GAUSS

Language Reference

Aptech Systems, Inc— Mathematical and Satistical System

Information in this document is subject to change without notice and does not
represent acommitment on the part of Aptech Systems, Inc. The software described in
this document is furnished under alicense agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of this agreement.
The purchaser may make one copy of the software for backup purposes. No part of
this manual may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying or recording, for any purpose other than the
purchaser’s personal use without the written permission of Aptech Systems, Inc.

© 1984-2001 Aptech Systems, Inc. All rights reserved.

GAUSS and GAUSS Light are trademarks of Aptech Systems, Inc.
GEM isatrademark of Digital Research, Inc.

Lotusisatrademark of Lotus Development Corp.

HP Laser Jet and HP-GL are trademarks of Hewlett-Packard Corp.
PostScript is atrademark of Adobe Systems Inc.

IBM is atrademark of International Business Machines Corporation.
Herculesis atrademark of Hercules Computer Technology, Inc.
GraphicC is atrademark of Scientific Endeavors Corporation.
Tektronix is atrademark of Tektronix, Inc.

Windowsis aregistered trademark of Microsoft Corporation.
Other trademarks are the property of their respective owners.

Part Number: 1295
Version 3.6
Revised September 1, 2001

Contents

Ta N o To [V Lo} A To] o NPT TR TP 1-1
Documentation CONVENTIONSuviiiieeiieie i e e e e 1-2
USING ThIS MANUAL ..ot r e e e e e e e e 1-2
Global Control VariabIesoooiiiiiiii e 1-3
ComMMANAS DY CAl@QOIY ...ttt e e e e e e e bt eeeeaaaeeas 2-1
MathematiCal FUNCHONSoiiiiiice et e e 2-1
FINANCE FUNCLIONS.....oee ettt e e e e e e e e e e e e aanes 2-10
MatriX ManiPUIALIONeiieiiiii e e 2-12
(D= 1= W =T To | 1 o TR TR 2-15
100]] o111 S @fo] o1 1o IR PRRRN 2-18
Program CONIOL. ...ttt e e e e e e bbb e e e e e e e e e e ennbbnbees 2-18
OS FUNCLIONS .ttt ettt e e e sttt e e e st b bt e e e s aabbe e e e e anbbbeee e s anbaeeeeeanes 2-22
WOrkSpace ManNAgEMIENTcciiiiiiiiiiiiiite ettt e e e e e e e e e e e e e e e e s e e aenneees 2-23
Error Handling and DEDUGQINGovveeeiiiiiiiee ittt eeaeeee e 2-23
SENG HANAING ..t e e e e e s bbb aee e e e e e e an 2-24
TiMe and DAte FUNCLONScooiiiiiii ittt et e et e e e sbaaeee e 2-25
CONSOIE IO ettt e e e e 2-26
OULPUL FUNCHIONSceiiiiiiie ettt ettt ettt e et e e e e st b e e e e s abaeeaeeanes 2-27
LCT7= o] 1o T PP PP PP T OPPPPPROPPPRPN 2-28
ComMMANT REFEIEINCE ...uiiiiiiieiee e e e aees 3-1
CommAaNd COMPONEIES ...c.coiiiiiieeiiiiie ettt et e et e e s st et e e e et b e e e s asbbeee e e enerees 3-1
ODbS0olete COMMEANTSeiiiiiiiiiie it e et e e e st b e e e e sbbeeeeeenae A-1
COl0TS APPENAIX 1ttt ettt e e e e et a e eee e B-1

Introduction

ThisGAUSS™ L anguage Reference describes each of the commands, procedures, and
functions available in the GAUSS programming language. These functions can be
divided into four categories:

« Mathematical, statistical, and scientific functions.

» Data handling routines, including data matrix manipulation and description
routines, and file 1/0O.

» Programming statements, including branching, looping, display features, error
checking, and shell commands.

» Graphicsfunctions.

Thefirst category contains those functions to be expected in a high-level
mathematical language: trigonometric functions and other transcendental functions,
distribution functions, random number generators, numerical differentiation and
integration routines, Fourier transforms, Bessel functions, and polynomial evaluation
routines. And, as a matrix programming language, GAUSS includes a variety of
routines that perform standard matrix operations. Among these are routines to
calculate determinants, matrix inverses, decompositions, eigenvalues and
eigenvectors, and condition numbers.

Data handling routines include functions that return dimensions of matrices, and
information about elements of data matrices, including functionsto locate valueslying
in specific ranges or with certain values. Also under data handling routines fall al

11

GAUSS Language Reference

those functionsthat create, save, open, and read from and write to GAUSS data sets. A
variety of sorting routines that will operate on both numeric and character data are
also available.

Programming statements are all of the commands that make it possible to write
complex programs in GAUSS. These include conditional and unconditional
branching, looping, file 1/O, error handling, and system-related commands to execute
OS shells and access directory and environment information.

The graphics functions of GAUSS Publication Quality Graphics (PQG) are a set of
routines built on the graphics functions in GraphiC by Scientific Endeavors
Corporation. GAUSS PQG consists of a set of main graphing procedures and several
additional procedures and global variables for customizing the output.

Documentation Conventions

The following table describes how text formatting is used to identify GAUSS
programming el ements.

Text Syle Use Example

regular text narrative “...text formatting isused...”

bold text emphasis "...not supported under
UNIX."

italic text variables “...If vnamesisastring or

has fewer elements than x
has columns, it will be...”

nonospace code example if scalerr(cm;
cm = inv(x);
endi f;
nonospace bold ReferstoaGAUSS “...asexplained under

programming element create..”
within anarrative

paragraph.

Using This Manual

Users who are new to GAUSS should make sure they have familiarized themselves
with "Language Fundamentals' in the User’s Guide before proceeding here. That
chapter contains the basics of GAUSS programming.

1-2

Introduction

In all, there are over 400 routines described in this GAUSS Language Reference. We
suggest that new GAUSS users skim through Chapter 2, and then browse through
Chapter 3, the main part of this manual. Here, users can familiarize themselves with
the kinds of tasks that GAUSS can handle easily.

Chapter 2 gives a categorical listing of all functions in this GAUSS Language
Reference, and a short discussion of the functionsin each category. Complete syntax,
description of input and output arguments, and genera remarks regarding each
function are given in Chapter 3.

If afunctionisan “extrinsic” (that is, part of the Run-Time Library), its source code
can befound on the . sr ¢ subdirectory. The name of the file containing the source
codeisgiven in Chapter 3 under the discussion of that function.

Global Control Variables

Several GAUSS functions use global variables to control various aspects of their
performance. The files gauss.ext, gauss.dec, and gauss.lcg contain the ext er nal
statements, decl ar e statements, and | i br ar y references to these globals. All
globals used by the GAUSS Run-Time library begin with an underscore‘ .

Default values for these common globals can be found in thefilegauss. dec,
located on the . sr ¢ subdirectory. The default values can be changed by editing this
file.

Changing the Default Values

To permanently change the default setting of acommon global, two files need to be
edited: gauss. dec and gauss. src.

To change the value of the common global __out put from 2 to O, for example, edit
thefilegauss. dec and change the statement

declare nmatrix __output = 2;
to read

declare matrix __out put 0;

Also, edit the procedure gausset , located in thefilegauss. sr ¢, and modify the
Statement

__output = 2;

similarly.

1-3

GAUSS Language Reference

The Procedure gausset

The global variables affect your program, even if you have not set them directly ina
particular command file. If you have changed them in a previous run, they will retain
their changed values until you exit GAUSS or execute the new command.

The procedure gausset will reset the Run-Time Library globalsto their default
values.

gausset ;

If your program changes the values of these globals, you can use gausset to reset
them whenever necessary. gausset resetsthe globals asawhole; you can write your
own routine to reset specific ones.

1-4

Commands
by Category

Mathematical Functions

Scientific Functions

abs Returns absol ute value of argument.
arccos Computes inverse cosine.

arcsin Computes inverse sine.

at an Computes inverse tangent.

at an2 Computes angle given a point X,y.

bessel j Computes Bessel function, first kind.
bessel y Computes Bessel function, second kind.
cos Computes cosine.

cosh Computes hyperbolic cosine.

exp Computes the exponential function of x.
gamma Computes gamma function value.

In Computes the natural log of each element.
I nf act Computes natural log of factorial function.

2-1

GAUSS Language Reference

| og

pi

sin

si nh
spl i nelD
spl i ne2D
sqrt

tan

t anh

Computes the log, of each element.

Returns 1t

Computes sine.

Computes the hyperbolic sine.

Computes a smoothing spline for a curve.
Computes a smoothing spline for a surface.
Computes the square root of each element.
Computes tangent.

Computes hyperbolic tangent

All trigonometric functions take or return values in radian units.

Differentiation and Integration

gradp
hessp
intgrat2
ntgrat3
nt quadl
nt quad2

nt quad3

ntsinm

Computesfirst derivative of afunction.

Computes second derivative of afunction.

Integrates a 2-dimensional function over a user-defined region.
Integrates a 3-dimensional function over a user-defined region.
Integrates a 1-dimensional function.

Integrates a 2-dimensional function over a user-defined
rectangular region.

Integrates a 3-dimensional function over a user-defined
rectangular region.

Integrates by Simpson’s method.

gr adp and hessp use afinite difference approximation to compute the first and
second derivatives. Use gr adp to calculate a Jacobian.

i nt quadl,int quad2,andi nt quad3 use Gaussian quadrature to calculate the
integral of the user-defined function over arectangular region.

To calculate an integral over aregion defined by functions of x and y, usei nt gr at 2

andi nt grat 3.

To get agreater degree of accuracy than that provided by i nt quadl, usei nt si np
for 1-dimensional integration.

Linear Algebra

bal ance

Balances a matrix.

2-2

Commands by Category

chol
chol dn
chol sol

chol up
cond
crout
croutp

det
det |
hess

i nv

i nvpd
i nVswp
lu

nul |
nul | 1
orth
pi nv
aqr
qqre
qarep

qr
qre

qrep
gr sol

grtsol

qtyr

Computes Cholesky decomposition, X = Y'Y.
Performs Cholesky downdate on an upper triangular matrix.

Solves a system of equations given the Cholesky factorization
of amatrix.

Performs Cholesky update on an upper triangular matrix.
Computes condition number of a matrix.
Computes Crout decomposition, X = LU (real matrices only).

Computes Crout decomposition with row pivoting (real
matrices only).

Computes determinant of square matrix.
Computes determinant of decomposed matrix.

Computes upper Hessenberg form of a matrix (real matrices
only).

Inverts a matrix.
Inverts a positive definite matrix.
Generalized sweep inverse.

Computes LU decomposition with row pivoting (real and
complex matrices).

Computes orthonormal basis for right null space.

Computes orthonormal basis for right null space.

Computes orthonormal basis for column space x.

Generalized pseudo-inverse: Moore-Penrose.

QR decomposition: returns Q; and R.

QR decomposition: returns Q4, R, and a permutation vector, E.
QR decomposition with pivot control: returns Q,, R, and E.
QR decomposition: returns R.

QR decomposition: returns R and E.

QR decomposition with pivot control: returns R and E.

Solves a system of equations Rx=b given an upper triangular
matrix, typically the R matrix from a QR decomposition.

Solves a system of equations R'X = b given an upper
triangular matrix, typically the R matrix from a QR
decomposition.

QR decomposition: returns Q'Y and R.

2-3

GAUSS Language Reference

qtyre
qtyrep

qyr
gyre
qyrep
r ank
r condl

rref
schur

sol pd
svd
svdl

svd2

QR decomposition: returns Q'Y , R, and E.

QR decomposition with pivot control: returns Q'Y , R, and E.
QR decomposition: returns QY and R.

QR decomposition: returns QY, R, and E.

QR decomposition with pivaot control: returns QY, R, and E.
Computes rank of a matrix.

Returns reciprocal of the condition number of last decomposed
matrix.

Computes reduced row echelon form of amatrix.

Computes Schur decomposition of amatrix (real matrices
only).
Solves a system of positive definite linear equations.

Computes the singular values of amatrix.
Computes singular value decomposition, X = USV' .
Computes svd1 with compact U.

The decomposition routines are chol for Cholesky decomposition, cr out and
cr out p for Crout decomposition, gqr -qyr ep for QR decompoasition, and svd,
svdl, and svd2 for singular value decomposition.

nul | ,nul | 1, and or t h calculate orthonormal bases.

i nv,i nvpd,sol pd, chol sol ,grsol ,andthe“/ " operator can al be used to
solve linear systems of equations.

rank and rr ef will find the rank and reduced row echelon form of a matrix.

det, det | , and cond will calculate the determinant and condition number of a

matrix.

Eigenvalues

eig
ei gh

ei ghv

ei gv

Computes eigenvalues of general matrix.

Computes eigenvalues of complex Hermitian or real symmetric
matrix.

Computes eigenvalues and eigenvectors of complex Hermitian
or real symmetric matrix.

Computes eigenvalues and eigenvectors of general matrix.

2-4

Commands by Category

There are four eigenvalue-eigenvector routines. Two calculate eigenvalues only, and
two calculate eigenvalues and eigenvectors. The types of matrices handled by these

routines are:
General: ei g,eigv
Symmetric or Hermitian: ei gh, ei ghv

Polynomial Operations

pol ychar
pol yeval
pol yi nt

pol ymake
pol ymat

pol ynul t
pol yr oot

Computes characteristic polynomial of a square matrix.
Evaluates polynomial with given coefficients.

Calculates Nt order polynomial interpolation given known
point pairs.

Computes polynomial coefficients from roots.

Returns sequence powers of a matrix.

Multiplies two polynomials together.

Computes roots of polynomial from coefficients.

Seedsorecserrc,recsercp,andconv.

Fourier Transforms

df ft
df fti
fft
ffti
fftm
fftm
fftn
rfft
rffti
rfftip
rfftn
rfftnp

rfftp

Computes discrete 1-D FFT.

Computesinverse discrete 1-D FFT.

Computes 1- or 2-D FFT.

Computesinverse 1- or 2-D FFT.

Computes multi-dimensional FFT.

Computes inverse multi-dimensional FFT.

Computes 1- or 2-D FFT using prime factor algorithm.
Computesrea 1- or 2-D FFT.

Computesinverserea 1- or 2-D FFT.
Computesinverserea 1- or 2-D FFT from packed format FFT.
Computesrea 1- or 2-D FFT using prime factor algorithm.

Computesreal 1- or 2-D FFT using prime factor algorithm,
returns packed format FFT.

Computesreal 1- or 2-D FFT, returns packed format FFT.

2-5

GAUSS Language Reference

Random Numbers

rndbet a
rndcon
rndgam

r ndi

r ndkKMbet a
rndkMgam
r ndkKM

r ndKvh

r ndKvhb
r ndKMp
rndkKMu

r ndKMrm
rndLCbet a
rndLCgam
rndLG
rndLCn
rndLCnb
rndLCp
rndLCu
rndLCvm
rndmul t
rndn
rndnb

rndp
r ndseed
r ndu

Computes random numbers with beta distribution.
Changes constant of the L C random number generator.
Computes random numbers with gamma distribution.
Returns random integers, 0 <=y < 2"32.

Computes beta pseudo-random numbers.

Computes gamma pseudo-random numbers.

Returns random integers, 0 <=y < 2"32.

Computes standard normal pseudo-random numbers.
Computes negative binomia pseudo-random numbers.
Computes Poisson pseudo-random numbers.
Computes uniform pseudo-random numbers.
Computes von Mises pseudo-random numbers.
Computes beta pseudo-random numbers.

Computes gamma pseudo-random numbers.

Returns random integers, 0 <=y < 2"32.

Computres standard normal pseudo-random numbers.
Computes negative binomial pseudo-random numbers.
Computes Poisson pseudo-random numbers.
Computes uniform pseudo-random numbers.
Computes von Mises pseudo-random numbers.
Changes multiplier of the LC random number generator.
Computes random numbers with Normal distribution.

Computes random numbers with negative binomial
distribution.

Computes random numbers with Poisson distribution.
Changes seed of the LC random number generator.
Computes random numbers with uniform distribution.

Fuzzy Conditional Functions

dot f eq
dot f ge
dot f gt

Fuzzy .==
Fuzzy =
Fuzzy >

2-6

Commands by Category

dotfle Fuzzy <
dotflt Fuzzy .<
dot f ne Fuzzy ./I=
feq Fuzzy ==
fge Fuzzy >
f gt Fuzzy >
fle Fuzzy <
flt Fuzzy <
fne Fuzzy /=

Theglobal variable f conpt ol controls the tolerance used for comparison. By
default, thisis 1e-15. The default can be changed by editing the filef conpar e. dec.

Statistical Functions

acf
conv
corrm
corrvc

corrx
crossprd
desi gn
dst at

| oess
nmeanc
nmedi an
nonent

nmonment d
ol s

ol sqgr

ol sqr2

pacf
princonp

Computes sample autocorrel ations.
Computes convolution of two vectors.
Computes correlation matrix of a moment matrix.

Computes correl ation matrix from a variance-covariance
matrix.

Computes correlation matrix.

Computes cross product.

Creates a design matrix of 0'sand 1's.

Computes descriptive statistics of a data set or matrix.
Computes coefficients of locally weighted regression.
Computes mean value of each column of amatrix.
Computes medians of the columns of a matrix.
Computes moment matrix (x'x) with special handling of
missing values.

Computes moment matrix from a data set.

Computes least squares regression of data set or matrix.
Computes OL S coefficients using QR decomposition.

Computes OL S coefficients, residuals, and predicted values
using QR decomposition.

Computes sample partial autocorrelations.
Computes principal components of a data matrix.

2-7

GAUSS Language Reference

stdc
toeplitz
var mal |
var mar es
vem

VCX

Computes standard deviation of the columns of a matrix.
Computes Toeplitz matrix from column vector.

Computes the log-likelihood of a Vector ARMA model.
Computes the residuals of a Vector ARMA model.

Computes a variance-covariance matrix from amoment matrix.
Computes a variance-covariance matrix from a data matrix.

Advanced statistics and optimization routines are available in the GAUSS
Applications programs. (Contact Aptech Systems for more information.)

Optimization and Solution

eqsol ve
QNewt on
QPr og
sqgpSol ve

Solves a system of nonlinear equations.
Optimizes a function using the BFGS descent algorithm.
Solves the quadratic programming problem.

Solves the nonlinear programming problem using a sequential
guadratic programming method.

Statistical Distributions

cdf bet a
cdf bvn
cdfchic

cdfchii

cdf chi nc

cdffc
cdf f nc
cdf gam

cdf mvn
cdfn
cdf n2
cdf nc

cdftc
cdftnc

Computesintegral of betafunction.
Computes lower tail of bivariate Normal cdf.

Computes complement of cdf of X 2

Computes X 2 abscissae val ues given probability and degrees of
freedom.

Computesintegral of noncentral X 2

Computes complement of cdf of F.

Computesintegral of noncentral F.

Computes integral of incomplete [" function.

Computes multivariate Normal cdf.

Computesintegral of Normal distribution: lower tail, or cdf.
Computesinterval of Normal cdf.

Computes complement of cdf of Normal distribution (upper
tail).

Computes complement of cdf of t-distribution.
Computesintegral of noncentral t-distribution.

2-8

Commands by Category

cdftvn Computes lower tail of trivariate Normal cdf.

erf Computes Gaussian error function.

erfc Computes complement of Gaussian error function.

| ncdf bvn Computes natural log of bivariate Normal cdf.

[ncdf mvn Computes natural log of multivariate Normal cdf.

| ncdfn Computes natural log of Normal cdf.

| ncdf n2 Computes natural log of interval of Normal cdf.

| ncdf nc Computes natural log of complement of Normal cdf.
| npdf nvn Computes multivariate Normal log-probabilities.

| npdf n Computes Normal |og-probahilities.

pdf n Computes standard Normal probability density function.

Series and Sequence Functions

recserar Computes autoregressive recursive series.
recsercp Computes recursive series involving products.
recserrc Computes recursive series involving division.
sega Creates an additive sequence.

seqm Creates a multiplicative sequence.

Precision Control

basel0 Converts number to x.xxx and a power of 10.

ceil Rounds up towards +co .

f1oor Rounds down towards - o .

prcsn Sets computational precision for matrix operations.
round Rounds to the nearest integer.

trunc Truncates toward O.

All calculationsin GAUSS are done in double precision, with the exception of some
of theintrinsic functions on OS/2 and DOS. These may use extended precision (18-19
digits of accuracy). Use pr csn to change the internal accuracy used in these cases.

round,trunc,ceil ,andf | oor convert floating point numbersinto integers. The
internal representation for the converted integer is double precision (64 bits).

Each matrix element in memory requires 8 bytes of memory.

2-9

GAUSS Language Reference

Finance Functions

Arrer i canBi nontal |
Arreri canBi nontCal | _Gr eeks

Aner i canBi nonCal | _I npVol

Arrer i canBi nonPut
Arrer i canBi nonPut _Gr eeks

Aner i canBi nonPut _I npVol

Amer i canBSCal |
Arreri canBSCal | _Greeks

Aneri canBSCal | _I npVol

Amer i canBSPut
Arrer i canBSPut _Gr eeks

Amer i canBSPut _| npVol
annual Tr adi ngDays
el apsedTr adi ngDays

Eur opeanBi nontCal |
Eur opeanBi nontCal | _G eeks

Eur opeanBi nontCal | _| npVol

Eur opeanBi nonPut
Eur opeanBi nonPut _Gr eeks

Eur opeanBi nonPut _| npVol

Eur opeanBSCal |

American binomial method Call.

American binomia method call Delta,
Gamma, Theta, Vega, and Rho.

Implied volatilities for American binomial
method calls.

American binomial method Put.

American binomia method put Delta,
Gamma, Theta, Vega, and Rho.

Implied volatilities for American binomial
method puts.

American Black and Scholes Call.

American Black and Scholes call Delta,
Gamma, Omega, Theta, and Vega.

Implied volatilities for American Black
and Scholes calls.

American Black and Scholes Put.

American Black and Scholes put Delta,
Gamma, Omega, Theta, and Vega.

Implied volatilities for American Black
and Scholes puts.

Compute number of trading daysin a
given year.

Compute number of trading days between
two datesinclusively.

European binomial method call.

European binomia method call Delta,
Gamma, Theta, Vega and Rho.

Implied volatilities for European binomial
method calls.

European binomia method Puit.

European binomia method put Delta,
Gamma, Theta, Vega, and Rho.

Implied volatilities for European binomial
method puts.

European Black and Scholes Call.

2-10

Commands by Category

Eur opeanBSCal | _Greeks
Eur opeanBSCal | _I npVol

Eur opeanBSPut
Eur opeanBSPut _Gr eeks

Eur opeanBSPut _| npVol

get Next Tr adi ngDay
get Next WeekDay

get Previ ousTr adi ngbay
get Previ ousWeekDay

European Black and Scholes call Delta,
Gamma, Omega, Theta, and Vega.

Implied volatilities for European Black
and Scholes calls.

European Black and Scholes Put.

European Black and Scholes put Delta,
Gamma, Omega, Theta, and Vega.

Implied volatilities for European Black
and Scholes puts.

Returns the next trading day.

Returns the next day that isnot on a
weekend.

Returns the previous trading day.

Returns the previous day that is not on a
weekend.

2-11

GAUSS Language Reference

Matrix Manipulation

Creating Vectors and Matrices

editm
eye

| et
mat al | oc
matinit
nmedi t
ones
zeros

Simple matrix editor.

Creates identity matrix.

Creates matrix from list of constants.
Allocates a matrix with unspecified contents.
Allocates a matrix with unspecified contents.
Full-screen spreadsheet-like matrix editor.
Creates a matrix of ones.

Creates a matrix of zeros.

Usezer 0s or ones to create a constant vector or matrix.

medi t isafull-screen editor that can be used to create matrices to be stored in
memory, or to edit matrices that already exist.

Matrices can aso be loaded from an ASCII file, from a GAUSS matrix file, or from a

GAUSS data set. (See “Procedures and Keywords” in the User Guide for more

information.)

Loading and Storing Matrices

| oadd
| oadm
save

saved

L oads matrix from data set.

Loads matrix from ASCII or matrix file.
Saves matrix to matrix file.

Saves matrix to data set.

Size, Ranking, and Range

col s
col sf
count s

countwts

cunpr odc
cunmsunt

Returns number of columnsin amatrix.
Returns number of columnsin an open data set.

Returns number of elements of a vector falling in specified
ranges.

Returns weighted count of elements of avector fallingin
specified ranges.

Computes cumulative products of each column of amatrix.
Computes cumulative sums of each column of amatrix.

2-12

Commands by Category

i ndexcat
maxc
maxi ndc

m nc
m ni ndc
pr odc

r anki ndx

r ows
r owsf
sunc

Returns indices of elements falling within a specified range.
Returns largest element in each column of a matrix.

Returns row number of largest element in each column of a
matrix.

Returns smallest e ement in each column of amatrix.

Returns row number of smallest element in each column of a
matrix.

Computes the product of each column of a matrix.

Returns rank index of Nx1 vector. (Rank order of elementsin
vector.)

Returns number of rowsin a matrix.
Returns number of rowsin an open data set.
Computes the sum of each column of a matrix.

These functions are used to find the minimum, maximum and frequency counts of

elements in matrices.

User ows and col s to find the number of rows or columnsin amatrix. User owsf
and col sf to find the numbers of rows or columnsin an open GAUSS data set.

Sparse Matrix Functions

denseSubnmat
i sSpar se
sparseCol s
spar sekye
spar seFD
spar seFP

Returns dense submatrix of sparse matrix.
Tests whether a matrix is a sparse matrix.
Returns number of columns in sparse matrix.
Creates sparse identity matrix.

Converts dense matrix to sparse matrix.
Converts packed matrix to sparse matrix.

spar seHConcat Horizontally concatenates sparse matrices.

spar seNZE
spar seOnes
spar seRows
spar seSet
sparseSol ve
spar seSubnat
sparseTD
sparseTrTD

Returns the number of nonzero elements in sparse matrix.
Generates sparse matrix of ones and zeros.

Returns number of rows in sparse matrix.

Resets sparse library globals.

Solves Ax = B for x where A is a sparse matrix.

Returns sparse submatrix of sparse matrix.

Multiplies sparse matrix by dense matrix.

Multiplies sparse matrix transposed by dense matrix.

2-13

GAUSS Language Reference

spar seVConcat Vertically concatenates sparse matrices.

Miscellaneous Matrix Manipulation

compl ex Creates a complex matrix from two real matrices.

del i f Deletes rows from a matrix using alogical expression.

di ag Extracts the diagona of a matrix.

di agrv Puts a column vector into the diagonal of amatrix.

exct snpl Creates a random subsample of data set, with replacement.

i mag Returns the imaginary part of acomplex matrix.

i ntrsect Returns the intersection of two vectors.

| owmat Returns the main diagonal and lower triangle.

| owmat 1 Returns amain diagonal of 1's and the lower triangle.

r eal Returns the real part of acomplex matrix.

reshape Reshapes a matrix to new dimensions.

rev Reverses the order of rows of a matrix.

rotater Rotates the rows of a matrix, wrapping elements as necessary.

selif Selects rows from amatrix using alogical expression.

setdif Returns elements of one vector that are not in another.

shiftr Shifts rows of amatrix, filling in holes with a specified value.

submat Extracts a submatrix from a matrix.

trinr Trims rows from top or bottom of a matrix.

uni on Returns the union of two vectors.

upnat Returns the main diagona and upper triangle.

upmat 1 Returns amain diagonal of 1's and the upper triangle.

vec Stacks columns of a matrix to form a single column.

vech Reshapes the lower triangular portion of a symmetric matrix
into a column vector.

vecr Stacks rows of amatrix to form a single column.

xpnd Expands a column vector into a symmetric matrix.

vech and xpnd are complementary functions. vech provides an efficient way to
store a symmetric matrix; X pnd expands the stored vector back to its origina
symmetric matrix.

del i f andsel i f are complementary functions. del i f deletes rows of a matrix
based on alogical comparison; sel i f selects rows based on alogica comparison.

2-14

Commands by Category

| ownat , | ownat 1, upnat , and upnat 1 extract triangular portions of a matrix.
To delete rows that contain missing values from a matrix in memory, see packr.

Data Handling

Data Sets
cl ose Closes an open data set (. dat file).
cl oseal | Closes al open data sets.
create Creates and opens a data set.
eof Tests for end of file.
i scpl xf Returns whether a data set is real or complex.
| oadd Loads a small data set.
open Opens an existing data set.
readr Reads rows from open data set.
saved Creates small data sets.
seekr Moves pointer to specified location in open data set.
t ypef Returns the element size (2, 4, or 8 bytes) of datain open data
Set.
witer Writes matrix to an open data set.

These functions all operate on GAUSS data sets (. dat files). (See“File I/O” inthe
User’s Guide for more information.)

To create a GAUSS data set from amatrix in memory, use saved. To create adata set
from an existing one, use cr eat e. To create adata set from alarge ASCII file, use
the utility at og. (See“Utilities” inthe User’s Guide.)

Data sets can be opened, read from, and written to using open, r eadr , seekr and
wri t er. Test for the end of afile using eof , and close the data set using cl ose or
cl oseal | .

The datain data sets may be specified as character or numeric. (See “File I/0O” inthe
User’'sGuide.) Seealsocreat e andvart ypef.

t ypef returnsthe element size of the datain an open data set.

Data Set Variable Names

get name Returns column vector of variable names in a data set.

2-15

GAUSS Language Reference

get namef
i ndcv

i ndi ces

i ndi ces2

makevar s
nmer gevar
setvars
vartype

vart ypef

Returns string array of variable namesin a data set.
Returns column numbers of variables within a data set.
Retrieves column numbers and names from a data set.

Similar toi ndi ces, but matches columns with names for
dependent and independent variables.

Decomposes matrix to create column vectors.
Concatenates column vectors to create larger matrix.
Creates globals using the names in a data set.

Returns column vector of variable types (numeric/character) in
adata set.

Returns column vector of variable types (numeric/character) in
adata set.

Useget nanef to retrieve the variable names associated with the columns of a
GAUSS data set, and var t ypef toretrieve the variable types. Use makevar s and
set var s to create global vectors from those names. Usei ndi ces andi ndi ces2
to match names with column numbers in a data set.

get name andvart ype are supported for backwards compatibility.

Data Coding

code

dumy

dummybr
dummydn

i smss

i si nfnanm ss

nm ss
m ssex
m ssrv
nsym
packr

Codes the datain a vector by applying alogical set of rulesto
assign each data value to a category.

Creates a dummy matrix, expanding values in vector to rows
with ones in columns corresponding to true categories and
zeros elsewhere.

Similar to dummy.
Similar to dummy.
Returns 1 if matrix has any missing values, O otherwise.

Returns true if the argument contains an infinity, NaN, or
missing value.

Changes specified values to missing value code.

Changes elements to missing value using logical expression.
Changes missing value codes to specified values.

Sets symbol to be interpreted as missing value.

Deletes rows with missing values.

2-16

Commands by Category

recode Similar to code, but leaves the original datain placeif no

condition is met.

scal i nf nanni ss Returnstrueif the argument isascalar infinity, NaN, or
missing value.

scal ni ss Tests whether a scalar is the missing value code.

subscat Simpler version of r ecode, but uses ascending bins instead
of logical conditions.

substute Similar tor ecode, but operates on matrices.

code, recode, and subscat alow the user to code data variables and operate on
vectorsin memory. subst ut e operates on matrices, and dunmy, duntmrybr , and
dumrydn create matrices.

nm ssex, ni ssrv,and n ss should be used to recode missing values.

Sorting and Merging

intrleav Produces one large sorted datafile from two smaller sorted files
having the same keys.

mer geby Produces one large sorted datafile from two smaller sorted files
having asingle key column in common.

sortc Quick-sorts rows of matrix based on numeric key.

sortcc Quick-sorts rows of matrix based on character key.

sortd Sorts data set on akey column.

sort hc Heap-sorts rows of matrix based on numeric key.

sorthcc Heap-sortsrows of matrix based on character key.

sortind Returns a sorted index of a numeric vector.

sortindc Returns a sorted index of a character vector.

sortnc Sorts rows of matrix on the basis of multiple columns.

uni gi ndx Returns a sorted unique index of avector.

uni que Removes duplicate elements of a vector.

sortc, sorthc, and sortind operate on numeric data only. sortcc, sorthcc, and
sortindc operate on character data only.

Sortd,sortnt, uni que, and uni gi ndx operate on both numeric and character
data

Usesort d to sort the rows of a data set on the basis of akey column.
Bothi nt rl eav and ner geby operate on data sets.

2-17

GAUSS Language Reference

Compiler Control

#defi ne
#defi necs
#el se
#endi f
#i f def

#i f dos

#i flight
#i f ndef

#i f os2wi n
#i funi x
#i ncl ude
#1 i nesof f
#1 i neson
#srcfile

#srcline

#undef

Defines a case-insensitive text-replacement or flag variable.
Defines a case-sensitive text-replacement or flag variable.
Alternates clause for #i f -#el se-#endi f code block.
End of #i f -#el se-#endi f code block.

Compiles code block if avariable has been #def i ne’d.
Compiles code block if running DOS.

Compiles code block if running GAUSS Light.

Compiles code block if avariable has not been #def i ne’d.
Compiles code block if running OS/2 or Windows.
Compiles code block if running UNIX.

Includes code from another file in program.

Compiles program without line number and file name records.
Compiles program with line number and file name records.

Inserts source file name record at this point (currently used
when doing data loop translation).

Inserts source file line number record at this point (currently
used when doing data loop trand ation).

Undefines a text-replacement or flag variable.

These commands are compiler directives. That is, they do not generate GAUSS
program instructions; rather, they are instructions that tell GAUSS how to process a
program during compilation. They determine what the final compiled form of a
program will be. They are not executable statements and have no effect at run-time.
(See “Language Fundamentals’ in the User’s Guide for more information.)

Program Control

Execution Control

end Terminates a program and close all files.
pause Pauses for the specified time.

run Runs aprogram in atext file.

sl eep Sleeps for the specified time.

st op Stops a program and leave files open.

2-18

Commands by Category

system Quits and returns to the OS.

Both st op and end will terminate the execution of a program; end will close all

openfiles, and st op will leave those files open. Neither st op nor end isrequiredin
a GAUSS program.

Branching

goto Unconditional branching.
if..endif Conditional branching.
pop Retrieve got o arguments.

if iter >itlim
goto errout(“lteration linmt exceeded”);
elseif iter ==
j
el se;
j
endi f;

setup(x,y);

iterate(x,y);

errout:
pop errnsg;
print errnmnsg;

end;

Looping

br eak Jump out the bottom of ado or f or loop.

conti nue Jump to thetop of ado or f or loop.
do while..endo

2-19

GAUSS Language Reference

Loop if TRUE.
do until..endo Loopif FALSE.
for.. endfor L oop with integer counter.
iter = 0;

do while dif > tol;
{ x,x0 } = eval (x, x0);
di f = abs(x-x0);
iter = iter + 1;
if iter > maxits;
br eak;
endi f;
if not prtiter;
conti nue;
endi f;
format /rdn 1,0;
print “lteration: ” iter;;
format /re 16, 8;
print “, Error: "maxc(dif);

endo;

for i (1, cols(x), 1);
for j (1, rows(x), 1);
x[i,j]1 = x[i,j] + 1;
endf or;

endf or;

Subroutines

gosub Branch to subroutine.

2-20

Commands by Category

pop Retrieve gosub arguments.
return Return from subroutine.

Arguments can be passed to subroutines in the branch to the subroutine label and then
popped, in first-in-last-out order, immediately following the subroutine label
definition. See Chapter 3, “Command Reference’, for details.

Arguments can then be returned in an analogous fashion through ther et ur n

Statement.
Procedures
endp Terminates a procedure definition.
| ocal Declares variables local to a procedure.
proc Begins definition of multi-line procedure.
retp Returns from a procedure.

Hereis an example of a GAUSS procedure:

proc (3) = crosprod(Xx,y);
local rl1, r2, r3;
ri =x[2,.].*y[3,.]1-x[3,.].-*y[2,.];
r2z =x[3,.]1.*y[1,.]-x[1,.].*Y[S3,.];
r3 =x[1,.].*y[2,.]-x[2,.].*Y[1,.];
retp(r1,r2,r3);

endp;

The“(3) = " indicatesthat the procedure returns three arguments. All local
variables, except those listed in the argument list, must appear in thel ocal
statement. Procedures may reference global variables. There may be more than one

r et p per procedure definition; noneisrequired if the procedureis defined to return 0
arguments. Theendp isaways necessary and must appear at the end of the procedure
definition. Procedure definitions cannot be nested. The syntax for using this example
functionis

{ al,a2,a3 } = crosprod(u,vV);

See “Procedures and Keywords” and “Libraries’ in the User’s Guide for details.

2-21

GAUSS Language Reference

Libraries

cal | Calls function and discard return values.
decl are Initializes variables at compile time.
ext er nal External symbol definitions.

lib Builds or updates a GAUSS library.
l'ibrary Setsup list of active libraries.

cal | alowsfunctionsto be called when return values are not needed. Thisis
especially useful if afunction produces printed output (dst at , ol s for example) as
well asreturn values.

Compiling
conpil e Compiles and saves aprogramto a. gcg file.
| oadp L oads compiled procedure.
save Saves the compiled image of a procedure to disk.
saveal | Saves the contents of the current workspace to afile.
use L oads previously compiled code.

GAUSS procedures and programs may be compiled to disk files. By then using this
compiled code, the time necessary to compile programs from scratch is eliminated.
Useconpi | e to compile acommand file. All procedures, matrices and strings
referenced by that program will be compiled as well.

Stand-alone applications may be created by running compiled code under the Run-
Time Module. (Contact Aptech Systems for more information on this product.)

To save the compiled images of procedures that do not make any global references,
usesave. Thiswill create an . f cg file. To load the compiled procedure into
memory, use| oadp. (Thisis not recommended because of the restriction on global
references and the need to explicitly load the procedure in each program that
referencesit. It isincluded here to maintain backward compatibility with previous
vVersions.)

OS Functions

cdir Returns current directory.

2-22

Commands by Category

ChangebDi r
chdir

df ree
envget
exec
fileinfo

files
filesa
shel |

Changes directory in program.
Changes directory interactively.
Returns free space on disk.

Gets an environment string.
Executes an executable program file.

Takes afile specification, returns names and information of
files that match.

Takes afile specification, returns names of files that match.
Takes afile specification, returns names of files that match.
Shellsto OS.

Workspace Management

cl ear
clearg
del ete
hasi nag
i scpl x
maxvec
new
show
type
typecv

Sets matrices equal to 0.

Sets global symbolsto 0.

Deletes specified global symbals.

Examines matrix for nonzero imaginary part.
Returns whether amatrix isreal or complex.
Returns maximum allowed vector size.
Clears current workspace.

Displays global symboal table.

Returns types of argument (matrix or string).

Returns types of symbol (argument contains the names of the
symbols to be checked).

When working with limited workspace, it isagood ideato cl ear large matrices that
are no longer needed by your program.

cor el ef t ismost commonly used to determine how many rows of adata set may be
read into memory at one time.

Error Handling and Debugging

#l i nesof f
#l i neson
debug

Omits line number and file name records from program.
Includes line number and file name records in program.
Executes a program under the source level debugger.

2-23

GAUSS Language Reference

String Handling

di sabl e
enabl e
error
errorl og
ndpchk
ndpcl ex
ndpcntrl
scal err
trace
trap

t rapchk

chrs
ftocv
ftos
ftostrC

get f

| oads

| ower
put f

st of
strindx
strlen
strrindx

strsect
strsplit

strsplitPad

Disablsinvalid operation interrupt of coprocessor.
Enablesinvalid operation interrupt of coprocessor.
Creates user-defined error code.

Sendserror message to screen and log file.
Examines status word of coprocessor.

Clears coprocessor exception flags.

Sets and gets coprocessor control word.

Tests for ascalar error code.

Traces program execution for debugging.
Controls trapping of program errors.

Examines the trap flag.

To trace the execution of aprogram, uset r ace.
User-defined error codes may be generated using er r or .

Converts ASCII valuesto a string.
Converts an NxK matrix to a character matrix.
Converts afloating point scalar to string.

Converts amatrix to astring array using a C language format
specification.

Loads ASCII or binary file into string.

Loadsastring file (. f st file).

Converts a string to lowercase.

Writes a string to disk file.

Converts a string to floating point numbers.

Finds starting location of one string in another string.
Returns length of a string.

Finds starting location of one string in another string, searching
from the end to the start of the string.

Extracts a substring of a string.

Splits an Nx1 string vector into an NxK string array of the
individual tokens.

Splitsastring vector into astring array of theindividual tokens.
Pads on the right with null strings.

2-24

Commands by Category

strtof
strtofcpl x
upper

val s

var get

var get |

var put

var put |

Converts a string array to a numeric matrix.
Converts a string array to a complex numeric matrix.
Changes a string to uppercase.

Converts astring to ASCI| values.

Accesses the global variable named by a string.
Accesses the local variable named by a string.
Assigns aglobal variable named by a string.
Assigns alocal variable named by a string.

strlen,strindx,strrindx,andstrsect canbeusedtogether to parse

strings.

Usef t os to print to astring.

To create alist of generic variable names (X1, X2, X3, X4... for example), usef t ocv.

Time and Date Functions

dat e

dat estr
datestring
dat estrynd
dayi nyr
dayof week
dt dat e

dt day

dttine

dtt odt v
dttostr

dttoutc
dt vnor nal
dt vt odt
et days
et hsec

Returns current system date.
Formats date as “ mm/dd/yy”.
Formats date as “ mm/dd/yyyy”.
Formats date as “yyyymmdd”.
Returns day number of a date.
Returns day of week.
Createsamatrix in DT scalar format.

Createsamatrix in DT scalar format containing only the year,
month and day. Time of day information is zeroed out.

Createsamatrix in DT scalar format containing only the hour,
minute and second. The date information is zeroed out.

Converts DT scalar format to DTV vector format.
Convertsa matrix containing datesin DT scalar format to a
string array.

Converts DT scalar format to UTC scalar format.
Normalizes a date and time (DTV) vector.

Converts DT vector format to DT scalar format.

Difference between two timesin days.

Difference between two times in 100ths of a second.

2-25

GAUSS Language Reference

etstr
hsec
strtodt
time

ti medt
timestr
t odaydt

ut ct odt
ut ct odt v

Converts elapsed time to string.

Returns elapsed time since midnight in 100ths of a second.
Converts astring array of datesto amatrix in DT scalar format.
Returns current system time.

Returns system date and time in DT scalar format.

Formats time as “hh:mm:ss”.

Returns system date in DT scalar format. The time returned is
aways midnight (00:00:00), the beginning of the returned day.

Converts UTC scalar format to DT scalar format.
Converts UTC scdar format to DTV vector format.

Use hsec to time segments of code. For example,

et = hsec;
X = y*y,;
et = hsec -

et;

will time the GAUSS mulltiplication operator.

Console 1/0

con
cons
key

keyw

wai t
wai t c

Requests console input, create matrix.
Requests console input, create string.

Gets the next key from the keyboard buffer. If buffer is empty,
returnsa 0.

Gets the next key from the keyboard buffer. If buffer is empty,
waits for akey.

Waits for a keystroke.
Flushes buffer, then waits for a keystroke.

key can be used to trap most keystrokes. For example, the following loop will trap the
ALT-H key combination:

kk = 0;

do until

kk = key;

endo;

== 1035;

2-26

Commands by Category

Other key combinations, function keys, and cursor key movement can also be trapped.

Seekey.

cons and con can be used to request information from the console. keyw, wai t ,
and wai t ¢ will wait for akeystroke.

Output Functions

Text Output

cls

col or
coml og
csrcol
csrlin
ed

edit

f or mat

| ocate

| pos

[print

[print [Jon]| of f]
| pwi dt h

| show
out put
out wi dt h
pl ot

pl ot sym
pri nt
print [on| of f]
printdos
printfm

screen [on| of f]
screen out
scrol |

Clears the window.

Sets pixel, text, background colors.
Controls interactive command logging.

Gets column position of cursor on window.
Gets row position of cursor on window.
Accesses an adternate editor.

Edits afile with the GAUSS editor.

Defines format of matrix printing.

Positions the cursor on the window.

Returns print head position in printer buffer.
Prints expression to the printer.

Switches auto printer mode on and off.
Specifies printer width.

Prints global symbal table on the printer.
Redirects pri nt statements to auxiliary output.
Setsline width of auxiliary output.

Plots elements of two matrices in text mode.
Controls data symbol used by pl ot .

Prints to window.

Turns auto window print on and off.

Prints a string for special handling by the OS.

Prints matrices using a different format for each
column.

Directs/suppressespr i nt statements to window.
Dumps snapshot of window to auxiliary output.
Scrolls a section of the window.

2-27

GAUSS Language Reference

tab Positions the cursor on the current line.

Theresults of al printing can be sent to an output file using out put . Thisfile can
then be printed or ported as an ASCI| fileto other software.

pri nt dos can be used to print in reverse video, or using different colors. It requires
that ansi . sys beinstalled.

To produce boxes, etc. using characters from the extended ASCI| set, usechr s.

Window Graphics

col or Sets color.

gr aph Sets pixels.
line Draws lines.
set vnode Sets video mode.

gr aph allowsthe user to plot individual pixels.

Graphics

This section summarizes all procedures and global variables available within the
Publication Quality Graphics (PQG) System. A genera usage description will be
found in “Publications Quality Graphics’ in the User’s Guide.

Graph Types

bar Generates bar graph.

box Graphs data using the box graph percentile method.
cont our Graphs contour data.

dr aw Supplies additional graphic elementsto graphs.

hi st Computes and graphs frequency histogram.

hi st f Graphs a histogram given a vector of frequency counts.
hi stp Graphs a percent frequency histogram of a vector.

| ogl og Graphs X,Y using logarithmic X and Y axes.

| ogx Graphs X,Y using logarithmic X axis.

| ogy Graphs X,Y using logarithmic Y axis.

surface Graphs a 3-D surface.

Xy Graphs X,Y using Cartesian coordinate system.

2-28

Commands by Category

Xyz

Axes Control and Scaling

_pXxpmax
_paxes
_pcross
_pgrid
_pticout
_pXxsci

_Pypnmax
_pysci
_Pzpmax
_pzsci
scal e
scal e3d
xtics
ytics
ztics

Graphs X, Y, Z using 3-D Cartesian coordinate system.

Controls precision of numberson X axis.
Turns axes on or off.

Controls where axes intersect.

Controls major and minor grid lines.
Controls direction of tick marks on axes.
Controls use of scientific notation on X axis.
Controls precision of numberson 'Y axis.
Controls use of scientific notation on Y axis.
Controls precision of nhumbers on Z axis.
Controls use of scientific notation on Z axis.
Scales X,Y axesfor 2-D plots.

Scales XY, and Z axesfor 3-D plots.
Scales X axisand control tick marks.
Scales Y axisand control tick marks.
Scales Z axis and control tick marks.

Text, Labels, Titles, and Fonts

_pnunht
_ptitlht
__paxht
_pdate
_plegctl
_plegstr
_pmrsgct |
_pmsgstr
_pnum
ascl abel
fonts
title

x| abel

Controls size of axes numeric labels.
Controls main title size.

Controls size of axes labels.

Dates string contents and control.

Sets | ocation and size of plot legend.
Specifies legend text entries.

Controls message position.

Specifies message text.

Axes numeric label control and orientation.
Defines character 1abels for tick marks.
Loads fonts for labels, titles, messages and |egend.
Specifies main title for graph.

X axislabdl.

2-29

GAUSS Language Reference

yl abel Y axislabel.
z| abel Z axislabel.

Main Curve Lines and Symbols

_pboxct| Controls box plotter.

_pboxlim Outputs percentile matrix from box plotter.

_pcol or Controlsline color for main curves.

_pletrl Controls main curve and frequency of data symbols.
_pltype Controlsline style for main curves.

_plwidth Controls line thickness for main curves.

_pstype Controls symbol type for main curves.

_psynsi z Controls symbol size for main curves.

_pzclr Z levd color control for cont our and sur f ace.

Extra Lines and Symbols

_parrow Creates arrows.

_parrow3 Creates arrows for 3-D graphs.
_perrbar Plots error bars.

_pline Plots extralines and circles.
_pline3d Plots extralines for 3-D graphs.
_psym Plots extra symbols.

_psyn8d Plots extra symbols for 3-D graphs.

Graphic Panel, Page, and Plot Control

_pageshf Shifts the graph for printer output.

_pagesi z Controls size of graph for printer output.

_pl ot shf Controls plot area position.

_plotsiz Controls plot area size.

_protate Rotates the graph 90 degrees.

axmargin Controls axes margins and plot size.

begwi nd Graphic panel initialization procedure.

endw nd End graphic panel manipulation, display graphs.
getw nd Gets current graphic panel number.

2-30

Commands by Category

| oadwi nd
makewi nd
mar gi n
next wi nd
savew nd
setwi nd
W ndow

Loads a graphic panel configuration from afile.
Creates graphic panel with specified size and position.
Controls graph margins.

Sets to next available graphic panel number.

Saves graphic panel configuration to afile.

Sets to specified graphic panel number.

Createstiled graphic panedls of equal size.

axmar gi n ispreferredtotheolder _pl ot si z and _pl ot shf globalsfor
establishing an absolute plot size and position.

Output Options

_pscreen
_psilent
_ptek
_pzoom

gr aphprt
pPagwi n
set vw node
t kf 2eps

t kf 2ps

Miscellaneous

_pbox
_pcrop
_pfrane
_pntol or

gr aphset
rerun

Vi ew

Vi ewxyz
vol une

Controls graphics output to window.

Controlsfinal beep.

Controls creation and name of gr aphi cs. t kf file.
Specifies zoom parameters.

Generates print, conversion file.

Sets the graphics viewer mode.

Sets the graphics viewer mode.

Converts. t kf fileto Encapsulated PostScript file.
Converts. t kf fileto PostScript file.

Draws a border around graphic panel/window.
Controls cropping of graphics data outside axes area.
Draws aframe around 2-D, 3-D plots.

Controls colors to be used for axes, title, x and y labels,
date, box, and background.

Resets all PQG globals to default values.

Displays most recently created graph.

Sets 3-D observer position in workbox units.

Sets 3-D observer position in plot coordinates.

Sets length, width, and height ratios of 3-D workbox.

2-31

Command
Reference

Command Components
The following list describes each of the components used in the GAUSS Language

Command Reference.

Purpose

Library

Format
Input

Global Input

Output

Describes the function of the command.

Describes where the Run-Time Library functions
can be found in the GAUSS program structure.

[llustrates use of the command syntax.
Describes the input parameters of the command.

Describes the global variablesthat are referenced by
the command.

Describes the parameters that will be returned as a
result of the input.

3-1

GAUSS Language Reference

Conmmand Ref erence
Global
Output
Portability

Remarks
Example

Source

Globals
See also

Technical
Notes

References

Describes the global variables that are updated by
the command.

Describes how GAUSS behaves under various
operating systems.

Explanatory material pertinent to the command.
Sampl e code strings using the command.

The source filein which Run-Time Library function
is defined.

Global variablesthat are accessed by the command.
Other commands that have similar characteristics.

Technical discussion and reference source citations.

Reference material citations.

3-2

Command Reference

abs

Purpose
Format
Input
Output

Example

abs

Returns the absol ute value or complex modulus of x.

y = abs(Xx);
X NxK matrix.
y NxK matrix containing absolute values of x.

X = rndn(2, 2);
y = abs(x);

0.675243 1.053485
—0.190746 —1.229539

— 0.675243 1.053485
0.190746 1.229539

In this example, a 2x2 matrix of Normal random numbersis generated
and the absolute value of the matrix is computed.

3-3

GAUSS Language Reference

acf

acf

Purpose Computes sample autocorrelations.
Format rk = acf(y, k, d);

Input vy Nx1 vector, data.
k scalar, maximum number of autocorrelations to compute.
d scalar, order of differencing.

Output rk Kx1 vector, sample autocorrel ations.

Example
x = { 20. 80,

18. 58,
23. 39,
20. 47,
21.78,
19. 56,
19. 58,
18. 91,
20. 08,
21.88 };

rk = acf(x, 4, 2);
print rk;

-0.74911771
0. 48360914
- 0. 34229330
0.17461180

Source tsutil.src

3-4

Command Reference

Anmer i canBi nontal |

Aner i canBi nontCal |

Purpose
Format

Input

Output

Example

American binomial method Call.

¢ = AnericanBi nontCal | (S0, K, r, div, tau, sigma, N) ;

Mx1 vector, strike prices
scalar, risk freerate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

D scalar, current price
K
r

trading
sigma scalar, volatility
N number of time segments
c Mx1 vector, call premiums
SO = 718. 46;
K= { 720, 725, 730 };
r = .0498;

sigma = .2493;
t0 = dtday(2001, 1, 30);
tl dt day(2001, 2, 16);
tau = el apsedTradi ngDays(t0,t1) /
annual Tr adi ngDays(2001);
¢ = AmericanBi nontCal |l (S0, K, r, O, t au, si gng, 60);

print c;

17.190224
14. 905054
12. 673322

3-5

GAUSS Language Reference

Aner i canBi nontCal |

Source finprocs.src

Technical Thebinomia method of Cox, Ross, and Rubinstein ("Option pricing: a
Notes smplified approach”, Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

3-6

Command Reference

Amer i canBi nontCal | _G eeks

Aneri canBi nonCal | G eeks

Purpose American binomial method call Delta, Gamma, Theta, Vega, and Rho.

Format { d gt v, rh} =
Ameri canBi nonCal | _Greeks(90, K, r, div, tau, sigma, N) ;

Input 9 scalar, current price
K Mx1 vector, strike price
r scalar, risk freerate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading

sigma scalar, volatility

N number of time segments
Output d Mx1 vector, delta

g Mx1 vector, gamma

t Mx1 vector, theta

v Mx1 vector, vega

rh Mx1 vector, rho

Example SO0 = 305;
K = 300;
r = .08;
sigma = . 25;
tau = . 33;
div = 0;
{ d,g,t,v,rh } = Aneri canBi nonCal | _G eeks
(SO, K, r, div,tau, sigma, 30);
print d;
print g;
print t;

3-7

GAUSS Language Reference

Arreri canBi nontCal | _Gr eeks

print v;

print rh;

0. 706312
0. 000764
-17. 400851
68. 703849
76. 691829

Source finprocs.src

Globals fin_thetaType scaar, if 1, oneday look ahead, else, infinitesmal.
Default = 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

Technical Thebinomia method of Cox, Ross, and Rubinstein ("Option pricing: a
Notes simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

3-8

Command Reference

Amer i canBi nontCal | _| npVol

Amer | canBi nonCal | _I npVol

Purpose

Format

Input

Output

Example

Implied volatilities for American binomial method calls.

sigma =
Ameri canBi nonCal | _I mpVol (¢, 0, K, r, div, tau, N) ;

c Mx1 vector, call premiums
D scalar, current price

K Mx1 vector, strike prices

r scalar, risk free rate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

N number of time segments

sigma Mx1 vector, volatility

¢ ={ 13.70, 11.90, 9.10 };

SO0 = 718. 46;

K = { 720, 725, 730 };

r = .0498;

div = 0;

t0 = dtday(2001, 1, 30);

tl dtday(2001, 2, 16);
tau = el apsedTradi ngDays(t0,t1) /
annual Tr adi ngDays(2001);

sigma = AnericanBi nomCal | _I npVol
(c,SO,K r,div, tau, 30);

print signg;

0.1981

3-9

GAUSS Language Reference

Arrer i canBi nontCal | _| npVol

0.1715
0. 1301

Source finprocs.src

Technical Thebinomia method of Cox, Ross, and Rubinstein ("Option pricing: a
Notes simplified approach”, Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

3-10

Command Reference

Aner i canBi nonPut

Aner i1 canBi nonPut

Purpose
Format

Input

Output

Example:

American binomial method Put.

¢ = Aneri canBi nonPut (0, K, r, div, tau, sigma, N) ;

Mx1 vector, strike prices
scalar, risk freerate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

D scalar, current price
K
r

trading
sigma scalar, volatility
N number of time segments
c Mx1 vector, put premiums
SO = 718. 46;
K={ 720, 725, 730 };
r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

tl dt day(2001, 2, 16);

tau = el apsedTradi ngDays(t0,t1) /
annual Tr adi ngDays(2001);

¢ = Ameri canBi nonPut (S0, K, r, 0, t au, si gng, 60) ;

print c;

16. 862683
19. 606573
22. 433590

3-11

GAUSS Language Reference

Aner i canBi nonPut

Source finprocs.src

Technical Thebinomia method of Cox, Ross, and Rubinstein ("Option pricing: a
Notes smplified approach”, Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

3-12

Command Reference

Aneri canBi nonPut G eeks

Purpose

Format

Input

Output

Example

Amer i canBi nonPut _Gr eeks

American binomial method put Delta, Gamma, Theta, Vega, and Rho.

{ dgtvrh} =

Amer i canBi nonPut _G eeks(S0, K, r, div, tau, sigma, N) ;
D scalar, current price

K Mx1 vector, strike price

r scalar, risk freerate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility
N number of time segments
d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
v Mx1 vector, vega
rh Mx1 vector, rho
S0 = 305;
K = 300;
r = .08;
div = 0;
sigma = . 25;
tau = . 33;

{ d,g,t,v,rh } = Aneri canBi nonPut _G eeks

(SO, K, r, div,tau, sigma, 60);
print d;
print g;
print t;

3-13

GAUSS Language Reference

Arrer i canBi nonPut _Gr eeks

print v;

print rh;

- 0. 38324908
0. 00076381912
8. 1336630

68. 337294
-27.585043

Source finprocs.src

Globals fin_thetaType scaar, if 1, oneday look ahead, else, infinitesmal.
Default = 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

Technical Thebinomia method of Cox, Ross, and Rubinstein ("Option pricing: a
Notes simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

3-14

Command Reference

Arer i canBi nonPut _| npVol

Amer | canBi nonPut _| npVol

Purpose Implied volétilities for American binomial method puts.
Format sigma = Aneri canBi nonPut _| mpVol (¢, 0, K, r, div, tau, N) ;

Input ¢ Mx1 vector, put premiums
D scalar, current price

K Mx1 vector, strike prices

r scalar, risk freerate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

N number of time segments

Output sigma Mx1 vector, volatility

Example p = { 14.60, 17.10, 20.10 };

SO0 = 718. 46;

K ={ 720, 725, 730 };

r = .0498s;

div = 0;

t0 = dtday(2001, 1, 30);

tl dtday(2001, 2, 16);
tau = el apsedTradi ngbays(t0,t1) /
annual Tradi ngDays(2001);

signma = Aneri canBi nonPut _I npVol
(p, SO, K, r,div,tau, 30);

print sigms;

0. 1254

3-15

GAUSS Language Reference

Arrer i canBi nonPut _| npVol

0. 1668
0.2134

Source finprocs.src

Technical Thebinomia method of Cox, Ross, and Rubinstein ("Option pricing: a
Notes simplified approach”, Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

3-16

Command Reference

Aner i canBSCal |

Aner i canBSCal |

Purpose American Black and Scholes Call.

Format c¢ = AnericanBSCall (90, K, r, div, tau, sigma) ;

Mx1 vector, strike prices
scalar, risk freerate
div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

sigma scalar, volatility

Input 9 scalar, current price
K
r

Output: ¢ Mx1 vector, call premiums

Example SO0 = 718. 46;
K={ 720, 725, 730 };
r . 0498;
sigma = .2493;
t0 = dtday(2001, 1, 30);
t1l = dtday(2001, 2, 16);
tau = el apsedTradi ngbays(t0,t1) /
annual Tr adi ngDays(2001);
¢ = AmrericanBSCal |l (SO, K, r, 0,tau, sigm);

print c;

16. 093640
13. 846830
11. 829059

Source finprocs.src

3-17

GAUSS Language Reference

Arreri canBSCal | _Greeks

Aneri canBSCal | G eeks

Purpose American Black and Scholes call Delta, Gamma, Omega, Theta, and
Vega

Format { dgtvrh} =
Ameri canBSCal | _Greeks(0, K, r, div, tau, sigma) ;

Input scalar, current price
K Mx1 vector, strike price
r scalar, risk freerate
div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

sigma scalar, volatility

Output d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
\Y Mx1 vector, vega
rh Mx1 vector, rho

Example SO0 = 305;
K = 300;
r = .08;
sigma = . 25;
tau = . 33;
{ d,g,t,v,rh } = Aneri canBSCal | _Gr eeks
(S0,K, r,0,tau, signa);
print d;
print g;
print t;

print v;

3-18

Command Reference

Arreri canBSCal | _Greeks

print rh;

0. 40034039
0. 016804021
-55. 731079
115. 36906
46. 374528

Source finprocs.src
Globals _fin_thetaType scaar,if 1, oneday look ahead, else, infinitesmal.

Default = 0.
_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

3-19

GAUSS Language Reference

Arreri canBSCal | _| mpVol

Amer | canBSCal | _I npVol

Purpose Implied volétilities for American Black and Scholes calls.
Format sigma = AnericanBSCall | npVol (¢, S, K, r, div, tau) ;

Input ¢ Mx1 vector, call premiums
D scalar, current price

K Mx1 vector, strike prices

r scalar, risk free rate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

Output sigma Mx1 vector, volatility

Example ¢ ={ 13.70, 11.90, 9.10 };

SO0 = 718. 46;

K= { 720, 725, 730 };

r = .0498;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = el apsedTradi ngbays(t0,t1) /
annual Tr adi ngDays(2001);

signa = Aneri canBSCal | _I npVol
(c,S0,K r,0,tau);

print sigmm;

0. 10350708
0. 089202881
0. 066876221

3-20

Command Reference

Arreri canBSCal | _| mpVol

Source finprocs.src

3-21

GAUSS Language Reference

Aner i canBSPut

Aner |1 canBSPut

Purpose
Format

Input

Output

Example

Source

American Black and Scholes Put.

