c,d,bounds,psi);

28-150 GAUSS L R

c

ConScore

INPUT H K×K matrix, Hessian of loglikelihood with respect to parameters.

G K×K matrix, cross-product matrix of the first derivatives by
observation. If not available set to H.

grad K×1 vector, gradient of loglikelihood with respect to parameters.

a M×K matrix, linear equality constraint coefficients.

b M×1 vector, linear equality constraint constants.
These arguments specify the linear equality constraints of the
following type:

a * X = b

where X is the K×1 parameter vector.

c M×K matrix, linear inequality constraint coefficients.

d M×1 vector, linear inequality constraint constants.
These arguments specify the linear inequality constraints of the
following type:

c * X >= d

where X is the K×1 parameter vector.

bounds K×2 matrix, bounds on parameters. The first column contains the
lower bounds, and the second column the upper bounds.

psi indices of the set of parameters in the hypothesis.

OUTPUT SL scalar, local score statistic of hypothesis.

SLprob scalar, probability of SL.

REMARKS ConScore computes the local score statistic for the hypothesis H(θ) = 0 vs.
H(θ) ≥ 0, where θ is the vector of estimated parameters, and H() is a constraint
function of the parameters.

First, the model with H(θ) = 0 is estimated, and the Hessian and optionally the
cross-product of the derivatives is computed. Also, the gradient vector is
computed.

Next, the constraint arguments are set to H(θ) ≥ 0.

GAUSS L R 28-151

ConScore

EXAMPLE This example is from Silvapulle and Sen, Constrained Statistical Inference,
page 181-3. It computes the local score statistic and probability for an ARCH
model. It tests the null hypothesis of no arch effects against the alternative of
arch effects subject to their being constrained to be positive.

The Hessian, H, cross-product matrix, G, and the gradient vector, grad, are
generated by an estimation using Sqpsolvemt where the model is an ARCH
model with the arch parameters constrained to be zero.

#include sqpsolvemt.sdf

/* data */

struct DS d0;

d0 = reshape(dsCreate,2,1);

load z0[] = aoi.asc;

z = packr(lagn(251*ln(trimr(z0,1,0)./trimr(z0,0,1)),0|1|2|3|4));

d0[1].dataMatrix = z[.,1];

d0[2].dataMatrix = z[.,2:5];

/* control structure */

struct sqpsolvemtControl c0;

c0 = sqpSolveMTcontrolCreate;

/*

** constraints setting arch parameter equal to zero

** for H(theta) = 0

*/

c0.A = zeros(3,6) ˜ eye(3);

c0.B = zeros(3,1);

c0.covType = 2; // causes cross-product of Jacobian

28-152 GAUSS L R

c

ConScore

// to be computed which is needed for

// ConScore

struct PV p0;

p0 = pvPack(pvCreate,.08999,"constant");

p0 = pvPack(p0,.25167|-.12599|.09164|.07517,"phi");

p0 = pvPack(p0,3.22713,"omega");

p0 = pvPack(p0,0|0|0,"arch");

struct sqpsolvemtOut out0;

out0 = sqpsolvemt(&lpr,p0,d0,c0);

/*

** set up constraints for H(theta) >= 0

*/

bounds = { -1e256 1e256,

-1e256 1e256,

-1e256 1e256,

-1e256 1e256,

-1e256 1e256,

-1e256 1e256,

0 1e256,

0 1e256,

0 1e256 };

H = out0.hessian;

G = out0.xproduct;

grad = -out0.gradient; // minus because -logl in log-likelihood

psi = { 7, 8, 9 };

{ SL, SLprob } = ConScore(H,G,grad,0,0,0,0,bounds,psi);

GAUSS L R 28-153

continue

SL = 3.8605086

SLprob = 0.10410000

SOURCE hypotest.src

continue

PURPOSE Jumps to the top of a do or for loop.

FORMAT continue;

EXAMPLE x = rndn(4,4);

r = 0;

do while r < rows(x);

r = r + 1;

c = 0;

do while c < cols(x); /* continue jumps here */

c = c + 1;

if c =\,= r;

continue;

endif;

x[r,c] = 0;

endo;

endo;

x =

−1.032195 0.000000 0.000000 0.000000
0.000000 −1.033763 0.000000 0.000000
0.000000 0.000000 0.061205 0.000000
0.000000 0.000000 0.000000 −0.225936

28-154 GAUSS L R

c

contour

REMARKS This command works just as in C.

contour

PURPOSE Graphs a matrix of contour data.

LIBRARY pgraph

FORMAT contour(x,y,z);

INPUT x 1×K vector, the X axis data. K must be odd.

y N×1 vector, the Y axis data. N must be odd.

z N×K matrix, the matrix of height data to be plotted.

GLOBAL
INPUT

_plev K×1 vector, user-defined contour levels for contour.
Default 0.

_pzclr N×1 or N×2 vector. This controls the Z level colors. See
surface for a complete description of how to set this global.

REMARKS A vector of evenly spaced contour levels will be generated automatically from
the z matrix data. Each contour level will be labeled. For unlabeled contours,
use ztics.

To specify a vector of your own unequal contour levels, set the vector _plev
before calling contour.

To specify your own evenly spaced contour levels, see ztics.

SOURCE pcontour.src

SEE ALSO surface

GAUSS L R 28-155

conv

conv

PURPOSE Computes the convolution of two vectors.

FORMAT c = conv(b,x,f,l);

INPUT b N×1 vector.

x L×1 vector.

f scalar, the first convolution to compute.

l scalar, the last convolution to compute.

OUTPUT c Q×1 result, where Q = (l − f + 1) .

If f is 0, the first to the l’th convolutions are computed. If l is 0, the
f ’th to the last convolutions are computed. If f and l are both zero,
all the convolutions are computed.

REMARKS If x and b are vectors of polynomial coefficients, this is the same as multiplying
the two polynomials.

EXAMPLE x = { 1,2,3,4 };

y = { 5,6,7,8 };

z1 = conv(x,y,0,0);

z2 = conv(x,y,2,5);

z1 =

5
16
34
60
61
52
32

28-156 GAUSS L R

c

convertsatostr

z2 =

16
34
60
61

SEE ALSO polymult

convertsatostr

PURPOSE Converts a 1×1 string array to a string.

FORMAT str = convertsatostr(sa);

INPUT sa 1×1 string array.

OUTPUT str string, sa converted to a string.

SEE ALSO convertstrtosa

convertstrtosa

PURPOSE Converts a string to a 1×1 string array.

FORMAT sa = convertstrtosa(str);

INPUT str string.

OUTPUT sa 1×1 string array, str converted to a string array.

EXAMPLE str = "This is a string";

GAUSS L R 28-157

corrm, corrvc, corrx

z = convertstrtosa(str);

SEE ALSO convertsatostr

corrm, corrvc, corrx

PURPOSE Computes a population correlation matrix.

FORMAT cx = corrm(m);
cx = corrvc(vc);
cx = corrx(x);

INPUT m K×K moment (x′x) matrix. A constant term MUST have been the
first variable when the moment matrix was computed.

vc K×K variance-covariance matrix (of data or parameters).

x N×K matrix of data.

OUTPUT cx P×P correlation matrix. For corrm, P = K-1. For corrvc and
corrx, P = K.

REMARKS Computes population correlation/covariance matrix, that is, it divides by N-1,
rather than N. For sample correlation/covariance matrix which uses N rather
than N-1, see corrms and corrxs.

SOURCE corr.src

SEE ALSO momentd, corrms, corrxs

28-158 GAUSS L R

c

cos

corrms, corrxs

PURPOSE Computes sample correlation matrix.

FORMAT cx = corrms(m);
cx = corrxs(x);

INPUT m K×K moment (x′x) matrix. A constant term MUST have been the
first variable when the moment matrix was computed.

x N×K matrix of data.

OUTPUT cx P×P correlation matrix. For corrms, P = K-1. For corrxs, P = K.

REMARKS Computes sample correlation/covariance matrix, that is, it divides the sample
size, N, rather than N-1. For population correlation/covariance matrix which
uses N-1 rather than N, see corrm or corrx.

SOURCE corrs.src

SEE ALSO momentd, corrm, corrx

cos

PURPOSE Returns the cosine of its argument.

FORMAT y = cos(x);

INPUT x N×K matrix.

OUTPUT y N×K matrix containing the cosines of the elements of x.

GAUSS L R 28-159

cosh

REMARKS For real matrices, x should contain angles measured in radians.

To convert degrees to radians, multiply the degrees by π
180 .

EXAMPLE x = { 0, .5, 1, 1.5 };

y = cos(x);

y =

1.00000000
0.87758256
0.54030231
0.07073720

SEE ALSO atan, atan2, pi

cosh

PURPOSE Computes the hyperbolic cosine.

FORMAT y = cosh(x);

INPUT x N×K matrix.

OUTPUT y N×K matrix containing the hyperbolic cosines of the elements of x.

EXAMPLE x = { -0.5, -0.25, 0, 0.25, 0.5, 1 };

x = x * pi;

y = cosh(x);

28-160 GAUSS L R

c

counts

x =

−1.570796
−0.785398

0.000000
0.785398
1.570796
3.141593

y =

2.509178
1.324609
1.000000
1.324609
2.509178

11.591953

SOURCE trig.src

counts

PURPOSE Counts the numbers of elements of a vector that fall into specified ranges.

FORMAT c = counts(x,v);

INPUT x N×1 vector containing the numbers to be counted.

v P×1 vector containing breakpoints specifying the ranges within
which counts are to be made. The vector v MUST be sorted in
ascending order.

OUTPUT c P×1 vector, the counts of the elements of x that fall into the regions:

x ≤ v[1],

v[1] < x ≤ v[2],
...

GAUSS L R 28-161

counts

v[p − 1] < x ≤ v[p]

REMARKS If the maximum value of x is greater than the last element (the maximum value)
of v, the sum of the elements of the result, c, will be less than N, the total
number of elements in x.

If

x =

1
2
3
4
5
6
7
8
9

and v =
4
5
8

then

c =
4
1
3

The first category can be a missing value if you need to count missings directly.
Also +∞ or −∞ are allowed as breakpoints. The missing value must be the first
breakpoint if it is included as a breakpoint and infinities must be in the proper
location depending on their sign. −∞ must be in the [2,1] element of the
breakpoint vector if there is a missing value as a category as well, otherwise it
has to be in the [1,1] element. If +∞ is included, it must be the last element of
the breakpoint vector.

EXAMPLE x = { 1, 3, 2,

4, 1, 3 };

v = { 0, 1, 2, 3, 4 };

28-162 GAUSS L R

c

countwts

c = counts(x,v);

c =

0.0000000
2.0000000
1.0000000
2.0000000
1.0000000

countwts

PURPOSE Returns a weighted count of the numbers of elements of a vector that fall into
specified ranges.

FORMAT c = countwts(x,v,w);

INPUT x N×1 vector, the numbers to be counted.

v P×1 vector, the breakpoints specifying the ranges within which
counts are to be made. This MUST be sorted in ascending order
(lowest to highest).

w N×1 vector, containing weights.

OUTPUT c P×1 vector containing the weighted counts of the elements of x that
fall into the regions:

x ≤ v[1],
v[1] < x ≤ v[2],

. . .

v[p − 1] < x ≤ v[p]

That is, when x[i] falls into region j, the weight w[i] is added to the
jth counter.

GAUSS L R 28-163

create

REMARKS If any elements of x are greater than the last element of v, they will not be
counted.

Missing values are not counted unless there is a missing in v. A missing value in
v MUST be the first element in v.

EXAMPLE x = { 1, 3, 2, 4, 1, 3 };

w = { .25, 1, .333, .1, .25, 1 };

v = { 0, 1, 2, 3, 4 };

c = countwts(x,v,w);

c =

0.000000
0.500000
0.333000
2.00000

0.100000

create

PURPOSE Creates and opens a GAUSS data set for subsequent writing.

FORMAT create [[vflag]] [[-w32]] [[complex]] fh = filename with
vnames,col,dtyp,vtyp;
create [[vflag]] [[-w32]] [[complex]] fh = filename using comfile;

INPUT vflag literal, version flag.

-v89 obsoleted, use -v96.
-v92 obsoleted, use -v96.
-v96 supported on all platforms.

For details on the various versions, see F I/O, Chapter 17. The
default format can be specified in gauss.cfg by setting the

28-164 GAUSS L R

c

create

dat_fmt_version configuration variable. The default, v96, should
be used.

filename literal or ˆstring
filename is the name to be given to the file on the disk. The name
can include a path if the directory to be used is not the current
directory. This file will automatically be given the extension .dat.
If an extension is specified, the .dat will be overridden. If the name
of the file is to be taken from a string variable, the name of the string
must be preceded by the ˆ (caret) operator.

create... with...

vnames literal or ˆstring or ˆcharacter matrix.
vnames controls the names to be given to the columns of the data
file. If the names are to be taken from a string or character matrix,
the ˆ (caret) operator must be placed before the name of the string or
character matrix. The number of columns parameter, col, also has an
effect on the way the names will be created. See below and see the
examples for details on the ways names are assigned to a data file.

col scalar expression.
col is a scalar expression containing the number of columns in the
data file. If col is 0, the number of columns will be controlled by the
contents of vnames. If col is positive, the file will contain col
columns and the names to be given each column will be created as
necessary depending on the vnames parameter. See the examples.

dtyp scalar expression.
dtyp is the precision used to store the data. This is a scalar expression
containing 2, 4, or 8, which is the number of bytes per element.

2 signed integer
4 single precision
8 double precision

Data Type Digits Range

integer 4 −32768 ≤ X ≤ 32767
single 6-7 8.43 × 10−37 ≤ |X| ≤ 3.37 × 10+38

double 15-16 4.19 × 10−307 ≤ |X| ≤ 1.67 × 10+308

GAUSS L R 28-165

create

If the integer type is specified, numbers will be rounded to the
nearest integer as they are written to the data set. If the data to be
written to the file contains character data, the precision must be 8 or
the character information will be lost.

vtyp matrix, types of variables.
The types of the variables in the data set. If
rows(vtyp)*cols(vtyp) < col, only the first element is used.
Otherwise nonzero elements indicate a numeric variable and zero
elements indicate character variables.

create... using...

comfile literal or ˆstring.
comfile is the name of a command file that contains the information
needed to create the file. The default extension for the command file
is .gcf, which can be overridden.
There are three possible commands in this file:

numvar n str;
outvar varlist;
outtyp dtyp;

numvar and outvar are alternate ways of specifying the number
and names of the variables in the data set to be created.
When numvar is used, n is a constant which specifies the number of
variables (columns) in the data file and str is a string literal
specifying the prefix to be given to all the variables. Thus:

numvar 10 xx;

says that there are 10 variables and that they are to be named xx01
through xx10. The numeric part of the names will be padded on the
left with zeros as necessary so the names will sort correctly:
xx1, . . . xx9 1–9 names
xx01, . . . xx10 10–99 names
xx001, . . . xx100 100–999 names
xx0001, . . . xx1000 1000–8100 names

If str is omitted, the variable prefix will be “X”.

28-166 GAUSS L R

c

create

When outvar is used, varlist is a list of variable names, separated
by spaces or commas. For instance:

outvar x1, x2, zed;

specifies that there are to be 3 variables per row of the data set, and
that they are to be named X1, X2, ZED, in that order.
outtyp specifies the precision. It can be a constant: 2, 4, or 8, or it
can be a literal: I, F, or D. For an explanation of the available data
types, see dtyp in create... with..., previously.
The outtyp statement does not have to be included. If it is not, then
all data will be stored in 4 bytes as single precision floating point
numbers.

OUTPUT fh scalar.
fh is the file handle which will be used by most commands to refer to
the file within GAUSS. This file handle is actually a scalar
containing an integer value that uniquely identifies each file. This
value is assigned by GAUSS when the create (or open) command
is executed.

REMARKS If the complex flag is included, the new data set will be initialized to store
complex number data. Complex data is stored a row at a time, with the real and
imaginary halves interleaved, element by element.

The -w32 flag is an optimization for Windows. It is ignored on all other
platforms. GAUSS 7.0 and later use Windows system file write commands that
support 64-bit file sizes. These commands are slower on Windows XP than the
32-bit file write commands that were used in GAUSS 6.0 and earlier. If you
include the -w32 flag, successive writes to the file indicated by fh will use 32-bit
Windows write commands, which will be faster on Windows XP. Note,
however, that the -w32 flag does not support 64-bit file sizes.

EXAMPLE let vnames = age sex educat wage occ;

create f1 = simdat with ˆvnames,0,8;

obs = 0; nr = 1000;

do while obs < 10000;

data = rndn(nr,colsf(f1));

GAUSS L R 28-167

create

if writer(f1,data) /= nr;

print "Disk Full"; end;

endif;

obs = obs+nr;

endo;

closeall f1;

This example uses create... with... to create a double precision data file
called simdat.dat on the default drive with 5 columns. The writer command
is used to write 10000 rows of Normal random numbers into the file. The
variables (columns) will be named: AGE, SEX, EDUCAT, WAGE, OCC.

Here are some examples of the variable names that will result when using a
character vector of names in the argument to the create function.

vnames = { AGE PAY SEX JOB };

typ = { 1, 1, 0, 0 };

create fp = mydata with ˆvnames,0,2,typ;

The names in the this example will be: AGE, PAY, SEX, JOB.

AGE and PAY are numeric variables, SEX and JOB are character variables.

create fp = mydata with ˆvnames,3,2;

The names will be: AGE, PAY, SEX.

create fp = mydata with ˆvnames,8,2;

The names will now be: AGE, PAY, SEX, JOB1, JOB2, JOB3, JOB4, JOB5.

If a literal is used for the vnames parameter, the number of columns should be
explicitly given in the col parameter and the names will be created as follows:

28-168 GAUSS L R

c

create

create fp = mydata with var,4,2;

Giving the names: VAR1, VAR2, VAR3, VAR4.

The next example assumes a command file called comd.gcf containing the
following lines, created using a text editor:

outvar age, pay, sex;

outtyp i;

Then the following program could be used to write 100 rows of random integers
into a file called smpl.dat in the subdirectory called /gauss/data:

filename = "/gauss/data/smpl";

create fh = ˆfilename using comd;

x = rndn(100,3)*10;

if writer(fh,x) /= rows(x);

print "Disk Full"; end;

endif;

closeall fh;

For platforms using the backslash as a path separator, remember that two
backslashes (“\\”) are required to enter one backslash inside of double quotes.
This is because a backslash is the escape character used to embed special
characters in strings.

SEE ALSO datacreate, datacreatecomplex, open, readr, writer, eof, close,
output, iscplxf

GAUSS L R 28-169

crossprd

crossprd

PURPOSE Computes the cross-products (vector products) of sets of 3×1 vectors.

FORMAT z = crossprd(x,y);

INPUT x 3×K matrix, each column is treated as a 3×1 vector.

y 3×K matrix, each column is treated as a 3×1 vector.

OUTPUT z 3×K matrix, each column is the cross-product (sometimes called
vector product) of the corresponding columns of x and y.

REMARKS The cross-product vector z is orthogonal to both x and y. sumc(x.*z) and
sumc(y.*z) will be K×1 vectors, all of whose elements are 0 (except for
rounding error).

EXAMPLE x = { 10 4,

11 13,

14 13 };

y = { 3 11,

5 12,

7 9 };

z = crossprd(x,y);

z =

7.0000000 −39.000000
−28.000000 107.00000

17.000000 −95.000000

SOURCE crossprd.src

28-170 GAUSS L R

c

crout

crout

PURPOSE Computes the Crout decomposition of a square matrix without row pivoting,
such that: X = LU.

FORMAT y = crout(x);

INPUT x N×N square nonsingular matrix.

OUTPUT y N×N matrix containing the lower (L) and upper (U) matrices of the
Crout decomposition of x. The main diagonal of y is the main
diagonal of the lower matrix L. The upper matrix has an implicit
main diagonal of ones. Use lowmat and upmat1 to extract the L and
U matrices from y.

REMARKS Since it does not do row pivoting, it is intended primarily for teaching purposes.
See croutp for a decomposition with pivoting.

EXAMPLE X = { 1 2 -1,

2 3 -2,

1 -2 1 };

y = crout(x);

L = lowmat(y);

U = upmat1(y);

y =

1 2 −1
2 −1 0
1 −4 2

L =

1 0 0
2 −1 0
1 −4 2

GAUSS L R 28-171

croutp

U =

1 2 −1
0 1 0
0 0 1

SEE ALSO croutp, chol, lowmat, lowmat1, lu, upmat, upmat1

croutp

PURPOSE Computes the Crout decomposition of a square matrix with partial (row)
pivoting.

FORMAT y = croutp(x);

INPUT x N×N square nonsingular matrix.

OUTPUT y (N+1)×N matrix containing the lower (L) and upper (U) matrices of
the Crout decomposition of a permuted x. The N+1 row of the
matrix y gives the row order of the y matrix. The matrix must be
reordered prior to extracting the L and U matrices. Use lowmat and
upmat1 to extract the L and U matrices from the reordered y matrix.

EXAMPLE This example illustrates a procedure for extracting L and U of the permuted x
matrix. It continues by sorting the result of LU to compare with the original
matrix x.

X = { 1 2 -1,

2 3 -2,

1 -2 1 };

y = croutp(x);

r = rows(y); /* the number of rows of y */

indx = y[r,.]’; /* get the index vector */

28-172 GAUSS L R

c

croutp

z = y[indx,.]; /* z is indexed RxR matrix y */

L = lowmat(z); /* obtain L and U of permuted matrix X */

U = upmat1(z);

q = sortc(indx˜(L*U),1); /* sort L*U against index */

x2 = q[.,2:cols(q)]; /* remove index column */

X =

1 2 −1
2 3 −2
1 −2 1

y =

1 0.5 0.2857
2 1.5 −1
1 −3.5 −0.5714
2 3 1

r = 4

indx =

2
3
1

z =

2 1.5 −1
1 −3.5 −0.5714
1 0.5 0.2857

L =

2 0 0
1 −3.5 0
1 0.5 0.2857

U =

1 1.5 −1
0 1 −0.5714
0 0 1

GAUSS L R 28-173

csrcol, csrlin

q =

1 1 2 −1
2 2 3 −2
3 1 −2 1

x2 =

1 2 −1
2 3 −2
1 −2 1

SEE ALSO crout, chol, lowmat, lowmat1, lu, upmat, upmat1

csrcol, csrlin

PURPOSE Returns the position of the cursor.

FORMAT y = csrcol;
y = csrlin;

OUTPUT y scalar, row or column value.

PORTABILITY Windows only

REMARKS y will contain the current column or row position of the cursor on the screen.
The upper left corner is (1,1).

csrcol returns the column position of the cursor. csrlin returns the row
position.

The locate commmand allows the cursor to be positioned at a specific row and
column.

csrcol returns the cursor column with respect to the current output line, i.e., it
will return the same value whether the text is wrapped or not. csrlin returns
the cursor line with respect to the top line in the window.

28-174 GAUSS L R

c

cumprodc

EXAMPLE r = csrlin;

c = csrcol;

cls;

locate r,c;

In this example the screen is cleared without affecting the cursor position.

SEE ALSO cls, locate

cumprodc

PURPOSE Computes the cumulative products of the columns of a matrix.

FORMAT y = cumprodc(x);

INPUT x N×K matrix.

OUTPUT y N×K matrix containing the cumulative products of the columns of x.

REMARKS This is based on the recursive series recsercp. recsercp could be called
directly as follows:

recsercp(x,zeros(1,cols(x)))

to accomplish the same thing.

EXAMPLE x = { 1 -3,

2 2,

3 -1 };

y = cumprodc(x);

GAUSS L R 28-175

cumsumc

y =

1.00 −3.00
2.00 −6.00
6.00 6.00

SOURCE cumprodc.src

SEE ALSO cumsumc, recsercp, recserar

cumsumc

PURPOSE Computes the cumulative sums of the columns of a matrix.

FORMAT y = cumsumc(x);

INPUT x N×K matrix.

OUTPUT y N×K matrix containing the cumulative sums of the columns of x.

REMARKS This is based on the recursive series function recserar. recserar could be
called directly as follows:

recserar(x,x[1,.],ones(1,cols(x)))

to accomplish the same thing.

EXAMPLE x = { 1 -3,

2 2,

3 -1 };

y = cumsumc(x);

28-176 GAUSS L R

c

curve

y =

1 −3
3 −1
6 −2

SOURCE cumsumc.src

SEE ALSO cumprodc, recsercp, recserar

curve

PURPOSE Computes a one-dimensional smoothing curve.

FORMAT { u,v } = curve(x,y,d,s,sigma,G);

INPUT x K×1 vector, x-abscissae (x-axis values).

y K×1 vector, y-ordinates (y-axis values).

d K×1 vector or scalar, observation weights.

s scalar, smoothing parameter. If s = 0, curve performs an
interpolation. If d contains standard deviation estimates, a
reasonable value for s is K.

sigma scalar, tension factor.

G scalar, grid size factor.

OUTPUT u (K*G)×1 vector, x-abscissae, regularly spaced.

v (K*G)×1 vector, y-ordinates, regularly spaced.

REMARKS sigma contains the tension factor. This value indicates the curviness desired. If
sigma is nearly zero (e.g. .001), the resulting curve is approximately the tensor
product of cubic curves. If sigma is large, (e.g. 50.0) the resulting curve is
approximately bi-linear. If sigma equals zero, tensor products of cubic curves
result. A standard value for sigma is approximately 1.

GAUSS L R 28-177

cvtos

G is the grid size factor. It determines the fineness of the output grid. For G = 1,
the input and output vectors will be the same size. For G = 2, the output grid is
twice as fine as the input grid, i.e., u and v will have twice as many rows as x
and y.

SOURCE spline.src

cvtos

PURPOSE Converts a character vector to a string.

FORMAT s = cvtos(v);

INPUT v N×1 character vector, to be converted to a string.

OUTPUT s string, contains the contents of v.

REMARKS cvtos in effect appends the elements of v together into a single string.

cvtos was written to operate in conjunction with stocv. If you pass it a
character vector that does not conform to the output of stocv, you may get
unexpected results. For example, cvtos does NOT look for 0 terminating bytes
in the elements of v; it assumes every element except the last is 8 characters
long. If this is not true, there will be 0’s in the middle of s.

If the last element of v does not have a terminating 0 byte, cvtos supplies one
for s.

EXAMPLE let v = { "Now is t" "he time " "for all " "good men" };

s = cvtos(v);

s = “Now is the time for all good men′′

28-178 GAUSS L R

c

datacreate

SEE ALSO stocv, vget, vlist, vput, vread

datacreate

PURPOSE Creates a v96 real data set.

FORMAT fh = datacreate(filename,vnames,col,dtyp,vtyp);

INPUT filename string, name of data file.

vnames string or N×1 string array, names of variables.

col scalar, number of variables.

dtyp scalar, data precision, one of the following:

2 2-byte, signed integer.
4 4-byte, single precision.
8 8-byte, double precision.

vtyp scalar or N×1 vector, types of variables, may contain one or both of
the following:

0 character variable.
1 numeric variable.

OUTPUT fh scalar, file handle.

REMARKS The file handle returned by datacreate is a scalar containing a positive integer
value that uniquely identifies each file. This value is assigned by GAUSS when
the create, datacreate, datacreatecomplex, open or dataopen
commands are executed. The file handle is used to reference the file in the
commands readr and writer. If datacreate fails, it returns a -1.

If filename does not include a path, then the file is placed on the current
directory. The file is given a .dat extension if no extension is specified.

GAUSS L R 28-179

datacreate

If col is set to 0, then the number of columns in the data set is controlled by the
contents of vnames. If col is positive, then the file will contain col columns.

If vnames contains col elements, then each column is given the name contained
in the corresponding row of vnames. If col is positive and vnames is a string,
then the columns are given the names vnames1, vnames2, . . ., vnamesN (or
vnames01, vnames02, . . ., vnamesN), where N = col. The numbers appended to
vnames are padded on the left with zeros to the same length as N.

The dtyp argument allows you to specify the precision to use when storing your
data. Keep in mind the following range restrictions when selecting a value for
dtyp:

Data Type Digits Range
integer 4 −32768 ≤ X ≤ 32767
single 6-7 8.43 × 10−37 ≤ |X| ≤ 3.37 × 10+38

double 15-16 4.19 × 10−307 ≤ |X| ≤ 1.67 × 10+308

If the integer type is specified, numbers are rounded to the nearest integer as
they are written to the data set. If the data to be written to the file contains
character data, the precision must be 8 or the character information will be lost.

If vtyp is a scalar, then the value in vtyp controls the types of all of the columns
in the data set. If it is an N×1 vector, then the type of each column is controlled
by the value in the corresponding row of vtyp.

EXAMPLE fh = datacreate("myfile.dat","V",100,8,1);

x = rndn(500,100);

r = writer(fh,x);

ret = close(fh);

This example creates a double precision data file called myfile.dat, which is
placed in the current directory. The file contains 100 columns with 500
observations (rows), and the columns are given the names ‘V001’, ‘V002’, . . .,
‘V100’.

28-180 GAUSS L R

d

datacreatecomplex

SOURCE datafile.src

SEE ALSO datacreatecomplex, create, dataopen, writer

datacreatecomplex

PURPOSE Creates a v96 complex data set.

FORMAT fh = datacreatecomplex(filename,vnames,col,dtyp,vtyp);

INPUT filename string, name of data file.

vnames string or N×1 string array, names of variables.

col scalar, number of variables.

dtyp scalar, data precision, one of the following:

2 2-byte, signed integer.
4 4-byte, single precision.
8 8-byte, double precision.

vtyp scalar or N×1 vector, types of variables, may contain one or both of
the following:

0 character variable.
1 numeric variable.

OUTPUT fh scalar, file handle.

REMARKS The file handle returned by datacreatecomplex is a scalar containing a
positive integer value that uniquely identifies each file. This value is assigned by
GAUSS when the create, datacreate, datacreatecomplex, open or
dataopen commands are executed. The file handle is used to reference the file
in the commands readr and writer. If datacreatecomplex fails, it returns a
-1.

GAUSS L R 28-181

datacreatecomplex

Complex data is stored a row at a time, with the real and imaginary halves
interleaved, element by element. For columns containing character data, the
imaginary parts are zeroed out.

If filename does not include a path, then the file is placed on the current
directory. The file is given a .dat extension if no extension is specified.

If col is set to 0, then the number of columns in the data set is controlled by the
contents of vnames. If col is positive, then the file will contain col columns.

If vnames contains col elements, then each column is given the name contained
in the corresponding row of vnames. If col is positive and vnames is a string,
then the columns are given the names vnames1, vnames2, . . ., vnamesN (or
vnames01, vnames02, . . ., vnamesN), where N = col. The numbers appended to
vnames are padded on the left with zeros to the same length as N.

The dtyp argument allows you to specify the precision to use when storing your
data. Keep in mind the following range restrictions when selecting a value for
dtyp:

Data Type Digits Range
integer 4 −32768 ≤ X ≤ 32767
single 6-7 8.43 × 10−37 ≤ |X| ≤ 3.37 × 10+38

double 15-16 4.19 × 10−307 ≤ |X| ≤ 1.67 × 10+308

If the integer type is specified, numbers are rounded to the nearest integer as
they are written to the data set. If the data to be written to the file contains
character data, the precision must be 8 or the character information will be lost.

If vtyp is a scalar, then the value in vtyp controls the types of all of the columns
in the data set. If it is an N×1 vector, then the type of each column is controlled
by the value in the corresponding row of vtyp.

EXAMPLE string vnames = { "random1", "random2" };

fh = datacreatecomplex("myfilecplx.dat",vnames,2,8,1);

x = complex(rndn(1000,2),rndn(1000,2));

28-182 GAUSS L R

d

datalist

r = writer(fh,x);

ret = close(fh);

This example creates a complex double precision data file called
myfilecplx.dat, which is placed in the current directory. The file contains 2
columns with 1000 observations (rows), and the columns are given the names
‘random1’ and ‘random2’.

SOURCE datafile.src

SEE ALSO datacreate, create, dataopen, writer

datalist

PURPOSE List selected variables from a data set.

FORMAT datalist dataset [[var1 [[var2...]]]];

INPUT dataset literal, name of the data set.

var# literal, the names of the variables to list.

GLOBAL
INPUT

__range scalar, the range of rows to list. The default is all rows.

__miss scalar, controls handling of missing values.

0 display rows with missing values.
1 do not display rows with missing values.

The default is 0.

__prec scalar, the number of digits to the right of the decimal point
to display. The default is 3.

REMARKS The variables are listed in an interactive mode. As many rows and columns as
will fit on the screen are displayed. You can use the cursor keys to pan and
scroll around in the listing.

GAUSS L R 28-183

dataload

EXAMPLE datalist freq age sex pay;

This command will display the variables age, sex, and pay from the data set
freq.dat.

SOURCE datalist.src

dataload

PURPOSE Loads matrices, N-dimensional arrays, strings and string arrays from a disk file.

FORMAT y = dataload(filename);

INPUT filename string, name of data file.

OUTPUT y matrix, array, string or string array, data retrieved from the file.

REMARKS The proper extension must be included in the file name. Valid extensions are as
follows:

.fmt matrix file
array file

.fst string file
string array file

See F I/O, Chapter 17, for details on these file types.

EXAMPLE y = dataload("myfile.fmt");

SEE ALSO load, datasave

28-184 GAUSS L R

d

dataopen

dataloop (dataloop)

PURPOSE Specifies the beginning of a data loop.

FORMAT dataloop infile outfile;

INPUT infile string variable or literal, the name of the source data set.

OUTPUT outfile string variable or literal, the name of the output data set.

REMARKS The statements between the dataloop... endata commands are assumed to be
metacode to be translated at compile time. The data from infile is manipulated
by the specified statements, and stored to the data set outfile. Case is not
significant within the dataloop... endata section, except for within quoted
strings. Comments can be used as in any GAUSS code.

EXAMPLE src = "source";

dataloop ˆsrc dest;

make newvar = x1 + x2 + log(x3);

x6 = sqrt(x4);

keep x6, x5, newvar;

endata;

Here, src is a string variable requiring the caret (ˆ) operator, while dest is a
string literal.

dataopen

PURPOSE Opens a data set.

FORMAT fh = dataopen(filename,mode);

GAUSS L R 28-185

dataopen

INPUT filename string, name of data file.

mode string containing one of the following:

read open file for read.
append open file for append.
update open file for update.

OUTPUT fh scalar, file handle.

REMARKS The file must exist before it can be opened with the dataopen command (to
create a new file, see datacreate or datasave).

The file handle returned by dataopen is a scalar containing a positive integer
value that uniquely identifies each file. This value is assigned by GAUSS when
the create, datacreate, datacreatecomplex, open or dataopen
commands are executed. The file handle is used to reference the file in the
commands readr and writer. If dataopen fails, it returns a -1.

A file can be opened simultaneously under more than one handle. If the value
that is in the file handle when the dataopen command begins to execute
matches that of an already open file, the process will be aborted and a File
already open error message will be given. This gives you some protection
against opening a second file with the same handle as a currently open file. If
this happens, you would no longer be able to access the first file.

It is important to set unused file handles to zero because both dataopen and
datacreate check the value that is in a file handle to see if it matches that of
an open file before they proceed with the process of opening a file. You may set
unused file handles to zero with the close or closeall commands.

If filename does not have an extension, dataopen appends a .dat extension
before searching for the file. If the file is an .fmt matrix file, the extension must
be explicitly given. If no path information is included, then dataopen searches
for the file in the current directory.

Files opened in read mode cannot be written to. The pointer is set to the
beginning of the file and the writer function is disabled for files opened in this

28-186 GAUSS L R

d

datasave

way. This is the only mode available for matrix files (.fmt), which are always
written in one piece with the save command.

Files opened in append mode cannot be read. The pointer is set to the end of
the file so that a subsequent write to the file with the writer function will add
data to the end of the file without overwriting any of the existing data in the file.
The readr function is disabled for files opened in this way. This mode is used
to add additional rows to the end of a file.

Files opened in update mode can be read from and written to. The pointer is
set to the beginning of the file. This mode is used to make changes in a file.

EXAMPLE fh = dataopen("myfile.dat","read");

y = readr(fh,100);

ret = close(fh);

This example opens the data file myfile.dat in the current directory and reads
100 observations (rows) from the file into the global variable y.

SOURCE datafile.src

SEE ALSO open, datacreate, writer, readr

datasave

PURPOSE Saves matrices, N-dimensional arrays, strings and string arrays to a disk file.

FORMAT ret = datasave(filename,x);

INPUT filename string, name of data file.
x matrix, array, string or string array, data to write to disk.

OUTPUT ret scalar, return code, 0 if successful, or -1 if it is unable to write the
file.

GAUSS L R 28-187

date

REMARKS datasave can be used to save matrices, N-dimensional arrays, strings and
string arrays. The following extensions are given to files that are saved with
datasave:

matrix .fmt

array .fmt

string .fst

string array .fst

See F I/O, Chapter 17, for details on these file types.

Use dataload to load a data file created with datasave.

EXAMPLE x = rndn(1000,100);

ret = datasave("myfile.fmt",x);

SEE ALSO save, dataload

date

PURPOSE Returns the current date in a 4-element column vector, in the order: year,
month, day, and hundredths of a second since midnight.

FORMAT y = date;

REMARKS The hundredths of a second since midnight can be accessed using hsec.

EXAMPLE print date;

2010.0000

8.0000000

31.000000

4804392.2

28-188 GAUSS L R

d

datestr

SEE ALSO time, timestr, ethsec, hsec, etstr

datestr

PURPOSE Returns a date in a string.

FORMAT str = datestr(d);

INPUT d 4×1 vector, like the date function returns. If this is 0, the date
function will be called for the current system date.

OUTPUT str 8 character string containing current date in the form: mo/dy/yr

EXAMPLE d = { 2010, 8, 31, 0 };

y = datestr(d);

print y;

8/31/10

SOURCE time.src

SEE ALSO date, datestring, datestrymd, time, timestr, ethsec

datestring

PURPOSE Returns a date in a string with a 4-digit year.

FORMAT str = datestring(d);

GAUSS L R 28-189

datestrymd

INPUT d 4×1 vector, like the date function returns. If this is 0, the date
function will be called for the current system date.

OUTPUT str 10 character string containing current date in the form: mm/dd/yyyy

EXAMPLE y = datestring(0);

print y;

8/31/2010

SOURCE time.src

SEE ALSO date, datestr, datestrymd, time, timestr, ethsec

datestrymd

PURPOSE Returns a date in a string.

FORMAT str = datestrymd(d);

INPUT d 4×1 vector, like the date function returns. If this is 0, the date
function will be called for the current system date.

OUTPUT str 8 character string containing current date in the form: yyyymmdd

EXAMPLE d = { 2010, 8, 31, 0 };

y = datestrymd(d);

print y;

20100831

SOURCE time.src

28-190 GAUSS L R

d

dayinyr

SEE ALSO date, datestr, datestring, time, timestr, ethsec

dayinyr

PURPOSE Returns day number in the year of a given date.

FORMAT daynum = dayinyr(dt);

INPUT dt 3×1 or 4×1 vector, date to check. The date should be in the form
returned by date.

OUTPUT daynum scalar, the day number of that date in that year.

EXAMPLE x = { 2010, 8, 31, 0 };

y = dayinyr(x);

print y;

243.00000

SOURCE time.src

GLOBALS _isleap

dayofweek

PURPOSE Returns day of week.

FORMAT d = dayofweek(a);

INPUT a N×1 vector, dates in DT format.

GAUSS L R 28-191

debug

OUTPUT d N×1 vector, integers indicating day of week of each date:

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

REMARKS The DT scalar format is a double precision representation of the date and time.
In the DT scalar format, the number

20100801183207

represents 18:32:07 or 6:32:07 PM on August 1, 2010.

SOURCE time.src

debug

PURPOSE Runs a program under the source level debugger.

FORMAT debug filename;

INPUT filename Literal, name of file to debug.

REMARKS See D, Section 5.4.

28-192 GAUSS L R

d

declare

declare

PURPOSE Initializes global variables at compile time.

FORMAT declare [[type]] symbol [[aop clist]];

INPUT type optional literal, specifying the type of the symbol.
matrix

string

array

sparse matrix

struct structure type
if type is not specified, matrix is assumed. Set type to string to
initialize a string or string array variable.

symbol the name of the symbol being declared.

aop the type of assignment to be made.

= if not initialized, initialize. If already initialized,
reinitialize.

!= if not initialized, initialize. If already initialized,
reinitialize.

:= if not initialized, initialize. If already initialized,
redefinition error.

?= if not initialized, initialize. If already initialized, leave as is.

If aop is specified, clist must be also.

clist a list of constants to assign to symbol.
If aop clist is not specified, symbol is initialized as a scalar 0 or a
null string.

REMARKS The declare syntax is similar to the let statement.

declare generates no executable code. This is strictly for compile time
initialization. The data on the right-hand side of the equal sign must be
constants. No expressions or variables are allowed.

GAUSS L R 28-193

declare

declare statements are intended for initialization of global variables that are
used by procedures in a library system.

It is best to place declare statements in a separate file from procedure
definitions. This will prevent redefinition errors when rerunning the same
program without clearing your workspace.

The optional aop and clist arguments are allowed only for declaring matrices,
strings, and string arrays. When you declare an N-dimensional array, sparse
matrix, or structure, they will be initialized as follows:

Variable Type Initializes To
N-dimensional array 1-dimensional array of 1 containing 0
sparse matrix empty sparse matrix
structure structure containing empty and/or zeroed out members

Complex numbers can be entered by joining the real and imaginary parts with a
sign (+ or -); there should be no spaces between the numbers and the sign.
Numbers with no real part can be entered by appending an ‘i’ to the number.

There should be only one declaration for any symbol in a program. Multiple
declarations of the same symbol should be considered a programming error.
When GAUSS is looking through the library to reconcile a reference to a matrix
or a string, it will quit looking as soon as a symbol with the correct name is
found. If another symbol with the same name existed in another file, it would
never be found. Only the first one in the search path would be available to
programs.

Here are some of the possible uses of the three forms of declaration:

!=, = Interactive programming or any situation where a global by
the same name will probably be sitting in the symbol table
when the file containing the declare statement is compiled.
The symbol will be reset.
This allows mixing declare statements with the procedure

28-194 GAUSS L R

d

declare

definitions that reference the global matrices and strings or
placing them in your main file.

:= Redefinition is treated as an error because you have probably
just outsmarted yourself. This will keep you out of trouble
because it won’t allow you to zap one symbol with another
value that you didn’t know was getting mixed up in your
program. You probably need to rename one of them.
You need to place declare statements in a separate file from
the rest of your program and procedure definitions.

?= Interactive programming where some global defaults were
set when you started and you don’t want them reset for each
successive run even if the file containing the declare’s gets
recompiled. This can get you into trouble if you are not
careful.

The declare statement warning level is a compile option. Call config in the
command line version of GAUSS or select Preferences from the Configure
menu in the Windows interface to edit this option. If declare warnings are on,
you will be warned whenever a declare statement encounters a symbol that is
already initialized. Here’s what happens when you declare a symbol that is
already initialized when declare warnings are turned on:

declare != Reinitialize and warn.
declare := Crash with fatal error.
declare ?= Leave as is and warn.

If declare warnings are off, no warnings are given for the != and ?= cases.

EXAMPLE declare matrix x,y,z;

x = 0
y = 0
z = 0

declare string x = "This string.";

GAUSS L R 28-195

declare

x = “This string.”

declare matrix x;

x = 0

declare matrix x != { 1 2 3, 4 5 6, 7 8 9 };

x =

1 2 3
4 5 6
7 8 9

declare matrix x[3,3] = 1 2 3 4 5 6 7 8 9;

x =

1 2 3
4 5 6
7 8 9

declare matrix x[3,3] = 1;

x =

1 1 1
1 1 1
1 1 1

declare matrix x[3,3];

x =

0 0 0
0 0 0
0 0 0

28-196 GAUSS L R

d

declare

declare matrix x = 1 2 3 4 5 6 7 8 9;

x =

1
2
3
4
5
6
7
8
9

declare matrix x = dog cat;

x =
DOG
CAT

declare matrix x = "dog" "cat";

x =
dog
cat

declare array a;

a is a 1-dimensional array of 1 containing 0.

declare sparse matrix sm;

sm is an empty sparse matrix.

struct mystruct {

GAUSS L R 28-197

delete

matrix m;

string s;

string array sa;

array a;

sparse matrix sm;

};

declare struct mystruct ms;

ms is a mystruct structure, with its members set as follows:

ms.m empty matrix
ms.s null string
ms.sa 1×1 string array containing a null string
ms.a 1-dimensional array of 1 containing 0
ms.sm empty sparse matrix

SEE ALSO let, external

delete

PURPOSE Deletes global symbols from the symbol table.

FORMAT delete [[-flags]] [[symbol1]] [[symbol2]] [[symbol3]];

INPUT flags specify the type(s) of symbols to be deleted

p procedures
k keywords
f fn functions
m matrices
s strings
g only procedures with global references

28-198 GAUSS L R

d

delete (dataloop)

l only procedures with all local references

n no pause for confirmation

symbol literal, name of symbol to be deleted. If symbol ends in an asterisk,
all symbols matching the leading characters will be deleted.

REMARKS This completely and irrevocably deletes a symbol from GAUSS’s memory and
workspace.

Flags must be preceded by a dash (e.g. -pfk). If the n(no pause) flag is used,
you will not be asked for confirmation for each symbol.

This command is supported only from interactive level. Since the interpreter
executes a compiled pseudo-code, this command would invalidate a previously
compiled code image and therefore would destroy any program it was a part of.
If any symbols are deleted, all procedures, keywords and functions with global
references to those symbols will be deleted as well.

EXAMPLE print x;

96.000000
6.0000000
14.000000
3502965.9

delete -m x;

At the Delete?[Yes No Previous Quit] prompt, enter y.

show x;

x no longer exists.

GAUSS L R 28-199

DeleteFile

delete (dataloop)

PURPOSE Removes specific rows in a data loop based on a logical expression.

FORMAT delete logical expression;

REMARKS Deletes only those rows for which logical expression is TRUE. Any variables
referenced must already exist, either as elements of the source data set, as
extern’s, or as the result of a previous make, vector, or code statement.

GAUSS expects logical expression to return a row vector of 1’s and 0’s. The
relational and other operators (e.g. <) are already interpreted in terms of their
dot equivalents (. <), but it is up to the user to make sure that function calls
within logical expression result in a vector.

EXAMPLE delete age < 40 or sex =\,= ’FEMALE’;

SEE ALSO select

DeleteFile

PURPOSE Deletes files.

FORMAT ret = DeleteFile(name);

INPUT name string or N×K string array, name of file or files to delete.

OUTPUT ret scalar or N×K matrix, 0 if successful.

REMARKS The return value, ret, is scalar if name is a string. If name is an N×K string
array, ret will be an N×K matrix reflecting the success or failure of each

28-200 GAUSS L R

d

delif

separate file deletion.

DeleteFile calls the C library unlink function for each file. If unlink fails it
sets the C library errno value. DeleteFile returns the value of errno if unlink
fails, otherwise it returns zero. If you want detailed information about the
reason for failure, consult the C library unlink documentation for your
platform for details.

delif

PURPOSE Deletes rows from a matrix. The rows deleted are those for which there is a 1 in
the corresponding row of e.

FORMAT y = delif(x,e);

INPUT x N×K data matrix.

e N×1 logical vector (vector of 0’s and 1’s).

OUTPUT y M×K data matrix consisting of the rows of y for which there is a 0 in
the corresponding row of e. If no rows remain, delif will return a
scalar missing.

REMARKS The input e will usually be generated by a logical expression using dot
operators. For instance:

y = delif(x,x[.,2] .> 100);

will delete all rows of x whose second element is greater than 100. The
remaining rows of x will be assigned to y.

EXAMPLE x = { 0 10 20,

30 40 50,

60 70 80 };

GAUSS L R 28-201

denseToSp

/* logical vector */

e = (x[.,1] .gt 0) .and (x[.,3] .lt 100);

y = delif(x,e);

y = 0 10 20

All rows for which the elements in column 1 are greater than 0 and the elements
in column 3 are less than 100 are deleted.

SEE ALSO selif

denseToSp

PURPOSE Converts a dense matrix to a sparse matrix.

FORMAT y = denseToSp(x,eps);

INPUT x M×N dense matrix.

eps scalar, elements of x whose absolute values are less than or equal to
eps will be treated as zero.

OUTPUT y M×N sparse matrix.

REMARKS A dense matrix is just a normal format matrix.

Since sparse matrices are strongly typed in GAUSS, y must be defined as a
sparse matrix before the call to denseToSp.

EXAMPLE sparse matrix y;

x = { 0 0 0 1,

0 4 0 0,

28-202 GAUSS L R

d

denseToSpRE

0 0 0 0,

0 0 -2 0 };

y = denseToSp(x,0);

d = spDenseSubmat(y,0,0);

d =

0 0 0 1
0 4 0 0
0 0 0 0
0 0 −2 0

SEE ALSO spCreate, spDenseSubmat, spToDense

denseToSpRE

PURPOSE Converts a dense matrix to a sparse matrix, using a relative epsilon.

FORMAT y = denseToSpRE(x,reps);

INPUT x M×N dense matrix.

reps scalar, relative epsilon. Elements of x will be treated as zero if their
absolute values are less than or equal to reps multiplied by the mean
of the absolute values of the non-zero values in x.

OUTPUT y M×N sparse matrix.

REMARKS A dense matrix is just a normal format matrix.

Since sparse matrices are strongly typed in GAUSS, y must be defined as a
sparse matrix before the call to denseToSpRE.

GAUSS L R 28-203

denToZero

EXAMPLE sparse matrix y;

x = { -9 0 0 1,

0 4 0 0,

5 0 0 7,

0 0 -2 0 };

y = denseToSpRE(x,.5);

d = spToDense(y);

d =

−9 0 0 0
0 4 0 0
5 0 0 7
0 0 0 0

SEE ALSO denseToSp, spCreate, spToDense

denToZero

PURPOSE Converts every denormal to a 0 in a matrix or array.

FORMAT y = denToZero(x);

INPUT x A matrix or an N-dimensional array.

OUTPUT y A matrix or an N-dimensional array with the same orders as the
input. Every denormal in the input will be converted to 0 in the
output. column.

EXAMPLE x = { 1, exp(-724.5), 3 };

y = isden(x);

y = 1, 0, 3;

28-204 GAUSS L R

d

design

SEE ALSO isden

design

PURPOSE Creates a design matrix of 0’s and 1’s from a column vector of numbers
specifying the columns in which the 1’s should be placed.

FORMAT y = design(x);

INPUT x N×1 vector.

OUTPUT y N×K matrix, where K = maxc(x); each row of y will contain a
single 1, and the rest 0’s. The one in the ith row will be in the
round(x[i,1]) column.

REMARKS Note that x does not have to contain integers: it will be rounded to nearest if
necessary.

EXAMPLE x = { 1, 1.2, 2, 3, 4.4 };

y = design(x);

y =

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

SOURCE design.src

SEE ALSO cumprodc, cumsumc, recserrc

GAUSS L R 28-205

det

det

PURPOSE Returns the determinant of a square matrix.

FORMAT y = det(x);

INPUT x N×N square matrix or K-dimensional array where the last two
dimensions are N×N .

OUTPUT y scalar or [K-2]-dimensional array, the determinant(s) of x.

REMARKS x may be any valid expression that returns a square matrix (number of rows
equals number of columns) or a K-dimensional array where the last two
dimensions are of equal size.

If x is a K-dimensional array, the result will be a [K-2]-dimensional array
containing the determinants of each 2-dimensional array described by the two
trailing dimensions of x. In other words, for a 10×4×4 array, the result will be a
1-dimensional array of 10 elements containing the determinants of each of the
10 4×4 arrays contained in x.

det computes a LU decomposition.

detl can be much faster in many applications.

EXAMPLE x = { 3 2 1,

0 1 -2,

1 3 4 };

y = det(x);

x =

3 2 1
0 1 −2
1 3 4

28-206 GAUSS L R

d

detl

y = 25

SEE ALSO detl

detl

PURPOSE Returns the determinant of the last matrix that was passed to one of the intrinsic
matrix decomposition routines.

FORMAT y = detl;

REMARKS Whenever one of the intrinsic matrix decomposition routines is executed, the
determinant of the matrix is also computed and stored in a system variable. This
function will return the value of that determinant and, because the value has
been computed in a previous instruction, this will require no computation.

The following functions will set the system variable used by detl:

chol(x)
crout(x)
croutp(x)
det(x)
inv(x)
invpd(x)
solpd(y,x) determinant of x
y/x determinant of x when neither argument is a scalar

or
determinant of x′x if x is not square

EXAMPLE If both the inverse and the determinant of the matrix are needed, the following
two commands will return both with the minimum amount of computation:

xi = inv(x);

GAUSS L R 28-207

dfft

xd = detl;

The function det(x) returns the determinant of a matrix using the Crout
decomposition. If you only want the determinant of a positive definite matrix,
the following code will be the fastest for matrices larger than 10×10:

call chol(x);

xd = detl;

The Cholesky decomposition is computed and the result from that is discarded.
The determinant saved during that instruction is retrieved using detl. This can
execute up to 2.5 times faster than det(x) for large positive definite matrices.

SEE ALSO det

dfft

PURPOSE Computes a discrete Fourier transform.

FORMAT y = dfft(x);

INPUT x N×1 vector.

OUTPUT y N×1 vector.

REMARKS The transform is divided by N.

This uses a second-order Goertzel algorithm. It is considerably slower than fft,
but it may have some advantages in some circumstances. For one thing, N does
not have to be an even power of 2.

SOURCE dfft.src

28-208 GAUSS L R

d

dffti

SEE ALSO dffti, fft, ffti

dffti

PURPOSE Computes inverse discrete Fourier transform.

FORMAT y = dffti(x);

INPUT x N×1 vector.

OUTPUT y N×1 vector.

REMARKS The transform is divided by N.

This uses a second-order Goertzel algorithm. It is considerably slower than
ffti, but it may have some advantages in some circumstances. For one thing,
N does not have to be an even power of 2.

SOURCE dffti.src

SEE ALSO fft, dffti, ffti

diag

PURPOSE Creates a column vector from the diagonal of a matrix.

FORMAT y = diag(x);

INPUT x N×K matrix or L-dimensional array where the last two dimensions
are N×K.

GAUSS L R 28-209

diagrv

OUTPUT y min(N,K)×1 vector or L-dimensional array where the last two
dimensions are min(N,K)×1.

REMARKS If x is a matrix, it need not be square. Otherwise, if x is an array, the last two
dimensions need not be equal.

If x is an array, the result will be an array containing the diagonals of each
2-dimensional array described by the two trailing dimensions of x. In other
words, for a 10×4×4 array, the result will be a 10×4×1 array containing the
diagonals of each of the 10 4×4 arrays contained in x.

diagrv reverses the procedure and puts a vector into the diagonal of a matrix.

EXAMPLE x = rndu(3,3);

y = diag(x);

x =

0.660818 0.367424 0.302208
0.204800 0.077357 0.145755
0.712284 0.353760 0.642567

y =

0.660818
0.077357
0.642567

SEE ALSO diagrv

diagrv

PURPOSE Inserts a vector into the diagonal of a matrix.

FORMAT y = diagrv(x,v);

28-210 GAUSS L R

d

digamma

INPUT x N×K matrix.
v min(N,K)×1 vector.

OUTPUT y N×K matrix equal to x with its principal diagonal elements equal to
those of v.

REMARKS diag reverses the procedure and pulls the diagonal out of a matrix.

EXAMPLE x = rndu(3,3);

v = ones(3,1);

y = diagrv(x,v);

x =

0.660818 0.367424 0.302208
0.204800 0.077357 0.145755
0.712284 0.353760 0.642567

v =

1.000000
1.000000
1.000000

y =

1.000000 0.367424 0.302208
0.204800 1.000000 0.145755
0.712284 0.353760 1.000000

SEE ALSO diag

digamma

PURPOSE Computes the digamma function.

FORMAT y = digamma(x);

GAUSS L R 28-211

dlibrary

INPUT x M×N matrix or N-dimensional array.

OUTPUT y M×N matrix or N-dimensional array, digamma.

REMARKS The digamma function is the first derivative of the log of the gamma function
with respect to its argument.

dlibrary

PURPOSE Dynamically links and unlinks shared libraries.

FORMAT dlibrary lib1 [[lib2]]...;
dlibrary -a lib1 [[lib2]]...;
dlibrary -d;

dlibrary;

INPUT lib1 lib2. . . literal, the base name of the library or the pathed name of the
library.
dlibrary takes two types of arguments, “base” names and file
names. Arguments without any “/” path separators are assumed to be
library base names, and are expanded by adding the suffix .so or
.dll, depending on the platform. They are searched for in the
default dynamic library directory. Arguments that include “/” path
separators are assumed to be file names, and are not expanded.
Relatively pathed file names are assumed to be specified relative to
the current working directory, not relative to the dynamic library
directory.

-a append flag, the shared libraries listed are added to the current set of
shared libraries rather than replacing them. For search purposes, the
new shared libraries follow the already active ones. Without the -a
flag, any previously linked libraries are dumped.

-d dump flag, ALL shared libraries are unlinked and the functions they
contain are no longer available to your programs. If you use

28-212 GAUSS L R

d

dllcall

dllcall to call one of your functions after executing a dlibrary
-d, your program will terminate with an error.

REMARKS If no flags are used, the shared libraries listed are linked into GAUSS and any
previously linked libraries are dumped. When you call dllcall, the shared
libraries will be searched in the order listed for the specified function. The first
instance of the function found will be called.

dlibrary with no arguments prints out a list of the currently linked shared
libraries. The order in which they are listed is the order in which they are
searched for functions.

dlibrary recognizes a default directory in which to look for dynamic libraries.
You can specify this by setting the variable dlib_path in gauss.cfg. Set it to
point to a single directory, not a sequence of directories. sysstate, case 24,
may also be used to get and set this default.

GAUSS maintains its own shared libraries which are listed when you execute
dlibrary with no arguments, and searched when you call dllcall. The
default shared library or libraries are searched last. You can force them to be
searched earlier by listing them explicitly in a dlibrary statement. They
always active and are not unlinked when you execute dlibrary -d.

For more information, see F L I, Chapter 18.

SEE ALSO dllcall, sysstate–case 24

dllcall

PURPOSE Calls functions located in dynamic libraries.

FORMAT dllcall [-r] [-v] func[[(arg1,arg2. . .)]];

dllcall works in conjunction with dlibrary. dlibrary is used to link
shared libraries into GAUSS; dllcall is used to access the functions contained

GAUSS L R 28-213

dllcall

in those shared libraries. dllcall searches the shared libraries (see dlibrary
for an explanation of the search order) for a function named func, and calls the
first instance it finds. The default shared libraries are searched last.

INPUT func the name of a function contained in a shared library (linked into
GAUSS with dlibrary). If func is not specified or cannot be
located in a shared library, dllcall will fail.

arg# arguments to be passed to func, optional. These must be simple
variable references; they cannot be expressions.

-r optional flag. If -r is specified, dllcall examines the value
returned by func, and fails if it is nonzero.

-v optional flag. Normally, dllcall passes parameters to func in a list.
If -v is specified, dllcall passes them in a vector. See below for
more details.

REMARKS func should be written to:

1. Take 0 or more pointers to doubles as arguments.
2. Take arguments either in a list or a vector.
3. Return an integer.

In C syntax, func should take one of the following forms:

1. int func(void);
2. int func(double *arg1 [[,double *arg2,. . .]]);
3. int func(double *arg[]);

dllcall can pass a list of up to 100 arguments to func; if it requires more
arguments than that, you MUST write it to take a vector of arguments, and you
MUST specify the -v flag when calling it. dllcall can pass up to 1000
arguments in vector format. In addition, in vector format dllcall appends a
null pointer to the vector, so you can write func to take a variable number of
arguments and just test for the null pointer.

Arguments are passed to func by reference. This means you can send back more
than just the return value, which is usually just a success/failure code. (It also
means that you need to be careful not to overwrite the contents of matrices or

28-214 GAUSS L R

d

do while, do until

strings you want to preserve.) To return data from func, simply set up one or
more of its arguments as return matrices (basically, by making them the size of
what you intend to return), and inside func assign the results to them before
returning.

For more information, see F L I, Chapter 18.

SEE ALSO dlibrary, sysstate–case 24

do while, do until

PURPOSE Executes a series of statements in a loop as long as a given expression is true (or
false).

FORMAT do while expression;
or
do until expression;

.

.

.
statements in loop

.

.

.
endo;

REMARKS expression is any expression that returns a scalar. It is TRUE if it is nonzero and
FALSE if it is zero.

In a do while loop, execution of the loop will continue as long as the
expression is TRUE.

In a do until loop, execution of the loop will continue as long as the
expression is FALSE.

GAUSS L R 28-215

do while, do until

The condition is checked at the top of the loop. If execution can continue, the
statements of the loop are executed until the endo is encountered. Then GAUSS
returns to the top of the loop and checks the condition again.

The do loop does not automatically increment a counter. See the first example
below.

do loops may be nested.

It is often possible to avoid using loops in GAUSS by using the appropriate
matrix operator or function. It is almost always preferable to avoid loops when
possible, since the corresponding matrix operations can be much faster.

EXAMPLE format /rdn 1,0;

space = " ";

comma = ",";

i = 1;

do while i <= 4;

j = 1;

do while j <= 3;

print space i comma j;;

j = j+1;

endo;

i = i+1;

print;

endo;

1, 1 1, 2 1, 3
2, 1 2, 2 2, 3
3, 1 3, 2 3, 3
4, 1 4, 2 4, 3

In the example above, two nested loops are executed and the loop counter
values are printed out. Note that the inner loop counter must be reset inside of
the outer loop before entering the inner loop. An empty print statement is
used to print a carriage return/line feed sequence after the inner loop finishes.

28-216 GAUSS L R

d

dos

The following are examples of simple loops that execute a predetermined
number of times. These loops will both have the result shown.

First loop:

format /rd 1,0;

i = 1;

do while i <= 10;

print i;;

i = i+1;

endo;

produces:

1 2 3 4 5 6 7 8 9 10

Second loop:

format /rd 1,0;

i = 1;

do until i > 10;

print i;;

i = i+1;

endo;

produces:

1 2 3 4 5 6 7 8 9 10

SEE ALSO continue, break

GAUSS L R 28-217

dos

dos

PURPOSE Provides access to the operating system from within GAUSS.

FORMAT dos [[s]];

INPUT s literal or ˆstring, the OS command to be executed.

PORTABILITY UNIX/Linux

Control and output go to the controlling terminal, if there is one.

This function may be used in terminal mode.

Windows

The dos function opens a new terminal.

Running programs in the background is allowed on both of the aforementioned
platforms.

REMARKS This allows all operating system commands to be used from within GAUSS. It
allows other programs to be run even though GAUSS is still resident in memory.

If no operating system command (for instance, dir or copy) or program name
is specified, then a shell of the operating system will be entered which can be
used just like the base level OS. The exit command must be given from the
shell to get back into GAUSS. If a command or program name is included, the
return to GAUSS is automatic after the OS command has been executed.

All matrices are retained in memory when the OS is accessed in this way. This
command allows the use of word processing, communications, and other
programs from within GAUSS.

Do not execute programs that terminate and remain resident because they will

28-218 GAUSS L R

d

doswin

be left resident inside of GAUSS’s workspace. Some examples are programs
that create RAM disks or print spoolers.

If the command is to be taken from a string variable, the ˆ (caret) must precede
the string.

The shorthand “>” can be used in place of “dos”.

EXAMPLE cmdstr = "atog mycfile";

dos ˆcmdstr;

This will run the ATOG utility, using mycfile.cmd as the ATOG command
file. For more information, see ATOG, Chapter 23.

> dir *.prg;

This will use the DOS dir command to print a directory listing of all files with
a .prg extension on Windows. When the listing is finished, control will be
returned to GAUSS.

> ls *.prg

This will perform the same operation on UNIX/Linux.

dos;

This will cause a second level OS shell to be entered. The OS prompt will
appear and OS commands or other programs can be executed. To return to
GAUSS, type exit.

SEE ALSO exec

GAUSS L R 28-219

DOSWinCloseall

doswin

PURPOSE Opens the DOS compatibility window with default settings.

FORMAT doswin;

PORTABILITY Windows only

REMARKS Calling doswin is equivalent to:

call DOSWinOpen("",error(0));

SOURCE gauss.src

DOSWinCloseall

PURPOSE Closes the DOS compatibility window.

FORMAT DOSWinCloseall;

PORTABILITY Windows only

REMARKS Calling DOSWinCloseall closes the DOS window immediately, without asking
for confirmation. If a program is running, its I/O reverts to the Command
window.

EXAMPLE let attr = 50 50 7 0 7;

if not DOSWinOpen("Legacy Window", attr);

28-220 GAUSS L R

d

DOSWinOpen

errorlog "Failed to open DOS window, aborting";

stop;

endif;

.

.

.

DOSWinCloseall;

DOSWinOpen

PURPOSE Opens the DOS compatibility window and gives it the specified title and
attributes.

FORMAT ret = DOSWinOpen(title,attr);

INPUT title string, window title.

attr 5×1 vector or scalar missing, window attributes.

[1] window x position
[2] window y position
[3] text foreground color
[4] text background color
[5] close action bit flags

bit 0 (1’s bit) issue dialog
bit 1 (2’s bit) close window
bit 2 (4’s bit) stop program

OUTPUT ret scalar, success flag, 1 if successful, 0 if not.

PORTABILITY Windows only

REMARKS If title is a null string (“”), the window will be titled “GAUSS-DOS”.

GAUSS L R 28-221

dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne

Defaults are defined for the elements of attr. To use the default, set an element
to a missing value. Set attr to a scalar missing to use all defaults. The defaults
are defined as follows:

[1] varies use x position of previous DOS window
[2] varies use y position of previous DOS window
[3] 7 white foreground
[4] 0 black background
[5] 6 4+2: stop program and close window without confirming

If the DOS window is already open, the new title and attr will be applied to it.
Elements of attr that are missing are not reset to the default values, but are left
as is.

To set the close action flags value (attr[5]), just sum the desired bit values. For
example:

stop program (4) + close window (2) + confirm close (1) = 7

The close action flags are only relevant when a user attempts to interactively
close the DOS window while a program is running. If GAUSS is idle, the
window will be closed immediately. Likewise, if a program calls
DOSWinCloseall, the window is closed, but the program does not get
terminated.

EXAMPLE let attr = 50 50 7 0 7;

if not DOSWinOpen("Legacy Window", attr);

errorlog "Failed to open DOS window, aborting";

stop;

endif;

This example opens the DOS window at screen location (50,50), with white text
on a black background. The close action flags are 4 + 2 + 1 (stop program +
close window + issue confirm dialog) = 7. Thus, if the user attempts to close
the window while a program is running, he/she will be asked for confirmation.
Upon confirmation, the window will be closed and the program terminated.

28-222 GAUSS L R

d

dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne

dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne

PURPOSE Fuzzy comparison functions. These functions use _fcmptol to fuzz the
comparison operations to allow for roundoff error.

FORMAT y = dotfeq(a,b);
y = dotfge(a,b);
y = dotfgt(a,b);
y = dotfle(a,b);
y = dotflt(a,b);
y = dotfne(a,b);

INPUT a N×K matrix, first matrix.

b L×M matrix, second matrix, E×E compatible with a.

GLOBAL
INPUT

_fcmptol scalar, comparison tolerance. The default value is 1.0e-15.

OUTPUT y max(N,L) by max(K,M) matrix of 1’s and 0’s.

REMARKS The return value is 1 if TRUE and 0 if FALSE.

The statement:

y = dotfeq(a,b);

is equivalent to:

y = a .eq b;

The calling program can reset _fcmptol before calling these procedures:

GAUSS L R 28-223

dotfeqmt, dotfgemt, dotfgtmt, dotflemt, dotfltmt, dotfnemt

_fcmptol = 1e-12;

EXAMPLE x = rndu(2,2);

y = rndu(2,2);

t = dotfge(x,y);

x =
0.85115559 0.98914218
0.12703276 0.43365175

y =
0.41907226 0.49648058
0.58039125 0.98200340

t =
1.0000000 1.0000000
0.0000000 0.0000000

SOURCE fcompare.src

GLOBALS _fcmptol

SEE ALSO feq--fne

dotfeqmt, dotfgemt, dotfgtmt, dotflemt, dotfltmt, dotfnemt

PURPOSE Fuzzy comparison functions. These functions use the fcmptol argument to fuzz
the comparison operations to allow for roundoff error.

FORMAT y = dotfeqmt(a,b,fcmptol);
y = dotfgemt(a,b,fcmptol);
y = dotfgtmt(a,b,fcmptol);
y = dotflemt(a,b,fcmptol);

28-224 GAUSS L R

d

dotfeqmt, dotfgemt, dotfgtmt, dotflemt, dotfltmt, dotfnemt

y = dotfltmt(a,b,fcmptol);
y = dotfnemt(a,b,fcmptol);

INPUT a N×K matrix, first matrix.

b L×M matrix, second matrix, E×E compatible with a.

fcmptol scalar, comparison tolerance.

OUTPUT y max(N,L) by max(K,M) matrix of 1’s and 0’s.

REMARKS The return value is 1 if TRUE and 0 if FALSE.

The statement:

y = dotfeqmt(a,b,1e-13);

is equivalent to:

y = a .eq b;

EXAMPLE x = rndu(2,2);

y = rndu(2,2);

t = dotfge(x,y,1e-15);

x =
0.85115559 0.98914218
0.12703276 0.43365175

y =
0.41907226 0.49648058
0.58039125 0.98200340

t =
1.0000000 1.0000000
0.0000000 0.0000000

GAUSS L R 28-225

draw

SOURCE fcomparemt.src

SEE ALSO feqmt--fnemt

draw

PURPOSE Graphs lines, symbols, and text using the PQG global variables. This procedure
does not require actual X, Y, or Z data since its main purpose is to manually
build graphs using _pline, _pmsgctl, _psym, _paxes, _parrow and other
globals.

LIBRARY pgraph

FORMAT draw;

REMARKS draw is especially useful when used in conjunction with transparent windows.

EXAMPLE library pgraph;

graphset;

begwind;

makewind(9,6.855,0,0,0); /* make full size window for plot */

makewind(3,1,3,3,0); /* make small overlapping window

** for text

*/

setwind(1);

x = seqa(.1,.1,100);

y = sin(x);

xy(x,y); /* plot data in first window */

nextwind;

_pbox = 15;

_paxes = 0;

28-226 GAUSS L R

d

drop (dataloop)

_pnum = 0;

_ptitlht = 1;

margin(0,0,2,0);

title("This is a text window.");

draw; /* add a smaller text window */

endwind; /* create graph */

SOURCE pdraw.src

SEE ALSO window, makewind

drop (dataloop)

PURPOSE Specifies columns to be dropped from the output data set in a data loop.

FORMAT drop variable list;

REMARKS Commas are optional in variable list.

Deletes the specified variables from the output data set. Any variables
referenced must already exist, either as elements of the source data set, or as the
result of a previous make, vector, or code statement.

If neither keep nor drop is used, the output data set will contain all variables
from the source data set, as well as any defined variables. The effects of
multiple keep and drop statements are cumulative.

EXAMPLE drop age, pay, sex;

SEE ALSO keep (dataloop)

GAUSS L R 28-227

dstat

dsCreate

PURPOSE Creates an instance of a structure of type DS set to default values.

INCLUDE ds.sdf

FORMAT s = dsCreate;

OUTPUT s instance of structure of type DS.

SOURCE ds.src

dstat

PURPOSE Computes descriptive statistics.

FORMAT { vnam,mean,var,std,min,max,valid,mis } = dstat(dataset,vars);

INPUT dataset string, name of data set.
If dataset is null or 0, vars will be assumed to be a matrix containing
the data.

vars the variables.
If dataset contains the name of a GAUSS data set, vars will be
interpreted as:

K×1 character vector, names of variables.
- or -

K×1 numeric vector, indices of variables.
These can be any size subset of the variables in the data set and can
be in any order. If a scalar 0 is passed, all columns of the data set
will be used.

28-228 GAUSS L R

d

dstat

If dataset is null or 0, vars will be interpreted as:
N×K matrix, the data on which to compute the descriptive
statistics.

GLOBAL
INPUT

__altnam matrix, default 0.
This can be a K×1 character vector of alternate variable
names for the output.

__maxbytes scalar, the maximum number of bytes to be read per iteration
of the read loop. Default = 1e9.

__maxvec scalar, the largest number of elements allowed in any one
matrix. Default = 20000.

__miss scalar, default 0.

0 there are no missing values (fastest).
1 listwise deletion, drop a row if any missings occur in it.
2 pairwise deletion.

__row scalar, the number of rows to read per iteration of the read
loop.
if 0, (default) the number of rows will be calculated using
__maxbytes and __maxvec.

__output scalar, controls output, default 1.

1 print output table.
0 do not print output.

OUTPUT vnam K×1 character vector, the names of the variables used in the
statistics.

mean K×1 vector, means.

var K×1 vector, variance.

std K×1 vector, standard deviation.

min K×1 vector, minima.

max K×1 vector, maxima.

valid K×1 vector, the number of valid cases.

mis K×1 vector, the number of missing cases.

GAUSS L R 28-229

dstatmt

REMARKS If pairwise deletion is used, the minima and maxima will be the true values for
the valid data. The means and standard deviations will be computed using the
correct number of valid observations for each variable.

SOURCE dstat.src

dstatmt

PURPOSE Compute descriptive statistics.

FORMAT dout = dstatmt(dc0,dataset,vars);

INPUT dc0 instance of a dstatmtControl structure containing the following
members:

dc0.altnames K×1 string array of alternate variable names
to be used if a matrix in memory is analyzed
(i.e., dataset is a null string or 0). Default =
“”.

dc0.maxbytes scalar, the maximum number of bytes to be
read per iteration of the read loop. Default =
1e9.

dc0.maxvec scalar, the largest number of elements allowed
in any one matrix. Default = 20000.

dc0.miss scalar, default 0.
0 there are no missing values (fastest).
1 listwise deletion, drop a row if any

missings occur in it.
2 pairwise deletion.

dc0.row scalar, the number of rows to read per
iteration of the read loop.
If 0, (default) the number of rows will be
calculated using dc0.maxbytes and
dc0.maxvec.

28-230 GAUSS L R

d

dstatmt

dc0.output scalar, controls output, default 1.

1 print output table.
0 do not print output.

dataset string, name of data set.
If dataset is null or 0, vars will be assumed to be a matrix containing
the data.

vars the variables.
If dataset contains the name of a GAUSS data set, vars will be
interpreted as:

K×1 string array, names of variables.
- or -

K×1 numeric vector, indices of variables.
These can be any size subset of the variables in the data set and can
be in any order. If a scalar 0 is passed, all columns of the data set
will be used.
If dataset is null or 0, vars will be interpreted as:

N×K matrix, the data on which to compute the descriptive
statistics.

OUTPUT dout instance of a dstatmtOut structure containing the following
members:

dout.vnames K×1 string array, the names of the variables
used in the statistics.

dout.mean K×1 vector, means.
dout.var K×1 vector, variance.
dout.std K×1 vector, standard deviation.
dout.min K×1 vector, minima.
dout.max K×1 vector, maxima.
dout.valid K×1 vector, the number of valid cases.
dout.missing K×1 vector, the number of missing cases.
dout.errcode scalar, error code, 0 if successful; otherwise,

one of the following:

2 Can’t open file.

GAUSS L R 28-231

dstatmtControlCreate

7 Too many missings - no data left after
packing.

9 altnames member of dstatmtControl
structure wrong size.

10 vartype member of dstatmtControl
structure wrong size.

REMARKS If pairwise deletion is used, the minima and maxima will be the true values for
the valid data. The means and standard deviations will be computed using the
correct number of valid observations for each variable.

SOURCE dstatmt.src

SEE ALSO dstatmtControlCreate

dstatmtControlCreate

PURPOSE Creates default dstatmtControl structure.

INCLUDE dstatmt.sdf

FORMAT c = dstatmtControlCreate;

OUTPUT c instance of dstatmtControl structure with members set to default
values.

SOURCE dstatmt.src

SEE ALSO dstatmt

28-232 GAUSS L R

d

dtday

dtdate

PURPOSE Creates a matrix in DT scalar format.

FORMAT dt = dtdate(year,month,day,hour,minute,second);

INPUT year N×K matrix of years.

month N×K matrix of months, 1-12.

day N×K matrix of days, 1-31.

hour N×K matrix of hours, 0-23.

minute N×K matrix of minutes, 0-59.

second N×K matrix of seconds, 0-59.

OUTPUT dt N×K matrix of DT scalar format dates.

REMARKS The arguments must be E×E conformable.

SOURCE time.src

SEE ALSO dtday, dttime, utctodt, dttostr

dtday

PURPOSE Creates a matrix in DT scalar format containing only the year, month and day.
Time of day information is zeroed out.

FORMAT dt = dtday(year,month,day);

INPUT year N×K matrix of years.

GAUSS L R 28-233

dttime

month N×K matrix of months, 1-12.

day N×K matrix of days, 1-31.

OUTPUT dt N×K matrix of DT scalar format dates.

REMARKS This amounts to 00:00:00 or midnight on the given day. The arguments must be
E×E conformable.

SOURCE time.src

SEE ALSO dttime, dtdate, utctodt, dttostr

dttime

PURPOSE Creates a matrix in DT scalar format containing only the hour, minute and
second. The date information is zeroed out.

FORMAT dt = dttime(hour,minute,second);

INPUT hour N×K matrix of hours, 0-23.

minute N×K matrix of minutes, 0-59.

second N×K matrix of seconds, 0-59.

OUTPUT dt N×K matrix of DT scalar format times.

REMARKS The arguments must be E×E conformable.

SOURCE time.src

SEE ALSO dtday, dtdate, utctodt, dttostr

28-234 GAUSS L R

d

dttodtv

dttodtv

PURPOSE Converts DT scalar format to DTV vector format.

FORMAT dtv = dttodtv(dt);

INPUT dt N×1 vector, DT scalar format.

OUTPUT dtv N×8 matrix, DTV vector format.

REMARKS In DT scalar format, 15:10:55 on July 3, 2005 is 20050703151055.

Each row of dtv, in DTV vector format, contains:

[N,1] Year

[N,2] Month in Year, 1-12

[N,3] Day of month, 1-31

[N,4] Hours since midnight, 0-23

[N,5] Minutes, 0-59

[N,6] Seconds, 0-59

[N,7] Day of week, 0-6, 0 = Sunday

[N,8] Days since Jan 1 of current year, 0-365

EXAMPLE dt = 20100326110722;

print "dt = " dt;

20100326110722

dtv = dttodtv(dt);

print "dtv = " dtv;

2010 3 26 11 7 22 1 84

GAUSS L R 28-235

dttostr

SOURCE time.src

SEE ALSO dtvnormal, timeutc, utctodtv, dtvtodt, dttoutc, dtvtodt, strtodt,
dttostr

dttostr

PURPOSE Converts a matrix containing dates in DT scalar format to a string array.

FORMAT sa = dttostr(x,fmt);

INPUT x N×K matrix containing dates in DT scalar format.
fmt string containing date/time format characters.

OUTPUT sa N×K string array.

REMARKS The DT scalar format is a double precision representation of the date and time.
In the DT scalar format, the number

20100703105031

represents 10:50:31 or 10:50:31 AM on July 3, 2010. dttostr converts a date
in DT scalar format to a character string using the format string in fmt.

The following formats are supported:

YYYY 4 digit year
YR Last two digits of year
MO Number of month, 01-12
DD Day of month, 01-31
HH Hour of day, 00-23
MI Minute of hour, 00-59
SS Second of minute, 00-59

28-236 GAUSS L R

d

dttoutc

EXAMPLE s0 = dttostr(utctodt(timeutc), "YYYY-MO-DD HH:MI:SS");

print ("Date and Time are: " $+ s0);

Date and time are: 2005-09-14 11:49:10

print dttostr(utctodt(timeutc), "Today is DD-MO-YR");

Today is 14-09-05

s = dttostr(x, "YYYY-MO-DD");

If x =

20000317060424
20010427031213
20010517020437
20011117161422
20010717120448
20010817043451
20010919052320
20011017032203
20011107071418

then s =

2000 − 03 − 17
2001 − 04 − 27
2001 − 05 − 17
2001 − 11 − 17
2001 − 07 − 17
2001 − 08 − 17
2001 − 09 − 19
2001 − 10 − 17
2001 − 11 − 07

SEE ALSO strtodt, dttoutc, utctodt

GAUSS L R 28-237

dtvnormal

dttoutc

PURPOSE Converts DT scalar format to UTC scalar format.

FORMAT utc = dttoutc(dt);

INPUT dt N×1 vector, DT scalar format.

OUTPUT utc N×1 vector, UTC scalar format.

REMARKS In DT scalar format, 10:50:31 on July 15, 2010 is 20100703105031. A UTC
scalar gives the number of seconds since or before January 1, 1970 Greenwich
Mean Time.

EXAMPLE dt = 20010326085118;

tc = dttoutc(dt);

print "tc = " tc;

tc = 985633642;

SOURCE time.src

SEE ALSO dtvnormal, timeutc, utctodtv, dttodtv, dtvtodt, dtvtoutc, dtvtodt,
strtodt, dttostr

dtvnormal

PURPOSE Normalizes a date and time (DTV) vector.

FORMAT d = dtvnormal(t);

28-238 GAUSS L R

d

dtvtodt

INPUT t 1×8 date and time vector that has one or more elements outside the
normal range.

OUTPUT d Normalized 1×8 date and time vector.

REMARKS The date and time vector is a 1×8 vector whose elements consist of:

Year Year, four digit integer.
Month 1-12, Month in year.
Day 1-31, Day of month.
Hour 0-23, Hours since midnight.
Min 0-59, Minutes.
Sec 0-59, Seconds.
DoW 0-6, Day of week, 0 = Sunday.
DiY 0-365, Days since Jan 1 of year.

On input missing values are treated as zeros and the last two elements are
ignored.

EXAMPLE format /rd 10,0;

x = { 2011 14 21 6 21 37 0 0 };

d = dtvnormal(x);

d = 2012 2 21 6 21 37 2 51

SEE ALSO date, ethsec, etstr, time, timestr, timeutc, utctodtv

dtvtodt

PURPOSE Converts DT vector format to DT scalar format.

FORMAT dt = dtvtodt(dtv);

GAUSS L R 28-239

dtvtoutc

INPUT dtv N×8 matrix, DTV vector format.

OUTPUT dt N×1 vector, DT scalar format.

REMARKS In DT scalar format, 11:06:47 on March 15, 2001 is 20010315110647.

Each row of dtv, in DTV vector format, contains:

[N,1] Year
[N,2] Month in Year, 1-12
[N,3] Day of month, 1-31
[N,4] Hours since midnight, 0-23
[N,5] Minutes, 0-59
[N,6] Seconds, 0-59
[N,7] Day of week, 0-6, 0 = Sunday
[N,8] Days since Jan 1 of current year, 0-365

EXAMPLE let dtv = { 2005 3 26 11 7 22 1 84 };

dt = dtvtodt(dtv);

dtv = 2005 3 26 11 7 22 1 84;

dt = 20050326110722

SOURCE time.src

SEE ALSO dtvnormal, timeutc, utctodtv, dttodtv, dtvtodt, dttoutc, dtvtodt,
strtodt, dttostr

dtvtoutc

PURPOSE Converts DTV vector format to UTC scalar format.

28-240 GAUSS L R

d

dummy

FORMAT utc = dtvtoutc(dtv);

INPUT dtv N×8 matrix, DTV vector format.

OUTPUT utc N×1 vector, UTC scalar format.

REMARKS A UTC scalar gives the number of seconds since or before January 1, 1970
Greenwich Mean Time.

Each row of dtv, in DTV vector format, contains:

[N,1] Year
[N,2] Month in Year, 1-12
[N,3] Day of month, 1-31
[N,4] Hours since midnight, 0-23
[N,5] Minutes, 0-59
[N,6] Seconds, 0-59
[N,7] Day of week, 0-6, 0 = Sunday
[N,8] Days since Jan 1 of current year, 0-365

EXAMPLE dtv = utctodtv(timeutc);

utc = dtvtoutc(dtv);

dtv = 2010 7 15 15 26 28 4 195

utc = 1279232788

SEE ALSO dtvnormal, timeutc, utctodt, dttodtv, dttoutc, dtvtodt, dtvtoutc,
strtodt, dttostr

dummy

GAUSS L R 28-241

dummy

PURPOSE Creates a set of dummy (0/1) variables by breaking up a variable into specified
categories. The highest (rightmost) category is unbounded on the right.

FORMAT y = dummy(x,v);

INPUT x N×1 vector of data that is to be broken up into dummy variables.

v (K-1)×1 vector specifying the K-1 breakpoints (these must be in
ascending order) that determine the K categories to be used. These
categories should not overlap.

OUTPUT y N×K matrix containing the K dummy variables.

REMARKS Missings are deleted before the dummy variables are created.

All categories are open on the left (i.e., do not contain their left boundaries) and
all but the highest are closed on the right (i.e., do contain their right
boundaries). The highest (rightmost) category is unbounded on the right. Thus,
only K-1 breakpoints are required to specify K dummy variables.

The function dummybr is similar to dummy, but in that function the highest
category is bounded on the right. The function dummydn is also similar to
dummy, but in that function a specified column of dummies is dropped.

EXAMPLE x = { 0, 2, 4, 6 };

v = { 1, 5, 7 };

y = dummy(x,v);

The result y looks like this:

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0

28-242 GAUSS L R

d

dummybr

The vector v will produce 4 dummies satisfying the following conditions:

x ≤ 1
1 < x ≤ 5
5 < x ≤ 7
7 < x

SOURCE datatran.src

SEE ALSO dummybr, dummydn

dummybr

PURPOSE Creates a set of dummy (0/1) variables. The highest (rightmost) category is
bounded on the right.

FORMAT y = dummybr(x,v);

INPUT x N×1 vector of data that is to be broken up into dummy variables.

v K×1 vector specifying the K breakpoints (these must be in
ascending order) that determine the K categories to be used. These
categories should not overlap.

OUTPUT y N×K matrix containing the K dummy variables. Each row will have
a maximum of one 1.

REMARKS Missings are deleted before the dummy variables are created.

All categories are open on the left (i.e., do not contain their left boundaries) and
are closed on the right (i.e., do contain their right boundaries). Thus, K
breakpoints are required to specify K dummy variables.

GAUSS L R 28-243

dummydn

The function dummy is similar to dummybr, but in that function the highest
category is unbounded on the right.

EXAMPLE x = { 0,

2,

4,

6 };

v = { 1,

5,

7 };

y = dummybr(x,v);

The resulting matrix y looks like this:

1 0 0
0 1 0
0 1 0
0 0 1

The vector v = 1 5 7 will produce 3 dummies satisfying the following
conditions:

x ≤ 1
1 < x ≤ 5
5 < x ≤ 7

SOURCE datatran.src

SEE ALSO dummydn, dummy

28-244 GAUSS L R

d

dummydn

dummydn

PURPOSE Creates a set of dummy (0/1) variables by breaking up a variable into specified
categories. The highest (rightmost) category is unbounded on the right, and a
specified column of dummies is dropped.

FORMAT y = dummydn(x,v,p);

INPUT x N×1 vector of data to be broken up into dummy variables.

v (K-1)×1 vector specifying the K-1 breakpoints (these must be in
ascending order) that determine the K categories to be used. These
categories should not overlap.

p positive integer in the range [1,K], specifying which column should
be dropped in the matrix of dummy variables.

OUTPUT y N×(K-1) matrix containing the K-1 dummy variables.

REMARKS This is just like the function dummy, except that the pth column of the matrix of
dummies is dropped. This ensures that the columns of the matrix of dummies do
not sum to 1, and so these variables will not be collinear with a vector of ones.

Missings are deleted before the dummy variables are created.

All categories are open on the left (i.e., do not contain their left boundaries) and
all but the highest are closed on the right (i.e., do contain their right
boundaries). The highest (rightmost) category is unbounded on the right. Thus,
only K-1 breakpoints are required to specify K dummy variables.

EXAMPLE x = { 0, 2, 4, 6 };

v = { 1, 5, 7 };

p = 2;

y = dummydn(x,v,p);

GAUSS L R 28-245

ed

The resulting matrix y looks like this:

1 0 0
0 0 0
0 0 0
0 1 0

The vector v = 1 5 7 will produce 4 dummies satisfying the following
conditions:

x ≤ 1
1 < x ≤ 5
5 < x ≤ 7
7 < x

SOURCE datatran.src

SEE ALSO dummy, dummybr

ed

PURPOSE Accesses an alternate editor.

FORMAT ed filename;

INPUT filename literal, the name of the file to be edited.

REMARKS The default name of the editor is set in gauss.cfg. To change the name of the
editor used type:

ed = editor name flags;

28-246 GAUSS L R

e

edit

or

ed = ‘‘editor name flags’’;

The flags are any command line flags you may want between the name of the
editor and the filename when your editor is invoked. The quoted version will
prevent the flags, if any, from being forced to uppercase.

This command can be placed in the startup file, so it will be set for you
automatically when you start GAUSS.

edit

PURPOSE Edits a disk file.

FORMAT edit filename;

INPUT filename literal, the name of the file to be edited.

PORTABILITY Windows and Mac only

This command loads a disk file in a GAUSS edit window. It is available only in
the GAUSS graphical user interface.

REMARKS The edit command does not follow the src_path to locate files. You must
specify the location in the filename. The default location is the current directory.

EXAMPLE edit test1.e;

SEE ALSO run

GAUSS L R 28-247

erfInv, erfCInv

erfInv, erfCInv

PURPOSE Computes the inverse of the Gaussian error function (erfInv) and its
complement (erfcInv).

FORMAT x = erfInv(y);
x = erfCInv(y);

INPUT y scalar or NxK matrix. -1 < y < 1.

OUTPUT x scalar or NxK matrix.

EXAMPLE x = seqa(.1,.1,10);

y = erf(x);

0.10000000

0.20000000

x 0.30000000

0.40000000

0.50000000

0.11246292

0.22270259

y 0.32862676

0.42839236

0.52049988

x = erfInv(y);

0.10000000

0.20000000

x 0.30000000

0.40000000

0.50000000

28-248 GAUSS L R

e

eig

SEE ALSO erf, erfc, cdfn, cdfnc, cdfni

eig

PURPOSE Computes the eigenvalues of a general matrix.

FORMAT va = eig(x);

INPUT x N×N matrix or K-dimensional array where the last two dimensions
are N×N.

OUTPUT va N×1 vector or K-dimensional array where the last two dimensions
are N×1, the eigenvalues of x.

REMARKS If x is an array, the result will be an array containing the eigenvalues of each
2-dimensional array described by the two trailing dimensions of x. In other
words, for a 10×4×4 array, the result will be a 10×4×1 array containing the
eigenvalues of each of the 10 4×4 arrays contained in x.

If the eigenvalues cannot all be determined, va[1] is set to an error code. Passing
va[1] to the scalerr function will return the index of the eigenvalue that failed.
The eigenvalues for indices scalerr(va[1])+1 to N should be correct.

Error handling is controlled with the low bit of the trap flag.

trap 0 set va[1] and terminate with message
trap 1 set va[1] and continue execution

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the positive
imaginary part first.

EXAMPLE x = { 4 8 1,

9 4 2,

GAUSS L R 28-249

eigh

5 5 7 };

va = eig(x);

va =

−4.4979246
14.475702
5.0222223

SEE ALSO eigh, eighv, eigv

eigh

PURPOSE Computes the eigenvalues of a complex hermitian or real symmetric matrix.

FORMAT va = eigh(x);

INPUT x N×N matrix or K-dimensional array where the last two dimensions
are N×N.

OUTPUT va N×1 vector or K-dimensional array where the last two dimensions
are N×1, the eigenvalues of x.

REMARKS If x is an array, the result will be an array containing the eigenvalues of each
2-dimensional array described by the two trailing dimensions of x. In other
words, for a 10×4×4 array, the result will be a 10×4×1 array containing the
eigenvalues of each of the 10 4×4 arrays contained in x.

If the eigenvalues cannot all be determined, va[1] is set to an error code. Passing
va[1] to the scalerr function will return the index of the eigenvalue that failed.
The eigenvalues for indices 1 to scalerr(va[1])-1 should be correct.

Error handling is controlled with the low bit of the trap flag.

28-250 GAUSS L R

e

eighv

trap 0 set va[1] and terminate with message
trap 1 set va[1] and continue execution

The eigenvalues are in ascending order.

The eigenvalues of a complex hermitian or real symmetric matrix are always
real.

SEE ALSO eig, eighv, eigv

eighv

PURPOSE Computes eigenvalues and eigenvectors of a complex hermitian or real
symmetric matrix.

FORMAT { va,ve } = eighv(x);

INPUT x N×N matrix or K-dimensional array where the last two dimensions
are N×N.

OUTPUT va N×1 vector or K-dimensional array where the last two dimensions
are N×1, the eigenvalues of x.

ve N×N matrix or K-dimensional array where the last two dimensions
are N×N, the eigenvectors of x.

REMARKS If x is an array, va will be an array containing the eigenvalues of each
2-dimensional array described by the two trailing dimensions of x, and ve will
be an array containing the corresponding eigenvectors. In other words, for a
10×4×4 array, va will be a 10×4×1 array containing the eigenvalues and ve a
10×4×4 array containing the eigenvectors of each of the 10 4×4 arrays
contained in x.

If the eigenvalues cannot all be determined, va[1] is set to an error code.
Passing va[1] to the scalerr function will return the index of the eigenvalue

GAUSS L R 28-251

eigv

that failed. The eigenvalues for indices 1 to scalerr(va[1])-1 should be
correct. The eigenvectors are not computed.

Error handling is controlled with the low bit of the trap flag.

trap 0 set va[1] and terminate with message
trap 1 set va[1] and continue execution

The eigenvalues are in ascending order. The columns of ve contain the
eigenvectors of x in the same order as the eigenvalues. The eigenvectors are
orthonormal.

The eigenvalues of a complex hermitian or real symmetric matrix are always
real.

SEE ALSO eig, eigh, eigv

eigv

PURPOSE Computes eigenvalues and eigenvectors of a general matrix.

FORMAT { va,ve } = eigv(x);

INPUT x N×N matrix or K-dimensional array where the last two dimensions
are N×N.

OUTPUT va N×1 vector or K-dimensional array where the last two dimensions
are N×1, the eigenvalues of x.

ve N×N matrix or K-dimensional array where the last two dimensions
are N×N, the eigenvectors of x.

REMARKS If x is an array, va will be an array containing the eigenvalues of each
2-dimensional array described by the two trailing dimensions of x, and ve will
be an array containing the corresponding eigenvectors. In other words, for a

28-252 GAUSS L R

e

elapsedTradingDays

10×4×4 array, va will be a 10×4×1 array containing the eigenvalues and ve a
10×4×4 array containing the eigenvectors of each of the 10 4×4 arrays
contained in x.

If the eigenvalues cannot all be determined, va[1] is set to an error code.
Passing va[1] to the scalerr function will return the index of the eigenvalue
that failed. The eigenvalues for indices scalerr(va[1])+1 to N should be
correct. The eigenvectors are not computed.

Error handling is controlled with the low bit of the trap flag.

trap 0 set va[1] and terminate with message
trap 1 set va[1] and continue execution

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the positive
imaginary part first. The columns of ve contain the eigenvectors of x in the same
order as the eigenvalues. The eigenvectors are not normalized.

EXAMPLE x = { 4 8 1,

9 4 2,

5 5 7 };

{y,n} = eigv(x);

y =

−4.4979246
14.475702
5.0222223

n =

−0.66930459 −0.64076622 −0.40145623
0.71335708 −0.72488533 −0.26047487

−0.019156716 −0.91339349 1.6734214

SEE ALSO eig, eigh, eighv

GAUSS L R 28-253

end

elapsedTradingDays

PURPOSE Computes number of trading days between two dates inclusively.

FORMAT n = elapsedTradingDays(a,b);

INPUT a scalar, date in DT scalar format.

b scalar, date in DT scalar format.

OUTPUT n number of trading days between dates inclusively, that is, elapsed
time includes the dates a and b.

REMARKS A trading day is a weekday that is not a holiday as defined by the New York
Stock Exchange from 1888 through 2006. Holidays are defined in
holidays.asc. You may edit that file to modify or add holidays.

SOURCE finutils.src

GLOBALS _fin_holidays

SEE ALSO elapsedTradingDays, getNextTradingDay, getPreviousTradingDay,
getNextWeekDay, getPreviousWeekDay

end

PURPOSE Terminates a program.

FORMAT end;

REMARKS end causes GAUSS to revert to interactive mode, and closes all open files. end

28-254 GAUSS L R

e

endp

also closes the auxiliary output file and turns the window on. It is not necessary
to put an end statement at the end of a program.

An end command can be placed above a label which begins a subroutine to
make sure that a program does not enter a subroutine without a gosub.

stop also terminates a program but closes no files and leaves the window
setting as it is.

EXAMPLE output on;

screen off;

print x;

end;

In this example, a matrix x is printed to the auxiliary output. The output to the
window is turned off to speed up the printing. The end statement is used to
terminate the program, so the output file will be closed and the window turned
back on.

SEE ALSO new, stop, system

endp

PURPOSE Closes a procedure or keyword definition.

FORMAT endp;

REMARKS endp marks the end of a procedure definition that began with a proc or
keyword statement. (For details on writing and using procedures, see
P K, Chapter 8.)

EXAMPLE proc regress(y,x);

retp(inv(x’x)*x’y);

endp;

GAUSS L R 28-255

endwind

x = { 1 3 2, 7 4 9, 1 1 6, 3 3 2 };

y = { 3, 5, 2, 7 };

b = regress(y,x);

x =

1.00000000 3.00000000 2.00000000
7.00000000 4.00000000 9.00000000
1.00000000 1.00000000 6.00000000
3.00000000 3.00000000 2.00000000

y =

3.00000000
5.00000000
2.00000000
7.00000000

b =

0.15456890
1.50276345
−0.12840825

SEE ALSO proc, keyword, retp

endwind

PURPOSE Ends graphic panel manipulation; displays graphs with rerun.

LIBRARY pgraph

FORMAT endwind;

REMARKS This function uses rerun to display the most recently created .tkf file.

28-256 GAUSS L R

e

envget

SOURCE pwindow.src

SEE ALSO begwind, window, makewind, setwind, nextwind, getwind

envget

PURPOSE Searches the environment table for a defined name.

FORMAT y = envget(s);

INPUT s string, the name to be searched for.

OUTPUT y string, the string that corresponds to that name in the environment
table or a null string if it is not found.

EXAMPLE proc dopen(file);

local fname,fp;

fname = envget("DPATH");

if fname $=\,= "";

fname = file;

else;

if strsect(fname,strlen(fname),1) $=\,= "\\";

fname = fname $+ file;

else;

fname = fname $+ "\\" $+ file;

endif;

endif;

open fp = ˆfname;

retp(fp);

endp;

This is an example of a procedure that will open a data file using a path stored
in an environment string called DPATH. The procedure returns the file handle
and is called as follows:

GAUSS L R 28-257

eof

fp = dopen(‘‘myfile’’);

SEE ALSO cdir

eof

PURPOSE Tests if the end of a file has been reached.

FORMAT y = eof(fh);

INPUT fh scalar, file handle.

OUTPUT y scalar, 1 if end of file has been reached, else 0.

REMARKS This function is used with the readr and fgetsxxx commands to test for the
end of a file.

The seekr function can be used to set the pointer to a specific row position in a
data set; the fseek function can be used to set the pointer to a specific byte
offset in a file opened with fopen.

EXAMPLE open f1 = dat1;

xx = 0;

do until eof(f1);

xx = xx+moment(readr(f1,100),0);

endo;

In this example, the data file dat1.dat is opened and given the handle f1.
Then the data are read from this data set and are used to create the moment
matrix (x′x) of the data. On each iteration of the loop, 100 additional rows of
data are read in, and the moment matrix for this set of rows is computed and
added to the matrix xx. When all the data have been read, xx will contain the
entire moment matrix for the data set.

28-258 GAUSS L R

e

eqSolve

GAUSS will keep reading until eof(f1) returns the value 1, which it will when
the end of the data set has been reached. On the last iteration of the loop, all
remaining observations are read in if there are 100 or fewer left.

SEE ALSO open, readr, seekr

eqSolve

PURPOSE Solves a system of nonlinear equations.

FORMAT { x,retcode } = eqSolve(&F,start);

INPUT start K×1 vector, starting values.

&F scalar, a pointer to a procedure which computes the value at x of the
equations to be solved.

GLOBAL
INPUT

The following are set by eqSolveSet:

_eqs_JacobianProc pointer to a procedure which computes the analytical
Jacobian. By default, eqSolve will compute the Jacobian
numerically.

_eqs_MaxIters scalar, the maximum number of iterations. Default = 100.

_eqs_StepTol scalar, the step tolerance. Default = __macheps2/3.

_eqs_TypicalF K×1 vector of the typical F(x) values at a point not near a
root, used for scaling. This becomes important when the
magnitudes of the components of F(x) are expected to be
very different. By default, function values are not scaled.

_eqs_TypicalX K×1 vector of the typical magnitude of x, used for scaling.
This becomes important when the magnitudes of the
components of x are expected to be very different. By
default, variable values are not scaled.

GAUSS L R 28-259

eqSolve

_eqs_IterInfo scalar, if nonzero, iteration information is printed. Default
= 0.

The following are set by gausset:

__Tol scalar, the tolerance of the scalar function f = 0.5 ∗ ||F(x)||2

required to terminate the algorithm. Default = 1e-5.

__altnam K×1 character vector of alternate names to be used by the
printed output. By default, the names “X1, X2,X3...” or
“X01,X02,X03...” (depending on how __vpad is set) will be
used.

__output scalar. If non-zero, final results are printed.

__title string, a custom title to be printed at the top of the iterations
report. By default, only a generic title will be printed.

__vpad scalar. If __altnam is not set, variable names are
automatically created. Two types of names can be created:

0 Variable names are not padded to give them equal
length. For example, X1, X2,. . .,X10,. . .

1 Variable names are padded with zeros to give them an
equal number of characters. For example,
X01,X02,. . .,X10,. . . This is useful if you want the
variable names to sort properly.

OUTPUT x K×1 vector, solution.

retcode scalar, the return code:

1 Norm of the scaled function value is less than __Tol. x given is
an approximate root of F(x) (unless __Tol is too large).

2 The scaled distance between the last two steps is less than the
step-tolerance (_eqs_StepTol). x may be an approximate root
of F(x), but it is also possible that the algorithm is making very
slow progress and is not near a root, or the step-tolerance is too
large.

3 The last global step failed to decrease norm2(F(x)) sufficiently;
either x is close to a root of F(x) and no more accuracy is

28-260 GAUSS L R

e

eqSolve

possible, or an incorrectly coded analytic Jacobian is being
used, or the secant approximation to the Jacobian is inaccurate,
or the step-tolerance is too large.

4 Iteration limit exceeded.
5 Five consecutive steps of maximum step length have been

taken; either norm2(F(x)) asymptotes from above to a finite
value in some direction or the maximum step length is too
small.

6 x seems to be an approximate local minimizer of norm2(F(x))
that is not a root of F(x). To find a root of F(x), restart eqSolve
from a different region.

REMARKS The equation procedure should return a column vector containing the result for
each equation. For example:

Equation 1: x12 + x22 − 2 = 0
Equation 2: exp(x1 − 1) + x23 − 2 = 0

proc f(var);

local x1,x2,eqns;

x1 = var[1];

x2 = var[2];

eqns[1] = x1ˆ2 + x2ˆ2 - 2; /* Equation 1 */

eqns[2] = exp(x1-1) + x2ˆ3 - 2; /* Equation 2 */

retp(eqns);

endp;

EXAMPLE eqSolveSet;

proc f(x);

local f1,f2,f3;

f1 = 3*x[1]ˆ3 + 2*x[2]ˆ2 + 5*x[3] - 10;

f2 = -x[1]ˆ3 - 3*x[2]ˆ2 + x[3] + 5;

f3 = 3*x[1]ˆ3 + 2*x[2]ˆ2 - 4*x[3];

GAUSS L R 28-261

eqSolve

retp(f1|f2|f3);

endp;

proc fjc(x);

local fjc1,fjc2, fjc3;

fjc1 = 9*x[1]ˆ2 ˜ 4*x[2] ˜ 5;

fjc2 = -3*x[1]ˆ2 ˜ -6*x[2] ˜ 1;

fjc3 = 9*x[1]ˆ2 ˜ 4*x[2] ˜ -4;

retp(fjc1|fjc2|fjc3);

endp;

start = { -1, 12, -1 };

_eqs_JacobianProc = &fjc;

{ x,tcode } = eqSolve(&f,start);

produces:

==

EqSolve Version 6.5.0 8/18/2010 3:33 pm

==

||F(X)|| at final solution: 0.93699762

Termination Code = 1:

Norm of the scaled function value is less than __Tol;

VARIABLE START ROOTS F(ROOTS)

X1 -1.00000 0.54144351 4.4175402e-06

X2 12.00000 1.4085912 -6.6263102e-06

X3 -1.00000 1.1111111 4.4175402e-06

28-262 GAUSS L R

e

eqSolvemt

SOURCE eqsolve.src

eqSolvemt

PURPOSE Solves a system of nonlinear equations.

