
TM
�����
Language Reference
Aptech Systems, Inc.— Mathematical and Statistical System

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software described in
this document is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of this agreement.
The purchaser may make one copy of the software for backup purposes. No part of
this manual may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying or recording, for any purpose other than the
purchaser’s personal use without the written permission of Aptech Systems, Inc.

© 1984, 2002 Aptech Systems, Inc. All rights reserved.

GAUSS and GAUSS Light are trademarks of Aptech Systems, Inc.
GEM is a trademark of Digital Research, Inc.
Lotus is a trademark of Lotus Development Corp.
HP Laser Jet and HP-GL are trademarks of Hewlett-Packard Corp.
PostScript is a trademark of Adobe Systems Inc.
IBM is a trademark of International Business Machines Corporation.
Hercules is a trademark of Hercules Computer Technology, Inc.
GraphicC is a trademark of Scientific Endeavors Corporation.
Tektronix is a trademark of Tektronix, Inc.
Windows is a registered trademark of Microsoft Corporation.
Other trademarks are the property of their respective owners.

Part Number: 2368
Version 4.0
Revised January 25, 2002

Contents
Contents..1-iii

Introduction ... 1-1

Documentation Conventions ... 1-2

Using This Manual .. 1-2

Global Control Variables ... 1-3

Commands
by Category.. 2-1

Mathematical Functions .. 2-1

Finance Functions... 2-10

Matrix Manipulation... 2-12

Data Handling ... 2-15

Compiler Control ... 2-18

Program Control.. 2-19

OS Functions .. 2-23

Workspace Management .. 2-23

Error Handling and Debugging ... 2-24

String Handling.. 2-24

Time and Date Functions .. 2-25

Console I/O ... 2-26

Output Functions... 2-27

Graphics.. 2-28

Command
Reference ... 3-1

Command Components .. 3-1

Obsolete Commands ..A-1

Colors
Appendix ..B-1
���

���������	��
This GAUSS™ Language Reference describes each of the commands, procedures, and
functions available in the GAUSS programming language. These functions can be
divided into four categories:

• Mathematical, statistical, and scientific functions.

• Data handling routines, including data matrix manipulation and description
routines, and file I/O.

• Programming statements, including branching, looping, display features, error
checking, and shell commands.

• Graphics functions.

The first category contains those functions to be expected in a high-level
mathematical language: trigonometric functions and other transcendental functions,
distribution functions, random number generators, numerical differentiation and
integration routines, Fourier transforms, Bessel functions, and polynomial evaluation
routines. And, as a matrix programming language, GAUSS includes a variety of
routines that perform standard matrix operations. Among these are routines to
calculate determinants, matrix inverses, decompositions, eigenvalues and
eigenvectors, and condition numbers.

Data handling routines include functions that return dimensions of matrices, and
information about elements of data matrices, including functions to locate values lying
in specific ranges or with certain values. Also under data handling routines fall all
���

GAUSS Language Reference
those functions that create, save, open, and read from and write to GAUSS data sets. A
variety of sorting routines that will operate on both numeric and character data are
also available.

Programming statements are all of the commands that make it possible to write
complex programs in GAUSS. These include conditional and unconditional
branching, looping, file I/O, error handling, and system-related commands to execute
OS shells and access directory and environment information.

The graphics functions of GAUSS Publication Quality Graphics (PQG) are a set of
routines built on the graphics functions in GraphiC by Scientific Endeavors
Corporation. GAUSS PQG consists of a set of main graphing procedures and several
additional procedures and global variables for customizing the output.

��������	����������	���
The following table describes how text formatting is used to identify GAUSS
programming elements.

��	�����	������
Users who are new to GAUSS should make sure they have familiarized themselves
with "Language Fundamentals" in the User’s Guide before proceeding here. That
chapter contains the basics of GAUSS programming.

Text Style Use Example

regular text narrative “... text formatting is used...”

bold text emphasis "...not supported under
UNIX."

italic text variables “... If vnames is a string or
has fewer elements than x
has columns, it will be...”

monospace code example if scalerr(cm);

cm = inv(x);

endif;

monospace bold Refers to a GAUSS
programming element
within a narrative
paragraph.

“...as explained under
create ...”
���

Introduction
In all, there are over 400 routines described in this GAUSS Language Reference. We
suggest that new GAUSS users skim through Chapter 2, and then browse through
Chapter 3, the main part of this manual. Here, users can familiarize themselves with
the kinds of tasks that GAUSS can handle easily.

Chapter 2 gives a categorical listing of all functions in this GAUSS Language
Reference, and a short discussion of the functions in each category. Complete syntax,
description of input and output arguments, and general remarks regarding each
function are given in Chapter 3.

If a function is an “extrinsic” (that is, part of the Run-Time Library), its source code
can be found on the .src subdirectory. The name of the file containing the source
code is given in Chapter 3 under the discussion of that function.

����������������	����
Several GAUSS functions use global variables to control various aspects of their
performance. The files gauss.ext, gauss.dec, and gauss.lcg contain the external
statements, declare statements, and library references to these globals. All
globals used by the GAUSS Run-Time library begin with an underscore ‘_’.

Default values for these common globals can be found in the file gauss.dec,
located on the .src subdirectory. The default values can be changed by editing this
file.

����	�������
�����������

To permanently change the default setting of a common global, two files need to be
edited: gauss.dec and gauss.src.

To change the value of the common global __output from 2 to 0, for example, edit
the file gauss.dec and change the statement

declare matrix __output = 2;

to read

declare matrix __output = 0;

Also, edit the procedure gausset, located in the file gauss.src, and modify the
statement

__output = 2;

similarly.
���

GAUSS Language Reference
��������������������

The global variables affect your program, even if you have not set them directly in a
particular command file. If you have changed them in a previous run, they will retain
their changed values until you exit GAUSS or execute the new command.

The procedure gausset will reset the Run-Time Library globals to their default
values:

gausset;

If your program changes the values of these globals, you can use gausset to reset
them whenever necessary. gausset resets the globals as a whole; you can write your
own routine to reset specific ones.
���

�������
����������
������	��������	���

��	���	�	�������	���

abs Returns absolute value of argument.

arccos Computes inverse cosine.

arcsin Computes inverse sine.

atan Computes inverse tangent.

atan2 Computes angle given a point x,y.

besselj Computes Bessel function, first kind.

bessely Computes Bessel function, second kind.

cos Computes cosine.

cosh Computes hyperbolic cosine.

exp Computes the exponential function of x.

gamma Computes gamma function value.

ln Computes the natural log of each element.

lnfact Computes natural log of factorial function.
���

GAUSS Language Reference
All trigonometric functions take or return values in radian units.

	�������	�	�������������	��

gradp and hessp use a finite difference approximation to compute the first and
second derivatives. Use gradp to calculate a Jacobian.

intquad1, intquad2, and intquad3 use Gaussian quadrature to calculate the
integral of the user-defined function over a rectangular region.

To calculate an integral over a region defined by functions of x and y, use intgrat2
and intgrat3.

To get a greater degree of accuracy than that provided by intquad1, use intsimp
for 1-dimensional integration.

 	����!�����

log Computes the log10 of each element.

pi Returns π.

sin Computes sine.

sinh Computes the hyperbolic sine.

spline1D Computes a smoothing spline for a curve.

spline2D Computes a smoothing spline for a surface.

sqrt Computes the square root of each element.

tan Computes tangent.

tanh Computes hyperbolic tangent

gradp Computes first derivative of a function.

hessp Computes second derivative of a function.

intgrat2 Integrates a 2-dimensional function over a user-defined region.

intgrat3 Integrates a 3-dimensional function over a user-defined region.

intquad1 Integrates a 1-dimensional function.

intquad2 Integrates a 2-dimensional function over a user-defined
rectangular region.

intquad3 Integrates a 3-dimensional function over a user-defined
rectangular region.

intsimp Integrates by Simpson’s method.

balance Balances a matrix.
���

Commands by Category
chol Computes Cholesky decomposition, X = Y′Y.

choldn Performs Cholesky downdate on an upper triangular matrix.

cholsol Solves a system of equations given the Cholesky factorization
of a matrix.

cholup Performs Cholesky update on an upper triangular matrix.

cond Computes condition number of a matrix.

crout Computes Crout decomposition, X = LU (real matrices only).

croutp Computes Crout decomposition with row pivoting (real
matrices only).

det Computes determinant of square matrix.

detl Computes determinant of decomposed matrix.

hess Computes upper Hessenberg form of a matrix (real matrices
only).

inv Inverts a matrix.

invpd Inverts a positive definite matrix.

invswp Generalized sweep inverse.

lapeighb Computes eigenvalues only of a real symmetric or complex
Hermitian matrix selected by bounds.

lapeighi Computes eigenvalues only of a real symmetric or complex
Hermitian matrix selected by index.

lapeighvb Computes eigenvalues and eigenvectors of a real symmetric or
complex Hermitian matrix selected by bounds.

lapeighvi Computes selected eigenvalues and eigenvectors of a real
symmetric or complex Hermitian matrix.

lapgeig Computes generalized eigenvalues for a pair of real or complex
general matrices.

lapgeigh Computes generalized eigenvalues for a pair of real symmetric
or Hermitian matrices.

lapgeighv Computes generalized eigenvalues and eigenvectors for a pair
of real symmetric or Hermitian matrices.

lapgeigv Computes generalized eigenvalues, left eigenvectors, and right
eigenvectors for a pair of real or complex general matrices.

lapgsvds Compute the generalized singular value decomposition of a
pair of real or complex general matrices.

lapgsvdcst Compute the generalized singular value decomposition of a
pair of real or complex general matrices.
���

GAUSS Language Reference
lapgsvdst Compute the generalized singular value decomposition of a
pair of real or complex general matrices.

lapschur Compute the generalized Schur form of a pair of real or
complex general matrices.

lapsvdcusv Computes the singular value decomposition a real or complex
rectangular matrix, returns compact u and v.

lapsvds Computes the singular values of a real or complex rectangular
matrix

lapsvdusv Computes the singular value decomposition a real or complex
rectangular matrix.

lu Computes LU decomposition with row pivoting (real and
complex matrices).

null Computes orthonormal basis for right null space.

null1 Computes orthonormal basis for right null space.

orth Computes orthonormal basis for column space x.

pinv Generalized pseudo-inverse: Moore-Penrose.

qqr QR decomposition: returns Q1 and R.

qqre QR decomposition: returns Q1, R, and a permutation vector, E.

qqrep QR decomposition with pivot control: returns Q1, R, and E.

qr QR decomposition: returns R.

qre QR decomposition: returns R and E.

qrep QR decomposition with pivot control: returns R and E.

qrsol Solves a system of equations Rx=b given an upper triangular
matrix, typically the R matrix from a QR decomposition.

qrtsol Solves a system of equations given an upper
triangular matrix, typically the R matrix from a QR
decomposition.

qtyr QR decomposition: returns and R.

qtyre QR decomposition: returns , R, and E.

qtyrep QR decomposition with pivot control: returns , R, and E.

qyr QR decomposition: returns QY and R.

qyre QR decomposition: returns QY, R, and E.

qyrep QR decomposition with pivot control: returns QY, R, and E.

rank Computes rank of a matrix.

R′x b=

Q′Y

Q′Y

Q′Y
���

Commands by Category
The decomposition routines are chol for Cholesky decomposition, crout and
croutp for Crout decomposition, qqr-qyrep for QR decomposition, and svd,
svd1, and svd2 for singular value decomposition.

null, null1, and orth calculate orthonormal bases.

inv, invpd, solpd, cholsol, qrsol, and the “/” operator can all be used to
solve linear systems of equations.

rank and rref will find the rank and reduced row echelon form of a matrix.

det, detl, and cond will calculate the determinant and condition number of a
matrix.

"	��������

There are four eigenvalue-eigenvector routines. Two calculate eigenvalues only, and
two calculate eigenvalues and eigenvectors. The types of matrices handled by these
routines are:

General: eig, eigv

Symmetric or Hermitian: eigh, eighv

�������	��#$���	���

rcondl Returns reciprocal of the condition number of last decomposed
matrix.

rref Computes reduced row echelon form of a matrix.

schur Computes Schur decomposition of a matrix (real matrices
only).

solpd Solves a system of positive definite linear equations.

svd Computes the singular values of a matrix.

svd1 Computes singular value decomposition, .

svd2 Computes svd1 with compact U.

eig Computes eigenvalues of general matrix.

eigh Computes eigenvalues of complex Hermitian or real symmetric
matrix.

eighv Computes eigenvalues and eigenvectors of complex Hermitian
or real symmetric matrix.

eigv Computes eigenvalues and eigenvectors of general matrix.

polychar Computes characteristic polynomial of a square matrix.

X USV′=
���

GAUSS Language Reference
See also recserrc, recsercp, and conv.

����	������������

%�����&������

polyeval Evaluates polynomial with given coefficients.

polyint Calculates Nth order polynomial interpolation given known
point pairs.

polymake Computes polynomial coefficients from roots.

polymat Returns sequence powers of a matrix.

polymult Multiplies two polynomials together.

polyroot Computes roots of polynomial from coefficients.

dfft Computes discrete 1-D FFT.

dffti Computes inverse discrete 1-D FFT.

fft Computes 1- or 2-D FFT.

ffti Computes inverse 1- or 2-D FFT.

fftm Computes multi-dimensional FFT.

fftmi Computes inverse multi-dimensional FFT.

fftn Computes 1- or 2-D FFT using prime factor algorithm.

rfft Computes real 1- or 2-D FFT.

rffti Computes inverse real 1- or 2-D FFT.

rfftip Computes inverse real 1- or 2-D FFT from packed format FFT.

rfftn Computes real 1- or 2-D FFT using prime factor algorithm.

rfftnp Computes real 1- or 2-D FFT using prime factor algorithm,
returns packed format FFT.

rfftp Computes real 1- or 2-D FFT, returns packed format FFT.

rndbeta Computes random numbers with beta distribution.

rndcon Changes constant of the LC random number generator.

rndgam Computes random numbers with gamma distribution.

rndi Returns random integers, 0 <= y < 2^32.

rndKMbeta Computes beta pseudo-random numbers.

rndKMgam Computes gamma pseudo-random numbers.

rndKMi Returns random integers, 0 <= y < 2^32.
���

Commands by Category
���''������	�	���������	���

rndKMn Computes standard normal pseudo-random numbers.

rndKMnb Computes negative binomial pseudo-random numbers.

rndKMp Computes Poisson pseudo-random numbers.

rndKMu Computes uniform pseudo-random numbers.

rndKMvm Computes von Mises pseudo-random numbers.

rndLCbeta Computes beta pseudo-random numbers.

rndLCgam Computes gamma pseudo-random numbers.

rndLCi Returns random integers, 0 <= y < 2^32.

rndLCn Computres standard normal pseudo-random numbers.

rndLCnb Computes negative binomial pseudo-random numbers.

rndLCp Computes Poisson pseudo-random numbers.

rndLCu Computes uniform pseudo-random numbers.

rndLCvm Computes von Mises pseudo-random numbers.

rndmult Changes multiplier of the LC random number generator.

rndn Computes random numbers with Normal distribution.

rndnb Computes random numbers with negative binomial
distribution.

rndp Computes random numbers with Poisson distribution.

rndseed Changes seed of the LC random number generator.

rndu Computes random numbers with uniform distribution.

dotfeq Fuzzy .==

dotfge Fuzzy .≥

dotfgt Fuzzy .>

dotfle Fuzzy .≤

dotflt Fuzzy .<

dotfne Fuzzy ./=

feq Fuzzy ==

fge Fuzzy ≥

fgt Fuzzy >

fle Fuzzy ≤

flt Fuzzy <

fne Fuzzy /=
��	

GAUSS Language Reference
The global variable _fcomptol controls the tolerance used for comparison. By
default, this is 1e-15. The default can be changed by editing the file fcompare.dec.

���	��	��������	���

Advanced statistics and optimization routines are available in the GAUSS
Applications programs. (Contact Aptech Systems for more information.)

acf Computes sample autocorrelations.

conv Computes convolution of two vectors.

corrm Computes correlation matrix of a moment matrix.

corrvc Computes correlation matrix from a variance-covariance
matrix.

corrx Computes correlation matrix.

crossprd Computes cross product.

design Creates a design matrix of 0’s and 1’s.

dstat Computes descriptive statistics of a data set or matrix.

loess Computes coefficients of locally weighted regression.

meanc Computes mean value of each column of a matrix.

median Computes medians of the columns of a matrix.

moment Computes moment matrix with special handling of
missing values.

momentd Computes moment matrix from a data set.

ols Computes least squares regression of data set or matrix.

olsqr Computes OLS coefficients using QR decomposition.

olsqr2 Computes OLS coefficients, residuals, and predicted values
using QR decomposition.

pacf Computes sample partial autocorrelations.

princomp Computes principal components of a data matrix.

stdc Computes standard deviation of the columns of a matrix.

toeplitz Computes Toeplitz matrix from column vector.

varmall Computes the log-likelihood of a Vector ARMA model.

varmares Computes the residuals of a Vector ARMA model.

vcm Computes a variance-covariance matrix from a moment matrix.

vcx Computes a variance-covariance matrix from a data matrix.

x′x()
��

Commands by Category
#$�	�	'�	�����������	��

���	��	���
	���	���	���

eqsolve Solves a system of nonlinear equations.

QNewton Optimizes a function using the BFGS descent algorithm.

QProg Solves the quadratic programming problem.

sqpSolve Solves the nonlinear programming problem using a sequential
quadratic programming method.

cdfbeta Computes integral of beta function.

cdfbvn Computes lower tail of bivariate Normal cdf.

cdfchic Computes complement of cdf of 2.

cdfchii Computes 2 abscissae values given probability and degrees of
freedom.

cdfchinc Computes integral of noncentral 2.

cdffc Computes complement of cdf of F.

cdffnc Computes integral of noncentral F.

cdfgam Computes integral of incomplete function.

cdfmvn Computes multivariate Normal cdf.

cdfn Computes integral of Normal distribution: lower tail, or cdf.

cdfn2 Computes interval of Normal cdf.

cdfnc Computes complement of cdf of Normal distribution (upper
tail).

cdftc Computes complement of cdf of t-distribution.

cdftnc Computes integral of noncentral t-distribution.

cdftvn Computes lower tail of trivariate Normal cdf.

erf Computes Gaussian error function.

erfc Computes complement of Gaussian error function.

lncdfbvn Computes natural log of bivariate Normal cdf.

lncdfmvn Computes natural log of multivariate Normal cdf.

lncdfn Computes natural log of Normal cdf.

lncdfn2 Computes natural log of interval of Normal cdf.

lncdfnc Computes natural log of complement of Normal cdf.

lnpdfmvn Computes multivariate Normal log-probabilities.

χ

χ

χ

Γ

���

GAUSS Language Reference
���	��������(�����������	���

����	�	����������

All calculations in GAUSS are done in double precision, with the exception of some
of the intrinsic functions on OS/2 and DOS. These may use extended precision (18-19
digits of accuracy). Use prcsn to change the internal accuracy used in these cases.

round, trunc, ceil, and floor convert floating point numbers into integers. The
internal representation for the converted integer is double precision (64 bits).

Each matrix element in memory requires 8 bytes of memory.

�	����������	���

lnpdfn Computes Normal log-probabilities.

pdfn Computes standard Normal probability density function.

recserar Computes autoregressive recursive series.

recsercp Computes recursive series involving products.

recserrc Computes recursive series involving division.

seqa Creates an additive sequence.

seqm Creates a multiplicative sequence.

base10 Converts number to x.xxx and a power of 10.

ceil Rounds up towards + .

floor Rounds down towards - .

prcsn Sets computational precision for matrix operations.

round Rounds to the nearest integer.

trunc Truncates toward 0.

AmericanBinomCall American binomial method Call.

AmericanBinomCall_Greeks American binomial method call Delta,
Gamma, Theta, Vega, and Rho.

AmericanBinomCall_ImpVol Implied volatilities for American binomial
method calls.

AmericanBinomPut American binomial method Put.

∞

∞

����

Commands by Category
AmericanBinomPut_Greeks American binomial method put Delta,
Gamma, Theta, Vega, and Rho.

AmericanBinomPut_ImpVol Implied volatilities for American binomial
method puts.

AmericanBSCall American Black and Scholes Call.

AmericanBSCall_Greeks American Black and Scholes call Delta,
Gamma, Omega, Theta, and Vega.

AmericanBSCall_ImpVol Implied volatilities for American Black
and Scholes calls.

AmericanBSPut American Black and Scholes Put.

AmericanBSPut_Greeks American Black and Scholes put Delta,
Gamma, Omega, Theta, and Vega.

AmericanBSPut_ImpVol Implied volatilities for American Black
and Scholes puts.

annualTradingDays Compute number of trading days in a
given year.

elapsedTradingDays Compute number of trading days between
two dates inclusively.

EuropeanBinomCall European binomial method call.

EuropeanBinomCall_Greeks European binomial method call Delta,
Gamma, Theta, Vega and Rho.

EuropeanBinomCall_ImpVol Implied volatilities for European binomial
method calls.

EuropeanBinomPut European binomial method Put.

EuropeanBinomPut_Greeks European binomial method put Delta,
Gamma, Theta, Vega, and Rho.

EuropeanBinomPut_ImpVol Implied volatilities for European binomial
method puts.

EuropeanBSCall European Black and Scholes Call.

EuropeanBSCall_Greeks European Black and Scholes call Delta,
Gamma, Omega, Theta, and Vega.

EuropeanBSCall_ImpVol Implied volatilities for European Black
and Scholes calls.

EuropeanBSPut European Black and Scholes Put.

EuropeanBSPut_Greeks European Black and Scholes put Delta,
Gamma, Omega, Theta, and Vega.
����

GAUSS Language Reference
���)���	$���	��

����	�����������������	���

Use zeros or ones to create a constant vector or matrix.

medit is a full-screen editor that can be used to create matrices to be stored in
memory, or to edit matrices that already exist.

Matrices can also be loaded from an ASCII file, from a GAUSS matrix file, or from a
GAUSS data set. (See “Procedures and Keywords” in the User Guide for more
information.)

 ��	����������	������	���

EuropeanBSPut_ImpVol Implied volatilities for European Black
and Scholes puts.

getNextTradingDay Returns the next trading day.

getNextWeekDay Returns the next day that is not on a
weekend.

getPreviousTradingDay Returns the previous trading day.

getPreviousWeekDay Returns the previous day that is not on a
weekend.

editm Simple matrix editor.

eye Creates identity matrix.

let Creates matrix from list of constants.

matalloc Allocates a matrix with unspecified contents.

matinit Allocates a matrix with unspecified contents.

medit Full-screen spreadsheet-like matrix editor.

ones Creates a matrix of ones.

zeros Creates a matrix of zeros.

loadd Loads matrix from data set.

loadm Loads matrix from ASCII or matrix file.

save Saves matrix to matrix file.

saved Saves matrix to data set.
����

Commands by Category
�	'�*�%�+	��*����%���

These functions are used to find the minimum, maximum and frequency counts of
elements in matrices.

Use rows and cols to find the number of rows or columns in a matrix. Use rowsf
and colsf to find the numbers of rows or columns in an open GAUSS data set.