¢ = AnericanBSPut (0, K, r, div, tau, sigma) ;

Mx1 vector, strike prices
scalar, risk freerate
div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

sigma scalar, volatility

S0) scalar, current price
K
r

c Mx1 vector, put premiums
SO = 718. 46;

K= { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1l = dtday(2001, 2, 16);

tau = el apsedTradi ngbays(t0,t1) /
annual Tr adi ngDays(2001);

¢ = AmericanBSPut (S0, K, r, 0, tau, signa);

print c;

16. 748987
19. 41627
22.318856

finprocs.src

3-22

Command Reference

Amer i canBSPut _Gr eeks

Aner i canBSPut G eeks

Purpose

Format

Input

Output

Example

American Black and Scholes put Delta, Gamma, Omega, Theta, and

Vega

{ dgtvrh} =

Amer i canBSPut _Greeks(90, K, r, div, tau, sigma) ;
D scalar, current price

K Mx1 vector, strike price

r scalar, risk freerate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility

d Mx1 vector, delta

g Mx1 vector, gamma
t Mx1 vector, theta

Y Mx1 vector, vega
rh Mx1 vector, rho

S0 = 305;

K = 300;

r = .08;

sigma = . 25;

tau = . 33;

{ d,g,t,v,rh } =

Amer i canBSPut _Greeks(S0, K, r, 0, tau, sigm);

print d;
print g;
print t;

print v;

3-23

GAUSS Language Reference

Arreri canBSPut _Gr eeks

print rh;

- 0. 33296721
0. 0091658294
-17.556118
77.614238
-40. 575963

Source finprocs.src
Globals _fin_thetaType scaar,if 1, oneday look ahead, else, infinitesmal.

Default = 0.
_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

3-24

Command Reference

Amer i canBSPut _| npVol

Amer | canBSPut _| npVol

Purpose
Format

Input

Output

Example

Source

Implied volatilities for American Black and Scholes puts.
sigma = Ameri canBSPut _| mpVol (¢, 0, K, r, div, tau) ;

c Mx1 vector, put premiums
S scalar, current price

K Mx1 vector, strike prices

r scalar, risk freerate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

sigma Mx1 vector, volatility

p = { 14.60, 17.10, 20.10 };

SO0 = 718. 46;

K= { 720, 725, 730 };

r = .0498;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);
tau = el apsedTradi ngbays(t0,t1) /
annual Tr adi ngDays(2001);
signma = Anmeri canBSPut _I npVol (p, SO, K, r, 0, tau);

print sigmm;

0. 12829346
0. 16885986
0. 21544312

finprocs.src

3-25

GAUSS Language Reference

annual Tr adi ngDays

annual Tr adi ngbDays

Purpose Compute number of trading daysin a given year.
Format n = annual Tradi ngDays(a);

Input a scalar, year.

Output n number of trading daysin year

Remarks A trading day isaweekday that is not a holiday as defined by the New
York Stock Exchange from 1888 through 2004. Holidays are defined in
hol i days. asc. You may edit that file to modify or add holidays.

Source finutils.src

3-26

Command Reference

al CCOS

Purpose
Format
Input
Output

Remarks

Example

Source

arccos
Computes the inverse cosine.

y = arccos(X);

X NxK matrix.

y NxK matrix containing the angle in radians whose cosineis x.

If x iscomplex or has any elements whose absolute value is greater than
1, complex results are returned.

X

y

{ -1, -0.5, 0, 0.5, 1};

arccos(x);

—1.000000
—0.500000

X = 0.000000
0.500000
1.000000

3.141593
2.094395
Yy = 1570796
1.047198
0.000000

trig.src

3-27

GAUSS Language Reference

arcsin

ar csi n

Purpose Computestheinversesine.
Format y = arcsin(x;
Input x NXK matrix.

Output vy NxK matrix, the anglein radians whose sineis x.

Remarks If xiscomplex or has any elements whose absolute value is greater than
1, complex results are returned.

{ -1, -0.5, 0, 0.5, 1};

arcsin(x);

Example x
y

—1.000000
—0.500000

X = 0.000000
0.500000
1.000000

-1.570796
—0.523599
0.000000
0.523599
1.570796

<
|

Source trig.src

3-28

Command Reference

ascl abel

ascl abel

Purpose
Library
Format

Input

Example

Source

Sets up character labelsfor the X and Y axes.

pgr aph
ascl abel (xIyl);

Xl string or Nx1 character vector, labels for the tick marks on the X
axis. Set to 0 if no character |abels for this axis are desired.

i string or Mx1 character vector, labels for the tick marks on the Y
axis. Set to 0 if no character labels for this axis are desired.

Thisillustrates how to label the X axis with the months of the year:
let lab = JAN FEB MAR APR MAY JUN JUL AUG SEP

OCT NOV DEC;
ascl abel (1 ab, 0);

Thiswill also work:
lab = “JAN FEB MAR APR MAY JUN JUL AUG SEP CCT
NOV DEC’;
ascl abel (1 ab, 0);
If the string format is used, then escape characters may be embedded in
the labels. For example, the following produces character labels that are

multiples of A. The font Simgrma must be previously loaded in af ont s
command. (See Chapter 13 in Using GAUSSfor Windows95.)

fonts(“sinplex singrm”);

lab = “\2010. 25\ 202| \2010. 5\ 202|
\ 2010. 75\ 2021 17;

ascl abel (1 ab, 0);

Here, the 2021 producesthe “A” symbol from Simgrma.

pgraph. src

3-29

GAUSS Language Reference

ascl abel

See also xtics, ytics, scale, scale3d, fonts

3-30

Command Reference

at an

Purpose
Format
Input
Output

Remarks

Example

See also

at an

Returns the arctangent of its argument.
y = atan(Xx);
X NxK matrix.

y NxK matrix containing the arctangent of x in radians.

y will be amatrix the same size as x, containing the arctangents of the
corresponding elements of x.

For real x, the arctangent of x isthe angle whosetangent isx. Theresultis

avaluein radiansin the range %Tto-%n. To convert radians to degrees,
. 180
Itipl —.
multiply by =

For complex x, the arctangent is defined everywhere except i and -i. If xis
complex, y will be complex.

x={ 2, 4, 6, 81},
x/ 2;

atan(z);

z

y

0.785398
1.107149
1.249046
1.325818

atan2, sin, cos, pi, tan

3-31

GAUSS Language Reference

at an2

at an2

Purpose
Format

Input

Output

Remarks

Example

See also

Computes an angle from an X,y coordinate.

z = atan2(yXx);

y NxK matrix, the Y coordinate.
X LxM matrix, EXE conformable with y, the X coordinate.
z max(N,L) by max(K,M) matrix.

Given apoint x,y in a Cartesian coordinate system, at an2 will give the
correct angle with respect to the positive X axis. The answer will bein
radians from -pi to +pi.

To convert radians to degrees, multiply by -1—-81_[—0 .

at an2 operates only on the real component of X, even if x is complex.
X = 2

y ={2 4, 6 81},

z = atan2(y, x);

0.785398
1.107149
1.249046
1.325818

atan, sin, cos, pi, tan, arcsin, arccos

3-32

Command Reference

axmar gi n

axmar gi n

Purpose

Library
Format

Input

Remarks

Example

Source

Set absolute marginsfor the plot axes which control placement and size of
plot.

pgr aph
axmar gi n(l,r,t,b);

scalar, the left margin in inches.
scalar, the right margin in inches.
scalar, the top margin in inches.
scalar, the bottom margin in inches.

o - = —

axmar gi n sets an absolute distance from the axes to the edge of the
graphic panel. Note that the user isresponsible for allowing enough space
inthemargin if axeslabels, numbers, and title are used on the graph, since
axmar gi n does not size the plot automatically asin the case of

nmar gi n.

All input inch values for this procedure are based on afull size window of
9 x 6.855 inches. If this procedure is used within a graphic panel, the
values will be scaled to window inches automatically.

If both mar gi n and axmar gi n are used for agraph, axmar gi n will
override any sizes specified by mar gi n.
The statement

axmargin(l,1,.5,.855);

will create aplot areaof 7 inches horizontally by 5.5 inchesvertically, and
positioned 1 inch right and .855 up from the lower left corner of the

graphic panel/page.

pgr aph. src

3-33

GAUSS Language Reference

bal ance

bal ance

Purpose
Format
Input

Output

Remarks

Example

Balances a square matrix.

{ bz} = bal ance(Xx)

X KxK matrix.
b KxK matrix, balanced matrix.
Z KxK matrix, diagonal scale matrix.

bal ance returns a balanced matrix b and another matrix z with scale
factorsin powers of two on itsdiagonal. b is balanced in the sense that the
absolute sums of the magnitudes of elements in corresponding rows and
columns are nearly equal.

bal ance ismost often used to scale matrices to improve the numerical
stability of the calculation of their eigenvalues. It isaso useful in the
solution of matrix equations.

In particular,

b = 71xz

bal ance usesthe BALANC function from EISPACK.

let x[3,3] = 100 200 300
40 50 60
7 8 9;
{ b,z } = bal ance(x);

100.0 100.0 37.5

= 80.0 50.0 15.0
56.0 320 90
40 00 0.0

= 00 20 00
0.0 0.0 05

3-34

Command Reference

band

Purpose
Format

Input

Output

Remarks

Example

band

Extracts bands from a symmetric banded matrix.

a = band(yn);

y KxK symmetric banded matrix.

n scalar, number of subdiagonals.

a Kx(N+1) matrix, 1 subdiagonal per column.

y can actually be arectangular PxQ matrix. K isthen defined asmin(PQ).
It will be assumed that a is symmetric about the principal diagonal for
y[1:K,1:K].

The subdiagonals of y are stored right to left in a, with the principal
diagonal in the rightmost (N+1'th) column of a. The upper left corner of a
isunused; itisset to O.

This compact form of abanded matrix iswhat bandchol expects.

x={ 1200,
2810,
015 2,
002 3},

bx = band(x, 1);

0.0000000 1.0000000
bx 2.0000000 8.0000000
1.0000000 5.0000000
2.0000000 3.0000000

3-35

GAUSS Language Reference

bandchol

bandchol

Purpose Computesthe Cholesky decomposition of a positive definite banded

matrix.
Format | = bandchol (a);
Input a KXN compact form matrix.
Output | KXN compact form matrix, lower triangle of the Cholesky

decomposition of a.

Remarks Given apositive definite banded matrix A, there exists amatrix L, the
lower triangle of the Cholesky decomposition of A, suchthat A=L xL'. a
is the compact form of A. Seeband for adescription of the format of a.

| isthe compact form of L. Thisisthe form of matrix that bandchol sol

expects.
Example x ={ 12 0 0,
2 810,
015 2,
00231},
bx = band(x, 1);

0.0000000 1.0000000
bx = 2-0000000 8.0000000
1.0000000 5.0000000
2.0000000 3.0000000

cx = bandchol (bx);
0.0000000 1.0000000
oX = 2.0000000 2.0000000

0.50000000 2.1794495
0.91766294 1.4689774

3-36

Command Reference

bandchol sol

bandchol sol

Purpose

Format

Input

Output

Remarks

Example

Solves the system of equations Ax = b for x, given the lower triangle of
the Cholesky decomposition of a positive definite banded matrix A.

x = bandchol sol (b)) ;

b KXM matrix.
I KXN compact form matrix.

X KXM matrix.

Given a positive definite banded matrix A, there exists amatrix L, the
lower triangle of the Cholesky decomposition of A, suchthat A =L*L’. |
isthe compact form of L; see band for a description of the format of I.

b can have more than one column. If so, Ax = b is solved for each column.
That is,

A*X[.,i] = b[.,i]

x={1200,
2810,
015 2,
002 3};
band(x, 1);

bx

0.0000000 1.0000000
2.0000000 8.0000000
1.0000000 5.0000000
2.0000000 3.0000000

bx

3-37

GAUSS Language Reference

bandchol sol

CX

CX

Xi

X

bandchol (bx);

0.0000000 1.0000000
2.0000000 2.0000000
0.50000000 2.1794495
0.91766294 1.4689774

bandchol sol (eye(4), cx);

2.0731707 —0.05365854 0.14634146 0.09756098
—0.53658537 0.26829268 —0.07317073 0.04878049
0.14634146 —0.07317073 0.29268293 —0.19512195
—0.09756098 0.04878049 —0.19512195 0.46341463

3-38

Command Reference

bandl t sol
bandl t sol
Purpose Solvesthe system of equations Ax = b for x, where A is alower triangular
banded matrix.
Format x = bandltsol (bA);
Input b KxM matrix.
A KXN compact form matrix.
Output x KxM matrix.
Remarks Aisalower triangular banded matrix in compact form. See band for a
description of the format of A.
b can have more than one column. If so, Ax = b is solved for each column.
That is,
Ax[.,1] =Db[.,i1]
Example 0.0000000 1.0000000

bx = 2-0000000 8.0000000
1.0000000 5.0000000
2.0000000 3.0000000

cx = bandchol (bx);
0.0000000 1.0000000
oxX = 2.0000000 2.0000000

0.50000000 2.1794495
0.91766294 1.4689774

3-39

GAUSS Language Reference

bandl t sol

xci = bandl tsol (eye(4), cx);

1.0000000 0.0000000 0.0000000 0.0000000

xci = —1.0000000 0.50000000 0.0000000 0.0000000
0.22941573 -0.11470787 0.45883147 0.0000000
—0.14331487 0.07165744 —0.28662975 0.68074565

3-40

Command Reference

bandr v

Purpose
Format
Input
Output

Remarks

Example

bandr v

Creates a symmetric banded matrix, given its compact form.
y = bandrv(a);
a KXN compact form matrix.

y KxK symmetrix banded matrix.

a isthe compact form of a symmetric banded matrix, as generated by
band. a stores subdiagonals right to left, with the principal diagonal in

the rightmost (Nth) column. The upper left corner of a is unused.
bandchol expectsamatrix of thisform.

y isthefully expanded form of a, a KxK matrix with N-1 subdiagonals.

0.0000000 1.0000000
2.0000000 8.0000000
1.0000000 5.0000000
2.0000000 3.0000000

bx =

X = bandrv(bx);

1.0000000
2.0000000
0.0000000
0.0000000

2.0000000
8.0000000
1.0000000
0.0000000

0.0000000
1.0000000
5.0000000
2.0000000

0.0000000
0.0000000
2.0000000
3.0000000

X =

3-41

GAUSS Language Reference

bandsol pd

bandsol pd

Purpose Solvesthe system of equations Ax = b for x, where A is a positive definite
banded matrix.

Format x = bandsol pd(bA);

Input b KxM matrix.
A KXN compact form matrix.
Output x KXM matrix.

Remarks Aisapositive definite banded matrix in compact form. See band for a
description of the format of A.

b can have more than one column. If so, Ax = b is solved for each column.
That is,

AX[.,i] = b[.,i]

3-42

Command Reference

bar

Purpose
Library
Format

Input

Global Input

Bar graph.
pgr aph
bar (val,ht) ;
val

ht

_pbarwi d

_pbartyp

bar

Nx1 numeric vector, bar labels. If scalar 0, a sequence
from 1 tor ows(ht) will be created.

NXK numeric vector, bar heights.

K overlapping or side-by-side sets of N bars will be
graphed.

For overlapping bars, thefirst column should contain the
set of bars with the greatest height and the last column
should contain the set of bars with the least height.
Otherwise, the barsthat are drawn first may be obscured
by the bars drawn last. Thisis not a problem if the bars
are plotted side-by-side.

global scalar, width and positioning of barsin bar graphs
and histograms. The valid range is 0-1. If thisis 0, the bars
will be asingle pixel wide. If thisis 1, the bars will touch
each other.

If thisvalueis positive, the bars will overlap. If negative,
the bars will be plotted side-by-side. The default is 0.5.

Kx2 matrix.

Thefirst column controls the bar shading:
0 noshading.

dots.

vertical cross-hatch.

diagonal lines with positive slope.

diagonal lines with negative slope.

diagonal cross-hatch.

solid.

The second column controls the bar color. See “ Colors
Appendix” on page B-1.

o 0o WN B

3-43

GAUSS Language Reference

bar

Remarks Usescal e oryti cs tofix the scaling for the bar heights.

Example Inthisexample, three overlapping sets of barswill be created. The three
heights for the i bar are stored in x[i,.].

i brary pgraph;
gr aphset;

—
I

seqa(0, 1, 10);
= (t"2/2).*(1~0.7~0. 3);

x
|

_plegctl { 14},
_plegstr = “Accnt #1\ 000Accnt #2\ 000Accnt #3”;
title(“Theoretical Savings Bal ance”);
x| abel (“Years”);
yl abel (“Dol l ars x 1000");
_pbartyp ={ 1 10 }; /* Set color of the */
/* bars to 10 (rmagenta) */
_pnum = 2;

bar (t, x); /* Use t vector to |abel X axis */
Source pbar.src

See also asclabel, xy, logx, |logy, |oglog, scale, hist

3-44

Command Reference

basel0

baselO

Purpose Break number into a number of the form #.###... and a power of 10.

Format { MP } = baselO(X);
Input x scalar, number to break down.

Output ™ scalar, in therange -10 < M < 10.
P scalar, integer power such that:

M * 107 = x
Example { b, e} = basel0(4500);
4. 5000000
3. 0000000

(e
1

(0]
1

Source baselO.src

3-45

GAUSS Language Reference

begwi nd
begw nd
Purpose Initidize global graphic panel variables.
Library pgraph

Format begwi nd;

Remarks Thisprocedure must be called before any other graphic panel functions
arecaled.

Source pw ndow. src

See also endwi nd, wi ndow, makew nd, setw nd, nextw nd,
getwi nd

3-46

Command Reference

bessel j
Purpose ComputesaBessel function of the first kind, J,(X).
Format vy = besselj(nx);
Input n NxK matrix, the order of the Bessel function. Nonintegers will
be truncated to an integer.
X LxM matrix, EXE conformable with n.
Output vy max(N,L) by max(K,M) matrix.
Example n ={ 0, 1},
x={0.11.2, 2.3 3.4},
y = besselj(n, x);

0.99750156 0.67113274
0.53987253 0.17922585

See also bessely, nbesseli

3-47

GAUSS Language Reference

bessel y

bessel y

Purpose TocomputeaBesse function of the second kind (Weber’s function),
Yn(X).

Format y = bessely(nx;

Input n NxK matrix, the order of the Bessel function. Nonintegers will
be truncated to an integer.
X LxM matrix, EXE conformable with n.
Output vy max(N,L) by max(K,M) matrix.
Example n ={ 0, 1},
x={0.11.2, 2.3 3.4},
y = bessely(n, x);
— —1.5342387 0.22808351
0.05227732 0.40101529
See also besselj, nbesseli

3-48

Command Reference

box
box
Purpose Graph data using the box graph percentile method.
Library pgraph
Format box(grpy);
Input grp 1xM vector. This contains the group numbers corresponding

to each column of y data. If scalar 0, a sequence from 1 to
col s(y) will be generated automatically for the X axis.

y NxM matrix. Each column represents the set of y values for
an individual percentiles box symbal.

Global Input _pboxct| 5x1 vector, controls box style, width, and color.

box width between 0 and 1. If zero, the box plot is
drawn astwo vertical lines representing the quartile

ranges with afilled circle representing the 50th
percentile.

box color. If thisis set to O, the colors may be
individually controlled using the global variable
_pcol or.

Min/max style for the box symbol. One of the
following:

[1]

[2]

[3]

[4]

1

2

Minimum and maximum taken from the actual
limits of the data. Elements 4 and 5 are ignored.

Statistical standard with the minimum and
maximum calculated according to interquartile
range as follows:

intgrange = 75th - p5th
min = 25" 1 5intgrange
max = 75" + 1.5intqrange

Elements 4 and 5 are ignored.

3 Minimum and maximum percentilestaken from

elements 4 and 5.

Minimum percentile value (0-100) if

_pboxct!1[3] =3.

3-49

GAUSS Language Reference

box

_pletrl

_pcol or

[5] Maximum percentile value (0-100) if
_pboxct1[3] =3.

1xM vector or scalar asfollows:
0 Plot boxes only, no symboals.

1 Plot boxes and plot symbols that lie outside the min
and max box values.

2 Plot boxes and all symbols.
-1 Plot symbolsonly, no boxes.

These capabilities are in addition to the usual line control
capabilitiesof _pl ctrl .

1xM vector or scalar for symbol colors. If scalar, all
symbols will be one color. See “Colors Appendix” on
page B-1.

Remarks If missing values are encountered in the y data, they will be ignored
during calculations and will not be plotted.

Source pbox. src

3-50

Command Reference

boxcox

Purpose
Format

Input

Output

Remarks

Example

boxcox

Computes the Box-Cox function.
y =boxcox (x,Jambda);

X MxN matrix.
lambda KxL matrix, EXE conformable to x.

y max(M,L) x max(N,K).

Allowable range for xis:
x>0
The boxcox function computes
X' —1
A

boxcox(x) =

x ={.2 .3, 1.5 2.5};
| anbda = {.4, 2};
y = boxcox(x, | anbda)

—1.1867361 —0.95549787
0.62500000 2.62500000

3-51

GAUSS Language Reference

br eak

br eak

Purpose Breaksout of ado or f or loop.

Format break;

Example x = rndn(4,4);
r = 0,
do while r < rows(x);
rr=r + 1;
c = 0;
do while ¢ < cols(x);
c =c¢c + 1;
if ¢c ==r;
x[r,c] = 1,
elseif ¢ > r;
break; /* terminate inner do | oop */
el se;
x[r,c] = 0;
endi f;
endo; /* break junps to the statenent */
/* after this endo */

endo;

1.000 0.326 —2.682 —0.594
x = 0.000 1.000 -0.879 0.056
0.000 0.000 1.000 —0.688

0.000 0.000 0.000 1.000
Remarks Thiscommand worksjust likein C.

3-52

Command Reference

br eak

See also continue, do, for

3-53

GAUSS Language Reference

cal |

cal |

Purpose Callsafunction or procedure when the returned value is not needed and
can beignored, or when the procedure is defined to return nothing.

Format «call function_name(argument_Ilist);
call function_nane;

Remarks Thisisuseful when you need to execute afunction or procedure and do
not need the value that it returns. It can a so be used for calling procedures
that have been defined to return nothing.

functi on_nane can beany intrinsic GAUSS function, a procedure
(pr oc), or any valid expression.

Example call chol (x);
y = detl;

The above example is the fastest way to compute the determinant of a
positive definite matrix. The result of chol isdiscarded and det | is
used to retrieve the determinant that was computed during the call to
chol .

See also proc

3-54

Command Reference

cdf bet a

Computes the incompl ete beta function (i.e., the cumulative distribution
function of the beta distribution).

Purpose

Format

Input

Output

Remarks

Example

See also

cdf bet a

y = cdf beta(xab);

X
a
b

y

NxK matrix.
LxM matrix, EXE conformable with x.
PxQ matrix, EXE conformable with x and a.

max(N,L,P) by max(K,M,Q) matrix.

y istheintegral from O to x of the beta distribution with parameters a and
b. Allowable ranges for the arguments are:

0 <x <1

a>>»0
b>0

A -lisreturned for those elements with invalid inputs.

< T o

{ .1, .2, .3, .41},
0.5;

0. 3;

cdf bet a(x, a, b) ;

0.142285
0.206629
0.260575
0.310875

cdfchic, cdffc, cdfn, cdfnc, cdftc, ganma

3-55

GAUSS Language Reference

cdf bet a

Technical
Notes

References

cdf bet a has the following approximate accuracy:

max(a,b) < 500 the absolute error is approx. £5e-13
500 < max(a,b) < 10,000 the absolute error is approx. £5e-11
10,000 < max(a,b) < 200,000 the absolute error is approx. £1e-9
200,000 < max(a,b) Normal approximations are used and

the absolute error is approx. +2e-9

Bol'shev, L.N. “Asymptotically Pearson’s Transformations.” Teor.
Veroyat. Primen. (Theory of Probability and its Applications). Vol. 8 No.
2, 1963, 129-55.

Bosten, N. E., and E.L. Battiste. “Remark on Algorithm 179 Incomplete
Beta Ratio.” Comm. ACM. Val. 17 No. 3, March 1974, 156-57.

Ludwig, O.G. “Algorithm 179 Incomplete Beta Ratio.” Comm. ACM.
Vol. 6 No. 6, June 1963, 314.

Mardia, K.V., and PJ. Zemroch. “ Tables of the F- and related distributions
with algorithms.” Academic Press, NY, 1978. ISBN 0-12-471140-5

Peizer, D.B., and JW. Pratt. “A Normal Approximation for Binomial, F,
Beta, and Other Common, Related Tail Probabilities, 1.” Journal of
American Satistical Association. Vol. 63, Dec. 1968, 1416-56.

Pike, M.C., and I.D. Hill. “Remark on Algorithm 179 Incomplete Beta
Ratio.” Comm. ACM. Vol. 10 No. 6, June 1967, 375-76.

3-56

Command Reference

cdf bvn

Purpose

Format

Input

Output

Remarks

cdf bvn

Computes the cumulative distribution function of the standardized
bivariate Normal density (lower tail).

¢ = cdf bvn(hkpr);

h NxK matrix, the upper limits of integration for variable 1.

k LxM matrix, EXE conformable with h, the upper limits of
integration for variable 2.

r PxQ matrix, EXE conformable with h and k, the correlation

coefficients between the two variables.

c max(N,L,P) by max(K,M,Q) matrix, the result of the double
integral from -0 to h and - to k of the standardized bivariate
Normal density f(X,y,r).

The function integrated is:

21 /1 —r2

fxy,r) =

with

X2 —2rxy + y?2
1-r2

Thus, x and y have 0 means, unit variances, and correlation =r.

W =

Allowable ranges for the arguments are:
-0 <h <+o0
-0 <k <+o0
-1 <r <1

A -lisreturned for those elements with invalid inputs.

To find the integral under a general bivariate density, with x and y having
nonzero means and any positive standard deviations, use the
transformation equations:

h = (ht - ux) ./ sx;
k = (kt - uy) ./ sy;

3-57

GAUSS Language Reference

cdf bvn

See also

Technical
Notes

References

where ux and uy arethe (vectors of) meansof xandy, sx and sy arethe
(vectors of) standard deviations of x andy, and ht and kt arethe (vectors
of) upper integration limits for the untransformed variables, respectively.

cdfn, cdftvn

The absolute error for cdf bvn is approximately £5.0e-9 for the entire
range of arguments.

Daley, D.J. “Computation of Bi- and Tri-variate Normal Integral.” Appl.
Satist. Vol. 23 No. 3, 1974, 435-38.

Owen, D.B. “A Table of Normal Integrals.” Commun. Satist.-Smula.
Computa., B9(4). 1980, 389-419.

3-58

Command Reference

cdf bvn2

Purpose
Format

Input

Output

Remarks

Example

cdf bvn2
Returns cdfbvn of abounded rectangle.
y = cdf bvn2(h, dh, k, dk, r);
h Nx1 vector, starting points of integration for variable 1.
dh Nx1 vector, increments for variable 1.
k Nx1 vector, starting points of integration for variable 2.
dk Nx1 vector, increments for variable 2.
r Nx1 vector, correlation coefficients between the two variables.

Nx1 vector, the integral over the rectangle bounded by h, h+dh,

k, and k+dk of the standardized bivariate Normal distribution.
Scalar input arguments are okay; they will be expanded to Nx1 vectors.
cdf bvn2 computes:

cdf bvn(h+dhk+dk,r) + cdf bvn(h,kr) - cdf bvn(hk+dk,r) -
cdf bvn(h+dhkr).

cdf bvn2 computes an error estimate for each set of inputs. The size of
the error depends on the input arguments. If t rap 2 isset, awarning
message is displayed when the error reaches 0.01*abs (y).

For an estimate of the actual error, see cdf bvn2e.

Example 1
cdf bvn2(1,-1,1,-1,0.5);

produces:
1.4105101488974692e- 001

Example 2
cdf bvn2(1, - 1le-15, 1, -1le-15,0.5);

produces:
4.9303806576313238e- 32

3-59

GAUSS Language Reference

cdf bvn2

Example 3
cdf bvn2(1, -1e-45,1,-1e-45,0.5);

produces:
0. 0000000000000000e+000

Example 4
trap 2, 2;
cdf bvn2(1, -1le-45, 1, le-45,0.5);

produces:
WARNI NG Dubi ous accuracy from cdf bvn2:

0. 000e+000 +/- 2.8e-060
0. 0000000000000000e+000

Source Incdfn.src

See also cdfbvn2e, | ncdfbvn2

3-60

Command Reference

cdf bvn2e

Purpose
Format

Input

Output

Remarks

Example

cdf bvn2e
Returns cdfbvn of abounded rectangle.
{y, e} = cdfbvn2e(h,dh k, dk, r);

h Nx1 vector, starting points of integration for variable 1.

dh Nx1 vector, increments for variable 1.

k Nx1 vector, starting points of integration for variable 2.

dk Nx1 vector, increments for variable 2.

r Nx1 vector, correlation coefficients between the two variables.

y Nx1 vector, the integral over the rectangle bounded by h,
h+dh, k, and k+dk of the standardized bivariate Normal
distribution.

e Nx1 vector, an error estimate.

Scalar input arguments are okay; they will be expanded to Nx1 vectors.

cdf bvn2e computes cdf bvn(h+dh,k+dk,r) + cdf bvn(hk,r) -
cdf bvn(h,k+dkr) - cdf bvn(h+dh,kr).

Thereal answer isy+e. The size of the error depends on the input
arguments.

Example 1
cdf bvn2e(1,-1,1,-1,0.5);

produces:
1.4105101488974692e- 001

1.9927918166193113e-014

Example 2
cdf bvn2e(1, -1e-15,1,-1e-15,0.5);

produces:

3-61

GAUSS Language Reference

cdf bvn2e

7.3955709864469857e- 032
2.8306169312687801e- 030

Example 3
cdf bvn2e(1, - 1le-45,1, - 1le- 45, 0. 5);

produces:
0. 0000000000000000e+000

2.8306169312687770e- 060

See also cdfbvn2, | ncdf bvn2

3-62

Command Reference

cdf chi c

Purpose
Format

Input

Output

Remarks

Example

See also

cdfchic

Computes the complement of the cdf of the chi-square distribution.

y = cdf chi c(xn)

X NxK matrix.
n LxM matrix, EXE conformable with x.
y max(N,L) by max(K,M) matrix.

y istheintegral from x to co of the chi-square distribution with n degrees
of freedom.

The elements of n must al be positive integers. The alowable ranges for
the arguments are:

x =20
n>0
A -lisreturned for those elements with invalid inputs.

Thiseguals 1-F(x,n), where F is the chi-square cdf with n degrees of
freedom. Thus, to get the chi-sgquare cdf, subtract cdf chi c(x, n) from
1. The complement of the cdf is computed because this is what is most
commonly needed in statistical applications, and because it can be
computed with fewer problems of roundoff error.

x={ .1, .2, .3, .4};

n = 3;

y = cdfchic(x,n);
0.991837

y = 0.977589
0.960028
0.940242

cdf beta, cdffc, cdfn, cdfnc, cdftc, ganm

3-63

GAUSS Language Reference

cdfchic

Technical
Notes

References

For n < 1000, the incomplete gamma function is used and the absolute
error is approx. £6e-13. For n > 1000, a Normal approximation is used
and the absolute error is +2e-8.

For higher accuracy when n > 1000, use:

1- cdf gam(0. 5*x, 0. 5*n) ;
Bhattacharjee, GP. “ Algorithm AS 32, The Incomplete Gamma Integral .”
Applied Satistics. Vol. 19, 1970, 285-87.

Mardia, K.V., and PJ. Zemroch. “ Tables of the F- and related distributions
with algorithms.” Academic Press, NY, 1978. ISBN 0-12-471140-5

Peizer, D.B., and JW. Pratt. “A Normal Approximation for Binomial, F,
Beta, and Other Common, Related Tail Probabilities, 1.” Journal of
American Satistical Association. Vol. 63, Dec. 1968, 1416-56.

3-64

Command Reference

cdf chi i

Purpose

Format

Input

Output

Example

Source

See also

cdfchii

Compute chi-sguare abscissae values given probability and degrees of
freedom.

c = cdfchii(pn);

p MxN matrix, probabilities.

n LxK matrix, EXE conformable with p, degrees of freedom.

c max(M,L) by max(N,K) matrix, abscissae values for chi-square
distribution.

The following generates a 3x3 matrix of pseudo-random numberswith a
chi-squared distribution with expected value of 4:

rndseed 464578;
x = cdfchii(rndu(3, 3), 4+zeros(3, 3));

2.1096456 1.9354989 1.7549182
X = 4.4971008 9.2643386 4.3639694
4.5737473 1.3706243 2.5653688

cdfchii.src

ganmmai i

3-65

GAUSS Language Reference

cdf chi nc
cdf chi nc
Purpose Theintegra under noncentral chi-square distribution, from 0 to x. It can
return a vector of values, but the degrees of freedom and noncentrality
parameter must be the same for all values of x.
Format y = cdfchinc(xvd);
Input x Nx1 vector, values of upper limits of integrals, must be greater
than O.
v scalar, degrees of freedom, v > 0.
d scalar, noncentrality parameter, d > 0.
Thisisthe square root of the noncentrality parameter that
sometimes goes under the symbol lambda. (See Scheffe, The
Analysis of Variance, App. V. 1959.)
Output vy Nx1 vector, integrals from 0 to x of noncentral chi-square.
Example x ={ .5, 1, 5, 25},
p = cdfchinc(x,4,2);
0.0042086234
0.016608592
0.30954232
0.99441140
Source cdfnonc.src
See also cdffnc, cdftnc
Technical Relation to cdfchic:
Notes

cdfchic(x,v) = 1 - cdfchinc(x,v,0);

The formula used is taken from Abramowitz and Stegun, Handbook of
Mathematical Functions. Formula 26.4.25. 1970, 942.

3-66

Command Reference

cdffc

Purpose
Format

Input

Output

Remarks

Example

cdffc

Computes the complement of the cdf of the F distribution.
y = cdf fc(x,n1,n2);

X NxK matrix.
nl LxM matrix, EXE conformable with x.
n2 PxQ matrix, EXE conformable with x and n1.

y max(N,L,P) by max(K,M,Q) matrix.
y istheintegra from x to co of the F distribution with n1 and n2 degrees

of freedom.

Allowable ranges for the arguments are:
x =20
nl >0
n2 >0

A -lisreturned for those elements with invalid inputs.

This equals 1-G(x,n1,n2), where G is the F cdf with n1 and n2 degrees of
freedom. Thus, to get the F cdf, subtract cdf f ¢(x,n1,n2) from 1. The
complement of the cdf is computed because thisis what is most
commonly needed in statistical applications, and because it can be
computed with fewer problems of roundoff error.

x={ .1, .2, .3, .4};
nl = 0.5;

n2 = 0.3;

y = cdffc(x,nl, n2);

0.751772
0.708152
0.680365
0.659816

3-67

GAUSS Language Reference

cdffc
See also

Technical
Notes

References

cdf beta, cdfchic, cdfn, cdfnc, cdftc, gamm

For max(n1,n2) < 1000, the absolute error is approximately +5e-13. For
max(nl1,n2) > 1000, Normal approximations are used and the absolute
error is approximately +2e-6.

For higher accuracy when max(nl1,n2) > 1000, use:
cdf beta(n2/ (n2+nl*x), n2/2, nl/2);

Bol’shev, L.N. “Asymptotically Pearson’s Transformations.” Teor.
Veroyat. Primen. (Theory of Probability and its Applications). Vol. 8 No.
2, 1963, 129-55.

Bosten, N. E., and E.L. Battiste. “Remark on Algorithm 179 Incomplete
Beta Ratio.” Comm. ACM. Val. 17 No. 3, March 1974, 156-57.

Kennedy, W.J., J., and J.E. Gentle. Satistical Computing. Marcel Dekker,
Inc., NY, 1980.

Ludwig, O.G. “Algorithm 179 Incomplete Beta Ratio.” Comm. ACM.
Vol. 6 No. 6, June 1963, 314.

Mardia, K.V., and PJ. Zemroch. “ Tables of the F- and related distributions
with algorithms.” Academic Press, NY, 1978. ISBN 0-12-471140-5

Peizer, D.B., and JW. Pratt. “A Normal Approximation for Binomial, F,
Beta, and Other Common, Related Tail Probabilities, 1.” Journal of
American Satistical Association. Vol. 63, Dec. 1968, 1416-56.

Pike, M.C., and I.D. Hill. “Remark on Algorithm 179 Incomplete Beta
Ratio.” Comm. ACM. Vol. 10 No. 6, June 1967, 375-76.

3-68

Command Reference

cdf f nc

Purpose
Format

Input

Output
Source

See also

Technical
Notes

cdf f nc

Theintegral under noncentral F distribution, from 0 to x.

y = cdf f nc(xviv2d);

X Nx1 vector, values of upper limits of integrals, x > 0.
al scalar, degrees of freedom of numerator, v1 > 0.

V2 scalar, degrees of freedom of denominator, v2 > 0.

d scalar, noncentrality parameter, d > 0.

Thisisthe square root of the noncentrality parameter that
sometimes goes under the symbol lambda. (See Scheffe,
The Analysis of Variance, App. V. 1959.)

y Nx1 vector of integrals from O to x of noncentral F.
cdf nonc. src
cdftnc, cdfchinc

Relation to cdf f c:
cdffc(x,vl,v2) =1 - cdffnc(x,vl, v2, 0);

The formula used is taken from Abramowitz and Stegun, Handbook of
Mathematical Functions. Formula 26.6.20. 1970, 947.

3-69

GAUSS Language Reference

cdf gam

cdf gam

Purpose Incomplete gamma function.

Format g = cdf gan(x,intlim);

Input NXxK matrix of data.
intlim LxM matrix, EXE compatible with x, containing the
integration limit.
Output ¢ max(N,L) by max(K,M) matrix.

Remarks Theincomplete gammafunction returns the integral
intlim ett(x-1)
0 gamma(x)
The allowable ranges for the arguments are:

X >0
intim =0

A -1lisreturned for those elements with invalid inputs.

Example x ={ 0.5 1 3 10 };
intlim= seqa(0,.2,6);
g = cdfgam(x,intlim;

X = 0.500000 1.00000 3.00000 10.00000

0.000000
0.200000
0.400000
0.600000
0.800000
1.000000

intlim =

3-70

Command Reference

Technical
Notes

References

cdf gam

0.000000 0.000000 0.000000 0.000000

0472911 0.181269 0.00114848 2.35307E-—-014
g= 0.628907 0.329680 0.00792633 2.00981E - 011
0.726678 1.451188 0.0231153 9.66972E — 010
0.794097 0.550671 0.0474226 1.43310E - 008
0.842701 0.632120 0.0803014 1.11425E-007

This computes the integrals over the range from 0 to 1, in increments of
.2, at the parameter values 0.5, 1, 3, 10.

cdf gamhas the following approximate accuracy:

x <500 the absolute error is approx. +6e-13
500 < x < 10,000 the absolute error is approx. £3e-11
10,000 < x aNormal approximation is used and the

absolute error is approx. +3e-10

Bhattacharjee, GP. “Algorithm AS 32, The Incomplete Gamma Integral.”
Applied Satistics. Vol. 19, 1970, 285-87.

Peizer, D.B., and JW. Pratt. “A Normal Approximation for Binomial, F,
Beta, and Other Common, Related Tail Probabilities, 1.” Journal of
American Satistical Association. Vol. 63, Dec. 1968, 1416-56.

Pike, M.C., and I.D. Hill. “Remark on Algorithm 179 Incomplete Beta
Ratio.” Comm. ACM. Vol. 10 No. 6, June 1967, 375-76.

3-71

GAUSS Language Reference

cdf mvn

cdf nvn

Purpose Computes multivariate Normal cumulative distribution function.

Format y = cdfnmvn(xr);

Input x KxL matrix, abscissae.
r KxK matrix, correlation matrix.
Output vy Lx1 vector, Pr(X < x]r).

Source | ncdfn. src

See also cdfbvn, cdfn, cdftvn, |ncdfnvn

3-72

Command Reference

cdf n,

Purpose

Format

Input

Output

Remarks

cdfn, cdfnc

cdf nc

cdf n computes the cumulative distribution function (cdf) of the Normal
distribution. cdf nc computes 1 minus the cdf of the Normal distribution.

n = cdfn(x);

nc = cdfnc(Xx);
X NxK matrix.
n NXxK matrix.
nc NxK matrix.

nistheintegral from -c to x of the Normal density function, and ncisthe
integral from X to +oo.

Note that: cdf n(x) + cdf nc(x) = 1. However, many applications expect
cdf n(x) to approach 1, but never actually reach it. Because of this, we
have capped the return value of cdf n at 1 - machine epsilon, or
approximately 1 - 1.11e-16. Astherelative error of cdf n isabout £5e-15
for cdf n(x) around 1, this does not invalidate the result. What it does
mean isthat for abs(x) > (approx.) 8.2924, the identity does not hold
true. If you have aneed for the uncapped value of cdf n, the following
code will return it:

n = cdf n(x);
if n>= 1-eps;
n =1;
endi f;
where the value of machine epsilon is obtained as follows:
x = 1;
do while 1-x /= 1;

eps = X;
X = x/2;
endo;

Note that thisis an aternate definition of machine epsilon. Machine
epsilon is usually defined as the smallest number such that 1 + machine

3-73

GAUSS Language Reference

cdf n, cdfnc

Example

See also

Technical
Notes

References

epsilon > 1, which is about 2.23e-16. This defines machine epsilon as the
smallest number such that 1 - machine epsilon < 1, or about 1.11e-16.

Theerf and er f ¢ functions are aso provided, and may sometimes be
more useful than cdf n and cdf nc.

x={-2-10121};
n = cdf n(x);
nc = cdfnc(x);

x= -2.00000 -1.00000 0.00000 1.00000 2.00000
n= 0.02275 0.15866 0.50000 0.84134 0.97725
nc= 0.97725 0.84134 0.50000 0.15866 0.02275

erf, erfc, cdfbeta, cdfchic, cdftc, cdffc, gamm

For the integral from - to x:

x < -37, cdf n underflows and 0.0 is returned

-36 < x < -10, cdf n hasarelative error of approx. +5e-12
-10<x<0, cdf n hasarelative error of approx. £1e-13
0<x, cdf n hasarelative error of approx. +5e-15

For cdf nc, i.e., theintegral from x to +c, use the above accuracies but
change x to -x.

Adams, A.G. “Remark on Algorithm 304 Normal Curve Integral.” Comm.
ACM. Val. 12 No. 10, Oct. 1969, 565-66.

Hill, 1.D., and S.A. Joyce. “Algorithm 304 Normal Curve Integral.”
Comm. ACM. Vol. 10 No. 6, June 1967, 374-75.

Holmgren, B. “Remark on Algorithm 304 Normal Curve Integra.”
Comm. ACM. Vol. 13 No. 10, Oct. 1970.

Mardia, K.V., and PJ. Zemroch. “ Tables of the F- and related distributions
with algorithms.” Academic Press, NY, 1978. ISBN 0-12-471140-5

3-74

Command Reference

cdf n2

Purpose
Format

Input

Output

Remarks

Example

Source

See also

cdf n2

Computes the integral over aNormal density function interval.

y = cdf n2(x,dx) ;

X MxN matrix, abscissae.
dx KxL matrix, EXE conformable to x, intervals.
y max(M,K) by max(N,L) matrix, the integral from x to

x+dx of the Normal distribution, i.e., Pr(x < X < x + dx).

Thereative error is;

X<landdx<1 +le-14
1< x| <37 and |dx| < V|| +le-13
min(x,x+dx) >-37 and y > 1e-300 +1e-11 or better

A relative error of £1e-14 implies that the answer is accurate to better
than £1 in the 14th digit.

print cdfn2(1,0.5);

9. 1848052662599017e- 02
print cdf n2(20,0.5);
2.7535164718736454e- 89
print cdfn2(20, le-2);
5.0038115018684521e- 90
print cdfn2(-5,2);
1.3496113800582164e- 03
print cdfn2(-5,0.15);
3.3065580013000255e- 07

| ncdfn. src

| ncdf n2

3-75

GAUSS Language Reference

cdf ni

cdf ni

Purpose Computestheinverse of the cdf of the Normal distribution.
Format x = cdfni(p);
Input p NxK rea matrix, Normal probability levels,0<p<1.
Output x NxK real matrix, Normal deviates, such that cdf n(x) = p

Remarks cdf n(cdf ni (p)) = p to within the errors given below:

p < 4.6..e-308 -37.5isreturned
46..e308<p<5e24 accurateto +5in 12th digit
5e-24<p<05 accurate to £1 in 13th digit
05<p<1-222045e-16 accurate to +5 in 15th digit
p=1-222045e-16 8.12589... isreturned

3-76

Command Reference

cdftc

Purpose
Format

Input

Output

Remarks

Example

See also

cdftc

Computes the complement of the cdf of the Student’st distribution.

y = cdftc(xn);

X NxK matrix.
n LxM matrix, EXE conformable with x.
y max(N,L) by max(K,M) matrix.

y istheintegral from x to o of thet distribution with n degrees of
freedom.

Allowable ranges for the arguments are:
-0 <X <+oo
n >0

A -lisreturned for those e ements with invaid inputs.

This equals 1-F(x,n), where F is the t cdf with n degrees of freedom.
Thus, to get the t cdf, subtract cdf t ¢(x,n) from 1. The complement of
the cdf is computed because thisiswhat is most commonly needed in
statistical applications, and because it can be computed with fewer
problems of roundoff error.

x ={ .1, .2, .3, .4},

n = 25;

y = cdftc(x,n);

print vy;

0.473165
_ 0.447100
0.422428
0.399555

cdf beta, cdfchic, cdffc, cdfn, cdfnc, gamm

3-77

GAUSS Language Reference

cdftc

Technical
Notes

References

For results greater than 0.5e-30, the absolute error is approximately
+1e-14 and therelative error is approximately +1e-12. If you multiply the
relative error by the result, then take the minimum of that and the absolute
error, you have the maximum actual error for any result. Thus, the actual
error isapproximately +1e-14 for results greater than 0.01. For resultsless
than 0.01, the actual error will be less. For example, for aresult of
0.5e-30, the actud error is only £0.5e-42.

Abramowitz, M., and I. A. Stegun, eds. Handbook of Mathematical
Functions. 7th ed. Dover, NY, 1970. ISBN 0-486-61272-4

Hill, GW. “Algorithm 395 Student’ s t-Distribution.” Comm. ACM. Val.
13 No. 10, Oct. 1970.

Hill, GW. “ Student’s t-Distribution Quantiles to 20D.” Division of
Mathematical Satistics Technical Paper No. 35. Commonwealth
Scientific and Industrial Research Organization, Australia, 1972.

3-78

Command Reference

cdf t ci

Purpose
Format

Input

Output

Remarks

cdftci
Computes the inverse of the complement of the Student's t cdf.
x = cdftci(p, n);
p NxK rea matrix, complementary Student'st probability levels,
O<psl.
n LxM real matrix, degrees of freedom, n = 1, n need not be
integral. EXE conformable with p.
X max(N,L) by max(K,M) rea matrix, Student'st deviates,

such that cdf t c(x,n) = p.

cdft c(cdf tci (p,n)) = ptowithinthe errors given below:

05e-30<p<0.01 accurateto +1in 12th digit
0.01<p accurateto £1e-14

Extreme values of arguments can give rise to underflows, but no
overflows are generated.

3-79

GAUSS Language Reference

cdft nc

cdf t nc

Purpose Theintegral under noncentral Student’st distribution, from -co to x. It can
return a vector of values, but the degrees of freedom and noncentrality
parameter must be the same for all values of x.

Format vy = cdftnc(xvd);

Input x Nx1 vector, values of upper limits of integrals.
v scalar, degrees of freedom, v > 0.
d scalar, noncentrality parameter.

Thisisthe square root of the noncentrality parameter that
sometimes goes under the symbol lambda. (See Scheffe,
The Analysis of Variance, App. V. 1959.)

Output vy Nx1 vector, integrals from -co to x of noncentral t.
Source cdfnonc.src
See also cdffnc, cdfchinc

Technical Reationtocdftc:
Notes cdftc(x,v) = 1 - cdftnc(x,v,0):

The formula used is based on the formulain SUGI Supplemental Library
User’s Guide. SAS Ingtitute. 1983, 232 (which is attributed to Johnson
and Kotz, 1970).

Theformulaused here is amodification of that formula. It has been tested
against direct numerical integration, and against simulation experiments

in which noncentral t random variates were generated and the cdf found
directly.

3-80

Command Reference

cdftvn

Purpose

Format

Input

Output

Remarks

cdftvn

Computes the cumulative distribution function of the standardized
trivariate Normal density (lower tail).

¢ = cdftvn(x1,x2x3,rho12,rho23,rho3l) ;

x1 Nx1 vector of upper limits of integration for variable 1.
X2 Nx1 vector of upper limits of integration for variable 2.
x3 Nx1 vector of upper limits of integration for variable 3.

rhol2 scalar or Nx1 vector of correlation coefficients between the two
variables x1 and x2.

rho23 scalar or Nx1 vector of correlation coefficients between the two
variables x2 and x3.

rho31 scalar or Nx1 vector of correlation coefficients between the two
variables x1 and x3.

Nx1 vector containing the result of the triple integral from -co to
x1, -o0 to X2, and -0 to X3 of the standardized trivariate Normal
density:

f(x1, x2,x3,rhol2, rho23, rho31)

(@]

Allowable ranges for the arguments are:
-0 <Xl < +oo
-00 < X2 < +00
-00 < X3 < +o0o
-1 <rhol2 <1
-1 <rho23 <1
-1 <rho3l <1

In addition, rhol2, rho23, and rho31 must come from alegitimate
positive definite matrix. A -1 isreturned for those rows with invalid
inputs.

A separate integral is computed for each row of the inputs.

Thefirst 3 arguments (x1,x2,x3) must be the same length, N. The second 3
arguments (rhol2,rho23,rho31) must also be the same length, and this

3-81

GAUSS Language Reference

cdftvn

See also

Technical
Notes

References

length must be N or 1. If it is 1, then these values will be expanded to
apply to al values of x1,x2,x3. All inputs must be column vectors.

To find the integral under a general trivariate density, with x1, x2, and x3
having nonzero means and any positive standard deviations, transform by
subtracting the mean and dividing by the standard deviation. For
example:

x1 = (x1 - nmeanc(xl)) / stdc(x1);
cdf n, cdfbvn

The absolute error for cdf t vn is approximately +2.5e-8 for the entire
range of arguments.

Daley, D.J. “Computation of Bi- and Tri-variate Normal Integral.” Appl.
Satist. Vol. 23 No. 3, 1974, 435-38.

Steck, GP. “ A Table for Computing Trivariate Normal Probabilities.”
Ann. Math. Satist. Vol. 29, 780-800.

3-82

Command Reference

cdir
Purpose

Format

Input

Output

Remarks

Example

See also

cdir

Returns the current directory.
y = cdir(s);

S gtring, if the first character is*A’-*Z’ and the second
character isacolon ‘:’ then that drive will be used. If not,
the current default drive will be used.

y string containing the drive and full path name of the
current directory on the specified drive.

If the current directory isthe root directory, the returned string will end
with a backs ash, otherwise it will not.

A null string or scalar zero can be passed in as an argument to obtain the
current drive and path name.

X cdir(0);
y cdir(“d:");
print x;

print vy;

C. \ GAUSS
D\

files

3-83

GAUSS Language Reference

ceil
cei l
Purpose Round up toward +eo.
Format vy = ceil(X);
Input x NXK matrix.

Output vy NxK matrix.

Remarks Thisrounds every element in the matrix x to an integer. The elements are
rounded up toward +co,

Example x 100*rndn(2, 2);

y = ceil (x);

X = 77.68 -14.10
4.73 —158.88

y = 78.00 -14.00
5.00 —158.00

See also floor, trunc

3-84

Command Reference

ChangeDi r
ChangeDi r
Purpose Changesthe working directory.
Format d = ChangeDir(9);
Input s string, directory to change to.
Output d string, new working directory, or null string if change failed.

See also chdir

3-85

GAUSS Language Reference

chdir

chdi r

Purpose Changesworking directory.
Format chdir dirstr;
Input dirstr literal or ~string, directory to change to.

Remarks Thisisfor interactive use. Use ChangeDi r inaprogram.
If the directory change fails, chdi r printsan error message.

3-86

Command Reference

chol

Purpose

Format
Input
Output

Remarks

Example

chol

Computes the Cholesky decomposition of a symmetric, positive definite
matrix.

y = chol (X);
X NXN matrix.
y NxN matrix containing the Cholesky decomposition of x.

y isthe “square root” matrix of x. That is, it is an upper triangular matrix
such that X = y'y.

chol does not check to see that the matrix is symmetric. chol will look
only at the upper half of the matrix including the principal diagonal.

If the matrix X is symmetric but not positive definite, either an error
message or an error code will be generated, depending on the lowest order
bit of the trap flag:

trap O Print error message and terminate program.
trap 1 Returnscaar error code 10.
Seescal err andt r ap for more details about error codes.

X nmonent (r ndn(100, 4), 0) ;

y = chol (x);

ypy = y'y;
90.746566 —6.467195 —1.927489 —15.696056

X = —6.467195 87.806557 6.319043 -2.435953
—1.927489 6.319043 101.973276 4.355520
—15.696056 —-2.435953 4.355520 99.042850
9.526099-0.678892 —0.202338 —1.647690

y = 0.000000 9.345890 0.661433 —0.380334

0.000000 0.000000 10.074465 0.424211
0.000000 0.000000 0.000000 9.798130

3-87

GAUSS Language Reference

chol

90.746566 —6.467195 —1.927489 —15.696056

ypy = —6.467195 87.806557 6.319043 —2.435953
—1.927489 6.319043 101.973276 4.355520
—15.696056 —2.435953 4.355520 99.042850

See also crout, solpd

3-88

Command Reference

chol dn

Purpose

Format

Input

Output

Remarks

Example

See also

chol dn

Performs a Cholesky downdate of one or more rows on an upper
triangular matrix.

r = chol dn(Cx);

C KxK upper triangular matrix.
X NxK matrix, the rows to downdate C with.
r KxK upper triangular matrix, the downdated matrix.

C should be a Cholesky factorization.

chol dn(C, x) isequivalenttochol (CC - x'x),butchol dnis
numerically much more stable.

Warning: it is possible to render a Cholesky factorization non-positive
definite with chol dn. You should keep an eye on the ratio of the largest
diagonal element of r to the smallest — if it gets very large, r may no
longer be positive definite. Thisratio is arough estimate of the condition
number of the matrix.

let (3,3] = 20.16210005 16.50544413 9.86676135
0 11. 16601462 2.97761666
0 0 11. 65496052;
let x[2,3] = 1.76644971 7.49445820 9.79114666
6.87691156 4.41961438 4.32476921;
chol dn(C, x) ;

“
1]

18.87055964 15.32294435 8.04947012
0.00000000 9.30682813 —2.12009339
0.00000000 0.00000000 7.62878355

q
I

chol up

3-89

GAUSS Language Reference

chol sol

chol sol

Purpose Solvesasystem of linear equations given the Cholesky factorization of
the system.

Format x = chol sol (bC);

Input b NXK matrix.
C NxN matrix.

Output x NxK matrix.

Remarks Cisthe Cholesky factorization of alinear system of equations A. x isthe
solution for Ax = b. b can have more than one column. If so, the systemiis
solved for each column, i.e., A*X[.,i] = b[.,i].

chol sol (eye(N), C) isequivalenttoi nvpd(A) . Thus, if you have
the Cholesky factorization of A, chol sol isthe most efficient way to
obtain theinverse of A.

Example |et b[3,1]
let 3, 3]

0.03177513 0.41823100 1.70129375;
1.73351215 1.53201723 1.78102499
0 1. 09926365 0. 63230050
0 0 0. 67015361;
chol sol (b, C);

X
1

—1.94396905
—-1.52686768
3.21579513

x
I

3.00506436 2.65577048 3.08742844
A0 = 265577048 3.55545737 3.42362593
3.08742844 3.42362593 4.02095978

3-90

Command Reference

chol up

Purpose

Format

Input

Output

Remarks

Example

See also

chol up

Performs a Cholesky update of one or more rows on an upper triangular
matrix.

r = cholup(Cx);

C KxK upper triangular matrix.
X NxK matrix, the rows to update C with.
r KxK upper triangular matrix, the updated matrix.

C should be a Cholesky factorization.

chol up(C, x) isequivalenttochol (CC + x'x), butchol upis
numerically much more stable.

let (3,3] = 18.87055964 15.32294435 8. 04947012
0 9. 30682813 -2.12009339
0 0 7.62878355;
let x[2,3] = 1.76644971 7.49445820 9.79114666
6.87691156 4.41961438 4.32476921,;
r = cholup(C, x);

20.16210005 16.50544413 9.86676135
0.00000000 11.16601462 2.97761666
0.00000000 0.00000000 11.65496052

_‘
I

chol dn

3-91

GAUSS Language Reference

chrs

chrs

Purpose

Format
Input

Output

Remarks

Example

See also

Convertsamatrix of ASCII valuesinto a string containing the appropriate
characters.

y = chrs(x);
X NxK matrix.
y string of length N*K containing the characters whose ASCI|

values are equal to the valuesin the elements of x.

Thisfunction is useful for embedding control codesin strings and for
creating variable length strings when formatting printouts, reports, etc.

n = 5;

print chrs(ones(n,1)*42);

*kk k%

Since the ASCII value of the asterisk character is 42, the program above
will print astring of n asterisks.

y = chrs(67~65~84);
print vy;

CAT

vals, ftos, stof

3-92

Command Reference

cl ear

cl ear

Purpose Clears spacein memory by setting matrices equal to scalar zero.

Format clear xyv;

Remarks clear x; isequivdenttox = O;.
Matrix names are retained in the symbol table after they are cleared.

Matrices can becl ear "ed even though they have not previously been
defined. ¢l ear can be used to initialize matricesto scalar 0.

Example clear x;

See also clearg, new, show, delete

3-93

GAUSS Language Reference

clearg

cl earg

Purpose
Format

Output

Remarks

Example

See also

This command clears global symbols by setting them equal to scalar zero.
cl earg ab.c;

a,b,c scalar global matrices containing O.

cl earg x; isequivalenttox = O;,wherex isunderstood to be a
global symbol. cl ear g can be used to initialize symbols not previously

referenced. This command can be used inside procedures to clear global
matrices. It will ignore any locals by the same name.

X = 45;
clearg x;
x = 0.0000000

clear, delete, new, show, | ocal

3-94

Command Reference

cl ose

Purpose
Format

Input

Output

Remarks

cl ose

Close a GAUSSfile.
y = cl ose(handle) ;

handle scalar, the file handle given to the file when it was opened with
theopen, cr eat e, or f open command.

y scalar, 0 if successful, -1 if unsuccessful.

handle is the scalar file handle created when the file was opened. It will
contain an integer which can be used to refer to thefile.

cl ose will close the file specified by handle, and will returna O if
successful and a-1 if not successful. The handle itself is not affected by
cl ose unlessthe return value of cl ose isassigned to it.

If f1isafile handle and it contains the value 7, then after:
call close(fl);

thefilewill be closed but f1 will still have the value 7. The best procedure
isto do the following:

fl = cl ose(fl);
Thiswill set f1 to 0 upon a successful close.

It isimportant to set unused file handles to zero because both open and
cr eat e check the value that is in afile handle before they proceed with
the process of opening afile. During open or cr eat e, if the value that
isin the file handle matches that of an already open file, the process will
be aborted and a“File already open” message will be given. This gives
you some protection against opening a second file with the same handle
as acurrently open file. If this happened, you would no longer be able to
access thefirst file.

An advantage of the cl ose function isthat it returns aresult which can
betested to seeif there were problemsin closing afile. The most common
reason for having a problem in closing afileis that the disk on which the
fileislocated is no longer in the disk drive — or the handle wasinvalid.
In both of these cases, cl ose will returna-1.

Files are not automatically closed when a program terminates. This
allows usersto run a program that opensfiles, and then access the files

3-95

GAUSS Language Reference

cl ose

from interactive mode after the program has been run. Files are
automatically closed when GAUSS exits to the operating system or when
aprogram isterminated with the end statement. st op will terminate a
program but not close files.

Asaruleit is good practiceto make end the last statement in a program,
unless further access to the open files is desired from interactive mode.
You should close files as soon as you are done writing to them to protect
against dataloss in the case of abnormal termination of the program due
to a power or equipment failure.

The danger in not closing filesis that anything written to the files may be
lost. The disk directory will not reflect changes in the size of afile until
the fileis closed and system buffers may not be flushed.

Example open f1 = datl for append,
y = witer(f1,x);
fl1 = close(fl);

See also cl oseall

3-96

Command Reference

cl oseal |

cl oseal |

Purpose

Format

Remarks

Close dl currently open GAUSSfiles.

cl oseal | ;
closeall list_of handl es;

i st_of handl es isacomma-delimited list of file handles.

cl oseal | with no specified list of handleswill close dl files. Thefile
handles will not be affected. The main advantage of using cl oseal | is
ease of use; the file handles do not have to be specified, and one statement
will closeall files.