INCLUDE eqsolvemt.sdf

FORMAT out = eqSolvemt(&fct,par,data,c);

INPUT &fct pointer to a procedure that computes the function to be minimized.
This procedure must have two input arguments, an instance of a PV
structure containing the parameters, and an instance of a DS structure
containing data, if any. And, one output argument, a column vector
containing the result of each equation.

par an instance of a PV structure. The par instance is passed to the
user-provided procedure pointed to by &fct. par is constructed using
the pvPack functions.

data an array of instances of a DS structure. This array is passed to the
user-provided procedure pointed to by &fct to be used in the
objective function. eqSolvemt does not look at this structure. Each
instance contains the the following members which can be set in
whatever way that is convenient for computing the objective
function:

data1[i].dataMatrix N×K matrix, data matrix.
data1[i].dataArray N×K×L... array, data array.
data1[i].vnames string array, variable names (optional).
data1[i].dsname string, data name (optional).
data1[i].type scalar, type of data (optional).

c an instance of an eqSolvemtControl structure. Normally an
instance is initialized by calling eqSolvemtControlCreate and
members of this instance can be set to other values by the user. For
an instance named c, the members are:

GAUSS L R 28-263

eqSolvemt

c.jacobianProc pointer to a procedure which computes the
analytical Jacobian. By default, eqSolvemt
will compute the Jacobian numerically.

c.maxIters scalar, the maximum number of iterations.
Default = 100.

c.stepTolerance scalar, the step tolerance. Default =
macheps2/3.

c.typicalF K×1 vector of the typical fct(X) values at a
point not near a root, used for scaling. This
becomes important when the magnitudes of
the components of fct(X) are expected to be
very different. By default, function values are
not scaled.

c.typicalX K×1 vector of the typical magnitude of X,
used for scaling. This becomes important
when the magnitudes of the components of X
are expected to be very different. By default,
variable values are not scaled.

c.printIters scalar, if nonzero, iteration information is
printed. Default = 0.

c.tolerance scalar, the tolerance of the scalar function
f = 0.5 ∗ || f ct(X)||2 required to terminate the
algorithm. That is, the condition that
| f (x) | <= c.tolerance must be met before
that algorithm can terminate successfully.
Default = 1e-5.

c.altnam K×1 character vector of alternate names to be
used by the printed output. By default, the
names “X1,X2,X3...” will be used.

c.title string, printed as a title in output.
c.output scalar. If non-zero, final results are printed.

OUTPUT out an instance of an eqSolvemtOut structure. For an instance named
out, the members are:

out.par an instance of a PV structure containing the
parameter estimates.

28-264 GAUSS L R

e

eqSolvemt

out.fct scalar, function evaluated at X.
out.retcode scalar, return code:

-1 Jacobian is singular.
1 Norm of the scaled function value is less

than c.tolerance. X given is an
approximate root of fct(X) (unless
c.tolerance is too large).

2 The scaled distance between the last two
steps is less than the step-tolerance
(c.stepTolerance). X may be an
approximate root of fct(X), but it is also
possible that the algorithm is making very
slow progress and is not near a root, or
the step-tolerance is too large.

3 The last global step failed to decrease
norm2(fct(X)) sufficiently; either X is
close to a root of fct(X) and no more
accuracy is possible, or an incorrectly
coded analytic Jacobian is being used, or
the secant approximation to the Jacobian
is inaccurate, or the step-tolerance is too
large.

4 Iteration limit exceeded.
5 Five consecutive steps of maximum step

length have been taken; either
norm2(fct(X)) asymptotes from above to
a finite value in some direction or the
maximum step length is too small.

6 X seems to be an approximate local
minimizer of norm2(fct(X)) that is not a
root of fct(X). To find a root of fct(X),
restart eqSolvemt from a different
region.

REMARKS The equation procedure should return a column vector containing the result for
each equation.

GAUSS L R 28-265

eqSolvemtControlCreate

If there is no data, you can pass an empty DS structure in the second argument:

call eqSolvemt(&fct,par,dsCreate,c);

EXAMPLE Equation 1: x12 + x22 − 2 = 0
Equation 2: exp(x1 − 1) + x23 − 2 = 0

#include eqSolvemt.sdf

struct eqSolvemtControl c;

c = eqSolvemtControlCreate;

c.printIters = 1;

struct PV par;

par = pvPack(pvCreate,1,"x1");

par = pvPack(par,1,"x2");

struct eqSolvemtOut out1;

out1 = eqSolvemt(&fct,par,dsCreate,c);

proc fct(struct PV p, struct DS d);

local x1, x2, z;

x1 = pvUnpack (p, "x1");

x2 = pvUnpack (p, "x2");

z = x1ˆ2+x2ˆ2-2 | exp(x1-1)+x2ˆ3-2;

retp(z);

endp;

SOURCE eqsolvemt.src

SEE ALSO eqSolvemtControlCreate, eqSolvemtOutCreate

28-266 GAUSS L R

e

eqSolvemtControlCreate

eqSolvemtControlCreate

PURPOSE Creates default eqSolvemtControl structure.

INCLUDE eqsolvemt.sdf

FORMAT c = eqSolvemtControlCreate;

OUTPUT c instance of eqSolvemtControl structure with members set to
default values.

EXAMPLE Since structures are strongly typed in GAUSS, each structure must be declared
before it can be used. To declare an eqSolvemtControlCreate structure the
eqsolvemt.sdf file from the src directory must be included. From inside a
GAUSS program file:

#include eqsolvemt.sdf /* include eqsolvemt.sdf */

struct eqSolvemtControl c; /* declare c as an eqSolvemtControl

structure */

c = eqSolvemtControlCreate; /* intitialize structure c */

From the command line, you cannot use #include statements. However,
eqsolvemt.sdf can be included by running the file:

>> run eqsolvemt.sdf; /* include eqsolvemt.sdf */

>> struct eqSolvemtControl c; /* declare c as an eqSolvemtControl

structure */

>> c = eqSolvemtControlCreate; /* initialize structure c */

The members of an eqSolvemtControl structure and default values are
described in the manual entry for eqSolvemt.

GAUSS L R 28-267

eqSolvemtOutCreate

SOURCE eqsolvemt.src

SEE ALSO eqSolvemt

eqSolvemtOutCreate

PURPOSE Creates default eqSolvemtOut structure.

INCLUDE eqsolvemt.sdf

FORMAT c = eqSolvemtOutCreate;

OUTPUT c instance of eqSolvemtOut structure with members set to default
values.

EXAMPLE Since structures are strongly typed in GAUSS, each structure must be declared
before it can be used. To declare an eqSolvemtOut structure the
eqsolvemt.sdf file from the src directory must be included. From inside a
GAUSS program file:

#include eqsolvemt.sdf /* include eqsolvemt.sdf */

struct eqSolvemtOut c; /* declare c as an eqSolvemtOut

structure */

c = eqSolvemtOutCreate; /* intitialize structure c */

From the command line, you cannot use #include statements. However,
eqsolvemt.sdf can be included by running the file:

>> run eqsolvemt.sdf; /* include eqsolvemt.sdf */

>> struct eqSolvemtOut c; /* declare c as an eqSolvemtControl

structure */

>> c = eqSolvemtOutCreate; /* initialize structure c */

28-268 GAUSS L R

e

eqSolveSet

The members of an eqSolvemtOut structure and default values are described in
the manual entry for eqSolvemt.

SOURCE eqsolvemt.src

SEE ALSO eqSolvemt

eqSolveSet

PURPOSE Sets global input used by eqSolve to default values.

FORMAT eqSolveset;

GLOBAL
OUTPUT

__eqs_TypicalX Set to 0.

__eqs_TypicalF Set to 0.

__eqs_IterInfo Set to 0.

__eqs_JacobianProc Set to 0.

__eqs_MaxIters Set to 100.

__eqs_StepTol Set to __macheps2/3

erf, erfc

PURPOSE Computes the Gaussian error function (erf) and its complement (erfc).

FORMAT y = erf(x);
y = erfc(x);

INPUT x N×K matrix.

GAUSS L R 28-269

erf, erfc

OUTPUT y N×K matrix.

REMARKS The allowable range for x is:

x >= 0

The erf and erfc functions are closely related to the Normal distribution:

cdfN(x) =

 1
2 (1 + erf(x

√
2
)) x ≥ 0

1
2erfc(

−x
√

2
) x < 0

EXAMPLE x = { .5 .4 .3,

.6 .8 .3 };

y = erf(x);

y =
0.52049988 0.42839236 0.32862676
0.60385609 0.74210096 0.32862676

x = { .5 .4 .3,

.6 .8 .3 };

y = erfc(x);

y =
0.47950012 0.57160764 0.67137324
0.39614391 0.25789904 0.67137324

SEE ALSO cdfN, cdfNc

TECHNICAL
NOTES

erf and erfc are computed by summing the appropriate series and continued
fractions. They are accurate to about 10 digits.

28-270 GAUSS L R

e

erfcplx, erfccplx

erfcplx, erfccplx

PURPOSE Computes the Gaussian error function (erfcplx) and its complement (erfccplx)
for complex inputs.

FORMAT f = erfcplx(z);
f = erfccplx(z);

INPUT z N×K complex matrix; z must be ≥ 0.

OUTPUT f N×K complex matrix.

TECHNICAL
NOTES

Accuracy is better than 12 significant digits.

REFERENCES 1. Abramowitz & Stegun, section 7.1, equations 7.1.9, 7.1.23, and 7.1.29

2. Main author Paul Godfrey

3. Small changes by Peter J. Acklam

error

PURPOSE Allows the user to generate a user-defined error code which can be tested
quickly with the scalerr function.

FORMAT y = error(x);

INPUT x scalar, in the range 0–65535.

OUTPUT y scalar error code which can be interpreted as an integer with the
scalerr function.

GAUSS L R 28-271

errorlog

REMARKS The user may assign any number in the range 0–65535 to denote particular error
conditions. This number may be tested for as an error code by scalerr.

The scalerr function will return the value of the error code and so is the
reverse of error. These user-generated error codes work in the same way as the
intrinsic GAUSS error codes which are generated automatically when trap 1
is on and certain GAUSS functions detect a numerical error such as a singular
matrix.

error(0) is equal to the missing value code.

EXAMPLE proc syminv(x);

local oldtrap,y;

if not x =\,= x’;

retp(error(99));

endif;

oldtrap = trapchk(0xffff);

trap 1;

y = invpd(x);

if scalerr(y);

y = inv(x);

endif;

trap oldtrap,0xffff;

retp(y);

endp;

The procedure syminv returns error code 99 if the matrix is not symmetric. If
invpd fails, it returns error code 20. If inv fails, it returns error code 50. The
original trap state is restored before the procedure returns.

SEE ALSO scalerr, trap, trapchk

errorlog

28-272 GAUSS L R

e

errorlogat

PURPOSE Prints an error message to the window and error log file.

FORMAT errorlog str;

INPUT str string, the error message to print.

REMARKS This command enables you to do your own error handling in your GAUSS
programs. To print an error message to the window and error log file along with
file name and line number information, use errorlogat.

SEE ALSO errorlogat

errorlogat

PURPOSE Prints an error message to the window and error log file, along with the file
name and line number at which the error occurred.

FORMAT errorlogat str;

INPUT str string, the error message to print.

REMARKS This command enables you to do your own error handling in your GAUSS
programs. To print an error message to the window and error log file without
file name and line number information, use errorlog.

SEE ALSO errorlog

etdays

GAUSS L R 28-273

ethsec

PURPOSE Computes the difference between two times, as generated by the date
command, in days.

FORMAT days = etdays(tstart,tend);

INPUT tstart 3×1 or 4×1 vector, starting date, in the order: yr, mo, day. (Only the
first 3 elements are used.)

tend 3×1 or 4×1 vector, ending date, in the order: yr, mo, day. (Only the
first 3 elements are used.) MUST be later than tstart.

OUTPUT days scalar, elapsed time measured in days.

REMARKS This will work correctly across leap years and centuries. The assumptions are a
Gregorian calendar with leap years on the years evenly divisible by 4 and not
evenly divisible by 100, unless divisible by 400.

EXAMPLE let date1 = 2008 1 2;

let date2 = 2009 9 14;

d = etdays(date1,date2);

d = 621

SOURCE time.src

SEE ALSO dayinyr

ethsec

PURPOSE Computes the difference between two times, as generated by the date
command, in hundredths of a second.

FORMAT hs = ethsec(tstart,tend);

28-274 GAUSS L R

e

etstr

INPUT tstart 4×1 vector, starting date, in the order: yr, mo, day, hundredths of a
second.

tend 4×1 vector, ending date, in the order: yr, mo, day, hundredths of a
second. MUST be later date than tstart.

OUTPUT hs scalar, elapsed time measured in hundredths of a second.

REMARKS This will work correctly across leap years and centuries. The assumptions are a
Gregorian calendar with leap years on the years evenly divisible by 4 and not
evenly divisible by 100, unless divisible by 400.

EXAMPLE let date1 = 2008 1 2 0;

let date2 = 2009 9 14 0;

t = ethsec(date1,date2);

t = 5365440000

SOURCE time.src

SEE ALSO dayinyr

etstr

PURPOSE Formats an elapsed time measured in hundredths of a second to a string.

FORMAT str = etstr(tothsecs);

INPUT tothsecs scalar, an elapsed time measured in hundredths of a second, as
given, for instance, by the ethsec function.

OUTPUT str string containing the elapsed time in the form:
days # hours # minutes #,## seconds

GAUSS L R 28-275

EuropeanBinomCall

EXAMPLE d1 = { 2009, 1, 2, 0 };

d2 = { 2009, 9, 14, 815642 };

t = ethsec(d1,d2);

str = etstr(t);

t = 5366255642

str = 34 days 2 hours 15 minutes 56.42 seconds

SOURCE time.src

SEE ALSO ethsec

EuropeanBinomCall

PURPOSE Prices European call options using binomial method.

FORMAT c = EuropeanBinomCall(S0,K,r,div,tau,sigma,N);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

N number of time segments.

OUTPUT c M×1 vector, call premiums.

28-276 GAUSS L R

e

EuropeanBinomCall Greeks

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

c = EuropeanBinomCall(S0,K,r,0,tau,sigma,60);

print c;

17.344044

15.058486

12.817427

SOURCE finprocs.src

EuropeanBinomCall Greeks

PURPOSE Computes Delta, Gamma, Theta, Vega, and Rho for European call options using
binomial method.

FORMAT { d,g,t,v,rh } =
EuropeanBinomCall_Greeks(S0,K,r,div,tau,sigma,N);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

GAUSS L R 28-277

EuropeanBinomCall Greeks

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

N number of time segments.

GLOBAL
INPUT

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal. Default
= 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

OUTPUT d M×1 vector, delta.

g M×1 vector, gamma.

t M×1 vector, theta.

v M×1 vector, vega.

rh M×1 vector, rho.

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE S0 = 305;

K = 300;

r = .08;

sigma = .25;

tau = .33;

div = 0;

print EuropeanBinomcall_Greeks(S0,K,r,0,tau,sigma,30);

0.70631204

0.00076381912

-44.616125

68.703851

76.691829

SOURCE finprocs.src

28-278 GAUSS L R

e

EuropeanBinomCall ImpVol

SEE ALSO EuropeanBinomCall_Impvol, EuropeanBinomCall,
EuropeanBinomPut_Greeks, EuropeanBSCall_Greeks

EuropeanBinomCall ImpVol

PURPOSE Computes implied volatilities for European call options using binomial method.

FORMAT sigma = EuropeanBinomCall_ImpVol(c,S0,K,r,div,tau,N);

INPUT c M×1 vector, call premiums.

S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

N number of time segments.

OUTPUT sigma M×1 vector, volatility.

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE c = { 13.70, 11.90, 9.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

div = 0;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

GAUSS L R 28-279

EuropeanBinomPut

sigma = EuropeanBinomCall_ImpVol(c,S0,K,r,0,tau,30);

print sigma;

0.19632223

0.16988741

0.12879447

SOURCE finprocs.src

EuropeanBinomPut

PURPOSE Prices European put options using binomial method.

FORMAT c = EuropeanBinomPut(S0,K,r,div,tau,sigma,N);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

N number of time segments.

OUTPUT c M×1 vector, put premiums.

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE S0 = 718.46;

28-280 GAUSS L R

e

EuropeanBinomPut Greeks

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

c = EuropeanBinomPut(S0,K,r,0,tau,sigma,60);

print c;

16.851815

19.580390

22.353464

SOURCE finprocs.src

EuropeanBinomPut Greeks

PURPOSE Computes Delta, Gamma, Theta, Vega, and Rho for European put options using
binomial method.

FORMAT { d,g,t,v,rh } =
EuropeanBinomPut_Greeks(S0,K,r,div,tau,sigma,N);

INPUT S0 scalar, current price.
K M×1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of trading.
sigma scalar, volatility.
N number of time segments.

GLOBAL
INPUT

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal. Default
= 0.

GAUSS L R 28-281

EuropeanBinomPut ImpVol

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

OUTPUT d M×1 vector, delta.

g M×1 vector, gamma.

t M×1 vector, theta.

v M×1 vector, vega.

rh M×1 vector, rho.

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE S0 = 305;

K = 300;

r = .08;

div = 0;

sigma = .25;

tau = .33;

print EuropeanBinomPut_Greeks(S0,K,r,0,tau,sigma,60);

-0.36885112

0.0011457287

6.6396424

68.979259

-33.796807

SOURCE finprocs.src

SEE ALSO EuropeanBinomPut_Impvol, EuropeanBinomPut,
EuropeanBinomCall_Greeks, EuropeanBSPut_Greeks

28-282 GAUSS L R

e

EuropeanBinomPut ImpVol

EuropeanBinomPut ImpVol

PURPOSE Computes implied volatilities for European put options using binomial method.

FORMAT sigma = EuropeanBinomPut_ImpVol(c,S0,K,r,div,tau,N);

INPUT c M×1 vector, put premiums.

S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

N number of time segments.

OUTPUT sigma M×1 vector, volatility.

REMARKS The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a
simplified approach”, Journal of Financial Economics, 7:229:264) as described
in Options, Futures, and other Derivatives by John C. Hull is the basis of this
procedure.

EXAMPLE p = { 14.60, 17.10, 20.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

div = 0;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

sigma = EuropeanBinomPut_ImpVol(p,S0,K,r,0,tau,30);

print sigma;

GAUSS L R 28-283

EuropeanBSCall

0.13006393

0.17043648

0.21499803

SOURCE finprocs.src

EuropeanBSCall

PURPOSE Prices European call options using Black, Scholes and Merton method.

FORMAT c = EuropeanBSCall(S0,K,r,div,tau,sigma);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

OUTPUT c M×1 vector, call premiums.

EXAMPLE S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

c = EuropeanBSCall(S0,K,r,0,tau,sigma);

print c;

17.249367

28-284 GAUSS L R

e

EuropeanBSCall Greeks

14.908466

12.796356

SOURCE finprocs.src

EuropeanBSCall Greeks

PURPOSE Computes Delta, Gamma, Theta, Vega, and Rho for European call options using
Black, Scholes, and Merton method.

FORMAT { d,g,t,v,rh } = EuropeanBSCall_Greeks(S0,K,r,div,tau,sigma);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

GLOBAL
INPUT

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal. Default
= 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

OUTPUT d M×1 vector, delta.

g M×1 vector, gamma.

t M×1 vector, theta.

v M×1 vector, vega.

rh M×1 vector, rho.

EXAMPLE S0 = 305;

GAUSS L R 28-285

EuropeanBSCall ImpVol

K = 300;

r = .08;

sigma = .25;

tau = .33;

print EuropeanBSCall_Greeks (S0,K,r,0,tau,sigma);

0.64458005

0.0085029307

-38.505439

65.256273

56.872007

SOURCE finprocs.src

SEE ALSO EuropeanBSCall_Impvol, EuropeanBSCall, EuropeanBSPut_Greeks,
EuropeanBinomCall_Greeks

EuropeanBSCall ImpVol

PURPOSE Computes implied volatilities for European call options using Black, Scholes,
and Merton method.

FORMAT sigma = EuropeanBSCall_ImpVol(c,S0,K,r,div,tau);

INPUT c M×1 vector, call premiums.

S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

OUTPUT sigma M×1 vector, volatility.

28-286 GAUSS L R

e

EuropeanBSPut

EXAMPLE c = { 13.70, 11.90, 9.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

sigma = EuropeanBSCall_ImpVol(c,S0,K,r,0,tau);

print sigma;

0.19724517

0.17084848

0.12978762

SOURCE finprocs.src

EuropeanBSPut

PURPOSE Prices European put options using Black, Scholes, and Merton method.

FORMAT c = EuropeanBSPut(S0,K,r,div,tau,sigma);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

OUTPUT c M×1 vector, put premiums.

EXAMPLE S0 = 718.46;

GAUSS L R 28-287

EuropeanBSPut Greeks

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

c = EuropeanBSPut(S0,K,r,0,tau,sigma);

print c;

16.759909

19.404914

22.278710

SOURCE finprocs.src

EuropeanBSPut Greeks

PURPOSE Computes Delta, Gamma, Theta, Vega, and Rho for European put options using
Black, Scholes, and Merton method.

FORMAT { d,g,t,v,rh } = EuropeanBSPut_Greeks(S0,K,r,div,tau,sigma);

INPUT S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

sigma scalar, volatility.

GLOBAL
INPUT

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal. Default
= 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

28-288 GAUSS L R

e

EuropeanBSPut ImpVol

OUTPUT d M×1 vector, delta.

g M×1 vector, gamma.

t M×1 vector, theta.

v M×1 vector, vega.

rh M×1 vector, rho.

EXAMPLE S0 = 305;

K = 300;

r = .08;

sigma = .25;

tau = .33;

print EuropeanBSPut_Greeks(S0,K,r,0,tau,sigma);

-0.35541995

0.0085029307

-15.130748

65.256273

-39.548591

SOURCE finprocs.src

SEE ALSO EuropeanBSPut_Impvol, EuropeanBSPut, EuropeanBSCall_Greeks,
EuropeanBinomPut_Greeks

EuropeanBSPut ImpVol

PURPOSE Computes implied volatilities for European put options using Black, Scholes,
and Merton method.

FORMAT sigma = EuropeanBSPut_ImpVol(c,S0,K,r,div,tau);

INPUT c M×1 vector, put premiums

GAUSS L R 28-289

exctsmpl

S0 scalar, current price.

K M×1 vector, strike prices.

r scalar, risk free rate.

div continuous dividend yield.

tau scalar, elapsed time to exercise in annualized days of trading.

OUTPUT sigma M×1 vector, volatility.

EXAMPLE p = { 14.60, 17.10, 20.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);

sigma = EuropeanBSPut_ImpVol(p,S0,K,r,0,tau);

print sigma;

0.13222999

0.17115393

0.21666496

SOURCE finprocs.src

exctsmpl

PURPOSE Computes a random subsample of a data set.

FORMAT n = exctsmpl(infile,outfile,percent);

INPUT infile string, the name of the original data set.

outfile string, the name of the data set to be created.

28-290 GAUSS L R

e

exec

percent scalar, the percentage random sample to take. This must be in the
range 0–100.

OUTPUT n scalar, number of rows in output data set.
Error returns are controlled by the low bit of the trap flag:

trap 0 terminate with error message
trap 1 return scalar negative integer

-1 can’t open input file
-2 can’t open output file
-3 disk full

REMARKS Random sampling is done with replacement. Thus, an observation may be in the
resulting sample more than once. If percent is 100, the resulting sample will not
be identical to the original sample, though it will be the same size.

EXAMPLE n = exctsmpl("freqdata.dat","rout",30);

n = 120

freqdata.dat is an example data set provided with GAUSS. Switching to the
examples subdirectory of your GAUSS installation directory will make it
possible to do the above example as shown. Otherwise you will need to
substitute another data set name for “freqdata.dat”.

SOURCE exctsmpl.src

exec

PURPOSE Executes an executable program and returns the exit code to GAUSS.

FORMAT y = exec(program,comline);

GAUSS L R 28-291

execbg

INPUT program string, the name of the program, including the extension, to be
executed.

comline string, the arguments to be placed on the command line of the
program being executed.

OUTPUT y scalar, the exit code returned by program.
If exec can’t execute program, the error returns will be negative:

-1 file not found
-2 the file is not an executable file
-3 not enough memory
-4 command line too long

EXAMPLE y = exec("atog","comd1.cmd");

if y;

errorlog "atog failed";

end;

endif;

In this example the ATOG ASCII conversion utility is executed under the exec
function. The name of the command file to be used, comd1.cmd, is passed to
ATOG on its command line. The exit code y returned by exec is tested to see if
ATOG was successful; if not, the program will be terminated after printing an
error message. See ATOG, Chapter 23.

execbg

PURPOSE Executes an executable program in the background and returns the process id to
GAUSS.

FORMAT pid = execbg(program,comline);

INPUT program string, the name of the program, including the extension, to be
executed.

28-292 GAUSS L R

e

exp

comline string, the arguments to be placed on the command line of the
program being executed.

OUTPUT pid scalar, the process id of the executable returned by program.
If execbg cannot execute program, the error returns will be negative:

-1 file not found
-2 the file is not an executable file
-3 not enough memory
-4 command line too long

EXAMPLE y = execbg("atog.exe","comd1.cmd");

if (y < 0);

errorlog "atog failed";

end;

endif;

In this example, the ATOG ASCII conversion utility is executed under the
execbg function. The name of the command file to be used, comd1.cmd, is
passed to ATOG on its command line. The returned value, y, is tested to see
whether ATOG was successful. If not successful the program terminates after
printing an error message. See ATOG, Chapter 23.

exp

PURPOSE Calculates the exponential function.

FORMAT y = exp(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array containing e, the base of natural
logs, raised to the powers given by the elements of x.

GAUSS L R 28-293

extern (dataloop)

EXAMPLE x = eye(3);

y = exp(x);

x =

1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
0.000000 0.000000 1.000000

y =

2.718282 1.000000 1.000000
1.000000 2.718282 1.000000
1.000000 1.000000 2.718282

This example creates a 3×3 identity matrix and computes the exponential
function for each one of its elements. Note that exp(1) returns e, the base of
natural logs.

SEE ALSO ln

extern (dataloop)

PURPOSE Allows access to matrices or strings in memory from inside a data loop.

FORMAT extern variable list;

REMARKS Commas in variable list are optional.

extern tells the translator not to generate local code for the listed variables, and
not to assume that they are elements of the input data set.

extern statements should be placed before any reference to the symbols listed.
The specified names should not exist in the input data set, or be used in a make
statement.

28-294 GAUSS L R

e

external

EXAMPLE This example shows how to assign the contents of an external vector to a new
variable in the data set, by iteratively assigning a range of elements to the
variable. The reserved variable x_x contains the data read from the input data
set on each iteration. The external vector must have at least as many rows as the
data set.

base = 1; /* used to index a range of */

/* elements from exvec */

dataloop oldata newdata;

extern base, exvec;

make ndvar = exvec[seqa(base,1,rows(x_x))];

base = base + rows(x_x); /* execute command */

/* literally */

endata;

external

PURPOSE Lets the compiler know about symbols that are referenced above or in a separate
file from their definitions.

FORMAT external proc dog,cat;
external keyword dog;
external fn dog;
external matrix x,y,z;
external string mstr,cstr;
external array a,b;
external sparse matrix sma,smb;
external struct structure type sta,stb;

REMARKS See P K, Chapter 8.

You may have several procedures in different files that reference the same

GAUSS L R 28-295

eye

global variable. By placing an external statement at the top of each file, you
can let the compiler know what the type of the symbol is. If the symbol is listed
and strongly typed in an active library, no external statement is needed.

If a matrix, string, N-dimensional array, sparse matrix, or structure appears in an
external statement, it needs to appear once in a declare statement. If no
declaration is found, an Undefined symbol error message will result.

EXAMPLE Let us suppose that you created a set of procedures defined in different files,
which all set a global matrix _errcode to some scalar error code if errors were
encountered.

You could use the following code to call one of the procedures in the set and
check whether it succeeded:

external matrix _errcode;

x = rndn(10,5);

y = myproc1(x);

if _errcode;

print "myproc1 failed";

end;

endif;

Without the external statement, the compiler would assume that _errcode
was a procedure and incorrectly compile this program. The file containing the
myproc1 procedure must also contain an external statement that defines
_errcode as a matrix, but this would not be encountered by the compiler until
the if statement containing the reference to _errcode in the main program file
had already been incorrectly compiled.

SEE ALSO declare

28-296 GAUSS L R

e

fcheckerr

eye

PURPOSE Creates an identity matrix.

FORMAT y = eye(n);

INPUT n scalar, size of identity matrix to be created.

OUTPUT y n×n identity matrix.

REMARKS If n is not an integer, it will be truncated to an integer.

The matrix created will contain 1’s down the diagonal and 0’s everywhere else.

EXAMPLE x = eye(3);

x =

1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
0.000000 0.000000 1.000000

SEE ALSO zeros, ones

fcheckerr

PURPOSE Gets the error status of a file.

FORMAT err = fcheckerr(f);

INPUT f scalar, file handle of a file opened with fopen.

GAUSS L R 28-297

fclearerr

OUTPUT err scalar, error status.

REMARKS If there has been a read or write error on a file, fcheckerr returns 1, otherwise
0.

If you pass fcheckerr the handle of a file opened with open (i.e., a data set or
matrix file), your program will terminate with a fatal error.

fclearerr

PURPOSE Gets the error status of a file, then clears it.

FORMAT err = fclearerr(f);

INPUT f scalar, file handle of a file opened with fopen.

OUTPUT err scalar, error status.

REMARKS Each file has an error flag that gets set when there is an I/O error on the file.
Typically, once this flag is set, you can no longer do I/O on the file, even if the
error is a recoverable one. fclearerr clears the file’s error flag, so you can
attempt to continue using it.

If there has been a read or write error on a file, fclearerr returns 1, otherwise
0.

If you pass fclearerr the handle of a file opened with open (i.e., a data set or
matrix file), your program will terminate with a fatal error.

The flag accessed by fclearerr is not the same as that accessed by
fstrerror.

28-298 GAUSS L R

f
feq, fge, fgt, fle, flt, fne

feq, fge, fgt, fle, flt, fne

PURPOSE Fuzzy comparison functions. These functions use _fcmptol to fuzz the
comparison operations to allow for roundoff error.

FORMAT y = feq(a,b);
y = fge(a,b);
y = fgt(a,b);
y = fle(a,b);
y = flt(a,b);
y = fne(a,b);

INPUT a N×K matrix, first matrix.
b L×M matrix, second matrix, E×E compatible with a.

GLOBAL
INPUT

_fcmptol scalar, comparison tolerance. The default value is 1.0e-15.

OUTPUT y scalar, 1 (TRUE) or 0 (FALSE).

REMARKS The return value is TRUE if every comparison is TRUE.

The statement:

y = feq(a,b);

is equivalent to:

y = a eq b;

For the sake of efficiency, these functions are not written to handle missing
values. If a and b contain missing values, use missrv to convert the missing
values to something appropriate before calling a fuzzy comparison function.

GAUSS L R 28-299

feqmt, fgemt, fgtmt, flemt, fltmt, fnemt

The calling program can reset _fcmptol before calling these procedures:

_fcmptol = 1e-12;

EXAMPLE x = rndu(2,2);

y = rndu(2,2);

t = fge(x,y);

x =
0.038289504 0.072535275
0.014713947 0.96863611

y =
0.25622293 0.70636474

0.0036191244 0.35913385

t = 0.0000000

SOURCE fcompare.src

SEE ALSO dotfeq--dotfne

feqmt, fgemt, fgtmt, flemt, fltmt, fnemt

PURPOSE Fuzzy comparison functions. These functions use the fcmptol argument to fuzz
the comparison operations to allow for roundoff error.

FORMAT y = feqmt(a,b,fcmptol);
y = fgemt(a,b,fcmptol);
y = fgtmt(a,b,fcmptol);
y = flemt(a,b,fcmptol);

28-300 GAUSS L R

f
feqmt, fgemt, fgtmt, flemt, fltmt, fnemt

y = fltmt(a,b,fcmptol);
y = fnemt(a,b,fcmptol);

INPUT a N×K matrix, first matrix.

b L×M matrix, second matrix, E×E compatible with a.

fcmptol scalar, comparison tolerance.

OUTPUT y scalar, 1 (TRUE) or 0 (FALSE).

REMARKS The return value is TRUE if every comparison is TRUE.

The statement:

y = feqmt(a,b,1e-15);

is equivalent to:

y = a eq b;

For the sake of efficiency, these functions are not written to handle missing
values. If a and b contain missing values, use missrv to convert the missing
values to something appropriate before calling a fuzzy comparison function.

EXAMPLE x = rndu(2,2);

y = rndu(2,2);

t = fgemt(x,y,1e-14);

x =
0.038289504 0.072535275
0.014713947 0.96863611

y =
0.25622293 0.70636474

0.0036191244 0.35913385

GAUSS L R 28-301

fflush

t = 0.0000000

SOURCE fcomparemt.src

SEE ALSO dotfeqmt--dotfnemt

fflush

PURPOSE Flushes a file’s output buffer.

FORMAT ret = fflush(f);

INPUT f scalar, file handle of a file opened with fopen.

OUTPUT ret scalar, 0 if successful, -1 if not.

REMARKS If fflush fails, you can call fstrerror to find out why.

If you pass fflush the handle of a file opened with open (i.e., a data set or
matrix file), your program will terminate with a fatal error.

fft

PURPOSE Computes a 1- or 2-D Fast Fourier transform.

FORMAT y = fft(x);

INPUT x N×K matrix.

28-302 GAUSS L R

f
ffti

OUTPUT y L×M matrix, where L and M are the smallest powers of 2 greater
than or equal to N and K, respectively.

REMARKS This computes the FFT of x, scaled by 1/N.

This uses a Temperton Fast Fourier algorithm.

If N or K is not a power of 2, x will be padded out with zeros before computing
the transform.

EXAMPLE x = { 22 24,

23 25 };

y = fft(x);

y =
23.500000 −1.0000000
−0.5000000 0.00000000

SEE ALSO ffti, rfft, rffti

ffti

PURPOSE Computes an inverse 1- or 2-D Fast Fourier transform.

FORMAT y = ffti(x);

INPUT x N×K matrix.

OUTPUT y L×M matrix, where L and M are the smallest prime factor products
greater than or equal to N and K, respectively.

REMARKS Computes the inverse FFT of x, scaled by 1/N.

This uses a Temperton prime factor Fast Fourier algorithm.

GAUSS L R 28-303

fftm

EXAMPLE x = { 22 24,

23 25 };

y = fft(x);

y =
23.500000 −1.0000000
−0.5000000 0.00000000

fi = ffti(y);

fi =
22.000000 24.000000
23.000000 25.000000

SEE ALSO fft, rfft, rffti

fftm

PURPOSE Computes a multi-dimensional FFT.

FORMAT y = fftm(x,dim);

INPUT x M×1 vector, data.

dim K×1 vector, size of each dimension.

OUTPUT y L×1 vector, FFT of x.

REMARKS The multi-dimensional data are laid out in a recursive or heirarchical fashion in
the vector x. That is to say, the elements of any given dimension are stored in
sequence left to right within the vector, with each element containing a
sequence of elements of the next smaller dimension. In abstract terms, a
4-dimensional 2×2×2×2 hypercubic x would consist of two cubes in sequence,
each cube containing two matrices in sequence, each matrix containing two

28-304 GAUSS L R

f
fftm

rows in sequence, and each row containing two columns in sequence. Visually,
x would look something like this:

Xhyper = Xcube1 | Xcube2

Xcube1 = Xmat1 | Xmat2

Xmat1 = Xrow1 | Xrow2

Xrow1 = Xcol1 | Xcol2

Or, in an extended GAUSS notation, x would be:

Xhyper = x[1,.,.,.] | x[2,.,.,.];

Xcube1 = x[1,1,.,.] | x[1,2,.,.];

Xmat1 = x[1,1,1,.] | x[1,1,2,.];

Xrow1 = x[1,1,1,1] | x[1,1,1,2];

To be explicit, x would be laid out like this:

x[1,1,1,1] x[1,1,1,2] x[1,1,2,1] x[1,1,2,2]

x[1,2,1,1] x[1,2,1,2] x[1,2,2,1] x[1,2,2,2]

x[2,1,1,1] x[2,1,1,2] x[2,1,2,1] x[2,1,2,2]

x[2,2,1,1] x[2,2,1,2] x[2,2,2,1] x[2,2,2,2]

If you look at the last diagram for the layout of x, you’ll notice that each line
actually constitutes the elements of an ordinary matrix in normal row-major
order. This is easy to achieve with vecr. Further, each pair of lines or
“matrices” constitutes one of the desired cubes, again with all the elements in
the correct order. And finally, the two cubes combine to form the hypercube.
So, the process of construction is simply a sequence of concatenations of
column vectors, with a vecr step if necessary to get started.

Here’s an example, this time working with a 2×3×2×3 hypercube.

GAUSS L R 28-305

fftm

let dim = 2 3 2 3;

let x1[2,3] = 1 2 3 4 5 6;

let x2[2,3] = 6 5 4 3 2 1;

let x3[2,3] = 1 2 3 5 7 11;

xc1 = vecr(x1)|vecr(x2)|vecr(x3); /* cube 1 */

let x1 = 1 1 2 3 5 8;

let x2 = 1 2 6 24 120 720;

let x3 = 13 17 19 23 29 31;

xc2 = x1|x2|x3; /* cube 2 */

xh = xc1|xc2; /* hypercube */

xhfft = fftm(xh,dim);

let dimi = 2 4 2 4;

xhffti = fftmi(xhfft,dimi);

We left out the vecr step for the 2nd cube. It’s not really necessary when you’re
constructing the matrices with let statements.

dim contains the dimensions of x, beginning with the highest dimension. The
last element of dim is the number of columns, the next to the last element of
dim is the number of rows, and so on. Thus

dim = { 2, 3, 3 };

indicates that the data in x is a 2×3×3 three-dimensional array, i.e., two 3×3
matrices of data. Suppose that x1 is the first 3×3 matrix and x2 the second 3×3
matrix, then x = vecr(x1)|vecr(x2).

The size of dim tells you how many dimensions x has.

The arrays have to be padded in each dimension to the nearest power of two.
Thus the output array can be larger than the input array. In the 2×3×2×3

28-306 GAUSS L R

f
fftmi

hypercube example, x would be padded from 2×3×2×3 out to 2×4×2×4. The
input vector would contain 36 elements, while the output vector would contain
64 elements. You may have noticed that we used a dimi with padded values at
the end of the example to check our answer.

SOURCE fftm.src

SEE ALSO fftmi, fft, ffti, fftn

fftmi

PURPOSE Computes a multi-dimensional inverse FFT.

FORMAT y = fftmi(x,dim);

INPUT x M×1 vector, data.
dim K×1 vector, size of each dimension.

OUTPUT y L×1 vector, inverse FFT of x.

REMARKS The multi-dimensional data are laid out in a recursive or heirarchical fashion in
the vector x. That is to say, the elements of any given dimension are stored in
sequence left to right within the vector, with each element containing a
sequence of elements of the next smaller dimension. In abstract terms, a
4-dimensional 2×2×2×2 hypercubic x would consist of two cubes in sequence,
each cube containing two matrices in sequence, each matrix containing two
rows in sequence, and each row containing two columns in sequence. Visually,
x would look something like this:

Xhyper = Xcube1 | Xcube2

Xcube1 = Xmat1 | Xmat2

Xmat1 = Xrow1 | Xrow2

Xrow1 = Xcol1 | Xcol2

GAUSS L R 28-307

fftmi

Or, in an extended GAUSS notation, x would be:

Xhyper = x[1,.,.,.] | x[2,.,.,.];

Xcube1 = x[1,1,.,.] | x[1,2,.,.];

Xmat1 = x[1,1,1,.] | x[1,1,2,.];

Xrow1 = x[1,1,1,1] | x[1,1,1,2];

To be explicit, x would be laid out like this:

x[1,1,1,1] x[1,1,1,2] x[1,1,2,1] x[1,1,2,2]

x[1,2,1,1] x[1,2,1,2] x[1,2,2,1] x[1,2,2,2]

x[2,1,1,1] x[2,1,1,2] x[2,1,2,1] x[2,1,2,2]

x[2,2,1,1] x[2,2,1,2] x[2,2,2,1] x[2,2,2,2]

If you look at the last diagram for the layout of x, you’ll notice that each line
actually constitutes the elements of an ordinary matrix in normal row-major
order. This is easy to achieve with vecr. Further, each pair of lines or
“matrices” constitutes one of the desired cubes, again with all the elements in
the correct order. And finally, the two cubes combine to form the hypercube.
So, the process of construction is simply a sequence of concatenations of
column vectors, with a vecr step if necessary to get started.

Here’s an example, this time working with a 2×3×2×3 hypercube.

let dim = 2 3 2 3;

let x1[2,3] = 1 2 3 4 5 6;

let x2[2,3] = 6 5 4 3 2 1;

let x3[2,3] = 1 2 3 5 7 11;

xc1 = vecr(x1)|vecr(x2)|vecr(x3); /* cube 1 */

let x1 = 1 1 2 3 5 8;

let x2 = 1 2 6 24 120 720;

let x3 = 13 17 19 23 29 31;

28-308 GAUSS L R

f
fftn

xc2 = x1|x2|x3; /* cube 2 */

xh = xc1|xc2; /* hypercube */

xhffti = fftmi(xh,dim);

We left out the vecr step for the 2nd cube. It’s not really necessary when you’re
constructing the matrices with let statements.

dim contains the dimensions of x, beginning with the highest dimension. The
last element of dim is the number of columns, the next to the last element of
dim is the number of rows, and so on. Thus

dim = { 2, 3, 3 };

indicates that the data in x is a 2×3×3 three-dimensional array, i.e., two 3×3
matrices of data. Suppose that x1 is the first 3×3 matrix and x2 the second 3×3
matrix, then x = vecr(x1)|vecr(x2).

The size of dim tells you how many dimensions x has.

The arrays have to be padded in each dimension to the nearest power of two.
Thus the output array can be larger than the input array. In the 2×3×2×3
hypercube example, x would be padded from 2×3×2×3 out to 2×4×2×4. The
input vector would contain 36 elements, while the output vector would contain
64 elements.

SOURCE fftm.src

SEE ALSO fftmi, fft, ffti, fftn

fftn

GAUSS L R 28-309

fftn

PURPOSE Computes a complex 1- or 2-D FFT.

FORMAT y = fftn(x);

INPUT x N×K matrix.

OUTPUT y L×M matrix, where L and M are the smallest prime factor products
greater than or equal to N and K, respectively.

REMARKS fftn uses the Temperton prime factor FFT algorithm. This algorithm can
compute the FFT of any vector or matrix whose dimensions can be expressed as
the product of selected prime number factors. GAUSS implements the
Temperton algorithm for any power of 2, 3, and 5, and one factor of 7. Thus,
fftn can handle any matrix whose dimensions can be expressed as

2p × 3q × 5r × 7s, p,q,r nonnegative integers
s=0 or 1

If a dimension of x does not meet this requirement, it will be padded with zeros
to the next allowable size before the FFT is computed.

fftn pads matrices to the next allowable dimensions; however, it generally runs
faster for matrices whose dimensions are highly composite numbers, i.e.,
products of several factors (to various powers), rather than powers of a single
factor. For example, even though it is bigger, a 33600×1 vector can compute as
much as 20% faster than a 32768×1 vector, because 33600 is a highly
composite number, 26×3×52×7, whereas 32768 is a simple power of 2, 215. For
this reason, you may want to hand-pad matrices to optimum dimensions before
passing them to fftn. The Run-Time Library includes a routine, optn, for
determining optimum dimensions.

The Run-Time Library also includes the nextn routine, for determining
allowable dimensions for a matrix. (You can use this to see the dimensions to
which fftn would pad a matrix.)

fftn scales the computed FFT by 1/(L*M).

28-310 GAUSS L R

f
fgets

SEE ALSO fft, ffti, fftm, fftmi, rfft, rffti, rfftip, rfftn, rfftnp, rfftp

fgets

PURPOSE Reads a line of text from a file.

FORMAT str = fgets(f,maxsize);

INPUT f scalar, file handle of a file opened with fopen.

maxsize scalar, maximum size of string to read in, including the terminating
null byte.

OUTPUT str string.

REMARKS fgets reads text from a file into a string. It reads up to a newline, the end of the
file, or maxsize-1 characters. The result is placed in str, which is then
terminated with a null byte. The newline, if present, is retained.

If the file is already at end-of-file when you call fgets, your program will
terminate with an error. Use eof in conjunction with fgets to avoid this.

If the file was opened for update (see fopen) and you are switching from
writing to reading, don’t forget to call fseek or fflush first, to flush the file’s
buffer.

If you pass fgets the handle of a file opened with open (i.e., a data set or
matrix file), your program will terminate with a fatal error.

SEE ALSO fgetst, fgetsa, fopen

GAUSS L R 28-311

fgetsat

fgetsa

PURPOSE Reads lines of text from a file into a string array.

FORMAT sa = fgetsa(f,numl);

INPUT f scalar, file handle of a file opened with fopen.

numl scalar, number of lines to read.

OUTPUT sa N×1 string array, N <= numl.

REMARKS fgetsa reads up to numl lines of text. If fgetsa reaches the end of the file
before reading numl lines, sa will be shortened. Lines are read in the same
manner as fgets, except that no limit is placed on the size of a line. Thus,
fgetsa always returns complete lines of text. Newlines are retained. If numl is
1, fgetsa returns a string. (This is one way to read a line from a file without
placing a limit on the length of the line.)

If the file is already at end-of-file when you call fgetsa, your program will
terminate with an error. Use eof in conjunction with fgetsa to avoid this. If
the file was opened for update (see fopen) and you are switching from writing
to reading, don’t forget to call fseek or fflush first, to flush the file’s buffer.

If you pass fgetsa the handle of a file opened with open (i.e., a data set or
matrix file), your program will terminate with a fatal error.

SEE ALSO fgetsat, fgets, fopen

fgetsat

PURPOSE Reads lines of text from a file into a string array.

28-312 GAUSS L R

f
fgetst

FORMAT sa = fgetsat(f,numl);

INPUT f scalar, file handle of a file opened with fopen.

numl scalar, number of lines to read.

OUTPUT sa N×1 string array, N <= numl.

REMARKS fgetsat operates identically to fgetsa, except that newlines are not retained
as text is read into sa.

In general, you don’t want to use fgetsat on files opened in binary mode (see
fopen). fgetsat drops the newlines, but it does NOT drop the carriage returns
that precede them on some platforms. Printing out such a string array can
produce unexpected results.

SEE ALSO fgetsa, fgetst, fopen

fgetst

PURPOSE Reads a line of text from a file.

FORMAT str = fgetst(f,maxsize);

INPUT f scalar, file handle of a file opened with fopen.

maxsize scalar, maximum size of string to read in, including the null
terminating byte.

OUTPUT str string.

REMARKS fgetst operates identically to fgets, except that the newline is not retained in
the string.

GAUSS L R 28-313

fileinfo

In general, you don’t want to use fgetst on files opened in binary mode (see
fopen). fgetst drops the newline, but it does NOT drop the preceding carriage
return used on some platforms. Printing out such a string can produce
unexpected results.

SEE ALSO fgets, fgetsat, fopen

fileinfo

PURPOSE Returns names and information for files that match a specification.

FORMAT { fnames,finfo } = fileinfo(fspec);

INPUT fspec string, file specification. Can include path. Wildcards are allowed in
fspec.

OUTPUT fnames N×1 string array of all file names that match, null string if none are
found.

finfo N×13 matrix, information about matching files.

UNIX/Linux
[N, 1] filesystem ID
[N, 2] inode number
[N, 3] mode bit mask
[N, 4] number of links
[N, 5] user ID
[N, 6] group ID
[N, 7] device ID (char/block special files only)
[N, 8] size in bytes
[N, 9] last access time
[N,10] last data modification time
[N,11] last file status change time

28-314 GAUSS L R

f
filesa

[N,12] preferred I/O block size
[N,13] number of 512-byte blocks allocated

Windows
[N, 1] drive number (A = 0, B = 1, etc.)
[N, 2] n/a, 0
[N, 3] mode bit mask
[N, 4] number of links, always 1
[N, 5] n/a, 0
[N, 6] n/a, 0
[N, 7] n/a, 0
[N, 8] size in bytes
[N, 9] last access time
[N,10] last data modification time
[N,11] creation time
[N,12] n/a, 0
[N,13] n/a, 0

finfo will be a scalar zero if no matches are found.

REMARKS fnames will contain file names only; any path information that was passed is
dropped.

The time stamp fields (finfo[N,9:11]) are expressed as the number of seconds
since midnight, Jan. 1, 1970, Coordinated Universal Time (UTC).

SEE ALSO filesa

filesa

PURPOSE Returns a string array of file names.

FORMAT y = filesa(n);

GAUSS L R 28-315

floor

INPUT n string, file specification to search for. Can include path. Wildcards
are allowed in n.

OUTPUT y N×1 string array of all file names that match, or null string if none
are found.

REMARKS y will contain file names only; any path information that was passed is dropped.

EXAMPLE y = filesa("ch*");

In this example all files listed in the current directory that begin with “ch” will
be returned.

proc exist(filename);

retp(not filesa(filename) $== "");

endp;

This procedure will return 1 if the file exists or 0 if not.

SEE ALSO fileinfo, shell

floor

PURPOSE Round down toward −∞.

FORMAT y = floor(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array containing the elements of x
rounded down.

28-316 GAUSS L R

f
fmod

REMARKS This rounds every element in x down to the nearest integer.

EXAMPLE x = 100*rndn(2,2);

x =
77.68 −14.10

4.73 −158.88

f = floor(x);

f =
77.00 −15.00

4.00 −159.00

SEE ALSO ceil, round, trunc

fmod

PURPOSE Computes the floating-point remainder of x/y.

FORMAT r = fmod(x,y);

INPUT x N×K matrix.

y L×M matrix, E×E conformable with x.

OUTPUT r max(N,L) by max(K,M) matrix.

REMARKS Returns the floating-point remainder r of x/y such that x = iy + r, where i is an
integer, r has the same sign as x and |r| < |y|.

Compare this with %, the modulo division operator. (See O, Chapter
7.)

GAUSS L R 28-317

fn

EXAMPLE x = seqa(1.7,2.3,5)’;

y = 2;

r = fmod(x,y);

x = 1.7 4 6.3 8.6 10.9

r = 1.7 0 0.3 0.6 0.9

fn

PURPOSE Allows user to create one-line functions.

FORMAT fn fn name(args) = code for function;

REMARKS Functions can be called in the same way as other procedures.

EXAMPLE fn area(r) = pi*r*r;

a = area(4);

a = 50.265482

fonts

PURPOSE Loads fonts to be used in the graph.

LIBRARY pgraph

28-318 GAUSS L R

f
fopen

FORMAT fonts(str);

INPUT str string or character vector containing the names of fonts to be used in
the plot. The following fonts are available:

Simplex standard sans serif font.
Simgrma Simplex greek, math.
Microb bold and boxy.
Complex standard font with serif.

REMARKS The first font specified will be used for the axes numbers.

If str is a null string, or fonts is not called, Simplex is loaded by default.

For more information on how to select fonts within a text string, see P
Q G, Chapter 21.

SOURCE pgraph.src

SEE ALSO title, xlabel, ylabel, zlabel

fopen

PURPOSE Opens a file.

FORMAT f = fopen(filename,omode);

INPUT filename string, name of file to open.

omode string, file I/O mode. (See Remarks, below.)

OUTPUT f scalar, file handle.

PORTABILITY UNIX

GAUSS L R 28-319

fopen

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX a newline is simply a linefeed.

REMARKS filename can contain a path specification.

omode is a sequence of characters that specify the mode in which to open the
file. The first character must be one of:

r Open an existing file for reading. If the file does not exist, fopen fails.

w Open or create a file for writing. If the file already exists, its current
contents will be destroyed.

a Open or create a file for appending. All output is appended to the end of
the file.

To this can be appended a + and/or a b. The + indicates the file is to opened for
reading and writing, or update, as follows:

r+ Open an existing file for update. You can read from or write to any
location in the file. If the file does not exist, fopen fails.

w+ Open or create a file for update. You can read from or write to any
location in the file. If the file already exists, its current contents will be
destroyed.

a+ Open or create a file for update. You can read from any location in the
file, but all output will be appended to the end of the file.

Finally, the b indicates whether the file is to be opened in text or binary mode. If
the file is opened in binary mode, the contents of the file are read verbatim;
likewise, anything output to the file is written verbatim. In text mode (the
default), carriage return-linefeed sequences are converted on input to linefeeds,
or newlines. Likewise on output, newlines are converted to carriage
return-linefeeds. Also in text mode, if a CTRL-Z (char 26) is encountered
during a read, it is interpreted as an end-of-file character, and reading ceases. In
binary mode, CTRL-Z is read in uninterpreted.

The order of + and b is not significant; rb+ and r+b mean the same thing.

28-320 GAUSS L R

f
for

You can both read from and write to a file opened for update. However, before
switching from one to the other, you must make an fseek or fflush call, to
flush the file’s buffer.

If fopen fails, it returns a 0.

Use close and closeall to close files opened with fopen.

SEE ALSO fseek, close, closeall

for

PURPOSE Begins a for loop.

FORMAT for i (start,stop,step);
.
.
.

endfor;

INPUT i literal, the name of the counter variable.

start scalar expression, the initial value of the counter.

stop scalar expression, the final value of the counter.

step scalar expression, the increment value.

REMARKS The counter is strictly local to the loop. The expressions, start, stop and step are
evaluated only once when the loop initializes and are stored local to the loop.

The for loop is optimized for speed and much faster than a do loop.

The commands break and continue are supported. The continue command
steps the counter and jumps to the top of the loop. The break command
terminates the current loop.

GAUSS L R 28-321

for

The loop terminates when the value of i exceeds stop. If break is used to
terminate the loop and you want the final value of the counter, you need to
assign it to a variable before the break statement (see the third example,
following).

EXAMPLE Example 1

x = zeros(10, 5);

for i (1, rows(x), 1);

for j (1, cols(x), 1);

x[i,j] = i*j;

endfor;

endfor;

Example 2

x = rndn(3,3);

y = rndn(3,3);

for i (1, rows(x), 1);

for j (1, cols(x), 1);

if x[i,j] >= y[i,j];

continue;

endif;

temp = x[i,j];

x[i,j] = y[i,j];

y[i,j] = temp;

endfor;

endfor;

Example 3

li = 0;

x = rndn(100,1);

28-322 GAUSS L R

f
format

y = rndn(100,1);

for i (1, rows(x), 1);

if x[i] /= y[i];

li = i;

break;

endif;

endfor;

if li;

print "Compare failed on row " li;

endif;

format

PURPOSE Controls the format of matrices and numbers printed out with print statements.

FORMAT format [[/typ]] [[/fmted]] [[/mf]] [[/jnt]] [[f,p]]

INPUT /typ literal, symbol type flag(s). Indicate which symbol types you are
setting the output format for.

/mat, /sa, /str Formatting parameters are maintained
separately for matrices and arrays (/mat), string
arrays (/sa), and strings (/str). You can specify
more than one /typ flag; the format will be set for
all types indicated. If no /typ flag is listed,
format assumes /mat.

/fmted literal, enable formatting flag.

/on, /off Enable/disable formatting. When formatting is
disabled, the contents of a variable are dumped to
the screen in a “raw” format. /off is currently
supported only for strings. “Raw” format for
strings means that the entire string is printed,
starting at the current cursor position. When

GAUSS L R 28-323

format

formatting is enabled for strings, they are handled
the same as string arrays. This shouldn’t be too
surprising, since a string is actually a 1×1 string
array.

/mf literal, matrix row format flag.

/m0 no delimiters before or after rows when printing
out matrices.

/m1 or /mb1 print 1 carriage return/line feed pair before each
row of a matrix with more than 1 row.

/m2 or /mb2 print 2 carriage return/line feed pairs before each
row of a matrix with more than 1 row.

/m3 or /mb3 print “Row 1”, “Row 2”... before each row of a
matrix with more than one row.

/ma1 print 1 carriage return/line feed pair after each
row of a matrix with more than 1 row.

/ma2 print 2 carriage return/line feed pairs after each
row of a matrix with more than 1 row.

/a1 print 1 carriage return/line feed pair after each
row of a matrix.

/a2 print 2 carriage return/line feed pairs after each
row of a matrix.

/b1 print 1 carriage return/line feed pair before each
row of a matrix.

/b2 print 2 carriage return/line feed pairs before each
row of a matrix.

/b3 print “Row 1”, “Row 2”... before each row of a
matrix.

/jnt literal, matrix element format flag – controls justification, notation
and trailing character.

Right-Justified
/rd Signed decimal number in the form

[[-]]####.####, where #### is one or more
decimal digits. The number of digits before the
decimal point depends on the magnitude of the

28-324 GAUSS L R

f
format

number, and the number of digits after the
decimal point depends on the precision. If the
precision is 0, no decimal point will be printed.

/re Signed number in the form [[-]]#.##E±###,
where # is one decimal digit, ## is one or more
decimal digits depending on the precision, and
is three decimal digits. If precision is 0, the
form will be [[-]]#E±### with no decimal point
printed.

/ro This will give a format like /rd or /re depending
on which is most compact for the number being
printed. A format like /re will be used only if the
exponent value is less than -4 or greater than the
precision. If a /re format is used, a decimal point
will always appear. The precision signifies the
number of significant digits displayed.

/rz This will give a format like /rd or /re depending
on which is most compact for the number being
printed. A format like /re will be used only if the
exponent value is less than -4 or greater than the
precision. If a /re format is used, trailing zeros
will be supressed and a decimal point will appear
only if one or more digits follow it. The precision
signifies the number of significant digits
displayed.

Left-Justified
/ld Signed decimal number in the form

[[-]]####.####, where #### is one or more
decimal digits. The number of digits before the
decimal point depends on the magnitude of the
number, and the number of digits after the
decimal point depends on the precision. If the
precision is 0, no decimal point will be printed. If
the number is positive, a space character will
replace the leading minus sign.

/le Signed number in the form [[-]]#.##E±###,
where # is one decimal digit, ## is one or more

GAUSS L R 28-325

format

decimal digits depending on the precision, and
is three decimal digits. If precision is 0, the
form will be [[-]]#E±### with no decimal point
printed. If the number is positive, a space
character will replace the leading minus sign.

/lo This will give a format like /ld or /le depending
on which is most compact for the number being
printed. A format like /le will be used only if the
exponent value is less than -4 or greater than the
precision. If a /le format is used, a decimal point
will always appear. If the number is positive, a
space character will replace the leading minus
sign. The precision specifies the number of
significant digits displayed.

/lz This will give a format like /ld or /le depending
on which is most compact for the number being
printed. A format like /le will be used only if the
exponent value is less than -4 or greater than the
precision. If a /le format is used, trailing zeros
will be supressed and a decimal point will appear
only if one or more digits follow it. If the number
is positive, a space character will replace the
leading minus sign. The precision specifies the
number of significant digits displayed.

Trailing Character

The following characters can be added to the /jnt parameters above
to control the trailing character if any:

format /rdn 1,3;

s The number will be followed immediately by a
space character. This is the default.

c The number will be followed immediately by a
comma.

t The number will be followed immediately by a
tab character.

n No trailing character.

28-326 GAUSS L R

f
format

f scalar expression, controls the field width.

p scalar expression, controls the precision.

REMARKS If character elements are to be printed, the precision should be at least 8 or the
elements will be truncated. This does not affect the string data type.

For numeric values in matrices, p sets the number of significant digits to be
printed. For string arrays, strings, and character elements in matrices, p sets the
number of characters to be printed. If a string is shorter than the specified
precision, the entire string is printed. For string arrays and strings, p = -1 means
print the entire string, regardless of its length. p = -1 is illegal for matrices;
setting p >= 8 means the same thing for character elements.

The /xxx slash parameters are optional. Field and precision are optional also,
but if one is included, then both must be included.

Slash parameters, if present, must precede the field and precision parameters.

A format statement stays in effect until it is overridden by a new format
statement. The slash parameters may be used in a print statement to override
the current default.

f and p may be any legal expressions that return scalars. Nonintegers will be
truncated to integers.

The total width of field will be overridden if the number is too big to fit into the
space allotted. For instance, format /rds 1,0 can be used to print integers
with a single space between them, regardless of the magnitudes of the integers.

Complex numbers are printed with the sign of the imaginary half separating
them and an “i” appended to the imaginary half. Also, the field parameter
refers to the width of field for each half of the number, so a complex number
printed with a field of 8 will actually take (at least) 20 spaces to print. The
character printed after the imaginary part can be changed (for example, to a “j”)
with the sysstate function, case 9.

The default when GAUSS is first started is:

GAUSS L R 28-327

format

format /mb1 /ros 16,8;

EXAMPLE This code:

x = rndn(3,3);

format /m1 /rd 16,8;

print x;

produces:

-1.63533465 1.61350700 -1.06295179

0.26171282 0.27972294 -1.38937242

0.58891114 0.46812202 1.08805960

This code:

format /m1 /rzs 1,10;

print x;

produces:

-1.635334648 1.613507002 -1.062951787

0.2617128159 0.2797229414 -1.389372421

0.5889111366 0.4681220206 1.088059602

This code:

format /m3 /rdn 16,4;

print x;

28-328 GAUSS L R

f
format

produces:

Row 1

-1.6353 1.6135 -1.0630

Row 2

0.2617 0.2797 -1.3894

Row 3

0.5889 0.4681 1.0881

This code:

format /m1 /ldn 16,4;

print x;

produces:

-1.6353 1.6135 -1.0630

0.2617 0.2797 -1.3894

0.5889 0.4681 1.0881

This code:

format /m1 /res 12,4;

print x;

produces:

-1.6353E+000 1.6135E+000 -1.0630E+000

2.6171E-001 2.7972E-001 -1.3894E+000

5.8891E-001 4.6812E-001 1.0881E+000

GAUSS L R 28-329

formatcv

SEE ALSO formatcv, formatnv, print, output

formatcv

PURPOSE Sets the character data format used by printfmt.

FORMAT oldfmt = formatcv(newfmt);

INPUT newfmt 1×3 vector, the new format specification.

OUTPUT oldfmt 1×3 vector, the old format specification.

REMARKS See printfm for details on the format vector.

EXAMPLE This example saves the old format, sets the format desired for printing x, prints
x, then restores the old format. This code:

x = { A 1, B 2, C 3 };

oldfmt = formatcv("*.*s" ˜ 3 ˜ 3);

call printfmt(x,0˜1);

call formatcv(oldfmt);

produces:

A 1

B 2

C 3

SOURCE gauss.src

GLOBALS __fmtcv

28-330 GAUSS L R

f
formatnv

SEE ALSO formatnv, printfm, printfmt

formatnv

PURPOSE Sets the numeric data format used by printfmt.

FORMAT oldfmt = formatnv(newfmt);

INPUT newfmt 1×3 vector, the new format specification.

OUTPUT oldfmt 1×3 vector, the old format specification.

REMARKS See printfm for details on the format vector.

EXAMPLE This example saves the old format, sets the format desired for printing x, prints
x, then restores the old format. This code:

x = { A 1, B 2, C 3 };

oldfmt = formatnv("*.*lf" ˜ 8 ˜ 4);

call printfmt(x,0˜1);

call formatnv(oldfmt);

produces:

A 1.0000

B 2.0000

C 3.0000

SOURCE gauss.src

GLOBALS __fmtnv

GAUSS L R 28-331

fputs

SEE ALSO formatcv, printfm, printfmt

fputs

PURPOSE Writes strings to a file.

FORMAT numl = fputs(f,sa);

INPUT f scalar, file handle of a file opened with fopen.

sa string or string array.

OUTPUT numl scalar, the number of lines written to the file.

PORTABILITY UNIX

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX a newline is simply a linefeed.

REMARKS fputs writes the contents of each string in sa, minus the null terminating byte,
to the file specified. If the file was opened in text mode (see fopen), any
newlines present in the strings are converted to carriage return-linefeed
sequences on output. If numl is not equal to the number of elements in sa, there
may have been an I/O error while writing the file. You can use fcheckerr or
fclearerr to check this. If there was an error, you can call fstrerror to find
out what it was. If the file was opened for update (see fopen) and you are
switching from reading to writing, don’t forget to call fseek or fflush first, to
flush the file’s buffer. If you pass fputs the handle of a file opened with open
(i.e., a data set or matrix file), your program will terminate with a fatal error.

SEE ALSO fputst, fopen

28-332 GAUSS L R

f
fseek

fputst

PURPOSE Writes strings to a file.

FORMAT numl = fputst (f,sa);

INPUT f scalar, file handle of a file opened with fopen.

sa string or string array.

OUTPUT numl scalar, the number of lines written to the file.

PORTABILITY UNIX

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX a newline is simply a linefeed.

REMARKS fputst works identically to fputs, except that a newline is appended to each
string that is written to the file. If the file was opened in text mode (see fopen),
these newlines are also converted to carriage return-linefeed sequences on
output.

SEE ALSO fputs, fopen

fseek

PURPOSE Positions the file pointer in a file.

FORMAT ret = fseek(f,offs,base);

INPUT f scalar, file handle of a file opened with fopen.

GAUSS L R 28-333

fseek

offs scalar, offset (in bytes).
base scalar, base position.

0 beginning of file.
1 current position of file pointer.
2 end of file.

OUTPUT ret scalar, 0 if successful, 1 if not.

PORTABILITY UNIX

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX a newline is simply a linefeed.

REMARKS fseek moves the file pointer offs bytes from the specified base position. offs
can be positive or negative. The call may fail if the file buffer needs to be
flushed (see fflush).

If fseek fails, you can call fstrerror to find out why.

For files opened for update (see fopen), the next operation can be a read or a
write.

fseek is not reliable when used on files opened in text mode (see fopen). This
has to do with the conversion of carriage return-linefeed sequences to newlines.
In particular, an fseek that follows one of the fgetxxx or fputxxx commands
may not produce the expected result. For example:

p = ftell(f);

s = fgetsa(f,7);

call fseek(f,p,0);

is not reliable. We have found that the best results are obtained by fseek’ing to
the beginning of the file and then fseek’ing to the desired location, as in

p = ftell(f);

28-334 GAUSS L R

f
fstrerror

s = fgetsa(f,7);

call fseek(f,0,0);

call fseek(f,p,0);

If you pass fseek the handle of a file opened with open (i.e., a data set or
matrix file), your program will terminate with a fatal error.

SEE ALSO fopen

fstrerror

PURPOSE Returns an error message explaining the cause of the most recent file I/O error.

FORMAT s = fstrerror;

OUTPUT s string, error message.

REMARKS Any time an I/O error occurs on a file opened with fopen, an internal error flag
is updated. (This flag, unlike those accessed by fcheckerr and fclearerr, is
not specific to a given file; rather, it is system-wide.) fstrerror returns an
error message based on the value of this flag, clearing it in the process. If no
error has occurred, a null string is returned.

Since fstrerror clears the error flag, if you call it twice in a row, it will
always return a null string the second time.

The Windows system command called by ftell does not set the internal error
flag accessed by fstrerror. Therefore, calling fstrerror after ftell on
Windows will not produce any error information.

SEE ALSO fopen, ftell

GAUSS L R 28-335

ftocv

ftell

PURPOSE Gets the position of the file pointer in a file.

FORMAT pos = ftell(f);

INPUT f scalar, file handle of a file opened with fopen.

OUTPUT pos scalar, current position of the file pointer in a file.

REMARKS ftell returns the position of the file pointer in terms of bytes from the
beginning of the file. The call may fail if the file buffer needs to be flushed (see
fflush).

If an error occurs, ftell returns -1. You can call fstrerror to find out what
the error was.

If you pass ftell the handle of a file opened with open (i.e., a data set or
matrix file), your program will terminate with a fatal error.

SEE ALSO fopen, fseek

ftocv

PURPOSE Converts a matrix containing floating point numbers into a matrix containing
the decimal character representation of each element.

FORMAT y = ftocv(x,field,prec);

INPUT x N×K matrix containing numeric data to be converted.

field scalar, minimum field width.

28-336 GAUSS L R

f
ftos

prec scalar, the numbers created will have prec places after the decimal
point.

OUTPUT y N×K matrix containing the decimal character equivalent of the
corresponding elements in x in the format defined by field and prec.

REMARKS If a number is narrower than field, it will be padded on the left with zeros.

If prec = 0, the decimal point will be suppressed.

EXAMPLE y = seqa(6,1,5);

x = 0 $+ "cat" $+ ftocv(y,2,0);

x =

cat06
cat07
cat08
cat09
cat10

Notice that the (0 $+) above was necessary to force the type of the result to
matrix because the string constant “cat” would be of type string. The left
operand in an expression containing a $+ operator controls the type of the result.

SEE ALSO ftos

ftos

PURPOSE Converts a scalar into a string containing the decimal character representation of
that number.

FORMAT y = ftos(x,fmat,field,prec);

INPUT x scalar, the number to be converted.

GAUSS L R 28-337

ftos

fmat string, the format string to control the conversion.

field scalar or 2×1 vector, the minimum field width. If field is 2×1, it
specifies separate field widths for the real and imaginary parts of x.

prec scalar or 2×1 vector, the number of places following the decimal
point. If prec is 2×1, it specifies separate precisions for the real and
imaginary parts of x.

OUTPUT y string containing the decimal character equivalent of x in the format
specified.

REMARKS The format string corresponds to the format /jnt (justification, notation,
trailing character) slash parameter as follows:

/rdn ‘‘%*.*lf’’

/ren ‘‘%*.*lE’’

/ron ‘‘%#*.*lG’’

/rzn ‘‘%*.*lG’’

/ldn ‘‘%- *.*lf’’

/len ‘‘%- *.*lE’’

/lon ‘‘%-# *.*lG’’

/lzn ‘‘%- *.*lG’’

If x is complex, you can specify separate formats for the real and imaginary
parts by putting two format specifications in the format string. You can also
specify separate fields and precisions. You can position the sign of the
imaginary part by placing a “+” between the two format specifications. If you
use two formats, no “i” is appended to the imaginary part. This is so you can
use an alternate format if you prefer, for example, prefacing the imaginary part
with a “j”.

The format string can be a maximum of 80 characters.

If you want special characters to be printed after x, include them as the last
characters of the format string. For example:

‘‘%*.*lf,’’ right-justified decimal followed by a comma.

28-338 GAUSS L R

f
ftos

‘‘%-*.*s ’’ left-justified string followed by a space.

‘‘%*.*lf’’ right-justified decimal followed by nothing.

You can embed the format specification in the middle of other text:

"Time: %*.*lf seconds."

If you want the beginning of the field padded with zeros, then put a “0” before
the first “*” in the format string:

‘‘%0*.*lf’’ right-justified decimal.

If prec = 0, the decimal point will be suppressed.

EXAMPLE You can create custom formats for complex numbers with ftos. For example,

let c = 24.56124+6.3224e-2i;

field = 1;

prec = 3|5;

fmat = "%lf + j%le is a complex number.";

cc = ftos(c,fmat,field,prec);

results in

cc = "24.561 + j6.32240e-02 is a complex number."

Some other things you can do with ftos:

let x = 929.857435324123;

let y = 5.46;

GAUSS L R 28-339

ftostrC

let z = 5;

field = 1;

prec = 0;

fmat = "%*.*lf";

zz = ftos(z,fmat,field,prec);

field = 1;

prec = 10;

fmat = "%*.*lE";

xx = ftos(x,fmat,field,prec);

field = 7;

prec = 2;

fmat = "%*.*lf seconds";

s1 = ftos(x,fmat,field,prec);

s2 = ftos(y,fmat,field,prec);

field = 1;

prec = 2;

fmat = "The maximum resistance is %*.*lf ohms.";

om = ftos(x,fmat,field,prec);

The results:

zz = “5”
xx = “9.2985743532E+02”
s1 = “ 929.86 seconds”
s2 = “ 5.46 seconds”
om = “The maximum resistance is 929.86 ohms.”

SEE ALSO ftocv, stof, format

28-340 GAUSS L R

f
ftostrC

ftostrC

PURPOSE Converts a matrix to a string array using a C language format specification.

FORMAT sa = ftostrC(x,fmt);

INPUT x N×K matrix, real or complex.

fmt K×1, 1×K or 1×1 string array containing format information.

OUTPUT sa N×K string array.

REMARKS If fmt has K elements, each column of sa can be formatted separately. If x is
complex, there must be two format specifications in each element of fmt.

EXAMPLE declare string fmtr = {

"%6.3lf",

"%11.8lf"

};

declare string fmtc = {

"(%6.3lf, %6.3lf)",

"(%11.8lf, %11.8lf)"

};

xr = rndn(4, 2);

xc = sqrt(xr’)’;

sar = ftostrC(xr, fmtr);

sac = ftostrC(xc, fmtc);

print sar;

print sac;

produces:

GAUSS L R 28-341

gamma

-0.166 1.05565441

-1.590 -0.79283296

0.130 -1.84886957

0.789 0.86089687

(0.000, -0.407) (1.02745044, 0.00000000)

(0.000, -1.261) (0.00000000, -0.89041168)

(0.361, 0.000) (0.00000000, -1.35973143)

(0.888, 0.000) (0.92784529, 0.00000000)

SEE ALSO strtof, strtofcplx

gamma

PURPOSE Returns the value of the gamma function.

FORMAT y = gamma(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array.

REMARKS For each element of x this function returns the integral

∫ ∞

0
t(x−1)e−tdt

All elements of x must be positive and less than or equal to 169. Values of x
greater than 169 will cause an overflow.

The natural log of gamma is often what is required and it can be computed
without the overflow problems of gamma using lnfact.

28-342 GAUSS L R

g

gammacplx

EXAMPLE y = gamma(2.5);

y = 1.32934

SEE ALSO cdfchic, cdfbeta, cdffc, cdfn, cdfnc, cdftc, erf, erfc, lnfact

gammacplx

PURPOSE Computes the Gamma function for complex inputs.

FORMAT f = gammacplx(z);

INPUT z N×K matrix; z may be complex.

OUTPUT f N×K matrix; f may be complex.

TECHNICAL
NOTES

Accuracy is 15 significant digits along the real axis and 13 significant digits
elsewhere. This routine uses the Lanczos series approximation for the complex
Gamma function.

REFERENCES 1. C. Lanczos, SIAM JNA 1, 1964, pp. 86-96.
2. Y. Luke, “The Special ... approximations,” 1969, pp. 29-31.
3. Y. Luke, “Algorithms ... functions,” 1977.
4. J. Spouge, SIAM JNA 31, 1994, pp. 931-944.
5. W. Press, “Numerical Recipes.”
6. S. Chang, “Computation of special functions,” 1996.
7. W. J. Cody “An Overview of Software Development for Special

Functions,” 1975.

GAUSS L R 28-343

gammaii

8. P. Godfrey “A note on the computation of the convergent Lanczos
complex Gamma approximation.”

9. Original code by Paul Godfrey

gammaii

PURPOSE Computes the inverse incomplete gamma function.

FORMAT x = gammaii(a,p);

INPUT a M×N matrix, exponents.
p K×L matrix, E×E conformable with a, incomplete gamma values.

OUTPUT x max(M,K) by max(N,L) matrix, abscissae.

SOURCE cdfchii.src

GLOBALS _ginvinc, __macheps

gausset

PURPOSE Resets the global control variables declared in gauss.dec.

FORMAT gausset;

SOURCE gauss.src

GLOBALS __altnam, __con, __ff, __fmtcv, __fmtnv, __header, __miss, __output,
__row, __rowfac, __sort, __title, __tol, __vpad, __vtype, __weight

28-344 GAUSS L R

g

gdaAppend

gdaAppend

PURPOSE Appends data to a variable in a GAUSS Data Archive.

FORMAT ret = gdaAppend(filename,x,varname);

INPUT filename string, name of data file.

x matrix, array, string or string array, data to append.

varname string, variable name.

OUTPUT ret scalar, return code, 0 if successful, otherwise one of the following
error codes:

1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.
17 Type mismatch.
18 Argument wrong size.
19 Data must be real.
20 Data must be complex.

REMARKS This command appends the data contained in x to the variable varname in
filename. Both x and the variable referenced by varname must be the same data
type, and they must both contain the same number of columns.

Because gdaAppend increases the size of the variable, it moves the variable to
just after the last variable in the data file to make room for the added data,
leaving empty bytes in the variable’s old location. It also moves the variable

GAUSS L R 28-345

gdaCreate

descriptor table, so it is not overwritten by the variable data. This does not
change the index of the variable because variable indices are determined NOT
by the order of the variable data in a GDA, but by the order of the variable
descriptors. Call gdaPack to pack the data in a GDA, so it contains no empty
bytes.

EXAMPLE x = rndn(100,50);

ret = gdaCreate("myfile.gda",1);

ret = gdaWrite("myfile.gda",x,"x1");

y = rndn(25,50);

ret = gdaAppend("myfile.gda",y,"x1");

This example adds 25*50=1250 elements to x1, making it a 125×50 matrix.

SEE ALSO gdaWriteSome, gdaUpdate, gdaWrite

gdaCreate

PURPOSE Creates a GAUSS Data Archive.

FORMAT ret = gdaCreate(filename,overwrite);

INPUT filename string, name of data file to create.

overwrite scalar, one of the following:

0 error out if file already exists.
1 overwrite file if it already exists.

OUTPUT ret scalar, return code, 0 if successful, otherwise one of the following
error codes:

1 Null file name.
3 File write error.

28-346 GAUSS L R

g

gdaDStat

6 File already exists.
7 Cannot create file.

REMARKS This command creates a GAUSS Data Archive containing only a header. To add
data to the GDA, call gdaWrite.

It is recommended that you include a .gda extension in filename. However,
gdaCreate will not force an extension.

EXAMPLE ret = gdaCreate("myfile.gda",1);

SEE ALSO gdaWrite

gdaDStat

PURPOSE Computes descriptive statistics on multiple N×1 variables in a GAUSS Data
Archive.

FORMAT dout = gdaDStat(dc0,filename,vars);

INPUT dc0 an instance of a dstatmtControl structure with the following
members:

dc0.altnames K×1 string array of alternate variable names
for the output. Default = “”.

dc0.maxbytes scalar, the maximum number of bytes to be
read per iteration of the read loop. Default =
1e9.

dc0.maxvec scalar, the largest number of elements allowed
in any one matrix. Default = 20000.

dc0.miss scalar, one of the following:
0 There are no missing values (fastest).
1 Listwise deletion, drop a row if any

missings occur in it.

GAUSS L R 28-347

gdaDStat

2 Pairwise deletion.
Default = 0.

dc0.output scalar, one of the following:
0 Do not print output table.
1 Print output table.
Default = 1.

dc0.row scalar, the number of rows of var to be read
per iteration of the read loop.
If 0, (default) the number of rows will be
calculated using dc0.maxbytes and
dc0.maxvec.

filename string, name of data file.

vars K×1 string array, names of variables
- or -

K×1 vector, indices of variables.

OUTPUT dout an instance of a dstatmtOut structure with the following members:

dout.vnames K×1 string array, the names of the variables
used in the statistics.

dout.mean K×1 vector, means.
dout.var K×1 vector, variance.
dout.std K×1 vector, standard deviation.
dout.min K×1 vector, minima.
dout.max K×1 vector, maxima.
dout.valid K×1 vector, the number of valid cases.
dout.missing K×1 vector, the number of missing cases.
dout.errcode scalar, error code, 0 if successful, or one of

the following:
1 No GDA indicated.
4 Not implemented for complex data.
5 Variable must be type matrix.
6 Too many variables specified.
7 Too many missings - no data left after

packing.

28-348 GAUSS L R

g

gdaDStatMat

8 Name variable wrong size.
9 altnames member of dstatmtControl

structure wrong size.
11 Data read error.

REMARKS The variables referenced by vars must all be N×1.

The names of the variables in the GDA will be used for the output by default.
To use alternate names, set the altnames member of the dstatmtControl
structure.

If pairwise deletion is used, the minima and maxima will be the true values for
the valid data. The means and standard deviations will be computed using the
correct number of valid observations for each variable.

EXAMPLE struct dstatmtControl dc0;

struct dstatmtOut dout;

dc0 = dstatmtControlCreate;

vars = { 1,4,5,8 };

dout = gdaDStat(dc0,"myfile.gda",vars);

This example computes descriptive statistics on the first, fourth, fifth and eighth
variables in myfile.gda.

SOURCE gdadstat.src

SEE ALSO gdaDStatMat, dstatmtControlCreate

gdaDStatMat

PURPOSE Computes descriptive statistics on a selection of columns in a variable in a
GAUSS Data Archive.

GAUSS L R 28-349

gdaDStatMat

FORMAT dout = gdaDStatMat(dc0,filename,var,colind,vnamevar);

INPUT dc0 an instance of a dstatmtControl structure with the following
members:

dc0.altnames K×1 string array of alternate variable names
for the output. Default = “”.

dc0.maxbytes scalar, the maximum number of bytes to be
read per iteration of the read loop. Default =
1e9.

dc0.maxvec scalar, the largest number of elements allowed
in any one matrix. Default = 20000.

dc0.miss scalar, one of the following:
0 There are no missing values (fastest).
1 Listwise deletion, drop a row if any

missings occur in it.
2 Pairwise deletion.
Default = 0.

dc0.output scalar, one of the following:
0 Do not print output table.
1 Print output table.
Default = 1.

dc0.row scalar, the number of rows of var to be read
per iteration of the read loop.
If 0, (default) the number of rows will be
calculated using dc0.maxbytes and
dc0.maxvec.

filename string, name of data file.

var string, name of variable
- or -

scalar, index of variable.

colind K×1 vector, indices of columns in variable to use.

vnamevar string, name of variable containing names for output
- or -

scalar, index of variable containing names for output.

28-350 GAUSS L R

g

gdaDStatMat

OUTPUT dc0 an instance of a dstatmtOut structure with the following members:

dout.vnames K×1 string array, the names of the variables
used in the statistics.

dout.mean K×1 vector, means.
dout.var K×1 vector, variance.
dout.std K×1 vector, standard deviation.
dout.min K×1 vector, minima.
dout.max K×1 vector, maxima.
dout.valid K×1 vector, the number of valid cases.
dout.missing K×1 vector, the number of missing cases.
dout.errcode scalar, error code, 0 if successful, otherwise

one of the following:
1 No GDA indicated.
3 Variable must be N×1.
4 Not implemented for complex data.
5 Variable must be type matrix.
7 Too many missings - no data left after

packing.
9 altnames member of dstatmtControl

structure wrong size.
11 Data read error.

REMARKS Set colind to a scalar 0 to use all of the columns in var.

vnamevar must either reference an M×1 string array variable containing
variable names, where M is the number of columns in the data set variable, or
be set to a scalar 0. If vnamevar references an M×1 string array variable, then
only the elements indicated by colind will be used. Otherwise, if vnamevar is
set to a scalar 0, then the variable names for the output will be generated
automatically (“X1,X2,...,XK”) unless the alternate variable names are set
explicitly in the altnames member of the dstatmtControl structure.

If pairwise deletion is used, the minima and maxima will be the true values for
the valid data. The means and standard deviations will be computed using the
correct number of valid observations for each variable.

GAUSS L R 28-351

gdaGetIndex

EXAMPLE struct dstatmtControl dc0;

struct dstatmtOut dout;

dc0 = dstatmtControlCreate;

var = 3;

index = { 1,3,4,7 };

dout = gdaDStatMat(dc0,"myfile.gda",var,index,"");

This example computes descriptive statistics on the first, third, fourth and
seventh columns of the third variable in myfile.gda, generating names for the
output automatically.

SOURCE gdadstat.src

SEE ALSO gdaDStat, dstatmtControlCreate

gdaGetIndex

PURPOSE Gets the index of a variable in a GAUSS Data Archive.

FORMAT ind = gdaGetIndex(filename,varname);

INPUT filename string, name of data file.

varname string, name of variable in the GDA.

OUTPUT ind scalar, index of variable in the GDA.

REMARKS If gdaGetIndex fails, it will return a scalar error code. Call scalerr to get the
value of the error code. The error code may be any of the following:

28-352 GAUSS L R

g

gdaGetName

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

EXAMPLE ind = gdaGetIndex("myfile.gda","observed");

SEE ALSO gdaGetName, gdaReadByIndex

gdaGetName

PURPOSE Gets the name of a variable in a GAUSS Data Archive.

FORMAT varname = gdaGetName(filename,varind);

INPUT filename string, name of data file.

varind scalar, index of variable in the GDA.

OUTPUT varname string, name of variable in the GDA.

REMARKS If gdaGetName fails, it will return a scalar error code. Call scalerr to get the
value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.

EXAMPLE varname = gdaGetName("myfile.gda",5);

GAUSS L R 28-353

gdaGetNames

SEE ALSO gdaGetIndex, gdaRead, gdaGetNames

gdaGetNames

PURPOSE Gets the names of all the variables in a GAUSS Data Archive.

FORMAT varnames = gdaGetNames(filename);

INPUT filename string, name of data file.

OUTPUT varnames N×1 string array, names of all the variables in the GDA.

REMARKS If gdaGetNames fails, it will return a scalar error code. Call scalerr to get the
value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
10 File contains no variables.
13 Result too large for current platform.
14 File too large to be read on current platform.

EXAMPLE varnames = gdaGetNames("myfile.gda");

SEE ALSO gdaGetTypes, gdaGetName

gdaGetOrders

PURPOSE Gets the orders of a variable in a GAUSS Data Archive.

28-354 GAUSS L R

g

gdaGetType

FORMAT ord = gdaGetOrders(filename,varname);

INPUT filename string, name of data file.

varname string, name of variable in the GDA.

OUTPUT ord M×1 vector, orders of the variable in the GDA.

REMARKS If the specified variable is a matrix or string array, then ord will be a 2×1 vector
containing the rows and columns of the variable respectively. If the variable is a
string, then ord will be a scalar containing the length of the string. If the
variable is an N-dimensional array, then ord will be an N×1 vector containing
the sizes of each dimension.

If gdaGetOrders fails, it will return a scalar error code. Call scalerr to get
the value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

EXAMPLE ord = gdaGetOrders("myfile.gda","x5");

SEE ALSO gdaGetName, gdaGetIndex

gdaGetType

PURPOSE Gets the type of a variable in a GAUSS Data Archive.

FORMAT vartype = gdaGetType(filename,varname);

GAUSS L R 28-355

gdaGetTypes

INPUT filename string, name of data file.

varname string, name of variable in the GDA.

OUTPUT vartype scalar, type of the variable in the GDA.

REMARKS vartype may contain any of the following:

6 Matrix
13 String
15 String array
21 Array

If gdaGetType fails, it will return a scalar error code. Call scalerr to get the
value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

EXAMPLE vartype = gdaGetType("myfile.gda","x1");

SEE ALSO gdaGetTypes

gdaGetTypes

PURPOSE Gets the types of all the variables in a GAUSS Data Archive.

FORMAT vartypes = gdaGetTypes(filename);

INPUT filename string, name of data file.

28-356 GAUSS L R

g

gdaGetVarInfo

OUTPUT vartypes N×1 vector, types of all the variables in the GDA.

REMARKS vartypes may contain any of the following:

6 Matrix
13 String
15 String array
21 Array

If gdaGetTypes fails, it will return a scalar error code. Call scalerr to get the
value of the error code. Valid error codes for this command include:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
10 File contains no variables.
14 File too large to be read on current platform.

EXAMPLE vartypes = gdaGetTypes("myfile.gda");

SEE ALSO gdaGetNames, gdaRead

gdaGetVarInfo

PURPOSE Gets information about all of the variables in a GAUSS Data Archive and
returns it in an array of gdavartable structures.

INCLUDE gdafns.sdf

FORMAT vtab = gdaGetVarInfo(filename);

INPUT filename string, name of data file.

GAUSS L R 28-357

gdaIsCplx

OUTPUT vtab N×1 array of gdavartable structures, where N is the number of
variables in filename, containing the following members:

vtab[i].name string, name of variable.

vtab[i].type scalar, type of variable.

vtab[i].orders M×1 vector or scalar, orders of the variable.

REMARKS The size of vtab.orders is dependent on the type of the variable as follows:

Variable Type vtab.orders
array M×1 vector, where M is the number of dimensions in the

array, containing the sizes of each dimension, from the
slowest-moving dimension to the fastest-moving dimension.

matrix 2×1 vector containing the rows and columns of the matrix,
respectively.

string scalar containing the length of string, excluding the null
terminating byte.

string array 2×1 vector containing the rows and columns of the string
array, respectively.

vtab.type may contain any of the following:

6 matrix
13 string
15 string array
21 array

EXAMPLE #include gdafns.sdf

struct gdavartable vtab;

vtab = gdaGetVarInfo("myfile.gda");

SOURCE gdafns.src

SEE ALSO gdaReportVarInfo, gdaGetNames, gdaGetTypes, gdaGetOrders

28-358 GAUSS L R

g

gdaLoad

gdaIsCplx

PURPOSE Checks to see if a variable in a GAUSS Data Archive is complex.

FORMAT y = gdaIsCplx(filename,varname);

INPUT filename string, name of data file.

varname string, name of variable in the GDA.

OUTPUT y scalar, 1 if variable is complex; 0 if real.

REMARKS If gdaIsCplx fails, it will return a scalar error code. Call scalerr to get the
value of the error code. Valid error codes for this command include:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

EXAMPLE cplx = gdaIsCplx("myfile.gda","x1");

gdaLoad

PURPOSE Loads variables in a GDA into the workspace.

FORMAT ret = gdaLoad(filename,create,modify,rename,ftypes,errh,report);

INPUT filename string, name of data file.

GAUSS L R 28-359

gdaLoad

create scalar, create flag:

0 do not create any new variables in the workspace.
1 create new variables in the workspace.

modify scalar, modify flag:

0 do not modify any variables in the workspace.
1 if the name of a variable in the data file matches the name of a

variable already in the workspace, modify that variable.

rename scalar, rename flag:

0 do not rename a variable retrieved from the data file when
copying it into the workspace.

1 rename variables retrieved from the data file when copying
them into the workspace if there are name conflicts with
existing variables, which may not be modified.

ftypes scalar, type force flag:

0 do not force a type change on any variables in the workspace
when modifying.

1 force a type change on a variable in the workspace when
modifying it with the data in a variable of the same name in the
data file. Note that if ftypes is set to 1, gdaLoad will follow
regular type change rules. The types of sparse matrix and
structure variables will NOT be changed.

errh scalar, controls the error handling of gdaLoad:

0 skip operations that cannot be performed, without setting an
error return.

1 return an error code if operations are skipped.
2 terminate program if operations are skipped.

report scalar, controls reporting:

0 no reporting.
1 report only name changes and operations that could not be

performed.
2 report type changes, name changes, and operations that could

not be performed.

28-360 GAUSS L R

g

gdaLoad

3 report everything.

OUTPUT ret scalar, return code, 0 if successful, otherwise one of the following
error codes:

4 File read error.
5 Invalid file type.
10 File contains no variables.
14 File too large to be read on current platform.
24 Variables skipped.
26 Cannot add structure definition.
27 Structure definition does not match.

REMARKS For each variable in filename, gdaLoad will first compare the name of the
variable against the names of the variables already resident in the GAUSS
workspace to see if there is a match. If there is not a match, and create is set to
1, it will create a new variable. Otherwise if create is set to 0, it will skip that
variable.

If the variable name does match that of a variable already resident in the
GAUSS workspace, and modify is set to 1, it will attempt to modify that
variable. If the types of the two variables are different, and ftype is set to 1, it
will force the type change if possible and modify the existing variable.

If it cannot modify the variable or modify is set to 0, it will check to see if
rename is set to 1, and if so, attempt to rename the variable, appending an _num
to the variable name, beginning with num = 1 and counting upward until it finds
a name with which there are no conflicts. If the variable cannot be modified and
rename is set to 0, then the variable will be skipped.

The rename argument also controls the handling of structure definitions. If a
structure variable is encountered in the GDA file, and no variable of the same
name exists in the workspace (or the variable is renamed), gdaLoad will
attempt to find a structure definition in the workspace that matches the one in
the GDA. Note that in order for structure definitions to match, the structure
definition names must be the same as well as the number, order, names, and
types of their members.

GAUSS L R 28-361

gdaPack

If no matching structure definition is found, the definition in the file will be
loaded into the workspace. If there is already a non-matching structure
definition with the same name in the workspace and rename is set to 1, then
gdaLoad will attempt to rename the structure definition, using the same method
as it does for variable names.

If a structure variable is encountered in the GDA file, a structure variable of the
same name already exists in the workspace, and modify is set to 1, then
gdaLoad will modify the existing variable, providing that the structure
definitions of the two variables match.

EXAMPLE ret = gdaLoad("myfile.gda",1,1,1,1,1,3);

This example loads the variables in myfile.gda into the workspace, creating a
new variable if a variable of the same name does not already exist, modifying an
existing variable if a variable of the same name does already exist and the
modification does not result in an impossible type change, and renaming the
variable if none of the above is possible. The example returns an error code if
any variables in myfile.gda are skipped and reports all activity.

SEE ALSO gdaSave

gdaPack

PURPOSE Packs the data in a GAUSS Data Archive, removing all empty bytes and
truncating the file.

FORMAT ret = gdaPack(filename);

INPUT filename string, name of data file.

OUTPUT ret scalar, return code, 0 if successful, otherwise one of the following
error codes:

28-362 GAUSS L R

g

gdaRead

1 Null file name.

2 File open error.

3 File write error.

4 File read error.

5 Invalid data file type.

10 File contains no variables.

12 File truncate error.

14 File too large to be read on current platform.

REMARKS You may want to call gdaPack after several calls to gdaUpdate to remove all
of the empty bytes from a GDA.

EXAMPLE ret = gdaPack("myfile.gda");

SEE ALSO gdaUpdate, gdaWrite

gdaRead

PURPOSE Gets a variable from a GAUSS Data Archive.

FORMAT y = gdaRead(filename,varname);

INPUT filename string, name of data file.

varname string, name of variable in the GDA.

OUTPUT y matrix, array, string or string array, variable data.

REMARKS If gdaRead fails, it will return a scalar error code. Call scalerr to get the value
of the error code. The error code may be any of the following:

GAUSS L R 28-363

gdaReadByIndex

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

EXAMPLE y = gdaRead("myfile.gda","x1");

SEE ALSO gdaReadByIndex, gdaGetName

gdaReadByIndex

PURPOSE Gets a variable from a GAUSS Data Archive given a variable index.

FORMAT y = gdaReadByIndex(filename,varind);

INPUT filename string, name of data file.
varind scalar, index of variable in the GDA.

OUTPUT y matrix, array, string or string array, variable data.

REMARKS If gdaReadByIndex fails, it will return a scalar error code. Call scalerr to get
the value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.

EXAMPLE y = gdaReadByIndex("myfile.gda",3);

28-364 GAUSS L R

g

gdaReadSome

SEE ALSO gdaRead, gdaGetIndex

gdaReadSome

PURPOSE Reads part of a variable from a GAUSS Data Archive.

FORMAT y = gdaReadSome(filename,varname,index,orders);

INPUT filename string, name of data file.
varname string, name of variable in the GDA.
index scalar or N×1 vector, index into variable where read is to begin.
orders scalar or K×1 vector, orders of object to output.

OUTPUT y matrix, array, string or string array, variable data.

REMARKS This command reads part of the variable varname in filename, beginning at the
position indicated by index. The orders argument determines the size and shape
of the object outputted by gdaReadSome. The number of elements read equals
the product of all of the elements in orders.

If index is a scalar, it will be interpreted as the indexth element of the variable.
Thus if varname references a 10×5 matrix, an index of 42 would indicate the
42nd element, which is equivalent to the [8,2] element of the matrix (remember
that GAUSS matrices are stored in row major order). If index is an N×1 vector,
then N must equal the number of dimensions in the variable referenced by
varname.

If orders is a K×1 vector, then y will be a K-dimensional object. If orders is a
scalar r, then y will be an r×1 column vector. To specify a 1×r row vector, set
output = { 1, r }.

If the variable referenced by varname is numeric (a matrix or array) and orders
is a scalar or 2×1 vector, then y will of type matrix. If the variable is numeric
and orders is an N×1 vector where N>2, then y will be of type array.

GAUSS L R 28-365

gdaReadSparse

If varname references a string, then both index and orders must be scalars, and
index must contain an index into the string in characters.

If gdaReadSome fails, it will return a scalar error code. Call scalerr to get the
value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
13 Result too large for current platform.
14 File too large to be read on current platform.
15 Argument out of range.
18 Argument wrong size.

EXAMPLE x = rndn(100,50);

ret = gdaCreate("myfile.gda",1);

ret = gdaWrite("myfile.gda",x,"x1");

index = { 35,20 };

orders = { 25,5 };

y = gdaReadSome("myfile.gda","x1",index,orders);

This example reads 25*5=125 elements from x1, beginning with the [35,20]
element. The 125 elements are returned as a 25×5 matrix, y.

SEE ALSO gdaWriteSome, gdaRead

gdaReadSparse

PURPOSE Gets a sparse matrix from a GAUSS Data Archive.

28-366 GAUSS L R

g

gdaReadStruct

FORMAT sm = gdaReadSparse(filename,varname);

INPUT filename string, name of data file.

varname string, name of sparse matrix variable in the GDA.

OUTPUT sm sparse matrix.

REMARKS If gdaReadSparse fails, it will return a sparse scalar error code. Call scalerr
to get the value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

EXAMPLE sparse matrix sm1;

sm1 = gdaReadSparse("myfile.gda","sm");

SEE ALSO gdaRead, gdaReadStruct, gdaWrite

gdaReadStruct

PURPOSE Gets a structure from a GAUSS Data Archive.

FORMAT { instance,retcode } = gdaReadStruct(filename,varname,structure type);

INPUT filename string, name of data file.

varname string, name of structure instance in the GDA.

structure type string, structure type.

GAUSS L R 28-367

gdaReportVarInfo

OUTPUT instance instance of the structure.

retcode scalar, 0 if successful, otherwise, any of the following error codes:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

REMARKS instance can be an array of structures.

EXAMPLE struct mystruct {

matrix x;

array a;

};

struct mystruct msw;

msw.x = rndn(500,25);

msw.a = areshape(rndn(5000,100),10|500|100);

ret = gdaCreate("myfile.gda",1);

ret = gdaWrite("myfile.gda",msw,"ms");

struct mystruct msr;

{ msr, ret } = gdaReadStruct("myfile.gda","ms","mystruct");

SEE ALSO gdaRead, gdaReadSparse, gdaWrite

gdaReportVarInfo

PURPOSE Gets information about all of the variables in a GAUSS Data Archive and
returns it in a string array formatted for printing.

28-368 GAUSS L R

g

gdaSave

FORMAT vinfo = gdaReportVarInfo(filename);

INPUT filename string, name of data file.

OUTPUT vinfo N×1 string array containing variable information.

REMARKS If you just want to print the information to the window, call
gdaReportVarInfo without assigning the output to a symbol name:

gdaReportVarInfo(filename);

EXAMPLE x1 = rndn(100,50);

x2 = rndn(75,5);

a = areshape(rndn(10000,1),10|100|10);

fname = "myfile.gda";

ret = gdaCreate(fname,1);

ret = gdaWrite(fname,x1,"x1");

ret = gdaWrite(fname,x2,"x2");

ret = gdaWrite(fname,a,"a1");

gdaReportVarInfo(fname);

produces:

Index Name Type Orders

1 x1 matrix 100x50

2 x2 matrix 75x5

3 a1 array 10x100x10

SOURCE gdafns.src

SEE ALSO gdaGetVarInfo, gdaGetNames, gdaGetTypes, gdaGetOrders

GAUSS L R 28-369

gdaSave

gdaSave

PURPOSE Writes variables in a workspace to a GDA.

FORMAT ret = gdaSave(filename,varnames,exclude,overwrite,report);

INPUT filename string, name of data file.

varnames string or N×K string array, names of variables in the workspace to
include or exclude.

exclude scalar, include/exclude flag:

0 include all variables contained in varnames.
1 exclude all variables contained in varnames.

overwrite scalar, controls the overwriting of the file and variables in the file:

0 if file exists, return with an error code.
1 if file exists, overwrite completely.
2 if file exists, append to file, appending to variable names if

necessary to avoid name conflicts.
3 if file exists, update file. When a name confict occurs, update

the existing variable in the file with the new variable.

report scalar, controls reporting:

0 no reporting.
1 report only name changes (note that name changes occur only

when overwrite is set to 2).
3 report everything.

OUTPUT ret scalar, return code, 0 if successful, otherwise one of the following
error codes:

1 Null file name.
3 File write error.
4 File read error.

28-370 GAUSS L R

g

gdaSave

5 Invalid file type.
6 File exists and overwrite set to 0.
7 Cannot create file.
14 File too large to be read on current platform.
16 Cannot write to GDA – version outdated.
17 Type mismatch.

REMARKS Only initialized variables are written to the GDA with gdaSave.

If varnames is a null string and exclude is set to 0, it will be interpreted as
indicating all of the variables in the workspace.

You may add an asterisk (*) to the end of a variable name in varnames to
indicate that all variables beginning with the specified text are to be selected.
For example, setting varnames to the string “_*” and setting exclude to 1
indicates that all variables EXCEPT those starting with an underscore should be
written to the GDA.

The names of the variables in the workspace are the names that are given to the
variables when they are written to the GDA, with the exception of names that
are changed to avoid conflicts.

If you set overwrite to 2, and variable name conflicts are encountered, gdaSave
will append an underscore and a number to the name of the variable it is adding.
It will first try changing the name to name_1. If there is a conflict with that
name, it will change it to name_2, and so on until it finds a name that does not
conflict with any of the variables already in the GDA.

EXAMPLE run -r myfile.gau;

ret = gdaSave("myfile.gda","x*",0,2,3);

This example runs a GAUSS program called myfile.gau and then writes all
initialized variables in the workspace beginning with ‘x’ to the file
myfile.gda. If myfile.gda already exists, this example appends to it,
changing the names of the variables that it writes to the file if necessary to avoid
name conficts. All writing and variable name changing is reported.

GAUSS L R 28-371

gdaUpdate

SEE ALSO gdaLoad

gdaUpdate

PURPOSE Updates a variable in a GAUSS Data Archive.

FORMAT ret = gdaUpdate(filename,x,varname);

INPUT filename string, name of data file.

x matrix, array, string or string array, data.

varname string, variable name.

OUTPUT ret scalar, return code, 0 if successful, otherwise one of the following
error codes:

1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

REMARKS This command updates the variable varname in filename with the data contained
in x.

If x is larger than the specified variable in the file, then gdaUpdate writes the
new variable data after the last variable in the data file, moving the variable
descriptor table to make room for the data and leaving empty bytes in the place
of the old variable. This does not change the index of the variable because
variable indices are determined NOT by the order of the variable data in a GDA,
but by the order of the variable descriptors.

28-372 GAUSS L R

g

gdaUpdateAndPack

If x is the same size or smaller than the specified variable in the file, then
gdaUpdate writes the data in x over the specified variable. If x is smaller, then
gdaUpdate leaves empty bytes between the end of the updated variable and the
beginning of the next variable in the data file.

This command updates variables quickly by not moving data in the file
unnecessarily. However, calling gdaUpdate several times for one file may
result in a file with a large number of empty bytes. To pack the data in a GDA,
so it contains no empty bytes, call gdaPack. Or to update a variable without
leaving empty bytes in the file, call gdaUpdateAndPack.

EXAMPLE x = rndn(100,50);

ret = gdaCreate("myfile.gda",1);

ret = gdaWrite("myfile.gda",x,"x1");

y = rndn(75,5);

ret = gdaUpdate("myfile.gda",y,"x1");

SEE ALSO gdaUpdateAndPack, gdaPack, gdaWrite

gdaUpdateAndPack

PURPOSE Updates a variable in a GAUSS Data Archive, leaving no empty bytes if the
updated variable is smaller or larger than the variable it is replacing.

FORMAT ret = gdaUpdateAndPack(filename,x,varname);

INPUT filename string, name of data file.

x matrix, array, string or string array, data.

varname string, variable name.

OUTPUT ret scalar, return code, 0 if successful, otherwise one of the following
error codes:

GAUSS L R 28-373

gdaVars

1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
8 Variable not found.
10 File contains no variables.
12 File truncate error.
14 File too large to be read on current platform.