�$�������)������	���

cols Returns number of columns in a matrix.

colsf Returns number of columns in an open data set.

counts Returns number of elements of a vector falling in specified
ranges.

countwts Returns weighted count of elements of a vector falling in
specified ranges.

cumprodc Computes cumulative products of each column of a matrix.

cumsumc Computes cumulative sums of each column of a matrix.

indexcat Returns indices of elements falling within a specified range.

maxc Returns largest element in each column of a matrix.

maxindc Returns row number of largest element in each column of a
matrix.

minc Returns smallest element in each column of a matrix.

minindc Returns row number of smallest element in each column of a
matrix.

prodc Computes the product of each column of a matrix.

rankindx Returns rank index of Nx1 vector. (Rank order of elements in
vector.)

rows Returns number of rows in a matrix.

rowsf Returns number of rows in an open data set.

sumc Computes the sum of each column of a matrix.

denseSubmat Returns dense submatrix of sparse matrix.

isSparse Tests whether a matrix is a sparse matrix.

sparseCols Returns number of columns in sparse matrix.

sparseEye Creates sparse identity matrix.

sparseFD Converts dense matrix to sparse matrix.

sparseFP Converts packed matrix to sparse matrix.
����

GAUSS Language Reference
�	��������������)���	$���	��

sparseHConcat Horizontally concatenates sparse matrices.

sparseNZE Returns the number of nonzero elements in sparse matrix.

sparseOnes Generates sparse matrix of ones and zeros.

sparseRows Returns number of rows in sparse matrix.

sparseSet Resets sparse library globals.

sparseSolve Solves Ax = B for x where A is a sparse matrix.

sparseSubmat Returns sparse submatrix of sparse matrix.

sparseTD Multiplies sparse matrix by dense matrix.

sparseTrTD Multiplies sparse matrix transposed by dense matrix.

sparseVConcat Vertically concatenates sparse matrices.

complex Creates a complex matrix from two real matrices.

delif Deletes rows from a matrix using a logical expression.

diag Extracts the diagonal of a matrix.

diagrv Puts a column vector into the diagonal of a matrix.

exctsmpl Creates a random subsample of data set, with replacement.

imag Returns the imaginary part of a complex matrix.

intrsect Returns the intersection of two vectors.

lowmat Returns the main diagonal and lower triangle.

lowmat1 Returns a main diagonal of 1’s and the lower triangle.

real Returns the real part of a complex matrix.

reshape Reshapes a matrix to new dimensions.

rev Reverses the order of rows of a matrix.

rotater Rotates the rows of a matrix, wrapping elements as necessary.

selif Selects rows from a matrix using a logical expression.

setdif Returns elements of one vector that are not in another.

shiftr Shifts rows of a matrix, filling in holes with a specified value.

submat Extracts a submatrix from a matrix.

trimr Trims rows from top or bottom of a matrix.

union Returns the union of two vectors.

upmat Returns the main diagonal and upper triangle.

upmat1 Returns a main diagonal of 1’s and the upper triangle.
����

Commands by Category
vech and xpnd are complementary functions. vech provides an efficient way to
store a symmetric matrix; xpnd expands the stored vector back to its original
symmetric matrix.

delif and selif are complementary functions. delif deletes rows of a matrix
based on a logical comparison; selif selects rows based on a logical comparison.

lowmat, lowmat1, upmat, and upmat1 extract triangular portions of a matrix.

To delete rows that contain missing values from a matrix in memory, see packr.

��,���	��

������

These functions all operate on GAUSS data sets (.dat files). (See “File I/O” in the
User’s Guide for more information.)

vec Stacks columns of a matrix to form a single column.

vech Reshapes the lower triangular portion of a symmetric matrix
into a column vector.

vecr Stacks rows of a matrix to form a single column.

xpnd Expands a column vector into a symmetric matrix.

close Closes an open data set (.dat file).

closeall Closes all open data sets.

create Creates and opens a data set.

eof Tests for end of file.

iscplxf Returns whether a data set is real or complex.

loadd Loads a small data set.

open Opens an existing data set.

readr Reads rows from open data set.

saved Creates small data sets.

seekr Moves pointer to specified location in open data set.

typef Returns the element size (2, 4, or 8 bytes) of data in open data
set.

writer Writes matrix to an open data set.
����

GAUSS Language Reference
To create a GAUSS data set from a matrix in memory, use saved. To create a data set
from an existing one, use create. To create a data set from a large ASCII file, use
the utility atog. (See “Utilities” in the User’s Guide.)

Data sets can be opened, read from, and written to using open, readr, seekr and
writer. Test for the end of a file using eof, and close the data set using close or
closeall.

The data in data sets may be specified as character or numeric. (See “File I/O” in the
User’s Guide.) See also create and vartypef.

typef returns the element size of the data in an open data set.

��������	����&���

Use getnamef to retrieve the variable names associated with the columns of a
GAUSS data set, and vartypef to retrieve the variable types. Use makevars and
setvars to create global vectors from those names. Use indices and indices2
to match names with column numbers in a data set.

getname and vartype are supported for backwards compatibility.

�����	��

getname Returns column vector of variable names in a data set.

getnamef Returns string array of variable names in a data set.

indcv Returns column numbers of variables within a data set.

indices Retrieves column numbers and names from a data set.

indices2 Similar to indices, but matches columns with names for
dependent and independent variables.

makevars Decomposes matrix to create column vectors.

mergevar Concatenates column vectors to create larger matrix.

setvars Creates globals using the names in a data set.

vartype Returns column vector of variable types (numeric/character) in
a data set.

vartypef Returns column vector of variable types (numeric/character) in
a data set.

code Codes the data in a vector by applying a logical set of rules to
assign each data value to a category.

dummy Creates a dummy matrix, expanding values in vector to rows
with ones in columns corresponding to true categories and
zeros elsewhere.
����

Commands by Category
code, recode, and subscat allow the user to code data variables and operate on
vectors in memory. substute operates on matrices, and dummy, dummybr, and
dummydn create matrices.

missex, missrv, and miss should be used to recode missing values.

����	����������	��

dummybr Similar to dummy.

dummydn Similar to dummy.

ismiss Returns 1 if matrix has any missing values, 0 otherwise.

isinfnanmiss Returns true if the argument contains an infinity, NaN, or
missing value.

miss Changes specified values to missing value code.

missex Changes elements to missing value using logical expression.

missrv Changes missing value codes to specified values.

msym Sets symbol to be interpreted as missing value.

packr Deletes rows with missing values.

recode Similar to code, but leaves the original data in place if no
condition is met.

scalinfnanmiss Returns true if the argument is a scalar infinity, NaN, or
missing value.

scalmiss Tests whether a scalar is the missing value code.

subscat Simpler version of recode, but uses ascending bins instead
of logical conditions.

substute Similar to recode, but operates on matrices.

intrleav Produces one large sorted data file from two smaller sorted files
having the same keys.

mergeby Produces one large sorted data file from two smaller sorted files
having a single key column in common.

sortc Quick-sorts rows of matrix based on numeric key.

sortcc Quick-sorts rows of matrix based on character key.

sortd Sorts data set on a key column.

sorthc Heap-sorts rows of matrix based on numeric key.

sorthcc Heap-sortsrows of matrix based on character key.

sortind Returns a sorted index of a numeric vector.

sortindc Returns a sorted index of a character vector.
���	

GAUSS Language Reference
sortc, sorthc, and sortind operate on numeric data only. sortcc, sorthcc, and
sortindc operate on character data only.

Sortd, sortmc, unique, and uniqindx operate on both numeric and character
data.

Use sortd to sort the rows of a data set on the basis of a key column.

Both intrleav and mergeby operate on data sets.

���$	�����������

These commands are compiler directives. That is, they do not generate GAUSS
program instructions; rather, they are instructions that tell GAUSS how to process a
program during compilation. They determine what the final compiled form of a

sortmc Sorts rows of matrix on the basis of multiple columns.

uniqindx Returns a sorted unique index of a vector.

unique Removes duplicate elements of a vector.

#define Defines a case-insensitive text-replacement or flag variable.

#definecs Defines a case-sensitive text-replacement or flag variable.

#else Alternates clause for #if-#else-#endif code block.

#endif End of #if-#else-#endif code block.

#ifdef Compiles code block if a variable has been #define’d.

#ifdos Compiles code block if running DOS.

#iflight Compiles code block if running GAUSS Light.

#ifndef Compiles code block if a variable has not been #define’d.

#ifos2win Compiles code block if running OS/2 or Windows.

#ifunix Compiles code block if running UNIX.

#include Includes code from another file in program.

#linesoff Compiles program without line number and file name records.

#lineson Compiles program with line number and file name records.

#srcfile Inserts source file name record at this point (currently used
when doing data loop translation).

#srcline Inserts source file line number record at this point (currently
used when doing data loop translation).

#undef Undefines a text-replacement or flag variable.
���

Commands by Category
program will be. They are not executable statements and have no effect at run-time.
(See “Language Fundamentals” in the User’s Guide for more information.)

��������������

")����	����������

Both stop and end will terminate the execution of a program; end will close all
open files, and stop will leave those files open. Neither stop nor end is required in
a GAUSS program.

-����	��

if iter > itlim;

goto errout(“Iteration limit exceeded”);

elseif iter == 1;

j = setup(x,y);

else;

j = iterate(x,y);

endif;

.

.

.

end Terminates a program and close all files.

pause Pauses for the specified time.

run Runs a program in a text file.

sleep Sleeps for the specified time.

stop Stops a program and leave files open.

system Quits and returns to the OS.

goto Unconditional branching.

if..endif Conditional branching.

pop Retrieve goto arguments.
����

GAUSS Language Reference
errout:

pop errmsg;

print errmsg;

end;

 ��$	��

Loop if TRUE.

do until..endo Loop if FALSE.

for.. endfor Loop with integer counter.

iter = 0;

do while dif > tol;

{ x,x0 } = eval(x,x0);

dif = abs(x-x0);

iter = iter + 1;

if iter > maxits;

break;

endif;

if not prtiter;

continue;

endif;

format /rdn 1,0;

print “Iteration: ” iter;;

format /re 16,8;

print “, Error: ”maxc(dif);

endo;

break Jump out the bottom of a do or for loop.

continue Jump to the top of a do or for loop.

do while..endo
����

Commands by Category
for i (1, cols(x), 1);

for j (1, rows(x), 1);

x[i,j] = x[i,j] + 1;

endfor;

endfor;

�������	���

Arguments can be passed to subroutines in the branch to the subroutine label and then
popped, in first-in-last-out order, immediately following the subroutine label
definition. See Chapter 3, “Command Reference”, for details.

Arguments can then be returned in an analogous fashion through the return
statement.

����������

Here is an example of a GAUSS procedure:

proc (3) = crosprod(x,y);

local r1, r2, r3;

r1 = x[2,.].*y[3,.]-x[3,.].*y[2,.];

r2 = x[3,.].*y[1,.]-x[1,.].*y[3,.];

r3 = x[1,.].*y[2,.]-x[2,.].*y[1,.];

retp(r1,r2,r3);

endp;

gosub Branch to subroutine.

pop Retrieve gosub arguments.

return Return from subroutine.

endp Terminates a procedure definition.

local Declares variables local to a procedure.

proc Begins definition of multi-line procedure.

retp Returns from a procedure.
����

GAUSS Language Reference
The “(3) = ” indicates that the procedure returns three arguments. All local
variables, except those listed in the argument list, must appear in the local
statement. Procedures may reference global variables. There may be more than one
retp per procedure definition; none is required if the procedure is defined to return 0
arguments. The endp is always necessary and must appear at the end of the procedure
definition. Procedure definitions cannot be nested. The syntax for using this example
function is

{ a1,a2,a3 } = crosprod(u,v);

See “Procedures and Keywords” and “Libraries” in the User’s Guide for details.

 	���	��

call allows functions to be called when return values are not needed. This is
especially useful if a function produces printed output (dstat, ols for example) as
well as return values.

���$	�	��

GAUSS procedures and programs may be compiled to disk files. By then using this
compiled code, the time necessary to compile programs from scratch is eliminated.
Use compile to compile a command file. All procedures, matrices and strings
referenced by that program will be compiled as well.

Stand-alone applications may be created by running compiled code under the Run-
Time Module. (Contact Aptech Systems for more information on this product.)

To save the compiled images of procedures that do not make any global references,
use save. This will create an .fcg file. To load the compiled procedure into
memory, use loadp. (This is not recommended because of the restriction on global

call Calls function and discard return values.

declare Initializes variables at compile time.

external External symbol definitions.

lib Builds or updates a GAUSS library.

library Sets up list of active libraries.

compile Compiles and saves a program to a .gcg file.

loadp Loads compiled procedure.

save Saves the compiled image of a procedure to disk.

saveall Saves the contents of the current workspace to a file.

use Loads previously compiled code.
����

Commands by Category
references and the need to explicitly load the procedure in each program that
references it. It is included here to maintain backward compatibility with previous
versions.)

#�������	���

.��+�$�����������

When working with limited workspace, it is a good idea to clear large matrices that
are no longer needed by your program.

coreleft is most commonly used to determine how many rows of a data set may be
read into memory at one time.

cdir Returns current directory.

ChangeDir Changes directory in program.

chdir Changes directory interactively.

dfree Returns free space on disk.

envget Gets an environment string.

exec Executes an executable program file.

fileinfo Takes a file specification, returns names and information of
files that match.

files Takes a file specification, returns names of files that match.

filesa Takes a file specification, returns names of files that match.

shell Shells to OS.

clear Sets matrices equal to 0.

clearg Sets global symbols to 0.

delete Deletes specified global symbols.

hasimag Examines matrix for nonzero imaginary part.

iscplx Returns whether a matrix is real or complex.

maxvec Returns maximum allowed vector size.

new Clears current workspace.

show Displays global symbol table.

type Returns types of argument (matrix or string).

typecv Returns types of symbol (argument contains the names of the
symbols to be checked).
����

GAUSS Language Reference
"�����,���	������
�����	��

To trace the execution of a program, use trace.

User-defined error codes may be generated using error.

���	���,���	��

#linesoff Omits line number and file name records from program.

#lineson Includes line number and file name records in program.

debug Executes a program under the source level debugger.

disable Disabls invalid operation interrupt of coprocessor.

enable Enables invalid operation interrupt of coprocessor.

error Creates user-defined error code.

errorlog Sendserror message to screen and log file.

ndpchk Examines status word of coprocessor.

ndpclex Clears coprocessor exception flags.

ndpcntrl Sets and gets coprocessor control word.

scalerr Tests for a scalar error code.

trace Traces program execution for debugging.

trap Controls trapping of program errors.

trapchk Examines the trap flag.

chrs Converts ASCII values to a string.

ftocv Converts an NxK matrix to a character matrix.

ftos Converts a floating point scalar to string.

ftostrC Converts a matrix to a string array using a C language format
specification.

getf Loads ASCII or binary file into string.

loads Loads a string file (.fst file).

lower Converts a string to lowercase.

putf Writes a string to disk file.

stof Converts a string to floating point numbers.

strindx Finds starting location of one string in another string.

strlen Returns length of a string.
����

Commands by Category
strlen, strindx, strrindx, and strsect can be used together to parse
strings.

Use ftos to print to a string.

To create a list of generic variable names (X1, X2, X3, X4... for example), use ftocv.

�	������
��������	���

strrindx Finds starting location of one string in another string, searching
from the end to the start of the string.

strsect Extracts a substring of a string.

strsplit Splits an Nx1 string vector into an NxK string array of the
individual tokens.

strsplitPad Splits a string vector into a string array of the individual tokens.
Pads on the right with null strings.

strtof Converts a string array to a numeric matrix.

strtofcplx Converts a string array to a complex numeric matrix.

upper Changes a string to uppercase.

vals Converts a string to ASCII values.

varget Accesses the global variable named by a string.

vargetl Accesses the local variable named by a string.

varput Assigns a global variable named by a string.

varputl Assigns a local variable named by a string.

date Returns current system date.

datestr Formats date as “mm/dd/yy”.

datestring Formats date as “mm/dd/yyyy”.

datestrymd Formats date as “yyyymmdd”.

dayinyr Returns day number of a date.

dayofweek Returns day of week.

dtdate Creates a matrix in DT scalar format.

dtday Creates a matrix in DT scalar format containing only the year,
month and day. Time of day information is zeroed out.

dttime Creates a matrix in DT scalar format containing only the hour,
minute and second. The date information is zeroed out.

dttodtv Converts DT scalar format to DTV vector format.
����

GAUSS Language Reference
Use hsec to time segments of code. For example,

et = hsec;

x = y*y;

et = hsec - et;

will time the GAUSS multiplication operator.

���������/#

dttostr Converts a matrix containing dates in DT scalar format to a
string array.

dttoutc Converts DT scalar format to UTC scalar format.

dtvnormal Normalizes a date and time (DTV) vector.

dtvtodt Converts DT vector format to DT scalar format.

etdays Difference between two times in days.

ethsec Difference between two times in 100ths of a second.

etstr Converts elapsed time to string.

hsec Returns elapsed time since midnight in 100ths of a second.

strtodt Converts a string array of dates to a matrix in DT scalar format.

time Returns current system time.

timedt Returns system date and time in DT scalar format.

timestr Formats time as “hh:mm:ss”.

todaydt Returns system date in DT scalar format. The time returned is
always midnight (00:00:00), the beginning of the returned day.

utctodt Converts UTC scalar format to DT scalar format.

utctodtv Converts UTC scalar format to DTV vector format.

con Requests console input, create matrix.

cons Requests console input, create string.

key Gets the next key from the keyboard buffer. If buffer is empty,
returns a 0.

keyav Check if keystroke is available.

keyw Gets the next key from the keyboard buffer. If buffer is empty,
waits for a key.

wait Waits for a keystroke.
����

Commands by Category
key can be used to trap most keystrokes. For example, the following loop will trap the
ALT-H key combination:

kk = 0;

do until kk == 1035;

kk = key;

endo;

Other key combinations, function keys, and cursor key movement can also be trapped.
See key.

cons and con can be used to request information from the console. keyw, wait,
and waitc will wait for a keystroke.

#��$��������	���

��)��#��$��

waitc Flushes buffer, then waits for a keystroke.

cls Clears the window.

color Sets pixel, text, background colors.

comlog Controls interactive command logging.

csrcol Gets column position of cursor on window.

csrlin Gets row position of cursor on window.

ed Accesses an alternate editor.

edit Edits a file with the GAUSS editor.

format Defines format of matrix printing.

locate Positions the cursor on the window.

lpos Returns print head position in printer buffer.

lprint Prints expression to the printer.

lprint [[on|off]] Switches auto printer mode on and off.

lpwidth Specifies printer width.

lshow Prints global symbol table on the printer.

output Redirects print statements to auxiliary output.

outwidth Sets line width of auxiliary output.
���	

GAUSS Language Reference
The results of all printing can be sent to an output file using output. This file can
then be printed or ported as an ASCII file to other software.

printdos can be used to print in reverse video, or using different colors. It requires
that ansi.sys be installed.

To produce boxes, etc. using characters from the extended ASCII set, use chrs.

.	���0���$�	��

graph allows the user to plot individual pixels.

��$�	��
This section summarizes all procedures and global variables available within the
Publication Quality Graphics (PQG) System. A general usage description will be
found in “Publications Quality Graphics” in the User’s Guide.

��$����$��

plot Plots elements of two matrices in text mode.

plotsym Controls data symbol used by plot.

print Prints to window.

print [[on|off]] Turns auto window print on and off.

printdos Prints a string for special handling by the OS.

printfm Prints matrices using a different format for each
column.

screen [[on|off]] Directs/suppresses print statements to window.

screen out Dumps snapshot of window to auxiliary output.

scroll Scrolls a section of the window.

tab Positions the cursor on the current line.

color Sets color.

graph Sets pixels.

line Draws lines.

setvmode Sets video mode.

bar Generates bar graph.

box Graphs data using the box graph percentile method.

contour Graphs contour data.
���

Commands by Category
!)�����������������	��

��)�*� ����*��	����*���������

draw Supplies additional graphic elements to graphs.

hist Computes and graphs frequency histogram.

histf Graphs a histogram given a vector of frequency counts.

histp Graphs a percent frequency histogram of a vector.

loglog Graphs X,Y using logarithmic X and Y axes.

logx Graphs X,Y using logarithmic X axis.

logy Graphs X,Y using logarithmic Y axis.

surface Graphs a 3-D surface.

xy Graphs X,Y using Cartesian coordinate system.

xyz Graphs X, Y, Z using 3-D Cartesian coordinate system.

 _pxpmax Controls precision of numbers on X axis.

_paxes Turns axes on or off.

_pcross Controls where axes intersect.

_pgrid Controls major and minor grid lines.

_pticout Controls direction of tick marks on axes.

_pxsci Controls use of scientific notation on X axis.

_pypmax Controls precision of numbers on Y axis.

_pysci Controls use of scientific notation on Y axis.

_pzpmax Controls precision of numbers on Z axis.

_pzsci Controls use of scientific notation on Z axis.

scale Scales X,Y axes for 2-D plots.

scale3d Scales X,Y, and Z axes for 3-D plots.

xtics Scales X axis and control tick marks.

ytics Scales Y axis and control tick marks.

ztics Scales Z axis and control tick marks.

 _pnumht Controls size of axes numeric labels.

 _ptitlht Controls main title size.

_paxht Controls size of axes labels.

_pdate Dates string contents and control.
����

GAUSS Language Reference
�	�������� 	��������������

")��� 	��������������

_plegctl Sets location and size of plot legend.

_plegstr Specifies legend text entries.

_pmsgctl Controls message position.

_pmsgstr Specifies message text.

_pnum Axes numeric label control and orientation.

asclabel Defines character labels for tick marks.

fonts Loads fonts for labels, titles, messages and legend.

title Specifies main title for graph.

xlabel X axis label.

ylabel Y axis label.

zlabel Z axis label.

_pboxctl Controls box plotter.

_pboxlim Outputs percentile matrix from box plotter.

_pcolor Controls line color for main curves.

_plctrl Controls main curve and frequency of data symbols.

_pltype Controls line style for main curves.

_plwidth Controls line thickness for main curves.

_pstype Controls symbol type for main curves.

_psymsiz Controls symbol size for main curves.

_pzclr Z level color control for contour and surface.

_parrow Creates arrows.

_parrow3 Creates arrows for 3-D graphs.

_perrbar Plots error bars.

_pline Plots extra lines and circles.

_pline3d Plots extra lines for 3-D graphs.

_psym Plots extra symbols.

_psym3d Plots extra symbols for 3-D graphs.
����

Commands by Category
��$�	������*����*����������������

axmargin is preferred to the older _plotsiz and _plotshf globals for
establishing an absolute plot size and position.

#��$���#$�	���

_pageshf Shifts the graph for printer output.

_pagesiz Controls size of graph for printer output.

_plotshf Controls plot area position.

_plotsiz Controls plot area size.

_protate Rotates the graph 90 degrees.

axmargin Controls axes margins and plot size.

begwind Graphic panel initialization procedure.

endwind End graphic panel manipulation, display graphs.

getwind Gets current graphic panel number.

loadwind Loads a graphic panel configuration from a file.

makewind Creates graphic panel with specified size and position.

margin Controls graph margins.

nextwind Sets to next available graphic panel number.

savewind Saves graphic panel configuration to a file.

setwind Sets to specified graphic panel number.

window Creates tiled graphic panels of equal size.

_pscreen Controls graphics output to window.

_psilent Controls final beep.

_ptek Controls creation and name of graphics.tkf file.

_pzoom Specifies zoom parameters.

graphprt Generates print, conversion file.

pqgwin Sets the graphics viewer mode.

setvwrmode Sets the graphics viewer mode.

tkf2eps Converts .tkf file to Encapsulated PostScript file.

tkf2ps Converts .tkf file to PostScript file.
����

GAUSS Language Reference
�	����������

_pbox Draws a border around graphic panel/window.

_pcrop Controls cropping of graphics data outside axes area.

_pframe Draws a frame around 2-D, 3-D plots.

_pmcolor Controls colors to be used for axes, title, x and y labels,
date, box, and background.

graphset Resets all PQG globals to default values.

rerun Displays most recently created graph.

view Sets 3-D observer position in workbox units.

viewxyz Sets 3-D observer position in plot coordinates.

volume Sets length, width, and height ratios of 3-D workbox.
����

������
%��������
����������$������
The following list describes each of the components used in the GAUSS Language
Command Reference.

���$��� Describes the function of the command.

 	���� Describes where the Run-Time Library functions
can be found in the GAUSS program structure.

����� Illustrates use of the command syntax.

��$�� Describes the input parameters of the command.

��������$�� Describes the global variables that are referenced by
the command.

#��$�� Describes the parameters that will be returned as a
result of the input.
���

GAUSS Language Reference

Command Reference

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�����
#��$��

Describes the global variables that are updated by
the command.

�����	�	�� Describes how GAUSS behaves under various
operating systems.

%���+� Explanatory material pertinent to the command.

")�$�� Sample code strings using the command.

������ The source file in which Run-Time Library function
is defined.

������ Global variables that are accessed by the command.

������� Other commands that have similar characteristics.

�����	��
&����

Technical discussion and reference source citations.

%��������� Reference material citations.
���

Command Reference

abs

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
abs

���$��� Returns the absolute value or complex modulus of x.

����� y = abs(x);

��$��

#��$��

")�$�� x = rndn(2,2);

y = abs(x);

In this example, a 2x2 matrix of Normal random numbers is generated
and the absolute value of the matrix is computed.

x NxK matrix.

y NxK matrix containing absolute values of x.

x 0.675243 1.053485

0.190746– 1.229539–
=

y 0.675243 1.053485

0.190746 1.229539
=

���

GAUSS Language Reference

acf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
acf

���$��� Computes sample autocorrelations.