When alist of handlesfollowscl oseal | , al filesare closed and thefile
handles listed are set to scalar 0. Thisis safer than cl oseal | without a
list of handles because the handles are cleared.

It isimportant to set unused file handles to zero because both open and
cr eat e check the value that isin afile handle before they proceed with
the process of opening afile. During open or cr eat e, if the value that
isin the file handle matches that of an already open file, the process will
be aborted and a“ File already open” message will be given. This gives
you some protection against opening a second file with the same handle
as a currently open file. If this happened, you would no longer be able to
access thefirst file.

Files are not automatically closed when a program terminates. This
allows usersto run a program that opens files, and then access the files
from interactive mode after the program has been run. Files are
automatically closed when GAUSS exits to the operating system or when
aprogram isterminated with the end statement. st op will terminate a
program but not close files.

Asaruleit is good practiceto make end the last statement in a program,
unless further access to the open files is desired from interactive mode.
You should close files as soon as you are done writing to them to protect
against dataloss in the case of abnormal termination of the program due
to a power or equipment failure.

The danger in not closing filesis that anything written to the files may be
lost. The disk directory will not reflect changes in the size of afile until
thefileis closed and system buffers may not be flushed.

3-97

GAUSS Language Reference

cl oseal |

Example

See also

open f1 datl for read;

open f2
X = readr(f1, rowsf(f1));

dat1l for update;

X = sqrt(x);
call witer(f2,x);

closeall f1,f2;

cl ose, open

3-98

Command Reference

cl s

Purpose
Format

Portability

Remarks

See also

cls

Clear the window.
cls;

UNIX 3.2 only

cl s clearsthe active graphic panel. For Text graphic panels, this means
the graphic panel buffer is cleared to the background color. For TTY
graphic panels, the current output lineis panned to the top of the graphic
panel, effectively clearing the display. The output log is still intact. To
clear theoutput log of aTTY graphic panel, use W nCl ear TTYLog. For
PQG graphic panels, the graphic panel is cleared to the background color,
and the related graphicsfile is truncated to zero length.

UNIX 3.5+
cl s will clear the screen on some terminals.
Windows

cl s clearsthe Command window if you'rein Cmnd 1/O mode, the
Output window if you're in Split I/O mode.

0S/2
cl s clearsthe Main window.

This command will cause the window to clear and will locate the cursor at
the upper left hand corner of the window.

| ocate

3-99

GAUSS Language Reference

code

code

Purpose Allowsanew variable to be created (coded) with different values
depending upon which one of a set of logical expressionsistrue.

Format vy = code(eVv);

Input e NxK matrix of 1'sand 0's. Each column of this matrix is created
by alogical expression using “dot” conditional and boolean
operators. Each of these expressions should return a column
vector result. The columns are horizontally concatenated to
produce e. If more than one of these vectors containsa 1 in any
given row, the code function will terminate with an error

message.
% (K+1)x1 vector containing the values to be assigned to the new
variable.
Output vy Nx1 vector containing the new values.

Remarks If noneof the K expressionsistrue, the new variable is assigned the
default value, which is given by the last element of v.

Example let x1 =0 /* colum vector of original values */
5
10
15
20;

let v =1 /* columm vector of new val ues */
2
3; /* the last elenent of v is the
“defaul t”
*/

3-100

Command Reference

code
el = (0 .1t x1) .and (x1 .le 5); /* expression 1
*/
e2 = (5 .1t x1) .and (x1 .le 25); /* expression 2
*/
e = el~e2; /* concatenate el & e2 to nake a 1,0

mask with one | ess colum than the
nunmber of new values in v.
*/

code(e, V);

<
1

0
5
x1[5,1] = 10 (column vector of original values)
15
20

v[3, 1]

123 (Note: visacolumn vector)

e[5, 2]

I
o
=

y[5, 1]

]
N NN BEFP W

For every row in g, if alisinthefirst column, the first element of vis
used. If alisin the second column, the second element of v is used, and

3-101

GAUSS Language Reference

code

so on. If there are only zerosin the row, the last element of visused. This
is the default value.

If there is more than one 1 in any row of e, the function will terminate
with an error message.

Source datatran.src

See also recode, substute

3-102

Command Reference

code (dat al oop)

code (dat al oop)

Purpose

Format

Input

Remarks

Creates new variables with different values based on a set of logical
expressions.

code [[#] [$] var [[default defval] with
val 1 for expression_1,

val 2 for expression_ 2,

val _n for expression_n;

var literal, the new variable name.

defval scalar, the default value if none of the expressions are
TRUE.

val scalar, value to be used if corresponding expression is
TRUE.

expression logical scalar-returning expression that returns nonzero
TRUE or zero FALSE.

If *'$’ isspecified, the new variable will be considered a character
variable. If ‘#’ or nothing is specified, the new variable will be considered
numeric.

Thelogical expressions must be mutually exclusive; i.e., only one may
return TRUE for a given row (observation).

Any variables referenced must already exist, either as elements of the
source data set, as externs, or as the result of a previous nake, vect or,
or code statement.

If no default valueis specified, 999 is used.

3-103

GAUSS Language Reference

code (dat al oop)

Example
1 for
2 for
3 for
4 for

code agecat default 5 with

age < 21,

age >= 21 and age < 35,
age >= 35 and age < 50,
age >= 50 and age < 65;

code $ sex with

1 '\/AL En

for gender == 1,

“FEMALE” for gender :

See also recode

3-104

Command Reference

col or

Purpose
Format

Input

Output

Portability

col or

Set pixel, text, background color, or VGA palette color registers.

y = col or(cv)

cv

y

DOS

scalar, 2x1 or 3x1 vector of color values or Nx4 matrix of palette
color values. See Portability, below, for platform specifics.

If the input vector is smaller than 3x1 or the corresponding
element in the input vector is -1, the corresponding color will be
left unchanged.

If the input is an Nx4 matrix, it will initialize the VGA palette
(DOYS) or active graphic panel’s colormap (UNIX) with user-
defined RGB colorsinterpreted as follows:

[N,1] palette register index 0-255
[N,2] red value 0-63

[N,3] green value 0-63

[N,4] blue value 0-63

vector, or Nx4 matrix the same size as the input which contains
the original color values or palette values.

[1] pixel color

[2] text color
[3] ignored
UNIX 3.2 only

col or affectsthe active graphic panel. X supports foreground and
background colors. The col or command makes no distinction between
text and pixel colors; both affect the foreground color of the active
graphic panel. If both apixel color and text color are specified, the pixel
color will beignored, and the text color will be used to set the foreground
color. Thus:

[1] foreground

or

[1] ignored

3-105

GAUSS Language Reference

col or

[2] foreground
or
[1] ignored
[2] foreground
[3] background
052, Windows, UNI X 3.5+
Thisfunction is not supported under OS/2 or Windows.
Remarks Thischangesthe window colors for your program’s output. The editor
and interactive mode will not be affected.
See “Colors Appendix” on page B-1 for acolor value table.

Under DOS, the VGA color palette registers may be set only if the display
adapter has been already been initialized to VGA graphics mode 19
(320x200, 256 colors) with the set vhbde command. The registers will
retain the new values until the adapter isreset to text mode, which resets
the palette to the default VGA colors.

Thisfunction is useful for obtaining 64 shades of a single color and/or
mixing colors to user-specification.

See also graph, line, setvnode

3-106

Command Reference

col s,

Purpose

Format

Input

Output

Remarks

Example

See also

cols, col sf

col sf

col s returns the number of columnsin amatrix.

col sf returnsthe number of columnsin a GAUSS data (.dat) file or
GAUSS matrix (.fmt) file.

y = col s(X);

yf = col sf (fh);

X any valid expression that returns a matrix.

fh file handle of an open file.

y number of columnsin x.

yf number of columnsin the file that has the handle fh.

If X isan empty matrix, r ows(x) and col s(x) return 0.
For col sf, thefile must be open.

X = rndn(100, 3);
y = col s(x);
y = 3. 000000

create fp = nyfile with x, 10, 4;
b = col sf(fp);

b = 10. 000000

rows, rowsf, show, |show

3-107

GAUSS Language Reference

com og

conl og

Purpose
Format

Input

Remarks

Controlslogging of interactive mode commandsto adisk file.
com og [[fi | e=filenamd] [on|of f |r esetT;

filename literal or "string.

Thef i | e=filename subcommand selects the file to log
interactive mode statements to. This can be any legal file
name.

If the name of the file isto be taken from a string variable,
the name of the string must be preceded by the ” (caret)

operator.
There isno default file name.
on,
of f, literal, mode command:
reset
on turns on command logging to the current log file.
If the file already exists, subsequent commands
will be appended.
of f closesthelog file and turns off command logging.

reset similartothe on subcommand, except that it resets
the log file by deleting any previous commands.

Interactive mode statements are always logged into the file specified in
thel og_fi | e configuration variable, regardless of the state of
com og.

Thecommandcom og fi | e=filename selects the file but does not turn
on logging.

The command com og of f will turn off logging. The filename will
remain the same. A subsequent com og on will cause logging to
resume. A subsequent com og reset will cause the existing contents
of thelog file to be destroyed and a new file created.

The command com og by itself will cause the name and status of the
current log file to be printed in the window.

In interactive mode under DOS, F10 will load the current log fileinto the
editor if logging ison. If logging is of f , the default log file listed in the
| og_fi | e configuration variable will be loaded into the editor.

3-108

Command Reference

conpil e

conpi | e

Purpose

Format

Input

Remarks

Compilesasourcefileto acompiled codefile. See also “ Compiler” in the
User’s Guide.

compi | e source fname;

source literal or ~string, the name of the file to be compiled.

fname literal or “string, optional, the name of the file to be created. If
not given, the file will have the same filename and path as
source. It will have a.gcg extension.

The source file will be searched for inthe sr c_pat h if the full pathis
not specified and it is not present in the current directory.

The sourcefile isaregular DOS text file containing a GAUSS program.
There can be references to global symbols, Run-Time Library references,
etc.

If therearel i br ar y statementsin source, they will be used during the
compilation to locate various procedures and symbols used in the
program. Since all of these library references are resolved at compile
time, thel i br ar y statements are not transferred to the compiled file.
The compiled file can be run without activating any libraries.

If you do not want extraneous matter saved in the compiled image, put a
new at the top of the source file or execute anewfrom interactive level
before compiling.

The program saved in the compiled file can be run with the r un
command. If no extension is given, ther un command will look for afile
with the correct extension for the version of GAUSS. Thesr c_pat h
will be used to locate the fileif the full path nameisnot given and itisnot
located on the current directory.

When the compiled fileisr un, all previous symbols and procedures are
deleted before the program is loaded. It is therefore unnecessary to
execute anew beforer un’ning a compiled file.

If you want line number records in the compiled file you can put a
#| i neson statement in the source file or turn line tracking on from the
Options menu.

Do not try to include compiled files with #i ncl ude.

3-109

GAUSS Language Reference

conpile

Example conpile gxy.e;

In this example, the sr ¢_pat h would be searched for gxy.e, which
would be compiled to afile called gxy.gcg on the same subdirectory gxy.e
was found.

conpil e gxy.e xy;

In thisexample, the sr ¢ _pat h would be searched for gxy.e which
would be compiled to afile called xy.gcg on the current subdirectory.

See also run, use, saveall

3-110

Command Reference

compl ex
conpl ex
Purpose Convertsapair of real matrices to acomplex matrix.
Format z = conpl ex(xrx);
Input xr NxK real matrix, the real elements of z.
Xi NxK real matrix or scalar, the imaginary elements of z
Output 7 NXxK complex matrix.
Example x = { 4 6,
98 };
y = { 3 5!
17 3},
t = compl ex(X,Yy);
t = 4.0000000 + 3.0000000i 6.0000000 + 5.0000000i
9.0000000 + 1.0000000i 8.0000000 + 7.0000000i
See also img, real

3-111

GAUSS Language Reference

con

con

Purpose
Format

Input

Output

Remarks

Requests input from the keyboard, and returnsit in amatrix.

X = con(rc);

r scalar, row dimension of matrix.
c scalar, column dimension of matrix.
X RxC matrix.

Enter ? to get a help screen at the con function prompt. The following
commands are available:

u Up onerow U First row
d Down one row D Last row
I L eft one column L First column
r Right one column R Last column
t First element
b Last element
g #, # Gotoelement
g # Goto element of vector
h Move horizontally, default
v Move vertically
\ Move diagonally
S Show size of matrix
Display element as numeric, default
c Display element as character
e exp(1)
p pi
missing value
? help

3-112

Command Reference

con

X exit

Use aleading single quote for character input.

See also cons, let, |oad

3-113

GAUSS Language Reference

cond

cond

Purpose Thisprocedure will compute the condition number of a matrix using the
singular value decomposition.

Format c¢ = cond(X);
Input x NXK matrix.

Output ¢ scalar, an estimate of the condition number of x. This equals the
ratio of the largest singular value to the smallest. If the smallest
singular value is zero or not al of the singular values can be

computed, the return valueis 105%.

Example x = { 4 2 6,
8 5 7,
389 };
y = cond(x);
y = 9.8436943

Source svd.src

3-114

Command Reference

conj

conj

Purpose Returnsthe complex conjugate of amatrix.
Format y = conj(X);
Input x NXK matrix.
Output vy NxK matrix, the complex conjugate of x.

Remarks Compareconj with thetranspose (') operator.

Example x = { 1+9i 2,
4+4i 5j,
7i 8-2i };
y = conj(x);
1.0000000 + 9.0000000i 2.0000000

X = 4.0000000 + 4.0000000i 0.0000000 + 5.0000000i
0.0000000 + 7.0000000i 8.0000000 — 2.0000000i

1.0000000 — 9.0000000i 2.0000000
Y = 4.0000000 — 4.0000000i 0.0000000 — 5.0000000i
0.0000000 — 7.0000000i 8.0000000 + 2.0000000i

3-115

GAUSS Language Reference

cons

cons

Purpose Retrievesacharacter string from the keyboard.

Format x = cons;

Output The characters entered from the keyboard. The output will be of type
string.

Remarks If you are working in terminal mode GAUSS will not “see’” any input
until you pressENTER. xisassigned the value of acharacter string typed
in at the keyboard. The program will pause to accept keyboard input. The
maximum length of the string that can be entered is 254 characters. The
program will resume execution when the ENTER key is pressed. The
standard DOS editing keys will be in effect.

Example x = cons;
At the cursor enter:
probability
X = “probability”

See also con

3-116

Command Reference

conti nue

cont 1l nue

Purpose Jumpstothetop of ado or f or loop.

Format continue;

Remarks Thiscommand worksjust likein C.

Example x = rndn(4,4);
r = 0;
do while r < rows(x);
r =r + 1;
c = 0;
do while ¢ < cols(x); /* continue junps here */
c =c + 1;
if ¢c ==r;
conti nue;
endi f;
x[r,c] = 0;
endo;

endo;

—1.032195 0000000 0.000000 0.000000
0.000000 —1.033763 0.000000 0.000000
0.000000 0.000000 0.061205 0.000000
0.000000 0.000000 0.000000 —0.225936

X =

3-117

GAUSS Language Reference

cont our

cont our

Purpose To graphamatrix of contour data
Library pgraph
Format contour(xy2;

Input x 1xK vector, the X axis data. K must be odd.
y Nx1 vector, the Y axis data. N must be odd.
z NxK matrix, the matrix of height data to be plotted.

Global Input _plev Kx1 vector, user-defined contour levelsfor cont our .
Default O.

_pzclr Nx1 or Nx2 vector. This controlsthe Z level colors. See
sur f ace for acomplete description of how to set this
global.

Remarks A vector of evenly spaced contour levels will be generated automatically
from the zmatrix data. Each contour level will be labeled. For unlabeled
contours, use zt i cs.

To specify avector of your own unequal contour levels, set the vector
_pl ev beforecalling cont our .

To specify your own evenly spaced contour levels, seezti cs.
Source pcontour.src

See also surface

3-118

Command Reference

conv

Purpose
Format

Input

Output

Remarks

Example

conv

Computes the convolution of two vectors.

c = conv(b, x, f, I);

b Nx1 vector.

X Lx1 vector.

f scalar, the first convolution to compute.
I scalar, the last convolution to compute.
c Qx1result, whereQ=(1-f+1).

If fis O, thefirst to the I'th convolutions are computed. If 1 is0,
the f’th to the last convolutions are computed. If f and | are both
zero, all the convolutions are computed.

If x and b are vectors of polynomial coefficients, thisis the same as
multiplying the two polynomials.

x ={123,41},
y { 5,6,7,8 };
z1 = conv(x,y,0,0);

z2 = conv(x,Vy,2,5);

5
16
34
z1 = g0
61
52
32

3-119

GAUSS Language Reference

conv

16
34
60
61

z2 =

See also pol ynult

3-120

Command Reference

corel eft

corel eft

Purpose
Format

Output

Portability

Remarks

Example

See also

Returns the amount, in bytes, of free workspace memory.
y = corel eft;

y scalar, number of bytesfree.

DOSonly

All otherswill returnthe cor el ef t value specified in the GAUSS
configuration (. cf g) file.

The amount of free memory is dynamic and can change rapidly as
expressions and procedures are being executed. cor el ef t returnsthe
amount of workspace memory free at thetime it is called. Workspace
memory is used for storing matrices, strings, procedures, and for
manipul ating matrices and strings.

Thisfunction can be used to write programs that automatically adjust
their use of memory so they do not crash with the “ Insufficient memory”
error if they are used on machines with less free memory than the one
used for development, or if the size of the data used becomes larger. A
common use isto adjust the number of rowsthat areread per iteration of a
read loop in programs that access datafrom adisk.

open fp = nyfile;

k = colsf(fp); /* colums in file */

fac = 4;

/* check amount of nenory avail able */

nr = coreleft/(fac*k*8);

In this example, nr, the number of rowsto read, is computed by taking
the number of bytesfree (cor el ef t) dividedby f ac*k*8.f ac isa
guesstimate of the number of copies of the dataread each iteration that the

algorithm we are using will require, plus alittle. k* 8 isthe number of
columns times the number of bytes per element.

df ree, new

3-121

GAUSS Language Reference

corrm corrvc, corrx

corrm corrvc, corrx

Purpose

Format

Input

Output

Source

See also

Computes a correlation matrix.

cx = corrm(m);

cX = corrvc(ve);

cx = corrx(x;

m KxK moment (x'X) matrix. A constant term MUST have been the
first variable when the moment matrix was computed.

Ve KxK variance-covariance matrix (of data or parameters).

X NxK matrix of data

cX PxP correlation matrix. Forcorr m P=K-1. Forcorrvc
andcorrx, P=K.

corr.src

nonent d

3-122

Command Reference

cos

COS

Purpose Returnsthe cosine of its argument.
Format vy = cos(X);
Input x NXK matrix.
Output vy NxK matrix.
Remarks For real matrices, x should contain angles measured in radians.
To convert degrees to radians, multiply the degrees by %) .

Example x ={ 0, .5 1, 1.5},

y = cos(x);
1.00000000

y = 087758256
0.54030231
0.07073720

See also atan, atan2, pi

3-123

GAUSS Language Reference

cosh

cosh

Purpose Computesthe hyperbolic cosine.
Format y = cosh(Xx);
Input x NXK matrix.

Output vy NxK matrix containing the hyperbolic cosines of the elements of
X.

{ -0.5, -0.25, 0, 0.25, 0.5, 1 };

X
I

Example
X = X * pi;

cosh(x);

<
1

-1.570796
—0.785398
0.000000
0.785398
1.570796
3.141593

2.509178
1.324609
1.000000
1.324609
2.509178
11.591953

Source trig.src

3-124

Command Reference

count s

Purpose
Format

Input

Output

Remarks

counts

Count the numbers of elements of a vector that fall into specified ranges.

c = counts(x, Vv);

x

Nx1 vector containing the numbers to be counted.

v Px1 vector containing breakpoints specifying the ranges within
which counts are to be made. The vector v MUST be sorted in
ascending order.

c Px1 vector, the counts of the e ements of x that fall into the regions:

X <V[1],
V[1] < x =£V[2],

P2 < x <vipl.

If the maximum value of x is greater than the last element (the maximum
value) of v, the sum of the elements of the result, ¢, will belessthan N, the
total number of elementsin x.

If

and v= g

X
1
© 00 NO OB WN P

3-125

GAUSS Language Reference

counts

then

@]
1
W~ b

Thefirst category can be amissing valueif you need to count missings
directly. Also +o or -co are allowed as breakpoints. The missing value
must be the first breakpoint if it isincluded as a breakpoint and infinities
must be in the proper location depending on their sign. -0 must be in the
[2,1] element of the breakpoint vector if thereisamissing value asa
category aswell, otherwiseit hasto be in the [1,1] element. If +o iS
included, it must be the last element of the breakpoint vector.

Example x ={ 1, 3, 2
4, 1, 3};
0, 1, 2, 3, 4};

v ={0, 1,

(e}
I

count s(x,Vv);

0.0000000
2.0000000
C = 1.0000000
2.0000000
1.0000000

3-126

Command Reference

countws

countw s

Purpose

Format

Input

Output

Remarks

Returns aweighted count of the numbers of elements of avector that fall
into specified ranges.

c = countwts(x v, w);

X Nx1 vector, the numbers to be counted.

% Px1 vector, the breakpoints specifying the ranges within which
counts are to be made. This MUST be sorted in ascending order
(lowest to highest).

w Nx1 vector, containing weights.
c Px1 vector, the counts of the elements of x that fall into the regions:
X £V[1],

V(1] < x £V[2],

v[p-1] < x < v[pl.

That is, when X[i] fallsinto region j, the weight w{i] is added to the ™
counter.

If any elements of x are greater than the last element of v, they will not be
counted.

Missing values are not counted unless thereisamissing in v. A missing
valueinv MUST bethefirst elementinv.

3-127

GAUSS Language Reference

countwts

Example { 1, 3, 2, 4, 1, 3};
{ .25, 1, .333, .1, .25 1};
{ 01 l! 21 3! 4 }!

countwt s(x, v, w;

< s X
I

o
1

0.000000
0.500000

C = 0.333000
2.00000
0.100000

3-128

Command Reference

Ccreate

Purpose

Format

Input

Create

Creates and opens a GAUSS data set for subsequent writing.

create

Create

vilag

filename

create...

vhames

filename Wi t h
vnames, col, dtyp, vtyp;

filename usi ng confile;

[vflag]] [conpl ex] fh

[vflag]] [conpl ex] fh

version flag.
- v89 supported for read
- v92 for read/write
- v96 for read/write

For details on the various versions, see“FileI/O” intheUser’s
Guide. The default format can be specified in gauss.cfg by
setting thedat _f mt _ver si on configuration variable. If
dat _fmt _versionisnot set, the defaultisv96.

literal or "string.

filename is the name to be given the file on the disk. The name
can include a path if the directory to be used is not the current
directory. Thisfile will automatically be given the extension
.dat. If an extension is specified, the .dat will be overridden. If
the name of thefile isto be taken from a string variable, the
name of the string must be preceded by the * (caret) operator.

W th. ..

literal or ~string or ~character matrix.

vhames controls the names to be given to the columns of the
datafile. If the names are to be taken from a string or character
matrix, the ™ (caret) operator must be placed before the name
of the string or character matrix. The number of columns
parameter, col, also has an effect on the way the names will be
created. See below and see the examples for details on the
ways names are assigned to adatafile.

3-129

GAUSS Language Reference

Create

col

dtyp

vtyp

scalar expression.

col isascalar expression containing the number of columnsin
the datafile. If col is 0, the number of columns will be
controlled by the contents of vnames. If col is positive, the file
will contain col columns and the namesto be given each
column will be created as necessary depending on the vnames
parameter. See the examples.

scalar expression.

dtyp isthe precision used to store the data. Thisisascalar
expression containing 2, 4, or 8, which isthe number of bytes
per element.

2 signed integer

4 single precision
8 double precision
DataType Digits Range
integer 4 -32768 <X < 32767

single 6-7 8.43x107%7 <IX|< 337x10*38
double 1516 419x107307 < [X|< 1.67x10"3%8

If the integer typeis specified, numbers will be rounded to the
nearest integer as they are written to the data set. If the datato
be written to the file contains character data, the precision must
be 8 or the character information will be lost.

matrix, types of variables.

The types of the variables in the data set. If

r ows (vtyp)* col s(vtyp) < col only the first element is used.
Otherwise nonzero elementsindicate a numeric variable and

zero elements indicate character variables. vtyp isignored for
v89 files.

3-130

Command Reference

Create

create... using...

comfile

literal or ~string.

comfile is the name of a command file that contains the
information needed to create the file. The default extension for
the command file is .gcf, which can be overridden.

There are three possible commands in thisfile:
numvar nstr;
out var varlist;
out t yp dtyp;

numvar andout var are alternate ways of specifying the
number and names of the variables in the data set to be created.

When nunvar isused, nisaconstant which specifies the
number of variables (columns) in the datafileand strisa
string literal specifying the prefix to be given to al the
variables. Thus:

nunmvar 10 XxX;

saysthat there are 10 variables and that they are to be named
xx01 through xx10. The numeric part of the names will be
padded on the left with zeros as necessary so the names will
sort correctly:

xx1, ... XX9 1-9 nanes

xx01, ... xx10 10- 99 nanes
xx001, ... Xx100 100-999 nanes
xx0001, ... xx1000 1000-8100 narmes

If str is omitted, the variable prefix will be “X”.

When out var isused, varlistisalist of variable names,
separated by spaces or commas. For instance:

outvar x1, x2, zed;
specifies that there are to be 3 variables per row of the data set,
and that they areto be named x 1, x2, zed, in that order.

out t yp specifiesthe precision. It can be aconstant: 2, 4, or 8, or
it can be aliteral: I, F, or D. For an explanation of the available
datatypes, seedtypincreate... wth...,previousy.

Theout t yp statement does not have to be included. If it is not,
then all datawill be stored in 4 bytes as single precision floating
point numbers.

3-131

GAUSS Language Reference

Create

Output

Remarks

Example

fh scalar.

fhisthefile handle which will be used by most commands
to refer to the file within GAUSS. Thisfile handleis
actually ascalar containing an integer value that uniquely
identifies each file. Thisvalueis assigned by GAUSS
when the cr eat e (or open) command is executed.

If the conpl ex flagisincluded, the new data set will beinitialized to
store complex number data. Complex datais stored arow at atime, with
the real and imaginary halvesinterleaved, element by element.

| et vhanmes = age sex educat wage occ;
create f1 = sindat with ~vnanes,O0, 8;
obs = 0;
nr = 1000;
do while obs < 10000;
data = rndn(nr,col sf(f1));
if witer(fl,data) /= nr;
print “Disk Full”;
end;
endi f;
obs = obs+nr;
endo;
cl oseal | f1;

usescreate... w th... tocreateadoubleprecision datafile called
si ndat . dat onthedefault drive with 5 columns. Thewr i t er
command is used to write 10000 rows of Normal random numbers into
the file. The variables (columns) will be named: AGE, SEX, EDUCAT,
WAGE, OCC.

Following are examples of the variable names that will result when using
acharacter vector of namesin the argument to the cr eat e function.

3-132

Command Reference

Create

vnanmes = { AGE PAY SEX JOB };

typ = { 1, 1, 0, 0 };

create fp = nydata with ~vnanes, 0, 2, typ;
The namesin this example will be: AGE PAY SEX JOB

AGE and PAY are numeric variables, SEX and JOB are character
variables.

create fp = nydata with ~vnanes, 3, 2;
The nameswill be: AGE PAY SEX
create fp = nydata with ~vnanes, 8, 2;

The names will now be: AGE PAY SEX JOB1 JOB2 JOB3 JOB4
JOB5

If aliteral is used for the vnames parameter, the number of columns
should be explicitly given in the col parameter and the names will be
created as follows:

create fp = nydata with var, 4, 2;
givingthenames: var1 var2 var3 var4

The next example assumes a command file called comd.gcf containing
the following lines created using a text editor:

outvar age, pay, Ssex;
outtyp i;

Then the following could be used to write 100 rows of random integers
into afile called smpl.dat in the subdirectory called /gauss/data:

filenane = “/gauss/datal/snmpl”;
create fh = ~fil enane using cond,
X = rndn(100, 3) *10;
if witer(fh,x) /= rows(x);

print Disk Full;

end;
endi f;

cl oseal | fh;

3-133

GAUSS Language Reference

Create

For platforms using the backslash as a path separator, remember that two
backslashes (\\) are required to enter one backslash inside double quotes.
Thisis because a backslash is the escape character used to embed special
charactersin strings.

See also open, readr, witer, eof, close, output, iscplxf

3-134

Command Reference

crossprd

Crossprd

Purpose
Format

Input

Output

Remarks

Example

Source

Computes the cross-products (vector products) of sets of 3x1 vectors.

zZ = crossprd(x y);

X 3xK matrix, each column is treated as a 3x1 vector.

y 3xK matrix, each column istreated as a 3x1 vector.

z 3xK matrix, each column is the cross-product (sometimes
called vector product) of the corresponding columns of x
andy.

The cross-product vector zis orthogonal to both x andy. sunt(x. * 2)
and sunc(y. *2) will be Kx1 vectors all of whose elements are 0
(except for rounding error).

x ={ 10 4,
11 13,
14 13 };
y = { 3 11,
5 12,
7 91},
Z = crossprd(x,y);

7.0000000 —39.000000
Z = -28.000000 107.00000
17.000000 —95.000000

crossprd. src

3-135

GAUSS Language Reference

crout

Cr out

Purpose Computesthe Crout decomposition of a square matrix without row
pivoting, such that: X = LU.

Format y = crout(x);
Input x NxN sguare nonsingular matrix.

Output vy NxN matrix containing the lower (L) and upper (U)
matrices of the Crout decompoasition of x. The main
diagonal of y isthe main diagona of the lower matrix L.
The upper matrix has an implicit main diagonal of ones.
Usel owrat and upmat 1 to extract the L and U matrices
fromy.

Remarks Sinceit does not do row pivoting, it isintended primarily for teaching
purposes. (See cr out p for adecomposition with pivoting.)

Example x={1 2 -1
2 3 -2,
1-2 1

y = crout(x);
L = lowmt(y);

U = upmat 1(y);

1 2-1
y=2-10
1-4 2
100
L=2-10
1-42

3-136

Command Reference

crout
12-1
U=010
001
See also croutp, chol, lowmt, |lowmtl, |u, upmat, upmatl

3-137

GAUSS Language Reference

croutp

croutp

Purpose Computesthe Crout decomposition of a square matrix with partial (row)
pivoting.

Format y = croutp(x);
Input x NxN sguare nonsingular matrix.

Output vy (N+1)xN matrix containing the lower (L) and upper (U) matrices
of the Crout decomposition of a permuted x. The N+1 row of the
matrix y gives the row order of the y matrix. The matrix must be
reordered prior to extracting the L and U matrices. Use| owrat
and upmat 1 to extract the L and U matrices from the reordered
y matrix.

Example Thisexampleillustrates aprocedure for extracting L and U of the
permuted x matrix. It continues by sorting the result of LU to compare
with the original matrix x.

X= {1 2-1,
2 3 -2,
1-2 1};
y = croutp(x);
r=rows(y); /* the nunber of rows of y */

indx = y[r,.]’; /* get the index vector */

z =y[indx,.]; [/* z is indexed RxRmatrix y */

L =1lowmat(z); /* obtain L and U of pernuted */
[* matrix X */

U = upmat 1(2) ;

g = sortc(indx~(L*U),1); /* sort L*U against */

[* index */

X2 =q[.,2:cols(q)]; /* renpve index columm */

3-138

Command Reference

1 2-1
X= 232
1-2 1
1 05 0.2857
y = 2 15 -1
1-35-05714
2 3 1
r=4
2
indx = 3
1
2 15 -1
Z= 1-35-05714
1 05 0.2857
2 0 0
L= 1-35 0
1 05 0.2857
115 -1
U= 0 1-05714
00 1
11 2-1
q=22 32

3121

croutp

3-139

GAUSS Language Reference

croutp
1 2-1
X2= 2 3-2
121
See also crout, chol, |lowmt, |owratl, |u, upmat, upmatl

3-140

Command Reference

csrcol

Purpose

Format

Portability

Remarks

Example

csrcol, csrlin

csrlin

Returns the position of the cursor.

y = csrcol;
y = csrlin;
UNIX 3.2 only

csrcol returnsthe cursor column for the active graphic panel. For Text
graphic panels, this valueis the cursor column with respect to the text
buffer. For TTY graphic panels, this value is the cursor column with
respect to the current output line, i.e., it will be the same whether the text
iswrapped or not. For PQG graphic panels, this value is meaningless.

csrlin returnsthe cursor line for the active graphic panel. For Text
graphic panels, this value is the cursor row with respect to the text buffer.
For TTY graphic panels, thisvaueisthe current output line number (i.e.,
the number of lineslogged + 1). For PQG graphic panels, thisvalueis
meaningless.

UNIX 3.5+
csrcol andcsrlinawaysreturn 1.
052, Windows

csrcol returnsthe cursor column with respect to the current output line,
i.e., it will return the same value whether the text is wrapped or not.

csrl i n returnsthe cursor line with respect to the top line in the graphic
panel.

DOS

Under DOS, columns are usually numbered 1-80, rows are usually
numbered 1-25. set vimode will return the current window dimensions.

y will contain the current column or row position of the cursor in the
graphic panel. The upper left corner is (1,1).

csr col returnsthe column position of the cursor. csr | i n returnsthe
row position.

Thel ocat e statement allows the cursor to be positioned at a specific
row and column.

r = csrlin;

3-141

GAUSS Language Reference

csrcol, csrlin

c = csrcol;
cls;

| ocate r, c;

In this example the window is cleared without affecting the cursor
position.

See also cls, locate, I|pos

3-142

Command Reference

csrtype

csrtype

Purpose
Format

Portability

Input

Output

Remarks

Example

See also

To set the cursor shape.
old = csrtype(mode) ;

UNIX

This function is not supported in terminal mode.

052, Windows

This function is not supported under OS/2 or Windows.

mode scalar, cursor type to set.

DOS

0 cursor off

1 normal cursor

2 large cursor
UNIX 3.2

0 cursor off

1 normal cursor

2 large cursor

3 triangular cursor

old scalar, original cursor type.

Under DOS, this function will set the same cursor shape that GAUSS is
aready using for its three modes.

X = csrtype(2);

csrcol, csrlin

3-143

GAUSS Language Reference

cunpr odc

cunpr odc

Purpose
Format
Input

Output

Remarks

Example

Source

See also

Computes the cumulative products of the columns of a matrix.

y = cunprodc(X);

X NxK matrix.
y NxK matrix containing the cumulative products of the columns
of x.

Thisis based on the recursive seriesr ecser cp.recser cp could be
called directly asfollows:

recserp(x, zeros(1,cols(x)))

to accomplish the same thing.

x ={ 1-3,
2 2,
3-11};
y = cunprodc(Xx);
1.00 -3.00
y = 2.00 -6.00
6.00 6.00

cunprodc. src

cunsunt, recsercp, recserar

3-144

Command Reference

cunsunc

Purpose
Format
Input
Output

Remarks

Example

Source

See also

cunsunt
Computes the cumulative sums of the columns of a matrix.
y = cunsunc(X);
X NxK matrix.
y NxK matrix containing the cumulative sums of the columns of x.

Thisis based on the recursive series functionr ecser ar.r ecser ar
could be called directly as follows:

recserar(x,x[1,.], ones(1,cols(x)))

to accomplish the same thing.

x =4{1-3,
2 2,
3 -1}
y = cumsunc(X);
1-3
y= 3-1
6 -2

cunsunct. src

cunpr odc, recser Cp, recserar

3-145

GAUSS Language Reference

curve

curve

Purpose Computesaone-dimensional smoothing curve.
Format { u v} = curve(xy d,s sgma G);

Input K x1 vector, x-abscissae (x-axis values).
Kx1 vector, y-ordinates (y-axis values).
Kx1 vector or scalar, observation weights.

scalar, smoothing parameter. If s=0, cur ve performsan
interpolation. If d contains standard deviation estimates, a
reasonable value for sisK.

sigma scaar, tension factor.
G scalar, grid size factor.

n o< X

Output y K*Gx1 vector, x-abscissae, regularly spaced.
K*Gx1 vector, y-ordinates, regularly spaced.

Remarks sigma containsthe tension factor. This value indicates the curviness
desired. If sigmais nearly zero (e.g., .001), the resulting curve is
approximately the tensor product of cubic curves. If sigmaislarge, (e.g.,
50.0) the resulting curve is approximately bi-linear. If sigma equals zero,
tensor products of cubic curves result. A standard value for sigmais
approximately 1.

G isthe grid size factor. It determines the fineness of the output grid. For
G = 1, theinput and output vectors will be the same size. For G = 2, the
output gridistwice asfineastheinput grid, i.e., uand v will havetwiceas
many rowsasx and y.

Source spline.src

3-146

Command Reference

Cvt oS

Purpose
Format
Input
Output

Remarks

Example

See also

cvt os

Converts a character vector to a string.
s = cvtos(Vv);
\% Nx1 character vector, to be converted to a string.

S string, contains the contents of v.

cvt os in effect appends the elements of v together into a single string.

cvt os waswrittento operatein conjunction with st ocv. If you passit a
character vector that does not conform to the output of st ocv, you may
get unexpected results. For example, cvt os DOES NOT look for O
terminating bytesin the elements of v; it assumes every element except
the last is 8 characterslong. If thisis not true, there will be 0’sin the
middle of s.

If the last element of v does not have aterminating O byte, cvt os
suppliesonefor s.

let v ={ “Nowis t” “he tine ” “for all ” “good
men” };

s = cvtos(v);

s="“Now isthetime for all good men”

stocv, vget, vlist, vput, vread

3-147

GAUSS Language Reference

dat al i st

dat al | st

Purpose
Format

Input

Global Input

Remarks

Example

Source

List selected variables from a data set.
dat al i st dataset [[varl [[var2. . .11 ;

dataset literal, name of the dataset.

var# literal, the names of the variablesto list.
_range global scalar, the range of rowsto list. The default is all
rows.
_mss global scalar, controls handling of missing values.

0 display rows with missing values.
1 donot display rows with missing values.

The default is 0.

_prec global scalar, the number of digitsto the right of the
decimal point to display. The default is 3.

The variables are listed in an interactive mode. As many rows and
columns as will fit in the window are displayed. You can use the cursor
keys to pan and scroll around in the listing.

datalist freq age sex pay;

This command will display the variables age, sex, and pay from the
datasetfreq. dat .

datalist.src

3-148

Command Reference

dat al oop (dat al oop)

dat al oop (dat al oop)

Purpose Specifiesthe beginning of adataloop.
Format dat al oop infileoutfile;
Input infile string variable or literal, the name of the source data set.

Output outfile string variable or literal, the name of the output data set.

Remarks The statements between thedat al oop. .. endat a commands are
assumed to be metacode to be translated at compile time. The data from
infile is manipulated by the specified statements, and stored to the data set

outfile. Caseis not significant withinthedat al oop. .. endata
section, except for within quoted strings. Comments can be used asin any
GAUSS code.

Example src = “source”;

dat al oop ~src dest;
make newar = x1 + x2 + | og(x3);
X6 = sqrt(x4);
keep x6, x5, newar;
endat a;

Here, sr c isastring variable requiring the caret operator (*) , while
dest isastring literal.

3-149

GAUSS Language Reference

dat e

dat e

Purpose Returnsthe current date in a 4-element column vector, in the order: year,
month, day, and hundredths of a second since midnight.

Format vy = date;

Remarks Thehundredths of a second since midnight can be accessed using hsec.

Example print date;

1998. 0000
6. 0000000
15. 000000
4011252. 7

See also time, tinmestr, ethsec, hsec, etstr

3-150

Command Reference

datestr
dat estr
Purpose Returnsadatein astring.
Format str = datestr(d);
Input d 4x1 vector, likethedat e function returns. If thisis 0, the

dat e function will be called for the current system date.

Output g 8 character string containing current date in the form: no/
dy/ yr

{ 1998, 6, 15, 0 };
datestr(d);

Example d
y
print vy;

6/ 15/ 98
Source tine.src

See also date, datestring, datestrynd, tine, tinestr,
et hsec

3-151

GAUSS Language Reference

datestring

dat estri ng

Purpose Returnsadatein ayear-2000-compliant string.
Format sir = datestring(d);

Input d 4x1 vector, likethedat e function returns. If thisis 0, the
dat e function will be called for the current system date.

Output g 10 character string containing current date in the form:
mi dd/ yyyy

Example y = datestring(0);
print vy;

6/ 15/ 1998
Source tine.src

See also date, datestr, datestrynd, time, tinestr, ethsec

3-152

Command Reference

dat est r ynd

Purpose
Format

Input

Output

Example

Source

See also

datestrynd
Returns adate in a string.
str = datestrynd(d);
d 4x1 vector, likethedat e function returns. If thisis 0, the

dat e function will be called for the current system date.

str 8 character string containing current date in the form:
yyyynmud
d = { 1998, 6, 15, 0 };

y datestrynd(d);

print vy;
19980615
time.src

date, datestr, datestring, tinme, timestr, ethsec

3-153

GAUSS Language Reference

dayi nyr

dayi nyr
Purpose Returnsday number in the year of agiven date.
Format daynum = dayi nyr (dt);

Input dt 3x1 or 4x1 vector, date to check. The date should be in the form
returned by dat e.

Output daynum scalar, the day number of that date in that year, 1-366.

Example x = { 1998, 6, 15, 0 };

y = dayinyr(x);
print vy;
166. 00000

Source tine.src

Globals _isleap

3-154

Command Reference

dayof week
Purpose Returns day of week.
Format d = dayofweek(a);
Input a Nx1 vector, datesin DT format.
Output d Nx1 vector, integersindicating day of week of each date:
[1] Sunday
[2] Monday
[3] Tuesday
[4] Wednesday
[5] Thursday
[6] Friday
[7] Saturday
Remarks TheDT scaar format is adouble precision representation of the date and
time. In the DT scalar format, the number
20010421183207
represents 18:32:07 or 6:32:07 PM on April 21, 2001.
Source tinme.src

3-155

GAUSS Language Reference

debug

debug

Purpose Runsaprogram under the source level debugger.
Format debug filename;

Input filename Literal or name of file to debug.

Remarks See“Debugging” inthe User’'s Guide.

3-156

Command Reference

decl ar e

Purpose
Format

Input

Remarks

decl are

To initialize matrices and strings at compile time.
decl ar e [type] symbol [aop clist];

type optiond literal, specifying the type of the symbol.
mat ri x

string
if typeisnot specified, mat ri x isassumed.
symbol the name of the symbol being declared.
aop the type of assignment to be made.
= if not initialized, initialize.
if already initialized, reinitialize.
I'= if notinitialized, initialize.
if aready initialized, reinitiaize.
;= if notinitialized, initialize.
if aready initialized, redefinition error.
?= if notinitialized, initialize.
if already initialized, leave asis.
If aop is specified, clist must be also.
clist alist of constants to assign to symbal.

If aop clist isnot specified, symbol isinitialized asascalar O or
anull string.

Thedecl ar e syntax issimilar to the| et statement.

decl ar e generates no executable code. Thisisstrictly for compile time
initialization. The data on the right-hand side of the equal sign must be
constants. No expressions or variables are allowed.

decl ar e statements are intended for initiaization of global matrices
and strings that are used by proceduresin alibrary system.

It isbest to place decl ar e statementsin a separate file from procedure
definitions. Thiswill prevent redefinition errors when rerunning the same
program without clearing your workspace.

Complex numbers can be entered by joining the real and imaginary parts
with asign (+ or -); there should be no spaces between the numbers and

3-157

GAUSS Language Reference

decl are

the sign. Numbers with no real part can be entered by appending an ‘i’ to
the number.

There should be only one declaration for any symbol in a program.
Multiple declarations of the same symbol should be considered a
programming error. When GAUSS is looking through the library to
reconcile areference to amatrix or astring, it will quit looking as soon as
asymbol with the correct nameis found. If another symbol with the same
name existed in another file, it would never be found. Only thefirst onein
the search path would be available to programs.

Here are some of the possible uses of the three forms of declaration:

I =, = Interactive programming or any situation where a global
by the same name will probably be listed in the symbol
table when the file containing the decl ar e statement is
compiled. The symbol will be reset.

Thisalows mixing decl ar e statements with the
procedure definitions that reference the global matrices
and strings, or placing them in your main file.

D= Redefinition istreated as an error. Thiswill not allow you
to assign one symbol with another value aready in your
program. Rename one of them.

Place decl ar e statementsin a separate file from the rest
of your program and procedure definitions.

?= Interactive programming where some global defaultswere
set when you started and you do not want them reset for
each successive run even if the file containing the
decl ar e’sgets recompiled. Be careful when using.

CTRL+W controlsthedec! ar e statement warning level. If decl ar e
warnings are on, you will be warned whenever adecl ar e statement
encounters a symbol that is already initialized. This happens when you
declare a symbol that is already initialized when decl ar e warnings are
turned on:

decl are ! Reinitialize and warn.
decl are : = Crashwith fatal error.
decl are ?= Leaveasisandwarn.

If decl ar e warnings are off, no warnings are given for the! = and ?=
Cases.

Example declare matrix x,y, z;

3-158

Command Reference

decl are
x =0
y =0
=0
declare string x = “This string.”;

X = “This string.”

declare matri x Xx;

x=0

declare matrix x '={ 12 3, 456, 789 };

123
X= 456
789

1234567829,

declare matrix x[3, 3]

123
X= 456
789

declare matrix X[3, 3]

1
i

111
X= 111
111

declare matrix x[3,3];
000

X= 000
000

3-159

GAUSS Language Reference

decl are

declare matrix x =12 34567 8 09;

0O ~NOoO O~ WDN P

o

declare matrix x = dog cat;

x = DOG

CAT
declare matrix x = “dog” “cat”;
x = dog

cat

See also let, external

3-160

Command Reference

del et e

Purpose
Format

Input

Remarks

Example

del et e

Deletes global symbols from the symbol table.

del et e [- flags]] [symbol]] [symbold] [symbolJ;

flags specify the type(s) of symbols to be deleted
p procedures
k keywords
f f n functions
m matrices
S strings
g only symbols with global references
I only symbols with all local references
n no pause for confirmation
symbol literal, name of symbol to be deleted. If symbol

ends in an asterisk, all symbols matching the
leading characters will be deleted.

Thiscompletely and irrevocably deletes symbols from GAUSS's memory
and workspace.

Flags must be preceded by aslash (e.g., - pf k). If then (no pause) flag is
used, you will not be asked for confirmation for each symbol.

This command is supported only from interactive level. Since the
interpreter executes a compiled pseudo-code, this command would
invalidate a previously compiled code image and therefore would destroy
any program it was a part of. If any symbols are deleted, all procedures,
keywords, and functions with global references will be deleted as well.

print x;

96. 000000
6. 0000000
14. 000000
3502965. 9

3-161

GAUSS Language Reference

del ete

del ete -m x;
At the Delete? [Yes No Previous Quit] prompt, enter y.
show x;

X no longer exists.

3-162

Command Reference

del et e (datal oop)

del et e (dat al oop)

Purpose
Format

Remarks

Example

See also

Removes specific rows in adataloop based on alogical expression.
del et e logical expression;

Deletes only those rows for which logical expression is TRUE. Any
variables referenced must already exist, either as elements of the source
data set, as externs, or as the result of a previous make, vect or, or
code statement.

GAUSS expectslogical expression to return arow vector of 1'sand 0's.
Therelationa and other operators (e.g., <) arealready interpreted in terms
of their dot equivalents (. <), but it is up to the user to make sure that
function calls within logical expression result in a vector.

del ete age < 40 or sex == ‘' FEMALE ;

sel ect

3-163

GAUSS Language Reference
delif

del i f

Purpose Deletesrowsfrom amatrix. The rows deleted are those for which thereis
alin the corresponding row of e.

Format vy = delif(x e);

Input x NxK data matrix.
e Nx1 logical vector (vector of 0'sand 1's).
Output vy MxK data matrix consisting of the rows of y for which

thereisa0 in the corresponding row of e. If no rows
remain, del i f will return ascalar missing.

Remarks Theinput ewill usually be generated by alogical expression using dot
operators. For instance:

y = delif(x, x.,2] .> 100);

will delete all rows of x whose second element is greater than 100. The
remaining rows of X will be assigned to y.

Example x = { 0 10 20,
30 40 50,
60 70 80};
/* logical vector */

e

y

(x[.,1] .gt 0) .and (x[.,3] .It 100);
delif(x, e);

Hereistheresulting matrix y:

0 10 20

All rows for which the elementsin column 1 are greater than 0 and the
elementsin column 3 are less than 100 are del eted.

Source datatran.src

3-164

Command Reference

del i f

See also selif

3-165

GAUSS Language Reference

denseSubmat

denseSubnmat

Purpose Returns dense submatrix of sparse matrix.

Format e = denseSubmat(Xx,r, C);

Input x MxN sparse matrix.
r Kx1 vector, row indices.
c Lx1 vector, column indices.
Output ¢ KXL dense matrix.

Remarks If r or c are scalar zeros, all rows or columns will be returned.
Source sparse.src

See also sparseFd, sparseFp

3-166

Command Reference

desi gn

Purpose

Format
Input

Output

Remarks

Example

Source

See also

desi gn

Creates a design matrix of 0's and 1's from a column vector of numbers
specifying the columns in which the 1's should be placed.

y = design(Xx);
X Nx1 vector.
y NxK matrix, where K = maxc(x) ; each row of y will

contain asingle 1, and the rest 0's. The onein the it row
will beinther ound(x[i, 1]) column.

Note that x does not have to contain integers: it will be rounded to nearest
if necessary.

X

y

{1, 1.2, 2, 3, 4.4 };

desi gn(x);

1000
1000
Y= 0100
0010
0001

desi gn. src

cunpr odc, cumsunt, recserrc

3-167

GAUSS Language Reference

det

det

Purpose Returnsthe determinant of a square matrix.
Format vy = det(x);
Input x NxN square matrix.
Output vy determinant of x.

Remarks xmay beany valid expression that returns a square matrix (number of
rows equals number of columns).
det computesalLU decomposition.

det | can be much faster in many applications.

Example x = { 32 1,
01 -2
13 4};

y = det(x);

32 1

X= 01-2

13 4

y =25

See also detl

3-168

Command Reference

det |

Purpose

Format

Remarks

Example

det |

Returns the determinant of the last matrix that was passed to one of the
intrinsic matrix decomposition routines.

y = detl;

Whenever one of the following functions is executed, the determinant of
the matrix is also computed and stored in asystem variable. Thisfunction
will return the value of that determinant and, because the value has been
computed in aprevious instruction, thiswill require no computation.

The following functions will set the system variable used by det | :

chol (X

crout (X)

crout p(x)

det (X)

i nv(Xx)

i nvpd(x)

sol pd(y, X) determinant of x

y/x determinant of x when neither argument is a scalar
or
determinant of X'x if X ishot square

If both the inverse and the determinant of the matrix are needed, the
following two commands will return both with the minimum amount of
computation:

Xi
xd

i nv(Xx);

detl ;

Thefunction det (X) returnsthe determinant of a matrix using the Crout
decomposition. If you only want the determinant of a positive definite
matrix, the following code will be the fastest for matrices larger than
10x10:

call chol (x);
xd = detl;

3-169

GAUSS Language Reference

det |

The Cholesky decomposition is computed and the result from that is
discarded. The determinant saved during that instruction is retrieved
using det | . This can execute up to 2.5 times faster than det (x) for
large positive definite matrices.

See also det

3-170

Command Reference

df f t

Purpose
Format
Input
Output

Remarks

Source

See also

df ft

Computes a discrete Fourier transform.

y = dfft(x);
X Nx1 vector.
y Nx1 vector.

Thetransform is divided by N.

This uses a second-order Goertzel algorithm. It is considerably slower
thanf f t , but it may have some advantages in some circumstances. For
one thing, N does not have to be an even power of 2.

dfft.src

difti, fft, ffti

3-171

GAUSS Language Reference

dffti

df fti

Purpose Computesinverse discrete Fourier transform.
Format vy = dffti(x);
Input x Nx1 vector.
Output vy Nx1 vector.

Remarks Thetransformisdivided by N.
This uses a second-order Goertzel algorithm. It is considerably slower
thanf fti, butit may have some advantagesin some circumstances. For
one thing, N does not have to be an even power of 2.
Source dffti.src

See also fft, dffti, ffti

3-172

Command Reference

df ree (DGCS only)

df ree (DOS only)

Purpose
Format
Input
Output
Portability

Remarks

See also

Returns the amount of room |eft on a diskette or hard disk.
y = dfree(drive);

drive scaar, valid disk drive number.

y number of bytes free.

All othersreturn -1

Valid disk drive numbers are O = default, 1 = A, 2 =B, etc. If an error is
encountered, df r ee will return -1.

corel eft

3-173

GAUSS Language Reference

di ag
di ag
Purpose Createsacolumn vector from the diagonal of a matrix.
Format vy = diag(Xx);
Input x NxK matrix.

Output vy min(N,K)x1 vector.

Remarks Thematrix need not be square.
di agr v reverses the procedure and puts a vector into the diagonal of a

matrix.
Example x = rndu(3, 3);
y = diag(x);

0.660818 0.367424 0.302208
X = 0.204800 0.077357 0.145755
0.712284 0.353760 0.642567

0.660818
Y = 0.077357
0.642567

See also diagrv

3-174

Command Reference

di agrv
Purpose

Format

Input

Output

Remarks

Example

See also

di agrv
Inserts a vector into the diagonal of a matrix.
y = diagrv(xv);
X NxK matrix.
v min(N,K) vector.
y NxK matrix equal to x with its principal diagonal elements equal
to those of v.

di ag reversesthe procedure and pulls the diagonal out of a matrix.

X = rndu(3, 3);
v = ones(3,1);

y = diagrv(x,vV);

0.660818 0.367424 0.302208
X = 0.204800 0.077357 0.145755
0.712284 0.353760 0.642567

1.000000
V= 1.000000
1.000000

1.000000 0.367424 0.302208
Y = 0.204800 1.000000 0.145755
0.712284 0.353760 1.000000

di ag

3-175

GAUSS Language Reference

dlibrary

dl i brary

Purpose

Format

Input

Remarks

Dynamically links and unlinks shared libraries.

dlibrarylibl[lib2...];
dlibrary-alibl[lib2...];
dlibrary-d

dlibrary

libl lib2... literal, the base name of thelibrary or the pathed name of the
library.
dl i br ary takestwo types of arguments, “base” namesand
file names. Arguments without any “\" path separators are
assumed to be library base names, and are expanded by
adding the suffix . dl | . They are searched for in the default
dynamic library directory. Arguments that include “\” path
separators are assumed to be file names, and are not
expanded. Relatively pathed file names are assumed to be
specified relative to the current working directory, not
relative to the dynamic library directory.

-a append flag, the DLL’s listed are added to the current set of
DLL'srather than replacing them. For search purposes, the
new DLL’sfollow the already active ones. Without the - a
flag, any previoudly linked libraries are dumped.

-d dump flag, ALL DLL'sare unlinked and the functions they
contain are no longer available to your programs. If you use
dl | cal | tocall one of your functions after executing a
dli brary -d,your program will terminate with an error.

If no flags are used, the DLL's listed are linked into GAUSS and any
previoudly linked libraries are dumped. Whenyou call dI | cal | , the
DLL’swill be searched in the order listed for the specified function. The
first instance of the function found will be called.

dl i br ary with no arguments prints out alist of the currently linked
DLL'’s. The order in which they are listed is the order in which they are
searched for functions.

dl i brary recognizes a default directory in which to look for dynamic
libraries. You can specify this by setting the variable dl i b_pat h in
gauss. cf g. Setit to point to asingle directory, not a sequence of

3-176

Command Reference

dlibrary

directories. A new case (case 24) has also been added to sysst at e for
getting and setting this default.

GAUSS maintainsitsown DLL, gauss. dl | . gauss. dl | islisted
when you execute dl i br ar y with no arguments, and searched when
youcdl dl | cal | . By default, gauss. dI | issearched last, after all
other DLL's but you can force it to be searched earlier by listing it
explicitly inadl i br ary statement. gauss. dl | isawaysactive. Itis
not unlinked when you executedl i brary -d.gauss. dl | islocated
inthe gauss. exe directory.

See also dllcall, sysstate-case 24

3-177

GAUSS Language Reference

dl | call

dl | cal |

Purpose

Format

Input

Remarks

Calls functions located in dynamic libraries.

dilcall [-r] [-v] func] (argl], arg2...])1];

dl | cal I worksin conjunctionwithdl i brary.dl i brary isusedto
link dynamic-link libraries (DLL's) into GAUSS; dI | cal | isused to
access the functions contained inthose DLL's. dI | cal | searchesthe
DLL's(seedl i br ary for an explanation of the search order) for a
function named func, and callsthefirst instanceit finds. The default DLL,
gauss. dl | , issearched last.

func the name of afunction contained in aDLL (linked into GAUSS
withdl i br ary). If func is not specified or cannot be located in
aDLL,dl I cal I will fail.

arg# arguments to be passed to func; optional. These must be
elementary variable; they cannot be expressions.

-r optional flag. If - r isspecified, dl | cal | examinesthe value
returned by func, and failsif it is nonzero.

-V optiona flag. Normally, dI | cal | passes parametersto funcin
alist. If - v isspecified, dl | cal | passesthem in avector. See
below for more details.

func should be written to:
1. Take 0 or more pointers to doubles as arguments.
2. Take arugments either in alist of a vector.
3. Return an integer.
In C syntax, func should take one of the following forms:
1. int func(void);
2. int func (doubl e *argl][, double *arg2...]);
3. int func(doubl e *argv[]);

dl I cal | canpassalist of up to 100 arguments to func; if it requires
more arguments than that, you MUST write it to take a vector of
arguments, and you MUST specify the- v flag when callingit. dl | cal |
can pass up to 1000 arguments in vector format. In addition, in vector
format dl | cal | appendsanull pointer to the vector, so you can write

3-178

Command Reference

See also

dl | call

func to take a variable number of arguments and just test for the null
pointer.

Arguments are passed to func by reference. This means you can send back
more than just the return value, which is usually jsut a success/failure
code. (It also means that you need to be careful not to overwrite the
contents of matrices or strings you want to preserve.) To return datafrom
func, simply set up one or more of its arguments as return matrices
(basically, by making them the size of what you intend to return), and
inside func assign the results to them before returning.

dlibrary, sysstate-case 24

3-179

GAUSS Language Reference

do while, do until

do while, do until

Purpose Executesaseries of statementsin aloop aslong as a given expression is
true (or false).

Format do whil e expression;
or
do until expression;

statementsin loop

endo;

Remarks expressionisany expression that returnsascaar. ItisTRUE if itis
nonzero and FALSE if it is zero.

Inado whi | e loop, execution of the loop will continue as long as the
expression is TRUE.

Inado until loop, execution of the loop will continue as long as the
expression is FALSE.

The condition is checked at the top of the loop. If execution can continue,
the statements of the loop are executed until the endo is encountered.
Then GAUSS returns to the top of the loop and checks the condition
again.

The do loop does not automatically increment a counter. See the first
example, following.

do loops may be nested.

3-180

Command Reference

Example

do while, do until

It is often possible to avoid using loops in GAUSS by using the
appropriate matrix operator or function. It is almost always preferable to
avoid loops when possible, since the corresponding matrix operations can

be much faster.

format /rdn 1, 0;

“ ”

space = ;

comma = “,";

i = 1;

do while i
=1
do while j <= 3;

print space i

<= 4;

=i+
endo;
i = i+1;
print;

endo;

1,1
2,1
31
4,1

1,2
2,2
3,2
4,2

1,3
2,3
3,3
4,3

comm j;;

In the example above, two nested |oops are executed and the loop counter
values are printed out. Note that the inner loop counter must be reset
inside the outer loop before entering the inner loop. An empty pri nt
statement is used to print a carriage return/line feed sequence after the

inner loop finishes.

3-181

GAUSS Language Reference
do while, do until

Thefollowing are examples of simple loops that execute a predetermined
number of times. These loops will both have the result shown.

First loop
format /rd 1, 0;
i = 1;
do while i <= 10;
print i;;
i = i+1;

endo;

produces
12345678910
Second loop

format /rd 1,0;

i = 1;

do until i > 10;

print i;;

i = i+1;

endo;

produces
12345678910

See also continue, break

3-182

Command Reference

dos

Purpose
Format
Input

Portability

Remarks

dos

Provides access to the operating system from within GAUSS.
dos [s];
S literal or ~string, the OS command to be executed.

UNIX
Control and output go to the controlling terminal, if thereis one.

This function may be used in terminal mode.

05/2, Windows
Thedos function opens a new terminal.

Running programs in the background is alowed in al three of the
aforementioned platforms.

This allows all operating system commands to be used from within
GAUSS. It allows other programs to be run even though GAUSS is till
resident in memory.

If no operating system command (for instance, di r or copy) or program
name is specified, a shell of the operating system will be entered which
can be used just like the base level OS. The exi t command must be
given from the shell to get back into GAUSS. If acommand or program
name is included, the return to GAUSS is automatic after the DOS
command has been executed.

All matrices are retained in memory when the OSis accessed in thisway.
This command allows the use of word processing, communications, and
other programs from within GAUSS.