REMARKS This command updates the variable varname in filename with the data contained
in x. gdaUpdateAndPack always writes the data in x over the specified variable
in the file. If x is larger than the specified variable, then it first moves all
subsequent data in the file to make room for the new data. If x is smaller, then
gdaUpdateAndPack writes the data, packs all of the subsequent data, leaving
no empty bytes after the updated variable, and truncates the file.

This command uses disk space efficiently; however, it may be slow for large
files (especially if the variable to be updated is one of the first variables in the
file). If speed is a concern, you may want to use gdaUpdate instead.

EXAMPLE x = rndn(100,50);

ret = gdaCreate("myfile.gda",1);

ret = gdaWrite("myfile.gda",x,"x1");

y = rndn(75,5);

ret = gdaUpdateAndPack("myfile.gda",y,"x1");

SEE ALSO gdaUpdate, gdaWrite

gdaVars

PURPOSE Gets the number of variables in a GAUSS Data Archive.

28-374 GAUSS L R

g

gdaWrite

FORMAT nvars = gdaVars(filename);

INPUT filename string, name of data file.

OUTPUT nvars scalar, the number of variables in filename.

EXAMPLE nvars = gdaVars("myfile.gda");

SOURCE gdafns.src

SEE ALSO gdaReportVarInfo, gdaGetNames,

gdaWrite

PURPOSE Writes a variable to a GAUSS Data Archive.

FORMAT ret = gdaWrite(filename,x,varname);

INPUT filename string, name of data file.

x matrix, array, string or string array, data to write to the GDA.

varname string, variable name.

OUTPUT ret scalar, return code, 0 if successful, otherwise one of the following
error codes:

1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
9 Variable name too long.
11 Variable name must be unique.

GAUSS L R 28-375

gdaWrite32

14 File too large to be read on current platform.

REMARKS gdaWrite adds the data in x to the end of the variable data in filename, and
gives the variable the name contained in varname.

EXAMPLE x = rndn(100,50);

ret = gdaCreate("myfile.gda",1);

ret = gdaWrite("myfile.gda",x,"x1");

SEE ALSO gdaWrite32, gdaCreate

gdaWrite32

PURPOSE Writes a variable to a GAUSS Data Archive using 32-bit system file write
commands.

FORMAT ret = gdaWrite32(filename,x,varname);

INPUT filename string, name of data file.

x matrix, array, string or string array, data to write to the GDA.

varname string, variable name.

OUTPUT ret scalar, return code, 0 if successful, otherwise one of the following
error codes:

1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
9 Variable name too long.
11 Variable name must be unique.

28-376 GAUSS L R

g

gdaWriteSome

14 File too large to be read on current platform.
25 Not supported for use with a file created on a machine with a

different byte order.

REMARKS gdaWrite32 adds the data in x to the end of the variable data in filename, and
gives the variable the name contained in varname.

This command is a speed optimization command for Windows. On all other
platforms, this function is identical to gdaWrite. gdaWrite uses system file
write commands that support 64-bit file sizes. These commands are slower on
Windows XP than the 32-bit file write commands that were used for binary
writes in GAUSS 6.0 and earlier. gdaWrite32 uses the 32-bit Windows system
write commands, which will be faster on Windows XP. Note, however, that
gdaWrite32 does not support 64-bit file sizes.

This command does not support writing to a GDA that was created on a
platform with a different byte order than the current machine. gdaWrite
supports full cross-platform writing to GDA’s.

EXAMPLE x = rndn(100,50);

ret = gdaCreate("myfile.gda",1);

ret = gdaWrite32("myfile.gda",x,"x1");

SEE ALSO gdaWrite, gdaCreate

gdaWriteSome

PURPOSE Overwrites part of a variable in a GAUSS Data Archive.

FORMAT ret = gdaWriteSome(filename,x,varname,index);

INPUT filename string, name of data file.

x matrix, array, string or string array, data.

GAUSS L R 28-377

gdaWriteSome

varname string, variable name.
index scalar or N×1 vector, index into variable where new data is to be

written.

OUTPUT ret scalar, return code, 0 if successful, otherwise one of the following
error codes:

1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.
15 Argument out of range.
17 Type mismatch.
18 Argument wrong size.
19 Data must be real.
20 Data must be complex.

REMARKS This command overwrites part of the variable varname in filename with the data
contained in x. The new data is written to varname beginning at the position
indicated by index.

If index is a scalar, it will be interpreted as the indexth element of the variable.
Thus if varname references a 10×5 matrix, an index of 42 would indicate the
42nd element, which is equivalent to the [8,2] element of the matrix (remember
that GAUSS matrices are stored in row major order). If index is an N×1 vector,
then N must equal the number of dimensions in the variable referenced by
varname.

If varname references a string, then index must be a scalar containing an index
into the string in characters.

gdaWriteSome may not be used to extend the size of a variable in a GDA. If
there are more elements (or characters for strings) in x than there are from the

28-378 GAUSS L R

g

getarray

indexed position of the specified variable to the end of that variable, then
gdaWriteSome will fail. Call gdaAppend to append data to an existing
variable.

The shape of x need not match the shape of the variable referenced by varname.
If varnum references an N×K matrix, then x may be any L×M matrix (or
P-dimensional array) that satisfies the size limitations described above. If x
contains R elements, then the elements in x will simply replace the indexed
element of the specified variable and the subsequent R-1 elements (as they are
laid out in memory).

If varname references a string array, then the size of the overall variable will
change if the sum of the length of the string array elements in x is different than
the sum of the length of the elements that they are replacing.

In this case, if the variable increases in size, then the variable data will be
rewritten after the last variable in the data file, moving the variable descriptor
table to make room for the data and leaving empty bytes in its old location. This
does not change the index of the variable because variable indices are
determined NOT by the order of the variable data in a GDA, but by the order of
the variable descriptors. If the variable decreases in size, then gdaWriteSome
leaves empty bytes between the end of the variable and the beginning of the
next variable in the data file. Call gdaPack to pack the data in a GDA, so it
contains no empty bytes.

EXAMPLE x = rndn(100,50);

ret = gdaCreate("myfile.gda",1);

ret = gdaWrite("myfile.gda",x,"x1");

y = rndn(75,5);

index = { 52,4 };

ret = gdaWriteSome("myfile.gda",y,"x1",index);

This example replaces 75*5=375 elements in x1, beginning with the [52,4]
element, with the elements in y.

SEE ALSO gdaReadSome, gdaUpdate, gdaWrite

GAUSS L R 28-379

getdims

getarray

PURPOSE Gets a contiguous subarray from an N-dimensional array.

FORMAT y = getarray(a,loc);

INPUT a N-dimensional array.

loc M×1 vector of indices into the array to locate the subarray of
interest, where 1<=M<=N.

OUTPUT y [N-M]-dimensional subarray or scalar.

REMARKS If N-M>0, getarray will return an array of [N-M] dimensions, otherwise, if
N-M=0, it will return a scalar.

EXAMPLE a = seqa(1,1,720);

a = areshape(a,2|3|4|5|6);

loc = { 2,1 };

y = getarray(a,loc);

y will be a 4×5×6 array of sequential values, beginning at [1,1,1] with 361, and
ending at [4,5,6] with 480.

SEE ALSO getmatrix

getdims

PURPOSE Gets the number of dimensions in an array.

FORMAT y = getdims(a);

28-380 GAUSS L R

g

getf

INPUT a N-dimensional array.

OUTPUT y scalar, the number of dimensions in the array.

EXAMPLE a = arrayinit(3|4|5|6|7|2,0);

dims = getdims(a);

dims = 6

SEE ALSO getorders

getf

PURPOSE Loads an ASCII or binary file into a string.

FORMAT y = getf(filename,mode);

INPUT filename string, any valid file name.

mode scalar 1 or 0 which determines if the file is to be loaded in ASCII
mode (0) or binary mode (1).

OUTPUT y string containing the file.

REMARKS If the file is loaded in ASCII mode, it will be tested to see if it contains any end
of file characters. These are ˆZ (ASCII 26). The file will be truncated before the
first ˆZ, and there will be no ˆZ’s in the string. This is the correct way to load
most text files because the ˆZ’s can cause problems when trying to print the
string to a printer.

If the file is loaded in binary mode, it will be loaded just like it is with no
changes.

GAUSS L R 28-381

getmatrix

EXAMPLE Create a file examp.e containing the following program:

library pgraph;

graphset;

x = seqa(0,0.1,100);

y = sin(x);

xy(x,y);

Then execute the following:

y = getf("examp.e",0);

print y;

This produces:

library pgraph;

graphset;

x = seqa(0,0.1,100);

y = sin(x);

xy(x,y);

SEE ALSO load, save, let, con

getmatrix

PURPOSE Gets a contiguous matrix from an N-dimensional array.

FORMAT y = getmatrix(a,loc);

28-382 GAUSS L R

g

getmatrix4D

INPUT a N-dimensional array.

loc M×1 vector of indices into the array to locate the matrix of interest,
where M equals N, N-1 or N-2.

OUTPUT y K×L or 1×L matrix or scalar, where L is the size of the fastest
moving dimension of the array and K is the size of the second fastest
moving dimension.

REMARKS Inputting an N×1 locator vector will return a scalar, an (N-1)×1 locator vector
will return a 1×L matrix, and an (N-2)×1 locator vector will return a K×L
matrix.

EXAMPLE a = seqa(1,1,120);

a = areshape(a,2|3|4|5);

loc = { 1,2 };

y = getmatrix(a,loc);

y =

21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40

SEE ALSO getarray, getmatrix4D

getmatrix4D

PURPOSE Gets a contiguous matrix from a 4-dimensional array.

FORMAT y = getmatrix4D(a,i1,i2);

INPUT a 4-dimensional array.

i1 scalar, index into the slowest moving dimension of the array.

GAUSS L R 28-383

getname

i2 scalar, index into the second slowest moving dimension of the array.

OUTPUT y K×L matrix, where L is the size of the fastest moving dimension of
the array and K is the size of the second fastest moving dimension.

REMARKS getmatrix4D returns the contiguous matrix that begins at the [i1,i2,1,1]
position in array a and ends at the [i1,i2,K,L] position.

A call to getmatrix4D is faster than using the more general getmatrix
function to get a matrix from a 4-dimensional array, especially when i1 and i2
are the counters from nested for loops.

EXAMPLE a = seqa(1,1,120);

a = areshape(a,2|3|4|5);

y = getmatrix4D(a,2,3);

y =

101 102 103 104 105
106 107 108 109 110
111 112 113 114 115
116 117 118 119 120

SEE ALSO getmatrix, getscalar4D, getarray

getname

PURPOSE Returns a column vector containing the names of the variables in a GAUSS data
set.

FORMAT y = getname(dset);

INPUT dset string specifying the name of the data set from which the function
will obtain the variable names.

28-384 GAUSS L R

g

getnamef

OUTPUT y N×1 vector containing the names of all of the variables in the
specified data set.

REMARKS The output, y, will have as many rows as there are variables in the data set.

EXAMPLE y = getname("olsdat");

format 8,8;

print $y;

produces:

TIME

DIST

TEMP

FRICT

The above example assumes that the data set olsdat contains the variables:
TIME, DIST, TEMP, FRICT.

Note that the extension is not included in the filename passed to the getname
function.

SEE ALSO getnamef, indcv

getnamef

PURPOSE Returns a string array containing the names of the variables in a GAUSS data
set.

FORMAT y = getnamef(f);

INPUT f scalar, file handle of an open data set

GAUSS L R 28-385

getNextTradingDay

OUTPUT y N×1 string array containing the names of all of the variables in the
specified data set.

REMARKS The output, y, will have as many rows as there are variables in the data set.

EXAMPLE open f = olsdat for read;

y = getnamef(f);

t = vartypef(f);

print y;

produces:

time

dist

temp

frict

The above example assumes that the data set olsdat contains the variables:
time, dist, temp, frict.

Note the use of vartypef to determine the types of these variables.

SEE ALSO getname, indcv, vartypef

getNextTradingDay

PURPOSE Returns the next trading day.

FORMAT n = getNextTradingDay(a);

INPUT a scalar, date in DT scalar format.

OUTPUT n scalar, next trading day in DT scalar format.

28-386 GAUSS L R

g

getNextWeekDay

REMARKS A trading day is a weekday that is not a holiday as defined by the New York
Stock Exchange from 1888 through 2006. Holidays are defined in
holidays.asc. You may edit that file to modify or add holidays.

SOURCE finutils.src

GLOBALS _fin_holidays

SEE ALSO getPreviousTradingDay, annualTradingDays

getNextWeekDay

PURPOSE Returns the next day that is not on a weekend.

FORMAT n = getNextWeekDay(a);

INPUT a scalar, date in DT scalar format.

OUTPUT n scalar, next week day in DT scalar format.

SOURCE finutils.src

SEE ALSO getPreviousWeekDay

getnr

PURPOSE Computes number of rows to read per iteration for a program that reads data
from a disk file in a loop.

FORMAT nr = getnr(nsets,ncols);

GAUSS L R 28-387

getnrmt

INPUT nsets scalar, estimate of the maximum number of duplicate copies of the
data matrix read by readr to be kept in memory during each
iteration of the loop.

ncols scalar, columns in the data file.

OUTPUT nr scalar, number of rows readr should read per iteration of the read
loop.

REMARKS If __row is greater than 0, nr will be set to __row.

If an insufficient memory error is encountered, change __rowfac to a number
less than 1.0 (e.g., 0.75). The number of rows read will be reduced in size by
this factor.

SOURCE gauss.src

GLOBALS __row, __rowfac, __maxvec

getnrmt

PURPOSE Computes number of rows to read per iteration for a program that reads data
from a disk file in a loop.

FORMAT nr = getnr(nsets,ncols,row,rowfac,maxv);

INPUT nsets scalar, estimate of the maximum number of duplicate copies of the
data matrix read by readr to be kept in memory during each
iteration of the loop.

ncols scalar, columns in the data file.
row scalar, if row is greater than 0, nr will be set to row.
rowfac scalar, nr will be reduced in size by this factor. If insufficient

memory error is encounted, change this to a number less than one
(e.g., 0.9).

28-388 GAUSS L R

g

getorders

maxv scalar, the largest number of elements allowed in any one matrix.

OUTPUT nr scalar, number of rows readr should read per iteration of the read
loop.

SOURCE gaussmt.src

getorders

PURPOSE Gets the vector of orders corresponding to an array.

FORMAT y = getorders(a);

INPUT a N-dimensional array.

OUTPUT y N×1 vector of orders, the sizes of the dimensions of the array.

EXAMPLE a = arrayalloc(7|6|5|4|3,0);

orders = getorders(a);

orders =

7
6
5
4
3

SEE ALSO getdims

GAUSS L R 28-389

getPreviousTradingDay

getpath

PURPOSE Returns an expanded filename including the drive and path.

FORMAT fname = getpath(pfname);

INPUT pfname string, partial filename with only partial or missing path information.

OUTPUT fname string, filename with full drive and path.

REMARKS This function handles relative path references.

EXAMPLE y = getpath("temp.e");

print y;

produces:

/gauss/temp.e

assuming that /gauss is the current directory.

SOURCE getpath.src

getPreviousTradingDay

PURPOSE Returns the previous trading day.

FORMAT n = getPreviousTradingDay(a);

INPUT a scalar, date in DT scalar format.

28-390 GAUSS L R

g

getPreviousWeekDay

OUTPUT n scalar, previous trading day in DT scalar format.

REMARKS A trading day is a weekday that is not a holiday as defined by the New York
Stock Exchange from 1888 through 2006. Holidays are defined in
holidays.asc. You may edit that file to modify or add holidays.

SOURCE finutils.src

GLOBALS _fin_holidays

SEE ALSO getNextTradingDay

getPreviousWeekDay

PURPOSE Returns the previous day that is not on a weekend.

FORMAT n = getPreviousWeekDay(a);

INPUT a scalar, date in DT scalar format.

OUTPUT n scalar, previous week day in DT scalar format.

SOURCE finutils.src

SEE ALSO getNextWeekDay

getRow

PURPOSE Returns a specified row from a matrix.

GAUSS L R 28-391

getscalar3D

FORMAT y = getRow(a,row);

INPUT a N×K matrix
row The row of the matrix to extract.

OUTPUT y A 1×K row vector.

REMARKS getRow is designed to give an alternative access to rows in a matrix than
indexing the matrix by brackets.

EXAMPLE a = rndn(10,10);

y = getRow(a,3);

SEE ALSO geTrRow

getscalar3D

PURPOSE Gets a scalar from a 3-dimensional array.

FORMAT y = getscalar3D(a,i1,i2,i3);

INPUT a 3-dimensional array.
i1 scalar, index into the slowest moving dimension of the array.
i2 scalar, index into the second slowest moving dimension of the array.
i3 scalar, index into the fastest moving dimension of the array.

OUTPUT y scalar, the element of the array indicated by the indices.

REMARKS getscalar3D returns the scalar that is located in the [i1,i2,i3] position of array
a.

A call to getscalar3D is faster than using the more general getmatrix
function to get a scalar from a 3-dimensional array.

28-392 GAUSS L R

g

getscalar4D

EXAMPLE a = seqa(1,1,24);

a = areshape(a,2|3|4);

y = getscalar3D(a,1,3,2);

y = 10

SEE ALSO getmatrix, getscalar4D, getarray

getscalar4D

PURPOSE Gets a scalar from a 4-dimensional array.

FORMAT y = getscalar4D(a,i1,i2,i3,i4);

INPUT a 4-dimensional array.

i1 scalar, index into the slowest moving dimension of the array.

i2 scalar, index into the second slowest moving dimension of the array.

i3 scalar, index into the second fastest moving dimension of the array.

i4 scalar, index into the fastest moving dimension of the array.

OUTPUT y scalar, the element of the array indicated by the indices.

REMARKS getscalar4D returns the scalar that is located in the [i1,i2,i3,i4] position of
array a.

A call to getscalar4D is faster than using the more general getmatrix
function to get a scalar from a 4-dimensional array.

EXAMPLE a = seqa(1,1,120);

a = areshape(a,2|3|4|5);

y = getscalar4D(a,1,3,2,5);

GAUSS L R 28-393

getTrRow

y = 50

SEE ALSO getmatrix, getscalar3D, getarray

getTrRow

PURPOSE Transposes a matrix and then returns a single row from it.

FORMAT y = getTrRow(a,row);

INPUT a N×K matrix

row The row of the matrix to extract.

OUTPUT y A 1×K row vector.

REMARKS getRow is designed to give an alternative access to rows in a matrix than
indexing the matrix by brackets.

EXAMPLE a = rndn(10,10);

y = getTrRow(a,3);

SEE ALSO getRow

getwind

PURPOSE Retrieve the current graphic panel number.

LIBRARY pgraph

28-394 GAUSS L R

g

gosub

FORMAT n = getwind;

OUTPUT n scalar, graphic panel number of current graphic panel.

REMARKS The current graphic panel is the graphic panel in which the next graph will be
drawn.

SOURCE pwindow.src

SEE ALSO endwind, begwind, window, setwind, nextwind

gosub

PURPOSE Causes a branch to a subroutine.

FORMAT gosub label;
.
.
.

label:
.
.
.

return;

REMARKS For multi-line recursive user-defined functions, see P K,
Chapter 8.

When a gosub statement is encountered, the program will branch to the label
and begin executing from there. When a return statement is encountered, the
program will resume executing at the statement following the gosub statement.
Labels are 1-32 characters long and are followed by a colon. The characters can
be A-Z or 0-9, but they must begin with an alphabetic character. Uppercase or
lowercase is allowed.

GAUSS L R 28-395

gosub

It is possible to pass parameters to subroutines and receive parameters from
them when they return. See the second example, following.

The only legal way to enter a subroutine is with a gosub statement.

If your subroutines are at the end of your program, you should have an end
statement before the first one to prevent the program from running into a
subroutine without using a gosub. This will result in a Return without
gosub error message.

The variables used in subroutines are not local to the subroutine and can be
accessed from other places in your program. (See P K,
Chapter 8.)

EXAMPLE In the program below the name mysub is a label. When the gosub statement is
executed, the program will jump to the label mysub and continue executing
from there. When the return statement is executed, the program will resume
executing at the statement following the gosub.

x = rndn(3,3); z = 0;

gosub mysub;

print z;

end;

/* ------ Subroutines Follow ------ */

mysub:

z = inv(x);

return;

Parameters can be passed to subroutines in the following way (line numbers are
added for clarity):

1. gosub mysub(x,y);

28-396 GAUSS L R

g

gosub

2. pop j; /* b will be in j */

3. pop k; /* a will be in k */

4. t = j*k;

5. print t;

6. end;

7.

8. /* ---- Subroutines Follow ----- */

9.

10. mysub:

11. pop b; /* y will be in b */

12. pop a; /* x will be in a */

13.

14. a = inv(b)*b+a;

15. b = a’b;

16. return(a,b);

In the above example, when the gosub statement is executed, the following
sequence of events results (line numbers are included for clarity):

1. x and y are pushed on the stack and the program branches to the label
mysub in line 10.

11. the second argument that was pushed, y, is pop’ped into b.

12. the first argument that was pushed, x, is pop’ped into a.

14. inv(b)*b+a is assigned to a.

15. a′b is assigned to b.

16. a and b are pushed on the stack and the program branches to the
statement following the gosub, which is line 2.

2. the second argument that was pushed, b, is pop’ped into j.

3. the first argument that was pushed, a, is pop’ped into k.

4. j*k is assigned to t.

5. t is printed.

6. the program is terminated with the end statement.

GAUSS L R 28-397

goto

Matrices are pushed on a last-in/first-out stack in the gosub() and return()
statements. They must be pop’ped off in the reverse order. No intervening
statements are allowed between the label and the pop or the gosub and the pop.
Only one matrix may be pop’ped per pop statement.

SEE ALSO goto, proc, pop, return

goto

PURPOSE Causes a branch to a label.

FORMAT goto label;
.
.
.

label:

REMARKS Label names can be any legal GAUSS names up to 32 alphanumeric characters,
beginning with an alphabetic character or an underscore, not a reserved word.

Labels are always followed immediately by a colon.

Labels do not have to be declared before they are used. GAUSS knows they are
labels by the fact that they are followed immediately by a colon.

When GAUSS encounters a goto statement, it jumps to the specified label and
continues execution of the program from there.

Parameters can be passed in a goto statement the same way as they can with a
gosub.

EXAMPLE x = seqa(.1,.1,5);

n = { 1 2 3 };

goto fip;

28-398 GAUSS L R

g

gradMT

print x;

end;

fip:

print n;

produces:

1.0000000 2.0000000 3.0000000

SEE ALSO gosub, if

gradMT

PURPOSE Computes numerical gradient.

INCLUDE optim.sdf

FORMAT g = gradMT(&fct,par1,data1);

INPUT &fct scalar, pointer to procedure returning either N×1 vector or 1×1
scalar.

par1 an instance of structure of type PV containing parameter vector at
which gradient is to be evaluated.

data1 structure of type DS containing any data needed by fct.

OUTPUT g N×K Jacobian or 1×K gradient.

REMARKS par1 must be created using the pvPack procedures.

EXAMPLE #include optim.sdf

GAUSS L R 28-399

gradMTm

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);

local p,y;

p = pvUnpack(p0,"P");

y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);

endp;

g = gradMT(&fct,p1,d0);

SOURCE gradmt.src

gradMTm

PURPOSE Computes numerical gradient with mask.

INCLUDE optim.sdf

FORMAT g = gradMTm(&fct,par1,data1,mask);

INPUT &fct scalar, pointer to procedure returning either N×1 vector or 1×1
scalar.

par1 an instance of structure of type PV containing parameter vector at
which gradient is to be evaluated.

data1 structure of type DS containing any data needed by fct.

28-400 GAUSS L R

g

gradMTT

mask K×1 matrix, elements in g corresponding to elements of mask set to
zero are not computed, otherwise they are computed.

OUTPUT g N×K Jacobian or 1×K gradient.

REMARKS par1 must be created using the pvPack procedures.

EXAMPLE #include optim.sdf

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);

local p,y;

p = pvUnpack(p0,"P");

y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);

endp;

mask = { 0, 1 };

g = gradMTm(&fct,p1,d0,mask);

SOURCE gradmt.src

gradMTT

PURPOSE Computes numerical gradient using available threads.

INCLUDE optim.sdf

GAUSS L R 28-401

gradMTTm

FORMAT g = gradMTT(fct,par1,data1);

INPUT fct scalar, pointer to procedure returning either N×1 vector or 1×1
scalar.

par1 structure of type PV containing parameter vector at which gradient is
to be evaluated

data1 structure of type DS containing any data needed by fct

OUTPUT g N×K Jacobian or 1×K gradient

REMARKS par1 must be created using the pvPack procedures

EXAMPLE #include optim.sdf

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);

local p,y;

p = pvUnpack(p0,"P");

y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);

endp;

g = gradMT(&fct,p1,d0);

SOURCE gradmtt.src

28-402 GAUSS L R

g

gradMTTm

gradMTTm

PURPOSE Computes numerical gradient with mask using threads.

INCLUDE sqpsolvemt.sdf

FORMAT g = gradMTTm(fct,par1,data1,mask);

INPUT fct scalar, pointer to procedure returning either N×1 vector or 1×1
scalar

par1 structure of type PV containing parameter vector at which gradient is
to be evaluated

data1 structure of type DS containing any data needed by fct

mask K×1 matrix, elements in g corresponding to elements of mask set to
zero are not computed otherwise are computed.

OUTPUT g N×K Jacobian or 1×K gradient

REMARKS par1 must be created using the pvPack procedures

EXAMPLE #include sqpsolvemt.sdf

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);

local p,y;

p = pvUnpack(p0,"P");

GAUSS L R 28-403

gradp, gradcplx

y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);

endp;

mask = { 0, 1 };

g = gradMTTm(&fct,p1,d0,mask);

SOURCE gradmtt.src

gradp, gradcplx

PURPOSE Computes the gradient vector or matrix (Jacobian) of a vector-valued function
that has been defined in a procedure. Single-sided (forward difference)
gradients are computed. gradcplx allows for complex arguments.

FORMAT g = gradp(&f,x0);
g = gradcplx(&f,x0);

INPUT &f a pointer to a vector-valued function (f : K×1→ N×1) defined as a
procedure. It is acceptable for f (x) to have been defined in terms of
global arguments in addition to x, and thus f can return an N×1
vector:

proc f(x);

retp(exp(x.*b));

endp;

x0 K×1 vector of points at which to compute gradient.

OUTPUT g N×K matrix containing the gradients of f with respect to the variable
x at x0.

REMARKS gradp will return a row for every row that is returned by f. For instance, if f
returns a scalar result, then gradp will return a 1×K row vector. This allows the

28-404 GAUSS L R

g

graphprt

same function to be used regardless of N, where N is the number of rows in the
result returned by f. Thus, for instance, gradp can be used to compute the
Jacobian matrix of a set of equations.

EXAMPLE proc myfunc(x);

retp(x.*2 .* exp(x.*x./3));

endp;

x0 = 2.5|3.0|3.5;

y = gradp(&myfunc,x0);

y =

82.98901842 0.00000000 0.00000000
0.00000000 281.19752975 0.00000000
0.00000000 0.00000000 1087.95414117

It is a 3×3 matrix because we are passing it 3 arguments and myfunc returns 3
results when we do that; the off-diagonals are zeros because the
cross-derivatives of 3 arguments are 0.

SOURCE gradp.src

SEE ALSO hessp, hesscplx

graphprt

PURPOSE Controls automatic printer hardcopy and conversion file output.

LIBRARY pgraph

FORMAT graphprt(str);

INPUT str string, control string.

GAUSS L R 28-405

graphprt

PORTABILITY UNIX

Not supported.

REMARKS graphprt is used to create hardcopy output automatically without user
intervention. The input string str can have any of the following items, separated
by spaces. If str is a null string, the interactive mode is entered. This is the
default.

-P print graph.

-PO=c set print orientation:

L landscape.
P portrait.

-C=n convert to another file format:

1 Encapsulated PostScript file.
3 HPGL Plotter file.
5 BMP (Windows Bitmap).
8 WMF (Windows Enhanced Metafile).

-CF=name set converted output file name.

-I minimize (iconize) the graphics window.

-Q close window after processing.

-W=n display graph, wait n seconds, then continue.

If you are not using graphic panels, you can call graphprt anytime before the
call to the graphics routine. If you are using graphic panels, call graphprt just
before the endwind statement.

The print option default values are obtained from the viewer application. Any
parameters passed through graphprt will override the default values. See
P Q G, Chapter 21.

EXAMPLE Automatic print using a single graphics call:

28-406 GAUSS L R

g

graphprt

library pgraph;

graphset;

load x,y;

graphprt("-p"); /* tell "xy" to print */

xy(x,y); /* create graph and print */

Automatic print using multiple graphic panels. Note graphprt is called once
just before the endwind call:

library pgraph;

graphset;

load x,y;

begwind;

window(1,2,0); /* create two windows */

setwind(1);

xy(x,y); /* first graphics call */

nextwind;

xy(x,y); /* second graphics call */

graphprt("-p");

endwind; /* print page containing all graphs */

The next example shows how to build a string to be used with graphprt:

library pgraph;

graphset;

load x,y;

cvtnam = "mycvt.eps"; /* name of output file */

/* concatenate options into one string */

cmdstr = "-c=1" $+ " -cf=" $+ cvtnam;

cmdstr = cmdstr $+ " -q";

GAUSS L R 28-407

graphset

graphprt(cmdstr); /* tell "xy" to convert and close */

xy(x,y); /* create graph and convert */

The above string cmdstr will read as follows:

“-c=1 -cf=mycvt.eps -q”

SOURCE pgraph.src

graphset

PURPOSE Reset graphics global variables to default values.

LIBRARY pgraph

FORMAT graphset;

REMARKS This procedure is used to reset the defaults between graphs.

graphset may be called between each graphic panel to be displayed.

To change the default values of the global control variables, make the
appropriate changes in the file pgraph.dec and to the procedure graphset.

SOURCE pgraph.src

hasimag

PURPOSE Tests whether the imaginary part of a complex matrix is negligible.

28-408 GAUSS L R

h

header

FORMAT y = hasimag(x);

INPUT x N×K matrix.

OUTPUT y scalar, 1 if the imaginary part of x has any nonzero elements, 0 if it
consists entirely of 0’s.

The function iscplx tests whether x is a complex matrix or not, but it does not
test the contents of the imaginary part of x. hasimag tests the contents of the
imaginary part of x to see if it is zero.

hasimag actually tests the imaginary part of x against a tolerance to determine
if it is negligible. The tolerance used is the imaginary tolerance set with the
sysstate command, case 21.

Some functions are not defined for complex matrices. iscplx can be used to
determine whether a matrix has no imaginary part and so can pass through those
functions. hasimag can be used to determine whether a complex matrix has a
negligible imaginary part and could thus be converted to a real matrix to pass
through those functions.

iscplx is useful as a preliminary check because for large matrices it is much
faster than hasimag.

EXAMPLE x = { 1 2 3i,

4-i 5 6i,

7 8i 9 };

y = hasimag(x);

y = 1.0000000

SEE ALSO iscplx

GAUSS L R 28-409

headermt

header

PURPOSE Prints a header for a report.

FORMAT header(prcnm,dataset,ver);

INPUT prcnm string, name of procedure that calls header.

dataset string, name of data set.

ver 2×1 numeric vector, the first element is the major version number of
the program, the second element is the revision number. Normally
this argument will be the version/revision global (__??_ver)
associated with the module within which header is called. This
argument will be ignored if set to 0.

GLOBAL
INPUT

__header string, containing one or more of the following letters:

t title is to be printed
l lines are to bracket the title
d a date and time is to be printed
v version number of program is to be printed
f file name being analyzed is to be printed

__title string, title for header.

SOURCE gauss.src

headermt

PURPOSE Prints a header for a report.

FORMAT headermt(prcnm,dataset,ver,header,title);

28-410 GAUSS L R

h

hess

INPUT prcnm string, name of procedure that calls header.

dataset string, name of data set.

ver 2×1 numeric vector, the first element is the major version number of
the program, the second element is the revision number. Normally
this argument will be the version/revision global (__??_ver)
associated with the module within which header is called. This
argument will be ignored if set to 0.

header string, containing one or more of the following letters:

t title is to be printed
l lines are to bracket the title
d a date and time is to be printed
v version number of program is to be printed
f file name being analyzed is to be printed

title string, title for header.

SOURCE gaussmt.src

hess

PURPOSE Computes the Hessenberg form of a square matrix.

FORMAT { h,z } = hess(x);

INPUT x K×K matrix.

OUTPUT h K×K matrix, Hessenberg form.

z K×K matrix, transformation matrix.

REMARKS hess computes the Hessenberg form of a square matrix. The Hessenberg form
is an intermediate step in computing eigenvalues. It also is useful for solving
certain matrix equations that occur in control theory (see Van Loan, Charles F.

GAUSS L R 28-411

hess

“Using the Hessenberg Decomposition in Control Theory”. Algorithms and
Theory in Filtering and Control. Sorenson, D.C. and R.J. Wets, eds.,
Mathematical Programming Study No. 18, North Holland, Amsterdam, 1982,
102-111).

z is an orthogonal matrix that transforms x into h and vice versa. Thus:

h = z′xz

and since z is orthogonal,

x = zhz′

x is reduced to upper Hessenberg form using orthogonal similiarity
transformations. This preserves the Frobenious norm of the matrix and the
condition numbers of the eigenvalues.

hess uses the ORTRAN and ORTHES functions from EISPACK.

EXAMPLE let x[3,3] = 1 2 3

4 5 6

7 8 9;

{ h,z } = hess(x);

h =

1.00000000 −3.59700730 −0.24806947
−8.06225775 14.04615385 2.83076923

0.00000000 0.83076923 −0.04615385

z =

1.00000000 0.00000000 0.00000000
0.00000000 −0.49613894 −0.86824314
0.00000000 −0.86824314 0.49613894

28-412 GAUSS L R

h

hessMT

SEE ALSO schur

hessMT

PURPOSE Computes numerical Hessian.

INCLUDE optim.sdf

FORMAT h = hessMT(&fct,par1,data1);

INPUT &fct scalar, pointer to procedure returning either N×1 vector or 1×1
scalar.

par1 an instance of structure of type PV containing parameter vector at
which Hessian is to be evaluated.

data1 structure of type DS containing any data needed by fct.

OUTPUT h K×K matrix, Hessian.

REMARKS par1 must be created using the pvPack procedures.

EXAMPLE #include optim.sdf

struct PV p1;

struct DS d0;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);

local p,y;

GAUSS L R 28-413

hessMTg

p = pvUnpack(p0,"P");

y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);

endp;

h = hessMT(&fct,p1,d0);

SOURCE hessmt.src

hessMTg

PURPOSE Computes numerical Hessian using gradient procedure.

INCLUDE optim.sdf

FORMAT h = hessMTg(&gfct,par1,data1);

INPUT &gfct scalar, pointer to procedure computing either 1×K gradient or N×K
Jacobian.

par1 an instance of structure of type PV containing parameter vector at
which Hessian is to be evaluated.

data1 structure of type DS containing any data needed by gfct.

OUTPUT h K×K matrix, Hessian.

REMARKS par1 must be created using the pvPack procedures.

EXAMPLE #include optim.sdf

struct PV p1;

struct DS d0;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

28-414 GAUSS L R

h

hessMTgw

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

proc gfct(&fct, struct PV p0, struct DS d0);

local p,y,g1,g2;

p = pvUnpack(p0,"P");

g1 = exp(-p[2] * d0.dataMatrix);

y = p[1] * exp(-p[2] * d0.dataMatrix);

g2 = -p[1] * d0.dataMatrix .* g1;

retp(g1˜g2);

endp;

h = hessMTg(&gfct,p1,d0);

SOURCE hessmt.src

hessMTgw

PURPOSE Computes numerical Hessian using gradient procedure with weights.

INCLUDE optim.sdf

FORMAT h = hessMTgw(&gfct,par1,data1,wgts);

INPUT &gfct scalar, pointer to procedure computing either N×K Jacobian.

par1 an instance of structure of type PV containing parameter vector at
which Hessian is to be evaluated.

data1 structure of type DS containing any data needed by gfct.

wgts N×1 vector.

OUTPUT h K×K matrix, Hessian.

GAUSS L R 28-415

hessMTm

REMARKS par1 must be created using the pvPack procedures.

EXAMPLE #include optim.sdf

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

wgts = zeros(5,1) | ones(10,1);

proc gfct(&fct, struct PV p0, struct DS d0);

local p,y,g1,g2;

p = pvUnpack(p0,"P");

g1 = exp(-p[2] * d0.dataMatrix);

y = p[1] * exp(-p[2] * d0.dataMatrix);

g2 = -p[1] * d0.dataMatrix .* g1;

retp(g1˜g2);

endp;

h = hessMTgw(&gfct,p1,d0,wgts);

SOURCE hessmt.src

hessMTm

PURPOSE Computes numerical Hessian with mask.

INCLUDE optim.sdf

FORMAT h = hessMTm(&fct,par1,data1,mask);

28-416 GAUSS L R

h

hessMTmw

INPUT &fct scalar, pointer to procedure returning either N×1 vector or scalar.

par1 an instance of structure of type PV containing parameter vector at
which Hessian is to be evaluated.

data1 structure of type DS containing any data needed by fct.

mask K×K matrix, elements in h corresponding to elements of mask set to
zero are not computed, otherwise are computed.

OUTPUT h K×K matrix, Hessian.

REMARKS par1 must be created using the pvPack procedures. Only lower left part of
mask looked at.

EXAMPLE #include optim.sdf

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

mask = { 1 1,

1 0 };

proc fct(struct PV p0, struct DS d0);

local p,y;

p = pvUnpack(p0,"P");

y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);

endp;

h = hessMTm(&fct,p1,d0,mask);

SOURCE hessmt.src

GAUSS L R 28-417

hessMTmw

hessMTmw

PURPOSE Computes numerical Hessian with mask and weights.

INCLUDE optim.sdf

FORMAT h = hessMTmw(&fct,par1,data1,mask,wgts);

INPUT &fct scalar, pointer to procedure returning N×1 vector.

par1 an instance of structure of type PV containing parameter vector at
which Hessian is to be evaluated.

data1 structure of type DS containing any data needed by fct.

mask K×K matrix, elements in h corresponding to elements of mask set to
zero are not computed, otherwise are computed.

wgts N×1 vector, weights.

OUTPUT h K×K matrix, Hessian.

REMARKS fct must evaluate to an N×1 vector conformable to the weight vector. par1 must
be created using the pvPack procedures.

EXAMPLE #include optim.sdf

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

wgts = zeros(5,1) | ones(10,1);

mask = { 1 1,

1 0 };

28-418 GAUSS L R

h

hessMTT

proc fct(&fct, struct PV p0, struct DS d0, wgts);

local p,y;

p = pvUnpack(p0,"P");

y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);

endp;

h = hessMTmw(&fct,p1,d0,mask,wgt);

SOURCE hessmt.src

hessMTT

PURPOSE Computes numerical Hessian using available threads.

FORMAT h = hessMTT(fct,par1,data1)];

INCLUDE optim.sdf

INPUT fct scalar, pointer to procedure returning either N×1 vector or 1×1
scalar.

par1 structure of type PV containing parameter vector at which Hessian is
to be evaluated

data1 structure of type DS containing any data needed by fct

OUTPUT h K×K matrix, Hessian

REMARKS par1 must be created using the pvPack procedures

EXAMPLE #include optim.sdf

GAUSS L R 28-419

hessMTTg

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);

local p,y;

p = pvUnpack(p0,"P");

y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);

endp;

h = hessMTT(&fct,p1,d0);

SOURCE hessmtt.src

hessMTTg

PURPOSE Computes numerical Hessian using gradient procedure with available threads.

INCLUDE optim.sdf

FORMAT h = hessMTTg(gfct,par1,data1);

INPUT gfct scalar, pointer to procedure computing either 1×K gradient or N×K
Jacobian

par1 structure of type PV containing parameter vector at which Hessian is
to be evaluated

data1 structure of type DS containing any data needed by fct

28-420 GAUSS L R

h

hessMTTgw

OUTPUT h K×K matrix, Hessian

REMARKS par1 must be created using the pvPack procedures.

EXAMPLE #include optim.sdf

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

proc gfct(&fct, struct PV p0, struct DS d0, wgt);

local p,y,g1,g2;

p = pvUnpack(p0,"P");

g1 = exp(-p[2] * d0.dataMatrix);

y = p[1] * exp(-p[2] * d0.dataMatrix);

g2 = -p[1] * d0.dataMatrix .* g1;

retp(g1˜g2);

endp;

h = hessMTTg(&gfct,p1,d0);

SOURCE hessmtt.src

hessMTTgw

PURPOSE Computes numerical Hessian using gradient procedure with weights and using
available threads.

INCLUDE optim.sdf

GAUSS L R 28-421

hessMTTgw

FORMAT h = hessMTTgw(gfct,par1,data1,wgts);

INPUT gfct scalar, pointer to procedure computing either 1×K gradient or N×K
Jacobian

par1 structure of type PV containing parameter vector at which Hessian is
to be evaluated

data1 structure of type DS containing any data needed by fct

wgts Nx1 vector, weights

OUTPUT

h K×K matrix, Hessian

REMARKS par1 must be created using the pvPack procedures.

EXAMPLE #include optim.sdf

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

wgts = zeros(5,1) | ones(10,1);

proc gfct(&fct, struct PV p0, struct DS d0);

local p,y,g1,g2;

p = pvUnpack(p0,"P");

g1 = exp(-p[2] * d0.dataMatrix);

y = p[1] * exp(-p[2] * d0.dataMatrix);

g2 = -p[1] * d0.dataMatrix .* g1;

retp(g1˜g2);

endp;

h = hessMTTg(&gfct,p1,d0,wgts);

28-422 GAUSS L R

h

hessMTTm

SOURCE hessmtt.src

hessMTTm

PURPOSE Computes numerical Hessian with mask using available threads.

INCLUDE optim.sdf

FORMAT h = hessMTTm(fct,par1,data1,mask);

INPUT fct scalar, pointer to procedure returning either N×1 vector or 1×1
scalar.

par1 structure of type PV containing parameter vector at which Hessian is
to be evaluated

data1 structure of type DS containing any data needed by fct

mask K×K matrix, elements in h corresponding to elements of mask set to
zero are not computed otherwise are computed

OUTPUT h K×K matrix, Hessian

REMARKS par1 must be created using the pvPack procedures. Only lower left part of
mask looked at.

EXAMPLE #include optim.sdf

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

GAUSS L R 28-423

hessMTw

mask = { 1 1

1 0 };

proc fct(struct PV p0, struct DS d0);

local p,y;

p = pvUnpack(p0,"P");

y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);

endp;

h = hessMTTm(&fct,p1,d0,mask);

SOURCE hessmtt.src

hessMTw

PURPOSE Computes numerical Hessian with weights.

INCLUDE optim.sdf

FORMAT h = hessMTw(&fct,par1,data1,wgts);

INPUT &fct scalar, pointer to procedure returning N×1 vector.

par1 an instance of structure of type PV containing parameter vector at
which Hessian is to be evaluated.

data1 structure of type DS containing any data needed by fct.

wgts N×1 vector, weights.

OUTPUT h K×K matrix, Hessian.

REMARKS fct must evaluate to an N×1 vector conformable to the weight vector. par1 must
be created using the pvPack procedures.

28-424 GAUSS L R

h

hessp, hesscplx

EXAMPLE #include optim.sdf

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

wgt = zeros(5,1) | ones(10,1);

proc fct(&fct, struct PV p0, struct DS d0, wgt);

local p,y;

p = pvUnpack(p0,"P");

y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);

endp;

h = hessMTw(&fct,p1,d0,wgt);

SOURCE hessmt.src

hessp, hesscplx

PURPOSE Computes the matrix of second partial derivatives (Hessian matrix) of a function
defined as a procedure. hesscplx allows for complex arguments.

FORMAT h = hessp(&f,x0);

INPUT &f pointer to a single-valued function f (x), defined as a procedure,
taking a single K×1 vector argument (f : K×1→ 1×1); f (x) may be
defined in terms of global arguments in addition to x.

x0 K×1 vector specifying the point at which the Hessian of f (x) is to be
computed.

GAUSS L R 28-425

hist

OUTPUT h K×K matrix of second derivatives of f with respect to x at x0; this
matrix will be symmetric.

REMARKS This procedure requires K*(K+1)/2 function evaluations. Thus if K is large, it
may take a long time to compute the Hessian matrix.

No more than 3-4 digit accuracy should be expected from this function, though
it is possible for greater accuracy to be achieved with some functions.

It is important that the function be properly scaled, in order to obtain greatest
possible accuracy. Specifically, scale it so that the first derivatives are
approximately the same size. If these derivatives differ by more than a factor of
100 or so, the results can be meaningless.

EXAMPLE x = { 1, 2, 3 };

proc g(b);

retp(exp(x’b));

endp;

b0 = { 3, 2, 1 };

h = hessp(&g,b0);

The resulting matrix of second partial derivatives of g(b) evaluated at b=b0 is:

22027.12898372 44054.87238165 66083.36762901
44054.87238165 88111.11102645 132168.66742899
66083.36762901 132168.66742899 198256.04087836

SOURCE hessp.src

SEE ALSO gradp, gradcp

28-426 GAUSS L R

h

hist

hist

PURPOSE Computes and graphs a frequency histogram for a vector. The actual
frequencies are plotted for each category.

LIBRARY pgraph

FORMAT { b,m,freq } = hist(x,v);

INPUT x M×1 vector of data.

v N×1 vector, the breakpoints to be used to compute the frequencies

- or -

scalar, the number of categories.

OUTPUT b P×1 vector, the breakpoints used for each category.

m P×1 vector, the midpoints of each category.

freq P×1 vector of computed frequency counts.

REMARKS If a vector of breakpoints is specified, a final breakpoint equal to the maximum
value of x will be added if the maximum breakpoint value is smaller.

If a number of categories is specified, the data will be divided into v evenly
spaced categories.

Each time an element falls into one of the categories specified in b, the
corresponding element of freq will be incremented by one. The categories are

GAUSS L R 28-427

histf

interpreted as follows:

f req[1] = x <= b[1]
f req[2] = b[1] < x <= b[2]
f req[3] = b[2] < x <= b[3]
·

·

·

f req[P] = b[P − 1] < x <= b[P]

EXAMPLE library pgraph;

x = rndn(5000,1);

{ b,m,f } = hist(x,20);

SOURCE phist.src

SEE ALSO histp, histf, bar

histf

PURPOSE Graphs a histogram given a vector of frequency counts.

LIBRARY pgraph

FORMAT histf(f,c);

INPUT f N×1 vector, frequencies to be graphed.

c N×1 vector, numeric labels for categories. If this is a scalar 0, a
sequence from 1 to rows(f) will be created.

REMARKS The axes are not automatically labeled. Use xlabel for the category axis and
ylabel for the frequency axis.

28-428 GAUSS L R

h

histp

SOURCE phist.src

SEE ALSO hist, bar, xlabel, ylabel

histp

PURPOSE Computes and graphs a percent frequency histogram of a vector. The
percentages in each category are plotted.

LIBRARY pgraph

FORMAT { b,m,freq } = histp(x,v);

INPUT x M×1 vector of data.

v N×1 vector, the breakpoints to be used to compute the frequencies
- or -

scalar, the number of categories.

OUTPUT b P×1 vector, the breakpoints used for each category.

m P×1 vector, the midpoints of each category.

freq P×1 vector of computed frequency counts. This is the vector of
counts, not percentages.

REMARKS If a vector of breakpoints is specified, a final breakpoint equal to the maximum
value of x will be added if the maximum breakpoint value is smaller.

If a number of categories is specified, the data will be divided into v evenly
spaced categories.

Each time an element falls into one of the categories specified in b, the
corresponding element of freq will be incremented by one. The categories are

GAUSS L R 28-429

hsec

interpreted as follows:

f req[1] = x <= b[1]
f req[2] = b[1] < x <= b[2]
f req[3] = b[2] < x <= b[3]
·

·

·

f req[P] = b[P − 1] < x <= b[P]

SOURCE phist.src

SEE ALSO hist, histf, bar

hsec

PURPOSE Returns the number of hundredths of a second since midnight.

FORMAT y = hsec;

OUTPUT y scalar, hundredths of a second since midnight.

REMARKS The number of hundredths of a second since midnight can also be accessed as
the [4,1] element of the vector returned by the date function.

EXAMPLE x = rndu(1000,1000);

ts = hsec;

y = x*x;

et = hsec-ts;

In this example, hsec is used to time a 1000×1000 multiplication in GAUSS. A
1000×1000 matrix, x, is created, and the current time, in hundredths of a second

28-430 GAUSS L R

h

if

since midnight, is stored in the variable ts. Then the multiplication is carried
out. Finally, ts is subtracted from hsec to give the time difference which is
assigned to et.

SEE ALSO date, time, timestr, ethsec, etstr

if

PURPOSE Controls program flow with conditional branching.

FORMAT if scalar expression;
list of statements;

elseif scalar expression;
list of statements;

elseif scalar expression;
list of statements;

else;

list of statements;
endif;

REMARKS scalar expression is any expression that returns a scalar. It is TRUE if it is not
zero, and FALSE if it is zero.

A list of statements is any set of GAUSS statements.

GAUSS will test the expression after the if statement. If it is TRUE (nonzero),
then the first list of statements is executed. If it is FALSE (zero), then GAUSS
will move to the expression after the first elseif statement, if there is one, and
test it. It will keep testing expressions and will execute the first list of
statements that corresponds to a TRUE expression. If no expression is TRUE,
then the list of statements following the else statement is executed. After the
appropriate list of statements is executed, the program will go to the statement
following the endif and continue on.

GAUSS L R 28-431

imag

if statements can be nested.

One endif is required per if statement. If an else statement is used, there may
be only one per if statement. There may be as many elseif’s as are required.
There need not be any elseif’s or any else statement within an if statement.

Note the semicolon after the else statement.

EXAMPLE if x < 0;

y = -1;

elseif x > 0;

y = 1;

else;

y = 0;

endif;

SEE ALSO do

imag

PURPOSE Returns the imaginary part of x.

FORMAT zi = imag(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT zi N×K matrix or N-dimensional array, the imaginary part of x.

REMARKS If x is real, zi will be an N×K matrix or N-dimensional array of zeros.

EXAMPLE x = { 4i 9 3,

2 5-6i 7i };

28-432 GAUSS L R

i

#include

y = imag(x);

y =
4.0000000 0.0000000 0.0000000
0.0000000 −6.0000000 7.0000000

SEE ALSO complex, real

#include

PURPOSE Inserts code from another file into a GAUSS program.

FORMAT #include filename
#include ‘‘filename’’

REMARKS filename can be any legitimate file name.

This command makes it possible to write a section of general-purpose code, and
insert it into other programs.

The code from the #include’d file is inserted literally as if it were merged into
that place in the program with a text editor.

If a path is specified for the file, then no additional searching will be attempted
if the file is not found.

If a path is not specified, the current directory will be searched first, then each
directory listed in src_path. src_path is defined in gauss.cfg.

#include /gauss/myprog.prc No additional search will be made if
the file is not found.

#include myprog.prc The directories listed in src_path will
be searched for myprog.prc if the file
is not found in the current directory.

GAUSS L R 28-433

indcv

Compile time errors will return the line number and the name of the file in
which they occur. For execution time errors, if a program is compiled with
#lineson, the line number and name of the file where the error occurred will
be printed. For files that have been #include’d this reflects the actual line
number within the #include’d file. See #lineson for a more complete
discussion of the use of and the validity of line numbers when debugging.

EXAMPLE #include "/gauss/inc/cond.inc"

The command will cause the code in the program cond.inc to be merged into
the current program at the point at which this statement appears.

SEE ALSO run, #lineson

indcv

PURPOSE Checks one character vector against another and returns the indices of the
elements of the first vector in the second vector.

FORMAT z = indcv(what,where);

INPUT what N×1 character vector which contains the elements to be found in
vector where.

where M×1 character vector to be searched for matches to the elements of
what.

OUTPUT z N×1 vector of integers containing the indices of the corresponding
element of what in where.

REMARKS If no matches are found for any of the elements in what, then the corresponding
elements in the returned vector are set to the GAUSS missing value code.

Both arguments will be forced to uppercase before the comparison.

28-434 GAUSS L R

i

indexcat

If there are duplicate elements in where, the index of the first match will be
returned.

EXAMPLE let what = AGE PAY SEX;

let where = AGE SEX JOB date PAY;

z = indcv(what,where);

what =

AGE
PAY
SEX

where =

AGE
SEX
JOB
date
PAY

z =

1
5
2

SEE ALSO indnv, indsav

indexcat

PURPOSE Returns the indices of the elements of a vector which fall into a specified
category

FORMAT y = indexcat(x,v);

INPUT x N×1 vector.

GAUSS L R 28-435

indexcat

v scalar or 2×1 vector.

If scalar, the function returns the indices of all elements of x equal to
v.

If 2×1, then the function returns the indices of all elements of x that
fall into the range:

v[1] < x ≤ v[2]

If v is scalar, it can contain a single missing to specify the missing
value as the category.

OUTPUT y L×1 vector, containing the indices of the elements of x which fall
into the category defined by v. It will contain error code 13 if there
are no elements in this category.

REMARKS Use a loop to pull out indices of multiple categories.

EXAMPLE let x = 1.0 4.0 3.3 4.2 6.0 5.7 8.1 5.5;

let v = 4 6;

y = indexcat(x,v);

x =

1.0
4.0
3.3
4.2
6.0
5.7
8.1
5.5

v =
4
6

28-436 GAUSS L R

i

indices

y =

4
5
6
8

indices

PURPOSE Processes a set of variable names or indices and returns a vector of variable
names and a vector of indices.

FORMAT { name,indx } = indices(dataset,vars);

INPUT dataset string, the name of the data set.

vars N×1 vector, a character vector of names or a numeric vector of
column indices.
If scalar 0, all variables in the data set will be selected.

OUTPUT name N×1 character vector, the names associated with vars.

indx N×1 numeric vector, the column indices associated with vars.

REMARKS If an error occurs, indices will either return a scalar error code or terminate
the program with an error message, depending on the trap state. If the low
order bit of the trap flag is 0, indices will terminate with an error message. If
the low order bit of the trap flag is 1, indices will return an error code. The
value of the trap flag can be tested with trapchk; the return from indices can
be tested with scalerr. You only need to check one argument; they will both
be the same. The following error codes are possible:

1 Can’t open dataset.
2 Index of variable out of range, or undefined data set variables.

GAUSS L R 28-437

indices2

SOURCE indices.src

indices2

PURPOSE Processes two sets of variable names or indices from a single file. The first is a
single variable and the second is a set of variables. The first must not occur in
the second set and all must be in the file.

FORMAT { name1,indx1,name2,indx2 } = indices2(dataset,var1,var2);

INPUT dataset string, the name of the data set.
var1 string or scalar, variable name or index.

This can be either the name of the variable, or the column index of
the variable.
If null or 0, the last variable in the data set will be used.

var2 N×1 vector, a character vector of names or a numeric vector of
column indices.
If scalar 0, all variables in the data set except the one associated with
var1 will be selected.

OUTPUT name1 scalar character matrix containing the name of the variable
associated with var1.

indx1 scalar, the column index of var1.
name2 N×1 character vector, the names associated with var2.
indx2 N×1 numeric vector, the column indices of var2.

REMARKS If an error occurs, indices2 will either return a scalar error code or terminate
the program with an error message, depending on the trap state. If the low
order bit of the trap flag is 0, indices2 will terminate with an error message. If
the low order bit of the trap flag is 1, indices2 will return an error code. The
value of the trap flag can be tested with trapchk; the return from indices2
can be tested with scalerr. You only need to check one argument; they will all
be the same. The following error codes are possible:

28-438 GAUSS L R

i

indicesf

1 Can’t open dataset.
2 Index of variable out of range, or undefined data set variables.
3 First variable must be a single name or index.
4 First variable contained in second set.

SOURCE indices2.src

indicesf

PURPOSE Processes a set of variable names or indices and returns a vector of variable
names and a vector of indices.

FORMAT { name,indx } = indicesf(fp,namein,indxin);

INPUT fp scalar, file handle of an open data set.

namein N×1 string array, names of selected columns in the data set. If set to
a null string, columns are selected using indxin

indxin N×1 vector, indices of selected columns in the data set. If set to 0,
columns are selected using namein.

OUTPUT name N×1 string array, the names of the selected columns.

indx N×1 vector, the indices of the selected columns.

REMARKS If namein is a null string and indxin is 0, all columns of the data set will be
selected.

If an error occurs, indx will be set to a scalar error code. The following error
codes are possible:

1 Can’t open data file
2 Variable not found
3 Indices outside of range of columns

GAUSS L R 28-439

indicesfn

SOURCE indices.src

SEE ALSO indicesfn, indices

indicesfn

PURPOSE Processes a set of variable names or indices and returns a vector of variable
names and a vector of indices.

FORMAT { name,indx } = indicesfn(dataset,namein,indxin);

INPUT dataset string, name of the data set.
namein N×1 string array, names of selected columns in the data set. If set to

a null string, columns are selected using indxin
indxin N×1 vector, indices of selected columns in the data set. If set to 0,

columns are selected using namein.

OUTPUT name N×1 string array, the names of the selected columns.
indx N×1 vector, the indices of the selected columns.

REMARKS If namein is a null string and indxin is 0, all columns of the data set will be
selected.

If an error occurs, indx will be set to a scalar error code. The following error
codes are possible:

1 Can’t open data file
2 Variable not found
3 Indices outside of range of columns

SOURCE indices.src

SEE ALSO indicesf, indices

28-440 GAUSS L R

i

indnv

indnv

PURPOSE Checks one numeric vector against another and returns the indices of the
elements of the first vector in the second vector.

FORMAT z = indnv(what,where);

INPUT what N×1 numeric vector which contains the values to be found in vector
where.

where M×1 numeric vector to be searched for matches to the values in
what.

OUTPUT z N×1 vector of integers, the indices of the corresponding elements of
what in where.

REMARKS If no matches are found for any of the elements in what, then those elements in
the returned vector are set to the GAUSS missing value code.

If there are duplicate elements in where, the index of the first match will be
returned.

EXAMPLE let what = 8 7 3;

let where = 2 7 8 4 3;

z = indnv(what,where);

what =

8
7
3

GAUSS L R 28-441

indsav

where =

2
7
8
4
3

z =

3
2
5

SEE ALSO indcv

indsav

PURPOSE Checks one string array against another and returns the indices of the first string
array in the second string array.

FORMAT indx = indsav(what,where);

INPUT what N×1 string array which contains the values to be found in vector
where.

where M×1 string array to be searched for the corresponding elements of
what.

OUTPUT indx N×1 vector of indices, the values of what in where.

REMARKS If no matches are found, those elements in the returned vector are set to the
GAUSS missing value code.

If there are duplicate elements in where, the index of the first match will be
returned.

28-442 GAUSS L R

i

intgrat2

intgrat2

PURPOSE Integrates the following double integral, using user-defined functions f, g1 and
g2 and scalars a and b:

∫ b

a

∫ g1(x)

g2(x)
f (x, y)dydx

FORMAT y = intgrat2(&f,xl,gl);

INPUT &f scalar, pointer to the procedure containing the function to be
integrated.

xl 2×1 or 2×N matrix, the limits of x. These must be scalar limits.

gl 2×1 or 2×N matrix of function pointers, the limits of y.
For xl and gl, the first row is the upper limit and the second row is
the lower limit. N integrations are computed.

GLOBAL
INPUT

_intord scalar, the order of the integration. The larger _intord, the
more precise the final result will be. _intord may be set to
2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.
Default = 12.

_intrec scalar. This variable is used to keep track of the level of
recursion of intgrat2 and may start out with a different
value if your program terminated inside of the integration
function on a previous run. Always set _intrec explicitly to
0 before any call to intgrat2.

OUTPUT y N×1 vector of the estimated integral(s) of f (x, y), evaluated between
the limits given by xl and gl.

REMARKS The user-defined functions specified by f and gl must either

GAUSS L R 28-443

intgrat3

1. Return a scalar constant
- or -

2. Return a vector of function values. intgrat2 will pass to
user-defined functions a vector or matrix for x and y and expect
a vector or matrix to be returned. Use .* and ./ instead of *
and /.

EXAMPLE proc f(x,y);

retp(cos(x) + 1).*(sin(y) + 1));

endp;

proc g1(x);

retp(sqrt(1-xˆ2));

endp;

proc g2(x);

retp(0);

endp;

xl = 1|-1;

g0 = &g1|&g2;

_intord = 40;

_intrec = 0;

y = intgrat2(&f,xl,g0);

This will integrate the function f (x, y) = (cos(x) + 1)(sin(y) + 1) over the upper
half of the unit circle. Note the use of the .* operator instead of just * in the
definition of f (x, y). This allows f to return a vector or matrix of function
values.

SOURCE intgrat.src

GLOBALS _intord, _intq12, _intq16, _intq2, _intq20, _intq24, _intq3, _intq32,
_intq4, _intq40, _intq6, _intq8, _intrec

SEE ALSO intgrat3, intquad1, intquad2, intquad3, intsimp

28-444 GAUSS L R

i

intgrat3

intgrat3

PURPOSE Integrates the following triple integral, using user-defined functions and scalars
for bounds:

∫ b

a

∫ g1(x)

g2(x)

∫ h1(x,y)

h2(x,y)
f (x, y, z)dzdydx

FORMAT y = intgrat3(&f,xl,gl,hl);

INPUT &f scalar, pointer to the procedure containing the function to be
integrated. f is a function of (x,y,z).

xl 2×1 or 2×N matrix, the limits of x. These must be scalar limits.
gl 2×1 or 2×N matrix of function pointers. These procedures are

functions of x.
hl 2×1 or 2×N matrix of function pointers. These procedures are

functions of x and y.

For xl, gl, and hl, the first row is the upper limit and the second row is the lower
limit. N integrations are computed.

GLOBAL
INPUT

_intord scalar, the order of the integration. The larger _intord, the
more precise the final result will be. _intord may be set to
2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.
Default = 12.

_intrec scalar. This variable is used to keep track of the level of
recursion of intgrat3 and may start out with a different
value if your program terminated inside of the integration
function on a previous run. Always set _intrec explicitly to
0 before any call to intgrat3.

OUTPUT y N×1 vector of the estimated integral(s) of f (x, y, z) evaluated
between the limits given by xl, gl and hl.

GAUSS L R 28-445

intgrat3

REMARKS User-defined functions f, and those used in gl and hl must either:

1. Return a scalar constant
- or -

2. Return a vector of function values. intgrat3 will pass to
user-defined functions a vector or matrix for x and y and expect
a vector or matrix to be returned. Use .* and ./ operators
instead of just * and /.

EXAMPLE proc f(x,y,z);

retp(2);

endp;

proc g1(x);

retp(sqrt(25-xˆ2));

endp;

proc g2(x);

retp(-g1(x));

endp;

proc h1(x,y);

retp(sqrt(25 - xˆ2 - yˆ2));

endp;

proc h2(x,y);

retp(-h1(x,y));

endp;

xl = 5|-5;

g0 = &g1|&g2;

h0 = &h1|&h2;

_intrec = 0;

_intord = 40;

y = intgrat3(&f,xl,g0,h0);

This will integrate the function f (x, y, z) = 2 over the sphere of radius 5. The

28-446 GAUSS L R

i

inthp1

result will be approximately twice the volume of a sphere of radius 5.

SOURCE intgrat.src

GLOBALS _intord, _intq12, _intq16, _intq2, _intq20, _intq24, _intq3, _intq32,
_intq4, _intq40, _intq6, _intq8, _intrec

SEE ALSO intgrat2, intquad1, intquad2, intquad3, intsimp

inthp1

PURPOSE Integrates a user-defined function over an infinite interval.

INCLUDE inthp.sdf

FORMAT y = inthp1(&f,pds,ctl);

INPUT &f scalar, pointer to the procedure containing the function to be
integrated.

pds scalar, pointer to instance of a DS structure. The members of the DS
are:

pds->dataMatrix N×K matrix.
pds->dataArray N×K×L... array.
pds->vnames string array.
pds->dsname string.
pds->type scalar.

The contents, if any, are set by the user and are passed by inthp1 to
the user-provided function without modification.

ctl instance of an inthpControl structure with members

ctl.maxEvaluations scalar, maximum number of function
evaluations, default = 1e5;

GAUSS L R 28-447

inthp1

ctl.p scalar, termination parameter
0 heuristic termination, default.
1 deterministic termination with infinity

norm.
2,... deterministic termination with p-th

norm.
ctl.d scalar termination parameter

1 if heuristic termination
0 < ctl.d ≤ π/2 if deterministic termination

ctl.eps scalar, relative error bound. Default = 1e-6.

A default ctl can be generated by calling inthpControlCreate.

OUTPUT y scalar, the estimated integral of f (x) evaluated over the interval
(−∞,+∞).

REMARKS The user-provided function must have the following format

f(struct DS *pds,x)

where

pds scalar, pointer to an instance of a DS structure.

x scalar, value at which integral will be evaluated.

If ctl.d can be specified (see Sikorski and Stenger, 1984), deterministic
termination can be specified and accuracy guaranteed. if not, the heuristic
method can be used and the value of clt.d is disregarded.

The pointer to the instance of the data structure, pds, is passed untouched to the
user-provided procedure computing the function to be integrated. Any
information needed by that function can be put into that data structure.

EXAMPLE #include inthp.sdf

proc fct(struct DS *pds, x);

28-448 GAUSS L R

i

inthp2

local var;

var = pds->dataMatrix;

retp(exp(-(x*x) / (2*var)));

endp;

struct DS d0;

struct DS *pds;

variance = 3;

pds = &d0;

d0.dataMatrix = variance;

struct inthpControl c0;

c0 = inthpControlCreate;

r = inthp1(&fct,pds,c0);

format /ld 16,10;

print r;

print sqrt(2*pi*variance);

4.3416075273

4.3416075273

REFERENCES 1. “Optimal Quadratures in H p Spaces” by K. Sikorski and F. Stenger, ACM
Transactions on Mathematical Software, 10(2):140-151, June 1984.

SOURCE inthp.src

SEE ALSO inthpControlCreate, inthp2, inthp3, inthp4

inthp2

GAUSS L R 28-449

inthp2

PURPOSE Integrates a user-defined function over the [a,+∞) interval.

INCLUDE inthp.sdf

FORMAT y = inthp2(&f,pds,ctl,a);

INPUT &f scalar, pointer to the procedure containing the function to be
integrated.

pds scalar, pointer to instance of a DS structure. The members of the DS
are:

pds->dataMatrix N×K matrix.
pds->dataArray N×K×L... array.
pds->vnames string array.
pds->dsname string.
pds->type scalar.

The contents, if any, are set by the user and are passed by inthp1 to
the user-provided function without modification.

ctl instance if an inthpControl structure with members

ctl.maxEvaluations scalar, maximum number of function
evaluations, default = 1e5;

ctl.p scalar, termination parameter

0 heuristic termination, default.
1 deterministic termination with infinity

norm.
2,... deterministic termination with p-th

norm.

ctl.d scalar termination parameter

1 if heuristic termination
0 < ctl.d ≤ π/2 if deterministic termination

ctl.eps scalar, relative error bound. Default = 1e-6.

A default ctl can be generated by calling inthpControlCreate.

a 1×N vector, lower limits of integration

28-450 GAUSS L R

i

inthp2

OUTPUT y N×1 vector, the estimated integrals of f (x) evaluated over the
interval [a,+∞).

REMARKS The user-provided function must have the following format

f(struct DS *pds,x)

where

pds scalar, pointer to an instance of a DS structure.

x scalar, value at which integral will be evaluated.

If ctl.d can be specified (see Sikorski and Stenger, 1984), deterministic
termination can be specified and accuracy guaranteed. if not, the heuristic
method can be used and the value of clt.d is disregarded.

The pointer to the instance of the data structure, pds, is passed untouched to the
user-provided procedure computing the function to be integrated. Any
information needed by that function can be put into that data structure.

EXAMPLE #include inthp.sdf

proc normal(struct DS *pd0, x);

local var;

var = pd0->dataMatrix;

retp((1/sqrt(2*pi*var))*exp(-(x*x) / (2*var)));

endp;

struct DS d0;

struct DS *pd0;

pd0 = &d0;

d0.dataMatrix = var;

struct inthpControl c0;

c0 = inthpControlCreate;

GAUSS L R 28-451

inthp3

lim = 2;

c0.d = pi/4;

c0.p = 2;

var = 1;

r = inthp2(&normal,pd0,c0,lim);

format /ld 16,10;

print r;

print cdfnc(2);

0.0227501281

0.0227501319

REFERENCES 1. “Optimal Quadratures in H p Spaces” by K. Sikorski and F. Stenger, ACM
Transactions on Mathematical Software, 10(2):140-151, June 1984.

SOURCE inthp.src

SEE ALSO inthpControlCreate, inthp1, inthp3, inthp4

inthp3

PURPOSE Integrates a user-defined function over the [a,+∞) interval that is oscillatory.

INCLUDE inthp.sdf

FORMAT y = inthp3(&f,pds,ctl,a);

INPUT &f scalar, pointer to the procedure containing the function to be
integrated.

28-452 GAUSS L R

i

inthp3

pds scalar, pointer to instance of a DS structure. The members of the DS
are:

pds->dataMatrix N×K matrix.
pds->dataArray N×K×L... array.
pds->vnames string array.
pds->dsname string.
pds->type scalar.

The contents, if any, are set by the user and are passed by inthp1 to
the user-provided function without modification.

ctl instance if an inthpControl structure with members

ctl.maxEvaluations scalar, maximum number of function
evaluations, default = 1e5;

ctl.p scalar, termination parameter
0 heuristic termination, default.
1 deterministic termination with infinity

norm.
2,... deterministic termination with p-th

norm.
ctl.d scalar termination parameter

1 if heuristic termination
0 < ctl.d ≤ π/2 if deterministic termination

ctl.eps scalar, relative error bound. Default = 1e-6.

A default ctl can be generated by calling inthpControlCreate.
a 1×N vector, lower limits of integration

OUTPUT y N×1 vector, the estimated integrals of f (x) evaluated over the
interval [a,+∞).

REMARKS This procedure is designed especially for oscillatory functions.

The user-provided function must have the following format

f(struct DS *pds,x)

where

GAUSS L R 28-453

inthp3

pds scalar, pointer to an instance of a DS structure.

x scalar, value at which integral will be evaluated.

If ctl.d can be specified (see Sikorski and Stenger, 1984), deterministic
termination can be specified and accuracy guaranteed. if not, the heuristic
method can be used and the value of clt.d is disregarded.

The pointer to the instance of the data structure, pds, is passed untouched to the
user-provided procedure computing the function to be integrated. Any
information needed by that function can be put into that data structure.

EXAMPLE #include inthp.sdf

proc fct(struct DS *pd0, x);

local m,a;

m = pd0->dataMatrix[1];

a = pd0->dataMatrix[2];

retp(exp(-a*x)*cos(m*x));

endp;

struct DS d0;

struct DS *pd0;

struct inthpControl c0;

c0 = inthpControlCreate;

c0.p = 2;

c0.d = pi/3;

m = 2;

a = 1;

pd0 = &d0;

d0.dataMatrix = m | a;

lim = 0;

r = inthp3(&fct,pd0,c0,lim);

28-454 GAUSS L R

i

inthp4

format /ld 16,10;

print r;

print a/(a*a + m*m);

0.2000000000

0.2000000000

REFERENCES 1. “Optimal Quadratures in H p Spaces” by K. Sikorski and F. Stenger, ACM
Transactions on Mathematical Software, 10(2):140-151, June 1984.

SOURCE inthp.src

SEE ALSO inthpControlCreate, inthp1, inthp2, inthp4

inthp4

PURPOSE Integrates a user-defined function over the [a,b] interval.

INCLUDE inthp.sdf

FORMAT y = inthp4(&f,pds,ctl,c);

INPUT &f scalar, pointer to the procedure containing the function to be
integrated.

pds scalar, pointer to instance of a DS structure. The members of the DS
are:

pds->dataMatrix N×K matrix.
pds->dataArray N×K×L... array.
pds->vnames string array.
pds->dsname string.
pds->type scalar.

GAUSS L R 28-455

inthp4

The contents, if any, are set by the user and are passed by inthp1 to
the user-provided function without modification.

ctl instance if an inthpControl structure with members

ctl.maxEvaluations scalar, maximum number of function
evaluations, default = 1e5;

ctl.p scalar, termination parameter
0 heuristic termination, default.
1 deterministic termination with infinity

norm.
2,... deterministic termination with p-th

norm.
ctl.d scalar termination parameter

1 if heuristic termination
0 < ctl.d ≤ π/2 if deterministic termination

ctl.eps scalar, relative error bound. Default = 1e-6.

A default ctl can be generated by calling inthpControlCreate.

c 2×N vector, upper and lower limits of integration, the first row
contains upper limits and the second row the lower.

OUTPUT y N×1 vector, the estimated integrals of f (x) evaluated over the
interval [a,b].

REMARKS The user-provided function must have the following format

f(struct DS *pds,x)

where

pds scalar, pointer to an instance of a DS structure.

x scalar, value at which integral will be evaluated.

If ctl.d can be specified (see Sikorski and Stenger, 1984), deterministic
termination can be specified and accuracy guaranteed. if not, the heuristic
method can be used and the value of clt.d is disregarded.

28-456 GAUSS L R

i

inthp4

The pointer to the instance of the data structure, pds, is passed untouched to the
user-provided procedure computing the function to be integrated. Any
information needed by that function can be put into that data structure.

EXAMPLE #include inthp.sdf

proc fct(struct DS *pd0, x);

local a,b,c;

a = pd0->dataMatrix[1];

b = pd0->dataMatrix[2];

c = pd0->dataMatrix[3];

retp(1/sqrt(a*x*x + b*x + c));

endp;

struct DS d0;

struct DS *pd0;

struct inthpControl c0;

c0 = inthpControlCreate;

c0.p = 2;

c0.d = pi/2;

a = -1;

b = -2;

c = 3;

pd0 = &d0;

d0.dataMatrix = a|b|c;

lim = 1 | -1;

r = inthp4(&fct,pd0,c0,lim);

format /ld 16,10;

print r;

print pi/2;

GAUSS L R 28-457

inthpControlCreate

1.5707962283

1.5707963268

REFERENCES 1. “Optimal Quadratures in H p Spaces” by K. Sikorski and F. Stenger, ACM
Transactions on Mathematical Software, 10(2):140-151, June 1984.

SOURCE inthp.src

SEE ALSO inthpControlCreate, inthp1, inthp2, inthp3

inthpControlCreate

PURPOSE Creates default inthpControl structure.

INCLUDE inthp.sdf

FORMAT c = inthpControlCreate;

OUTPUT c instance of inthpControl structure with members set to default
values.

SOURCE inthp.src

SEE ALSO inthp1, inthp2, inthp3, inthp4

intquad1

PURPOSE Integrates a specified function using Gauss-Legendre quadrature. A suite of
upper and lower bounds may be calculated in one procedure call.

28-458 GAUSS L R

i

intquad2

FORMAT y = intquad1(&f,xl);

INPUT &f scalar, pointer to the procedure containing the function to be
integrated. This must be a function of x.

xl 2×N matrix, the limits of x.
The first row is the upper limit and the second row is the lower limit.
N integrations are computed.

GLOBAL
INPUT

_intord scalar, the order of the integration. The larger _intord, the
more precise the final result will be. _intord may be set to
2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.
Default = 12.

OUTPUT y N×1 vector of the estimated integral(s) of f (x) evaluated between the
limits given by xl.

REMARKS The user-defined function f must return a vector of function values. intquad1
will pass to the user-defined function a vector or matrix for x and expect a
vector or matrix to be returned. Use the .* and ./ instead of * and /.

EXAMPLE proc f(x);

retp(x.*sin(x));

endp;

xl = 1|0;

y = intquad1(&f,xl);

This will integrate the function f (x) = xsin(x) between 0 and 1. Note the use of
the .* instead of *.

SOURCE integral.src

GLOBALS _intord, _intq12, _intq16, _intq2, _intq20, _intq24, _intq3, _intq32,
_intq4, _intq40, _intq6, _intq8

SEE ALSO intsimp, intquad2, intquad3, intgrat2, intgrat3

GAUSS L R 28-459

intquad2

intquad2

PURPOSE Integrates a specified function using Gauss-Legendre quadrature. A suite of
upper and lower bounds may be calculated in one procedure call.

FORMAT y = intquad2(&f,xl,yl);

INPUT &f scalar, pointer to the procedure containing the function to be
integrated.

xl 2×1 or 2×N matrix, the limits of x.
yl 2×1 or 2×N matrix, the limits of y.

For xl and yl, the first row is the upper limit and the second row is the lower
limit. N integrations are computed.

GLOBAL
INPUT

_intord scalar, the order of the integration. The larger _intord, the
more precise the final result will be. _intord may be set to
2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.
Default = 12.

_intrec scalar. This variable is used to keep track of the level of
recursion of intquad2 and may start out with a different
value if your program terminated inside of the integration
function on a previous run. Always set _intrec explicitly to
0 before any calls to intquad2.

OUTPUT y N×1 vector of the estimated integral(s) of f (x, y) evaluated between
the limits given by xl and yl.

REMARKS The user-defined function f must return a vector of function values. intquad2
will pass to user-defined functions a vector or matrix for x and y and expect a
vector or matrix to be returned. Use .* and ./ instead of * and /.

intquad2 will expand scalars to the appropriate size. This means that functions
can be defined to return a scalar constant. If users write their functions

28-460 GAUSS L R

i

intquad3

incorrectly (using * instead of .*, for example), intquad2 may not compute
the expected integral, but the integral of a constant function.

To integrate over a region which is bounded by functions, rather than just
scalars, use intgrat2 or intgrat3.

EXAMPLE proc f(x,y);

retp(x.*sin(x+y));

endp;

xl = 1|0;

yl = 1|0;

_intrec = 0;

y = intquad2(&f,xl,yl);

This will integrate the function x.*sin(x+y) between x = 0 and 1, and
between y = 0 and 1.

SOURCE integral.src

GLOBALS _intord, _intq12, _intq16, _intq2, _intq20, _intq24, _intq3, _intq32,
_intq4, _intq40, _intq6, _intq8, _intrec

SEE ALSO intquad1, intquad3, intsimp, intgrat2, intgrat3

intquad3

PURPOSE Integrates a specified function using Gauss-Legendre quadrature. A suite of
upper and lower bounds may be calculated in one procedure call.

FORMAT y = intquad3(&f,xl,yl,zl);

INPUT &f scalar, pointer to the procedure containing the function to be

GAUSS L R 28-461

intquad3

integrated. f is a function of (x,y,z).

xl 2×1 or 2×N matrix, the limits of x.

yl 2×1 or 2×N matrix, the limits of y.

zl 2×1 or 2×N matrix, the limits of z.

For xl, yl, and zl, the first row is the upper limit and the second row is the lower
limit. N integrations are computed.

GLOBAL
INPUT

_intord scalar, the order of the integration. The larger _intord, the
more precise the final result will be. _intord may be set to
2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.
Default = 12.

_intrec scalar. This variable is used to keep track of the level of
recursion of intquad3 and may start out with a different
value if your program terminated inside of the integration
function on a previous run. Always set _intrec explicitly to
0 before any calls to intquad3.

OUTPUT y N×1 vector of the estimated integral(s) of f (x, y, z) evaluated
between the limits given by xl, yl, and zl.

REMARKS The user-defined function f must return a vector of function values. intquad3
will pass to the user-defined function a vector or matrix for x, y and z and expect
a vector or matrix to be returned. Use .* and ./ instead of * and /.

intquad3 will expand scalars to the appropriate size. This means that functions
can be defined to return a scalar constant. If users write their functions
incorrectly (using * instead of .*, for example), intquad3 may not compute
the expected integral, but the integral of a constant function.

To integrate over a region which is bounded by functions, rather than just
scalars, use intgrat2 or intgrat3.

EXAMPLE proc f(x,y,z);

retp(x.*y.*z);

endp;

28-462 GAUSS L R

i

intrleav

xl = 1|0;

yl = 1|0;

zl = { 1 2 3, 0 0 0 };

_intrec = 0;

y = intquad3(&f,xl,yl,zl);

This will integrate the function f (x) = x ∗ y ∗ z over 3 sets of limits, since zl is
defined to be a 2×3 matrix.

SOURCE integral.src

GLOBALS _intord, _intq12, _intq16, _intq2, _intq20, _intq24, _intq3, _intq32,
_intq4, _intq40, _intq6, _intq8, _intrec

SEE ALSO intquad1, intquad2, intsimp, intgrat2, intgrat3

intrleav

PURPOSE Interleaves the rows of two files that have been sorted on a common variable to
produce a single file sorted on that variable.

FORMAT intrleav(infile1,infile2,outfile,keyvar,keytyp);

INPUT infile1 string, name of input file 1.

infile2 string, name of input file 2.

outfile string, name of output file.

keyvar string, name of key variable; this is the column the files are sorted
on.

keytyp scalar, data type of key variable.

1 numeric key, ascending order

GAUSS L R 28-463

intrleavsa

2 character key, ascending order
-1 numeric key, descending order
-2 character key, descending order

REMARKS The two files MUST have exactly the same variables, that is, the same number
of columns AND the same variable names. They must both already be sorted on
the key column. This procedure will combine them into one large file, sorted by
the key variable.

If the inputs are null (“” or 0), the procedure will ask for them.

SOURCE sortd.src

SEE ALSO intrleavsa

intrleavsa

PURPOSE Interleaves the rows of two string arrays that have been sorted on a common
column.

FORMAT y = intrleavsa(sa1,sa2,ikey);

INPUT sa1 N×K string array 1.
sa2 M×K string array 2.
ikey scalar integer, index of the key column the string arrays are sorted

on.

OUTPUT y L×K interleaved (combined) string array.

REMARKS The two string arrays MUST have exactly the same number of columns AND
have been already sorted on a key column.

This procedure will combine them into one large string array, sorted by the key
column.

28-464 GAUSS L R

i

intrsect

SOURCE sortd.src

SEE ALSO intrleav

intrsect

PURPOSE Returns the intersection of two vectors, with duplicates removed.

FORMAT y = intrsect(v1,v2,flag);

INPUT v1 N×1 vector.

v2 M×1 vector.

flag scalar, if 1, v1 and v2 are numeric; if 0, character.

OUTPUT y L×1 vector containing all unique values that are in both v1 and v2,
sorted in ascending order.

REMARKS Place smaller vector first for fastest operation.

If there are a lot of duplicates within a vector, it is faster to remove them with
unique before calling intrsect.

SOURCE intrsect.src

EXAMPLE v1 = { 3, 9, 5, 2, 10, 15 };

v2 = { 4, 9, 8, 5, 12, 3, 1 };

y = intrsect(v1,v2,1);

y =

3
5
9

GAUSS L R 28-465

intrsectsa

SEE ALSO intrsectsa

intrsectsa

PURPOSE Returns the intersection of two string vectors, with duplicates removed.

FORMAT y = intrsectsa(sv1,sv2);

INPUT sv1 N×1 or 1×N string vector.
sv2 M×1 or 1×M string vector.

OUTPUT sy L×1 vector containing all unique strings that are in both sv1 and sv2,
sorted in ascending order.

REMARKS Place smaller vector first for fastest operation.

If there are a lot of duplicates it is faster to remove them with unique before
calling intrsectsa.

EXAMPLE string sv1 = { "mary", "jane", "linda", "dawn" };

string sv2 = { "mary", "sally", "jane", "lisa", "ruth" };

sy = intrsectsa(sv1,sv2);

SOURCE intrsect.src

SEE ALSO intrsect

intsimp

PURPOSE Integrates a specified function using Simpson’s method with end correction. A
single integral is computed in one function call.

28-466 GAUSS L R

i

inv, invpd

FORMAT y = intsimp(&f,xl,tol);

INPUT &f pointer to the procedure containing the function to be integrated.
xl 2×1 vector, the limits of x.

The first element is the upper limit and the second element is the
lower limit.

tol The tolerance to be used in testing for convergence.

OUTPUT y The estimated integral of f (x) between xl[1] and xl[2].

EXAMPLE proc f(x);

retp(sin(x));

endp;

let xl = { 1,

0 };

y = intsimp(&f,xl,1E-8);

y = 0.45969769

This will integrate the function between 0 and 1.

SOURCE intsimp.src

SEE ALSO intquad1, intquad2, intquad3, intgrat2, intgrat3

inv, invpd

PURPOSE inv returns the inverse of an invertible matrix.

invpd returns the inverse of a symmetric, positive definite matrix.

GAUSS L R 28-467

inv, invpd

FORMAT y = inv(x);
y = invpd(x);

INPUT x N×N matrix or K-dimensional array where the last two dimensions
are N×N.

OUTPUT y N×N matrix or K-dimensional array where the last two dimensions
are N×N, containing the inverse of x.

REMARKS x can be any legitimate expression that returns a matrix or array that is legal for
the function.

If x is an array, the result will be an array containing the inverses of each
2-dimensional array described by the two trailing dimensions of x. In other
words, for a 10×4×4 array, the result will be an array of the same size
containing the inverses of each of the 10 4×4 arrays contained in x

For inv, if x is a matrix, it must be square and invertible. Otherwise, if x is an
array, the 2-dimensional arrays described by the last two dimensions of x must
be square and invertible.

For invpd, if x is a matrix, it must be symmetric and positive definite.
Otherwise, if x is an array, the 2-dimensional arrays described by the last two
dimensions of x must be symmetric and positive definite.

If the input matrix is not invertible by these functions, they will either terminate
the program with an error message or return an error code which can be tested
for with the scalerr function. This depends on the trap state as follows:

trap 1, return error code

inv invpd

50 20

trap 0, terminate with error message

inv invpd

Matrix singular Matrix not positive definite

28-468 GAUSS L R

i

invswp

If the input to invpd is not symmetric, it is possible that the function will
(erroneously) appear to operate successfully.

Positive definite matrices can be inverted by inv. However, for symmetric,
positive definite matrices (such as moment matrices), invpd is about twice as
fast as inv.

EXAMPLE n = 4000;

x1 = rndn(n,1);

x = ones(n,1)˜x1;

btrue = { 1, 0.5 };

y = x*btrue + rndn(n,1);

bols = invpd(x’x)*x’y;

bols = 1.017201 0.484244

This example simulates some data and computes the ols coefficient estimator
using the invpd function. First, the number of observations is specified.
Second, a vector x1 of standard Normal random variables is generated and is
concatenated with a vector of ones (to create a constant term). The true
coefficients are specified, and the dependent variable y is created. Then the ols
coefficient estimates are computed.

invswp

PURPOSE Computes a generalized sweep inverse.

FORMAT y = invswp(x);

INPUT x N×N matrix.

OUTPUT y N×N matrix, the generalized inverse of x.

GAUSS L R 28-469

iscplx

REMARKS This will invert any general matrix. That is, even matrices which will not invert
using inv because they are singular will invert using invswp.

x and y will satisfy the two conditions:

1. xyx = x
2. yxy = y

invswp returns a row and column with zeros when the pivot fails. This is good
for quadratic forms since it essentially removes rows with redundant
information, i.e., the statistices generated will be “correct” but with reduced
degrees of freedom.

The tolerance used to determine if a pivot element is zero is taken from the
crout singularity tolerance. The corresponding row and column are zeroed out.
See S T, Appendix C.

EXAMPLE let x[3,3] = 1 2 3 4 5 6 7 8 9;

y = invswp(x);

y =

−1.6666667 0.66666667 0.0000000
1.3333333 −0.33333333 0.0000000
0.0000000 0.0000000 0.0000000

iscplx

PURPOSE Returns whether a matrix or N-dimensional array is complex or real.

FORMAT y = iscplx(x);

INPUT x N×K matrix or N-dimensional array.

28-470 GAUSS L R

i

iscplxf

OUTPUT y scalar, 1 if x is complex, 0 if it is real.

EXAMPLE x = { 1, 2i, 3 };

y = iscplx(x);

y = 1.0000000

SEE ALSO hasimag, iscplxf

iscplxf

PURPOSE Returns whether a data set is complex or real.

FORMAT y = iscplxf(fh);

INPUT fh scalar, file handle of an open file.

OUTPUT y scalar, 1 if the data set is complex, 0 if it is real.

SEE ALSO hasimag, iscplx

isden

PURPOSE Returns whether a scalar, matrix or N-dimensional array contains denormals.

FORMAT y = isden(x);

INPUT x N×K matrix or N-dimensional array.

GAUSS L R 28-471

isinfnanmiss

OUTPUT y scalar, 1 if x contains a denormal, 0 if it does not.

EXAMPLE x = { 1, exp(-724.5), 3 };

y = isden(x);

y = 1.0000000

SEE ALSO denToZero

isinfnanmiss

PURPOSE Returns true if the argument contains an infinity, NaN, or missing value.

FORMAT y = isinfnanmiss(x);

INPUT x N×K matrix.

OUTPUT y scalar, 1 if x contains any infinities, NaNs, or missing values, else 0.

SEE ALSO scalinfnanmiss, ismiss, scalmiss

ismiss

PURPOSE Returns a 1 if its matrix argument contains any missing values, otherwise
returns a 0.

FORMAT y = ismiss(x);

INPUT x N×K matrix.

28-472 GAUSS L R

i

keep (dataloop)

OUTPUT y scalar, 1 if x contains any missing values, otherwise 0.

REMARKS An element of x is considered to be a missing if and only if it contains a missing
value in the real part. Thus, if x = 1 + .i, ismiss(x) will return a 0.

EXAMPLE x = { 1 6 3 4 };

y = ismiss(x);

y = 0.0000000

SEE ALSO scalmiss, miss, missrv

keep (dataloop)

PURPOSE Specifies columns (variables) to be saved to the output data set in a data loop.

FORMAT keep variable list;

REMARKS Commas are optional in variable list.

Retains only the specified variables in the output data set. Any variables
referenced must already exist, either as elements of the source data set, or as the
result of a previous make, vector, or code statement.

If neither keep nor drop is used, the output data set will contain all variables
from the source data set, as well as any newly defined variables. The effects of
multiple keep and drop statements are cumulative.

EXAMPLE keep age, pay, sex;

SEE ALSO drop (dataloop)

GAUSS L R 28-473

key

key

PURPOSE Returns the ASCII value of the next key available in the keyboard buffer.

FORMAT y = key;

OUTPUT y scalar, ASCII value of next available key in keyboard buffer.

REMARKS If you are working in terminal mode, key does not “see” any keystrokes until
ENTER is pressed. The value returned will be zero if no key is available in the
buffer or it will equal the ASCII value of the key if one is available. The key is
taken from the buffer at this time and the next call to key will return the next
key.

Here are the values returned if the key pressed is not a standard ASCII character
in the range of 1-255:

1015 SHIFT+TAB

1016-1025 ALT+Q, W, E, R, T, Y, U, I, O, P

1030-1038 ALT+A, S, D, F, G, H, J, K, L

1044-1050 ALT+Z, X, C, V, B, N, M

1059-1068 F1-F10

1071 HOME

1072 CURSOR UP

1073 PAGE UP

1075 CURSOR LEFT

1077 CURSOR RIGHT

1079 END

1080 CURSOR DOWN

1081 PAGE DOWN

1082 INSERT

28-474 GAUSS L R

k

key

1083 DELETE

1084-1093 SHIFT+F1-F10

1094-1103 CTRL+F1-F10

1104-1113 ALT+F1-F10

1114 CTRL+PRINT SCREEN

1115 CTRL+CURSOR LEFT

1116 CTRL+CURSOR RIGHT

1117 CTRL+END

1118 CTRL+PAGE DOWN

1119 CTRL+HOME

1120-1131 ALT+1,2,3,4,5,6,7,8,9,0,-,=

1132 CTRL+PAGE UP

EXAMPLE format /rds 1,0;

kk = 0;

do until kk == 27;

kk = key;

if kk == 0;

continue;

elseif kk == vals(" ");

print "space \\" kk;

elseif kk == vals("\r");

print "carriage return \\" kk;

elseif kk >= vals("0") and kk <= vals("9");

print "digit \\" kk chrs(kk);

elseif vals(upper(chrs(kk))) >= vals("A") and

vals(upper(chrs(kk))) <= vals("Z");

print "alpha \\" kk chrs(kk);

else;

print "\\" kk;

endif;

endo;

This is an example of a loop that processes keyboard input. This loop will
continue until the escape key (ASCII 27) is pressed.

GAUSS L R 28-475

keyav

SEE ALSO vals, chrs, upper, lower, con, cons

keyav

PURPOSE Check if keystroke is available.

FORMAT x = keyav;

OUTPUT x scalar, value of key or 0 if no key is available.

SEE ALSO keyw, key

keyw

PURPOSE Waits for and gets a key.

FORMAT k = keyw;

OUTPUT k scalar, ASCII value of the key pressed.

REMARKS If you are working in terminal mode, GAUSS will not see any input until you
press the ENTER key. keyw gets the next key from the keyboard buffer. If the
keyboard buffer is empty, keyw waits for a keystroke. For normal keys, keyw
returns the ASCII value of the key. See key for a table of return values for
extended and function keys.

SEE ALSO key

28-476 GAUSS L R

k

keyword

keyword

PURPOSE Begins the definition of a keyword procedure. Keywords are user-defined
functions with local or global variables.

FORMAT keyword name(str);

INPUT name literal, name of the keyword. This name will be a global symbol.

str string, a name to be used inside the keyword to refer to the argument
that is passed to the keyword when the keyword is called. This will
always be local to the keyword, and cannot be accessed from outside
the keyword or from other keywords or procedures.

REMARKS A keyword definition begins with the keyword statement and ends with the
endp statement. See P K, Chapter 8.

Keywords always have 1 string argument and 0 returns. GAUSS will take
everything past name, excluding leading spaces, and pass it as a string argument
to the keyword. Inside the keyword, the argument is a local string. The user is
responsible to manipulate or parse the string.

An example of a keyword definition is:

keyword add(str);

local tok,sum;

sum = 0;

do until str $=\,= "";

{ tok, str } = token(str);

sum = sum + stof(tok);

endo;

print "Sum is: " sum;

endp;

GAUSS L R 28-477

lag (dataloop)

To use this keyword, type:

add 1 2 3 4 5;

This keyword will respond by printing:

Sum is: 15

SEE ALSO proc, local, endp

lag (dataloop)

PURPOSE Lags variables a specified number of periods.

FORMAT lag nv1 = var1:p1 [[nv2 = var2:p2...]];

INPUT var name of the variable to lag.

p scalar constant, number of periods to lag.

OUTPUT nv name of the new lagged variable.

REMARKS You can specify any number of variables to lag. Each variable can be lagged a
different number of periods. Both positive and negative lags are allowed.

Lagging is executed before any other transformations. If the new variable name
is different from that of the variable to lag, the new variable is first created and
appended to a temporary data set. This temporary data set becomes the input
data set for the dataloop, and is then automatically deleted.

28-478 GAUSS L R

l

lagn

lag1

PURPOSE Lags a matrix by one time period for time series analysis.

FORMAT y = lag1(x);

INPUT x N×K matrix.

OUTPUT y N×K matrix, x lagged 1 period.

REMARKS lag1 lags x by one time period, so the first observations of y are missing.

SOURCE lag.src

SEE ALSO lagn

lagn

PURPOSE Lags a matrix a specified number of time periods for time series analysis.

FORMAT y = lagn(x,t);

INPUT x N×K matrix.

t scalar, number of time periods.

OUTPUT y N×K matrix, x lagged t periods.

REMARKS If t is positive, lagn lags x back t time periods, so the first t observations of y
are missing. If t is negative, lagn lags x forward t time periods, so the last t
observations of y are missing.

GAUSS L R 28-479

lapeighb

SOURCE lag.src

SEE ALSO lag1

lapeighb

PURPOSE Computes eigenvalues only of a real symmetric or complex Hermitian matrix
selected by bounds.

FORMAT ve = lapeighb(x,vl,vu,abstol);

INPUT x N×N matrix, real symmetric or complex Hermitian.

vl scalar, lower bound of the interval to be searched for eigenvalues.

vu scalar, upper bound of the interval to be searched for eigenvalues; vu
must be greater than vl.

abstol scalar, the absolute error tolerance for the eigenvalues. An
approximate eigenvalue is accepted as converged when it is
determined to lie in an interval [a,b] of width less than or equal to
abstol + EPS*max(| a|,|b|), where EPS is machine precision. If
abstol is less than or equal to zero, then EPS*||T || will be used in its
place, where T is the tridiagonal matrix obtained by reducing the
input matrix to tridiagonal form.

OUTPUT ve M×1 vector, eigenvalues, where M is the number of eigenvalues on
the half open interval [vl,vu]. If no eigenvalues are found then ve is a
scalar missing value.

REMARKS lapeighb computes eigenvalues only which are found on on the half open
interval [vl,vu]. To find eigenvalues within a specified range of indices see
lapeighi. For eigenvectors see lapeighvi, or lapeighvb. lapeighb is
based on the LAPACK drivers DYESVX and ZHEEVX. Further documentation
of these functions may be found in the LAPACK User’s Guide.

28-480 GAUSS L R

l

lapeighi

EXAMPLE x = { 5 2 1,

2 6 2,

1 2 9 };

vl = 5;

vu = 10;

ve = lapeighi(x,vl,vu,0);

print ve;

6.0000

SEE ALSO lapeighb, lapeighvi, lapeighvb

lapeighi

PURPOSE Computes eigenvalues only of a real symmetric or complex Hermitian matrix
selected by index.

FORMAT ve = lapeighi(x,il,iu,abstol);

INPUT x N×N matrix, real symmetric or complex Hermitian.

il scalar, index of the smallest desired eigenvalue ranking them from
smallest to largest.

iu scalar, index of the largest desired eigenvalue, iu must be greater
than il.

abstol scalar, the absolute error tolerance for the eigenvalues. An
approximate eigenvalue is accepted as converged when it is
determined to lie in an interval [a,b] of width less than or equal to
abstol + EPS*max(|a|,|b|), where EPS is machine precision. If abstol
is less than or equal to zero, then EPS*||T || will be used in its place,
where T is the tridiagonal matrix obtained by reducing the input
matrix to tridiagonal form.

GAUSS L R 28-481

lapeighvb

OUTPUT ve (iu-il+1)×1 vector, eigenvalues.

REMARKS lapeighi computes iu-il+1 eigenvalues only given a range of indices, i.e., the
ith to jth eigenvalues, ranking them from smallest to largest. To find eigenvalues
within a specified range see lapeighxb. For eigenvectors see lapeighvi, or
lapeighvb. lapeighi is based on the LAPACK drivers DYESVX and
ZHEEVX. Further documentation of these functions may be found in the
LAPACK User’s Guide.

EXAMPLE x = { 5 2 1,

2 6 2,

1 2 9 };

il = 2;

iu = 3;

ve = lapeighi(x,il,iu,0);

print ve;

6.0000 10.6056

SEE ALSO lapeighb, lapeighvi, lapeighvb

lapeighvb

PURPOSE Computes eigenvalues and eigenvectors of a real symmetric or complex
Hermitian matrix selected by bounds.

FORMAT { ve,va } = lapeighvb(x,vl,vu,abstol);

INPUT x N×N matrix, real symmetric or complex Hermitian.

vl scalar, lower bound of the interval to be searched for eigenvalues.

vu scalar, upper bound of the interval to be searched for eigenvalues; vu
must be greater than vl.

28-482 GAUSS L R

l

lapeighvi

abstol scalar, the absolute error tolerance for the eigenvalues. An
approximate eigenvalue is accepted as converged when it is
determined to lie in an interval [a,b] of width less than or equal to
abstol + EPS*max(|a|,|b|), where EPS is machine precision. If abstol
is less than or equal to zero, then EPS*||T || will be used in its place,
where T is the tridiagonal matrix obtained by reducing the input
matrix to tridiagonal form.

OUTPUT ve M×1 vector, eigenvalues, where M is the number of eigenvalues on
the half open interval [vl,vu]. If no eigenvalues are found then s is a
scalar missing value.

va N×M matrix, eigenvectors.

REMARKS lapeighvb computes eigenvalues and eigenvectors which are found on the half
open interval [vl,vu]. lapeighvb is based on the LAPACK drivers DYESVX
and ZHEEVX. Further documentation of these functions may be found in the
LAPACK User’s Guide.

EXAMPLE x = { 5 2 1,

2 6 2,

1 2 9 };

vl = 5;

vu = 10;

{ ve,va } = lapeighvb(x,vl,vu,0);

print ve;

6.00000000

print va;

-0.57735027

0.00000000

0.00000000

SEE ALSO lapeighvb

GAUSS L R 28-483

lapeighvi

lapeighvi

PURPOSE Computes selected eigenvalues and eigenvectors of a real symmetric or complex
Hermitian matrix.

FORMAT { ve,va } = lapeighvi(x,il,iu,abstol);

INPUT x N×N matrix, real symmetric or complex Hermitian.

il scalar, index of the smallest desired eigenvalue ranking them from
smallest to largest.

iu scalar, index of the largest desired eigenvalue, iu must be greater
than il.

abstol scalar, the absolute error tolerance for the eigenvalues. An
approximate eigenvalue is accepted as converged when it is
determined to lie in an interval [a,b] of width less than or equal to
abstol + EPS*max(|a|,|b|), where EPS is machine precision. If abstol
is less than or equal to zero, then EPS*||T || will be used in its place,
where T is the tridiagonal matrix obtained by reducing the input
matrix to tridiagonal form.

OUTPUT ve (iu-il+1)×1 vector, eigenvalues.

va N×(iu-il+1) matrix, eigenvectors.

REMARKS lapeighvi computes iu-il+1 eigenvalues and eigenvectors given a range of
indices, i.e., the ith to jth eigenvalues, ranking them from smallest to largest. To
find eigenvalues and eigenvectors within a specified range see lapeighvb.
lapeighvi is based on the LAPACK drivers DYESVX and ZHEEVX. Further
documentation of these functions may be found in the LAPACK User’s Guide.

EXAMPLE x = { 5 2 1,

2 6 2,

1 2 9 };

28-484 GAUSS L R

l

lapgeig

il = 2;

iu = 3;

{ ve,va } = lapeighvi(x,il,iu,0);

print ve;

6.00000000

10.60555128

print va;

-0.57735027 -0.57735027

-0.31970025 -0.49079864

0.00000000 0.00000000

SEE ALSO lapeighvb, lapeighb

lapgeig

PURPOSE Computes generalized eigenvalues for a pair of real or complex general
matrices.

FORMAT { va1,va2 } = lapgeig(A,B);

INPUT A N×N matrix, real or complex general matrix.

B N×N matrix, real or complex general matrix.

OUTPUT va1 N×1 vector, numerator of eigenvalues.

va2 N×1 vector, denominator of eigenvalues.

REMARKS va1 and va2 are the vectors of the numerators and denominators respectively of
the eigenvalues of the solution of the generalized symmetric eigenproblem of
the form Aw = eBw where A and B are real or complex general matrices and w
= va1 ./ va2. The generalized eigenvalues are not computed directly because

GAUSS L R 28-485

lapgeigh

some elements of va2 may be zero, i.e., the eigenvalues may be infinite. This
procedure calls the LAPACK routines DGEGV and ZGEGV.

SEE ALSO lapgeig, lapgeigh

lapgeigh

PURPOSE Computes generalized eigenvalues for a pair of real symmetric or Hermitian
matrices.

FORMAT ve = lapgeigh(A,B);

INPUT A N×N matrix, real or complex symmetric or Hermitian matrix.

B N×N matrix, real or complex positive definite symmetric or
Hermitian matrix.

OUTPUT ve N×1 vector, eigenvalues.

REMARKS ve is the vector of eigenvalues of the solution of the generalized symmetric
eigenproblem of the form Ax = λBx.

EXAMPLE A = { 3 4 5,

2 5 2,

3 2 4 };

B = { 4 2 2,

2 6 1,

2 1 8 };

ve = lapgeigh(A,B);

print ve;

28-486 GAUSS L R

l

lapgeighv

-0.70051730

0.48661989

1.27818313

This procedure calls the LAPACK routines DSYGV and ZHEGV.

SEE ALSO lapgeig, lapgeighv

lapgeighv

PURPOSE Computes generalized eigenvalues and eigenvectors for a pair of real symmetric
or Hermitian matrices.

FORMAT { ve,va } = lapgeighv(A,B);

INPUT A N×N matrix, real or complex symmetric or Hermitian matrix.
B N×N matrix, real or complex positive definite symmetric or

Hermitian matrix.

OUTPUT ve N×1 vector, eigenvalues.
va N×N matrix, eigenvectors.