����� rk = acf(y,k,d);

��$��

#��$��

")�$��

rk = acf(x,4,2);

print rk;

������ tsutil.src

y Nx1 vector, data.
k scalar, maximum number of autocorrelations to compute.
d scalar, order of differencing.

rk Kx1 vector, sample autocorrelations.

x = { 20.80,

18.58,

23.39,

20.47,

21.78,

19.56,

19.58,

18.91,

20.08,

21.88 };

-0.74911771

 0.48360914

-0.34229330

 0.17461180
���

Command Reference

AmericanBinomCall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBinomCall

���$��� American binomial method Call.

����� c = AmericanBinomCall(S0,K,r,div,tau,sigma,N);

��$��

#��$��

")�$�� S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

c = AmericanBinomCall(S0,K,r,0,tau,sigma,60);

print c;

17.190224

14.905054

12.673322

S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility
N number of time segments

c Mx1 vector, call premiums
���

GAUSS Language Reference

AmericanBinomCall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������ finprocs.src

�����	��
&����

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a
simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.
���

Command Reference

AmericanBinomCall_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBinomCall_Greeks

���$��� American binomial method call Delta, Gamma, Theta, Vega, and Rho.

����� { d,g,t,v,rh } =
AmericanBinomCall_Greeks(S0,K,r,div,tau,sigma,N);

��$��

#��$��

")�$�� S0 = 305;

K = 300;

r = .08;

sigma = .25;

tau = .33;

div = 0;

{ d,g,t,v,rh } = AmericanBinomCall_Greeks

(S0,K,r,div,tau,sigma,30);

print d;

print g;

print t;

S0 scalar, current price
K Mx1 vector, strike price
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility
N number of time segments

d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
v Mx1 vector, vega
rh Mx1 vector, rho
��	

GAUSS Language Reference

AmericanBinomCall_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print v;

print rh;

0.706312

0.000764

-17.400851

68.703849

76.691829

������ finprocs.src

������

�����	��
&����

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a
simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.
��

Command Reference

AmericanBinomCall_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBinomCall_ImpVol

���$��� Implied volatilities for American binomial method calls.

����� sigma =
AmericanBinomCall_ImpVol(c,S0,K,r,div,tau,N);

��$��

#��$��

")�$�� c = { 13.70, 11.90, 9.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

div = 0;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

sigma = AmericanBinomCall_ImpVol

(c,S0,K,r,div,tau,30);

print sigma;

0.1981

c Mx1 vector, call premiums
S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
N number of time segments

sigma Mx1 vector, volatility
���

GAUSS Language Reference

AmericanBinomCall_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
0.1715

0.1301

������ finprocs.src

�����	��
&����

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a
simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.
����

Command Reference

AmericanBinomPut

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBinomPut

���$��� American binomial method Put.

����� c = AmericanBinomPut(S0,K,r,div,tau,sigma,N);

��$��

#��$��

")�$��1 S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

c = AmericanBinomPut(S0,K,r,0,tau,sigma,60);

print c;

16.862683

19.606573

22.433590

S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility
N number of time segments

c Mx1 vector, put premiums
����

GAUSS Language Reference

AmericanBinomPut

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������ finprocs.src

�����	��
&����

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a
simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.
����

Command Reference

AmericanBinomPut_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBinomPut_Greeks

���$��� American binomial method put Delta, Gamma, Theta, Vega, and Rho.

����� { d,g,t,v,rh } =
AmericanBinomPut_Greeks(S0,K,r,div,tau,sigma,N);

��$��

#��$��

")�$�� S0 = 305;

K = 300;

r = .08;

div = 0;

sigma = .25;

tau = .33;

{ d,g,t,v,rh } = AmericanBinomPut_Greeks

(S0,K,r,div,tau,sigma,60);

print d;

print g;

print t;

S0 scalar, current price
K Mx1 vector, strike price
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility
N number of time segments

d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
v Mx1 vector, vega
rh Mx1 vector, rho
����

GAUSS Language Reference

AmericanBinomPut_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print v;

print rh;

-0.38324908

0.00076381912

8.1336630

68.337294

-27.585043

������ finprocs.src

������

�����	��
&����

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a
simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.
����

Command Reference

AmericanBinomPut_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBinomPut_ImpVol

���$��� Implied volatilities for American binomial method puts.

����� sigma = AmericanBinomPut_ImpVol(c,S0,K,r,div,tau,N);

��$��

#��$��

")�$�� p = { 14.60, 17.10, 20.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

div = 0;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

sigma = AmericanBinomPut_ImpVol

(p,S0,K,r,div,tau,30);

print sigma;

0.1254

c Mx1 vector, put premiums
S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
N number of time segments

sigma Mx1 vector, volatility
����

GAUSS Language Reference

AmericanBinomPut_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
0.1668

0.2134

������ finprocs.src

�����	��
&����

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a
simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.
����

Command Reference

AmericanBSCall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBSCall

���$��� American Black and Scholes Call.

����� c = AmericanBSCall(S0,K,r,div,tau,sigma);

��$��

#��$��1

")�$�� S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

c = AmericanBSCall(S0,K,r,0,tau,sigma);

print c;

16.093640

13.846830

11.829059

������ finprocs.src

S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility

c Mx1 vector, call premiums
���	

GAUSS Language Reference

AmericanBSCall_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBSCall_Greeks

���$��� American Black and Scholes call Delta, Gamma, Omega, Theta, and
Vega.

����� { d,g,t,v,rh } =
AmericanBSCall_Greeks(S0,K,r,div,tau,sigma);

��$��

#��$��

")�$�� S0 = 305;

K = 300;

r = .08;

sigma = .25;

tau = .33;

{ d,g,t,v,rh } = AmericanBSCall_Greeks

(S0,K,r,0,tau,sigma);

print d;

print g;

print t;

print v;

S0 scalar, current price
K Mx1 vector, strike price
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility

d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
v Mx1 vector, vega
rh Mx1 vector, rho
���

Command Reference

AmericanBSCall_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print rh;

0.40034039

0.016804021

-55.731079

115.36906

46.374528

������ finprocs.src

������ _fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.
����

GAUSS Language Reference

AmericanBSCall_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBSCall_ImpVol

���$��� Implied volatilities for American Black and Scholes calls.

����� sigma = AmericanBSCall_ImpVol(c,S0,K,r,div,tau);

��$��

#��$��

")�$�� c = { 13.70, 11.90, 9.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

sigma = AmericanBSCall_ImpVol

(c,S0,K,r,0,tau);

print sigma;

0.10350708

0.089202881

0.066876221

c Mx1 vector, call premiums
S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading

sigma Mx1 vector, volatility
����

Command Reference

AmericanBSCall_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������ finprocs.src
����

GAUSS Language Reference

AmericanBSPut

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBSPut

���$��� American Black and Scholes Put.

����� c = AmericanBSPut(S0,K,r,div,tau,sigma);

��$��

#��$��

")�$�� S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

c = AmericanBSPut(S0,K,r,0,tau,sigma);

print c;

16.748987

19.41627

22.318856

������ finprocs.src

S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility

c Mx1 vector, put premiums
����

Command Reference

AmericanBSPut_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBSPut_Greeks

���$��� American Black and Scholes put Delta, Gamma, Omega, Theta, and
Vega.

����� { d,g,t,v,rh } =
AmericanBSPut_Greeks(S0,K,r,div,tau,sigma);

��$��

#��$��

")�$�� S0 = 305;

K = 300;

r = .08;

sigma = .25;

tau = .33;

{ d,g,t,v,rh } =

AmericanBSPut_Greeks(S0,K,r,0,tau,sigma);

print d;

print g;

print t;

print v;

S0 scalar, current price
K Mx1 vector, strike price
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility

d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
v Mx1 vector, vega
rh Mx1 vector, rho
����

GAUSS Language Reference

AmericanBSPut_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print rh;

-0.33296721

0.0091658294

-17.556118

77.614238

-40.575963

������ finprocs.src

������ _fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.
����

Command Reference

AmericanBSPut_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
AmericanBSPut_ImpVol

���$��� Implied volatilities for American Black and Scholes puts.

����� sigma = AmericanBSPut_ImpVol(c,S0,K,r,div,tau);

��$��

#��$��

")�$�� p = { 14.60, 17.10, 20.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

t0 = dtday(2001, 1, 30);

t1 = dtday(2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

sigma = AmericanBSPut_ImpVol(p,S0,K,r,0,tau);

print sigma;

0.12829346

0.16885986

0.21544312

������ finprocs.src

c Mx1 vector, put premiums
S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading

sigma Mx1 vector, volatility
����

GAUSS Language Reference

annualTradingDays

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
annualTradingDays

���$��� Compute number of trading days in a given year.

����� n = annualTradingDays(a);

��$��

#��$��

%���+� A trading day is a weekday that is not a holiday as defined by the New
York Stock Exchange from 1888 through 2004. Holidays are defined in
holidays.asc. You may edit that file to modify or add holidays.

������ finutils.src

a scalar, year.

n number of trading days in year
����

Command Reference

arccos

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
arccos

���$��� Computes the inverse cosine.

����� y = arccos(x);

��$��

#��$��

%���+� If x is complex or has any elements whose absolute value is greater than
1, complex results are returned.

")�$�� x = { -1, -0.5, 0, 0.5, 1 };

y = arccos(x);

������ trig.src

x NxK matrix.

y NxK matrix containing the angle in radians whose cosine is x.

x

1.000000–

0.500000–

0.000000

0.500000

1.000000

=

y

3.141593

2.094395

1.570796

1.047198

0.000000

=

���	

GAUSS Language Reference

arcsin

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
arcsin

���$��� Computes the inverse sine.

����� y = arcsin(x);

��$��

�#��$��

%���+� If x is complex or has any elements whose absolute value is greater than
1, complex results are returned.

")�$�� x = { -1, -0.5, 0, 0.5, 1 };

y = arcsin(x);

������ trig.src

x NxK matrix.

y NxK matrix, the angle in radians whose sine is x.

x

1.000000–

0.500000–

0.000000

0.500000

1.000000

=

y

1.570796–

0.523599–

0.000000

0.523599

1.570796

=

���

Command Reference

asclabel

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
asclabel

���$��� Sets up character labels for the X and Y axes.

 	���� pgraph

����� asclabel(xl,yl);

��$��

")�$�� This illustrates how to label the X axis with the months of the year:

let lab = JAN FEB MAR APR MAY JUN JUL AUG SEP

OCT NOV DEC;

asclabel(lab,0);

This will also work:

lab = “JAN FEB MAR APR MAY JUN JUL AUG SEP OCT

NOV DEC”;

asclabel(lab,0);

If the string format is used, then escape characters may be embedded in
the labels. For example, the following produces character labels that are
multiples of λ. The font Simgrma must be previously loaded in a fonts
command. (See Chapter 13 in Using GAUSS for Windows95.)

fonts(“simplex simgrma”);

lab = “\2010.25\202l \2010.5\202l

\2010.75\202l l”;

asclabel(lab,0);

 Here, the 202l produces the “λ” symbol from Simgrma.

������ pgraph.src

xl string or Nx1 character vector, labels for the tick marks on the X
axis. Set to 0 if no character labels for this axis are desired.

yl string or Mx1 character vector, labels for the tick marks on the Y
axis. Set to 0 if no character labels for this axis are desired.
����

GAUSS Language Reference

asclabel

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� xtics, ytics, scale, scale3d, fonts
����

Command Reference

atan

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
atan

���$��� Returns the arctangent of its argument.

����� y = atan(x);

��$��

#��$��

%���+� y will be a matrix the same size as x, containing the arctangents of the
corresponding elements of x.

For real x, the arctangent of x is the angle whose tangent is x. The result is

a value in radians in the range to . To convert radians to degrees,

multiply by .

For complex x, the arctangent is defined everywhere except i and -i. If x is
complex, y will be complex.

")�$�� x = { 2, 4, 6, 8 };

z = x/2;

y = atan(z);

������� atan2, sin, cos, pi, tan

x NxK matrix.

y NxK matrix containing the arctangent of x in radians.

π–
2

+π
2

180
π

y

0.785398

1.107149

1.249046

1.325818

=

����

GAUSS Language Reference

atan2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
atan2

���$��� Computes an angle from an x,y coordinate.

����� z = atan2(y,x);

��$��

#��$��

%���+� Given a point x,y in a Cartesian coordinate system, atan2 will give the
correct angle with respect to the positive X axis. The answer will be in
radians from -pi to +pi.

To convert radians to degrees, multiply by .

atan2 operates only on the real component of x, even if x is complex.

")�$�� x = 2;

y = { 2, 4, 6, 8 };

z = atan2(y,x);

������� atan, sin, cos, pi, tan, arcsin, arccos

y NxK matrix, the Y coordinate.
x LxM matrix, ExE conformable with y, the X coordinate.

z max(N,L) by max(K,M) matrix.

180
π

z

0.785398

1.107149

1.249046

1.325818

=

����

Command Reference

axmargin

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
axmargin

���$��� Set absolute margins for the plot axes which control placement and size of
plot.

 	���� pgraph

����� axmargin(l,r,t,b);

��$��

%���+� axmargin sets an absolute distance from the axes to the edge of the
graphic panel. Note that the user is responsible for allowing enough space
in the margin if axes labels, numbers, and title are used on the graph, since
axmargin does not size the plot automatically as in the case of
margin.

All input inch values for this procedure are based on a full size window of
9 x 6.855 inches. If this procedure is used within a graphic panel, the
values will be scaled to window inches automatically.

If both margin and axmargin are used for a graph, axmargin will
override any sizes specified by margin.

")�$�� The statement

axmargin(1,1,.5,.855);

will create a plot area of 7 inches horizontally by 5.5 inches vertically, and
positioned 1 inch right and .855 up from the lower left corner of the
graphic panel/page.

������ pgraph.src

l scalar, the left margin in inches.
r scalar, the right margin in inches.
t scalar, the top margin in inches.
b scalar, the bottom margin in inches.
����

GAUSS Language Reference

balance

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
balance

���$��� Balances a square matrix.

����� { b,z } = balance(x)

��$��

#��$��

%���+� balance returns a balanced matrix b and another matrix z with scale
factors in powers of two on its diagonal. b is balanced in the sense that the
absolute sums of the magnitudes of elements in corresponding rows and
columns are nearly equal.

balance is most often used to scale matrices to improve the numerical
stability of the calculation of their eigenvalues. It is also useful in the
solution of matrix equations.

In particular,

b = z-1xz

balance uses the BALANC function from EISPACK.

")�$��

{ b,z } = balance(x);

x KxK matrix.

b KxK matrix, balanced matrix.
z KxK matrix, diagonal scale matrix.

let x[3,3] = 100 200 300

40 50 60

7 8 9 ;

100.0 100.0 37.5

80.0 50.0 15.0

56.0 32.0 9.0

=

4.0 0.0 0.0

0.0 2.0 0.0

0.0 0.0 0.5

=

����

Command Reference

band

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
band

���$��� Extracts bands from a symmetric banded matrix.

����� a = band(y,n);

��$��

#��$��

%���+� y can actually be a rectangular PxQ matrix. K is then defined as min(P,Q).
It will be assumed that a is symmetric about the principal diagonal for
y[1:K,1:K].

The subdiagonals of y are stored right to left in a, with the principal
diagonal in the rightmost (N+1’th) column of a. The upper left corner of a
is unused; it is set to 0.

This compact form of a banded matrix is what bandchol expects.

")�$��

bx = band(x,1);

y KxK symmetric banded matrix.
n scalar, number of subdiagonals.

a Kx(N+1) matrix, 1 subdiagonal per column.

x = { 1 2 0 0,

2 8 1 0,

0 1 5 2,

0 0 2 3 };

bx

0.0000000 1.0000000

2.0000000 8.0000000

1.0000000 5.0000000

2.0000000 3.0000000

=

����

GAUSS Language Reference

bandchol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z

bandchol

���$��� Computes the Cholesky decomposition of a positive definite banded
matrix.

����� l = bandchol(a);

��$��

#��$��

%���+� Given a positive definite banded matrix A, there exists a matrix L, the
lower triangle of the Cholesky decomposition of A, such that A = L x L′. a
is the compact form of A. See band for a description of the format of a.

l is the compact form of L. This is the form of matrix that bandcholsol
expects.

")�$��

bx = band(x,1);

cx = bandchol(bx);

a KxN compact form matrix.

l KxN compact form matrix, lower triangle of the Cholesky
decomposition of a.

x = { 1 2 0 0,

2 8 1 0,

0 1 5 2,

0 0 2 3 };

bx

0.0000000 1.0000000

2.0000000 8.0000000

1.0000000 5.0000000

2.0000000 3.0000000

=

cx

0.0000000 1.0000000

2.0000000 2.0000000

0.50000000 2.1794495

0.91766294 1.4689774

=

����

Command Reference

bandcholsol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z

bandcholsol

���$��� Solves the system of equations Ax = b for x, given the lower triangle of
the Cholesky decomposition of a positive definite banded matrix A.

����� x = bandcholsol(b,l);

��$��

#��$��

%���+� Given a positive definite banded matrix A, there exists a matrix L, the
lower triangle of the Cholesky decomposition of A, such that A = L*L’. l
is the compact form of L; see band for a description of the format of l.

b can have more than one column. If so, Ax = b is solved for each column.
That is,

A*x[.,i] = b[.,i]

")�$�� x = { 1 2 0 0,

 2 8 1 0,

 0 1 5 2,

 0 0 2 3 };

bx = band(x,1);

b KxM matrix.
l KxN compact form matrix.

x KxM matrix.

bx

0.0000000 1.0000000

2.0000000 8.0000000

1.0000000 5.0000000

2.0000000 3.0000000

=

���	

GAUSS Language Reference

bandcholsol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cx = bandchol(bx);

xi = bandcholsol(eye(4),cx);

cx

0.0000000 1.0000000

2.0000000 2.0000000

0.50000000 2.1794495

0.91766294 1.4689774

=

xi

2.0731707 0.05365854– 0.14634146 0.09756098

0.53658537– 0.26829268 0.07317073– 0.04878049

0.14634146 0.07317073– 0.29268293 0.19512195–

0.09756098– 0.04878049 0.19512195– 0.46341463

=

���

Command Reference

bandltsol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
bandltsol

���$��� Solves the system of equations Ax = b for x, where A is a lower triangular
banded matrix.

����� x = bandltsol(b,A);

��$��

#��$��

%���+� A is a lower triangular banded matrix in compact form. See band for a
description of the format of A.

b can have more than one column. If so, Ax = b is solved for each column.
That is,

A*x[.,i] = b[.,i]

")�$��

cx = bandchol(bx);

b KxM matrix.
A KxN compact form matrix.

x KxM matrix.

bx

0.0000000 1.0000000

2.0000000 8.0000000

1.0000000 5.0000000

2.0000000 3.0000000

=

cx

0.0000000 1.0000000

2.0000000 2.0000000

0.50000000 2.1794495

0.91766294 1.4689774

=

����

GAUSS Language Reference

bandltsol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
xci = bandltsol(eye(4),cx);

xci

1.0000000 0.0000000 0.0000000 0.0000000

1.0000000– 0.50000000 0.0000000 0.0000000

0.22941573 0.11470787– 0.45883147 0.0000000

0.14331487– 0.07165744 0.28662975– 0.68074565

=

����

Command Reference

bandrv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z

bandrv

���$��� Creates a symmetric banded matrix, given its compact form.

����� y = bandrv(a);

��$��

#��$��

%���+� a is the compact form of a symmetric banded matrix, as generated by
band. a stores subdiagonals right to left, with the principal diagonal in
the rightmost (Nth) column. The upper left corner of a is unused.
bandchol expects a matrix of this form.

y is the fully expanded form of a, a KxK matrix with N-1 subdiagonals.

")�$��

x = bandrv(bx);

a KxN compact form matrix.

y KxK symmetrix banded matrix.

bx

0.0000000 1.0000000

2.0000000 8.0000000

1.0000000 5.0000000

2.0000000 3.0000000

=

x

1.0000000 2.0000000 0.0000000 0.0000000

2.0000000 8.0000000 1.0000000 0.0000000

0.0000000 1.0000000 5.0000000 2.0000000

0.0000000 0.0000000 2.0000000 3.0000000

=

����

GAUSS Language Reference

bandsolpd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
bandsolpd

���$��� Solves the system of equations Ax = b for x, where A is a positive definite
banded matrix.

����� x = bandsolpd(b,A);

��$��

�#��$��

�%���+� A is a positive definite banded matrix in compact form. See band for a
description of the format of A.

b can have more than one column. If so, Ax = b is solved for each column.
That is,

A*x[.,i] = b[.,i]

b KxM matrix.
A KxN compact form matrix.

x KxM matrix.
����

Command Reference

bar

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
bar

���$��� Bar graph.

 	���� pgraph

����� bar(val,ht);

��$��

��������$��

val Nx1 numeric vector, bar labels. If scalar 0, a sequence
from 1 to rows(ht) will be created.

ht NxK numeric vector, bar heights.
K overlapping or side-by-side sets of N bars will be
graphed.
For overlapping bars, the first column should contain the
set of bars with the greatest height and the last column
should contain the set of bars with the least height.
Otherwise, the bars that are drawn first may be obscured
by the bars drawn last. This is not a problem if the bars
are plotted side-by-side.

_pbarwid global scalar, width and positioning of bars in bar graphs
and histograms. The valid range is 0-1. If this is 0, the bars
will be a single pixel wide. If this is 1, the bars will touch
each other.
If this value is positive, the bars will overlap. If negative,
the bars will be plotted side-by-side. The default is 0.5.

_pbartyp Kx2 matrix.
The first column controls the bar shading:

0 no shading.

1 dots.

2 vertical cross-hatch.

3 diagonal lines with positive slope.

4 diagonal lines with negative slope.

5 diagonal cross-hatch.

6 solid.

The second column controls the bar color. See “Colors
Appendix” on page B-1.
����

GAUSS Language Reference

bar

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
%���+� Use scale or ytics to fix the scaling for the bar heights.

")�$�� In this example, three overlapping sets of bars will be created. The three
heights for the ith bar are stored in x[i,.].

library pgraph;

graphset;

t = seqa(0,1,10);

x = (t^2/2).*(1~0.7~0.3);

_plegctl = { 1 4 };

_plegstr = “Accnt #1\000Accnt #2\000Accnt #3”;

title(“Theoretical Savings Balance”);

xlabel(“Years”);

ylabel(“Dollars x 1000”);

_pbartyp = { 1 10 }; /* Set color of the */

 /* bars to 10 (magenta) */

_pnum = 2;

bar(t,x); /* Use t vector to label X axis */

������ pbar.src

������� asclabel, xy, logx, logy, loglog, scale, hist
����

Command Reference

base10

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
base10

���$��� Break number into a number of the form #.####... and a power of 10.

����� { M,P } = base10(x);

��$��

�#��$��

")�$�� { b, e } = base10(4500);

b = 4.5000000

e = 3.0000000

������ base10.src

x scalar, number to break down.

M scalar, in the range -10 < M < 10.
P scalar, integer power such that:

M * 10P = x
����

GAUSS Language Reference

begwind

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
begwind

���$��� Initialize global graphic panel variables.

 	���� pgraph

����� begwind;

%���+� This procedure must be called before any other graphic panel functions
are called.

������ pwindow.src

������� endwind, window, makewind, setwind, nextwind,
getwind
����

Command Reference

besselj

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
besselj

���$��� Computes a Bessel function of the first kind, Jn(x).

����� y = besselj(n,x);

��$��

�#��$��

")�$�� n = { 0, 1 };

x = { 0.1 1.2, 2.3 3.4 };

y = besselj(n,x);

������� bessely, mbesseli

n NxK matrix, the order of the Bessel function. Nonintegers will
be truncated to an integer.

x LxM matrix, ExE conformable with n.

y max(N,L) by max(K,M) matrix.

0.99750156 0.67113274

0.53987253 0.17922585
=

���	

GAUSS Language Reference

bessely

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
bessely

���$��� To compute a Bessel function of the second kind (Weber’s function),
Yn(x).