Do not execute programs that terminate and remain resident because they
will be left resident inside GAUSS's workspace. Some examples are
programs that create RAM disks or print spoolers.

If the command is to be taken from a string variable, the ” (caret) must
precede the string.

The shorthand “>" can be used in place of the word “DOS".

3-183

GAUSS Language Reference

dos

Example constr = “basic nyprog”;
dos ~constr;
Thiswill causethe BASIC program nmypr og to be run. When that
program is finished, control will automatically return to GAUSS.
>dir *.prg;
Thiswill usethe DOSdi r command to print a directory listing of all

fileswith a. pr g extension. When the listing is finished, control will be
returned to GAUSS.

dos;

Thiswill cause asecond level OS shell to be entered. The OS prompt will
appear and OS commands or other programs can be executed. To return to
GAUSS, typeexi t .

See also exec

3-184

Command Reference

doswi n

dosw n

Purpose Opensthe DOS compatibility window with default settings.
Format dosw n;
Portability = Windowsonly

Remarks Calingdoswi n isequivaent to:
call DOSW nOpen(““,error(0));

Source gauss.src

3-185

GAUSS Language Reference

DOSW nCl oseal |

DOSW nCl oseal |

Purpose
Format
Portability

Remarks

Example

Closes the DOS compatibility window.
DOSW nCl oseal | ;
Windows only

Calling DOSW nCl oseal | closesthe DOS window immediately,
without asking for confirmation. If a program isrunning, its1/O revertsto
the Command window.

let attr = 50 50 7 0 7,

i f not DOSW nQpen("Legacy W ndow', attr);
errorlog "Failed to open DOS wi ndow, aborting"”;
st op;

endi f;

DOSW nCl oseal | ;

3-186

Command Reference

DOSW nQpen

DOSW nQOpen

Purpose

Format
Portability

Input

Output

Remarks

Opens the DOS compatibility window and gives it the specified title and
attributes.

ret = DOSW nOpen(title, attr) ;

Windows 3.2 only

titte string, window title.
attr 5x1 vector or scalar missing, window attributes.
[1] window x position
[2] window y position
[3] textforeground color
[4] text background color
[5] close action hit flags
bit 0 (1'shit)] issue dialog
bit 1 (2'shit)] close window
bit 2 (4's bit)] stop program

ret scalar, success flag, 1 if successful, Oif not.

If titleisanull string (“"), the window will be titled “ GAUSS- DOS”.

Defaults are defined for the elements of attr. To use the default, set an
element to amissing value. Set attr to a scalar missing to use all defaults

[1] varies use x position of previous DOS window
[2] varies usey position of previous DOS window

[3] 7 white foreground

[4] 0 black background

[5] 6 4+2: stop program and close window without
confirming

If the DOS window is already open, the new title and attr will be applied
to it. Elements of attr that are missing are not reset to the default values,
but areleft asis.

To set the close action flags value (attr[5]), just sum the desired bit
values. For example:

3-187

GAUSS Language Reference

DOSW nOpen

stop program (4) + close window (2) + confirm close (1) =7

The close action flags are only relevant when a user attemptsto
interactively close the DOS window while a program is running. If
GAUSS isidle, the window will be closed immediately. Likewise, if a
program calls DOSW nCl oseal | , thewindow isclosed, but the
program does not get terminated.

Example let attr =50 50 7 0 7;
if not DOSW nOpen("Legacy W ndow', attr);
errorlog "Failed to open DOS wi ndow, aborting";
st op;
endi f;

This example opens the DOS window at screen location (50,50), with
white text on ablack background. The close action flagsare4 +2 + 1
(stop program + close window + issue confirm dialog) = 7. Thus, if the
user attemptsto close the window while a program is running, he/she will
be asked for confirmation. Upon confirmation, the window will be closed
and the program terminated.

3-188

Command Reference

dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne

dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne

Purpose

Format

Input

Global Input

Output

Remarks

Fuzzy comparison functions. These functionsuse _f cnpt ol to fuzz the
comparison operations to allow for roundoff error.

= dotfeq(a b);
= dotfge(a b);
= dotfgt(a b);
= dotfle(a b);
= dotflt(a b);
= dotfne(a b);

KKK K K
I

Q

NxK matrix, first matrix.
LxM matrix, second matrix, EXE compatible with a.

lon

_fcnptol global scalar, comparison tolerance. The default valueis
1.0e-15.

y max(N,L) by max(K,M) matrix of I'sand O's.

Thereturn valueis 1 if trueand O if false.
The statement:
y = dotfeq(a,b);
isequivalent to:
y = a .eq b;
The calling program can reset _f cnpt ol before calling these
procedures.
_fcnptol = 1le-12;

3-189

GAUSS Language Reference

dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne

Example x = rndu(2,2);
y = rndu(2, 2);
t = dotfge(x,y);
X = 0.85115559 0.98914218
0.12703276 0.43365175
y = 0.41907226 0.49648058

0.58039125 0.98200340

1.0000000 1.0000000
0.0000000 0.0000000

Source fconpare.src
Globals _fcnptol

See also feg-fne

3-190

Command Reference

dr aw

Purpose

Library
Format

Remarks

Example

dr aw

Graphs lines, symbols, and text using the PQG global variables. This
procedure does not require actual X, Y, or Z datasince its main purposeis
to manualy build graphsusing _pl i ne, _pnsgct|,_psym _paxes,
__par r owand other globals.

pgr aph
dr aw;

dr awis especialy useful when used in conjunction with transparent
graphic panels.

library pgraph;

gr aphset;

begwi nd;

/* make full size wi ndow for plot */

makew nd(9, 6. 855, 0, 0, 0) ;

/* make snall overl appi ng wi ndow for text*/
makewi nd(3, 1, 3, 3,0);

setwi nd(1);
X = seqga(.1,.1,100);
y = sin(x);
/* plot data in first wi ndow/

Xy(Xx,y);

3-191

GAUSS Language Reference

dr aw
nextw nd;
_pbox = 15;
_paxes = 0;
_pnum = O;
_ptitlht = 1;

margi n(0,0, 2,0);
title(“This is a text wi ndow. ");
dr aw;
/* add a smaller text wi ndow */

endwi nd; /* create graph*/

Source pdraw src

See also wi ndow, makew nd

3-192

Command Reference

drop (dat al oop)

drop (datal oop)

Purpose

Format

Remarks

Example

See also

Specifies columns to be dropped from the output data set in a data loop.
drop variable_list;

Commasareoptional invari abl e_|i st.

Deletes the specified variables from the output data set. Any variables
referenced must already exist, either as elements of the source data set, or
as the result of aprevious make, vect or, or code statement.

If neither keep nor dr op is used, the output data set will contain all
variables from the source data set, as well as any defined variables. The
effects of multiple keep and dr op statements are cumulative.

drop age, pay, sex;

keep

3-193

GAUSS Language Reference

dst at

dst at

Purpose Compute descriptive statistics.
Format { vnammean,varstd,min,max,validmis } = dst at (dataset,vars) ;

Input dataset string, name of data set.
If dataset contains the name of a GAUSS data set, vars will be
interpreted as:
vars the variables.

If dataset is null or O, varswill be assumed to be a matrix
containing the data.

Kx1 character vector namesof variables.
Kx1 nuneric vector indices of columns.

These can be any size subset of the variablesin the data set and
can bein any order. If ascalar 0 is passed, al columns of the
data set will be used.

If dataset is null or O, varswill be interpreted as:

NxK matri x the data on which to
compute the descriptive
statistics.

Defaults are provided for the following global input variables, so they can
beignored unless you need control over the other options provided by this
procedure.

__al tnam globa matrix, default O.

This can be aKx1 character vector of alternate variable
nss names for the output.
global scalar, default O.
0 there are no missing values (fastest).
1 listwise deletion, drop arow if any missings occur
init.
2 pairwise deletion.

_row globa scalar, the number of rows to read per iteration of
the read loop.

if O, (default) the number of rows will be calculated
internaly.

3-194

Command Reference

Output

Remarks

Source

Globals

dst at

__out put global scalar, controls output, default 1.
1 print output table.
0 do not print output.

vnam Kx1 character vector, the names of the variables used in the
statistics.

mean Kx1 vector, means.

var Kx1 vector, variance.

std Kx1 vector, standard deviation.

min Kx1 vector, minima

max Kx1 vector, maxima.

valid Kx1 vector, the number of valid cases.

mis Kx1 vector, the number of missing cases.

If pairwise deletion is used, the minima and maxima will be the true
values for the valid data. The means and standard deviations will be
computed using the correct number of valid observations for each
variable.

dstat.src

__output, _dstatd, _dstatx

3-195

GAUSS Language Reference

dt dat e

dt dat e

Purpose Createsamatrix in DT scalar format.
Format dt = dtdate(year, month, day, hour, minute, second);

Input year NxK matrix of years.
month NxK matrix of months, 1-12.
day NxK matrix of days, 1-31.
hour NxK matrix of hours, 0-23.
minute NxK matrix of minutes, 0-59.
second NxK matrix of seconds, 0-59.

Output dt NxK matrix of DT scalar format dates.
Remarks Thearguments must be EXE conformable.

Source tine.src

See also dtday, dttine, utctodt, dttostr

3-196

Command Reference

dt day

Purpose

Format

Input

Output

Remarks

Source

See also

dt day

Createsamatrix in DT scalar format containing only the year, month and
day. Time of day information is zeroed out.

dt = dtday(year, month, day);

year NxK matrix of years.
month NxK matrix of months, 1-12.
day NxK matrix of days, 1-31.

dt NxK matrix of DT scalar format dates.

This amounts to 00:00:00 or midnight on the given day. The arguments
must be EXE conformable.

time.src

dttinme, dtdate, utctodt, dttostr

3-197

GAUSS Language Reference

dttine

dtti ne

Purpose Createsamatrix in DT scalar format containing only the hour, minute and
second. The date information is zeroed out.

Format dt = dttinme(hour, minute, second);

INnput hour NxK matrix of hours, 0-23.
minute NxK matrix of minutes, 0-59.
second NxK matrix of seconds, 0-59.

Output dt NxK matrix of DT scalar format times.
Remarks Thearguments must be EXE conformable.
Source tine.src

See also dtday, dtdate, utctodt, dttostr

3-198

Command Reference

dttodtv

Purpose
Format
Input
Output

Remarks

Example

Source

See also

Converts DT scalar format to DTV vector format.
dtv = dttodtv(dt);
dt Nx1 vector, DT scalar format.

dtv Nx8 matrix, DTV vector format.

dttodtv

In DT scalar format, 11:06:47 on March 15, 2001 is 20010315110647.

Each row of dtv, in DTV vector format, contains:
[N,1] Year

[N,2] Monthin Year, 1-12

[N,3] Day of month, 1-31

[N,4] Hours since midnight, 0-23

[N,5] Minutes, 0-59

[N,6] Seconds, 0-59

[N, 7] Day of week, 0-6, 0 = Sunday

[N,8] Days since Jan 1 of current year, 0-365

dt = 20010326110722;

print "dt =" dt;
dtv = dttodtv(dt);
print "dtv =" dtv;
produces:

dt = 20010326110722
dtv = 2001 3 26 11 7 22 1 84

time.src

dtvnormal, tineutc, utctodtv, dtvtodt,
dtvtodt, strtodt, dttostr

dtt out c,

3-199

GAUSS Language Reference

dttostr

dttostr

Purpose Convertsamatrix containing datesin DT scalar format to a string array.
Format sa = dttostr(x, fmt);

Input x NxK matrix containing datesin DT scalar format.
fmt string containing date/time format characters.

Output s NxK string array.

Remarks TheDT scaar format is adouble precision representation of the date and
time. In the DT scalar format, the number

20010421183207

represents 18:32:07 or 6:32:07 PM on April 21, 2001. dt t ost r converts
adatein DT scalar format to a character string using the format string in
fmt.

The following formats are supported:

YYYY 4digit year

YR Last two digits of year

MO Number of month, 01-12

DD Day of month, 01-31

HH Hour of day, 00-23

Ml Minute of hour, 00-59

SS Second of minute, 00-59

Example sO = dttostr(utctodt(tineutc),
“YYYY-MO-DD HH: M : SS”) ;
Print (“Date and Tinme are: " $+ s0);

produces:
Date and tine are: 2001-03-25 14:59: 40

3-200

Command Reference

dttostr

print dttostr(utctodt(timeutc),
"Today is DD- MO YR')

produces:
Today is 25-03-01

s = dttostr(x, "YYYY-MODD");

if x = 20000317060424
20010427031213
20010517020437
20011117161422
20010717120448
20010817043451
20010919052320
20011017032203
20011107071418

then s = 2000-03-17
2001- 04- 27
2001- 05- 17
2001-11-17
2001-07-17
2001-08- 17
2001-09-19

3-201

GAUSS Language Reference

dttostr

2001-10-17
2001-11-07

See also strtodt, dttoutc, utctodt

3-202

Command Reference

dtt out c

Purpose
Format
Input
Output

Remarks

Example

Source

See also

dttoutc

Converts DT scalar format to UTC scalar format.
utc = dttoutc(dt);
dt Nx1 vector, DT scalar format.

utc Nx1 vector, UTC scaar format.

In DT scalar format, 11:06:47 on March 15, 2001 is 20010315110647. A
UTC scalar gives the number of seconds since or before January 1, 1970
Greenwich Mean Time.

dt

20010326085118;
dttoutc(dt);

tc

print "utc = ut c;

produces:
tc = 985633642,

time.src

dtvnormal, tineutc, utctodtv, dttodtv, dtvtodt,
dtvtoutc, dtvtodt, strtodt, dttostr

3-203

GAUSS Language Reference

dt vnor mal
dt vnor mal
Purpose Normalizes adate and time (DTV) vector.
Format d = dtvnormal (t);
Input ¢ 1x8 date and time vector that has one or more el ements outside
the normal range.
Output d Normalized 1x8 date and time vector.

Remarks Thedate and time vector is a 1x8 vector whose elements consist of:
Year: Year, four digit integer.
Month: 1-12, Month in year.
Day: 1-31, Day of month.
Hour: 0-23, Hours since midnight.
Min: 0-59, Minutes.
Sec: 0-59, Seconds.
DoW: 0-6, Day of week, 0 = Sunday.
DiY: 0-365, Days since Jan 1 of year.
The last two elements are ignored on input.

Example fornmat /rd 10, 2;
x ={ 1996 14 21 6 21 37 0 0 };
d = dtvnormal (x);

d:97.00 2.00 21.00 6.00 21.00 37.00 2.00 51.00
See also date, ethsec, etstr, tinme, tinmestr, tineutc,

ut ct odtv

3-204

Command Reference

dt vt odt

Purpose
Format
Input
Output

Remarks

Example

Source

See also

Converts DT vector format to DT scalar format.
dt = dtvtodt (dtv);
dtv Nx8 matrix, DTV vector format.

dt Nx1 vector, DT scalar format.

dt vt odt

In DT scalar format, 11:06:47 on March 15, 2001 is 20010315110647.

Each row of dtv, in DTV vector format, contains:
[N,1] Year

[N,2] Monthin Year, 1-12

[N,3] Day of month, 1-31

[N,4] Hours since midnight, 0-23

[N,5] Minutes, 0-59

[N,6] Seconds, 0-59

[N, 7] Day of week, 0-6, 0 = Sunday

[N,8] Days since Jan 1 of current year, 0-365

let dtv = { 2001 3 26 11 7 22 1 84 },;

print "dtv =" dtv;
dt = dtvtodt(dtv);
print "dt =" dt;
produces:

dtv = 2001 3 26 11 7 22 1 84;
dt = 20010326110722

time.src

dtvnormal, tinmeutc, utctodtv, dttodtv,
dttoutc, dtvtodt, strtodt, dttostr

dt vt odt,

3-205

GAUSS Language Reference

dt vt out c

dt vt out c

Purpose ConvertsDTV vector format to UTC scalar format.
Format utc = dtvtoutc(dtv);
Input dtv Nx8matrix, DTV vector format.

Output utc Nx1 vector, UTC scalar format.

Remarks A UTC scalar givesthe number of seconds since or before January 1,
1970 Greenwich Mean Time.
Each row of dtv, in DTV vector format, contains:
[N,1] Year
[N,2] Monthin Year, 1-12
[N,3] Day of month, 1-31
[N,4] Hours since midnight, 0-23
[N,5] Minutes, 0-59
[N,6] Seconds, 0-59
[N, 7] Day of week, 0-6, 0 = Sunday
[N,8] Days since Jan 1 of current year, 0-365

Example dtv = utctodtv(tinmeutc);
print "dtv =" dtv;
utc = dtvtoutc(dtv);

print "utc = ut c;

produces:
dtv 2001 3 26 11 7 22 1

84985633642

utc

See also dtvnormal, tineutc, utctodt, dttodtv, dttoutc,
dtvtodt, dtvtoutc, strtodt, dttostr

3-206

Command Reference

dunmmy

Purpose

Format

Input

Output

Remarks

Example

dumry

Creates a set of dummy (0/1) variables by breaking up avariable into
specified categories. The highest (rightmost) category is unbounded on
the right.

y = dunmy(x, V) ;

X Nx1 vector of datathat is to be broken up into dummy variables.

% (K-1)x1 vector specifying the K-1 breakpoints (these must be in
ascending order) that determine the K categories to be used.
These categories should not overlap.

y NxK matrix containing the K dummy variables.

Missings are deleted before the dummy variables are created.

All categories are open on the l€ft (i.e., do not contain their left
boundaries) and all but the highest are closed on theright (i.e., do contain
their right boundaries). The highest (rightmost) category is unbounded on
the right. Thus, only K-1 breakpoints are required to specify K dummy
variables.

Thefunction dunmrybr issimilar to dummy, but in that function the
highest category is bounded on the right. The function durmrydn isalso
similar to durmmy, but in that function a specified column of dummiesis
dropped.

x={0, 2, 4, 6 };
v={1 5 7};
y = dumy(x, Vv);

Theresult y looks like this:

1000
0100
0100
0010

3-207

GAUSS Language Reference
dumy

The vector v will produce 4 dummies satisfying the following conditions:
x<1

l1<x<5

IN
\l

5<x

7 < X
Source datatran.src

See also dummybr, dummydn

3-208

Command Reference

dunmybr

Purpose

Format

Input

Output

Remarks

Example

dumybr

Creates a set of dummy (0/1) variables. The highest (rightmost) category
is bounded on the right.

y = dunmybr (X, V) ;

X Nx1 vector of datathat is to be broken up into dummy variables.

v Kx1 vector specifying the K breakpoints (these must be in
ascending order) that determine the K categories to be used.
These categories should not overlap.

y NxK matrix containing the K dummy variables. Each row will
have a maximum of one 1.

Missings are deleted before the dummy variables are created.

All categories are open on the l€eft (i.e., do not contain their left
boundaries) and are closed on theright (i.e., do contain their right
boundaries). Thus, K breakpoints are required to specify K dummy
variables.

Thefunction duntry issimilar to dummybr, but in that function the
highest category is unbounded on the right.

x = |

H DN O

Gi;

v = { 1,
5,
7}

y dummybr (x, v);
The resulting matrix y looks like this:

3-209

GAUSS Language Reference

dumrybr

100
010
010
001

The vector v=15 7 will produce 3 dummies satisfying the following
conditions:

x<1

l1<x<5

5<x<7

Source datatran.src

See also dummydn, dummy

3-210

Command Reference

dunmmydn

Purpose

Format

Input

Output

Remarks

Example

dumrydn

Creates a set of dummy (0/1) variables by breaking up avariable into
specified categories. The highest (rightmost) category is unbounded on
the right, and a specified column of dummies is dropped.

y = dummydn(Xx, Vv, p);

X Nx1 vector of datato be broken up into dummy variables.

% Kx1 vector specifying the K-1 breakpoints (these must be in
ascending order) that determine the K categories to be used.
These categories should not overlap.

p positive integer in the range [1,K], specifying which column
should be dropped in the matrix of dummy variables.

y Nx(K-1) matrix containing the K-1 dummy variables.

Thisisjust like the function dumry, except that the pth column of the
matrix of dummiesis dropped. This ensures that the columns of the
matrix of dummies do not sum to 1, and so these variables will not be
collinear with avector of ones.

Missings are deleted before the dummy variables are created.

All categories are open on the l€eft (i.e., do not contain their left
boundaries) and all but the highest are closed on theright (i.e., do contain
their right boundaries). The highest (rightmost) category is unbounded on
the right. Thus, only K-1 breakpoints are required to specify K dummy
variables.

x={0, 2, 4, 6 };
v={1 5 71};

p =2

y = dumydn(x, v, p);

3-211

GAUSS Language Reference

dumrydn

The resulting matrix y looks like this;

100
000
000
010

The vector v=15 7 will produce 4 dummies satisfying the following
conditions:

x<1
l<x<b5
S5<x<s7
7 < X

Source datatran.src

See also dummy, dummybr

3-212

Command Reference

ed

Purpose
Format
Input

Remarks

ed

Accesses an alternate editor.
ed filename;
filename The name of thefile to be edited.

The default name of the editor issetingauss. cf g. To change the name
of the editor used type:

ed editor_name flags;

or
ed

Theflags are any command line flags you may want between the name of
the editor and the filename when your editor isinvoked. The quoted
version will prevent the flags, if any, from being forced to uppercase.

“ editor_name flags’;

This command can be placed in the startup file so it will be set for you
automatically when you start GAUSS.

3-213

GAUSS Language Reference
edit

edi t

Purpose Editsadisk file.

Format edit filename;

Remarks Theedit command does not follow the src_path to locate files. You must
specify the location in the filename. The default location is the current
directory.

Example edit testl.e;

See also run

3-214

Command Reference

el g
Purpose
Format
Input
Output

Remarks

Example

See also

eig

Computes the eigenvalues of a general matrix.
va = eig(x);
X NXN matrix.

va Nx1 vector, the eigenvalues of x.

If the eigenvalues cannot al be determined, va[1] is set to an error code.
Passing va[1] to the scal er r function will return the index of the
eigenvalue that failed. The eigenvaluesfor indicesscal err (va[1])+1to
N should be correct.

Error handling is controlled with the low bit of the trap flag.

trap O
trap 1

set va[1] and terminate with message
set va[1] and continue execution

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first.

x={ 481,
94 2,
5571},

va = eig(x);

—4.4979246

va = 14.475702
5.0222223

ei gh, eighv, eigv

3-215

GAUSS Language Reference

ei gcg

el gcg

Purpose

Format

Input

Output

Remarks

Source
Globals

See also

Computes the eigenvalues of a complex, general matrix. (Included for
backwards compatibility — use ei g instead.)

{ var,vai } = eigcg(xr, x);

Xr NxN matrix, real part.

Xi NxN matrix, imaginary part.
var Nx1 vector, real part of eigenvalues.
vai Nx1 vector, imaginary part of eigenvalues.

_eigerr globa scaar, if al the eigenvalues can be determined
_eigerr =0,otherwise _ei gerr issettotheindex of
the eigenvalue that failed. The eigenvalues for indices
_ei gerr+1to N should be correct.

Error handling is controlled with the low bit of the trap flag.

trap 0 set_ei gerr and terminate with message
trap 1 set_ei gerr and continue execution

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first.

ei gcg. src

_eigerr

ei gcg2, eigch, eigrg, eigrs

3-216

Command Reference

el gcg2
Purpose

Format

Input

Output

Global Input

Remarks

Source
Globals

See also

ei gcg2

Computes eigenvalues and eigenvectors of a complex, general matrix.
(Included for backwards compatibility — use ei gv instead.)

{ var, vai, ver,vei } = eigcg2(xr,X);

Xr NxN matrix, real part.

Xi NxN matrix, imaginary part.

var Nx1 vector, real part of eigenvalues.

vai Nx1 vector, imaginary part of eigenvalues.

ver NxN matrix, real part of eigenvectors.

vei NxN matrix, imaginary part of eigenvectors.

_eigerr global scalar, if al the eigenvalues can be determined

_eigerr =0, otherwise _ei gerr issettotheindex
of the eigenvalue that failed. The eigenvalues for indices
_ei gerr +1to N should be correct. The eigenvectors
are not computed.

Error handling is controlled with the low bit of the trap flag.

trap 0 set_ei gerr and terminate with message
trap 1 set_ei gerr and continue execution

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first. The columns of ver and vei contain the real
and imaginary eigenvectors of X in the same order asthe eigenvalues. The
eigenvectors are not normalized.

ei gcg. src
_eigerr

ei gcg, eigch, eigrg, eigrs

3-217

GAUSS Language Reference

ei gch
el gch
Purpose

Format

Input

Output

Remarks

Source
Globals

See also

Computes the eigenvalues of a complex, hermitian matrix. (Included for
backwards compatibility — use ei gh instead.)

va = ei gch(xr, xi);

Xr NxN matrix, real part.
Xi NxN matrix, imaginary part.
va Nx1 vector, real part of eigenvalues.

_eigerr globa scaar, if al the eigenvalues can be determined
_ei gerr =0, otherwise_ei gerr issettotheindex of the
eigenvalue that failed. The eigenvaluesfor indices 1 to
_ei ger r -1 should be correct.

Error handling is controlled with the low bit of the trap flag.

trap O set_ei gerr andterminate with message
trap 1 set_ei gerr and continue execution

The eigenvalues are in ascending order. The eigenvalues for a complex
hermitian matrix are awaysreal so this procedure returns only one vector.

ei gch. src
_eigerr

ei gch2, eigcg, eigrg, eigrs

3-218

Command Reference

el gch2

Purpose

Format

Input

Output

Remarks

Source
Globals

See also

ei gch2

Computes eigenvalues and eigenvectors of a complex, hermitian matrix.
(Included for backwards compatibility — use ei ghv instead.)

{ var, vai, ver,vel } = eigch2(xr, x);

Xr NxN matrix, real part.

Xi NxN matrix, imaginary part.

var Nx1 vector, real part of eigenvalues.

vai Nx1 vector, imaginary part of eigenvalues.
ver NxN matrix, real part of eigenvectors.

vei NxN matrix, imaginary part of eigenvectors.

_eigerr globa scaar, if al the eigenvalues can be determined
_ei gerr =0, otherwise_ei gerr issettotheindex of the
eigenvalue that failed. The eigenvaluesfor indices 1 to
_ei ger r -1 should be correct. The eigenvectors are not
computed.

Error handling is controlled with the low bit of the trap flag.

trap 0 set_ei gerr and terminate with message
trap 1 set_ei gerr and continue execution

The eigenvalues are in ascending order. The eigenvalues of a complex
hermitian matrix are always real. This procedure returns a vector of zeros
for theimaginary part of the eigenvalues so the syntax is consistent with
other ei gxx procedure calls. The columns of ver and vei contain the real
and imaginary eigenvectors of X in the same order asthe eigenvalues. The
eigenvectors are orthonormal.

ei gch.src
_eigerr

ei gch, eigcg, eigrg, eigrs

3-219

GAUSS Language Reference

ei gh
el gh
Purpose

Format
Input
Output

Remarks

See also

Computes the eigenvalues of a complex hermitian or real symmetric
matrix.

va = eigh(x);
X NXN matrix.
va Nx1 vector, the eigenvalues of x.

If the eigenvalues cannot all be determined, va[1] is set to an error code.
Passing va[1] to thescal er r function will return the index of the
eigenvalue that failed. The eigenvaluesfor indices1to scal er r (va[1])-
1 should be correct.

Error handling is controlled with the low bit of the trap flag.

trap O setva[l] and terminate with message
trap 1 setva[l] and continue execution

The eigenvalues are in ascending order.

The eigenvalues of acomplex hermitian or real symmetric matrix are
aways real.

ei g, eighv, eigv

3-220

Command Reference

el ghv
Purpose

Format
Input

Output

Remarks

See also

ei ghv

Computes eigenvalues and eigenvectors of a complex hermitian or real
symmetric matrix.

{ va,ve } = eighv(X);

X NxN matrix.
va Nx1 vector, the eigenvalues of x.
ve NxN matrix, the eigenvectors of x.

If the eigenvalues cannot al be determined, va[1] is set to an error code.
Passing va[1] to the scal err function will return the index of the
eigenvalue that failed. The eigenvaluesfor indices1to scal err (va[1])-
1 should be correct. The eigenvectors are not computed.

Error handling is controlled with the low bit of the trap flag.

trap O setva[l] and terminate with message
trap 1 setvall] and continue execution

The eigenvalues are in ascending order. The columns of ve contain the
eigenvectors of x in the same order as the eigenvalues. The eigenvectors
are orthonormal.

The eigenvalues of a complex hermitian or real symmetric matrix are
awaysreal.

eig, eigh, eigv

3-221

GAUSS Language Reference

eigrg

el grg

Purpose

Format
Input

Output

Remarks

Example

Computes the eigenvalues of areal, general matrix. (Included for
backwards compatibility — use ei g instead.)

{ var,vai } = eigrg(x;

X NXN matrix.

var Nx1 vector, real part of eigenvalues.

vai Nx1 vector, imaginary part of eigenvalues.

_eigerr globa scaar, if al the eigenvalues can be determined

_ei gerr =0, otherwise_ei gerr issettotheindex of the
eigenvalue that failed. The eigenvalues for indices
_ei gerr+1to N should be correct.

Error handling is controlled with the low bit of the trap flag.

trap O set_ei gerr andterminate with message
trap 1 set_ei gerr and continue execution

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first.

x ={ 12 3,
4i 5+43i 6,
7 8 9 };
{y.n} = eigrg(x);

—6.3836054
2.0816489
10.301956

<
|

7.2292503
—1.4598755
6.2306252

>
I

3-222

Command Reference

eigrg

Source eigrg.src
Globals _eigerr

See also eigrg2, eigcg, eigch, eigrs

3-223

GAUSS Language Reference

ei grg2
el grg2
Purpose

Format
Input

Output

Remarks

Source
Globals

See also

Computes eigenvalues and eigenvectors of areal, general matrix.
(Included for backwards compatibility — use ei gv instead.)

{ var,vai, ver,vei } = eigrg2(x);

X NXN matrix.

var Nx1 vector, real part of eigenvalues.

vai Nx1 vector, imaginary part of eigenvalues.
ver NxN matrix, real part of eigenvectors.

vei NxN matrix, imaginary part of eigenvectors.

_eigerr globa scaar, if al the eigenvalues can be determined
_eigerr =0, otherwise_ei gerr issettotheindex of the
eigenvalue that failed. The eigenvalues for indices
_ei gerr +1to N should be correct. The eigenvectors are
not computed.

Error handling is controlled with the low bit of the trap flag.

trap O set_ei gerr andterminate with message
trap 1 set_ei gerr and continue execution

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first. The columns of ver and vel contain the real
and imaginary eigenvectors of x in the same order asthe eigenvalues. The
eigenvectors are not normalized.

eigrg.src
_eigerr

eigrg, eigcg, eigch, eigrs

3-224

Command Reference

el grs
Purpose

Format
Input

Output

Remarks

Source
Globals

See also

eigrs

Computes the eigenvalues of area, symmetric matrix. (Included for
backwards compatibility — use ei gh instead.)

va = eigrs(x;
X NXN matrix.

va Nx1 vector, eigenvalues of x.

_eigerr globa scaar, if al the eigenvalues can be determined
_ei gerr =0, otherwise _ei gerr issettotheindex of the
eigenvalue that failed. The eigenvaluesfor indices 1 to
_ei ger r-1should be correct.

Error handling is controlled with the low bit of the trap flag.

trap 0 set_ei gerr and terminate with message
trap 1 set_ei gerr and continue execution

The eigenvalues are in ascending order. The eigenvaluesfor area
symmetric matrix are always real so this procedure returns only one
vector.

eigrs.src
_eigerr

eigrs2, eigcg, eigch, eigrg

3-225

GAUSS Language Reference

eigrs2

el grs2

Purpose

Format
Input

Output

Remarks

Source
Globals

See also

Computes eigenvalues and eigenvectors of areal, symmetric matrix.
(Included for backwards compatibility — use ei ghv instead.)

{ va,ve } = eigrs2(x;

X NxN matrix.
va Nx1 vector, eigenvalues of x.
ve NxN matrix, eigenvectors of x.

_eigerr globa scaar, if al the eigenvalues can be determined
_eigerr =0, otherwise_ei gerr issettotheindex of the
eigenvalue that failed. The eigenvalues and eigenvectors for
indices1to _ei gerr -1 should be correct.

Error handling is controlled with the low bit of the trap flag.

trap O set_ei gerr andterminate with message
trap 1 set_ei gerr and continue execution

The eigenvalues are in ascending order. The columns of ve contain the
eigenvectors of x in the same order as the eigenvalues. The eigenvectors
are orthonormal.

The eigenvalues and eigenvectors for areal symmetric matrix are always
real so this procedure returns only the real parts.

eigrs.src
_eigerr

eigrs, eigcg, eigch, eigrg

3-226

Command Reference

el gv
Purpose
Format
Input

Output

Remarks

Example

ei gv

Computes eigenvalues and eigenvectors of a general matrix.

{ va,ve } = eigv(X);

X NxN matrix.
va Nx1 vector, the eigenvalues of x.
ve NxN matrix, the eigenvectors of x.

If the eigenvalues cannot all be determined, va[1] is set to an error code.
Passing va[1] to thescal er r function will return the index of the
eigenvaluethat failed. The eigenvaluesfor indicesscal er r (va[1])+1to
N should be correct. The eigenvectors are not computed.

Error handling is controlled with the low bit of the trap flag.

trap O setva[l] and terminate with message
trap 1 setvall] and continue execution

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first. The columns of ve contain the eigenvectors
of x in the same order as the eigenvalues. The eigenvectors are not
normalized.

x ={ 481,
9 4 2,
557 };
{y,n} = eigv(x);
—4.4979246
Y = 14.475702
5.0222223
—0.66930459 -0.64076622 —0.40145623
n = 0.71335708 —0.72488533 —0.26047487
—0.01915672 —0.91339349 1.6734214

3-227

GAUSS Language Reference

ei gv

See also eig, eigh, eighv

3-228

Command Reference

el apsedTr adi ngDays

el apsedTr adi ngDays

Purpose Compute number of trading days between two datesinclusively.

Format n = el apsedTradi ngDays(a, b);

Input 3 scalar, datein DT scalar format.
b scalar, datein DT scalar format.
Output n number of trading days between dates inclusively, that is,

elapsed time includes the dates a and b.

Remarks A trading day isaweekday that is not a holiday as defined by the New
York Stock Exchange from 1888 through 2004. Holidays are defined in
hol i days. asc. You may edit that file to modify or add holidays.

Source finutils.src

3-229

GAUSS Language Reference

end

end

Purpose Terminatesa program.
Format end;

Remarks end causes GAUSS to revert to interactive mode, and closes all open
files. end aso closesthe auxiliary output file and turnsthe screen on. Itis
not necessary to put an end statement at the end of a program.

An end command can be placed above alabel which begins a subroutine
to make sure that a program does not enter a subroutine without agosub.

stop als_o f[erminatesaprogram but closes no files and leaves the screen
setting asitis.
Example output on;
screen off;
print x;
end;

In thisexample, amatrix X is printed to the auxiliary output. The output to
the screen is turned off to speed up the printing. The end statement is
used to terminate the program so the output file will be closed and the
screen will be turned back on.

See also new, stop, system

3-230

Command Reference

endp

Purpose
Format

Remarks

Example

endp

Closes aprocedure or keyword definition.
endp;

endp marksthe end of a procedure definition that began withapr oc or
keywor d statement. (For details on writing and using procedures, see
“Procedures and Keywords’ in the User’s Guide.)

proc regress(y, X);
retp(inv(x’ x)*x'y);

endp;

X
I

{132 749 116, 332]};
{ 3, 5 2, 71},

<
1

O
1]

regress(y, X);

1.00000000 3.00000000 2.00000000
7.00000000 4.00000000 9.00000000
1.00000000 1.00000000 6.00000000
3.00000000 3.00000000 2.00000000

3.00000000
5.00000000
2.00000000
7.00000000

0.15456890
b= 150276345
—0.12840825

3-231

GAUSS Language Reference

endp

See also proc, keyword, retp

3-232

Command Reference

endw nd

endw nd

Purpose Endsgraphic panel manipulation; display graphswithr er un.
Library pgraph
Format endw nd,

Remarks Thisfunction usesr er un to display the most recently created . t kf file.
Source pw ndow. src

See also begw nd, wi ndow, makew nd, setw nd, nextw nd,
getwi nd

3-233

GAUSS Language Reference

envget

envget

Purpose Searchesthe environment table for a defined name.
Format y = envget(s);
Input s string, the name to be searched for.

Output vy string, the string that corresponds to that name in the
environment or anull string if it is not found.
Example proc dopen(file);
| ocal fnane, fp;
f name = envget (“ DPATH");
if fname $== “”;

fnane = file;

el se;
if strsect(fnane,strlen(fnane),l1l) $== “\\";
fnane = fname $+ file;
el se;
fname = fnanme $+ “\\" $+ file;
endi f;
endi f;
open fp = ~fnane;
retp(fp);
endp;

Thisisan example of aprocedure which will open a datafile using a path
stored in an environment string called DPATH. The procedure returns the
filehandle and is called asfollows:

fp = dopen(“nyfile”);

See also cdir

3-234

Command Reference

eof

Purpose
Format
Input
Output

Remarks

Example

See also

eof

Tests if the end of afile has been reached.

y = eof (fh);
fh scalar, file handle.
y scalar, 1 if end of file has been reached, else 0.

Thisfunction is used with ther eadr and f get sxxx commands to test
for the end of afile.

Theseekr function can be used to set the pointer to a specific row
positionin adata set; thef seek function can be used to set the pointer to
a specific byte offset in a file opened with f open.

open f1 = dat1;
XX = 0;
do until eof(f1);
XX = xx+nmoment (readr (f1, 100), 0);
endo;

In this example, the datafiledat 1. dat is opened and given the handle
f 1. Then the data are read from this data set and are used to create the
moment (x’ x) matrix of the data. On each iteration of the loop, 100
additional rows of data are read in and the moment matrix for this set of
rows is computed, and added to the matrix xx. When all the data have
been read, xx will contain the entire moment matrix for the data set.

GAUSS will keep reading until eof (f 1) returnsthe value 1, which it
will when the end of the data set has been reached. On the last iteration of
the loop, al remaining observations are read in if there are 100 or fewer
left.

open, readr, seekr

3-235

GAUSS Language Reference

eqgSol ve

egSol ve

Purpose Solvesasystem of nonlinear equations

Format { x, retcode } =

eqSol ve(&F, start) ;

Input start Kx1 vector, starting val ues.

&F scalar, a pointer to a procedure which computes the value at x of
the equations to be solved.

Global Input Thefolowing are set by eqsol veset .

_egs_Jacobi anPr oc pointer to a procedure which computes the

_eqs_Mxlters
_egs_StepTol

_eqgs_Typical F

_egs_Typi cal X

_eqgs_lterlnfo

analytical Jacobian. By default, eqSol ve
will compute the Jacobian numerically.

scalar, the maximum number of iterations.
Default = 100.

scalar, the step tolerance.

Default =__macheps”™(2/3).

Kx1 vector of thetypical F(x) valuesat a point
not near aroot, used for scaling. This becomes
important when the magnitudes of the
components of F(x) are expected to be very
different. By default, function values are not
scaled.

Kx1 vector of the typical magnitude of x, used
for scaling. This becomes important when the
magnitudes of the components of x are
expected to be very different. By default,
variable values are not scaled.

scalar, if nonzero, iteration information is
printed. Default = 0.

Thefollowing are set by gausset .

Tol

scalar, the tolerance of the scalar function

f = 0.5*||F(X)|[? required to terminate the
agorithm. Default = 1e-5.

3-236

Command Reference

__altnam

__out put
_title

eqSol ve

Kx1 character vector of alternate namesto be
used by the printed output. By default, the
names X1, X2, X3... or X01, X02, X03
(depending on how __ vpad isset) will be
used.

scalar. If non-zero, final results are printed.

string, a custom title to be printed at the top of
theiterationsreport. By default, only ageneric
title will be printed.

Output x Kx1 vector, solution.
retcode scalar, thereturn code:

1

Norm of the scaled function valueislessthan __ Tol .
X given is an approximate root of F(x) (unless__Tol is
too large).

The scaled distance between the last two stepsis less than
the step-tolerance (_eqs_St epTol). X may be an
approximate root of F(x), but it is also possible that the
agorithm is making very slow progress and is not near a
root, or the step-toleranceistoo large.

The last global step failed to decrease norm2(F(x))
sufficiently; either xis close to aroot of F(x) and no more
accuracy is possible, or an incorrectly coded analytic
Jacobian is being used, or the secant approximation to the
Jacobian isinaccurate, or the step-tolerance istoo large.

Iteration limit exceeded.

Five consecutive steps of maximum step length have been
taken; either norm2(F(x)) asymptotes from aboveto a
finite value in some direction or the maximum step length
istoo small.

X seems to be an approximate local minimizer of

norm2(F(x)) that is not aroot of F(x). To find aroot of
F(x), restart eqSol ve from a different region.

Remarks Theequation procedure should return a column vector containing the
result for each equation. For example:

Equation 1: x172 + x2"2 - 2 =0
Equation 2: exp(x1l-1) + x2"3 - 2 =0

3-237

GAUSS Language Reference

eqgSol ve

proc f(var);

| ocal x1, x2, eqns;

x1
X2
egns[1] = x172 + x2"2 - 2; /* Equation 1 */

var[1];

var|[2] ;

eqns[2] = exp(x1l-1) + x273 - 2; /* Equation
[* 2 *
retp(egns);
endp;

Example eqSol veset;

proc f(x);
|ocal f1,f2,f3;

f1 = 3*x[1]"3 + 2*x[2]"2 + 5*x[3] - 10;
f2 = -x[1]"3 - 3*x[2]"2 + x[3] + 5;
f3 = 3*x[1]"3 + 2*x[2]"2 - 4*X[3];

retp(fl|f2|f3);
endp;

proc fjc(x);

local fjcl,fjc2, fjc3

fjcl = 9*x[1]"2 ~ 4*x[2] ~ 5;
fjc2 = -3*x[1]"2 ~ -6*x[2] ~ 1;
fjc3 = 9*x[1]"2 ~ 4*x[2] ~ -4;
retp(fjcl|fjc2|fjc3);

endp;

3-238

Command Reference

eqSol ve
start = { -1, 12, -1 };
_egs_Jacobi anProc = &fjc;
{ x,tcode } = eqSol ve(&f,start);
Pr oduces
EqSol ve Version 3.2.22 2/ 24/ 97 9:54 am
|[|F(X)||] at final solution: 0. 93699762

Term nati on Code = 1:
Norm of the scal ed function value is |less than

__Tol;
VARI ABLE START ROOTS F(ROOTS)
X1 -1. 00000 0.54144351 4.4175402e- 06
X2 12. 00000 1.4085912 -6.6263102e- 06
X3 -1. 00000 1.1111111 4.4175402e- 06

Source eqsolve.src

3-239

GAUSS Language Reference

eqSol veset

egSol veset

Purpose Setsglobal input used by eqSol ve to default values.
Format eqSol veset;

Global __eqs_Typical X=0
Output .45 Typical F =0
_eqgs_lterinfo =0
__egs_Jacobi anProc =0
__egs_Maxlters =100

__eqgs_StepTol _ macheps”(2/3)

3-240

Command Reference

erf, erfc
erf, erfc
Purpose Computesthe Gaussian error function (er f) and its complement (er f c).
Format vy = erf(x);
y = erfc(x);
Input x NxK matrix.
Output vy NxK matrix.
Remarks Thealowablerangefor xis:
x =20
Theerf and er f ¢ functions are closely related to the Normal
distribution:
(1rer()
Zl1+erfl—]] x=0
2 2
cdfn(x) = 1
—erfc(_—) x<0
2 \/2
Example x = { .5 .4 .3,
.6 .8 .3 };
y = erf(x);
y = 0.52049988 0.42839236 0.32862676

0.60385609 0.74210096 0.32862676
x={ .5.4 .3,
.6 .8 .3 };

erfc(x);

<
1

— 0.47950012 0.57160764 0.67137324
0.39614391 0.25789904 0.67137324

3-241

GAUSS Language Reference

erf, erfc
See also cdfn, cdfnc

Technical erf anderf c arecomputed by summing the appropriate series and
Notes continued fractions. They are accurate to about 10 digits.

3-242

Command Reference

error

Purpose

Format
Input

Output

Remarks

Example

error

Allows the user to generate a user-defined error code which can be tested
quickly withthescal er r function.

y = error(x);
X scalar, in the range 0-65535.

y scalar error code which can be interpreted as an integer
withthescal err function.

The user may assign any number in the range 0-65535 to denote particul ar
error conditions. This number may be tested for as an error code by
scal err.

Thescal err function will return the value of the error code and so is
thereverse of er r or . These user-generated error codes work in the same
way astheintrinsic GAUSS error codes which are generated
automatically whent r ap 1 ison and certain GAUSS functions detect a
numerical error such as a singular matrix.

error (0) isequal tothe missing value code.
proc sym nv(Xx);

| ocal oldtrap,y;

if not x == x';
retp(error(99));
endi f;

oldtrap = trapchk(Oxffff);
trap 1;
y = invpd(x);
if scalerr(y);
y = inv(x);

endi f;

3-243

GAUSS Language Reference

error

trap ol dtrap, Oxffff;
retp(y);
endp;

The procedure symi nv returns error code 99 if the matrix is not
symmetric. If i nvpd fails, it returns error code 20. If i nv falils, it returns
error code 50. The original trap state is restored before the procedure
returns.

See also scalerr, trap, trapchk

3-244

Command Reference

errorl og

errorl og

Purpose
Format
Input

Remarks

Prints an error message to the window and error log file.
errorlog str;

str string, the error message to print.

This function prints to the screen and the error log file.

3-245

GAUSS Language Reference

et days

et days

Purpose Computesthe difference between two times, as generated by the dat e
command, in days.

Format days = et days(tstart, tend) ;

Input tstart 3x1 or 4x1 vector, starting date, in the order: yr, mo, day. (Only
the first 3 elements are used.)

tend 3x1 or 4x1 vector, ending date, in the order: yr, mo, day. (Only
the first 3 eements are used.) MUST be later than tstart.

Output days scalar, elapsed time measured in days.

Remarks Thiswill work correctly acrossleap years and centuries. The assumptions
are a Gregorian calendar with leap years on the years evenly divisible by
4 and not evenly divisible by 400.

Example let datel = 1986 1 2;
| et date2 1987 10 25;
d et days(dat el, dat e2);

d = 661

Source tine.src

See also dayi nyr

3-246

Command Reference

et hsec

et hsec

Purpose Computesthe difference between two times, as generated by the dat e
command, in hundredths of a second.

Format hs = et hsec(tstart, tend) ;

Input tstart 4x1 vector, starti ng date, in the order: yr, mo, day, hundredths of
asecond.

tend 4x1 vector, ending date, in the order: yr, mo, day, hundredths of a
second. MUST be later than tstart.

Output hs scalar, elapsed time measured in hundredths of a second.

Remarks Thiswill work correctly acrossleap years and centuries. The assumptions
are a Gregorian calendar with leap years on the years evenly divisible by
4 and not evenly divisible by 400.

1986 1 2 O;
1987 10 25 O;
t = ethsec(datel, date2);

t = 5711040000

Example let datel
| et date2

Source tine.src

See also dayi nyr

3-247

GAUSS Language Reference

etstr

etstr

Purpose
Format

Input

Output

Example

Source

Formats an elapsed time, measured in hundredths of a second, to a string.
str = et str (tothsecs) ;

tothsecs scalar, an elapsed time measured in hundredths of a second, as
given, for instance, by the et hsec function.

str string containing the elapsed time in the form:
#days #hours #minutes ### seconds

di ={ 86, 1, 2, 0 };

d2 = { 86, 2, 5, 815642 };

t = ethsec(dl, d2);

str = etstr(t);

t = 2.9457564e + 08

str = 34 days 2 hours 15 minutes 56.42 seconds

time.src

3-248

Command Reference

Eur opeanBi nontal |

Eur opeanBi nontCal |

Purpose
Format

Input

Output

Example

European binomial method call.

¢ = EuropeanBi nontCal | (0, K, r, div, tau, sigma, N) ;

Mx1 vector, strike prices
scalar, risk freerate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

D scalar, current price
K
r

trading
sigma scalar, volatility
N number of time segments
c Mx1 vector, call premiums
SO = 718. 46;
K= { 720, 725, 730 };
b = .0498;
r = .0498;

sigma = .2493;
t0 = dtday (2001, 1, 30);
tl dtday (2001, 2, 16);
tau = el apsedTradi ngbays(t0,t1) /
annual Tradi ngDays(2001);
¢ = EuropeanBi nontCal | (SO, K, r, div, tau, sigm,N);

print c;

17.1071
15. 0067

3-249

GAUSS Language Reference

Eur opeanBi nontal |

12. 9064
Source finprocs.src

Technical Thebinomia method of Cox, Ross, and Rubinstein ("Option pricing: a
Notes simplified approach”, Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

3-250

Command Reference

Eur opeanBi nontCal | _G eeks

Eur opeanBi nontCal | _G eeks

Purpose

Format

Input

Output

Example

European binomial method call Delta, Gamma, Theta, Vega and Rho.

{ dgtvrh} =
Eur opeanBi nontCal | _Greeks(90, K, r, div, tau, sigma, N) ;

D scalar, current price

K Mx1 vector, strike price

r scalar, risk freerate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility
N number of time segments
d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
v Mx1 vector, vega
rh Mx1 vector, rho
S0 = 305;
K = 300;
r = .08;
sigma = . 25;
tau = . 33;
N = 30;

{ d,g,t,v,rh } = EuropeanBi nonCal | _G eeks
(S0, K, r,div,tau,sigm,N);

print d;

print g;

print t;

3-251

GAUSS Language Reference

Eur opeanBi nontCal | _G eeks

print v;

print rh;

0.6738
0. 0008
-44. 7874
69. 0880
96. 9225

Source finprocs.src

Globals fin_thetaType scaar, if 1, oneday look ahead, else, infinitesmal.
Default = 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

Technical Thebinomia method of Cox, Ross, and Rubinstein ("Option pricing: a
Notes simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

3-252

Command Reference

Eur opeanBi nontCal | _| npVol

Eur opeanBi nonCal | _| npVol

Purpose

Format

Input

Output

Example

Implied volatilities for European binomia method calls.

sigma =
Eur opeanBi nonCal | _I mpVol (¢, 0, K, r, div, tau, N) ;

c Mx1 vector, call premiums
D scalar, current price

K Mx1 vector, strike prices

r scalar, risk free rate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

N number of time segments

sigma Mx1 vector, volatility

¢ ={ 13.70, 11.90, 9.10 };

SO0 = 718. 46;

K = { 720, 725, 730 };

r = .0498;

t0 = dtday (2001, 1, 30);

tl = dtday (2001, 2, 16);

tau = el apsedTradi ngbays(t0,t1) / annual Tradi ng-
Days(2001);

N = 30;

si gma = EuropeanBi nomCal | _| npVol
(c,S0,K r,div,tau, N;

print signg;

0.1982

3-253

GAUSS Language Reference

Eur opeanBi nontCal | _| npVol

0.1716
0. 1301

Source finprocs.src

Technical Thebinomia method of Cox, Ross, and Rubinstein ("Option pricing: a
Notes simplified approach”, Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

3-254

Command Reference

Eur opeanBi nonPut

Eur opeanBi nonPut

Purpose
Format

Input

Output

Example:

European binomial method Put.

¢ = EuropeanBi nonPut (0, K, r, div, tau, sigma, N) ;

Mx1 vector, strike prices
scalar, risk freerate
div continuous dividend yield
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

D scalar, current price
K
r

trading
sigma scalar, volatility
N number of time segments
c Mx1 vector, put premiums
SO = 718. 46;
K= { 720, 725, 730 };
r = .0498;

sigma = .2493;

t0 = dtday (2001, 1, 30);

tl = dtday (2001, 2, 16);

tau = el apsedTradi ngbays(t0,t1) /
annual Tr adi ngDays(2001);

N = 30;

¢ = EuropeanBi nonPut

(SO,K, r,div,tau, sigm, N);
print c;
16. 6927

3-255

GAUSS Language Reference

Eur opeanBi nonPut

19. 5266
22. 3604

Source finprocs.src

3-256

Command Reference

Eur opeanBi nonPut _ G eeks

Purpose

Format

Input

Output

Example

Eur opeanBi nonPut _Gr eeks

European binomial method put Delta, Gamma, Theta, Vega, and Rho.

{ dgtvrh} =

Eur opeanBi nonPut _Gr eeks(0, K, r, div, tau, sigma, N) ;

D scalar, current price

K Mx1 vector, strike price

r scalar, risk freerate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility
N number of time segments
d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
v Mx1 vector, vega
rh Mx1 vector, rho
S0 = 305;
K = 300;
r = .08;
sigma = . 25;
tau = . 33;
N = 30;

{ d,g,t,v,rh } = EuropeanBi nonPut G eeks

(S0, K, r,div,tau,sigm,N);
print d;
print g;
print t;

3-257

GAUSS Language Reference

Eur opeanBi nonPut _Gr eeks

print v;

print rh;

- 0. 3804
0. 0038
-17.9838
69. 0880
- 33. 7666

Globals _fin_thetaType scaar,if 1, oneday look ahead, else, infinitesmal.
Default = 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.

Source finprocs.src

Technical Thebinomia method of Cox, Ross, and Rubinstein ("Option pricing: a
Notes simplified approach”, Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

3-258

Command Reference

Eur opeanBi nonmPut _| npVol

Eur opeanBi nonPut | npVol

Purpose Implied volétilities for European binomial method puts.
Format sigma = EuropeanBi nonPut _| mpVol (c, 0, K, r, div, tau, N) ;

Input ¢ Mx1 vector, put premiums
D scalar, current price

K Mx1 vector, strike prices

r scalar, risk freerate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

N number of time segments

Output sigma Mx1 vector, volatility

Example: p = { 14.60, 17.10, 20.10 };

SO = 718. 46;
K ={ 720, 725, 730 };

r = .0498;

t0 = dtday (2001, 1, 30);

tl dtday (2001, 2, 16);

tau = el apsedTradi ngDays(t0,t1) /
annual Tr adi ngDays(2001);

N = 30;

si gna = Eur opeanBi nonPut _| npVol
(p,SO,K, r,div,tau, N);

print sigms;

0. 1307

3-259

GAUSS Language Reference

Eur opeanBi nonPut _| npVol

0.1714
0. 2165

Source finprocs.src

Technical Thebinomia method of Cox, Ross, and Rubinstein ("Option pricing: a
Notes simplified approach”, Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

3-260

Command Reference

Eur opeanBSCal |

Eur opeanBSCal |

Purpose European Black and Scholes Call.

Format c¢ = EuropeanBSCal | (0, K, r, div, tau, sigma) ;

Mx1 vector, strike prices
scalar, risk freerate
div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

sigma scalar, volatility

Input 9 scalar, current price
K
r

Output ¢ Mx1 vector, call premiums

Example SO0 = 718. 46;

K ={ 720, 725, 730 };
b = .0498;

r = .0498;

div = 0;

sigma = .2493;
t0 = dtday (2001, 1, 30);
tl = dtday (2001, 2, 16);
tau = el apsedTradi ngDays(t0,t1) /
annual Tradi ngDays(2001);
¢ = EuropeanBSCal | (S0, K, r, di v, tau, signm);

print c;

17. 0975
14. 7583

3-261

GAUSS Language Reference

Eur opeanBSCal |

12. 6496

Source finprocs.src

3-262

Command Reference

Purpose

Format

Input

Output

Example

Eur opeanBSCal | _Gr eeks

Eur opeanBSCal | _ G eeks

European Black and Scholes call Delta, Gamma, Omega, Theta, and

Vega

{ dgtvrh} =

Eur opeanBSCal | _Greeks(90, K, r, div, tau, sigma) ;
D scalar, current price

K Mx1 vector, strike price

r scalar, risk freerate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

sigma scalar, volatility

d Mx1 vector, delta

g Mx1 vector, gamma
t Mx1 vector, theta

\Y Mx1 vector, vega
rh Mx1 vector, rho

S0 = 305;

K = 300;

r = .08;

sigma = . 25;

tau = . 33;

{ d,g,t,v,rh } = EuropeanBSCal | _Gr eeks
(S0, K, r,div,tau, signa);

print d;

print g;

print t;

print v;

3-263

GAUSS Language Reference

Eur opeanBSCal | _Gr eeks

print rh;
0. 6446

0. 0085

- 38. 5054
65. 2563
56. 8720

Source finprocs.src

Globals _fin_thetaType scaar,if 1, oneday look ahead, else, infinitesmal.
Default = 0.

3-264

Command Reference

Eur opeanBSCal | _| mpVol

Eur opeanBSCal | _| npVol

Purpose
Format

Input

Output

Example

Implied volatilities for European Black and Scholes calls.
sigma = EuropeanBSCal | _| npVol (¢, 0, K, r, div, tau) ;

c Mx1 vector, call premiums
D scalar, current price

K Mx1 vector, strike prices

r scalar, risk free rate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

sigma Mx1 vector, volatility

c ={ 13.70, 11.90, 9.10 };

SO = 718. 46;

K={ 720, 725, 730 };

r = .0498;

div = 0;

t0 = dtday (2001, 1, 30);

tl dtday (2001, 2, 16);

tau = el apsedTradi ngDays(t0,t1) /
annual Tr adi ngDays(2001);

si gma = EuropeanBSCal | _I npVol
(c,SO,K r,div,tau);

print signg;

0. 1991
0.1725

3-265

GAUSS Language Reference

Eur opeanBSCal | _| mpVol

0. 1310

Source finprocs.src

3-266

Command Reference

Eur opeanBSPut

Eur opeanBSPut

Purpose European Black and Scholes Put.

Format c¢ = EuropeanBSPut (0, K, r, div, tau, sigma) ;

Mx1 vector, strike prices
scalar, risk freerate
div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

sigma scalar, volatility

Input 9 scalar, current price
K
r

Output ¢ Mx1 vector, put premiums

Example SO0 = 718. 46;
K={ 720, 725, 730 };
r . 0498;

sigma = .2493;

div = 0;

to dtday (2001, 1, 30);

tl dtday (2001, 2, 16);

tau = el apsedTradi ngDays(t0,t1) /
annual Tr adi ngDays(2001);

¢ = EuropeanBSPut (SO, K, r, di v, tau, sigm);

print c;

16. 6403
19. 2872
22.1647

3-267

GAUSS Language Reference

Eur opeanBSPut

Source finprocs.src

3-268

Command Reference

Eur opeanBSPut _Gr eeks

Eur opeanBSPut G eeks

Purpose

Format

Input

Output

Example

European Black and Scholes put Delta, Gamma, Omega, Theta, and Vega.

{ dgtvrh} =
Eur opeanBSPut _Gr eeks(90, K, r, div, tau, sigma) ;

D scalar, current price

K Mx1 vector, strike price

r scalar, risk freerate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

sigma scalar, volatility

d Mx1 vector, delta

g Mx1 vector, gamma
t Mx1 vector, theta

\ Mx1 vector, vega
rh Mx1 vector, rho

S0 = 305;

K = 300;

r = .08;

sigma = . 25;

tau = . 33;

{ d,g,t,v,rh } = EuropeanBSPut G eeks
(SO, K, r,div,tau, sigm);

print d;

print g;

print t;

print v;

3-269

GAUSS Language Reference

Eur opeanBSPut _Gr eeks

print rh;
- 0. 3554
0. 0085

- 15. 1307
65. 2563

- 39. 5486

Source finprocs.src

Globals _fin_thetaType scaar,if 1, oneday look ahead, else, infinitesmal.
Default = 0.

3-270

Command Reference

Eur opeanBSPut _| npVol

Eur opeanBSPut | npVol

Purpose
Format

Input

Output

Example

Source

Implied volatilities for European Black and Scholes puts.
sigma = Eur opeanBSPut | mpVol (¢, 0, K, r, div, tau) ;

c Mx1 vector, put premiums
S scalar, current price

K Mx1 vector, strike prices

r scalar, risk freerate

div continuous dividend yield

tau scalar, elapsed time to exercise in annualized days of
trading

sigma Mx1 vector, volatility

p = { 14.60, 17.10, 20.10 };

SO0 = 718. 46;

K= { 720, 725, 730 };

r = .0498;

t0 = dtday (2001, 1, 30);

t1 = dtday (2001, 2, 16);
tau = el apsedTradi ngbays(t0,t1) /
annual Tr adi ngDays(2001);
si gna = Eur opeanBSPut _I mpVol (p, SO, K, r, di v, tau);

print sigmm;

0.2123
0. 2493
0. 2937

finprocs.src

3-271

GAUSS Language Reference

exct snpl

exct snpl

Purpose
Format

Input

Output

Remarks

Example

Source

Computes a random subsample of a data set.
n = exct snpl (infile, outfile, percent) ;

infile string, the name of the original data set.
outfile string, the name of the data set to be created.

percent scalar, the percentage random sample to take. This must bein
the range 0-100.

n scalar, number of rowsin output data set.