REMARKS ve and va are the eigenvalues and eigenvectors of the solution of the generalized
symmetric eigenproblem of the form Ax = λBx. Equivalently, va diagonalizes
U′−1AU−1 in the following way

vaU′−1AY−1va′ = ve

where B = U′U. This procedure calls the LAPACK routines DSYGV and
ZHEGV.

EXAMPLE A = { 3 4 5,

GAUSS L R 28-487

lapgeigv

2 5 2,

3 2 4 };

B = { 4 2 2,

2 6 1,

2 1 8 };

{ ve, va } = lapgeighv(A,B);

print ve;

-0.0425

0.5082

0.8694

print va;

0.3575 -0.0996 0.9286

-0.2594 0.9446 0.2012

-0.8972 -0.3128 0.3118

SEE ALSO lapgeig, lapgeigh

lapgeigv

PURPOSE Computes generalized eigenvalues, left eigenvectors, and right eigenvectors for
a pair of real or complex general matrices.

FORMAT { va1,va2,lve,rve } = lapgeigv(A,B);

INPUT A N×N matrix, real or complex general matrix.
B N×N matrix, real or complex general matrix.

OUTPUT va1 N×1 vector, numerator of eigenvalues.

28-488 GAUSS L R

l

lapgsvdcst

va2 N×1 vector, denominator of eigenvalues.

lve N×N left eigenvectors.

rve N×N right eigenvectors.

REMARKS va1 and va2 are the vectors of the numerators and denominators respectively of
the eigenvalues of the solution of the generalized symmetric eigenproblem of
the form Aw = λBw where A and B are real or complex general matrices and
w = va1./va2. The generalized eigenvalues are not computed directly because
some elements of va2 may be zero, i.e., the eigenvalues may be infinite.

The left and right eigenvectors diagonalize U′−1AU−1 where B = U′U, that is,

lve U′−1AU lve′ = w

and

rve′U′−1AU−1rve = w

This procedure calls the LAPACK routines DGEGV and ZGEGV.

SEE ALSO lapgeig, lapgeigh

lapgsvdcst

PURPOSE Compute the generalized singular value decomposition of a pair of real or
complex general matrices.

FORMAT { C,S,R,U,V,Q } = lapgsvdcst(A,B);

INPUT A M×N matrix.

GAUSS L R 28-489

lapgsvdcst

B P×N matrix.

OUTPUT C L×1 vector, singular values for A.
S L×1 vector, singular values for B.
R (K+L)×(K+L) upper triangular matrix.
U M×M matrix, orthogonal transformation matrix.
V P×P matrix, orthogonal transformation matrix.
Q N×N matrix, orthogonal transformation matrix.

REMARKS (1) The generalized singular value decomposition of A and B is

U′AQ = D1Z

V ′BQ = D2Z

where U, V, and Q are orthogonal matrices (see lapgsvdcst and lapgsvdst).
Letting K+L = the rank of A|B then R is a (K+L)×(K+L) upper triangular
matrix, D1 and D2 are M×(K+L) and P×(K+L) matrices with entries on the
diagonal, Z = [0R], and if M-K-L >= 0

D1 =

K L
K [I 0]
L [0 C]

M − K − L [0 0]

D2 =
K L

P [0 S]
P − L [0 0]

[0 R] =
N − K − L K L

K [0 R11 R12]
L [0 0 R22]

28-490 GAUSS L R

l

lapgsvdcst

or if M-K-L < 0

D1 =
K M − K K + L − M

K [I 0 0]
M − K [0 0 0]

D2 =

K M − K K + L − M
M − K [0 S 0]

K + L − M [0 0 I]
P − L [0 0 0]

[0 R] =

N − K − L K M − K K + L − M
K [0 R11 R12 R13]

M − K [0 0 R22 R23]
K + L − M [0 0 0 R33]

(2) Form the matrix

X = Q
[I 0]
[0 R−1]

then

A = U′−1E1X

B = V ′−1E2X−1

where E1 = [0 D1] and E2 = [0 D2] .

(3) The generalized singular value decomposition of A and B implicitly

GAUSS L R 28-491

lapgsvds

produces the singular value decomposition of AB−1:

AB−1 = UD1D−1
2 V ′

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

SEE ALSO lapgsvds, lapgsvdst

lapgsvds

PURPOSE Compute the generalized singular value decomposition of a pair of real or
complex general matrices.

FORMAT { C,S,R } = lapgsvds(A,B);

INPUT A M×N real or complex matrix.
B P×N real or complex matrix.

OUTPUT C L×1 vector, singular values for A.
S L×1 vector, singular values for B.
R (K+L)×(K+L) upper triangular matrix.

REMARKS (1) The generalized singular value decomposition of A and B is

U′AQ = D1Z

V ′BQ = D2Z

where U, V, and Q are orthogonal matrices (see lapgsvdcst and lapgsvdst).
Letting K+L = the rank of A|B then R is a (K+L)×(K+L) upper triangular

28-492 GAUSS L R

l

lapgsvds

matrix, D1 and D2 are M×(K+L) and P×(K+L) matrices with entries on the
diagonal, Z = [0R], and if M-K-L >= 0

D1 =

K L
K [I 0]
L [0 C]

M − K − L [0 0]

D2 =
K L

P [0 S]
P − L [0 0]

[0R] =
N − K − L K L

K [0 R11 R12]
L [0 0 R22]

or if M-K-L < 0

D1 =
K M − K K + L − M

K [I 0 0]
M − K [0 0 0]

D2 =

K M − K K + L − M
M − K [0 S 0]

K + L − M [0 0 I]
P − L [0 0 0]

[0R] =

N − K − L K M − K K + L − M
K [0 R11 R12 R13]

M − K [0 0 R22 R23]
K + L − M [0 0 0 R33]

GAUSS L R 28-493

lapgsvdst

(2) Form the matrix

X = Q
[I 0]
[0 R−1]

then

A = U′−1E1X

B = V ′−1E2X−1

where E1 = [0 D1] and E2 = [0 D2] .

(3) The generalized singular value decomposition of A and B implicitly
produces the singular value decomposition of AB−1:

AB−1 = UD1D−1
2 V ′

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

SEE ALSO lapgsvdcst, lapgsvdst

lapgsvdst

PURPOSE Compute the generalized singular value decomposition of a pair of real or
complex general matrices.

FORMAT { D1,D2,Z,U,V,Q } = lapgsvdst(A,B);

28-494 GAUSS L R

l

lapgsvdst

INPUT A M×N matrix.

B P×N matrix.

OUTPUT D1 M×(K+L) matrix, with singular values for A on diagonal.

D2 P×(K+L) matrix, with singular values for B on diagonal.

Z (K+L)×N matrix, partitioned matrix composed of a zero matrix and
upper triangular matrix.

U M×M matrix, orthogonal transformation matrix.

V P×P matrix, orthogonal transformation matrix.

Q N×N matrix, orthogonal transformation matrix.

REMARKS (1) The generalized singular value decomposition of A and B is

U′AQ = D1Z

V ′BQ = D2Z

where U, V, and Q are orthogonal matrices (see lapgsvdcst and lapgsvdst).
Letting K+L = the rank of A|B then R is a (K+L)×(K+L) upper triangular
matrix, D1 and D2 are M×(K+L) and P×(K+L) matrices with entries on the
diagonal, Z = [0R], and if M-K-L >= 0

D1 =

K L
K [I 0]
L [0 C]

M − K − L [0 0]

D2 =
K L

P [0 S]
P − L [0 0]

GAUSS L R 28-495

lapgsvdst

[0 R] =
N − K − L K L

K [0 R11 R12]
L [0 0 R22]

or if M-K-L < 0

D1 =
K M − K K + L − M

K [I 0 0]
M − K [0 0 0]

D2 =

K M − K K + L − M
M − K [0 S 0]

K + L − M [0 0 I]
P − L [0 0 0]

[0 R] =

N − K − L K M − K K + L − M
K [0 R11 R12 R13]

M − K [0 0 R22 R23]
K + L − M [0 0 0 R33]

(2) Form the matrix

X = Q
[I 0]
[0 R−1]

then

A = U′−1E1X

B = V ′−1E2X−1

28-496 GAUSS L R

l

lapgschur

where E1 = [0 D1] and E2 = [0 D2] .

(3) The generalized singular value decomposition of A and B implicitly
produces the singular value decomposition of AB−1:

AB−1 = UD1D−1
2 V ′

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

SEE ALSO lapgsvds, lapgsvdcst

lapgschur

PURPOSE Compute the generalized Schur form of a pair of real or complex general
matrices.

FORMAT { sa,sb,q,z } = lapgschur(A,B);

INPUT A N×N matrix, real or complex general matrix.

B N×N matrix, real or complex general matrix.

OUTPUT sa N×N matrix, Schur form of A.

sb N×N matrix, Schur form of B.

q N×N matrix, left Schur vectors.

z N×N matrix, right Schur vectors.

REMARKS The pair of matrices A and B are in generalized real Schur form when B is upper
triangular with non-negative diagonal, and A is block upper triangular with 1×1
and 2×2 blocks. The 1×1 blocks correspond to real generalized eigenvalues and
the 2×2 blocks to pairs of complex conjugate eigenvalues. The real generalized
eigenvalues can be computed by dividing the diagonal element of sa by the

GAUSS L R 28-497

lapsvdcusv

corresponding diagonal element of sb. The complex generalized eigenvalues are
computed by first constructing two complex conjugate numbers from 2×2 block
where the real parts are on the diagonal of the block and the imaginary part on
the off-diagonal. The eigenvalues are then computed by dividing the two
complex conjugate values by their corresponding diagonal elements of sb. The
generalized Schur vectors q and z are orthogonal matrices that reduce A and B
to Schur form:

sa = q′Az

sb = q′Bz

This procedure calls the LAPACK routines DGEGS and ZGEGS.

SOURCE lapschur.src

lapsvdcusv

PURPOSE Computes the singular value decomposition of a real or complex rectangular
matrix, returns compact u and v.

FORMAT { u,s,v } = lapsvdcusv(x);

INPUT x M×N matrix, real or complex rectangular matrix.

OUTPUT u M×min(M,N) matrix, left singular vectors.

s min(M,N)×N matrix, singular values.

v N×N matrix, right singular values.

REMARKS lapsvdcusv computes the singular value decomposition of a real or complex

28-498 GAUSS L R

l

lapsvds

rectangular matrix. The SVD is

x = usv ′

where v is the matrix of right singular vectors. lapsvdcusv is based on the
LAPACK drivers DGESVD and ZGESVD. Further documentation of these
functions may be found in the LAPACK User’s Guide.

EXAMPLE x = { 2.143 4.345 6.124,

1.244 5.124 3.412, 0.235 5.657 8.214 };

{ u,s,v } = lapsvdusv(x);

print s;

-0.55531277 0.049048431 0.83019394

-0.43090168 0.83684123 -0.33766923

-0.71130266 -0.54524400 -0.44357356

print s;

13.895868 0.0000000 0.0000000

0.0000000 2.1893939 0.0000000

0.0000000 0.0000000 1.4344261

print v;

-0.13624432 -0.62209955 -0.77099263

0.46497296 0.64704876 -0.60425826

0.87477862 -0.44081748 0.20110275

SEE ALSO lapsvds, lapsvdusv

GAUSS L R 28-499

lapsvds

lapsvds

PURPOSE Computes the singular values of a real or complex rectangular matrix

FORMAT s = lapsvds(x);

INPUT x M×N matrix, real or complex rectangular matrix.

OUTPUT s min(M,N)×1 vector, singular values.

REMARKS lapsvd computes the singular values of a real or complex rectangular matrix.
The SVD is

x = usv ′

where v is the matrix of right singular vectors. For the computation of the
singular vectors, see lapsvdcusv and lapsvdusv.

lapsvd is based on the LAPACK drivers DGESVD and ZGESVD. Further
documentation of these functions may be found in the LAPACK User’s Guide.

EXAMPLE x = { 2.143 4.345 6.124,

1.244 5.124 3.412,

0.235 5.657 8.214 };

va = lapsvd(x);

print va;

13.895868 2.1893939 1.4344261

xi = { 4+1 3+1 2+2,

1+2 5+3 2+2,

1+1 2+1 6+2 };

28-500 GAUSS L R

l

lapsvdusv

ve = lapsvds(xi);

print ve;

10.352877 4.0190557 2.3801546

SEE ALSO lapsvdcusv, lapsvdusv

lapsvdusv

PURPOSE Computes the singular value decomposition a real or complex rectangular
matrix.

FORMAT { u,s,v } = lapsvdusv(x);

INPUT x M×N matrix, real or complex rectangular matrix.

OUTPUT u M×M matrix, left singular vectors.

s M×N matrix, singular values.

v N×N matrix, right singular values.

REMARKS lapsvdusv computes the singular value decomposition of a real or complex
rectangular matrix. The SVD is

x = usv ′

where v is the matrix of right singular vectors. lapsvdusv is based on the
LAPACK drivers DGESVD and ZGESVD. Further documentation of these
functions may be found in the LAPACK User’s Guide.

EXAMPLE x = { 2.143 4.345 6.124,

GAUSS L R 28-501

let

1.244 5.124 3.412,

0.235 5.657 8.214 };

{ u,s,v } = lapsvdusv(x);

print u;

-0.5553 0.0490 0.8302

-0.4309 0.8368 -0.3377

-0.7113 -0.5452 -0.4436

print s;

13.8959 0.0000 0.0000

0.0000 2.1894 0.0000

0.0000 0.0000 1.4344

print v;

-0.1362 0.4650 0.8748

0.6221 0.6470 -0.4408

-0.7710 -0.6043 0.2011

SEE ALSO lapsvds, lapsvdcusv

let

PURPOSE Creates a matrix from a list of numeric or character values. The result is always
of type matrix, string, or string array.

FORMAT let x = constant list;

REMARKS Expressions and variable names are not allowed in the let command,
expressions such as this:

28-502 GAUSS L R

l

let

let x[2,1] = 3*a b

are illegal. To define matrices by combining matrices and expressions, use an
expression containing the concatenation operators: ∼ and | .

Numbers can be entered in scientific notation. The syntax is dE±n, where d is a
number and n is an integer (denoting the power of 10):

let x = 1e+10 1.1e-4 4.019e+2;

Complex numbers can be entered by joining the real and imaginary parts with a
sign (+ or -); there should be no spaces between the numbers and the sign.
Numbers with no real part can be entered by appending an “i” to the number:

let x = 1.2+23 8.56i 3-2.1i -4.2e+6i 1.2e-4-4.5e+3i;

If curly braces are used, the let is optional.

let x = { 1 2 3, 4 5 6, 7 8 9 };

x = { 1 2 3, 4 5 6, 7 8 9 };

If indices are given, a matrix of that size will be created:

let x[2,2] = 1 2 3 4;

x =
1 2
3 4

If indices are not given, a column vector will be created:

GAUSS L R 28-503

let

let x = 1 2 3 4;

x =

1
2
3
4

You can create matrices with no elements, i.e., “empty matrices” . Just use a set
of empty curly braces:

x = {};

Empty matrices are chiefly used as the starting point for building up a matrix,
for example in a do loop. See M, Section 6.6.2, for more information on
empty matrices.

Character elements are allowed in a let statement:

let x = age pay sex;

x =

AGE
PAY
SEX

Lowercase elements can be created if quotation marks are used. Note that each
element must be quoted.

let x = "age" "pay" "sex";

28-504 GAUSS L R

l

let

x =

age
pay
sex

EXAMPLE let x;

x = 0

let x = { 1 2 3, 4 5 6, 7 8 9 };

x =

1 2 3
4 5 6
7 8 9

let x[3,3] = 1 2 3 4 5 6 7 8 9;

x =

1 2 3
4 5 6
7 8 9

let x[3,3] = 1;

x =

1 1 1
1 1 1
1 1 1

let x[3,3];

x =

0 0 0
0 0 0
0 0 0

GAUSS L R 28-505

lib

let x = 1 2 3 4 5 6 7 8 9;

x =

1
2
3
4
5
6
7
8
9

let x = dog cat;

x =
DOG
CAT

let x = "dog" "cat";

x =
dog
cat

let string x = { "Median Income", "Country" };

x =
Median Income

Country

SEE ALSO con, cons, declare, load

28-506 GAUSS L R

l

lib

lib

PURPOSE Builds and updates library files.

FORMAT lib library [[file]] [[-flag -flag...]];

INPUT library literal, name of library.

file optional literal, name of source file to be updated or added.

flags optional literal preceded by ‘-’, controls operation of library update.
To control handling of path information on source filenames:

-addpath (default) add paths to entries without paths
and expand relative paths.

-gausspath reset all paths using a normal file search.
-leavepath leave all path information untouched.
-nopath drop all path information.

To specify a library update or a complete library build:

-update (default) update the symbol information for
the specified file only.

-build update the symbol information for every
library entry by compiling the actual source
file.

-delete delete a file from the library.
-list list files in a library.

To control the symbol type information placed in the library file:

-strong (default) use strongly typed symbol entries.
-weak save no type information. This should only

be used to build a library compatible with a
previous version of GAUSS.

To control location of temporary files for a complete library build:

-tmp (default) use the directory pointed to by the
tmp_path configuration variable. The

GAUSS L R 28-507

library

directory will usually be on a RAM disk. If
tmp_path is not defined, lib will look for a
tmp environment variable.

-disk use the same directory listed in the
lib_path configuration variable.

REMARKS The flags can be shortened to one or two letters, as long as they remain
unique–for example, -b to -build a library, -li to list files in a library.

If the filenames include a full path, the compilation process is faster because no
unnecessary directory searching is needed during the autoloading process. The
default path handling adds a path to each file listed in the library and also
expands any relative paths so the system will work from any drive or
subdirectory.

When a path is added to a filename containing no path information, the file is
searched for on the current directory and then on each subdirectory listed in
src_path. The first path encountered that contains the file is added to the
filename in the library entry.

SEE ALSO library

library

PURPOSE Sets up the list of active libraries.

FORMAT library [[-l]] lib1[[,lib2,lib3,lib4...]];
library;

REMARKS If no arguments are given, the list of current libraries will be printed out.

The -l option will produce a listing of libraries, files, and symbols for all active
libraries. This file will reside in the directory defined by the lib_path

28-508 GAUSS L R

l

library

configuration variable. The file will have a unique name beginning with
liblst_.

For more information about the library system, see L, Chapter 15.

The default extension for library files is .lcg.

If a list of library names is given, they will be the new set of active libraries.
The two default libraries are user.lcg and gauss.lcg. Unless otherwise
specified, user.lcg will be searched first and gauss.lcg will be searched last.
Any other user-specified libraries will be searched after user.lcg in the order
they were entered in the library statement.

If the statement:

y = dog(x);

is encountered in a program, dog will be searched for in the active libraries. If it
is found, it will be compiled. If it cannot be found in a library, the deletion state
determines how it is handled:

autodelete on search for dog.g
autodelete off return Undefined symbol error message

If dog calls cat and cat calls bird and they are all in separate files, they will
all be found by the autoloader.

The source browser and the help facility will search for dog in exactly the same
sequence as the autoloader. The file containing dog will be displayed in the
window, and you can scroll up and down and look at the code and comments.

Library files are simple ASCII files that you can create with a text editor. Here
is an example:

/*

GAUSS L R 28-509

library

** This is a GAUSS library file.

*/

eig.src

eig : proc

eigsym : proc

_eigerr : matrix

svd.src

cond : proc

pinv : proc

rank : proc

svd : proc

_svdtol : matrix

The lines not indented are the file names. The lines that are indented are the
symbols defined in that file. As you can see, a GAUSS library is a dictionary of
files and the global symbols they contain.

Any line beginning with /*, **, or */ is considered a comment. Blank lines are
okay.

To make the autoloading process more efficient, you can put the full pathname
for each file in the library:

/gauss/src/eig.src

eig : proc

eigsym : proc

_eigerr : matrix

/gauss/src/svd.src

cond : proc

pinv : proc

rank : proc

svd : proc

_svdtol : matrix

28-510 GAUSS L R

l

#lineson, #linesoff

Here’s a debugging hint. If your program is acting strange and you suspect it is
autoloading the wrong copy of a procedure, use the source browser or help
facility to locate the suspected function. It will use the same search path that the
autoloader uses.

SEE ALSO declare, external, lib, proc

#lineson, #linesoff

PURPOSE The #lineson command causes GAUSS to embed line number and file name
records in a program for the purpose of reporting the location where an error
occurs. The #linesoff command causes GAUSS to stop embedding line and
file records in a program.

FORMAT #lineson

#linesoff

REMARKS In the “lines on” mode, GAUSS keeps track of line numbers and file names and
reports the location of an error when an execution time error occurs. In the
“lines off” mode, GAUSS does not keep track of lines and files at execution
time. During the compile phase, line numbers and file names will always be
given when errors occur in a program stored in a disk file.

It is easier to debug a program when the locations of errors are reported, but this
slows down execution. In programs with several scalar operations, the time
spent tracking line numbers and file names is most significant.

These commands have no effect on interactive programs (that is, those typed in
the window and run from the command line), since there are no line numbers in
such programs.

Line number tracking can be turned on and off through the user interface, but
the #lineson and #linesoff commands will override that.

GAUSS L R 28-511

linsolve

The line numbers and file names given at run-time will reflect the last record
encountered in the code. If you have a mixture of procedures that were compiled
without line and file records and procedures that were compiled with line and
file records, use the trace command to locate exactly where the error occurs.

The Currently active call error message will always be correct. If it
states that it was executing procedure xyz at line number nnn in file ABC and
xyz has no line nnn or is not in file ABC, you know that it just did not encounter
any line or file records in xyz before it crashed.

When using #include’d files, the line number and file name will be correct for
the file the error was in within the limits stated above.

SEE ALSO trace

linsolve

PURPOSE Solves Ax = b using the inverse function.

FORMAT x = linsolve(b,A);

INPUT b N×K matrix.

A N×N matrix.

OUTPUT x N×K matrix, the linear solution of b/A for each column in b.

REMARKS linsolve solves for x by computing inv(A)*b. If A is square and b contains
more than 1 column, it is much faster to use linsolve than the / operator.
However, while faster, there is some sacrifice in accuracy.

A test shows linsolve to be acccurate to within approximately 1.2e-11, while
the / operator is accurate to within approximately 4e-13.

EXAMPLE b = { 2, 3, 4 };

28-512 GAUSS L R

l

listwise (dataloop)

a = { 10 2 3, 6 14 2, 1 1 9 };

x = linsolve(b,A);

print x

0.045863309

0.13399281

0.42446043

SEE ALSO qrsol, qrtsol, solpd, cholsol

listwise (dataloop)

PURPOSE Controls listwise deletion of missing values.

FORMAT listwise [[read]]|[[write]];

REMARKS If read is specified, the deletion of all rows containing missing values happens
immediately after reading the input file and before any transformations. If
write is specified, the deletion of missing values happens after any
transformations and just before writing to the output file. If no listwise
statement is present, rows with missing values are not deleted.

The default is read.

ln

PURPOSE Computes the natural log of all elements of x.

FORMAT y = ln(x);

GAUSS L R 28-513

lncdfbvn

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array containing the natural log
values of the elements of x.

REMARKS ln is defined for x,0.

If x is negative, complex results are returned.

You can turn the generation of complex numbers for negative inputs on or off in
the GAUSS configuration file, and with the sysstate function, case 8. If you
turn it off, ln will generate an error for negative inputs.

If x is already complex, the complex number state doesn’t matter; ln will
compute a complex result.

x can be any expression that returns a matrix.

EXAMPLE y = ln(16);

y = 2.7725887

SEE ALSO log

lncdfbvn

PURPOSE Computes natural log of bivariate Normal cumulative distribution function.

FORMAT y = lncdfbvn(x1,x2,r);

INPUT x1 N×K matrix, abscissae.

x2 L×M matrix, abscissae.

28-514 GAUSS L R

l

lncdfbvn2

r P×Q matrix, correlations.

OUTPUT y max(N,L,P) × max(K,M,Q) matrix, ln Pr(X < x1, X < x2|r).

REMARKS x1, x2, and r must be E×E conformable.

SOURCE lncdfn.src

SEE ALSO cdfbvn, lncdfmvn

lncdfbvn2

PURPOSE Returns natural log of standardized bivariate Normal cumulative distribution
function of a bounded rectangle.

FORMAT y = lncdfbvn2(h,dh,k,dk,r);

INPUT h N×1 vector, upper limits of integration for variable 1.
dh N×1 vector, increments for variable 1.
k N×1 vector, upper limits of integration for variable 2.
dk N×1 vector, increments for variable 2.
r N×1 vector, correlation coefficients between the two variables.

OUTPUT y N×1 vector, the log of the integral from h,k to h+dh,k+dk of the
standardized bivariate Normal distribution.

REMARKS Scalar input arguments are okay; they will be expanded to N×1 vectors.

lncdfbvn2 will abort if the computed integral is negative.

lncdfbvn2 computes an error estimate for each set of inputs–the real integral is
exp(y)±err. The size of the error depends on the input arguments. If trap 2 is
set, a warning message is displayed when err >= exp(y)/100.

GAUSS L R 28-515

lncdfbvn2

For an estimate of the actual error, see cdfbvn2e.

EXAMPLE Example 1

lncdfbvn2(1,1,1,1,0.5);

produces:

-3.2180110258198771e+000

Example 2

trap 0,2;

lncdfbvn2(1,1e-15,1,1e-15,0.5);

produces:

-7.1171016046360151e+001

Example 3

trap 2,2;

lncdfbvn2(1,-1e-45,1,1e-45,0.5);

produces:

WARNING: Dubious accuracy from lncdfbvn2:

0.000e+000 +/- 2.8e-060

-INF

28-516 GAUSS L R

l

lncdfmvn

SEE ALSO cdfbvn2, cdfbvn2e

lncdfmvn

PURPOSE Computes natural log of multivariate Normal cumulative distribution function.

FORMAT y = lncdfmvn(x,r);

INPUT x K×L matrix, abscissae.

r K×K matrix, correlation matrix.

OUTPUT y L×1 vector, ln Pr(X < x|r).

REMARKS You can pass more than one set of abscissae at a time; each column of x is
treated separately.

SOURCE lncdfn.src

SEE ALSO cdfmvn, lncdfbvn

lncdfn

PURPOSE Computes natural log of Normal cumulative distribution function.

FORMAT y = lncdfn(x);

INPUT x N×K matrix or N-dimensional array, abscissae.

OUTPUT y N×K matrix or N-dimensional array, ln Pr(X < x).

GAUSS L R 28-517

lncdfn2

SOURCE lncdfn.src

lncdfn2

PURPOSE Computes natural log of interval of Normal cumulative distribution function.

FORMAT y = lncdfn2(x,r);

INPUT x M×N matrix, abscissae.

r K×L matrix, E×E conformable with x, intervals.

OUTPUT y max(M,K)×max(N,L) matrix, the log of the integral from x to x+dx
of the Normal distribution, i.e., ln Pr(x < X < x + dx).

REMARKS The relative error is:

|x| ≤ 1 and dx ≤ 1 ±1e − 14
1 < |x| < 37 and |dx| < 1/|x| ±1e − 13

min(x, x + dx) > −37 and y > −690 ±1e − 11 or better

A relative error of ±1e-14 implies that the answer is accurate to better than ±1
in the 14th digit after the decimal point.

EXAMPLE print lncdfn2(-10,29);

-7.6198530241605269e-24

print lncdfn2(0,1);

-1.0748623268620716e+00

print lncdfn2(5,1);

-1.5068446096529453e+01

28-518 GAUSS L R

l

lncdfnc

SOURCE lncdfn.src

SEE ALSO cdfn2

lncdfnc

PURPOSE Computes natural log of complement of Normal cumulative distribution
function.

FORMAT y = lncdfnc(x);

INPUT x N×K matrix, abscissae.

OUTPUT y N×K matrix, ln(1 − Pr(X < x)).

SOURCE lncdfn.src

lnfact

PURPOSE Computes the natural log of the factorial function and can be used to compute
log gamma.

FORMAT y = lnfact(x);

INPUT x N×K matrix or N-dimensional array, all elements must be positive.

OUTPUT y N×K matrix containing the natural log of the factorial of each of the
elements in x.

REMARKS For integer x, this is (approximately) ln(x!). However, the computation is
done using a formula, and the function is defined for noninteger x.

GAUSS L R 28-519

lngammacplx

In most formulae in which the factorial operator appears, it is possible to avoid
computing the factorial directly, and to use lnfact instead. The advantage of
this is that lnfact does not have the overflow problems that the factorial (!)
operator has.

For x≥1, this function has at least 6 digit accuracy, for x>4 it has at least 9 digit
accuracy, and for x>10 it has at least 12 digit accuracy. For 0<x<1, accuracy is
not known completely but is probably at least 6 digits.

Sometimes log gamma is required instead of log factorial. These functions are
related by:

lngamma(x) = lnfact(x-1);

EXAMPLE let x = 100 500 1000;

y = lnfact(x);

y =

363.739375560
2611.33045846
5912.12817849

SOURCE lnfact.src

SEE ALSO gamma

TECHNICAL
NOTES

For x>1, Stirling’s formula is used.

For 0<x≤1, ln(gamma(x+1)) is used.

lngammacplx

PURPOSE Returns the natural log of the Gamma function.

28-520 GAUSS L R

l

lnpdfmvn

FORMAT f = lngammacplx(z);

INPUT z N×K matrix; z may be complex.

OUTPUT f N×K matrix.

REMARKS Note that lngammacplx(z) may yield a result with a different imaginary part
than ln(gammacplx(z)). This is because lngammacplx(z) returns the value
of the logarithm of gamma(z) on the corresponding branch of the complex
plane, while a call to ln(z) always returns a function value with an imaginary
part within [pi, pi]. Hence the imaginary part of the result can differ by a
multiple of 2*π. However, exp(lngammacplx(z)) = gammacplx(z). This
routine uses a Lanczos series approximation for the complex ln(gamma)
function.

REFERENCES 1. C. Lanczos, SIAM JNA 1, 1964. pp. 86-96.

2. Y. Luke, “The Special ... approximations,” 1969 pp. 29-31.

3. Y. Luke, “Algorithms ... functions,” 1977.

4. J. Spouge, SIAM JNA 31, 1994. pp. 931.

5. W. Press, “Numerical Recipes.”

6. S. Chang, “Computation of special functions,” 1996.

7. P. Godfrey, “A note on the computation of the convergent Lanczos
complex Gamma approximation.”

8. Original code by Paul Godfrey

lnpdfmvn

PURPOSE Computes multivariate Normal log-probabilities.

FORMAT z = lnpdfmvn(x,s);

INPUT x N×K matrix, data.

GAUSS L R 28-521

lnpdfmvt

s K×K matrix, covariance matrix.

OUTPUT z N×1 vector, log-probabilities.

REMARKS This computes the multivariate Normal log-probability for each row of x.

SOURCE lnpdfn.src

lnpdfmvt

PURPOSE Computes multivariate Student’s t log-probabilities.

FORMAT z = lnpdfmvt(x,s,nu);

INPUT x N×K matrix, data.

s K×K matrix, covariance matrix.

nu scalar, degrees of freedom.

OUTPUT z N×1 vector, log-probabilities.

SOURCE lnpdfn.src

SEE ALSO lnpdft

lnpdfn

PURPOSE Computes standard Normal log-probabilities.

FORMAT z = lnpdfn(x);

28-522 GAUSS L R

l

lnpdft

INPUT x N×K matrix or N-dimensional array, data.

OUTPUT z N×K matrix or N-dimensional array, log-probabilities.

REMARKS This computes the log of the scalar Normal density function for each element of
x. z could be computed by the following GAUSS code:

z = -ln(sqrt(2*pi))-x.*x/2;

For multivariate log-probabilities, see lnpdfmvn.

EXAMPLE x = { -2, -1, 0, 1, 2 };

z = lnpdfn(x);

z =

−2.9189385
−1.4189385
−0.91893853
−1.4189385
−2.9189385

lnpdft

PURPOSE Computes Student’s t log-probabilities.

FORMAT z = lnpdft(x,nu);

INPUT x N×K matrix, data.

nu scalar, degrees of freedom.

OUTPUT z N×K matrix, log-probabilities.

GAUSS L R 28-523

load, loadf, loadk, loadm, loadp, loads

REMARKS This does not compute the log of the joint Student’s t pdf. Instead, the scalar
Normal density function is computed element-by-element.

For multivariate probabilities with covariance matrix see lnpdfmvt.

SEE ALSO lnpdfmvt

load, loadf, loadk, loadm, loadp, loads

PURPOSE Loads from a disk file.

FORMAT load [[path=path]] x, y[]=filename, z=filename;

REMARKS All the loadxx commands use the same syntax–they only differ in the types of
symbols you use them for:

load, loadm matrix
loads string
loadf function (fn)
loadk keyword (keyword)
loadp procedure (proc)

If no filename is given, as with x above, then the symbol name the file is to be
loaded into is used as the filename, and the proper extension is added.

If more than one item is to be loaded in a single statement, the names should be
separated by commas.

The filename can be either a literal or a string. If the filename is in a string
variable, then the ˆ (caret) operator must precede the name of the string, as in:

filestr = "mydata/char";

loadm x = ˆfilestr;

28-524 GAUSS L R

l

load, loadf, loadk, loadm, loadp, loads

If no extension is supplied, the proper extension for each type of file will be
used automatically as follows:

load .fmt - matrix file or delimited ASCII file
loadm .fmt - matrix file or delimited ASCII file
loads .fst - string file
loadf .fcg - user-defined function (fn) file
loadk .fcg - user-defined keyword (keyword) file
loadp .fcg - user-defined procedure (proc) file

These commands also signal to the compiler what type of object the symbol is
so that later references to it will be compiled correctly.

A dummy definition must exist in the program for each symbol that is loaded in
using loadf, loadk, or loadp. This resolves the need to have the symbol
initialized at compile time. When the load executes, the dummy definition will
be replaced with the saved definition:

proc corrmat; endp;

loadp corrmat;

y = corrmat;

keyword regress(x); endp;

loadk regress;

regress x on y z t from data01;

fn sqrd=;

loadf sqrd;

y = sqrd(4.5);

To load GAUSS files created with the save command, no brackets are used
with the symbol name.

If you use save to save a scalar error code 65535 (i.e., error(65535)), it will
be interpreted as an empty matrix when you load it again.

GAUSS L R 28-525

load, loadf, loadk, loadm, loadp, loads

ASCII data files

To load ASCII data files, square brackets follow the name of the symbol.

Numbers in ASCII files must be delimited with spaces, commas, tabs, or
newlines. If the size of the matrix to be loaded is not explicitly given, as in:

load x[] = data.asc;

GAUSS will load as many elements as possible from the file and create an N×1
matrix. This is the preferred method of loading ASCII data from a file,
especially when you want to verify if the load was successful. Your program
can then see how many elements were actually loaded by testing the matrix with
the rows command, and if that is correct, the N×1 matrix can be reshape’d to
the desired form. You could, for instance, put the number of rows and columns
of the matrix right in the file as the first and second elements and reshape the
remainder of the vector to the desired form using those values.

If the size of the matrix is explicitly given in the load command, then no
checking will be done. If you use:

load x[500,6] = data.asc;

GAUSS will still load as many elements as possible from the file into an N×1
matrix and then automatically reshape it using the dimensions given.

If you load data from a file, data.asc, which contains nine numbers (1 2 3 4 5
6 7 8 9), then the resulting matrix will be as follows:

load x[1,9] = data.asc;

x = 1 2 3 4 5 6 7 8 9

28-526 GAUSS L R

l

load, loadf, loadk, loadm, loadp, loads

load x[3,3] = data.asc;

x =

1 2 3
4 5 6
7 8 9

load x[2,2] = data.asc;

x =
1 2
3 4

load x[2,9] = data.asc;

x =
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

load x[3,5] = data.asc;

x =

1 2 3 4 5
6 7 8 9 1
2 3 4 5 6

load accepts pathnames. The following is legal:

loadm k = /gauss/x;

This will load /gauss/x.fmt into k.

If the path= subcommand is used with load and save, the path string will be
remembered until changed in a subsequent command. This path will be used
whenever none is specified. There are four separate paths for:

GAUSS L R 28-527

load, loadf, loadk, loadm, loadp, loads

1. load, loadm

2. loadf, loadp

3. loads

4. save

Setting any of the four paths will not affect the others. The current path settings
can be obtained (and changed) with the sysstate function, cases 4-7.

loadm path = /data;

This will change the loadm path without loading anything.

load path = /gauss x,y,z;

This will load x.fmt, y.fmt, and z.fmt using /gauss as a path. This path will
be used for the next load if none is specified.

The load path or save path can be overridden in any particular load or save
by putting an explicit path on the filename given to load from or save to as
follows:

loadm path = /miscdata;

loadm x = /data/mydata1, y, z = hisdata;

In the above program:

/data/mydata1.fmt would be loaded into a matrix called x.

/miscdata/y.fmt would be loaded into a matrix called y.

/miscdata/hisdata.fmt would be loaded into a matrix called z.

oldmpath = sysstate(5,"/data");

28-528 GAUSS L R

l

loadarray

load x, y;

call sysstate(5,oldmpath);

This will get the old loadm path, set it to /data, load x.fmt and y.fmt, and
reset the loadm path to its original setting.

SEE ALSO loadd, dataload, save, let, con, cons, sysstate

loadarray

PURPOSE Loads an N-dimensional array from a disk file.

FORMAT loadarray [[path=path]] x, y=filename;

REMARKS If no filename is given, as with x above, then the symbol name the file is to be
loaded into is used as the filename, and the proper extension is added.

If more than one item is to be loaded in a single statement, the names should be
separated by commas.

The filename can be either a literal or a string. If the filename is in a string
variable, then the ˆ (caret) operator must precede the name of the string, as in:

filestr = "mydata/adat";

loadarray x = ˆfilestr;

If no extension is supplied, then an .fmt extension will be assumed.

loadarray accepts pathnames. The following is legal:

loadarray k = /gauss/a;

GAUSS L R 28-529

loadarray

This will load /gauss/a.fmt into k.

If the path= subcommand is used, the path string will be remembered until
changed in a subsequent command. This path will be used for all loadarray,
loadm, and load calls whenever none is specified.

The current path setting can be obtained (and changed) with the sysstate
function, case 5.

loadarray path = /data;

This will change the loadarray path without loading anything.

loadarray path = /gauss a,b,c;

This will load a.fmt, b.fmt, and c.fmt using /gauss as a path. This path will
be used for the next loadarray, loadm, or load call if none is specified.

The load path or save path can be overridden in any particular load or save
by putting an explicit path on the filename given to load from or save to as
follows:

loadarray path = /miscdata;

loadarray a = /data/mydata1, b, c = hisdata;

In the above program:

/data/mydata1.fmt would be loaded into an array called a.

/miscdata/b.fmt would be loaded into an array called b.

/miscdata/hisdata.fmt would be loaded into an array called c.

28-530 GAUSS L R

l

loadd

oldarraypath = sysstate(5,"/data");

loadarray a, b;

call sysstate(5,oldarraypath);

This will get the old loadarray path, set it to /data, load a.fmt and b.fmt,
and reset the loadarray path to its original setting.

SEE ALSO load, loadm, save, let, sysstate

loadd

PURPOSE Loads a data set.

FORMAT y = loadd(dataset);

INPUT dataset string, name of data set.

OUTPUT y N×K matrix of data.

REMARKS The data set must not be larger than a single GAUSS matrix.

If dataset is a null string or 0, the data set temp.dat will be loaded. To load a
matrix file, use an .fmt extension on dataset.

SOURCE saveload.src

GLOBALS __maxvec

GAUSS L R 28-531

loadwind

loadstruct

PURPOSE Loads a structure into memory from a file on the disk.

FORMAT { instance,retcode } = loadstruct(file name,structure type);

INPUT file name string, name of file containing structure.

structure type string, structure type.

OUTPUT instance instance of the structure.

retcode scalar, 0 if successful, otherwise 1.

REMARKS instance can be an array of structures.

EXAMPLE #include ds.sdf

struct DS p3;

{ p3, retc } = loadstruct("p2", "ds");

loadwind

PURPOSE Load a previously saved graphic panel configuration.

LIBRARY pgraph

FORMAT err = loadwind(namestr);

INPUT namestr string, name of file to be loaded.

28-532 GAUSS L R

l

local

OUTPUT err scalar, 0 if successful, 1 if graphic panel matrix is invalid. Note that
the current graphic panel configuration will be overwritten in either
case.

SOURCE pwindow.src

GLOBALS _pwindmx

SEE ALSO savewind

local

PURPOSE Declare variables that are to exist only inside a procedure.

FORMAT local x, y, f:proc;

REMARKS The statement above would place the names x, y, and f in the local symbol table
for the current procedure being compiled. This statement is legal only between
the proc statement and the endp statement of a procedure definition.

These symbols cannot be accessed outside of the procedure.

The symbol f in the statement above will be treated as a procedure whenever it
is accessed in the current procedure. What is actually passed in is a pointer to a
procedure.

See P K, Chapter 8.

SEE ALSO proc

GAUSS L R 28-533

loess

locate

PURPOSE Positions the cursor in the window.

FORMAT locate m, n;

PORTABILITY Windows only

REMARKS locate locates the cursor in the current output window.

m and n denote the row and column, respectively, at which the cursor is to be
located.

The origin (1,1) is the upper left corner.

m and n may be any expressions that return scalars. Nonintegers will be
truncated to an integer.

EXAMPLE r = csrlin;

c = csrcol;

cls;

locate r,c;

In this example the window is cleared without affecting the cursor position.

SEE ALSO csrlin, csrcol

loess

PURPOSE Computes coefficients of locally weighted regression.

FORMAT { yhat,ys,xs } = loess(depvar,indvars);

28-534 GAUSS L R

l

loessmt

INPUT depvar N×1 vector, dependent variable.

indvars N×K matrix, independent variables.

GLOBAL
INPUT

_loess_Span scalar, degree of smoothing. Must be greater than 2/N.
Default = .67777.

_loess_NumEval scalar, number of points in ys and xs. Default = 50.

_loess_Degree scalar, if 2, quadratic fit, otherwise linear. Default = 1.

_loess_WgtType scalar, type of weights. If 1, robust, symmetric weights,
otherwise Gaussian. Default = 1.

__output scalar, if 1, iteration information and results are printed,
otherwise nothing is printed.

OUTPUT yhat N×1 vector, predicted depvar given indvars.

ys _loess_numEval×1 vector, ordinate values given abscissae values
in xs.

xs _loess_numEval×1 vector, equally spaced abscissae values.

REMARKS Based on Cleveland, William S. “Robust Locally Weighted Regression and
Smoothing Scatterplots.” JASA, Vol. 74, 1979, 829-836.

SOURCE loess.src

loessmt

PURPOSE Computes coefficients of locally weighted regression.

INCLUDE loessmt.sdf

FORMAT { yhat,ys,xs } = loessmt(lc0,depvar,indvars);

INPUT lc0 an instance of a loessmtControl structure, containing the
following members:

GAUSS L R 28-535

loessmtControlCreate

lc0.Span scalar, degree of smoothing. Must be greater
than 2/N. Default = .67777.

lc0.NumEval scalar, number of points in ys and xs. Default
= 50.

lc0.Degree scalar, if 2, quadratic fit, otherwise linear.
Default = 1.

lc0.WgtType scalar, type of weights. If 1, robust,
symmetric weights, otherwise Gaussian.
Default = 1.

lc0.output scalar, if 1, iteration information and results
are printed, otherwise nothing is printed.

depvar N×1 vector, dependent variable.

indvars N×K matrix, independent variables.

OUTPUT yhat N×1 vector, predicted depvar given indvars.

ys lc0.numEval×1 vector, ordinate values given abscissae values in xs.

xs lc0.numEval×1 vector, equally spaced abscissae values.

REMARKS Based on Cleveland, William S. “Robust Locally Weighted Regression and
Smoothing Scatterplots.” JASA, Vol. 74, 1979, 829-836.

SOURCE loessmt.src

SEE ALSO loessmtControlCreate

loessmtControlCreate

PURPOSE Creates default loessmtControl structure.

INCLUDE loessmt.sdf

FORMAT c = loessmtControlCreate;

28-536 GAUSS L R

l

log

OUTPUT c instance of a loessmtControl structure with members set to
default values.

SOURCE loessmt.src

SEE ALSO loessmt

log

PURPOSE Computes the log10 of all elements of x.

FORMAT y = log(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array containing the log 10 values of
the elements of x.

REMARKS log is defined for x,0.

You can turn the generation of complex numbers for negative inputs on or off in
the GAUSS configuration file, and with the sysstate function, case 8. If you
turn it off, log will generate an error for negative inputs.

If x is already complex, the complex number state doesn’t matter; log will
compute a complex result.

x can be any expression that returns a matrix.

EXAMPLE x = round(rndu(3,3)*10+1);

y = log(x);

GAUSS L R 28-537

loglog

x =

4.0000000000 2.0000000000 1.0000000000
10.0000000000 4.0000000000 8.0000000000
7.0000000000 2.0000000000 6.0000000000

y =

0.6020599913 0.3010299957 0.3010299957
1.0000000000 0.6020599913 0.9030899870
0.8450980400 0.3010299957 0.7781512504

SEE ALSO ln

loglog

PURPOSE Graphs X vs. Y using log coordinates.

LIBRARY pgraph

FORMAT loglog(x,y);

INPUT x N×1 or N×M matrix. Each column contains the X values for a
particular line.

y N×1 or N×M matrix. Each column contains the Y values for a
particular line.

SOURCE ploglog.src

SEE ALSO xy, logx, logy

logx

28-538 GAUSS L R

l

logy

PURPOSE Graphs X vs. Y using log coordinates for the X axis.

LIBRARY pgraph

FORMAT logx(x,y);

INPUT x N×1 or N×M matrix. Each column contains the X values for a
particular line.

y N×1 or N×M matrix. Each column contains the Y values for a
particular line.

SOURCE plogx.src

SEE ALSO xy, logy, loglog

logy

PURPOSE Graphs X vs. Y using log coordinates for the Y axis.

LIBRARY pgraph

FORMAT logy(x,y);

INPUT x N×1 or N×M matrix. Each column represents the X values for a
particular line.

y N×1 or N×M matrix. Each column represents the Y values for a
particular line.

SOURCE plogy.src

SEE ALSO xy, logx, loglog

GAUSS L R 28-539

loopnextindex

loopnextindex

PURPOSE Increments an index vector to the next logical index and jumps to the specified
label if the index did not wrap to the beginning.

FORMAT loopnextindex lab,i,o [[,dim]];

INPUT lab literal, label to jump to if loopnextindex succeeds.

i M×1 vector of indices into an array, where M<=N.

o N×1 vector of orders of an N-dimensional array.

dim scalar [1-M], index into the vector of indices i, corresponding to the
dimension to walk through, positive to walk the index forward, or
negative to walk backward.

REMARKS If the argument dim is given, loopnextindex will walk through only the
dimension indicated by dim in the specified direction. Otherwise, if dim is not
given, each call to loopnextindex will increment i to index the next element
or subarray of the corresponding array.

loopnextindex will jump to the label indicated by lab if the index can walk
further in the specified dimension and direction, otherwise it will fall out of the
loop and continue through the program.

When the index matches the vector of orders, the index will be reset to the
beginning and program execution will resume at the statement following the
loopnextindex statement.

EXAMPLE orders = { 2,3,4,5,6,7 };

a = arrayalloc(orders,0);

ind = { 1,1,1,1 };

loopni:

setarray a, ind, rndn(6,7);

28-540 GAUSS L R

l

lower

loopnextindex loopni, ind, orders;

This example sets each 6×7 subarray of array a, by incrementing the index at
each call of loopnextindex and then going to the label loopni. When ind
cannot be incremented, the program drops out of the loop and continues.

ind = { 1,1,4,5 };

loopni2:

setarray a, ind, rndn(6,7);

loopnextindex loopni2, ind, orders, 2;

Using the array and vector of orders from the example above, this example
increments the second value of the index vector ind during each call to
loopnextindex. This loop will set the 6×7 subarrays of a that begin at
[1,1,4,5,1,1], [1,2,4,5,1,1], and [1,3,4,5,1,1], and then drop out of the loop.

SEE ALSO nextindex, previousindex, walkindex

lower

PURPOSE Converts a string or character matrix to lowercase.

FORMAT y = lower(x);

INPUT x string or N×K matrix of character data to be converted to lowercase.

OUTPUT y string or N×K matrix which contains the lowercase equivalent of the
data in x.

REMARKS If x is a numeric matrix, y will contain garbage. No error message will be

GAUSS L R 28-541

lowmat, lowmat1

generated since GAUSS does not distinguish between numeric and character
data in matrices.

EXAMPLE x = "MATH 401";

y = lower(x);

print y;

produces:

math 401

SEE ALSO upper

lowmat, lowmat1

PURPOSE Returns the lower portion of a matrix. lowmat returns the main diagonal and
every element below. lowmat1 is the same except it replaces the main diagonal
with ones.

FORMAT L = lowmat(x);
L = lowmat1(x);

INPUT x N×N matrix.

OUTPUT L N×N matrix containing the lower elements of the matrix. The upper
elements are replaced with zeros. lowmat returns the main diagonal
intact. lowmat1 replaces the main diagonal with ones.

EXAMPLE x = { 1 2 -1,

2 3 -2,

1 -2 1 };

28-542 GAUSS L R

l

ltrisol

L = lowmat(x);

L1 = lowmat1(x);

The resulting matrices are

L =

1 0 0
2 3 0
1 −2 1

L1 =

1 0 0
2 1 0
1 −2 1

SOURCE diag.src

SEE ALSO upmat, upmat1, diag, diagrv, crout, croutp

ltrisol

PURPOSE Computes the solution of Lx = b where L is a lower triangular matrix.

FORMAT x = ltrisol(b,L);

INPUT b P×K matrix.
L P×P lower triangular matrix.

OUTPUT x P×K matrix, soluion of Lx = b.

ltrisol applies a forward solve to Lx = b to solve for x. If b has more than
one column, each column will be solved for separately, i.e., ltrisol will apply
a forward solve to L*x[.,i] = b[.,i].

GAUSS L R 28-543

lu

lu

PURPOSE Computes the LU decomposition of a square matrix with partial (row) pivoting,
such that: X = LU.

FORMAT { l,u } = lu(x);

INPUT x N×N square nonsingular matrix.

OUTPUT l N×N “scrambled” lower triangular matrix. This is a lower triangular
matrix that has been reordered based on the row pivoting.

u N×N upper triangular matrix.

EXAMPLE rndseed 13;

format /rd 10,4;

x = complex(rndn(3,3),rndn(3,3));

{ l,u } = lu(x);

x2 = l*u;

x =

0.1523 + 0.7685i −0.8957 + 0.0342i 2.4353 + 2.7736i
−1.1953 + 1.2187i 1.2118 + 0.2571i −0.0446 − 1.7768i

0.8038 + 1.3668i 1.2950 − 1.6929i 1.6267 + 0.2844i

l =

0.2589 − 0.3789i −1.2417 − 0.5225i 1.0000
1.0000 0.0000 0.0000

0.2419 − 0.8968i 1.0000 0.0000

u =

−1.1953 + 1.2187i 1.2118 + 0.2571i −0.0446 − 1.7768i
0.0000 0.7713 − 0.6683i 3.2309 + 0.6742i
0.0000 0.0000 6.7795 + 5.7420i

28-544 GAUSS L R

l

lusol

x2 =

0.1523 + 0.7685i −0.8957 + 0.0342i 2.4353 + 2.7736i
−1.1953 + 1.2187i 1.2118 + 0.2571i −0.0446 − 1.7768i

0.8038 + 1.3668i 1.2950 − 1.6929i 1.6267 + 0.2844i

SEE ALSO crout, croutp, chol

lusol

PURPOSE Computes the solution of LUx = b where L is a lower triangular matrix and U is
an upper triangular matrix.

FORMAT x = lusol(b,L,U);

INPUT b P×K matrix.

L P×P lower triangular matrix.

U P×P upper triangular matrix.

OUTPUT x P×K matrix, solution of LUx = b.

REMARKS If b has more than one column, each column is solved for separately, i.e., lusol
solves LUx[.,i] = b[.,i].

machEpsilon

PURPOSE Returns the smallest number such that 1+ eps > 1.

FORMAT eps = machEpsilon;

OUTPUT eps scalar, machine epsilon.

GAUSS L R 28-545

make (dataloop)

SOURCE machconst.src

make (dataloop)

PURPOSE Specifies the creation of a new variable within a data loop.

FORMAT make [[#]] numvar = numeric expression;
make $ charvar = character expression;

REMARKS A numeric expression is any valid expression returning a numeric vector. A
character expression is any valid expression returning a character vector. If
neither ‘$’ nor ‘#’ is specified, ‘#’ is assumed.

The expression may contain explicit variable names and/or GAUSS commands.
Any variables referenced must already exist, either as elements of the source
data set, as extern’s, or as the result of a previous make, vector, or code
statement. The variable name must be unique. A variable cannot be made more
than once, or an error is generated.

EXAMPLE make sqvpt = sqrt(velocity * pressure * temp);

make $ sex = lower(sex);

SEE ALSO vector (dataloop)

makevars

PURPOSE Creates separate global vectors from the columns of a matrix.

FORMAT makevars(x,vnames,xnames);

28-546 GAUSS L R

m

makevars

INPUT x N×K matrix whose columns will be converted into individual
vectors.

vnames string or M×1 character vector containing names of global vectors to
create. If 0, all names in xnames will be used.

xnames string or K×1 character vector containing names to be associated
with the columns of the matrix x.

REMARKS If xnames = 0, the prefix X will be used to create names. Therefore, if there are
9 columns in x, the names will be X1-X9, if there are 10, they will be X01-X10,
and so on.

If xnames or vnames is a string, the individual names must be separated by
spaces or commas:

vnames = "age pay sex";

Since these new vectors are created at execution time, the compiler will not
know they exist until after makevars has executed once. This means that you
cannot access them by name unless you previously clear them or otherwise
add them to the symbol table. (See setvars for a quick interactive solution to
this.)

This function is the opposite of mergevar.

EXAMPLE let x[3,3] = 101 35 50000

102 29 13000

103 37 18000;

let xnames = id age pay;

let vnames = age pay;

makevars(x,vnames,xnames);

Two global vectors, called age and pay, are created from the columns of x.

let x[3,3] = 101 35 50000

102 29 13000

GAUSS L R 28-547

makewind

103 37 18000;

xnames = "id age pay";

vnames = "age pay";

makevars(x,vnames,xnames);

This is the same as the example above, except that strings are used for the
variable names.

SOURCE vars.src

GLOBALS __vpad

SEE ALSO mergevar, setvars

makewind

PURPOSE Creates a graphic panel of specific size and position and adds it to the list of
graphic panels.

LIBRARY pgraph

FORMAT makewind(xsize,ysize,xshft,yshft,typ);

INPUT xsize scalar, horizontal size of the graphic panel in inches.

ysize scalar, vertical size of the graphic panel in inches.

xshft scalar, horizontal distance from left edge of window in inches.

yshft scalar, vertical distance from bottom edge of window in inches.

typ scalar, graphic panel attribute type. If this value is 1, the graphic
panels will be transparent. If 0, the graphic panels will be
nontransparent.

28-548 GAUSS L R

m

margin

REMARKS Note that if this procedure is used when rotating the page, the passed parameters
are scaled appropriately to the newly oriented page. The size and shift values
will not be true inches when printed, but the graphic panel size to page size ratio
will remain the same. The result of this implementation automates the rotation
and eliminates the required graphic panel recalculations by the user.

See the window command for creating tiled graphic panels. For more
information on using graphic panels, see G P, Section 21.3.

SOURCE pwindow.src

SEE ALSO window, endwind, setwind, getwind, begwind, nextwind

margin

PURPOSE Sets the margins for the current graph’s graphic panel.

LIBRARY pgraph

FORMAT margin(l,r,t,b);

INPUT l scalar, the left margin in inches.

r scalar, the right margin in inches.

t scalar, the top margin in inches.

b scalar, the bottom margin in inches.

REMARKS By default, the dimensions of the graph are the same as the graphic panel
dimensions. With this function the graph dimensions may be decreased. The
result will be a smaller plot area surrounded by the specified margin. This
procedure takes into consideration the axes labels and numbers for correct
placement.

GAUSS L R 28-549

matalloc

All input inch values for this procedure are based on a full size window of
9×6.855 inches. If this procedure is used with a graphic panel, the values will
be scaled to “window inches” automatically.

If the axes must be placed an exact distance from the edge of the page,
axmargin should be used.

SOURCE pgraph.src

SEE ALSO axmargin

matalloc

PURPOSE Allocates a matrix with unspecified contents.

FORMAT y = matalloc(r,c);

INPUT r scalar, rows.

c scalar, columns.

OUTPUT y r×c matrix.

REMARKS The contents are unspecified. This function is used to allocate a matrix that will
be written to in sections using indexing or used with the Foreign Language
Interface as an output matrix for a function called with dllcall.

SEE ALSO matinit, ones, zeros, eye

28-550 GAUSS L R

m

mattoarray

matinit

PURPOSE Allocates a matrix with a specified fill value.

FORMAT y = matinit(r,c,v);

INPUT r scalar, rows.
c scalar, columns.
v scalar, value to initialize.

OUTPUT y r×c matrix with each element equal to the value of v.

SEE ALSO matalloc, ones, zeros, eye

mattoarray

PURPOSE Converts a matrix to a type array.

FORMAT y = mattoarray(x);

INPUT x matrix.

OUTPUT y 1-or-2-dimensional array.

REMARKS If the argument x is a scalar, mattoarray will simply return the scalar, without
changing it to a type array.

EXAMPLE x = 5*ones(2,3);

y = mattoarray(x);

y will be a 2×3 array of fives.

GAUSS L R 28-551

maxc

SEE ALSO arraytomat

maxc

PURPOSE Returns a column vector containing the largest element in each column of a
matrix.

FORMAT y = maxc(x);

INPUT x N×K matrix or sparse matrix.

OUTPUT y K×1 matrix containing the largest element in each column of x.

REMARKS If x is complex, maxc uses the complex modulus (abs(x)) to determine the
largest elements.

To find the maximum elements in each row of a matrix, transpose the matrix
before applying the maxc function.

To find the maximum value in the whole matrix if the matrix has more than one
column, nest two calls to maxc:

y = maxc(maxc(x));

EXAMPLE x = rndn(4,2);

y = maxc(x);

x =

−2.124474 1.376765
0.348110 1.172391
−0.027064 0.796867

1.421940 −0.351313

28-552 GAUSS L R

m

maxindc

y =
1.421940
1.376765

SEE ALSO minc, maxindc, minindc

maxindc

PURPOSE Returns a column vector containing the index (i.e., row number) of the
maximum element in each column of a matrix.

FORMAT y = maxindc(x);

INPUT x N×K matrix.

OUTPUT y K×1 matrix containing the index of the maximum element in each
column of x.

REMARKS If x is complex, maxindc uses the complex modulus (abs(x)) to determine the
largest elements.

To find the index of the maximum element in each row of a matrix, transpose
the matrix before applying maxindc.

If there are two or more “largest” elements in a column (i.e., two or more
elements equal to each other and greater than all other elements), then maxindc
returns the index of the first one found, which will be the smallest index.

EXAMPLE x = round(rndn(4,4)*5);

y = maxc(x);

z = maxindc(x);

GAUSS L R 28-553

maxv

x =

1 −11 0 5
0 0 −2 −6
−8 0 3 2
−11 5 −4 5

y =

1
5
3
5

z =

1
4
3
1

SEE ALSO maxc, minindc, minc

maxv

PURPOSE Performs an element by element comparison of two matrices and returns the
maximum value for each element.

FORMAT z = maxv(x,y);

GLOBAL
INPUT

x N×K matrix

y N×K matrix

OUTPUT z A N×K matrix whose values are the maximum of each element from
the arguments x and y.

REMARKS maxv works for sparse matrices as well as arrays.

28-554 GAUSS L R

m

maxvec

EXAMPLEx = rndn(10,10);
y = rndn(10,10);

z = maxv(x,y);

SEE ALSO minv

maxvec

PURPOSE Returns maximum vector length allowed.

FORMAT y = maxvec;

GLOBAL
INPUT

__maxvec scalar, maximum vector length allowed.

OUTPUT y scalar, maximum vector length.

REMARKS maxvec returns the value in the global scalar __maxvec, which can be reset in
the calling program.

maxvec is called by Run-Time Library functions and applications when
determining how many rows can be read from a data set in one call to readr.

Using a value that is too large can cause excessive disk thrashing. The trick is to
allow the algorithm making the disk reads to execute entirely in RAM.

EXAMPLE y = maxvec;

print y;

20000.000

SOURCE system.src

GAUSS L R 28-555

mbesseli

maxbytes

PURPOSE Returns maximum memory to be used.

FORMAT y = maxbytes;

GLOBAL
INPUT

__maxbytes scalar, maximum memory to be used.

OUTPUT y scalar, maximum memory to be used.

REMARKS maxbytes returns the value in the global scalar __maxbytes, which can be
reset in the calling program.

maxbytes is called by Run-Time Library functions and applications when
determining how many rows can be read from a data set in one call to readr.

maxbytes replaced the obsolete command coreleft. If coreleft returns a
meaningful number for your operating system and if you wish to reference it,
set __maxbytes = 0 and then call maxbytes.

EXAMPLE y = maxbytes;

print y;

100000000.000

SOURCE system.src

mbesseli

PURPOSE Computes modified and exponentially scaled modified Bessels of the first kind
of the nth order.

28-556 GAUSS L R

m

mbesseli

FORMAT y = mbesseli(x,n,alpha);
y = mbesseli0(x);
y = mbesseli1(x);
y = mbesselei(x,n,alpha);
y = mbesselei0(x);
y = mbesselei1(x);

INPUT x K×1 vector, abscissae.

n scalar, highest order.

alpha scalar, 0≤alpha<1.

OUTPUT y K×N matrix, evaluations of the modified Bessel or the exponentially
scaled modified Bessel of the first kind of the nth order.

REMARKS For the functions that permit you to specify the order, the returned matrix
contains a sequence of modified or exponentially scaled modified Bessel values
of different orders. For the ith row of y:

y[i, .] = Iα(x[i]) Iα+1(x[i]) · · · Iα+n−1(x[i])

The remaining functions generate modified Bessels of only the specified order.

The exponentially scaled modified Bessels are related to the unscaled modifed
Bessels in the following way:

mbesselei0(x) = exp(-x) * mbesseli0(x)

The use of the scaled versions of the modified Bessel can improve the numerical
properties of some calculations by keeping the intermediate numbers small in
size.

EXAMPLE This example produces estimates for the “circular” response regression model
(Fisher, N.I. Statistical Analysis of Circular Data. NY: Cambridge University

GAUSS L R 28-557

mbesseli

Press, 1993.), where the dependent variable varies between −π and π in a
circular manner. The model is

y = µ +G(XB)

where B is a vector of regression coefficients, X a matrix of independent
variables with a column of 1’s included for a constant, and y a vector of
“circular” dependent variables, and where G() is a function mapping XB onto
the [−π, π] interval.

The log-likelihood for this model is from Fisher, N.I. . . . 1993, 159:

logL = −N × ln(I0(κ)) + κ
N∑
i

cos(yi − µ −G(XiB))

To generate estimates it is necessary to maximize this function using an iterative
method. QNewton is used here.

κ is required to be nonnegative and therefore in the example below, the
exponential of this parameter is estimated instead. Also, the exponentially
scaled modified Bessel is used to improve numerical properties of the
calculations.

The arctan function is used in G() to map XB to the [−π, π] interval as
suggested by Fisher, N.I. . . . 1993, 158.

proc G(u);

retp(2*atan(u));

endp;

proc lpr(b);

local dev;

/*

** b[1] - kappa

28-558 GAUSS L R

m

meanc

** b[2] - mu

** b[3] - constant

** b[4:rows(b)] - coefficients

*/

dev = y - b[2]- G(b[3] + x * b[4:rows(b)]);

retp(rows(dev)*ln(mbesselei0(exp(b[1])) -

sumc(exp(b[1])*(cos(dev)-1))));

endp;

loadm data;

y0 = data[.,1];

x0 = data[.,2:cols(data)];

b0 = 2*ones(cols(x0),1);

{ b,fct,grd,ret } = QNewton(&lpr,b0);

cov = invpd(hessp(&lpr,b));

print "estimates standard errors";

print;

print b˜sqrt(diag(cov));

SOURCE ribesl.src

meanc

PURPOSE Computes the mean of every column of a matrix.

FORMAT y = meanc(x);

INPUT x N×K matrix.

GAUSS L R 28-559

median

OUTPUT y K×1 matrix containing the mean of every column of x.

EXAMPLE x = meanc(rndu(2000,4));

x =

0.492446
0.503543
0.502905
0.509283

In this example, 4 columns of uniform random numbers are generated in a
matrix, and the mean is computed for each column.

SEE ALSO stdc

median

PURPOSE Computes the medians of the columns of a matrix.

FORMAT m = median(x);

INPUT x N×K matrix.

OUTPUT m K×1 vector containing the medians of the respective columns of x.

EXAMPLE x = { 8 4,

6 8,

3 7 };

y = median(x);

y =
6.0000000
7.0000000

28-560 GAUSS L R

m

mergeby

SOURCE median.src

mergeby

PURPOSE Merges two sorted files by a common variable.

FORMAT mergeby(infile1,infile2,outfile,keytyp);

INPUT infile1 string, name of input file 1.

infile2 string, name of input file 2.

outfile string, name of output file.

keytyp scalar, data type of key variable.

1 numeric
2 character

REMARKS This will combine the variables in the two files to create a single large file. The
following assumptions hold:

1. Both files have a single (key) variable in common and it is the first
variable.

2. All of the values of the key variable are unique.

3. Each file is already sorted on the key variable.

The output file will contain the key variable in its first column.

It is not necessary for the two files to have the same number of rows. For each
row for which the key variables match, a row will be created in the output file.
outfile will contain the columns from infile1 followed by the columns from
infile2 minus the key column from the second file.

If the inputs are null (“” or 0), the procedure will ask for them.

GAUSS L R 28-561

mergevar

SOURCE sortd.src

mergevar

PURPOSE Accepts a list of names of global matrices, and concatenates the corresponding
matrices horizontally to form a single matrix.

FORMAT x = mergevar(vnames);

INPUT vnames string or K×1 column vector containing the names of K global
matrices.

OUTPUT x N×M matrix that contains the concatenated matrices, where M is the
sum of the columns in the K matrices specified in vnames.

REMARKS The matrices specified in vnames must be globals and they must all have the
same number of rows.

This function is the opposite of makevars.

EXAMPLE let vnames = age pay sex;

x = mergevar(vnames);

The matrices age, pay and sex will be concatenated horizontally to create x.

SOURCE vars.src

SEE ALSO makevars

28-562 GAUSS L R

m

minc

minc

PURPOSE Returns a column vector containing the smallest element in each column of a
matrix.

FORMAT y = minc(x);

INPUT x N×K matrix or sparse matrix.

OUTPUT y K×1 matrix containing the smallest element in each column of x.

REMARKS If x is complex, minc uses the complex modulus (abs(x)) to determine the
smallest elements.

To find the minimum element in each row, transpose the matrix before applying
the minc function.

To find the minimum value in the whole matrix, nest two calls to minc:

y = minc(minc(x));

EXAMPLE x = rndn(4,2);

y = minc(x);

x =

−1.061321 −0.729026
−0.021965 0.184246

1.843242 −1.847015
1.977621 −0.532307

y =
−1.061321
−1.847015

GAUSS L R 28-563

minindc

SEE ALSO maxc, minindc, maxindc

minindc

PURPOSE Returns a column vector containing the index (i.e., row number) of the smallest
element in each column of a matrix.

FORMAT y = minindc(x);

INPUT x N×K matrix.

OUTPUT y K×1 matrix containing the index of the smallest element in each
column of x.

REMARKS If x is complex, minindc uses the complex modulus (abs(x)) to determine the
smallest elements.

To find the index of the smallest element in each row, transpose the matrix
before applying minindc.

If there are two or more “smallest” elements in a column (i.e., two or more
elements equal to each other and less than all other elements), then minindc
returns the index of the first one found, which will be the smallest index.

EXAMPLE x = round(rndn(5,4)*5);

y = minc(x);

z = minindc(x);

x =

−5 6 −4 −1
2 −2 1 3
6 0 1 −7
−6 0 8 −4

7 −4 8 3

28-564 GAUSS L R

m

minv

y =

−6
−4
−4
−7

z =

4
5
1
3

SEE ALSO maxindc, minc, maxc

minv

PURPOSE Performs an element by element comparison of two matrices and returns the
minimum value for each element.

FORMAT z = minv(x,y);

GLOBAL
INPUT

x N×K matrix

y N×K matrix

OUTPUT z A N×K matrix whose values are the minimum of each element from
the arguments x and y.

REMARKS maxv works for sparse matrices as well as arrays.

EXAMPLEx = rndn(10,10);
y = rndn(10,10);

z = minv(x,y);

GAUSS L R 28-565

miss, missrv

SEE ALSO maxv

miss, missrv

PURPOSE miss converts specified elements in a matrix to GAUSS’s missing value code.
missrv is the reverse of this, and converts missing values into specified values.

FORMAT y = miss(x,v);
y = missrv(x,v);

INPUT x N×K matrix.

v L×M matrix, E×E conformable with x.

OUTPUT y max(N,L) by max(K,M) matrix.

REMARKS For miss, elements in x that are equal to the corresponding elements in v will be
replaced with the GAUSS missing value code.

For missrv, elements in x that are equal to the GAUSS missing value code will
be replaced with the corresponding element of v.

For complex matrices, the missing value code is defined as a missing value
entry in the real part of the matrix. For complex x, then, miss replaces elements
with a “. + 0i” value, and missrv examines only the real part of x for missing
values. If, for example, an element of x = 1 + .i, missrv will not replace it.

These functions act like element-by-element operators. If v is a scalar, for
instance -1, then all -1’s in x are converted to missing. If v is a row (column)
vector with the same number of columns (rows) as x, then each column (row) in
x is transformed to missings according to the corresponding element in v. If v is
a matrix of the same size as x, then the transformation is done corresponding
element by corresponding element.

Missing values are given special treatment in the following functions and

28-566 GAUSS L R

m

missex

operators: b/a (matrix division when a is not square and neither a nor b is
scalar), counts, ismiss, maxc, maxindc, minc, minindc, miss, missex,
missrv, moment, packr, scalmiss, sortc.

As long as you know a matrix contains no missings to begin with, miss and
missrv can be used to convert one set of numbers into another. For example:

y=missrv(miss(x,0),1);

will convert 0’s to 1’s.

EXAMPLE v = -1˜4˜5;

y = miss(x,v);

In this example, x must have 3 columns. All -1’s in the first column will be
changed to missings, along with all 4’s in the second column and 5’s in the third
column.

SEE ALSO counts, ismiss, maxc, maxindc, minc, minindc, missex, moment, packr,
scalmiss, sortc

missex

PURPOSE Converts numeric values to the missing value code according to the values given
in a logical expression.

FORMAT y = missex(x,e);

INPUT x N×K matrix.

e N×K logical matrix (matrix of 0’s and 1’s) that serves as a “mask”
for x; the 1’s in e correspond to the values in x that are to be
converted into missing values.

GAUSS L R 28-567

moment

OUTPUT y N×K matrix that equals x, but with those elements that correspond to
the 1’s in e converted to missing.

REMARKS The matrix e will usually be created by a logical expression. For instance, to
convert all numbers between 10 and 15 in x to missing, the following code
could be used:

y = missex(x, (x .>10) .and (x .<15));

Note that “dot” operators MUST be used in constructing the logical expressions.

For complex matrices, the missing value code is defined as a missing value
entry in the real part of the matrix. For complex x, then, missex replaces
elements with a “. + 0i” value.

This function is like miss, but is more general in that a range of values can be
converted into missings.

EXAMPLE x = rndu(3,2);

/* logical expression */

e = (x .> .10) .and (x .< .20);

y = missex(x,e);

A 3×2 matrix of uniform random numbers is created. All values in the interval
(0.10, 0.20) are converted to missing.

SOURCE datatran.src

SEE ALSO miss, missrv

moment

PURPOSE Computes a cross-product matrix. This is the same as x′x.

28-568 GAUSS L R

m

moment

FORMAT y = moment(x,d);

INPUT x N×K matrix or M-dimensional array where the last two dimensions
are N×K.

d scalar, controls handling of missing values.

0 missing values will not be checked for. This is the fastest
option.

1 “listwise deletion” is used. Any row that contains a missing
value in any of its elements is excluded from the computation of
the moment matrix. If every row in x contains missing values,
then moment(x,1) will return a scalar zero.

2 “pairwise deletion” is used. Any element of x that is missing is
excluded from the computation of the moment matrix. Note that
this is seldom a satisfactory method of handling missing values,
and special care must be taken in computing the relevant
number of observations and degrees of freedom.

OUTPUT y K×K matrix or M-dimensional array where the last two dimensions
are K×K, the cross-product of x.

REMARKS The fact that the moment matrix is symmetric is taken into account to cut
execution time almost in half.

If x is an array, the result will be an array containing the cross-products of each
2-dimensional array described by the two trailing dimensions of x. In other
words, for a 10×4×4 array x, the resulting array y will contain the
cross-products of each fo the 10 4×4 arrays contained in x, so
y[n,.,.]=x[n,.,.]′x[n,.,.] for 1≤n≤10.

If there is no missing data then d = 0 should be used because it will be faster.

The / operator (matrix division) will automatically form a moment matrix
(performing pairwise deletions if trap 2 is set) and will compute the ols
coefficients of a regression. However, it can only be used for data sets that are
small enough to fit into a single matrix. In addition, the moment matrix and its
inverse cannot be recovered if the / operator is used.

GAUSS L R 28-569

momentd

EXAMPLE xx = moment(x,2);

ixx = invpd(xx);

b = ixx*missrv(x,0)’y;

In this example, the regression of y on x is computed. The moment matrix (xx)
is formed using the moment command (with pairwise deletion, since the second
parameter is 2). Then xx is inverted using the invpd function. Finally, the ols
coefficients are computed. missrv is used to emulate pairwise deletion by
setting missing values to 0.

momentd

PURPOSE Computes a moment (X′X) matrix from a GAUSS data set.

FORMAT m = momentd(dataset,vars);

INPUT dataset string, name of data set.

vars K×1 character vector, names of variables
- or -

K×1 numeric vector, indices of columns.
These can be any size subset of the variables in the data set, and can
be in any order. If a scalar 0 is passed, all columns of the data set
will be used.

GLOBAL
INPUT

__con scalar, default 1.

1 a constant term will be added.
0 no constant term will be added.

__miss scalar, default 0.

0 there are no missing values (fastest).
1 do listwise deletion; drop an observation if any missings

occur in it.

28-570 GAUSS L R

m

movingave

2 do pairwise deletion; this is equivalent to setting
missings to 0 when calculating m.

__row scalar, the number of rows to read per iteration of the read
loop, default 0.
If 0, the number of rows will be calculated internally.
If you get an Insufficient memory error, or you want the
rounding to be exactly the same between runs, you can set
the number of rows to read before calling momentd.

OUTPUT m M×M matrix, where M = K + __con, the moment matrix
constructed by calculating X′X where X is the data, with or without
a constant vector of ones.
Error handling is controlled by the low order bit of the trap flag.

trap 0 terminate with error message
trap 1 return scalar error code in m

33 too many missings
34 file not found

EXAMPLE z = { age, pay, sex };

m = momentd("freq",z);

SOURCE momentd.src

movingave

PURPOSE Computes moving average of a series.

FORMAT y = movingave(x,d);

INPUT x N×K matrix.

d scalar, order of moving average.

GAUSS L R 28-571

movingaveExpwgt

OUTPUT y N×K matrix, filtered series. The first d-1 rows of x are set to missing
values.

REMARKS movingave is essentially a smoothing time series filter. The moving average as
performed by column and thus it treats the N×K matrix as K time series of
length N.

SEE ALSO movingaveWgt, movingaveExpwgt

movingaveExpwgt

PURPOSE Computes exponentially weighted moving average of a series.

FORMAT y = movingaveExpwgt(x,d,p);

INPUT x N×K matrix.

d scalar, order of moving average.

p scalar, smoothing coefficient where 0>p>1.

OUTPUT y N×K matrix, filtered series. The first d-1 rows of x are set to missing
values.

REMARKS movingaveExpwgt is smoothing time series filter using exponential weights.
The moving average as performed by column and thus it treats the N×K matrix
as K time series of length N.

SEE ALSO movingaveWgt, movingave

28-572 GAUSS L R

m

msym

movingaveWgt

PURPOSE Computes weighted moving average of a series

FORMAT y = movingaveWgt(x,d,w);

INPUT x N×K matrix.

d scalar, order of moving average.

w d×1 vector, weights.

OUTPUT y N×K matrix, filtered series. The first d-1 rows of x are set to missing
values.

REMARKS movingaveWgt is essentially a smoothing time series filter with weights. The
moving average as performed by column and thus it treats the N×K matrix as K
time series of length N.

SEE ALSO movingave, movingaveExpwgt

msym

PURPOSE Allows the user to set the symbol that GAUSS uses when missing values are
converted to ASCII and vice versa.

FORMAT msym str;

INPUT str literal or ˆstring (up to 8 letters) which, if not surrounded by quotes,
is forced to uppercase. This is the string to be printed for missing
values. The default is ‘.’.

GAUSS L R 28-573

new

REMARKS The entire string will be printed out when converting to ASCII in print and
printfm statements.

When converting ASCII to binary in loadm and let statements, only the first
character is significant. In other words,

msym HAT;

will cause ‘H’ to be converted to missing on input.

This does not affect writer, which outputs data in binary format.

SEE ALSO print, printfm

new

PURPOSE Erases everything in memory including the symbol table; closes all open files as
well as the auxiliary output and turns the window on if it was off; also allows
the size of the new symbol table and the main program space to be specified.

FORMAT new [[nos]] [[, mps]];

INPUT nos scalar, which indicates the maximum number of global symbols
allowed.

mps scalar, which indicates the number of bytes of main program space
to be allocated. The second argument is obsolete, and included only
for backwards compatibility. Memory is dynamically allocated.

REMARKS Procedures, user-defined functions, and global matrices, strings, and string
arrays are all global symbols.

This command can be used with arguments as the first statement in a program to
clear the symbol table and to allocate only as much space for program code as

28-574 GAUSS L R

n

nextindex

your program actually needs. When used in this manner, the auxiliary output
will not be closed. This will allow you to open the auxiliary output from the
command level and run a program without having to remove the new at the
beginning of the program. If this command is not the first statement in your
program, it will cause the program to terminate.

EXAMPLE new; /* clear global symbols. */

new 300; /* clear global symbols,set maximum

** number of global symbols to 300,

** and leave program space unchanged.

*/

SEE ALSO clear, delete, output

nextindex

PURPOSE Returns the index of the next element or subarray in an array.

FORMAT ni = nextindex(i,o);

INPUT i M×1 vector of indices into an array, where M<=N.

o N×1 vector of orders of an N-dimensional array.

OUTPUT ni M×1 vector of indices, the index of the next element or subarray in
the array corresponding to o.

REMARKS nextindex will return a scalar error code if the index cannot be incremented.

EXAMPLE a = ones(2520,1);

a = areshape(a,3|4|5|6|7);

orders = getorders(a);

GAUSS L R 28-575

nextn, nextnevn

ind = { 2,3,5 };

ind = nextindex(ind,orders);

ind =

2
4
1

In this example, nextindex incremented ind to index the next 6×7 subarray in
array a.

SEE ALSO previousindex, loopnextindex, walkindex

nextn, nextnevn

PURPOSE Returns allowable matrix dimensions for computing FFT’s.

FORMAT n = nextn(n0);
n = nextnevn(n0);

INPUT n0 scalar, the length of a vector or the number of rows or columns in a
matrix.

OUTPUT n scalar, the next allowable size for the given dimension for computing
an FFT or RFFT. n ≥ n0.

REMARKS nextn and nextnevn determine allowable matrix dimensions for computing
FFT’s. The Temperton FFT routines (see table below) can handle any matrix
whose dimensions can be expressed as:

2p × 3q × 5r × 7s, p,q,r nonnegative integers
s = 0 or 1

28-576 GAUSS L R

n

nextwind

with one restriction: the vector length or matrix column size must be even (p
must be positive) when computing RFFT’s.

fftn, etc., automatically pad matrices (with zeros) to the next allowable
dimensions; nextn and nextnevn are provided in case you want to check or fix
matrix sizes yourself.

Use the following table to determine what to call for a given function and
matrix:

FFT Vector Matrix Matrix
Function Length Rows Columns
fftn nextn nextn nextn

rfftn nextnevn nextn nextnevn

rfftnp nextnevn nextn nextnevn

EXAMPLE n = nextn(456);

n = 480.00000

SOURCE optim.src

SEE ALSO fftn, optn, optnevn, rfftn, rfftnp

nextwind

PURPOSE Set the current graphic panel to the next available graphic panel.

LIBRARY pgraph

FORMAT nextwind;

GAUSS L R 28-577

null

REMARKS This function selects the next available graphic panel to be the current graphic
panel. This is the graphic panel in which the next graph will be drawn.

See the discussion on using graphic panels in G P, Section 21.3.

SOURCE pwindow.src

SEE ALSO endwind, begwind, setwind, getwind, makewind, window

null

PURPOSE Computes an orthonormal basis for the (right) null space of a matrix.

FORMAT b = null(x);

INPUT x N×M matrix.

OUTPUT b M×K matrix, where K is the nullity of x, such that:

x ∗ b = 0 (N×K matrix of zeros)

and

b′b = I (M×M identity matrix)

The error returns are returned in b:
error code reason

1 there is no null space
2 b is too large to return in a single matrix

Use scalerr to test for error returns.

REMARKS The orthogonal complement of the column space of x′ is computed using the
QR decomposition. This provides an orthonormal basis for the null space of x.

28-578 GAUSS L R

n

null1

EXAMPLE let x[2,4] = 2 1 3 -1

3 5 1 2;

b = null(x);

z = x*b;

i = b’b;

SOURCE null.src

GLOBALS _qrdc, _qrsl

null1

PURPOSE Computes an orthonormal basis for the (right) null space of a matrix.

FORMAT nu = null1(x,dataset);

INPUT x N×M matrix.

dataset string, the name of a data set null1 will write.

OUTPUT nu scalar, the nullity of x.

REMARKS null1 computes an M×K matrix b, where K is the nullity of x, such that:

x ∗ b = 0 (N×K matrix of zeros)

and

b′b = I (M×M identity matrix)

GAUSS L R 28-579

numCombinations

The transpose of b is written to the data set named by dataset, unless the nullity
of x is zero. If nu is zero, the data set is not written.

SOURCE null.src

GLOBALS _qrdc, _qrsl

numCombinations

PURPOSE Computes number of combinations of n things taken k at a time.

FORMAT y = numCombinations(n,k);

INPUT n scalar.

k scalar.

OUTPUT y scalar, number of combinations of n things take k at a time.

EXAMPLE y = numCombinations(25,5);

print y;

53130.0000

SEE ALSO combinate, combinated

ols

PURPOSE Computes a least squares regression.

28-580 GAUSS L R

o

ols

FORMAT { vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat } =
ols(dataset,depvar,indvars);

INPUT dataset string, name of data set or null string.
If dataset is a null string, the procedure assumes that the actual data
has been passed in the next two arguments.

depvar If dataset contains a string:

string, name of dependent variable
- or -

scalar, index of dependent variable. If scalar 0, the last column
of the data set will be used.

If dataset is a null string or 0:

N×1 vector, the dependent variable.

indvars If dataset contains a string:

K×1 character vector, names of independent variables
- or -

K×1 numeric vector, indices of independent variables.
These can be any size subset of the variables in the data set and
can be in any order. If a scalar 0 is passed, all columns of the
data set will be used except for the one used for the dependent
variable.

If dataset is a null string or 0:

N×K matrix, the independent variables.

GLOBAL
INPUT

Defaults are provided for the following global input variables, so they can be
ignored unless you need control over the other options provided by this
procedure.

__altnam character vector, default 0.
This can be a (K+1)×1 or (K+2)×1 character vector of
alternate variable names for the output. If __con is 1, this
must be (K+2)×1. The name of the dependent variable is the
last element.

__con scalar, default 1.

GAUSS L R 28-581

ols

1 a constant term will be added, D = K+1.
0 no constant term will be added, D = K.

A constant term will always be used in constructing the
moment matrix m.

__miss scalar, default 0.

0 there are no missing values (fastest).
1 listwise deletion, drop any cases in which missings

occur.
2 pairwise deletion, this is equivalent to setting

missings to 0 when calculating m. The number of
cases computed is equal to the total number of cases
in the data set.

__olsalg string, default “cholup.”
Selects the algorithm used for computing the parameter
estimates. The default Cholesky update method is more
computationally efficient; however, accuracy can suffer for
poorly conditioned data. For higher accuracy, set __olsalg
to either qr or svd.

qr Solves for the parameter estimates using a qr
decomposition.

svd Solves for the paramer estimates using a singular
value decomposition.

__output scalar, default 1.

1 print the statistics.
0 do not print statistics.

__row scalar, the number of rows to read per iteration of the read
loop. Default 0.
If 0, the number of rows will be calculated internally. If you
get an Insufficient memory error while executing ols,
you can supply a value for __row that works on your system.
The answers may vary slightly due to rounding error
differences when a different number of rows is read per
iteration. You can use __row to control this if you want to
get exactly the same rounding effects between several runs.

28-582 GAUSS L R

o

ols

_olsres scalar, default 0.

1 compute residuals (resid) and Durbin-Watson
statistic (dwstat).

0 resid = 0, dwstat = 0.

OUTPUT vnam (K+2)×1 or (K+1)×1 character vector, the variable names used in
the regression. If a constant term is used, this vector will be
(K+2)×1, and the first name will be “CONSTANT”. The last name
will be the name of the dependent variable.

m M×M matrix, where M = K+2, the moment matrix constructed by
calculating X′X where X is a matrix containing all useable
observations and having columns in the order:

1.0 indvars depvar
(constant) (independent variables) (dependent variable)

A constant term is always used in computing m.

b D×1 vector, the least squares estimates of parameters Error handling
is controlled by the low order bit of the trap flag.

trap 0 terminate with error message
trap 1 return scalar error code in b

30 system singular
31 system underdetermined
32 same number of columns as rows
33 too many missings
34 file not found
35 no variance in an independent variable

The system can become underdetermined if you use listwise deletion
and have missing values. In that case, it is possible to skip so many
cases that there are fewer useable rows than columns in the data set.

stb K×1 vector, the standardized coefficients.

vc D×D matrix, the variance-covariance matrix of estimates.

stderr D×1 vector, the standard errors of the estimated parameters.

sigma scalar, standard deviation of residual.

GAUSS L R 28-583

ols

cx (K+1)×(K+1) matrix, correlation matrix of variables with the
dependent variable as the last column.

rsq scalar, R square, coefficient of determination.

resid residuals, resid = y - x * b.
If _olsres = 1, the residuals will be computed.
If the data is taken from a data set, a new data set will be created for
the residuals, using the name in the global string variable _olsrnam.
The residuals will be saved in this data set as an N×1 column. The
resid return value will be a string containing the name of the new
data set containing the residuals.
If the data is passed in as a matrix, the resid return value will be the
N×1 vector of residuals.

dwstat scalar, Durbin-Watson statistic.

REMARKS For poorly conditioned data the default setting for __olsalg, using the
Cholesky update, may produce only four or five digits of accuracy for the
parameter estimates and standard error. For greater accuracy, use either the qr
or singular value decomposition algorithm by setting __olsalg to qr or svd. If
you are unsure of the condition of your data, set __olsalg to qr.

No output file is modified, opened, or closed by this procedure. If you want
output to be placed in a file, you need to open an output file before calling ols.

EXAMPLE y = { 2,

3,

1,

7,

5 };

x = { 1 3 2,

2 3 1,

7 1 7,

5 3 1,

3 5 5 };

output file = ols.out reset;

28-584 GAUSS L R

o

olsmt

call ols(0,y,x);

output off;

In this example, the output from ols is put into a file called ols.out as well as
being printed to the window. This example will compute a least squares
regression of y on x. The return values are discarded by using a call statement.

data = "olsdat";

depvar = { score };

indvars = { region,age,marstat };

_olsres = 1;

output file = lpt1 on;

{ nam,m,b,stb,vc,std,sig,cx,rsq,resid,dbw } =

ols(data,depvar,indvars);

output off;

In this example, the data set olsdat.dat is used to compute a regression. The
dependent variable is score. The independent variables are: region, age, and
marstat. The residuals and Durbin-Watson statistic will be computed. The
output will be sent to the printer as well as the window and the returned values
are assigned to variables.

SOURCE ols.src

SEE ALSO olsqr

olsmt

PURPOSE Computes a least squares regression.

FORMAT oout = olsmt(oc0,dataset,depvar,indvars);

GAUSS L R 28-585

olsmt

INPUT oc0 instance of an olsmtControl structure containing the following
members:

oc0.altnam character vector, default 0.
This can be a (K+1)×1 or (K+2)×1 character
vector of alternate variable names for the
output. If oc0.con is 1, this must be (K+2)×1.
The name of the dependent variable is the last
element.

oc0.con scalar, default 1.
1 a constant term will be added, D =

K+1.
0 no constant term will be added, D = K.

A constant term will always be used in
constructing the moment matrix m.

oc0.miss scalar, default 0.
0 there are no missing values (fastest).
1 listwise deletion, drop any cases in

which missings occur.
2 pairwise deletion, this is equivalent to

setting missings to 0 when calculating
m. The number of cases computed is
equal to the total number of cases in
the data set.

oc0.row scalar, the number of rows to read per
iteration of the read loop. Default 0.
If 0, the number of rows will be calculated
internally. If you get an Insufficient
memory error message while executing
olsmt, you can supply a value for oc0.row
that works on your system.
The answers may vary slightly due to
rounding error differences when a different
number of rows is read per iteration. You can
use oc0.row to control this if you want to get
exactly the same rounding effects between
several runs.

28-586 GAUSS L R

o

olsmt

oc0.vpad scalar, default 1.
If 0, internally created variable names are not
padded to the same length (e.g. “X1, X2,...,
X10”).
If 1, they are padded with zeros to the same
length (e.g., “X01, X02,..., X10”).

oc0.output scalar, default 1.
1 print the statistics.
0 do not print statistics.

oc0.res scalar, default 0.
1 compute residuals (resid) and

Durbin-Watson statistic (dwstat).
0 oout.resid = 0, oout.dwstat = 0.

oc0.rnam string, default “ olsmtres”.
If the data is taken from a data set, a new data
set will be created for the residuals, using the
name in oc0.rnam.

oc0.maxvec scalar, default 20000.
The largest number of elements allowed in
any one matrix.

oc0.fcmptol scalar, default 1e-12.
Tolerance used to fuzz the comparison
operations to allow for round off error.

oc0.alg string, default “cholup”.
Selects the algorithm used for computing the
parameter estimates. The default Cholesky
update method is more computationally
efficient. However, accuracy can suffer for
poorly conditioned data. For higher accuracy
set oc0.alg to either qr or svd.

qr Solves for the parameter estimates
using a qr decomposition.

svd Solves for the paramer estimates
using a singular value decomposition.

dataset string, name of data set or null string.

GAUSS L R 28-587

olsmt

If dataset is a null string, the procedure assumes that the actual data
has been passed in the next two arguments.

depvar If dataset contains a string:

string, name of dependent variable
- or -

scalar, index of dependent variable. If scalar 0, the last column
of the data set will be used.

If dataset is a null string or 0:

N×1 vector, the dependent variable.

indvars If dataset contains a string:

K×1 character vector, names of independent variables
- or -

K×1 numeric vector, indices of independent variables.
These can be any size subset of the variables in the data set and
can be in any order. If a scalar 0 is passed, all columns of the
data set will be used except for the one used for the dependent
variable.

If dataset is a null string or 0:

N×K matrix, the independent variables.

OUTPUT oout instance of an olsmtOut structure containing the following
members:

oout.vnam (K+2)×1 or (K+1)×1 character vector, the
variable names used in the regression. If a
constant term is used, this vector will be
(K+2)×1, and the first name will be
“CONSTANT”. The last name will be the
name of the dependent variable.

oout.m M×M matrix, where M = K+2, the moment
matrix constructed by calculating X′X where
X is a matrix containing all useable
observations and having columns in the order:

1.0 indvars depvar
constant independent dependent

variables variables

28-588 GAUSS L R

o

olsmt

A constant term is always used in computing
m.

oout.b D×1 vector, the least squares estimates of
parameters
Error handling is controlled by the low order
bit of the trap flag.

trap 0 terminate with error
message

trap 1 return scalar error code in b

30 system singular
31 system

underdetermined
32 same number of

columns as rows
33 too many missings
34 file not found
35 no variance in an

independent variable

The system can become underdetermined if
you use listwise deletion and have missing
values. In that case, it is possible to skip so
many cases that there are fewer useable rows
than columns in the data set.

oout.stb K×1 vector, the standardized coefficients.
oout.vc D×D matrix, the variance-covariance matrix

of estimates.
oout.stderr D×1 vector, the standard errors of the

estimated parameters.
oout.sigma scalar, standard deviation of residual.
oout.cx (K+1)×(K+1) matrix, correlation matrix of

variables with the dependent variable as the
last column.

oout.rsq scalar, R square, coefficient of determination.
oout.resid residuals, oout.resid = y - x * oout.b.

GAUSS L R 28-589

olsmt

If oc0.olsres = 1, the residuals will be
computed.
If the data is taken from a data set, a new data
set will be created for the residuals, using the
name in oc0.rnam. The residuals will be
saved in this data set as an N×1 column. The
oout.resid return value will be a string
containing the name of the new data set
containing the residuals.
If the data is passed in as a matrix, the
oout.resid return value will be the N×1
vector of residuals.

oout.dwstat scalar, Durbin-Watson statistic.

REMARKS For poorly conditioned data the default setting for oc0.alg, using the Cholesky
update, may produce only four or five digits of accuracy for the parameter
estimates and standard error. For greater accuracy, use either the qr or singular
value decomposition algorithm by setting oc0.alg to qr or svd. If you are
unsure of the condition of your data, set oc0.alg to qr.

No output file is modified, opened, or closed by this procedure. If you want
output to be placed in a file, you need to open an output file before calling
olsmt.

EXAMPLE #include olsmt.sdf

struct olsmtControl oc0;

struct olsmtOut oOut;

oc0 = olsmtControlCreate;

y = { 2,

3,

1,

7,

5 };

x = { 1 3 2,

28-590 GAUSS L R

o

olsmt

2 3 1,

7 1 7,

5 3 1,

3 5 5 };

output file = olsmt.out reset;

oOut = olsmt(oc0,0,y,x);

output off;

In this example, the output from olsmt is put into a file called olsmt.out as
well as being printed to the window. This example will compute a least squares
regression of y on x.

#include olsmt.sdf

struct olsmtControl oc0;

struct olsmtOut oOut;

oc0 = olsmtControlCreate;

data = "olsdat";

depvar = { score };

indvars = { region,age,marstat };

oc0.res = 1;

output file = lpt1 on;

oOut = olsmt(oc0,data,depvar,indvars);

output off;

In this example, the data set olsdat.dat is used to compute a regression. The
dependent variable is score. The independent variables are: region, age, and
marstat. The residuals and Durbin-Watson statistic will be computed. The
output will be sent to the printer as well as the window and the returned values
are assigned to variables.

SOURCE olsmt.src

SEE ALSO olsmtControlCreate, olsqrmt

GAUSS L R 28-591

olsmtControlCreate

olsmtControlCreate

PURPOSE Creates default olsmtControl structure.

INCLUDE olsmt.sdf

FORMAT c = olsmtControlCreate;

OUTPUT c instance of an olsmtControl structure with members set to default
values.

EXAMPLE Since structures are strongly typed in GAUSS, each structure must be declared
before it can be used. To declare an olsmtControlCreate structure, we must
include olsmt.sdf from the src directory. From inside a GAUSS program file:

#include olsmt.sdf /* include olsmt.sdf */

struct olsmtControl c; /* declare c as an olsmtControl strucure */

c = olsmtControlCreate; /* initialize structure c */

From the command line, you cannot use #include statements. However,
olsmt.sdf can be included by running the file like this:

>> run olsmt.sdf /* include olsmt.sdf */

>> struct olsmtControl c /* declare c as an olsmtControl structure */

>> c = olsmtControlCreate /* initialize structure c */

The members of the olsmtControl structure and their default values are
described in the manual entry for olsmt.

SOURCE olsmt.src

28-592 GAUSS L R

o

olsqr

SEE ALSO olsmt

olsqr

PURPOSE Computes OLS coefficients using QR decomposition.

FORMAT b = olsqr(y,x);

INPUT y N×1 vector containing dependent variable.

x N×P matrix containing independent variables.

GLOBAL
INPUT

_olsqtol scalar, the tolerance for testing if diagonal elements are
approaching zero. The default value is 10−14.

OUTPUT b P×1 vector of least squares estimates of regression of y on x. If x
does not have full rank, then the coefficients that cannot be estimated
will be zero.

REMARKS This provides an alternative to y/x for computing least squares coefficients.

This procedure is slower than the / operator. However, for near singular
matrices it may produce better results.

olsqr handles matrices that do not have full rank by returning zeros for the
coefficients that cannot be estimated.

SOURCE olsqr.src

SEE ALSO ols, olsqr2, orth, qqr

GAUSS L R 28-593

olsqrmt

olsqr2

PURPOSE Computes OLS coefficients, residuals, and predicted values using the QR
decomposition.

FORMAT { b,r,p } = olsqr2(y,x);

INPUT y N×1 vector containing dependent variable.

x N×P matrix containing independent variables.

GLOBAL
INPUT

_olsqtol scalar, the tolerance for testing if diagonal elements are
approaching zero. The default value is 10−14.

OUTPUT b P×1 vector of least squares estimates of regression of y on x. If x
does not have full rank, then the coefficients that cannot be estimated
will be zero.

r P×1 vector of residuals. (r = y − x ∗ b)

p P×1 vector of predicted values. (p = x ∗ b)

REMARKS This provides an alternative to y/x for computing least squares coefficients.

This procedure is slower than the / operator. However, for near singular
matrices, it may produce better results.

olsqr2 handles matrices that do not have full rank by returning zeros for the
coefficients that cannot be estimated.

SOURCE olsqr.src

SEE ALSO olsqr, orth, qqr

28-594 GAUSS L R

o

ones

olsqrmt

PURPOSE Computes OLS coefficients using QR decomposition.

FORMAT b = olsqrmt(y,x,tol);

INPUT y N×1 vector containing dependent variable.

x N×P matrix containing independent variables.

tol scalar, the tolerance for testing if diagonal elements are approaching
zero. The default value is 10−14.

OUTPUT b P×1 vector of least squares estimates of regression of y on x. If x
does not have full rank, then the coefficients that cannot be estimated
will be zero.

REMARKS This provides an alternative to y/x for computing least squares coefficients.

This procedure is slower than the / operator. However, for near singular
matrices it may produce better results.

olsqrmt handles matrices that do not have full rank by returning zeros for the
coefficients that cannot be estimated.

SOURCE olsmt.src

SEE ALSO olsmt, olsqr2

ones

PURPOSE Creates a matrix of ones.

GAUSS L R 28-595

open

FORMAT y = ones(r,c);

INPUT r scalar, number of rows.

c scalar, number of columns.

OUTPUT y r×c matrix of ones.

REMARKS Noninteger arguments will be truncated to an integer.

EXAMPLE x = ones(3,2);

x =

1.000000 1.000000
1.000000 1.000000
1.000000 1.000000

SEE ALSO zeros, eye

open

PURPOSE Opens an existing GAUSS data file.

FORMAT open fh=filename [[for mode]] [[-w32]] [[varindxi [[offs]]]];

INPUT filename literal or ˆstring.

filename is the name of the file on the disk. The name can include a
path if the directory to be used is not the current directory. This
filename will automatically be given the extension .dat. If an
extension is specified, the .dat will be overridden. If the file is an
.fmt matrix file, the extension must be explicitly given. If the name
of the file is to be taken from a string variable, the name of the string
must be preceded by the ˆ (caret) operator.

28-596 GAUSS L R

o

open

mode literal, the modes supported with the optional for subcommand are:

read This is the default file opening mode and will be
the one used if none is specified. Files opened in
this mode cannot be written to. The pointer is set
to the beginning of the file and the writer
function is disabled for files opened in this way.
This is the only mode available for matrix files
(.fmt), which are always written in one piece
with the save command.

append Files opened in this mode cannot be read. The
pointer will be set to the end of the file so that a
subsequent write to the file with the writer
function will add data to the end of the file
without overwriting any of the existing data in the
file. The readr function is disabled for files
opened in this way. This mode is used to add
additional rows to the end of a file.

update Files opened in this mode can be read from and
written to. The pointer will be set to the
beginning of the file. This mode is used to make
changes in a file.

offs scalar, offset added to “index variables.”

The optional varindxi subcommand tells GAUSS to create a set of
global scalars that contain the index (column position) of the
variables in a GAUSS data file. These “index variables” will have
the same names as the corresponding variables in the data file but
with “i” added as a prefix. They can be used inside index brackets,
and with functions like submat to access specific columns of a
matrix without having to remember the column position.

The optional offs argument is an offset that will be added to the
index variables. This is useful if data from multiple files are
concatenated horizontally in one matrix. It can be any scalar
expression. The default is 0.

GAUSS L R 28-597

open

The index variables are useful for creating submatrices of specific
variables without requiring that the positions of the variables be
known. For instance, if there are two variables, xvar and yvar in
the data set, the index variables will have the names ixvar, iyvar.
If xvar is the first column in the data file, and yvar is the second,
and if no offset, offs, has been specified, then ixvar and iyvar will
equal 1 and 2 respectively. If an offset of 3 had been specified, then
these variables would be assigned the values 4 and 5 respectively.

The -w32 flag is an optimization for Windows. It is ignored on all
other platforms. GAUSS 7.0 and later use Windows system file
write commands that support 64-bit file sizes. These commands are
slower on Windows XP than the 32-bit file write commands that
were used in GAUSS 6.0 and earlier. If you include the -w32 flag,
successive writes to the file indicated by fh will use 32-bit Windows
write commands, which will be faster on Windows XP. Note,
however, that the -w32 flag does not support 64-bit file sizes.

The varindxi option cannot be used with .fmt matrix files because
no column names are stored with them.

If varindxi is used, GAUSS will ignore the Undefined symbol
error for global symbols that start with “i”. This makes it much
more convenient to use index variables because they don’t have to be
cleared before they are accessed in the program. Clearing is
otherwise necessary because the index variables do not exist until
execution time when the data file is actually opened and the names
are read in from the header of the file. At compile time a statement
like: y=x[.,ixvar]; will be illegal if the compiler has never heard
of ixvar. If varindxi is used, this error will be ignored for
symbols beginning with “i”. Any symbols that are accessed before
they have been initialized with a real value will be trapped at
execution time with a Variable not initialized error.

OUTPUT fh scalar, file handle.

fh is the file handle which will be used by most commands to refer to

28-598 GAUSS L R

o

open

the file within GAUSS. This file handle is actually a scalar
containing an integer value that uniquely identifies each file. This
value is assigned by GAUSS when the open command is executed.
If the file was not successfully opened, the file handle will be set to
-1.

REMARKS The file must exist before it can be opened with the open command. To create a
new file, see create or save.

A file can be opened simultaneously under more than one handle. See the
second example following.

If the value that is in the file handle when the open command begins to execute
matches that of an already open file, the process will be aborted and a File
already open message will be given. This gives you some protection against
opening a second file with the same handle as a currently open file. If this
happens, you would no longer be able to access the first file.

It is important to set unused file handles to zero because both open and create
check the value that is in a file handle to see if it matches that of an open file
before they proceed with the process of opening a file. This should be done with
close or closeall.

EXAMPLE fname = "/data/rawdat";

open dt = ˆfname for append;

if dt =\,= -1;

print "File not found";

end;

endif;

y = writer(dt,x);

if y /= rows(x);

print "Disk Full";

end;

endif;

dt = close(dt);

In the example above, the existing data set /data/rawdat.dat is opened for
appending new data. The name of the file is in the string variable fname. In this

GAUSS L R 28-599

open

example the file handle is tested to see if the file was opened successfully. The
matrix x is written to this data set. The number of columns in x must be the
same as the number of columns in the existing data set. The first row in x will
be placed after the last row in the existing data set. The writer function will
return the number of rows actually written. If this does not equal the number of
rows that were attempted, then the disk is probably full.

open fin = mydata for read;

open fout = mydata for update;

do until eof(fin);

x = readr(fin,100);

x[.,1 3] = ln(x[.,1 3];

call writer(fout,x);

endo;

closeall fin,fout;

In the above example, the same file, mydata.dat, is opened twice with two
different file handles. It is opened for read with the handle fin, and it is opened
for update with the handle fout. This will allow the file to be transformed in
place without taking up the extra space necessary for a separate output file.
Notice that fin is used as the input handle and fout is used as the output
handle. The loop will terminate as soon as the input handle has reached the end
of the file. Inside the loop the file is read into a matrix called x using the input
handle, the data are transformed (columns 1 and 3 are replaced with their
natural logs), and the transformed data is written back out using the output
handle. This type of operation works fine as long as the total number of rows
and columns does not change.