����� y = bessely(n,x);

��$��

�#��$��

�")�$�� n = { 0, 1 };

x = { 0.1 1.2, 2.3 3.4 };

y = bessely(n,x);

������� besselj, mbesseli

n NxK matrix, the order of the Bessel function. Nonintegers will
be truncated to an integer.

x LxM matrix, ExE conformable with n.

y max(N,L) by max(K,M) matrix.

y 1.5342387– 0.22808351

0.05227732 0.40101529
=

���

Command Reference

box

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
box

���$��� Graph data using the box graph percentile method.

 	���� pgraph

����� box(grp,y);

��$��

��������$��

grp 1xM vector. This contains the group numbers corresponding
to each column of y data. If scalar 0, a sequence from 1 to
cols(y) will be generated automatically for the X axis.

y NxM matrix. Each column represents the set of y values for
an individual percentiles box symbol.

_pboxctl 5x1 vector, controls box style, width, and color.
[1] box width between 0 and 1. If zero, the box plot is

drawn as two vertical lines representing the quartile
ranges with a filled circle representing the 50th
percentile.

[2] box color. If this is set to 0, the colors may be
individually controlled using the global variable
_pcolor.

[3] Min/max style for the box symbol. One of the
following:
1 Minimum and maximum taken from the actual

limits of the data. Elements 4 and 5 are ignored.
2 Statistical standard with the minimum and

maximum calculated according to interquartile
range as follows:

Elements 4 and 5 are ignored.
3 Minimum and maximum percentiles taken from

elements 4 and 5.
[4] Minimum percentile value (0-100) if

_pboxctl[3] = 3.

intqrange = 75th - 25th

min = 25th - 1.5intqrange
max = 75th + 1.5intqrange
����

GAUSS Language Reference

box

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
%���+� If missing values are encountered in the y data, they will be ignored
during calculations and will not be plotted.

������ pbox.src

[5] Maximum percentile value (0-100) if
_pboxctl[3] = 3.

_plctrl 1xM vector or scalar as follows:
0 Plot boxes only, no symbols.
1 Plot boxes and plot symbols that lie outside the min

and max box values.
2 Plot boxes and all symbols.
-1 Plot symbols only, no boxes.
These capabilities are in addition to the usual line control
capabilities of _plctrl.

_pcolor 1xM vector or scalar for symbol colors. If scalar, all
symbols will be one color. See “Colors Appendix” on
page B-1.
����

Command Reference

boxcox

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
boxcox

���$��� Computes the Box-Cox function.

����� y = boxcox (x,lambda);

��$��

#��$��

%���+� Allowable range for x is:

x > 0

The boxcox function computes

")�$�� x = {.2 .3, 1.5 2.5};

lambda = {.4, 2};

y = boxcox(x,lambda)

x MxN matrix.
lambda KxL matrix, ExE conformable to x.

y max(M,L) x max(N,K).

boxcox x() x
λ

1–
λ

--------------=

y 1.1867361– 0.95549787–

0.62500000 2.62500000
=

����

GAUSS Language Reference

break

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
break

���$��� Breaks out of a do or for loop.

����� break;

")�$�� x = rndn(4,4);

r = 0;

do while r < rows(x);

r = r + 1;

c = 0;

do while c < cols(x);

c = c + 1;

if c == r;

x[r,c] = 1;

elseif c > r;

break; /* terminate inner do loop */

else;

x[r,c] = 0;

endif;

endo; /* break jumps to the statement */

 /* after this endo */

endo;

%���+� This command works just like in C.

x

1.000 0.326 2.682– 0.594–

0.000 1.000 0.879– 0.056

0.000 0.000 1.000 0.688–

0.000 0.000 0.000 1.000

=

����

Command Reference

break

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� continue, do, for
����

GAUSS Language Reference

call

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
call

���$��� Calls a function or procedure when the returned value is not needed and
can be ignored, or when the procedure is defined to return nothing.

����� call function_name(argument_list);

call function_name;

%���+� This is useful when you need to execute a function or procedure and do
not need the value that it returns. It can also be used for calling procedures
that have been defined to return nothing.

function_name can be any intrinsic GAUSS function, a procedure
(proc), or any valid expression.

")�$�� call chol(x);

y = detl;

The above example is the fastest way to compute the determinant of a
positive definite matrix. The result of chol is discarded and detl is
used to retrieve the determinant that was computed during the call to
chol.

������� proc
����

Command Reference

cdfbeta

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfbeta

���$��� Computes the incomplete beta function (i.e., the cumulative distribution
function of the beta distribution).

����� y = cdfbeta(x,a,b);

��$��

�#��$��

�%���+� y is the integral from 0 to x of the beta distribution with parameters a and
b. Allowable ranges for the arguments are:

0 ≤ x ≤ 1

a > 0

b > 0

A -1 is returned for those elements with invalid inputs.

")�$�� x = { .1, .2, .3, .4 };

a = 0.5;

b = 0.3;

y = cdfbeta(x,a,b);

������� cdfchic, cdffc, cdfn, cdfnc, cdftc, gamma

x NxK matrix.
a LxM matrix, ExE conformable with x.
b PxQ matrix, ExE conformable with x and a.

y max(N,L,P) by max(K,M,Q) matrix.

y

0.142285

0.206629

0.260575

0.310875

=

����

GAUSS Language Reference

cdfbeta

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�����	��
&����

cdfbeta has the following approximate accuracy:

�%��������� Bol’shev, L.N. “Asymptotically Pearson’s Transformations.” Teor.
Veroyat. Primen. (Theory of Probability and its Applications). Vol. 8 No.
2, 1963, 129-55.

Bosten, N. E., and E.L. Battiste. “Remark on Algorithm 179 Incomplete
Beta Ratio.” Comm. ACM. Vol. 17 No. 3, March 1974, 156-57.

Ludwig, O.G. “Algorithm 179 Incomplete Beta Ratio.” Comm. ACM.
Vol. 6 No. 6, June 1963, 314.

Mardia, K.V., and P.J. Zemroch. “Tables of the F- and related distributions
with algorithms.” Academic Press, NY, 1978. ISBN 0-12-471140-5

Peizer, D.B., and J.W. Pratt. “A Normal Approximation for Binomial, F,
Beta, and Other Common, Related Tail Probabilities, I.” Journal of
American Statistical Association. Vol. 63, Dec. 1968, 1416-56.

Pike, M.C., and I.D. Hill. “Remark on Algorithm 179 Incomplete Beta
Ratio.” Comm. ACM. Vol. 10 No. 6, June 1967, 375-76.

max(a,b) ≤ 500 the absolute error is approx. ±5e-13
500 < max(a,b) ≤ 10,000 the absolute error is approx. ±5e-11
10,000 < max(a,b) ≤ 200,000 the absolute error is approx. ±1e-9
200,000 < max(a,b) Normal approximations are used and

the absolute error is approx. ±2e-9
����

Command Reference

cdfbvn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfbvn

���$��� Computes the cumulative distribution function of the standardized
bivariate Normal density (lower tail).

����� c = cdfbvn(h,k,r);

��$��

�#��$��

�%���+� The function integrated is:

 with

Thus, x and y have 0 means, unit variances, and correlation = r.

Allowable ranges for the arguments are:

A -1 is returned for those elements with invalid inputs.

To find the integral under a general bivariate density, with x and y having
nonzero means and any positive standard deviations, use the
transformation equations:

h = (ht - ux) ./ sx;

k = (kt - uy) ./ sy;

h NxK matrix, the upper limits of integration for variable 1.
k LxM matrix, ExE conformable with h, the upper limits of

integration for variable 2.
r PxQ matrix, ExE conformable with h and k, the correlation

coefficients between the two variables.

c max(N,L,P) by max(K,M,Q) matrix, the result of the double
integral from -∞ to h and -∞ to k of the standardized bivariate
Normal density f(x,y,r).

-∞ < h < +∞
-∞ < k < +∞
-1 ≤ r ≤ 1

f x y r, ,() e 0.5w–

2π 1 r2–
-------------------------=

w
x2 2rxy– y2+

1 r2–
----------------------------------=
���	

GAUSS Language Reference

cdfbvn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
where ux and uy are the (vectors of) means of x and y, sx and sy are the
(vectors of) standard deviations of x and y, and ht and kt are the (vectors
of) upper integration limits for the untransformed variables, respectively.

������� cdfn, cdftvn

�����	��
&����

The absolute error for cdfbvn is approximately ±5.0e-9 for the entire
range of arguments.

%��������� Daley, D.J. “Computation of Bi- and Tri-variate Normal Integral.” Appl.
Statist. Vol. 23 No. 3, 1974, 435-38.

Owen, D.B. “A Table of Normal Integrals.” Commun. Statist.-Simula.
Computa., B9(4). 1980, 389-419.
���

Command Reference

cdfbvn2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfbvn2

���$��� Returns cdfbvn of a bounded rectangle.

����� y = cdfbvn2(h,dh,k,dk,r);

��$�� .

#��$��

%���+� Scalar input arguments are okay; they will be expanded to Nx1 vectors.

cdfbvn2 computes:

cdfbvn(h+dh,k+dk,r) + cdfbvn(h,k,r) - cdfbvn(h,k+dk,r) -
cdfbvn(h+dh,k,r).

cdfbvn2 computes an error estimate for each set of inputs. The size of
the error depends on the input arguments. If trap 2 is set, a warning
message is displayed when the error reaches 0.01*abs(y).

For an estimate of the actual error, see cdfbvn2e.

")�$�� Example 1

cdfbvn2(1,-1,1,-1,0.5);

produces:

1.4105101488974692e-001

Example 2

cdfbvn2(1,-1e-15,1,-1e-15,0.5);

produces:

4.9303806576313238e-32

h Nx1 vector, starting points of integration for variable 1.
dh Nx1 vector, increments for variable 1.
k Nx1 vector, starting points of integration for variable 2.
dk Nx1 vector, increments for variable 2.
r Nx1 vector, correlation coefficients between the two variables.

y Nx1 vector, the integral over the rectangle bounded by h, h+dh,
k, and k+dk of the standardized bivariate Normal distribution.
����

GAUSS Language Reference

cdfbvn2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Example 3

cdfbvn2(1,-1e-45,1,-1e-45,0.5);

produces:

0.0000000000000000e+000

Example 4

trap 2,2;

cdfbvn2(1,-1e-45,1,1e-45,0.5);

produces:

WARNING: Dubious accuracy from cdfbvn2:

0.000e+000 +/- 2.8e-060

0.0000000000000000e+000

������ lncdfn.src

������� cdfbvn2e, lncdfbvn2
����

Command Reference

cdfbvn2e

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfbvn2e

���$��� Returns cdfbvn of a bounded rectangle.

������ { y, e } = cdfbvn2e(h,dh,k,dk,r);

��$�� .

#��$��

�%���+� Scalar input arguments are okay; they will be expanded to Nx1 vectors.

cdfbvn2e computes cdfbvn(h+dh,k+dk,r) + cdfbvn(h,k,r) -
cdfbvn(h,k+dk,r) - cdfbvn(h+dh,k,r).

The real answer is y±e. The size of the error depends on the input
arguments.

�")�$�� Example 1

cdfbvn2e(1,-1,1,-1,0.5);

produces:

1.4105101488974692e-001

1.9927918166193113e-014

Example 2

cdfbvn2e(1,-1e-15,1,-1e-15,0.5);

produces:

h Nx1 vector, starting points of integration for variable 1.
dh Nx1 vector, increments for variable 1.
k Nx1 vector, starting points of integration for variable 2.
dk Nx1 vector, increments for variable 2.
r Nx1 vector, correlation coefficients between the two variables.

 y Nx1 vector, the integral over the rectangle bounded by h,
h+dh, k, and k+dk of the standardized bivariate Normal
distribution.

e Nx1 vector, an error estimate.
����

GAUSS Language Reference

cdfbvn2e

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
7.3955709864469857e-032

2.8306169312687801e-030

Example 3

cdfbvn2e(1,-1e-45,1,-1e-45,0.5);

produces:

0.0000000000000000e+000

2.8306169312687770e-060

������� cdfbvn2, lncdfbvn2
����

Command Reference

cdfchic

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfchic

���$��� Computes the complement of the cdf of the chi-square distribution.

����� y = cdfchic(x,n)

��$��

�#��$��

�%���+� y is the integral from x to ∞ of the chi-square distribution with n degrees
of freedom.

The elements of n must all be positive integers. The allowable ranges for
the arguments are:

x ≥ 0

n > 0

A -1 is returned for those elements with invalid inputs.

This equals 1-F(x,n), where F is the chi-square cdf with n degrees of
freedom. Thus, to get the chi-square cdf, subtract cdfchic(x,n) from
1. The complement of the cdf is computed because this is what is most
commonly needed in statistical applications, and because it can be
computed with fewer problems of roundoff error.

")�$�� x = { .1, .2, .3, .4 };

n = 3;

y = cdfchic(x,n);

������� cdfbeta, cdffc, cdfn, cdfnc, cdftc, gamma

x NxK matrix.
n LxM matrix, ExE conformable with x.

y max(N,L) by max(K,M) matrix.

y

0.991837

0.977589

0.960028

0.940242

=

����

GAUSS Language Reference

cdfchic

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�����	��
&����

For n ≤ 1000, the incomplete gamma function is used and the absolute
error is approx. ±6e-13. For n > 1000, a Normal approximation is used
and the absolute error is ±2e-8.

For higher accuracy when n > 1000, use:

1-cdfgam(0.5*x,0.5*n);

%��������� Bhattacharjee, G.P. “Algorithm AS 32, The Incomplete Gamma Integral.”
Applied Statistics. Vol. 19, 1970, 285-87.

Mardia, K.V., and P.J. Zemroch. “Tables of the F- and related distributions
with algorithms.” Academic Press, NY, 1978. ISBN 0-12-471140-5

Peizer, D.B., and J.W. Pratt. “A Normal Approximation for Binomial, F,
Beta, and Other Common, Related Tail Probabilities, I.” Journal of
American Statistical Association. Vol. 63, Dec. 1968, 1416-56.
����

Command Reference

cdfchii

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfchii

���$��� Compute chi-square abscissae values given probability and degrees of
freedom.

����� c = cdfchii(p,n);

��$��

#��$��

")�$�� The following generates a 3x3 matrix of pseudo-random numbers with a
chi-squared distribution with expected value of 4:

rndseed 464578;

x = cdfchii(rndu(3,3),4+zeros(3,3));

������ cdfchii.src

������� gammaii

p MxN matrix, probabilities.
n LxK matrix, ExE conformable with p, degrees of freedom.

c max(M,L) by max(N,K) matrix, abscissae values for chi-square
distribution.

x
2.1096456 1.9354989 1.7549182

4.4971008 9.2643386 4.3639694

4.5737473 1.3706243 2.5653688

=

����

GAUSS Language Reference

cdfchinc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfchinc

���$��� The integral under noncentral chi-square distribution, from 0 to x. It can
return a vector of values, but the degrees of freedom and noncentrality
parameter must be the same for all values of x.

����� y = cdfchinc(x,v,d);

��$��

�#��$��

")�$�� x = { .5, 1, 5, 25 };

p = cdfchinc(x,4,2);

 ������� cdfnonc.src

������� cdffnc, cdftnc

�����	��
&����

Relation to cdfchic:

cdfchic(x,v) = 1 - cdfchinc(x,v,0);

The formula used is taken from Abramowitz and Stegun, Handbook of
Mathematical Functions. Formula 26.4.25. 1970, 942.

x Nx1 vector, values of upper limits of integrals, must be greater
than 0.

v scalar, degrees of freedom, v > 0.
d scalar, noncentrality parameter, d > 0.

This is the square root of the noncentrality parameter that
sometimes goes under the symbol lambda. (See Scheffe, The
Analysis of Variance, App. IV. 1959.)

y Nx1 vector, integrals from 0 to x of noncentral chi-square.

0.0042086234
0.016608592
0.30954232
0.99441140
����

Command Reference

cdffc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdffc

���$��� Computes the complement of the cdf of the F distribution.

����� y = cdffc(x,n1,n2);

��$��

�#��$��

�%���+� y is the integral from x to ∞ of the F distribution with n1 and n2 degrees
of freedom.

Allowable ranges for the arguments are:

A -1 is returned for those elements with invalid inputs.

This equals 1-G(x,n1,n2), where G is the F cdf with n1 and n2 degrees of
freedom. Thus, to get the F cdf, subtract cdffc(x,n1,n2) from 1. The
complement of the cdf is computed because this is what is most
commonly needed in statistical applications, and because it can be
computed with fewer problems of roundoff error.

")�$�� x = { .1, .2, .3, .4 };

n1 = 0.5;

n2 = 0.3;

y = cdffc(x,n1,n2);

x NxK matrix.
n1 LxM matrix, ExE conformable with x.
n2 PxQ matrix, ExE conformable with x and n1.

y max(N,L,P) by max(K,M,Q) matrix.

x ≥ 0
n1 > 0
n2 > 0

y

0.751772

0.708152

0.680365

0.659816

=

���	

GAUSS Language Reference

cdffc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� cdfbeta, cdfchic, cdfn, cdfnc, cdftc, gamma

�����	��
&����

For max(n1,n2) ≤ 1000, the absolute error is approximately ±5e-13. For
max(n1,n2) > 1000, Normal approximations are used and the absolute
error is approximately ±2e-6.

For higher accuracy when max(n1,n2) > 1000, use:

cdfbeta(n2/(n2+n1*x), n2/2, n1/2);

%��������� Bol’shev, L.N. “Asymptotically Pearson’s Transformations.” Teor.
Veroyat. Primen. (Theory of Probability and its Applications). Vol. 8 No.
2, 1963, 129-55.

Bosten, N. E., and E.L. Battiste. “Remark on Algorithm 179 Incomplete
Beta Ratio.” Comm. ACM. Vol. 17 No. 3, March 1974, 156-57.

Kennedy, W.J., Jr., and J.E. Gentle. Statistical Computing. Marcel Dekker,
Inc., NY, 1980.

Ludwig, O.G. “Algorithm 179 Incomplete Beta Ratio.” Comm. ACM.
Vol. 6 No. 6, June 1963, 314.

Mardia, K.V., and P.J. Zemroch. “Tables of the F- and related distributions
with algorithms.” Academic Press, NY, 1978. ISBN 0-12-471140-5

Peizer, D.B., and J.W. Pratt. “A Normal Approximation for Binomial, F,
Beta, and Other Common, Related Tail Probabilities, I.” Journal of
American Statistical Association. Vol. 63, Dec. 1968, 1416-56.

Pike, M.C., and I.D. Hill. “Remark on Algorithm 179 Incomplete Beta
Ratio.” Comm. ACM. Vol. 10 No. 6, June 1967, 375-76.
���

Command Reference

cdffnc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdffnc

���$��� The integral under noncentral F distribution, from 0 to x.

����� y = cdffnc(x,v1,v2,d);

��$��

#��$��

������ cdfnonc.src

������� cdftnc, cdfchinc

�����	��
&����

Relation to cdffc:

cdffc(x,v1,v2) = 1 - cdffnc(x,v1,v2,0);

The formula used is taken from Abramowitz and Stegun, Handbook of
Mathematical Functions. Formula 26.6.20. 1970, 947.

x Nx1 vector, values of upper limits of integrals, x > 0.
v1 scalar, degrees of freedom of numerator, v1 > 0.
v2 scalar, degrees of freedom of denominator, v2 > 0.
d scalar, noncentrality parameter, d > 0.

This is the square root of the noncentrality parameter that
sometimes goes under the symbol lambda. (See Scheffe,
The Analysis of Variance, App. IV. 1959.)

y Nx1 vector of integrals from 0 to x of noncentral F.
����

GAUSS Language Reference

cdfgam

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfgam

���$��� Incomplete gamma function.

����� g = cdfgam(x,intlim);

��$��

�#��$��

�%���+� The incomplete gamma function returns the integral

The allowable ranges for the arguments are:

A -1 is returned for those elements with invalid inputs.

")�$�� x = { 0.5 1 3 10 };

intlim = seqa(0,.2,6);

g = cdfgam(x,intlim);

x NxK matrix of data.
intlim LxM matrix, ExE compatible with x, containing the

integration limit.

g max(N,L) by max(K,M) matrix.

x > 0
intlim ≥ 0

e t– t x 1–)(

gamma x()
-------------------------- td

0

intlim

∫

x 0.500000 1.00000 3.00000 10.00000=

intlim

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

=

��	�

Command Reference

cdfgam

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
This computes the integrals over the range from 0 to 1, in increments of
.2, at the parameter values 0.5, 1, 3, 10.

�����	��
&����

cdfgam has the following approximate accuracy:

�%��������� Bhattacharjee, G.P. “Algorithm AS 32, The Incomplete Gamma Integral.”
Applied Statistics. Vol. 19, 1970, 285-87.

Peizer, D.B., and J.W. Pratt. “A Normal Approximation for Binomial, F,
Beta, and Other Common, Related Tail Probabilities, I.” Journal of
American Statistical Association. Vol. 63, Dec. 1968, 1416-56.

Pike, M.C., and I.D. Hill. “Remark on Algorithm 179 Incomplete Beta
Ratio.” Comm. ACM. Vol. 10 No. 6, June 1967, 375-76.

g

0.000000 0.000000 0.000000 0.000000

0.472911 0.181269 0.00114848 2.35307E 014–

0.628907 0.329680 0.00792633 2.00981E 011–

0.726678 1.451188 0.0231153 9.66972E 010–

0.794097 0.550671 0.0474226 1.43310E 008–

0.842701 0.632120 0.0803014 1.11425E 007–

=

x < 500 the absolute error is approx. ±6e-13
500 ≤ x ≤ 10,000 the absolute error is approx. ±3e-11
10,000 < x a Normal approximation is used and the

absolute error is approx. ±3e-10
��	�

GAUSS Language Reference

cdfmvn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfmvn

���$��� Computes multivariate Normal cumulative distribution function.

����� y = cdfmvn(x,r);

��$��

#��$��

������� lncdfn.src

������� cdfbvn, cdfn, cdftvn, lncdfmvn

x KxL matrix, abscissae.
r KxK matrix, correlation matrix.

y Lx1 vector, Pr(X < x | r).
��	�

Command Reference

cdfn, cdfnc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfn, cdfnc

���$��� cdfn computes the cumulative distribution function (cdf) of the Normal
distribution. cdfnc computes 1 minus the cdf of the Normal distribution.

����� n = cdfn(x);
nc = cdfnc(x);

��$��

�#��$��

�%���+� n is the integral from -∞ to x of the Normal density function, and nc is the
integral from x to +∞.

Note that: cdfn(x) + cdfnc(x) = 1. However, many applications expect
cdfn(x) to approach 1, but never actually reach it. Because of this, we
have capped the return value of cdfn at 1 - machine epsilon, or
approximately 1 - 1.11e-16. As the relative error of cdfn is about ±5e-15
for cdfn(x) around 1, this does not invalidate the result. What it does
mean is that for abs(x) > (approx.) 8.2924, the identity does not hold
true. If you have a need for the uncapped value of cdfn, the following
code will return it:

n = cdfn(x);

if n >= 1-eps;

n = 1;

endif;

where the value of machine epsilon is obtained as follows:

x = 1;

do while 1-x /= 1;

eps = x;

x = x/2;

endo;

Note that this is an alternate definition of machine epsilon. Machine
epsilon is usually defined as the smallest number such that 1 + machine

x NxK matrix.

n NxK matrix.
nc NxK matrix.
��	�

GAUSS Language Reference

cdfn, cdfnc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
epsilon > 1, which is about 2.23e-16. This defines machine epsilon as the
smallest number such that 1 - machine epsilon < 1, or about 1.11e-16.

The erf and erfc functions are also provided, and may sometimes be
more useful than cdfn and cdfnc.

")�$�� x = { -2 -1 0 1 2 };

n = cdfn(x);

nc = cdfnc(x);

������� erf, erfc, cdfbeta, cdfchic, cdftc, cdffc, gamma

�����	��
&����

For the integral from -∞ to x:

For cdfnc, i.e., the integral from x to +∞, use the above accuracies but
change x to -x.

%��������� Adams, A.G. “Remark on Algorithm 304 Normal Curve Integral.” Comm.
ACM. Vol. 12 No. 10, Oct. 1969, 565-66.

Hill, I.D., and S.A. Joyce. “Algorithm 304 Normal Curve Integral.”
Comm. ACM. Vol. 10 No. 6, June 1967, 374-75.