Error returns are controlled by the low bit of the trap flag.
trap O terminate with error message
trap 1 returnscalar negative integer

-1 can't openinput file

-2 can't open output file

-3 diskfull

Random sampling is done with replacement. Thus, an observation may be
in the resulting sample more than once. If percent is 100, the resulting
sample will not be identical to the original sample, though it will be the
same size.

exctsmpl (“freqg.dat”, “rout”, 30);
n =30

freq. dat isan example data set provided with GAUSS. Switching to
the GAUSS examples directory will make it possible to do the above
example as shown. Otherwise substitute data set names will need to be
used.

n

exctsnpl . src

3-272

Command Reference

exec

Purpose
Format

Input

Output

Remarks

Example

exec

Executes an executable program and returns the exit code to GAUSS.
y = exec(program, comline) ;

program string, the name of the program to be executed.

comline string, the arguments to be placed on the command line of
the program being executed.

y the exit code returned by program.

If exec cannot execute program, the error returns will be negative.
-1 filenot found
-2 thefileisnot an executablefile
-3 not enough memory
-4 command line too long

Under Windows, the file can be given an extension or a“.” meaning no
extension. Otherwise the file will be searched for with the following
extensionsin their given order: . com .exe, . bat,. cnd.

y = exec("atog”, “condl.cnd”);
ifoy;
errorlog “atog failed”;
end;
endi f;

In this example, the ATOG ASCII conversion utility is executed under the
exec function. The name of the command file to be used, cond1. cnd,
is passed to ATOG on its command line. The exit codey returned by
exec istested to see if ATOG was successful; if not, the program will be
terminated after printing an error message. See “ Utilities’ in the User
Guide.

3-273

GAUSS Language Reference

exp

exp

Purpose Calculatesthe exponential function.
Format vy = exp(x);
Input x NXK matrix.

Output vy NxK matrix containing e, the base of natural logs, raised to the
powers given by the elements of x.
Example x = eye(3);
y = exp(x);

1.000000 0.000000 0.000000
X = 0.000000 1.000000 0.000000
0.000000 0.000000 1.000000

2.718282 1.000000 1.000000
Y = 1.000000 2.718282 1.000000
1.000000 1.000000 2.718282
This example creates a 3x3 identity matrix and computes the exponential

function for each one of its elements. Note that exp(1) returnse, the
base of natural logs.

Seealso In

3-274

Command Reference

expor t

Purpose
Format

Input

Output

Portability

Remarks

Example

Globals

See also

export

Exports a GAUSS matrix to a spreadsheet, database or ASCI| file.
ret = export (%, fname, namel) ;

X MxK matrix, datato export.
fname string, name of file to export with optional path.
namel Kx1 vector, column names, or scalar O for default column names.

ret scalar, success flag, 1 if successful, O if not.
fname filein the selected format.

Windows only

Setting namel to 0 results in default column names of Var:1 to Var:K.

fnane = “c:\\tenp\\testdata. xls”;
mat x = rndn(7, 4);

| et names = gnp invest pop export;
call export(matx, fnane, names);

Thiswill export the matrix mat x to thefilec: \ t enp\
t estdat a. x| s in Excel format.

If thefirst line had been
fnane = "c:\\tenp\\testdata.dbf";

the file would have been exported in dBase format.

_dxaschdr, _dxftype, _dxmiss, _dxprcn, _dxprint,
_dxtxdlim _dxtype, _dxwi dth, _dxwkshd

exportf, inport, inportf

3-275

GAUSS Language Reference

exportf

exportf

Purpose Exportsa GAUSS data set to a spreadsheet, database, or ASCI| file.
Format ret = exportf (dname fname, namel) ;

Input dname string, name of GAUSS data set with optional path
fname string, name of file to export with optional path.
namel Kx1 vector, column names, or O for all columns.

Output ret scalar, success flag, 1 if successful, 0 if not.
fname filein the specified format.

Portability = Windowsonly

Remarks Thecolumnsof the data set listed in namel will be exported. If namel isO,
the entire data set will be exported.

Example dnanme = “c:\\gauss\\data\\nydata. dat”;
“c:\\tenp\\testdata2. wkl";

f name
call exportf(dnanme, fnane, 0);

Thiswill export the data set dname to thefilec: \ t enp\
t est dat a2. wk1 in Lotusformat.

Globals _dxaschdr, _dxftype, _dxm ss, _dxprcn, _dxprint,
_dxtxdlim _dxtype, _dxwi dth, _dxwkshdr

See also export, inport, inportf

3-276

Command Reference

extern (datal oop)

extern (datal oop)

Purpose
Format

Remarks

Example

Allows access to matrices or strings in memory from inside a data loop.
ext ern variable list;

Commasin variable list are optional.

ext er n tellsthe translator not to generate local code for the listed
variables, and not to assume they are elements of the input data set.

ext er n statements should be placed before any reference to the symbols
listed. The specified names should not exist in the input data set, or be
used in anmake statement.

This example shows how to assign the contents of an external vector to a
new variable in the data set, by iteratively assigning a range of elements
to thevariable. Thereserved variable x_x containsthe dataread from the
input data set on each iteration. The external vector must have at least as
many rows as the data set.

base = 1; [/* used to index a range of elenents
/* from exvec */
dat al oop ol data newdat a;
extern base, exvec;
meke ndvar = exvec|[seqa(base, 1,rows(x _x))];
/* execute command literally */
base = base + rows(x_Xx);

endat a;

3-277

GAUSS Language Reference

ext er nal

ext er nal

Purpose Letsthe compiler know about symbolsthat are referenced above or in a
separate file from their definitions.

Format external proc dog, cat;
external keyword dog;
external fn dog;
external matrix XY, z
external string mstr, cstr;

Remarks See“Procedures and Keywords’ in the User’s Guide.

You may have several proceduresin different filesthat reference the same
global variable. By placing an ext er nal statement at the top of each
file, you can let the compiler know if the symbol isamatrix, string, or
procedure. If the symboal is listed and strongly typed in an active library,
no ext er nal statement is needed.

If amatrix or string appearsinanext er nal statement it needs to appear
onceinadecl! ar e statement. If no declaration isfound, an
Undef i ned synbol error will result.

Example Thegeneral eigenvalue procedure, ei gr g, setsaglobal variable
_ei gerr if it cannot compute all of the eigenvalues.

external matrix _eigerr;

X = rndn(4,4);

Xi = inv(x);

xev = eigrg(x);

if _eigerr;
print “Ei genval ues not conputed”’;
end;

endi f;

Without the ext er nal statement, the compiler would assume that
_ei ger r wasaprocedure and incorrectly compile this program. Thefile

3-278

Command Reference

See also

ext er nal

containing the ei gr g procedure also contains an external statement that
defines_ei ger r asamatrix, but thiswould not be encountered until the
i f statement containing the referenceto _ei ger r inthe main program
file had already been incorrectly compiled.

decl are

3-279

GAUSS Language Reference

eye

Purpose Createsan identity matrix.
Format vy = eye(n);
Input n scalar, size of identity matrix to be created.

Output vy NxN identity matrix.

Remarks If nisnot aninteger, it will be truncated to an integer.

The matrix created will contain 1's down the diagonal and 0’'s everywhere
else.

Example x = eye(3);

1.000000 0.000000 0.000000
X = 0.000000 1.000000 0.000000
0.000000 0.000000 1.000000

See also zeros, ones

3-280

Command Reference

f checkerr

f checkerr

Purpose
Format
Input
Output

Remarks

Gets the error status of afile.
err = fcheckerr (f);
f scalar, file handle of afile opened with f open.

err scalar, error status.

If there has been aread or write error on afile, f checker r returns 1,
otherwise 0.

If you passf checker r the handle of afile opened with open (i.e, a
data set or matrix file), your program will terminate with afatal error.

3-281

GAUSS Language Reference

fclearerr

fclearerr

Purpose
Format
Input
Output

Remarks

Gets the error status of afile, then clearsit.
er = fclearerr(f);
f scalar, file handle of afile opened with f open.

err scalar, error status.

Each file has an error flag that is set when thereisan 1/0 error on thefile.
Typically, once thisflag is set, you can no longer do I/O on the file, even
if the error isarecoverable one. f cl ear er r clearsthefile'serror flag,
and you can attempt to continue using it.

If there has been aread or write error on afile, f cl ear err returns 1,
otherwise 0.

If you passf cl ear er r the handle of afile opened with open (i.e, a
data set or matrix file), your program will terminate with afatal error.

Theflag accessed by f cl ear er r isnot the same as that accessed by
fstrerror.

3-282

Command Reference

feq, fge,

Purpose

Format

Input

Global Input

Output

Remarks

Example

feq, fge, fgt, fle, flt, fne

fgt, fle, flt, fne

Fuzzy comparison functions. These functionsuse _f cnpt ol to fuzz the
comparison operations to allow for roundoff error.

= feq(a, b);
= fge(a, b);
= fgt(a b);
= fle(a b);
=flt(a b);
= fne(a b);

KK KK K
I

Q

NxK matrix, first matrix.
LxM matrix, second matrix, EXE compatible with a.

lon

_fcnpt ol global scalar, comparison tolerance. The default value is
1.0e-15.

y scalar, 1 (true) or O (false).

Thereturn value istrue if every comparison istrue.
The statement:
y = feq(a, b);
isequivalent to:
y = aeqb;
The calling program can reset _f cnpt ol before calling these
procedures.
_fcnptol = le-12;

X = rndu(2, 2);
y = rndu(2, 2);
t = fge(x,y);

3-283

GAUSS Language Reference

feq, fge, fgt, fle, flt, fne

0.0382895 0.07253527
0.01471395 0.96863611

X =

0.25622293 0.70636474
0.00361912 0.35913385

t = 0.0000000

Source fconpare.src
Globals _fcnptol

See also dotfeq-dotfne

3-284

Command Reference

fflush

fflush

Purpose Flushesafile's output buffer.
Format ret = fflush(f);
Input scalar, file handle of afile opened with f open.
Output ret scalar, 0 if successful, -1 if not.

Remarks If fflush fails, youcancall f strerror tofind out why.

If you passf f | ush the handle of afile opened with open (i.e., adata set
or matrix file), your program will terminate with afatal error.

3-285

GAUSS Language Reference

fft

fft

Purpose
Format
Input

Output

Remarks

Example

See also

Computes a 1- or 2-D Fast Fourier transform.
y = fft(x);
X NxK matrix.

y LxM matrix, where L and M are the smallest powersof 2 greater
than or equal to N and K, respectively.

This computesthe FFT of x, scaled by 1/N.

This uses a Temperton Fast Fourier algorithm.

If N or K isnot apower of 2, x will be padded out with zeros before
computing the transform.

x = { 22 24,
23 25};

fft(x);

<
1

— 23.500000 -1.000000
—0.5000000 0.00000000

ffti, rfft, rffti

3-286

Command Reference

ffti

ffti

Purpose Computesan inverse 1- or 2-D Fast Fourier transform.
Format vy = ffti(x);
Input x NXK matrix.

Output vy LxM matrix, where L and M are the smallest prime factor
products greater than or equal to N and K, respectively.

Remarks Computestheinverse FFT of x, scaled by 1/N.
This uses a Temperton prime factor Fast Fourier algorithm.

Example x { 22 24,
23 25};

fft(x);

<
1

23.500000 —1.000000
—0.500000 0.0000000

fi = fftiy);

fi = 22.000000 24.000000
23.000000 25.000000

See also fft, rfft, rffti

3-287

GAUSS Language Reference

fftm

fftm

Purpose
Format

Input

Output

Remarks

Computes a multi-dimensional FFT.
y = fftm(x dim);

X Mx1 vector, data.
dim Kx1 vector, size of each dimension.

y Lx1 vector, FFT of x.

The multi-dimensional data arelaid out in arecursive or heirarchical
fashion in the vector x. That isto say, the elements of any given
dimension are stored in sequence | eft to right within the vector, with each
element containing a sequence of elements of the next smaller dimension.
In abstract terms, a4-dimensional 2x2x2x2 hypercubic x would consist of
two cubes in sequence, each cube containing two matrices in sequence,
each matrix containing two rows in sequence, and each row containing
two columns in sequence. Visually, x would look something like this:

Xhyper = Xcubel | Xcube2
Xeubel = Xmatt | Xmat2
Xmat1 = Xrowt | Xrow2
Xrowmt = Xeolr | Xeol2

Or, in an extended GAUSS notation, x would be;

Xnyper =x[1,.,.,. 1 | x[2,.,.,. 1;
Xcubel = x[1,1,.,. 1 | x[1,2,.,. 1;
Xmatl = x[1,1,1,. 1 | x[1,1,2,. 1];
Xrowdl =x[1,1,1,1 1 | x[1,1,1,2];

To be explicit, x would be laid out like this:

x[1,1,1,1] x[1,1,1,2] x[1,1,2,1] x[1,1,2,2]
x[1,2,1,1] x[1,2,1,2] x[1,2,2,1] Xx[1,2,2,2]
x[2,1,1,1] x[2,1,1,2] x[2,1,2,1] x[2,1,2,2]
x[2,2,1,1] x[2,2,1,2] x[2,2,2,1] x[2,2,2,2]

3-288

Command Reference

fftm

If you look at the last diagram for the layout of x you'll notice that each
line actually constitutes the elements of an ordinary matrix in normal
row-major order. Thisis easy to achieve with vecr . Further, each pair of
lines or “matrices’ constitutes one of the desired cubes, again with all the
elementsin the correct order. And finally, the two cubes combine to form
the hypercube. So, the process of construction is simply a sequence of
concatenations of column vectors, with avecr step if necessary to get
started.

Here's an exampl e, this time working with a 2x3x2x3 hypercube.
let dim=2 3 2 3;

let x1[2,3] =1 2 3 4 5 6;
let x2[2,3] =654 3 2 1;
let x3[2,3] =12 35 7 11,

xcl = vecr(x1)|vecr(x2)]|vecr(x3); /* cube 1 */

let x1 =112 35 8§;

let x2 =12 6 24 120 720;

let x3 = 13 17 19 23 29 31;

xc2 = x1| x2| x3; /* cube 2 */
xh = xcl]| xc2; /* hypercube */

xhfft = fftm(xh, dimnm;

let dim =2 4 2 4;
xhffti = fftm (xhfft,dim);

We left out thevecr step for the 2" cube. It's not really necessary when
you' re constructing the matriceswith | et statements.

di mcontains the dimensions of x, beginning with the highest dimension.
The last element of di misthe number of columns, the next to the last
element of di misthe number of rows, and so on. Thus

3-289

GAUSS Language Reference

fftm

dm={ 2, 3, 3};

indicates that the datain x is a 2x3x3 three-dimensional array, i.e., two
3x3 matrices of data. Suppose that x 1 isthe first 3x3 matrix and x2 the
second 3x3 matrix, thenx = vecr(x1) | vecr(x2).

The size of di mtellsyou how many dimensions x has.

The arrays have to be padded in each dimension to the nearest power of
two. Thus the output array can be larger than the input array. In the
2x3x2x3 hypercube example, x would be padded from 2x3x2x3 out to
2x4x2x4. The input vector would contain 36 elements, while the output
vector would contain 64 elements. You may have noticed that we used a
di m with padded values at the end of the example to check our answer.

Source fftmsrc

See also fftm, fft, ffti, fftn

3-290

Command Reference

fftm

Purpose
Format

Input

Output

Remarks

fftm

Computes a multi-dimensional inverse FFT.
y = fftm (x dim);

X Mx1 vector, data.
dim Kx1 vector, size of each dimension.

y Lx1 vector, inverse FFT of x.

The multi-dimensional data arelaid out in arecursive or heirarchical
fashion in the vector x. That isto say, the elements of any given
dimension are stored in sequence | eft to right within the vector, with each
element containing a sequence of elements of the next smaller dimension.
In abstract terms, a4-dimensional 2x2x2x2 hypercubic x would consist of
two cubes in sequence, each cube containing two matrices in sequence,
each matrix containing two rows in sequence, and each row containing
two columns in sequence. Visually, x would look something like this:

Xhyper = Xcubel | Xcube2
Xcubel = Xmat1 | Xmat2
Xmat1 = Xrowt | Xrow2
Xrowt = Xeol1 | Xeol2

Or, in an extended GAUSS notation, x would be;

Xnyper =x[1,.,.,. 1 | x[2,.,.,. 1;
Xcubel = x[1,1,.,. 1 | x[1,2,.,. 1;
Xmatl = x[1,1,1,. 1 | x[1,1,2,. 1];
Xrowdl =x[1,1,1,1 1 | x[1,1,1,2];

To be explicit, x would be laid out like this:

x[1,1,1,1] x[1,1,1,2] x[1,1,2,1] x[1,1,2,2]
x[1,2,1,1] x[1,2,1,2] x[1,2,2,1] Xx[1,2,2,2]
x[2,1,1,1] x[2,1,1,2] x[2,1,2,1] x[2,1,2,2]
x[2,2,1,1] x[2,2,1,2] x[2,2,2,1] x[2,2,2,2]

3-291

GAUSS Language Reference

fftm

If you look at the last diagram for the layout of x you'll notice that each
line actually constitutes the elements of an ordinary matrix in normal
row-major order. Thisis easy to achieve with vecr . Further, each pair of
lines or “matrices’ constitutes one of the desired cubes, again with all the
elementsin the correct order. And finally, the two cubes combine to form
the hypercube. So, the process of construction is simply a sequence of
concatenations of column vectors, with avecr step if necessary to get
started.

Here's an exampl e, this time working with a 2x3x2x3 hypercube.
let dim=2 3 2 3;

12345 6;
6 54321,
12357 11,

vecr (x1) | vecr(x2)]| vecr(x3);

let x1[2, 3]
x2[2, 3]

x3[2, 3]

| et

| et

xcl = /* cube 1 */

x1
X2
X3

112358§;
126 24 120 720;
13 17 19 23 29 31;
x1| x2| x3;

| et

| et

| et

Xc?2 /* cube 2 */

xh
xhffti

xcl| xc2;
= fftm (xh,dim;

/* hypercube */

We left out thevecr step for the 2" cube. It's not really necessary when
you' re constructing the matriceswith | et statements.

di mcontains the dimensions of x, beginning with the highest dimension.
Thelast element of di misthe number of columns, the next to the last
element of di misthe number of rows, and so on. Thus

dm={ 2, 3, 31};

indicates that the datain x is a 2x3x3 three-dimensional array, i.e., two
3x3 matrices of data. Suppose that x 1 is the first 3x3 matrix and x 2 the
second 3x3 matrix, then x vecr(x1l) | vecr(x2).

3-292

Command Reference

Source

See also

fftm

The size of di mtellsyou how many dimensions x has.

The arrays have to be padded in each dimension to the nearest power of
two. Thus the output array can be larger than the input array. In the
2x3x2x3 hypercube example, x would be padded from 2x3x2x3 out to
2x4x2x4. The input vector would contain 36 elements, while the output
vector would contain 64 elements.

fftmsrc

fftm, fft, ffti, fftn

3-293

GAUSS Language Reference

fftn

fftn

Purpose
Format
Input

Output

Remarks

See also

Computes a complex 1- or 2-D FFT.

y = fftn(x);
X NxK matrix.
y LxM matrix, where L and M are the smallest prime factor

products greater than or equal to N and K, respectively.

f f t n usesthe Temperton prime factor FFT algorithm. This algorithm
can compute the FFT of any vector or matrix whose dimensions can be
expressed as the product of selected prime number factors. GAUSS
implements the Temperton algorithm for any power of 2, 3, and 5, and
onefactor of 7. Thus, f f t n can handle any matrix whose dimensions can
be expressed as

2Px39x 5" x 75, p,q,r nonnegative integers
s=0or1l

If adimension of x does not meet this requirement, it will be padded with
zeros to the next allowabl e size before the FFT is computed.

f f t n pads matrices to the next alowable dimensions; however, it
generally runs faster for matrices whose dimensions are highly composite
numbers, i.e., products of several factors (to various powers), rather than
powers of asingle factor. For example, even though it is bigger, a
33600x1 vector can compute as much as 20% faster than a 32768x1

vector, because 33600 is a highly composite number, 26 x 3x 52 x 7,

whereas 32768 is asimple power of 2, 212, For this reason, you may want
to hand-pad matrices to optimum dimensions before passing them to

f f t n. The Run-Time Library includes aroutine, opt n, for determining
optimum dimensions.

The Run-Time Library also includes the next n routine, for determining
allowable dimensions for a matrix. (You can use thisto see the
dimensionsto which f f t n would pad a matrix.)

f f t n scalesthe computed FFT by 1/(L*M).

ffti, fftm fftm, rfft, rffti, rfftip,

fft,
rfftn, rfftnp, rfftp

f
f

3-294

Command Reference

fgets

Purpose
Format

Input

Output

Remarks

fgets

Reads aline of text from afile.
str = fgets(f, maxsize) ;

f scalar, file handle of afile opened with f open.

maxsize scalar, maximum size of string to read in, including the
terminating null byte.

str string.

f get s readstext from afileinto astring. It reads up to anewline, the end
of thefile, or maxsize-1 characters. Theresult is placed in str, which is
then terminated with anull byte. The newline, if present, is retained.

If thefileisalready at end-of-file when you call f get s, your program
will terminate with an error. Use eof in conjunction with f get s to
avoid this.

If the file was opened for update (seef open) and you are switching from
writing to reading, don’'t forget to call f seek or f f | ush first, to flush
the file's buffer.

If you passf get s the handle of afile opened with open (i.e., adata set
or matrix file), your program will terminate with afatal error.

3-295

GAUSS Language Reference

f get sa

f get sa

Purpose
Format

Input

Output

Remarks

Reads lines of text from afileinto a string array.
sa = fgetsa(f, numl);

f scalar, file handle of afile opened with f open.
numl scalar, number of linesto read.

sa Nx1 string array, N < numl.

f get sa readsup to numl lines of text. If f get sa reaches the end of the
file before reading numl lines, sa will be shortened. Lines areread in the
same manner asf get s, except that no limit is placed on the size of a
line. Thus, f get sa always returns complete lines of text. Newlines are
retained. If numl is1, f get sa returnsastring. (Thisis oneway to read a
line from afile without placing alimit on the length of theline.)

If thefileisaready at end-of-file when you call f get sa, your program
will terminate with an error. Use eof in conjunction with f get sa to
avoid this. If the file was opened for update (seef open) and you are
switching from writing to reading, don’'t forget to call f seek orf f | ush
firgt, to flush the file's buffer.

If you passf get sa the handle of afile opened with open (i.e., adata set
or matrix file), your program will terminate with afatal error.

3-296

Command Reference

f get sat

Purpose
Format

Input

Output

Remarks

f get sat

Reads lines of text from afileinto a string array.
sa = fgetsat (f, numl);

f scalar, file handle of afile opened with f open.
numl scalar, number of linesto read.

sa Nx1 string array, N < numl.

f get sat operatesidentically to f get sa, except that newlines are not
retained astext isread into sa.

In general, you don't want to use f get sat on files opened in binary
mode (seef open). f get sat dropsthe newlines, but it does NOT drop
the carriage returns that precede them on some platforms. Printing out
such astring array can produce unexpected results.

3-297

GAUSS Language Reference

f get st

f get st

Purpose
Format

Input

Output

Remarks

Reads aline of text from afile.
str = f get st (f, maxsize) ;

f scalar, file handle of afile opened with f open.

maxsize scalar, maximum size of string to read in, including the null
terminating byte.

str string.

f get st operatesidenticaly tof get s, except that the newlineis not
retained in the string.

In general, you don't want touse f get st on files opened in binary mode
(seef open). f get st dropsthe newline, but it does NOT drop the
preceding carriage return used on some platforms. Printing out such a
string can produce unexpected results.

3-298

Command Reference

fileinfo

fileinfo

Purpose
Format

Input

Output

Returns names and information for files that match a specification.
{ fnames, finfo } = fil ei nfo(fspec);

fspec string, file specification. Can include path. Wildcards are
allowed in the filename.

fnames Nx1string array of all filenamesthat match, null string if none

are found.
finfo Nx13 matrix, information about matching files.
UNIX
[N, 1] filesystemID
[N, 2] inodenumber
[N, 3] modebit mask
[N, 4] number of links
[N, 5] userID
[N, 6] grouplID
[N, 7] devicelD (char/block special files
only)
[N, 8] sizeinbytes
[N, 9] lastaccesstime
[N, 10] last data modification time
[N, 11] lastfile status changetime
[N, 12] preferred 1/O block size
[N, 13] number of 512-byte blocks allocated
0S/2, Windows
[N, 1] drivenumber (A=0,B =1, etc.)
[N, 2] n/a0

[N, 3] modebit mask
[N, 4] number of links, aways 1

[N, 5] n/a0
[N, 6] n/a0
[N, 7] n/a0

[N, 8] sizeinbytes

3-299

GAUSS Language Reference

fileinfo

[N, 9] Ilastaccesstime
[N, 10] last datamodificationtime
[N, 11] creationtime
[N, 12] n/a 0
[N, 13] n/a0
DOS
[N, 1] drivenumber (A=0,B =1, etc.)
[N, 2] n/a0
[N, 3] modebit mask
[N, 4] number of links, dways 1

[N, 5] n/a0

[N, 6] n/a0

[N, 7] n/a0

[N, 8] sizeinbytes

[N, 9] n/a0

[N, 10] last data modification time
[N, 11] n/a0

[N 12] n/a0

[N, 13] n/a0

finfo will be ascalar zero if no matches are found.

Remarks fnameswill contain file names only; any path information that was passed
is dropped.

The time stamp fields (finfo[N,9]-[N,11]) are expressed as the number of
seconds since midnight, Jan. 1, 1970, Coordinated Universal Time
(UTC).

See also files, filesa

3-300

Command Reference

filesa

Purpose
Format

Input
Output

Remarks

Example

See also

filesa
Returns astring array of file names.
y = filesa(n);
n string, file specification to search for. Can include path.
Wildcards are allowed in the filename.
y Nx1 string array of all filenamesthat match, or null string if none

are found.

y will contain file names only; any path information that was passed is
dropped.

y = filesa(“ch*");

In this example al fileslisted in the current directory that begin with “ch”
will be returned.

proc exist(filenane);
retp(not filesa(filenane) $== “");
endp;

This procedure will return 1 if the file exists or O if not.

fileinfo, files, shell

3-301

GAUSS Language Reference

fl oor

floor

Purpose Roundsdown toward -co.
Format y = floor(x);
Input x NXK matrix.
Output vy NxK matrix containing the elements of x rounded down.

Remarks Thisrounds every element in the matrix x down to the nearest integer.

Example x 100*rndn(2, 2);

77.68 -14.10
4.73 —158.88

f = floor(x);

¢ = 7700 -15.00
4.00 —159.00

See also ceil, round, trunc

3-302

Command Reference

f nod

Purpose
Format

Input

Output

Remarks

Example

f nod

Computes the floating-point remainder of x/y.

r = frod(xy);

X NxK matrix.

y LxM matrix, EXE conformable with x.
r max(N,L) by max(K,M) matrix.

Returns the floating-point remainder r of x/y such that x =iy + r, wherei is
an integer, r hasthe same sign as x, and |r| < |y|.

Compare this with % the modul o division operator. (See “Operators’ in
the User’s Guide.)

X = sega(l.7,2.3,5)";
y = 2
r = frod(x,y);

X
|

17 4 63 86 109

r= 17 0 03 06 09

3-303

GAUSS Language Reference

fn

fn

Purpose Allowsuser to create one-line functions.
Format fn fn_name(args) = code for_function;
Remarks Functions can be caled in the same way as other procedures.

Example fn area(r) = pi*r*r;

a = area(4),

50.265482

a

3-304

Command Reference

fonts
fonts
Purpose Loadsfontsto be used in the graph.
Library pgraph
Format fonts(str);
Input s string or character vector containing the names of fonts to be
used in the plot.

Simplex standard sans serif font.
Simgrma Simplex Greek, math.
Microb bold and boxy.
Complex standard font with serif.

Thefirst font specified will be used for the axes numbers.

If strisanull string, or f ont s isnot called, Simplex isloaded
by default.

Remarks For information on how to select fonts within atext string, see
“Publication Quality Graphicsin the User’s Guide.

Source pgraph.src

See also title, xlabel, ylabel, zlabel

3-305

GAUSS Language Reference

f open

f open

Purpose Opensafile.
Format f = fopen(filename, omode) ;

Input filename string, name of file to open.
omode string, file 1/0 mode. (See Remarks, below.)

Output scalar, file handle.

Portability UNIX

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX anewlineis simply alinefeed.

Remarks filename can contain a path specification.

omode is a sequence of characters that specify the mode in which to open
thefile. The first character must be one of:

r Open an existing file for reading. If the file does not exist,
f open falils.

w Open or create afile for writing. If the file already exists, its
current contents will be destroyed.

a Open or create afile for appending. All output is appended to the
end of thefile.

To this can be appended a + and/or ab. The + indicates the fileisto
opened for reading and writing, or update, as follows:

r+ Open an existing file for update. You can read from or write to
any location in the file. If the file does not exist, f open fails.

WH Open or create afile for update. You can read from or write to
any location in thefile. If thefile already exists, its current
contents will be destroyed.

a+ Open or create afile for update. You can read from any location
in the file, but all output will be appended to the end of thefile.

Finally, the b indicates whether the file is to be opened in text or binary
mode. If thefileisopened in binary mode, the contents of the file areread
verbatim; likewise, anything output to the file is written verbatim. In text
mode (the default), carriage return-linefeed sequences are converted on

3-306

Command Reference

f open

input to linefeeds, or newlines. Likewise on output, newlines are
converted to carriage return-linefeeds. Also in text mode, if a CTRL-Z
(char 26) is encountered during aread, it isinterpreted as an end-of-file
character, and reading ceases. In binary mode, CTRL-Z isread in
uninterpreted.

The order of + and b is not significant; r b+ and r +b mean the same
thing.

You can both read from and write to a file opened for update. However,
before switching from oneto the other, you must make an f seek or
f f 1 ush call, to flush the file's buffer.

If f open fails, it returnsaO.
Usecl ose andcl oseal | toclosefiles opened with f open.

3-307

GAUSS Language Reference

for

for

Purpose

Format

Input

Remarks

Example

Beginsaf or loop.

for i (sart, stop, step);

endf or;

i literal, the name of the counter variable.

start scalar expression, theinitial value of the counter.
stop scalar expression, the final value of the counter.
step scalar expression, the increment value.

The counter is strictly local to the loop. The expressions start, stop, and
step are evaluated only once when the loop initializes. They are converted
to integers and stored local to the loop.

Thef or loop isoptimized for speed and is much faster than ado loop.

The commands br eak and cont i nue are supported. Thecont i nue
command steps the counter and jumps to the top of the loop. The br eak
command terminates the current loop.

The loop terminates when the value of i exceeds stop. If br eak isused to
terminate the loop and you want thefinal value of the counter, you need to
assign it to avariable before the br eak statement (see the third example,
following).

Example 1
X = zeros(10, 5);
for i (1, rows(x), 1);
for j (1, cols(x), 1);
x[i,j] = i*j;
endf or;

endf or;

3-308

Command Reference

f or

Example 2
X = rndn(3, 3);
y = rndn(3, 3);
for i (1, rows(x), 1);
for j (1, cols(x), 1);
ifox[i gl 2yl gl
conti nue;
endi f;
tenp = x[i,j];
x[i,)] = yli,jl;
yli.j] = tenp;
endf or;

endf or;

Example 3

i = 0;

X rndn(100, 1) ;

y rndn(100, 1);

for i (1, rows(x), 1);
ifox[i] /= y[i];

br eak;
endi f;
endf or;
if li;
print “Conpare failed on row” |i;

endi f;

3-309

GAUSS Language Reference

f or mat

f or mat

Purpose Controlsthe format of matrices and numbers printed out with pri nt or
| print statements.

Format format [/ typ] [/ fmted] [/ mf] [/ jnt] [f, d;

Input jtyp literal, symbol type flag(s). Indicate which symbol types you are
setting the output format for.

/mat, /sa, /str Formatting parametersare maintained
separately for matrices (/ mat), string
arrays (/ sa), and strings (/ st r). You
can specify more than one /typ flag; the
format will be set for al typesindicated.
If no /typ flag islisted, format assumes

/ mat .
/fmted literal, enable formatting flag.
/on, [off Enable/disable formatting. When

formatting is disabled, the contents of a
variable are dumped to the window in a
“raw” format. / of f iscurrently
supported only for strings. Raw format
for strings meansthat the entire string is
printed, starting at the current cursor
position. When formatting is enabled
for strings, they are handled the same as
string arrays. This shouldn’t be too
surprising, since astring is actually a
1x1 string array.

Imf literal, matrix row format flag.

/ 0 no delimiters before or after rows when
printing out matrices.
[ml or /nbl print 1 carriage return/line feed pair

before each row of amatrix with more
than 1 row.

/2 or /b2 print 2 carriage return/line feed pairs
before each row of amatrix with more
than 1 row.

/8 or /b3 print “Row 17, “Row 2"... before each
row of amatrix with more than one row.

3-310

Command Reference

/int

/ mal

/ ma2

/al

/a2

/bl

/ b2

/ b3

f or mat

print 1 carriage return/line feed pair
after each row of amatrix with more
than 1 row.

print 2 carriage return/line feed pairs
after each row of amatrix with more
than 1 row.

print 1 carriage return/line feed pair
after each row of amatrix.

print 2 carriage return/line feed pairs
after each row of amatrix.

print 1 carriage return/line feed pair
before each row of a matrix.

print 2 carriage return/line feed pairs
before each row of a matrix.

print “Row 17, “Row 2"... before each
row of amatrix.

literal, matrix element format flag controls justification,
notation and trailing character.

Right-Justified
/rd

/lre

Signed decimal number in the form

[#HH4 ##HE, where ##H##E IS one or
more decimal digits. The number of
digits before the decimal point depends
on the magnitude of the number, and the
number of digits after the decimal point
depends on the precision. If the
precision is0, no decimal point will be
printed.

Signed number in the form

[#HH A, where # is one decimal
digit, ## is one or more decimal digits
depending on the precision, and ### is
three decimal digits. If precisionisO,
the form will be []] #Ex### with no
decimal point printed.

3-311

GAUSS Language Reference

f or mat

/ro

[rz

L eft-Justified
/1d

Thiswill giveaformat like/ rdor/re
depending on which is most compact
for the number being printed. A format
like/ r e will be used only if the
exponent value islessthan -4 or greater
than the precision. If a/ r e format is
used, adecimal point will always
appear. The precision signifies the
number of significant digits displayed.

Thiswill giveaformat like/rdor/ re
depending on which is most compact
for the number being printed. A format
like/ r e will be used only if the
exponent valueislessthan -4 or greater
than the precision. If a/ r e format is
used, trailing zeros will be supressed
and adecimal point will appear only if
one or more digits follow it. The
precision signifies the number of
significant digits displayed.

Signed decimal number in the form [[]
HitHE HHHE, where ###H is one or more
decimal digits. The number of digits
before the decimal point depends on the
magnitude of the number, and the
number of digits after the decimal point
depends on the precision. If the
precision is 0, no decimal point will be
printed. If the number is positive, a
space character will replace the leading
minus sign.

Signed number in the form [

#HEHHHHE, where # is one decimal
digit, ## is one or more decimal digits
depending on the precision, and ### is
three decimal digits. If precisionisO,
the form will be [#Ex### with no
decimal point printed. If the number is
positive, a space character will replace
the leading minus sign.

3-312

Command Reference

f or mat

/1o Thiswill giveaformat like/ I dor/ | e
depending on which is most compact
for the number being printed. A format
like/ | e will be used only if the
exponent value isless than -4 or greater
than the precision. If a/ | e format is
used, adecimal point will always
appear. If the number is positive, a
space character will replace the leading
minus sign. The precision specifies the
number of significant digits displayed.

Iz Thiswill giveaformat like/ I dor/ | e
depending on which is most compact
for the number being printed. A format
like/ | e will be used only if the
exponent valueislessthan -4 or greater
than the precision. If a/ | e format is
used, trailing zeros will be supressed
and adecimal point will appear only if
one or more digits follow it. If the
number is positive, a space character
will replace the leading minus sign. The
precision specifies the number of
significant digits displayed.

Trailing Character

The following characters can be added to the /jnt parameters
above to control the trailing character if any:

format /rdn 1, 3;

s The number will be followed
immediately by a space character. This
is the default.

c The number will be followed
immediately by a comma.

t The number will be followed
immediately by atab character.

n No trailing character.

f scalar expression, controls the field width.
p scalar expression, controls the precision.

Remarks If character elementsareto be printed, the precision should be at least 8 or
the elements will be truncated. This does not affect the string data type.

3-313

GAUSS Language Reference

f or mat

For numeric values in matrices, p sets the number of significant digits to
be printed. For string arrays, strings, and character elementsin matrices, p
sets the number of characters to be printed. If astring is shorter than the
specified precision, the entire string is printed. For string arrays and
strings, p = -1 means print the entire string, regardless of itslength. p=-1
isillegal for matrices, setting p = 8 means the same thing for character
elements.

The /xxx slash parameters are optional. Field and precision are optional
also but if oneisincluded, then both must be included.

Slash parameters, if present, must precede the field and precision
parameters.

A f or mat statement staysin effect until it is overridden by a new
f or mat statement. The slash parameters may be usedinapri nt
statement to override the current default.

f and p may be any legal expressions that return scalars. Nonintegers will
be truncated to integers.

Thetotal width of field will be overridden if the number istoo big to fit
into the space alotted. For instance, f or mat /rds 1, 0 canbeusedto
print integers with a single space between them, regardless of the
magnitudes of the integers.

Complex numbers are printed with the sign of the imaginary half
separating them and an “i” appended to theimaginary half. Also, thefield
parameter refers to the width of field for each half of the number, so a
complex number printed with afield of 8 will actually take (at least) 20
spaces to print. The character printed after the imaginary part can be
changed (for example, to a“j”) withthe sysst at e function, case 9.

The default when GAUSS isfirst started is:
format /nbl /ros 16, 8;

3-314

Command Reference

Example

This code:
X =

rndn(3, 3);

format /ml /rd 16, 8;

f or mat

print x;
produces:

—-1. 63533465 1. 61350700 -1. 06295179
0.26171282 0.27972294 —1. 38937242
0.58891114 0. 46812202 1. 08805960

This code:
format /ml /rzs 1, 10;
print Xx;
produces:
-1. 6353346 1. 613507 -1. 0629518
0.26171282 0. 27972294 —1. 3893724
0.58891114 0. 46812202 1. 0880596
This code:
format /nB8 /rdn 16, 4;
print Xx;
produces:
Row 1
-1.6353 1.6135 ~-1.0630
Row 2
0.2617 0.2797 -1.3894
Row 3
0.5889 0.4681 1.0881

3-315

GAUSS Language Reference

f or mat

This code:
format /ml /1 dn 16, 4;

print Xx;
produces:
-1. 6353 1.6135 -1. 0630
0.2617 0. 2797 —1. 3894
0. 5889 0. 4681 1.0881
This code:

format /ml /res 12, 4;
print x;

produces:

-1. 6353E+000 1. 6135E+000 -1. 0630E+000
2.6171E-001 2. 7972E-001 -1.3894E+000
5. 8891E- 001 4. 6812E- 001 1. 0881E+000

See also formatcv, formatnv, print, |print, output

3-316

Command Reference

formatcv
for mat cv
Purpose Setsthe character dataformat used by pri nt f nt .
Format oldfmt = f or nat cv(newfmt) ;
Input newfmt 1x3 vector, the new format specification.
Output oldfmt 1x3 vector, the old format specification.
Remarks Seepri nt f mfor details on the format vector.
Example Thisexample savesthe old format, sets the format desired for printing X,
prints x, then restores the old format. This code:
x={ A1l B2 C3},;
oldfm = formatcv(“*.*s” ~ 3 ~ 3);
call printfnt(x, 0~1);
call formatcv(oldfnt);
produces:
A
B
C
Source gauss.src
Globals _ _fntcv
See also formatnv, printfm printfmn

3-317

GAUSS Language Reference

f or mat nv
f or mat nv
Purpose Setsthe numeric dataformat used by pri nt f nt .
Format oldfmt = f or nat nv(newfmt) ;
Input newfmt 1x3 vector, the new format specification.
Output oldfmt 1x3 vector, the old format specification.
Remarks Seepri nt f mfor details on the format vector.
Example Thisexample savesthe old format, sets the format desired for printing X,
prints x, then restores the old format. This code:
x={ A1l B2 C3},;
oldfnmt = formatnv(“*.*If” ~ 8 ~ 4);
call printfnt(x, 0~1);
call formatnv(oldfmt);
produces:
A1l
B 2
cC 3
Source gauss.src
Globals _ fntnv
See also formatcv, printfm printfmn

3-318

Command Reference

f puts

Purpose
Format

Input

Output

Portability

Remarks

fputs

Writes stringsto afile.
num = fputs(f, sa);

f scalar, file handle of afile opened with f open.
sa string or string array.

numl scalar, the number of lineswritten to the file.

UNIX

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX anewlineis simply alinefeed.

f put s writesthe contents of each string in sa, minusthe null terminating
byte, to the file specified. If the file was opened in text mode (see

f open), any newlines present in the strings are converted to carriage
return-linefeed sequences on output. If numl is not equal to the number of
elementsin sa, there may have been an 1/0 error while writing the file.
Youcanusef checkerr orfcl earerr tocheck this. If there was an
error, you cancal f st rerr or tofind out what it was. If the file was
opened for update (see f open) and you are switching from reading to
writing, don't forget to call f seek or f f | ush first, to flush thefile's
buffer. If you passf put s the handle of afile opened with open (i.e, a
data set or matrix file), your program will terminate with afatal error.

3-319

GAUSS Language Reference

f put st

f put st

Purpose
Format

Input

Output

Portability

Remarks

Writes stringsto afile.
num = fputst (f, sa);

f scalar, file handle of afile opened with f open.
sa string or string array.

numl scalar, the number of lines written to the file.

UNIX

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX anewlineis simply alinefeed.

f put st worksidentically tof put s, except that a newline is appended
to each string that is written to the file. If the file was opened in text mode
(seef open), these newlines are al'so converted to carriage return-
linefeed sequences on output.

3-320

Command Reference

f seek

Purpose
Format

Input

Output

Portability

Remarks

f seek

Positions the file pointer in afile.
ret = fseek(f, offs, base) ;

f scalar, file handle of afile opened withf open.
offs scaar, offset (in bytes).
base scalar, base position.

0 beginning of file.

1 current position of file pointer.

2 end of file.

ret scalar, O if successful, 1if not.

UNIX

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX anewlineis simply alinefeed.

f seek movesthefile pointer offs bytes from the specified base position.
offs can be positive or negative. The call may fail if the file buffer needsto
be flushed (seef f | ush).

If f seek fails, youcancall f st rerror tofind out why.

For files opened for update (see f open), the next operation can be aread
or awrite.

f seek isnot reliable when used on files opened in text mode (see

f open). This hasto do with the conversion of carriage return-linefeed

sequences to newlines. In particular, an f seek that follows one of the

f get sxxor f put sxx commands may not produce the expected result.
For example:

p =ftell(f);
S fgetsa(f,7);

call fseek(f,p,0);

isnot reliable. The best results are obtained by f seek’ing to the
beginning of the file and then f seek’ing to the desired location, asin

3-321

GAUSS Language Reference

f seek

ftell (f);
fgetsa(f,7);
call fseek(f,0,0);
call fseek(f,p,0);

P
S

If you passf seek the handle of afile opened with open (i.e., a data set
or matrix file), your program will terminate with afatal error.

3-322

Command Reference

fstrerror

fstrerror

Purpose

Format

Output

Remarks

Returns an error message explaining the cause of the most recent file 110
error.

s = fstrerror;

s string, error message.

Any time an I/O error occurs on afile opened with f open, an internal
error flag is updated. (Thisflag, unlike those accessed by f checker r
andf cl ear er r, isnot specific to agiven file; rather, it is system-wide.)
f strerror returnsan error message based on the value of this flag,
clearing it in the process. If no error has occurred, anull string is returned.

Sincef strerror clearstheerror flag, if you cal it twicein arow, it
will always return anull string the second time.

3-323

GAUSS Language Reference

ftell

ftell

Purpose
Format
Input
Output

Remarks

Gets the position of the file pointer in afile.
pos = ftell(f);
f scalar, file handle of afile opened with f open.

pos scalar, current position of the file pointer in afile.

ftell returnsthe position of the file pointer in terms of bytes from the
beginning of the file. The call may fail if the file buffer needs to be
flushed (seef f | ush).

If an error occurs, ft el | returns-1. Youcancall f strerror tofind
out what the error was.

If youpassftell thehandle of afile opened with open (i.e., adata set
or matrix file), your program will terminate with afatal error.

3-324

Command Reference

ftocv

Purpose

Format

Input

Output

Remarks

Example

See also

ftocv

Converts a matrix containing floating point numbers into a matrix
containing the decimal character representation of each element.

y = ftocv(x, field, prec) ;

X NxK matrix containing numeric data to be converted.
field scalar, minimum field width.

prec scalar, the numbers created will have prec places after the
decimal point.

y NxK matrix containing the decimal character equivalent of the
corresponding elementsin x in the format defined by field and
prec.

If anumber is narrower than field, it will be padded on the left with zeros.

If prec = 0, the decimal point will be suppressed.

seqa(6,1,5);
0 $+ “cat” $+ ftocv(y, 2,0);

y

cat06

cat07
X = cat08

cat09

cat10
Notice that the (0 $+) above was necessary to force the type of the result
to matrix because the string constant cat would be of type string. The

left operand in an expression containing a$+ operator controls the type of
the result.

ftos

3-325

GAUSS Language Reference

ftos

ftos

Purpose Convertsascalar into astring containing the decimal character
representation of that number.

Format y = ftos(x fmat, field, prec) ;

Input x scalar, the number to be converted.
fmat string, the format string to control the conversion.

field scalar or 2x1 vector, the minimum field width. If field is 2x1, it
specifies separate field widths for the real and imaginary parts of
X.

prec scalar or 2x1 vector, the number of places following the decimal
point. If precis 2x1, it specifies separate precisions for the real
and imaginary parts of x.

Output vy string containing the decimal character equivalent of x in the
format specified.

Remarks Theformat string correspondstothef or mat /jnt (justification, notation,
trailing character) slash parameter as follows:

/rdn “9o&.*|f”
/ren “9%%.*I E
/ron “%#*.*| G
lrzn “9%.*I G

/1dn “% *. *|f”

/len “% * *|FE

[lon “%# *.*| G

[lzn “% *. *| G
If xis complex, you can specify separate formats for the real and
imaginary parts by putting two format specifications in the format string.
You can aso specify separate fields and precisions. You can position the

sign of theimaginary part by placing a“+" between the two format
specifications. If you use two formats, no “i” is appended to theimaginary

3-326

Command Reference

Example

ftos
part. Thisis so you can use an alternate format if you prefer, for example,
prefacing the imaginary part witha*“j”.
The format string can be a maximum of 80 characters.

If you want special characters to be printed after x, include them as the
last characters of the format string. For example:

“of . *If,” rightjustified decimal followed by acomma.
“Op*. *g” left-justified string followed by a space.

“ofF L xIf” right-justified decimal followed by nothing.

You can embed the format specification in the middle of other text.

“Time: % .*lIf seconds.”

If you want the beginning of the field padded with zeros, then put a*“0”
before the first “*” in the format string:

“o0*.*I f” right-justified decimal.
If prec = 0, the decimal point will be suppressed.
You can create custom formats for complex numberswith f t 0s. For
example,
let ¢ = 24.56124+6. 3224e-2i ;

field = 1;
prec = 3|5;
frat = “%Bf + j%e is a conplex nunber.”;

cc = ftos(c,fmat,field,prec);

resultsin
cc = “24.561 + j6.32240e-02 is a conpl ex
nunber.”

Some other things you can do with f t 0s:

l et x = 929.857435324123;
let y = 5.46;
let z = 5;

3-327

GAUSS Language Reference

ftos

field = 1;
prec = 0;
frmat = “9%. > f";

zz = ftos(z,fmat,field,prec);

field = 1;
prec = 10;
fmat = “9%.*I E";

xx = ftos(x,fmat,field,prec);

field = 7;
prec = 2;
frat = “9%.*|If seconds”;

sl = ftos(x,fmat,field,prec);

s2 = ftos(y,fmat,field, prec);

field = 1;
prec = 2;
frmat = “The maxi mumresi stance is 9%.*|f

ohns. ”;

om= ftos(x,fmat,field,prec);

The results:
zz = "5
XX = “9.2985743532E+02"
sl =" 929.86 seconds”
s2 = * 5. 46 seconds”
om = “The maxi num resi stance is 929. 86

ohns.

”

3-328

Command Reference

ftos

See also ftocv, stof, formt

3-329

GAUSS Language Reference

ftostrC

ftostrC

Purpose

Format

Input

Output

Remarks

Example

Converts amatrix to a string array using a C language format
specification.

sa = ftostrC(x fmt);

X NxK matrix, real or complex.
fmt Kx1, 1xK or 1x1 string array containing format information.

sa NXxK string array.

If fmt has K elements, each column of sa can be formatted separately. If x
is complex, there must be two format specifications in each element of
fmt.

declare string fmr = {
"o5. 3,

"od1.8lf"

1

declare string fmc = {

"(9%.31f, %.31f)",
"(941.81f, 9%d1.81f)"

}

Xr = rndn(4, 2);

XC = sgrt(xr')";

sar = ftostrC(xr, fmtr);
sac = ftostrC(xc, fntc);

3-330

Command Reference

See also

print sar;

print sac;

produces:

-0. 166 1. 05565441
-1.590 -0. 79283296
0. 130 -1.84886957
0.789 0. 86089687
(0.000, -0.407)

(0.000, -1.261)

(0.361, 0.000)

(0.888, 0.000)
strtof, strtofcplx

1. 02745044,
0. 00000000,
0. 00000000,
0. 92784529,

ftostrC

0. 00000000)
-0.89041168)
- 1. 35973143)

0. 00000000)

3-331

GAUSS Language Reference

gamma

ganmma

Purpose
Format
Input
Output

Remarks

Example

See also

Returns the value of the gamma function.
y = gama(X) ;
X NxK matrix.

y NxK matrix.

For each element of X, this function returns the integral

[(X Detgt
0

All dements of x must be positive and less than or equal to 169. Values of
X greater than 169 will cause an overflow.

The natural log of gama is often what is required and it can be
computed without the overflow problems of ganma. | nf act can be
used to compute log gamma.

gamma(2. 5);
1.32934

y

y

cdfchic, cdfbeta, cdffc, cdfn, cdfnc, cdftc, erf,
erfc

3-332

Command Reference

gamai i
ganmmai |

Purpose Computesthe inverseincomplete gammafunction.

Format x = gammuii(a, p);

Input 3 MxN matrix, exponents.
p KxL matrix, EXE conformable with a, incomplete gamma
values.
Output x max(M,K) by max(N,L) matrix, abscissae.

Source cdfchii.src

Globals _ginvinc, _ _macheps

3-333

GAUSS Language Reference

gausset

gausset

Purpose Resetstheglobal control variables declared in gauss. dec.
Format gausset;

Source gauss.src

Globals __altnam __con, _ ff, _ fntcv, __fntnv,
__header, __mss, __output, __row, _ rowfac,
__sort, _ title, __tol, __vpad, __vtype, _ weight

3-334

Command Reference

get f

Purpose
Format

Input

Output

Remarks

Example

get f

Loads an ASCII or binary file into a string.
y = get f (filename, mode) ;

filename string, any valid file name.

mode scalar 1 or 0 which determinesif thefileisto be loaded in
ASCII mode (0) or binary mode (1).

y string containing the file.

If thefileisloaded in ASCII mode, it will be tested to seeiif it contains
any end of file characters. These are*Z (ASCII 26). Thefilewill be
truncated before the first ~Z and there will be no ~Z’sin the string. Thisis
the correct way to load most text files because the ~Z’s can cause
problems when trying to print the string to a printer.

If thefileisloaded in binary mode, it will be loaded just like it iswith no
changes.

Create afileexanp. e containing the following program.
i brary pgraph;

gr aphset;

X = seqga(0,0.1,100);

y = sin(x);

Xy(X,y);

Then execute the following.

y = getf(“exanp.e”, 0);

print vy;

3-335

GAUSS Language Reference

get f

See also

This produces:
library pgraph;

gr aphset;

X = sega(0,0.1,100);
y = sin(x);

xy(X,y);

| oad, save, let, con

3-336

Command Reference

get nane

Purpose

Format

Input

Output

Remarks

Example

See also

get name

Returns a column vector containing the names of the variablesin a
GAUSS data set.

y = get nanme(dset) ;

dset string specifying the name of the data set from which the
function will obtain the variable names.

y Nx1 vector containing the names of all of the variablesin the
specified data set.

The output, y, will have as many rows as there are variables in the data
Set.

y = getnane(“ol sdat”);
format 8, 8;

print S$y;

produces:
TI ME

DI ST
TEMP
FRI CT

The above example assumes the data set ol sdat contained the variables
TIME, DIST, TEMP, FRICT.

Note that the extension is not included in the filename passed to the

get name function.

get namef, indcv

3-337

GAUSS Language Reference

get namef

get namef

Purpose

Format
Input

Output

Remarks

Example

See also

Returns a string array containing the names of the variablesin a GAUSS
data set.

y = get nanef (f);
f scalar, file handle of an open data set.

y Nx1 string array containing the names of all of the variablesin
the specified data set.

The output, y, will have as many rows as there are variables in the data
Set.

open f = ol sdat for read;

y
t

get namef (f);
vartypef (f);
print vy;

produces:
time
di st
tenp
frict

The above example assumes the data set ol sdat contained the variables
time, dist, temp, frict.

Notetheuse of var t ypef to determine the types of these variables.

get nane, indcv, vartypef

3-338

Command Reference

get Next Tr adi ngbDay

get Next Tr adi ngDay

Purpose Returnsthe next trading day.
Format n = get Next Tradi ngDay(a)

Input 3 scalar, datein DT scalar format.

Output n next trading day in DT scalar format

Remarks A trading day isaweekday that is not a holiday as defined by the New
York Stock Exchange from 1888 through 2004. Holidays are defined in
hol i days. asc. You may edit that file to modify or add holidays.

Source finutils.src

3-339

GAUSS Language Reference

get Next WeekDay

get Next Week Day

Purpose Returnsthe next day that is not on aweekend.
Format n = get Next WeekDay(a)
Input 3 scalar, date in DT scalar format.
Output n next week day in DT scalar format

Source finutils.src

3-340

Command Reference

get nr

get nr

Purpose Computes number of rowsto read per iteration for a program that reads
datafrom adisk filein aloop.

Format nr = getnr(nsets, ncols) ;

Input nsets scalar, estimate of the maximum number of duplicate copies of
the datamatrix read by r eadr to be kept in memory during each
iteration of the loop.

ncols scalar, columnsin the datafile.

Output nr scalar, number of rowsr eadr should read per iteration of the
read loop.
Remarks If __rowisgreater than O, nr will besetto __ r ow

If an insufficient memory error is encountered, change __ r owf ac toa
number less than 1.0 (e.g., 0.75). The number of rows read will be
reduced in size by this factor.

Source gauss.src

Globals _row, __rowfac

3-341

GAUSS Language Reference

getpath

get pat h

Purpose Returns an expanded filename including the drive and path.
Format fname = get pat h(pfname) ;

Input pfname string, partial filename with only partial or missing path
information.

Output fname string, filename with full drive and path.

Remarks Thisfunction handlesrelative path references.

Example y = getpath(“tenp.e”);
print vy;

produces:
/[gauss/tenp. e

Source getpath.src

3-342

Command Reference

get Pr evi ousTr adi ngDay

get Previ ousTr adi ngDay

Purpose
Format

Input
Output

Remarks

Source

Returns the previous trading day.
n = get Previ ousTr adi ngDay(a)

a scalar, datein DT scalar format.

n Previous trading day in DT scalar format

A trading day isaweekday that is not a holiday as defined by the New
York Stock Exchange from 1888 through 2004. Holidays are defined in
hol i days. asc. You may edit that file to modify or add holidays.

finutils.src

3-343

GAUSS Language Reference

get Previ ousWeekDay

get Pr evi ousWeekDay

Purpose Returnsthe previous day that is not on a weekend.
Format n = getPrevi ousWekDay(a)
Input 3 scalar, date in DT scalar format.
Output n previous week day in DT scalar format

Source finutils.src

3-344

Command Reference

getwi nd

get w nd

Purpose Retrievesthe current graphic panel number.
Library pgraph
Format n = getw nd;
Output n scalar, graphic panel number of current graphic panel.

Remarks Thecurrent graphic panel is the graphic panel in which the next graph
will be drawn.

Source pw ndow. src

See also endwi nd, begw nd, w ndow, setw nd, nextw nd

3-345

GAUSS Language Reference

gosub

gosub

Purpose Causesabranch to asubroutine.

Format gosub label;

label:

return;

Remarks For multi-line recursive user-defined functions, see “Procedures and
Keywords” in the User’s Guide.

When agosub statement is encountered, the program will branch to the
label and begin executing from there. When ar et ur n statement is
encountered, the program will resume executing at the statement
following the gosub statement. Labels are 1-32 characterslong and are
followed by acolon. The characters can be A-Z or 0-9 and they must
begin with an alphabetic character. Uppercase or lowercase is allowed.

It is possible to pass parameters to subroutines and receive parameters
from them when they return. See the second example, following.

The only legal way to enter a subroutineiswith agosub statement.

If your subroutines are at the end of your program, you should have an
end statement before the first one to prevent the program from running
into a subroutine without using agosub. Thiswill result in a“return
without gosub” error message.

3-346

Command Reference

Example

gosub

The variables used in subroutines are not local to the subroutine and can
be accessed from other places in your program. (See “ Procedures and
Keywords’ in the User’s Guide.)

In the program below, the name mysub isalabel. When the gosub
statement is executed, the program will jump to the label mysub and
continue executing from there. When ther et ur n statement is executed,
the program will resume executing at the statement following the gosub.

X =rndn(3,3); z = 0;
gosub nysub;
print z;

end;

zZ = inv(x);

return;

Parameters can be passed to subroutines in the following way (line
numbers are added for clarity):

1. gosub nysub(x,y);

2.popj; /* bwll beinj */

3. pop k; /* awll beink */

4.t = j*k;

5 print t;

6. end;

7.

8 /* ---- Subroutines Follow ----- */
9.

10. nmysub:

3-347

GAUSS Language Reference

gosub

11. pop b; /* y will be in b */

12. pop a; /* x will be in a */
13.
14. a = inv(b)*b+a;

15. b = a'b;
16. return(a, b);

In the previous example, when the gosub statement is executed, the
following sequence of events results:

1 x andy are pushed on the stack and the program branches to the
label mysub inline 10.

11. the second argument that was pushed, y, ispop’ ped into b.
12. the first argument that was pushed, x, ispop’pedinto a.
14, i nv(b)*b+aisassignedtoa.

15. a/ b isassignedto b.

16. a and b are pushed on the stack and the program branches to the
statement following the gosub, whichisline 2.

the second argument that was pushed, b, ispop’pedintoj .
the first argument that was pushed, a, ispop’ped into k.

j *k isassignedtot .

t isprinted.

the program is terminated with the end statement.

o U~ wWwDN

Matrices are pushed on alast-in/first-out stack inthegosub() and
return() statements. They must be popped off in thereverse order. No
intervening statements are allowed between the label and the pop or the
gosub and the pop. Only one matrix may be popped per pop statement.

See also goto, proc, pop, return

3-348

Command Reference

got o

Purpose

Format

Remarks

Example

got o

Causes a branch to alabel.

got o label;

label:

Label names can be any legal GAUSS names up to 32 alphanumeric
characters, beginning with an alphabetic character or an underscore, not a
reserved word.

Labels are always followed immediately by a colon.

Labels do not have to be declared before they are used. GAUSS knows
they are labels by the fact that they are followed immediately by a colon.

When GAUSS encounters agot o statement, it jumps to the specified
label and continues execution of the program from there.

Parameters can be passed in agot o statement the same way as they can
withagosub.

X = seqa(.1,.1,5);
{ 1231}

goto fip;

n

print Xx;

end;

fip:
print n;

produces:

1. 0000000 2.0000000 3.0000000

3-349

GAUSS Language Reference

got o

See also gosub, if

3-350

Command Reference

gr adp

Purpose

Format

Input

Output

Remarks

Example

gradp

Computes the gradient vector or matrix (Jacobian) of avector-valued
function that has been defined in a procedure. Single-sided (forward
difference) gradients are computed.

g = gradp(&f, x0) ;

&f apointer to avector-valued function (f:Kx1 - > Nx1)
defined as aprocedure. It is acceptable for f(x) to have been
defined in terms of global argumentsin addition to x, and
thus f can return an Nx1 vector:

proc f(x);
retp(exp(x.*b));

endp;
x0 Kx1 vector of pointsat which to compute gradient.
g NxK matrix containing the gradients of f with respect to the
variable x at x0.

gr adp will return arow for every row that is returned by f. For instance,
if f returns ascalar result, then gr adp will return a 1xK row vector. This
allows the same function to be used regardless of N, where N isthe
number of rowsin the result returned by f. Thus, for instance, gr adp can
be used to compute the Jacobian matrix of a set of equations.
proc nyfunc(x);

retp(x.*2 .* exp(X.*x./3));

endp;

x0 = 2.5]3.0]|3.5;
y = gradp(&myfunc, x0);

82.98901842 0.00000000 0.00000000

Y = 0.00000000 281.19752975 0.00000000
0.00000000 0.00000000 1087.95414117

3-351

GAUSS Language Reference

gradp
It is a3x3 matrix because we are passing it 3 arguments and myf unc

returns 3 results when we do that; the off-diagonal s are zeros because the
cross-derivatives of 3 argumentsare 0.