The following example assumes a data file named dat1.dat that has the
variables: visc, temp, lub, and rpm:

open f1 = dat1 varindxi;

dtx = readr(f1,100);

x = dtx[.,irpm ilub ivisc];

y = dtx[.,itemp];

28-600 GAUSS L R

o

open

call seekr(f1,1);

In this example, the data set dat1.dat is opened for reading (the .dat and the
for read are implicit). varindxi is specified with no constant. Thus, index
variables are created that give the positions of the variables in the data set. The
first 100 rows of the data set are read into the matrix dtx. Then, specified
variables in a specified order are assigned to the matrices x and y using the
index variables. The last line uses the seekr function to reset the pointer to the
beginning of the file.

open q1 = c:dat1 varindx;

open q2 = c:dat2 varindx colsf(q1);

nr = 100;

y = readr(q1,nr)˜readr(q2,nr);

closeall q1,q2;

In this example, two data sets are opened for reading and index variables are
created for each. A constant is added to the indices for the second data set (q2),
equal to the number of variables (columns) in the first data set (q1). Thus, if
there are three variables x1, x2, x3 in q1, and three variables y1, y2, y3 in q2,
the index variables that were created when the files were opened would be ix1,
ix2, ix3, iy1, iy2, iy3. The values of these index variables would be 1, 2, 3,
4, 5, 6, respectively. The first 100 rows of the two data sets are read in and
concatenated to produce the matrix y. The index variables will thus give the
correct positions of the variables in y.

open fx = x.fmt;

i = 1; rf = rowsf(fx);

sampsize = round(rf*0.1);

rndsmpx = zeros(sampsize,colsf(fx));

do until i > sampsize;

r = ceil(rndu(1,1)*rf);

call seekr(fx,r);

rndsmpx[i,.] = readr(fx,1);

GAUSS L R 28-601

optn, optnevn

i = i+1;

endo;

fx = close(fx);

In this example, a 10% random sample of rows is drawn from the matrix file
x.fmt and put into the matrix rndsmpx. Note that the extension .fmt must be
specified explicitly in the open statement. The rowsf command is used to
obtain the number of rows in x.fmt. This number is multiplied by 0.10 and the
result is rounded to the nearest integer; this yields the desired sample size. Then
random integers (r) in the range 1 to rf are generated. seekr is used to locate
to the appropriate row in the matrix, and the row is read with readr and placed
in the matrix rndsmpx. This is continued until the complete sample has been
obtained.

SEE ALSO dataopen, create, close, closeall, readr, writer, seekr, eof

optn, optnevn

PURPOSE Returns optimal matrix dimensions for computing FFT’s.

FORMAT n = optn(n0);
n = optnevn(n0);

INPUT n0 scalar, the length of a vector or the number of rows or columns in a
matrix.

OUTPUT n scalar, the next optimal size for the given dimension for computing
an FFT or RFFT. n≥n0.

REMARKS optn and optnevn determine optimal matrix dimensions for computing FFT’s.
The Temperton FFT routines (see table following) can handle any matrix whose
dimensions can be expressed as:

28-602 GAUSS L R

o

orth

2p × 3q × 5r × 7s, p,q,r nonnegative integers
s=0 or 1

with one restriction: the vector length or matrix column size must be even (p
must be positive) when computing RFFT’s.

fftn, etc., pad matrices to the next allowable dimensions; however, they
generally run faster for matrices whose dimensions are highly composite
numbers, that is, products of several factors (to various powers), rather than
powers of a single factor. For example, even though it is bigger, a 33600×1
vector can compute as much as 20% faster than a 32768×1 vector, because
33600 is a highly composite number, 26 × 3 × 52 × 7, whereas 32768 is a simple
power of 2, 215. optn and optnevn are provided so you can take advantage of
this fact by hand-sizing matrices to optimal dimensions before computing the
FFT.

Use the following table to determine what to call for a given function and
matrix:

FFT Vector Matrix Matrix
Function Length Rows Columns
fftn optn optn optn

rfftn optnevn optn optnevn

rfftnp optnevn optn optnevn

EXAMPLE n = optn(231);

n = 240.00000

SEE ALSO fftn, nextn, nextnevn, rfftn, rfftnp

GAUSS L R 28-603

output

orth

PURPOSE Computes an orthonormal basis for the column space of a matrix.

FORMAT y = orth(x);

INPUT x N×K matrix.

GLOBAL
INPUT

_orthtol scalar, the tolerance for testing if diagonal elements are
approaching zero. The default is 1.0e-14.

OUTPUT y N×L matrix such that y′y = eye(L) and whose columns span the
same space as the columns of x; L is the rank of x.

EXAMPLE x = { 6 5 4,

2 7 5 };

y = orth(x);

y =
−0.58123819 −0.81373347
−0.81373347 0.58123819

SOURCE qqr.src

SEE ALSO qqr, olsqr

output

PURPOSE This command makes it possible to direct the output of print statements to two
different places simultaneously. One output device is always the window or

28-604 GAUSS L R

o

output

standard output. The other can be selected by the user to be any disk file or
other suitable output device such as a printer.

FORMAT output [[file=filename]] [[on|off|reset]];

INPUT filename literal or ˆstring.
The file=filename subcommand selects the file or device to which
output is to be sent.
If the name of the file is to be taken from a string variable, the name
of the string must be preceded by the ˆ (caret) operator.
The default file name is output.out.

on, off, reset literal, mode flag:

on opens the auxiliary output file or device and
causes the results of all print statements to be
sent to that file or device. If the file already exists,
it will be opened for appending. If the file does
not already exist, it will be created.

off closes the auxiliary output file and turns off the
auxiliary output.

reset similar to the on subcommand, except that it
always creates a new file. If the file already exists,
it will be destroyed and a new file by that name
will be created. If it does not exist, it will be
created.

REMARKS After you have written to an output file you have to close the file before you can
print it or edit it with the GAUSS editor. Use output off.

The selection of the auxiliary output file or device remains in effect until a new
selection is made, or until you get out of GAUSS. Thus, if a file is named as the
output device in one program, it will remain the output device in subsequent
programs until a new file=filename subcommand is encountered.

The command

output file=filename;

GAUSS L R 28-605

output

will select the file or device but will not open it. A subsequent output on or
output reset will open it and turn on the auxiliary output.

The command output off will close the file and turn off the auxiliary output.
The filename will remain the same. A subsequent output on will cause the file
to be opened again for appending. A subsequent output reset will cause the
existing file to be destroyed and then recreated and will turn on the auxiliary
output.

The command output by itself will cause the name and status (i.e., open or
closed) of the current auxiliary output file to be printed to the window.

The output to the console can be turned off and on using the screen off and
screen on commands. Output to the auxiliary file or device can be turned off
or on using the output off or output on command. The defaults are screen
on and output off.

The auxiliary file or device can be closed by an explicit output off statement,
by an end statement, or by an interactive new statement. However, a new
statement at the beginning of a program will not close the file. This allows
programs with new statements in them to be run without reopening the auxiliary
output file.

If a program sends data to a disk file, it will execute much faster if the window
is off.

The outwidth command will set the line width of the output file. The default is
80.

EXAMPLE output file = out1.out on;

This statement will open the file out1.out and will cause the results of all
subsequent print statements to be sent to that file. If out1.out already exists,
the new output will be appended.

output file = out2.out;

output on;

28-606 GAUSS L R

o

outtyp (dataloop)

This is equivalent to the previous example.

output reset;

This statement will create a new output file using the current filename. If the file
already exists, any data in it will be lost.

output file = mydata.asc reset;

screen off;

format /m1/rz 1,8;

open fp = mydata;

do until eof(fp);

print readr(fp,200);;

endo;

fp = close(fp);

end;

The program above will write the contents of the GAUSS file mydata.dat into
an ASCII file called mydata.asc. If there had been an existing file by the name
of mydata.asc, it would have been overwritten.

The /m1 parameter in the format statement in combination with the ;; at the
end of the print statement will cause one carriage return/line feed pair to be
written at the beginning of each row of the output file. There will not be an extra
line feed added at the end of each 200 row block.

The end statement above will automatically perform output off and screen
on.

SEE ALSO outwidth, screen, end, new

GAUSS L R 28-607

outwidth

outtyp (dataloop)

PURPOSE Specifies the precision of the output data set.

FORMAT outtyp num constant;

INPUT num constant scalar, precision of output data set.

REMARKS num constant must be 2, 4, or 8, to specify integer, single precision, or double
precision, respectively.

If outtyp is not specified, the precison of the output data set will be that of the
input data set. If character data is present in the data set, the precision will be
forced to double.

EXAMPLE outtyp 8;

outwidth

PURPOSE Specifies the width of the auxiliary output.

FORMAT outwidth n;

INPUT n scalar, width of auxilary output.

REMARKS n specifies the width of the auxiliary output in columns (characters). After
printing n characters on a line, GAUSS will output a line feed.

If a matrix is being printed, the line feed sequence will always be inserted
between separate elements of the matrix rather than being inserted between
digits of a single element.

28-608 GAUSS L R

o

pacf

n may be any scalar-valued expressions in the range of 2-256. Nonintegers will
be truncated to an integer. If 256 is used, no additional lines will be inserted.

The default is 80 columns.

EXAMPLE outwidth 132;

This statement will change the auxiliary output width to 132 columns.

SEE ALSO output, print

pacf

PURPOSE Computes sample partial autocorrelations.

FORMAT rkk = pacf(y,k,d);

INPUT y N×1 vector, data.

k scalar, maximum number of partial autocorrelations to compute.

d scalar, order of differencing.

OUTPUT rkk K×1 vector, sample partial autocorrelations.

EXAMPLE proc pacf(y,k,d);

local a,l,j,r,t;

r = acf(y,k,d);

a = zeros(k,k);

a[1,1] = r[1];

t = 1;

l = 2;

do while l le k;

a[l,l] = (r[l]-a[l-1,1:t]*rev(r[1:l-1]))/

GAUSS L R 28-609

packedToSp

(1-a[l-1,1:t]*r[1:t]);

j = 1;

do while j <= t;

a[l,j] = a[l-1,j] - a[l,l]*a[l-1,l-j];

j = j+1;

endo;

t = t+1;

l = l+1;

endo;

retp(diag(a));

endp;

SOURCE tsutil.src

packedToSp

PURPOSE Creates a sparse matrix from a packed matrix of non-zero values and row and
column indices.

FORMAT y = packedToSp(r,c,p);

INPUT r scalar, rows of output matrix.

c scalar, columns of output matrix.

p N×3 or N×4 matrix, containing non-zero values and row and
column indices.

OUTPUT y r×c sparse matrix.

28-610 GAUSS L R

p

packr

REMARKS If p is N×3, y will be a real sparse matrix. Otherwise, if p is N×4, y will be
complex.

The format for p is as follows:

If p is N×3:

Column 1 Column 2 Column 3
non-zero values row indices column indices

If p is N×4:

Column 1 Column 2 Column 3 Column 4
real non-zero imaginary row indices column indices
values non-zero values

Note that spCreate may be faster.

Since sparse matrices are strongly typed in GAUSS, y must be defined as a
sparse matrix before the call to packedToSp.

EXAMPLE sparse matrix y;

p = { 1 2 4, 2 5 1, 3 8 9, 4 13 5 };

y = packedToSp(15,10,p);

This example creates a 15×10 sparse matrix y, containing the following
non-zero values:

Non-zero value Index
1 (2,4)
2 (5,1)
3 (8,9)
4 (13,5)

SEE ALSO spCreate, denseToSp

GAUSS L R 28-611

packr

packr

PURPOSE Deletes the rows of a matrix that contain any missing values.

FORMAT y = packr(x);

INPUT x N×K matrix.

OUTPUT y L×K submatrix of x containing only those rows that do not have
missing values in any of their elements.

REMARKS This function is useful for handling missing values by “listwise deletion,”
particularly prior to using the / operator to compute least squares coefficients.

If all rows of a matrix contain missing values, packr returns a scalar missing
value. This can be tested for quickly with the scalmiss function.

EXAMPLE x = miss(ceil(rndu(3,3)*10),1);

y = packr(x);

x =

. 9 10
4 2 .

3 4 9

y = 3 4 9

In this example, the matrix x is formed with random integers and missing
values. packr is used to delete rows with missing values.

open fp = mydata;

obs = 0;

28-612 GAUSS L R

p

parse

sum = 0;

do until eof(fp);

x = packr(readr(fp,100));

if not scalmiss(x);

obs = obs+rows(x);

sum = sum+sumc(x);

endif;

endo;

mean = sum/obs;

In this example the sums of each column in a data file are computed as well as a
count of the rows that do not contain any missing values. packr is used to
delete rows that contain missings and scalmiss is used to skip the two sum
steps if all the rows are deleted for a particular iteration of the read loop. Then
the sums are divided by the number of observations to obtain the means.

SEE ALSO scalmiss, miss, missrv

parse

PURPOSE Parses a string, returning a character vector of tokens.

FORMAT tok = parse(str,delim);

INPUT str string consisting of a series of tokens and/or delimiters.

delim N×K character matrix of delimiters that might be found in str.

OUTPUT tok M×1 character vector consisting of the tokens contained in str. All
tokens are returned; any delimiters found in str are ignored.

REMARKS The tokens in str must be 8 characters or less in size. If they are longer, the
contents of tok is unpredictable.

GAUSS L R 28-613

pause

SEE ALSO token

pause

PURPOSE Pauses for a specified number of seconds.

FORMAT pause(sec);

INPUT sec scalar, seconds to pause.

SOURCE pause.src

SEE ALSO wait

pdfCauchy

PURPOSE Computes the probability density function for the Cauchy distribution.

FORMAT y = pdfCauchy(x,a,b);

INPUT x N×K matrix, an N×1 vector or scalar.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x.

b Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

28-614 GAUSS L R

p

pdfexp

REMARKS The probability density function for the Cauchy distribution is defined as

f (x) =
(
πσ

(
1 +

(x − µ
σ

)2
))−1

SEE ALSO cdfCauchy

pdfexp

PURPOSE Computes the probability density function for the exponential distribution.

FORMAT y = pdfexp(x,a,m);

INPUT x N×K matrix, N×1 vector or scalar. x must be greater than a.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x.

m Scalar, mean parameter. m must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The probability density function for the exponential distribution is defined as

f (x) = λ exp(−λ(x − γ))

SEE ALSO cdfexp

GAUSS L R 28-615

pdfLaplace

pdfGenPareto

PURPOSE Computes the probability density function for the Generalized Pareto
distribution.

FORMAT y = pdfGenPareto(x,a,o,k);

INPUT x N×K matrix, an N×1 vector or scalar.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x.

o Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. o must be greater than 0.

k Shape parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The probability density function for the Generalized Pareto distribution is
defined as

f (x) =

 1
σ

(
1 + k (x−µ)

σ

)−1−1/k
k , 0

1
σ

exp
(
−

(x−µ)
σ

)
k = 0

SEE ALSO cdfGenPareto

pdfLaplace

PURPOSE Computes the probability density function for the Laplace distribution.

28-616 GAUSS L R

p

pdflogistic

FORMAT y = pdfLaplace(x,a,b);

INPUT x N×K matrix, N×1 vector or scalar.

a Scalar, location parameter.

b Scalar, scale parameter. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The probability density function for the Laplace distribution is defined as

f (x) =
λ

2
exp(−λ |x − µ|)

SEE ALSO cdfCauchy, pdfCauchy

pdflogistic

PURPOSE Computes the probability density function for the logistic distribution.

FORMAT y = pdflogistic(x,a,b);

INPUT x N×K matrix, an N×1 vector or scalar.

a Location parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x.

b Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

GAUSS L R 28-617

pdfn

REMARKS The probability density function for the logistic distribution is defined as

f (x) =
exp(−z)

σ(1 + exp(−z))−2

SEE ALSO cdflogistic

pdfn

PURPOSE Computes the standard Normal (scalar) probability density function.

FORMAT y = pdfn(x);

INPUT x N×K matrix.

OUTPUT y N×K matrix containing the standard Normal probability density
function of x.

REMARKS This does not compute the joint Normal density function. Instead, the scalar
Normal density function is computed element-by-element. y could be computed
by the following GAUSS code:

y = (1/sqrt(2*pi))*exp(-(x.*x)/2);

EXAMPLE x = rndn(2,2);

y = pdfn(x);

x =
−1.828915 0.514485
−0.550219 −0.275229

28-618 GAUSS L R

p

pdfRayleigh

y =
0.074915 0.349488
0.342903 0.384115

pdfRayleigh

PURPOSE Computes the probability density function of the Rayleigh distribution.

FORMAT y = pdfRayleigh(x,b);

INPUT x N×K matrix, an N×1 vector or scalar. x must be greater than 0.

b Scale parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. b must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The probability density function of the Rayleigh distribution is defined as

x exp
(
−x2

2σ2

)
σ2

SEE ALSO cdfRayleighinv

pdfWeibull

PURPOSE Computes the probability density function of a Weibull random variable.

FORMAT y = pdfWeibull(x,k,lambda);

GAUSS L R 28-619

pi

INPUT x N×K matrix, N×1 vector or scalar. x must be greater than 0.

k Shape parameter; N×K matrix, N×1 vector or scalar, E×E
conformable with x. k must be greater than 0.

lambda Scale parameter; may be matrix, N×1 vector or scalar, E×E
conformable with x. lambda must be greater than 0.

OUTPUT y N×K matrix, N×1 vector or scalar.

REMARKS The probability density function of a Weibull random variable is defined as

f (x; λ, k) =
{ k
λ

(x
λ
) k−1e −(x/λ) k x ≥ 0

0 x < 0

SEE ALSO cdfWeibull, cdfWeibullinv

pi

PURPOSE Returns the mathematical constant π.

FORMAT y = pi;

OUTPUT y scalar, the value of π.

EXAMPLE format /rdn 16,14;

print pi;

3.14159265358979

28-620 GAUSS L R

p

pinvmt

pinv

PURPOSE Computes the Moore-Penrose pseudo-inverse of a matrix, using the singular
value decomposition.

This pseudo-inverse is one particular type of generalized inverse.

FORMAT y = pinv(x);

INPUT x N×M matrix.

GLOBAL
INPUT

_svdtol scalar, any singular values less than _svdtol are treated as
zero in determining the rank of the input matrix. The default
value for _svdtol is 1.0e-13.

OUTPUT y M×N matrix that satisfies the 4 Moore-Penrose conditions:
xyx = x
yxy = y
xy is symmetric
yx is symmetric

GLOBAL
OUTPUT

_svderr scalar, if not all of the singular values can be computed
_svderr will be nonzero.

EXAMPLE x = { 6 5 4, 2 7 5 };

y = pinv(x);

y =

0.22017139 −0.16348055
−0.052076467 0.13447594
−0.015161503 0.077125906

SOURCE svd.src

GAUSS L R 28-621

pinvmt

pinvmt

PURPOSE Computes the Moore-Penrose pseudo-inverse of a matrix, using the singular
value decomposition.

This pseudo-inverse is one particular type of generalized inverse.

FORMAT { y,err } = pinvmt(x,tol);

INPUT x N×M matrix.
tol scalar, any singular values less than tol are treated as zero in

determining the rank of the input matrix.

OUTPUT y M×N matrix that satisfies the 4 Moore-Penrose conditions:
xyx = x
yxy = y
xy is symmetric
yx is symmetric

err scalar, if not all of the singular values can be computed err will be
nonzero.

EXAMPLE x = { 6 5 4, 2 7 5 };

tol = 1e-13;

{ y,err } = pinvmt(x,tol);

y =

0.22017139 −0.16348055
−0.052076467 0.13447594
−0.015161503 0.077125906

err = 0

SOURCE svdmt.src

28-622 GAUSS L R

p

polar

polar

PURPOSE Graph data using polar coordinates.

LIBRARY pgraph

FORMAT polar(radius,theta);

INPUT radius N×1 or N×M matrix. Each column contains the magnitude for a
particular line.

theta N×1 or N×M matrix. Each column represents the angle values for a
particular line.

SOURCE polar.src

SEE ALSO xy, logx, logy, loglog, scale, xtics, ytics

polychar

PURPOSE Computes the characteristic polynomial of a square matrix.

FORMAT c = polychar(x);

INPUT x N×N matrix.

OUTPUT c (N+1)×1 vector of coefficients of the Nth order characteristic
polynomial of x:

p(x) = c[1] ∗ xn + c[2] ∗ x(n−1) + . . . + c[n] ∗ x + c[n + 1];

REMARKS The coefficient of xn is set to unity (c[1]=1).

GAUSS L R 28-623

polyeval

SOURCE poly.src

SEE ALSO polymake, polymult, polyroot, polyeval

polyeval

PURPOSE Evaluates polynomials. Can either be one or more scalar polynomials or a
single matrix polynomial.

FORMAT y = polyeval(x,c);

INPUT x 1×K or N×N; that is, x can either represent K separate scalar values
at which to evaluate the (scalar) polynomial(s), or it can represent a
single N×N matrix.

c (P+1)×K or (P+1)×1 matrix of coefficients of polynomials to
evaluate. If x is 1×K, then c must be (P+1)×K. If x is N×N, c must
be (P+1)×1. That is, if x is a matrix, it can only be evaluated at a
single set of coefficients.

OUTPUT y K×1 vector (if c is (P+1)×K) or N×N matrix (if c is (P+1)×1 and x
is N×N):

y = (c[1, .]. ∗ xp + c[2, .]. ∗ x(p−1) + . . . + c[p + 1, .])′;

REMARKS In both the scalar and the matrix case, Horner’s rule is used to do the evaluation.
In the scalar case, the function recsercp is called (this implements an
elaboration of Horner’s rule).

EXAMPLE x = 2;

let c = 1 1 0 1 1;

y = polyeval(x,c);

The result is 27. Note that this is the decimal value of the binary number 11011.

28-624 GAUSS L R

p

polygamma

y = polyeval(x,1|zeros(n,1));

This will raise the matrix x to the nth power (e.g: x*x*x*x*. . . *x).

SOURCE poly.src

SEE ALSO polymake, polychar, polymult, polyroot

polygamma

PURPOSE Computes the polygamma function of order n.

FORMAT f = polygamma(z,n);

INPUT z N×K matrix; z may be complex.

n The order of the function. If n is 2 then f will be the Digamma
function. If n = 3,4,5, etc., then f will be the tri-, tetra-, penta-,
hexa-, hepta-, etc., Gamma function. Real (n) must be positive.

OUTPUT f N×K matrix; f may be complex.

EXAMPLE polygamma(-45.6-i*29.4, 101) is near 12.5 + 9*i

polygamma(-11.5-i*0.577007813568142,10) is near a root of the decagamma
function

REMARKS This program uses the partial fraction expansion of the derivative of the log of
the Lanczos series approximation for the Gamma function. Accurate to about
12 digits.

REFERENCES 1. C. Lanczos, SIAM JNA 1, 1964. pp. 86-96.

2. Y. Luke, “The Special ... approximations,” 1969 pp. 29-31.

GAUSS L R 28-625

polyint

3. Y. Luke, “Algorithms ... functions,” 1977.

4. J. Spouge, SIAM JNA 31, 1994. pp. 931.

5. W. Press, “Numerical Recipes.”

6. S. Chang, “Computation of special functions,” 1996.

7. Abramowitz & Stegun, section eq 6.4.6

8. Original code by Paul Godfrey

polyint

PURPOSE Calculates an Nth order polynomial interpolation.

FORMAT y = polyint(xa,ya,x);

INPUT xa N×1 vector, X values.

ya N×1 vector, Y values.

x scalar, X value to solve for.

GLOBAL
INPUT

_poldeg scalar, the degree of polynomial required, default 6.

OUTPUT y result of interpolation or extrapolation.

GLOBAL
OUTPUT

_polerr scalar, interpolation error.

REMARKS Calculates an Nth order polynomial interpolation or extrapolation of X on Y
given the vectors xa and ya and the scalar x. The procedure uses Neville’s
algorithm to determine an up to Nth order polynomial and an error estimate.

Polynomials above degree 6 are not likely to increase the accuracy for most
data. Test _polerr to determine the required _poldeg for your problem.

28-626 GAUSS L R

p

polymake

SOURCE polyint.src

TECHNICAL
NOTES

Press, W.P., B.P. Flannery, S.A. Teukolsky, and W.T. Vettering. Numerical
Recipes: The Art of Scientific Computing. NY: Cambridge Press, 1986.

polymake

PURPOSE Computes the coefficients of a polynomial given the roots.

FORMAT c = polymake(r);

INPUT r N×1 vector containing roots of the desired polynomial.

OUTPUT c (N+1)×1 vector containing the coefficients of the Nth order
polynomial with roots r:

p(z) = c[1] ∗ zn + c[2] ∗ z(n−1) + . . . + c[n] ∗ z + c[n + 1];

REMARKS The coefficient of zn is set to unity (c[1]=1).

EXAMPLE r = { 2, 1, 3 };

c = polymake(r);

c =

1.0000000
−6.0000000

11.000000
−6.0000000

SOURCE poly.src

SEE ALSO polychar, polymult, polyroot, polyeval

GAUSS L R 28-627

polymroot

polymat

PURPOSE Returns a matrix containing the powers of the elements of x from 1 to p.

FORMAT y = polymat(x,p);

INPUT x N×K matrix.

p scalar, positive integer.

OUTPUT y N×(p*K) matrix containing powers of the elements of x from 1 to p.
The first K columns will contain first powers, the second K columns
second powers, and so on.

REMARKS To do polynomial regression use ols:

{ vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat } =

ols(0,y,polymat(x,p));

SOURCE polymat.src

polymroot

PURPOSE Computes the roots of the determinant of a matrix polynomial.

FORMAT r = polymroot(c);

INPUT c (N+1)*K×K matrix of coefficients of an Nth order polynomial of
rank K.

28-628 GAUSS L R

p

polymult

OUTPUT r K*N vector containing the roots of the determinantal equation.

REMARKS c is constructed of N+1 K×K coefficient matrices stacked vertically with the
coefficient matrix of the tn at the top, t(n−1) next, down to the t0 matrix at the
bottom.

Note that this procedure solves the scalar problem as well, that is, the one that
POLYROOT solves.

EXAMPLE Solve det(A2 ∗ t2 + A1 ∗ t + A0) = 0 where:

A2 =
1 2
2 1

A1 =
5 8

10 7

A0 =
3 4
6 5

a2 = { 1 2, 2 1 };

a1 = { 5 8, 10 7 };

a0 = { 3 4, 6 5 };

print polymroot(a2|a1|a0);

-4.3027756

-.69722436

-2.6180340

-.38196601

GAUSS L R 28-629

polyroot

polymult

PURPOSE Multiplies polynomials.

FORMAT c = polymult(c1,c2);

INPUT c1 (D1+1)×1 vector containing the coefficients of the first polynomial.

c2 (D2+1)×1 vector containing the coefficients of the second
polynomial.

OUTPUT c (D1+D2)×1 vector containing the coefficients of the product of the
two polynomials.

EXAMPLE c1 = { 2, 1 };

c2 = { 2, 0, 1 };

c = polymult(c1,c2);

c =

4.0000000
2.0000000
2.0000000
1.0000000

SOURCE poly.src

SEE ALSO polymake, polychar, polyroot, polyeval

TECHNICAL
NOTES

If the degree of c1 is D1 (e.g., if D1=3, then the polynomial corresponding to c1
is cubic), then there must be D1+1 elements in c1 (e.g., 4 elements for a cubic).
Thus, for instance the coefficients for the polynomial 5 ∗ x3 + 6 ∗ x + 3 would
be: c1=5| 0| 6| 3. (Note that zeros must be explicitly given if there are powers of
x missing.)

28-630 GAUSS L R

p

pop

polyroot

PURPOSE Computes the roots of a polynomial given the coefficients.

FORMAT y = polyroot(c);

INPUT c (N+1)×1 vector of coefficients of an Nth order polynomial:

p(z) = c[1] ∗ zn + c[2] ∗ z(n−1) + . . . + c[n] ∗ z + c[n + 1]

OUTPUT y N×1 vector, the roots of c.

REMARKS Zero leading terms will be stripped from c. When that occurs the order of y will
be the order of the polynomial after the leading zeros have been stripped.

c[1] need not be normalized to unity.

SOURCE poly.src

SEE ALSO polymake, polychar, polymult, polyeval

pop

PURPOSE Provides access to a last-in, first-out stack for matrices.

FORMAT pop b; pop a;

REMARKS This is used with gosub, goto, and return statements with parameters. It
permits passing parameters to subroutines or labels, and returning parameters
from subroutines.

GAUSS L R 28-631

pqgwin

The gosub syntax allows an implicit push statement. This syntax is almost the
same as that of a standard gosub, except that the matrices to be push’ed “into
the subroutine” are in parentheses following the label name. The matrices to be
push’ed back to the main body of the program are in parentheses following the
return statement. The only limit on the number of matrices that can be passed
to and from subroutines in this way is the amount of room on the stack.

No matrix expressions can be executed between the (implicit) push and the
pop. Execution of such expressions will alter what is on the stack.

Matrices must be pop’ped in the reverse order that they are push’ed, therefore
in the statements:

goto label(x,y,z);

.

.

.

label:

pop c;

pop b;

pop a;

c = z b = y a = x

Note that there must be a separate pop statement for each matrix popped.

SEE ALSO gosub, goto, return

pqgwin

PURPOSE Sets the graphics viewer mode.

28-632 GAUSS L R

p

previousindex

LIBRARY pgraph

FORMAT pqgwin one;

pqgwin many;

REMARKS If you call pqgwin one, only a single viewer will be used. If you call pqgwin
many, a new viewer will be used for each graph.

pqgwin manual and pqgwin auto are supported for backwards compatibility,
manual=one, auto=many.

EXAMPLE pqgwin many;

SOURCE pgraph.src

SEE ALSO setvwrmode

previousindex

PURPOSE Returns the index of the previous element or subarray in an array.

FORMAT pi = previousindex(i,o);

INPUT i M×1 vector of indices into an array, where M<=N.

o N×1 vector of orders of an N-dimensional array.

OUTPUT pi M×1 vector of indices, the index of the previous element or subarray
in the array corresponding to o.

REMARKS previousindex will return a scalar error code if the index cannot be
decremented.

EXAMPLE orders = {3,4,5,6,7};

GAUSS L R 28-633

princomp

a = areshape(1,orders);

orders = getorders(a);

ind = { 2,3,1 };

ind = previousindex(ind,orders);

ind =

2
2
5

In this example, previousindex decremented ind to index the previous 6×7
subarray in array a.

SEE ALSO nextindex, loopnextindex, walkindex

princomp

PURPOSE Computes principal components of a data matrix.

FORMAT { p,v,a } = princomp(x,j);

INPUT x N×K data matrix, N>K, full rank.
j scalar, number of principal components to be computed (j<=K).

OUTPUT p N×J matrix of the first j principal components of x in descending
order of amount of variance explained.

v J×1 vector of fractions of variance explained.
a J×K matrix of factor loadings, such that x = p*a +error.

REMARKS Adapted from a program written by Mico Loretan.

The algorithm is based on Theil, Henri “Principles of Econometrics.” Wiley,
NY, 1971, 46-56.

28-634 GAUSS L R

p

print

print

PURPOSE Prints matrices, arrays, strings and string arrays to the screen and/or auxiliary
output.

FORMAT print [[/flush]] [[/typ]] [[/fmted]] [[/mf]] [[/jnt]] list of expressions[[;]];

INPUT /typ literal, symbol type flag.

/mat, /sa, /str Indicate which symbol types you are setting
the output format for: matrices and arrays (/mat),
string arrays (/sa), and/or strings (/str). You
can specify more than one /typ flag; the format
will be set for all types indicated. If no /typ flag
is listed, print assumes /mat.

/fmted literal, enable formatting flag.

/on, /off Enable/disable formatting. When formatting is
disabled, the contents of a variable are dumped to
the screen in a “raw” format. /off is currently
supported only for strings. “Raw” format for
strings means that the entire string is printed,
starting at the current cursor position. When
formatting is enabled for strings, they are handled
the same as string arrays. This shouldn’t be too
surprising, since a string is actually a 1×1 string
array.

/mf literal, matrix format. It controls the way rows of a matrix are
separated from one another. The possibilities are:

/m0 no delimiters before or after rows when printing
out matrices.

/m1 or /mb1 print 1 carriage return/line feed pair before each
row of a matrix with more than 1 row.

/m2 or /mb2 print 2 carriage return/line feed pairs before each
row of a matrix with more than 1 row.

GAUSS L R 28-635

print

/m3 or /mb3 print “Row 1”, “Row 2”...before each row of a
matrix with more than one row.

/ma1 print 1 carriage return/line feed pair after each
row of a matrix with more than 1 row.

/ma2 print 2 carriage return/line feed pairs after each
row of a matrix with more than 1 row.

/a1 print 1 carriage return/line feed pair after each
row of a matrix.

/a2 print 2 carriage return/line feed pairs after each
row of a matrix.

/b1 print 1 carriage return/line feed pair before each
row of a matrix.

/b2 print 2 carriage return/line feed pairs before each
row of a matrix.

/b3 print “Row 1”, “Row 2”... before each row of a
matrix.

/jnt literal, controls justification, notation, and the trailing character.

Right-Justified
/rd Signed decimal number in the form

[[-]]####.####, where #### is one or more
decimal digits. The number of digits before the
decimal point depends on the magnitude of the
number, and the number of digits after the
decimal point depends on the precision. If the
precision is 0, no decimal point will be printed.

/re Signed number in the form [[-]]#.##E±###,
where # is one decimal digit, ## is one or more
decimal digits depending on the precision, and
is three decimal digits. If precision is 0, the
form will be [[-]]#E±### with no decimal point
printed.

/ro This will give a format like /rd or /re depending
on which is most compact for the number being
printed. A format like /re will be used only if the
exponent value is less than -4 or greater than the

28-636 GAUSS L R

p

print

precision. If a /re format is used, a decimal point
will always appear. The precision signifies the
number of significant digits displayed.

/rz This will give a format like /rd or /re depending
on which is most compact for the number being
printed. A format like /re will be used only if the
exponent value is less than -4 or greater than the
precision. If a /re format is used, trailing zeros
will be supressed and a decimal point will appear
only if one or more digits follow it. The precision
signifies the number of significant digits
displayed.

Left-Justified
/ld Signed decimal number in the form

[[-]]####.####, where #### is one or more
decimal digits. The number of digits before the
decimal point depends on the magnitude of the
number, and the number of digits after the
decimal point depends on the precision. If the
precision is 0, no decimal point will be printed. If
the number is positive, a space character will
replace the leading minus sign.

/le Signed number in the form [[-]]#.##E±###,
where # is one decimal digit, ## is one or more
decimal digits depending on the precision, and
is three decimal digits. If precision is 0, the
form will be [[-]]#E±### with no decimal point
printed. If the number is positive, a space
character will replace the leading minus sign.

/lo This will give a format like /ld or /le depending
on which is most compact for the number being
printed. A format like /le will be used only if the
exponent value is less than -4 or greater than the
precision. If a /le format is used, a decimal point
will always appear. If the number is positive, a
space character will replace the leading minus
sign. The precision specifies the number of

GAUSS L R 28-637

print

significant digits displayed.
/lz This will give a format like /ld or /le depending

on which is most compact for the number being
printed. A format like /le will be used only if the
exponent value is less than -4 or greater than the
precision. If a /le format is used, trailing zeros
will be supressed and a decimal point will appear
only if one or more digits follow it. If the number
is positive, a space character will replace the
leading minus sign. The precision specifies the
number of significant digits displayed.

Trailing Character

The following characters can be added to the /jnt parameters above
to control the trailing character if any:

format /rdn 1,3;

s The number will be followed immediately by a
space character. This is the default.

c The number will be followed immediately by a
comma.

t The number will be followed immediately by a
tab character.

n No trailing character.

The default when GAUSS is first started is:

format /m1 /ro 16,8;

;; Double semicolons following a print statement
will suppress the final carriage return/line feed.

list of expressions any GAUSS expressions that produce matrices, arrays,
stings, or string arrays and/or names of variables to print, separated
by spaces.

REMARKS The list of expressions MUST be separated by spaces. In print statements,
because a space is the delimiter between expressions, NO SPACES are allowed
inside expressions unless they are within index brackets, quotes, or parentheses.

28-638 GAUSS L R

p

print

The printing of special characters is accomplished by the use of the backslash
(\) within double quotes. The options are:

\b backspace (ASCII 8)
\e escape (ASCII 27)
\f form feed (ASCII 12)
\g beep (ASCII 7)
\l line feed (ASCII 10)
\r carriage return (ASCII 13)
\t tab (ASCII 9)
\### the character whose ASCII value is “###” (decimal).

Thus, \13\10 is a carriage return/line feed sequence. The first three digits will
be picked up here. So if the character to follow a special character is a digit, be
sure to use three digits in the escape sequence. For example: \0074 will be
interpreted as 2 characters (ASCII 7, “4”)

An expression with no assignment operator is an implicit print statement.

If output on has been specified, then all subsequent print statements will be
directed to the auxiliary output as well as the window. (See output.) The
locate statement has no effect on what will be sent to the auxiliary output, so
all formatting must be accomplished using tab characters or some other form of
serial output.

If the name of the symbol to be printed is prefixed with a $, it is assumed that
the symbol is a matrix of characters.

print $x;

Note that GAUSS makes no distinction between matrices containing character
data and those containing numeric data, so it is the responsibility of the user to
use functions which operate on character matrices only on those matrices
containing character data.

These matrices of character strings have a maximum of 8 characters per
element. A precision of 8 or more should be set when printing out character
matrices or the elements will be truncated.

GAUSS L R 28-639

print

Complex numbers are printed with the sign of the imaginary half separating
them and an “i” appended to the imaginary half. Also, the current field width
setting (see format) refers to the width of field for each half of the number, so a
complex number printed with a field of 8 will actually take (at least) 20 spaces
to print.

print’ing a sparse matrix results in a table of the non-zero values contained in
the sparse matrix, followed by their corresponding row and column indices,
respectively.

A print statement by itself will cause a blank line to be printed:

print;

EXAMPLE x = rndn(3,3);

format /rd 16,8;

print x;

format /re 12,2;

print x;

print /rd/m3 x;

0.14357994 -1.39272762 -0.91942414

0.51061645 -0.02332207 -0.02511298

-1.54675893 -1.04988540 0.07992059

1.44E-001 -1.39E+000 -9.19E-001

5.11E-001 -2.33E-002 -2.51E-002

-1.55E+000 -1.05E+000 7.99E-002

Row 1

0.14 -1.39 -0.92

Row 2

0.51 -0.02 -0.03

Row 3

-1.55 -1.05 0.08

28-640 GAUSS L R

p

printdos

In this example, a 3×3 random matrix is printed using 3 different formats.
Notice that in the last statement, the format is overridden in the print
statement itself but the field and precision remain the same.

let x = AGE PAY SEX;

format /m1 8,8;

print $x;

AGE

PAY

SEX

SEE ALSO printfm, printdos

printdos

PURPOSE Prints a string to the standard output.

FORMAT printdos s;

INPUT s string to be printed to the standard output.

REMARKS This function is useful for printing messages to the screen when screen off is
in effect. The output of this function will not go to the auxiliary output.

This function was used in the past to send escape sequences to the ansi.sys
device driver on DOS. It still works on some terminals.

EXAMPLE printdos "\27[7m"; /* set for reverse video */

printdos "\27[0m"; /* set for normal text */

SEE ALSO print, printfm, screen

GAUSS L R 28-641

printfm

printfm

PURPOSE Prints a matrix using a different format for each column of the matrix.

FORMAT y = printfm(x,mask,fmt);

INPUT x N×K matrix which is to be printed and which may contain both
character and numeric data.

mask L×M matrix, E×E conformable with x, containing ones and zeros,
which is used to specify whether the particular row, column, or
element is to be printed as a character (0) or numeric (1) value.

fmt K×3 or 1×3 matrix where each row specifies the format for the
respective column of x.

OUTPUT y scalar, 1 if the function is successful and 0 if it fails.

REMARKS The mask is applied to the matrix x following the rules of standard
element-by-element operations. If the corresponding element of mask is 0, then
that element of x is printed as a character string of up to 8 characters. If mask
contains a 1, then that element of x is assumed to be a double precision floating
point number.

The contents of fmt are as follows:
[K,1] format string, a string 8 characters maximum.
[K,2] field width, a number < 80.
[K,3] precision, a number < 17.

The format strings correspond to the format slash commands as follows:

28-642 GAUSS L R

p

printfm

/rdn ‘‘*.*lf’’

/ren ‘‘*.*lE’’

/ron ‘‘#*.*lG’’

/rzn ‘‘*.*lG’’

/ldn ‘‘- *.*lf’’

/len ‘‘- *.*lE’’

/lon ‘‘-# *.*lG’’

/lzn ‘‘- *.*lG’’

Complex numbers are printed with the sign of the imaginary half separating
them and an “i” appended to the imaginary half. The field width refers to the
width of field for each half of the number, so a complex number printed with a
field of 8 will actually take (at least) 20 spaces to print.

If the precision = 0, the decimal point will be suppressed.

The format string can be a maximum of 8 characters and is appended to a % sign
and passed directly to the fprintf function in the standard C language I/O
library. The lf, etc., are case sensitive. If you know C, you will easily be able
to use this.

If you want special characters to be printed after x, then include them as the last
characters of the format string. For example

‘‘*.*lf,’’ right-justified decimal followed by a comma.

‘‘-*.*s ’’ left-justified string followed by a space.

‘‘*.*lf’’ right-justified decimal followed by nothing.

If you want the beginning of the field padded with zeros, then put a “0” before
the first “*” in the format string:

‘‘0*.*lf’’ right-justified decimal.

EXAMPLE Here is an example of printfm being used to print a mixed numeric and
character matrix:

GAUSS L R 28-643

printfmt

let x[4,3] =

"AGE" 5.12345564 2.23456788

"PAY" 1.23456677 1.23456789

"SEX" 1.14454345 3.44718234

"JOB" 4.11429432 8.55649341;

let mask[1,3] = 0 1 1; /* character numeric numeric */

let fmt[3,3] =

"-*.*s " 8 8 /* first column format */

"*.*lf," 10 3 /* second column format */

"*.*le " 12 4; /* third column format */

d = printfm(x,mask,fmt);

The output looks like this:

AGE 5.123, 2.2346E+00

PAY 1.235, 1.2346E+00

SEX 1.145, 3.4471E+00

JOB 4.114, 8.5564E+00

When the column of x to be printed contains all character elements, use a format
string of ‘‘*.*s’’ if you want it right-justified, or ‘‘-*.*s’’ if you want it
left-justified. If the column is mixed character and numeric elements, then use
the correct numeric format and printfm will substitute a default format string
for those elements in the column that are character.

Remember, the mask value controls whether an element will be printed as a
number or a character string.

SEE ALSO print, printdos

28-644 GAUSS L R

p

proc

printfmt

PURPOSE Prints character, numeric, or mixed matrix using a default format controlled by
the functions formatcv and formatnv.

FORMAT y = printfmt(x,mask);

INPUT x N×K matrix which is to be printed.

mask scalar, 1 if x is numeric or 0 if x is character.

- or -

1×K vector of 1’s and 0’s.

The corresponding column of x will be printed as numeric where
mask = 1 and as character where mask = 0.

OUTPUT y scalar, 1 if the function is successful and 0 if it fails.

REMARKS Default format for numeric data is: ‘‘*.*lg ’’ 16 8

Default format for character data is: ‘‘*.*s ’’ 8 8

EXAMPLE x = rndn(5,4);

call printfmt(x,1);

SOURCE gauss.src

GLOBALS __fmtcv, __fmtnv

SEE ALSO formatcv, formatnv

GAUSS L R 28-645

proc

proc

PURPOSE Begins the definition of a multi-line recursive procedure. Procedures are
user-defined functions with local or global variables.

FORMAT proc [[(nrets) =]] name(arglist);

INPUT nrets constant, number of objects returned by the procedure. If nrets is not
explicitly given, the default is 1. Legal values are 0 to 1023. The
retp statement is used to return values from a procedure.

name literal, name of the procedure. This name will be a global symbol.

arglist a list of names, separated by commas, to be used inside the
procedure to refer to the arguments that are passed to the procedure
when the procedure is called. These will always be local to the
procedure, and cannot be accessed from outside the procedure or
from other procedures.

REMARKS A procedure definition begins with the proc statement and ends with the endp
statement.

An example of a procedure definition is:

proc dog(x,y,z); /* procedure declaration */

local a,b; /* local variable declarations */

a = x .* x;

b = y .* y;

a = a ./ x;

b = b ./ y;

z = z .* z;

z = inv(z);

retp(a’b*z); /* return with value of a’b*z */

endp; /* end of procedure definition */

28-646 GAUSS L R

p

prodc

Procedures can be used just as if they were functions intrinsic to the language.
Below are the possible variations depending on the number of items the
procedure returns.

Returns 1 item:

y = dog(i,j,k);

Returns multiple items:

{ x,y,z } = cat(i,j,k);

Returns no items:

fish(i,j,k);

If the procedure does not return any items or you want to discard the returned
items:

call dog(i,j,k);

Procedure definitions may not be nested.

For more details on writing procedures, see P K, Chapter
8.

SEE ALSO keyword, call, endp, local, retp

prodc

GAUSS L R 28-647

psi

PURPOSE Computes the products of all elements in each column of a matrix.

FORMAT y = prodc(x);

INPUT x N×K matrix.

OUTPUT y K×1 matrix containing the products of all elements in each column
of x.

REMARKS To find the products of the elements in each row of a matrix, transpose before
applying prodc. If x is complex, use the bookkeeping transpose (.′).

To find the products of all of the elements in a matrix, use the vecr function
before applying prodc.

EXAMPLE let x[3,3] = 1 2 3

4 5 6

7 8 9;

y = prodc(x);

y =

28
80

162

SEE ALSO sumc, meanc, stdc

psi

PURPOSE Computes the Psi (or Digamma) function.

FORMAT f = psi(z);

28-648 GAUSS L R

p

putarray

INPUT z N×K matrix; z may be complex.

OUTPUT f N×K matrix.

REMARKS This program uses the analytical derivative of the log of the Lanczos series
approximation for the Gamma function.

REFERENCES 1. C. Lanczos, SIAM JNA 1, 1964. pp. 86-96.

2. Y. Luke, “The Special ... approximations,” 1969 pp. 29-31.

3. Y. Luke, “Algorithms ... functions,” 1977.

4. J. Spouge, SIAM JNA 31, 1994. pp. 931.

5. W. Press, “Numerical Recipes.”

6. S. Chang, “Computation of special functions,” 1996.

7. Original code by Paul Godfrey

putarray

PURPOSE Puts a contiguous subarray into an N-dimensional array and returns the
resulting array.

FORMAT y = putarray(a,loc,src);

INPUT a N-dimensional array.

loc M×1 vector of indices into the array to locate the subarray of
interest, where M is a value from 1 to N.

src [N-M]-dimensional array, matrix, or scalar.

OUTPUT y N-dimensional array.

REMARKS If loc is an N×1 vector, then src must be a scalar. If loc is an [N-1]×1 vector,
then src must be a 1-dimensional array or a 1×L vector, where L is the size of

GAUSS L R 28-649

putf

the fastest moving dimension of the array. If loc is an [N-2]×1 vector, then src
must be a K×L matrix, or a K×L 2-dimensional array, where K is the size of the
second fastest moving dimension.

Otherwise, if loc is an M×1 vector, then src must be an [N-M]-dimensional
array, whose dimensions are the same size as the corresponding dimensions of
array a.

EXAMPLE a = arrayalloc(2|3|4|5|6,0);

src = arrayinit(4|5|6,5);

loc = { 2,1 };

a = putarray(a,loc,src);

This example sets the contiguous 4×5×6 subarray of a beginning at [2,1,1,1,1]
to the array src, in which each element is set to the specified value 5.

SEE ALSO setarray

putf

PURPOSE Writes the contents of a string to a file.

FORMAT ret = putf(filename,str,start,len,mode,append);

INPUT filename string, name of output file.

str string to be written to filename. All or part of str may be written out.

start scalar, beginning position in str of output string.

len scalar, length of output string.

mode scalar, output mode, (0) ASCII or (1) binary.

append scalar, file write mode, (0) overwrite or (1) append.

OUTPUT ret scalar, return code.

28-650 GAUSS L R

p

putvals

0 normal return
1 null file name
2 file open error
3 file write error
4 output string too long
5 null output string, or illegal mode value
6 illegal append value
16 (1) append specified but file did not exist; file was created

(warning only)

REMARKS If mode is set to (1) binary, a string of length len will be written to filename. If
mode is set to (0) ASCII, the string will be output up to length len or until putf
encounters a ˆZ (ASCII 26) in str. The ˆZ will not be written to filename.

If append is set to (0) overwrite, the current contents of filename will be
destroyed. If append is set to (1) append, filename will be created if it does not
already exist.

If an error occurs, putf will either return an error code or terminate the
program with an error message, depending on the trap state. If bit 2 (the 4’s
bit) of the trap flag is 0, putf will terminate with an error message. If bit 2 of
the trap flag is 1, putf will return an error code. The value of the trap flag can
be tested with trapchk.

SOURCE putf.src

SEE ALSO getf

putvals

PURPOSE Inserts values into a matrix or N-dimensional array.

FORMAT y = putvals(x,inds,vals);

GAUSS L R 28-651

pvCreate

INPUT x M×K matrix or N-dimensional array.

inds L×D matrix of indices, specifying where the new values are to be
inserted, where D is the number of dimensions in x.

vals L×1 vector, new values to insert.

OUTPUT y M×K matrix or N-dimensional array, copy of x containing the new
values in vals.

REMARKS If x is a vector, inds should be an L×1 vector. If x is a matrix, inds should be an
L×2 matrix. Otherwise if x is an N-dimensional array, inds should be an L×N
matrix.

putvals allows you to insert multiple values into a matrix or N-dimensional
array at one time. This could also be accomplished using indexing inside a for
loop.

EXAMPLE x = { -0.8750 0.3616 0.6032 -0.3974,

0.7644 -1.8509 -0.2703 -0.8190,

0.7886 1.2678 -1.4998 -0.5876,

0.6639 -0.7972 1.2713 0.1896,

0.6303 0.7879 -0.7451 -0.5419 };

inds = { 1 1, 2 4, 3 2, 3 4, 5 3 };

v = seqa(1,1,5);

y = putvals(x,inds,v);

y =

1.0000 0.3616 0.6032 −0.3974
0.7644 −1.8509 −0.2703 2.0000
0.7886 3.0000 −1.4998 4.0000
0.6639 −0.7972 1.2713 0.1896
0.6303 0.7879 5.0000 −0.5419

28-652 GAUSS L R

p

pvGetIndex

pvCreate

PURPOSE Returns an initialized instance of structure of type PV.

FORMAT p1 = pvCreate;

OUTPUT p1 an instance of structure of type PV

EXAMPLE struct PV p1;

p1 = pvCreate;

SOURCE pv.src

pvGetIndex

PURPOSE Gets row indices of a matrix in a parameter vector.

FORMAT id = pvGetIndex(p1,nm1);

INPUT p1 an instance of structure of type PV.

nm1 name or row number of matrix.

OUTPUT id K×1 vector, row indices of matrix described by nm1 in parameter
vector.

SOURCE pv.src

GAUSS L R 28-653

pvGetParNames

pvGetParNames

PURPOSE Generates names for parameter vector stored in structure of type PV.

INCLUDE pv.sdf

FORMAT s = pvGetParNames(p1);

INPUT p1 an instance of structure of type PV.

OUTPUT s K×1 string array, names of parameters.

REMARKS If the vector in the structure of type PV was generated with matrix names, the
parameter names will be concatenations of the matrix name with row and
column numbers of the parameters in the matrix. Otherwise the names will have
a generic prefix with concatenated row and column numbers.

EXAMPLE #include pv.sdf

struct PV p1;

p1 = pvCreate;

x = { 1 2,

3 4 };

mask = { 1 0,

0 1 };

p1 = pvPackm(p1,x,"P",mask);

print pvGetParNames(p1);

P[1,1]

P[2,2]

28-654 GAUSS L R

p

pvGetParVector

SOURCE pv.src

pvGetParVector

PURPOSE Retrieves parameter vector from structure of type PV.

INCLUDE pv.sdf

FORMAT p = pvGetParVector(p1);

INPUT p1 an instance of structure of type PV.

OUTPUT p K×1 vector, parameter vector.

REMARKS Matrices or portions of matrices (stored using a mask) are stored in the structure
of type PV as a vector in the p member.

EXAMPLE #include pv.sdf

struct PV p1;

p1 = pvCreate;

x = { 1 2,

3 4 };

mask = { 1 0,

0 1 };

p1 = pvPackm(p1,x,"X",mask);

print pvUnpack(p1,1);

GAUSS L R 28-655

pvLength

1.000 2.000

3.000 4.000

print pvGetParVector(p1);

1.000

4.000

SOURCE pv.src

pvLength

PURPOSE Returns the length of a parameter vector.

FORMAT n = pvLength(p1);

INPUT p1 an instance of structure of type PV.

OUTPUT n scalar, length of parameter vector in p1.

SOURCE pv.src

pvList

PURPOSE Retrieves names of packed matrices in structure of type PV.

FORMAT n = pvList(p1);

INPUT p1 an instance of structure of type PV.

28-656 GAUSS L R

p

pvPack

OUTPUT n K×1 string vector, names of packed matrices.

SOURCE pv.src

pvPack

PURPOSE Packs general matrix into a structure of type PV with matrix name.

INCLUDE pv.sdf

FORMAT p1 = pvPack(p1,x,nm);

INPUT p1 an instance of structure of type PV.

x M×N matrix or N-dimensional array.

nm string, name of matrix/array.

OUTPUT p1 an instance of structure of type PV.

EXAMPLE #include pv.sdf

y = rndn(100,1);

x = rndn(100,5);

struct PV p1;

p1 = pvCreate;

p1 = pvPack(p1,x,"Y");

p1 = pvPack(p1,y,"X");

These matrices can be extracted using the pvUnpack command:

y = pvUnpack(p1,"Y");

x = pvUnpack(p1,"X");

GAUSS L R 28-657

pvPacki

SOURCE pv.src

SEE ALSO pvPackm, pvPacks, pvUnpack

pvPacki

PURPOSE Packs general matrix or array into a PV instance with name and index.

INCLUDE pv.sdf

FORMAT p1 = pvPacki(p1,x,nm,i);

INPUT p1 an instance of structure of type PV.

x M×N matrix or N-dimensional array.

nm string, name of matrix or array, or null string.

i scalar, index of matrix or array in lookup table.

OUTPUT p1 an instance of structure of type PV.

EXAMPLE #include pv.sdf

y = rndn(100,1);

x = rndn(100,5);

struct PV p1;

p1 = pvCreate;

p1 = pvPacki(p1,y,"Y",1);

p1 = pvPacki(p1,x,"X",2);

These matrices can be extracted using the pvUnpack command:

y = pvUnpack(p1,1);

x = pvUnpack(p1,2);

28-658 GAUSS L R

p

pvPackm

SEE ALSO pvPack, pvUnpack

pvPackm

PURPOSE Packs general matrix into a structure of type PV with a mask and matrix name.

INCLUDE pv.sdf

FORMAT p1 = pvPackm(p1,x,nm,mask);

INPUT p1 an instance of structure of type PV.

x M×N matrix or N-dimensional array.

nm string, name of matrix/array or N-dimensional array.

mask M×N matrix, mask matrix of zeros and ones.

OUTPUT p1 an instance of structure of type PV.

REMARKS The mask argument allows storing a selected portion of a matrix into the packed
vector. The ones in mask indicate an element to be stored in the packed matrix.
When the matrix is unpacked (using pvUnpack) the elements corresponding to
the zeros are restored. Elements corresponding to the ones come from the
packed vector which may have been changed.

If the mask is all zeros, the matrix or array is packed with the specified elements
in the second argument but no elements of the matrix or array are entered into
the parameter vector. When unpacked the matrix or array in the second argment
is returned without modification.

EXAMPLE #include pv.sdf

struct PV p1;

p1 = pvCreate;

GAUSS L R 28-659

pvPackmi

x = { 1 2,

3 4 };

mask = { 1 0,

0 1 };

p1 = pvPackm(p1,x,"X",mask);

print pvUnpack(p1,1);

1.000 2.000

3.000 4.000

p1 = pvPutParVector(p1,5|6);

print pvUnpack(p1,"X");

5.000 2.000

3.000 6.000

SOURCE pv.src

pvPackmi

PURPOSE Packs general matrix or array into a PV instance with a mask, name, and index.

INCLUDE pv.sdf

FORMAT p1 = pvPackmi(p1,x,nm,mask,i);

INPUT p1 an instance of structure of type PV.

x M×N matrix or N-dimensional array.

28-660 GAUSS L R

p

pvPackmi

nm string, matrix or array name.

mask M×N matrix or N-dimensional array, mask of zeros and ones.

i scalar, index of matrix or array in lookup table.

OUTPUT p1 an instance of structure of type PV.

REMARKS The mask allows storing a selected portion of a matrix into the parameter vector.
The ones in the mask matrix indicate an element to be stored in the parameter
matrix. When the matrix is unpacked (using pvUnpackm) the elements
corresponding to the zeros are restored. Elements corresponding to the ones
come from the parameter vector.

If the mask is all zeros, the matrix or array is packed with the specified elements
in the second argument but no elements of the matrix or array are entered into
the parameter vector. When unpacked the matrix or array in the second argment
is returned without modification.

EXAMPLE #include pv.sdf

struct PV p1;

p1 = pvCreate;

x = { 1 2,

3 4 };

mask = { 1 0,

0 1 };

p1 = pvPackmi(p1,x,"X",mask,1);

print pvUnpack(p1,1);

1.000 2.000

3.000 4.000

p1 = pvPutParVector(p1,5|6);

GAUSS L R 28-661

pvPacks

print pvUnpack(p1,1);

5.000 2.000

3.000 6.000

SEE ALSO pvPackm, pvUnpack

pvPacks

PURPOSE Packs symmetric matrix into a structure of type PV.

INCLUDE pv.sdf

FORMAT p1 = pvPacks(p1,x,nm);

INPUT p1 an instance of structure of type PV.

x M×M symmetric matrix.

nm string, matrix name.

OUTPUT p1 an instance of structure of type PV.

REMARKS pvPacks does not support the packing of arrays.

EXAMPLE #include pv.sdf

struct PV p1;

p1 = pvCreate;

x = { 1 2,

2 1 };

28-662 GAUSS L R

p

pvPacksi

p1 = pvPacks(p1,x,"A");

p1 = pvPacks(p1,eye(2),"I");

These matrices can be extracted using the pvUnpack command:

print pvUnpack(p1,"A");

1.000 2.000

2.000 1.000

print pvUnpack(p1,"I");

1.000 0.000

0.000 1.000

SOURCE pv.src

SEE ALSO pvPacksm, pvUnpack

pvPacksi

PURPOSE Packs symmetric matrix into a PV instance with matrix name and index.

INCLUDE pv.sdf

FORMAT p1 = pvPacksi(p1,x,nm,i);

INPUT p1 an instance of structure of type PV.

x M×M symmetric matrix.

nm string, matrix name.

i scalar, index of matrix in lookup table.

GAUSS L R 28-663

pvPacksm

OUTPUT p1 an instance of structure of type PV.

REMARKS pvPacksi does not support the packing of arrays.

EXAMPLE #include pv.sdf

struct PV p1;

p1 = pvCreate;

x = { 1 2, 2 1 };

p1 = pvPacksi(p1,x,"A",1);

p1 = pvPacksi(p1,eye(2),"I",2);

These matrices can be extracted using the pvUnpack command.

print pvUnpack(p1,1);

1.000 2.000

2.000 1.000

print pvUnpack(p1,2);

1.000 0.000

0.000 1.000

SEE ALSO pvPacks, pvUnpack

pvPacksm

PURPOSE Packs symmetric matrix into a structure of type PV with a mask.

INCLUDE pv.sdf

28-664 GAUSS L R

p

pvPacksm

FORMAT p1 = pvPacksm(p1,x,nm,mask);

INPUT p1 an instance of structure of type PV.

x M×M symmetric matrix.

nm string, matrix name.

mask M×M matrix, mask matrix of zeros and ones.

OUTPUT p1 an instance of structure of type PV.

REMARKS pvPacksm does not support the packing of arrays.

The mask allows storing a selected portion of a matrix into the packed vector.
The ones in mask indicate an element to be stored in the packed matrix. When
the matrix is unpacked (using pvUnpack) the elements corresponding to the
zeros are restored. Elements corresponding to the ones come from the packed
vector which may have been changed.

Only the lower left portion of the mask matrix is used, and only the lower left
portion of the x matrix is stored in the packed vector.

If the mask is all zeros, the matrix is packed with the specified elements in the
second argument but no elements of the matrix are entered into the parameter
vector. When unpacked the matrix in the second argment is returned without
modification.

EXAMPLE #include pv.sdf

struct PV p1;

p1 = pvCreate;

x = { 1 2 4,

2 3 5,

4 5 6};

mask = { 1 0 1,

0 1 0,

GAUSS L R 28-665

pvPacksmi

1 0 1 };

p1 = pvPacksm(p1,x,"A",mask);

print pvUnpack(p1,"A");

1.000 2.000 4.000

2.000 3.000 5.000

4.000 5.000 6.000

p2 = pvGetParVector(p1);

print p2;

1.000

3.000

4.000

6.000

p3 = { 10, 11, 12, 13 };

p1 = pvPutParVector(p1,p3);

print pvUnpack(p1,"A");

10.000 2.000 12.000

2.000 11.000 5.000

12.000 5.000 13.000

SOURCE pv.src

pvPacksmi

PURPOSE Packs symmetric matrix into a PV instance with a mask, matrix name, and index.

28-666 GAUSS L R

p

pvPacksmi

INCLUDE pv.sdf

FORMAT p1 = pvPacksmi(p1,x,nm,mask,i);

INPUT p1 an instance of structure of type PV.

x M×M symmetric matrix.

nm string, matrix name.

mask M×M matrix, symmetric mask matrix of zeros and ones.

i scalar, index of matrix in lookup table.

OUTPUT p1 an instance of structure of type PV.

REMARKS pvPacksmi does not support the packing of arrays.

The mask allows storing a selected portion of a matrix into the parameter vector.
The ones in the mask matrix indicate an element to be stored in the parameter
vector. When the matrix is unpacked (using pvUnpackm) the elements
corresponding to the zeros are restored. Elements corresponding to the ones
come from the parameter vector.

Only the lower left portion of the mask matrix is used, and only the lower left
portion of the x matrix is stored in the packed vector.

If the mask is all zeros, the matrix is packed with the specified elements in the
second argument but no elements of the matrix are entered into the parameter
vector. When unpacked the matrix in the second argment is returned without
modification.

EXAMPLE #include pv.sdf

struct PV p1;

p1 = pvCreate;

x = { 1 2 4,

2 3 5,

4 5 6};

GAUSS L R 28-667

pvPutParVector

mask = { 1 0 1,

0 1 0,

1 0 1 };

p1 = pvPacksmi(p1,x,"A",mask,1);

print pvUnpack(p1,1);

1.000 2.000 4.000

2.000 3.000 5.000

4.000 5.000 6.000

p2 = pvGetParVector(p1);

print p2;

1.000

3.000

4.000

6.000

p3 = { 10, 11, 12, 13 };

p1 = pvPutParVector(p1,p3);

print pvUnpack(p1,1);

10.000 2.000 12.000

2.000 11.000 5.000

12.000 5.000 13.000

SEE ALSO pvPacksm, pvUnpack

pvPutParVector

28-668 GAUSS L R

p

pvPutParVector

PURPOSE Inserts parameter vector into structure of type PV.

INCLUDE pv.sdf

FORMAT p1 = pvPutParVector(p1,p);

INPUT p1 an instance of structure of type PV.

p K×1 vector, parameter vector.

OUTPUT p1 an instance of structure of type PV.

REMARKS Matrices or portions of matrices (stored using a mask) are stored in the structure
of type PV as a vector in the p member.

EXAMPLE #include pv.sdf

struct PV p1;

p1 = pvCreate;

x = { 1 2 4,

2 3 5,

4 5 6};

mask = { 1 0 1,

0 1 0,

1 0 1 };

// packed as square matrix

p1 = pvPackm(p1,x,"A",mask);

print pvUnpack(p1,"A");

1.000 2.000 4.000

2.000 3.000 5.000

4.000 5.000 6.000

GAUSS L R 28-669

pvTest

p3 = { 10, 11, 12, 13, 14 };

p1 = pvPutParVector(p1,p3);

print pvUnpack(p1,"A");

10.000 2.000 11.000

2.000 12.000 5.000

13.000 5.000 14.000

SOURCE pv.src

pvTest

PURPOSE Tests an instance of structure of type PV to determine if it is a proper structure of
type PV.

FORMAT i = pvTest(p1);

INPUT p1 an instance of structure of type PV.

OUTPUT i scalar, if 0, p1 is a proper structure of type PV, else if 1, an improper
or unitialized structure of type PV.

SOURCE pv.src

pvUnpack

PURPOSE Unpacks matrices stored in a structure of type PV.

FORMAT x = pvUnpack(p1,m);

28-670 GAUSS L R

p

QNewton

INPUT p1 an instance of structure of type PV.
m string, name of matrix, or integer, index of matrix.

OUTPUT x M×N general matrix or M×M symmetric matrix or N-dimensional
array.

SOURCE pv.src

QNewton

PURPOSE Optimizes a function using the BFGS descent algorithm.

FORMAT { x,f,g,ret } = QNewton(&fct,start);

INPUT &fct pointer to a procedure that computes the function to be minimized.
This procedure must have one input argument, a vector of parameter
values, and one output argument, the value of the function evaluated
at the input vector of parameter values.

start K×1 vector, start values.

GLOBAL
INPUT

_qn_RelGradTol scalar, convergence tolerance for relative gradient of
estimated coefficients. Default = 1e-5.

_qn_GradProc scalar, pointer to a procedure that computes the gradient of
the function with respect to the parameters. This procedure
must have a single input argument, a K×1 vector of
parameter values, and a single output argument, a K×1
vector of gradients of the function with respect to the
parameters evaluated at the vector of parameter values. If
_qn_GradProc is 0, QNewton uses gradp.

_qn_MaxIters scalar, maximum number of iterations. Default = 1e+5.
Termination can be forced by pressing C on the keyboard.

_qn_PrintIters scalar, if 1, print iteration information. Default = 0. Can
be toggled during iterations by pressing P on the keyboard.

GAUSS L R 28-671

QNewton

_qn_ParNames K×1 vector, labels for parameters.

_qn_PrintResults scalar, if 1, results are printed.

OUTPUT x K×1 vector, coefficients at the minimum of the function.

f scalar, value of function at minimum.

g K×1 vector, gradient at the minimum of the function.

ret scalar, return code.

0 normal convergence
1 forced termination
2 max iterations exceeded
3 function calculation failed
4 gradient calculation failed
5 step length calculation failed
6 function cannot be evaluated at initial parameter values

REMARKS If you are running in terminal mode, GAUSS will not see any input until you
press ENTER. Pressing C on the keyboard will terminate iterations, and
pressing P will toggle iteration output.

To reset global variables for this function to their default values, call
QNewtonSet.

EXAMPLE This example computes maximum likelihood coefficients and standard errors
for a Tobit model:

/*

** qnewton.e - a Tobit model

*/

z = loadd("tobit"); /* get data */

b0 = { 1, 1, 1, 1 };

{b,f,g,retcode} = qnewton(&lpr,b0);

28-672 GAUSS L R

qQNewton

/*

** covariance matrix of parameters

*/

h = hessp(&lpr,b);

output file = qnewton.out reset;

print "Tobit Model";

print;

print "coefficients standard errors";

print b˜sqrt(diag(invpd(h)));

output off;

/*

** log-likelihood proc

*/

proc lpr(b);

local s,m,u;

s = b[4];

if s <= 1e-4;

retp(error(0));

endif;

m = z[.,2:4]*b[1:3,.];

u = z[.,1] ./= 0;

retp(-sumc(u.*lnpdfn2(z[.,1]-m,s) +

(1-u).*(ln(cdfnc(m/sqrt(s))))));

endp;

produces:

Tobit Model

coefficients standard errors

0.010417884 0.080220019

GAUSS L R 28-673

QNewtonmt

-0.20805753 0.094551107

-0.099749592 0.080006676

0.65223067 0.099827309

SOURCE qnewton.src

QNewtonmt

PURPOSE Minimize an arbitrary function.

INCLUDE qnewtonmt.sdf

FORMAT out = QNewtonmt(&fct,par,data,c);

INPUT &fct pointer to a procedure that computes the function to be minimized.
This procedure must have two input arguments, an instance of a PV
structure containing the parameters, and a DS structure containing
data, if any. And, one output argument, the value of the function
evaluated at the input vector of parameter values.

par an instance of a PV structure. The par instance is passed to the
user-provided procedure pointed to by &fct. par is constructed using
the pvPack functions.

data an array of instances of a DS structure. This array is passed to the
user-provided pointed by &fct to be used in the objective function.
QNewtonmt does not look at this structure. Each instance contains
the the following members which can be set in whatever way that is
convenient for computing the objective function:

data[i].dataMatrix N×K matrix, data matrix.
data[i].dataArray N×K×L. . . array, data array.
data[i].vnames string array, variable names (optional).
data[i].dsname string, data name (optional).
data[i].type scalar, type of data (optional).

28-674 GAUSS L R

qQNewtonmt

c an instance of a QNewtonmtControl structure. Normally an
instance is initialized by calling QNewtonmtControlCreate and
members of this instance can be set to other values by the user. For
an instance named c, the members are:

c.CovType scalar, if 1, ML covariance matrix, else if 2,
QML covariance matrix is computed. Default
is 0, no covariance matrix.

c.GradProc scalar, pointer to a procedure that computes
the gradient of the function with respect to the
parameters. Default = ., i.e., no gradient
procedure has been provided.

c.MaxIters scalar, maximum number of iterations.
Default = 1e+5.

c.MaxTries scalar, maximum number of attemps in
random search. Default = 100.

c.relGradTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When
this criterion has been satisifed QNewtonmt
exits the iterations.

c.randRadius scalar, If zero, no random search is attempted.
If nonzero, it is the radius of the random
search. Default = .001.

c.output scalar, if nonzero, results are printed. Default
= 0.

c.PrintIters scalar, if nonzero, prints iteration information.
Default = 0.

c.disableKey scalar, if nonzero, keyboard input disabled

OUTPUT out an instance of an QNewtonmtOut structure. For an instance named
out, the members are:

out.par instance of a PV structure containing the
parameter estimates will be placed in the
member matrix out.par.

out.fct scalar, function evaluated at x.
out.retcode scalar, return code:

GAUSS L R 28-675

QNewtonmt

0 normal convergence.
1 forced exit.
2 maximum number of iterations exceeded.
3 function calculation failed.
4 gradient calculation failed.
5 Hessian calculation failed.
6 line search failed.
7 error with constraints.
8 function complex.

out.moment K×K matrix, covariance matrix of
parameters, if c.covType > 0.

out.hessian K×K matrix, matrix of second derivatives of
objective function with respect to parameters.

REMARKS There is one required user-provided procedure, the one computing the objective
function to be minimized, and another optional functions, the gradient of the
objective function.

These functions have one input argument that is an instance of type struct PV
and a second argument that is an instance of type struct DS. On input to the call
to QNewtonmt, the first argument contains starting values for the parameters and
the second argument any required data. The data are passed in a separate
argument because the structure in the first argument will be copied as it is
passed through procedure calls which would be very costly if it contained large
data matrices. Since QNewtonmt makes no changes to the second argument it
will be passed by pointer thus saving time because its contents aren’t copied.

The PV structures are set up using the PV pack procedures, pvPack, pvPackm,
pvPacks, and pvPacksm. These procedures allow for setting up a parameter
vector in a variety of ways.

For example, we might have the following objective function for fitting a
nonlinear curve to data:

proc Micherlitz(struct PV par1, struct DS data1);

28-676 GAUSS L R

qQNewtonmt

local p0,e,s2,x,y;

p0 = pvUnpack(par1,"parameters");

y = data1.dataMatrix[.,1];

x = data1.dataMatrix[.,2];

e = y - p0[1] - p0[2]*exp(-p0[3] * x);

retp(-lnpdfmvn(e,e’e/rows(e));

endp;

In this example the dependent and independent variables are passed to the
procedure as the first and second columns of a data matrix stored in a single DS
structure. Alternatively these two columns of data can be entered into a vector
of DS structures one for each column of data:

If the objective function is the negative of a proper log-likelihood, and if
c.covType is set to 1, the covariance matrix of the parameters is computed and
returned in out.moment, and standard errors, t-statistics and probabilities are
printed if c.output = 1.

If the objective function returns the negative of a vector of log-likelihoods, and
if c.covType is set to 2, the quasi-maximum likelihood (QML) covariance
matrix of the parameters is computed.

EXAMPLE The following is a complete example for estimating the parameters of the
Micherlitz equation in data on the parameters and where an optional gradient
procedure has been provided.

#include QNewtonmt.sdf

struct DS d0;

d0 = dsCreate;

y = 3.183|

3.059|

2.871|

2.622|

2.541|

GAUSS L R 28-677

QNewtonmtControlCreate

2.184|

2.110|

2.075|

2.018|

1.903|

1.770|

1.762|

1.550;

x = seqa(1,1,13);

d0.dataMatrix = y˜x;

struct QNewtonmtControl c0;

c0 = QNewtonmtControlCreate;

c0.output = 1; /* print results */

c0.covType = 1; /* compute moment matrix */

/* of parameters */

struct PV par1;

par1 = pvCreate;

par1 = pvPack(par1,1|1|0,"parameters");

struct QNewtonmt out1;

out1 = QNewtonmt(&Micherlitz,par1,d0,c0);

SOURCE qnewtonmt.src

SEE ALSO QNewtonmtControlCreate, QNewtonmtOutCreate

QNewtonmtControlCreate

PURPOSE Creates default QNewtonmtControl structure.

28-678 GAUSS L R

qQNewtonmtOutCreate

INCLUDE qnewtonmt.sdf

FORMAT c = QNewtonmtControlCreate;

OUTPUT c instance of QNewtonmtControl structure with members set to
default values.

SOURCE qnewtonmt.src

SEE ALSO QNewtonmt

QNewtonmtOutCreate

PURPOSE Creates default QNewtonmtOut structure.

FORMAT c = QNewtonmtOutCreate;

OUTPUT c instance of QNewtonmtOut structure with members set to default
values.

SOURCE qnewtonmt.src

SEE ALSO QNewtonmt

QNewtonSet

PURPOSE Resets global variables used by QNewton to default values.

FORMAT QNewtonSet;

GAUSS L R 28-679

QProg

SOURCE qnewton.src

QProg

PURPOSE Solves the quadratic programming problem.

FORMAT { x,u1,u2,u3,u4,u5 } = QProg(start,q,r,a,b,c,d,bnds);

INPUT start K×1 vector, start values.

q K×K matrix, symmetric model matrix.

r K×1 vector, model constant vector.

a M×K matrix, equality constraint coefficient matrix, or scalar 0, no
equality constraints.

b M×1 vector, equality constraint constant vector, or scalar 0, will be
expanded to M×1 vector of zeros.

c N×K matrix, inequality constraint coefficient matrix, or scalar 0, no
inequality constraints.

d N×1 vector, inequality constraint constant vector, or scalar 0, will be
expanded to N×1 vector of zeros.

bnds K×2 matrix, bounds on x, the first column contains the lower bounds
on x, and the second column the upper bounds. If scalar 0, the
bounds for all elements will default to ±1e200.

GLOBAL
INPUT

_qprog_maxit scalar, maximum number of iterations. Default = 1000.

OUTPUT x K×1 vector, coefficients at the minimum of the function.

u1 M×1 vector, Lagrangian coefficients of equality constraints.

u2 N×1 vector, Lagrangian coefficients of inequality constraints.

u3 K×1 vector, Lagrangian coefficients of lower bounds.

u4 K×1 vector, Lagrangian coefficients of upper bounds.

28-680 GAUSS L R

qQProgmt

ret scalar, return code.

0 successful termination
1 max iterations exceeded
2 machine accuracy is insufficient to maintain decreasing

function values
3 model matrices not conformable
<0 active constraints inconsistent

REMARKS QProg solves the standard quadratic programming problem:

min
1
2

x′Qx − x′R

subject to constraints,

Ax = B

Cx ≥ D

and bounds,

xlow ≤ x ≤ xup

SOURCE qprog.src

QProgmt

PURPOSE Solves the quadratic programming problem.

INCLUDE qprogmt.sdf

GAUSS L R 28-681

QProgmt

FORMAT qOut = QProgmt(qIn);

INPUT qIn instance of a qprogMTIn structure containing the following
members:

qIn.start K×1 vector, start values.
qIn.q K×K matrix, symmetric model matrix.
qIn.r K×1 vector, model constant vector.
qIn.a M×K matrix, equality constraint coefficient

matrix, or scalar 0, no equality constraints.
qIn.b M×1 vector, equality constraint constant

vector, or scalar 0, will be expanded to M×1
vector of zeros.

qIn.c N×K matrix, inequality constraint coefficient
matrix, or scalar 0, no inequality constraints.

qIn.d N×1 vector, inequality constraint constant
vector, or scalar 0, will be expanded to N×1
vector of zeros.

qIn.bounds K×2 matrix, bounds on qOut.x, the first
column contains the lower bounds on qOut.x,
and the second column the upper bounds. If
scalar 0, the bounds for all elements will
default to ±1e200.

maxit scalar, maximum number of iterations.
Default = 1000.

OUTPUT qOut instance of a qprogMTOut structure containing the following
members:

qOut.x K×1 vector, coefficients at the minimum of
the function.

qOut.lagrange instance of a qprogMTLagrange structure
containing the following members:

qOut.lagrange.lineq M×1 vector,
Lagrangian coefficients
of equality constraints.

28-682 GAUSS L R

qQProgmt

qOut.lagrange.linineq N×1 vector,
Lagrangian coefficients
of inequality
constraints.

qOut.lagrange.bounds K×2 matrix,
Lagrangian coefficients
of bounds, the first
column contains the
lower bounds and the
second the upper
bounds.

qOut.ret scalar, return code.

0 successful termination
1 max iterations exceeded
2 machine accuracy is insufficient to

maintain decreasing function values
3 model matrices not conformable
<0 active constraints inconsistent

REMARKS QProgmt solves the standard quadratic programming problem:

min
1
2

x′Qx − x′R

subject to constraints,

Ax = B

Cx ≥ D

and bounds,

xlow ≤ x ≤ xup

GAUSS L R 28-683

QProgmtInCreate

SOURCE qprogmt.src

SEE ALSO QProgmtInCreate

QProgmtInCreate

PURPOSE Creates an instance of a structure of type QProgmtInCreate with the maxit
member set to a default value.

INCLUDE qprogmt.sdf

FORMAT s = QProgmtInCreate;

OUTPUT s instance of structure of type QProgmtInCreate.

SOURCE qprogmt.src

SEE ALSO QProgmt

qqr

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X, such
that:

X = Q1R

FORMAT { q1,r } = qqr(x);

INPUT x N×P matrix.

28-684 GAUSS L R

qqqr

OUTPUT q1 N×K unitary matrix, K = min(N,P).

r K×P upper triangular matrix.

REMARKS Given X, there is an orthogonal matrix Q such that Q′X is zero below its
diagonal, i.e.,

Q′X =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X = Q1R

is the QR decomposition of X. If X has linearly independent columns, R is also
the Cholesky factorization of the moment matrix of X, i.e., of X′X.

If you want only the R matrix, see the function qr. Not computing Q1 can
produce significant improvements in computing time and memory usage.

An unpivoted R matrix can also be generated using cholup:

r = cholup(zeros(cols(x),cols(x)),x);

For linear equation or least squares problems, which require Q2 for computing
residuals and residual sums of squares, see olsqr and qtyr.

For most problems an explicit copy of Q1 or Q2 is not required. Instead one of
the following, Q′Y , QY , Q′1Y , Q1Y , Q′2Y , or Q2Y , for some Y, is required. These

GAUSS L R 28-685

qqre

cases are all handled by qtyr and qyr. These functions are available because Q
and Q1 are typically very large matrices while their products with Y are more
manageable.

If N<P, the factorization assumes the form:

Q′X = [R1 R2]

where R1 is a P×P upper triangular matrix and R2 is P×(N-P). Thus Q is a P×P
matrix and R is a P×N matrix containing R1 and R2. This type of factorization is
useful for the solution of underdetermined systems. However, unless the
linearly independent columns happen to be the initial rows, such an analysis
also requires pivoting (see qre and qrep).

SOURCE qqr.src

SEE ALSO qre, qrep, qtyr, qtyre, qtyrep, qyr, qyre, qyrep, olsqr

qqre

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X, such
that:

X[., E] = Q1R

FORMAT { q1,r,e } = qqre(x);

INPUT x N×P matrix.

OUTPUT q1 N×K unitary matrix, K = min(N,P).

28-686 GAUSS L R

qqqre

r K×P upper triangular matrix.

e P×1 permutation vector.

REMARKS Given X[., E], where E is a permutation vector that permutes the columns of X,
there is an orthogonal matrix Q such that Q′X[., E] is zero below its diagonal,
i.e.,

Q′X[., E] =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X[., E] = Q1R

is the QR decomposition of X[., E].

If you want only the R matrix, see qre. Not computing Q1 can produce
significant improvements in computing time and memory usage.

If X has rank P, then the columns of X will not be permuted. If X has rank M<P,
then the M linearly independent columns are permuted to the front of X by E.
Partition the permuted X in the following way:

X[., E] = [X1 X2]

GAUSS L R 28-687

qqre

where X1 is N×M and X2 is N×(P-M). Further partition R in the following way:

R =
[

R11 R12

0 0

]

where R11 is M×M and R12 is M×(P-M). Then

A = R−1
11 R12

and

X2 = X1A

that is, A is an M×(P-N) matrix defining the linear combinations of X2 with
respect to X1.

If N<P, the factorization assumes the form:

Q′X = [R1 R2]

where R1 is a P×P upper triangular matrix and R2 is P×(N-P). Thus Q is a P×P
matrix and R is a P×N matrix containing R1 and R2. This type of factorization is
useful for the solution of underdetermined systems. For the solution of

X[., E]b = Y

it can be shown that

b = qrsol(Q′Y,R1)|zeros(N-P,1);

28-688 GAUSS L R

qqqrep

The explicit formation here of Q, which can be a very large matrix, can be
avoided by using the function qtyre.

For further discussion of QR factorizations see the remarks under qqr.

SOURCE qqr.src

SEE ALSO qqr, qtyre, olsqr

qqrep

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X, such
that:

X[., E] = Q1R

FORMAT { q1,r,e } = qqrep(x,pvt);

INPUT x N×P matrix.

pvt P×1 vector, controls the selection of the pivot columns:
if pvt[i] > 0, x[i] is an initial column
if pvt[i] = 0, x[i] is a free column
if pvt[i] < 0, x[i] is a final column

The initial columns are placed at the beginning of the matrix and the
final columns are placed at the end. Only the free columns will be
moved during the decomposition.

OUTPUT q1 N×K unitary matrix, K = min(N,P).

r K×P upper triangular matrix.

e P×1 permutation vector.

GAUSS L R 28-689

qr

REMARKS Given X[., E], where E is a permutation vector that permutes the columns of X,
there is an orthogonal matrix Q such that Q′X[., E] is zero below its diagonal,
i.e.,

Q′X[., E] =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X[., E] = Q1R

is the QR decomposition of X[., E].

qqrep allows you to control the pivoting. For example, suppose that X is a data
set with a column of ones in the first column. If there are linear dependencies
among the columns of X, the column of ones for the constant may get pivoted
away. This column can be forced to be included among the linearly independent
columns using pvt.

If you want only the R matrix, see qrep. Not computing Q1 can produce
significant improvements in computing time and memory usage.

SOURCE qqr.src

SEE ALSO qqr, qre, olsqr

28-690 GAUSS L R

qqr

qr

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X, such
that:

X = Q1R

FORMAT r = qr(x);

INPUT x N×P matrix.

OUTPUT r K×P upper triangular matrix, K = min(N,P).

REMARKS qr is the same as qqr but doesn’t return the Q1 matrix. If Q1 is not wanted, qr
will save a significant amount of time and memory usage, especially for large
problems.

Given X, there is an orthogonal matrix Q such that Q′X is zero below its
diagonal, i.e.,

Q′X =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X = Q1R

GAUSS L R 28-691

qre

is the QR decomposition of X. If X has linearly independent columns, R is also
the Cholesky factorization of the moment matrix of X, i.e., of X′X.

qr does not return the Q1 matrix because in most cases it is not required and can
be very large. If you need the Q1 matrix, see the function qqr. If you need the
entire Q matrix, call qyr with Y set to a conformable identity matrix.

For most problems Q′Y , Q′1Y , or QY , Q1Y , for some Y, are required. For these
cases see qtyr and qyr.

For linear equation or least squares problems, which require Q2 for computing
residuals and residual sums of squares, see olsqr.

If N<P, the factorization assumes the form:

Q′X = [R1 R2]

where R1 is a P×P upper triangular matrix and R2 is P×(N-P). Thus Q is a P×P
matrix and R is a P×N matrix containing R1 and R2. This type of factorization is
useful for the solution of underdetermined systems. However, unless the
linearly independent columns happen to be the initial rows, such an analysis
also requires pivoting (see qre and qrep).

SOURCE qr.src

SEE ALSO qqr, qrep, qtyre

qre

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X, such

28-692 GAUSS L R

qqre

that:

X[., E] = Q1R

FORMAT { r,e } = qre(x);

INPUT x N×P matrix.

OUTPUT r K×P upper triangular matrix, K = min(N,P).

e P×1 permutation vector.

REMARKS qre is the same as qqre but doesn’t return the Q1 matrix. If Q1 is not wanted,
qre will save a significant amount of time and memory usage, especially for
large problems.

Given X[., E], where E is a permutation vector that permutes the columns of X,
there is an orthogonal matrix Q such that Q′X[., E] is zero below its diagonal,
i.e.,

Q′X[., E] =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X[., E] = Q1R

is the QR decomposition of X[., E].

GAUSS L R 28-693

qre

qre does not return the Q1 matrix because in most cases it is not required and
can be very large. If you need the Q1 matrix, see the function qqre. If you need
the entire Q matrix, call qyre with Y set to a conformable identity matrix. For
most problems Q′Y , Q′1Y , or QY , Q1Y , for some Y, are required. For these cases
see qtyre and qyre.

If X has rank P, then the columns of X will not be permuted. If X has rank M<P,
then the M linearly independent columns are permuted to the front of X by E.
Partition the permuted X in the following way:

X[., E] = [X1 X2]

where X1 is N×M and X2 is N×(P-M). Further partition R in the following way:

R =
[

R11 R12

0 0

]

where R11 is M×M and R12 is M×(P-M). Then

A = R−1
11 R12

and

X2 = X1A

that is, A is an M×(P-N) matrix defining the linear combinations of X2 with
respect to X1.

If N<P the factorization assumes the form:

Q′X = [R1 R2]

28-694 GAUSS L R

qqrep

where R1 is a P×P upper triangular matrix and R2 is P×(N-P). Thus Q is a P×P
matrix and R is a P×N matrix containing R1 and R2. This type of factorization is
useful for the solution of underdetermined systems. For the solution of

X[., E]b = Y

it can be shown that

b = qrsol(Q′Y,R1)|zeros(N-P,1);

The explicit formation here of Q, which can be a very large matrix, can be
avoided by using the function qtyre.

For further discussion of QR factorizations see the remarks under qqr.

SOURCE qr.src

SEE ALSO qqr, olsqr

qrep

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X, such
that:

X[., E] = Q1R

FORMAT { r,e } = qrep(x,pvt);

INPUT x N×P matrix.

GAUSS L R 28-695

qrep

pvt P×1 vector, controls the selection of the pivot columns:
if pvt[i] > 0, x[i] is an initial column.
if pvt[i] = 0, x[i] is a free column.
if pvt[i] < 0, x[i] is a final column.

The initial columns are placed at the beginning of the matrix and the
final columns are placed at the end. Only the free columns will be
moved during the decomposition.

OUTPUT r K×P upper triangular matrix, K = min(N,P).

e P×1 permutation vector.

REMARKS qrep is the same as qqrep but doesn’t return the Q1 matrix. If Q1 is not wanted,
qrep will save a significant amount of time and memory usage, especially for
large problems.

Given X[., E], where E is a permutation vector that permutes the columns of X,
there is an orthogonal matrix Q such that Q′X[., E] is zero below its diagonal,
i.e.,

Q′X[., E] =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X[., E] = Q1R

is the QR decomposition of X[., E].

qrep does not return the Q1 matrix because in most cases it is not required and

28-696 GAUSS L R

qqrsol

can be very large. If you need the Q1 matrix, see the function qqrep. If you
need the entire Q matrix, call qyrep with Y set to a conformable identity
matrix. For most problems Q′Y , Q′1Y , or QY , Q1Y , for some Y, are required.
For these cases see qtyrep and qyrep.

qrep allows you to control the pivoting. For example, suppose that X is a data
set with a column of ones in the first column. If there are linear dependencies
among the columns of X, the column of ones for the constant may get pivoted
away. This column can be forced to be included among the linearly independent
columns using pvt.

SOURCE qr.src

SEE ALSO qr, qre, qqrep

qrsol

PURPOSE Computes the solution of Rx = b where R is an upper triangular matrix.

FORMAT x = qrsol(b,R);

INPUT b P×L matrix.
R P×P upper triangular matrix.

OUTPUT x P×L matrix.

REMARKS qrsol applies a backsolve to Rx = b to solve for x. Generally R will be the R
matrix from a QR factorization. qrsol may be used, however, in any situation
where R is upper triangular.

SOURCE qrsol.src

SEE ALSO qqr, qr, qtyr, qrtsol

GAUSS L R 28-697

qtyr

qrtsol

PURPOSE Computes the solution of R′x = b where R is an upper triangular matrix.

FORMAT x = qrtsol(b,R);

INPUT b P×L matrix.

R P×P upper triangular matrix.

OUTPUT x P×L matrix.

REMARKS qrtsol applies a forward solve to R′x = b to solve for x. Generally R will be
the R matrix from a QR factorization. qrtsol may be used, however, in any
situation where R is upper triangular. If R is lower triangular, transpose before
calling qrtsol.

If R is not transposed, use qrsol.

SOURCE qrsol.src

SEE ALSO qqr, qr, qtyr, qrsol

qtyr

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X and
returns Q′Y and R.

FORMAT { qty,r } = qtyr(y,x);

INPUT y N×L matrix.

28-698 GAUSS L R

qqtyr

x N×P matrix.

OUTPUT qty N×L unitary matrix.
r K×P upper triangular matrix, K = min(N,P).

REMARKS Given X, there is an orthogonal matrix Q such that Q′X is zero below its
diagonal, i.e.,

Q′X =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X = Q1R

is the QR decomposition of X. If X has linearly independent columns, R is also
the Cholesky factorization of the moment matrix of X, i.e., of X′X. For most
problems Q or Q1 is not what is required. Rather, we require Q′Y or Q′1Y where
Y is an N×L matrix (if either QY or Q1Y are required, see qyr). Since Q can be
a very large matrix, qtyr has been provided for the calculation of Q′Y which
will be a much smaller matrix. Q′1Y will be a submatrix of Q′Y . In particular,

G = Q′1Y = qty[1 : P, .]

and Q′2Y is the remaining submatrix:

H = Q′2Y = qty[P + 1 : N, .]

GAUSS L R 28-699

qtyr

Suppose that X is an N×K data set of independent variables, and Y is an N×1
vector of dependent variables. Then it can be shown that

b = R−1G

and

s j =

N−P∑
i=1

Hi, j, j = 1, 2, ...L

where b is a P×L matrix of least squares coefficients and s is a 1×L vector of
residual sums of squares. Rather than invert R directly, however, it is better to
apply qrsol to

Rb = Q′1Y

For rank deficient least squares problems, see qtyre and qtyrep.

EXAMPLE The QR algorithm is the superior numerical method for the solution of least
squares problems:

loadm x, y;

{ qty, r } = qtyr(y,x);

q1ty = qty[1:rows(r),.];

q2ty = qty[rows(r)+1:rows(qty),.];

b = qrsol(q1ty,r); /* LS coefficients */

s2 = sumc(q2tyˆ2); /* residual sums of squares */

SOURCE qtyr.src

SEE ALSO qqr, qtyre, qtyrep, olsqr

28-700 GAUSS L R

qqtyre

qtyre

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X and
returns Q′Y and R.

FORMAT { qty,r,e } = qtyre(y,x);

INPUT y N×L matrix.
x N×P matrix.

OUTPUT qty N×L unitary matrix.
r K×P upper triangular matrix, K = min(N,P).
e P×1 permutation vector.

REMARKS Given X[., E], where E is a permutation vector that permutes the columns of X,
there is an orthogonal matrix Q such that Q′X[., E] is zero below its diagonal,
i.e.,

Q′X[., E] =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X[., E] = Q1R

is the QR decomposition of X[., E].

GAUSS L R 28-701

qtyre

If X has rank P, then the columns of X will not be permuted. If X has rank M<P,
then the M linearly independent columns are permuted to the front of X by E.
Partition the permuted X in the following way:

X[., E] = [X1 X2]

where X1 is N×M and X2 is N×(P-M). Further partition R in the following way:

R =
[

R11 R12

0 0

]

where R11 is M×M and R12 is M×(P-M). Then

A = R−1
11 R12

and

X2 = X1A

that is, A is an M×(P-N) matrix defining the linear combinations of X2 with
respect to X1.

For most problems Q or Q1 is not it is required. Rather, we require Q′Y or Q′1Y
where Y is an N×L matrix. Since Q can be a very large matrix, qtyre has been
provided for the calculation of Q′Y which will be a much smaller matrix. Q′1Y
will be a submatrix of Q′Y . In particular,

Q′1Y = qty[1 : P, .]

28-702 GAUSS L R

qqtyre

and Q′2Y is the remaining submatrix:

Q′2Y = qty[P + 1 : N, .]

Suppose that X is an N×K data set of independent variables and Y is an N×1
vector of dependent variables. Suppose further that X contains linearly
dependent columns, i.e., X has rank M<P. Then define

C = Q′1Y[1 : M, .]

A = R[1 : M, 1 : M]

and the vector (or matrix of L>1) of least squares coefficients of the reduced,
linearly independent problem is the solution of

Ab = C

To solve for b use qrsol:

b = qrsol(C,A);

If N<P, the factorization assumes the form:

Q′X[., E] = [R1 R2]

where R1 is a P×P upper triangular matrix and R2 is P×(N-P). Thus Q is a P×P
matrix and R is a P×N matrix containing R1 and R2. This type of factorization is
useful for the solution of underdetermined systems. For the solution of

X[., E]b = Y

GAUSS L R 28-703

qtyrep

it can be shown that

b = qrsol(Q′Y,R1)|zeros(N-P,1);

SOURCE qtyr.src

SEE ALSO qqr, qre, qtyr

qtyrep

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X using a
pivot vector and returns Q′Y and R.

FORMAT { qty,r,e } = qtyrep(y,x,pvt);

INPUT y N×L matrix.

x N×P matrix.

pvt P×1 vector, controls the selection of the pivot columns:
if pvt[i] > 0, x[i] is an initial column.
if pvt[i] = 0, x[i] is a free column.
if pvt[i] < 0, x[i] is a final column.

The initial columns are placed at the beginning of the matrix and the
final columns are placed at the end. Only the free columns will be
moved during the decomposition.

OUTPUT qty N×L unitary matrix.

r K×P upper triangular matrix, K = min(N,P).

e P×1 permutation vector.

REMARKS Given X[., E], where E is a permutation vector that permutes the columns of X,
there is an orthogonal matrix Q such that Q′X[., E] is zero below its diagonal,

28-704 GAUSS L R

qqtyrep

i.e.,

Q′X[., E] =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X[., E] = Q1R

is the QR decomposition of X[., E].

qtyrep allows you to control the pivoting. For example, suppose that X is a
data set with a column of ones in the first column. If there are linear
dependencies among the columns of X, the column of ones for the constant may
get pivoted away. This column can be forced to be included among the linearly
independent columns using pvt.

EXAMPLE y = { 4 7 2,

5 9 1,

6 3 3 };

x = { 12 9 5,

4 3 5,

4 2 7 };

pvt = { 11, 10, 3 };

{ qty,r,e } = qtyrep(y,x,pvt);

GAUSS L R 28-705

quantile

qty =

−6.9347609 −9.9498744 −3.0151134
4.0998891 3.5527137e − 15 2.1929640
3.4785054 6.3245553 0.31622777

r =

−13.266499 −9.6483630 −8.1408063
0.0000000 −0.95346259 4.7673129
0.0000000 0.0000000 3.1622777

e =

1.0000000
2.0000000
3.0000000

SOURCE qtyr.src

SEE ALSO qrep, qtyre

quantile

PURPOSE Computes quantiles from data in a matrix, given specified probabilities.

FORMAT y = quantile(x,e)

INPUT x N×K matrix of data.

e L×1 vector, quantile levels or probabilities.

OUTPUT y L×K matrix, quantiles.

REMARKS quantile will not succeed if N*minc(e) is less than 1, or N*maxc(e) is greater
than N - 1. In other words, to produce a quantile for a level of .001, the input
matrix must have more than 1000 rows.

28-706 GAUSS L R

qquantiled

EXAMPLE rndseed 345567;

x = rndn(1000,4); /* data */

e = { .025, .5, .975 }; /* quantile levels */

y = quantile(x,e);

print "medians";

print y[2,.];

print;

print "95 percentiles";

print y[1,.];

print y[3,.];

produces:

medians

-0.0020 -0.0408 -0.0380 -0.0247

95 percentiles

-1.8677 -1.9894 -2.1474 -1.8747

1.9687 2.0899 1.8576 2.0545

SOURCE quantile.src

quantiled

PURPOSE Computes quantiles from data in a data set, given specified probabilities.

FORMAT y = quantiled(dataset,e,var);

INPUT dataset string, data set name, or N×M matrix of data.

GAUSS L R 28-707

quantiled

e L×1 vector, quantile levels or probabilities.
var K×1 vector or scalar zero. If K×1, character vector of labels selected

for analysis, or numeric vector of column numbers in data set of
variables selected for analysis. If scalar zero, all columns are
selected.
If dataset is a matrix var cannot be a character vector.

OUTPUT y L×K matrix, quantiles.

REMARKS quantiled will not succeed if N*minc(e) is less than 1, or N*maxc(e) is
greater than N - 1. In other words, to produce a quantile for a level of .001,
the input matrix must have more than 1000 rows.

Example:

y = quantiled("tobit",e,0);

print "medians";

print y[2,.];

print;

print "95 percentiles";

print y[1,.];

print y[3,.];

produces:

medians

0.0000 1.0000 -0.0021 -0.1228

95 percentiles

-1.1198 1.0000 -1.8139 -2.3143

2.3066 1.0000 1.4590 1.6954

28-708 GAUSS L R

qqyr

SOURCE quantile.src

qyr

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X and
returns QY and R.

FORMAT { qy,r } = qyr(y,x);

INPUT y N×L matrix.

x N×P matrix.

OUTPUT qy N×L unitary matrix.

r K×P upper triangular matrix, K = min(N,P).

REMARKS Given X, there is an orthogonal matrix Q such that Q′X is zero below its
diagonal, i.e.,

Q′X =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X = Q1R

GAUSS L R 28-709

qyre

is the QR decomposition of X. If X has linearly independent columns, R is also
the Cholesky factorization of the moment matrix of X, i.e., of X′X.

For most problems Q or Q1 is not what is required. Since Q can be a very large
matrix, qyr has been provided for the calculation of QY , where Y is some N×L
matrix, which will be a much smaller matrix.

If either Q′Y or Q′1Y are required, see qtyr.

EXAMPLE x = { 1 11, 7 3, 2 1 };

y = { 2 6, 5 10, 4 3 };

{ qy, r } = qyr(y,x);

qy =

4.6288991 9.0506281
−3.6692823 −7.8788202

3.1795692 1.0051489

r =
−7.3484692 −4.6268140

0.0000000 10.468648

SOURCE qyr.src

SEE ALSO qqr, qyre, qyrep, olsqr

qyre

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X and
returns QY and R.

FORMAT { qy,r,e } = qyre(y,x);

INPUT y N×L matrix.

28-710 GAUSS L R

qqyre

x N×P matrix.

OUTPUT qy N×L unitary matrix.

r K×P upper triangular matrix, K = min(N,P).

e P×1 permutation vector.

REMARKS Given X[., E], where E is a permutation vector that permutes the columns of X,
there is an orthogonal matrix Q such that Q′X[., E] is zero below its diagonal,
i.e.,

Q′X[., E] =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X[., E] = Q1R

is the QR decomposition of X[., E].

For most problems Q or Q1 is not what is required. Since Q can be a very large
matrix, qyre has been provided for the calculation of QY , where Y is some
N×L matrix, which will be a much smaller matrix.

If either Q′Y or Q′1Y are required, see qtyre.

IfN <P, the factorization assumes the form:

Q′X[., E] = [R1 R2]

GAUSS L R 28-711

qyrep

where R1 is a P×P upper triangular matrix and R2 is P×(N-P). Thus Q is a P×P
matrix and R is a P×N matrix containing R1 and R2.

EXAMPLE x = { 1 11, 7 3, 2 1 };

y = { 2 6, 5 10, 4 3 };

{ qy, r, e } = qyre(y,x);

qy =

−0.59422765 −3.0456088
−6.2442636 −11.647846

2.3782485 −0.22790230

r =
−11.445523 −2.9705938

0.0000000 −6.7212776

e =
2.0000000
1.0000000

SOURCE qyr.src

SEE ALSO qqr, qre, qyr

qyrep

PURPOSE Computes the orthogonal-triangular (QR) decomposition of a matrix X using a
pivot vector and returns QY and R.

FORMAT { qy,r,e } = qyrep(y,x,pvt);

INPUT y N×L matrix.

x N×P matrix.

28-712 GAUSS L R

qqyrep

pvt P×1 vector, controls the selection of the pivot columns:
if pvt[i] > 0, x[i] is an initial column.
if pvt[i] = 0, x[i] is a free column.
if pvt[i] < 0, x[i] is a final column.

The initial columns are placed at the beginning of the matrix and the
final columns are placed at the end. Only the free columns will be
moved during the decomposition.

OUTPUT qy N×L unitary matrix.

r K×P upper triangular matrix, K = min(N,P).

e P×1 permutation vector.

REMARKS Given X[., E], where E is a permutation vector that permutes the columns of X,
there is an orthogonal matrix Q such that Q′X[., E] is zero below its diagonal,
i.e.,

Q′X[., E] =
[

R
0

]

where R is upper triangular. If we partition

Q = [Q1 Q2]

where Q1 has P columns, then

X[., E] = Q1R

is the QR decomposition of X[., E].

qyrep allows you to control the pivoting. For example, suppose that X is a data
set with a column of ones in the first column. If there are linear dependencies
among the columns of X, the column of ones for the constant may get pivoted

GAUSS L R 28-713

rank

away. This column can be forced to be included among the linearly independent
columns using pvt.

For most problems Q or Q1 is not what is required. Since Q can be a very large
matrix, qyrep has been provided for the calculation of QY , where Y is some
N×L matrix, which will be a much smaller matrix.

If either Q′Y or Q′1Y are required, see qtyrep.

If N<P, the factorization assumes the form:

Q′X[., E] = [R1 R2]

where R1 is a P×P upper triangular matrix and R2 is P×(N-P). Thus Q is a P×P
matrix and R is a P×N matrix containing R1 and R2.

SOURCE qyr.src

SEE ALSO qr, qqrep, qrep, qtyrep

rank

PURPOSE Computes the rank of a matrix, using the singular value decomposition.

FORMAT k = rank(x);

INPUT x N×P matrix.

GLOBAL
INPUT

_svdtol scalar, the tolerance used in determining if any of the
singular values are effectively 0. The default value is 10e−13.
This can be changed before calling the procedure.

28-714 GAUSS L R

r

rankindx

OUTPUT k an estimate of the rank of x. This equals the number of singular
values of x that exceed a prespecified tolerance in absolute value.

GLOBAL
OUTPUT

_svderr scalar, if not all of the singular values can be computed
_svderr will be nonzero.