Holmgren, B. “Remark on Algorithm 304 Normal Curve Integral.”
Comm. ACM. Vol. 13 No. 10, Oct. 1970.

Mardia, K.V., and P.J. Zemroch. “Tables of the F- and related distributions
with algorithms.” Academic Press, NY, 1978. ISBN 0-12-471140-5

x = -2.00000 -1.00000 0.00000 1.00000 2.00000
n = 0.02275 0.15866 0.50000 0.84134 0.97725
nc = 0.97725 0.84134 0.50000 0.15866 0.02275

x ≤ -37, cdfn underflows and 0.0 is returned
-36 < x < -10, cdfn has a relative error of approx. ±5e-12
-10 < x < 0, cdfn has a relative error of approx. ±1e-13
0 < x, cdfn has a relative error of approx. ±5e-15
��	�

Command Reference

cdfn2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfn2

���$��� Computes the integral over a Normal density function interval.

������ y = cdfn2(x,dx);

��$��

#��$��

�%���+� The relative error is:

A relative error of ±1e-14 implies that the answer is accurate to better
than ±1 in the 14th digit.

")�$�� print cdfn2(1,0.5);

9.1848052662599017e-02

print cdfn2(20,0.5);

2.7535164718736454e-89

print cdfn2(20,1e-2);

5.0038115018684521e-90

print cdfn2(-5,2);

1.3496113800582164e-03

print cdfn2(-5,0.15);

3.3065580013000255e-07

������ lncdfn.src

������� lncdfn2

x MxN matrix, abscissae.
dx KxL matrix, ExE conformable to x, intervals.

y max(M,K) by max(N,L) matrix, the integral from x to
x+dx of the Normal distribution, i.e., Pr(x ≤ X ≤ x + dx).

|x| ≤ 1 and dx ≤ 1 ±1e-14
1 < |x| < 37 and |dx| < 1/|x| ±1e-13
min(x,x+dx) > -37 and y > 1e-300 ±1e-11 or better
��	�

GAUSS Language Reference

cdfni

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdfni

���$��� Computes the inverse of the cdf of the Normal distribution.

������ x = cdfni(p);

���$��

�#��$��

%���+� cdfn(cdfni(p)) = p to within the errors given below:

p NxK real matrix, Normal probability levels, 0 ≤ p ≤ 1.

x NxK real matrix, Normal deviates, such that cdfn(x) = p

p ≤ 4.6..e-308 -37.5 is returned
4.6..e-308 < p < 5e-24 accurate to ±5 in 12th digit
5e-24 < p < 0.5 accurate to ±1 in 13th digit
0.5 < p < 1 - 2.22045e-16 accurate to ±5 in 15th digit
p ≥ 1 - 2.22045e-16 8.12589... is returned
��	�

Command Reference

cdftc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdftc

���$��� Computes the complement of the cdf of the Student’s t distribution.

����� y = cdftc(x,n);

��$��

�#��$��

�%���+� y is the integral from x to ∞ of the t distribution with n degrees of
freedom.

Allowable ranges for the arguments are:

 A -1 is returned for those elements with invalid inputs.

This equals 1-F(x,n), where F is the t cdf with n degrees of freedom.
Thus, to get the t cdf, subtract cdftc(x,n) from 1. The complement of
the cdf is computed because this is what is most commonly needed in
statistical applications, and because it can be computed with fewer
problems of roundoff error.

")�$�� x = { .1, .2, .3, .4 };

n = 25;

y = cdftc(x,n);

print y;

������� cdfbeta, cdfchic, cdffc, cdfn, cdfnc, gamma

x NxK matrix.
n LxM matrix, ExE conformable with x.

y max(N,L) by max(K,M) matrix.

-∞ < x < +∞
n > 0

y

0.473165

0.447100

0.422428

0.399555

=

��		

GAUSS Language Reference

cdftc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�����	��
&����

For results greater than 0.5e-30, the absolute error is approximately
±1e-14 and the relative error is approximately ±1e-12. If you multiply the
relative error by the result, then take the minimum of that and the absolute
error, you have the maximum actual error for any result. Thus, the actual
error is approximately ±1e-14 for results greater than 0.01. For results less
than 0.01, the actual error will be less. For example, for a result of
0.5e-30, the actual error is only ±0.5e-42.

%��������� Abramowitz, M., and I. A. Stegun, eds. Handbook of Mathematical
Functions. 7th ed. Dover, NY, 1970. ISBN 0-486-61272-4

Hill, G.W. “Algorithm 395 Student’s t-Distribution.” Comm. ACM. Vol.
13 No. 10, Oct. 1970.

Hill, G.W. “Student’s t-Distribution Quantiles to 20D.” Division of
Mathematical Statistics Technical Paper No. 35. Commonwealth
Scientific and Industrial Research Organization, Australia, 1972.
��	

Command Reference

cdftci

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdftci

���$��� Computes the inverse of the complement of the Student’s t cdf.

������ x = cdftci(p,n);

���$��

�#��$��

�%���+� cdftc(cdftci(p,n)) = p to within the errors given below:

Extreme values of arguments can give rise to underflows, but no
overflows are generated.

p NxK real matrix, complementary Student’s t probability levels,
0 ≤ p ≤ 1.

n LxM real matrix, degrees of freedom, n ≥ 1, n need not be
integral. ExE conformable with p.

x max(N,L) by max(K,M) real matrix, Student’s t deviates,
such that cdftc(x,n) = p.

0.5e-30 < p < 0.01 accurate to ±1 in 12th digit
0.01 < p accurate to ±1e-14
��	�

GAUSS Language Reference

cdftnc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdftnc

���$��� The integral under noncentral Student’s t distribution, from -∞ to x. It can
return a vector of values, but the degrees of freedom and noncentrality
parameter must be the same for all values of x.

����� y = cdftnc(x,v,d);

��$��

#��$��

������ cdfnonc.src

������� cdffnc, cdfchinc

�����	��
&����

Relation to cdftc:

cdftc(x,v) = 1 - cdftnc(x,v,0);

The formula used is based on the formula in SUGI Supplemental Library
User’s Guide. SAS Institute. 1983, 232 (which is attributed to Johnson
and Kotz, 1970).

The formula used here is a modification of that formula. It has been tested
against direct numerical integration, and against simulation experiments
in which noncentral t random variates were generated and the cdf found
directly.

x Nx1 vector, values of upper limits of integrals.
v scalar, degrees of freedom, v > 0.
d scalar, noncentrality parameter.

This is the square root of the noncentrality parameter that
sometimes goes under the symbol lambda. (See Scheffe,
The Analysis of Variance, App. IV. 1959.)

y Nx1 vector, integrals from -∞ to x of noncentral t.
��
�

Command Reference

cdftvn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdftvn

���$��� Computes the cumulative distribution function of the standardized
trivariate Normal density (lower tail).

����� c = cdftvn(x1,x2,x3,rho12,rho23,rho31);

��$��

�#��$��

�%���+� Allowable ranges for the arguments are:

-∞ < x1 < +∞

-∞ < x2 < +∞

-∞ < x3 < +∞

-1 < rho12 < 1

-1 < rho23 < 1

-1 < rho31 < 1

In addition, rho12, rho23, and rho31 must come from a legitimate
positive definite matrix. A -1 is returned for those rows with invalid
inputs.

A separate integral is computed for each row of the inputs.

The first 3 arguments (x1,x2,x3) must be the same length, N. The second 3
arguments (rho12,rho23,rho31) must also be the same length, and this

x1 Nx1 vector of upper limits of integration for variable 1.
x2 Nx1 vector of upper limits of integration for variable 2.
x3 Nx1 vector of upper limits of integration for variable 3.
rho12 scalar or Nx1 vector of correlation coefficients between the two

variables x1 and x2.
rho23 scalar or Nx1 vector of correlation coefficients between the two

variables x2 and x3.
rho31 scalar or Nx1 vector of correlation coefficients between the two

variables x1 and x3.

c Nx1 vector containing the result of the triple integral from -∞ to
x1, -∞ to x2, and -∞ to x3 of the standardized trivariate Normal
density:

 f(x1,x2,x3,rho12,rho23,rho31)
��
�

GAUSS Language Reference

cdftvn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
length must be N or 1. If it is 1, then these values will be expanded to
apply to all values of x1,x2,x3. All inputs must be column vectors.

To find the integral under a general trivariate density, with x1, x2, and x3
having nonzero means and any positive standard deviations, transform by
subtracting the mean and dividing by the standard deviation. For
example:

x1 = (x1 - meanc(x1)) / stdc(x1);

������� cdfn, cdfbvn

�����	��
&����

The absolute error for cdftvn is approximately ±2.5e-8 for the entire
range of arguments.

%��������� Daley, D.J. “Computation of Bi- and Tri-variate Normal Integral.” Appl.
Statist. Vol. 23 No. 3, 1974, 435-38.

Steck, G.P. “A Table for Computing Trivariate Normal Probabilities.”
Ann. Math. Statist. Vol. 29, 780-800.
��
�

Command Reference

cdir

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cdir

���$��� Returns the current directory.

����� y = cdir(s);

��$��

�#��$��

�%���+� If the current directory is the root directory, the returned string will end
with a backslash, otherwise it will not.

A null string or scalar zero can be passed in as an argument to obtain the
current drive and path name.

")�$�� x = cdir(0);

y = cdir(“d:”);

print x;

print y;

C:\GAUSS

D:\

������� files

s string, if the first character is ‘A’-‘Z’ and the second
character is a colon ‘:’ then that drive will be used. If not,
the current default drive will be used.

y string containing the drive and full path name of the
current directory on the specified drive.
��
�

GAUSS Language Reference

ceil

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ceil

���$��� Round up toward +∞.

����� y = ceil(x);

��$��

�#��$��

�%���+� This rounds every element in the matrix x to an integer. The elements are
rounded up toward +∞.

")�$�� x = 100*rndn(2,2);

y = ceil(x);

������� floor, trunc

x NxK matrix.

y NxK matrix.

x 77.68 14.10–

4.73 158.88–
=

y 78.00 14.00–

5.00 158.00–
=

��
�

Command Reference

ChangeDir

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ChangeDir

���$��� Changes the working directory.

����� d = ChangeDir(s);

��$��

�#��$��

�������� chdir

s string, directory to change to.

d string, new working directory, or null string if change failed.
��
�

GAUSS Language Reference

chdir

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
chdir

���$��� Changes working directory.

����� chdir dirstr;

��$��

�%���+� This is for interactive use. Use ChangeDir in a program.

If the directory change fails, chdir prints an error message.

dirstr literal or ^string, directory to change to.
��
�

Command Reference

chol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
chol

���$��� Computes the Cholesky decomposition of a symmetric, positive definite
matrix.

����� y = chol(x);

��$��

�#��$��

�%���+� y is the “square root” matrix of x. That is, it is an upper triangular matrix
such that x = y′y.

chol does not check to see that the matrix is symmetric. chol will look
only at the upper half of the matrix including the principal diagonal.

If the matrix x is symmetric but not positive definite, either an error
message or an error code will be generated, depending on the lowest order
bit of the trap flag:

trap 0 Print error message and terminate program.

trap 1 Return scalar error code 10.

See scalerr and trap for more details about error codes.

")�$�� x = moment(rndn(100,4),0);

y = chol(x);

ypy = y’y;

x NxN matrix.

y NxN matrix containing the Cholesky decomposition of x.

x

90.746566 6.467195– 1.927489– 15.696056–

6.467195– 87.806557 6.319043 2.435953–

1.927489– 6.319043 101.973276 4.355520

15.696056– 2.435953– 4.355520 99.042850

=

y

9.526099 0.678892– 0.202338– 1.647690–

0.000000 9.345890 0.661433 0.380334–

0.000000 0.000000 10.074465 0.424211

0.000000 0.000000 0.000000 9.798130

=

��
	

GAUSS Language Reference

chol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�������� crout, solpd

ypy

90.746566 6.467195– 1.927489– 15.696056–

6.467195– 87.806557 6.319043 2.435953–

1.927489– 6.319043 101.973276 4.355520

15.696056– 2.435953– 4.355520 99.042850

=

��

Command Reference

choldn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
choldn

���$��� Performs a Cholesky downdate of one or more rows on an upper
triangular matrix.

����� r = choldn(C,x);

��$��

�#��$��

�%���+� C should be a Cholesky factorization.

choldn(C,x) is equivalent to chol(C′C - x′x), but choldn is
numerically much more stable.

Warning: it is possible to render a Cholesky factorization non-positive
definite with choldn. You should keep an eye on the ratio of the largest
diagonal element of r to the smallest — if it gets very large, r may no
longer be positive definite. This ratio is a rough estimate of the condition
number of the matrix.

")�$��

r = choldn(C,x);

������� cholup

C KxK upper triangular matrix.
x NxK matrix, the rows to downdate C with.

r KxK upper triangular matrix, the downdated matrix.

let C[3,3] = 20.16210005 16.50544413 9.86676135

0 11.16601462 2.97761666

0 0 11.65496052;

let x[2,3] = 1.76644971 7.49445820 9.79114666

6.87691156 4.41961438 4.32476921;

r

18.87055964 15.32294435 8.04947012

0.00000000 9.30682813 2.12009339–

0.00000000 0.00000000 7.62878355
=

��
�

GAUSS Language Reference

cholsol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cholsol

���$��� Solves a system of linear equations given the Cholesky factorization of
the system.

����� x = cholsol(b,C);

��$��

�#��$��

�%���+� C is the Cholesky factorization of a linear system of equations A. x is the
solution for Ax = b. b can have more than one column. If so, the system is
solved for each column, i.e., A*x[.,i] = b[.,i].

cholsol(eye(N),C) is equivalent to invpd(A). Thus, if you have
the Cholesky factorization of A, cholsol is the most efficient way to
obtain the inverse of A.

")�$��

x = cholsol(b,C);

b NxK matrix.
C NxN matrix.

x NxK matrix.

let b[3,1] = 0.03177513 0.41823100 1.70129375;

let C[3,3] = 1.73351215 1.53201723 1.78102499

0 1.09926365 0.63230050

0 0 0.67015361;

x
1.94396905–

1.52686768–

3.21579513

=

A0
3.00506436 2.65577048 3.08742844

2.65577048 3.55545737 3.42362593

3.08742844 3.42362593 4.02095978

=

����

Command Reference

cholup

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cholup

���$��� Performs a Cholesky update of one or more rows on an upper triangular
matrix.

����� r = cholup(C,x);

��$��

�#��$��

�%���+� C should be a Cholesky factorization.

cholup(C,x) is equivalent to chol(C′C + x′x), but cholup is
numerically much more stable.

")�$��

r = cholup(C,x);

������� choldn

C KxK upper triangular matrix.
x NxK matrix, the rows to update C with.

r KxK upper triangular matrix, the updated matrix.

let C[3,3] = 18.87055964 15.32294435 8.04947012

0 9.30682813 -2.12009339

0 0 7.62878355;

let x[2,3] = 1.76644971 7.49445820 9.79114666

6.87691156 4.41961438 4.32476921;

r
20.16210005 16.50544413 9.86676135

0.00000000 11.16601462 2.97761666

0.00000000 0.00000000 11.65496052

=

����

GAUSS Language Reference

chrs

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
chrs

���$��� Converts a matrix of ASCII values into a string containing the appropriate
characters.

����� y = chrs(x);

��$��

�#��$��

�%���+� This function is useful for embedding control codes in strings and for
creating variable length strings when formatting printouts, reports, etc.

")�$�� n = 5;

print chrs(ones(n,1)*42);

Since the ASCII value of the asterisk character is 42, the program above
will print a string of n asterisks.

y = chrs(67~65~84);

print y;

CAT

�������� vals, ftos, stof

x NxK matrix.

y string of length N*K containing the characters whose ASCII
values are equal to the values in the elements of x.
����

Command Reference

clear

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
clear

���$��� Clears space in memory by setting matrices equal to scalar zero.

����� clear x, y;

%���+� clear x; is equivalent to x = 0;.

Matrix names are retained in the symbol table after they are cleared.

Matrices can be clear’ed even though they have not previously been
defined. clear can be used to initialize matrices to scalar 0.

")�$�� clear x;

�������� clearg, new, show, delete
����

GAUSS Language Reference

clearg

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
clearg

���$��� This command clears global symbols by setting them equal to scalar zero.

����� clearg a,b,c;

#��$��

�%���+� clearg x; is equivalent to x = 0;, where x is understood to be a
global symbol. clearg can be used to initialize symbols not previously
referenced. This command can be used inside procedures to clear global
matrices. It will ignore any locals by the same name.

")�$�� x = 45;

clearg x;

x = 0.0000000

������� clear, delete, new, show, local

a,b,c scalar global matrices containing 0.
����

Command Reference

close

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
close

���$��� Close a GAUSS file.

����� y = close(handle);

��$��

�#��$��

�%���+� handle is the scalar file handle created when the file was opened. It will
contain an integer which can be used to refer to the file.

close will close the file specified by handle, and will return a 0 if
successful and a -1 if not successful. The handle itself is not affected by
close unless the return value of close is assigned to it.

If f1 is a file handle and it contains the value 7, then after:

call close(f1);

the file will be closed but f1 will still have the value 7. The best procedure
is to do the following:

f1 = close(f1);

This will set f1 to 0 upon a successful close.

It is important to set unused file handles to zero because both open and
create check the value that is in a file handle before they proceed with
the process of opening a file. During open or create, if the value that
is in the file handle matches that of an already open file, the process will
be aborted and a “File already open” message will be given. This gives
you some protection against opening a second file with the same handle
as a currently open file. If this happened, you would no longer be able to
access the first file.

An advantage of the close function is that it returns a result which can
be tested to see if there were problems in closing a file. The most common
reason for having a problem in closing a file is that the disk on which the
file is located is no longer in the disk drive — or the handle was invalid.
In both of these cases, close will return a -1.

Files are not automatically closed when a program terminates. This
allows users to run a program that opens files, and then access the files

handle scalar, the file handle given to the file when it was opened with
the open, create, or fopen command.

y scalar, 0 if successful, -1 if unsuccessful.
����

GAUSS Language Reference

close

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
from interactive mode after the program has been run. Files are
automatically closed when GAUSS exits to the operating system or when
a program is terminated with the end statement. stop will terminate a
program but not close files.

As a rule it is good practice to make end the last statement in a program,
unless further access to the open files is desired from interactive mode.
You should close files as soon as you are done writing to them to protect
against data loss in the case of abnormal termination of the program due
to a power or equipment failure.

The danger in not closing files is that anything written to the files may be
lost. The disk directory will not reflect changes in the size of a file until
the file is closed and system buffers may not be flushed.

")�$�� open f1 = dat1 for append;

y = writer(f1,x);

f1 = close(f1);

�������� closeall
����

Command Reference

closeall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
closeall

���$��� Close all currently open GAUSS files.

����� closeall;

closeall list_of_handles;

%���+� list_of_handles is a comma-delimited list of file handles.

closeall with no specified list of handles will close all files. The file
handles will not be affected. The main advantage of using closeall is
ease of use; the file handles do not have to be specified, and one statement
will close all files.

When a list of handles follows closeall, all files are closed and the file
handles listed are set to scalar 0. This is safer than closeall without a
list of handles because the handles are cleared.

It is important to set unused file handles to zero because both open and
create check the value that is in a file handle before they proceed with
the process of opening a file. During open or create, if the value that
is in the file handle matches that of an already open file, the process will
be aborted and a “File already open” message will be given. This gives
you some protection against opening a second file with the same handle
as a currently open file. If this happened, you would no longer be able to
access the first file.

Files are not automatically closed when a program terminates. This
allows users to run a program that opens files, and then access the files
from interactive mode after the program has been run. Files are
automatically closed when GAUSS exits to the operating system or when
a program is terminated with the end statement. stop will terminate a
program but not close files.

As a rule it is good practice to make end the last statement in a program,
unless further access to the open files is desired from interactive mode.
You should close files as soon as you are done writing to them to protect
against data loss in the case of abnormal termination of the program due
to a power or equipment failure.

The danger in not closing files is that anything written to the files may be
lost. The disk directory will not reflect changes in the size of a file until
the file is closed and system buffers may not be flushed.
���	

GAUSS Language Reference

closeall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� open f1 = dat1 for read;

open f2 = dat1 for update;

x = readr(f1,rowsf(f1));

x = sqrt(x);

call writer(f2,x);

closeall f1,f2;

������� close, open
���

Command Reference

cls

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cls

���$��� Clear the window.

����� cls;

�����	�	�� UNIX 3.2 only

cls clears the active graphic panel. For Text graphic panels, this means
the graphic panel buffer is cleared to the background color. For TTY
graphic panels, the current output line is panned to the top of the graphic
panel, effectively clearing the display. The output log is still intact. To
clear the output log of a TTY graphic panel, use WinClearTTYLog. For
PQG graphic panels, the graphic panel is cleared to the background color,
and the related graphics file is truncated to zero length.

UNIX 3.5+

cls will clear the screen on some terminals.

Windows

cls clears the Command window if you’re in Cmnd I/O mode, the
Output window if you’re in Split I/O mode.

OS/2

cls clears the Main window.

%���+� This command will cause the window to clear and will locate the cursor at
the upper left hand corner of the window.

������� locate
����

GAUSS Language Reference

code

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
code

����$��� Allows a new variable to be created (coded) with different values
depending upon which one of a set of logical expressions is true.

����� y = code(e,v);

��$��

�#��$��

�%���+� If none of the K expressions is true, the new variable is assigned the
default value, which is given by the last element of v.

")�$�� let x1 = 0 /* column vector of original values */

 5

10

15

20;

let v = 1 /* column vector of new values */

2

3; /* the last element of v is the

 :: “default”

 */

e NxK matrix of 1’s and 0’s. Each column of this matrix is created
by a logical expression using “dot” conditional and boolean
operators. Each of these expressions should return a column
vector result. The columns are horizontally concatenated to
produce e. If more than one of these vectors contains a 1 in any
given row, the code function will terminate with an error
message.

v (K+1)x1 vector containing the values to be assigned to the new
variable.

y Nx1 vector containing the new values.
�����

Command Reference

code

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
e1 = (0 .lt x1) .and (x1 .le 5); /* expression 1

*/

e2 = (5 .lt x1) .and (x1 .le 25); /* expression 2

 */

e = e1~e2; /* concatenate e1 & e2 to make a 1,0

:: mask with one less column than the

:: number of new values in v.

*/

y = code(e,v);

 (column vector of original values)

 (Note: v is a column vector)

For every row in e, if a 1 is in the first column, the first element of v is
used. If a 1 is in the second column, the second element of v is used, and

x1 5 1,[]

0

5

10

15

20

=

v 3 1,[] 1 2 3=

e 5 2,[]

0 0

1 0

0 1

0 1

0 1

=

y 5 1,[]

3

1

2

2

2

=

�����

GAUSS Language Reference

code

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
so on. If there are only zeros in the row, the last element of v is used. This
is the default value.

If there is more than one 1 in any row of e, the function will terminate
with an error message.

������ datatran.src

������� recode, substute
�����

Command Reference

code (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
code (dataloop)

���$��� Creates new variables with different values based on a set of logical
expressions.

����� code [[#]] [[$]] var [[default defval]] with
val_1 for expression_1,

val_2 for expression_2,

 .

 .

 .

val_n for expression_n;

��$��

%���+� If ‘$’ is specified, the new variable will be considered a character
variable. If ‘#’ or nothing is specified, the new variable will be considered
numeric.

The logical expressions must be mutually exclusive; i.e., only one may
return TRUE for a given row (observation).

Any variables referenced must already exist, either as elements of the
source data set, as externs, or as the result of a previous make, vector,
or code statement.

If no default value is specified, 999 is used.

var literal, the new variable name.
defval scalar, the default value if none of the expressions are

TRUE.
val scalar, value to be used if corresponding expression is

TRUE.
expression logical scalar-returning expression that returns nonzero

TRUE or zero FALSE.
�����

GAUSS Language Reference

code (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� code agecat default 5 with

1 for age < 21,

2 for age >= 21 and age < 35,

3 for age >= 35 and age < 50,

4 for age >= 50 and age < 65;

code $ sex with

“MALE” for gender == 1,

“FEMALE” for gender == 0;

������� recode
�����

Command Reference

color

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
color

���$��� Set pixel, text, background color, or VGA palette color registers.