Source gradp.src

See also hessp

3-352

Command Reference

graphprt

gr aphprt

Purpose
Library

Format
Input

Portability

Remarks

Controls automatic printer hardcopy and conversion file output.

pgr aph

graphprt (str);
str string, control string.

UNIX
Not supported, use WinPrintPQG instead.

gr aphprt isused to create hardcopy output automatically without user
intervention. The input string str can have any of the following items,
separated by spaces. If str isanull string, the interactive mode is entered.
Thisisthe default.

-P print graph.
- PC=c set print orientation.
L landscape.
P portrait.
-C=n convert to another file format.

1 Encapsul ated PostScript file.
3 HPGL Plotter file.

5 BMP (Windows only)

8 WMF (Windows only)

- CF=name set converted output file name.

-l Minimize (iconize) the graphics window.

-Q Close window after processing.

- WEN display graph, wait n seconds, then continue.

If you are not using graphic panels, you can call gr aphprt anytime
before the call to the graphicsroutine. If you are using graphic panels, call
gr aphprt just beforetheendw nd statement.

The print option default values are set from the viewer application. Any
parameters passed through gr aphpr t will override the default values.
(See “Publication Quality Graphics’ in the User’'s Guide.)

Under DOS, this uses a utility called vwr . exe by default.

3-353

GAUSS Language Reference

gr aphprt
Example Automatic print using a single graphics call.
library pgraph;
gr aphset;
| oad x,vV;
graphprt(“-p”); /* tell “xy” to print */
Xy(X,V¥); /* create graph and print */

Automatic print using multiple graphics graphic panels. Notegr aphpr t
is called once just before the endwi nd call.

library pgraph;
gr aphset ;

| oad Xx,vy;

begwi nd;

wi ndow(1,2,0); /* create two wi ndows */

setwind(1);
xy(x,y); /* first graphics call */

next wi nd;

Xy(x,y); /* second graphics call */

graphprt(“-p”);

endwi nd; /* print page containing all graphs */
The next example shows how to build a string to be used with
graphprt.

l'ibrary pgraph;

gr aphset;

| oad Xx,Yy;

3-354

Command Reference

Source

graphprt

cvtnam = “mycvt.eps”; /* name of output file

/* concatenate options into one string */
cnmdstr = “-c¢=1" $+ “ -cf=" $+ cvtnam

cndstr = cndstr $+ “n-q”

graphprt(cmdstr); /* tell “xy” to convert and
cl ose*/

Xy(Xx,V¥); [* create graph and print */

The above string cmdstr will produce:
“-c=1, - cf = mycvt.eps,-q”

pgr aph. src

3-355

GAUSS Language Reference

gr aphset

gr aphset

Purpose
Library
Format

Remarks

Source

Resets graphics globals to default values.
pgr aph
gr aphset;

This procedure is used to reset the defaults between graphs.
gr aphset may be called between each graphic pand to be displayed.

To change the default values of the global control variables, make the
appropriate changesin thefilepgr aph. dec and to the procedure
gr aphset.

pgr aph. src

3-356

Command Reference

hasi nag

Purpose
Format
Input

Output

Example

See also

hasi mag

Tests whether the imaginary part of acomplex matrix is negligible.
y = hasi mag(Xx);
X NxK matrix.

y scalar, 1if theimaginary part of x has any nonzero elements, O if
it consists entirely of 0’s.

Thefunctioni scpl x tests whether x isacomplex matrix or not, but it
does not test the contents of the imaginary part of x. hasi mag teststhe
contents of the imaginary part of x to seeif it is zero.

hasi nmag actualy tests the imaginary part of x against atolerance to
determineif it is negligible. The tolerance used isthe imaginary tolerance
set with the sysst at e command, case 21.

Some functions are not defined for complex matrices. i scpl x can be
used to determine whether amatrix has no imaginary part and so can pass
through those functions. hasi mag can be used to determine whether a
complex matrix has a negligible imaginary part and could thus be
converted to area matrix to pass through those functions.

i scpl x isuseful asapreliminary check because for large matricesit is
much faster than hasi mag.

x={ 12 3i,
4-i 5 6i,
7 8i 9 };

y = hasi mag(x);

y = 1.0000000

i scpl x

3-357

GAUSS Language Reference

header

header

Purpose Printsaheader for areport.
Format header (prcnm, dataset, ver) ;

Input prenm string, name of procedure that calls header .
dataset string, name of data set.

ver 2x1 numeric vector, the first element is the mgjor version
number of the program, the second element is the revision
number. Normally this argument will be the version/revision
globa (__ ?? ver) associated with the module within
which header is called. This argument will be ignored if set to
0.

Global Input _ header string, containing the letters:
t title isto be printed
I lines are to bracket the title
d adate and time isto be printed
% version number of program is printed
f file name being analyzed is printed
__title dring, title for header.

Source gauss.src

Globals _ _header, _title

3-358

Command Reference

hess

Purpose
Format
Input

Output

Remarks

Example

hess

Computes the Hessenberg form of a square matrix.

{ hyz} = hess(X);

X KxK matrix.
h KxK matrix, Hessenberg form.
Z KxK matrix, transformation matrix.

hess computes the Hessenberg form of a square matrix. The Hessenberg
formisanintermediate step in computing eigenvalues. It also isuseful for
solving certain matrix eguations that occur in control theory (see Van
Loan, Charles F. “Using the Hessenberg Decomposition in Control
Theory,” Algorithms and Theory in Flltering and Control. Sorenson,
D.C., and R.J. Wets, eds., Mathematical Programming Study No. 18, No.
Holland, Amsterdam, 1982, 102-11).

zis an orthogonal matrix that transforms x into h and vice versa. Thus:
h=27Zxz

and since z is orthogonal ,
x=zhZ

X isreduced to upper Hessenberg form using orthogonal similiarity
transformations. This preserves the Frobenious norm of the matrix and
the condition numbers of the eigenvalues.

hess usesthe ORTRAN and ORTHES functions from EISPACK.

let x[3,3] =

{ h,z } = hess(x);

1.00000000 —3.59700730 —0.24806947
h = _806225775 14.04615385 2.83076923
0.00000000 0.83076923 —0.04615385

3-359

GAUSS Language Reference

hess

1.00000000 0.00000000 0.00000000
Z = 0.00000000 —0.49613894 —0.86824314
0.00000000 —0.86824314 0.49613894

See also schur

3-360

Command Reference

hessp

Purpose

Format

Input

Output

Remarks

Example

hessp

Computes the matrix of second partial derivatives (Hessian matrix) of a
function defined as a procedure.

h = hessp(&f, x0) ;

&f pointer to a single-valued function f(x), defined as a procedure,
taking a single Kx1 vector argument (f:Kx1 -> 1x1); f(x) may be
defined in terms of globa argumentsin addition to x.

x0 Kx1 vector specifying the point at which the Hessian of f(X) isto
be computed.

h KxK matrix of second derivatives of f with respect to x at x0; this
matrix will be symmetric.

This procedure requires K* (K+1)/2 function evaluations. Thusif K is
large, it may take along time to compute the Hessian matrix.

No more than 3-4 digit accuracy should be expected from this function,
though it is possible for greater accuracy to be achieved with some
functions.

It isimportant that the function be properly scaled, in order to obtain
greatest possible accuracy. Specificaly, scale it so that the first
derivatives are approximately the same size. If these derivatives differ by
more than afactor of 100 or so, the results can be meaningless.

x={1, 2, 31},;

proc g(b);
retp(exp(x'b));
endp;

bO = { 3, 2, 1};
h = hessp(&g, b0);

3-361

GAUSS Language Reference

hessp

The resulting matrix of second partial derivatives of g(b) evaluated at
b=bO0 is:

22027.12898372 44054.87238165 66083.36762901
44054.87238165 88111.11102645 132168.66742899
66083.36762901 132168.66742899 198256.04087836

Source hessp.src

See also gradp

3-362

Command Reference

hi st
Purpose

Library
Format
Input

Output

Remarks

hi st

Computes and graphs a frequency histogram for a vector. The actual
frequencies are plotted for each category.

pgr aph

{ bmfreq } = hist(x, V);

X Mx1 vector of data.

Y Nx1 vector, the breakpoints to be used to compute the
frequencies,
or

scalar, the number of categories.

b Px1 vector, the breakpoints used for each category.
m Px1 vector, the midpoints of each category.
freq Px1 vector of computed frequency counts.

If avector of breakpointsis specified, afinal breakpoint equal to the
maximum value of x will be added if the maximum breakpoint value is
smaller.

If anumber of categoriesis specified, the datawill be divided into v
evenly spaced categories.

Each time an element fallsinto one of the categories specified in b, the
corresponding element of freq will be incremented by one. The categories
areinterpreted as follows:

freq[1] = X < b[1]
freq[2] = B[] < X < b[2]
freq[3] = b2 < X < b[3]
freq[P] = bP1] < x < b[P]

3-363

GAUSS Language Reference

hi st

Example library pgraph;
X = rndn(5000, 1);
{ b,mf } = hist(x, 20);

Source phist.src

See also histp, histf, bar

3-364

Command Reference

hi st f

Purpose
Library
Format

Input

Remarks

Source

See also

hi st f
Graphs a histogram given a vector of frequency counts.
pgr aph
hi stf(f, c);
f Nx1 vector, frequenciesto be graphed.
c Nx1 vector, numeric labels for categories. If thisisascalar O, a

sequencefrom 1 tor ows(f) will be created.

Theaxesare not automatically labeled. Use x| abel for the category axis
andyl abel for the frequency axis.

phi st.src

hi st, bar, xlabel, ylabel

3-365

GAUSS Language Reference

hi stp
histp
Purpose

Library
Format

Input

Output

Remarks

Source
See also

Computes and graphs a percent frequency histogram of a vector. The
percentages in each category are plotted.

pgr aph

{ b,m freg } = histp(x V);

X Mx1 vector of data.

v Nx1 vector, the breakpoints to be used to compute the
frequencies,
or

scalar, the number of categories.

b Px1 vector, the breakpoints used for each category.
m Px1 vector, the midpoints of each category.

fre@ Px1 vector of computed frequency counts. Thisis the vector of
counts, not percentages.

If avector of breakpointsis specified, afinal breakpoint equal to the
maximum value of x will be added if the maximum breakpoint value is
smaller.

If anumber of categoriesis specified, the datawill be divided into v
evenly spaced categories.

Each time an element fallsinto one of the categories specified in b, the
corresponding element of freq will be incremented by one. The categories
are interpreted as follows:

freq[1] = X < b[1]
freq[2] = b[1] < X < b[2]
freq[3] = b2 < X < b[3]
freq[P] = bP1] < x < b[P]

phi st.src

hi st, histf, bar

3-366

Command Reference

hsec

Purpose
Format

Remarks

Example

See also

hsec

Returns the number of hundredths of a second since midnight.
y = hsec;

The number of hundredths of a second since midnight can also be
accessed asthe [4,1] element of the vector returned by the dat e function.

X = rndu(100, 100);
ts = hsec;

y = X*X;

et = hsec-ts;

In thisexample, hsec isused to time a 100x100 multiplication in
GAUSS. A 100x100 matrix, X, is created, and the current time, in
hundredths of a second since midnight, is stored in the variablet s. Then
the multiplication is carried out. Finally, t s issubtracted from hsec to
givethetime difference which isassigned to et .

date, tinme, tinestr, ethsec, etstr

3-367

GAUSS Language Reference

i f
| f
Purpose Controls program flow with conditional branching.

Format if scalar_expression;
list of statements;

el sei f scalar_expression;
list of statements;

el sei f scalar_expression;
list of statements;

el se;
list of statements;

endi f;

Remarks scalar_expressionisany expression that returnsascalar. ItisTRUE if itis
not zero, and FALSE if it is zero.

A list of statementsis any set of GAUSS statements.

GAUSS will test the expression after thei f statement. If it is TRUE
(nonzero), then the first list of statementsis executed. If it is FALSE
(zero), then GAUSS will move to the expression after thefirst el sei f
statement if thereisone and test it. It will keep testing expressions and
will execute thefirst list of statements that corresponds to a TRUE
expression. If no expression is TRUE, then thelist of statements following
theel se statement is executed. After the appropriate list of statementsis
executed, the program will go to the statement following theendi f and
continue on.

i f statements can be nested.

Oneendi f isrequired per i f statement. If an el se statement is used,
there may be only oneperi f statement. There may be as many

el sei f 'sasarerequired. There need not be any el sei f 'sor any

el se statement withinani f statement.

Note the semicolon after the el se statement.

3-368

Command Reference
i f

Example if x < 0;

y = -1;
elseif x > 0;
y = 1;

el se;
y = 0;

endi f;

See also do

3-369

GAUSS Language Reference

i mag
| g
Purpose
Format
Input
Output

Remarks

Example

See also

Returns the imaginary part of amatrix.

Z = img(Xx);
X NxK matrix.
Zi NxK matrix, the imaginary part of X.

If xisreal, zi will be an NxK matrix of zeros.

x ={4 9 3,
2 5-6i 7i };
y = img(x);

4.0000000 0.0000000 0.0000000
0.0000000 —6.0000000 7.0000000

compl ex, real

3-370

Command Reference

| nport

Purpose
Format

Input

Output

Portability

Remarks

i nport

Imports a spreadsheet, database, or ASCI| file into a matrix.
{ x,namel } = inport (fname, range, sheet) ;

fname string, file name with path.

range string, range of cells (spreadsheet only), field descriptor (ASCI|
files), or 0.

sheet scalar, sheet number of multi-sheet spreadsheet or 0.

X NxK matrix, imported data.
namel Kx1 vector, column headers.

Windows only

If sheetisO, i nport will import the first (possibly only) sheet of a
spreadsheset.

For spreadsheets, range indicates the columns to be imported, and can be
expressed intheform B7: K243 or B7. . K243. A range of 0 imports
al data.

For packed ASCII files, range is a descriptor that defines field name,
type, width, and optionally precision. It isasingle string of the form

name [[typd fldspec [name [typd] fldspec. . .]
where
name is the column name for the field.
typeis$ for acharacter field, blank for a numeric field.

fldspec is either a column range (e.g., 5-8), astart column and field width
(e.g., 5,4 0r54.2), or afield width only (e.g., 4 or 4.2). If only afield
width is given, the start column isinput from the previousfield. If the
field width is specified with a decimal (e.g., 4.2), then adecimal point
will be inserted that many placesin from the right edge of the field.

A shorthand for a set of columnsis available (e.g., x01- x09); the
subsequent type and fldspec are applied to al columnsin the set.

3-371

GAUSS Language Reference
i nport

Example fnanme = “c:\\tenp\\testdata. x|l s”;
{mmx, nanes} = inport(fname, “A3:D12", 3);

Thiswill import the range of cells A3 to D12 of the third sheet of

t est dat a. x| s into the GAUSS matrix mx with the column headings
defined by nanes. Substituting a0 or 1 for the 3 would have imported
the first (possibly only) sheet.

fname = “c:\\tenp\\tstdta.asc”;

range = “varl $ 6,2 var2 8-15 var3 18,4.1 gnp 7
cons 6.2 xsl1l-xs20 27;

{x, names} = inport (fnane,range,0);

Here, a GAUSS matrix x is created from a packed ASCI| data set, using
the descriptor shown.

Globals _dxaschdr, _dxftype, _dxmiss, _dxprcn, _dxprint,
_dxtxdlim _dxtype, _dxwidth, _dxwkshdr

See also export, exportf, inportf

3-372

Command Reference

| nportf

Purpose
Format

Input

Output

Portability

Remarks

Example

Globals

See also

i nportf

Imports a spreadsheet, database, or ASCI| fileto a GAUSS data set.
ret = inportf (fname, dset, range, sheet) ;

fname string, file name with optional path.
dset string, name of data set with optional path.

range string, range of cells (spreadsheet only), field descriptor
(ASCII files), or 0.

sheet scalar, sheet number of multi-sheet spreadsheet or 0.

ret scalar, success flag, 1 if successful, O if not.
dset GAUSS data set.

Windows only

Seei nport for details on the range and sheet parameters.

f nane “c:\\tenp\\testdata2. dbf”;
dnanme = “c:\\gauss\\data\\nydata.dat”;
call inportf(dnanme, fnane, 0, 0);

Thiswill createa GAUSS dataset c: \ gauss\ dat a\ nydat a. dat
from thedatain the dBasellll filec: \ t enp\ t est dat a2. dbf.

_dxaschdr, _dxftype, _dxmiss, _dxprcn, _dxprint,
_dxtxdlim _dxtype, _dxwidth, _dxwkshdr

export, exportf, inport

3-373

GAUSS Language Reference

#i ncl ude

#1 ncl ude

Purpose

Format

Remarks

Inserts code from ancther file into a GAUSS program.

#i ncl ude filename;
#i ncl ude *“filename’;

filename can be any legitimate file name.

This command makes it possible to write a section of general-purpose
code, and insert it into other programs.

The code from the #i ncl ude’dfileisinserted literally asif it were
merged into that place in the program with atext editor.

If apath is specified for the file, then no additional searching will be
attempted if the file is not found.

If apath is not specified, the current directory will be searched first, then
each directory listedinsrc_pat h.src_pat hisdefinedin
gauss. cfg.

#i ncl ude /gauss/ myprog. prc; No additional search will be
made if the file is not found.

#i ncl ude nyprog. prc; Thedirectorieslisted in
sr c_pat h will be searched
for mypr og. pr c if thefile
is not found in the current
directory.

Compiletime errorswill return the line number and the name of thefilein
which they occur. For execution time errors, if aprogram is compiled
with #l i neson, the line number and name of the file where the error
occurred will be printed. For filesthat have been #i ncl ude’d this
reflects the actual line number within the#i ncl ude’dfile. See

#1 i neson for amore complete discussion of the use of and the validity
of line numbers when debugging.

3-374

Command Reference

Example

See also

#i ncl ude

#i ncl ude “/gauss/inc/cond.inc”;

The command will cause the codein thefilecond. i nc to be merged
into the current program at the point at which this statement appears.

run, #lineson

3-375

GAUSS Language Reference

i ndcv

| ndcv

Purpose Checks one character vector against another and returns the indices of the
elements of the first vector in the second vector.

Format z = i ndcv(what, where) ;

Input what Nx1 character vector which contains the elements to be found in

vector where.
where Mx1 character vector to be searched for matches to the elements
of what.
Output 7 Nx1 vector of integers containing the indices of the

corresponding element of what in where.

Remarks If no matches are found for any of the elementsin what, then the
corresponding elements in the returned vector are set to the GAUSS
missing value code.

Both arguments will be forced to uppercase before the comparison.
If there are duplicate elementsin where, the index of the first match will
be returned.
Example | et what = AGE PAY SEX;
| et where = AGE SEX JOB “date” PAY;
z = indcv(what, where);

AGE
what = pay

SEX

AGE
SEX
where = joB
date
PAY

3-376

Command Reference

N O1 -

i ndcv

3-377

GAUSS Language Reference

i ndexcat

| ndexcat

Purpose Returnstheindices of the elements of a vector which fall into a specified
category.

Format vy = indexcat(x V);

Input x Nx1 vector.
\Y scalar or 2x1 vector.
If scalar, the function returns the indices of all elements of x
equal to v.

If 2x1, then the function returns the indices of all elements of x
that fall into the range:

V[1] <x=V[2].
If visscalar, it can contain asingle missing to specify the
missing value as the category.

Output vy Lx1 vector, containing the indices of the elements of x which fall
into the category defined by v. It will contain error code 13 if
there are no elementsin this category.

Remarks Usealoop to pull out indices of multiple categories.

Example let x =1.04.03.34.26.05.78.15.5;
let v = 4 6;
y

i ndexcat (x, V) ;

10
4.0
3.3
4.2
6.0
5.7
8.1
5.5

3-378

Command Reference

(o3}

o o 01 b~

i ndexcat

3-379

GAUSS Language Reference

i ndi ces
| ndi ces
Purpose

Format

Input

Output

Remarks

Source

Processes a set of variable names or indices and returns a vector of
variable names and a vector of indices.

{ name, indx } = indi ces(dataset, vars) ;

dataset string, the name of the data set.

vars Nx1 vector, acharacter vector of names or a numeric vector of
column indices.

If scalar O, all variablesin the data set will be selected.

name Nx1 character vector, the names associated with vars.
indx Nx1 numeric vector, the column indices associated with vars.

If an error occurs, i ndi ces will either return a scalar error code or
terminate the program with an error message, depending on thet r ap
state. If the low order bit of thetrap flagis 0O, i ndi ces will terminate
with an error message. If the low order bit of thetrap flagis1,i ndi ces
will return an error code. The value of the trap flag can be tested with

t rapchk; thereturn fromi ndi ces can betested withscal err. You
only need to check one argument; they will both be the same. The
following error codes are possible:

1 Can't open dataset.

2 Index of variable out of range, or undefined data set
variables.

i ndi ces. src

3-380

Command Reference

i ndi ces?2

| ndi ces?2

Purpose

Format

Input

Output

Remarks

Processes two sets of variable names or indices from asinglefile. The
firstisasingle variable and the second is a set of variables. The first must
not occur in the second set and all must bein thefile.

{ namel, indx1, name2, indx2 } =
i ndi ces2(dataset, varl, var2) ;

dataset string, the name of the data set.
varl string or scalar, variable name or index.

This can be either the name of the variable, or the column
index of the variable.
If null or O, the last variable in the data set will be used.

var2 Nx1 vector, a character vector of names or a numeric vector of
column indices.

If scalar 0, all variablesin the data set except the one
associated with var1 will be selected.

namel scalar character matrix containing the name of the variable
associated with var1.

indx1 scalar, the column index of varl.

name2 NXx1 character vector, the names associated with var2.

indx2 Nx1 numeric vector, the column indices of var2.

If an error occurs, i ndi ces?2 will either return a scalar error code or
terminate the program with an error message, depending onthet r ap
state. If the low order bit of the trap flag is0, i ndi ces2 will terminate
with an error message. If the low order bit of the trap flag is 1,

i ndi ces2 will return an error code. The value of the trap flag can be
tested with t r apchk; the return fromi ndi ces2 can be tested with
scal err. You only need to check one argument; they will all be the
same. The following error codes are possible:

1 Can't open dataset.

2 Index of variable out of range, or undefined data set
variables.

3 First variable must be a single name or index.
4 First variable contained in second set.

3-381

GAUSS Language Reference

i ndi ces?2

Source indices2.src

3-382

Command Reference

| ndnv

Purpose

Format

Input

Output

Remarks

Example

i ndnv

Checks one numeric vector against another and returns the indices of the
elements of the first vector in the second vector.

z = i ndnv(what, where) ;

what Nx1 numeric vector which contains the values to be found in

vector where.

where Mx1 numeric vector to be searched for matches to the valuesin
what.

z Nx1 vector of integers, theindices of the corresponding elements

of what in where.

If no matches are found for any of the elementsin what, then those
elementsin the returned vector are set to the GAUSS missing value code.

If there are duplicate e ements in where, the index of the first match will
be returned.

et what = 8 7 3;
et where =2 7 8 4 3;
z = indnv(what, where);

8
what = 7
3
2
7
where = g
4
3

3-383

GAUSS Language Reference

i ndnv

o N W

3-384

Command Reference

intgrat2

| nt grat 2

Purpose Integratesthefollowing doubleintegral, using user-defined functionsf, g;
and g,, and scalarsa and b:

| : | B¢ %, y) dydx

9,00

Format y = intgrat2(é&f, xl,gl);

Input &f scalar, pointer to the procedure containing the function to be
integrated.
Xl 2x1 or 2xN matrix, the limits of x. These must be scalar
limits.
al 2x1 or 2xN matrix of function pointers, the limits of v.

For xI and gl, the first row is the upper limit and the second
row isthe lower limit. N integrations are computed.

Global Input intord scalar, the order of theintegration. Thelarger i nt or d,
the more precise the final result will be. _i nt or d may
besetto 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.
Default = 12.

_intrec scalar. Thisvariable is used to keep track of the leve of
recursion of i nt gr at 2 and may start out with a
different value if your program terminated inside of the
integration function on a previous run. Always set
_intrec explicitly to O before any call toi nt gr at 2.

Output vy Nx1 vector of the estimated integral (s) of f(x,y) evaluated
between the limits given by xI and gl.

Remarks Theuser-defined functions specified by f and gl must either

Return a scaar constant, OR

Return avector of function values. i nt gr at 2 will passto user-
defined functions a vector or matrix for x and y and expect a
vector or matrix to bereturned. Use. * and . / instead of * and
/.

3-385

GAUSS Language Reference

intgrat?2

Example

Source

Globals

See also

proc f(x,y);
retp(cos(x) + 1).*(sin(y) + 1));
endp;

proc gl(x);
retp(sqrt(1-x"2));
endp;

proc g2(x);
retp(0);
endp;

x| 1] -1;

g0 &g1l| &g92;
_intord = 40;
_intrec = 0;

y = intgrat2(&f,xl,go);

Thiswill integrate the function f(x,y) = (cos(x)+1)(sin(y)+1) over the
upper half of the unit circle. Note the use of the. * operator instead of just
* in the definition of f(x,y). This alowsf to return avector or matrix of
function val ues.

intgrat.src

_intord, _intqgl2, _intqgl6, _intg2, _intqg20,
_intqg24, _intqg3, _intqg32, _intqg4, _intqg40,
_intg6, _intqg8, _intrec

intgrat3, intquadl, intquad2, intquad3, intsinp

3-386

Command Reference

intgrat3

| nt grat 3

Purpose

Format

Input

Global Input

Output

Integrates the following triple integral, using user-defined functions and
scalars for bounds:

b 9,0 My

H j f(x, y, z)dzdydx

a” 9,00 " Nyixy)

y = intgrat3(&f, x, gl hl);

&f scalar, pointer to the procedure containing the function to be
integrated. F isafunction of (x,y,2).

Xl 2x1 or 2xN matrix, the limits of x. These must be scalar
limits.

al 2x1 or 2xN matrix of function pointers. These procedures
are functions of x.

hi 2x1 or 2xN matrix of function pointers. These procedures

are functions of x and y.

For xI, gl, and hl, thefirst row isthe upper limit and the second row isthe
lower limit. N integrations are computed.

_intord scalar, the order of theintegration. Thelarger _i nt or d,
the more precise the final result will be. _i nt or d may
besetto 2, 3,4, 6, 8, 12, 16, 20, 24, 32, 40.
Default = 12.

_intrec scalar. Thisvariableis used to keep track of the level of
recursion of i nt gr at 3 and may start out with a
different value if your program terminated inside of the
integration function on a previous run. Always set
_intrec explicitly to 0 before any call toi nt gr at 3.

y Nx1 vector of the estimated integral (s) of f(x,y,z) evaluated
between the limits given by xl, gl, and hl.

3-387

GAUSS Language Reference

intgrat3

Remarks User-defined functions f, and those used in gl and hl, must either:

Return a scaar constant, OR
Return avector of function values. i nt gr at 3 will passto user-
defined functions a vector or matrix for x and y and expect a
vector or matrix to bereturned. Use. * and . / operatorsinstead
of just* or/.
Example proc f(x,y,z);
retp(2);

endp;

proc gl(x);
retp(sqrt(25-x72));
endp;

proc g2(x);
retp(-gil(x));
endp;

proc hi(x,y);
retp(sqrt(25 - x"2 - y"2));
endp;

proc h2(x,y);

retp(-hl(x,y));
endp;

3-388

Command Reference

Source

Globals

See also

intgrat3

x| 5| -5;

g0 = &g1| &92;
ho = &hl| &2;
_intrec = 0;
_intord = 40;

y = intgrat3(&f,xl,gl, hl);

Thiswill integrate the function f(x,y,2) = 2 over the sphere of radius 5. The
result will be approximately twice the volume of a sphere of radius 5.

intgrat.src

_intord, _intql2, _intqgl6, _intg2, _intq20,
_intg24, _intq3, _intg32, _intqg4, _intqg40,
_intg6, _intg8, _intrec

intgrat2, intquadl, intquad2, intquad3, intsinp

3-389

GAUSS Language Reference

i nt quadl

| nt quadl

Purpose Integrates aspecified function using Gauss-L egendre quadrature. A suite
of upper and lower bounds may be calculated in one procedure call.

Format vy = intquadl(&f, xl);

Input &f scalar, pointer to the procedure containing the function to be
integrated. This must be a function of x.
X 2XN matrix, the limits of x.

Thefirst row isthe upper limit and the second row is the
lower limit. N integrations are computed.

_intord scaar theorder of theintegration. Thelarger _i nt or d, the
more precise thefinal result will be. _i nt or d may be set to
2,3,4,6,8, 12, 16, 20, 24, 32, 40.

Default = 12.

Global Input _intord scalar, the order of theintegration. Thelarger _i nt or d,
the more precise the final result will be. _i nt or d may
besetto 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.

Default = 12.

Output vy Nx1 vector of the estimated integral(s) of f(x) evaluated between
the limits given by x.

Remarks Theuser-defined function f must return avector of function values.
i nt quadl will passto the user-defined function avector or matrix for x
and expect avector or matrix to bereturned. Usethe. * and. / instead of
*and/ .

Example proc f(x);
retp(x.*sin(x));

endp;

xI = 1]0;
y = intquadl(&f,xl);

3-390

Command Reference

Source

Globals

See also

i nt quadl

Thiswill integrate the function f(x) = xsin(x) between 0 and 1. Note the
use of the. * instead of *.

integral.src

_intord, _intqgl2, _intqgl6, _intg2, _intqg20,
_intg24, _intqg3, _intq32, _intqg4, _intqg40,
_intg6, _intqg8

intsinp, intquad2, intquad3, intgrat2, intgrat3

3-391

GAUSS Language Reference

i nt quad2

| nt quad?2

Purpose

Format

Input

Global Input

Output

Remarks

Integrates a specified function using Gauss-L egendre quadrature. A suite
of upper and lower bounds may be calculated in one procedure call.

y = intquad2(&f, X, yl);

&f scalar, pointer to the procedure containing the function to be
integrated.

Xl 2x1 or 2xN matrix, the limits of x.

i 2x1 or 2xN matrix, the limits of y.

For xI and yl, the first row is the upper limit and the second
row isthe lower limit. N integrations are computed.

_intord global scalar, the order of the integration. The larger
_i nt ord, the more precise the fina result will be.
_intordmaybesetto2 3,4,6,8, 12, 16, 20, 24, 32,
40.
Default = 12.

_intrec global scalar. Thisvariable is used to keep track of the
level of recursion of i nt quad2 and may start out with
adifferent valueif your program terminated inside of the
integration function on a previous run. Always set
_intrec explicitly to 0 before any callsto
i nt quad2.

y Nx1 vector of the estimated integral (s) of f(x,y) evaluated
between the limits given by xI and yl.

The user-defined function f must return a vector of function values.

i nt quad2 will passto user-defined functions a vector or matrix for x
and y and expect avector or matrix to bereturned. Use. * and. / instead
of * and/ .

i nt quad2 will expand scalars to the appropriate size. This means that
functions can be defined to return a scalar constant. If users write their
functionsincorrectly (using * instead of . *, for example), i nt quad2
may not compute the expected integral, but the integral of a constant
function.

To integrate over aregion which is bounded by functions, rather than just
scalars, usei ntgrat 2 ori nt grat 3.

3-392

Command Reference

Example

Source

Globals

See also

i nt quad2
proc f(x,y);
retp(x.*sin(x+y));

endp;

Xl 1] 0;

yl = 1]0;

_intrec = 0;
y = intquad2(&,xl,yl);

Thiswill integratethe function x. * si n(x+y) betweenx =0and 1, and
betweeny = 0and 1.

integral.src

_intord, _intqgl2, _intqgl6, _intg2, _intqg20,
_intqg24, _intqg3, _intqg32, _intqg4, _intqg40,
_intg6, _intqg8, _intrec

i ntquadl, intquad3, intsinp, intgrat2, intgrat3

3-393

GAUSS Language Reference

i nt quad3

| nt quad3

Purpose

Format

Input

Global Input

Output

Remarks

Integrates a specified function using Gauss-L egendre quadrature. A suite
of upper and lower bounds may be calculated in one procedure call.

y = intquad3(&f, x, yl,) ;

&f scalar, pointer to the procedure containing the function to be
integrated. f is afunction of (x,y,2).

Xl 2x1 or 2xN matrix, the limits of x.

i 2x1 or 2xN matrix, the limits of y.

i 2x1 or 2xN matrix, the limits of z

For xl, yl, and 4, the first row is the upper limit and the
second row isthe lower limit. N integrations are computed.

_intord global scalar, the order of the integration. The larger
_intord, the more precise the fina result will be.
_intordmaybesetto2, 3,4,6,8, 12, 16, 20, 24, 32,
40.

Default = 12.

_intrec global scalar. Thisvariableis used to keep track of the
level of recursion of i nt quad3 and may start out with
adifferent valueif your program terminated inside of the
integration function on a previous run. Always set
_i ntrec explicitly to 0 before any callsto
i nt quads3.

y Nx1 vector of the estimated integral (s) of f(x,y,z) evaluated
between the limits given by xl, yl, and 2.

The user-defined function f must return a vector of function values.

i nt quad3 will passto the user-defined function avector or matrix for x,
y, and z and expect a vector or matrix to be returned. Use. * and . /
instead of * and/ .

i nt quad3 will expand scalars to the appropriate size. This means that
functions can be defined to return a scalar constant. If users write their
functionsincorrectly (using * instead of . *, for example), i nt quad3
may not compute the expected integral, but the integral of a constant
function.

3-394

Command Reference

Example

Source

Globals

See also

i nt quad3

To integrate over aregion which is bounded by functions, rather than just
scalars, usei ntgrat 2 ori nt gr at 3.

proc f(x,y,2);
retp(x.*y.*z);
endp;

x|

yl
zl

1] O;
1| 0;
{123 000};

_intrec = 0;
y = intquad3(&f,xl,yl,zl);

Thiswill integrate the functionf (x) = Xx*y*z over 3 setsof limits,
since zl isdefined to be a 2x3 matrix.

integral .src

_intord, _intql2, _intqgl6, _intg2, _intq20,
_intqg24, _intqg3, _intqg32, _intqg4, _intqg40,
_intg6, _intg8, _intrec

i ntquadl, intquad2, intsinp, intgrat2, intgrat3

3-395

GAUSS Language Reference

intrl eav

| ntr| eav

Purpose

Format

Input

Remarks

Example

Source

Interleaves the rows of two files that have been sorted on a common
variable, to give asinglefile sorted on that variable.

i ntrleav(infilel, infile2, outfile, keyvar, keytyp) ;

infilel
infile2
outfile
keyvar

keytyp

string, name of input file 1.
string, name of input file 2.
string, name of output file.

string, name of key variable, thisisthe column the files are
sorted on.

scalar, data type of key variable.

1 numeric key, ascending order

2 character key, ascending order
-1 numeric key, descending order
-2 character key, descending order

Thetwo files MUST have exactly the same variables, i.e., the same
number of columns AND the same variable names. They must both
aready be sorted on the key column. This procedure will combine them
into one large file, sorted by the key variable.

If the inputs are null or O, the procedure will ask for them.

intrleav(“freq.dat”,“freqata. dat”,

“intfile”,“AGE", 1);

sortd.src

3-396

Command Reference

i ntrsect

| ntr sect

Purpose
Format

Input

Output

Remarks

Source

Example

Returns the intersection of two vectors, with duplicates removed.
y = intrsect (vl v2, flag) ;

vl Nx1 vector.
V2 Mx1 vector.
flag scalar; if 1, vl, and v2 are numeric, if 0, character.

y Lx1 vector containing al unique values that are in both v1 and
V2, sorted in ascending order.

Place smaller vector first for fastest operation.

If there are alot of duplicates within avector, it is faster to remove them
withuni que beforecallingi nt r sect.

intrsect.src

let vl = mary jane |inda dawn;
let v2 = mary sally lisa ruth |inda;

y = intrsect(vl,v2,0);

_ LINDA
MARY

3-397

GAUSS Language Reference

intsinp
| Nt si np
Purpose

Format

Input

Output

Example

Source

See also

Integrates a specified function using Simpson’s method with end
correction. A single integral is computed in one function call.

y = intsinmp(&f, x, tal) ;

&f pointer to the procedure containing the function to be integrated.
Xl 2x1 vector, the limits of x.
Thefirst element isthe upper limit and the second element isthe

lower limit.
tol Thetolerance to be used in testing for convergence.
y The estimated integral of f(x) between xI[1] and xI[2].
proc f(x);
retp(sin(x));
endp;
let xI ={ 1,
0 };
y = intsimp(&f, x|, 1E-8);

y = 0.45969769

Thiswill integrate the function between 0 and 1.
i ntsinp.src

i nt quadl, intquad2, intquad3, intgrat2, intgrat3

3-398

Command Reference

inv, invpd

| nv, 1 nvpd

Purpose

Format

Input
Output

Remarks

i nv returns theinverse of an invertible matrix.
i nvpd returns the inverse of a symmetric, positive definite matrix.

y = inv(x);

y = invpd(X);

X NXN matrix.

y NxN matrix containing the inverse of x.

X can be any |egitimate matrix expression that returns amatrix that islegal
for the function.

For i nv, x must be square and invertible.
For i nvpd, x must be symmetric and positive definite.

If the input matrix is not invertible by these functions, they will either
terminate the program with an error message or return an error code
which can be tested for with the scal er r function. This depends on the
t r ap state asfollows:

trap 1, return error code

i nv i nvpd
50 20
trap O, terminate with error message
i nv i nvpd
Matri x singul ar Matri x not positive
definite

If theinput toi nvpd isnot symmetric, it is possible that the function will
(erroneoudly) appear to operate successfully.

Positive definite matrices can be inverted by i nv. However, for
symmetric, positive definite matrices (such as moment matrices), i nvpd
is about twice asfast asi nv.

3-399

GAUSS Language Reference

i nv,

i nvpd

Example

See also

Technical
Notes

n = 4000;

x1 = rndn(n, 1);

X = ones(n, 1) ~x1;

btrue ={ 1, 0.5 };

y = x*btrue + rndn(n,1);
bols = invpd(x' X)*x'vy;
bols = 1.017201 0.484244

This example simulates some data and computes the ol s coefficient
estimator using thei nvpd function. First, the number of observationsis
specified. Second, avector x 1 of standard Normal random variablesis
generated and is concatenated with avector of 1's (to create a constant
term). The true coefficients are specified, and the dependent variabley is
created. Then the ol s coefficient estimates are computed.

scalerr, trap, prcsn

For complex matrices, i nv usesthe ZGECO, ZGEDI path in the
LINPACK routines. For real matrices, it usesthe cr out p function.

Thei nv function uses the Crout decomposition. The advantage of this
routineisthat on some platformsit allows most of the intermediate results
to be computed in extended precision.

Thei nvpd function uses the Cholesky decomposition and is based upon
the LINPACK routines for positive definite matrices. On OS/2 and DOS,
if pr csn 80isin effect, all intermediate calculations and intermediate
results will be in the 80-bit extended precision of the 80x87 temporary
real format. The final results will be rounded to 64-bit double precision.

The tolerance used to determine singularity is 1.0e-14. This can be
changed. See “ Singularity Tolerance” in the User’s Guide.

3-400

Command Reference

| NVSWP

Purpose
Format
Input
Output

Remarks

Example

i nVvswp

Computes a generalized sweep inverse.

y = invswp(X);
X NXN matrix.
y NxN matrix, the generalized inverse of x.

Thiswill invert any general matrix. That is, even matrices which will not
invert using i nv because they are singular will invert usingi nvswp.

x andy will satisfy the four M oore-Penrose conditions:

1. xyx=xX
2. yxy=y
3. Xyissymmetric
4. yxissymmetric
The tolerance used to determineif a pivot element is zero is taken from

the cr out singularity tolerance. The corresponding row and column are
zeroed out. See “Appendix C” in the User’s Guide.

let x[3,3] =1234567809;

y = invswp(Xx);
—1.6666667 0.66666667 0.0000000
Yy = 1.3333333 -0.3333333 0.0000000

0.0000000 0.0000000 0.0000000

3-401

GAUSS Language Reference

i scpl x
| scpl x
Purpose
Format
Input

Output

Example

See also

Returns whether a matrix is complex or real.

y = iscpl x(X);

X NxK matrix.

y scalar, 1if xiscomplex, Oif itisred.
x={ 1, 2i, 31};

y = iscpl x(x);

y=1

hasi mag, iscpl xf

3-402

Command Reference

i scpl xf

| scpl xf
Purpose Returns whether a data set is complex or real.
Format y = iscplxf(fh);
Input fh scalar, file handle of an open file.

Output vy scalar, 1if the data set is complex, Oif itisreal.

See also hasinmag, iscplx

3-403

GAUSS Language Reference

i si nfnanm ss

| SI nf nanm ss

Purpose Returnstrueif the argument contains an infinity, NaN, or missing value.

Format vy = isinfnanm ss(x);

Input x NXK matrix.
Output vy scalar, 1if x contains any infinities, NaNs, or missing
values, else 0.

See Also scalinfnanmss, isniss, scal mss

3-404

Command Reference

| SM SS
Purpose

Format
Input
Output

Remarks

Example

See also

i sm ss

Returnsal if its matrix argument contains any missing values, otherwise
returnsao.

y = ismss(X);
X NXK matrix.
y scalar, 1 or O.

y will be ascalar 1 if the matrix x contains any missing values, otherwise
it will beaO.

An element of x is considered to be amissing if and only if it contains a
missing valuein the rea part. Thus, for x =1+ .i, i sm ss(x) will return
ao0.

x={16 34},

y = ismss(x);

y=0

scalmss, mss, mssrv

3-405

GAUSS Language Reference

i sSpar se

| sSpar se

Purpose Tests whether amatrix is a sparse matrix.

Format r = isSparse(X;
Input x MxN sparse or dense matrix.
Output r scalar, 1if xis sparse, 0 otherwise.

Source sparse.src

3-406

Command Reference

keep (datal oop)

keep (dat al oop)

Purpose

Format

Remarks

Example

See also

Specifies columns (variables) to be saved to the output data set in adata
loop.

keep variable list;

Commas are optional in variable_list.

Retains only the specified variables in the output data set. Any variables
referenced must already exist, either as elements of the source data set, or
astheresult of aprevious make, vect or, or code statement.

If neither keep nor dr op is used, the output data set will contain all
variables from the source data set, as well as any newly defined variables.
The effects of multiple keep and dr op statements are cumulative.
keep age, pay, sex;

dr op

3-407

GAUSS Language Reference

key

key

Purpose Returnsthe ASCII value of the next key available in the keyboard buffer.
Format vy = key;

Remarks If youareworking in terminal mode, key does not “see” any keystrokes
until ENTER is pressed. The value returned will be zero if no key is
availablein the buffer or it will equal the ASCII value of the key if oneis
available. The key istaken from the buffer at thistime and the next call to
key will return the next key.

Here are the values returned if the key pressed is not a standard ASCI|
character in the range of 1-255.

1015 SHIFT+TAB

1016-1025 ALT+Q,W,E,R, T,Y,U, 1,0, P
1030-1038 ALT+A,S D,FGH,J K, L
1044-1050 ALT+Z,X,C,V,B,N,M
1059-1068 F1-F10

1071 HOME

1072 CURSOR UP
1073 PAGE UP

1075 LEFT ARROW
1077 RIGHT ARROW
1079 END

1080 DOWN ARROW
1081 PAGE DOWN
1082 INSERT

1083 DELETE

1084-1093 SHIFT+F1-F10
1094-1103 CTRL+F1-F10
1104-1113 ALT+F1-F10

1114 CTRL+PRINT SCREEN
1115 CTRL+LEFT ARROW
1116 CTRL+RIGHT ARROW
1117 CTRL+END

1118 CTRL+PAGE DOWN

3-408

Command Reference

key
1119 CTRL+HOME
1120-1131 ALT+1,2,3,4,5,6,7,8,9,0,HY PHEN,
EQUAL SIGN
1132 CTRL+PAGE UP
Example format /rds 1,0;
kk = 0;
do until kk == 27;
kk = key;
if kk == 0;
conti nue;
el seif kk == vals(* ");
print “space \\" KKk;
el seif kk == vals(“\r");
print “carriage return \\" Kkk;
el seif kk = vals(“0”) and kk < vals(“9");
print “digit \\” kk chrs(kk);
el seif val s(upper(chrs(kk))) = vals(“A’) and
val s(upper (chrs(kk))) < vals(“Z");
print “al pha \\” kk chrs(kk);
el se;
print “\\" kk;
endi f;
endo;
Thisisan example of aloop that processes keyboard input. This loop will
continue until the ESC key (ASCII 27) is pressed.
See also vals, chrs, upper, lower, con, cons

GAUSS Language Reference

keyw
keyw
Purpose

Format

Output

Remarks

See also

Waits for and gets a key.

k = keyw;

k scalar, ASCII value of the key pressed.

If you are working in terminal mode, GAUSS will not see any input until
you pressthe ENTER key. keyw gets the next key from the keyboard
buffer. If the keyboard buffer is empty, keywwaits for akeystroke. For
normal keys, keyw returnsthe ASCII value of the key. Seekey for a
table of return values for extended and function keys.

key

3-410

Command Reference

keywor d

keywor d

Purpose Beginsthe definition of akeyword procedure. Keywords are user-defined
functions with local or global variables.

Format keyword name(str);

Input name literal, name of the keyword. This name will be a global symbol.

str string, a name to be used inside the keyword to refer to the
argument that is passed to the keyword when the keyword is
called. Thiswill always be loca to the keyword, and cannot be
accessed from outside the keyword or from other keywords or
procedures.

Remarks A keyword definition begins with the keywor d statement and ends with
the endp statement. See “Procedures and Keywords’ in User’s Guide.

Keywords aways have 1 string argument and 0 returns. GAUSS will take
everything past name, excluding leading spaces, and pass it as a string
argument to the keyword. Inside the keyword, the argument isalocal
string. The user is responsible to manipulate or parse the string.

An example of akeyword definition is:
keyword add(str);

| ocal tok, sum

sum = 0;

do until str $== *"";
{ tok, str } = token(str);
sum = sum + st of (tok);

endo;

print “Sumis: sum

endp;

To use this keyword, type:
add 1 2 3 4 5;

3-411

GAUSS Language Reference

keywor d

This keyword will respond by printing:
Sumis: 15

See also proc, local, endp

3-412

Command Reference

| ag (dat al oop)

| ag (dat al oop)

Purpose
Format

Input

Output

Remarks

Lags variables a specified number of periods.
lag nvl = varl: pl [nv2 =var2:p2..];

var name of the variable to lag.
p scalar constant, number of periodsto lag.

nv name of the new lagged variable.

You can specify any number of variables to lag. Each variable can be
lagged a different number of periods. Both positive and negative lags are
alowed.

Lagging is executed before any other transformations. If the new variable
name is different from that of the variable to lag, the new variable isfirst
created and appended to atemporary data set. This temporary data set
becomes the input data set for the dataloop, and is then automatically
deleted.

3-413

GAUSS Language Reference

| agl
| agl
Purpose Lagsamatrix by onetime period for time series analysis.
Format vy = lagl(x);
Input x NXK matrix.
Output vy NxK matrix, x lagged 1 period.
Remarks | agl lagsx by onetime period, so the first observations of y are missing.

Source lag.src

See also lagn

3-414

Command Reference

| agn
Purpose

Format

Input

Output

Remarks

Source

See also

| agn

Lags amatrix a specified number of time periods for time series analysis.

y = lagn(xt);

X NxK matrix.

t scalar, number of time periods.
y NxK matrix, x lagged t periods.

If tispositive, | agn lags x back t time periods, so the first t observations
of yaremissing. If tisnegative, | agn lags x forward t time periods, so
the last t observations of y are missing.

| ag. src

| agl

3-415

GAUSS Language Reference

| et

| et

Purpose Createsamatrix fromalist of numeric or character values. The result is
awaysof typematri x,stringorstring array.

Format Iet x = constant list;
Remarks Expressionsand matrix names are not allowed inthel et command.
Expressions such asthis:
let x[2,1] = 3*a b

areillegal. To define matrices by combining matrices and expressions,
use an expression containing the concatenation operators: ~ and | .

Numbers can be entered in scientific notation. The syntax is dExn, where
disanumber and n is an integer (denoting the power of 10).

et x = 1e+10 1. 1e-4 4.019e+2;

Complex numbers can be entered by joining the real and imaginary parts
with asign (+ or -); there should be no spaces between the numbers and
the sign. Numbers with no real part can be entered by appending an “i” to
the number.

let x = 1.2+23 8.56i 3-2.1i -4.2e+6i
1.2e-4-4,5e+3i;

If curly braces are used, the |l et isoptional. You will needthel et for
statements that you want to protect from the beautifier using the- | flag
on the beautifier command line.

let x ={ 123, 456, 789 };
x={ 123 456, 789]};

If indices are given, amatrix of that size will be created:
let x[2,2] =12 3 4

12
34

X =

3-416

Command Reference

| et

If indices are not given, acolumn vector will be created:
let x =1 2 3 4;

A W NP

You can create matrices with no elements, i.e., “empty matrices’. Just use
aset of empty curly braces.

x = {};

Empty matrices are chiefly used as the starting point for building up a
matrix, for examplein ado loop. For more information on empty
matrices, see “Language Fundamentals’ in the User’s Guide.

Character elementsaredlowed in al et statement:
l et x = age pay sex;

AGE
X = PAY
SEX

L owercase el ements can be created if quotation marks are used. Note that
each element must be quoted.

@ ”

let x = “age” “pay” “sex”;

age

X = pay
sex

Example let x;

x=0

3-417

GAUSS Language Reference

| et

let x ={ 123, 456, 789},

123
X= 456
789

1234567829,

let x[3, 3]

123
X= 456
789

let Xx[3, 3]

1
=

111
X= 111
111

let x[3,3];

000
X= 000
000

3-418

Command Reference

| et

let x =123 4567 8 9;

x
11
© 00 NO OB WDN PP

let x = dog cat;

x = DOG

CAT
let x = “dog” “cat”;
x = dog

cat

let string x = { “Median | nconge”
“Country”;

Median Income
Country

X =

See also con, cons, declare, | oad

3-419

GAUSS Language Reference

lib

i b

Purpose
Format

Input

Builds and updates library files.

i b library [filg [-flag - flag. . .];

library
file
flags

literal, name of library.
optional literal, name of source file to be updated or added.

optional literal preceded by ‘-’, controls operation of library
update. To control handling of path information on source

filenames:
- addpat h

-gausspath

-| eavepat h
-nopat h

(default) add paths to entries without
paths and expand relative paths.

reset all paths using anormal file
search.

leave al path information untouched.
drop all path information.

To specify alibrary update or a complete library build:

-updat e

-build

-del ete
-1 st

(default) update the symbol information
for the specified file only.

update the symbol information for every
library entry by compiling the actual
sourcefile.

delete afile from the library.

list filesin alibrary.

To control the symbol type information placed in the library

file:
-strong

-weak

(default) use strongly typed symbol
entries.

save no type information. This should
only be used to build alibrary
compatible with a previous version of
GAUSS.

3-420

Command Reference

Remarks

See also

lib

To control location of temporary files for acomplete library
build:

-tnp (default) use the directory pointed to by
thet np_pat h configuration variable.
The directory will usually be on aRAM
disk. If t np_pat hisnot defined, | i b
will look for at np environment
variable.

-di sk use the same directory listed in the
I'i b_pat h configuration variable.

The flags can be shortened to one or two letters, aslong as they remain
uniqgue — for example, - b to- bui | d alibrary, - 1| tolistfilesina
library.

If the filenames include afull path, the compilation processis faster
because no unnecessary directory searching is needed during the
autoloading process. The default path handling adds a path to each file
listed in the library and also expands any relative paths so the system will
work from any drive or subdirectory.

When a path is added to a filename containing no path information, the
fileis searched for on the current directory and then on each subdirectory
listedinsr c_pat h. Thefirst path encountered that contains the fileis
added to the filename in the library entry.

library

3-421

GAUSS Language Reference

library

|1 brary

Purpose Setsup thelist of active libraries.

Format [Ilibrary [-I] libl, lib2, lib3, lib4,
library;

Remarks If noargumentsare given, thelist of current libraries will be printed out.

The- | option will write afile containing alisting of libraries, files, and
symbols for al active libraries. Thisfile will reside in the directory
defined by thel i b_pat h configuration variable. Under Windows and
UNIX, thefilewill have aunique name beginningwith | i bl st _. Under
0S/2 and DOS, the filewill becalled gaussl i b. | st ;if it already
existsit will be overwritten.

For more information about the library system, see“Libraries’ in the
User’s Guide.

The default extension for library filesis. | cg.

If alist of library namesis given, they will be the new set of active
libraries. The two default librariesareuser . | cg and gauss. | cg.
Unless otherwise specified, user . | cg will be searched first and
gauss. | cg will be searched last. Any other user-specified libraries will
be searched after user . | cg inthe order they were entered in the

| i brary statement.

If the statement:
y = dog(x);

is encountered in a program, dog will be searched for in the active
libraries. If it isfound, it will be compiled. If it cannot be found in a
library, the deletion state determines how it is handled:

autodeleteon search for dog. g
autodelete of f return Undef i ned synbol error message

If dog callscat and cat calsbi r d and they are al in separate files,
they will al be found by the autoloader.

The source browser and the help facility will search for dog in exactly
the same sequence as the autoloader. The file containing dog will be
displayed in the window and you can scroll up and down and look at the
code and comments.

3-422

Command Reference

See also

library

Library files are ssimple ASCI| files that you can create with the editor.
Hereis an example:

/*
** This is a GAUSS library file.
*/
eig.src
eig . proc
ei gsym . proc
_eigerr ©omatrix
svd. src
cond . proc
pi nv . proc
r ank . proc
svd . proc
_svdt ol omatrix

The lines not indented are the file names. The lines that are indented are
the symbols defined in that file. As you can see, a GAUSS library isa
dictionary of files and the global symbolsthey contain.

Any line beginning with/ *,** or */ is considered a comment. Blank
lines are okay.

Hereis adebugging hint. If your program is acting strange and you
suspect it is autoloading the wrong copy of a procedure, use the source
browser or help facility to locate the suspected function. It will use the
same search path that the autol oader uses.

decl are, external, lib, proc

3-423

GAUSS Language Reference

#l i neson,

#1 i nesof f

#1 1 neson, #l i1 nesoff

Purpose

Format

Remarks

See also

The #l i neson command causes GAUSS to embed line number and
file name recordsin a program for the purpose of reporting the location
where an error occurs. The#l i nesof f command causes GAUSS to
stop embedding line and file records in a program.

#| i neson;
#l i nesof f;

In the “lines on” mode, GAUSS keeps track of line numbers and file
names and reports the location of an error when an execution time error
occurs. In the “lines off” mode, GAUSS does not keep track of lines and
files at execution time. During the compile phase, line numbers and file
names will always be given when errors occur in a program stored in a
disk file.

It is easier to debug a program when the locations of errors are reported,
but this slows down execution. In programs with several scalar
operations, the time spent tracking line numbers and file names is most
significant.

These commands have no effect on interactive programs (that is, those
typed in the window and run from the command line), since there are no
line numbersin such programs.

Line number tracking can be turned on and off through the user interface,
but the#l i neson and #l i nesof f commands will override that.

The line numbers and file names given at run-time will reflect the last
record encountered in the code. If you have a mixture of procedures that
were compiled without line and file records and procedures that were
compiled with line and file records, use thet r ace command to locate
exactly where the error occurs.

TheCurrently active call error message will always be correct.
If it states that it was executing procedure xyz at line number nnnin file

ABC and xyz hasno line nnn or isnot in file ABC, you know that it just

did not encounter any line or file recordsin xyz before it crashed.

When using #i ncl ude’d files, the line number and file name will be
correct for thefile the error was in, within the limits stated above.

trace

3-424

Command Reference

listwi se (datal oop)

|1 stw se (datal oop)

Purpose Controlslistwise deletion of missing values.

Format |istw se [read]|[wite];

Remarks If read isspecified, the deletion of all rows containing missing values
happens immediately after reading the input file and before any
transformations. If wr i t e is specified, the deletion of missing values
happens after any transformations and just before writing to the output
file.If nol i st wi se statement is present, rows with missing values are
not deleted.

The default isr ead.

3-425

GAUSS Language Reference

I n

| n

Purpose
Format
Input

Output

Remarks

Example

Computes the natural log of all elements of a matrix.

y = 1n(x;

X NxK matrix.

y NxK matrix containing the natural log values of the elements of
X.

| nisdefined for x # 0.
If X is negative, complex results are returned.

You can turn the generation of complex numbers for negative inputs on or
off in the GAUSS configuration file, and with the sysst at e function,
case 8. If you turn it off, | n will generate an error for negative inputs.

If x isalready complex, the complex number state doesn’t matter; | n will
compute a complex result.

X can be any expression that returns a matrix.

I n(16);
2.7725887

y
y

3-426

Command Reference

| ncdf bvn

| ncdf bvn

Purpose Computesnatural log of bivariate Normal cumulative distribution
function.

Format y = | ncdfbvn(xl, x2,r);

Input x1 NXK matrix, abscissae.
x2 LxM matrix, abscissae.
r PxQ matrix, correlations.

Output vy max(N,L,P) x max(K,M,Q) matrix, In Pr(X < x1, X<x2|r).
Remarks x1, x2, andr must be EXE conformable.
Source |Incdfn.src

See also cdfbvn, | ncdfnmvn

3-427

GAUSS Language Reference

| ncdf bvn2

| ncdf bvn2

Purpose
Format

Input

Output

Remarks

Example

Returns log of cdfbvn of abounded rectangle.

y = I ncdf bvn2(h, dh, k, dk, r) ;

h Nx1 vector, upper limits of integration for variable 1.

dh Nx1 vector, increments for variable 1.

k Nx1 vector, upper limits of integration for variable 2.

dk Nx1 vector, increments for variable 2.

r Nx1 vector, correlation coefficients between the two variables.
y Nx1 vector, the log of the integral from h,k to h+dh,k+dk of the

standardized bivariate Normal distribution.

Scalar input arguments are okay; they will be expanded to Nx1 vectors.
I ncdf bvn2 will abort if the computed integral is negative.

| ncdf bvn2 computes an error estimate for each set of inputs--the real
integral is exp(y)zerr. The size of the error depends on the input
arguments. If t rap 2 isset, awarning message is displayed when err =
exp(y)/100.

For an estimate of the actual error, see cdf bvn2e.

Example 1
| ncdf bvn2(1,1,1,1,0.5);

produces:
-3.2180110258198771e+000

Example 2
trap O, 2;
| ncdf bvn2(1, le- 15,1, 1le-15,0.5);

produces:
-7.1171016046360151e+001

3-428

Command Reference

| ncdf bvn2

Example 3

trap 2, 2;

| ncdf bvn2(1, - 1e-45, 1, 1e-45,0.5);

WARNI NG Dubi ous accuracy from | ncdf bvn2:
0. 000e+000 = 2. 8e-060

- I NF

See also cdfbvn2, cdfbvn2e

3-429

GAUSS Language Reference

| ncdf mvn

| ncdf nvn

Purpose Computesnatural log of multivariate Normal cumulative distribution
function.

Format vy = I ncdfnmvn(xr);

Input x KxL matrix, abscissae.
r KxK matrix, correlation matrix.
Output vy Lx1 vector, In Pr(X < x|r).

Remarks You can pass more than one set of abscissae at atime; each column of xis
treated separately.

Source | ncdfn. src

See also cdf mvn, | ncdfbvn

3-430

Command Reference

| ncdf n

| ncdf n

Purpose Computesnatural log of Normal cumulative distribution function.
Format vy = Incdfn(x);
Input x NxK matrix, abscissae.
Output vy NxK matrix, In Pr(X < x).

Source Incdfn.src

3-431

GAUSS Language Reference

| ncdf n2

| ncdf n2

Purpose

Format

Input

Output

Remarks

Example

Source

See also

Computes natural log of interval of Normal cumulative distribution
function.

y = I ncdf n2(x,r);

X MxN matrix, abscissae.
KxL matrix, EXE conformable with x, intervals.

y max(M,K) x max(N,L) matrix, the log of the integral from x to
x+dx of the Normal distribution, i.e., In Pr(x < X < x + dx).

Thereative erroris;

X<landdx<1 tle-14
1< x| <37 and|dx| < 1]x| +le-13
min(x,x + dx) > -37 and y > -690 +1e-11 or better

A relative error of £1e-14 implies that the answer is accurate to better
than £1 in the 14th digit.

print |ncdfn2(-10,29);
-7.6198530241605269e- 24

print |ncdfn2(0,1);
-1.0748623268620716e+00

print |ncdfn2(5,1);
-1.5068446096529453e+01

| ncdfn. src

cdf n2

3-432

Command Reference

| ncdf nc

| ncdf nc

Purpose Computesnatural log of complement of Normal cumulative distribution
function.

Format y = I ncdfnc(x);
Input x NxK matrix, abscissae.

Output vy NxK matrix, In (1 - Pr(X < x)).

Source | ncdf n. src

3-433

GAUSS Language Reference

| nf act

| nf act

Purpose

Format
Input

Output

Remarks

Example

Source

See also

Computes the natural log of the factorial function and can be used to
compute log gamma.

y = I nfact(X);
X NxK matrix, all elements must be positive.

y NxK matrix containing the natural log of the factorial of each of
the elements of x.

For integer x, thisis (approximately) In(x!). However, the computation is
done using aformula, and the function is defined for noninteger x.