SOURCE svd.src

rankindx

PURPOSE Returns the vector of ranks of a vector.

FORMAT y = rankindx(x,flag);

INPUT x N×1 vector.

flag scalar, 1 for numeric data or 0 for character data.

OUTPUT y N×1 vector containing the ranks of x. That is, the rank of the largest
element is N and the rank of the smallest is 1. (To get ranks in
descending order, subtract y from N+1).

REMARKS rankindx assigns different ranks to elements that have equal values (ties).
Missing values are assigned the lowest ranks.

EXAMPLE let x = 12 4 15 7 8;

r = rankindx(x,1);

r =

4
1
5
2
3

GAUSS L R 28-715

readr

readr

PURPOSE Reads a specified number of rows of data from a GAUSS data set (.dat) file or
a GAUSS matrix (.fmt) file.

FORMAT y = readr(f1,r);

INPUT f1 scalar, file handle of an open file.
r scalar, number of rows to read.

OUTPUT y N×K matrix, the data read from the file.

REMARKS The first time a readr statement is encountered, the first r rows will be read.
The next time it is encountered, the next r rows will be read in, and so on. If the
end of the data set is reached before r rows can be read, then only those rows
remaining will be read.

After the last row has been read, the pointer is placed immediately after the end
of the file. An attempt to read the file in these circumstances will cause an error
message.

To move the pointer to a specific place in the file use seekr.

EXAMPLE open dt = dat1.dat;

m = 0;

do until eof(dt);

x = readr(dt,400);

m = m+moment(x,0);

endo;

dt = close(dt);

This code reads data from a data set 400 rows at a time. The moment matrix for
each set of rows is computed and added to the sum of the previous moment

28-716 GAUSS L R

r

real

matrices. The result is the moment matrix for the entire data set. eof(dt)
returns 1 when the end of the data set is encountered.

SEE ALSO open, create, writer, seekr, eof

real

PURPOSE Returns the real part of x.

FORMAT zr = real(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT zr N×K matrix or N-dimensional array, the real part of x.

REMARKS If x is not complex, zr will be equal to x.

EXAMPLE x = { 1 11,

7i 3,

2+i 1 };

zr = real(x);

zr =

1.0000000 11.000000
0.0000000 3.0000000
2.0000000 1.0000000

SEE ALSO complex, imag

GAUSS L R 28-717

recode

recode

PURPOSE Changes the values of an existing vector from a vector of new values. Used in
data transformations.

FORMAT y = recode(x,e,v);

INPUT x N×1 vector to be recoded (changed).

e N×K matrix of 1’s and 0’s.

v K×1 vector containing the new values to be assigned to the recoded
variable.

OUTPUT y N×1 vector containing the recoded values of x.

REMARKS There should be no more than a single 1 in any row of e.

For any given row N of x and e, if the Kth column of e is 1, the Kth element of v
will replace the original element of x.

If every column of e contains a 0, the original value of x will be unchanged.

EXAMPLE x = { 20,

45,

32,

63,

29 };

e1 = (20 .lt x) .and (x .le 30);

e2 = (30 .lt x) .and (x .le 40);

e3 = (40 .lt x) .and (x .le 50);

e4 = (50 .lt x) .and (x .le 60);

e = e1˜e2˜e3˜e4;

v = { 1,

28-718 GAUSS L R

r

recode (dataloop)

2,

3,

4 };

y = recode(x,e,v);

x =

20
45
32
63
29

e =

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0
1 0 0 0

v =

1
2
3
4

y =

20
3
2

63
1

SOURCE datatran.src

SEE ALSO code, substute

GAUSS L R 28-719

recode (dataloop)

recode (dataloop)

PURPOSE Changes the value of a variable with different values based on a set of logical
expressions.

FORMAT recode [[#]] [[$]] var with
val 1 for expression 1,
val 2 for expression 2,

.

.

.
val n for expression n;

INPUT var literal, the new variable name.

val scalar, value to be used if corresponding expression is TRUE.

expression logical scalar-returning expression that returns nonzero TRUE or
zero FALSE.

REMARKS If ‘$’ is specified, the variable will be considered a character variable. If ‘#’ is
specified, the variable will be considered numeric. If neither is specified, the
type of the variable will be left unchanged.

The logical expressions must be mutually exclusive, that is only one may return
TRUE for a given row (observation).

If none of the expressions is TRUE for a given row (observation), its value will
remain unchanged.

Any variables referenced must already exist, either as elements of the source
data set, as extern’s, or as the result of a previous make, vector, or code
statement.

EXAMPLE recode age with

1 for age < 21,

28-720 GAUSS L R

r

recserar

2 for age >= 21 and age < 35,

3 for age >= 35 and age < 50,

4 for age >= 50 and age < 65,

5 for age >= 65;

recode $ sex with

"MALE" for sex =\,= 1,

"FEMALE" for sex =\,= 0;

recode # sex with

1 for sex $=\,= "MALE",

0 for sex $=\,= "FEMALE";

SEE ALSO code (dataloop)

recserar

PURPOSE Computes a vector of autoregressive recursive series.

FORMAT y = recserar(x,y0,a);

INPUT x N×K matrix

y0 P×K matrix.

a P×K matrix.

OUTPUT y N×K matrix containing the series.

REMARKS recserar is particularly useful in dealing with time series.

Typically, the result would be thought of as K vectors of length N.

GAUSS L R 28-721

recserar

y0 contains the first P values of each of these vectors (thus, these are
prespecified). The remaining elements are constructed by computing a Pth order
“autoregressive” recursion, with weights given by a, and then by adding the
result to the corresponding elements of x. That is, the tth row of y is given by:

y[t, .] = x[t, .] + a[1, .] ∗ y[t − 1, .] + . . . + a[P, .] ∗ y[t − P, .], t = P + 1, . . . ,N

and

y[t, .] = y0[t, .], t = 1, . . . , P

Note that the first P rows of x are not used.

EXAMPLE n = 10;

fn multnorm(n,sigma) = rndn(n,rows(sigma))*chol(sigma);

let sig[2,2] = { 1 -.3, -.3 1 };

rho = 0.5˜0.3;

y0 = 0˜0;

e = multnorm(n,sig);

x = ones(n,1)˜rndn(n,3);

b = 1|2|3|4;

y = recserar(x*b+e,y0,rho);

In this example, two autoregressive series are formed using simulated data. The
general form of the series can be written:

y[1,t] = rho[1,1]*y[1,t-1] + x[t,.]*b + e[1,t]

y[2,t] = rho[2,1]*y[2,t-1] + x[t,.]*b + e[2,t]

The error terms (e[1,t] and e[2,t]) are not individually serially correlated,
but they are contemporaneously correlated with each other. The
variance-covariance matrix is sig.

28-722 GAUSS L R

r

recsercp

SEE ALSO recsercp, recserrc

recsercp

PURPOSE Computes a recursive series involving products. Can be used to compute
cumulative products, to evaluate polynomials using Horner’s rule, and to
convert from base b representations of numbers to decimal representations
among other things.

FORMAT y = recsercp(x,z);

INPUT x N×K or 1×K matrix

z N×K or 1×K matrix.

OUTPUT y N×K matrix in which each column is a series generated by a
recursion of the form:

y(1) = x(1) + z(1)

y(t) = y(t − 1) ∗ x(t) + z(t), t = 2, ...N

REMARKS The following GAUSS code could be used to emulate recsercp when the
number of rows in x and z is the same:

n = rows(x); /* assume here that rows(z) */

/* is also n */

y = zeros(n,1);

y[1,.] = x[1,.] + z[1,.];

i = 2;

do until i > n;

y[i,.] = y[i-1,.] .* x[i,.] + z[i,.];

i = i +1;

endo;

GAUSS L R 28-723

recserrc

Note that K series can be computed simultaneously, since x and z can have K
columns (they must both have the same number of columns).

recsercp allows either x or z to have only 1 row.

recsercp(x,0) will produce the cumulative products of the elements in x.

EXAMPLE c1 = c[1,.];

n = rows(c) - 1;

y = recsercp(x,trim(c ./ c1,1,0));

p = c1 .* y[n,.];

If x is a scalar and c is an (N+1)×1 vector, the result p will contain the value of
the polynomial whose coefficients are given in c. That is:

p = c[1,.].*xˆn + c[2,.].*xˆ(n-1) + ... + c[n+1,.];

Note that both x and c could contain more than 1 column, and then this code
would evaluate the entire set of polynomials at the same time. Note also that if x
= 2, and if c contains the digits of the binary representation of a number, then p
will be the decimal representation of that number.

SEE ALSO recserar, recserrc

recserrc

PURPOSE Computes a recursive series involving division.

FORMAT y = recserrc(x,z);

INPUT x 1×K or K×1 vector.

z N×K matrix.

28-724 GAUSS L R

r

rerun

OUTPUT y N×K matrix in which each column is a series generated by a
recursion of the form:

y[1] = x mod z[1], x = trunc(x/z[1])
y[2] = x mod z[2], x = trunc(x/z[2])
y[3] = x mod z[3], x = trunc(x/z[3])

.

.

.

y[n] = x mod z[n]

REMARKS Can be used to convert from decimal to other number systems (radix
conversion).

EXAMPLE x = 2|8|10;

b = 2;

n = maxc(log(x)./log(b)) + 1;

z = reshape(b, n, rows(x));

y = rev(recserrc(x, z))’;

The result, y, will contain in its rows (note that it is transposed in the last step)
the digits representing the decimal numbers 2, 8, and 10 in base 2:

0 0 1 0
1 0 0 0
1 0 1 0

SOURCE recserrc.src

SEE ALSO recserar, recsercp

rerun

PURPOSE Displays the most recently created graphics file.

GAUSS L R 28-725

reshape

LIBRARY pgraph

FORMAT rerun;

REMARKS rerun is used by the endwind function.

SOURCE pcart.src

GLOBALS _pcmdlin, _pnotify, _psilent, _ptek, _pzoom

reshape

PURPOSE Reshapes a matrix.

FORMAT y = reshape(x,r,c);

INPUT x N×K matrix.

r scalar, new row dimension.

c scalar, new column dimension.

OUTPUT y r×c matrix created from the elements of x.

REMARKS Matrices are stored in row major order.

The first c elements are put into the first row of y, the second in the second row,
and so on. If there are more elements in x than in y, the remaining elements are
discarded. If there are not enough elements in x to fill y, then when reshape
runs out of elements, it goes back to the first element of x and starts getting
additional elements from there.

EXAMPLE y = reshape(x,2,6);

28-726 GAUSS L R

r

retp

If x =
1 2 3 4
5 6 7 8
9 10 11 12

then y =
1 2 3 4 5 6
7 8 9 10 11 12

If x =
1 2 3
4 5 6
7 8 9

then y =
1 2 3 4 5 6
7 8 9 1 2 3

If x =
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
then y =

1 2 3 4 5 6
7 8 9 10 11 12

If x =
1 2
3 4

then y =
1 2 3 4 1 2
3 4 1 2 3 4

If x = 1 then y =
1 1 1 1 1 1
1 1 1 1 1 1

SEE ALSO submat, vec

retp

PURPOSE Returns from a procedure or keyword.

FORMAT retp;

retp(x,y,...);

REMARKS For more details, see P K, Chapter 8.

In a retp statement 0-1023 items may be returned. The items may be

GAUSS L R 28-727

return

expressions. Items are separated by commas.

It is legal to return with no arguments, as long as the procedure is defined to
return 0 arguments.

SEE ALSO proc, keyword, endp

return

PURPOSE Returns from a subroutine.

FORMAT return;

return(x,y,...);

REMARKS The number of items that may be returned from a subroutine in a return
statement is limited only by stack space. The items may be expressions. Items
are separated by commas.

It is legal to return with no arguments and therefore return nothing.

SEE ALSO gosub, pop

rev

PURPOSE Reverses the order of the rows in a matrix.

FORMAT y = rev(x);

INPUT x N×K matrix.

OUTPUT y N×K matrix containing the reversed rows of x.

28-728 GAUSS L R

r

rfft

REMARKS The first row of y will be where the last row of x was and the last row will be
where the first was and so on. This can be used to put a sorted matrix in
descending order.

EXAMPLE x = round(rndn(5,3)*10);

y = rev(x);

x =

10 7 8
7 4 −9

−11 0 −3
3 18 0
9 −1 20

y =

9 −1 20
3 18 0

−11 0 −3
7 4 −9

10 7 8

SEE ALSO sortc

rfft

PURPOSE Computes a real 1- or 2-D Fast Fourier transform.

FORMAT y = rfft(x);

INPUT x N×K real matrix.

OUTPUT y L×M matrix, where L and M are the smallest powers of 2 greater
than or equal to N and K, respectively.

GAUSS L R 28-729

rffti

REMARKS Computes the RFFT of x, scaled by 1/(L*M).

This uses a Temperton Fast Fourier algorithm.

If N or K is not a power of 2, x will be padded out with zeros before computing
the transform.

EXAMPLE x = { 6 9, 8 1 };

y = rfft(x);

y =
6.0000000 1.0000000
1.5000000 −2.5000000

SEE ALSO rffti, fft, ffti, fftm, fftmi

rffti

PURPOSE Computes inverse real 1- or 2-D Fast Fourier transform.

FORMAT y = rffti(x);

INPUT x N×K matrix.

OUTPUT y L×M real matrix, where L and M are the smallest prime factor
products greater than or equal to N and K.

REMARKS It is up to the user to guarantee that the input will return a real result. If in
doubt, use ffti.

EXAMPLE x = { 6 1, 1.5 -2.5 };

y = rffti(x);

28-730 GAUSS L R

r

rfftip

y =
6.0000000 9.0000000
8.0000000 1.0000000

SEE ALSO rfft, fft, ffti, fftm, fftmi

rfftip

PURPOSE Computes an inverse real 1- or 2-D FFT. Takes a packed format FFT as input.

FORMAT y = rfftip(x);

INPUT x N×K matrix or K-length vector.

OUTPUT y L×M real matrix or M-length vector.

REMARKS rfftip assumes that its input is of the same form as that output by rfftp and
rfftnp.

rfftip uses the Temperton prime factor FFT algorithm. This algorithm can
compute the inverse FFT of any vector or matrix whose dimensions can be
expressed as the product of selected prime number factors. GAUSS implements
the Temperton algorithm for any integer power of 2, 3, and 5, and one factor of
7. Thus, rfftip can handle any matrix whose dimensions can be expressed as:

2p × 3q × 5r × 7s, p,q,r≥0
s=0 or 1

If a dimension of x does not meet this requirement, it will be padded with zeros
to the next allowable size before the inverse FFT is computed. Note that
rfftip assumes the length (for vectors) or column dimension (for matrices) of
x is K-1 rather than K, since the last element or column does not hold FFT
information, but the Nyquist frequencies.

GAUSS L R 28-731

rfftn

The sizes of x and y are related as follows: L will be the smallest prime factor
product greater than or equal to N, and M will be twice the smallest prime factor
product greater than or equal to K-1. This takes into account the fact that x
contains both positive and negative frequencies in the row dimension (matrices
only), but only positive frequencies, and those only in the first K-1 elements or
columns, in the length or column dimension.

It is up to the user to guarantee that the input will return a real result. If in
doubt, use ffti. Note, however, that ffti expects a full FFT, including
negative frequency information, for input.

Do not pass rfftip the output from rfft or rfftn–it will return incorrect
results. Use rffti with those routines.

SEE ALSO fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftn, rfftnp, rfftp

rfftn

PURPOSE Computes a real 1- or 2-D FFT.

FORMAT y = rfftn(x);

INPUT x N×K real matrix.

OUTPUT y L×M matrix, where L and M are the smallest prime factor products
greater than or equal to N and K, respectively.

REMARKS rfftn uses the Temperton prime factor FFT algorithm. This algorithm can
compute the FFT of any vector or matrix whose dimensions can be expressed as
the product of selected prime number factors. GAUSS implements the
Temperton algorithm for any power of 2, 3, and 5, and one factor of 7. Thus,
rfftn can handle any matrix whose dimensions can be expressed as:

28-732 GAUSS L R

r

rfftnp

2p × 3q × 5r × 7s, p,q,r≥0 for rows of matrix
p>0, q,r≥0 for columns of matrix
p>0, q,r≥0 for length of vector
s=0 or 1 for all dimensions

If a dimension of x does not meet these requirements, it will be padded with
zeros to the next allowable size before the FFT is computed.

rfftn pads matrices to the next allowable size; however, it generally runs faster
for matrices whose dimensions are highly composite numbers, i.e., products of
several factors (to various powers), rather than powers of a single factor. For
example, even though it is bigger, a 33600×1 vector can compute as much as 20
percent faster than a 32768×1 vector, because 33600 is a highly composite
number, 26×3×52×7, whereas 32768 is a simple power of 2, 215. For this
reason, you may want to hand-pad matrices to optimum dimensions before
passing them to rfftn. The Run-Time Library includes two routines, optn
and optnevn, for determining optimum dimensions. Use optn to determine
optimum rows for matrices, and optnevn to determine optimum columns for
matrices and optimum lengths for vectors.

The Run-Time Library also includes the nextn and nextnevn routines, for
determining allowable dimensions for matrices and vectors. (You can use these
to see the dimensions to which rfftn would pad a matrix or vector.)

rfftn scales the computed FFT by 1/(L*M).

SEE ALSO fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftip, rfftnp, rfftp

rfftnp

PURPOSE Computes a real 1- or 2-D FFT. Returns the results in a packed format.

FORMAT y = rfftnp(x);

GAUSS L R 28-733

rfftnp

INPUT x N×K real matrix or K-length real vector.

OUTPUT y L×(M/2+1) matrix or (M/2+1)-length vector, where L and M are the
smallest prime factor products greater than or equal to N and K,
respectively.

REMARKS For 1-D FFT’s, rfftnp returns the positive frequencies in ascending order in
the first M/2 elements, and the Nyquist frequency in the last element. For 2-D
FFT’s, rfftnp returns the positive and negative frequencies for the row
dimension, and for the column dimension, it returns the positive frequencies in
ascending order in the first M/2 columns, and the Nyquist frequencies in the last
column. Usually the FFT of a real function is calculated to find the power
density spectrum or to perform filtering on the waveform. In both these cases
only the positive frequencies are required. (See also rfft and rfftn for
routines that return the negative frequencies as well.)

rfftnp uses the Temperton prime factor FFT algorithm. This algorithm can
compute the FFT of any vector or matrix whose dimensions can be expressed as
the product of selected prime number factors. GAUSS implements the
Temperton algorithm for any power of 2, 3, and 5, and one factor of 7. Thus,
rfftnp can handle any matrix whose dimensions can be expressed as:

2p × 3q × 5r × 7s, p,q,r≥0 for rows of matrix
p>0, q,r≥0 for columns of matrix
p>0, q,r≥0 for length of vector
s=0 or 1 for all dimensions

If a dimension of x does not meet these requirements, it will be padded with
zeros to the next allowable size before the FFT is computed.

rfftnp pads matrices to the next allowable size; however, it generally runs
faster for matrices whose dimensions are highly composite numbers, i.e.,
products of several factors (to various powers), rather than powers of a single
factor. For example, even though it is bigger, a 33600×1 vector can compute as
much as 20 percent faster than a 32768×1 vector, because 33600 is a highly
composite number, 26×3×52×7, whereas 32768 is a simple power of 2, 215. For

28-734 GAUSS L R

r

rfftp

this reason, you may want to hand-pad matrices to optimum dimensions before
passing them to rfftnp. The Run-Time Library includes two routines, optn
and optnevn, for determining optimum dimensions. Use optn to determine
optimum rows for matrices, and optnevn to determine optimum columns for
matrices and optimum lengths for vectors.

The Run-Time Library also includes the nextn and nextnevn routines, for
determining allowable dimensions for matrices and vectors. (You can use these
to see the dimensions to which rfftnp would pad a matrix or vector.)

rfftnp scales the computed FFT by 1/(L*M).

SEE ALSO fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftip, rfftn, rfftp

rfftp

PURPOSE Computes a real 1- or 2-D FFT. Returns the results in a packed format.

FORMAT y = rfftp(x);

INPUT x N×K real matrix or K-length real vector.

OUTPUT y L×(M/2+1) matrix or (M/2+1)-length vector, where L and M are the
smallest powers of 2 greater than or equal to N and K, respectively.

REMARKS If a dimension of x is not a power of 2, it will be padded with zeros to the next
allowable size before the FFT is computed.

For 1-D FFT’s, rfftp returns the positive frequencies in ascending order in the
first M/2 elements, and the Nyquist frequency in the last element. For 2-D
FFT’s, rfftp returns the positive and negative frequencies for the row
dimension, and for the column dimension, it returns the positive frequencies in
ascending order in the first M/2 columns, and the Nyquist frequencies in the last
column. Usually the FFT of a real function is calculated to find the power

GAUSS L R 28-735

rndbeta

density spectrum or to perform filtering on the waveform. In both these cases
only the positive frequencies are required. (See also rfft and rfftn for
routines that return the negative frequencies as well.)

rfftp scales the computed FFT by 1/(L*M).

rfftp uses the Temperton FFT algorithm.

SEE ALSO fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftip, rfftn, rfftnp

rndbeta

PURPOSE Computes pseudo-random numbers with beta distribution.

FORMAT x = rndbeta(r,c,a,b);

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

a M×N matrix, E×E conformable with r×c resulting matrix, shape
parameters for beta distribution.

b K×L matrix, E×E conformable with r×c resulting matrix, shape
parameters for beta distribution.

OUTPUT x r×c matrix, beta distributed pseudo-random numbers.

REMARKS The properties of the pseudo-random numbers in x are:

E(x) = a/(a + b)

Var(x) = a ∗ b/((a + b + 1) ∗ (a + b)2)

x > 0

28-736 GAUSS L R

r

rndcon, rndmult, rndseed

x < 1

a > 0

b > 0

SOURCE random.src

rndcon, rndmult, rndseed

PURPOSE Resets the parameters of the linear congruential random number generator that
is the basis for rndu, rndi and rndn.

FORMAT rndcon c;
rndmult a;
rndseed seed;

INPUT c scalar, constant for the random number generator.

a scalar, multiplier for the random number generator.

seed scalar, initial seed for the random number generator.

Parameter default values and ranges:

seed time(0) 0 < seed < 232

a 1664525 0 < a < 232

c 1013904223 0 <= c < 232

REMARKS A linear congruential uniform random number generator is used by rndu, and is
also called by rndn. These statements allow the parameters of this generator to
be changed.

The procedure used to generate the uniform random numbers is as follows.
First, the current “seed” is used to generate a new seed:

GAUSS L R 28-737

rndgam

new seed = (((a * seed) % 232)+ c) % 232

(where % is the mod operator). Then a number between 0 and 1 is created by
dividing the new seed by 232:

x = new seed / 232

rndcon resets c.

rndmult resets a.

rndseed resets seed. This is the initial seed for the generator. The default is
that GAUSS uses the clock to generate an initial seed when GAUSS is invoked.

GAUSS goes to the clock to seed the generator only when it is first started up.
Therefore, if GAUSS is allowed to run for a long time, and if large numbers of
random numbers are generated, there is a possibility of recycling (that is, the
sequence of “random numbers” will repeat itself). However, the generator used
has an extremely long cycle, so that should not usually be a problem.

The parameters set by these commands remain in effect until new commands
are encountered, or until GAUSS is restarted.

SEE ALSO rndu, rndn, rndi, rndLCi, rndKMi

rndgam

PURPOSE Computes pseudo-random numbers with gamma distribution.

FORMAT x = rndgam(r,c,alpha);

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

28-738 GAUSS L R

r

rndi

alpha M×N matrix, E×E conformable with r×c resulting matrix, shape
parameters for gamma distribution.

OUTPUT x r×c matrix, gamma distributed pseudo-random numbers.

REMARKS The properties of the pseudo-random numbers in x are:

E(x) = alpha

Var(x) = alpha

x > 0

alpha > 0

To generate gamma(alpha,theta) pseudo-random numbers where theta is a
scale parameter, multiply the result of rndgam by theta. Thus:

z = theta * rndgam(1,1,alpha);

has the properties

E(z) = alpha × theta

Var(z) = alpha × theta2

z > 0

alpha > 0

theta > 0

SOURCE random.src

GAUSS L R 28-739

rndKMbeta

rndi

PURPOSE Returns a matrix of random integers, 0 <= y < 232.

FORMAT y = rndi(r,c);

INPUT r scalar, row dimension.
c scalar, column dimension.

OUTPUT y r×c matrix of random integers between 0 and 232-1, inclusive.

REMARKS r and c will be truncated to integers if necessary.

This generator is automatically seeded using the system clock when GAUSS
first starts. However, that can be overridden using the rndseed statement.

Each seed is generated from the preceding seed, using the formula

new seed = (((a * seed) % 232)+c) % 232

where % is the mod operator. The new seeds are the values returned. The
multiplicative constant and the additive constant may be changed using
rndmult and rndcon respectively.

SEE ALSO rndu, rndn, rndcon, rndmult

rndKMbeta

PURPOSE Computes beta pseudo-random numbers.

FORMAT { x,newstate } = rndKMbeta(r,c,a,b,state);

28-740 GAUSS L R

r

rndKMgam

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

a r×c matrix, or r×1 vector, or 1×c vector, or scalar, first shape
argument for beta distribution.

b r×c matrix, or r×1 vector, or 1×c vector, or scalar, second shape
argument for beta distribution.

state scalar or 500×1 vector.

Scalar case:
state = starting seed value only. If -1, GAUSS computes the starting
seed based on the system clock.

500×1 vector case:
state = the state vector returned from a previous call to one of the
rndKM random number functions.

OUTPUT x r×c matrix, beta distributed random numbers.

newstate 500×1 vector, the updated state.

REMARKS The properties of the pseudo-random numbers in x are:

E(x) =
a

a + b
,Var(x) =

(a ∗ b)
(a + b + 1) ∗ (a + b)2

0 < x < 1, a > 0, b > 0

r and c will be truncated to integers if necessary.

SOURCE randkm.src

TECHNICAL
NOTES

rndKMbeta uses the recur-with-carry KISS+Monster algorithm described in the
rndKMi Technical Notes.

GAUSS L R 28-741

rndKMgam

rndKMgam

PURPOSE Computes Gamma pseudo-random numbers.

FORMAT { x,newstate } = rndKMgam(r,c,alpha,state);

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

alpha r×c matrix, or r×1 vector, or 1×c vector, or scalar, shape argument
for gamma distribution.

state scalar or 500×1 vector.
Scalar case:
state = starting seed value only. If -1, GAUSS computes the starting
seed based on the system clock.
500×1 vector case:
state = the state vector returned from a previous call to one of the
rndKM random number functions.

OUTPUT x r×c matrix, gamma distributed random numbers.

newstate 500×1 vector, the updated state.

REMARKS The properties of the pseudo-random numbers in x are:

E(x) = alpha,Var(x) = alpha

x > 0, alpha > 0

To generate gamma(alpha,theta) pseudo-random numbers where theta is a
scale parameter, multiply the result of rndKMgam by theta.

Thus

28-742 GAUSS L R

r

rndKMi

z = theta * rndgam(1,1,alpha);

has the properties

E(z) = alpha ∗ theta,Var(z) = alpha ∗ theta2

z > 0, alpha > 0, theta > 0

r and c will be truncated to integers if necessary.

SOURCE randkm.src

TECHNICAL
NOTES

rndKMgam uses the recur-with-carry KISS+Monster algorithm described in the
rndKMi Technical Notes.

rndKMi

PURPOSE Returns a matrix of random integers, 0 <= y < 232, and the state of the random
number generator.

FORMAT { y,newstate } = rndKMi(r,c,state);

INPUT r scalar, row dimension.
c scalar, column dimension.
state scalar or 500×1 vector.

Scalar case:
state = starting seed value. If -1, GAUSS computes the starting seed
based on the system clock.
500×1 vector case:
state = the state vector returned from a previous call to one of the
rndKM random number generators.

GAUSS L R 28-743

rndKMn

OUTPUT y r×c matrix of random integers between 0 and 232 - 1, inclusive.

newstate 500×1 vector, the updated state.

REMARKS r and c will be truncated to integers if necessary.

EXAMPLE This example generates two thousand vectors of random integers, each with one
million elements. The state of the random number generator after each iteration
is used as an input to the next generation of random numbers.

state = 13;

n = 2000;

k = 1000000;

c = 0;

min = 2ˆ32+1;

max = -1;

do while c < n;

{ y,state } = rndKMi(k,1,state);

min = minc(min | minc(y));

max = maxc(max | maxc(y));

c = c + k;

endo;

print "min " min;

print "max " max;

SEE ALSO rndKMn, rndKMu

TECHNICAL
NOTES

rndKMi generates random integers using a KISS+Monster algorithm developed
by George Marsaglia. KISS initializes the sequence used in the recur-with-carry
Monster random number generator. For more information on this generator see
http://www.Aptech.com/random.

28-744 GAUSS L R

r

rndKMn

rndKMn

PURPOSE Returns a matrix of standard normal (pseudo) random variables and the state of
the random number generator.

FORMAT { y,newstate } = rndKMn(r,c,state);

INPUT r scalar, row dimension.

c scalar, column dimension.

state scalar or 500×1 vector.
Scalar case:
state = starting seed value. If -1, GAUSS computes the starting seed
based on the system clock.
500×1 vector case:
state = the state vector returned from a previous call to one of the
rndKM random number generators.

OUTPUT y r×c matrix of standard normal random numbers.

newstate 500×1 vector, the updated state.

REMARKS r and c will be truncated to integers if necessary.

EXAMPLE This example generates two thousand vectors of standard normal random
numbers, each with one million elements. The state of the random number
generator after each iteration is used as an input to the next generation of
random numbers.

state = 13;

n = 2000;

k = 1000000;

c = 0;

submean = {};

GAUSS L R 28-745

rndKMnb

do while c < n;

{ y,state } = rndKMn(k,1,state);

submean = submean | meanc(y);

c = c + k;

endo;

mean = meanc(submean);

print mean;

SEE ALSO rndKMu, rndKMi

TECHNICAL
NOTES

rndKMn calls the uniform random number generator that is the basis for rndKMu
multiple times for each normal random number generated. This is the
recur-with-carry KISS+Monster algorithm described in the rndKMi Technical
Notes. Potential normal random numbers are filtered using the fast
acceptance-rejection algorithm proposed by Kinderman, A.J. and J.G. Ramage,
“Computer Generation of Normal Random Numbers,” Journal of the American
Statistical Association, December 1976, Volume 71, Number 356, pp. 893-896.
It employs the error correction from Tirler et al. (2004), “An error in the
Kinderman-Ramage method and how to fix it,” Computational and Data
Analysis, Vol. 47, 433-40.

rndKMnb

PURPOSE Computes negative binomial pseudo-random numbers.

FORMAT { x,newstate } = rndKMnb(r,c,k,p,state);

INPUT r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
k r×c matrix, or r×1 vector, or 1×c vector, or scalar, “event” argument

for negative binomial distribution.

28-746 GAUSS L R

r

rndKMp

p r×c matrix, or r×1 vector, or 1×c vector, or scalar, “probability”
argument for negative binomial distribution.

state scalar or 500×1 vector.
Scalar case:
state = starting seed value only. If -1, GAUSS computes the starting
seed based on the system clock.
500×1 vector case:
state = the state vector returned from a previous call to one of the
rndKM random number functions.

OUTPUT x r×c matrix, negative binomial distributed random numbers.

newstate 500×1 vector, the updated state.

REMARKS The properties of the pseudo-random numbers in x are:

E(x) =
k ∗ p

(1 − p)
,Var(x) =

k ∗ p
(1 − p)2

x = 0, 1, . . . , k > 0, 0 < p < 1

r and c will be truncated to integers if necessary.

SOURCE randkm.src

TECHNICAL
NOTES

rndKMnb uses the recur-with-carry KISS+Monster algorithm described in the
rndKMi Technical Notes.

rndKMp

PURPOSE Computes Poisson pseudo-random numbers.

GAUSS L R 28-747

rndKMu

FORMAT { x,newstate } = rndKMp(r,c,lambda,state);

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

lambda r×c matrix, or r×1 vector, or 1×c vector, or scalar, shape argument
for Poisson distribution.

state scalar or 500×1 vector.

Scalar case:
state = starting seed value only. If -1, GAUSS computes the starting
seed based on the system clock.

500×1 vector case:
state = the state vector returned from a previous call to one of the
rndKM random number functions.

OUTPUT x r×c matrix, Poisson distributed random numbers.

newstate 500×1 vector, the updated state.

REMARKS The properties of the pseudo-random numbers in x are:

E(x) = lambda,Var(x) = lambda

x = 0, 1, . . . , lambda > 0

r and c will be truncated to integers if necessary.

SOURCE randkm.src

TECHNICAL
NOTES

rndKMp uses the recur-with-carry KISS+Monster algorithm described in the
rndKMi Technical Notes.

28-748 GAUSS L R

r

rndKMu

rndKMu

PURPOSE Returns a matrix of uniform (pseudo) random variables and the state of the
random number generator.

FORMAT { y,newstate } = rndKMu(r,c,state);

INPUT r scalar, row dimension.

c scalar, column dimension.

state scalar, 2×1 vector, or 500×1 vector.
Scalar case:
state = starting seed value. If -1, GAUSS computes the starting seed
based on the system clock.
2×1 vector case:
[1] the starting seed, uses the system clock if -1
[2] 0 for 0 <= y < 1

1 for 0 <= y <= 1

500×1 vector case:
state = the state vector returned from a previous call to one of the
rndKM random number generators.

OUTPUT y r×c matrix of uniform random numbers, 0 <= y < 1.

newstate 500×1 vector, the updated state.

REMARKS r and c will be truncated to integers if necessary.

EXAMPLE This example generates two thousand vectors of uniform random numbers, each
with one million elements. The state of the random number generator after each
iteration is used as an input to the next generation of random numbers.

state = 13;

GAUSS L R 28-749

rndKMvm

n = 2000;

k = 1000000;

c = 0;

submean = {};

do while c < n;

{ y,state } = rndKMu(k,1,state);

submean = submean | meanc(y);

c = c + k;

endo;

mean = meanc(submean);

print 0.5-mean;

SEE ALSO rndKMn, rndKMi

TECHNICAL
NOTES

rndKMu uses the recur-with-carry KISS-Monster algorithm described in the
rndKMi Technical Notes. Random integer seeds from 0 to 232-1 are generated.
Each integer is divided by 232 or 232-1.

rndKMvm

PURPOSE Computes von Mises pseudo-random numbers.

FORMAT { x,newstate } = rndKMvm(r,c,m,k,state);

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

m r×c matrix, or r×1 vector, or 1×c vector, or scalar, means for vm
distribution.

k r×c matrix, or r×1 vector, or 1×c vector, or scalar, shape argument
for vm distribution.

28-750 GAUSS L R

r

rndLCbeta

state scalar or 500×1 vector.
Scalar case:
state = starting seed value only. If -1, GAUSS computes the starting
seed based on the system clock.
500×1 vector case:
state = the state vector returned from a previous call to one of the
rndKM random number functions.

OUTPUT x r×c matrix, von Mises distributed random numbers.

newstate 500×1 vector, the updated state.

REMARKS r and c will be truncated to integers if necessary.

SOURCE randkm.src

TECHNICAL
NOTES

rndKMvm uses the recur-with-carry KISS+Monster algorithm described in the
rndKMi Technical Notes.

rndLCbeta

PURPOSE Computes beta pseudo-random numbers.

FORMAT { x,newstate } = rndLCbeta(r,c,a,b,state);

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

a r×c matrix, or r×1 vector, or 1×c vector, or scalar, first shape
argument for beta distribution.

b r×c matrix, or r×1 vector, or 1×c vector, or scalar, second shape
argument for beta distribution.

state scalar, or 3×1 vector, or 4×1 vector.

GAUSS L R 28-751

rndLCbeta

Scalar case:
state = starting seed value only. System default values are used for
the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively. These may
be changed with rndcon and rndmult.
If state = -1, GAUSS computes the starting seed based on the
system clock.
3×1 vector case:

[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant
[3] the additive constant

4×1 vector case:
state = the state vector returned from a previous call to one of the
rndLC random number generators.

OUTPUT x r×c matrix, beta distributed random numbers.

newstate 4×1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

REMARKS The properties of the pseudo-random numbers in x are:

E(x) =
a

a + b
,Var(x) =

(a ∗ b)
(a + b + 1) ∗ (a + b)2

0 < x < 1, a > 0, b > 0

r and c will be truncated to integers if necessary.

SOURCE randlc.src

28-752 GAUSS L R

r

rndLCgam

TECHNICAL
NOTES

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr.,
and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147.
Each seed is generated from the preceding seed using the formula

new seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is
the additive constant.

rndLCgam

PURPOSE Computes Gamma pseudo-random numbers.

FORMAT { x,newstate } = rndLCgam(r,c,alpha,state);

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

alpha r×c matrix, or r×1 vector, or 1×c vector, or scalar, shape argument
for gamma distribution.

state scalar, or 3×1 vector, or 4×1 vector.
Scalar case:
state = starting seed value only. System default values are used for
the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively. These may
be changed with rndcon and rndmult.
If state = -1, GAUSS computes the starting seed based on the
system clock.
3×1 vector case:

[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant
[3] the additive constant

GAUSS L R 28-753

rndLCgam

4×1 vector case:
state = the state vector returned from a previous call to one of the
rndLC random number generators.

OUTPUT x r×c matrix, gamma distributed random numbers.

newstate 4×1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

REMARKS The properties of the pseudo-random numbers in x are:

E(x) = alpha,Var(x) = alpha

x > 0, alpha > 0

To generate gamma(alpha,theta) pseudo-random numbers where theta is a
scale parameter, multiply the result of rndLCgam by theta.

Thus

z = theta * rndgam(1,1,alpha);

has the properties

E(z) = alpha ∗ theta,Var(z) = alpha ∗ theta2

z > 0, alpha > 0, theta > 0

r and c will be truncated to integers if necessary.

28-754 GAUSS L R

r

rndLCi

SOURCE randlc.src

TECHNICAL
NOTES

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr.,
and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147.
Each seed is generated from the preceding seed using the formula

new seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is
the additive constant.

rndLCi

PURPOSE Returns a matrix of random integers, 0 <= y < 232, and the state of the random
number generator.

FORMAT { y,newstate } = rndLCi(r,c,state);

INPUT r scalar, row dimension.

c scalar, column dimension.

state scalar, or 3×1 vector, or 4×1 vector.
Scalar case:
state = starting seed value only. System default values are used for
the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively. These may
be changed with rndcon and rndmult.
If state<0, GAUSS computes the starting seed based on the system
clock.
3×1 vector case:
[1] the starting seed, uses the system clock if < 0
[2] the multiplicative constant
[3] the additive constant

GAUSS L R 28-755

rndLCi

4×1 vector case:
state = the state vector returned from a previous call to one of the
rndLC random number generators.

OUTPUT y r×c matrix of random integers between 0 and 232 - 1, inclusive.

newstate 4×1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

REMARKS r and c will be truncated to integers if necessary.

Each seed is generated from the preceding seed, using the formula

new seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is
the additive constant. The new seeds are the values returned.

EXAMPLE state = 13;

n = 2000000000;

k = 1000000;

c = 0;

min = 2ˆ32+1;

max = -1;

do while c < n;

{ y,state } = rndLCi(k,1,state);

min = minc(min | minc(y));

max = maxc(max | maxc(y));

c = c + k;

endo;

print "min " min;

print "max " max;

28-756 GAUSS L R

r

rndLCn

SEE ALSO rndLCn, rndLCu, rndcon, rndmult

rndLCn

PURPOSE Returns a matrix of standard normal (pseudo) random variables and the state of
the random number generator.

FORMAT { y,newstate } = rndLCn(r,c,state);

INPUT r scalar, row dimension.

c scalar, column dimension.

state scalar, or 3×1 vector, or 4×1 vector.
Scalar case:
state = starting seed value only. System default values are used for
the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively. These may
be changed with rndcon and rndmult.
If state<0, GAUSS computes the starting seed based on the system
clock.
3×1 vector case:
[1] the starting seed, uses the system clock if < 0
[2] the multiplicative constant
[3] the additive constant

4×1 vector case:
state = the state vector returned from a previous call to one of the
rndLC random number generators.

OUTPUT y r×c matrix of standard normal random numbers.

newstate 4×1 vector:

[1] the updated seed
[2] the multiplicative constant

GAUSS L R 28-757

rndLCnb

[3] the additive constant
[4] the original initialization seed

REMARKS r and c will be truncated to integers if necessary.

EXAMPLE state = 13;

n = 2000000000;

k = 1000000;

c = 0;

submean = {};

do while c < n;

{ y,state } = rndLCn(k,1,state);

submean = submean | meanc(y);

c = c + k;

endo;

mean = meanc(submean);

print mean;

SEE ALSO rndLCu, rndLCi, rndcon, rndmult

TECHNICAL
NOTES

The normal random number generator is based on the uniform random number
generator, using the fast acceptance-rejection algorithm proposed by
Kinderman, A.J. and J.G. Ramage, “Computer Generation of Normal Random
Numbers,” Journal of the American Statistical Association, December 1976,
Volume 71, Number 356, pp. 893-896. This algorithm calls the linear
congruential uniform random number generator multiple times for each normal
random number generated. See rndLCu for a description of the uniform random
number generator algorithm.

rndLCnb

PURPOSE Computes negative binomial pseudo-random numbers.

28-758 GAUSS L R

r

rndLCnb

FORMAT { x,newstate } = rndLCnb(r,c,k,p,state);

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

k r×c matrix, or r×1 vector, or 1×c vector, or scalar, “event” argument
for negative binomial distribution.

p r×c matrix, or r×1 vector, or 1×c vector, or scalar, “probability”
argument for negative binomial distribution.

state scalar, or 3×1 vector, or 4×1 vector.

Scalar case:
state = starting seed value only. System default values are used for
the additive and multiplicative constants.

The defaults are 1013904223, and 1664525, respectively. These may
be changed with rndcon and rndmult.

If state = -1, GAUSS computes the starting seed based on the
system clock.

3×1 vector case:

[1] the starting seed, uses the system clock if -1

[2] the multiplicative constant

[3] the additive constant

4×1 vector case:
state = the state vector returned from a previous call to one of the
rndLC random number generators.

OUTPUT x r×c matrix, negative binomial distributed random numbers.

newstate 4×1 vector:

[1] the updated seed

[2] the multiplicative constant

[3] the additive constant

[4] the original initialization seed

GAUSS L R 28-759

rndLCp

REMARKS The properties of the pseudo-random numbers in x are:

E(x) =
k ∗ p

(1 − p)
,Var(x) =

k ∗ p
(1 − p)2

x = 0, 1, . . . , k > 0, 0 < p < 1

r and c will be truncated to integers if necessary.

SOURCE randlc.src

TECHNICAL
NOTES

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr.,
and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147.
Each seed is generated from the preceding seed using the formula

new seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is
the additive constant.

rndLCp

PURPOSE Computes Poisson pseudo-random numbers.

FORMAT { x,newstate } = rndLCp(r,c,lambda,state);

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

lambda r×c matrix, or r×1 vector, or 1×c vector, or scalar, shape argument
for Poisson distribution.

28-760 GAUSS L R

r

rndLCp

state scalar, or 3×1 vector, or 4×1 vector.
Scalar case:
state = starting seed value only. System default values are used for
the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively. These may
be changed with rndcon and rndmult.
If state = -1, GAUSS computes the starting seed based on the
system clock.
3×1 vector case:
[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant
[3] the additive constant

4×1 vector case:
state = the state vector returned from a previous call to one of the
rndLC random number generators.

OUTPUT x r×c matrix, Poisson distributed random numbers.

newstate 4×1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

REMARKS The properties of the pseudo-random numbers in x are:

E(x) = lambda,Var(x) = lambda

x = 0, 1, . . . , lambda > 0

r and c will be truncated to integers if necessary.

SOURCE randlc.src

GAUSS L R 28-761

rndLCu

TECHNICAL
NOTES

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr.,
and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147.
Each seed is generated from the preceding seed using the formula

new seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is
the additive constant.

rndLCu

PURPOSE Returns a matrix of uniform (pseudo) random variables and the state of the
random number generator.

FORMAT { y,newstate } = rndLCu(r,c,state);

INPUT r scalar, row dimension.

c scalar, column dimension.

state scalar, or 3×1 vector, or 4×1 vector.
Scalar case:
state = starting seed value only. System default values are used for
the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively. These may
be changed with rndcon and rndmult.
If state<0, GAUSS computes the starting seed based on the system
clock.
3×1 vector case:

[1] the starting seed, uses the system clock if < 0
[2] the multiplicative constant
[3] the additive constant

4×1 vector case:

28-762 GAUSS L R

r

rndLCu

state = the state vector returned from a previous call to one of the
rndLC random number generators.

OUTPUT y r×c matrix of uniform random numbers, 0<=y<1.

newstate 4×1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

REMARKS r and c will be truncated to integers if necessary.

Each seed is generated from the preceding seed, using the formula

new seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is
the additive constant. A number between 0 and 1 is created by dividing
new seed by 232.

EXAMPLE state = 13;

n = 2000000000;

k = 1000000;

c = 0;

submean = {};

do while c < n;

{ y,state } = rndLCu(k,1,state);

submean = submean | meanc(y);

c = c + k;

endo;

mean = meanc(submean);

print 0.5-mean;

SEE ALSO rndLCn, rndLCi, rndcon, rndmult

GAUSS L R 28-763

rndLCvm

TECHNICAL
NOTES

This function uses a linear congruential method, discussed in Kennedy, W. J. Jr.,
and J. E. Gentle, Statistical Computing, Marcel Dekker, Inc., 1980, pp. 136-147.

rndLCvm

PURPOSE Computes von Mises pseudo-random numbers.

FORMAT { x,newstate } = rndLCvm(r,c,m,k,state);

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

m r×c matrix, or r×1 vector, or 1×c vector, or scalar, means for vm
distribution.

k r×c matrix, or r×1 vector, or 1×c vector, or scalar, shape argument
for vm distribution.

state scalar, or 3×1 vector, or 4×1 vector.
Scalar case:
state = starting seed value only. System default values are used for
the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively. These may
be changed with rndcon and rndmult.
If state = -1, GAUSS computes the starting seed based on the
system clock.
3×1 vector case:

[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant
[3] the additive constant

4×1 vector case:
state = the state vector returned from a previous call to one of the
rndLC random number generators.

28-764 GAUSS L R

r

rndn

OUTPUT x r×c matrix, von Mises distributed random numbers.

newstate 4×1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

REMARKS r and c will be truncated to integers if necessary.

SOURCE randlc.src

TECHNICAL
NOTES

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr.,
and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147.
Each seed is generated from the preceding seed using the formula

new seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is
the additive constant.

rndn

PURPOSE Creates a matrix of standard Normal (pseudo) random numbers.

FORMAT y = rndn(r,c);

INPUT r scalar, row dimension.

c scalar, column dimension.

OUTPUT y r×c matrix of Normal random numbers having a mean of 0 and
standard deviation of 1.

GAUSS L R 28-765

rndnb

REMARKS rndn is a legacy function and is not thread-safe, nor can it be made thread-safe.

r and c will be truncated to integers if necessary.

The Normal random number generator is based upon the uniform random
number generator. To reseed them both, use the rndseed statement. The other
parameters of the uniform generator can be changed using rndcon, rndmod,
and rndmult.

EXAMPLE x = rndn(8100,1);

m = meanc(x);

s = stdc(x);

m = 0.002810

s = 0.997087

In this example, a sample of 8100 Normal random numbers is drawn, and the
mean and standard deviation are computed for the sample.

SEE ALSO rndu, rndcon

TECHNICAL
NOTES

This function uses the fast acceptance-rejection algorithm proposed by
Kinderman, A. J., and J. G. Ramage. “Computer Generation of Normal
Random Numbers.” Journal of the American Statistical Association, Vol. 71
No. 356, Dec. 1976, 893-96. It employs the error correction from Tirler et al.
(2004), “An error in the Kinderman-Ramage method and how to fix it,”
Computational and Data Analysis, Vol. 47, 433-40.

rndnb

PURPOSE Computes pseudo-random numbers with negative binomial distribution.

28-766 GAUSS L R

r

rndp

FORMAT x = rndnb(r,c,k,p);

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

k M×N matrix, E×E conformable with r×c resulting matrix, “event”
parameters for negative binomial distribution.

p K×L matrix, E×E conformable with r×c resulting matrix,
“probability” parameters for negative binomial distribution.

OUTPUT x r×c matrix, negative binomial distributed pseudo-random numbers.

REMARKS The properties of the pseudo-random numbers in x are:

E(x) = k ∗ p/(1 − p)

Var(x) = k ∗ p/(1 − p)2

x = 0, 1, 2, · · · , k

k > 0

p > 0

p < 1

SOURCE random.src

rndp

PURPOSE Computes pseudo-random numbers with Poisson distribution.

FORMAT x = rndp(r,c,lambda);

INPUT r scalar, number of rows of resulting matrix.

GAUSS L R 28-767

rndu

c scalar, number of columns of resulting matrix.

lambda M×N matrix, E×E conformable with r×c resulting matrix, shape
parameters for Poisson distribution.

OUTPUT x r×c matrix, Poisson distributed pseudo-random numbers.

REMARKS The properties of the pseudo-random numbers in x are:

E(x) = lambda

Var(x) = lambda

x = 0, 1, 2, . . .

lambda > 0

SOURCE random.src

rndu

PURPOSE Creates a matrix of uniform (pseudo) random variables.

FORMAT y = rndu(r,c);

INPUT r scalar, row dimension.

c scalar, column dimension.

OUTPUT y r×c matrix of uniform random variables between 0 and 1.

REMARKS rndn is a legacy function and is not thread-safe, nor can it be made thread-safe.

r and c will be truncated to integers if necessary.

28-768 GAUSS L R

r

rndvm

This generator is automatically seeded using the clock when GAUSS is first
started. However, that can be overridden using the rndseed statement.

The seed is automatically updated as a random number is generated (see above
under rndcon). Thus, if GAUSS is allowed to run for a long time, and if large
numbers of random numbers are generated, there is a possibility of recycling.
This is a 32-bit generator, though, so the range is sufficient for most
applications.

EXAMPLE x = rndu(8100,1);

y = meanc(x);

z = stdc(x);

y = 0.500205

z = 0.289197

In this example, a sample of 8100 uniform random numbers is generated, and
the mean and standard deviation are computed for the sample.

SEE ALSO rndn, rndcon, rndmod, rndmult, rndseed

TECHNICAL
NOTES

This function uses a multiplicative-congruential method. This method is
discussed in Kennedy, W.J., Jr., and J.E. Gentle. Statistical Computing. Marcel
Dekker, Inc., NY, 1980, 136-147.

rndvm

PURPOSE Computes von Mises pseudo-random numbers.

FORMAT x = rndvm(r,c,m,k);

GAUSS L R 28-769

rotater

INPUT r scalar, number of rows of resulting matrix.

c scalar, number of columns of resulting matrix.

m N×K matrix, E×E conformable with r×c, means for von Mises
distribution.

k L×M matrix, E×E conformable with r×c, shape argument for von
Mises distribution.

OUTPUT x r×c matrix, von Mises distributed random numbers.

SOURCE random.src

rotater

PURPOSE Rotates the rows of a matrix.

FORMAT y = rotater(x,r);

INPUT x N×K matrix to be rotated.

r N×1 or 1×1 matrix specifying the amount of rotation.

OUTPUT y N×K rotated matrix.

REMARKS The rotation is performed horizontally within each row of the matrix. A positive
rotation value will cause the elements to move to the right. A negative rotation
value will cause the elements to move to the left. In either case, the elements
that are pushed off the end of the row will wrap around to the opposite end of
the same row.

If the rotation value is greater than or equal to the number of columns in x, then
the rotation value will be calculated using (r % cols(x)).

EXAMPLE y = rotater(x,r);

28-770 GAUSS L R

r

round

If x =
1 2 3
4 5 6

and r =
1
−1

Then y =
3 1 2
5 6 4

If x =

1 2 3
4 5 6
7 8 9

10 11 12

and r =

0
1
2
3

Then y =

1 2 3
6 4 5
8 9 7

10 11 12

SEE ALSO shiftr

round

PURPOSE Round to the nearest integer.

FORMAT y = round(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array containing the rounded
elements of x.

EXAMPLE let x = { 77.68 -14.10,

4.73 -158.88 };

y = round(x);

y =
78.00 −14.00

5.00 −159.00

SEE ALSO trunc, floor, ceil

GAUSS L R 28-771

rowsf

rows

PURPOSE Returns the number of rows in a matrix.

FORMAT y = rows(x);

INPUT x N×K matrix or sparse matrix.

OUTPUT y scalar, number of rows in the specified matrix.

REMARKS If x is an empty matrix, rows(x) and cols(x) return 0.

EXAMPLE x = ones(3,5);

y = rows(x);

x =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

y = 3

SEE ALSO cols, show

rowsf

PURPOSE Returns the number of rows in a GAUSS data set (.dat) file or GAUSS matrix
(.fmt) file.

FORMAT y = rowsf(f);

28-772 GAUSS L R

r

rref

INPUT f file handle of an open file.

OUTPUT y scalar, number of rows in the specified file.

EXAMPLE open fp = myfile;

r = rowsf(fp);

c = colsf(fp);

SEE ALSO colsf, open, typef

rref

PURPOSE Computes the reduced row echelon form of a matrix.

FORMAT y = rref(x);

INPUT x M×N matrix.

OUTPUT y M×N matrix containing reduced row echelon form of x.

REMARKS The tolerance used for zeroing elements is computed inside the procedure using:

tol = maxc(m|n) * eps * maxc(abs(sumc(x′)));

where eps = 2.24e-16.

This procedure can be used to find the rank of a matrix. It is not as stable
numerically as the singular value decomposition (which is used in the rank
function), but it is faster for large matrices.

There is some speed advantage in having the number of rows be greater than the
number of columns, so you may want to transpose if all you care about is the
rank.

GAUSS L R 28-773

run

The following code can be used to compute the rank of a matrix:

r = sumc(sumc(abs(y′)) .> tol);

where y is the output from rref, and tol is the tolerance used. This finds the
number of rows with any nonzero elements, which gives the rank of the matrix,
disregarding numeric problems.

EXAMPLE let x[3,3] = 1 2 3

4 5 6

7 8 9;

y = rref(x);

y =

1 0 −1
0 1 2
0 0 0

SOURCE rref.src

run

PURPOSE Runs a source code or compiled code program.

FORMAT run filename;

INPUT filename literal or ˆstring, name of file to run.

REMARKS The filename can be any legal file name. Filename extensions can be whatever
you want, except for the compiled file extension, .gcg. Pathnames are okay. If
the name is to be taken from a string variable, then the name of the string
variable must be preceded by the ˆ (caret) operator.

28-774 GAUSS L R

r

run

The run statement can be used both from the command line and within a
program. If used in a program, once control is given to another program through
the run statement, there is no return to the original program.

If you specify a filename without an extension, GAUSS will first look for a
compiled code program (i.e., a .gcg file) by that name, then a source code
program by that name. For example, if you enter

run dog;

GAUSS will first look for the compiled code file dog.gcg, and run that if it
finds it. If GAUSS cannot find dog.gcg, it will then look for the source code
file dog with no extension.

If a path is specified for the file, then no additional searching will be attempted
if the file is not found.

If a path is not specified, the current directory will be searched first, then each
directory listed in src_path. The first instance found is run. src_path is
defined in gauss.cfg.

run /gauss/myprog.prg; No additional search will be made if the file
is not found.

run myprog.prg; The directories listed in src_path will be
searched for myprog.prg if the file is not
found in the current directory.

Programs can also be run by typing the filename on the OS command line when
starting GAUSS.

EXAMPLE Example 1

run myprog.prg;

Example 2

GAUSS L R 28-775

satostrC

name = "myprog.prg";

run ˆname;

SEE ALSO #include

satostrC

PURPOSE Copies from one string array to another using a C language format specifier
string for each element.

FORMAT y = satostrC(sa,fmt);

INPUT sa N×M string array.

fmt 1×1, 1×M, or M×1 format specifier for each element copy.

OUTPUT y N×M formatted string array.

SOURCE strfns.src

SEE ALSO strcombine

save

PURPOSE Saves matrices, strings, or procedures to a disk file.

FORMAT save [[vflag]] [[path=path]] x, [[lpath=]]y;

INPUT vflag version flag.

-v89 not supported

28-776 GAUSS L R

s

save

-v92 supported on UNIX, Windows
-v96 supported on all platforms

See also F I/O, Chapter 17, for details on the various versions.
The default format can be specified in gauss.cfg by setting the
dat_fmt_version configuration variable. If dat_fmt_version is
not set, the default is v96.

path literal or ˆstring, a default path to use for this and subsequent
save’s.

x a symbol name, the name of the file the symbol will be saved in is
the same as this with the proper extension added for the type of the
symbol.

lpath literal or ˆstring, a local path and filename to be used for a particular
symbol. This path will override the path previously set and the
filename will override the name of the symbol being saved. The
extension cannot be overridden.

y the symbol to be saved to lpath.

REMARKS save can be used to save matrices, strings, procedures, and functions.
Procedures and functions must be compiled and resident in memory before they
can be save’d.

The following extensions will be given to files that are save’d:

matrix .fmt

string .fst

procedure .fcg

function .fcg

keyword .fcg

If the path= subcommand is used with save, the path string will be
remembered until changed in a subsequent command. This path will be used
whenever none is specified. The save path can be overridden in any particular
save by specifying an explicit path and filename.

EXAMPLE spath = "/gauss";

save path = ˆspath x,y,z;

GAUSS L R 28-777

saveall

Save x, y, and z using /gauss as the path. This path will be used for the next
save if none is specified.

svp = "/gauss/data";

save path = ˆsvp n, k, /gauss/quad1=quad;

n and k will be saved using /gauss/data as the save path, quad will be saved
in /gauss with the name quad1.fmt. On platforms that use the backslash as
the path separator, the double backslash is required inside double quotes to
produce a backslash because it is the escape character in quoted strings. It is not
required when specifying literals.

save path=/procs;

Change save path to /procs.

save path = /miscdata;

save /data/mydata1 = x, y, hisdata = z;

In the above program:

x would be saved in /data/mydata1.fmt
y would be saved in /miscdata/y.fmt
z would be saved in /miscdata/hisdata.fmt

SEE ALSO datasave, load, saveall, saved

saveall

PURPOSE Saves the current state of the machine to a compiled file. All procedures, global

28-778 GAUSS L R

s

saved

matrices and strings will be saved.

FORMAT saveall fname;

INPUT fname literal or ˆstring, the path and filename of the compiled file to be
created.

REMARKS The file extension will be .gcg.

A file will be created containing all your matrices, strings, and procedures. No
main code segment will be saved. This just means it will be a .gcg file with no
main program code (see compile). The rest of the contents of memory will be
saved, including all global matrices, strings, functions and procedures. Local
variables are not saved. This can be used inside a program to take a snapshot of
the state of your global variables and procedures. To reload the compiled image,
use run or use.

library pgraph;

external proc xy,logx,logy,loglog,hist;

saveall pgraph;

This would create a file called pgraph.gcg, containing all the procedures,
strings and matrices needed to run Publication Quality Graphics programs.
Other programs could be compiled very quickly with the following statement at
the top of each:

use pgraph;

SEE ALSO compile, run, use

saved

GAUSS L R 28-779

savestruct

PURPOSE Writes a matrix in memory to a GAUSS data set on disk.

FORMAT y = saved(x,dataset,vnames);

INPUT x N×K matrix to save in .dat file.

dataset string, name of data set.

vnames string or K×1 character vector, names for the columns of the data set.

OUTPUT y scalar, 1 if successful, otherwise 0.

REMARKS If dataset is null or 0, the data set name will be temp.dat.

If vnames is a null or 0, the variable names will begin with “X” and be
numbered 1-K.

If vnames is a string or has fewer elements than x has columns, it will be
expanded as explained under create.

The output data type is double precision.

EXAMPLE x = rndn(100,3);

dataset = "mydata";

vnames = { height, weight, age };

if not saved(x,dataset,vnames);

errorlog "Write error";

end;

endif;

SOURCE saveload.src

SEE ALSO loadd, writer, create

28-780 GAUSS L R

s

savewind

savestruct

PURPOSE Saves a matrix of structures to a file on the disk.

FORMAT retcode = saveStruct(instance,file name);

INPUT instance M×N matrix, instances of a structure.
file name string, name of file on disk to contain matrix of structures.

OUTPUT retcode scalar, 0 if successful, otherwise 1.

REMARKS The file on the disk will be given a .fsr extension

EXAMPLE #include ds.sdf

struct DS p0;

p0 = reshape(dsCreate,2,3);

retc = saveStruct(p2,"p2");

savewind

PURPOSE Save the current graphic panel configuration to a file.

LIBRARY pgraph

FORMAT err = savewind(filename);

INPUT filename string, name of file.

OUTPUT err scalar, 0 if successful, 1 if graphic panel matrix is invalid. Note that
the file is written in either case.

GAUSS L R 28-781

scale

REMARKS See the discussion on using graphics panels in G P, Section 21.3.

SOURCE pwindow.src

SEE ALSO loadwind

scale

PURPOSE Fixes the scaling for subsequent graphs. The axes endpoints and increments are
computed as a best guess based on the data passed to it.

LIBRARY pgraph

FORMAT scale(x,y);

INPUT x matrix, the X axis data.

y matrix, the Y axis data.

REMARKS x and y must each have at least 2 elements. Only the minimum and maximum
values are necessary.

This routine fixes the scaling for all subsequent graphs until graphset is called.
This also clears xtics and ytics whenever it is called.

If either of the arguments is a scalar missing, the main graphics function will set
the scaling for that axis using the actual data.

If an argument has 2 elements, the first will be used for the minimum and the
last will be used for the maximum.

If an argument has 2 elements, and contains a missing value, that end of the axis
will be scaled from the data by the main graphics function.

28-782 GAUSS L R

s

scale3d

If you want direct control over the axes endpoints and tick marks, use xtics or
ytics. If xtics or ytics have been called after scale, they will override
scale.

SOURCE pscale.src

SEE ALSO xtics, ytics, ztics, scale3d

scale3d

PURPOSE Fixes the scaling for subsequent graphs. The axes endpoints and increments are
computed as a best guess based on the data passed to it.

LIBRARY pgraph

FORMAT scale3d(x,y,z);

INPUT x matrix, the X axis data.

y matrix, the Y axis data.

z matrix, the Z axis data.

REMARKS x, y and z must each have at least 2 elements. Only the minimum and maximum
values are necessary.

This routine fixes the scaling for all subsequent graphs until graphset is called.
This also clears xtics, ytics and ztics whenever it is called.

If any of the arguments is a scalar missing, the main graphics function will set
the scaling for that axis using the actual data.

If an argument has 2 elements, the first will be used for the minimum and the
last will be used for the maximum.

GAUSS L R 28-783

scalerr

If an argument has 2 elements, and contains a missing value, that end of the axis
will be scaled from the data by the main graphics function.

If you want direct control over the axes endpoints and tick marks, use xtics,
ytics, or ztics. If one of these functions have been called, they will override
scale3d.

SOURCE pscale.src

SEE ALSO scale, xtics, ytics, ztics

scalerr

PURPOSE Tests for a scalar error code.

FORMAT y = scalerr(c);

INPUT c N×K matrix or sparse matrix or N-dimensional array, generally the
return argument of a function or procedure call.

OUTPUT y scalar or [N-2]-dimensional array, 0 if the argument is not a scalar
error code, or the value of the error code as an integer if the
argument is an error code.

REMARKS Error codes in GAUSS are NaN’s (Not A Number). These are not just scalar
integer values. They are special floating point encodings that the math chip
recognizes as not representing a valid number. See also error.

scalerr can be used to test for either those error codes that are predefined in
GAUSS or an error code that the user has defined using error.

If c is an N-dimensional array, y will be an [N-2]-dimensional array, where each
element corresponds to a 2-dimensional array described by the last two
dimensions of c. For each 2-dimensional array in c that does not contain a scalar

28-784 GAUSS L R

s

scalerr

error code, its corresponding element in y will be set to zero. For each
2-dimensional array in c that does contain a scalar error code, its corresponding
element in y will be set to the value of that error code as an integer. In other
words, if c is a 5×5×10×10 array, y will be a 5×5 array, in which each element
corresponds to a 10×10 array in c and contains either a zero or the integer value
of a scalar error code.

If c is an empty matrix, scalerr will return 65535.

Certain functions will either return an error code or terminate a program with an
error message, depending on the trap state. The trap command is used to set
the trap state. The error code that will be returned will appear to most
commands as a missing value code, but the scalerr function can distinguish
between missing values and error codes and will return the value of the error
code.

Following are some of the functions that are affected by the trap state:

trap 1 trap 0

function error code error message
chol 10 Matrix not positive definite

invpd 20 Matrix not positive definite

solpd 30 Matrix not positive definite

/ 40 Matrix not positive definite

(second argument not square)
41 Matrix singular

(second argument is square)
inv 50 Matrix singular

EXAMPLE trap 1;

cm = invpd(x);

trap 0;

if scalerr(cm);

cm = inv(x);

endif;

In this example invpd will return a scalar error code if the matrix x is not
positive definite. If scalerr returns with a nonzero value, the program will use

GAUSS L R 28-785

scalinfnanmiss

the inv function, which is slower, to compute the inverse. Since the trap state
has been turned off, if inv fails, the program will terminate with a Matrix
singular error message.

SEE ALSO error, trap, trapchk

scalinfnanmiss

PURPOSE Returns true if the argument is a scalar infinity, NaN, or missing value.

FORMAT y = scalinfnanmiss(x);

INPUT x N×K matrix.

OUTPUT y scalar, 1 if x is a scalar, infinity, NaN, or missing value, else 0.

SEE ALSO isinfnanmiss, ismiss, scalmiss

scalmiss

PURPOSE Tests to see if its argument is a scalar missing value.

FORMAT y = scalmiss(x);

INPUT x N×K matrix.

OUTPUT y scalar, 1 if argument is a scalar missing value, 0 if not.

REMARKS scalmiss first tests to see if the argument is a scalar. If it is not scalar,
scalmiss returns a 0 without testing any of the elements.

28-786 GAUSS L R

s

schtoc

The ismiss function will test each element of the matrix and return 1 if it
encounters any missing values. scalmiss will execute much faster if the
argument is a large matrix, since it will not test each element of the matrix but
will simply return a 0.

An element of x is considered to be a missing if and only if it contains a missing
value in the real part. Thus, scalmiss and ismiss would return a 1 for
complex x = . + 1i, and a 0 for x = 1 + .i.

EXAMPLE clear s;

do until eof(fp);

y = readr(fp,nr);

y = packr(y);

if scalmiss(y);

continue;

endif;

s = s+sumc(y);

endo;

In this example the packr function will return a scalar missing if every row of
its argument contains missing values, otherwise it will return a matrix that
contains no missing values. scalmiss is used here to test for a scalar missing
returned from packr. If the test returns true, then the sum step will be skipped
for that iteration of the read loop because there were no rows left after the rows
containing missings were packed out.

schtoc

PURPOSE Reduces any 2×2 blocks on the diagional of the real Schur matrix returned from
schur. The transformation matrix is also updated.

FORMAT { schc,transc } = schtoc(sch,trans);

INPUT sch real N×N matrix in Real Schur form, i.e., upper triangular except for

GAUSS L R 28-787

schur

possibly 2×2 blocks on the diagonal.

trans real N×N matrix, the associated transformation matrix.

OUTPUT schc N×N matrix, possibly complex, strictly upper triangular. The
diagonal entries are the eigenvalues.

transc N×N matrix, possibly complex, the associated transformation
matrix.

REMARKS Other than checking that the inputs are strictly real matrices, no other checks are
made. If the input matrix sch is already upper triangular, it is not changed.
Small off-diagonal elements are considered to be zero. See the source code for
the test used.

EXAMPLE { schc, transc } = schtoc(schur(a));

This example calculates the complex Schur form for a real matrix a.

SOURCE schtoc.src

SEE ALSO schur

schur

PURPOSE Computes the Schur form of a square matrix.

FORMAT { s,z } = schur(x)

INPUT x K×K matrix.

OUTPUT s K×K matrix, Schur form.

z K×K matrix, transformation matrix.

28-788 GAUSS L R

s

schur

REMARKS schur computes the real Schur form of a square matrix. The real Schur form is
an upper quasi-triangular matrix, that is, it is block triangular where the blocks
are 2×2 submatrices which correspond to complex eigenvalues of x. If x has no
complex eigenvalues, s will be strictly upper triangular. To convert s to the
complex Schur form, use the Run-Time Library function schtoc.

x is first reduced to upper Hessenberg form using orthogonal similiarity
transformations, then reduced to Schur form through a sequence of QR
decompositions.

schur uses the ORTRAN, ORTHES and HQR2 functions from EISPACK.

z is an orthogonal matrix that transforms x into s and vice versa. Thus

s = z′xz

and since z is orthogonal,

x = zsz′

EXAMPLE let x[3,3] = 1 2 3

4 5 6

7 8 9;

{ s, z } = schur(x);

s =

16.11684397 4.89897949 0.00000000
−0.00000000 −1.11684397 −0.00000000

0.00000000 0.00000000 −0.00000000

z =

0.23197069 0.88290596 0.40824829
0.52532209 0.23952042 −0.81649658
0.81867350 −0.40386512 0.40824829

GAUSS L R 28-789

screen

SEE ALSO hess

screen

PURPOSE Controls output to the screen.

FORMAT screen on;

screen off;

screen;

REMARKS When this is on, the results of all print statements will be directed to the
window. When this is off, print statements will not be sent to the window. This
is independent of the statement output on, which will cause the results of all
print statements to be routed to the current auxiliary output file.

If you are sending a lot of output to the auxiliary output file on a disk drive,
turning the window off will speed things up.

The end statement will automatically perform output off and screen on.

screen with no arguments will print “Screen is on” or “Screen is off”
on the console.

EXAMPLE output file = mydata.asc reset;

screen off;

format /m1/rz 1,8;

open fp = mydata;

do until eof(fp);

print readr(fp,200);;

endo;

fp = close(fp);

end;

The program above will write the contents of the GAUSS file mydata.dat into

28-790 GAUSS L R

s

searchsourcepath

an ASCII file called mydata.asc. If mydata.asc already exists, it will be
overwritten.

Turning the window off will speed up execution. The end statement above will
automatically perform output off and screen on.

SEE ALSO output, end, new

searchsourcepath

PURPOSE Searches the source path and (if specified) the src subdirectory of the GAUSS
installation directory for a specified file.

FORMAT fpath = searchsourcepath(fname,srcdir);

INPUT fname string, name of file to search for.

srcdir scalar, one of the following:

0 do not search in the src subdirectory of the GAUSS installation
directory.

1 search the src subdirectory first.
2 search the src subdirectory last.

OUTPUT fpath string, the path of fname, or null string if fname is not found.

REMARKS The source path is set by the src_path configuration variable in your GAUSS
configuration file, gauss.cfg.

seekr

PURPOSE Moves the pointer in a .dat or .fmt file to a particular row.

GAUSS L R 28-791

select (dataloop)

FORMAT y = seekr(fh,r);

INPUT fh scalar, file handle of an open file.
r scalar, the row number to which the pointer is to be moved.

OUTPUT y scalar, the row number to which the pointer has been moved.

REMARKS If r = -1, the current row number will be returned.

If r = 0, the pointer will be moved to the end of the file, just past the end of the
last row.

rowsf returns the number of rows in a file.

seekr(fh,0) = = rowsf(fh) + 1;

Do NOT try to seek beyond the end of a file.

SEE ALSO open, readr, rowsf

select (dataloop)

PURPOSE Selects specific rows (observations) in a data loop based on a logical expression.

FORMAT select logical expression;

REMARKS Selects only those rows for which logical expression is TRUE. Any variables
referenced must already exist, either as elements of the source data set, as
extern’s, or as the result of a previous make, vector, or code statement.

EXAMPLE select age > 40 AND sex $=\,= ’MALE’;

SEE ALSO delete (dataloop)

28-792 GAUSS L R

s

selif

selif

PURPOSE Selects rows from a matrix. Those selected are the rows for which there is a 1 in
the corresponding row of e.

FORMAT y = selif(x,e);

INPUT x N×K matrix or string array.

e N×1 vector of 1’s and 0’s.

OUTPUT y M×K matrix or string array consisting of the rows of x for which
there is a 1 in the corresponding row of e.

REMARKS The argument e will usually be generated by a logical expression using “dot”
operators.

y will be a scalar missing if no rows are selected.

EXAMPLE y = selif(x,x[.,2] .gt 100);

This example selects all rows of x in which the second column is greater than
100.

let x[3,3] = 0 10 20

30 40 50

60 70 80;

e = (x[.,1] .gt 0) .and (x[.,3] .lt 100);

y = selif(x,e);

GAUSS L R 28-793

seqa, seqm

The resulting matrix y is:

30 40 50
60 70 80

All rows for which the element in column 1 is greater than 0 and the element in
column 3 is less than 100 are placed into the matrix y.

SEE ALSO delif, scalmiss

seqa, seqm

PURPOSE seqa creates an additive sequence. seqm creates a multiplicative sequence.

FORMAT y = seqa(start,inc,n);
y = seqm(start,inc,n);

INPUT start scalar specifying the first element.
inc scalar specifying increment.
n scalar specifying the number of elements in the sequence.

OUTPUT y n×1 vector containing the specified sequence.

REMARKS For seqa, y will contain a first element equal to start, the second equal to
start+inc, and the last equal to start+inc*(n-1).

For instance,

seqa(1,1,10);

will create a column vector containing the numbers 1, 2, . . . 10.

28-794 GAUSS L R

s

setarray

For seqm, y will contain a first element equal to start, the second equal to
start*inc, and the last equal to start*incn−1.

For instance,

seqm(10,10,10);

will create a column vector containing the numbers 10, 100, . . . 1010.

EXAMPLE a = seqa(2,2,10)’;

m = seqm(2,2,10)’;

a = 2 4 6 8 10 12 14 16 18 20

m = 2 4 8 16 32 64 128 256 512 1024

Note that the results have been transposed in this example. Both functions
return N×1 (column) vectors.

SEE ALSO recserar, recsercp

setarray

PURPOSE Sets a contiguous subarray of an N-dimensional array.

FORMAT setarray a,loc,src;

INPUT a N-dimensional array.

GAUSS L R 28-795

setdif

loc M×1 vector of indices into the array to locate the subarray of
interest, where M is a value from 1 to N.

src [N-M]-dimensional array, matrix, or scalar.

REMARKS setarray resets the specified subarray of a in place, without making a copy of
the entire array. Therefore, it is faster than putarray.

If loc is an N×1 vector, then src must be a scalar. If loc is an [N-1]×1 vector,
then src must be a 1-dimensional array or a 1×L vector, where L is the size of
the fastest moving dimension of the array. If loc is an [N-2]×1 vector, then src
must be a K×L matrix, or a K×L 2-dimensional array, where K is the size of the
second fastest moving dimension.

Otherwise, if loc is an M×1 vector, then src must be an [N-M]-dimensional
array, whose dimensions are the same size as the corresponding dimensions of
array a.

EXAMPLE a = arrayalloc(2|3|4|5|6,0);

src = arrayinit(4|5|6,5);

loc = { 2,1 };

setarray a,loc,src;

This example sets the contiguous 4×5×6 subarray of a beginning at [2,1,1,1,1]
to the array src, in which each element is set to the specified value 5.

SEE ALSO putarray

setdif

PURPOSE Returns the unique elements in one vector that are not present in a second
vector.

FORMAT y = setdif(v1,v2,typ);

28-796 GAUSS L R

s

setdifsa

INPUT v1 N×1 vector.
v2 M×1 vector.
typ scalar, type of data.

0 character, case sensitive.
1 numeric.
2 character, case insensitive.

OUTPUT y L×1 vector containing all unique values that are in v1 and are not in
v2, sorted in ascending order.

REMARKS Place smaller vector first for fastest operation.

When there are a lot of duplicates, it is faster to remove them first with unique
before calling this function.

EXAMPLE let v1 = mary jane linda john;

let v2 = mary sally;

typ = 0;

y = setdif(v1,v2,typ);

y =

JANE
JOHN

LINDA

SOURCE setdif.src

SEE ALSO setdifsa

setdifsa

PURPOSE Returns the unique elements in one string vector that are not present in a second
string vector.

GAUSS L R 28-797

setvars

FORMAT sy = setdifsa(sv1,sv2);

INPUT sv1 N×1 or 1×N string vector.

sv2 M×1 or 1×M string vector.

OUTPUT sy L×1 vector containing all unique values that are in sv1 and are not in
sv2, sorted in ascending order.

REMARKS Place smaller vector first for fastest operation.

When there are a lot of duplicates it is faster to remove them first with unique
before calling this function.

EXAMPLE string sv1 = { "mary", "jane", "linda", "john" };

string sv2 = { "mary", "sally" };

sy = setdifsa(sv1,sv2);

sy =jane

john

linda

SOURCE setdif.src

SEE ALSO setdif

setvars

PURPOSE Reads the variable names from a data set header and creates global matrices
with the same names.

FORMAT nvec = setvars(dataset);

INPUT dataset string, the name of the GAUSS data set. Do not use a file extension.

28-798 GAUSS L R

s

setvwrmode

OUTPUT nvec N×1 character vector, containing the variable names defined in the
data set.

REMARKS setvars is designed to be used interactively.

EXAMPLE nvec = setvars("freq");

SOURCE vars.src

SEE ALSO makevars

setvwrmode

PURPOSE Sets the graphics viewer mode.

LIBRARY pgraph

FORMAT oldmode = setvwrmode(mode);

INPUT mode string, new mode or null string.

one Use only one viewer.
many Use a new viewer for each graph.

OUTPUT oldmode string, previous mode.

REMARKS If mode is a null string, the current mode will be returned with no changes made.

If “one” is set, the viewer executable will be vwr.exe.

EXAMPLE oldmode = setvwrmode("one");

call setvwrmode(oldmode);

SOURCE pgraph.src

GAUSS L R 28-799

setwind

SEE ALSO pqgwin

setwind

PURPOSE Sets the current graphic panel to a previously created graphic panel number.

LIBRARY pgraph

FORMAT setwind(n);

INPUT n scalar, graphic panel number.

REMARKS This function selects the specified graphic panel to be the current graphic panel.
This is the graphic panel in which the next graph will be drawn.

See the discussion on using graphic panels in G P, Section 21.3.

SOURCE pwindow.src

SEE ALSO begwind, endwind, getwind, nextwind, makewind, window

shell

PURPOSE Executes an operating system command.

FORMAT shell [[s]];

INPUT s literal or ˆstring, the command to be executed.

REMARKS shell lets you run shell commands and programs from inside GAUSS. If a
command is specified, it is executed; when it finishes, you automatically return

28-800 GAUSS L R

s

shiftr

to GAUSS. If no command is specified, the shell is executed and control passes
to it, so you can issue commands interactively. You have to type exit to get
back to GAUSS in that case.

If you specify a command in a string variable, precede it with the ˆ (caret).

EXAMPLE comstr = "ls ./src";

shell ˆcomstr;

This lists the contents of the ./src subdirectory, then returns to GAUSS.

shell cmp n1.fmt n1.fmt.old;

This compares the matrix file n1.fmt to an older version of itself, n1.fmt.old,
to see if it has changed. When cmp finishes, control is returned to GAUSS.

shell;

This executes an interactive shell. The OS prompt will appear and OS
commands or other programs can be executed. To return to GAUSS, type exit.

SEE ALSO exec,

shiftr

PURPOSE Shifts the rows of a matrix.

FORMAT y = shiftr(x,s,f);

INPUT x N×K matrix to be shifted.

s scalar or N×1 vector specifying the amount of shift.

GAUSS L R 28-801

show

f scalar or N×1 vector specifying the value to fill in.

OUTPUT y N×K shifted matrix.

REMARKS The shift is performed within each row of the matrix, horizontally. If the shift
value is positive, the elements in the row will be moved to the right. A negative
shift value causes the elements to be moved to the left. The elements that are
pushed off the end of the row are lost, and the fill value will be used for the new
elements on the other end.

EXAMPLE y = shiftr(x,s,f);

If x =
1 2
3 4

and s =
1
−1

and f =
99

999

Then y =
99 1
4 999

If x =
1 2 3
4 5 6
7 8 9

and s =
0
1
2

and f = 0

Then y =
1 2 3
0 4 5
0 0 7

SEE ALSO rotater

show

28-802 GAUSS L R

s

show

PURPOSE Displays the global symbol table.

FORMAT show [[-flags]] [[symbol]];

INPUT flags flags to specify the symbol type that is shown.

k keywords
p procedures
f fn functions
m matrices
s strings
g show only symbols with global references
l show only symbols with all local references

symbol the name of the symbol to be shown. If the last character is an
asterisk (*), all symbols beginning with the supplied characters will
be shown.

REMARKS If there are no arguments, the entire symbol table will be displayed.

show is directed to the auxiliary output if it is open.

Here is an example listing with an explanation of the columns. Note that show
does not display the column titles shown here:

Memory used Name Cplx Type References Info

128 bytes a MATRIX 4,4

672 bytes add KEYWORD global refs 0=1

192 bytes area FUNCTION local refs 1=1

256 bytes c C MATRIX 4,4

296 bytes p1 PROCEDURE local refs 1=1

384 bytes p2 PROCEDURE global refs 0=1

8 bytes ps1 STRUCT sdat *

16 bytes s STRING 8 char

312 bytes s1 STRUCT sdat 1,1

40 bytes sa STRING ARRAY 3,1

56 bytes sm SPARSE MATRIX 15,15

2104 bytes token PROCEDURE local refs 2=1

GAUSS L R 28-803

show

216 bytes y ARRAY 3 dims 2,3,4

672 bytes program space used

12 global symbols, 2000 maximum, 12 shown

0 active locals, 2000 maximum

1 active structure

The ‘Memory used’ column gives the amount of memory used by each item.

The ‘Name’ column gives the name of each symbol.

The ‘Cplx’ column contains a ‘C’ if the symbol is a complex matrix.

The ‘Type’ column specifies the type of the symbol. It can be ARRAY,
FUNCTION, KEYWORD, MATRIX, PROCEDURE, STRING, STRING ARRAY, or
STRUCT.

If the symbol is a procedure, keyword or function, the ‘References’ column
will show if it makes any global references. If it makes only local references,
the procedure or function can be saved to disk in an .fcg file with the save
command. If the function or procedure makes any global references, it cannot
be saved in an .fcg file.

If the symbol is a structure, the ‘References’ column will contain the structure
type. A structure pointer is indicated by a * following the structure type.

The ‘Info’ column depends on the type of the symbol. If the symbol is a
procedure or a function, it gives the number of values that the function or
procedure returns and the number of arguments that need to be passed to it
when it is called. If the symbol is a matrix, sparse matrix, string array or array
of structures, then the ‘Info’ column gives the number of rows and columns. If
the symbol is a string, then it gives the number of characters in the string. If the
symbol is an N-dimensional array, then it gives the orders of each dimension.
As follows:

28-804 GAUSS L R

s

sin

Rets=Args if procedure, keyword, or function
Row,Col if matrix, sparse matrix, string array, or structure
Length if string
OrdN,. . . ,Ord2,Ord1 if array, where N is the slowest moving

dimension of the array, and Ord is the order
(or size) of a dimension

If the symbol is an array of structures, the ‘Info’ column will display the size
of the array. A scalar structure instance is treated as a 1×1 array of structures. If
the symbol is a structure pointer, the ‘Info’ column will be blank.

The program space is the area of space reserved for all nonprocedure,
nonfunction program code. The maximum program space can be controlled by
the new command.

The maximum number of global and local symbols is controlled by the
maxglobals and maxlocals configuration variables in gauss.cfg.

EXAMPLE show -fpg eig*;

This command will show all functions and procedures that have global
references and begin with eig.

show -m;

This command will show all matrices.

SEE ALSO new, delete

sin

PURPOSE Returns the sine of its argument.

GAUSS L R 28-805

singleindex

FORMAT y = sin(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array containing the sine of x.

REMARKS For real data, x should contain angles measured in radians.

To convert degrees to radians, multiply the degrees by π
180 .

EXAMPLE let x = { 0, .5, 1, 1.5 };

y = sin(x);

y =

0.00000000
0.47942554
0.84147098
0.99749499

SEE ALSO atan, cos, sinh, pi

singleindex

PURPOSE Converts a vector of indices for an N-dimensional array to a scalar vector index.

FORMAT si = singleindex(i,o);

INPUT i N×1 vector of indices into an N-dimensional array.

o N×1 vector of orders of an N-dimensional array.

OUTPUT si scalar, index of corresponding element in 1-dimensional array or
vector.

28-806 GAUSS L R

s

sinh

REMARKS This function and its opposite, arrayindex, allow you to convert between an
N-dimensional index and its corresponding location in a 1-dimensional object
of the same size.

EXAMPLE orders = { 2,3,4 };

a = arrayalloc(orders,0);

ai = { 2,1,3 };

setarray a, ai, 49;

v = vecr(a);

vi = singleindex(ai,orders);

print "ai = " ai;

print "vi = " vi;

print "getarray(a,ai) = " getarray(a,ai);

print "v[vi] = " v[vi];

produces:

ai =

2.0000000

1.0000000

3.0000000

vi = 15.000000

getarray(a,ai) = 49.000000

v[vi] = 49.000000

This example allocates a 3-dimensional array a and sets the element
corresponding to the index vector ai to 49. It then creates a vector, v, with the
same data. The element in the array a that is indexed by ai corresponds to the
element of the vector v that is indexed by vi.

SEE ALSO arrayindex

GAUSS L R 28-807

sleep

sinh

PURPOSE Computes the hyperbolic sine.

FORMAT y = sinh(x);

INPUT x N×K matrix.

OUTPUT y N×K matrix containing the hyperbolic sines of the elements of x.

EXAMPLE let x = { -0.5, -0.25, 0, 0.25, 0.5, 1 };

x = x * pi;

y = sinh(x);

x =

−1.570796
−0.785398

0.000000
0.785398
1.570796
3.141593

y =

−2.301299
−0.868671

0.000000
0.868671
2.301299

11.548739

SOURCE trig.src

28-808 GAUSS L R

s

solpd

sleep

PURPOSE Sleeps for a specified number of seconds.

FORMAT unslept = sleep(secs);

INPUT secs scalar, number of seconds to sleep.

OUTPUT unslept scalar, number of seconds not slept.

REMARKS secs does not have to be an integer. If your system does not permit sleeping for
a fractional number of seconds, secs will be rounded to the nearest integer, with
a minimum value of 1.

If a program sleeps for the full number of secs specified, sleep returns 0;
otherwise, if the program is awakened early (e.g., by a signal), sleep returns
the amount of time not slept.

A program may sleep for longer than secs seconds, due to system scheduling.

solpd

PURPOSE Solves a set of positive definite linear equations.

FORMAT x = solpd(b,A);

INPUT b N×K matrix or M-dimensional array where the last two dimensions
are N×K.

A N×N symmetric positive definite matrix or M-dimensional array
where the N×N 2-dimensional arrays described by the last two
dimensions are symmetric and positive definite.

GAUSS L R 28-809

solpd

OUTPUT x N×K matrix or M-dimensional array where the last two dimensions
are N×K, the solutions for the system of equations, Ax = b.

REMARKS b can have more than one column. If so, the system of equations is solved for
each column, i.e., A*x[.,i] = b[.,i].

This function uses the Cholesky decomposition to solve the system directly.
Therefore it is more efficient than using inv(A)*b.

If b and A are M-dimensional arrays, the sizes of their corresponding M-2
leading dimensions must be the same. The resulting array will contain the
solutions for the system of equations given by each of the corresponding
2-dimensional arrays described by the two trailing dimensions of b and A. In
other words, for a 10×4×2 array b and a 10×4×4 array A, the resulting array x
will contain the solutions for each of the 10 corresponding 4×2 arrays contained
in b and 4×4 arrays contained in A. Therefore, A[n, ., .] ∗ x[n, ., .] = b[n, ., .], for
1 <= n <= 10.

solpd does not check to see that the matrix A is symmetric. solpd will look
only at the upper half of the matrix including the principal diagonal.

If the A matrix is not positive definite:

trap 1 return scalar error code 30.
trap 0 terminate with an error message.

One obvious use for this function is to solve for least squares coefficients. The
effect of this function is thus similar to that of the / operator.

If X is a matrix of independent variables, and Y is a vector containing the
dependent variable, then the following code will compute the least squares
coefficients of the regression of Y on X:

b = solpd(X’Y,X’X);

EXAMPLE n = 5; format /lo 16,8;

A = rndn(n,n);

28-810 GAUSS L R

s

sortc, sortcc

A = A’A;

x = rndn(n,1);

b = A*x;

x2 = solpd(b,A);

print " X solpd(b,A) Difference";

print x˜x2˜x-x2;

produces:

X solpd(b,A) Difference

0.32547881 0.32547881 -4.9960036e-16

1.5190182 1.5190182 -1.7763568e-15

0.88099266 0.88099266 1.5543122e-15

1.8192784 1.8192784 -2.2204460e-16

-0.060848175 -0.060848175 -1.4710455e-15

SEE ALSO scalerr, chol, invpd, trap

sortc, sortcc

PURPOSE Sorts a matrix of numeric or character data.

FORMAT y = sortc(x,c);
y = sortcc(x,c);

INPUT x N×K matrix.

c scalar specifying one column of x to sort on.

OUTPUT y N×K matrix equal to x and sorted on the column c.

REMARKS These functions will sort the rows of a matrix with respect to a specified

GAUSS L R 28-811

sortd

column. That is, they will sort the elements of a column and will arrange all
rows of the matrix in the same order as the sorted column.

sortc assumes that the column to sort on is numeric. sortcc assumes that the
column to sort on contains character data.

The matrix may contain both character and numeric data, but the sort column
must be all of one type. Missing values will sort as if their value is below −∞.

The sort will be in ascending order. This function uses the Quicksort algorithm.

If you need to obtain the matrix sorted in descending order, you can use:

rev(sortc(x,c))

EXAMPLE let x[3,3]= 4 7 3

1 3 2

3 4 8;

y = sortc(x,1);

x =

4 7 3
1 3 2
3 4 8

y =

1 3 2
3 4 8
4 7 3

SEE ALSO rev

sortd

PURPOSE Sorts a data file on disk with respect to a specified variable.

28-812 GAUSS L R

s

sorthc, sorthcc

FORMAT sortd(infile,outfile,keyvar,keytyp);

INPUT infile string, name of input file.

outfile string, name of output file, must be different.

keyvar string, name of key variable.

keytyp scalar, type of key variable.

1 numeric key, ascending order.
2 character key, ascending order.
-1 numeric key, descending order.
-2 character key, descending order.

REMARKS The data set infile will be sorted on the variable keyvar, and will be placed in
outfile.

If the inputs are null (“” or 0), the procedure will ask for them.

SOURCE sortd.src

SEE ALSO sortmc, sortc, sortcc, sorthc, sorthcc

sorthc, sorthcc

PURPOSE Sorts a matrix of numeric or character data, or a string array.

FORMAT y = sorthc(x,c);
y = sorthcc(x,c);

INPUT x N×K matrix or string array.

c scalar specifying one column of x to sort on.

OUTPUT y N×K matrix or string array equal to x and sorted on the column c.

GAUSS L R 28-813

sortind, sortindc

REMARKS These functions will sort the rows of a matrix or string array with respect to a
specified column. That is, they will sort the elements of a column and will
arrange all rows of the object in the same order as the sorted column.

sorthc assumes that the column to sort on is numeric. sorthcc assumes that
the column to sort on contains character data.

If x is a matrix, it may contain both character and numeric data, but the sort
column must be all of one type. Missing values will sort as if their value is
below −∞.

The sort is in ascending order. This function uses the heap sort algorithm.

If you need to obtain the matrix sorted in descending order, you can use:

rev(sorthc(x,c))

EXAMPLE let x[3,3]= 4 7 3

1 3 2

3 4 8;

y = sorthc(x,1);

x =

4 7 3
1 3 2
3 4 8

y =

1 3 2
3 4 8
4 7 3

SEE ALSO sortc, rev

28-814 GAUSS L R

s

sortind, sortindc

sortind, sortindc

PURPOSE Returns the sorted index of x.

FORMAT ind = sortind(x);
ind = sortindc(x);

INPUT x N×1 column vector.

OUTPUT ind N×1 vector representing sorted index of x.

REMARKS sortind assumes that x contains numeric data. sortindc assumes that x
contains character data.

This function can be used to sort several matrices in the same way that some
other reference matrix is sorted. To do this, create the index of the reference
matrix, then use submat to rearrange the other matrices in the same way.

EXAMPLE let x = 3 8 2 5 1 6 9

ind = sortind(x);

y = x[ind];

x =

3
8
2
5
1
6
9

GAUSS L R 28-815

sortmc

ind =

5
3
1
4
6
2
7

y =

1
2
3
5
6
8
9

sortmc

PURPOSE Sorts a matrix on multiple columns.

FORMAT y = sortmc(x,v);

INPUT x N×K matrix to be sorted.
v L×1 vector containing integers specifying the columns, in order, that

are to be sorted. If an element is negative, that column will be
interpreted as character data.

OUTPUT y N×K sorted matrix.

SOURCE sortmc.src

SEE ALSO sortd, sortc, sortcc, sorthc, sorthcc

28-816 GAUSS L R

s

sortr, sortrc

sortr, sortrc

PURPOSE Sorts rows of a matrix of numeric or character data.

FORMAT y = sortr(x,r);
y = sortrc(x,r);

INPUT x N×K matrix.

r scalar, row of x on which to sort.

OUTPUT y N×K matrix equal to x and sorted on row r.

REMARKS These functions sort the columns of a matrix with respect to a specified row.
That is, they sort the elements of a row and arrange all rows of the matrix in the
same order as the sorted column.

sortr assumes the row on which to sort is numeric. sortrc assumes that the
row on which to sort contains character data.

The matrix may contain both character and numeric data, but the sort row must
be all of one type. Missing values will sort as if their value is below −∞.

The sort will be in left to right ascending order. This function uses the
Quicksort algorithm. If you need to obtain the matrix sorted left to right in
descending order (i.e., ascending right to left), use

rev(sortr(x,r)′)′

EXAMPLE let x = { 4 7 3,

1 3 2,

3 4 8 };

y = sortr(x,1);

GAUSS L R 28-817

spBiconjGradSol

y =

3 4 7
2 1 1
8 3 3

spBiconjGradSol

PURPOSE Attempts to solve the system of linear equations Ax = b using the biconjugate
gradient method where A is a sparse matrix.

FORMAT x = spBiconjGradSol(a,b,epsilon,maxit);

INPUT a N×N, sparse matrix.

b N×1, dense vector.

epsilon Method tolerance: If epsilon is set to 0, the default tolerance is set to
1e-6.

maxit Maximum number of iterations. If maxit is set to 0, the default
setting is 300 iterations.

OUTPUT x N×1 dense vector.

EXAMPLE { 33.446 82.641 -12.710 -25.062 0.000,

0.000 -26.386 17.016 21.576 -45.273,

nz = 0.000 -42.331 -47.902 0.000 0.000,

0.000 -26.517 -22.135 -76.827 31.920,

10.364 -29.843 -20.277 0.000 65.816 };

{ 10.349,

-3.117,

b = 4.240,

0.013,

2.115 };

28-818 GAUSS L R

s

spChol

sparse matrix a;

a = densetosp(nz,0);

x = spBiconjGradSol(a,b,0,0); /* Setting the third

and fourth arguments to 0

employs the default tolerance

and maxit settings */

0.135

x = 0.055

-0.137

0.018

-0.006

10.349

-3.117

a*x = 4.240

0.013

2.115

REMARKS If convergence is not reached within the maximum number of iterations
allowed, the function will either terminate the program with an error message or
return an error code which can be tested for with the scalerr function. This
depends on the trap state as follows:

trap 1 return error code: 60

trap 0 terminate with error message: Unable to converge in allowed
number of iterations.

If matrix A is not well conditioned use the / operator to perform the solve. If the
matrix is symmetric, spConjGradSol will be approximately twice as fast as
spBiconjGradSol.

SEE ALSO spConjGradSol

GAUSS L R 28-819

spConjGradSol

spChol

PURPOSE Computes the LL′ decomposition of a sparse matrix A.

FORMAT l = spChol(a);

INPUT a N×N, symmetric, positive definite sparse matrix.

OUTPUT l N×N lower-triangular sparse matrix.

EXAMPLE sparse matrix a;

let x = { 9.53984224e+001 -5.84272701e+000 1.99970335e+001,

-5.84272701e+000 1.09765831e+002 2.52038945e+000,

1.99970335e+001 2.52038945e+000 4.71834812e+000 };

a = spChol(denseToSp(x,0));

y = spToDense(a);

9.762116 0.00000000 0.00000000

y = -0.59819806 10.459827 0.00000000

2.0473636 0.35804782 0.63123068

95.398422 -5.8427270 19.997034

y*y’ = -5.8427270 109.76583 2.5203895

19.997034 2.5203895 4.7183481

SEE ALSO spLDL, spLU

TECHNICAL
NOTES

spChol implements functions from the TAUCS library: TAUCS Version 2.2.
Copyright c©2001, 2002, 2003 by Sivan Toledo, Tel-Aviv University,
stoledo@tau.ac.il. All Rights Reserved.

28-820 GAUSS L R

s

spConjGradSol

spConjGradSol

PURPOSE Attempts to solve the system of linear equations Ax = b using the conjugate
gradient method where A is a symmetric sparse matrix.

FORMAT x = spConjGradSol(a,b,epsilon,maxit);

INPUT a N×N, symmetric sparse matrix.

b N×1, dense vector.

epsilon Method tolerance: If epsilon is set to 0, the default tolerance is set to
1e-6.

maxit Maximum number of iterations. If maxit is set to 0, the default
setting is 300 iterations.

OUTPUT x N×1 dense vector

EXAMPLE { 0 2845.607 0 0 0,

2845.607 10911.430 0 0 0,

0 0 3646.798 2736.338 -2674.440,

nz = 0 0 2736.338 7041.526 -3758.528,

0 0 -2674.440 -3758.528 7457.899 };

sparse matrix a;

a = densetosp(nz,0);

b = { 10.349,

-3.117,

4.240,

0.013,

2.115 };

x = spConjGradSol(a,b,0,0); /* Setting the third

and fourth arguments to 0

GAUSS L R 28-821

spCreate

employs the default tolerance

maxit settings */

-0.0150

0.0036

x = 0.0020

-0.0003

0.0008

10.349

-3.117

a*x = 4.240

0.013

2.115

REMARKS If convergence is not reached within the maximum number of iterations
allowed, the function will either terminate the program with an error message or
return an error code which can be tested for with the scalerr function. This
depends on the trap state as follows:

trap 1 return error code: 60

trap 0 terminate with error message: Unable to converge in allowed
number of iterations.

If matrix A is not symmetric or well conditioned use the / operator to perform
the solve. For a nonsymmetric, but well conditioned matrix A, use
spBiconjGradSol.

SEE ALSO spBiconjGradSol

spCreate

PURPOSE Creates a sparse matrix from vectors of non-zero values, row indices, and

28-822 GAUSS L R

s

spDenseSubmat

column indices.

FORMAT y = spCreate(r,c,vals,rinds,cinds);

INPUT r scalar, rows of output matrix.

c scalar, columns of output matrix.

vals N×1 vector, non-zero values.

rinds N×1 vector, row indices of corresponding non-zero values.

cinds N×1 vector, column indices of corresponding non-zero values.

OUTPUT y r×c sparse matrix.

REMARKS Since sparse matrices are strongly typed in GAUSS, y must be defined as a
sparse matrix before the call to spCreate.

EXAMPLE sparse matrix y;

vals = { 1,2,3,4 };

rinds = { 2,5,8,13 };

cinds = { 4,1,9,5 };

y = spCreate(15,10,vals,rinds,cinds);

This example creates a 15×10 sparse matrix y, containing the following
non-zero values:

Non-zero value Index
1 (2,4)
2 (5,1)
3 (8,9)
4 (13,5)

SEE ALSO packedToSp, denseToSp, spEye

GAUSS L R 28-823

spDiagRvMat

spDenseSubmat

PURPOSE Returns a dense submatrix of a sparse matrix.

FORMAT y = spDenseSubmat(x,rinds,cinds);

INPUT x M×N sparse matrix.

rinds K×1 vector, row indices.

cinds L×1 vector, column indices.

OUTPUT y K×L dense matrix, the intersection of rinds and cinds.

REMARKS If rinds or cinds are scalar zeros, all rows or columns will be returned.

EXAMPLE sparse matrix y;

x = { 0 0 0 10,

0 2 0 0,

0 0 0 0,

5 0 0 0,

0 0 0 3 };

y = denseToSp(x,0);

d = spDenseSubmat(y,0,1|3|4);

d =

0 0 10
0 0 0
0 0 0
5 0 0
0 0 3

SEE ALSO spSubmat

28-824 GAUSS L R

s

spDiagRvMat

spDiagRvMat

PURPOSE Inserts submatrices along the diagonal of a sparse matrix.

FORMAT y = spDiagRvMat(x,inds,size,a);

INPUT x M×N sparse matrix.

inds K×2 vector or scalar 0, row and column indices into x at which to
place the corresponding submatrices in a.

size K×2 vector or scalar 0, sizes of the corresponding submatrices in a.

a K×L×P array, containing the submatrices to insert into x.

OUTPUT y M×N sparse matrix, a copy of x containing the specified insertions.

REMARKS Each row of ind must contain the row and column indices, respectively, that
form the starting point for the insertion of the corresponding submatrix in a. If
ind is a scalar 0, the starting point for the insertion of each submatrix will be
one row and one column past the ending point of the previous insertion. The
first insertion will begin at the [1,1] element.

Each row of size must contain the number of rows and columns in the
corresponding submatrix in a. This allows you to insert submatrices of different
sizes Li×Pi by inserting them into the planes of an array that is
K×MAX(L)×MAX(P) and padding the submatrices with zeros to
MAX(L)×MAX(P). For each plane in a, spDiagRvMat extracts the submatrix
a[i,1:size[i,1],1:size[i,2]] and inserts that into x at the location indicated by the
corresponding row of inds. If size is a scalar 0, then each L×P plane of a is
inserted into x as is.

EXAMPLE declare sparse matrix x,y;

x = spEye(10);

sx1 = { 2 3, 5 8 };

sx2 = { 8 2 3 4, 7 9 5 6, 3 2 8 4 };

GAUSS L R 28-825

spDiagRvMat

sx3 = { 4 7 2, 6 5 3 };

sx4 = { 9, 3 };

a = arrayinit(4|3|4,0);

a[1,1:2,1:2] = sx1;

a[2,.,.] = sx2;

a[3,1:2,1:3] = sx3;

a[4,1:2,1] = sx4;

inds = 0;

siz = { 2 2, 3 4, 2 3, 2 1 };

y = spDiagRvMat(x,inds,siz,a);

dx = spToDense(x);

dy = spToDense(y);

dx =

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

dy =

2 3 0 0 0 0 0 0 0 0
5 8 0 0 0 0 0 0 0 0
0 0 8 2 3 4 0 0 0 0
0 0 7 9 5 6 0 0 0 0
0 0 3 2 8 4 0 0 0 0
0 0 0 0 0 1 4 7 2 0
0 0 0 0 0 0 6 5 3 0
0 0 0 0 0 0 0 1 0 9
0 0 0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 0 0 1

28-826 GAUSS L R

s

spEigv

spEigv

PURPOSE Computes a specified number of eigenvalues and eigenvectors of a square,
sparse matrix a.

FORMAT { va, ve } = spEigv(a, nev, which, tol, maxit, ncv);

INPUT a N×N square, sparse matrix.

nev Scalar, number of eigenvalues to compute.

which String, may be one of the following: “LM” largest magnitude, “LR”
largest real, “LI” largest imaginary, “SR” smallest real, or “SI”
smallest imaginary. Default input 0, sets which to “LM.”

tol Scalar, tolerance for eigenvalues. Default input 0, sets tol to 1e-15.

maxit Scalar, maximum number of iterations. Default input 0, sets maxit to
nev×(columns of a)×100.

ncv Scalar, size of Arnoldi factorization. The minimum setting is the
greater of nev+2 and 20. See Remarks on how to set ncv. Default
input 0, sets ncv to 2×nev+1.

OUTPUT va nev×1 dense vector containing the computed eigenvalues of input
matrix a.

ve N×nev dense matrix containing the corresponding eigenvectors of
input matrix a.