����� y = color(cv)

��$��

#��$��

������	�	�� DOS

[1] pixel color

[2] text color

[3] ignored

UNIX 3.2 only

color affects the active graphic panel. X supports foreground and
background colors. The color command makes no distinction between
text and pixel colors; both affect the foreground color of the active
graphic panel. If both a pixel color and text color are specified, the pixel
color will be ignored, and the text color will be used to set the foreground
color. Thus:

[1] foreground

or

[1] ignored

cv scalar, 2x1 or 3x1 vector of color values or Nx4 matrix of palette
color values. See Portability, below, for platform specifics.

If the input vector is smaller than 3x1 or the corresponding
element in the input vector is -1, the corresponding color will be
left unchanged.

If the input is an Nx4 matrix, it will initialize the VGA palette
(DOS) or active graphic panel’s colormap (UNIX) with user-
defined RGB colors interpreted as follows:

[N,1] palette register index 0-255
[N,2] red value 0-63
[N,3] green value 0-63
[N,4] blue value 0-63

y vector, or Nx4 matrix the same size as the input which contains
the original color values or palette values.
�����

GAUSS Language Reference

color

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
[2] foreground

or

[1] ignored

[2] foreground

[3] background

OS/2, Windows, UNIX 3.5+

This function is not supported under OS/2 or Windows.

%���+� This changes the window colors for your program’s output. The editor
and interactive mode will not be affected.

See “Colors Appendix” on page B-1 for a color value table.

Under DOS, the VGA color palette registers may be set only if the display
adapter has been already been initialized to VGA graphics mode 19
(320x200, 256 colors) with the setvmode command. The registers will
retain the new values until the adapter is reset to text mode, which resets
the palette to the default VGA colors.

This function is useful for obtaining 64 shades of a single color and/or
mixing colors to user-specification.

������� graph, line, setvmode
�����

Command Reference

cols, colsf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cols, colsf

���$��� cols returns the number of columns in a matrix.

colsf returns the number of columns in a GAUSS data (.dat) file or
GAUSS matrix (.fmt) file.

����� y = cols(x);
yf = colsf(fh);

��$��

�#��$��

%���+� If x is an empty matrix, rows(x) and cols(x) return 0.

For colsf, the file must be open.

")�$�� x = rndn(100,3);

y = cols(x);

y = 3.000000

create fp = myfile with x,10,4;

b = colsf(fp);

b = 10.000000

������� rows, rowsf, show, lshow

x any valid expression that returns a matrix.
fh file handle of an open file.

y number of columns in x.
yf number of columns in the file that has the handle fh.
����	

GAUSS Language Reference

comlog

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
comlog

���$��� Controls logging of interactive mode commands to a disk file.

����� comlog [[file=filename]] [[on|off|reset]] ;

��$��

%���+� Interactive mode statements are always logged into the file specified in
the log_file configuration variable, regardless of the state of
comlog.

The command comlog file=filename selects the file but does not turn
on logging.

The command comlog off will turn off logging. The filename will
remain the same. A subsequent comlog on will cause logging to
resume. A subsequent comlog reset will cause the existing contents
of the log file to be destroyed and a new file created.

The command comlog by itself will cause the name and status of the
current log file to be printed in the window.

In interactive mode under DOS, F10 will load the current log file into the
editor if logging is on. If logging is off, the default log file listed in the
log_file configuration variable will be loaded into the editor.

filename literal or ^string.

The file=filename subcommand selects the file to log
interactive mode statements to. This can be any legal file
name.

If the name of the file is to be taken from a string variable,
the name of the string must be preceded by the ^ (caret)
operator.

There is no default file name.
on,
off,
reset

literal, mode command:

on turns on command logging to the current log file.
If the file already exists, subsequent commands
will be appended.

off closes the log file and turns off command logging.
reset similar to the on subcommand, except that it resets

the log file by deleting any previous commands.
����

Command Reference

compile

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
compile

���$��� Compiles a source file to a compiled code file. See also “Compiler” in the
User’s Guide.

����� compile source fname;

��$��

%���+� The source file will be searched for in the src_path if the full path is
not specified and it is not present in the current directory.

The source file is a regular DOS text file containing a GAUSS program.
There can be references to global symbols, Run-Time Library references,
etc.

If there are library statements in source, they will be used during the
compilation to locate various procedures and symbols used in the
program. Since all of these library references are resolved at compile
time, the library statements are not transferred to the compiled file.
The compiled file can be run without activating any libraries.

If you do not want extraneous matter saved in the compiled image, put a
new at the top of the source file or execute a new from interactive level
before compiling.

The program saved in the compiled file can be run with the run
command. If no extension is given, the run command will look for a file
with the correct extension for the version of GAUSS. The src_path
will be used to locate the file if the full path name is not given and it is not
located on the current directory.

When the compiled file is run, all previous symbols and procedures are
deleted before the program is loaded. It is therefore unnecessary to
execute a new before run’ning a compiled file.

If you want line number records in the compiled file you can put a
#lineson statement in the source file or turn line tracking on from the
Options menu.

Do not try to include compiled files with #include.

source literal or ^string, the name of the file to be compiled.
fname literal or ^string, optional, the name of the file to be created. If

not given, the file will have the same filename and path as
source. It will have a .gcg extension.
�����

GAUSS Language Reference

compile

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� compile qxy.e;

In this example, the src_path would be searched for qxy.e, which
would be compiled to a file called qxy.gcg on the same subdirectory qxy.e
was found.

compile qxy.e xy;

In this example, the src_path would be searched for qxy.e which
would be compiled to a file called xy.gcg on the current subdirectory.

������� run, use, saveall
�����

Command Reference

complex

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
complex

���$��� Converts a pair of real matrices to a complex matrix.

����� z = complex(xr,xi);

��$��

�#��$��

�")�$��

t = complex(x,y);

������� imag, real

xr NxK real matrix, the real elements of z.
xi NxK real matrix or scalar, the imaginary elements of z.

z NxK complex matrix.

x = { 4 6 ,

 9 8 };

y = { 3 5 ,

1 7 };

t 4.0000000 3.0000000i+ 6.0000000 5.0000000i+

9.0000000 1.0000000i+ 8.0000000 7.0000000i+
=

�����

GAUSS Language Reference

con

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
con

���$��� Requests input from the keyboard, and returns it in a matrix.

����� x = con(r,c);

��$��

�#��$��

�%���+� Enter ? to get a help screen at the con function prompt. The following
commands are available:

r scalar, row dimension of matrix.
c scalar, column dimension of matrix.

x RxC matrix.

u Up one row U First row
d Down one row D Last row
l Left one column L First column
r Right one column R Last column

t First element
b Last element
g #, # Goto element
g # Goto element of vector

h Move horizontally, default
v Move vertically
\ Move diagonally

s Show size of matrix
n Display element as numeric, default
c Display element as character

e exp(1)
p pi
. missing value

? help
�����

Command Reference

con

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Use a leading single quote for character input.

������� cons, let, load

x exit
�����

GAUSS Language Reference

cond

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cond

���$��� This procedure will compute the condition number of a matrix using the
singular value decomposition.

����� c = cond(x);

��$��

�#��$��

�")�$��

y = cond(x);

y = 9.8436943

������ svd.src

x NxK matrix.

c scalar, an estimate of the condition number of x. This equals the
ratio of the largest singular value to the smallest. If the smallest
singular value is zero or not all of the singular values can be
computed, the return value is 10300.

x = { 4 2 6,

 8 5 7,

 3 8 9 };
�����

Command Reference

conj

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
conj

���$��� Returns the complex conjugate of a matrix.

����� y = conj(x);

��$��

#��$��

%���+� Compare conj with the transpose (′) operator.

")�$��

y = conj(x);

x NxK matrix.

y NxK matrix, the complex conjugate of x.

x = { 1+9i 2,

 4+4i 5i,

 7i 8-2i };

x
1.0000000 9.0000000i+ 2.0000000

4.0000000 4.0000000i+ 0.0000000 5.0000000i+

0.0000000 7.0000000i+ 8.0000000 2.0000000i–

=

y
1.0000000 9.0000000i– 2.0000000

4.0000000 4.0000000i– 0.0000000 5.0000000i–

0.0000000 7.0000000i– 8.0000000 2.0000000i+

=

�����

GAUSS Language Reference

cons

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cons

���$��� Retrieves a character string from the keyboard.

����� x = cons;

#��$�� The characters entered from the keyboard. The output will be of type
string.

%���+� If you are working in terminal mode GAUSS will not “see’’ any input
until you press ENTER. x is assigned the value of a character string typed
in at the keyboard. The program will pause to accept keyboard input. The
maximum length of the string that can be entered is 254 characters. The
program will resume execution when the ENTER key is pressed. The
standard DOS editing keys will be in effect.

")�$�� x = cons;

At the cursor enter:

probability

x = “probability”

������� con
�����

Command Reference

continue

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
continue

���$��� Jumps to the top of a do or for loop.

����� continue;

%���+� This command works just like in C.

")�$�� x = rndn(4,4);

r = 0;

do while r < rows(x);

r = r + 1;

c = 0;

do while c < cols(x); /* continue jumps here */

c = c + 1;

if c == r;

continue;

endif;

x[r,c] = 0;

endo;

endo;

x

1.032195– 0000000 0.000000 0.000000

0.000000 1.033763– 0.000000 0.000000
0.000000 0.000000 0.061205 0.000000

0.000000 0.000000 0.000000 0.225936–

=

����	

GAUSS Language Reference

contour

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
contour

���$��� To graph a matrix of contour data.

 	���� pgraph

����� contour(x,y,z);

��$��

��������$��

%���+� A vector of evenly spaced contour levels will be generated automatically
from the z matrix data. Each contour level will be labeled. For unlabeled
contours, use ztics.

To specify a vector of your own unequal contour levels, set the vector
_plev before calling contour.

To specify your own evenly spaced contour levels, see ztics.

������ pcontour.src

������� surface

x 1xK vector, the X axis data. K must be odd.
y Nx1 vector, the Y axis data. N must be odd.
z NxK matrix, the matrix of height data to be plotted.

_plev Kx1 vector, user-defined contour levels for contour.
Default 0.

_pzclr Nx1 or Nx2 vector. This controls the Z level colors. See
surface for a complete description of how to set this
global.
����

Command Reference

conv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
conv

���$��� Computes the convolution of two vectors.

����� c = conv(b,x,f,l);

��$��

�#��$��

�%���+� If x and b are vectors of polynomial coefficients, this is the same as
multiplying the two polynomials.

")�$�� x = { 1,2,3,4 };

y = { 5,6,7,8 };

z1 = conv(x,y,0,0);

z2 = conv(x,y,2,5);

b Nx1 vector.
x Lx1 vector.
f scalar, the first convolution to compute.
l scalar, the last convolution to compute.

c Qx1 result, where Q = (l - f + 1) .
If f is 0, the first to the l’th convolutions are computed. If l is 0,
the f’th to the last convolutions are computed. If f and l are both
zero, all the convolutions are computed.

z1

5

16

34

60

61

52

32

=

�����

GAUSS Language Reference

conv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� polymult

z2

16

34

60

61

=

�����

Command Reference

coreleft

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
coreleft

���$��� Returns the amount, in bytes, of free workspace memory.

����� y = coreleft;

#��$��

�����	�	�� DOS only

All others will return the coreleft value specified in the GAUSS
configuration (.cfg) file.

%���+� The amount of free memory is dynamic and can change rapidly as
expressions and procedures are being executed. coreleft returns the
amount of workspace memory free at the time it is called. Workspace
memory is used for storing matrices, strings, procedures, and for
manipulating matrices and strings.

This function can be used to write programs that automatically adjust
their use of memory so they do not crash with the “Insufficient memory”
error if they are used on machines with less free memory than the one
used for development, or if the size of the data used becomes larger. A
common use is to adjust the number of rows that are read per iteration of a
read loop in programs that access data from a disk.

")�$�� open fp = myfile;

k = colsf(fp); /* columns in file */

fac = 4;

/* check amount of memory available */

nr = coreleft/(fac*k*8);

In this example, nr, the number of rows to read, is computed by taking
the number of bytes free (coreleft) divided by fac*k*8. fac is a
guesstimate of the number of copies of the data read each iteration that the
algorithm we are using will require, plus a little. k*8 is the number of
columns times the number of bytes per element.

������� dfree, new

y scalar, number of bytes free.
�����

GAUSS Language Reference

corrm, corrvc, corrx

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
corrm, corrvc, corrx

���$��� Computes a correlation matrix.

����� cx = corrm(m);
cx = corrvc(vc);
cx = corrx(x);

��$��

�#��$��

������� corr.src

������� momentd

m KxK moment (x′x) matrix. A constant term MUST have been the
first variable when the moment matrix was computed.

vc KxK variance-covariance matrix (of data or parameters).
x NxK matrix of data.

cx PxP correlation matrix. For corrm, P = K-1. For corrvc
and corrx, P = K.
�����

Command Reference

cos

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cos

���$��� Returns the cosine of its argument.

����� y = cos(x);

��$��

�#��$��

�%���+� For real matrices, x should contain angles measured in radians.

To convert degrees to radians, multiply the degrees by .

")�$�� x = { 0, .5, 1, 1.5 };

y = cos(x);

������� atan, atan2, pi

x NxK matrix.

y NxK matrix.

π
180

y

1.00000000

0.87758256

0.54030231

0.07073720

=

�����

GAUSS Language Reference

cosh

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cosh

���$��� Computes the hyperbolic cosine.

����� y = cosh(x);

��$��

�#��$��

�")�$�� x = { -0.5, -0.25, 0, 0.25, 0.5, 1 };

x = x * pi;

y = cosh(x);

������ trig.src

x NxK matrix.

y NxK matrix containing the hyperbolic cosines of the elements of
x.

x

1.570796–

0.785398–

0.000000

0.785398

1.570796

3.141593

=

y

2.509178

1.324609

1.000000

1.324609

2.509178

11.591953

=

�����

Command Reference

counts

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
counts

���$��� Count the numbers of elements of a vector that fall into specified ranges.

����� c = counts(x,v);

��$��

�#��$��

�%���+� If the maximum value of x is greater than the last element (the maximum
value) of v, the sum of the elements of the result, c, will be less than N, the
total number of elements in x.

If

x Nx1 vector containing the numbers to be counted.
v Px1 vector containing breakpoints specifying the ranges within

which counts are to be made. The vector v MUST be sorted in
ascending order.

c Px1 vector, the counts of the elements of x that fall into the regions:

x ≤ v[1],
v[1] < x ≤ v[2],

.

.

.

v[p-1] < x ≤ v[p].

x

1
2

3

4

5

6

7

8

9

and v
4

5

8

= =
�����

GAUSS Language Reference

counts

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
then

The first category can be a missing value if you need to count missings
directly. Also +∞ or -∞ are allowed as breakpoints. The missing value
must be the first breakpoint if it is included as a breakpoint and infinities
must be in the proper location depending on their sign. -∞ must be in the
[2,1] element of the breakpoint vector if there is a missing value as a
category as well, otherwise it has to be in the [1,1] element. If +∞ is
included, it must be the last element of the breakpoint vector.

")�$��

c = counts(x,v);

c
4

1

3

=

x = { 1, 3, 2,

4, 1, 3 };

v = { 0, 1, 2, 3, 4 };

c

0.0000000

2.0000000

1.0000000

2.0000000

1.0000000

=

�����

Command Reference

countwts

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
countwts

���$��� Returns a weighted count of the numbers of elements of a vector that fall
into specified ranges.

����� c = countwts(x,v,w);

��$��

�#��$��

That is, when x[i] falls into region j, the weight w[i] is added to the jth
counter.

�%���+� If any elements of x are greater than the last element of v, they will not be
counted.

Missing values are not counted unless there is a missing in v. A missing
value in v MUST be the first element in v.

x Nx1 vector, the numbers to be counted.
v Px1 vector, the breakpoints specifying the ranges within which

counts are to be made. This MUST be sorted in ascending order
(lowest to highest).

w Nx1 vector, containing weights.

c Px1 vector, the counts of the elements of x that fall into the regions:

x ≤ v[1],
v[1] < x ≤ v[2],

.

.

.

v[p-1] < x ≤ v[p].
����	

GAUSS Language Reference

countwts

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� x = { 1, 3, 2, 4, 1, 3 };

w = { .25, 1, .333, .1, .25, 1 };

v = { 0, 1, 2, 3, 4 };

c = countwts(x,v,w);

c

0.000000

0.500000

0.333000

2.00000

0.100000

=

����

Command Reference

create

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
create

���$��� Creates and opens a GAUSS data set for subsequent writing.

����� create [[vflag]] [[complex]] fh = filename with
 vnames,col,dtyp,vtyp;

create [[vflag]] [[complex]] fh = filename using comfile;

��$��

create... with...

vflag version flag.
-v89 supported for read
-v92 for read/write
-v96 for read/write

For details on the various versions, see “File I/O” in the User’s
Guide. The default format can be specified in gauss.cfg by
setting the dat_fmt_version configuration variable. If
dat_fmt_version is not set, the default is v96.

filename literal or ^string.

filename is the name to be given the file on the disk. The name
can include a path if the directory to be used is not the current
directory. This file will automatically be given the extension
.dat. If an extension is specified, the .dat will be overridden. If
the name of the file is to be taken from a string variable, the
name of the string must be preceded by the ^ (caret) operator.

vnames literal or ^string or ^character matrix.
vnames controls the names to be given to the columns of the
data file. If the names are to be taken from a string or character
matrix, the ^ (caret) operator must be placed before the name
of the string or character matrix. The number of columns
parameter, col, also has an effect on the way the names will be
created. See below and see the examples for details on the
ways names are assigned to a data file.
�����

GAUSS Language Reference

create

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
col scalar expression.
col is a scalar expression containing the number of columns in
the data file. If col is 0, the number of columns will be
controlled by the contents of vnames. If col is positive, the file
will contain col columns and the names to be given each
column will be created as necessary depending on the vnames
parameter. See the examples.

dtyp scalar expression.
dtyp is the precision used to store the data. This is a scalar
expression containing 2, 4, or 8, which is the number of bytes
per element.

2 signed integer
4 single precision
8 double precision

Data Type Digits Range

integer 4 -32768 ≤ X ≤ 32767

single 6-7 8.43x10−37 ≤ |X| ≤ 3.37x10+38

double 15-16 4.19x10−307 ≤ |X| ≤ 1.67x10+308

If the integer type is specified, numbers will be rounded to the
nearest integer as they are written to the data set. If the data to
be written to the file contains character data, the precision must
be 8 or the character information will be lost.

vtyp matrix, types of variables.
The types of the variables in the data set. If
rows(vtyp)*cols(vtyp) < col only the first element is used.
Otherwise nonzero elements indicate a numeric variable and
zero elements indicate character variables. vtyp is ignored for
v89 files.
�����

Command Reference

create

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z

create... using...

comfile literal or ^string.

comfile is the name of a command file that contains the
information needed to create the file. The default extension for
the command file is .gcf, which can be overridden.

There are three possible commands in this file:
numvar n str;
outvar varlist;
outtyp dtyp;

numvar and outvar are alternate ways of specifying the
number and names of the variables in the data set to be created.

When numvar is used, n is a constant which specifies the
number of variables (columns) in the data file and str is a
string literal specifying the prefix to be given to all the
variables. Thus:

numvar 10 xx;

says that there are 10 variables and that they are to be named
xx01 through xx10. The numeric part of the names will be
padded on the left with zeros as necessary so the names will
sort correctly:

xx1, ... xx9 1-9 names

xx01, ... xx10 10-99 names

xx001, ... xx100 100-999 names

xx0001, ... xx1000 1000-8100 names

If str is omitted, the variable prefix will be “X”.

When outvar is used, varlist is a list of variable names,
separated by spaces or commas. For instance:

outvar x1, x2, zed;

specifies that there are to be 3 variables per row of the data set,
and that they are to be named x1, x2, zed, in that order.
outtyp specifies the precision. It can be a constant: 2, 4, or 8, or
it can be a literal: I, F, or D. For an explanation of the available
data types, see dtyp in create... with..., previously.
The outtyp statement does not have to be included. If it is not,
then all data will be stored in 4 bytes as single precision floating
point numbers.
�����

GAUSS Language Reference

create

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�#��$��

�%���+� If the complex flag is included, the new data set will be initialized to
store complex number data. Complex data is stored a row at a time, with
the real and imaginary halves interleaved, element by element.

")�$�� let vnames = age sex educat wage occ;

create f1 = simdat with ^vnames,0,8;

obs = 0;

nr = 1000;

do while obs < 10000;

data = rndn(nr,colsf(f1));

if writer(f1,data) /= nr;

print “Disk Full”;

end;

endif;

obs = obs+nr;

endo;

closeall f1;

uses create... with... to create a double precision data file called
simdat.dat on the default drive with 5 columns. The writer
command is used to write 10000 rows of Normal random numbers into
the file. The variables (columns) will be named: AGE, SEX, EDUCAT,
WAGE, OCC.

Following are examples of the variable names that will result when using
a character vector of names in the argument to the create function.

fh scalar.
fh is the file handle which will be used by most commands
to refer to the file within GAUSS. This file handle is
actually a scalar containing an integer value that uniquely
identifies each file. This value is assigned by GAUSS
when the create (or open) command is executed.
�����

Command Reference

create

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vnames = { AGE PAY SEX JOB };

typ = { 1, 1, 0, 0 };

create fp = mydata with ^vnames,0,2,typ;

The names in this example will be: AGE PAY SEX JOB

AGE and PAY are numeric variables, SEX and JOB are character
variables.

create fp = mydata with ^vnames,3,2;

The names will be: AGE PAY SEX

create fp = mydata with ^vnames,8,2;

The names will now be: AGE PAY SEX JOB1 JOB2 JOB3 JOB4
JOB5

If a literal is used for the vnames parameter, the number of columns
should be explicitly given in the col parameter and the names will be
created as follows:

create fp = mydata with var,4,2;

giving the names: var1 var2 var3 var4

The next example assumes a command file called comd.gcf containing
the following lines created using a text editor:

outvar age, pay, sex;

outtyp i;

Then the following could be used to write 100 rows of random integers
into a file called smpl.dat in the subdirectory called /gauss/data:

filename = “/gauss/data/smpl”;

create fh = ^filename using comd;

x = rndn(100,3)*10;

if writer(fh,x) /= rows(x);

print Disk Full;

end;

endif;

closeall fh;
�����

GAUSS Language Reference

create

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
For platforms using the backslash as a path separator, remember that two
backslashes (\\) are required to enter one backslash inside double quotes.
This is because a backslash is the escape character used to embed special
characters in strings.

������� open, readr, writer, eof, close, output, iscplxf
�����

Command Reference

crossprd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
crossprd

���$��� Computes the cross-products (vector products) of sets of 3x1 vectors.

����� z = crossprd(x,y);

��$��

�#��$��

�%���+� The cross-product vector z is orthogonal to both x and y. sumc(x.*z)
and sumc(y.*z) will be Kx1 vectors all of whose elements are 0
(except for rounding error).

")�$��

z = crossprd(x,y);

������ crossprd.src

x 3xK matrix, each column is treated as a 3x1 vector.
y 3xK matrix, each column is treated as a 3x1 vector.

z 3xK matrix, each column is the cross-product (sometimes
called vector product) of the corresponding columns of x
and y.

x = { 10 4,

 11 13,

 14 13 };

y = { 3 11,

 5 12,

 7 9 };

z
7.0000000 39.000000–

28.000000– 107.00000

17.000000 95.000000–

=

�����

GAUSS Language Reference

crout

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
crout

���$��� Computes the Crout decomposition of a square matrix without row
pivoting, such that: X = LU.

����� y = crout(x);

��$��

�#��$��

�%���+� Since it does not do row pivoting, it is intended primarily for teaching
purposes. (See croutp for a decomposition with pivoting.)

")�$��

y = crout(x);

L = lowmat(y);

U = upmat1(y);

x NxN square nonsingular matrix.

y NxN matrix containing the lower (L) and upper (U)
matrices of the Crout decomposition of x. The main
diagonal of y is the main diagonal of the lower matrix L.
The upper matrix has an implicit main diagonal of ones.
Use lowmat and upmat1 to extract the L and U matrices
from y.

X = { 1 2 -1,

 2 3 -2,

 1 -2 1 };

y
1 2 1–

2 1– 0

1 4– 2

=

L
1 0 0

2 1– 0

1 4– 2

=

�����

Command Reference

crout

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� croutp, chol, lowmat, lowmat1, lu, upmat, upmat1

U
1 2 1–

0 1 0

0 0 1

=

����	

GAUSS Language Reference

croutp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
croutp

���$��� Computes the Crout decomposition of a square matrix with partial (row)
pivoting.