In most formulae in which the factorial operator appears, it is possible to
avoid computing the factorial directly, and to usel nf act instead. The
advantage of thisisthat | nf act does not have the overflow problems
that the factorial (!) operator has.

For x= 1, thisfunction has at least 6 digit accuracy, for x > 4 it has at |east
9 digit accuracy, and for x > 10 it has at least 12 digit accuracy. For
0<x<1, accuracy is not known completely but is probably at least 6
digits.

Sometimes log gammaiis required instead of log factorial. These
functions are related by:

I nganma(x) = I nfact(x-1);
et x = 100 500 1000;
y

| nfact (x);

363.739375560
2611.33045846
5912.12817849

<
|

| nfact. src

gamma

3-434

Command Reference

| nf act

Technical Forx> 1, Stirling'sformula is used.

NOtes rorg<x<1,1n(gamma(x+1)) isused.

3-435

GAUSS Language Reference

| npdf n

| npdf n

Purpose
Format
Input
Output

Remarks

Example

Computes standard Normal log-probabilities.

z = | npdfn(x);
X NxK matrix, data.
z NxK matrix, log-probabilities.

This computes the log of the scalar Normal density function for each
element of x. z could be computed by the following GAUSS code:

= -In(sqrt(2*pi))-x *x 2;
For multivariate log-probabilities, see | npdf mvn.

{ .2, -1, 0, 1, 2},
[npdf n(x) ;

X

z

—2.9189385
—1.4189385
Z = -0.91893853
—1.4189385
—2.9189385

3-436

Command Reference

| npdf mvn

| npdf nvn

Purpose
Format

Input

Output

Remarks

Computes multivariate Normal log-probabilities.

z = | npdf nvn(x, 9);

X NxK matrix, data.

S KxK matrix, covariance matrix.
z Nx1 vector, log-probabilities.

This computes the multivariate Normal log-probability for each row of x.

3-437

GAUSS Language Reference

| npdf nvt

| npdf mvt

Purpose Computes multivariate Student’st log-probabilities.

Format z = Inpdfmvt(x s nu);

Input x NxK matrix, data.
S KxK matrix, covariance matrix.
nu scalar, degrees of freedom.
Output 7 Nx1 vector, |log-probabilities.

3-438

Command Reference

| npdf t

Purpose
Format

Input

Output

Remarks

| npdft

Computes Student’s t log-probabilities.

z = I npdft(x, nu);

X NxK matrix, data.
nu scalar, degrees of freedom.
z NxK matrix, log-probabilities.

This does not compute the log of the joint Student’st pdf. Instead, the
scalar Normal density function is computed element by element.

For multivariate probabilities with covariance matrix see Inpdfmvt.

3-439

GAUSS Language Reference

| oad, |oadf, |oadk, |oadm | oadp, | oads

| oad, | oadf, | oadk, | oadm | oadp, | oads

Purpose Loadsfromadisk file.
Format | oad [[pat h=path] x, y[]=filename, z=filename;

Remarks All thel oadxx commands use the same syntax — they only differ in the
types of symbols you use them with.

| oad, | oadm matrix

| oads string

| oadf function (f n)

| oadk keyword (keywor d)
| oadp procedure (pr oc)

If no filenameis given aswith x above, then the symbol namethefileisto
be loaded into is used as the filename and the proper extension is added.

If more than one item is to be loaded in a single statement, the names
should be separated by commas.

Thefilename can be either aliteral or astring. If thefilenameisin astring
variable, then the ™ (caret) operator must precede the name of the string,
asin:

filestr “mydat a/ char”;

| oadm x = ~filestr;

If no extension is supplied, the proper extension for each type of file will
be used automatically as follows:

| oad . fm - matrix file or delimited ASCII file

| oadm . fnt - matrix file or delimited ASCII file

| oads . fst -dringfile

| oadf . fcg - user-defined function (f n) file

| oadk . f cg - user-defined keyword (keywor d) file

| oadp . fcg - user-defined procedure (pr oc) file

These commands also signal to the compiler what type of object the
symbol is so that later referencesto it will be compiled correctly.

A dummy definition must exist in the program for each symbol that is
loaded inusing | oadf , | oadk, or | oadp. Thisresolvesthe need to

3-440

Command Reference

| oad, |oadf, |oadk, |oadm I oadp, |oads
have the symbol initialized at compile time. When the load executes, the
dummy definition will be replaced with the saved definition.
proc corrmat; endp;
| oadp corrnat;

y = corrmat;

keyword regress(x); endp;
| oadk regress;

regress x ony z t from data0O1l;

fn sqgrd=;
| oadf sqrd;
y = sqrd(4.5);

To load GAUSS files created with the save command, no brackets are
used with the symbol name.

If you use save to save ascalar error code 65535 (i.e.,
error(65535)), it will beinterpreted as an empty matrix when you
| oad it again.

ASCII datafiles
To load ASCII data files, square brackets follow the name of the symbol.

Numbersin ASCII files must be delimited with spaces, commas, tabs, or
newlines. If the size of the matrix to be loaded is not explicitly given, as
in:

| oad x[] = data. asc;

GAUSSwill load as many elements as possible from the file and create an
Nx1 matrix. Thisis the preferred method of loading ASCII datafrom a
file, especially when you want to verify if the load was successful. Your
program can then see how many elements were actually loaded by testing
the matrix with ther ows command, and if that is correct, the Nx1 matrix
can be reshaped to the desired form. You could, for instance, put the
number of rows and columns of the matrix right in the file as the first and
second elements and reshape the remainder of the vector to the desired
form using those values.

3-441

GAUSS Language Reference

| oad, |oadf, |oadk, |oadm | oadp, | oads
If the size of the matrix is explicitly giveninthel oad command, then no
checking will be done. If you use:
| oad x[500, 6] = data. asc;

GAUSS will still load as many elements as possible from the file into an
Nx1 matrix and then automatically reshape it using the dimensions given.

If your file contains nine numbers (123456 7 8 9), then the matrix x
that was created would be as follows:

| oad x[1,9] = data.asc;

X= 123456789

| oad X[3, 3]

dat a. asc;

123
X= 456
789

| oad X[2, 2] dat a. asc;

12
34

X =

| oad X[2, 9] dat a. asc;

123456789
123456789

X =

| oad x[3,5] = data. asc;

12345
X= 67891
23456

| oad accepts pathnames. The following islegal:
| oadm k = /gauss/x;

Thiswill load / gauss/ x. f mt intok.

3-442

Command Reference

See also

| oad, |oadf, |oadk, |oadm I oadp, |oads

If the pat h= subcommand is used with | oad and save, the path string
will be remembered until changed in a subsequent command. This path
will be used whenever noneis specified. There are four separate pathsfor:

1. | oad, | oadm
2. loadf, |oadp
3. | oads
4, save

Setting any of the four paths will not affect the others. The current path
settings can be obtained (and changed) with the sysst at e function,
cases 4-7.

| oadm path = /dat a;
Thiswill change the | oadmpath without loading anything.
| oad path = /gauss Xx,VY, z;

Thiswill loadx. fmt ,0y. fm ,andz. f m using/ gauss asapath.
This path will be used for the next load if noneis specified.

The load path or save path can be overridden in any particular load or
save by putting an explicit path on the filename given to load from or save
to asfollows:

| oadm path = / m scdat a;
| oadm x = /datal/nydatal, y, z = hisdata;
In the above program:
[dat a/ mydat al. f nt would be loaded into a matrix called x.
/ mi scdat a/y. f mt would beloaded into a matrix calledy.
/ m scdat a/ hi sdat a. f mt would be loaded into amatrix called z
ol dnmpat h = sysstate(5,“/data”);
| oad x, v;
call sysstate(5, ol dnpath);

Thiswill get theold | oadmpath, setitto/ dat a, load x. f nt and
y. fm , and reset thel oadmpath to its original setting.

| oadd, save, let, con, cons, sysstate

3-443

GAUSS Language Reference

| oadd

| oadd

Purpose Loadsadataset.
Format vy = | oadd(dataset);
Input dataset string, name of data set.

Output vy NxK matrix of data.

Remarks Thedataset must not be larger than a single GAUSS matrix.

If dataset isanull string or O, the dataset t enp. dat will be loaded. To
load a matrix file, usean . f nt extension on dataset.

Source savel oad. src

Globals _ maxvec

3-444

Command Reference

| oadwi nd

| oadw nd

Purpose
Library
Format

Input

Output

Source

See also

Loads a previously saved graphic panel configuration.
pgr aph

er = | oadwi nd(namestr) ;

namestr string, name of file to be loaded.

er scalar, 0 if successful, 1 if graphic panel matrix isinvalid. Note
that the current graphic panel configuration will be overwritten
in either case.

pwi ndow. src

savew nd

3-445

GAUSS Language Reference

| ocal

| ocal

Purpose Declares variables that are to exist only inside a procedure.

Format local x vy, f proc;

Remarks Thestatement above would place the namesx, y, and f in the local symbol
table for the current procedure being compiled. This statement is legal
only between the pr oc statement and the endp statement of a procedure
definition.

These symbols cannot be accessed outside of the procedure.

The symbol f in the example above will be treated as a procedure
whenever it is accessed in the procedure. What is actually passed inisa
pointer to a procedure.

See “ Procedures and Keywords” in the User’s Guide.

See also proc

3-446

Command Reference

| ocat e

Purpose
Format

Portability

Remarks

Example

See also

| ocat e

Positions the cursor in the window.
| ocate m, n;

Windows only
L ocates the cursor in the current output window.

mand n denote the row and column, respectively, at which the cursor isto
be located.

Theorigin (1,1) is the upper left corner.

m and n may be any expressions that return scalars. Nonintegers will be
truncated to an integer.

csrlin;

r

c csrcol;

cls;

| ocate r,c;

In this example the window is cleared without affecting the cursor
position.

csrlin, csrcol

3-447

GAUSS Language Reference

| oess

| oess

Purpose
Format

Input

Global Input

Output

Remarks

Source

Computes coefficients of locally weighted regression.
{ yhat,ys, xs } = | oess(depvar, indvars) ;

depvar Nx1 vector, dependent variable.
indvars NxK matrix, independent variables.

_|l oess_Span scalar, degree of smoothing. Must be greater than
2/ N. Default = .67777.

_l oess_NunEval scalar, number of pointsinysand xs. Default = 50.

|l oess_Degree scalar, if 2, quadratic fit, otherwise linear. Default
=1

_l oess_Wjt Type scaar, type of weights. If 1, robust, symmetric
weights, otherwise Gaussian. Default = 1.

__out put scalar, if 1, iteration information and results are
printed, otherwise nothing is printed.

yhat Nx1 vector, predicted depvar given indvars.

ys _l oess_nunEval x1 vector, ordinate values given abscissae
valuesin xs.
XS _l oess_nunEval x1 vector, equally spaced abscissae values.

Based on Cleveland, William S. “Robust Locally Weighted Regression
and Smoothing Scatterplots.” JASA. Vol. 74, 1979, 829-36.

| oess. src

3-448

Command Reference

| og

Purpose
Format
Input
Output

Remarks

Example

| og
Computes the log,q of all elements of a matrix.
y = 1og(x);
X NxK matrix.
y NxK matrix containing the log 10 values of the elements of x.

| og isdefined for x # 0.
If X is negative, complex results are returned.

You can turn the generation of complex numbers for negative inputs on or
off in the GAUSS configuration file, and with the sy sst at e function,
case 8. If you turn it off, | og will generate an error for negative inputs.

If x isaready complex, the complex humber state doesn’t matter; | og
will compute a complex result.

X can be any expression that returns a matrix.

X round(rndu(3, 3)*10+1);

y = log(x);
4.0000000000 2.0000000000 1.0000000000
X = 10.0000000000 4.0000000000 8.0000000000

7.0000000000 2.0000000000 6.0000000000

0.60205999 0.30103 0.30103
Y = 1.0000000000 0.60205999 0.90308999
0.8450980400 0.30103 0.77815125

3-449

GAUSS Language Reference

| ogl og

| ogl og
Purpose GraphsX vs. Y using log coordinates.

Library pgraph

Format |oglog(xYy);

Input x Nx1 or NxM matrix. Each column contains the X values for a
particular line.

y Nx1 or NxM matrix. Each column containsthe Y values for a
particular line.

Source ploglog.src

See also xy, logy, |ogx

3-450

Command Reference

| ogx
Purpose
Library

Format

Input

Source

See also

| ogx

Graphs X vs. Y using log coordinates for the X axis.
pgr aph
logx(x y);

X Nx1 or NxM matrix. Each column contains the X values for a
particular line.

y Nx1 or NxM matrix. Each column containsthe Y values for a
particular line.

pl ogx. src

xy, logy, |oglog

3-451

GAUSS Language Reference

| ogy

| ogy

Purpose GraphsX vs. Y using log coordinates for the Y axis.
Library pgraph

Format |ogy(xy);

Input x Nx1 or NxM matrix. Each column represents the X values for a
particular line.

y Nx1 or NxM matrix. Each column representsthe Y values for a
particular line.

Source plogy.src

See also xy, logx, |oglog

3-452

Command Reference

| ower
Purpose Convertsastring or character matrix to lowercase.
Format vy = |lower(x);
Input x string or NxK matrix of character datato be converted to
lowercase.
Output vy string or NxK matrix which contains the lowercase equivalent of
the datain x.

Remarks If xisanumeric matrix, y will contain garbage. No error message will be
generated since GAUSS does not distinguish between numeric and
character data in matrices.

Example x = “MATH 401",

y
print vy;

| ower (x);

produces:
mat h 401

See also upper

3-453

GAUSS Language Reference

| owmat, | owmatl

| owmat, | owmat 1

Purpose Returnsthelower portion of amatrix. | owmat returns the main diagonal
and every element below. | owmat 1 isthe same except it replaces the
main diagonal with ones.

Format L = |owmat(Xx);
L = lowmat 1(X) ;
Input x NXN matrix.
Output L NxN matrix containing the lower elements of the matrix. The

upper elements are replaced with zeros. | owmat returns the
main diagonal intact. | owmat 1 replacesthe main diagonal with

ones.
Example x={ 1 2 -1,
2 3 -2,

1-2 11};

L = | owmat (x);

L1 = | owrat 1(X) ;
The resulting matrices are;
1 00

L= 2 30
1-21

1 00
L1= 2 10
1-21

Source diag.src

See also upmat, upnatl, diag, diagrv, crout, croutp

3-454

Command Reference

| pos
Purpose

Format

Remarks

Example

See also

| pos

Returns the current position of the print head within the printer buffer for
the printer.

y = | pos;

Thisfunction is basically equivalent to function csr col but this returns
the current column position for the standard printer.

The value returned is the column position of the next character to be
printed to the printer buffer. This does not necessarily reflect the actua
physical position of the print head at the time of the call.

If this function returns a number greater than 1, there are charactersin the
buffer for the standard printer which have not yet been sent to the printer.
This buffer can be flushed at any time by | pri nt 'ing a carriage return/
line feed sequence, or aform feed character.

if | pos > 60;
| print;
endi f;

In thisexample, if the print buffer contains 60 characters or more, a
carriage return/line feed sequence will be printed.

[print, |pwdth

3-455

GAUSS Language Reference

| print
| print

Purpose Controls printing to the line printer.

Format | print [/typ]] [/fmted]] [/mf] [/jnt] [list of expressions separated by
spaces] [;1;

Remarks Thisfunction was originally written for line printers. It is still supported
for backwards compatibility purposes, but if you're using a page-oriented
printer (such asalaser or inkjet printer), it may not give you the results
you're expecting.

| print statementswork in essentialy the same way that pri nt
statements work. The main differenceisthat | pri nt statements cannot
be directed to the auxiliary output. Also, thel ocat e statement has no
meaning with | pri nt .

Two semicolons following an| pri nt statement will suppress the final
line feed.

See pri nt for information on /typ, /fmted, /mf, and /jnt.

A list of expressionsisalist of GAUSS expressions, separated by spaces.
Inl pri nt statements, because a space is the delimiter between
expressions, no spaces are allowed inside expressions unless they are
within index brackets, they are in quotes, or the whole expressionisin
parentheses.

Printer width can be specified by thel pwi dt h statement:
| pwi dt h 132;

This statement remainsin effect until cancelled. The default printer width
is80. That is, GAUSS automatically sends aline feed to the printer after
printing 80 characters.

| pos can be used to determine the (column) position of the next
character that will be printed in the buffer.

Anl pri nt statement by itself will cause ablank line to be printed:
[print;

The printing of specia charactersis accomplished by the use of the
backslash (\) within double quotes. The options are;

“\'b” backspace (ASCII 8)
“\e” escape (ASCII 27)

3-456

Command Reference

Example

See also

o\ fr
NE
A\ p
‘ 1

“\ #H#H"

| print

form feed (ASCII 12)

i ne feed (ASCII 10)

carriage return (ASCII 13)

t ab (ASCII 9)

the character whose ASCII value is “###" (decimal)

GAUSS also has an automatic line printer mode which causes the results
of all global assignment statementsto be printed out on the printer. Thisis
controlled by thelprint onandl print off commands. (See

[print on,lprint off.)

| print 3*4 5+2;

print,

| print on, |pos, |pwdth, format

3-457

GAUSS Language Reference

| pwi dt h
| pwi dt h
Purpose Specifiesthe width of the printer.

Format Ipwdth n;

Remarks nisascaar which specifies the width of the printer in columns
(characters). That is, after printing n characterson aline, GAUSS will
send acarriage return and a line feed, so that the print head will move to
the beginning of the next line.

If amatrix isbeing printed, the line feed sequence will always be inserted
between separate elements of the matrix rather than being inserted
between digits of a single element.

n may be any scalar-valued expression. Nonintegers will be truncated to
an integer.

The default is 80 columns.

Note: Thisdoes not send control charactersto the printer to automatically
switch the mode of the printer to a different character pitch because each
printer isdifferent. Thisonly controlsthe frequency of carriage return/line
feed sequences.

Example | pw dth 132;

This statement will change the printer width to 132 columns.

See also Iprint,lpos,outw dth

3-458

Command Reference

| tri sol

Purpose
Format

Input

Output

[trisol

Computes the solution of Lx = b where L isalower triangular matrix.

X = ltrisol (b, L);

b PxK matrix.
L PxP lower triangular matrix.
X PxK matrix.

I trisol appliesaforward solveto Lx = b to solve for x. If b has more
than one column, each column will be solved for separately, i.e.,
I trisol will apply aforward solvetoL * x[.,i] = b[.,i].

3-459

GAUSS Language Reference

| u

| u

Purpose Computesthe LU decomposition of a square matrix with partial (row)
pivoting, such that X = LU.

Format { l,u} = lu(x;

Input x NxN square nonsingular matrix.

Output | NxN “scrambled” lower triangular matrix. Thisis alower
triangular matrix that has been reordered based on the row
pivoting.

u NXN upper triangular matrix.

Example rndseed 13;
format /rd 10, 4;
x = conmpl ex(rndn(3,3),rndn(3, 3));
{ 1,u} =1lu(x);

x2 = | *u;

0.1523 + 0.7685i —0.8957 + 0.0342i 2.4353 + 2.7736i
X = —-11953+1.2187i 1.2118+0.2571i —0.0446 —1.7768i
0.8038 + 1.3668i 1.2950 —1.6929i 1.6267 + 0.2844i

0.2589-0.3789i —1.2417 + 0.5225i 1.0000
I = 1.0000 0.0000 0.0000
0.2419 - 0.8968i 1.0000 0.0000

—1.1953 +1.2187i 1.2118+ 0.2571i —0.0446—1.7768i
u= 0.0000 0.7713—-0.6683i 3.2309 + 0.6742i
0.0000 0.0000 6.7795 + 5.7420i

3-460

Command Reference

[u

0.1523 + 0.7685i —0.8957 + 0.0342i 2.4353 + 2.7736i
X2 = _11953+1.2187i 1.2118+ 0.2571i —0.0446 — 1.7768i
0.8038 + 1.3668i 1.2950—-1.69291 1.6267 + 0.2844i

See also crout, croutp, chol

3-461

GAUSS Language Reference

| usol

| usol

Purpose

Format

Input

Output

Remarks

Computes the solution of LUx = b where L isalower triangular matrix
and U is an upper triangular matrix.

x = lusol (b, L, U);

b PxK matrix.
L PxP lower triangular matrix.
U PxP upper triangular matrix.
X PxK matrix.

If b has more than one column, each column is solved for separately, i.e.,
| usol solvesLUX[.,i] = b[.,i].

3-462

Command Reference

nmake (datal oop)

make (dat al oop)

Purpose

Format

Remarks

Example

See also

Specifies the creation of a new variable within a data loop.

make [#] numvar = numeric_expression;
make $ charvar = character_expression;

A numeric_expression is any valid expression returning anumeric vector.
A character_expression is any valid expression returning a character
vector. If neither ‘$’ nor ‘#’ is specified, ‘#’ is assumed.

The expression may contain explicit variable names and/or GAUSS
commands. Any variables referenced must already exist, either as
elements of the source data set, asext er ns, or astheresult of aprevious
nmeke, vect or, or code statement. The variable name must be unique.
A variable cannot be made more than once, or an error is generated.

make sqvpt sqgrt(velocity * pressure * tenp);

| ower (sex);

make $ sex

vect or

3-463

GAUSS Language Reference

makevar s

nakevar s

Purpose
Format

Input

Remarks

Example

Creates separate global vectors from the columns of a matrix.
makevar s(X, vnames, xnames) ;

X NxK matrix whose columns will be converted into individual
vectors.

vnames string or Mx1 character vector containing names of global
vectorsto create. If 0, all namesin xnames will be used.

xnames string or Kx1 character vector containing names to be
associated with the columns of the matrix x.

If xnames = 0, the prefix X will be used to create names. Therefore, if
there are 9 columnsin x, the names will be X1-X9, if there are 10, they
will be X01-X10, and so on.

If xnames or vnames is a string, the individual names must be separated
by spaces or commas.

vnanes = “age pay sex";

Since these new vectors are created at execution time, the compiler will
not know they exist until after makevar s has executed once. This means
that you cannot access them by hame unless you previously cl ear them
or otherwise add them to the symbol table. (See set var s for aquick
interactive solution to this.)

Thisfunction isthe opposite of mer gevar.

let x[3,3] = 101 35 50000
102 29 13000
103 37 18000;
| et xnames = id age pay;

| et vnames = age pay;

mekevar s(x, vnames, xnames) ;

Two global vectors, called age and pay, are created from the columns of
X.

3-464

Command Reference

makevar s

let x[3,3] = 101 35 50000
102 29 13000
103 37 18000;

xnanes = "id age pay";

vnanmes = "age pay";
makevar s(x, vnames, xnames) ;

Thisisthe same as the example above, except that strings are used for the
variable names.

Source vars.src
Globals __vpad

See also nergevar, setvars

3-465

GAUSS Language Reference

makew nd

makew nd

Purpose

Library
Format

Input

Remarks

Source

See also

Creates a graphic panel of specific size and position and add it to the list
of graphic panels.

pgr aph
makew nd(xsize, ysize, xshft, yshft, typ) ;

xsize scalar, horizontal size of the graphic panel in inches.

ysize scalar, vertical size of the graphic pand in inches.

xshft scalar, horizontal distance from left edge of window ininches.
yshft scalar, vertical distance from bottom edge of window in inches.

typ scalar, graphic panel attribute type. If thisvalueis 1, the graphic
panels will be transparent. If 0, the graphic panelswill be
nontransparent.

Note that if this procedure is used when rotating the page, the passed
parameters are scaled appropriately to the newly oriented page. The size
and shift values will not be true inches when printed, but the graphic
panel size to page size ratio remains the same. The result of this
implementation automates the rotation and eliminates the required
graphic panel recalculations by the user.

See thewi ndow command for creating tiled graphic panels. For more
information on using graphic panels, see “Publication Quality Graphics’
in the User’s Guide.

pw ndow. src

wi ndow, endw nd, setw nd, getw nd, begw nd,
nextw nd

3-466

Command Reference

mar gi n
Purpose
Library

Format

Input

Remarks

Source

See also

mar gi n

Sets the margins for the current graph graphic panel.
pgr aph
mar gi n(l, r, t, b);

scalar, the left margin in inches.
scalar, the right margin in inches.
scalar, the top margin in inches.
scalar, the bottom margin in inches.

o~ = —

By default, the dimensions of the graph are the same as the graphic panel
dimensions. With this function the graph dimensions may be decreased.
The result will be asmaller plot area surrounded by the specified margin.
This procedure takes into consideration the axes labels and numbers for
correct placement.

All input inch values for this procedure are based on afull size window of
9 x 6.855 inches. If this procedure is used with a graphic panel, the values
will be scaled towi ndow i nches automatically.

If the axes must be placed an exact distance from the edge of the page,
axmar gi n should be used.

pgr aph. src

axmargi n

3-467

GAUSS Language Reference

mat al | oc

mat al | oc

Purpose
Format

Input

Output

Remarks

See Also

Allocates a matrix with unspecified contents.

y = matal |l oc(r,.C);

r scalar, rows.
C scalar, columns.
y rXc matrix.

The contents are unspecified. Thisfunction is used to allocate a matrix
that will be written to in sections using indexing or used with the Foreign
Language Interface as an output matrix for afunction called with
dllcall().

matinit, ones, zeros, eye

3-468

Command Reference

matinit
mat | ni t
Purpose Allocates amatrix with unspecified contents.

Format vy = matinit(rcyVv);

Input scalar, rows.
C scalar, columns.
scalar, value to initialize.

Output vy rxc matrix with each element equal to the value of v.

See Also matalloc, ones, zeros, eye

3-469

GAUSS Language Reference

maxc

maxc

Purpose

Format
Input
Output

Remarks

Example

See also

Returns a column vector containing the largest element in each column of
amatrix.

y = maxc(X);
X NXK matrix.

y Kx1 matrix containing the largest element in each column of x.
If x iscomplex, maxc usesthe complex modulus (abs(X)) to determine
the largest elements.

To find the maximum elements in each row of amatrix, transpose the
matrix before applying the maxc function.

To find the maximum value in the whole matrix if the matrix has more
than one column, nest two callsto maxc:

y = maxc(maxc(x));

X = rndn(4, 2);
y = maxc(x);

2124474 1.376765
X = 0.348110 1.172391

—0.027064 0.796867
1.421940 —0.351313

— 1421940
1.376765

m nc, maxi ndc, m ni ndc

3-470

Command Reference

nmaxi ndc

Purpose

Format
Input

Output

Remarks

Example

maxi ndc

Returns a column vector containing the index (i.e., row number) of the
maximum element in each column in a matrix.

y = maxi ndc(X);
X NxK matrix.

y Kx1 matrix containing the index of the maximum element in
each column of x.

If x iscomplex, maxc usesthe complex modulus (abs(X)) to determine
the largest elements.

To find the index of the maximum element in each row of a matrix,
transpose the matrix before applying maxi ndc.

If there are two or more “largest” elementsin acolumn (i.e., two or more
elements equal to each other and greater than all other elements), then
maxi ndc returnsthe index of the first one found, which will be the
smallest index.

X = round(rndn(4,4)*5);
y = maxc(X);
= maxi ndc(Xx) ;
1-11 0 5

X = 0O 0-2-6
-8 0 3 2
-11 54 5
1

y = °
3
5

3-471

GAUSS Language Reference

maxi ndc

B WA R

See also maxc, minindc, ninc

3-472

Command Reference

maxvec

Purpose
Format

Global Input
Output

Remarks

Example

Source

maxvec

Returns maximum vector length allowed.
y = mBaxvec;
__maxvec scalar, maximum vector length allowed.

y scalar, maximum vector length.
maxvec returnsthevaluein the global scalar __maxvec, which can be
reset in the calling program. This must never be set to 8190.

nmaxvec iscaled by Run-Time Library functions and applications when
determining how many rows can be read from a data set in one call to
readr.

On systems without virtual memory you can use 536870910. Otherwise a
smaller value like 20000-30000 is necessary to prevent excessive disk
thrashing. The trick isto allow the a gorithm making the disk reads to
execute entirely in RAM.

y = maxvec;

print vy;

produces:
20000.000

system src

3-473

GAUSS Language Reference

nmbessel i

nbessel |

Purpose Computes modified and exponentially scaled modified Bessels of the first
kind of the n order.

Format y = nbesseli(x, n, apha);
y = nbessel i 0(X);
y = nmbesseli 1(x);

y = nmbessel ei (x, n, alpha) ;

y = nbessel ei 0(X);

y = nbessel ei 1(X);
Input x Kx1 vector, abscissae.

n scalar, highest order.

alpha scalar, 0<alpha<1.

Output vy KxN matrix, evaluations of the modified Bessel or the

exponentially scaled modified Bessel of the first kind of the nth
orders.

Remarks For the functions that permit you to specify the order, the returned matrix
contains a sequence of modified or exponentially scaled modified Bessel

values of different orders. For the it row of y:
Vi1 = 1gO0i]) laea(XT) -t lgans 1(XC])

The remaining functions generate modified Bessels of only the specified
order.

The exponentially scaled modified Bessels are related to the unscaled
modifed Besselsin the following way:

nbessel ei 0(x) = exp(-x) * nbesseli 0(x)

The use of the scaled versions of the modified Bessel can improve the
numerical properties of some calculations by keeping the intermediate
numbers small in size.

Example Thisexample produces estimates for the “circular” response regression
model (Fisher, N.I. Satistical Analysis of Circular Data. NY: Cambridge

3-474

Command Reference

nmbessel i
University Press, 1993.), where the dependent variable varies between -1t
and 1tin acircular manner. The moddl is
y = U + G(XB)

where B isavector of regression coefficients, X amatrix of independent
variables with a column of 1'sincluded for a constant, and y a vector of
“circular” dependent variables, and where G() is afunction mapping XB
onto the [-Tt, 1§ interval.

Thelog-likelihood for this model isfrom Fisher, N.1I. ... 1993, 159;
N
logL = -NxIn((I(«)) + K)Z cos(y, —p—G(X;B))
i

To generate estimates it is necessary to maximize this function using an
iterative method. QNewt on is used here.

K isrequired to be nonnegative and therefore in the example below, the
exponential of this parameter is estimated instead. Also, the exponentially
scaled modified Bessel is used to improve numerical properties of the
calculations.

Thear ct an function isused in G()to map XB to the[-1, 1§ interval as
suggested by Fisher, N.I. ... 1993, 158.

proc u);
retp(2*atan(u));
endp;

proc | pr(b);
| ocal dev;

3-475

GAUSS Language Reference

nmbessel i

** b[1] - kappa
** p[2] - nu
** p[3] - constant

** pb[4:rows(b)] - coefficients

*/
dev =y - b[2]- Gb[3] + x * b[4:rows(b)]);
retp(rows(dev)*Il n(nmbessel ei 0(exp(b[1])) -
sunc(exp(b[1])*(cos(dev)-1))));

endp;

| oadm dat a;

y0 = data[., 1];

x0 = data[., 2:cols(data)];

b0 = 2*ones(col s(x),1);

{ b,fct,grd,ret } = QNewton(&l pr, b0);

cov = invpd(hessp(& pr,b));

print “estimtes standard errors”;

print;
print b~sqgrt(diag(cov));

Source ribesl.src

3-476

Command Reference

nmeanc

Purpose
Format
Input
Output

Example

See also

neanc

Computes the mean of every column of amatrix.

y = nmeanc(X);

X NxK matrix.
y Kx1 matrix containing the mean of every column of x.
x = nmeanc(rndu(2000,4));
0.492446
¥ = 0.503543
0.502905
0.509283

In this example, 4 columns of uniform random numbers are generated in a
matrix, and the mean is computed for each column.

stdc

3-477

GAUSS Language Reference

medi an

nmedl an

Purpose Computesthe medians of the columns of a matrix.

Format m = nedian(x);

Input x NXK matrix.
Output m Kx1 vector containing the medians of the respective columns of
X.
Example x={ 8 4,
6 8,
371},
y = nedi an(Xx);
_ 6.0000000
7.0000000

Source nedian.src

3-478

Command Reference

nmer geby

Purpose
Format

Input

Remarks

Example

Source

ner geby

Merges two sorted files by acommon variable.
mer geby (infilel, infile2, outfile, keytyp) ;

infilel string, name of input file 1.
infile2 string, name of input file 2.
outfile string, name of output file.
keytyp scalar, datatype of key variable.
1 numeric
2 character

Thiswill combine the variablesin the two files to create asingle large
file. The following assumptions hold:

1. Bothfiles havethe key variablein the first column.
2. All of the values of the key variable within afile are unique.
3. Eachfileisalready sorted on that variable.

The output file will contain the key variablein its first column.

It is not necessary for the two filesto have the same number of rows. For
each row for which the key variables match, arow will be created in the

output file. outfile will contain the columns from infilel followed by the

columns of infile2 minus the key column from the second file.

If theinputs are null or O, the procedure will ask for them.
nmergeby(“freq”, “freqdata”, “nergex”,1l);

sortd. src

3-479

GAUSS Language Reference

mer gevar

nmer gevar

Purpose

Format

Input

Output

Remarks

Example

Source

See also

Accepts alist of names of global matrices, and concatenates the
corresponding matrices horizontally to form a single matrix.

X = mergevar (vnames) ;

vnames string or Kx1 column vector containing the names of K global
matrices.

X NxM matrix that contains the concatenated matrices, where M is
the sum of the columnsin the K matrices specified in vnames.

The matrices specified in vnames must be globals and they must all have
the same number of rows.

Thisfunction isthe opposite of makevar s.

| et vhanmes = age pay Ssex;
X = nergevar(vhanes);

The matricesage, pay, and sex will be concatenated horizontally to
create x.

vars. src

makevar s

3-480

Command Reference

m nc
Purpose

Format
Input
Output

Remarks

Example

See also

m nc

Returns a column vector containing the smallest element in each column
in amatrix.

y = mnc(Xx);
X NXK matrix.

y Kx1 matrix containing the smallest element in each column of x.
If xiscomplex, m nc usesthe complex modulus (abs(X)) to determine
the smallest elements.

To find the minimum element in each row, transpose the matrix before
applying the m nc function.

To find the minimum value in the whole matrix, nest two callstom nc:
y = minc(mnc(x));

X = rndn(4, 2);
y = mnc(x);
-1.061321 —0.729026
X = —0.021965 0.184246
1.843242 —-1.847015
1.977621 —0.532307
y = -1.061321
-1.847015

maxc, m ni ndc, nmaxi ndc

3-481

GAUSS Language Reference

nm ni ndc
m ni ndc

Purpose Returnsacolumn vector containing the index (i.e., row number) of the
smallest element in each column in a matrix.

Format y = minindc(x);

Input x NxK matrix.
Output vy Kx1 matrix containing the index of the smallest element in each
column of x.

Remarks If xiscomplex, m ni ndc usesthe complex modulus (abs(x)) to
determine the smallest elements.

Tofind the index of the smallest element in each row, transpose the matrix
before applying m ni ndc.

If there are two or more “smallest” elementsin acolumn (i.e., two or
more elements equal to each other and less than al other el ements), then
nm ni ndc returns the index of the first one found, which will be the
smallest index.

round(rndn(5, 4)*5);

m nc(x);

Example x
y

ni ni ndc(x) ;

5 6-4-1
2-2 1 3
X= 6 0 1-7
6 0 8-4
7-4 8 3

3-482

Command Reference

m ni ndc

See also nmaxindc, mnc, maxc

3-483

GAUSS Language Reference

m ss,

m

m sSsrv

SS,

Purpose

Format

Input

Output

Remarks

M SSrv

nm ss converts specified elementsin amatrix to GAUSS's missing value
code. m ssr v isthe reverse of this, and converts missing values into
specified values.

y = mss(xV);

y = mssrv(x, v);

X NXK matrix.

\% LxM matrix, EXE conformable with x.
y max(N,L) by max(K,M) matrix.

For m ss, dementsin x that are equal to the corresponding elementsin v
will be replaced with the GAUSS missing value code.

For m ssr v, elementsin x that are equal to the GAUSS missing value
code will be replaced with the corresponding element of v.

For complex matrices, the missing value code is defined as amissing
value entry in the real part of the matrix. For complex x, then, i ss
replaces elementswith a“. + 0i” value, and m ssr v examines only the
real part of x for missing values. If, for example, an element of x =1 + .i,
m ssrv will not replaceit.

These functions act like element-by-element operators. If visascaar, for
instance -1, then all -1'sin x are converted to missing. If visarow
(column) vector with the same number of columns (rows) as x, then each
column (row) in x is transformed to missings according to the
corresponding element in v. If visamatrix of the same size as x, then the
transformation is done corresponding element by corresponding element.

Missing values are given specia treatment in the following functions and
operators: b/a (matrix division when ais not square and neither anor bis
scalar),count s,i sm ss, maxc, maxi ndc, m nc, i ni ndc, m ss,
nm ssex, m ssrv, nonent , packr, scal ni ss, sortc.

Aslong as you know amatrix contains no missings to begin with, m ss
and ni ssr v can be used to convert one set of numbers into another. For
example:

y=mi ssrv(mss(x 0),1);

will convert 0'sto 1's.

3-484

Command Reference

Example

See also

m ss, msSssrv

\Y

y

If x has 3 columns, al -1'sin the first column will be changed to
missings, along with all 4'sin the second column and 5's in the third
column.

- 1~4~5;

m ss(x, Vv);

counts, ismss, maxc, nmaxindc, mnc, mnindc,
m ssex, nonment, packr, scal mss, sortc

3-485

GAUSS Language Reference

m ssex

m ssex

Purpose

Format

Input

Output

Remarks

Example

Source

See also

Converts numeric values to the missing value code according to the
values given in alogical expression.

y = missex(Xx €);

X NxK matrix.

e NxK logica matrix (matrix of O'sand 1's) that servesasa
“mask” for x; the 1'sin e correspond to the valuesin x that are to
be converted into missing values.

y NxK matrix that equals x, but with those el ements that
correspond to the 1'sin e converted to missing.

Thematrix ewill usually be created by alogical expression. For instance,
to convert all numbers between 10 and 15 in x to missing, the following
code could be used:

y = missex(x, (x .>10) .and (x .< 15));

Note that “dot” operators MUST be used in constructing the logical
expressions.

For complex matrices, the missing value code is defined as amissing
value entry in the real part of the matrix. For complex x, then, mi ssex
replaces elementswith a“. + 0i” value.

Thisfunctionislikem ss, but is more general in that arange of values
can be converted into missings.

X = rndu(3, 2);

/* logical expression */

e = (x .>.10) .and (x .< .20);
y = mssex(Xx,e);

A 3x2 matrix of uniform random numbersis created. All valuesin the
interval (0.10, 0.20) are converted to missing.

datatran. src

m SS, m SSrv

3-486

Command Reference

nmonent

Purpose
Format

Input

Output

Remarks

noment

Computes a cross-product matrix. Thisisthe same as X'x.
y = nonent (X, d);
X NxK matrix.
d scalar, controls handling of missing values.

0 missing values will not be checked for. Thisis the fastest

option.
1 “listwise deletion” is used. Any row that contains a

missing value in any of its elementsis excluded from the
computation of the moment matrix. If every row in x
contains missing values, then nonent (x, 1) will returna
scalar zero.

2 “pairwise deletion” isused. Any element of x that is
missing is excluded from the computation of the moment
matrix. Note that this is seldom a satisfactory method of
handling missing values, and special care must be takenin
computing the relevant number of observations and
degrees of freedom.

y KxK matrix which equals x'x.

The fact that the moment matrix is symmetric is taken into account to cut
execution time almost in half.

If there is no missing datathen d = 0 should be used because it will be
faster.

The/ operator (matrix division) will automatically form a moment
matrix (performing pairwise deletionsif t r ap 2 is set) and will compute
theol s coefficients of aregression. However, it can only be used for data
setsthat are small enough to fit into a single matrix. In addition, the
moment matrix and itsinverse cannot be recovered if the/ operator is
used.

3-487

GAUSS Language Reference

nmoment

Example xx = nonent(x, 2);
i Xxx = invpd(xx);
b = ixx*missrv(x,0)'y;

In this example, theregression of y on x is computed. The moment matrix
xX isformed using the monment command (with pairwise deletion, since
the second parameter is 2). Then xx isinverted using thei nvpd
function. Finaly, the ol s coefficients are computed. m ssr v isused to
emulate pairwise deletion by setting missing valuesto 0.

3-488

Command Reference

nonent d

Purpose
Format

Input

Global Input

Output

nonment d

Computes amoment (X'X) matrix from a GAUSS data set.
m = nonent d(dataset, vars) ;

dataset string, name of data set.
vars Kx1 character vector, names of variables.
or
Kx1 numeric vector, indices of columns.
These can be any size subset of the variablesin the data set, and can bein
any order. If ascaar 0ispassed, all columns of the data set will be used.

Defaults are provided for the following global input variables so they can
be ignored unless you need control over the other options provided by
this procedure.

con scalar, default 1.
1 aconstant term will be added.
0 no constant term will be added.
m ss scalar, default O.
0 there are no missing values (fastest).
1 do listwise deletion, drop an observation if any
missings occur init.
2 do pairwise deletion. Thisis equivalent to setting
missings to 0 when calculating m.

_row scalar, default 0, the number of rows to read per iteration of
the read loop.

If O, the number of rows will be calculated internally.

If yougetan| nsuffici ent nmenory error message, or
you want the rounding to be exactly the same between runs,
you can set the number of rows to read before calling
nonent d.

m MXxM matrix, where M =K + __con, the moment matrix
constructed by calculating X' X where X isthe data, with or
without a constant vector of ones.

Error handling is controlled by the low order bit of the trap
flag.

3-489

GAUSS Language Reference

nmonment d
trap O terminate with error message
trap 1 return scalar error codeinm
33 too many missings
34 file not found

Example z ={ age, pay, sex };

m = nonentd(“freq”, z);

Source nonent d. src

Globals con, mss, __row

3-490

Command Reference

nsym
Purpose

Format

Input

Remarks

See also

msym

Allows the user to set the symbol that GAUSS uses when missing values
are converted to ASCII and vice versa.

meym Str;

str literal or ~string (up to 8 letters) which, if not surrounded by
guotes, isforced to uppercase. Thisis the string to be printed for
missing values. The defaultis*. .

The entire string will be printed out when convertingto ASCIl inpri nt
| print,andprintfmstatements.

When converting ASCII to binary inl oadmand | et statements, only
the first character is significant. In other words,

msym HAT,;
will cause ‘H' to be converted to missing on input.
This does not affect wr i t er which outputs datain binary format.

print, lprint, printfm

3-491

GAUSS Language Reference

namet ype

nanet ype

Purpose Provides support for programs following the upper/lowercase convention
in GAUSS data sets. (See“File 1/O” in the User’s Guide.) Returns a
vector of names of the correct case and a 1/0 vector of type information.

Format { vname vtype } = namet ype(vname, vtype) ;

Input vname Nx1 character vector of variable names.

vtype scalar or Nx1 vector of 1's and O'sto determine the type and
therefore the case of the output vname. If thisisscalar O or 1 it
will be expanded to Nx1. If -1, namet ype will assume that
vname follows the upper/lowercase convention.

Output vname Nx1 character vector of variable names of the correct case,
uppercase if numeric, lowercase if character.

vtype Nx1 vector of ones and zeros, 1 if variableis numeric, O if
character.

Example vn = { age, pay, sex };
{ 1, 1, 0};

{ vn, vt } = nanmetype(vn,vt);

vt

print $vn;
AGE
vn = PpAY
sex

Source nanetype.src

Globals vartype

3-492

Command Reference

new

Purpose

Format

Input

Remarks

new

Erases everything in memory including the symbol table; closes all open
files, the auxiliary output, and turns the window on if it was off; also
allowsthe size of the new symbol table and the main program space to be
specified.

new [nos [, mps TI;

nos scalar, which indicates the maximum number of global symbols
allowed. See your platform supplement for the maximum
number of globals alowed in thisimplementation.

mps scalar, which indicates the number of bytes of main program
space to be allocated. See your platform supplement for the
maximum amount allowed in this implementation.

Procedures, user-defined functions, and global matrices strings and string
arrays are all global symbols.

The main program space is the amount of memory available for
nonprocedure, nonfunction program code.

This command can be used with arguments as the first statement in a
program to clear the symbol table and to allocate only as much space for
program code as your program actually needs. When used in this manner,
the auxiliary output will not be closed. Thiswill allow you to open the
auxiliary output from command level and run a program without having
to remove the new at the beginning of the program. If this command is
not the first statement in your program, it will cause the program to
terminate.

3-493

GAUSS Language Reference

new

Example

See also

new;

new 300;

new
200, 100000;

new , 100000;

cl ear, delete,

/* clear global synbols. */
[* clear global synbols, set */
/* maxi mum nunber of gl obal */
/* synbols to 300, and | eave */
/* program space unchanged. */
/* clear global synbols, set */
/* maxi mum nunber of gl obal */
/* synbols to 200, and allocate */
/* 100000 bytes for nmin */
/* program code. */
/* clear global synbols, */
/* allocate 100000 bytes for */
/* main program code, and | eave */
/* maxi mum nunber of gl obals */
/* unchanged. */
out put

3-494

Command Reference

next n,

Purpose

Format
Input
Output

Remarks

Example

nextn, nextnevn

next nevn

Returns allowable matrix dimensions for computing FFT’s.

next n(n0) ;
next nevn(no) ;

no scalar, the length of avector or the number of rows or columnsin
amatrix.
n scalar, the next allowable size for the given dimension for

computing an FFT or RFFT. n= n0.

next n and next nevn determine allowable matrix dimensions for
computing FFT’s. The Temperton FFT routines (see table below) can
handle any matrix whose dimensions can be expressed as.

2Px 3% 5 x 75 PG, nonnegative integers
s=0or1l
with one restriction: the vector length or matrix column size must be even
(p must be positive) when computing RFFT’s.

f f t n, etc., automatically pad matrices (with zeros) to the next allowable
dimensions; next n and next nevn are provided in case you want to
check or fix matrix sizes yourself.

Use the following table to determine what to call for a given function and
matrix:

FFT Vector Matrix Matrix
Function Length Rows Columns
fftn nextn next n next n
rfftn next nevn nextn next nevn
rfftnp next nevn nextn next nevn
n = nextn(456);
n = 480

3-495

GAUSS Language Reference

nextn, nextnevn

Source optimsrc

See also fftn, optn, optnevn, rfftn, rfftnp

3-496

Command Reference

nextw nd

nextw nd

Purpose
Library
Format

Remarks

Source

See also

Sets the current graphic panel to the next available graphic panel.

pgr aph

nextw nd;

This function selects the next available graphic panel to be the current

graphic panel. Thisisthe graphic panel in which the next graph will be
drawn.

See the discussion on using graphic panelsin “Publication Quality
Graphics’ in the User’s Guide.

pw ndow. src

endwi nd, begwi nd, setwi nd, getw nd, nakew nd,
Wi hdow

3-497

GAUSS Language Reference

nul |

nul |

Purpose
Format
Input

Output

Remarks

Example

Source

Globals

Computes an orthonormal basis for the (right) null space of amatrix.

b = null(x);
X NxM matrix.
b MxK matrix, where K isthe nullity of X, such that:
X*b=0 (NxK matrix of zeros)
and
bb=1I (MxM identity matrix)

The error returns are returned in b:
error code reason

1 there is no null space
2 b istoo large to return in a single matrix
Usescal err totest for error returns.

The orthogona complement of the column space of X' is computed using
the QR decomposition. This provides an orthonormal basis for the null
space of x.

let x[2,4] =213 -1
351 2

(e
1]

nul | (x);
= X*b;

b’ b;

N
|

null.src

_qgrdc, _qgrsl

3-498

Command Reference

nul | 1

Purpose
Format

Input

Output

Remarks

Source

Globals

nul |1

Computes an orthonormal basis for the (right) null space of amatrix.
nu = nul | 1(x, dataset) ;

X NXM matrix.
dataset string, the name of adataset nul | 1 will write.

nu scalar, the nullity of x.

nul | 1 computes an MxK matrix b, where K isthe nullity of x, such that:

X*b=0 (NxK matrix of zeros)
and
bb=1 (MxM identity matrix)

The transpose of b iswritten to the data set named by dataset, unless the
nullity of x iszero. If nuis zero, the data set is not written.

null.src

_grdc, _qgrsl

3-499

GAUSS Language Reference

ol s

ol s

Purpose

Format

Input

Global Input

Computes aleast squares regression.

{ wvnam, m, b, stb, vc, stderr, sigma, cx, rsq, resid, dwstat }
= ol s(dataset, depvar, indvars) ;

dataset

depvar

indvars

string, name of data set or null string.

If dataset isanull string, the procedure assumes that the
actual data has been passed in the next two arguments.

If dataset contains a string:
string, name of dependent variable.

scalar, index of dependent variable. If scalar O, the last
column of the data set will be used.

If dataset isanull string or O:
Nx1 vector, the dependent variable.

If dataset contains a string:
Kx1 character vector, names of independent variables.
Kx1 numeric vector, indices of independent variables.

These can be any size subset of the variablesin the data set
and can beinany order. If ascalar 0ispassed, all columns of
the data set will be used except for the one used for the
dependent variable.

If dataset isanull string or O:
NxK matrix, the independent variables.

Defaults are provided for the following global input variables, so they can
be ignored unless you need control over the other options provided by
this procedure.

_con

__al tnam global vector, default O.

This can be a(K+1)x1 or (K+2)x1 character vector of
aternate variable namesfor the output. If __con is 1, this
must be (K+2)x1. The name of the dependent variableis
the last element.

global scalar, default 1.
1 aconstant term will be added, D = K+1.
0 no constant term will be added, D = K.

3-500

Command Reference

Output

ol s

A constant term will always be used in constructing the
moment matrix m.

nmss global scalar, default 0.

0 there are no missing values (fastest).

1 listwise deletion, drop any casesin which
mi ssings occur.

2 pairwise deletion, thisisequivaent to
setting missings to 0 when calculating m.
The number of cases computed is equal to
the total number of casesin the data set.

__output globa scalar, default 1.

_row

1 print the statistics.
0 donot print statistics.

global scalar, the number of rows to read per iteration of
the read loop. Default O.

If O, the number of rows will be calculated internally. If
youget anl nsuf fi ci ent menory error message
while executing ol s, you can supply avaluefor __r ow
that works on your system.

The answers may vary slightly due to rounding error
differences when a different number of rowsis read per
iteration. You can use___r owto control thisif you want to
get exactly the same rounding effects between several runs.

_ol sres globa scalar, default 0.

vhnam

1 computeresiduals (resid) and Durbin-
Watson statistic(dwstat).

0 resid=0, dwstat = 0.

(K+2)x1 or (K+1)x1 character vector, the variable names used in
the regression. If a constant term is used, this vector will be
(K+2)x1, and the first name will be “CONSTANT”. The last
name will be the name of the dependent variable.

MxM matrix, where M = K+2, the moment matrix constructed
by calculating X'X where X isamatrix containing all useable
observations and having columns in the order:

1.0 indvars depvar

(constant) (independent variables) (dependent variable)
A constant term is always used in computing m.
Dx1 vector, the least squares estimates of parameters.

3-501

GAUSS Language Reference

ol s

Error handling is controlled by the low order bit of the trap flag.
trap O terminate with error message
trap 1 returnscaar error codeinb

30 systemsingular

31 system underdetermined

32 same number of columns as rows

33 too many missings

34 filenot found

35 novariancein an independent variable

The system can become underdetermined if you use listwise
deletion and have missing values. In that case, it is possible to
skip so many cases that there are fewer useable rows than
columns in the data set.

stb Kx1 vector, the standardized coefficients.

VC DxD matrix, the variance-covariance matrix of estimates.
stderr Dx1 vector, the standard errors of the estimated parameters.
sigma scalar, standard deviation of residual.

cX (K+1L)x(K+1) matrix, correlation matrix of variables with the
dependent variable as the last column.

rsq scalar, R square, coefficient of determination.
resid residuas, resid=y-x* b.
If _ol sres =1, theresidualswill be computed.
If the datais taken from a data set, a new data set will be created
for the residuals, using the name in the global string variable
ol srnam Theresiduals will be saved in this data set as an

Nx1 column. The resid return value will be a stri ng containing
the name of the new data set containing the residuals.

If the data is passed in as a matrix, the resid return value will be
the Nx1 vector of residuals.

dwstat scalar, Durbin-Watson statistic.

Remarks Nooutput fileis modified, opened, or closed by this procedure. If you
want output to be placed in afile, you need to open an output file before
calingol s.

3-502

Command Reference

Example

ol s

<
I
~—

U'I\l‘!—‘(AJI\)
—

W oNN e
O Wk W w
U NP N

b

output file = ols.out reset;
call ols(0,vy,Xx);
out put of f;

In this example, the output from ol s was put into afilecalled ol s. out
aswell as being printed in the window. This example will compute aleast
sguares regression of y on x. The return values were discarded by using a
cal | statement.

data = “ol sdat”;

depvar = { score };

i ndvars = { region,age, marstat };

_olsres = 1;

output file = 1Iptl on;

{ nammb, stb, vc,std, sig,cx,rsq,resid,dow} =

ol s(dat a, depvar, i ndvars);

out put of f;
In this example, the data set ol sdat . dat was used to compute a
regression. The dependent variable isscor e. The independent variables
arer egi on, age, and mar st at . The residuals and Durbin-Watson

statistic will be computed. The output will be sent to the printer aswell as
the window and the returned values are assigned to variables.

3-503

GAUSS Language Reference

ol s
Source ols.src

Globals _olsres, _olsrnam __altnam __con, m ss,

__output, __row, _ vpad

See also ol sar

3-504

Command Reference

ol sqr

Purpose
Format

Input

Global Input

Output

Remarks

Source
Globals

See also

ol sqr

Computes OL S coefficients using QR decomposition.
b = olsqgr(y, X ;

y Nx1 vector containing dependent variable.
X NxP matrix containing independent variables.

_ol sqt ol global scalar, the tolerance for testing if diagonal elements
are approaching zero. The default value is 10e-14.

b Px1 vector of least squares estimates of regression of y on x. If x
does not have full rank, then the coefficients that cannot be
estimated will be zero.

This provides an alternative to y/x for computing least squares
coefficients.

This procedure is slower than the/ operator. However, for near singular
matrices it may produce better results.

ol sgr handles matrices that do not have full rank by returning zeros for
the coefficients that cannot be estimated.

ol sgr.src
_ol sqtol

ols, olsqr2, orth, qgr

3-505

GAUSS Language Reference

ol sqr2

ol sqr2

Purpose

Format

Input
Global Input

Output

Remarks

Source
Globals

See also

Computes OL S coefficients, residuals, and predicted values using the QR
decomposition.

{ br,p} = olsqgr2(y, x;

y Nx1 vector containing dependent variable.
X NxP matrix containing independent variables.

_ol sqt ol global scalar, the tolerance for testing if diagonal el ements
are approaching zero. The default valueis 10e-14.

b Px1 vector of least squares estimates of regression of y on x. If x
does not have full rank, then the coefficients that cannot be
estimated will be zero.

r Px1 vector of residuas. (r =y - x*b)
p Px1 vector of predicted values. (p = x*b)

This provides an alternative to y/x for computing least squares
coefficients.

This procedure is slower than the / operator. However, for near singular
matrices, it may produce better results.

ol sqr 2 handles matrices that do not have full rank by returning zeros
for the coefficients that cannot be estimated.

ol sgr.src
_ol sqt ol

ol sqr, orth, qqr

3-506

Command Reference

ones

Purpose
Format

Input

Output
Remarks

Example

See also

Creates a matrix of ones.

y = ones(r, C);

r scalar, number of rows.
C scalar, number of columns.
y RxC matrix of ones.

Noninteger arguments will be truncated to an integer.

X = ones(3, 2);
11

X= 11
11

zeros, eye

ones

3-507

GAUSS Language Reference

open
open
Purpose

Format

Input

Opens an existing GAUSS datafile.

open fh=filename [[f or mode] [vari ndxi [offs] T

filename

mode

offs

literal or ~string.

filename is the name of the file on the disk. The name can
include a path if the directory to be used is not the current
directory. Thisfilename will automatically be given the
extension . dat . If an extension is specified, the . dat will
be overridden. If thefileisan . f nt matrix file, the
extension must be explicitly given. If the name of thefileis
to be taken from a string variable, the name of the string
must be preceded by the » (caret) operator.

[read], append, update

The modes supported with the optional f or subcommand
are:

read Thisisthe default file opening mode and will be
the one used if noneis specified. Files opened in
this mode cannot be written to. The pointer is set
to the beginning of thefileand thewr i t er
function is disabled for files opened in this way.
Thisisthe only mode available for matrix files
(. f nt), which are always written in one piece
with the save command.

append Files opened in this mode cannot beread. The
pointer will be set to the end of the file so that a
subsequent write to the filewith thewr i t er
function will add datato the end of the file without
overwriting any of the existing datain thefile. The
r eadr functionisdisabled for filesopenedin this
way. Thismode is used to add additional rowsto
the end of afile.

updat e Filesopened in this mode can be read from and
written to. The pointer will be set to the beginning
of thefile. Thismodeis used to make changesin a
file.

scalar.

3-508

Command Reference

open

Theoptional var i ndxi subcommand tells GAUSS to
create a set of global scalars that contain the index (column
position) of thevariablesin a GAUSS datafile. These“index
variables’ will have the same names as the corresponding
variablesinthedatafile but with “i ” added as a prefix. They
can be used inside index brackets, and with functionslike
submat to access specific columns of a matrix without
having to remember the column position.

The optional offsisan offset that will be added to the index
variables. Thisis useful if datafrom multiple files are
concatenated horizontally in one matrix. It can be any scalar
expression. The default is 0.

Theindex variables are useful for creating submatrices of
specific variables without requiring that the positions of the
variables be known. For instance, if there are two variables,
xvar andyvar inthedataset, theindex variableswill have
thenamesi xvar,i yvar. If xvar isthefirst columninthe
datafile, and yvar isthe second, and if no offset, offs, has
been specified, theni xvar andi yvar will equal 1 and 2,
respectively. If an offset of 3 had been specified, then these
variables would be assigned the values 4 and 5, respectively.

Thevari ndxi andvar i ndx options cannot be used with
. f mt matrix files because no column names are stored with
them.

If vari ndxi isused, GAUSSwill ignorethe Undef i ned
synbol error message for global symbols that start with
“i”. Thismakes it much more convenient to use index
variables because they don’t have to be cleared before they
are accessed in the program. Clearing is otherwise necessary
because the index variables do not exist until execution time
when the datafileis actually opened and the names are read
in from the header of the file. At compile time a statement
likee y=x[., ixvar]; will beillegal if the compiler has
never heard of i xvar. If vari ndxi isused, thiserror will
be ignored for symbols beginning with “i ”. Any symbols
that are accessed before they have been initialized with areal
value will be trapped at execution time with aVar i abl e
not initialized error message.

3-509

GAUSS Language Reference

open

Output fh scalar.

fhisthefile handle which will be used by most commands
to refer to the file within GAUSS. Thisfile handleis
actually a scalar containing an integer value that uniquely
identifies each file. Thisvalue is assigned by GAUSS
when the open command is executed. If the file was not
successfully opened, the file handle will be set to -1.

Remarks Thefile must exist before it can be opened with the open command. (To
create anew file, seecr eat e or save.)

A file can be opened simultaneously under more than one handle. See the
second example following.

If the value that isin the file handle when the open command beginsto
execute matches that of an already open file, the process will be aborted
andaFi |l e al ready open error message will be given. This gives

you some protection against opening a second file with the same handle
as acurrently open file. If this happens, you would no longer be able to

access thefirst file.

It isimportant to set unused file handles to zero because both open and
cr eat e check thevaluethat isin afile handle to seeif it matches that of
an open file before they proceed with the process of opening afile. This
should be donewith cl ose orcl oseal | .

Example fnane = “/data/rawdat”;
open dt = ~fname for append,
if dt == -1;

print “File not found”;
end;
endi f;
y = witer(dt,x);
ify /=rows(x);
print “Disk Full”;
end;
endi f;

dt = close(dt);

3-510

Command Reference

open

In the example above, the existing dataset / dat a/ r awdat . dat is
opened for appending new data. The name of the file was in the string
variable f nane. In this example the file handle is tested to seeif thefile
was opened successfully. The matrix x iswritten to this data set. The
number of columnsin x must be the same as the number of columnsin
the existing data set. Thefirst row in x will be placed after the last row in
the existing data set. Thewr i t er function will return the number of
rows actually written. If this does not equal the number of rows that were
attempted, then the disk is probably full.

open fin = nydata for read;
open fout = nydata for update;
do until eof (fin);
X = readr(fin, 100);
Xx[.,13] =In(x][.,1 3]);
call witer(fout, x);
endo;
closeall fin,fout;
In the above example, the samefile, mydat a. dat , is opened twice with
two different file handles. It is opened for read with the handlef i n, and it
is opened for update with the handle f out . Thiswill alow the file to be
transformed in place without taking up the extra space necessary for a
separate output file. Noticethat f i n isused astheinput handleand f out
is used as the output handle. The loop will terminate as soon as the input
handle has reached the end of thefile. Insidetheloop thefileisread into a
matrix called x using the input handle, the data are transformed (columns
1 and 3 are replaced with their natural 1ogs), and the transformed datais

written back out using the output handle. This type of operation works
well as long as the total number of rows and columns does not change.