EXAMPLE rndseed 3456;

sparse matrix a;

x = 10*rndn(5,5);

a = densetosp(x,4);

21.276135 5.4078872 -19.817044 9.6771132 -19.211952

0.0000000 -4.4011007 10.445221 -5.1742289 -16.336474

a = 0.0000000 -20.853017 7.6285434 0.0000000 -15.626397

GAUSS L R 28-827

spEye

-12.637055 8.1227002 0.0000000 -8.7817892 0.0000000

0.0000000 -7.8181517 15.326816 0.0000000 0.0000000

{ va, ve } = spEigv(a,2,0,0,0,0); /* equivalent to call

{ va, ve } = spEigv(a,2,"LM",1e-15,2*5*100,5); */

va = 21.089832

-3.4769986 + 20.141970i

ve = -0.92097057 0.29490584 - 0.38519280i

-0.10091920 -0.18070330 - 0.38405816i

0.061241324 0.24121182 - 0.56419722i

0.36217049 0.017643612 + 0.26254313i

0.081917964 -0.31466284 - 0.19936942i

Below we show that the first eigenvalue times the corresponding eigenvector (1)
equals the input matrix times the first eigenvector (2).

(1) va[1]*ve[.,1] = (2) a*ve[.,1] =

-19.423115 -19.423115

-2.1283690 -2.1283690

1.2915693 1.2915693

7.6381149 7.6381149

1.7276361 1.7276361

REMARKS The ideal setting for input ncv is problem dependent and cannot be easily
predicted ahead of time. Increasing ncv will increase the amount of memory
used during computation. For a large, sparse matrix, ncv should be small
compared to the order of input matrix a. spEigv is not threadsafe.

TECHNICAL
NOTES

spEigv implements functions from the ARPACK library.

28-828 GAUSS L R

s

spGetNZE

spEye

PURPOSE Creates a sparse identity matrix.

FORMAT y = spEye(n);

INPUT n scalar, order of identity matrix.

OUTPUT y n×n sparse identity matrix.

REMARKS Since sparse matrices are strongly typed in GAUSS, y must be defined as a
sparse matrix before the call to spEye.

EXAMPLE sparse matrix y;

y = spEye(3);

d = spDenseSubmat(y,0,0);

d =

1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000

SEE ALSO spCreate, spOnes, denseToSp

spGetNZE

PURPOSE Returns the non-zero values in a sparse matrix, as well as their corresponding
row and column indices.

FORMAT { vals,rowinds,colinds } = spNumNZE(x);

GAUSS L R 28-829

spline

INPUT x M×N sparse matrix.

OUTPUT vals N×1 vector, non-zero values in x.

rinds N×1 vector, row indices of corresponding non-zero values.

cinds N×1 vector, column indices of corresponding non-zero values.

EXAMPLE sparse matrix y;

x = { 0 0 0 10,

0 2 0 0,

0 0 0 0,

5 0 0 0,

0 0 0 3 };

y = denseToSp(x,0);

{ v,r,c } = spGetNZE(y);

v =

10
2
5
3

r =

1
2
4
5

c =

4
2
1
4

SEE ALSO spNumNZE

28-830 GAUSS L R

s

spLDL

spline

PURPOSE Computes a two-dimensional interpolatory spline.

FORMAT { u,v,w } = spline(x,y,z,sigma,g);

INPUT x 1×K vector, x-abscissae (x-axis values).

y N×1 vector, y-abscissae (y-axis values).

z K×N matrix, ordinates (z-axis values).

sigma scalar, tension factor.

g scalar, grid size factor.

OUTPUT u 1×(K*g) vector, x-abscissae, regularly spaced.

v (N*g)×1 vector, y-abscissae, regularly spaced.

w (K*g)×(N*g) matrix, interpolated ordinates.

REMARKS sigma contains the tension factor. This value indicates the curviness desired. If
sigma is nearly zero (e.g., .001), the resulting surface is approximately the
tensor product of cubic splines. If sigma is large (e.g., 50.0), the resulting
surface is approximately bi-linear. If sigma equals zero, tensor products of
cubic splines result. A standard value for sigma is approximately 1.

g is the grid size factor. It determines the fineness of the output grid. For g = 1,
the output matrices are identical to the input matrices. For g = 2, the output grid
is twice as fine as the input grid, i.e., u will have twice as many columns as x, v
will have twice as many rows as y, and w will have twice as many rows and
columns as z.

SOURCE spline.src

GAUSS L R 28-831

spLDL

spLDL

PURPOSE Computes the LDL decomposition of a symmetric sparse matrix A.

FORMAT { l, d } = spLDL(a);

INPUT a N x N, symmetric sparse matrix.

OUTPUT l N×N lower-triangular sparse matrix.

d N×N diagonal sparse matrix.

EXAMPLE declare sparse matrix a, l, d;

142 13 56 57 0

nz = 13 0 0 0 0

56 0 94 47 0

57 0 47 35 0

0 0 0 0 0

a = densetosp(nz,0);

{ l, d } = spLDL(a);

1 0 0 0 0

0.0915 1 0 0 0

l = 0.3943 4.307 1 0 0

0.4014 4.384 0.5 1 0

0 0 0 0 0

142 0 0 0 0

0 -1.190 0 0 0

d = 0 0 94 0 0

0 0 0 11.5 0

0 0 0 0 0

28-832 GAUSS L R

s

spLU

142 13 56 57 0

l*d*l’ = 13 0 0 0 0

56 0 94 47 0

57 0 47 35 0

0 0 0 0 0

REMARKS spLDL will not check to see if the input matrix is symmetric. The function looks
only at the lower triangular portion of the input matrix.

SEE ALSO spLU

TECHNICAL
NOTES

spLDL implements functions from the TAUCS library:

TAUCS Version 2.2 Copyright c©2003, by Sivan Toledo, Tel-Aviv University,
stoledo@tau.ac.il. All Rights Reserved.

spLU

PURPOSE Computes the LU decomposition of a sparse matrix A with partial pivoting.

FORMAT { l, u } = spLU(a);

INPUT a N x N, non-singular sparse matrix.

OUTPUT l N×N “scrambled” lower-triangular sparse matrix. This is a lower
triangular matrix that has been reordered based upon the row
pivoting.

u N×N “scrambled” upper-triangular sparse matrix. This is an upper
triangular matrix that has been reordered based upon column
pivoting to preserve sparsity.

EXAMPLE declare sparse matrix a, l, u;

nz = {-5.974 0 -13.37 6.136 0,

GAUSS L R 28-833

spLU

0 5.932 7.712 0 -6.549,

0 -5.728 0 14.227 0,

0 -12.164 9.916 13.902 6.182,

13.425 0 -12.654 -16.534 0 };

a = densetosp(nz,0);

{ l, u } = spLU(a);

l = 0 0 0.873 0.790 1.000

0 -0.944 1.000 0 0

1.000 0 0 0 0

13.425 0 -12.654 -16.534 0

0 5.932 7.712 0 -6.549

u = 0 -6.565 17.195 13.902 0

0 0 -19.004 -1.221 0

0 0 0 3.061 0

-5.974 0 -13.374 6.136 0

0 5.932 7.712 0 -6.549

-5.974 0 -13.37 6.316 0

0 5.932 7.712 0 -6.549

l*u = 0 -5.728 0 14.227 0

0 -12.164 9.916 13.902 6.182

13.425 0 -12.654 -16.534 0

REMARKS If the input matrix or either of the factors L and U are singular, the function will
either terminate the program with an error message or return an error code
which can be tested for with the scalerr function. This depends on the trap
state as follows:

trap 1 return error code: 50
trap 0 terminate with error message: Matrix singular

SEE ALSO spLDL

TECHNICAL
NOTES

spLU implements functions from the SuperLU 4.0 library written by James W.

28-834 GAUSS L R

s

spNumNZE

Demmel, John R. Gilbert and Xiaoye S. Li.
Copyright c©2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved.

spNumNZE

PURPOSE Returns the number of non-zero elements in a sparse matrix.

FORMAT n = spNumNZE(x);

INPUT x M×N sparse matrix.

OUTPUT n scalar, the number of non-zero elements in x.

EXAMPLE sparse matrix y;

x = { 0 0 0 10,

0 2 0 0,

0 0 0 0,

5 0 0 0,

0 0 0 3 };

y = denseToSp(x,0);

n = spNumNZE(y);

n = 4

SEE ALSO spGetNZE

GAUSS L R 28-835

SpreadsheetReadM

spOnes

PURPOSE Generates a sparse matrix containing only ones and zeros

FORMAT y = spOnes(r,c,rinds,cinds);

INPUT r scalar, rows of output matrix.

c scalar, columns of output matrix.

rinds N×1 vector, row indices of ones.

cinds N×1 vector, column indices of ones.

OUTPUT y r×c sparse matrix of ones.

REMARKS Since sparse matrices are strongly typed in GAUSS, y must be defined as a
sparse matrix before the call to spOnes.

EXAMPLE sparse matrix y;

rinds = { 1, 3, 5 };

cinds = { 2, 1, 3 };

y = spOnes(5,4,rinds,cinds);

d = spDenseSubmat(y,0,0);

d =

0.0000000 1.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000
1.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 1.0000000 0.0000000

SEE ALSO spCreate, spEye, spZeros, denseToSp

28-836 GAUSS L R

s

SpreadsheetReadSA

SpreadsheetReadM

PURPOSE Reads and writes Excel files.

FORMAT xlsmat = SpreadsheetReadM(file,range,sheet);

INPUT file string, name of .xls file.

range string, range to read or write; e.g., “a1:b20”.

sheet scalar, sheet number.

OUTPUT xlsmat matrix of numbers read from Excel.

PORTABILITY Windows only

REMARKS If the read functions fail, they will return a scalar error code which can be
decoded with scalerr. If the write function fails, it returns a non-zero error
number.

SEE ALSO scalerr, error

SpreadsheetReadSA

PURPOSE Reads and writes Excel files.

FORMAT xlssa = SpreadsheetReadSA(file,range,sheet);

INPUT file string, name of .xls file.

range string, range to read or write; e.g., “a1:b20”.

sheet scalar, sheet number.

GAUSS L R 28-837

SpreadsheetWrite

OUTPUT xlssa string array read from Excel.

PORTABILITY Windows only

REMARKS If the read functions fail, they will return a scalar error code which can be
decoded with scalerr. If the write function fails, it returns a non-zero error
number.

SEE ALSO scalerr, error

SpreadsheetWrite

PURPOSE Reads and writes Excel files.

FORMAT xlsret = SpreadsheetWrite(data,file,range,sheet);

INPUT data matrix, string or string array, data to write.

file string, name of .xls file.

range string, range to read or write; e.g., “a1:b20”.

sheet scalar, sheet number.

OUTPUT xlsret success code, 0 if successful, else error code.

PORTABILITY Windows only

REMARKS If the read functions fail, they will return a scalar error code which can be
decoded with scalerr. If the write function fails, it returns a non-zero error
number.

SEE ALSO scalerr, error

28-838 GAUSS L R

s

spScale

spScale

PURPOSE Scales a sparse matrix.

FORMAT { a r s } = spScale(x);

INPUT x M×N sparse matrix.

OUTPUT a M×N scaled sparse matrix.

r M×1 vector, row scale factors.

s N×1 vector, column scale factors.

REMARKS spScale scales the elements of the matrix by powers of 10 so that they are all
within (-10,10).

EXAMPLE x = { 25 -12 0,

3 0 -11,

8 -100 0 };

declare sparse matrix sm, smsc;

sm = denseToSp(x,0);

{ smsc, r, c } = spScale(sm);

sm =

25 −12 0
3 0 −11
8 −100 0

smsc =

2.5 −1.2 0.0
0.3 0.0 −1.1

0.08 −1.0 0.0

GAUSS L R 28-839

spSubmat

r =

0.1
0.1

0.01

c =

1.0
1.0
1.0

spSubmat

PURPOSE Returns a sparse submatrix of a sparse matrix.

FORMAT y = spSubmat(x,rinds,cinds);

INPUT x M×N sparse matrix.

rinds K×1 vector, row indices.

cinds L×1 vector, column indices.

OUTPUT s K×L sparse matrix, the intersection of rinds and cinds.

REMARKS If rinds or cinds are scalar zeros, all rows or columns will be returned.

Since sparse matrices are strongly typed in GAUSS, y must be defined as a
sparse matrix before the call to spSubmat.

EXAMPLE sparse matrix y;

sparse matrix z;

x = { 0 0 0 10,

0 2 0 0,

0 0 0 0,

5 0 0 0,

28-840 GAUSS L R

s

spToDense

0 0 0 3 };

y = denseToSp(x,0);

z = spSubmat(y,1|3|4,0);

d = spDenseSubmat(z,0,0);

d =

0 0 0 10
0 0 0 0
5 0 0 0

SEE ALSO spDenseSubmat

spToDense

PURPOSE Converts a sparse matrix to a dense matrix.

FORMAT y = spToDense(x);

INPUT x M×N sparse matrix.

OUTPUT y M×N dense matrix.

REMARKS A dense matrix is just a normal format matrix.

EXAMPLE sparse matrix y;

y = spEye(4);

d = spToDense(y);

d =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

GAUSS L R 28-841

spTrTDense

SEE ALSO spDenseSubmat, denseToSp

spTrTDense

PURPOSE Multiplies a sparse matrix transposed by a dense matrix.

FORMAT y = spTrTDense(s,d);

INPUT s N×M sparse matrix.

d N×L dense matrix.

OUTPUT y M×L dense matrix, the result of s′d.

REMARKS This may also be accomplished by the following code:

y = s′*d

However, spTrTDense will be more efficient.

SEE ALSO spTScalar

spTScalar

PURPOSE Multiplies a sparse matrix by a scalar.

FORMAT y = spTScalar(s,scal,rinds,cinds);

INPUT s N×M sparse matrix.

scal scalar.

28-842 GAUSS L R

s

spZeros

rinds K×1 vector of row indices.

cinds L×1 vector of column indices.

OUTPUT y K×L sparse matrix.

REMARKS Only the elements of s specified by rinds and cinds will be multiplied by scal.
All other elements will be unchanged in the result.

To select all rows or all columns, input a scalar 0 for rinds or cinds.

Since sparse matrices are strongly typed in GAUSS, y must be defined as a
sparse matrix before the call to spTScalar.

EXAMPLE sparse matrix y;

x = { 3 0 2 1,

0 4 0 0,

5 0 0 3,

0 1 2 0 };

rinds = 0;

cinds = { 2,4 };

y = spTScalar(x,10,rinds,cinds);

d = spDenseSubmat(y,0,0);

d =

3 0 2 10
0 40 0 0
5 0 0 30
0 10 2 0

SEE ALSO spTrTDense

spZeros

GAUSS L R 28-843

sqpSolve

PURPOSE Creates a sparse matrix containing no non-zero values.

FORMAT y = spZeros(r,c);

INPUT r scalar, rows of output matrix.

c scalar, columns of output matrix.

OUTPUT y r×c sparse matrix.

REMARKS Since sparse matrices are strongly typed in GAUSS, y must be defined as a
sparse matrix before the call to spZeros.

EXAMPLE sparse matrix y;

y = spZeros(4,3);

d = spDenseSubmat(y,0,0);

d =

0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000

SEE ALSO spOnes, spEye, createSp

sqpSolve

PURPOSE Solves the nonlinear programming problem using a sequential quadratic
programming method.

FORMAT { x,f,lagr,retcode } = sqpSolve(&fct,start);

INPUT &fct pointer to a procedure that computes the function to be minimized.
This procedure must have one input argument, a vector of parameter

28-844 GAUSS L R

s

sqpSolve

values, and one output argument, the value of the function evaluated
at the input vector of parameter values.

start K×1 vector of start values.

GLOBAL
INPUT

_sqp_A M×K matrix, linear equality constraint coefficients.

_sqp_B M×1 vector, linear equality constraint constants.
These globals are used to specify linear equality constraints
of the following type:

_sqp_A * X = _sqp_B

where X is the K×1 unknown parameter vector.

_sqp_EqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. For example, the statement:

_sqp_EqProc = &eqproc;

tells sqpSolve that nonlinear equality constraints are to be
placed on the parameters and where the procedure computing
them is to be found. The procedure must have one input
argument, the K×1 vector of parameters, and one output
argument, the R×1 vector of computed constraints that are to
be equal to zero. For example, suppose that you wish to
place the following constraint:

p[1] * p[2] = p[3]

The procedure for this is:

proc eqproc(p);

retp(p[1]*p[2]-p[3]);

endp;

_sqp_C M×K matrix, linear inequality constraint coefficients.

_sqp_D M×1 vector, linear inequality constraint constants.
These globals are used to specify linear inequality constraints
of the following type:

_sqp_C * X >= _sqp_D

where X is the K×1 unknown parameter vector.

GAUSS L R 28-845

sqpSolve

_sqp_IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. For example the statement:

_sqp_EqProc = &ineqproc;

tells sqpSolve that nonlinear equality constraints are to be
placed on the parameters and where the procedure computing
them is to be found. The procedure must have one input
argument, the K×1 vector of parameters, and one output
argument, the R×1 vector of computed constraints that are to
be equal to zero. For example, suppose that you wish to
place the following constraint:

p[1] * p[2] >= p[3]

The procedure for this is:

proc ineqproc(p);

retp(p[1]*[2]-p[3]);

endp;

_sqp_Bounds K×2 matrix, bounds on parameters. The first column
contains the lower bounds, and the second column the upper
bounds. If the bounds for all the coefficients are the same, a
1×2 matrix may be used. Default is:

[1] -1e256 [2] 1e256

_sqp_GradProc scalar, pointer to a procedure that computes the gradient of
the function with respect to the parameters. For example, the
statement:

_sqp_GradProc = &gradproc;

tells sqpSolve that a gradient procedure exists and where to
find it. The user-provided procedure has two input
arguments, a K×1 vector of parameter values and an N×P
matrix of data. The procedure returns a single output
argument, an N×K matrix of gradients of the log-likelihood
function with respect to the parameters evaluated at the
vector of parameter values.
Default = 0, i.e., no gradient procedure has been provided.

28-846 GAUSS L R

s

sqpSolve

_sqp_HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the
function with respect to the parameters. For example, the
instruction:

_sqp_HessProc = &hessproc;

will tell sqpSolve that a procedure has been provided for the
computation of the Hessian and where to find it. The
procedure that is provided by the user must have two input
arguments, a P×1 vector of parameter values and an N×K
data matrix. The procedure returns a single output argument,
the P×P symmetric matrix of second order derivatives of the
function evaluated at the parameter values.

_sqp_MaxIters scalar, maximum number of iterations. Default = 1e+5.
Termination can be forced by pressing C on the keyboard.

_sqp_DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has been
satisifed, sqpSolve will exit the iterations.

_sqp_ParNames K×1 character vector, parameter names.
_sqp_PrintIters scalar, if nonzero, prints iteration information. Default =

0. Can be toggled during iterations by pressing P on the
keyboard.

_sqp_FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is
defined outside inequality boundaries, then this test can be
turned off.

_sqp_RandRadius scalar, if zero, no random search is attempted. If
nonzero it is the radius of random search which is invoked
whenever the usual line search fails. Default = .01.

__output scalar, if nonzero, results are printed. Default = 0.

OUTPUT x K×1 vector of parameters at minimum.
f scalar, function evaluated at x.
lagr vector, created using vput. Contains the Lagrangean for the

constraints. They may be extracted with the vread command using
the following strings:

GAUSS L R 28-847

sqpSolve

‘‘lineq’’ Lagrangeans of linear equality constraints,
‘‘nlineq’’ Lagrangeans of nonlinear equality constraints
‘‘linineq’’ Lagrangeans of linear inequality constraints
‘‘nlinineq’’ Lagrangeans of nonlinear inequality constraints
‘‘bounds’’ Lagrangeans of bounds

Whenever a constraint is active, its associated Lagrangean will be
nonzero.

retcode return code:

0 normal convergence
1 forced exit
2 maximum number of iterations exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 error with constraints

REMARKS Pressing C on the keyboard will terminate iterations, and pressing P will toggle
iteration output.

sqpSolve is recursive, that is, it can call itself with another function and set of
global variables,

EXAMPLE sqpSolveSet;

proc fct(x);

retp((x[1] + 3*x[2] + x[3])ˆ2 + 4*(x[1] - x[2])ˆ2);

endp;

proc ineqp(x);

retp(6*x[2] + 4*x[3] - x[1]ˆ3 - 3);

endp;

proc eqp(x);

retp(1-sumc(x));

28-848 GAUSS L R

s

sqpSolveMT

endp;

_sqp_Bounds = { 0 1e256 };

start = { .1, .7, .2 };

_sqp_IneqProc = &ineqp;

_sqp_EqProc = &eqp;

{ x,f,lagr,ret } = sqpSolve(&fct,start);

SOURCE sqpsolve.src

sqpSolveMT

PURPOSE Solves the nonlinear programming problem.

INCLUDE sqpsolvemt.sdf

FORMAT out1 = sqpSolveMT(&fct,par1,data1,c1);

INPUT &fct pointer to a procedure that computes the function to be minimized.
This procedure must have two input arguments, an instance of
structure of type PV and an instance of a structure of type DS, and
one output argument, either a 1×1 scalar or an N×1 vector of
function values evaluated at the parameters stored in the PV instance
using data stored in the DS instance.

par1 an instance of structure of type PV. The par1 instance is passed to
the user-provided procedure pointed to by &fct. par1 is constructed
using the “pack” functions.

data1 an array of instances of a DS structure. This array is passed to the
user-provided pointed by &fct to be used in the objective function.
sqpSolveMT does not look at this structure. Each instance contains

GAUSS L R 28-849

sqpSolveMT

the the following members which can be set in whatever way that is
convenient for computing the objective function:

data1[i].dataMatrix N×K matrix, data matrix.
data1[i].dataArray N×K×L.. array, data array.
data1[i].vnames string array, variable names (optional).
data1[i].dsname string, data name (optional).
data1[i].type scalar, type of data (optional).

c1 an instance of an sqpSolveMTControl structure. Normally an
instance is initialized by calling sqpSolveMTControlCreate and
members of this instance can be set to other values by the user. For
an instance named c1, the members are:

c1.A M×K matrix, linear equality constraint
coefficients: c1.A * p = c1.B where p is a
vector of the parameters.

c1.B M×1 vector, linear equality constraint
constants: c1.A * p = c1.B where p is a vector
of the parameters.

c1.C M×K matrix, linear inequality constraint
coefficients: c1.C * p >= c1.D where p is a
vector of the parameters.

c1.D M×1 vector, linear inequality constraint
constants: c1.C * p >= c1.D where p is a
vector of the parameters.

c1.eqProc scalar, pointer to a procedure that computes
the nonlinear equality constraints. When such
a procedure has been provided, it has one
input argument, a structure of type SQPdata,
and one output argument, a vector of
computed equality constraints. For more
details see Remarks below. Default = ., i.e.,
no equality procedure.

c1.weights vector, weights for objective function
returning a vector. Default = 1.

c1.ineqProc scalar, pointer to a procedure that computes
the nonlinear inequality constraints. When

28-850 GAUSS L R

s

sqpSolveMT

such a procedure has been provided, it has
one input argument, a structure of type
SQPdata, and one output argument, a vector
of computed inequality constraints. For more
details see Remarks below. Default = ., i.e.,
no inequality procedure.

c1.bounds 1×2 or K×2 matrix, bounds on parameters. If
1×2 all parameters have same bounds.
Default = -1e256 1e256 .

c1.covType scalar, if 2, QML covariance matrix, else if 0,
no covariance matrix is computed, else ML
covariance matrix is computed.

c1.gradProc scalar, pointer to a procedure that computes
the gradient of the function with respect to the
parameters. Default = ., i.e., no gradient
procedure has been provided.

c1.hessProc scalar, pointer to a procedure that computes
the Hessian, i.e., the matrix of second order
partial derivatives of the function with respect
to the parameters. Default = ., i.e., no Hessian
procedure has been provided.

c1.maxIters scalar, maximum number of iterations.
Default = 1e+5.

c1.dirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When
this criterion has been satisfied SQPSolve
exits the iterations.

c1.feasibleTest scalar, if nonzero, parameters are tested for
feasibility before computing function in line
search. If function is defined outside
inequality boundaries, then this test can be
turned off. Default = 1.

c1.randRadius scalar, If zero, no random search is attempted.
If nonzero, it is the radius of random search
which is invoked whenever the usual line
search fails. Default = .01.

GAUSS L R 28-851

sqpSolveMT

c1.output scalar, if nonzero, results are printed. Default
= 0.

c1.printIters scalar, if nonzero, prints iteration information.
Default = 0.

OUTPUT out1 an instance of an sqpSolveMTout structure. For an instance named
out1, the members are:

out1.par an instance of structure of type PV containing
the parameter estimates will be placed in the
member matrix out1.par.

out1.fct scalar, function evaluated at x.
out1.lagr an instance of a SQPLagrange structure

containing the Lagrangeans for the
constraints. The members are:

out1.lagr.lineq M×1 vector,
Lagrangeans of linear
equality constraints.

out1.lagr.nlineq N×1 vector,
Lagrangeans of
nonlinear equality
constraints.

out1.lagr.linineq P×1 vector,
Lagrangeans of linear
inequality constraints.

out1.lagr.nlinineq Q×1 vector,
Lagrangeans of
nonlinear inequality
constraints.

out1.lagr.bounds K×2 matrix,
Lagrangeans of
bounds.

Whenever a constraint is active, its associated
Lagrangean will be nonzero. For any
constraint that is inactive throughout the
iterations as well as at convergence, the

28-852 GAUSS L R

s

sqpSolveMT

corresponding Lagrangean matrix will be set
to a scalar missing value.

out1.retcode return code:
0 normal convergence.
1 forced exit.
2 maximum number of iterations exceeded.
3 function calculation failed.
4 gradient calculation failed.
5 Hessian calculation failed.
6 line search failed.
7 error with constraints.
8 function complex.

REMARKS There is one required user-provided procedure, the one computing the objective
function to be minimized, and four other optional functions, one each for
computing the equality constraints, the inequality constraints, the gradient of
the objective function, and the Hessian of the objective function.

All of these functions have one input argument that is an instance of a structure
of type struct PV and a second argument that is an instance of a structure of type
struct DS. On input to the call to sqpSolveMT, the first argument contains
starting values for the parameters and the second argument any required data.
The data are passed in a separate argument because the structure in the first
argument will be copied as it is passed through procedure calls which would be
very costly if it contained large data matrices. Since sqpSolveMT makes no
changes to the second argument it will be passed by pointer thus saving time
because its contents aren’t copied.

Both of the structures of type PV are set up using the PV “pack” procedures,
pvPack, pvPackm, pvPacks, and pvPacksm. These procedures allow for
setting up a parameter vector in a variety of ways.

For example, we might have the following objective function for fitting a
nonlinear curve to data:

proc Micherlitz(struct PV par1, struct DS data1);

GAUSS L R 28-853

sqpSolveMT

local p0,e,s2,x,y;

p0 = pvUnpack(par1,"parameters");

y = data1.dataMatrix[.,1];

x = data1.dataMatrix[.,2];

e = y - p0[1] - p0[2]*exp(-p0[3] * x);

retp(e’*e);

endp;

In this example the dependent and independent variables are passed to the
procedure as the first and second columns of a data matrix stored in a single DS
structure. Alternatively these two columns of data can be entered into a vector
of DS structures, one for each column of data:

proc Micherlitz(struct PV par1, struct DS data1);

local p0,e,s2,x,y;

p0 = pvUnpack(par1,"parameters");

y = data1[1].dataMatrix;

x = data1[2].dataMatrix;

e = y - p0[1] - p0[2]*exp(-p0[3]*x);

retp(e’*e);

endp;

The syntax is similar for the optional user-provided procedures. For example, to
constrain the squared sum of the first two parameters to be greater than one in
the above problem, provide the following procedure:

proc ineqConst(struct PV par1, struct DS data1);

local p0;

p0 = pvUnpack(p0,"parameters");

retp((p0[2]+p0[1])ˆ2 - 1);

endp;

The following is a complete example for estimating the parameters of the

28-854 GAUSS L R

s

sqpSolveMT

Micherlitz equation in data with bounds constraints on the parameters and
where an optional gradient procedure has been provided:

#include sqpSolveMT.sdf

struct DS d0;

d0 = dsCreate;

y = 3.183|

3.059|

2.871|

2.622|

2.541|

2.184|

2.110|

2.075|

2.018|

1.903|

1.770|

1.762|

1.550;

x = seqa(1,1,13);

d0.dataMatrix = y˜x;

struct sqpSolveMTControl c0;

c0 = sqpSolveMTControlCreate;

c0.bounds = 0˜100; /* constrains parameters */

/* to be positive */

struct PV par1;

par1 = pvCreate;

par1 = pvPack(par1,.92|2.62|.114,"parameters");

struct sqpSolveMTout out1;

out1 = sqpSolveMT(&Micherlitz,par1,d0,c0);

print " parameter estimates ";

GAUSS L R 28-855

sqpSolveMTControlCreate

print pvUnPack(out1.par,"parameters");

proc Micherlitz(struct PV par1, struct DS data1);

local p0,e,s2,x,y;

p0 = pvUnpack(par1,"parameters");

y = data1.dataMatrix[.,1];

x = data1.dataMatrix[.,2];

e = y - p0[1] - p0[2]*exp(-p0[3] * x);

retp(e’*e);

endp;

proc grad(struct PV par1, struct DS data1);

local p0,e,w,g,r,x,y;

p0 = pvUnpack(par1,"parameters");

y = data1.dataMatrix[.,1];

x = data1.dataMatrix[.,2];

g = zeros(3,1);

w = exp(-p0[3] * x);

e = y - p0[1] - p0[2]*w;

r = e’*w;

g[1] = -2*sumc(e);

g[2] = -2*r;

g[3] = 2*p0[1]*p0[2]*r;

retp(g);

endp;

SOURCE sqpsolvemt.src

SEE ALSO sqpSolveMTControlCreate, sqpSolveMTlagrangeCreate,
sqpSolveOutCreate

sqpSolveMTControlCreate

28-856 GAUSS L R

s

sqpSolveMTlagrangeCreate

PURPOSE Creates an instance of a structure of type sqpSolveMTcontrol set to default
values.

INCLUDE sqpsolvemt.sdf

FORMAT s = sqpSolveMTControlCreate;

OUTPUT s instance of structure of type sqpSolveMTControl.

SOURCE sqpsolvemt.src

SEE ALSO sqpSolve

sqpSolveMTlagrangeCreate

PURPOSE Creates an instance of a structure of type sqpSolveMTlagrange set to default
values.

INCLUDE sqpsolvemt.sdf

FORMAT s = sqpSolveMTlagrangeCreate;

OUTPUT s instance of structure of type sqpSolveMTlagrange.

SOURCE sqpsolvemt.src

SEE ALSO sqpSolve

GAUSS L R 28-857

sqpSolveSet

sqpSolveMToutCreate

PURPOSE Creates an instance of a structure of type sqpSolveMTout set to default values.

INCLUDE sqpsolvemt.sdf

FORMAT s = sqpSolveMToutCreate;

OUTPUT s instance of structure of type sqpSolveMTout.

SOURCE sqpsolvemt.src

SEE ALSO sqpSolve

sqpSolveSet

PURPOSE Resets global variables used by sqpSolve to default values.

FORMAT sqpSolveSet;

SOURCE sqpsolve.src

sqrt

PURPOSE Computes the square root of every element in x.

FORMAT y = sqrt(x);

28-858 GAUSS L R

s

stdc

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array, the square roots of each
element of x.

REMARKS If x is negative, complex results are returned by default. You can turn the
generation of complex numbers for negative inputs on or off in the GAUSS
configuration file, and with the sysstate function, case 8. If you turn it off,
sqrt will generate an error for negative inputs.

If x is already complex, the complex number state does not matter; sqrt will
compute a complex result.

EXAMPLE let x[2,2] = 1 2 3 4;

y = sqrt(x);

x =
1.00000000 2.00000000
3.00000000 4.00000000

y =
1.00000000 1.41421356
1.73205081 2.00000000

stdc

PURPOSE Computes the standard deviation of the elements in each column of a matrix.

FORMAT y = stdc(x);

INPUT x N×K matrix.

OUTPUT y K×1 vector, the standard deviation of each column of x.

GAUSS L R 28-859

stdsc

REMARKS This function essentially computes:

sqrt(1/(N-1)*sumc((x-meanc(x)’)2))

Thus, the divisor is N-1 rather than N, where N is the number of elements being
summed. To convert to the alternate definition, multiply by

sqrt((N-1)/N)

EXAMPLE y = rndn(8100,1);

std = stdc(y);

std = 1.008377

In this example, 8100 standard Normal random variables are generated, and
their standard deviation is computed.

SEE ALSO meanc

stdsc

PURPOSE Computes the standard deviation of the elements in each column of a matrix.

FORMAT y = stdsc(x);

INPUT x N×K matrix.

OUTPUT y K×1 vector, the standard deviation of each column of x.

REMARKS This function essentially computes:

28-860 GAUSS L R

s

stocv

sqrt(1/(N)*sumc((x-meanc(x)’)2))

Thus, the divisor is N rather than N-1, where N is the number of elements being
summed. See stdc for the alternate definition.

EXAMPLE y = rndn(8100,1);

std = stdsc(y);

std = 1.0151475

In this example, 8100 standard Normal random variables are generated, and
their standard deviation is computed.

SEE ALSO stdc, astds, meanc

stocv

PURPOSE Converts a string to a character vector.

FORMAT v = stocv(s);

INPUT s string, to be converted to character vector.

OUTPUT v N×1 character vector, contains the contents of s.

REMARKS stocv breaks s up into a vector of 8-character length matrix elements. Note that
the character information in the vector is not guaranteed to be null-terminated.

EXAMPLE s = "Now is the time for all good men";

v = stocv(s);

GAUSS L R 28-861

stof

v =

“Now is t”
“he time ”

“for all ”
“good men”

SEE ALSO cvtos, vget, vlist, vput, vread

stof

PURPOSE Converts a string to floating point.

FORMAT y = stof(x);

INPUT x string or N×K matrix containing character elements to be converted.

OUTPUT y matrix, the floating point equivalents of the ASCII numbers in x.

REMARKS If x is a string containing “1 2 3”, then stof will return a 3×1 matrix containing
the numbers 1, 2 and 3.

If x is a null string, stof will return a 0.

This uses the same input conversion routine as loadm and let. It will convert
character elements and missing values. stof also converts complex numbers in
the same manner as let.

SEE ALSO ftos, ftocv, chrs

stop

28-862 GAUSS L R

s

strcombine

PURPOSE Stops a program and returns to the command prompt. Does not close files.

FORMAT stop;

REMARKS This command has the same effect as end, except it does not close files or the
auxiliary output.

It is not necessary to put a stop or an end statement at the end of a program. If
neither is found, an implicit stop is executed.

SEE ALSO end, new, system

strcombine

PURPOSE Converts an N×M string array to an N×1 string vector by combining each
element in a column separated by a user-defined delimiter string.

FORMAT y = strcombine(sa,delim,qchar);

INPUT sa N×M string array.

delim 1×1, 1×M, or M×1 delimiter string.

qchar scalar, 2×1, or 1×2 string vector containing quote characters as
required:

scalar: Use this character as quote character.
If this is 0, no quotes are added.

2×1 or 1×2 string vector: Contains left and right quote characters.

OUTPUT y N×1 string vector result.

SOURCE strfns.src

SEE ALSO satostrC

GAUSS L R 28-863

strlen

strindx

PURPOSE Finds the index of one string within another string.

FORMAT y = strindx(where,what,start);

INPUT where string or scalar, the data to be searched.

what string or scalar, the substring to be searched for in where.

start scalar, the starting point of the search in where for an occurrence of
what. The index of the first character in a string is 1.

OUTPUT y scalar containing the index of the first occurrence of what, within
where, which is greater than or equal to start. If no occurrence is
found, it will be 0.

REMARKS An example of the use of this function is the location of a name within a string
of names:

z = "nameagepaysex";

x = "pay";

y = strindx(z,x,1);

y = 8

This function is used with strsect for extracting substrings.

SEE ALSO strrindx, strlen, strsect, strput

28-864 GAUSS L R

s

strput

strlen

PURPOSE Returns the length of a string.

FORMAT y = strlen(x);

INPUT x string, N×K matrix of character data, or N×K string array.

OUTPUT y scalar containing the exact length of the string x, or N×K matrix or
string array containing the lengths of the elements in x.

REMARKS The null character (ASCII 0) is a legal character within strings and so embedded
nulls will be counted in the length of strings. The final terminating null byte is
not counted, though.

For character matrices, the length is computed by counting the characters
(maximum of 8) up to the first null in each element of the matrix. The null
character, therefore, is not a valid character in matrices containing character
data and is not counted in the lengths of the elements of those matrices.

EXAMPLE x = "How long?";

y = strlen(x);

y = 9

SEE ALSO strsect, strindx, strrindx

strput

PURPOSE Lays a substring over a string.

GAUSS L R 28-865

strrindx

FORMAT y = strput(substr,str,off);

INPUT substr string, the substring to be laid over the other string.

str string, the string to receive the substring.

off scalar, the offset in str to place substr. The offset of the first byte is 1.

OUTPUT y string, the new string.

EXAMPLE str = "max";

sub = "imum";

f = 4;

y = strput(sub,str,f);

print y;

produces:

maximum

SOURCE strput.src

strrindx

PURPOSE Finds the index of one string within another string. Searches from the end of the
string to the beginning.

FORMAT y = strrindx(where,what,start);

INPUT where string or scalar, the data to be searched.

what string or scalar, the substring to be searched for in where.

start scalar, the starting point of the search in where for an occurrence of
what. where will be searched from this point backward for what.

28-866 GAUSS L R

s

strsect

OUTPUT y scalar containing the index of the last occurrence of what, within
where, which is less than or equal to start. If no occurrence is found,
it will be 0.

REMARKS A negative value for start causes the search to begin at the end of the string. An
example of the use of strrindx is extracting a file name from a complete path
specification:

path = "/gauss/src/ols.src";

ps = "/";

pos = strrindx(path,ps,-1);

if pos;

name = strsect(path,pos+1,strlen(path)-pos);

else;

name = "";

endif;

pos = 11

name = “ols.src”

strrindx can be used with strsect for extracting substrings.

SEE ALSO strindx, strlen, strsect, strput

strsect

PURPOSE Extracts a substring of a string.

FORMAT y = strsect(str,start,len);

GAUSS L R 28-867

strsplit

INPUT str string or scalar from which the segment is to be obtained.
start scalar, the index of the substring in str. The index of the first

character is 1.
len scalar, the length of the substring.

OUTPUT y string, the extracted substring, or a null string if start is greater than
the length of str.

REMARKS If there are not enough characters in a string for the defined substring to be
extracted, then a short string or a null string will be returned.

If str is a matrix containing character data, it must be scalar.

EXAMPLE strng = "This is an example string."

y = strsect(strng,12,7);

y = “example”

SEE ALSO strlen, strindx, strrindx

strsplit

PURPOSE Splits an N×1 string vector into an N×K string array of the individual tokens.

FORMAT sa = strsplit(sv);

INPUT sv N×1 string array.

OUTPUT sa N×K string array.

REMARKS Each row of sv must contain the same number of tokens. The following
characters are considered delimiters between tokens:

28-868 GAUSS L R

s

strsplitPad

space ASCII 32
tab ASCII 9
comma ASCII 44
newline ASCII 10
carriage return ASCII 13

Tokens containing delimiters must be enclosed in single or double quotes or
parentheses. Tokens enclosed in single or double quotes will NOT retain the
quotes upon translation. Tokens enclosed in parentheses WILL retain the
parentheses after translation. Parentheses cannot be nested.

EXAMPLE let string sv = {

"dog ’cat fish’ moose",

"lion, zebra, elk",

"seal owl whale"

};

sa = strsplit(sv);

sa =

‘dog’ ‘cat fish’ ‘moose’
‘lion’ ‘zebra’ ‘elk’
‘seal’ ‘owl’ ‘whale’

SEE ALSO strsplitPad

strsplitPad

PURPOSE Splits a string vector into a string array of the individual tokens. Pads on the
right with null strings.

FORMAT sa = strsplitPad(sv,cols);

INPUT sv N×1 string array.

GAUSS L R 28-869

strtodt

cols scalar, number of columns of output string array.

OUTPUT sa N×cols string array.

REMARKS Rows containing more than cols tokens are truncated and rows containing fewer
than cols tokens are padded on the right with null strings. The following
characters are considered delimiters between tokens:

space ASCII 32
tab ASCII 9
comma ASCII 44
newline ASCII 10
carriage return ASCII 13

Tokens containing delimiters must be enclosed in single or double quotes or
parentheses. Tokens enclosed in single or double quotes will NOT retain the
quotes upon translation. Tokens enclosed in parentheses WILL retain the
parentheses after translation. Parentheses cannot be nested.

EXAMPLE let string sv = {

"dog ’cat fish’ moose",

"lion, zebra, elk, bird",

"seal owl whale"

};

sa = strsplitPad(sv, 4);

sa =

‘dog’ ‘cat fish’ ‘moose’ ‘’
‘lion’ ‘zebra’ ‘elk’ ‘bird’
‘seal’ ‘owl’ ‘whale’ ‘’

SEE ALSO strsplit

28-870 GAUSS L R

s

strtodt

strtodt

PURPOSE Converts a string array of dates to a matrix in DT scalar format.

FORMAT x = strtodt(sa,fmt);

INPUT sa N×K string array containing dates.
fmt string containing date/time format characters.

OUTPUT x N×K matrix of dates in DT scalar format.

REMARKS The DT scalar format is a double precision representation of the date and time.
In the DT scalar format, the number

20100810223505

represents 22:35:05 or 10:35:05 PM on August 10, 2010.

The following formats are supported:

YYYY Four digit year
YR Last two digits of year
MO Number of month, 01-12
DD Day of month, 01-31
HH Hour of day, 00-23
MI Minute of hour, 00-59
SS Second of minute, 00-59

EXAMPLE x = strtodt("2010-07-12 10:18:32",

"YYYY-MO-DD HH:MI:SS");

print x;

produces:

20100712101832.0

GAUSS L R 28-871

strtof

x = strtodt("2010-07-12 10:18:32", "YYYY-MO-DD");

print x;

produces:

20100712000000.0

x = strtodt("10:18:32", "HH:MI:SS");

print x;

produces:

101832.0

x = strtodt("05-28-10", "MO-DD-YR");

print x;

produces:

20100528000000.0

SEE ALSO dttostr, dttoutc, utctodt

strtof

PURPOSE Converts a string array to a numeric matrix.

FORMAT x = strtof(sa);

28-872 GAUSS L R

s

strtofcplx

INPUT sa N×K string array containing numeric data.

OUTPUT x N×K matrix.

REMARKS This function supports real matrices only. Use strtofcplx for complex data.

SEE ALSO strtofcplx, ftostrC

strtofcplx

PURPOSE Converts a string array to a complex numeric matrix.

FORMAT x = strtofcplx(sa);

INPUT sa N×K string array containing numeric data.

OUTPUT x N×K complex matrix.

REMARKS strtofcplx supports both real and complex data. It is slower than strtof for
real matrices. strtofcplx requires the presence of the real part. The
imaginary part can be absent.

SEE ALSO strtof, ftostrC

strtriml

PURPOSE Strips all whitespace characters from the left side of each element in a string
array.

FORMAT y = strtriml(sa);

GAUSS L R 28-873

strtrimr

INPUT sa N×M string array.

OUTPUT y N×M string array.

SOURCE strfns.src

SEE ALSO strtrimr, strtrunc, strtruncl, strtruncpad, strtruncr

strtrimr

PURPOSE Strips all whitespace characters from the right side of each element in a string
array.

FORMAT y = strtrimr(sa);

INPUT sa N×M string array.

OUTPUT y N×M string array.

SOURCE strfns.src

SEE ALSO strtriml, strtrunc, strtruncl, strtruncpad, strtruncr

strtrunc

PURPOSE Truncates all elements of a string array to not longer than the specified number
of characters.

FORMAT y = strtrunc(sa,maxlen);

28-874 GAUSS L R

s

strtruncl

INPUT sa N×K string array.
maxlen 1×K or 1×1 matrix, maximum length.

OUTPUT y N×K string array result.

SEE ALSO strtriml, strtrimr, strtruncl, strtruncpad, strtruncr

strtruncl

PURPOSE Truncates the left side of all elements of a string array by a user-specified
number of characters.

FORMAT y = strtruncl(sa,ntrunc);

INPUT sa N×M, N×1, 1×M, or 1×1 string array.
ntrunc N×M, N×1, 1×M, or 1×1 matrix containing the number of

characters to strip.

OUTPUT y string array result.

SOURCE strfns.src

SEE ALSO strtriml, strtrimr, strtrunc, strtruncpad, strtruncr

strtruncpad

PURPOSE Truncates all elements of a string array to the specified number of characters,
adding spaces on the end as needed to achieve the exact length.

FORMAT y = strtruncpad(sa,maxlen);

GAUSS L R 28-875

strtruncr

INPUT sa N×K string array.
maxlen 1×K or 1×1 matrix, maximum length.

OUTPUT y N×K string array result.

SEE ALSO strtriml, strtrimr, strtrunc, strtruncl, strtruncr

strtruncr

PURPOSE Truncates the right side of all elements of a string array by a user-specified
number of characters.

FORMAT y = strtruncr(sa,ntrunc);

INPUT sa N×M, N×1, 1×M, or 1×1 string array.
ntrunc N×M, N×1, 1×M, or 1×1 matrix containing the number of

characters to strip.

OUTPUT y String array result.

SOURCE strfns.src

SEE ALSO strtriml, strtrimr, strtrunc, strtruncl, strtruncpad

submat

PURPOSE Extracts a submatrix of a matrix, with the appropriate rows and columns given
by the elements of vectors.

FORMAT y = submat(x,r,c);

28-876 GAUSS L R

s

subscat

INPUT x N×K matrix.

r L×M matrix of row indices.

c P×Q matrix of column indices.

OUTPUT y (L*M)×(P*Q) submatrix of x, y may be larger than x.

REMARKS If r = 0, then all rows of x will be used. If c = 0, then all columns of x will be
used.

EXAMPLE let x[3,4] = 1 2 3 4 5 6 7 8 9 10 11 12;

let v1 = 1 3;

let v2 = 2 4;

y = submat(x,v1,v2);

z = submat(x,0,v2);

x =

1 2 3 4
5 6 7 8
9 10 11 12

y =
2 4

10 12

z =

2 4
6 8

10 12

SEE ALSO diag, vec, reshape

subscat

GAUSS L R 28-877

subscat

PURPOSE Changes the values in a vector depending on the category a particular element
falls in.

FORMAT y = subscat(x,v,s);

INPUT x N×1 vector.

v P×1 numeric vector, containing breakpoints specifying the ranges
within which substitution is to be made. This MUST be sorted in
ascending order.

v can contain a missing value as a separate category if the missing
value is the first element in v.

If v is a scalar, all matches must be exact for a substitution to be
made.

s P×1 vector, containing values to be substituted.

OUTPUT y N×1 vector, with the elements in s substituted for the original
elements of x according to which of the regions the elements of x fall
into:

x ≤ v[1] → s[1]
v[1] < x ≤ v[2] → s[2]

. . .

v[p − 1] < x ≤ v[p] → s[p]
x > v[p] → the original value of x

If missing is not a category specified in v, missings in x are passed
through without change.

EXAMPLE let x = 1 2 3 4 5 6 7 8 9 10;

let v = 4 5 8;

let s = 10 5 0;

y = subscat(x,v,s);

28-878 GAUSS L R

s

substute

y =

10
10
10
10
5
0
0
0
9

10

substute

PURPOSE Substitutes new values for old values in a matrix, depending on the outcome of
a logical expression.

FORMAT y = substute(x,e,v);

INPUT x N×K matrix containing the data to be changed.

e L×M matrix, E×E conformable with x containing 1’s and 0’s.
Elements of x will be changed if the corresponding element of e is 1.

v P×Q matrix, E×E conformable with x and e, containing the values to
be substituted for the original values of x when the corresponding
element of e is 1.

OUTPUT y max(N,L,P) by max(K,M,Q) matrix.

REMARKS The e matrix is usually the result of an expression or set of expressions using
dot conditional and boolean operators.

EXAMPLE x = { Y 55 30,

N 57 18,

GAUSS L R 28-879

subvec

Y 24 3,

N 63 38,

Y 55 32,

N 37 11 };

e = x[.,1] .$=\,= "Y" .and x[.,2] .>= 55 .and x[.,3] .>= 30;

x[.,1] = substute(x[.,1],e,"R");

e =

1
0
0
0
1
0

Here is what x looks like after substitution:

x =

R 55 30
N 57 18
Y 24 3
N 63 38
R 55 32
N 37 11

SOURCE datatran.src

SEE ALSO code, recode

subvec

PURPOSE Extracts an N×1 vector of elements from an N×K matrix.

28-880 GAUSS L R

s

sumc

FORMAT y = subvec(x,ci);

INPUT x N×K matrix.

ci N×1 vector of column indices.

OUTPUT y N×1 vector containing the elements in x indicated by ci.

REMARKS Each element of y is from the corresponding row of x and the column set by the
corresponding row of ci. In other words, y[i] = x[i,ci[i]].

EXAMPLE x = reshape(seqa(1,1,12),4,3);

ci = { 2,3,1,3 };

y = subvec(x,ci);

x =

1 2 3
4 5 6
7 8 9

10 11 12

ci =

2
3
1
3

y =

2
6
7

12

sumc

GAUSS L R 28-881

sumc

PURPOSE Computes the sum of each column of a matrix or the sum across the
second-fastest moving dimension of an L-dimensional array.

FORMAT y = sumc(x);

INPUT x N×K matrix or L-dimensional array where the last two dimensions
are N×K.

OUTPUT y K×1 vector or L-dimensional array where the last two dimensions
are K×1.

EXAMPLE x = reshape(seqa(1,1,12),3,4));

y = sumc(x);

x =

1 2 3 4
5 6 7 8
9 10 11 12

y =

15
18
21
24

a = areshape(seqa(1,1,24),2|3|4);

z = sumc(a);

a is a 2×3×4 array such that:

[1,1,1] through [1,3,4] =

1 2 3 4
5 6 7 8
9 10 11 12

28-882 GAUSS L R

s

sumr

[2,1,1] through [2,3,4] =

13 14 15 16
17 18 19 20
21 22 23 24

z is a 2×4×1 array such that:

[1,1,1] through [1,4,1] =

15
18
21
24

[2,1,1] through [2,4,1] =

51
54
57
60

SEE ALSO cumsumc, meanc, stdc

sumr

PURPOSE Computes the sum of each row of a matrix or the sum of the fastest moving
dimension of an L-dimensional array.

FORMAT y = sumr(x);

GAUSS L R 28-883

sumr

INPUT x N×K matrix or L-dimensional array where the last two dimensions
are N×K.

OUTPUT y N×1 vector or L-dimensional array where the last two dimensions
are N×1.

EXAMPLE x = reshape(seqa(1,1,12),3,4);

y = sumr(x);

x =

1 2 3 4
5 6 7 8
9 10 11 12

y =

10
26
42

a = areshape(seqa(1,1,24),2|3|4);

z = sumr(a);

a is a 2×3×4 array such that:

[1,1,1] through [1,3,4] =

1 2 3 4
5 6 7 8
9 10 11 12

[2,1,1] through [2,3,4] =

13 14 15 16
17 18 19 20
21 22 23 24

28-884 GAUSS L R

s

surface

z is a 2×3×1 array such that:

[1,1,1] through [1,3,1] =

10
26
42

[2,1,1] through [2,3,1] =

58
74
90

SEE ALSO sumc

surface

PURPOSE Graphs a 3-D surface.

LIBRARY pgraph

FORMAT surface(x,y,z);

INPUT x 1×K vector, the X axis data.

y N×1 vector, the Y axis data.

z N×K matrix, the matrix of height data to be plotted.

GLOBAL
INPUT

_psurf 2×1 vector, controls 3-D surface characteristics.

[1] if 1, show hidden lines. Default 0.

GAUSS L R 28-885

surface

[2] color for base (default 7). The base is an outline of the
X-Y plane with a line connecting each corner to the
surface. If 0, no base is drawn.

_pticout scalar, if 0 (default), tick marks point inward, if 1, tick marks
point outward.

_pzclr Z level color control.
There are 3 ways to set colors for the Z levels of a surface
graph.

1. To specify a single color for the entire surface plot,
set the color control variable to a scalar value 1–15.
For example:
_pzclr = 15;

2. To specify multiple colors distributed evenly over
the entire Z range, set the color control variable to a
vector containing the desired colors only. GAUSS
will automatically calculate the required
corresponding Z values for you. The following
example will produce a three color surface plot, the
Z ranges being lowest=blue, middle=light blue,
highest=white:
_pzclr = { 1, 10, 15 };

3. To specify multiple colors distributed over selected
ranges, the Z ranges as well as the colors must be
manually input by the user. The following example
assumes -0.2 to be the minimum value in the z
matrix:
_pzclr = { -0.2 1,

/* z >= -0.2 blue */

0.0 10,

/* z >= 0.0 light blue */

0.2 15 };

/* z >= 0.2 white */

Since a Z level is required for each selected color,
the user must be responsible to compute the
minimum value of the z matrix as the first Z range

28-886 GAUSS L R

s

svd

element. This may be most easily accomplished by
setting the _pzclr matrix as shown above (the first
element being an arbitrary value), then resetting the
first element to the minimum z value as follows:
_pzclr = { 0.0 1,

0.0 10,

0.2 15 };

_pzclr[1,1] = minc(minc(z));

See C, Section 21.5, for the list of available colors.

REMARKS surface uses only the minimum and maximum of the X axis data in generating
the graph and tick marks.

SOURCE psurface.src

SEE ALSO volume, view

svd

PURPOSE Computes the singular values of a matrix.

FORMAT s = svd(x);

INPUT x N×P matrix whose singular values are to be computed.

OUTPUT s M×1 vector, where M = min(N,P), containing the singular values of
x arranged in descending order.

GLOBAL
INPUT

_svderr scalar, if not all of the singular values can be computed,
_svderr will be nonzero. The singular values in
s[_svderr+1], . . . s[M] will be correct.

REMARKS Error handling is controlled with the low bit of the trap flag.

GAUSS L R 28-887

svd1

trap 0 set _svderr and terminate with message
trap 1 set _svderr and continue execution

EXAMPLE x = { 4 3 6 7,

8 2 9 5 };

y = svd(x);

y =
16.521787
3.3212254

SOURCE svd.src

SEE ALSO svd1, svd2, svds

svd1

PURPOSE Computes the singular value decomposition of a matrix so that: x = u ∗ s ∗ v′.

FORMAT { u,s,v } = svd1(x);

INPUT x N×P matrix whose singular values are to be computed.

OUTPUT u N×N matrix, the left singular vectors of x.

s N×P diagonal matrix, containing the singular values of x arranged in
descending order on the principal diagonal.

v P×P matrix, the right singular vectors of x.

GLOBAL
OUTPUT

_svderr scalar, if all of the singular values are correct, _svderr is 0.
If not all of the singular values can be computed, _svderr is
set and the diagonal elements of s with indices greater than
_svderr are correct.

28-888 GAUSS L R

s

svd2

REMARKS Error handling is controlled with the low bit of the trap flag.

trap 0 set _svderr and terminate with message
trap 1 set _svderr and continue execution

EXAMPLE x = rndu(3,3);

{ u, s, v } = svd1(x);

x =

0.97847012 0.20538614 0.59906497
0.85474208 0.79673540 0.22482095
0.33340653 0.74443792 0.75698778

u =

−0.57955818 0.65204491 0.48882486
−0.61005618 0.05056673 −0.79074298
−0.54031821 −0.75649219 0.36847767

s =

1.84994646 0.00000000 0.00000000
0.00000000 0.60370542 0.00000000
0.00000000 0.00000000 0.47539239

v =

−0.68578561 0.71062560 −0.15719208
−0.54451302 −0.64427479 −0.53704336
−0.48291165 −0.28270348 0.82877927

SOURCE svd.src

SEE ALSO svd, svd2, svdusv

svd2

GAUSS L R 28-889

svdcusv

PURPOSE Computes the singular value decomposition of a matrix so that: x = u ∗ s ∗ v′

(compact u).

FORMAT { u,s,v } = svd2(x);

INPUT x N×P matrix whose singular values are to be computed.

OUTPUT u N×N or N×P matrix, the left singular vectors of x. If N > P, then u
will be N×P, containing only the P left singular vectors of x.

s N×P or P×P diagonal matrix, containing the singular values of x
arranged in descending order on the principal diagonal. If N > P,
then s will be P×P.

v P×P matrix, the right singular vectors of x.

GLOBAL
OUTPUT

_svderr scalar, if all of the singular values are correct, _svderr is 0.
If not all of the singular values can be computed, _svderr is
set and the diagonal elements of s with indices greater than
_svderr are correct.

REMARKS Error handling is controlled with the low bit of the trap flag.

trap 0 set _svderr and terminate with message
trap 1 set _svderr and continue execution

SOURCE svd.src

SEE ALSO svd, svd1, svdcusv

svdcusv

PURPOSE Computes the singular value decomposition of x so that: x = u ∗ s ∗ v′ (compact
u).

28-890 GAUSS L R

s

svds

FORMAT { u,s,v } = svdcusv(x);

INPUT x N×P matrix or K-dimensional array where the last two dimensions
are N×P, whose singular values are to be computed.

OUTPUT u N×N or N×P matrix or K-dimensional array where the last two
dimensions are N×N or N×P, the left singular vectors of x. If N > P,
u is N×P, containing only the P left singular vectors of x.

s N×P or P×P diagonal matrix or K-dimensional array where the last
two dimensions describe N×P or P×P diagonal arrays, the singular
values of x arranged in descending order on the principal diagonal.
If N > P, s is P×P.

v P×P matrix or K-dimensional array where the last two dimensions
are P×P, the right singular vectors of x.

REMARKS If x is an array, the resulting arrays u, s and v will contain their respective results
for each of the corresponding 2-dimensional arrays described by the two trailing
dimensions of x. In other words, for a 10×4×5 array x, u will be a 10×4×4 array
containing the left singular vectors of each of the 10 corresponding 4×5 arrays
contained in x. s will be a 10×4×5 array and v will be a 10×5×5 array both
containing their respective results for each of the 10 corresponding 4×5 arrays
contained in x.

If not all of the singular values can be computed, s[1,1] is set to a scalar error
code. Use scalerr to convert this to an integer. The diagonal elements of s
with indices greater than scalerr(s[1,1]) are correct. If scalerr(s[1,1])
returns a 0, all of the singular values have been computed.

SEE ALSO svd2, svds, svdusv

svds

PURPOSE Computes the singular values of a x.

GAUSS L R 28-891

svdusv

FORMAT s = svds(x);

INPUT x N×P matrix or K-dimensional array where the last two dimensions
are N×P, whose singular values are to be computed.

OUTPUT s min(N,P)×1 vector or K-dimensional array where the last two
dimensions are min(N,P)×1, the singular values of x arranged in
descending order.

REMARKS If x is an array, the result will be an array containing the singular values of each
of the 2-dimensional arrays described by the two trailing dimensions of x. In
other words, for a 10×4×5 array x, s will be a 10×4×1 array containing the
singular values of each of the 10 4×5 arrays contained in x.

If not all of the singular values can be computed, s[1] is set to a scalar error
code. Use scalerr to convert this to an integer. The elements of s with indices
greater than scalerr(s[1]) are correct. If scalerr(s[1]) returns a 0, all of
the singular values have been computed.

SEE ALSO svd, svdcusv, svdusv

svdusv

PURPOSE Computes the singular value decomposition of x so that: x = u ∗ s ∗ v′.

FORMAT { u,s,v } = svdusv(x);

INPUT x N×P matrix or K-dimensional array where the last two dimensions
are N×P, whose singular values are to be computed.

OUTPUT u N×N matrix or K-dimensional array where the last two dimensions
are N×N, the left singular vectors of x.

28-892 GAUSS L R

s

sysstate

s N×P diagonal matrix or K-dimensional array where the last two
dimensions describe N×P diagonal arrays, the singular values of x
arranged in descending order on the principal diagonal.

v P×P matrix or K-dimensional array where the last two dimensions
are P×P, the right singular vectors of x.

REMARKS If x is an array, the resulting arrays u, s and v will contain their respective results
for each of the corresponding 2-dimensional arrays described by the two trailing
dimensions of x. In other words, for a 10×4×5 array x, u will be a 10×4×4 array
containing the left singular vectors of each of the 10 corresponding 4×5 arrays
contained in x. s will be a 10×4×5 array and v will be a 10×5×5 array both
containing their respective results for each of the 10 corresponding 4×5 arrays
contained in x.

If not all of the singular values can be computed, s[1,1] is set to a scalar error
code. Use scalerr to convert this to an integer. The diagonal elements of s
with indices greater than scalerr(s[1,1]) are correct. If scalerr(s[1,1])
returns a 0, all of the singular values have been computed.

SEE ALSO svd1, svdcusv, svds

sysstate

PURPOSE Gets or sets general system parameters.

FORMAT { rets. . . } = sysstate(case,y);

REMARKS The available cases are as follows:

Case 1 Version Information Returns the current GAUSS version
information in an 8-element numeric vector.

Cases 2-7 GAUSS System Paths Gets or sets GAUSS system path.

GAUSS L R 28-893

sysstate

Case 8 Complex Number Toggle Controls automatic generation of
complex numbers in sqrt, ln, and log for negative
arguments.

Case 9 Complex Trailing Character Gets or sets trailing character
for the imaginary part of a complex number.

Case 10 Printer Width Gets or sets lprint width.

Case 11 Auxiliary Output Width Gets or sets the auxiliary output
width.

Case 13 LU Tolerance Gets or sets singularity tolerance for LU
decomposition in current thread.

Case 14 Cholesky Tolerance Gets or sets singularity tolerance for
Cholesky decomposition in current thread.

Case 15 Screen State Gets or sets window state as controlled by
screen command.

Case 18 Auxiliary Output Gets auxiliary output parameters.

Case 19 Get/Set Format Gets or sets format parameters.

Case 21 Imaginary Tolerance Gets or sets imaginary tolerance in
current thread.

Case 22 Source Path Gets or sets the path the compiler will search
for source files.

Case 24 Dynamic Library Directory Gets or sets the path for the
default dynamic library directory.

Case 25 Temporary File Path Gets or sets the path GAUSS will use
for temporary files.

Case 26 Interface Mode Returns the current interface mode.

Case 28 Random Number Generator Parameters Gets or sets
parameters used by the random number generation
commands.

Case 30 Base Year Toggle Specifies whether year value returned by
date is to include base year (1900) or not.

Case 32 Global LU Tolerance Gets or sets global singularity
tolerance for LU decomposition.

28-894 GAUSS L R

s

sysstate

Case 33 Global Cholesky Tolerance Gets or sets global singularity
tolerance for Cholesky decomposition.

Case 34 Global Imaginary Tolerance Gets or sets global imaginary
tolerance.

Case 1: Version Information

PURPOSE Returns the current GAUSS version information in an 8-element numeric
vector.

FORMAT vi = sysstate(1,0);

OUTPUT vi 8×1 numeric vector containing version information:

[1] Major version number.
[2] Minor version number.
[3] Revision.
[4] Machine type.
[5] Operating system.
[6] Runtime module.
[7] Light version.
[8] Always 0.

vi[4] indicates the type of machine on which GAUSS is running:

1 Intel x86
2 Sun SPARC
4 HP 9000
7 Mac 32-bit PowerPC

vi[5] indicates the operating system on which GAUSS is running:

3 Solaris
5 HP-UX
9 Windows
10 Linux

GAUSS L R 28-895

sysstate

12 Mac OS

Cases 2-7: GAUSS System Paths

PURPOSE Gets or sets GAUSS system path.

FORMAT oldpath = sysstate(case,path);

INPUT case scalar 2-7, path to set.

2 .exe file location.
3 loadexe path.
4 save path.
5 load, loadm path.
6 loadf, loadp path.
7 loads path.

path scalar 0 to get path, or string containing the new path.

OUTPUT oldpath string, original path.

REMARKS If path is of type matrix, the path will be returned but not modified.

Case 8: Complex Number Toggle

PURPOSE Controls automatic generation of complex numbers in sqrt, ln and log for
negative arguments.

FORMAT oldstate = sysstate(8,state);

INPUT state scalar, 1, 0, or -1

OUTPUT oldstate scalar, the original state.

28-896 GAUSS L R

s

sysstate

REMARKS If state = 1, log, ln, and sqrt will return complex numbers for negative
arguments. If state = 0, the program will terminate with an error message when
negative numbers are passed to log, ln, and sqrt. If state = -1, the current
state is returned and left unchanged. The default state is 1.

Case 9: Complex Trailing Character

PURPOSE Gets or sets trailing character for the imaginary part of a complex number.

FORMAT oldtrail = sysstate(9,trail);

INPUT trail scalar 0 to get character, or string containing the new trailing
character.

OUTPUT oldtrail string, the original trailing character.

REMARKS The default character is “i”.

Case 10: Printer Width

PURPOSE Gets or sets lprint width.

FORMAT oldwidth = sysstate(10,width);

INPUT width scalar, new printer width.

OUTPUT oldwidth scalar, the current original width.

REMARKS If width is 0, the printer width will not be changed.

This may also be set with the lpwidth command.

SEE ALSO lpwidth

GAUSS L R 28-897

sysstate

Case 11: Auxiliary Output Width

PURPOSE Gets or sets the auxiliary output width.

FORMAT oldwidth = sysstate(11,width);

INPUT width scalar, new output width.

OUTPUT oldwidth scalar, the original output width.

REMARKS If width is 0 then the output width will not be changed.

This may also be set with the outwidth command.

SEE ALSO outwidth

Case 13: LU Tolerance

PURPOSE Gets or sets singularity tolerance for LU decomposition in current thread.

FORMAT oldtol = sysstate(13,tol);

INPUT tol scalar, new tolerance.

OUTPUT oldtol scalar, the original tolerance.

REMARKS The tolerance must be ≥ 0. If tol is negative, the tolerance is returned and left
unchanged.

This tolerance is thread-safe. It must be set in the same thread in which it is to
be referenced. To set the global singularity tolerance for LU decomposition, use
case 32.

SEE ALSO croutp, inv

28-898 GAUSS L R

s

sysstate

Case 14: Cholesky Tolerance

PURPOSE Gets or sets singularity tolerance for Cholesky decomposition in current thread.

FORMAT oldtol = sysstate(14,tol);

INPUT tol scalar, new tolerance.

OUTPUT oldtol scalar, the original tolerance.

REMARKS The tolerance must be ≥ 0. If tol is negative, the tolerance is returned and left
unchanged.

This tolerance is thread-safe. It must be set in the same thread in which it is to
be referenced. To set the global singularity tolerance for Cholesky
decomposition, use case 33.

SEE ALSO chol, invpd, solpd

Case 15: Screen State

PURPOSE Gets or sets window state as controlled by screen command.

FORMAT oldstate = sysstate(15,state);

INPUT state scalar, new window state.

OUTPUT oldstate scalar, the original window state.

REMARKS If state = 1, window output is turned on. If state = 0, window output is turned
off. If state = -1, the state is returned unchanged.

SEE ALSO screen

GAUSS L R 28-899

sysstate

Case 18: Auxiliary Output

PURPOSE Gets auxiliary output parameters.

FORMAT { state,name } = sysstate(18,0);

OUTPUT state scalar, auxiliary output state, 1 - on, 0 - off.

name string, auxiliary output filename.

SEE ALSO output

Case 19: Get/Set Format

PURPOSE Gets or sets format parameters.

FORMAT oldfmt = sysstate(19,fmt);

INPUT fmt scalar or 11×1 column vector containing the new format parameters.
Usually this will have come from a previous sysstate(19,0) call.
See Output for description of matrix.

OUTPUT oldfmt 11×1 vector containing the current format parameters. The
characters in quotes are components of the format string that gets
passed through to the C library sprintf function:

[1] format conversion type:
0 string format (“s”).
1 compact format (“g”).
2 auto format (“#g”).
3 scientific format (“e”).
4 decimal format (“f”).
5 compact format, upper case (“G”).
6 auto format, upper case (“#G”).
7 scientific format, upper case (“E”).

28-900 GAUSS L R

s

sysstate

[2] justification:

0 right justification.
1 left justification (“-”).

[3] sign:
0 sign used only for negative numbers.
1 sign always used (“+”).

[4] leading zero:

0 no leading zero.
1 leading zero (“0”).

[5] trailing character:

0 no trailing character.
1 trailing space (“ ”).
2 trailing comma (“,”).
3 trailing tab (“\t”).

[6] row delimiter:

0 no row delimiter.
1 one newline between rows (“\n”).
2 two newlines between rows (“\n\n”).
3 print “Row 1, Row 2, ...” before each row (“\nRow %u\n”,

where “%u” is the row number).

[7] carriage line feed position:

0 newline row delimiters positioned before rows.
1 newline row delimiters positioned after rows.

[8] automatic line feed for row vectors.

0 newline row delimiters occur between rows of a matrix
only if that matrix has more than one row.

1 newline row delimiters occur between rows of a matrix,
regardless of number of rows.

[9] field width.
[10] precision.
[11] formatted flag.

0 formatting disabled.

GAUSS L R 28-901

sysstate

1 formatting enabled.

REMARKS If fmt is scalar 0, then the format parameters will be left unchanged.

See the format and print commands for more information on the formatting
parameters.

SEE ALSO format, print

Case 21: Imaginary Tolerance

PURPOSE Gets or sets imaginary tolerance in current thread.

FORMAT oldtol = sysstate(21,tol);

INPUT tol scalar, the new tolerance.

OUTPUT oldtol scalar, the original tolerance.

REMARKS The imaginary tolerance is used to test whether the imaginary part of a complex
matrix can be treated as zero or not. Functions that are not defined for complex
matrices check the imaginary part to see if it can be ignored. The default
tolerance is 2.23e-16, or machine epsilon.

If tol<0, the current tolerance is returned.

This tolerance is thread-safe. It must be set in the same thread in which it is to
be referenced. To set the global imaginary tolerance, use case 34.

SEE ALSO hasimag

Case 22: Source Path

PURPOSE Gets or sets the path the compiler will search for source files.

28-902 GAUSS L R

s

sysstate

FORMAT oldpath = sysstate(22,path);

INPUT path scalar 0 to get path, or string containing the new path.

OUTPUT oldpath string, original path.

REMARKS If path is a matrix, the current source path is returned.

This resets the src_path configuration variable. src_path is initially defined
in the GAUSS configuration file, gauss.cfg.

path can list a sequence of directories, separated by semicolons.

Resetting src_path affects the path used for subsequent run and compile
statements.

Case 24: Dynamic Library Directory

PURPOSE Gets or sets the path for the default dynamic library directory.

FORMAT oldpath = sysstate(24,path);

INPUT path scalar 0 to get path, or string containing the new path.

OUTPUT oldpath string, original path.

REMARKS If path is a matrix, the current path is returned.

path should list a single directory, not a sequence of directories.

Changing the dynamic library path does not affect the state of any DLL’s
currently linked to GAUSS. Rather, it determines the directory that will be
searched the next time dlibrary is called.

UNIX

GAUSS L R 28-903

sysstate

Changing the path has no effect on GAUSS’s default DLL, libgauss.so.
libgauss.so must always be located in the GAUSSHOME directory.

Windows

Changing the path has no effect on GAUSS’s default DLL, gauss.dll.
gauss.dll must always be located in the GAUSSHOME directory.

SEE ALSO dlibrary, dllcall

Case 25: Temporary File Path

PURPOSE Gets or sets the path GAUSS will use for temporary files.

FORMAT oldpath = sysstate(25,path);

INPUT path scalar 0 to get path, or string containing the new path.

OUTPUT oldpath string, original path.

REMARKS If path is of type matrix, the path will be returned but not modified.

Case 26: Interface Mode

PURPOSE Returns the current interface mode.

FORMAT mode = sysstate(26,0);

OUTPUT mode scalar, interface mode flag

0 non-X mode
1 terminal (-v) mode
2 X Windows mode

28-904 GAUSS L R

s

sysstate

REMARKS A mode of 0 indicates that you’re running a non-X version of GAUSS; i.e., a
version that has no X Windows capabilities. A mode of 1 indicates that you’re
running an X Windows version of GAUSS, but in terminal mode; i.e., you
started GAUSS with the -v flag. A mode of 2 indicates that you’re running
GAUSS in X Windows mode.

Case 28: Random Number Generator Parameters

PURPOSE Gets or sets the random number generator (RNG) parameters.

FORMAT oldprms = sysstate(28,prms);

INPUT prms scalar 0 to get parameters, or 3×1 matrix of new parameters.
[1] seed, 0<seed<232

[2] multiplier, 0<mult<232

[3] constant, 0<=const<232

OUTPUT oldprms 3×1 vector, the original parameters.

REMARKS If prms is a scalar 0, the current parameters will be returned without being
changed.

The modulus of the RNG cannot be changed; it is fixed at 232.

SEE ALSO rndcon, rndmult, rndseed, rndn, rndu

Case 30: Base Year Toggle

PURPOSE Specifies whether year value returned by date is to include base year (1900) or
not.

FORMAT oldstate = sysstate(30,state);

INPUT state scalar, 1, 0, or missing value.

GAUSS L R 28-905

sysstate

OUTPUT oldstate scalar, the original state.

REMARKS Internally, date acquires the number of years since 1900. sysstate case 30
specifies whether date should add the base year to that value or not. If state =
1, date adds 1900, returning a fully-qualified 4-digit year.

If state = 0, date returns the number of years since 1900. If state is a missing
value, the current state is returned. The default state is 1.

Case 32: Global LU Tolerance

PURPOSE Gets or sets global singularity tolerance for LU decomposition.

FORMAT oldtol = sysstate(32,tol);

INPUT tol scalar, new tolerance.

OUTPUT oldtol scalar, the original tolerance.

REMARKS The tolerance must be ≥ 0. If tol is negative, the tolerance is returned and left
unchanged.

This is a global tolerance and therefore not thread-safe. To set the singularity
tolerance for LU decomposition in the current thread, use case 13.

SEE ALSO croutp, inv

Case 33: Global Cholesky Tolerance

PURPOSE Gets or sets global singularity tolerance for Cholesky decomposition.

FORMAT oldtol = sysstate(33,tol);

INPUT tol scalar, new tolerance.

28-906 GAUSS L R

s

system

OUTPUT oldtol scalar, the original tolerance.

REMARKS The tolerance must be ≥ 0. If tol is negative, the tolerance is returned and left
unchanged.

This is a global tolerance and therefore not thread-safe. To set the singularity
tolerance for Cholesky decomposition in the current thread, use case 14.

SEE ALSO chol, invpd, solpd

Case 34: Global Imaginary Tolerance

PURPOSE Gets or sets the global imaginary tolerance.

FORMAT oldtol = sysstate(34,tol);

INPUT tol scalar, the new tolerance.

OUTPUT oldtol scalar, the original tolerance.

REMARKS The imaginary tolerance is used to test whether the imaginary part of a complex
matrix can be treated as zero or not. Functions that are not defined for complex
matrices check the imaginary part to see if it can be ignored. The default
tolerance is 2.23e-16, or machine epsilon.

If tol<0, the current tolerance is returned.

This is a global tolerance and therefore not thread-safe. To set the imaginary
tolerance in the current thread, use case 21.

SEE ALSO hasimag

GAUSS L R 28-907

tab

system

PURPOSE Quits GAUSS and returns to the operating system.

FORMAT system;

system c;

INPUT c scalar, an optional exit code that can be recovered by the program
that invoked GAUSS. The default is 0. Valid arguments are 0-255.

REMARKS The system command always returns an exit code to the operating system or
invoking program. If you don’t supply one, it returns 0. This is usually
interpreted as indicating success.

SEE ALSO exec

tab

PURPOSE Tabs the cursor to a specified text column.

FORMAT tab(col);
print expr1 expr2 tab(col1) expr3 tab(col2) expr4 ...;

INPUT col scalar, the column position to tab to.

REMARKS col specifies an absolute column position. If col is not an integer, it will be
truncated.

tab can be called alone or embedded in a print statement. You cannot embed
it within a parenthesized expression in a print statement, though. For example:

28-908 GAUSS L R

t

tan

print (tab(20) c + d * e);

will not give the results you expect. If you have to use parenthesized
expressions, write it like this instead:

print tab(20) (c + d * e);

tan

PURPOSE Returns the tangent of its argument.

FORMAT y = tan(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array.

REMARKS For real matrices, x should contain angles measured in radians.

To convert degrees to radians, multiply the degrees by π
180 .

EXAMPLE let x = 0 .5 1 1.5;

y = tan(x);

y =

0.00000000
0.54630249
1.55740772

14.10141995

GAUSS L R 28-909

tanh

SEE ALSO atan, pi

tanh

PURPOSE Computes the hyperbolic tangent.

FORMAT y = tanh(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array containing the hyperbolic
tangents of the elements of x.

EXAMPLE let x = -0.5 -0.25 0 0.25 0.5 1;

x = x * pi;

y = tanh(x);

x =

−1.570796
−0.785398

0.000000
0.785398
1.570796
3.141593

y =

−0.917152
−0.655794

0.000000
0.655794
0.917152
0.996272

SOURCE trig.src

28-910 GAUSS L R

t

tempname

tempname

PURPOSE Creates a temporary file with a unique name.

FORMAT tname = tempname(path,pre,suf);

INPUT path string, path where the file will reside.

pre string, a prefix to begin the file name with.

suf string, a suffix to end the file name with.

OUTPUT tname string, unique temporary file name of the form
path/preXXXXnnnnnsuf , where XXXX are 4 letters, and nnnnn is the
process id of the calling process.

REMARKS Any or all of the inputs may be a null string or 0. If path is not specified, the
current working directory is used.

If unable to create a unique file name of the form requested, tempname returns a
null string.

WARNING: GAUSS does not remove temporary files created by tempname. It
is left to the user to remove them when they are no longer needed.

ThreadBegin

PURPOSE Marks the beginning of a multi-line block of code to be executed as a thread.

FORMAT ThreadBegin;

EXAMPLE ThreadBegin;

GAUSS L R 28-911

ThreadEnd

m = n*p;

n = calcA(m);

ThreadEnd;

Notice that the writer-must-isolate rule (see Chapter 14) does not apply within
the bounds of the ThreadBegin/ThreadEnd pair, as there is no risk of
simultaneous access to a symbol. The rule only applies between the threads in a
given set (and their children).

See ThreadJoin for an example of a fully-defined thread set.

SEE ALSO ThreadEnd, ThreadJoin, ThreadStat

ThreadEnd

PURPOSE Marks the end of a multi-line block of code to be executed as a thread.

FORMAT ThreadEnd;

EXAMPLE ThreadBegin;

m = n*p;

n = calcA(m);

ThreadEnd;

Notice that the writer-must-isolate rule (see Chapter 14) does not apply within
the bounds of the ThreadBegin/ThreadEnd pair, as there is no risk of
simultaneous access to a symbol. The rule only applies between the threads in a
given set (and their children).

See ThreadJoin for an example of a fully-defined thread set.

SEE ALSO ThreadBegin, ThreadJoin, ThreadStat

28-912 GAUSS L R

t

ThreadStat

ThreadJoin

PURPOSE Completes the definition of a set of threads to be executed simultaneously.

FORMAT ThreadJoin;

REMARKS Each thread in the set must adhere to the writer-must-isolate rule (see Chapter
14). Because the threads in a set execute simultaneously, there is no way of
knowing in one thread the current “state” of a symbol in another, and thus no
way of safely or meaningfully accessing it.

EXAMPLE ThreadBegin; // Thread 1--isolates y,z

y = x’x;

z = y’y;

ThreadEnd;

ThreadBegin; // Thread 2--isolates q,r

q = r’r;

r = q’q;

ThreadEnd;

ThreadStat n = m’m; // Thread 3--isolates n

ThreadStat p = o’o; // Thread 4--isolates p

ThreadJoin; // Joins threads 1-4

b = z + r + n’p; // y,z,q,r,n,p available again, can

// be read and written

Note how threads 1-4 isolate the various symbols they assign to—no other
thread references the written symbols at all. Once the threads are joined,
however, the symbols are again available for use, and can be both read and
assigned to.

SEE ALSO ThreadBegin, ThreadEnd, ThreadStat

GAUSS L R 28-913

time

ThreadStat

PURPOSE Marks a single line of code to be executed as a thread.

FORMAT ThreadStat statement;

EXAMPLE ThreadStat m = n*p;

See ThreadJoin for an example of a fully-defined thread set.

SEE ALSO ThreadBegin, ThreadEnd, ThreadJoin

time

PURPOSE Returns the current system time.

FORMAT y = time;

OUTPUT y 4×1 numeric vector, the current time in the order: hours, minutes,
seconds, and hundredths of a second.

EXAMPLE print time;

7.000000

31.000000

46.000000

33.000000

SEE ALSO date, datestr, datestring, datestrymd, hsec, timestr

28-914 GAUSS L R

t

timestr

timedt

PURPOSE Returns system date and time in DT scalar format.

FORMAT dt = timedt;

OUTPUT dt scalar, system date and time in DT scalar format.

REMARKS The DT scalar format is a double precision representation of the date and time.
In the DT scalar format, the number

20100306071511

represents 07:15:11 or 7:15:11 AM on March 6, 2010.

SOURCE time.src

SEE ALSO todaydt, timeutc, dtdate

timestr

PURPOSE Formats a time in a vector to a string.

FORMAT ts = timestr(t);

INPUT t 4×1 vector from the time function, or a zero. If the input is 0, the
time function will be called to return the current system time.

OUTPUT ts 8 character string containing current time in the format: hr:mn:sc

EXAMPLE t = { 7, 31, 46, 33 };

GAUSS L R 28-915

timeutc

ts = timestr(t);

print ts;

produces:

7:31:46

SOURCE time.src

SEE ALSO date, datestr, datestring, datestrymd, ethsec, etstr, time

timeutc

PURPOSE Returns the number of seconds since January 1, 1970 Greenwich Mean Time.

FORMAT tc = timeutc;

OUTPUT tc scalar, number of seconds since January 1, 1970 Greenwich Mean
Time.

EXAMPLE tc = timeutc;

utv = utctodtv(tc);

tc = 1279752687

utv = 2010 7 21 15 51 27 3 201

SEE ALSO dtvnormal, utctodtv

28-916 GAUSS L R

t

tkf2eps

title

PURPOSE Sets the title for the graph.

LIBRARY pgraph

FORMAT title(str);

INPUT str string, the title to display above the graph.

REMARKS Up to three lines of title may be produced by embedding a line feed character
(“\L”) in the title string.

EXAMPLE title("First title line\LSecond title line\L"\

"Third title line");

Fonts may be specified in the title string. For instructions on using fonts. see
S F, Section 21.4.1.

SOURCE pgraph.src

SEE ALSO xlabel, ylabel, fonts

tkf2eps

PURPOSE Converts a .tkf file to an Encapsulated PostScript file.

LIBRARY pgraph

FORMAT ret = tkf2eps(tekfile,epsfile);

GAUSS L R 28-917

tkf2ps

INPUT tekfile string, name of .tkf file.

epsfile string, name of Encapsulated PostScript file.

OUTPUT ret scalar, 0 if successful

REMARKS The conversion is done using the global parameters in peps.dec. You can
modify these globally by editing the .dec file, or locally by setting them in your
program before calling tkf2eps.

See the header of the output Encapsulated PostScript file and a PostScript
manual if you want to modify these parameters.

tkf2ps

PURPOSE Converts a .tkf file to a PostScript file.

LIBRARY pgraph

FORMAT ret = tkf2ps(tekfile,psfile);

INPUT tekfile string, name of .tkf file.

psfile string, name of PostScript file.

OUTPUT ret scalar, 0 if successful.

REMARKS The conversion is done using the global parameters in peps.dec. You can
modify these globally by editing the .dec file, or locally by setting them in your
program before calling tkf2ps.

See the header of the output PostScript file and a PostScript manual if you want
to modify these parameters.

28-918 GAUSS L R

t

todaydt

tocart

PURPOSE Converts from polar to cartesian coordinates.

FORMAT xy = tocart(r,theta);

INPUT r N×K real matrix, radius.

theta L×M real matrix, E×E conformable with r, angle in radians.

OUTPUT xy max(N,L) by max(K,M) complex matrix containing the X coordinate
in the real part and the Y coordinate in the imaginary part.

SOURCE coord.src

todaydt

PURPOSE Returns system date in DT scalar format. The time returned is always midnight
(00:00:00), the beginning of the returned day.

FORMAT dt = todaydt;

OUTPUT dt scalar, system date in DT scalar format.

REMARKS The DT scalar format is a double precision representation of the date and time.
In the DT scalar format, the number

20100306130525

represents 13:05:25 or 1:05:25 PM on March 6, 2010.

SOURCE time.src

GAUSS L R 28-919

toeplitz

SEE ALSO timedt, timeutc, dtdate

toeplitz

PURPOSE Creates a Toeplitz matrix from a column vector.

FORMAT t = toeplitz(x);

INPUT x K×1 vector.

OUTPUT t K×K Toeplitz matrix.

EXAMPLE x = seqa(1,1,5);

y = toeplitz(x);

x =

1
2
3
4
5

y =

1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
5 4 3 2 1

SOURCE toeplitz.src

28-920 GAUSS L R

t

token

token

PURPOSE Extracts the leading token from a string.

FORMAT { token,str left } = token(str);

INPUT str string, the string to parse.

OUTPUT token string, the first token in str.

str left string, str minus token.

REMARKS str can be delimited with commas or spaces.

The advantage of token over parse is that parse is limited to tokens of 8
characters or less; token can extract tokens of any length.

EXAMPLE Here is a keyword that uses token to parse its string parameter:

keyword add(s);

local tok,sum;

sum = 0;

do until s $=\,= "";

{ tok, s } = token(s);

sum = sum + stof(tok);

endo;

format /rd 1,2;

print "Sum is: " sum;

endp;

If you type:

add 1 2 3 4 5 6;

GAUSS L R 28-921

topolar

add will respond:

Sum is: 15.00

SOURCE token.src

SEE ALSO parse

topolar

PURPOSE Converts from cartesian to polar coordinates.

FORMAT { r,theta } = topolar(xy);

INPUT xy N×K complex matrix containing the X coordinate in the real part
and the Y coordinate in the imaginary part.

OUTPUT r N×K real matrix, radius.

theta N×K real matrix, angle in radians.

SOURCE coord.src

trace

PURPOSE Allows the user to trace program execution for debugging purposes.

FORMAT trace new;
trace new, mask;

28-922 GAUSS L R

t

trace

INPUT new scalar, new value for trace flag.

mask scalar, optional mask to allow leaving some bits of the trace flag
unchanged.

REMARKS The trace command has no effect unless you are running your program under
GAUSS’s source level debugger. Setting the trace flag will not generate any
debugging output during normal execution of a program.

The argument is converted to a binary integer with the following meanings:

bit decimal meaning
ones 1 trace calls/returns
twos 2 trace line numbers
fours 4 unused
eights 8 output to window
sixteens 16 output to print
thirty-twos 32 output to auxiliary output
sixty-fours 64 output to error log

You must set one or more of the output bits to get any output from trace. If
you set trace to 2, you’ll be doing a line number trace of your program, but the
output will not be displayed anywhere.

The trace output as a program executes will be as follows:

(+GRAD) calling function or procedure GRAD
(-GRAD) returning from GRAD
[47] executing line 47

Note that the line number trace will only produce output if the program was
compiled with line number records.

To set a single bit use two arguments:

trace 16,16; turn on output to printer
trace 0,16; turn off output to printer

EXAMPLE trace 1+8; /* trace fn/proc calls/returns to standard

GAUSS L R 28-923

trap

** output

*/

trace 2+8; /* trace line numbers to standard output */

trace 1+2+8; /* trace line numbers and fn/proc

** calls/returns to standard output

*/

trace 1+16; /* trace fn/proc calls/returns to printer */

trace 2+16; /* trace line numbers to printer */

trace 1+2+16; /* trace line numbers and fn/proc

** calls/returns to printer

*/

SEE ALSO #lineson

trap

PURPOSE Sets the trap flag to enable or disable trapping of numerical errors.

FORMAT trap new;
trap new, mask;

INPUT new scalar, new trap value.

mask scalar, optional mask to allow leaving some bits of the trap flag
unchanged.

REMARKS The trap flag is examined by some functions to control error handling. There are
16 bits in the trap flag, but most GAUSS functions will examine only the lowest
order bit:

trap 1; turn trapping on
trap 0; turn trapping off

If we extend the use of the trap flag, we will use the lower order bits of the trap
flag. It would be wise for you to use the highest 8 bits of the trap flag if you

28-924 GAUSS L R

t

trap

create some sort of user-defined trap mechanism for use in your programs. (See
the function trapchk for detailed instructions on testing the state of the trap
flag; see error for generating user-defined error codes.)

To set only one bit and leave the others unchanged, use two arguments:

trap 1,1; set the ones bit
trap 0,1; clear the ones bit

EXAMPLE proc(0) = printinv(x);

local oldval,y;

oldval = trapchk(1);

trap 1,1;

y = inv(x);

trap oldval,1;

if scalerr(y);

errorlog "WARNING: x is singular";

else;

print "y" y;

endif;

endp;

In this example the result of inv is trapped in case x is singular. The trap state is
reset to the original value after the call to inv.

Calling printinv as follows:

x = eye(3);

printinv(x);

produces:

y =

1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

GAUSS L R 28-925

trapchk

while

x = ones(3,3);

printinv(x);

produces:

WARNING: x is singular

SEE ALSO scalerr, trapchk, error

trapchk

PURPOSE Tests the value of the trap flag.

FORMAT y = trapchk(m);

INPUT m scalar mask value.

OUTPUT y scalar which is the result of the bitwise logical AND of the trap flag
and the mask value.

REMARKS To check the various bits in the trap flag, add the decimal values for the bits you
wish to check according to the chart below and pass the sum in as the argument
to the trapchk function:

28-926 GAUSS L R

t

trigamma

bit decimal value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

If you want to test if either bit 0 or bit 8 is set, then pass an argument of 1+256
or 257 to trapchk. The following table demonstrates values that will be
returned for:

y=trapchk(257);

0 1 value of bit 0 in trap flag
0 0 1

1 256 257

value of bit 8
in trap flag

GAUSS functions that test the trap flag currently test only bits 0 and 1.

SEE ALSO scalerr, trap, error

GAUSS L R 28-927

trimr

trigamma

PURPOSE Computes trigamma function.

FORMAT y = trigamma(x);

INPUT x M×N matrix or N-dimensional array.

OUTPUT y M×N matrix or N-dimensional array, trigamma.

REMARKS The trigamma function is the second derivative of the log of the gamma
function with respect to its argument.

trimr

PURPOSE Trims rows from the top and/or bottom of a matrix.

FORMAT y = trimr(x,t,b);

INPUT x N×K matrix from which rows are to be trimmed.

t scalar containing the number of rows which are to be removed from
the top of x.

b scalar containing the number of rows which are to be removed from
the bottom of x.

OUTPUT y R×K matrix where R=N-(t+b), containing the rows left after the
trim.

REMARKS If either t or b is zero, then no rows will be trimmed from that end of the matrix.

28-928 GAUSS L R

t

trunc

EXAMPLE x = rndu(5,3);

y = trimr(x,2,1);

x =

0.76042751 0.33841579 0.01844780
0.05334503 0.38939785 0.65029973
0.93077511 0.06961078 0.04207563
0.53640701 0.06640062 0.07222560
0.14084669 0.06033813 0.69449247

y =
0.93077511 0.06961078 0.04207563
0.53640701 0.06640062 0.07222560

SEE ALSO submat, rotater, shiftr

trunc

PURPOSE Converts numbers to integers by truncating the fractional portion.

FORMAT y = trunc(x);

INPUT x N×K matrix or N-dimensional array.

OUTPUT y N×K matrix or N-dimensional array containing the truncated
elements of x.

EXAMPLE x = 100*rndn(2,2);

y = trunc(x);

x =
77.68 −14.10

4.73 −158.88

GAUSS L R 28-929

type

y =
77.00 −14.00

4.00 −158.00

SEE ALSO ceil, floor, round

type

PURPOSE Returns the symbol table type of its argument.

FORMAT t = type(x);

INPUT x local or global symbol, can be an expression.

OUTPUT t scalar, argument type.

6 matrix
13 string
15 string array
17 structure
21 array
23 structure pointer
23 sparse matrix

REMARKS type returns the type of a single symbol. The related function typecv will take
a character vector of symbol names and return a vector of either their types or
the missing value code for any that are undefined. type works for the symbol
types listed above; typecv works for user-defined procedures, keywords and
functions as well. type works for global or local symbols; typecv works only
for global symbols.

EXAMPLE k = { "CHARS" };

print k;

28-930 GAUSS L R

t

typecv

if type(k) =\,= 6;

k = "" $+ k; /* force matrix to string */

endif;

print k;

produces:

+DEN

CHARS

SEE ALSO typecv, typef

typecv

PURPOSE Returns the symbol table type of objects whose names are given as a string or as
elements of a character vector or string array.

FORMAT y = typecv(x);

INPUT x string, or N×1 character vector or string array which contains the
names of variables whose type is to be determined.

OUTPUT y scalar or N×1 vector containing the types of the respective symbols
in x.

REMARKS The values returned by typecv for the various variable types are as follows:

GAUSS L R 28-931

typef

5 keyword (keyword)
6 matrix (numeric, character, or mixed)
8 procedure (proc)
9 function (fn)

13 string
15 string array
17 structure
21 array
23 structure pointer

typecv will return the GAUSS missing value code if the symbol is not found,
so it may be used to determine if a symbol is defined or not.

EXAMPLE xvar = sqrt(5);

yvar = "Montana";

fn area(r) = pi*r*r;

let names = xvar yvar area;

y = typecv(names);

names =

XVAR
YVAR
AREA

y =

6
13
9

SEE ALSO type, typef, varput, varget

typef

PURPOSE Returns the type of data (the number of bytes per element) in a GAUSS data set.

28-932 GAUSS L R

t

union

FORMAT y = typef(fp);

INPUT fp scalar, file handle of an open file.

OUTPUT y scalar, type of data in GAUSS data set.

REMARKS If fp is a valid GAUSS file handle, then y will be set to the type of the data in the
file as follows:

2 2-byte signed integer
4 4-byte IEEE floating point
8 8-byte IEEE floating point

EXAMPLE infile = "dat1";

outfile = "dat2";

open fin = ˆinfile;

names = getname(infile);

create fout = ˆoutfile with ˆnames,0,typef(fin);

In this example, a file dat2.dat is created which has the same variables and
variable type as the input file, dat1.dat. typef is used to return the type of the
input file data for the create statement.

SEE ALSO colsf, rowsf

union

PURPOSE Returns the union of two vectors with duplicates removed.

FORMAT y = union(v1,v2,flag);

INPUT v1 N×1 vector.

v2 M×1 vector.

GAUSS L R 28-933

unionsa

flag scalar, 1 if numeric data, 0 if character.

OUTPUT y L×1 vector containing all unique values that are in v1 and v2, sorted
in ascending order.

REMARKS The combined elements of v1 and v2 must fit into a single vector.

EXAMPLE let v1 = mary jane linda john;

let v2 = mary sally;

x = union(v1,v2,0);

x =

JANE
JOHN

LINDA
MARY
SALLY

unionsa

PURPOSE Returns the union of two string vectors with duplicates removed.

FORMAT y = unionsa(sv1,sv2);

INPUT sv1 N×1 or 1×N string vector.

sv2 M×1 or 1×M string vector.

OUTPUT y L×1 vector containing all unique values that are in sv1 and sv2,
sorted in ascending order.

EXAMPLE string sv1 = { "mary", "jane", "linda", "john" };

string sv2 = { "mary", "sally" };

28-934 GAUSS L R

u

uniqindx

y = unionsa(sv1,sv2);

y =

jane
john
linda
mary
sally

SOURCE unionsa.src

SEE ALSO union

uniqindx

PURPOSE Computes the sorted index of x, leaving out duplicate elements.

FORMAT index = uniqindx(x,flag);

INPUT x N×1 or 1×N vector.

flag scalar, 1 if numeric data, 0 if character.

OUTPUT index M×1 vector, indices corresponding to the elements of x sorted in
ascending order with duplicates removed.

REMARKS Among sets of duplicates it is unpredictable which elements will be indexed.

EXAMPLE let x = 5 4 4 3 3 2 1;

ind = uniqindx(x,1);

y = x[ind];

GAUSS L R 28-935

uniqindxsa

ind =

7
6
5
2
1

y =

1
2
3
4
5

SEE ALSO unique, uniqindxsa

uniqindxsa

PURPOSE Computes the sorted index of a string vector, omitting duplicate elements.

FORMAT ind = uniqindxsa(sv);

INPUT sv N×1 or 1×N string vector.

OUTPUT ind M×1 vector, indices corresponding to the elements of sv sorted in
ascending order with duplicates removed.

REMARKS Among sets of duplicates it is unpredictable which elements will be indexed.

EXAMPLE string sv = {"mary","linda","linda","jane",

"jane","cindy","betty"};

ind = uniqindxsa(sv);

y = sv[ind];

28-936 GAUSS L R

u

unique

ind =

7
6
5
2
1

y =

betty
cindy
jane
linda
mary

SOURCE uniquesa.src

SEE ALSO unique, uniquesa, uniqindx

unique

PURPOSE Sorts and removes duplicate elements from a vector.

FORMAT y = unique(x,flag);

INPUT x N×1 or 1×N vector.

flag scalar, 1 if numeric data, 0 if character.

OUTPUT y M×1 vector, sorted x with the duplicates removed.

EXAMPLE let x = 5 4 4 3 3 2 1;

y = unique(x,1);

GAUSS L R 28-937

uniquesa

y =

1
2
3
4
5

SEE ALSO uniquesa, uniqindx

uniquesa

PURPOSE Removes duplicate elements from a string vector.

FORMAT y = uniquesa(sv);

INPUT sv N×1 or 1×N string vector.

OUTPUT y sorted M×1 string vector containing all unique elements found in sv.

EXAMPLE string sv1 = { "mary", "jane", "mary", "linda", "john", "jane" };

y = uniquesa(sv);

y =

jane
john
linda
mary

SOURCE uniquesa.src

SEE ALSO unique, uniqindxsa, uniqindx

28-938 GAUSS L R

u

upmat, upmat1

upmat, upmat1

PURPOSE Returns the upper portion of a matrix. upmat returns the main diagonal and
every element above. upmat1 is the same except it replaces the main diagonal
with ones.

FORMAT u = upmat(x); u = upmat1(x);

INPUT x N×K matrix.

OUTPUT u N×K matrix containing the upper elements of x. The lower elements
are replaced with zeros. upmat returns the main diagonal intact.
upmat1 replaces the main diagonal with ones.

EXAMPLE x = { 1 2 -1,

2 3 -2,

1 -2 1 };

u = upmat(x);

u1 = upmat1(x);

The resulting matrices are

u =

1 2 −1
0 3 −2
0 0 1

u1 =

1 2 −1
0 1 −2
0 0 1

SOURCE diag.src

GAUSS L R 28-939

upper

SEE ALSO lowmat, lowmat1, diag, diagrv, crout

upper

PURPOSE Converts a string, matrix of character data, or string array to uppercase.

FORMAT y = upper(x);

INPUT x string, or N×K matrix, or string array containing the character data
to be converted to uppercase.

OUTPUT y string, or N×K matrix, or string array containing the uppercase
equivalent of the data in x.

REMARKS If x is a numeric matrix, y will contain garbage. No error message will be
generated since GAUSS does not distinguish between numeric and character
data in matrices.

EXAMPLE x = "uppercase";

y = upper(x);

y = “UPPERCASE”

SEE ALSO lower

use

PURPOSE Loads a compiled file at the beginning of the compilation of a source program.

28-940 GAUSS L R

u

use

FORMAT use fname;

INPUT fname literal or ˆstring, the name of a compiled file created using the
compile or the saveall command.

REMARKS The use command can be used ONCE at the TOP of a program to load in a
compiled file which the rest of the program will be added to. In other words, if
xy.e had the following lines:

library pgraph;

external proc xy;

x = seqa(0.1,0.1,100);

it could be compiled to xy.gcg. Then the following program could be run:

use xy;

xy(x,sin(x));

which would be equivalent to:

new;

library pgraph;

x = seqa(0.1,0.1,100);

xy(x,sin(x));

The use command can be used at the top of files that are to be compiled with
the compile command. This can greatly shorten compile time for a set of
closely related programs. For example:

library pgraph;

external proc xy,logx,logy,loglog,hist;

saveall pgraph;

GAUSS L R 28-941

utctodt

This would create a file called pgraph.gcg containing all the procedures,
strings and matrices needed to run PQG programs. Other programs could be
compiled very quickly with the following statement at the top of each:

use pgraph;

or the same statement could be executed once, for instance from the command
prompt, to instantly load all the procedures for PQG.

When the compiled file is loaded with use, all previous symbols and procedures
are deleted before the program is loaded. It is therefore unnecessary to execute
a new before use’ing a compiled file.

use can appear only ONCE at the TOP of a program.

SEE ALSO compile, run, saveall

utctodt

PURPOSE Converts UTC scalar format to DT scalar format.

FORMAT dt = utctodt(utc);

INPUT utc N×1 vector, UTC scalar format.

OUTPUT dt N×1 vector, DT scalar format.

REMARKS A UTC scalar gives the number of seconds since or before January 1, 1970
Greenwich Mean Time. In DT scalar format, 08:35:52 on June 11, 2005 is
20050611083552.

EXAMPLE tc = 1126290409;

28-942 GAUSS L R

u

utctodtv

print "tc = " tc;

dt = utctodt(tc);

print "dt = " dt;

produces:

tc = 1126290409

dt = 20050909112649

SOURCE time.src

SEE ALSO dtvnormal, timeutc, utctodtv, dttodtv, dtvtodt, dttoutc, dtvtodt,
strtodt, dttostr

utctodtv

PURPOSE Converts UTC scalar format to DTV vector format.

FORMAT dtv = utctodtv(utc);

INPUT utc N×1 vector, UTC scalar format.

OUTPUT dtv N×8 matrix, DTV vector format.

REMARKS A UTC scalar gives the number of seconds since or before January 1, 1970
Greenwich Mean Time.

Each row of dtv, in DTV vector format, contains:

GAUSS L R 28-943

utrisol

[N,1] Year, four digit integer.
[N,2] Month in Year, 1-12.
[N,3] Day of month, 1-31.
[N,4] Hours since midnight, 0-23.
[N,5] Minutes, 0-59.
[N,6] Seconds, 0-59.
[N,7] Day of week, 0-6, 0=Sunday.
[N,8] Days since Jan 1 of current year, 0-365.

EXAMPLE tc = timeutc;

print "tc = " tc;

dtv = utctodtv(tc);

print "dtv = " dtv;

produces:

tc = 1279816168

dtv = 2010 7 22 9 29 28 4 202

SEE ALSO dtvnormal, timeutc, utctodt, dttodtv, dttoutc, dtvtodt, dtvtoutc,
strtodt, dttostr

utrisol

PURPOSE Computes the solution of Ux = b where U is an upper triangular matrix.

FORMAT x = utrisol(b,U);

INPUT b P×K matrix.

U P×P upper triangular matrix.

OUTPUT x P×K matrix, solution of Ux = b.

28-944 GAUSS L R

u

vals

REMARKS utrisol applies a back solve to Ux = b to solve for x. If b has more than one
column, each column is solved for separately, i.e., utrisol applies a back solve
to Ux[., i] = b[., i].

vals

PURPOSE Converts a string into a matrix of its ASCII values.

FORMAT y = vals(s);

INPUT s string of length N where N > 0.

OUTPUT y N×1 matrix containing the ASCII values of the characters in the
string s.

REMARKS If the string is null, the function will fail and an error message will be given.

EXAMPLE k0:

k = key;

if not k;

goto k0;

endif;

if k =\,= vals("Y") or k =\,= vals("y");

goto doit;

else;

end;

endif;

doit:

In this example the key function is used to read keyboard input. When key
returns a nonzero value, meaning a key has been pressed, the ASCII value it
returns is tested to see if it is an uppercase or lowercase ‘Y’. If it is, the program
will jump to the label doit, otherwise the program will end.

GAUSS L R 28-945

varget

SEE ALSO chrs, ftos, stof

varget

PURPOSE Accesses a global variable whose name is given as a string argument.

FORMAT y = varget(s);

INPUT s string containing the name of the global symbol you wish to access.

OUTPUT y contents of the variable whose name is in s.

REMARKS This function searches the global symbol table for the symbol whose name is in
s and returns the contents of the variable if it exists. If the symbol does not exist,
the function will terminate with an Undefined symbol error message. If you
want to check to see if a variable exists before using this function, use typecv.