����� y = croutp(x);

��$��

�#��$��

�")�$�� This example illustrates a procedure for extracting L and U of the
permuted x matrix. It continues by sorting the result of LU to compare
with the original matrix x.

y = croutp(x);

r = rows(y); /* the number of rows of y */

indx = y[r,.]’; /* get the index vector */

z = y[indx,.]; /* z is indexed RxR matrix y */

L = lowmat(z); /* obtain L and U of permuted */

 /* matrix X */

U = upmat1(z);

q = sortc(indx~(L*U),1); /* sort L*U against */

 /* index */

x2 = q[.,2:cols(q)]; /* remove index column */

x NxN square nonsingular matrix.

y (N+1)xN matrix containing the lower (L) and upper (U) matrices
of the Crout decomposition of a permuted x. The N+1 row of the
matrix y gives the row order of the y matrix. The matrix must be
reordered prior to extracting the L and U matrices. Use lowmat
and upmat1 to extract the L and U matrices from the reordered
y matrix.

X = { 1 2 -1,

 2 3 -2,

 1 -2 1 };
����

Command Reference

croutp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
X
1 2 1–

2 3 2–

1 2– 1

=

y

1 0.5 0.2857

2 1.5 1–

1 3.5– 0.5714–

2 3 1

=

r 4=

indx
2

3

1

=

z
2 1.5 1–

1 3.5– 0.5714–
1 0.5 0.2857

=

L
2 0 0

1 3.5– 0

1 0.5 0.2857

=

U
1 1.5 1–

0 1 0.5714–

0 0 1

=

q
1 1 2 1–

2 2 3 2–

3 1 2– 1

=

�����

GAUSS Language Reference

croutp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� crout, chol, lowmat, lowmat1, lu, upmat, upmat1

x2
1 2 1–

2 3 2–

1 2– 1

=

�����

Command Reference

csrcol, csrlin

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
csrcol, csrlin

���$��� Returns the position of the cursor.

����� y = csrcol;
y = csrlin;

�����	�	�� UNIX 3.2 only

csrcol returns the cursor column for the active graphic panel. For Text
graphic panels, this value is the cursor column with respect to the text
buffer. For TTY graphic panels, this value is the cursor column with
respect to the current output line, i.e., it will be the same whether the text
is wrapped or not. For PQG graphic panels, this value is meaningless.

csrlin returns the cursor line for the active graphic panel. For Text
graphic panels, this value is the cursor row with respect to the text buffer.
For TTY graphic panels, this value is the current output line number (i.e.,
the number of lines logged + 1). For PQG graphic panels, this value is
meaningless.

UNIX 3.5+

csrcol and csrlin always return 1.

OS/2, Windows

csrcol returns the cursor column with respect to the current output line,
i.e., it will return the same value whether the text is wrapped or not.
csrlin returns the cursor line with respect to the top line in the graphic
panel.

DOS

Under DOS, columns are usually numbered 1-80, rows are usually
numbered 1-25. setvmode will return the current window dimensions.

%���+� y will contain the current column or row position of the cursor in the
graphic panel. The upper left corner is (1,1).

csrcol returns the column position of the cursor. csrlin returns the
row position.

The locate statement allows the cursor to be positioned at a specific
row and column.

")�$�� r = csrlin;
�����

GAUSS Language Reference

csrcol, csrlin

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
c = csrcol;

cls;

locate r,c;

In this example the window is cleared without affecting the cursor
position.

������� cls, locate, lpos
�����

Command Reference

csrtype

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
csrtype

���$��� To set the cursor shape.

����� old = csrtype(mode);

�����	�	�� UNIX

This function is not supported in terminal mode.

OS/2, Windows

This function is not supported under OS/2 or Windows.

��$��

#��$��

�%���+� Under DOS, this function will set the same cursor shape that GAUSS is
already using for its three modes.

")�$�� x = csrtype(2);

�������� csrcol, csrlin

mode scalar, cursor type to set.
DOS
0 cursor off
1 normal cursor
2 large cursor
UNIX 3.2
0 cursor off
1 normal cursor
2 large cursor
3 triangular cursor

old scalar, original cursor type.
�����

GAUSS Language Reference

cumprodc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cumprodc

���$��� Computes the cumulative products of the columns of a matrix.

����� y = cumprodc(x);

��$��

�#��$��

�%���+� This is based on the recursive series recsercp. recsercp could be
called directly as follows:

recserp(x,zeros(1,cols(x)))

to accomplish the same thing.

")�$��

y = cumprodc(x);

������ cumprodc.src

������� cumsumc, recsercp, recserar

x NxK matrix.

y NxK matrix containing the cumulative products of the columns
of x.

x = { 1 -3,

 2 2,

 3 -1 };

y
1.00 3.00–
2.00 6.00–

6.00 6.00

=

�����

Command Reference

cumsumc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cumsumc

���$��� Computes the cumulative sums of the columns of a matrix.

����� y = cumsumc(x);

��$��

�#��$��

�%���+� This is based on the recursive series function recserar. recserar
could be called directly as follows:

recserar(x,x[1,.], ones(1,cols(x)))

to accomplish the same thing.

")�$��

y = cumsumc(x);

������ cumsumc.src

������� cumprodc, recsercp, recserar

x NxK matrix.

y NxK matrix containing the cumulative sums of the columns of x.

x = { 1 -3,

 2 2,

 3 -1 };

y
1 3–
3 1–

6 2–

=

�����

GAUSS Language Reference

curve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
curve

���$��� Computes a one-dimensional smoothing curve.

������ { u,v } = curve(x,y,d,s,sigma,G);

��$��

#��$��

%���+� sigma contains the tension factor. This value indicates the curviness
desired. If sigma is nearly zero (e.g., .001), the resulting curve is
approximately the tensor product of cubic curves. If sigma is large, (e.g.,
50.0) the resulting curve is approximately bi-linear. If sigma equals zero,
tensor products of cubic curves result. A standard value for sigma is
approximately 1.

G is the grid size factor. It determines the fineness of the output grid. For
G = 1, the input and output vectors will be the same size. For G = 2, the
output grid is twice as fine as the input grid, i.e., u and v will have twice as
many rows as x and y.

������ spline.src

x Kx1 vector, x-abscissae (x-axis values).
y Kx1 vector, y-ordinates (y-axis values).
d Kx1 vector or scalar, observation weights.
s scalar, smoothing parameter. If s = 0, curve performs an

interpolation. If d contains standard deviation estimates, a
reasonable value for s is K.

sigma scalar, tension factor.
G scalar, grid size factor.

u K*Gx1 vector, x-abscissae, regularly spaced.
v K*Gx1 vector, y-ordinates, regularly spaced.
�����

Command Reference

cvtos

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cvtos

���$��� Converts a character vector to a string.

����� s = cvtos(v);

��$��

#��$��

%���+� cvtos in effect appends the elements of v together into a single string.

cvtos was written to operate in conjunction with stocv. If you pass it a
character vector that does not conform to the output of stocv, you may
get unexpected results. For example, cvtos DOES NOT look for 0
terminating bytes in the elements of v; it assumes every element except
the last is 8 characters long. If this is not true, there will be 0’s in the
middle of s.

If the last element of v does not have a terminating 0 byte, cvtos
supplies one for s.

")�$�� let v = { “Now is t” “he time ” “for all ” “good

men” };

s = cvtos(v);

s = “Now is the time for all good men”

������� stocv, vget, vlist, vput, vread

v Nx1 character vector, to be converted to a string.

s string, contains the contents of v.
����	

GAUSS Language Reference

datalist

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
datalist

���$��� List selected variables from a data set.

����� datalist dataset [[var1 [[var2...]]]] ;

��$��

��������$��

%���+� The variables are listed in an interactive mode. As many rows and
columns as will fit in the window are displayed. You can use the cursor
keys to pan and scroll around in the listing.

")�$�� datalist freq age sex pay;

This command will display the variables age, sex, and pay from the
data set freq.dat.

������ datalist.src

dataset literal, name of the dataset.
var# literal, the names of the variables to list.

_range global scalar, the range of rows to list. The default is all
rows.

_miss global scalar, controls handling of missing values.

0 display rows with missing values.

1 do not display rows with missing values.

The default is 0.
_prec global scalar, the number of digits to the right of the

decimal point to display. The default is 3.
����

Command Reference

dataloop (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dataloop (dataloop)

���$��� Specifies the beginning of a data loop.

����� dataloop infile outfile;

��$��

#��$��

%���+� The statements between the dataloop... endata commands are
assumed to be metacode to be translated at compile time. The data from
infile is manipulated by the specified statements, and stored to the data set
outfile. Case is not significant within the dataloop... endata
section, except for within quoted strings. Comments can be used as in any
GAUSS code.

")�$�� src = “source”;

dataloop ^src dest;

make newvar = x1 + x2 + log(x3);

x6 = sqrt(x4);

keep x6, x5, newvar;

endata;

Here, src is a string variable requiring the caret operator (^) , while
dest is a string literal.

infile string variable or literal, the name of the source data set.

outfile string variable or literal, the name of the output data set.
�����

GAUSS Language Reference

date

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
date

���$��� Returns the current date in a 4-element column vector, in the order: year,
month, day, and hundredths of a second since midnight.

����� y = date;

%���+� The hundredths of a second since midnight can be accessed using hsec.

")�$�� print date;

1998.0000

6.0000000

15.000000

4011252.7

������� time, timestr, ethsec, hsec, etstr
�����

Command Reference

datestr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
datestr

���$��� Returns a date in a string.

����� str = datestr(d);

��$��

�#��$��

�")�$�� d = { 1998, 6, 15, 0 };

y = datestr(d);

print y;

6/15/98

������ time.src

������� date, datestring, datestrymd, time, timestr,
ethsec

d 4x1 vector, like the date function returns. If this is 0, the
date function will be called for the current system date.

str 8 character string containing current date in the form: mo/
dy/yr
�����

GAUSS Language Reference

datestring

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
datestring

���$��� Returns a date in a year-2000-compliant string.

����� str = datestring(d);

��$��

�#��$��

")�$�� y = datestring(0);

print y;

6/15/1998

������ time.src

������� date, datestr, datestrymd, time, timestr, ethsec

d 4x1 vector, like the date function returns. If this is 0, the
date function will be called for the current system date.

str 10 character string containing current date in the form:
mm/dd/yyyy
�����

Command Reference

datestrymd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
datestrymd

���$��� Returns a date in a string.

����� str = datestrymd(d);

��$��

�#��$��

�")�$�� d = { 1998, 6, 15, 0 };

y = datestrymd(d);

print y;

19980615

������ time.src

������� date, datestr, datestring, time, timestr, ethsec

d 4x1 vector, like the date function returns. If this is 0, the
date function will be called for the current system date.

str 8 character string containing current date in the form:
yyyymmdd
�����

GAUSS Language Reference

dayinyr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dayinyr

���$��� Returns day number in the year of a given date.

����� daynum = dayinyr(dt);

��$��

�#��$��

�")�$�� x = { 1998, 6, 15, 0 };

y = dayinyr(x);

print y;

166.00000

������� time.src

������ _isleap

dt 3x1 or 4x1 vector, date to check. The date should be in the form
returned by date.

daynum scalar, the day number of that date in that year, 1-366.
�����

Command Reference

dayofweek

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dayofweek

���$��� Returns day of week.

������ d = dayofweek(a);

��$��

�#��$��

�%���+� The DT scalar format is a double precision representation of the date and
time. In the DT scalar format, the number

20010421183207

represents 18:32:07 or 6:32:07 PM on April 21, 2001.

������ time.src

a Nx1 vector, dates in DT format.

d Nx1 vector, integers indicating day of week of each date:
[1] Sunday
[2] Monday
[3] Tuesday
[4] Wednesday
[5] Thursday
[6] Friday
[7] Saturday
�����

GAUSS Language Reference

debug

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
debug

���$��� Runs a program under the source level debugger.

����� debug filename;

��$��

%���+� See “Debugging” in the User’s Guide.

filename Literal or name of file to debug.
�����

Command Reference

declare

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z

declare

���$��� To initialize matrices and strings at compile time.

����� declare [[type]] symbol [[aop clist]] ;

��$��

%���+� The declare syntax is similar to the let statement.

declare generates no executable code. This is strictly for compile time
initialization. The data on the right-hand side of the equal sign must be
constants. No expressions or variables are allowed.

declare statements are intended for initialization of global matrices
and strings that are used by procedures in a library system.

It is best to place declare statements in a separate file from procedure
definitions. This will prevent redefinition errors when rerunning the same
program without clearing your workspace.

Complex numbers can be entered by joining the real and imaginary parts
with a sign (+ or -); there should be no spaces between the numbers and

type optional literal, specifying the type of the symbol.
matrix

string

if type is not specified, matrix is assumed.
symbol the name of the symbol being declared.
aop the type of assignment to be made.

= if not initialized, initialize.
if already initialized, reinitialize.

!= if not initialized, initialize.
if already initialized, reinitialize.

:= if not initialized, initialize.
 if already initialized, redefinition error.

?= if not initialized, initialize.
if already initialized, leave as is.

If aop is specified, clist must be also.
clist a list of constants to assign to symbol.

If aop clist is not specified, symbol is initialized as a scalar 0 or
a null string.
����	

GAUSS Language Reference

declare

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
the sign. Numbers with no real part can be entered by appending an ‘i’ to
the number.

There should be only one declaration for any symbol in a program.
Multiple declarations of the same symbol should be considered a
programming error. When GAUSS is looking through the library to
reconcile a reference to a matrix or a string, it will quit looking as soon as
a symbol with the correct name is found. If another symbol with the same
name existed in another file, it would never be found. Only the first one in
the search path would be available to programs.

Here are some of the possible uses of the three forms of declaration:

CTRL+W controls the declare statement warning level. If declare
warnings are on, you will be warned whenever a declare statement
encounters a symbol that is already initialized. This happens when you
declare a symbol that is already initialized when declare warnings are
turned on:

If declare warnings are off, no warnings are given for the != and ?=
cases.

")�$�� declare matrix x,y,z;

!=, = Interactive programming or any situation where a global
by the same name will probably be listed in the symbol
table when the file containing the declare statement is
compiled. The symbol will be reset.
This allows mixing declare statements with the
procedure definitions that reference the global matrices
and strings, or placing them in your main file.

:= Redefinition is treated as an error. This will not allow you
to assign one symbol with another value already in your
program. Rename one of them.
Place declare statements in a separate file from the rest
of your program and procedure definitions.

?= Interactive programming where some global defaults were
set when you started and you do not want them reset for
each successive run even if the file containing the
declare’s gets recompiled. Be careful when using.

declare != Reinitialize and warn.
declare := Crash with fatal error.
declare ?= Leave as is and warn.
����

Command Reference

declare

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
x = 0

y = 0

z = 0

declare string x = “This string.”;

x = “This string.”

declare matrix x;

declare matrix x != { 1 2 3, 4 5 6, 7 8 9 };

declare matrix x[3,3] = 1 2 3 4 5 6 7 8 9;

declare matrix x[3,3] = 1;

declare matrix x[3,3];

x 0=

x
1 2 3

4 5 6

7 8 9

=

x
1 2 3

4 5 6

7 8 9

=

x
1 1 1

1 1 1

1 1 1

=

x
0 0 0

0 0 0

0 0 0

=

�����

GAUSS Language Reference

declare

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
declare matrix x = 1 2 3 4 5 6 7 8 9;

declare matrix x = dog cat;

declare matrix x = “dog” “cat”;

������� let, external

x

1

2

3

4

5

6

7

8

9

=

x DOG

CAT
=

x dog

cat
=

�����

Command Reference

delete

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
delete

���$��� Deletes global symbols from the symbol table.

����� delete [[-flags]] [[symbol]]1 [[symbol2]] [[symbol3]] ;

��$��

%���+� This completely and irrevocably deletes symbols from GAUSS’s memory
and workspace.

Flags must be preceded by a slash (e.g., -pfk). If the n (no pause) flag is
used, you will not be asked for confirmation for each symbol.

This command is supported only from interactive level. Since the
interpreter executes a compiled pseudo-code, this command would
invalidate a previously compiled code image and therefore would destroy
any program it was a part of. If any symbols are deleted, all procedures,
keywords, and functions with global references will be deleted as well.

")�$�� print x;

96.000000

6.0000000

14.000000

3502965.9

flags specify the type(s) of symbols to be deleted
p procedures
k keywords
f fn functions
m matrices
s strings
g only symbols with global references
l only symbols with all local references
n no pause for confirmation

symbol literal, name of symbol to be deleted. If symbol
ends in an asterisk, all symbols matching the
leading characters will be deleted.
�����

GAUSS Language Reference

delete

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
delete -m x;

At the Delete? [Yes No Previous Quit] prompt, enter y.

show x;

x no longer exists.
�����

Command Reference

delete (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
delete (dataloop)

���$��� Removes specific rows in a data loop based on a logical expression.

����� delete logical expression;

%���+� Deletes only those rows for which logical expression is TRUE. Any
variables referenced must already exist, either as elements of the source
data set, as externs, or as the result of a previous make, vector, or
code statement.

GAUSS expects logical expression to return a row vector of 1’s and 0’s.
The relational and other operators (e.g., <) are already interpreted in terms
of their dot equivalents (.<), but it is up to the user to make sure that
function calls within logical expression result in a vector.

")�$�� delete age < 40 or sex == ‘FEMALE’;

������� select
�����

GAUSS Language Reference

delif

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
delif

���$��� Deletes rows from a matrix. The rows deleted are those for which there is
a 1 in the corresponding row of e.

����� y = delif(x,e);

��$��

�#��$��

�%���+� The input e will usually be generated by a logical expression using dot
operators. For instance:

y = delif(x, x[.,2] .> 100);

will delete all rows of x whose second element is greater than 100. The
remaining rows of x will be assigned to y.

")�$��

 /* logical vector */

e = (x[.,1] .gt 0) .and (x[.,3] .lt 100);

y = delif(x,e);

Here is the resulting matrix y:

All rows for which the elements in column 1 are greater than 0 and the
elements in column 3 are less than 100 are deleted.

������ datatran.src

x NxK data matrix.
e Nx1 logical vector (vector of 0’s and 1’s).

y MxK data matrix consisting of the rows of y for which
there is a 0 in the corresponding row of e. If no rows
remain, delif will return a scalar missing.

x = { 0 10 20,

30 40 50,

60 70 80};

0 10 20
�����

Command Reference

delif

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� selif
�����

GAUSS Language Reference

denseSubmat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
denseSubmat

���$��� Returns dense submatrix of sparse matrix.

����� e = denseSubmat(x,r,c);

��$��

#��$��

%���+� If r or c are scalar zeros, all rows or columns will be returned.

������� sparse.src

������� sparseFd, sparseFp

x MxN sparse matrix.
r Kx1 vector, row indices.
c Lx1 vector, column indices.

e KxL dense matrix.
�����

Command Reference

design

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
design

���$��� Creates a design matrix of 0’s and 1’s from a column vector of numbers
specifying the columns in which the 1’s should be placed.

����� y = design(x);

��$��

�#��$��

�%���+� Note that x does not have to contain integers: it will be rounded to nearest
if necessary.

")�$�� x = { 1, 1.2, 2, 3, 4.4 };

y = design(x);

������ design.src

������� cumprodc, cumsumc, recserrc

x Nx1 vector.

y NxK matrix, where K = maxc(x); each row of y will
contain a single 1, and the rest 0’s. The one in the ith row
will be in the round(x[i,1]) column.

y

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=

����	

GAUSS Language Reference

det

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
det

���$��� Returns the determinant of a square matrix.

����� y = det(x);

��$��

�#��$��

�%���+� x may be any valid expression that returns a square matrix (number of
rows equals number of columns).

det computes a LU decomposition.

detl can be much faster in many applications.

")�$��

y = det(x);

������� detl

x NxN square matrix.

y determinant of x.

x = { 3 2 1,

0 1 -2,

1 3 4};

x
3 2 1

0 1 2–

1 3 4

=

y 25=
����

Command Reference

detl

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
detl

���$��� Returns the determinant of the last matrix that was passed to one of the
intrinsic matrix decomposition routines.

����� y = detl;

%���+� Whenever one of the following functions is executed, the determinant of
the matrix is also computed and stored in a system variable. This function
will return the value of that determinant and, because the value has been
computed in a previous instruction, this will require no computation.

The following functions will set the system variable used by detl:

")�$�� If both the inverse and the determinant of the matrix are needed, the
following two commands will return both with the minimum amount of
computation:

xi = inv(x);

xd = detl;

The function det(x) returns the determinant of a matrix using the Crout
decomposition. If you only want the determinant of a positive definite
matrix, the following code will be the fastest for matrices larger than
10x10:

call chol(x);

xd = detl;

chol(x)
crout(x)
croutp(x)
det(x)
inv(x)
invpd(x)
solpd(y,x) determinant of x

determinant of x when neither argument is a scalar y/x

or
determinant of x′x if x is not square
�����

GAUSS Language Reference

detl

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The Cholesky decomposition is computed and the result from that is
discarded. The determinant saved during that instruction is retrieved
using detl. This can execute up to 2.5 times faster than det(x) for
large positive definite matrices.

������� det
���	�

Command Reference

dfft

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dfft

���$��� Computes a discrete Fourier transform.

����� y = dfft(x);

��$��

�#��$��

�%���+� The transform is divided by N.

This uses a second-order Goertzel algorithm. It is considerably slower
than fft, but it may have some advantages in some circumstances. For
one thing, N does not have to be an even power of 2.

������ dfft.src

������� dffti, fft, ffti

x Nx1 vector.

y Nx1 vector.
���	�

GAUSS Language Reference

dffti

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dffti

���$��� Computes inverse discrete Fourier transform.

����� y = dffti(x);

��$��

�#��$��

�%���+� The transform is divided by N.

This uses a second-order Goertzel algorithm. It is considerably slower
than ffti, but it may have some advantages in some circumstances. For
one thing, N does not have to be an even power of 2.

������� dffti.src

������� fft, dffti, ffti

x Nx1 vector.

y Nx1 vector.
���	�

Command Reference

dfree (DOS only)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dfree (DOS only)

���$��� Returns the amount of room left on a diskette or hard disk.

����� y = dfree(drive);

��$��

�#��$��

������	�	�� All others return -1

%���+� Valid disk drive numbers are 0 = default, 1 = A, 2 = B, etc. If an error is
encountered, dfree will return -1.

������� coreleft

drive scalar, valid disk drive number.

y number of bytes free.
���	�

GAUSS Language Reference

diag

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
diag

���$��� Creates a column vector from the diagonal of a matrix.

����� y = diag(x);

��$��

�#��$��

�%���+� The matrix need not be square.

diagrv reverses the procedure and puts a vector into the diagonal of a
matrix.

")�$�� x = rndu(3,3);

y = diag(x);

������� diagrv

x NxK matrix.

y min(N,K)x1 vector.

x
0.660818 0.367424 0.302208

0.204800 0.077357 0.145755

0.712284 0.353760 0.642567

=

y
0.660818

0.077357

0.642567

=

���	�

Command Reference

diagrv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
diagrv

���$��� Inserts a vector into the diagonal of a matrix.

����� y = diagrv(x,v);

��$��

�#��$��

�%���+� diag reverses the procedure and pulls the diagonal out of a matrix.

")�$�� x = rndu(3,3);

v = ones(3,1);

y = diagrv(x,v);

������� diag

x NxK matrix.
v min(N,K) vector.

y NxK matrix equal to x with its principal diagonal elements equal
to those of v.

x
0.660818 0.367424 0.302208

0.204800 0.077357 0.145755

0.712284 0.353760 0.642567

=

v
1.000000

1.000000

1.000000

=

y
1.000000 0.367424 0.302208

0.204800 1.000000 0.145755

0.712284 0.353760 1.000000

=

���	�

GAUSS Language Reference

dlibrary

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dlibrary

���$��� Dynamically links and unlinks shared libraries.