The following example assumes a data file named dat 1. dat that has
thevariables: vi sc,t enp, | ub,r pm

open f1 = datl varindxi;
dtx = readr(f1, 100);

dtx[.,irpmilub ivisc];

X

y
call seekr(f1,1);

dtx[.,itenp];

3-511

GAUSS Language Reference

open

Inthisexample, the dataset dat 1. dat isopened for reading (the. dat
andthef or read areimplicit). vari ndxi isspecified with no
constant. Thus, index variables are created that give the positions of the
variablesin the data set. Thefirst 100 rows of the data set are read into the
matrix dt x. Then, specified variables in a specified order are assigned to
the matrices x and y using the index variables. The last line uses the
seekr function to reset the pointer to the beginning of thefile.

open gl = datl vari ndx;

open g2 = dat2 varindx colsf(ql);
nr = 100;

y = readr(qgl, nr)~readr(g2, nr);

closeal | ql, g2;
In this example, two data sets are opened for reading and index variables
are created for each. A constant is added to the indices for the second data
set (g2), equal to the number of variables (columns) in the first data set
(91). Thus, if there are three variablesx1, x2, x3 in g1, and three
variablesyl,y2,y3 inq2, theindex variables that were created when
the fileswere opened would bei x1,i x2,i x3,iy1l,iy2,iy3.The
values of theseindex variableswould be 1, 2, 3, 4, 5, 6, respectively. The
first 100 rows of the two data sets are read in and concatenated to give the
matrix y. The index variables will thus give the correct positions of the
variablesiny.

open fx = x.fnt
i =1; rf = rowsf(fx);
sanpsi ze = round(rf*0.1);
rndsnpx = zeros(sanpsize, col sf(fx))
do until i > sanpsize;
r = ceil(rndu(1,1)*rf);
call seekr(fx,r);
rndsnmpx[i,.] = readr(fx,1);
i = i+1;
endo;

fx = close(fx);

3-512

Command Reference

See also

open

In this example, a 10% random sample of rowsis drawn from the matrix
filex. f m and put into the matrix r ndsnpx. Note that the extension

. f mt must be specified explicitly in the open statement. Ther owsf
command is used to obtain the number of rowsin x. f it . Thisnumber is
multiplied by 0.10 and the result is rounded to the nearest integer; this
yields desired sample size. Then random integers(r) intherange 1tor f
are generated. seekr isused to locate to the appropriate row in the
matrix, and the row is read withr eadr and placed in the matrix

r ndsnpx. Thisis continued until the complete sample has been
obtained.

create, close, closeall, readr, witer, seekr,
eof

3-513

GAUSS Language Reference

opt n,

opt nevn

opt n,

Purpose

Format

Input

Output

Remarks

opt nevn

Returns optimal matrix dimensions for computing FFT’s.

= opt n(nO);
= opt nevn(no);
n0 scalar, the length of avector or the number of rows or columnsin
amatrix.
n scalar, the next optimal size for the given dimension for

computing an FFT or RFFT. n= n0.

opt n and opt nevn determine optimal matrix dimensions for
computing FFT's. The Temperton FFT routines (see table following) can
handle any matrix whose dimensions can be expressed as.

2Px39x5 x 75 p, g, I nonnegative integers
s=0orl

with one restriction: the vector length or matrix column size must be even
(p must be positive) when computing RFFT’s.

f f t n, etc., pad matricesto the next allowable dimensions; however, they
generally run faster for matrices whose dimensions are highly composite
numbers, that is, products of severa factors (to various powers), rather
than powers of asingle factor. For example, even though it is bigger, a
33600x1 vector can compute as much as 20 percent faster than a 32768x1

vector, because 33600 is a highly composite number, 26 x 3x 52x 7,

whereas 32768 is a simple power of 2, 21°. opt n and opt nevn are
provided so you can take advantage of thisfact by hand-sizing matricesto
optimal dimensions before computing the FFT.

3-514

Command Reference

optn, optnevn

Use the following table to determine what to call for a given function and

matrix:
FFT Vector Matrix Matrix
Function Length Rows Columns
fftn optn optn optn
rfftn optnevn optn opt nevn
rfftnp optnevn optn opt nevn

Example n = optn(231);
n = 240.00000

See also fftn, nextn, nextnevn, rfftn, rfftnp

3-515

GAUSS Language Reference

orth

orth

Purpose
Format
Input

Global Input
Output

Example

Source
Globals

See also

Computes an orthonormal basis for the column space of a matrix.
y = orth(x);
X NxK matrix.

_orthtol global scalar, the tolerance for testing if diagonal elements
are approaching zero. The default is 1.0e-14.

y NxL matrix such that y'y = eye(L) and whose columns span the
same space as the columns of x; L isthe rank of x.
x={ 65 4,
2751},
y = orth(x);
y = —0.58123819 —0.81373347
—0.81373347 0.58123819
qgqr.src
_orthtol
qqr, ol sqr

3-516

Command Reference

out put

Purpose

Format

Input

Remarks

out put

Thiscommand makesit possible to direct the output of pr i nt statements
to two different places simultaneously. One output device is aways the
window or standard output. The other can be selected by the user to be
any disk file or other suitable output device such as a printer.

out put [fil e=filename]] [[on|of f |r eset]];

filename literal or ~string.

Thef i | e=filename subcommand selects thefile or
device to which output is to be sent.

If the name of the file isto be taken from a string
variable, the name of the string must be preceded by
the ™ (caret) operator.

The default file nameisout put . out .

on, off, literal, mode flag
reset

on opensthe auxiliary output file or device and
causestheresults of dl pri nt statements
to be sent to that file or device. If thefile
aready exists, it will be opened for
appending. If the file does not already exist,
it will be created.

of f closestheauxiliary output file and turns off
the auxiliary output.

reset similar to the on subcommand, except that
it always creates anew file. If thefile
aready exists, it will be destroyed and a
new file by that name will be created. If it
does not exist, it will be created.

After you have written to an output file you have to close the file before
you can print it or edit it with the GAUSS editor. Use out put of f .

The selection of the auxiliary output file or device remainsin effect until a
new selection is made, or until you exit GAUSS. Thus, if afileisnamed
as the output device in one program, it will remain the output devicein
subsequent programs until anew f i | e=filename subcommand is
encountered.

3-517

GAUSS Language Reference

out put

The command out put fi | e=filename; will select the file or device
but will not open it. A subsequent out put on; orout put reset;
will open it and turn on the auxiliary output.

The command out put of f will close thefile and turn off the auxiliary
output. The filename will remain the same. A subsequent out put on
will cause the file to be opened again for appending. A subsequent

out put reset will causethe existing file to be destroyed and then
recreated and will turn on the auxiliary output.

Thecommand out put by itself will cause the name and status (i.e., open
or closed) of the current auxiliary output file to be printed in the window.

The output to the console can be turned off and on using thescr een
of f and scr een on commands. Output to the auxiliary file or device
can be turned off or on using the out put of f or out put on
command. The defaultsare scr een on and out put of f.

The auxiliary file or device can be closed by an explicit out put of f
statement, by an end statement, or by an interactive new statement.
However, anew statement at the beginning of a program will not close
the file. This allows programs with new statements in them to be run
without reopening the auxiliary output file.

If aprogram sends datato adisk file, it will execute much faster if the
window is off.

Theout wi dt h command will set the line width of the output file. The
default is 80.

3-518

Command Reference

Example

See also

out put

output file = outl.out on;

This statement will open thefileout 1. out and will cause the results of
all subsequent pri nt statementsto be sent to that file. If out 1. out
already exists, the new output will be appended.

output file = out2.out;

out put on;

Thisisequivalent to the previous example.
out put reset;

This statement will create a new output file using the current filename. If
the file already exists, any datain it will be lost.

output file = nydata.asc reset;

screen off;

format /ml/rz 1, 8;

open fp = nydata;

do until eof (fp);

print readr(fp, 200);;

endo;

fp = close(fp);

end;
The program above will write the contents of the GAUSS file
mydat a. dat intoan ASCII filecaled nydat a. asc. If there had been

an existing file by the name of nydat a. asc, it would have been
overwritten.

The/ ml parameter inthef or mat statement in combination with the; ;
at theend of thepri nt statement will cause one carriage return/line feed
pair to be written at the beginning of each row of the output file. There
will not be an extraline feed added at the end of each 200 row block.

The end statement above will automatically perform out put of f and
screen on.

outw dth, screen, end, new

3-519

GAUSS Language Reference

outtyp (datal oop)

outtyp

Purpose
Format

Remarks

Example

(dat al oop)

Specifies the precision of the output data set.
outtyp num_constant;

num_constant must be 2, 4, or 8, to specify integer, single precision, or
double precision, respectively.

If out t yp isnot specified, the precison of the output data set will be that
of the input data set. If character datais present in the data set, the
precision will be forced to double.

outtyp 8;

3-520

Command Reference

out wi dt h

outw dt h

Purpose Specifiesthewidth of the auxiliary output.

Format outwidth n;
Remarks nspecifiesthewidth of the auxiliary output in columns (characters). After
printing n characters on aline, GAUSS will output aline feed.

If amatrix isbeing printed, the line feed sequence will always be inserted
between separate elements of the matrix rather than being inserted
between digits of a single element.

n may be any scalar-valued expression in the range of 2-256. Nonintegers
will be truncated to an integer. If 256 is used, no additional lines will be
inserted.

The default is 80 columns.

Example outw dth 132;

This statement will change the auxiliary output width to 132 columns.

See also | pwidth, output, print

3-521

GAUSS Language Reference

pacf

pacf

Purpose
Format

Input

Output

Example

Computes sample partial autocorrelations.

rkk = pacf(y, k, d);

y Nx1 vector, data.
k scalar, maximum number of partial autocorrelations to compute.
d scalar, order of differencing.

rkk Kx1 vector, sample partial autocorrelations.

proc pacf(y,k, d);

local a,l,j,r,t;

r = acf(y, k, d);
a = zeros(k,k);
a[1,1] =r[1];
t = 1;

| = 2;

do while | le k;
a[l,1] = (r[1]-a[l-1,1:t]*rev(r[2:1-1]1))/
(1-a[l-1,2:t]*r[2:t]);
j =1
do while j <= t;
a[l,j] =a[l-1,j] - a[l,l]*a[l-1,1-j1;

=0+
endo;
t = t+1;
| = 1+1;

3-522

Command Reference

pacf

retp(diag(a));
endp;

Source tsutil.src

3-523

GAUSS Language Reference

packr

packr

Purpose
Format
Input

Output

Remarks

Example

Deletes the rows of a matrix that contain any missing values.

y = packr(x);
X NxK matrix.
y LxK submatrix of x containing only those rows that do not have

missing valuesin any of their elements.

Thisfunction is useful for handling missing values by “listwise deletion,”
particularly prior to using the/ operator to compute least squares
coefficients.

If al rows of amatrix contain missing values, packr returnsascalar
missing value. This can be tested for quickly withthescal mi ss
function.

x = mss(ceil (rndu(3,3)*10),1);

y = packr(x);
. 910

X= 42 .
34 9

Y= 34 9

In this example, the matrix x isformed with random integers and missing
values. packr isused to delete rows with missing val ues.

3-524

Command Reference

See also

packr

open fp = nydata;
obs = 0;
sum = 0;
do until eof (fp);
X = packr(readr(fp, 100));
if not scal mss(x);
obs = obs+rows(x);
sum = sumtsunc(Xx) ;
endi f;
endo;
mean = sum obs;

In this example, the sums of each column in a datafile are computed as
well asacount of the rowsthat do not contain any missing values. packr
is used to delete rows that contain missingsand scal ni ss isusedto
skip the two sum steps if al the rows are deleted for a particular iteration
of the read loop. Then the sums are divided by the number of observations
to obtain the means.

scal m ss, nmiss, nisSsrv

3-525

GAUSS Language Reference

par se

par se

Purpose Parsesastring, returning a character vector of tokens.
Format tok = parse(str, deim);

Input g string consisting of a series of tokens and/or delimiters.
delim NxK character matrix of delimitersthat might be found in str.

Output tok Mx1 character vector consisting of the tokens contained in str.
All tokens are returned; any delimiters found in str are ignored.

Remarks Thetokensin str must be 8 characters or lessin size. If they are longer,
the contents of tok is unpredictable.

See also token

3-526

Command Reference

pause

Purpose
Format
Input
Source

See also

Pauses for a specified number of seconds.
pause(sec) ;

Sec seconds to pause.

pause. src

wai t

pause

3-527

GAUSS Language Reference

pdf n

pdf n

Purpose
Format
Input

Output

Remarks

Example

Computes the standard Normal (scalar) probability density function.
y = pdfn(x);
X NxK matrix.
y NxK matrix containing the standard Normal probability density
function of x.
This does not compute the joint Normal density function. Instead, the
scalar Normal density function is computed element-by-element. y could
be computed by the following GAUSS code:
y = (1/sqgrt(2*pi)) *exp(-(x.*x)/2);
X = rndn(2, 2);
y = pdfn(x);
— -1.828915 0.514485
—0.550219 —0.275229
y = 0.074915 0.349488

0.342903 0.384115

3-528

Command Reference

pi

Pl
Purpose Returnsthe mathematical constant Tt
Format y = pi;

Example format /rdn 16, 14;
print pi;

produces:
3. 14159265358979

3-529

GAUSS Language Reference

pi nv
Pl NV
Purpose
Format
Input

Global Input

Output

Global
Output

Example

Source

Globals

Computes the Moore-Penrose pseudo-inverse of a matrix, using the
singular value decomposition.

This pseudo-inverse is one particular type of generalized inverse.
y = pinv(x);
X NXM matrix.

_svdtol globa scalar, any singular values lessthan _svdt ol are
treated as zero in determining the rank of the input matrix.
The default valuefor _svdt ol is1.0e-13.

y MxN matrix that satisfies the 4 Moore-Penrose conditions:
XYX =X
YXYy=Y
XY is symmetric
YX is symmetric

_svderr global scaar, if not al of the singular values can be
computed _svder r will be nonzero.

x={ 654 275}
y = pinv(x);
0.22017139 —0.16348055
Y = -0.05207647 0.13447594
—0.0151615 0.07712591
svd. src
_svdtol, _svderr

3-530

Command Reference

pol ar

Purpose
Library
Format

Input

Source

See also

pol ar

Graphs data using polar coordinates.

pgr aph

pol ar (radius, theta) ;

radius Nx1 or NxM matrix. Each column contains the magnitude for

aparticular line.
theta Nx1 or NxM matrix. Each column represents the angle values

for aparticular line.

pol ar. src

xy, logx, logy, |oglog, scale, xtics, ytics

3-531

GAUSS Language Reference

pol ychar

pol ychar

Purpose
Format
Input

Output

Remarks

Source

See also

Computes the characteristic polynomial of a square matrix.
¢ = polychar (x);

X NXN matrix.

¢ (N+1)x1 vector of coefficients of the N™ order characteristic
polynomial of x:

p(2=c[1]*Z" + c[2]*ZA™D + ... + ¢[n]*z+ c[n+1];
The coefficient of z"is set to unity (c[1]=1).
poly.src

pol ynake, polymult, polyroot, polyeval

3-532

Command Reference

pol yeval

pol yeval

Purpose

Format

Input

Output

Remarks

Example

Source

See also

Evauates polynomials. Can either be 1 or more scalar polynomialsor a
single matrix polynomial.

y = pol yeval (X, c);

X 1xK or NxN; that is, x can either represent K separate scalar
values at which to evaluate the (scalar) polynomial(s), or it can
represent asingle NxN matrix.

c (P+1)xK or (P+1)x1 matrix of coefficients of polynomialsto
evaluate. If xis 1xK, then ¢ must be (P+1)xK. If xisNxN, ¢ must
be (P+1)x1. That is, if x isamatrix, it can only be evaluated at a
single set of coefficients.

y Kx1 vector (if cis (P+1)xK) or NxN matrix (if cis (P+1)x1 and x
isNXN):
y=(c[L]5xP +c[2,]5xP D+ +c[p+1,]);
In both the scalar and the matrix case, Horner’s rule is used to do the

evaluation. In the scalar case, the functionr ecser cp is called (this
implements an elaboration of Horner’srule).

X = 2;
let c=1101 1;
y = polyeval (X, c¢);

Theresult is 27. Note that thisis the decimal value of the binary number
11011.

y = polyeval (x, 1| zeros(n, 1));
Thiswill raise the matrix x to the n" power (e.g: X* X* X*X*...*X).
poly.src

pol ymake, polychar, polymult, polyroot

3-533

GAUSS Language Reference

pol yi nt

pol yi nt

Purpose

Format

Input

Global Input
Output

Global
Output

Remarks

Source

Technical
Notes

Calculates an N™ order polynomial interpolation.

y = polyint(xa ya X);

xa Nx1 vector, X values.

ya Nx1 vector, Y values.

X scalar, X value to solve for.

_pol deg global scalar, the degree of polynomial required, default 6.
y result of interpolation or extrapolation.

_pol err globa scalar, interpolation error.

Calculates an N order polynomial interpolation or extrapolation of X on
Y given the vectors xa and ya and the scalar x. The procedure uses
Neville's algorithm to determine an up to Nt order polynomial and an
error estimate.

Polynomials above degree 6 are not likely to increase the accuracy for
most data. Test _pol er r to determine the required _pol deg for your
problem.

polyint.src

Press, W.P, B.P. Flannery, S.A. Tevkolsky, and W.T. Vettering. Numerical
Recipes. The Art of Scientific Computing. NY: Cambridge Press, 1986.

3-534

Command Reference

pol ymake
pol ynmake
Purpose Computesthe coefficients of a polynomial given the roots.
Format c¢ = pol ynake(r);
Input r Nx1 vector containing roots of the desired polynomial.
Output ¢ (N+1)x1 vector containing the coefficients of the NI order
polynomial with rootsr:
p(2)=c[1]* 2™+ ¢[2]*Z™D + ..+ c[n]*z + c[n+1];
Remarks The coefficient of 2" is set to unity (c[1]=1).
Example r ={ 2, 1, 31};
c = pol ymake(r);
—1.0000000
c = —6.0000000
11.000000
—6.0000000
Source poly.src
See also pol ychar, polymult, polyroot, polyeval

3-535

GAUSS Language Reference

pol ymat
pol ymat
Purpose

Format

Input

Output

Remarks

Source

Returns a matrix containing the powers of the elements of x from 1 to p.

y = polynmat (X, p);

X
p

y

NxK matrix.
scalar, positive integer.

Nx(p* K) matrix containing powers of the elements of x from 1to
p. Thefirst K columnswill contain first powers, the second K
columns contain the second powers, and so on.

To do polynomial regression use ol s:

{ vham m b, stb, vc, stderr, si gnma, cx, rsq, resid,

dwstat } = ol s(0,y, pol ymat (X, p));

pol ymat . src

3-536

Command Reference

pol ynr oot
Purpose Computesthe roots of the determinant of a matrix polynomial
Format r = pol ynroot(c);
Input ¢ (N+1)* KxK matrix of coefficients of an Nth order
polynomial of rank K.
Output r K*N vector containing the roots of the determinantal equation.
Remarks cisconstructed of N+1 KxK coefficient matrices stacked vertically with
the coefficient matrix of the t"n at the top, t*(n-1) next, down to the t*0
matrix at the bottom.
Note that this procedure solves the scalar problem as well, that is, the one
that POLY ROQOT solves.
Example Solvedet(A2*t"2 + Al*t + AO) = O where:

A2 =[1 2]
[2 1]
Al =[] 5 8]
[10 7]
AO=[3 4]
[6 5]
a2 ={ 12 21};
al = { 58, 10 7 };
a0 ={ 34, 65},
print pol ynroot(a2|al|a0);
-4.3027756
-.69722436
-2.6180340
-. 38196601

3-537

GAUSS Language Reference

pol yrul t

pol ynul
Purpose

Format

Input

Output

Example

Source
See also

Technical
Notes

t

Multiplies polynomials.

c = polymult(cl, c2);

cl (D1+1)x1 vector containing the coefficients of the first
polynomial.

c2 (D2+1)x1 vector containing the coefficients of the second
polynomial.

c (D1+D2)x1 vector containing the coefficients of the product of

the two polynomials.
cl =2 11},
c2 ={ 2, 0, 11};
¢ = polynmult(cl,c2);

4.0000000
c = 2.0000000

2.0000000

1.0000000
poly.src

pol ymake, polychar, polyroot, polyeval

If the degree of clisD1 (e.g., if D1=3, then the polynomial
corresponding to cl is cubic), then there must be D1+1 elementsin cl
(e.g., 4 elements for a cubic). Thus, for instance the coefficients for the

polynomial 5*x3 + 6+x + 3 would be: c1=5|0|6|3. (Note that zeros must be
explicitly given if there are powers of x missing.)

3-538

Command Reference

pol yr oot
pol yr oot
Purpose Computesthe roots of a polynomial given the coefficients.
Format y = polyroot(c);
Input ¢ (N+1)x1 vector of coefficients of an N order polynomial:

p(2=c[1]*Z" + c[2]*Z" D+ . +c[n]*z + c[n+1]
Zero leading terms will be stripped from ¢. When that occurs the

order of y will be the order of the polynomial after the leading
zeros have been stripped.

c[1] need not be normalized to unity.
Output vy Nx1 vector, the roots of c.

Source poly.src

See also pol ymake, polychar, polymult, polyeval

3-539

GAUSS Language Reference

pop

pPop

Purpose
Format

Remarks

See also

Provides access to alast-in, first-out stack for matrices.

pop b; pop &

Thisisused withgosub, got o, and r et ur n statements with
parameters. It permits passing parameters to subroutines or labels, and
returning parameters from subroutines.

Thegosub syntax allows an implicit push statement. This syntax is
almost the same as that of a standard gosub, except that the matricesto
be push’ed “into the subroutine” are in parentheses following the label
name. The matricesto be push’ed back to the main body of the program
arein parenthesesfollowing ther et ur n statement. The only limit on the
number of matrices that can be passed to and from subroutines in this way
is the amount of room on the stack.

No matrix expressions can be executed between the (implicit) push and
the pop. Execution of such expressions will ater what is on the stack.

Matrices must be pop’ ped in the reverse order that they are push’ed,
therefore the statements:

goto | abel (x,vy, 2);

| abel :
pop c;
pop b;
pop a;
c=z b=y a=x

Note that matrices are pop’ ped in reverse order, and that thereisa
Separate pop statement for each matrix popped.

gosub, goto, return

3-540

Command Reference

pPggw n

Purpose
Library
Format

Input
Remarks

Example:

Source

See also

pagwi n

Sets the graphics viewer mode.
pgr aph
pagwi n arg;

arg string literal.
"one" Use only one viewer.
"many" Useanew viewer for each graph.

If "one" is set, the viewer executable will bevwr . exe.

"manua" and "auto" are supported for backwards compatibility,
manual=one, auto=many.

pgqgwi n one;

pagwi n nany;
pgr aph. src

set vw npde

3-541

GAUSS Language Reference

prcsn

set vw npde

prcsn

Purpose
Format
Input

Portability

Remarks

See also

Sets the computational precision of some of the matrix operators.
prcsn n;

n scalar, 64 or 80.

UNI X, Windows

This function has no effect under UNIX or Windows. All computations
are donein 64-bit precision.

nisascalar containing either 64 or 80. The operators affected by this
command are chol , sol pd, i nvpd, and b/a (when neither anor b is
scalar and a is not square).

pr csn 80 isthe default. Precision is set to 80 bits (10 bytes), which
corresponds to about 19 digits of precision.

pr csn 64 setsthe precision to 64 bits (8 bytes), which is standard |EEE
double precision. This corresponds to 15-16 digits of precision. 80-bit
precision is still maintained within the 80x87 math coprocessor so that
actual precision is better than double precision.

When pr csn 80isin effect, all temporary storage and all computations
for the operators listed above are done in 80 bits. When the operator is
finished, the final result is rounded to 64-bit double precision.

chol, sol pd, invpd

3-542

Command Reference

pri nconp

princonp

Purpose Computes principal components of a data matrix.

Format {p v,a} = princonp(xj);

Input x NxK data matrix, N > K, full rank.
i scalar, number of principal components to be computed (J < K).
Output p NxJmatrix of thefirst j principal components of x in descending
order of amount of variance explained.
Y Jx1 vector of fractions of variance explained.
a JxK matrix of factor loadings, such that x = p*a +error.

Remarks Adapted from aprogram written by Mico L oretan.

The algorithm is based on Theil, Henri “ Principles of Econometrics.”
Wiley, NY, 1971, 46-56.

3-543

GAUSS Language Reference

pri nt

print
Purpose Prints matrices or strings to the window and/or auxiliary output.

Format print [/flush] [/typ]] [/fmted]] [/mf] [/jnt]
list_of expressionsf;J;

Input syp literal, symbol typeflag.

[mat, /sa, Indicate which symbol types you are

[str setting the output format for: matrices
(/ mat), string arrays (/ sa) , and/or
strings (/ st r). You can specify more
than one /typ flag; the format will be set
for all typesindicated. If no /typ flag is
listed, pri nt assumes/ nat .

/fmted literal, enable formatting flag.

/on, [off Enable/disable formatting. When
formatting is disabled, the contents of a
variable are dumped to the window in a
“raw” format.

fmf literal, matrix format. It controls the way rows of amatrix are
separated from one another. The possibilities are:

/ mD no delimiters before or after rows when
printing out matrices.

[ml or /nbl print 1 carriage return/line feed pair
before each row of amatrix with more
than 1 row.

/2 or /nb2 print 2 carriage return/line feed pairs
before each row of amatrix with more
than 1 row.

/8 or /b3 print “Row 1", “Row 2"... before each
row of amatrix with more than one row.

/ mal print 1 carriage return/line feed pair after
each row of amatrix with more than 1
row.

/ ma2 print 2 carriage return/line feed pairs after
each row of amatrix with more than 1
row.

3-544

Command Reference

/int

print

/al print 1 carriage return/line feed pair after
each row of amatrix.

/a2 print 2 carriage return/line feed pairs after
each row of amatrix.

/bl print 1 carriage return/line feed pair
before each row of a matrix.

/ b2 print 2 carriage return/line feed pairs
before each row of a matrix.

/ b3 print “Row 1", “Row 2"... before each

row of amatrix.
literal, controls justification, notation, and the trailing character.
Ri ght-Justified

[rd Signed decimal number in the form
[Hl #HEA#E# where ##£### is one or more
decimal digits. The number of digits
before the decimal point depends on the
magnitude of the number, and the number
of digits after the decimal point depends
on the precision. If the precision is 0, no
decimal point will be printed.

lre Signed number in the form[{] #.##EL##H,
where # is one decimal digit, ## isone or
more decimal digits depending on the
precision, and ### is three decimal digits.
If precisionis 0, the form will be
[Hl #Ex#### with no decimal point printed.

/ro Thiswill giveaformat like/rdor/re
depending on which is most compact for
the number being printed. A format like
/ r e will be used only if the exponent
valueislessthan -4 or greater than the
precision. If a/ r e format isused a
decimal point will always appear. The
precision signifies the number of
significant digits displayed.

3-545

GAUSS Language Reference

pri nt

lrz

Left-Justified

/1d

/1o

Thiswill giveaformat like/rdor/re
depending on which is most compact for
the number being printed. A format like

/ r e will be used only if the exponent
valueislessthan -4 or greater than the
precision. If a/ r e format is used, trailing
zeros will be supressed and a decimal
point will appear only if one or more
digitsfollow it. The precision signifiesthe
number of significant digits displayed.

Signed decimal number in the form

[H] # ##4#E, where ###### is one or more
decimal digits. The number of digits
before the decimal point depends on the
magnitude of the number, and the number
of digits after the decimal point depends
on the precision. If the precision is 0, no
decimal point will be printed. If the
number is positive, a space character will
replace the leading minus sign.

Signed number in the form

[# #HEL##, where # is one decimal
digit, ## is one or more decimal digits
depending on the precision, and #### is
three decimal digits. If precisionisO, the
form will be [{] #E+### with no decimal
point printed. If the number is positive, a
space character will replace the leading
minus sign.

Thiswill giveaformat like/ 1 dor/ | e
depending on which is most compact for
the number being printed. A format like
/1 e will be used only if the exponent
valueislessthan -4 or greater than the
precision. If a/ | e format isused a
decimal point will always appear. If the
number is positive, a space character will
replace the leading minus sign. The
precision specifies the number of
significant digits displayed.

3-546

Command Reference

print

Thiswill giveaformat like/ [dor/1 e
depending on which is most compact for
the number being printed. A format like
/1 e will be used only if the exponent
valueislessthan -4 or greater than the
precision. If a/ | e format is used, trailing
zeros will be supressed and a decimal
point will appear only if one or more
digitsfollow it. If the number is positive, a
space character will replace the leading
minus sign. The precision specifies the
number of significant digits displayed.

Trailing Character

The following characters can be added to the /jnt parameters
above to control thetrailing character if any:

n

format /rdn 1, 3;

The number will befollowed immediately
by a space character. Thisisthe default.

The number will befollowed immediately
with acomma.

The number will be followed immediately
with atab character.

No trailing character.

The default when GAUSS isfirst started is:

format /mlL /r0 16, 8;

Double semicolons following apr i nt
statement will suppress the final carriage
return/line feed.

3-547

GAUSS Language Reference

pri nt

Remarks Thelist of expressions MUST be separated by spaces. Inpr i nt
statements, because a space is the delimiter between expressions, NO
SPACES are alowed inside expressions unless they are within index
brackets, quotes, or parentheses.

The printing of special charactersis accomplished by the use of the
backslash (\) within double quotes. The options are:

\'b backspace (ASCI|I 8)

\e escape (ASCII 27)

\ f form feed (ASCII 12)

\g beep (ASCII 7)

\ | line feed (ASCII 10)

\'r carriage return (ASCII 13)
\ t tab (ASCII 9)

\ ### the character whose ASCII valueis“###" (decimal).

Thus, \ 13\ 10 isacarriage return/line feed sequence. The first three
digits will be picked up here. So if the character to follow a special
character is adigit, be sure to use three digits in the escape sequence. For
example: \ 0074 will beinterpreted as 2 characters (ASCI| 7 followed by
the character “4”).

An expression with no assignment operator is an implicit pri nt
Statement.

If out put on has been specified, then all subsequent pri nt
statements will be directed to the auxiliary output as well as the window.
(Seeout put .) Thel ocat e statement has no effect on what will be sent
to the auxiliary output, so al formatting must be accomplished using tab
characters or some other form of serial output.

If the name of the symbol to be printed is prefixed witha‘$’, it is
assumed that the symbol is a matrix of characters.

print $x;

Note that GAUSS makes no distinction between matrices containing
character data and those containing numeric data, so it isthe
responsibility of the user to use functions which operate on character
matrices only on those matrices containing character data.

These matrices of character strings have a maximum of 8 characters per
element. A precision of 8 or more should be set when printing out
character matrices or the elements will be truncated.

3-548

Command Reference

Example

print

Complex numbers are printed with the sign of the imaginary half
separating them and an “i” appended to the imaginary half. Also, the
current field width setting (see f or mat) refers to the width of field for
each half of the number, so a complex number printed with afield of 8
will actually take (at least) 20 spacesto print.

A print statement by itself will cause a blank line to be printed:
print;
GAUSS also has an automatic print mode which causes the results of all
global assignment statements to be printed out. Thisis controlled by the
print onandprint off commands. (Seeprint on.)
X = rndn(3, 3);
format /rd 16, 8;
print x;
format /re 12, 2;
print x;
print /rd/nB x;

0.14357994 -1.39272762 —0.91942414
0.51061645 -0.02332207 -0.02511298
—1.54675893 -1.04988540 0.07992059
1.44E-001 -1.39E+000 -9.19E-001
511E-001 -2.33E-002 -2.51E-002
—155E+000 -1.05E+000 7.99E-002
Row 1
0.14 -1.39 -0.92
Row 2
0.51 -0.02 -0.03
Row 3
-1.55 -1.05 0. 08

3-549

GAUSS Language Reference

pri nt

In this example, a 3x3 random matrix is printed using 3 different formats.
Notice that in the last statement the format is overridden inthe pri nt
statement itself but the field and precision remain the same.

et x = AGE PAY SEX;
format /ml 8, 8;
print $x;
produces:

AGE

PAY

SEX

Seealso Iprint, print on, Iprint on, printfm printdos

3-550

Command Reference

print dos

Purpose
Format
Input

Remarks

Example

See also

printdos
Prints a string to the standard output.
printdos s
S string, containing the string to be printed to the standard output.

Thisfunction is useful for printing messages to the window when
screen of f isineffect. The output of thisfunction will not go to the
auxiliary outpuit.

Thisfunction can also be used to send escape sequences to the
ansi . sys devicedriver.

printdos “\27[7nf; /* set for reverse video */

printdos “\27[0nf; /* set for normal text */
See the DOS manual s for more complete information.

print, Iprint, printfm screen

3-551

GAUSS Language Reference

printfm

printfm

Purpose
Format

Input

Output

Remarks

Prints amatrix using a different format for each column of the matrix.
y = printfmx, mask, fmt) ;

X NxK matrix which isto be printed and which may contain both
character and numeric data.

mask LXxM matrix, EXE conformable with x, containing ones and zeros
which is used to specify whether the particular row, column, or
element isto be printed as a string (0) or numeric (1) vaue.

fmt Kx3 or 1x3 matrix where each row specifies the format for the
respective column of x.

y scalar, 1 if the function is successful and 0 if it fails.

The mask is applied to the matrix x following the rules of standard
element-by-element operations. If the corresponding element of mask is
0, then that element of x is printed as a character string of up to 8
characters. If mask contains a 1, then that element of x is assumed to be a
double precision floating point number.

The contents of fmt are as follows:
[K, 1] format string, astring 8 characters maximum.

[K, 2] fieldwidth, anumber < 80.
[K, 3] precision, anumber < 17.

The format strings correspond to the f or mat slash commands as
follows:

/rdn R b i
/ren R I =
/ron “Hr x| G
/rzn “rO* G
/1dn R I
/1en “ox X E
/1on “oHr LI G
/1zn Lux X G

3-552

Command Reference

Example

printfm

Complex numbers are printed with the sign of the imaginary half
separating them and an “i " appended to the imaginary half. The field
width refers to the width of field for each half of the number, so a
complex number printed with afield of 8 will actually take (at least) 20
spacesto print.

If the precision = 0, the decimal point will be suppressed.

The format string can be a maximum of 8 characters and is appended to a
%sign and passed directly to thef pri nt f function in the standard C
language I/O library. Thel f , etc., are case sensitive. If you know C, you
will easily be ableto usethis.

If you want special characters to be printed after x, then include them as
the last characters of the format string. For example:

“x *|f,” right-justified decimal followed by a comma.
fok *g” left-justified string followed by a space.
T I right-justified decimal followed by nothing.

If you want the beginning of the field padded with zeros, then put a“0”
before the first “*” in the format string:

“0*.*1 f” right-justified decimal

Hereisan exampleof pri nt f mbeing used to print amixed numeric and
character matrix:

let x[4,3] =
“AGE” 5.12345564 2.23456788
“PAY” 1.23456677 1.23456789
“SEX’ 1.14454345 3. 44718234
“JOB” 4.11429432 8.55649341;

let mask[1,3] = 0 1 1; /* character numeric */

/* nuneric */

let fm[3,3] =
“-* *g” 88 /* first colum format */

“* %1 f " 10 3 /* second colum format */

3-553

GAUSS Language Reference

printfm

“x *le" 12 4; [* third columm format */

d = printfnm(x, mask, fnt);

The output looks like this:
AGE 5. 123, 2.2346E+000
PAY 1.235, 1.2346E+000
SEX 1. 145, 3.4471E+000
JOB 4. 114, 8.5564E+000

When the column of x to be printed contains all string elements, use a
format string of “ *. *s” if you want it right-justified, or “ - *. *s” if
you want it left-justified. If the column is mixed string and numeric
elements, then use the correct numeric format and pr i nt f mwill
substitute a default format string for those elementsin the column that are
strings.

Remember, the mask value controls whether an element will be printed as
anumber or a string.

See also print, lprint, printdos

3-554

Command Reference

printfnt

printfnt

Purpose

Format

Input

Output

Remarks

Example

Source
Globals

See also

Prints character, numeric, or mixed matrix using a default format
controlled by the functionsf or mat cv and f or mat nv.

y = printfnt(x, mask);

X NxK matrix which isto be printed.
mask scalar, 1if xisnumeric or Oif x is character.
or

1xK vector of 1'sand O's.

The corresponding column of x will be printed as numeric where
mask = 1 and as character where mask = 0.

y scalar, 1 if the function is successful and O if it fails.

Default format for numeric datais: “*. *1 g” 16 8
Default format for character datais: “*. *s” 8 8

X = rndn(5, 4);
call printfnt(x,1);

gauss. src
_fmecv, __fmnv

format cv, formatnv

3-555

GAUSS Language Reference

proc

proc

Purpose

Format

Input

Remarks

Begins the definition of amulti-line recursive procedure. Procedures are
user-defined functions with local or global variables.

proc [[(nrets) =] name(arglist) ;

nrets

name

arglist

constant, number of objects returned by the procedure. If nretsis
not explicitly given, the default is 1. Legal values are 0 to 1023.
Ther et p statement is used to return values from a procedure.

literal, name of the procedure. This name will be a global
symbol.

alist of names, separated by commas, to be used inside the
procedure to refer to the arguments that are passed to the
procedure when the procedure is called. These will always be
local to the procedure, and cannot be accessed from outside the
procedure or from other procedures.

A procedure definition begins with the pr oc statement and ends with the
endp statement.

An example of aprocedure definitionis:

proc dog(x,y,z); /* procedure declaration */

| ocal a,b; /* local variabl e decl arati ons */

a=x.%* x;
b=y .*y;
a=a.l x;
b=>b./vy;
Z =z .* z;
z =inv(z);

retp(a b*z); /* return with value of */

[* a b*z */

endp; /* end of procedure definition */

3-556

Command Reference

See also

proc

Procedures can be used just asif they were functionsintrinsic to the
language. Below are the possible variations depending on the number of
items the procedure returns.

Returns 1 item:

y = dog(i,j,k);
Returns multiple items:

{ x,y,z } =cat(i,j,k);
Returns no items:

fish(i,j,k);

If the procedure does not return any items or you want to discard the
returned items:

call dog(i,j,k);

Procedure definitions may not be nested.

For more details on writing procedures, see “Procedures and Keywords”
in the User’s Guide.

keyword, call, endp, local, retp

3-557

GAUSS Language Reference

pr odc

pr odc

Purpose
Format
Input

Output

Remarks

Example

See also

Computes the products of all elementsin each column of a matrix.

y = prodc(X);

X NXK matrix.

y Kx1 matrix containing the products of al elementsin each
column of x.

To find the products of the elementsin each row of amatrix, transpose
before applying pr odc. If x is complex, use the bookkeeping
transpose (.").

To find the products of al of the elementsin a matrix, usethevecr
function before applying pr odc.

let x[3,3] =12 3
456
7 8 9;
y = prodc(x);
28
y= 80
162

sunct, neanc, stdc

3-558

Command Reference

put f

Purpose
Format

Input

Output

Remarks

put f
Writes the contents of a string to afile.
ret = putf (filename, str, start, len, mode, append) ;
filename string, name of output file.
str string to be written to filename. All or part of str may be
written out.
start scalar, beginning position in str of output string.
len scalar, length of output string.

maode scalar, output mode, (0) ASCII or (1) binary.
append scalar, file write mode, (0) overwrite or (1) append.

ret scalar, return code.

If modeis set to (1) binary, astring of length len will be written to
filename. If modeis set to (0) ASCII, the string will be output up to length
len or until put f encounters a~Z (ASCII 26) in str. The *Z will not be
written to filename.

If append is set to (0) overwrite, the current contents of filename will be
destroyed. If append is set to (1) append, filename will be created if it
does not already exist.

If an error occurs, put f will either return an error code or terminate the
program with an error message, depending onthet r ap state. If bit 2 (the
4'shit) of thetrap flagis0, put f will terminate with an error message. If
bit 2 of thetrap flagis 1, put f will return an error code. The value of the
trap flag can be tested with t r apchk.

3-559

GAUSS Language Reference

put f

ret can have the following values:

0 normal return

null file name

file open error

file write error

output string too long

null output string, or illegal mode value
illegal append value

16 append specified but file did not exist; file was created
(warning only)

o Ol WDN PP

Source putf.src

See also getf

3-560

Command Reference

ONewt on

Purpose
Format

Input

Global Input

Output

QNewt on

Optimizes a function using the BFGS descent algorithm.

{ xfgret} = QNewt on(&fct,start);

&fct pointer to a procedure that computes the function to be
minimized. This procedure must have one input argument, a
vector of parameter values, and one output argument, the value
of the function evaluated at the input vector of parameter values.

start Kx1 vector, start values.

_gn_Rel GradTol

_gn_G adProc

_gn_Maxlters

_gn_Printlters

_gn_Par Nanmes

scalar, convergence tolerance for relative
gradient of estimated coefficients. Default =
le-5.

sca ar, pointer to aprocedure that computesthe
gradient of the function with respect to the
parameters. This procedure must have asingle
input argument, a Kx1 vector of parameter
values, and a single output argument, a Kx1
vector of gradientsof the function with respect
to the parameters evaluated at the vector of
parameter values. If _gn_GradPr oc isO,
Q\ewt on usesgr adp.

scalar, maximum number of iterations.
Default = 1e+5. Termination can be forced by
pressing C on the keyboard.

scdar, if 1, print iteration information. Default
= 0. Can be toggled during iterations by
pressing P on the keyboard.

Kx1 vector, labels for parameters.

_gn_PrintResul ts scdar, if 1, results are printed.

X Kx1 vector, coefficients at the minimum of the function.
f scalar, value of function at minimum.
g Kx1 vector, gradient at the minimum of the function.

ret scalar, return code.
0 normal convergence

3-561

GAUSS Language Reference

QNewt on

forced termination

max iterations exceeded

function calculation failed

gradient calculation failed

step length calculation failed

function cannot be evaluated at initial parameter values

O 01Tk WN PP

Remarks If you arerunning in terminal mode, GAUSS will not see any input until
you press ENTER. Pressing C on the keyboard will terminate iterations,
and pressing P will toggle iteration output.

To reset global variables for this function to their default values, call
gnewt onset .

Example Thisexample computes maximum likelihood coefficients and standard
errorsfor a Tobit model:

/*
** gnewton.e - a Tobit nodel
*/

Z = loadd(“tobit”); /* get data */
bo ={ 1, 1, 1, 1 };
{b,f,g,retcode} = gnewton(é&l pr, b0);

/*
** covariance matrix of paraneters
*/

h = hessp(& pr, b);
output file = gnewton.out reset;

print “Tobit Model”;
print;

3-562

Command Reference

Source

pri nt

print b~sqgrt(diag(invpd(h)));

out put off;

** | o0g-1likelihood proc

proc | pr(b);

| ocal s, mu;

s = b[4];

if s < le-4;
retp(error(0));

endi f;

m=z[.,2:4]*b[1:3,.];

u=z.,1 ./= 0;

retp(-sunc(u.*l npdfn2(z[.,1]-ms) +

“coefficients standard errors”

QNewt on

(1-u). *(In(cdfnc(n sqrt(s))))));

endp;

produces:
Tobit Mode

coefficients standard errors

0. 010417884 0.080220019
-0. 20805753 0. 094551107
-0.099749592 0. 080006676

0. 65223067 0.099827309

gnewt on. src

3-563

GAUSS Language Reference

QProg

QPr og
Purpose Solvesthe quadratic programming problem.

Format { xul,u2,u3udret} = QProg(sart,q,ra,b,cdbnds);

Input start Kx1 vector, start values.

q KxK matrix, symmetric model matrix.

r Kx1 vector, model constant vector.

a MxK matrix, equality constraint coefficient matrix, or
scalar 0, no equality constraints.

b Mx1 vector, equality constraint constant vector, or scalar
0, will be expanded to Mx1 vector of zeros.

c NxK matrix, inequality constraint coefficient matrix, or
scalar 0, no inequality constraints.

d Nx1 vector, inequality constraint constant vector, or scalar

0, will be expanded to Nx1 vector of zeros.

bnds Kx2 matrix, bounds on x, the first column contains the
lower bounds on x, and the second column the upper
bounds. If scalar 0, the bounds for all elementswill default

to +1e200.
Global Input _gprog_naxit scalar, maximum number of iterations.
Default = 1000.
Output x Kx1 vector, coefficients at the minimum of the function.

ul Mx1 vector, Lagrangian coefficients of equality constraints.
u2 Nx1 vector, Lagrangian coefficients of inequality constraints.
u3 Kx1 vector, Lagrangian coefficients of lower bounds.

ud Kx1 vector, Lagrangian coefficients of upper bounds.

ret scalar, return code.
0 successful termination
1 max iterations exceeded

2 machine accuracy isinsufficient to maintain decreasing
function values

3 modd matrices not conformable
<0 active constraints inconsi stent

3-564

Command Reference

QProg

Remarks QPr og solvesthe standard quadratic programming problem:
mi n%x’ Qx—X'R

subject to constraints,

AXx=B
Cx=D
and bounds,

Xiow S X< Xyp

Source qprog.src

3-565

GAUSS Language Reference

qqr

aqr

Purpose

Format
Input

Output

Remarks

Computes the orthogonal -triangul ar (QR) decomposition of a matrix X,
such that:

X = QR
{alr}=qar(x);

X NxP matrix.

gl NxK unitary matrix, K = min(N,P).
r KXP upper triangular matrix.

Given X, thereis an orthogonal matrix Q such that Q' X is zero below its
diagondl, i.e.,

ol

where Ris upper triangular. If we partition

Q=1[Q Q)
where Q, has P columns, then
X =0QR

isthe QR decomposition of X. If X haslinearly independent columns, Ris
a so the Cholesky factorization of the moment matrix of X, i.e., of X'X.

If you want only the R matrix, see the function gqr . Not computing Q4 can
produce significant improvements in computing time and memory usage.

An unpivoted R matrix can also be generated using chol up:
r = chol up(zeros(col s(x),cols(x)), x);

For linear equation or least squares problems, which require Q, for
computing residuals and residual sums of squares, seeol sqr andqt yr.

3-566

Command Reference

Source

See also

qaqr

For most problems an explicit copy of Q; or Q, is not required. Instead
one of the following, Q'Y, QY, QY, Q.Y, QJY, or Q,Y, for some Y, is

required. These cases are all handled by gt yr and qyr . These functions
are available because Q and Q, are typically very large matrices while

their products with Y are more manageable.
If N < P the factorization assumes the form:

QX = [R Ry

where Ry isa PxP upper triangular matrix and R, isPx(N —P). ThusQ is
aPxP matrix and RisaPxN matrix containing R; and R,. This type of

factorization is useful for the solution of underdetermined systems.
However, unlessthe linearly independent columns happen to be theinitial
rows, such an analysis also requires pivoting (seeqr e and gqr ep).

qqr.src

gre, qrep, qtyr, qtyre, qtyrep, qyr, qyre, qyrep,
ol sqgr

3-567

GAUSS Language Reference

qqre

gqgr e

Purpose

Format
Input

Output

Remarks

Computes the orthogonal -triangul ar (QR) decomposition of a matrix X,
such that:

X[., E]= QlR
{alre} = qgre(x);
X NxP matrix.

gl NxK unitary matrix, K = min(N,P).
r KXP upper triangular matrix.
e Px1 permutation vector.

Given X[.,E], where E is a permutation vector that permutes the columns
of X, thereis an orthogonal matrix Q such that Q'X[.,E] is zero below its
diagondl, i.e.,

' —_ |R
0
where Ris upper triangular. If we partition

Q=[q Q)

where Q, has P columns, then
X[Bl = QR

is the QR decomposition of X[.,E].

If you want only the R matrix, see gr e. Not computing Q; can produce
significant improvements in computing time and memory usage.

If X hasrank P, then the columns of X will not be permuted. If X has rank
M < P, then the M linearly independent columns are permuted to the front
of X by E. Partition the permuted X in the following way:

X[E] = |X, %)

3-568

Command Reference

Source

See also

qqre

where X; isNxM and X, is Nx(P —M). Further partition Rin the
following way:

R = Ry Rp
0 O
where Ry1 isMxM and Ry, is Mx(P —M). Then
_ -1
A = RyR,,

and

X, = XA
that is, A isan Mx(P— N) matrix defining the linear combinations of X,
with respect to X;.

If N < P the factorization assumes the form:
QX = [R, Ry

where R; isaPxP upper triangular matrix and R, isPx (N —P). ThusQ is
aPxP matrix and RisaPxN matrix containing R; and R,. This type of

factorization is useful for the solution of underdetermined systems. For
the solution of

X[.,Elb=Y
it can be shown that
b = grsol (QY,Rl) | zeros(NP, 1);

The explicit formation here of Q, which can be avery large matrix, can be
avoided by using the function qt yr e.

For further discussion of QR factorizations see the remarks under qqr .

qqr.src

qqr, qtyre, olsqgr

3-569

GAUSS Language Reference

qqrep

aqrep

Purpose

Format

Input

Output

Remarks

Computes the orthogonal -triangul ar (QR) decomposition of a matrix X,
such that:

X[.,E]= Q;R
{qlre} = qarep(xpv);

X NXP matrix.
pvt Px1 vector, controls the selection of the pivot columns;

if pvt[i] > 0, X[i] isan initial column
if pvt[i] = 0, X[i] isafree column
if pvt[i] <0, X[i] isafinal column

Theinitial columns are placed at the beginning of the
matrix and the final columns are placed at the end. Only
the free columns will be moved during the decomposition.

gl NxK unitary matrix, K = min(N,P).
r KXP upper triangular matrix.
e Px1 permutation vector.

Given X[.,E], where E is a permutation vector that permutes the columns

of X, thereis an orthogonal matrix Q such that Q'X[.,E] is zero below its
diagonal, i.e.,

ox.a -]
0
where Ris upper triangular. If we partition

Q= Q)

where Q4 has P columns, then

X[., E] = [Ql R}

is the QR decomposition of X][.,E].

3-570

Command Reference

qqrep

gqgr ep alowsyou to control the pivoting. For example, suppose that X is
adata set with a column of onesin the first column. If there are linear
dependencies among the columns of X, the column of ones for the
constant may get pivoted away. This column can be forced to be included
among the linearly independent columns using pvt.

If you want only the R matrix, see qr ep. Not computing Q, can produce
significant improvements in computing time and memory usage.

Source qgr.src

See also qgr, qre, olsqr

3-571

GAUSS Language Reference

qr

qr

Purpose

Format
Input
Output

Remarks

Computes the orthogonal -triangul ar (QR) decomposition of a matrix X,
such that:

X= Q4R
r=qr(x;
X NxP matrix.
r KXxP upper triangular matrix, K = min(N,P).

gr isthesameasqqr but doesn't return the Q; matrix. If Q, isnot

wanted, gr will save a significant amount of time and memory usage,
especialy for large problems.

Given X, thereis an orthogonal matrix Q such that Q"X is zero below its
diagonal, i.e.,

o

where Ris upper triangular. If we partition

Q= @ Q)
where Q, has P columns, then
X= Q4R

isthe QR decomposition of X. If X haslinearly independent columns, Ris
al so the Cholesky factorization of the moment matrix of X, i.e., of X'X.

gr does not return the Q; matrix because in most casesit is not required

and can be very large. If you need the Q, matrix see the function qqr . If

you need the entire Q matrix call qyr with Y set to aconformable identity
matrix.

For most problems Q'Y, Q/Y, or QY, Q,Y, for someY, are required. For
these casesseeqt yr and qyr.

3-572

Command Reference

qr

For linear equation or least squares problems, which require Q, for
computing residuals and residual sums of squares, seeol sqr.

If N < P the factorization assumes the form:

QX = [R, Ry

where Ry isa PxP upper triangular matrix and R, isPx(N —P). ThusQ is
aPxP matrix and RisaPxN matrix containing R; and R,. This type of
factorization is useful for the solution of underdetermined systems.

However, unlessthe linearly independent columns happen to be theinitial
rows, such an analysis also requires pivoting (seeqr e and gr ep).
Source qr.src

See also qqr, qrep, qtyre

3-573

GAUSS Language Reference

qre

qr e

Purpose

Format
Input

Output

Remarks

Computes the orthogonal -triangul ar (QR) decomposition of a matrix X,
such that:

X[.,E]= Q;R

{re}= are(x);

X NXP matrix.
r KXP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

gr e isthesame asqqr e but doesn’t return the Q; matrix. If Q; is not

wanted, gr e will save asignificant amount of time and memory usage,
especially for large problems.

Given X[.,E], where E is a permutation vector that permutes the columns
of X, thereis an orthogonal matrix Q such that Q'X[.,E] is zero below its
diagondl, i.e.,

' —_ |R
0
where Ris upper triangular. If we partition

Q= o ¢
where Q, has P columns, then
X[.,E]= QR

is the QR decomposition of X[.,E].

gr e does not return the Q; matrix because in most casesit is not required
and can be very large. If you need the Q; matrix seethefunctionqqr e. If
you need the entire Q matrix call gyr e with Y set to aconformable
identity matrix. For most problems Q'Y, Q7Y or QY, Q;Y, for someY, are
required. For these cases see gt yr e and qyr e.

3-574

Command Reference

Source

See also

gre

If X hasrank P, then the columns of X will not be permuted. If X has rank
M < P, then the M linearly independent columns are permuted to the front
of X by E. Partition the permuted X in the following way:

X[El= [X, %)

where X, is NxM and X5 is Nx(P —M). Further partition Rin the
following way:

R = Ry Ryp
0O O
where Ry1 iIsSMxM and Ry, isMx(P—M). Then
I
A = RyRyp,
and
X, = X/A
that is, Aisan Mx(P— N) matrix defining the linear combinations of X,

with respect to X;.

If N < P the factorization assumes the form:

QX = [R, Ry

where R; isaPxP upper triangular matrix and R, isPx(N —P). ThusQ is
aPxP matrix and RisaPxN matrix containing R; and R,. This type of

factorization is useful for the solution of underdetermined systems. For
the solution of

X[,Elb=Y
it can be shown that
b = grsol (QY,Rl) | zeros(NP, 1);

The explicit formation here of Q, which can be avery large matrix, can be
avoided by using the function gt yr e.

For further discussion of QR factorizations see the remarks under qqr .

qr.src

qqr, ol sqgr

3-575

GAUSS Language Reference

qrep

arep

Purpose

Format

Input

Output

Remarks

Computes the orthogonal -triangul ar (QR) decomposition of a matrix X,
such that:

X[..,El= Q4R
{re} = agrep(xpw);

X NXP matrix.
pvt Px1 vector, controls the selection of the pivot columns:

if pvi[i] >0, x[i] isan initial column
if pvi[i] =0, x[i] isafree column
if pvt[i] <0, x[i] isafinal column

Theinitial columns are placed at the beginning of the
matrix and the final columns are placed at the end. Only
the free columns will be moved during the decomposition.

r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

gr ep isthesameasqqr ep but doesn't return the Q; matrix. If Q, isnot

wanted, gr ep will save asignificant amount of time and memory usage,
especialy for large problems.

Given X[.,E], where E is a permutation vector that permutes the columns
of X, thereis an orthogonal matrix Q such that Q'X[.,E] is zero below its
diagonal, i.e.,

o.a-]
0
where Ris upper triangular. If we partition

Q= [Q, Q)

where Q, has P columns, then

X[.,E]= Q;R

3-576

Command Reference

arep

isthe QR decomposition of X][.,E].

gr ep does not return the Q, matrix because in most casesit is not
required and can be very large. If you need the Q; matrix see the function
qqr ep. If you need the entire Q matrix call qyr ep with Y setto a
conformableidentity matrix. For most problems Q'Y, Q;Y, or QY, Q,Y, for
some 'Y, are required. For these cases see gt yr ep and qyr ep.

gr ep adlowsyou to control the pivoting. For example, supposethat Xisa
data set with a column of onesin the first column. If there are linear
dependencies among the columns of X, the column of onesfor the

constant may get pivoted away. This column can be forced to be included
among the linearly independent columns using pvt.

Source qr.src

See also qr, gre, qgrep

3-577

GAUSS Language Reference

gr sol

gr sol

Purpose
Format

Input

Output

Remarks

Source

See also

Computes the solution of Rx = b where Ris an upper triangular matrix.

x= grsol (bR);

b PxL matrix.
R PxP upper triangular matrix.
X PxL matrix.

gr sol applies abacksolveto Rx = b to solve for x. Generally R will be
the R matrix from a QR factorization. qr sol may be used, however, in
any situation where R is upper triangular.

grsol.src

aqqr, gr, qtyr, grtsol

3-578

Command Reference

grt sol

Purpose
Format

Input

Output

Remarks

Source

See also

grtsol

Computes the solution of R' x = b where Ris an upper triangular matrix.

x= grtsol (bR);

b PxL matrix.
R PxP upper triangular matrix.
X PxL matrix.

grt sol appliesaforward solveto Rx = bto solve for x. Generally R
will be the R matrix from a QR factorization. qr t sol may be used,
however, in any situation where R is upper triangular. If Rislower
triangular, transpose before calling gr t sol .

If Risnot transposed, use gr sol .

grsol.src

qqr, qr, qtyr, qrsol

3-579

GAUSS Language Reference

qtyr

qryr

Purpose

Format

Input
Output

Remarks

Computes the orthogonal-triangular (QR) decomposition of a matrix X
and returns Q'Y and R.

{atyr} = qtyr(yx;

y NXL matrix.
X NxP matrix.

gty NXL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).

Given X, thereis an orthogonal matrix Q such that Q' X is zero below its
diagonal, i.e.,

o

where Ris upper triangular. If we partition

Q=[e)
where Q, has P columns, then
X =0QR

isthe QR decomposition of X. If X haslinearly independent columns, Ris
a so the Cholesky factorization of the moment matrix of X, i.e., of X'X.
For most problems Q or Q isnot what is required. Rather, we require
Q'Yor QY whereYisan NxL matrix (if either QY or Q,Y are required,
seeqyr). Since Q can beavery large matrix, gt yr has been provided for
the calculation of Q'Y which will be a much smaller matrix. QY will be
asubmatrix of Q'Y. In particular,

G=QY =qty[1:P,]

and QY istheremaining submatrix:

3-580

Command Reference

Example

Source

See also

qtyr
H = Q’2Y = qty[P+1:N,.]

Suppose that X isan NxK data set of independent variables, and visan
Nx1 vector of dependent variables. Then it can be shown that

b=RG
and
N-P
s= Y Hi=12..L
i=1

where b isaPxL matrix of least squares coefficients and sisa 1xL vector
of residual sums of squares. Rather than invert R directly, however, it is
better to apply gr sol to

Rb = QY

For rank deficient least squares problems, seeqt yr e and qt yr ep.

The QR agorithm is the superior numerical method for the solution of
least squares problems:

| oadm x, vy;

{ aty, r } = atyr(y,x);
gqlty gty[1:rows(r),.];
q2ty
b = grsol (qlty,r); [/* LS coefficients */

gty[rows(r)+l:rows(qty),.];

s2 = sunc(g2ty”2); [/* residual suns of squares */

qtyr.src

qqr, qtyre, gtyrep, ol sqr

3-581

GAUSS Language Reference

qtyre

qtyre

Purpose

Format

Input

Output

Remarks

Computes the orthogonal-triangular (QR) decomposition of a matrix X
and returns Q'Y and R.

{ atyre} = qtyre(yx);

y NXL matrix.
X NxP matrix.

gty NXL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Given X[.,E], where E is a permutation vector that permutes the columns
of X, thereis an orthogonal matrix Q such that Q'X[.,E] is zero below its
diagondl, i.e.,

' —_ |R
0
where Ris upper triangular. If we partition

SR
where Q, has P columns, then
X[.,E]= QR

is the QR decomposition of X[.,E].

If X has rank P, then the columns of X will not be permuted. If X has rank
M < P, then the M linearly independent columns are permuted to the front
of X by E. Partition the permuted X in the following way:

X[El= |X, %)

where X; isNxM and X, is Nx(P — M). Further partition R in the
following way:

3-582

Command Reference

qtyre

R = |Ru R
0 O

where Ry1 isMxM and Ry, is Mx(P —M). Then

-1
A = RyRyp
and

Xy, = XA

that is, A isan Mx(P—N) matrix defining the linear combinations of X,
with respect to X;.

For most problems Q or Q isnot what is required. Rather, werequire Q'Y

or Q/Y whereYisan NxL matrix. Since Q can be avery large matrix,
gt yr e hasbeen provided for the cal culation of Q'Y which will beamuch
smaller matrix. QY will be asubmatrix of Q'Y. In particular,

Q1Y = qty[1:P,]
and Q,Y istheremaining submatrix:
Q’2Y = qty[P+1:N,]

Suppose that X isan NxK data set of independent variablesand Y is an
Nx1 vector of dependent variables. Suppose further that X contains
linearly dependent columns, i.e., X hasrank M < P. Then define

C

QY [1:M,]

A = R[1:M,1:M]

and the vector (or matrix of L > 1) of least squares coefficients of the
reduced, linearly independent problem is the solution of

Ab = C
To solvefor buseqr sol :
b = grsol (C, A);

3-583

GAUSS Language Reference

qtyre

Source

See also

If N < P the factorization assumes the form:
QX[El= [R; Ry

where Ry isa PxP upper triangular matrix and R, isPx(N —P). ThusQ is
aPxP matrix and RisaPxN matrix containing R; and R,. This type of

factorization is useful for the solution of underdetermined systems. For
the solution of

X[.,E]b =Y
it can be shown that
b = grsol (QY,Rl) | zeros(NP,1);

qtyr.src

qa