EXAMPLE dog = rndn(2,2);

y = varget("dog");

dog =
−0.83429985 0.34782433

0.91032546 1.75446391

y =
−0.83429985 0.34782433

0.91032546 1.75446391

SEE ALSO typecv, varput

28-946 GAUSS L R

v

vargetl

vargetl

PURPOSE Accesses a local variable whose name is given as a string argument.

FORMAT y = vargetl(s);

INPUT s string containing the name of the local symbol you wish to access.

OUTPUT y contents of the variable whose name is in s.

REMARKS This function searches the local symbol list for the symbol whose name is in s
and returns the contents of the variable if it exists. If the symbol does not exist,
the function will terminate with an Undefined symbol error message.

EXAMPLE proc dog;

local x,y;

x = rndn(2,2);

y = vargetl("x");

print "x" x;

print "y" y;

retp(y);

endp;

z = dog;

print "z" z;

x

-0.543851 -0.181701

-0.108873 0.0648738

y

-0.543851 -0.181701

-0.108873 0.0648738

z

-0.543851 -0.181701

-0.108873 0.0648738

GAUSS L R 28-947

varmall

SEE ALSO varputl

varmall

PURPOSE Computes log-likelihood of a Vector ARMA model.

FORMAT ll = varmall(w,phi,theta,vc);

INPUT w N×K matrix, time series.

phi (K*P)×K matrix, AR coefficient matrices.

theta (K*Q)×K matrix, MA coefficient matrices.

vc K×K matrix, covariance matrix.

OUTPUT ll scalar, log-likelihood. If the calculation fails ll is set to missing
value with error code:

Error Code Reason for Failure
1 M < 1
2 N < 1
3 P < 0
4 Q < 0
5 P = 0 and Q = 0
7 floating point work space too small
8 integer work space too small
9 vc is not positive definite
10 AR parameters too close to stationarity boundary
11 model not stationary
12 model not invertible
13 I+M’H’HM not positive definite

REMARKS varmall is adapted from code developed by Jose Alberto Mauricio of the
Universidad Complutense de Madrid. It was published as Algorithm AS311 in
Applied Statistics. Also described in “Exact Maximum Likelihood Estimation
of Stationary Vector ARMA Models,” JASA, 90:282-264.

28-948 GAUSS L R

v

varmares

varmares

PURPOSE Computes residuals of a Vector ARMA model.

FORMAT res = varmares(w,phi,theta);

INPUT w N×K matrix, time series.
phi (K*P)×K matrix, AR coefficient matrices.
theta (K*Q)×K matrix, MA coefficient matrices.

OUTPUT res N×K matrix, residuals. If the calculation fails res is set to missing
value with error code:

Error Code Reason for Failure
1 M < 1
2 N < 1
3 P < 0
4 Q < 0
5 P = 0 and Q = 0
7 floating point work space too small
8 integer work space too small
10 AR parameters too close to stationarity boundary
11 model not stationary
12 model not invertible
13 I+M’H’HM not positive definite

REMARKS varmares is adapted from code developed by Jose Alberto Mauricio of the
Universidad Complutense de Madrid. It was published as Algorithm AS311 in
Applied Statistics. Also described in “Exact Maximum Likelihood Estimation
of Stationary Vector ARMA Models,” JASA, 90:282-264.

varput

GAUSS L R 28-949

varputl

PURPOSE Allows a matrix, array, string, or string array to be assigned to a global symbol
whose name is given as a string argument.

FORMAT y = varput(x,n);

INPUT x matrix, array, string, or string array which is to be assigned to the
target variable.

n string containing the name of the global symbol which will be the
target variable.

OUTPUT y scalar, 1 if the operation is successful and 0 if the operation fails.

REMARKS x and n may be global or local. The variable, whose name is in n, that x is
assigned to is always a global.

If the function fails, it will be because the global symbol table is full.

This function is useful for returning values generated in local variables within a
procedure to the global symbol table.

EXAMPLE source = rndn(2,2);

targname = "target";

if not varput(source,targname);

print "Symbol table full";

end;

endif;

source =
−0.93519984 0.40642598
−0.36867581 2.57623519

target =
−0.93519984 0.40642598
−0.36867581 2.57623519

SEE ALSO varget, typecv

28-950 GAUSS L R

v

varputl

varputl

PURPOSE given as a string argument.

FORMAT y = varputl(x,n);

INPUT x matrix, array, string, or string array which is to be assigned to the
target variable.

n string containing the name of the local symbol which will be the
target variable.

OUTPUT y scalar, 1 if the operation is successful and 0 if the operation fails.

REMARKS x and n may be global or local. The variable, whose name is in n, that x is
assigned to is always a local.

EXAMPLE proc dog(x);

local a,b,c,d,e,vars,putvar;

a=1;b=2;c=3;d=5;e=7;

vars = { a b c d e };

putvar = 0;

do while putvar $/= vars;

print "Assign x (" $vars "): ";;

putvar = upper(cons);

print;

endo;

call varputl(x,putvar);

retp(a+b*c-d/e);

endp;

format /rds 2,1;

i = 0;

do until i >= 5;

z = dog(17);

GAUSS L R 28-951

vartypef

print " z is " z;

i = i + 1;

endo;

produces:

Assign x (A B C D E): a

z is 22.3

Assign x (A B C D E): b

z is 51.3

Assign x (A B C D E): c

z is 34.3

Assign x (A B C D E): d

z is 4.6

Assign x (A B C D E): e

z is 6.7

SEE ALSO vargetl

vartypef

PURPOSE Returns a vector of ones and zeros that indicate whether variables in a data set
are character or numeric.

FORMAT y = vartypef(f);

INPUT f file handle of an open file.

OUTPUT y N×1 vector of ones and zeros, 1 if variable is numeric, 0 if character.

REMARKS This function should be used in place of older functions that are based on the
case of the variable names. You should also use the v96 data set format.

28-952 GAUSS L R

v

vcms, vcxs

vcm, vcx

PURPOSE Computes a variance-covariance matrix.

FORMAT vc = vcm(m);
vc = vcx(x);

INPUT m K×K moment (x′x) matrix. A constant term MUST have been the
first variable when the moment matrix was computed.

x N×K matrix of data.

OUTPUT vc K×K variance-covariance matrix.

SOURCE corr.src

SEE ALSO momentd

vcms, vcxs

PURPOSE Computes a sample variance-covariance matrix.

FORMAT vc = vcms(m);
vc = vcxs(x);

INPUT m K×K moment (x′x) matrix. A constant term MUST have been the
first variable when the moment matrix was computed.

x N×K matrix of data.

OUTPUT vc K×K variance-covariance matrix.

GAUSS L R 28-953

vec, vecr

REMARKS Computes sample covariance matrix, that is, it divides the sample size, N, rather
than N - 1. For population covariance matrix which uses N - 1 rather than N see
vcm or vcx.

SOURCE corrs.src

SEE ALSO momentd, corrms, corrvcs, corrxs

vec, vecr

PURPOSE Creates a column vector by appending the columns/rows of a matrix to each
other.

FORMAT yc = vec(x);
yr = vecr(x);

INPUT x N×K matrix.

OUTPUT yc (N*K)×1 vector, the columns of x appended to each other.

yr (N*K)×1 vector, the rows of x appended to each other and the result
transposed.

REMARKS vecr is much faster.

EXAMPLE x = { 1 2,

3 4 };

yc = vec(x);

yr = vecr(x);

x =
1.000000 2.000000
3.000000 4.000000

28-954 GAUSS L R

v

vech

yc =

1.000000
3.000000
2.000000
4.000000

yr =

1.000000
2.000000
3.000000
4.000000

vech

PURPOSE Vectorizes a symmetric matrix by retaining only the lower triangular portion of
the matrix.

FORMAT v = vech(x);

INPUT x N×N symmetric matrix.

OUTPUT v (N*(N+1)/2)×1 vector, the lower triangular portion of the matrix x.

REMARKS As you can see from the example below, vech will not check to see if x is
symmetric. It just packs the lower trangular portion of the matrix into a column
vector in row-wise order.

EXAMPLE x = seqa(10,10,3) + seqa(1,1,3)’;

v = vech(x);

sx = xpnd(v);

GAUSS L R 28-955

vector (dataloop)

x =

11 12 13
21 22 23
31 32 33

v =

11
21
22
31
32
33

sx =

11 21 31
21 22 32
31 32 33

SEE ALSO xpnd

vector (dataloop)

PURPOSE Specifies the creation of a new variable within a data loop.

FORMAT vector [[#]] numvar = numeric expression;
vector $ charvar = character expression;

REMARKS A numeric expression is any valid expression returning a numeric value. A
character expression is any valid expression returning a character value. If
neither ‘$’ nor ‘#’ is specified, ‘#’ is assumed.

vector is used in place of make when the expression returns a scalar rather
than a vector. vector forces the result of such an expression to a vector of the
correct length. vector could actually be used anywhere that make is used, but
would generate slower code for expressions that already return vectors.

28-956 GAUSS L R

v

vget

Any variables referenced must already exist, either as elements of the source
data set, as extern’s, or as the result of a previous make, vector, or code
statement.

EXAMPLE vector const = 1;

SEE ALSO make (dataloop)

vget

PURPOSE Extracts a matrix or string from a data buffer constructed with vput.

FORMAT { x,dbufnew } = vget(dbuf,name);

INPUT dbuf N×1 vector, a data buffer containing various strings and matrices.

name string, the name of the string or matrix to extract from dbuf.

OUTPUT x L×M matrix or string, the item extracted from dbuf.

dbufnew K×1 vector, the remainder of dbuf after x has been extracted.

SOURCE pack.src

SEE ALSO vlist, vput, vread

view

PURPOSE Sets the position of the observer in workbox units for 3-D plots.

LIBRARY pgraph

GAUSS L R 28-957

viewxyz

FORMAT view(x,y,z);

INPUT x scalar, the X position in workbox units.

y scalar, the Y position in workbox units.

z scalar, the Z position in workbox units.

REMARKS The size of the workbox is set with volume. The viewer MUST be outside of
the workbox. The closer the position of the observer, the more perspective
distortion there will be. If x = y = z, the projection will be isometric.

If view is not called, a default position will be calculated.

Use viewxyz to locate the observer in plot coordinates.

SOURCE pgraph.src

SEE ALSO volume, viewxyz

viewxyz

PURPOSE To set the position of the observer in plot coordinates for 3-D plots.

LIBRARY pgraph

FORMAT viewxyz(x,y,z);

INPUT x scalar, the X position in plot coordinates.

y scalar, the Y position in plot coordinates.

z scalar, the Z position in plot coordinates.

REMARKS The viewer MUST be outside of the workbox. The closer the observer, the more
perspective distortion there will be.

28-958 GAUSS L R

v

vlist

If viewxyz is not called, a default position will be calculated.

Use view to locate the observer in workbox units.

SOURCE pgraph.src

SEE ALSO volume, view

vlist

PURPOSE Lists the contents of a data buffer constructed with vput.

FORMAT vlist(dbuf);

INPUT dbuf N×1 vector, a data buffer containing various strings and matrices.

REMARKS vlist lists the names of all the strings and matrices stored in dbuf.

SOURCE vpack.src

SEE ALSO vget, vput, vread

vnamecv

PURPOSE Returns the names of the elements of a data buffer constructed with vput.

FORMAT cv = vnamecv(dbuf);

INPUT dbuf N×1 vector, a data buffer containing various strings and matrices.

GAUSS L R 28-959

volume

OUTPUT cv K×1 character vector containing the names of the elements of dbuf.

SEE ALSO vget, vput, vread, vtypecv

volume

PURPOSE Sets the length, width, and height ratios of the 3-D workbox.

LIBRARY pgraph

FORMAT volume(x,y,z);

INPUT x scalar, the X length of the 3-D workbox.

y scalar, the Y length of the 3-D workbox.

z scalar, the Z length of the 3-D workbox.

REMARKS The ratio between these values is what is important. If volume is not called, a
default workbox will be calculated.

SOURCE pgraph.src

SEE ALSO view

vput

PURPOSE Inserts a matrix or string into a data buffer.

FORMAT dbufnew = vput(dbuf,x,xname);

28-960 GAUSS L R

v

vread

INPUT dbuf N×1 vector, a data buffer containing various strings and matrices. If
dbuf is a scalar 0, a new data buffer will be created.

x L×M matrix or string, item to be inserted into dbuf.

xname string, the name of x, will be inserted with x into dbuf.

OUTPUT dbufnew K×1 vector, the data buffer after x and xname have been inserted.

REMARKS If dbuf already contains x, the new value of x will replace the old one.

SOURCE vpack.src

SEE ALSO vget, vlist, vread

vread

PURPOSE Reads a string or matrix from a data buffer constructed with vput.

FORMAT x = vread(dbuf,xname);

INPUT dbuf N×1 vector, a data buffer containing various strings and matrices.

xname string, the name of the matrix or string to read from dbuf.

OUTPUT x L×M matrix or string, the item read from dbuf.

REMARKS vread, unlike vget, does not change the contents of dbuf. Reading x from dbuf
does not remove it from dbuf.

SOURCE vpack.src

SEE ALSO vget, vlist, vput

GAUSS L R 28-961

wait, waitc

vtypecv

PURPOSE Returns the types of the elements of a data buffer constructed with vput.

FORMAT cv = vtypecv(dbuf);

INPUT dbuf N×1 vector, a data buffer containing various strings and matrices.

OUTPUT cv K×1 character vector containing the types of the elements of dbuf.

SEE ALSO vget, vput, vread, vnamecv

wait, waitc

PURPOSE Waits until any key is pressed.

FORMAT wait;

waitc;

REMARKS If you are working in terminal mode, these commands do not “see” any
keystrokes until ENTER is pressed. waitc clears any pending keystrokes
before waiting until another key is pressed.

SOURCE wait.src, waitc.src

SEE ALSO pause

28-962 GAUSS L R

w

walkindex

walkindex

PURPOSE Walks the index of an array forward or backward through a specified dimension.

FORMAT ni = walkindex(i,o,dim);

INPUT i M×1 vector of indices into an array, where M<=N.

o N×1 vector of orders of an N-dimensional array.

dim scalar [1-to-M], index into the vector of indices i, corresponding to
the dimension to walk through, positive to walk the index forward,
or negative to walk backward.

OUTPUT ni M×1 vector of indices, the new index.

REMARKS walkindex will return a scalar error code if the index cannot walk further in the
specified dimension and direction.

EXAMPLE orders = (3,4,5,6,7);

a = arrayinit(orders,1);

ind = { 2,3,3 };

ind = walkindex(ind,orders,-2);

ind =

2
2
3

This example decrements the second value of the index vector ind.

ind = walkindex(ind,orders,3);

GAUSS L R 28-963

window

ind =

2
2
4

Using the orders from the example above and the ind that was returned, this
example increments the third value of the index vector ind.

SEE ALSO nextindex, previousindex, loopnextindex

window

PURPOSE Partitions the window into tiled regions (graphic panels) of equal size.

LIBRARY pgraph

FORMAT window(row,col,typ);

INPUT row scalar, number of rows of graphic panels.

col scalar, number of columns of graphic panels.

typ scalar, graphic panel attribute type. If 1, the graphic panels will be
transparent, if 0, the graphic panels will be nontransparent (blanked).

REMARKS The graphic panels will be numbered from 1 to (row)×(col) starting from the
left topmost graphic panel and moving right.

See makewind for creating graphic panels of a specific size and position. (For
more information, see G P, Section 21.3.

SOURCE pwindow.src

SEE ALSO endwind, begwind, setwind, nextwind, getwind, makewind

28-964 GAUSS L R

w

writer

writer

PURPOSE Writes a matrix to a GAUSS data set.

FORMAT y = writer(fh,x);

INPUT fh handle of the file that data is to be written to.

x N×K matrix.

OUTPUT y scalar specifying the number of rows of data actually written to the
data set.

REMARKS The file must have been opened with create, open for append, or open
for update.

The data in x will be written to the data set whose handle is fh starting at the
current pointer position in the file. The pointer position in the file will be
updated, so the next call to writer will put the next block of data after the first
block. (See open and create for the initial pointer positions in the file for
reading and writing.)

x must have the same number of columns as the data set. colsf returns the
number of columns in a data set.

writer returns the number of rows actually written to the data set. If y does not
equal rows(x), the disk is probably full.

If the data set is not double precision, the data will be rounded as it is written
out.

If the data contain character elements, the file must be double precision or the
character information will be lost.

If the file being written to is the 2-byte integer data type, then missing values
will be written out as -32768. These will not automatically be converted to

GAUSS L R 28-965

xlabel

missings on input. They can be converted with the miss function:

x = miss(x,-32768);

Trying to write complex data to a data set that was originally created to store
real data will cause a program to abort with an error message. (See create for
details on creating a complex data set.)

EXAMPLE create fp = data with x,10,8;

if fp =\,= -1;

errorlog "Can’t create output file";

end;

endif;

c = 0;

do until c >= 10000;

y = rndn(100,10);

k = writer(fp,y);

if k /= rows(y);

errorlog "Disk Full";

fp = close(fp);

end;

endif;

c = c+k;

endo;

fp = close(fp);

In this example, a 10000×10 data set of Normal random numbers is written to a
data set called data.dat. The variable names are X01-X10.

SEE ALSO open, close, create, readr, saved, seekr

xlabel

PURPOSE Sets a label for the X axis.

28-966 GAUSS L R

x

xlsGetSheetCount

LIBRARY pgraph

FORMAT xlabel(str);

INPUT str string, the label for the X axis.

SOURCE pgraph.src

SEE ALSO title, ylabel, zlabel

xlsGetSheetCount

PURPOSE Gets the number of sheets in an Excel R© spreadsheet.

FORMAT nsheets = xlsGetSheetCount(file);

INPUT file string, name of .xls file.

OUTPUT nsheets scalar, sheet count or an error code.

PORTABILITY Windows only

REMARKS If xlsGetSheetCount fails, it will return a scalar error code, which can be
decoded with scalerr.

SEE ALSO xlsGetSheetSize, xlsGetSheetTypes, xlsMakeRange

GAUSS L R 28-967

xlsGetSheetTypes

xlsGetSheetSize

PURPOSE Gets the size (rows and columns) of a specified sheet in an Excel R© spreadsheet.

FORMAT { rows,cols } = xlsGetSheetSize(file,sheet);

INPUT file string, name of .xls file.

sheet scalar, sheet index (1-based).

OUTPUT rows scalar, number of rows.

cols scalar, number of columns.

PORTABILITY Windows only

REMARKS If xlsGetSheetSize fails, it will return a scalar error code, which can be
decoded with scalerr.

SEE ALSO xlsGetSheetCount, xlsGetSheetTypes, xlsMakeRange

xlsGetSheetTypes

PURPOSE Gets the cell format types of a row in an Excel R© spreadsheet.

FORMAT nsheets = xlsGetSheetTypes(file,sheet,row);

INPUT file string, name of .xls file.

sheet scalar, sheet index (1-based).

row scalar, the row of cells to be scanned.

28-968 GAUSS L R

x

xlsMakeRange

OUTPUT types 1×K vector of predefined data types representing the format of each
cell in the specified row.
The possible types are:

0 Text
1 Numeric
2 Date

PORTABILITY Windows only

REMARKS K is the number of columns found in the spreadsheet.

If xlsGetSheetTypes fails, it will return a scalar error code, which can be
decoded with scalerr.

SEE ALSO xlsGetSheetCount, xlsGetSheetSize, xlsMakeRange

xlsMakeRange

PURPOSE Builds an Excel R© range string from a row/column pair.

FORMAT range = xlsMakeRange(row,col);

INPUT row scalar or 2×1 vector.

col scalar or 2×1 vector.

OUTPUT range string, an Excel R©-formatted range specifier.

PORTABILITY Windows only

REMARKS If row is a 2×1 vector, it is interpreted as follows

row[1] starting row

GAUSS L R 28-969

xlsReadM

row[2] ending row

If col is a 2×1 vector, it is interpreted as follows

col[1] starting column

col[2] ending column

SEE ALSO xlsGetSheetCount, xlsGetSheetSize, xlsGetSheetTypes

xlsReadM

PURPOSE Reads from an Excel R© spreadsheet into a GAUSS matrix.

FORMAT mat = xlsReadM(file,range,sheet,vls);

INPUT file string, name of .xls file.

range string, range to read, e.g. a2:b20, or the starting point of the read,
e.g. a2.

sheet scalar, sheet number.

vls null string or 9×1 matrix, specifies the conversion of Excel R© empty
cells and special types into GAUSS (see Remarks). A null string
results in all empty cells and special types being converted to
GAUSS missing values.

OUTPUT mat matrix or a Microsoft error code.

PORTABILITY Windows only

REMARKS If range is a null string, then by default the read will begin at cell a1.

The vls argument lets users control the import of Excel R© empty cells and
special types, according to the following table:

28-970 GAUSS L R

x

xlsReadSA

Row Number Excel R© Cell

1 empty cell
2 #N/A
3 #VALUE!
4 #DIV/0!
5 #NAME?
6 #REF!
7 #NUM!
8 #NULL!
9 #ERR

Use the following to convert all occurrences of #DIV/0! to 9999.99, and all
other empty cells and special types to GAUSS missing values:

vls = reshape(error(0),9,1);

vls[4] = 9999.99;

SEE ALSO xlsReadSA, xlsWrite, xlsWriteM, xlsWriteSA, xlsGetSheetCount,
xlsGetSheetSize, xlsGetSheetTypes, xlsMakeRange

xlsReadSA

PURPOSE Reads from an Excel R© spreadsheet into a GAUSS string array or string.

FORMAT s = xlsReadSA(file,range,sheet,vls);

INPUT file string, name of .xls file.

range string, range to read, e.g. a2:b20 or the starting point of the read,
e.g. a2.

sheet scalar, sheet number.

GAUSS L R 28-971

xlsWrite

vls null string or 9×1 string array, specifies the conversion of Excel R©

empty cells and special types into GAUSS (see Remarks). A null
string results in all empty cells and special types being converted to
null strings.

OUTPUT s string array or string or a Microsoft error code.

PORTABILITY Windows only

REMARKS If range is a null string, then by default the read will begin at cell a1.

The vls argument lets users control the import of Excel R© empty cells and
special types, according to the following table:

Row Number Excel R© Cell

1 empty cell
2 #N/A
3 #VALUE!
4 #DIV/0!
5 #NAME?
6 #REF!
7 #NUM!
8 #NULL!
9 #ERR

Use the following to convert all occurrences of #DIV/0! to “Division by Zero”,
and all other empty cells and special types to null strings:

vls = reshape("",9,1);

vls[4] = "Division by Zero";

SEE ALSO xlsReadM, xlsWrite, xlsWriteM, xlsWriteSA, xlsGetSheetCount,
xlsGetSheetSize, xlsGetSheetTypes, xlsMakeRange

28-972 GAUSS L R

x

xlsWrite

xlsWrite

PURPOSE Writes a GAUSS matrix, string, or string array to an Excel R© spreadsheet.

FORMAT ret = xlsWrite(data,file,range,sheet,vls);

INPUT data matrix, string, or string array.

file string, name of .xls file.

range string, the starting point of the write, e.g. a2.

sheet scalar, sheet number.

vls null string or 9×1 matrix or string array, specifies the conversion of
GAUSS values or characters into Excel R© empty cells and special
types (see Remarks). A null string results in all GAUSS missing
values and null strings being converted to empty cells.

OUTPUT ret scalar, 0 if success or a Microsoft error code.

PORTABILITY Windows only

REMARKS The vls argument lets users control the export to Excel R© empty cells and special
types, according to the following table:

Row Number Excel R© Cell

1 empty cell
2 #N/A
3 #VALUE!
4 #DIV/0!
5 #NAME?
6 #REF!
7 #NUM!
8 #NULL!
9 #ERR

GAUSS L R 28-973

xlsWriteM

Use the following to convert all occurrences of 9999.99 to #DIV/0! in Excel R©

and convert all GAUSS missing values to empty cells in Excel R©:

vls = reshape(error(0),9,1);

vls[4] = 9999.99;

SEE ALSO xlsReadSA, xlsReadM, xlsWriteM, xlsWriteSA, xlsGetSheetCount,
xlsGetSheetSize, xlsGetSheetTypes, xlsMakeRange

xlsWriteM

PURPOSE Writes a GAUSS matrix to an Excel R© spreadsheet.

FORMAT ret = xlsWriteM(data,file,range,sheet,vls);

INPUT data matrix.
file string, name of .xls file.
range string, the starting point of the write, e.g. a2.
sheet scalar, sheet number.
vls null string or 9×1 matrix, specifies the conversion of GAUSS values

into Excel R© empty cells and special types (see Remarks). A null
string results in all GAUSS missing values being converted to empty
cells.

OUTPUT ret scalar, 0 if success or a Microsoft error code.

PORTABILITY Windows only

REMARKS The vls argument lets users control the export to Excel R© empty cells and special
types, according to the following table:

28-974 GAUSS L R

x

xlsWriteSA

Row Number Excel R© Cell

1 empty cell
2 #N/A
3 #VALUE!
4 #DIV/0!
5 #NAME?
6 #REF!
7 #NUM!
8 #NULL!
9 #ERR

Use the following to convert all occurrences of 9999.99 to #DIV/0! in Excel R©

and convert all GAUSS missing values to empty cells in Excel R©:

vls = reshape(error(0),9,1);

vls[4] = 9999.99;

SEE ALSO xlsReadSA, xlsReadM, xlsWrite, xlsWriteSA, xlsGetSheetCount,
xlsGetSheetSize, xlsGetSheetTypes, xlsMakeRange

xlsWriteSA

PURPOSE Writes a GAUSS string or string array to an Excel R© spreadsheet.

FORMAT ret = xlsWriteSA(data,file,range,sheet,vls);

INPUT data string or string array.

file string, name of .xls file.

range string, the starting point of the write, e.g. a2.

GAUSS L R 28-975

xpnd

sheet scalar, sheet number.

vls null string or 9×1 string array, specifies the conversion of GAUSS
characters into Excel R© empty cells and special types (see Remarks).
A null string results in all null strings being converted to empty cells.

OUTPUT ret scalar, 0 if success or a Microsoft error code.

PORTABILITY Windows only

REMARKS The vls argument lets users control the export to Excel R© empty cells and special
types, according to the following table:

Row Number Excel R© Cell

1 empty cell
2 #N/A
3 #VALUE!
4 #DIV/0!
5 #NAME?
6 #REF!
7 #NUM!
8 #NULL!
9 #ERR

Use the following to convert all occurrences of “Division by Zero” to #DIV/0!,
and all null strings to empty cells:

vls = reshape("",9,1);

vls[4] = "Division by Zero";

SEE ALSO xlsReadM, xlsWrite, xlsWriteM, xlsReadSA, xlsGetSheetCount,
xlsGetSheetSize, xlsGetSheetTypes, xlsMakeRange

28-976 GAUSS L R

x

xpnd

xpnd

PURPOSE Expands a column vector into a symmetric matrix.

FORMAT x = xpnd(v);

INPUT v K×1 vector, to be expanded into a symmetric matrix.

OUTPUT x M×M matrix, the results of taking v and filling in a symmetric
matrix with its elements.
M = ((-1 + sqrt(1+8*K))/2)

REMARKS If v does not contain the right number of elements, (that is, if sqrt(1 + 8*K)
is not integral), then an error message is generated.

This function is particularly useful for hard-coding symmetric matrices, because
only about half of the matrix needs to be entered.

EXAMPLE x = { 1,

2, 3,

4, 5, 6,

7, 8, 9, 10 };

y = xpnd(x);

x =

1
2
3
4
5
6
7
8
9

10

GAUSS L R 28-977

xtics

y =

1 2 4 7
2 3 5 8
4 5 6 9
7 8 9 10

SEE ALSO vech

xtics

PURPOSE Sets and fixes scaling, axes numbering and tick marks for the X axis.

LIBRARY pgraph

FORMAT xtics(min,max,step,minordiv);

INPUT min scalar, the minimum value.
max scalar, the maximum value.
step scalar, the value between major tick marks.
minordiv scalar, the number of minor subdivisions.

REMARKS This routine fixes the scaling for all subsequent graphs until graphset is called.

This gives you direct control over the axes endpoints and tick marks. If xtics
is called after a call to scale, it will override scale.

X and Y axes numbering may be reversed for xy, logx, logy, and loglog
graphs. This may be accomplished by using a negative step value in the xtics
and ytics functions.

SOURCE pscale.src

SEE ALSO scale, ytics, ztics

28-978 GAUSS L R

x

xyz

xy

PURPOSE Graphs X vs. Y using Cartesian coordinates.

LIBRARY pgraph

FORMAT xy(x,y);

INPUT x N×1 or N×M matrix. Each column contains the X values for a
particular line.

y N×1 or N×M matrix. Each column contains the Y values for a
particular line.

REMARKS Missing values are ignored when plotting symbols. If missing values are
encountered while plotting a curve, the curve will end and a new curve will
begin plotting at the next non-missing value.

SOURCE pxy.src

SEE ALSO xyz, logx, logy, loglog

xyz

PURPOSE Graphs X vs. Y vs. Z using Cartesian coordinates.

LIBRARY pgraph

FORMAT xyz(x,y,z);

INPUT x N×1 or N×K matrix. Each column contains the X values for a
particular line.

GAUSS L R 28-979

ylabel

y N×1 or N×K matrix. Each column contains the Y values for a
particular line.

z N×1 or N×K matrix. Each column contains the Z values for a
particular line.

REMARKS Missing values are ignored when plotting symbols. If missing values are
encountered while plotting a curve, the curve will end and a new curve will
begin plotting at the next non-missing value.

SOURCE pxyz.src

ylabel

PURPOSE Sets a label for the Y axis.

LIBRARY pgraph

FORMAT ylabel(str);

INPUT str string, the label for the Y axis.

SOURCE pgraph.src

SEE ALSO title, xlabel, zlabel

ytics

PURPOSE Sets and fixes scaling, axes numbering and tick marks for the Y axis.

LIBRARY pgraph

28-980 GAUSS L R

y

zeros

FORMAT ytics(min,max,step,minordiv);

INPUT min scalar, the minimum value.

max scalar, the maximum value.

step scalar, the value between major tick marks.

minordiv scalar, the number of minor subdivisions.

REMARKS This routine fixes the scaling for all subsequent graphs until graphset is called.

This gives you direct control over the axes endpoints and tick marks. If ytics
is called after a call to scale, it will override scale.

X and Y axes numbering may be reversed for xy, logx, logy and loglog
graphs. This may be accomplished by using a negative step value in the xtics
and ytics functions.

SOURCE pscale.src

SEE ALSO scale, xtics, ztics

zeros

PURPOSE Creates a matrix of zeros.

FORMAT y = zeros(r,c);

INPUT r scalar, the number of rows.

c scalar, the number of columns.

OUTPUT y r×c matrix of zeros.

REMARKS This is faster than ones.

GAUSS L R 28-981

zeta

Noninteger arguments will be truncated to an integer.

EXAMPLE y = zeros(3,2);

y =

0.000000 0.000000
0.000000 0.000000
0.000000 0.000000

SEE ALSO ones, eye

zeta

PURPOSE Computes the Rieman Zeta function.

FORMAT f = zeta(z);

INPUT z N×K matrix; z may be complex.

OUTPUT f N×K matrix.

REMARKS Euler MacLaurin series

REFERENCES 1. Jon Breslaw, 2009

zlabel

28-982 GAUSS L R

z

ztics

PURPOSE Sets a label for the Z axis.

LIBRARY pgraph

FORMAT zlabel(str);

INPUT str string, the label for the Z axis.

SOURCE pgraph.src

SEE ALSO title, xlabel, ylabel

ztics

PURPOSE Sets and fixes scaling, axes numbering and tick marks for the Z axis.

LIBRARY pgraph

FORMAT ztics(min,max,step,minordiv);

INPUT min scalar, the minimum value.

max scalar, the maximum value.

step scalar, the value between major tick marks.

minordiv scalar, the number of minor subdivisions. If this function is used
with contour, contour labels will be placed every minordiv levels.
If 0, there will be no labels.

REMARKS This routine fixes the scaling for all subsequent graphs until graphset is called.

This gives you direct control over the axes endpoints and tick marks. If ztics
is called after a call to scale3d, it will override scale3d.

GAUSS L R 28-983

ztics

SOURCE pscale.src

SEE ALSO scale3d, xtics, ytics, contour

28-984 GAUSS L R

O
bsolete

C
om

m
ands

Obsolete Commands D
The following commands will no longer be supported and therefore should not be used when
creating new programs.

color

coreleft

csrtype

denseSubmat

dfree

disable

editm

eigcg

eigcg2

eigch

eigch2

eigrg

eigrg2

eigrs

eigrs2

enable

export

D-1

GAUSS Language Reference

exportf

files

font

FontLoad

FontUnload

FontUnloadAll

graph

import

importf

isSparse

line

lpos

lprint

lprint on/off

lpwidth

lshow

medit

nametype

ndpchk

ndpclex

ndpcntrl

plot

plotsym

prcsn

print on/off

rndns

rndus

scroll

setvmode

sparseCols

sparseEye

sparseFD

sparseFP

sparseHConcat

sparseNZE

sparseOnes

sparseRows

D-2

O
bsolete

C
om

m
ands

Obsolete Commands

sparseScale

sparseSet

sparseSolve

sparseSubmat

sparseTD

sparseTranspose

sparseTrTD

sparseTScalar

sparseVConcat

spline1d

spline2d

vartype

WinClear

WinClearArea

WinClearTTYlog

WinClose

WinCloseAll

WinGetActive

WinGetAttributes

WinGetColorCells

WinGetCursor

WinMove

WinOpenPQG

WinOpenText

WinOpenTTY

WinPan

WinPrint

WinPrintPQG

WinRefresh

WinRefreshArea

WinResize

WinSetActive

WinSetBackground

WinSetColorCells

WinSetColormap

WinSetCursor

WinSetForeground

D-3

GAUSS Language Reference

WinSetRefresh

WinSetTextWrap

WinZoomPQG

D-4

C
olors

Colors E
0 Black 8 Dark Grey
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 Grey 15 White

E-1

Index

Index

Index

′ , 7-8
.′ , 7-8
∼ , 7-9
| , 7-8

! , 7-6
*∼ , 7-7
∗ , 7-5
.* , 7-6
.*. , 7-6
+ , 7-4
− , 7-4
/ , 7-5
./ , 7-6
% , 7-5
ˆ , 7-6, 7-19
.ˆ , 7-6

, (comma) , 7-16
. (dot) , 7-16
: (colon) , 7-17
; (semicolon) , 6-2

, 19-3, 28-137, 28-546, 28-720, 28-956
$, 28-137, 28-546, 28-720, 28-956
∼ , 7-19
$| , 7-18
$+ , 7-17
& , 7-17, 8-10

= , 6-2, 6-12, 6-39
= , 7-15

/ = , 7-11
./= , 7-12
== , 6-40, 7-10
.== , 7-12
> , 7-11
. > , 7-12
>= , 7-11
. >= , 7-12
< , 7-10
. < , 7-11
<= , 7-10
. <= , 7-12

__altnam, 28-259
__output, 28-259, 28-535, 28-847
__title, 28-259
__Tol, 28-259
_eqs_IterInfo, 28-259
_eqs_JacobianProc, 28-259
_eqs_MaxIters, 28-259
_eqs_StepTol, 28-259
_eqs_TypicalF, 28-259
_eqs_TypicalX, 28-259
_loess_Degree, 28-535
_loess_NumEval, 28-535
_loess_Span, 28-535

Index-1

Index

_loess_WgtType, 28-535
_sqp_A, 28-845
_sqp_B, 28-845
_sqp_Bounds, 28-846
_sqp_C, 28-845
_sqp_D, 28-845
_sqp_DirTol, 28-847
_sqp_EqProc, 28-845
_sqp_FeasibleTest, 28-847
_sqp_GradProc, 28-846
_sqp_HessProc, 28-847
_sqp_IneqProc, 28-846
_sqp_MaxIters, 28-847
_sqp_ParNames, 28-847
_sqp_PrintIters, 28-847
_sqp_RandRadius, 28-847

A

abs, 28-1
absolute value, 28-1
acf, 28-2
aconcat, 11-4, 28-3
additive sequence, 28-794
aeye, 11-6, 28-5
algebra, linear, 27-5
amax, 11-25, 28-6
amean, 11-25, 28-8
AmericanBinomCall, 28-10
AmericanBinomCall_Greeks, 28-11
AmericanBinomCall_ImpVol, 28-13
AmericanBinomPut, 28-14
AmericanBinomPut_Greeks, 28-15
AmericanBinomPut_ImpVol, 28-17
AmericanBSCall, 28-18
AmericanBSCall_Greeks, 28-19
AmericanBSCall_ImpVol, 28-20
AmericanBSPut, 28-21

AmericanBSPut_Greeks, 28-22
AmericanBSPut_ImpVol, 28-23
amin, 11-25, 28-24
ampersand, 7-17
amult, 11-23, 28-26
and, 7-13, 7-14
.and, 7-15
annualTradingDays, 28-28
append, ATOG command, 23-3
arccos, 28-29
arcsin, 28-30
areshape, 11-2, 28-31
arguments, 6-40, 8-3, 8-7
array indexing, 10-3
arrayalloc, 11-7, 28-32
arrayindex, 28-33
arrayinit, 11-6, 28-34
arrays, 10-1, 11-1, 27-30
arrays of structures, 12-4
arraytomat, 11-28, 28-35
arrows, 21-14, 21-16
ASCII files, 23-1
ASCII files, packed, 23-8
ASCII files, reading, 17-3
ASCII files, writing, 17-4
asciiload, 28-36
asclabel, 28-37
assigning to arrays, 11-8
assignment operator, 6-2, 6-39, 7-15
astd, 28-38
astds, 28-40
asum, 28-42
atan, 28-44
atan2, 28-45
atog, 17-3
ATOG, 23-1
atranspose, 11-21, 28-46

Index-2

Index

Index

autocompletion, 3-12
autoindenting, 3-13
autoloader, 6-4, 6-5, 15-1, 28-509
autoreload, 3-20
auxiliary output, 17-4, 28-605
auxiliary output, width, 28-608
axes, 21-17, 21-19
axes numbering, 21-26
axes, reversed, 28-978, 28-981
axmargin, 28-49

B

backslash, 6-22
balance, 28-50
band, 28-51
bandchol, 28-52
bandcholsol, 28-53
bandltsol, 28-55
bandrv, 28-56
bandsolpd, 28-58
bar shading, 21-17
bar width, 21-18
bar, 28-58
base10, 28-60
batch mode, 5-1
begwind, 28-61
besselj, 28-61
bessely, 28-62
beta function, 28-68
beta, 28-63
binary file, loading, 28-381
binary files, 17-15
bivariate Normal, 28-72
blank lines, 6-38
bookmark, 3-13
Boolean operators, 7-13
box, 21-18

box, 28-64
boxcox, 28-65
branching, 27-44
break, 28-66
breakpoints, 3-23
browse, 5-5

C

call, 28-67
calling a procedure, 8-6
caret, 7-6, 7-19
Cartesian coordinates, 28-979
case, 6-38, 28-541, 28-940
Cauchy, 28-78, 28-614
cdBbeta, 28-68
cdfBetaInv, 28-70
commandnamecdfBinomial, 28-70
commandnamecdfBinomialInv, 28-71
cdfBvn, 28-72
cdfBvn2, 28-74
cdfBvn2e, 28-76
cdfCauchy, 28-78
cdfCauchyInv, 28-78
cdfChic, 28-79
cdfChii, 28-80
cdfChinc, 28-81
commandnamecdfChincInv, 28-83
cdfExp, 28-83
cdfExpInv, 28-84
cdfFc, 28-85
cdfFnc, 28-87
commandnamecdfFncInv, 28-88
cdfGam, 28-89
cdfGenPareto, 28-91
cdfLaplace, 28-91
cdfLaplaceInv, 28-92
cdfLogistic, 28-93

Index-3

Index

cdfLogisticInv, 28-94
cdfm.src, 28-96, 28-97, 28-98, 28-100,

28-102, 28-104
cdfMvn, 28-94
cdfMvn2e, 28-97
cdfMvnce, 28-95
cdfMvne, 28-96
cdfMvt2e, 28-103
cdfMvtce, 28-99
cdfMvte, 28-101
cdfN, 28-105
cdfN2, 28-108
cdfNc, 28-105
commandnamecdfNegBinomial, 28-107
commandnamecdfNegBinomialInv, 28-108
cdfNi, 28-110
commandnamecdfPoisson, 28-110
commandnamecdfPoissonInv, 28-111
cdfRayleigh, 28-112
cdfRayleighInv, 28-113
cdfTc, 28-113
cdfTci, 28-115
cdfTnc, 28-116
cdfTvn, 28-117
cdfWeibull, 28-118
cdfWeibullInv, 28-119
cdir, 28-120
ceil, 28-120
change font, 3-3
change working directory, 3-3
ChangeDir, 28-121
characteristic polynomial, 28-623
chdir, 28-122
chi-square, 28-79
chi-square, noncentral, 28-81
chiBarSquare, 28-122
chol, 28-124

choldn, 28-125
Cholesky decomposition, 0-1, 7-5, 28-124,

28-810
cholsol, 28-126
cholup, 28-127
chrs, 28-128
circles, 21-22
clear breakpoints, 3-21
clear working directory history, 3-3
clear, 28-129
clearg, 28-130
close, 3-10
close all, 3-10
close, 28-130
closeall, 28-132
cls, 28-134
code (dataloop), 28-137
code folding, 3-12
code, 28-134
coefficient of determination, 28-584, 28-589
coefficients, 28-583, 28-589
coefficients, standardized, 28-583, 28-589
colon, 6-39
color, 21-19, 21-25
Colors, 0-1
colors, 0-1
cols, 28-138
colsf, 28-139
columns in a matrix, 28-138
combinate, 28-139
combinated, 28-140
comlog, 28-142
comma, 7-16
command, 6-2
command history toolbar, 3-5
command history window, 3-7
command input window, 3-8, 3-16

Index-4

Index

Index

command line, 5-1
command line editing, 3-8, 5-2
command line history, 3-8, 5-2
command page, 3-2, 4-3
command page toolbar, 3-4
comments, 6-38
comparison functions, 28-299, 28-300
comparison operator, 6-40
compilation phase, 19-3
compile, 16-1
compile time, 6-1
compile, 28-143
compiled language, 6-1
compiler, 16-1
compiler directives, 27-42
compiling, 27-48
compiling files, 16-2
compiling programs, 16-2
complex constants, 6-14, 28-194, 28-503,

28-862
complex modulus, 28-1
complex, 23-4, 28-144
components and usage, 3-22
con, 28-145
concatenation, matrix, 7-8, 7-9
concatenation, string, 7-17
cond, 28-148
condition number, 28-148
conditional branching, 6-34
config, 5-5
conformability, 7-1
conj, 28-149
cons, 28-150
ConScore, 28-150
constants, complex, 6-14, 28-194, 28-503,

28-862
continue, 28-154

contour levels, 21-22
contour, 28-155
control flow, 6-31
control structures, 12-22
conv, 28-156
conversion, character to ASCII value, 28-945
conversion, float to ASCII, 28-336, 28-337
conversion, string to floating point, 28-862
convertsatostr, 28-157
convertstrtosa, 28-157
convolution, 28-156
coordinates, 21-6
copy, 3-3, 3-4
correlation matrix, 28-158, 28-159, 28-584,

28-589
corrm, 28-158
corrms, 28-159
corrvc, 28-158
corrx, 28-158
corrxs, 28-159
cos, 28-159
cosh, 28-160
cosine, inverse, 28-29
counts, 28-161
countwts, 28-163
create, 28-164
cropping, 21-19
cross-product, 28-170, 28-568
crossprd, 28-170
Crout decomposition, 28-171, 28-172
Crout LU decomposition, 0-1
crout, 28-171
croutp, 28-172
csrcol, 28-174
csrlin, 28-174
cumprodc, 28-175
cumsumc, 28-176

Index-5

Index

cumulative distribution function, 28-68
cumulative products, 28-175
cumulative sums, 28-176
cursor, 28-174, 28-534
curve, 28-177
cut, 3-3, 3-4
cvtos, 28-178

D

data coding, 27-38
data handling, 27-33
data loop, 19-1
data page, 3-17
data sets, 17-7, 27-36
data transformations, 19-1, 28-134, 28-201
data, writing, 28-965
datacreate, 28-179
datacreatecomplex, 28-181
datalist, 28-183
dataload, 28-184
dataloop translator, 5-6
dataloop, 28-185
dataopen, 28-185
datasave, 28-187
date, 21-20, 28-188
date, 22-2, 28-188
datestr, 28-189
datestring, 28-189
datestrymd, 28-190
dayinyr, 28-191
dayofweek, 28-191
debug, 3-4
debug button, 3-6
debug page, 3-21
debug, 28-192
debugger, 3-22
debugging, 5-7, 16-3, 27-50, 28-511

declare, 28-193
delete (dataloop), 28-200
delete, 28-198
DeleteFile, 28-200
deletion, 28-229, 28-230, 28-569, 28-612
delif, 28-201
delimited, 23-1
delimited files, 17-3
delimited, hard, 23-6
delimited, soft, 23-5
denseToSp, 28-202
denseToSpRE, 28-203
denToZero, 28-204
derivatives, 28-404
derivatives, second partial, 28-425
descriptive statistics, 28-228, 28-230
design matrix, 28-205
design, 28-205
det, 28-206
determinant, 28-206
detl, 28-207
dfft, 28-208
dffti, 28-209
diag, 28-209
diagonal, 28-209
diagrv, 28-210
differentiation, 27-3
digamma, 28-211
dimension index, 10-2
dimension number, 10-2
directory, 28-120
division, 7-5
dlibrary, 18-1, 28-212
dllcall, 18-1, 28-213
do loop, 6-32
do until, 28-215
do while, 28-215

Index-6

Index

Index

dos, 28-218
doswin, 28-220
DOSWinCloseall, 28-220
DOSWinOpen, 28-221
dot relational operator, 7-11, 7-21
dotmtfeq, 28-223
dotmtfeqmt, 28-224
dotfge, 28-223
dotfgemt, 28-224
dotfgt, 28-223
dotfgtmt, 28-224
dotfle, 28-223
dotflemt, 28-224
dotflt, 28-223
dotfltmt, 28-224
dotfne, 28-223
dotfnemt, 28-224
draw, 28-226
drop (dataloop), 28-227
DS structure, 12-15, 13-7
dsCreate, 28-228
dstat, 28-228
dstatmt, 28-230
dstatmtControlCreate, 28-232
dtdate, 28-233
dtday, 28-233
dttime, 28-234
dttodtv, 28-235
dttostr, 28-236
dttoutc, 28-238
dtv vector, 22-3
dtvnormal, 22-3, 28-238
dtvtodt, 28-239
dtvtoutc, 28-240
dummy variables, 28-242
dummy, 28-241
dummybr, 28-243

dummydn, 28-245
Durbin-Watson statistic, 28-583, 28-587
dynamic libraries, 18-3

E

E×E conformable, 7-1
ed, 28-246
edit, 3-4
edit button, 3-6
edit symbol, 3-17
edit, 28-247
editor, 28-247
editor properties, 3-15
editor, alternate, 28-246
eig, 28-249
eigenvalues, 27-9, 28-249
eigenvalues and eigenvectors, 28-252
eigh, 28-250
eighv, 28-251
eigv, 28-252
elapsedTradingDays, 28-254
element-by-element conformability, 7-1,

10-5
element-by-element operators, 7-1
else, 28-431
elseif, 28-431
empty matrix, 6-15, 28-138, 28-504, 28-525,

28-772, 28-785
end of file, 28-258
end, 28-254
endp, 8-2, 8-5, 28-255
endwind, 28-256
envget, 28-257
environment, search, 28-257
eof, 28-258
eq, 7-10
.eq, 7-12

Index-7

Index

eqSolve, 28-259
eqSolvemt, 28-263
eqSolvemtControlCreate, 28-267
eqSolvemtOutCreate, 28-268
eqSolveSet, 28-269
eqv, 7-14, 7-15
.eqv, 7-15
erf, 28-269
erfc, 28-269
erfccplx, 28-271
ervCInv, 28-248
erfcplx, 28-271
ervInv, 28-248
error bar, 21-20
error code, 28-271, 28-784
error function, 28-269
error handling, 27-50
error messages, 24-1, 28-273, 28-511
error output window, 3-9, 3-16
error trapping, 28-924
error, 28-271
errorlog, 28-272
errorlogat, 28-273
escape character, 6-22
etdays, 28-273
ethsec, 28-274
etstr, 22-5, 28-275
EuropeanBinomCall, 28-276
EuropeanBinomCall_Greeks, 28-277
EuropeanBinomCall_ImpVol, 28-279
EuropeanBinomPut, 28-280
EuropeanBinomPut_Greeks, 28-281
EuropeanBinomPut_ImpVol, 28-283
EuropeanBSCall, 28-284
EuropeanBSCall_Greeks, 28-285
EuropeanBSCall_ImpVol, 28-286
EuropeanBSPut, 28-287

EuropeanBSPut_Greeks, 28-288
EuropeanBSPut_ImpVol, 28-289
exctsmpl, 28-290
exec, 28-291
execbg, 28-292
executable code, 6-4
executable statement, 6-3
execution phase, 19-4
execution time, 6-1
exit, 3-3
exp, 28-293
exponential, 28-83, 28-84, 28-615
exponential function, 28-293
exponentiation, 7-6
expression, 6-1
expression, evaluation order, 6-30
expression, scalar, 6-32
extern (dataloop), 28-294
external, 28-295
extraneous spaces, 6-38
eye, 28-297

F

F distribution, 28-85, 28-87
factorial, 7-6
FALSE, 6-32
fcheckerr, 28-297
fclearerr, 28-298
feq, 28-299
feqmt, 28-300
fflush, 28-302
fft, 28-302
fft, 28-302
ffti, 28-303
fftm, 28-304
fftmi, 28-307
fftn, 28-309

Index-8

Index

Index

fge, 28-299
fgemt, 28-300
fgets, 28-311
fgetsa, 28-312
fgetsat, 28-312
fgetst, 28-313
fgt, 28-299
fgtmt, 28-300
file formats, 17-14
file handle, 28-167, 28-598
fileinfo, 28-314
files, 17-3
files, binary, 17-15
files, matrix, 17-13
files, string, 17-16
filesa, 28-315
finance functions, 27-23
find and replace, 3-14
fle, 28-299
flemt, 28-300
floor, 28-316
flow control, 6-31
flt, 28-299
fltmt, 28-300
fmod, 28-317
fn, 28-318
fne, 28-299
fnemt, 28-300
fonts, 0-1, 28-319
fonts, 28-318
fopen, 28-319
for, 28-321
Foreign Language Interface, 18-1
format, 28-323
formatcv, 28-330
formatnv, 28-331
forward reference, 15-2

Fourier transform, 28-302
Fourier transform, discrete, 28-208, 28-209
fourier transforms, 27-10
fputs, 28-332
fputst, 28-333
fseek, 28-333
fstrerror, 28-335
ftell, 28-336
ftocv, 28-336
ftos, 28-337
ftostrC, 28-341
function, 6-37, 28-477, 28-646
functions, 27-46
fuzzy conditional functions, 27-12

G

gamma function, 28-342
gamma, 28-342
gamma, incomplete, 28-89
gamma, log, 28-519
gammacplx, 28-343
gammaii, 28-344
GAUSS Data Archives, 17-11, 17-24, 27-35
Gauss-Legendre quadrature, 28-458
gausset, 26-6, 28-344
gdaAppend, 28-345
gdaCreate, 28-346
gdaDStat, 28-347
gdaDStatMat, 28-349
gdaGetIndex, 28-352
gdaGetName, 28-353
gdaGetNames, 28-354
gdaGetOrders, 28-354
gdaGetType, 28-355
gdaGetTypes, 28-356
gdaGetVarInfo, 28-357
gdaIsCplx, 28-359

Index-9

Index

gdaLoad, 28-359
gdaPack, 28-362
gdaRead, 28-363
gdaReadByIndex, 28-364
gdaReadSome, 28-365
gdaReadSparse, 28-366
gdaReadStruct, 28-367
gdaReportVarInfo, 28-368
gdaSave, 28-370
gdaUpdate, 28-372
gdaUpdateAndPack, 28-373
gdaVars, 28-374
gdaWrite, 28-375
gdaWrite32, 28-376
gdaWriteSome, 28-377
ge, 7-11
.ge, 7-12
generalized inverse, 28-469, 28-621, 28-622
Generalized Pareto, 28-91, 28-616
getarray, 28-380
getArray, 11-12
getdims, 28-380
getDims, 11-27
getf, 28-381
getmatrix, 28-382
getMatrix, 11-13
getmatrix4D, 28-383
getMatrix4D, 11-13
getname, 28-384
getnamef, 28-385
getNextTradingDay, 28-386
getNextWeekDay, 28-387
getnr, 28-387
getnrmt, 28-388
getOrders, 11-27
getorders, 28-389
getpath, 28-390

getPreviousTradingDay, 28-390
getPreviousWeekDay, 28-391
getRow, 28-391
getScalar3D, 11-14
getscalar3D, 28-392
getScalar4D, 11-14
getscalar4D, 28-393
getTrRow, 28-394
getwind, 28-394
global control variables, 26-5
global variable, 8-3
go, 3-21
Goertzel algorithm, 28-208
gosub, 28-395
goto help, 3-3
goto, 28-398
gradcplx, 28-404
gradient, 28-404
gradMT, 28-399
gradMTm, 28-400
gradMTT, 28-401
gradMTTm, 28-403
gradp, 28-404
graphic panels, 21-7
graphic panels, nontransparent, 21-8
graphic panels, overlapping, 21-7
graphic panels, tiled, 21-7
graphic panels, transparent, 21-8
graphics, publication quality, 21-1
graphprt, 28-405
graphset, 28-408
grid, 21-21
grid subdivisions, 21-21
gt, 7-11
.gt, 7-12

Index-10

Index

Index

H

hard delimited, 23-6
hasimag, 28-408
hat operator, 7-6, 7-19
header, 28-410
headermt, 28-410
help facility, 28-511
help hot keys, 3-26
help page, 3-25
help, F1, 4-4
hermitian matrix, 28-251
hess, 28-411
hesscplx, 28-425
Hessian, 28-425
hessMT, 28-413
hessMTg, 28-414
hessMTgw, 28-415
hessMTm, 28-416
hessMTmw, 28-418
hessMTT, 28-419
hessMTTg, 28-420
hessMTTgw, 28-421
hessMTTm, 28-423
hessMTw, 28-424
hessp, 28-425
hidden lines, 21-27
hist, 28-427
histf, 28-428
histogram, 28-427, 28-428
histp, 28-429
horizontal direct product, 7-7
hot keys, 4-2
hot keys, programming editor, 3-13
hsec, 28-430
html, 3-21
hyperbolic cosine, 28-160

hyperbolic sine, 28-808
hyperbolic tangent, 28-910

I

if, 28-431
imag, 28-432
imaginary matrix, 28-432
inch coordinates, 21-6
#include, 28-433
incomplete beta function, 28-68
incomplete gamma function, 28-89
indcv, 28-434
indefinite, 6-28
index variables, 28-597
indexcat, 28-435
indexing matrices, 6-40, 7-16
indexing procedures, 7-17
indexing, array, 10-3
indexing, structure, 12-5
indices, 28-437
indices2, 28-438
indicesf, 28-439
indicesfn, 28-440
indnv, 28-441
indsav, 28-442
infinity, 6-28
initialize, 8-4
initializing arrays, 11-1
inner product, 7-5
input, ATOG command, 23-4
input, console, 28-145
input, keyboard, 28-145
installation, 2-1
installation, UNIX/Linux, 2-1
installation, Windows, 2-2
instruction pointer, 6-3

Index-11

Index

integration, 27-3, 27-4, 28-447, 28-450,
28-452, 28-455, 28-458, 28-466

interactive commands, 5-4
interpreter, 6-1
intersection, 28-465
intgrat2, 28-443
intgrat3, 28-445
inthp1, 28-447
inthp2, 28-449
inthp3, 28-452
inthp4, 28-455
inthpControlCreate, 28-458
intquad1, 28-458
intquad2, 28-460
intquad3, 28-461
intrinsic function, 6-8
intrleav, 28-463
intrleavsa, 28-464
intrsect, 28-465
intrsectsa, 28-466
intsimp, 28-466
inv, 28-467
invar, ATOG command, 23-5
inverse cosine, 28-29
inverse sine, 28-30
inverse, generalized, 28-469, 28-621, 28-622
inverse, matrix, 28-467
inverse, sweep, 28-469
invpd, 28-467
invswp, 28-469
iscplx, 28-470
iscplxf, 28-471
isden, 28-471
isinfnanmiss, 28-472
ismiss, 28-472

J

Jacobian, 28-404

K

keep (dataloop), 28-473
key, 28-474
keyav, 28-476
keyboard input, 28-150
keyboard, reading, 28-474
keyw, 28-476
keyword, 8-1, 8-7
keyword procedure, 28-477
keyword, 28-477
keywords, 27-46
Kronecker, 7-6

L

label, 6-35, 6-39, 8-1, 28-395, 28-398
lag (dataloop), 28-478
lag1, 28-479
lagn, 28-479
lambda, 28-82
lapeighb, 28-480
lapeighi, 28-481
lapeigvb, 28-482
lapeigvi, 28-484
lapgeig, 28-485
lapgeigh, 28-486
lapgeighv, 28-487
lapgeigv, 28-488
lapgschur, 28-497
lapgsvdcst, 28-489
lapgsvds, 28-492
lapgsvdst, 28-494
Laplace, 28-91, 28-92, 28-616
lapsvdcusv, 28-498

Index-12

Index

Index

lapsvds, 28-500
lapsvdusv, 28-501
layout, 3-6, 3-18
layout and usage, 3-10
le, 7-10
.le, 7-12
least squares, 7-5
least squares regression, 28-580, 28-585
left-hand side, 15-2
legend, 21-22
let, 28-502
lib, 28-507
libraries, 15-1, 27-47
libraries, active, 28-509
library, 28-508
line numbers, 28-511
line thickness, 21-16, 21-20, 21-25
line type, 21-25
linear algebra, 27-5
linear equation, 28-809
linear equation solution, 7-5
lines, 21-21, 21-22, 21-24
#linesoff, 28-511
#lineson, 28-511
linsolve, 28-512
listwise (dataloop), 28-513
listwise deletion, 28-229, 28-230, 28-569,

28-612
literal, 6-23, 7-19
ln, 28-513
lncdfbvn, 28-514
lncdfbvn2, 28-515
lncdfmvn, 28-517
lncdfn, 28-517
lncdfn.src, 28-94, 28-109
lncdfn2, 28-518
lncdfnc, 28-519

lnfact, 28-519
lngammacplx, 28-520
lnpdfmvn, 28-521
lnpdfmvt, 28-522
lnpdfn, 28-522
lnpdft, 28-523
load, 28-524
loadarray, 28-529
loadd, 28-531
loadf, 28-524
loadk, 28-524
loadm, 28-524
loadp, 28-524
loads, 28-524
loadstruct, 28-532
loadwind, 28-532
local variable declaration, 8-3
local variables, 6-8, 8-3, 28-533
local, 8-2, 28-533
locate, 28-534
loess, 28-534
loessmt, 28-535
loessmtControlCreate, 28-536
log coordinates, 28-538
log factorial, 28-519
log gamma, 28-519
log, 28-537
log, base 10, 28-537
log, natural, 28-513
logging commands, 28-142
logical operators, 7-13
logistic, 28-93, 28-94, 28-617
loglog, 28-538
logx, 28-538
logy, 28-539
looping, 6-32, 27-45, 28-215
looping with arrays, 11-17

Index-13

Index

loopnextindex, 11-19, 28-540
lower triangular matrix, 28-542
lower, 28-541
lowmat, 28-542
lowmat1, 28-542
lt, 7-10
.lt, 7-11
ltrisol, 28-543
LU decomposition, 7-5, 28-544
lu, 28-544
lusol, 28-545

M

machEpsilon, 28-545
machine epsilon, 28-105, 28-902, 28-907
machine requirements, 2-2
magnification, 21-29
make (dataloop), 28-546
makevars, 28-546
makewind, 28-548
margin, 28-549
matalloc, 28-550
matinit, 28-551
matrices, indexing, 6-40
matrix conformability, 7-1
matrix files, 17-13
matrix manipulation, 27-24
matrix, creation, 28-502
matrix, empty, 6-15, 28-138, 28-504, 28-525,

28-772, 28-785
matrix, ones, 28-595
matrix, zeros, 28-981
mattoarray, 11-28, 28-551
maxbytes, 28-556
maxc, 28-552
maximizing performance, 25-1
maximum element, 28-552

maximum element index, 28-553
maxindc, 28-553
maxv, 28-554
maxvec, 28-555
mbesseli, 28-556
mean, 28-559
meanc, 28-559
median, 28-560
memory, 28-199
memory, clear all, 28-574
menu bar, 3-17
menu, edit, 3-3
menu, file, 3-3, 3-10
menu, help, 3-3
menu, symbol editor, 3-17
menu, tools, 3-3
menu, view, 3-3
menu, window, 3-10, 3-18
menus, 3-3, 3-21
mergeby, 28-561
mergevar, 28-562
merging, 27-41
minc, 28-563
minimum element, 28-563
minimum element index, 28-564
minindc, 28-564
minv, 28-565
miss, 28-566
missex, 28-567
missing character, 28-573
missing values, 7-5, 28-229, 28-230, 28-472,

28-566, 28-567, 28-573, 28-612,
28-786

missrv, 28-566
modulo division, 7-5
moment matrix, 28-569, 28-583, 28-588
moment, 28-568

Index-14

Index

Index

momentd, 28-570
Moore-Penrose pseudo-inverse, 28-621,

28-622
movement, command line history, 3-8
movingave, 28-571
movingaveExpwgt, 28-572
movingaveWgt, 28-573
msym, 28-573
msym, ATOG command, 23-10
multi-threading, 14-1, 27-43
multiplication, 7-5
multiplicative sequence, 28-794

N

N-dimensional arrays, 10-1, 11-1, 27-30
NaN, 6-28
NaN, testing for, 6-29, 7-9
navigating, 4-2
ne, 7-11
.ne, 7-12
new, 3-3, 3-4, 3-18
new, 28-574
nextindex, 28-575
nextn, 28-576
nextnevn, 28-576
nextwind, 28-577
nocheck, 23-10
Normal distribution, 28-94, 28-95, 28-96,

28-97, 28-99, 28-101, 28-103,
28-105, 28-108, 28-514, 28-517,
28-518, 28-519

Normal distribution, bivariate, 28-72
not, 7-13, 7-14
.not, 7-15
null space, 28-578
null, 28-578
null1, 28-579

numCombinations, 28-580

O

obsolete commands, 0-1
ols, 28-580
olsmt, 28-585
olsmtControlCreate, 28-592
olsqr, 28-593
olsqr2, 28-594
olsqrmt, 28-595
ones, 28-595
open, 3-3, 3-4
open, 28-596
operators, 6-1, 7-4
operators, element-by-element, 7-1
optimization, 27-17
optn, 28-602
optnevn, 28-602
or, 7-13, 7-14
.or, 7-15
orth, 28-604
orthogonal complement, 28-578
orthonormal, 28-578, 28-604
outer product, 7-6
output, 17-4
output functions, 27-56
output, 28-604
output, ATOG command, 23-10
outtyp (dataloop), 28-608
outtyp, ATOG command, 23-11
outvar, ATOG command, 23-11
outwidth, 28-608

P

pacf, 28-609
packed ASCII, 23-1, 23-8

Index-15

Index

packedToSp, 28-610
packr, 28-612
page organization, 3-1
_pageshf, 21-14
_pagesiz, 21-14
pairwise deletion, 7-5, 28-229, 28-230,

28-569
panel data, 11-32
_parrow, 21-14
_parrow3, 21-16
parse, 28-613
paste, 3-3, 3-4, 3-5
pause, 28-614
_paxes, 21-17
_paxht, 21-17
_pbartyp, 21-17
_pbarwid, 21-18
_pbox, 21-18
_pboxlim, 21-19
_pcolor, 21-19
_pcrop, 21-19
_pcross, 21-19
_pdate, 21-20
pdfCauchy, 28-614
pdfexp, 28-615
pdfGenPareto, 28-616
pdfLaplace, 28-616
pdflogistic, 28-617
pdfn, 28-618
pdfRayleigh, 28-619
pdfWeibull, 28-619
_perrbar, 21-20
_pframe, 21-20
_pgrid, 21-21
pi, 28-620
pinv, 28-621
pinvmt, 28-622

pixel coordinates, 21-6
_plctrl, 21-21
_plegctl, 21-22
_plegstr, 21-22
_plev, 21-22
_pline, 21-22
_pline3d, 21-24
plot coordinates, 21-6
_plotshf, 21-24
_plotsiz, 21-25
_pltype, 21-25
_plwidth, 21-25
_pmcolor, 21-25
_pmsgctl, 21-26
_pmsgstr, 21-26
_pnotify, 21-26
_pnum, 21-26
_pnumht, 21-27
pointer, 7-17, 8-10, 8-11, 28-533
pointer, instruction, 6-3
pointers, structure, 12-10
polar, 28-623
polychar, 28-623
polyeval, 28-624
polygamma, 28-625
polyint, 28-626
polymake, 28-627
polymat, 28-628
polymroot, 28-628
polymult, 28-630
polynomial, 28-627
polynomial interpolation, 28-626
polynomial operations, 27-10
polynomial regression, 28-628
polynomial, characteristic, 28-623
polynomial, evaluation, 28-624
polynomial, roots, 28-631

Index-16

Index

Index

polyroot, 28-631
pop, 28-631
pqgwin, 28-632
precedence, 6-30
precision control, 27-22
predicted values, 28-594
preferences, 3-3, 3-18
preservecase, 23-12
previousindex, 28-633
princomp, 28-634
print, 3-3, 3-4
print setup, 3-3
print, 28-635
printdos, 28-641
printfm, 28-642
printfmt, 28-645
probability density function, Normal, 28-618
proc, 8-2, 28-646
procedure, 8-1, 28-533, 28-646
procedure, definitions, 6-3, 8-2
procedures, 27-46
procedures, indexing, 8-10
procedures, multiple returns, 8-11
procedures, passing to other procedures, 8-9
prodc, 28-647
products, 28-648
Profiler, 20-1
program, 6-4
program control, 27-44
program space, 28-804
program, run, 28-774
programming editor, 3-10
_protate, 21-27
_pscreen, 21-27
pseudo-inverse, 28-621, 28-622
psi, 28-648
_psilent, 21-27

_pstype, 21-27
_psurf, 21-27
_psym, 21-28
_psym3d, 21-28
_psymsiz, 21-28
_ptek, 21-28
_pticout, 21-28
_ptitlht, 21-28
Publication Quality Graphics, 21-1, 27-57
putArray, 11-15
putarray, 28-649
putf, 28-650
putvals, 28-651
PV structure, 12-16, 13-1
pvCreate, 28-653
_pversno, 21-29
pvGetIndex, 28-653
pvGetParNames, 28-654
pvGetParVector, 28-655
pvLength, 28-656
pvList, 28-656
pvPack, 28-657
pvPacki, 28-658
pvPackm, 28-659
pvPackmi, 28-660
pvPacks, 28-662
pvPacksi, 28-663
pvPacksm, 28-664
pvPacksmi, 28-666
pvPutParVector, 28-668
pvTest, 28-670
pvUnpack, 28-670
_pxpmax, 21-29
_pxsci, 21-29
_pypmax, 21-29
_pysci, 21-29
_pzclr, 21-29

Index-17

Index

_pzoom, 21-29
_pzpmax, 21-29
_pzsci, 21-29

Q

QNewton, 28-671
QNewtonmt, 28-674
QNewtonmtControlCreate, 28-678
QNewtonmtOutCreate, 28-679
QNewtonSet, 28-679
QProg, 28-680
QProgmt, 28-681
QProgmtInCreate, 28-684
qqr, 28-684
qqre, 28-686
qqrep, 28-689
QR decomposition, 28-593, 28-595
qr, 28-691
qre, 28-692
qrep, 28-695
qrsol, 28-697
qrtsol, 28-698
qtyr, 28-698
qtyre, 28-701
qtyrep, 28-704
quadrature, 28-458
quantile, 28-706
quantiled, 28-707
qyr, 28-709
qyre, 28-710
qyrep, 28-712

R

radii, 21-22
random numbers, 27-11
rank of a matrix, 28-714

rank, 28-714
rankindx, 28-715
Rayleigh, 28-112, 28-113, 28-619
readr, 28-716
real, 28-717
recent files, 3-3
recent working directories, 3-3
recode (dataloop), 28-720
recode, 28-718
recserar, 28-721
recsercp, 28-723
recserrc, 28-724
recursion, 8-5
redo, 3-3
reduced row echelon form, 28-773
regression, 28-580, 28-585
regular expressions, 3-15
relational operator, dot, 7-11, 7-21
relational operators, 7-9
relative error, 28-105, 28-114
reload, 3-18
reload symbol, 3-17
remove split, 3-10
rerun, 28-725
reserved words, 0-1
reshape, 28-726
residuals, 28-583, 28-587, 28-594
retp, 8-2, 8-5, 28-727
return, 28-728
rev, 28-728
rfft, 28-729
rffti, 28-730
rfftip, 28-731
rfftn, 28-732
rfftnp, 28-733
rfftp, 28-735
right-hand side, 15-2

Index-18

Index

Index

rndbeta, 28-736
rndcon, 28-737
rndgam, 28-738
rndi, 28-740
rndKMbeta, 28-740
rndKMgam, 28-742
rndKMi, 28-743
rndKMn, 28-745
rndKMnb, 28-746
rndKMp, 28-747
rndKMu, 28-749
rndKMvm, 28-750
rndLCbeta, 28-751
rndLCgam, 28-753
rndLCi, 28-755
rndLCn, 28-757
rndLCnb, 28-758
rndLCp, 28-760
rndLCu, 28-762
rndLCvm, 28-764
rndmult, 28-737
rndn, 28-765
rndnb, 28-766
rndp, 28-767
rndseed, 28-737
rndu, 28-768
rndvm, 28-769
rotater, 28-770
round down, 28-316
round up, 28-121
round, 28-771
rows, 28-772
rowsf, 28-772
rref, 28-773
rules of syntax, 6-37
run, 3-4, 3-5
run button, 3-6

run to cursor, 3-21
run, 28-774
Run-Time Library structures, 13-1

S

satostrC, 28-776
save, 3-10, 3-18
save as, 3-10
save symbol, 3-17
save, 28-776
saveall, 28-778
saved, 28-779
savestruct, 28-781
savewind, 28-781
saving the workspace, 16-2
scalar error code, 28-271, 28-784
scalar expression, 6-32
scale, 28-782
scale3d, 28-783
scalerr, 28-784
scalinfnanmiss, 28-786
scaling, 28-782, 28-783
scalmiss, 28-786
schtoc, 28-787
schur, 28-788
scientific functions, 27-1
screen, 28-790
search next, 3-5
search previous, 3-5
searchsourcepath, 28-791
secondary section, 6-5
seekr, 28-791
select (dataloop), 28-792
selif, 28-793
semicolon, 6-2
seqa, 28-794
seqm, 28-794

Index-19

Index

sequence function, 28-794
sequence functions, 27-22
series functions, 27-22
set difference function, 28-796
setArray, 11-16
setarray, 28-795
setdif, 28-796
setdifsa, 28-797
setvars, 28-798
setvwrmode, 28-799
setwind, 28-800
shell, 28-800
shiftr, 28-801
shortcuts, 4-2
show, 28-802
Simpson’s method, 28-466
sin, 28-805
sine, inverse, 28-30
singleindex, 28-806
singular value decomposition, 28-888,

28-890, 28-892
singular values, 28-887, 28-891
singularity tolerance, 0-1
sinh, 28-808
sleep, 28-809
soft delimited, 23-5
solpd, 28-809
sort data file, 28-812
sort index, 28-815
sort, heap sort, 28-813
sort, multiple columns, 28-816
sort, quicksort, 28-811
sortc, 28-811
sortcc, 28-811
sortd, 28-812
sorthc, 28-813
sorthcc, 28-813

sortind, 28-815
sortindc, 28-815
sorting, 27-41
sortmc, 28-816
sortr, sortrc, 28-817
Source Browser, 5-10
source browsing, 4-4
source page, 3-9
spaces, 7-16
spaces, extraneous, 6-38, 7-16, 7-17
sparse matrices, 27-29
spBiconjGradSol, 28-818
spChol, 28-820
spConjGradSol, 28-821
spCreate, 28-822
spDenseSubmat, 28-824
spDiagRvMat, 28-825
spEigv, 28-827
spEye, 28-829
spGetNZE, 28-829
spLDL, 28-832
spline, 28-831
split horizontally, 3-10, 3-18
split vertically, 3-10, 3-18
spLU, 28-833
spNumNZE, 28-835
spOnes, 28-836
SpreadsheetReadM, 28-837
SpreadsheetReadSA, 28-837
spreadsheets, 27-33
SpreadsheetWrite, 28-838
spScale, 28-839
spSubmat, 28-840
spToDense, 28-841
spTrTDense, 28-842
spTScalar, 28-842
spZeros, 28-843

Index-20

Index

Index

sqpSolve, 28-844
sqpSolvemt, 12-23
sqpSolveMT, 28-849
sqpSolvemtControl structure, 12-25
sqpSolveMTControlCreate, 28-856
sqpSolveMTlagrangeCreate, 28-857
sqpSolveMToutCreate, 28-858
sqpSolveSet, 28-858
sqrt, 28-858
square root, 28-858
src_path, 15-1
standard deviation, 28-38, 28-40, 28-229,

28-231, 28-859, 28-860
standard deviation of residual, 28-583,

28-589
standard errors, 28-583, 28-589
statement, 6-2, 6-37
statement, executable, 6-3
statement, nonexecutable, 6-3
statistical distributions, 27-18
statistical functions, 27-14
statistics, descriptive, 28-228, 28-230
stdc, 28-859
stdsc, 28-860
step into, 3-21
step out, 3-21
step over, 3-21
stepping through, 3-23
Stirling’s formula, 28-520
stocv, 28-861
stof, 28-862
stop, 3-21
stop program, 3-4
stop, 28-862
strcombine, 28-863
strindx, 28-864
string array concatenation, 7-18

string arrays, 6-24, 6-25
string concatenation, 7-17
string files, 17-16
string handling, 27-51
string index, 28-864, 28-866
string length, 28-865
string, long, 6-38
string, substring, 28-867
strings, graphics, 21-26
strlen, 28-865
strput, 28-865
strrindx, 28-866
strsect, 28-867
strsplit, 28-868
strsplitPad, 28-869
strtodt, 28-871
strtof, 28-872
strtofcplx, 28-873
strtriml, 28-873
strtrimr, 28-874
strtrunc, 28-874
strtruncl, 28-875
strtruncpad, 28-875
strtruncr, 28-876
struct editor, 3-19
structure definition, 12-1
structure indexing, 12-5
structure instance, 12-2
structure pointers, 12-10
structure, DS, 12-15, 13-7
structure, PV, 12-16, 13-1
structures, 3-19, 12-1, 27-32
structures, arrays of, 12-4
structures, control, 12-22
submat, 28-876
submatrix, 28-876
subroutine, 6-36, 28-395

Index-21

Index

subroutines, 27-46
subsample, 28-290
subscat, 28-877
substitution, 7-19
substring, 28-867
substute, 28-879
subvec, 28-880
sum, 28-882
sumc, 28-881
sumr, 28-883
surface, 28-885
svd, 28-887
svd1, 28-888
svd2, 28-889
svdcusv, 28-890
svds, 28-891
svdusv, 28-892
sweep inverse, 28-469
symbol editor, 3-20
symbol names, 6-39
symbol table, 28-803
symbol table type, 28-930
symbols, allocate maximum number, 28-574
syntax, 6-37
syntax highlighting, 3-12
sysstate, 28-893
system, 28-908

T

t distribution, Student’s, 28-113
tab, 28-908
table, 7-6
tan, 28-909
tanh, 28-910
tempname, 28-911
tensor, 7-6
text files, 27-34

TGAUSS, 5-1
thickness, line, 21-16, 21-20, 21-25
ThreadBegin, 28-911
ThreadEnd, 28-912
ThreadJoin, 28-913
threads, 14-1, 27-43
ThreadStat, 28-914
tick marks, 21-28
tilde, 7-9
time and date functions, 27-53
time, 22-2, 28-914
time, elapsed, 28-274
timed iterations, 22-6
timedt, 28-915
timestr, 28-915
timeutc, 28-916
timing functions, 28-430
title, 28-917
tkf2eps, 28-917
tkf2ps, 28-918
tocart, 28-919
todaydt, 28-919
Toeplitz matrix, 28-920
toeplitz, 28-920
toggle auto-reload, 3-18
toggle breakpoint, 3-21
token, 28-921
toolbar, 3-18
toolbars, 3-3, 3-21
tooltips, 3-12
topolar, 28-922
trace program execution, 28-922
trace, 28-922
translation phase, 19-3
transpose, 7-8
transpose, bookkeeping, 7-8
trap flag, 28-924, 28-926

Index-22

Index

Index

trap state, 28-785
trap, 28-924
trapchk, 28-926
triangular matrix, lower, 28-542
triangular matrix, upper, 28-939
trigamma, 28-928
trimr, 28-928
trivariate Normal, 28-117
troubleshooting, libraries, 15-12
TRUE, 6-32, 7-10
trunc, 28-929
truncating, 28-929
type, 28-930
typecv, 28-931
typef, 28-932

U

unconditional branching, 6-35
underdetermined, 28-583, 28-589
undo, 3-3
union, 28-933
unionsa, 28-934
uniqindx, 28-935
uniqindxsa, 28-936
unique, 28-937
uniquesa, 28-938
until, 28-215
upmat, 28-939
upmat1, 28-939
upper triangular matrix, 28-939
upper, 28-940
use, 28-940
user-defined function, 28-477, 28-646
utctodt, 28-942
utctodtv, 28-943
utrisol, 28-944

V

vals, 28-945
varget, 28-946
vargetl, 28-947
variable names, 28-384, 28-385
variables, debugging, 3-24
variables, editing, 3-24
variables, viewing, 3-24
variance, 28-229, 28-231
variance-covariance matrix, 28-583, 28-589,

28-953
varindxi, 28-597
varmall, 28-948
varmares, 28-949
varput, 28-949
varputl, 28-951
vartypef, 28-952
vcm, 28-953
vcms, 28-953
vcx, 28-953
vcxs, 28-953
vec, vecr, 28-954
vech, 28-955
vector (dataloop), 28-956
vectors, 6-40
vget, 28-957
view, 28-957
viewing graphics, 5-2
viewing program output, 4-3
viewxyz, 28-958
vlist, 28-959
vnamecv, 28-959
volume, 28-960
vput, 28-960
vread, 28-961
vtypecv, 28-962

Index-23

Index

W

wait, 28-962
waitc, 28-962
walkindex, 28-963
watch window, 3-24
Weibull, 28-118, 28-119, 28-619
weighted count, 28-163
while, 28-215
window, 17-4
window, 28-964
window, clear, 28-134
workbox, 28-958, 28-960
working directory toolbar, 3-4
workspace, 28-199, 28-804
writer, 28-965

X

xlabel, 28-966
xlsGetSheetCount, 28-967
xlsGetSheetSize, 28-968
xlsGetSheetTypes, 28-968
xlsMakeRange, 28-969
xlsReadM, 28-970
xlsReadSA, 28-971
xlsWrite, 28-973
xlsWriteM, 28-974
xlsWriteSA, 28-975
xor, 7-14
.xor, 7-15
xpnd, 28-977
xtics, 28-978
xy, 28-979
xyz, 28-979

Y

ylabel, 28-980
ytics, 28-980

Z

zeros, 28-981
zeta, 28-982
zlabel, 28-982
zooming graphs, 21-29
ztics, 28-983

Index-24

	1 Introduction
	1.1 Product Overview
	1.2 Documentation Conventions

	2 Getting Started
	2.1 Installation Under UNIX/Linux
	2.2 Installation Under Windows
	2.2.1 Machine Requirements
	2.2.2 Installation from Download
	2.2.3 Installation from CD

	3 Introduction to the GAUSS Graphical User Interface
	3.1 Page Organization Concept
	3.2 Command Page
	3.2.1 Menus and Toolbars
	3.2.2 Command Page Toolbar
	3.2.3 Working Directory Toolbar
	3.2.4 Command History Toolbar
	3.2.5 The Run, Debug, and Edit Buttons

	3.3 Layout
	3.3.1 Command History Window
	3.3.2 The Command Input Window

	3.4 Command Line History and Command Line Editing
	3.4.1 Movement
	3.4.2 Error Output Window

	3.5 Source Page: Editing Programs
	3.5.1 Menus and Toolbars
	3.5.2 Layout and Usage
	3.5.3 Find and Replace
	3.5.4 Changing Editor Properties
	3.5.5 Command Input Window
	3.5.6 Error Output Window

	3.6 Data Page
	3.6.1 Menu Bar
	3.6.2 Layout
	3.6.3 Symbol Editor

	3.7 Debug Page
	3.7.1 Menus and Toolbars
	3.7.2 Using Breakpoints
	3.7.3 Setting and Clearing Breakpoints
	3.7.4 Stepping Through a Program
	3.7.5 Viewing and Editing Variables

	3.8 Help Page
	3.8.1 Hot Keys

	4 Navigating the GAUSS Graphical User Interface
	4.1 Hot Keys and Shortcuts
	4.2 Navigating Between Pages
	4.3 Focus Program Output on I/O
	4.4 Viewing Program Output from Other Pages
	4.5 F1 Help
	4.6 CTRL+F1 Source Browsing

	5 Using the Command Line Interface
	5.1 Viewing Graphics
	5.2 Command Line History and Command Line Editing
	5.2.1 Movement
	5.2.2 Editing
	5.2.3 History Retrieval

	5.3 Interactive Commands
	5.3.1 quit
	5.3.2 ed
	5.3.3 browse
	5.3.4 config

	5.4 Debugging
	5.4.1 General Functions
	5.4.2 Listing Functions
	5.4.3 Execution Functions
	5.4.4 View Commands
	5.4.5 Breakpoint Commands

	5.5 Using the Source Browser in TGAUSS

	6 Language Fundamentals
	6.1 Expressions
	6.2 Statements
	6.2.1 Executable Statements
	6.2.2 Nonexecutable Statements

	6.3 Programs
	6.3.1 Main Section
	6.3.2 Secondary Sections

	6.4 Compiler Directives
	6.5 Procedures
	6.6 Data Types
	6.6.1 Constants
	6.6.2 Matrices
	6.6.3 Sparse Matrices
	6.6.4 N-dimensional Arrays
	6.6.5 Strings
	6.6.6 String Arrays
	6.6.7 Character Matrices
	6.6.8 Date and Time Formats
	6.6.9 Special Data Types

	6.7 Operator Precedence
	6.8 Flow Control
	6.8.1 Looping
	6.8.2 Conditional Branching
	6.8.3 Unconditional Branching

	6.9 Functions
	6.10 Rules of Syntax
	6.10.1 Statements
	6.10.2 Case
	6.10.3 Comments
	6.10.4 Extraneous Spaces
	6.10.5 Symbol Names
	6.10.6 Labels
	6.10.7 Assignment Statements
	6.10.8 Function Arguments
	6.10.9 Indexing Matrices
	6.10.10 Arrays of Matrices and Strings
	6.10.11 Arrays of Procedures

	7 Operators
	7.1 Element-by-Element Operators
	7.2 Matrix Operators
	7.2.1 Numeric Operators
	7.2.2 Other Matrix Operators

	7.3 Relational Operators
	7.4 Logical Operators
	7.5 Other Operators
	7.6 Using Dot Operators with Constants
	7.7 Operator Precedence

	8 Procedures and Keywords
	8.1 Defining a Procedure
	8.1.1 Procedure Declaration
	8.1.2 Local Variable Declarations
	8.1.3 Body of Procedure
	8.1.4 Returning from the Procedure
	8.1.5 End of Procedure Definition

	8.2 Calling a Procedure
	8.3 Keywords
	8.3.1 Defining a Keyword
	8.3.2 Calling a Keyword

	8.4 Passing Procedures to Procedures
	8.5 Indexing Procedures
	8.6 Multiple Returns from Procedures
	8.7 Saving Compiled Procedures

	9 Sparse Matrices
	9.1 Defining Sparse Matrices
	9.2 Creating and Using Sparse Matrices
	9.3 Sparse Support in Matrix Functions and Operators
	9.3.1 Return Types for Dyadic Operators

	10 N-Dimensional Arrays
	10.1 Bracketed Indexing
	10.2 EE Conformability
	10.3 Glossary of Terms

	11 Working with Arrays
	11.1 Initializing Arrays
	11.1.1 areshape
	11.1.2 aconcat
	11.1.3 aeye
	11.1.4 arrayinit
	11.1.5 arrayalloc

	11.2 Assigning to Arrays
	11.2.1 index operator
	11.2.2 getArray
	11.2.3 getMatrix
	11.2.4 getMatrix4D
	11.2.5 getScalar3D, getScalar4D
	11.2.6 putArray
	11.2.7 setArray

	11.3 Looping with Arrays
	11.3.1 loopnextindex

	11.4 Miscellaneous Array Functions
	11.4.1 atranspose
	11.4.2 amult
	11.4.3 amean, amin, amax
	11.4.4 getDims
	11.4.5 getOrders
	11.4.6 arraytomat
	11.4.7 mattoarray

	11.5 Using Arrays with GAUSS functions
	11.6 A Panel Data Model
	11.7 Appendix

	12 Structures
	12.1 Basic Structures
	12.1.1 Structure Definition
	12.1.2 Declaring an Instance
	12.1.3 Initializing an Instance
	12.1.4 Arrays of Structures
	12.1.5 Structure Indexing
	12.1.6 Saving an Instance to the Disk
	12.1.7 Loading an Instance from the Disk
	12.1.8 Passing Structures to Procedures

	12.2 Structure Pointers
	12.2.1 Creating and Assigning Structure Pointers
	12.2.2 Structure Pointer References
	12.2.3 Using Structure Pointers in Procedures

	12.3 Special Structures
	12.3.1 The DS Structure
	12.3.2 The PV Structure
	12.3.3 Miscellaneous PV Procedures
	12.3.4 Control Structures

	12.4 sqpSolvemt
	12.4.1 Input Arguments
	12.4.2 Output Argument
	12.4.3 Example
	12.4.4 The Command File

	13 Run-Time Library Structures
	13.1 The PV Parameter Structure
	13.2 Fast Pack Functions
	13.3 The DS Data Structure

	14 Multi-Threaded Programming in GAUSS
	14.1 The Functions
	14.2 GAUSS Threading Concepts
	14.3 Coding With Threads
	14.4 Coding Restrictions

	15 Libraries
	15.1 Autoloader
	15.1.1 Forward References
	15.1.2 The Autoloader Search Path

	15.2 Global Declaration Files
	15.3 Troubleshooting
	15.3.1 Using .dec Files

	16 Compiler
	16.1 Compiling Programs
	16.1.1 Compiling a File

	16.2 Saving the Current Workspace
	16.3 Debugging

	17 File I/O
	17.1 ASCII Files
	17.1.1 Matrix Data
	17.1.2 General File I/O

	17.2 Data Sets
	17.2.1 Layout
	17.2.2 Creating Data Sets
	17.2.3 Reading and Writing
	17.2.4 Distinguishing Character and Numeric Data

	17.3 GAUSS Data Archives
	17.3.1 Creating and Writing Variables to GDA's
	17.3.2 Reading Variables from GDA's
	17.3.3 Updating Variables in GDA's

	17.4 Matrix Files
	17.5 File Formats
	17.5.1 Small Matrix v89 (Obsolete)
	17.5.2 Extended Matrix v89 (Obsolete)
	17.5.3 Small String v89 (Obsolete)
	17.5.4 Extended String v89 (Obsolete)
	17.5.5 Small Data Set v89 (Obsolete)
	17.5.6 Extended Data Set v89 (Obsolete)
	17.5.7 Matrix v92 (Obsolete)
	17.5.8 String v92 (Obsolete)
	17.5.9 Data Set v92 (Obsolete)
	17.5.10 Matrix v96
	17.5.11 Data Set v96
	17.5.12 GAUSS Data Archive

	18 Foreign Language Interface
	18.1 Writing FLI Functions
	18.2 Creating Dynamic Libraries

	19 Data Transformations
	19.1 Data Loop Statements
	19.2 Using Other Statements
	19.3 Debugging Data Loops
	19.3.1 Translation Phase
	19.3.2 Compilation Phase
	19.3.3 Execution Phase

	19.4 Reserved Variables

	20 The GAUSS Profiler
	20.1 Using the GAUSS Profiler
	20.1.1 Collection
	20.1.2 Analysis

	21 Publication Quality Graphics
	21.1 General Design
	21.2 Using Publication Quality Graphics
	21.2.1 Getting Started
	21.2.2 Graphics Coordinate System

	21.3 Graphic Panels
	21.3.1 Tiled Graphic Panels
	21.3.2 Overlapping Graphic Panels
	21.3.3 Nontransparent Graphic Panels
	21.3.4 Transparent Graphic Panels
	21.3.5 Using Graphic Panel Functions
	21.3.6 Inch Units in Graphic Panels
	21.3.7 Saving Graphic Panel Configurations

	21.4 Graphics Text Elements
	21.4.1 Selecting Fonts
	21.4.2 Greek and Mathematical Symbols

	21.5 Colors
	21.6 Global Control Variables

	22 Time and Date
	22.1 Time and Date Formats
	22.2 Time and Date Functions
	22.2.1 Timed Iterations

	23 ATOG
	23.1 Command Summary
	23.2 Commands
	23.3 Examples
	23.4 Error Messages

	24 Error Messages
	25 Maximizing Performance
	25.1 Library System
	25.2 Loops
	25.3 Memory Usage
	25.3.1 Hard Disk Maintenance
	25.3.2 CPU Cache

	A Fonts
	A.1 Simplex
	A.2 Simgrma
	A.3 Microb
	A.4 Complex

	B Reserved Words Appendix
	C Singularity Tolerance Appendix
	C.1 Reading and Setting the Tolerance
	C.2 Determining Singularity

	26 Command Reference Introduction
	26.1 Documentation Conventions
	26.2 Command Components
	26.3 Using This Manual
	26.4 Global Control Variables
	26.4.1 Changing the Default Values
	26.4.2 The Procedure gausset

	27 Commands by Category
	27.1 Mathematical Functions
	27.2 Finance Functions
	27.3 Matrix Manipulation
	27.4 Sparse Matrix Handling
	27.5 N-Dimensional Array Handling
	27.6 Structures
	27.7 Data Handling (I/0)
	27.8 Compiler Control
	27.9 Multi-Threading
	27.10 Program Control
	27.11 OS Functions and File Management
	27.12 Workspace Management
	27.13 Error Handling and Debugging
	27.14 String Handling
	27.15 Time and Date Functions
	27.16 Console I/O
	27.17 Output Functions
	27.18 Graphics

	28 Command Reference
	a
	abs
	acf
	aconcat
	aeye
	amax
	amean
	AmericanBinomCall
	AmericanBinomCall_Greeks
	AmericanBinomCall_ImpVol
	AmericanBinomPut
	AmericanBinomPut_Greeks
	AmericanBinomPut_ImpVol
	AmericanBSCall
	AmericanBSCall_Greeks
	AmericanBSCall_ImpVol
	AmericanBSPut
	AmericanBSPut_Greeks
	AmericanBSPut_ImpVol
	amin
	amult
	annualTradingDays
	arccos
	arcsin
	areshape
	arrayalloc
	arrayindex
	arrayinit
	arraytomat
	asciiload
	asclabel
	astd
	astds
	asum
	atan
	atan2
	atranspose
	axmargin

	b
	balance
	band
	bandchol
	bandcholsol
	bandltsol
	bandrv
	bandsolpd
	bar
	base10
	begwind
	besselj
	bessely
	beta
	box
	boxcox
	break

	c
	call
	cdfBeta
	cdfBetaInv
	cdfBinomial
	cdfBinomialInv
	cdfBvn
	cdfBvn2
	cdfBvn2e
	cdfCauchy
	cdfCauchyInv
	cdfChic
	cdfChii
	cdfChinc
	cdfChincInv
	cdfExp
	cdfExpInv
	cdfFc
	cdfFnc
	cdfFncInv
	cdfGam
	cdfGenPareto
	cdfLaplace
	cdfLaplaceInv
	cdfLogistic
	cdfLogisticInv
	cdfMvn
	cdfMvnce
	cdfMvne
	cdfMvn2e
	cdfMvtce
	cdfMvte
	cdfMvt2e
	cdfN, cdfNc
	cdfNegBinomial
	cdfNegBinomialInv
	cdfN2
	cdfNi
	cdfPoisson
	cdfPoissonInv
	cdfRayleigh
	cdfRayleighInv
	cdfTc
	cdfTci
	cdfTnc
	cdfTvn
	cdfWeibull
	cdfWeibullInv
	cdir
	ceil
	ChangeDir
	chdir
	chiBarSquare
	chol
	choldn
	cholsol
	cholup
	chrs
	clear
	clearg
	close
	closeall
	cls
	code
	code (dataloop)
	cols
	colsf
	combinate
	combinated
	comlog
	compile
	complex
	con
	cond
	conj
	cons
	ConScore
	continue
	contour
	conv
	convertsatostr
	convertstrtosa
	corrm, corrvc, corrx
	corrms, corrxs
	cos
	cosh
	counts
	countwts
	create
	crossprd
	crout
	croutp
	csrcol, csrlin
	cumprodc
	cumsumc
	curve
	cvtos

	d
	datacreate
	datacreatecomplex
	datalist
	dataload
	dataloop (dataloop)
	dataopen
	datasave
	date
	datestr
	datestring
	datestrymd
	dayinyr
	dayofweek
	debug
	declare
	delete
	delete (dataloop)
	DeleteFile
	delif
	denseToSp
	denseToSpRE
	denToZero
	design
	det
	detl
	dfft
	dffti
	diag
	diagrv
	digamma
	dlibrary
	dllcall
	do while, do until
	dos
	doswin
	DOSWinCloseall
	DOSWinOpen
	dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne
	dotfeqmt, dotfgemt, dotfgtmt, dotflemt, dotfltmt, dotfnemt
	draw
	drop (dataloop)
	dsCreate
	dstat
	dstatmt
	dstatmtControlCreate
	dtdate
	dtday
	dttime
	dttodtv
	dttostr
	dttoutc
	dtvnormal
	dtvtodt
	dtvtoutc
	dummy
	dummybr
	dummydn

	e
	ed
	edit
	erfInv, erfCInv
	eig
	eigh
	eighv
	eigv
	elapsedTradingDays
	end
	endp
	endwind
	envget
	eof
	eqSolve
	eqSolvemt
	eqSolvemtControlCreate
	eqSolvemtOutCreate
	eqSolveSet
	erf, erfc
	erfcplx, erfccplx
	error
	errorlog
	errorlogat
	etdays
	ethsec
	etstr
	EuropeanBinomCall
	EuropeanBinomCall_Greeks
	EuropeanBinomCall_ImpVol
	EuropeanBinomPut
	EuropeanBinomPut_Greeks
	EuropeanBinomPut_ImpVol
	EuropeanBSCall
	EuropeanBSCall_Greeks
	EuropeanBSCall_ImpVol
	EuropeanBSPut
	EuropeanBSPut_Greeks
	EuropeanBSPut_ImpVol
	exctsmpl
	exec
	execbg
	exp
	extern (dataloop)
	external
	eye

	f
	fcheckerr
	fclearerr
	feq, fge, fgt, fle, flt, fne
	feqmt, fgemt, fgtmt, flemt, fltmt, fnemt
	fflush
	fft
	ffti
	fftm
	fftmi
	fftn
	fgets
	fgetsa
	fgetsat
	fgetst
	fileinfo
	filesa
	floor
	fmod
	fn
	fonts
	fopen
	for
	format
	formatcv
	formatnv
	fputs
	fputst
	fseek
	fstrerror
	ftell
	ftocv
	ftos
	ftostrC

	g
	gamma
	gammacplx
	gammaii
	gausset
	gdaAppend
	gdaCreate
	gdaDStat
	gdaDStatMat
	gdaGetIndex
	gdaGetName
	gdaGetNames
	gdaGetOrders
	gdaGetType
	gdaGetTypes
	gdaGetVarInfo
	gdaIsCplx
	gdaLoad
	gdaPack
	gdaRead
	gdaReadByIndex
	gdaReadSome
	gdaReadSparse
	gdaReadStruct
	gdaReportVarInfo
	gdaSave
	gdaUpdate
	gdaUpdateAndPack
	gdaVars
	gdaWrite
	gdaWrite32
	gdaWriteSome
	getarray
	getdims
	getf
	getmatrix
	getmatrix4D
	getname
	getnamef
	getNextTradingDay
	getNextWeekDay
	getnr
	getnrmt
	getorders
	getpath
	getPreviousTradingDay
	getPreviousWeekDay
	getRow
	getscalar3D
	getscalar4D
	getTrRow
	getwind
	gosub
	goto
	gradMT
	gradMTm
	gradMTT
	gradMTTm
	gradp, gradcplx
	graphprt
	graphset

	h
	hasimag
	header
	headermt
	hess
	hessMT
	hessMTg
	hessMTgw
	hessMTm
	hessMTmw
	hessMTT
	hessMTTg
	hessMTTgw
	hessMTTm
	hessMTw
	hessp, hesscplx
	hist
	histf
	histp
	hsec

	i
	if
	imag
	#include
	indcv
	indexcat
	indices
	indices2
	indicesf
	indicesfn
	indnv
	indsav
	intgrat2
	intgrat3
	inthp1
	inthp2
	inthp3
	inthp4
	inthpControlCreate
	intquad1
	intquad2
	intquad3
	intrleav
	intrleavsa
	intrsect
	intrsectsa
	intsimp
	inv, invpd
	invswp
	iscplx
	iscplxf
	isden
	isinfnanmiss
	ismiss

	k
	keep (dataloop)
	key
	keyav
	keyw
	keyword

	l
	lag (dataloop)
	lag1
	lagn
	lapeighb
	lapeighi
	lapeighvb
	lapeighvi
	lapgeig
	lapgeigh
	lapgeighv
	lapgeigv
	lapgsvdcst
	lapgsvds
	lapgsvdst
	lapgschur
	lapsvdcusv
	lapsvds
	lapsvdusv
	let
	lib
	library
	#lineson, #linesoff
	linsolve
	listwise (dataloop)
	ln
	lncdfbvn
	lncdfbvn2
	lncdfmvn
	lncdfn
	lncdfn2
	lncdfnc
	lnfact
	lngammacplx
	lnpdfmvn
	lnpdfmvt
	lnpdfn
	lnpdft
	load, loadf, loadk, loadm, loadp, loads
	loadarray
	loadd
	loadstruct
	loadwind
	local
	locate
	loess
	loessmt
	loessmtControlCreate
	log
	loglog
	logx
	logy
	loopnextindex
	lower
	lowmat, lowmat1
	ltrisol
	lu
	lusol

	m
	machEpsilon
	make (dataloop)
	makevars
	makewind
	margin
	matalloc
	matinit
	mattoarray
	maxc
	maxindc
	maxv
	maxvec
	maxbytes
	mbesseli
	meanc
	median
	mergeby
	mergevar
	minc
	minindc
	minv
	miss, missrv
	missex
	moment
	momentd
	movingave
	movingaveExpwgt
	movingaveWgt
	msym

	n
	new
	nextindex
	nextn, nextnevn
	nextwind
	null
	null1
	numCombinations

	o
	ols
	olsmt
	olsmtControlCreate
	olsqr
	olsqr2
	olsqrmt
	ones
	open
	optn, optnevn
	orth
	output
	outtyp (dataloop)
	outwidth

	p
	pacf
	packedToSp
	packr
	parse
	pause
	pdfCauchy
	pdfexp
	pdfGenPareto
	pdfLaplace
	pdflogistic
	pdfn
	pdfRayleigh
	pdfWeibull
	pi
	pinv
	pinvmt
	polar
	polychar
	polyeval
	polygamma
	polyint
	polymake
	polymat
	polymroot
	polymult
	polyroot
	pop
	pqgwin
	previousindex
	princomp
	print
	printdos
	printfm
	printfmt
	proc
	prodc
	psi
	putarray
	putf
	putvals
	pvCreate
	pvGetIndex
	pvGetParNames
	pvGetParVector
	pvLength
	pvList
	pvPack
	pvPacki
	pvPackm
	pvPackmi
	pvPacks
	pvPacksi
	pvPacksm
	pvPacksmi
	pvPutParVector
	pvTest
	pvUnpack

	q
	QNewton
	QNewtonmt
	QNewtonmtControlCreate
	QNewtonmtOutCreate
	QNewtonSet
	QProg
	QProgmt
	QProgmtInCreate
	qqr
	qqre
	qqrep
	qr
	qre
	qrep
	qrsol
	qrtsol
	qtyr
	qtyre
	qtyrep
	quantile
	quantiled
	qyr
	qyre
	qyrep

	r
	rank
	rankindx
	readr
	real
	recode
	recode (dataloop)
	recserar
	recsercp
	recserrc
	rerun
	reshape
	retp
	return
	rev
	rfft
	rffti
	rfftip
	rfftn
	rfftnp
	rfftp
	rndbeta
	rndcon, rndmult, rndseed
	rndgam
	rndi
	rndKMbeta
	rndKMgam
	rndKMi
	rndKMn
	rndKMnb
	rndKMp
	rndKMu
	rndKMvm
	rndLCbeta
	rndLCgam
	rndLCi
	rndLCn
	rndLCnb
	rndLCp
	rndLCu
	rndLCvm
	rndn
	rndnb
	rndp
	rndu
	rndvm
	rotater
	round
	rows
	rowsf
	rref
	run

	s
	satostrC
	save
	saveall
	saved
	savestruct
	savewind
	scale
	scale3d
	scalerr
	scalinfnanmiss
	scalmiss
	schtoc
	schur
	screen
	searchsourcepath
	seekr
	select (dataloop)
	selif
	seqa, seqm
	setarray
	setdif
	setdifsa
	setvars
	setvwrmode
	setwind
	shell
	shiftr
	show
	sin
	singleindex
	sinh
	sleep
	solpd
	sortc, sortcc
	sortd
	sorthc, sorthcc
	sortind, sortindc
	sortmc
	sortr, sortrc
	spBiconjGradSol
	spChol
	spConjGradSol
	spCreate
	spDenseSubmat
	spDiagRvMat
	spEigv
	spEye
	spGetNZE
	spline
	spLDL
	spLU
	spNumNZE
	spOnes
	SpreadsheetReadM
	SpreadsheetReadSA
	SpreadsheetWrite
	spScale
	spSubmat
	spToDense
	spTrTDense
	spTScalar
	spZeros
	sqpSolve
	sqpSolveMT
	sqpSolveMTControlCreate
	sqpSolveMTlagrangeCreate
	sqpSolveMToutCreate
	sqpSolveSet
	sqrt
	stdc
	stdsc
	stocv
	stof
	stop
	strcombine
	strindx
	strlen
	strput
	strrindx
	strsect
	strsplit
	strsplitPad
	strtodt
	strtof
	strtofcplx
	strtriml
	strtrimr
	strtrunc
	strtruncl
	strtruncpad
	strtruncr
	submat
	subscat
	substute
	subvec
	sumc
	sumr
	surface
	svd
	svd1
	svd2
	svdcusv
	svds
	svdusv
	sysstate
	system

	t
	tab
	tan
	tanh
	tempname
	ThreadBegin
	ThreadEnd
	ThreadJoin
	ThreadStat
	time
	timedt
	timestr
	timeutc
	title
	tkf2eps
	tkf2ps
	tocart
	todaydt
	toeplitz
	token
	topolar
	trace
	trap
	trapchk
	trigamma
	trimr
	trunc
	type
	typecv
	typef

	u
	union
	unionsa
	uniqindx
	uniqindxsa
	unique
	uniquesa
	upmat, upmat1
	upper
	use
	utctodt
	utctodtv
	utrisol

	v
	vals
	varget
	vargetl
	varmall
	varmares
	varput
	varputl
	vartypef
	vcm, vcx
	vcms, vcxs
	vec, vecr
	vech
	vector (dataloop)
	vget
	view
	viewxyz
	vlist
	vnamecv
	volume
	vput
	vread
	vtypecv

	w
	wait, waitc
	walkindex
	window
	writer

	x
	xlabel
	xlsGetSheetCount
	xlsGetSheetSize
	xlsGetSheetTypes
	xlsMakeRange
	xlsReadM
	xlsReadSA
	xlsWrite
	xlsWriteM
	xlsWriteSA
	xpnd
	xtics
	xy
	xyz

	y
	ylabel
	ytics

	z
	zeros
	zeta
	zlabel
	ztics

	D Obsolete Commands
	E Colors
	Index