����� dlibrary lib1 [lib2...];

dlibrary -a lib1 [lib2...];

dlibrary -d

dlibrary

��$��

%���+� If no flags are used, the DLL’s listed are linked into GAUSS and any
previously linked libraries are dumped. When you call dllcall, the
DLL’s will be searched in the order listed for the specified function. The
first instance of the function found will be called.

dlibrary with no arguments prints out a list of the currently linked
DLL’s. The order in which they are listed is the order in which they are
searched for functions.

dlibrary recognizes a default directory in which to look for dynamic
libraries. You can specify this by setting the variable dlib_path in
gauss.cfg. Set it to point to a single directory, not a sequence of

lib1 lib2... literal, the base name of the library or the pathed name of the
library.
dlibrary takes two types of arguments, “base” names and
file names. Arguments without any “\” path separators are
assumed to be library base names, and are expanded by
adding the suffix .dll. They are searched for in the default
dynamic library directory. Arguments that include “\” path
separators are assumed to be file names, and are not
expanded. Relatively pathed file names are assumed to be
specified relative to the current working directory, not
relative to the dynamic library directory.

-a append flag, the DLL’s listed are added to the current set of
DLL’s rather than replacing them. For search purposes, the
new DLL’s follow the already active ones. Without the -a
flag, any previously linked libraries are dumped.

-d dump flag, ALL DLL’s are unlinked and the functions they
contain are no longer available to your programs. If you use
dllcall to call one of your functions after executing a
dlibrary -d, your program will terminate with an error.
���	�

Command Reference

dlibrary

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
directories. A new case (case 24) has also been added to sysstate for
getting and setting this default.

GAUSS maintains its own DLL, gauss.dll. gauss.dll is listed
when you execute dlibrary with no arguments, and searched when
you call dllcall. By default, gauss.dll is searched last, after all
other DLL’s but you can force it to be searched earlier by listing it
explicitly in a dlibrary statement. gauss.dll is always active. It is
not unlinked when you execute dlibrary -d. gauss.dll is located
in the gauss.exe directory.

������� dllcall, sysstate-case 24
���		

GAUSS Language Reference

dllcall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dllcall

���$��� Calls functions located in dynamic libraries.

����� dllcall [-r] [-v] func[(arg1[,arg2...])];

dllcall works in conjunction with dlibrary. dlibrary is used to
link dynamic-link libraries (DLL’s) into GAUSS; dllcall is used to
access the functions contained in those DLL’s. dllcall searches the
DLL’s (see dlibrary for an explanation of the search order) for a
function named func, and calls the first instance it finds. The default DLL,
gauss.dll, is searched last.

��$��

%���+� func should be written to:

1. Take 0 or more pointers to doubles as arguments.

2. Take arugments either in a list of a vector.

3. Return an integer.

In C syntax, func should take one of the following forms:

1. int func (void);

2. int func (double *arg1[,double *arg2...]);

3. int func (double *argv[]);

dllcall can pass a list of up to 100 arguments to func; if it requires
more arguments than that, you MUST write it to take a vector of
arguments, and you MUST specify the -v flag when calling it. dllcall
can pass up to 1000 arguments in vector format. In addition, in vector
format dllcall appends a null pointer to the vector, so you can write

func the name of a function contained in a DLL (linked into GAUSS
with dlibrary). If func is not specified or cannot be located in
a DLL, dllcall will fail.

arg# arguments to be passed to func; optional. These must be
elementary variable; they cannot be expressions.

-r optional flag. If -r is specified, dllcall examines the value
returned by func, and fails if it is nonzero.

-v optional flag. Normally, dllcall passes parameters to func in
a list. If -v is specified, dllcall passes them in a vector. See
below for more details.
���	

Command Reference

dllcall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
func to take a variable number of arguments and just test for the null
pointer.

Arguments are passed to func by reference. This means you can send back
more than just the return value, which is usually jsut a success/failure
code. (It also means that you need to be careful not to overwrite the
contents of matrices or strings you want to preserve.) To return data from
func, simply set up one or more of its arguments as return matrices
(basically, by making them the size of what you intend to return), and
inside func assign the results to them before returning.

������� dlibrary, sysstate-case 24
���	�

GAUSS Language Reference

do while, do until

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
do while, do until

���$��� Executes a series of statements in a loop as long as a given expression is
true (or false).

����� do while expression;
or
do until expression;

.

.

.

statements in loop

.

.

.

endo;

%���+� expression is any expression that returns a scalar. It is TRUE if it is
nonzero and FALSE if it is zero.

In a do while loop, execution of the loop will continue as long as the
expression is TRUE.

In a do until loop, execution of the loop will continue as long as the
expression is FALSE.

The condition is checked at the top of the loop. If execution can continue,
the statements of the loop are executed until the endo is encountered.
Then GAUSS returns to the top of the loop and checks the condition
again.

The do loop does not automatically increment a counter. See the first
example, following.

do loops may be nested.
���
�

Command Reference

do while, do until

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
It is often possible to avoid using loops in GAUSS by using the
appropriate matrix operator or function. It is almost always preferable to
avoid loops when possible, since the corresponding matrix operations can
be much faster.

")�$�� format /rdn 1,0;

space = “ ”;

comma = “,”;

i = 1;

do while i <= 4;

j = 1;

do while j <= 3;

print space i comma j;;

j = j+1;

endo;

i = i+1;

print;

endo;

In the example above, two nested loops are executed and the loop counter
values are printed out. Note that the inner loop counter must be reset
inside the outer loop before entering the inner loop. An empty print
statement is used to print a carriage return/line feed sequence after the
inner loop finishes.

1 1, 1 2, 1 3,
2 1, 2 2, 2 3,
3 1, 3 2, 3 3,
4 1, 4 2, 4 3,
���
�

GAUSS Language Reference

do while, do until

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The following are examples of simple loops that execute a predetermined
number of times. These loops will both have the result shown.

First loop

format /rd 1,0;

i = 1;

do while i <= 10;

print i;;

i = i+1;

endo;

produces

1 2 3 4 5 6 7 8 9 10

Second loop

format /rd 1,0;

i = 1;

do until i > 10;

print i;;

i = i+1;

endo;

produces

1 2 3 4 5 6 7 8 9 10

������� continue, break
���
�

Command Reference

dos

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dos

���$��� Provides access to the operating system from within GAUSS.

����� dos [[s]] ;

��$��

�����	�	�� UNIX
Control and output go to the controlling terminal, if there is one.

This function may be used in terminal mode.

OS/2, Windows
The dos function opens a new terminal.

Running programs in the background is allowed in all three of the
aforementioned platforms.

�%���+� This allows all operating system commands to be used from within
GAUSS. It allows other programs to be run even though GAUSS is still
resident in memory.

If no operating system command (for instance, dir or copy) or program
name is specified, a shell of the operating system will be entered which
can be used just like the base level OS. The exit command must be
given from the shell to get back into GAUSS. If a command or program
name is included, the return to GAUSS is automatic after the DOS
command has been executed.

All matrices are retained in memory when the OS is accessed in this way.
This command allows the use of word processing, communications, and
other programs from within GAUSS.

Do not execute programs that terminate and remain resident because they
will be left resident inside GAUSS’s workspace. Some examples are
programs that create RAM disks or print spoolers.

If the command is to be taken from a string variable, the ^ (caret) must
precede the string.

The shorthand “>” can be used in place of the word “DOS”.

s literal or ^string, the OS command to be executed.
���
�

GAUSS Language Reference

dos

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� comstr = “basic myprog”;

dos ^comstr;

This will cause the BASIC program myprog to be run. When that
program is finished, control will automatically return to GAUSS.

>dir *.prg;

This will use the DOS dir command to print a directory listing of all
files with a .prg extension. When the listing is finished, control will be
returned to GAUSS.

dos;

This will cause a second level OS shell to be entered. The OS prompt will
appear and OS commands or other programs can be executed. To return to
GAUSS, type exit.

������� exec
���
�

Command Reference

doswin

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
doswin

���$��� Opens the DOS compatibility window with default settings.

����� doswin;

�����	�	�� Windows only

%���+� Calling doswin is equivalent to:

call DOSWinOpen(““,error(0));

������ gauss.src
���
�

GAUSS Language Reference

DOSWinCloseall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
DOSWinCloseall

���$��� Closes the DOS compatibility window.

����� DOSWinCloseall;

�����	�	�� Windows only

%���+� Calling DOSWinCloseall closes the DOS window immediately,
without asking for confirmation. If a program is running, its I/O reverts to
the Command window.

")�$�� let attr = 50 50 7 0 7;

if not DOSWinOpen("Legacy Window", attr);

errorlog "Failed to open DOS window, aborting";

stop;

endif;

 .

 .

DOSWinCloseall;
���
�

Command Reference

DOSWinOpen

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
DOSWinOpen

���$��� Opens the DOS compatibility window and gives it the specified title and
attributes.

����� ret = DOSWinOpen(title,attr);

�����	�	�� Windows 3.2 only

��$��

#��$��

%���+� If title is a null string (“”), the window will be titled “GAUSS-DOS”.

Defaults are defined for the elements of attr. To use the default, set an
element to a missing value. Set attr to a scalar missing to use all defaults

If the DOS window is already open, the new title and attr will be applied
to it. Elements of attr that are missing are not reset to the default values,
but are left as is.

To set the close action flags value (attr[5]), just sum the desired bit
values. For example:

title string, window title.
attr 5x1 vector or scalar missing, window attributes.

[1] window x position
[2] window y position
[3] text foreground color
[4] text background color
[5] close action bit flags

bit 0 (1's bit)] issue dialog
bit 1 (2's bit)] close window
bit 2 (4's bit)] stop program

ret scalar, success flag, 1 if successful, 0 if not.

[1] varies use x position of previous DOS window
[2] varies use y position of previous DOS window
[3] 7 white foreground
[4] 0 black background
[5] 6 4+2: stop program and close window without

confirming
���
	

GAUSS Language Reference

DOSWinOpen

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
stop program (4) + close window (2) + confirm close (1) = 7

The close action flags are only relevant when a user attempts to
interactively close the DOS window while a program is running. If
GAUSS is idle, the window will be closed immediately. Likewise, if a
program calls DOSWinCloseall, the window is closed, but the
program does not get terminated.

")�$�� let attr = 50 50 7 0 7;

if not DOSWinOpen("Legacy Window", attr);

errorlog "Failed to open DOS window, aborting";

stop;

endif;

This example opens the DOS window at screen location (50,50), with
white text on a black background. The close action flags are 4 + 2 + 1
(stop program + close window + issue confirm dialog) = 7. Thus, if the
user attempts to close the window while a program is running, he/she will
be asked for confirmation. Upon confirmation, the window will be closed
and the program terminated.
���

Command Reference

dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne

���$��� Fuzzy comparison functions. These functions use _fcmptol to fuzz the
comparison operations to allow for roundoff error.

����� y = dotfeq(a,b);
y = dotfge(a,b);
y = dotfgt(a,b);
y = dotfle(a,b);
y = dotflt(a,b);
y = dotfne(a,b);

��$��

��������$��

�#��$�� t

�%���+� The return value is 1 if true and 0 if false.

The statement:

y = dotfeq(a,b);

is equivalent to:

y = a .eq b;

The calling program can reset _fcmptol before calling these
procedures.

_fcmptol = 1e-12;

a NxK matrix, first matrix.
b LxM matrix, second matrix, ExE compatible with a.

_fcmptol global scalar, comparison tolerance. The default value is
1.0e-15.

y max(N,L) by max(K,M) matrix of 1’s and 0’s.
���
�

GAUSS Language Reference

dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� x = rndu(2,2);

y = rndu(2,2);

t = dotfge(x,y);

������ fcompare.src

������ _fcmptol

������� feq-fne

x 0.85115559 0.98914218

0.12703276 0.43365175
=

y 0.41907226 0.49648058

0.58039125 0.98200340
=

t 1.0000000 1.0000000

0.0000000 0.0000000
=

�����

Command Reference

draw

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
draw

���$��� Graphs lines, symbols, and text using the PQG global variables. This
procedure does not require actual X, Y, or Z data since its main purpose is
to manually build graphs using _pline, _pmsgctl, _psym, _paxes,
_parrow and other globals.

 	���� pgraph

����� draw;

%���+� draw is especially useful when used in conjunction with transparent
graphic panels.

")�$�� library pgraph;

graphset;

begwind;

/* make full size window for plot */

makewind(9,6.855,0,0,0);

/* make small overlapping window for text*/

makewind(3,1,3,3,0);

setwind(1);

x = seqa(.1,.1,100);

y = sin(x);

/* plot data in first window*/

xy(x,y);
�����

GAUSS Language Reference

draw

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
nextwind;

_pbox = 15;

_paxes = 0;

_pnum = 0;

_ptitlht = 1;

margin(0,0,2,0);

title(“This is a text window.”);

draw;

/* add a smaller text window */

endwind; /* create graph*/

������ pdraw.src

������� window, makewind
�����

Command Reference

drop (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
drop (dataloop)

���$��� Specifies columns to be dropped from the output data set in a data loop.

����� drop variable_list;

%���+� Commas are optional in variable_list.

Deletes the specified variables from the output data set. Any variables
referenced must already exist, either as elements of the source data set, or
as the result of a previous make, vector, or code statement.

If neither keep nor drop is used, the output data set will contain all
variables from the source data set, as well as any defined variables. The
effects of multiple keep and drop statements are cumulative.

")�$�� drop age, pay, sex;

������� keep
�����

GAUSS Language Reference

dstat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dstat

���$��� Compute descriptive statistics.

����� { vnam,mean,var,std,min,max,valid,mis } = dstat(dataset,vars);

��$��

Defaults are provided for the following global input variables, so they can
be ignored unless you need control over the other options provided by this
procedure.

dataset string, name of data set.

If dataset contains the name of a GAUSS data set, vars will be
interpreted as:

vars the variables.
If dataset is null or 0, vars will be assumed to be a matrix
containing the data.

Kx1 character vector names of variables.
Kx1 numeric vector indices of columns.

These can be any size subset of the variables in the data set and
can be in any order. If a scalar 0 is passed, all columns of the
data set will be used.
If dataset is null or 0, vars will be interpreted as:

NxK matrix the data on which to
compute the descriptive
statistics.

__altnam global matrix, default 0.

This can be a Kx1 character vector of alternate variable
names for the output.

global scalar, default 0.

__miss

0 there are no missing values (fastest).
1 listwise deletion, drop a row if any missings occur

in it.
2 pairwise deletion.

__row global scalar, the number of rows to read per iteration of
the read loop.
if 0, (default) the number of rows will be calculated
internally.
�����

Command Reference

dstat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�#��$��

�%���+� If pairwise deletion is used, the minima and maxima will be the true
values for the valid data. The means and standard deviations will be
computed using the correct number of valid observations for each
variable.

������ dstat.src

������ __output, _dstatd, _dstatx

__output global scalar, controls output, default 1.
1 print output table.
0 do not print output.

vnam Kx1 character vector, the names of the variables used in the
statistics.

mean Kx1 vector, means.
var Kx1 vector, variance.
std Kx1 vector, standard deviation.
min Kx1 vector, minima.
max Kx1 vector, maxima.
valid Kx1 vector, the number of valid cases.
mis Kx1 vector, the number of missing cases.
�����

GAUSS Language Reference

dtdate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dtdate

���$��� Creates a matrix in DT scalar format.

����� dt = dtdate(year, month, day, hour, minute, second);

��$��

#��$��

%���+� The arguments must be ExE conformable.

������ time.src

������� dtday, dttime, utctodt, dttostr

year NxK matrix of years.
month NxK matrix of months, 1-12.
day NxK matrix of days, 1-31.
hour NxK matrix of hours, 0-23.
minute NxK matrix of minutes, 0-59.
second NxK matrix of seconds, 0-59.

dt NxK matrix of DT scalar format dates.
�����

Command Reference

dtday

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dtday

���$��� Creates a matrix in DT scalar format containing only the year, month and
day. Time of day information is zeroed out.

����� dt = dtday(year, month, day);

��$��

#��$��

%���+� This amounts to 00:00:00 or midnight on the given day. The arguments
must be ExE conformable.

������ time.src

������� dttime, dtdate, utctodt, dttostr

year NxK matrix of years.
month NxK matrix of months, 1-12.
day NxK matrix of days, 1-31.

dt NxK matrix of DT scalar format dates.
����	

GAUSS Language Reference

dttime

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dttime

���$��� Creates a matrix in DT scalar format containing only the hour, minute and
second. The date information is zeroed out.

����� dt = dttime(hour, minute, second);

��$��

#��$��

%���+� The arguments must be ExE conformable.

������ time.src

������� dtday, dtdate, utctodt, dttostr

hour NxK matrix of hours, 0-23.
minute NxK matrix of minutes, 0-59.
second NxK matrix of seconds, 0-59.

dt NxK matrix of DT scalar format times.
����

Command Reference

dttodtv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dttodtv

���$��� Converts DT scalar format to DTV vector format.

����� dtv = dttodtv(dt);

��$��

#��$��

%���+� In DT scalar format, 11:06:47 on March 15, 2001 is 20010315110647.

")�$�� dt = 20010326110722;

print "dt = " dt;

dtv = dttodtv(dt);

print "dtv = " dtv;

produces:

dt = 20010326110722

dtv = 2001 3 26 11 7 22 1 84

������ time.src

�������� dtvnormal, timeutc, utctodtv, dtvtodt, dttoutc,
dtvtodt, strtodt, dttostr

dt Nx1 vector, DT scalar format.

dtv Nx8 matrix, DTV vector format.

Each row of dtv, in DTV vector format, contains:
[N,1] Year
[N,2] Month in Year, 1-12
[N,3] Day of month, 1-31
[N,4] Hours since midnight, 0-23
[N,5] Minutes, 0-59
[N,6] Seconds, 0-59
[N,7] Day of week, 0-6, 0 = Sunday
[N,8] Days since Jan 1 of current year, 0-365
�����

GAUSS Language Reference

dttostr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dttostr

���$��� Converts a matrix containing dates in DT scalar format to a string array.

����� sa = dttostr(x, fmt);

��$��

#��$��

%���+� The DT scalar format is a double precision representation of the date and
time. In the DT scalar format, the number

20010421183207

represents 18:32:07 or 6:32:07 PM on April 21, 2001. dttostr converts
a date in DT scalar format to a character string using the format string in
fmt.

")�$�� s0 = dttostr(utctodt(timeutc),

“YYYY-MO-DD HH:MI:SS”);

Print (“Date and Time are: ” $+ s0);

produces:

Date and time are: 2001-03-25 14:59:40

x NxK matrix containing dates in DT scalar format.
fmt string containing date/time format characters.

sa NxK string array.

The following formats are supported:
YYYY 4 digit year
YR Last two digits of year
MO Number of month, 01-12
DD Day of month, 01-31
HH Hour of day, 00-23
MI Minute of hour, 00-59
SS Second of minute, 00-59
�����

Command Reference

dttostr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print dttostr(utctodt(timeutc),

"Today is DD-MO-YR")

produces:

Today is 25-03-01

s = dttostr(x, "YYYY-MO-DD");

if x = 20000317060424

 20010427031213

 20010517020437

 20011117161422

 20010717120448

 20010817043451

 20010919052320

 20011017032203

 20011107071418

then s = 2000-03-17

 2001-04-27

 2001-05-17

 2001-11-17

 2001-07-17

 2001-08-17

 2001-09-19
�����

GAUSS Language Reference

dttostr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
 2001-10-17

 2001-11-07

������� strtodt, dttoutc, utctodt
�����

Command Reference

dttoutc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dttoutc

���$��� Converts DT scalar format to UTC scalar format.

����� utc = dttoutc(dt);

��$��

#��$��

%���+� In DT scalar format, 11:06:47 on March 15, 2001 is 20010315110647. A
UTC scalar gives the number of seconds since or before January 1, 1970
Greenwich Mean Time.

")�$�� dt = 20010326085118;

tc = dttoutc(dt);

print "utc = " utc;

produces:

tc = 985633642;

������ time.src

������� dtvnormal, timeutc, utctodtv, dttodtv, dtvtodt,
dtvtoutc, dtvtodt, strtodt, dttostr

dt Nx1 vector, DT scalar format.

utc Nx1 vector, UTC scalar format.
�����

GAUSS Language Reference

dtvnormal

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dtvnormal

���$��� Normalizes a date and time (DTV) vector.

����� d = dtvnormal(t);

��$��

#��$��

�%���+� The date and time vector is a 1x8 vector whose elements consist of:

The last two elements are ignored on input.

")�$�� format /rd 10,2;

x = { 1996 14 21 6 21 37 0 0 };

d = dtvnormal(x);

������� date, ethsec, etstr, time, timestr, timeutc,
utctodtv

t 1x8 date and time vector that has one or more elements outside
the normal range.

d Normalized 1x8 date and time vector.

Year: Year, four digit integer.
Month: 1-12, Month in year.
Day: 1-31, Day of month.
Hour: 0-23, Hours since midnight.
Min: 0-59, Minutes.
Sec: 0-59, Seconds.
DoW: 0-6, Day of week, 0 = Sunday.
DiY: 0-365, Days since Jan 1 of year.

d:97.00 2.00 21.00 6.00 21.00 37.00 2.00 51.00
�����

Command Reference

dtvtodt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dtvtodt

���$��� Converts DT vector format to DT scalar format.

����� dt = dtvtodt(dtv);

��$��

#��$��

%���+� In DT scalar format, 11:06:47 on March 15, 2001 is 20010315110647.

")�$�� let dtv = { 2001 3 26 11 7 22 1 84 };

print "dtv = " dtv;

dt = dtvtodt(dtv);

print "dt = " dt;

produces:

dtv = 2001 3 26 11 7 22 1 84;

dt = 20010326110722

������ time.src

�������� dtvnormal, timeutc, utctodtv, dttodtv, dtvtodt,
dttoutc, dtvtodt, strtodt, dttostr

dtv Nx8 matrix, DTV vector format.

dt Nx1 vector, DT scalar format.

Each row of dtv, in DTV vector format, contains:
[N,1] Year
[N,2] Month in Year, 1-12
[N,3] Day of month, 1-31
[N,4] Hours since midnight, 0-23
[N,5] Minutes, 0-59
[N,6] Seconds, 0-59
[N,7] Day of week, 0-6, 0 = Sunday
[N,8] Days since Jan 1 of current year, 0-365
�����

GAUSS Language Reference

dtvtoutc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dtvtoutc

���$��� Converts DTV vector format to UTC scalar format.

����� utc = dtvtoutc(dtv);

��$��

#��$��

%���+� A UTC scalar gives the number of seconds since or before January 1,
1970 Greenwich Mean Time.

")�$�� dtv = utctodtv(timeutc);

print "dtv = " dtv;

utc = dtvtoutc(dtv);

print "utc = " utc;

produces:

dtv = 2001 3 26 11 7 22 1

utc = 84985633642

������� dtvnormal, timeutc, utctodt, dttodtv, dttoutc,
dtvtodt, dtvtoutc, strtodt, dttostr

dtv Nx8 matrix, DTV vector format.

utc Nx1 vector, UTC scalar format.

Each row of dtv, in DTV vector format, contains:
[N,1] Year
[N,2] Month in Year, 1-12
[N,3] Day of month, 1-31
[N,4] Hours since midnight, 0-23
[N,5] Minutes, 0-59
[N,6] Seconds, 0-59
[N,7] Day of week, 0-6, 0 = Sunday
[N,8] Days since Jan 1 of current year, 0-365
�����

Command Reference

dummy

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dummy

���$��� Creates a set of dummy (0/1) variables by breaking up a variable into
specified categories. The highest (rightmost) category is unbounded on
the right.

����� y = dummy(x,v);

��$��

�#��$��

�%���+� Missings are deleted before the dummy variables are created.

All categories are open on the left (i.e., do not contain their left
boundaries) and all but the highest are closed on the right (i.e., do contain
their right boundaries). The highest (rightmost) category is unbounded on
the right. Thus, only K-1 breakpoints are required to specify K dummy
variables.

The function dummybr is similar to dummy, but in that function the
highest category is bounded on the right. The function dummydn is also
similar to dummy, but in that function a specified column of dummies is
dropped.

")�$�� x = { 0, 2, 4, 6 };

v = { 1, 5, 7 };

y = dummy(x,v);

The result y looks like this:

x Nx1 vector of data that is to be broken up into dummy variables.
v (K-1)x1 vector specifying the K-1 breakpoints (these must be in

ascending order) that determine the K categories to be used.
These categories should not overlap.

y NxK matrix containing the K dummy variables.

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0
����	

GAUSS Language Reference

dummy

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The vector v will produce 4 dummies satisfying the following conditions:

������ datatran.src

������� dummybr, dummydn

 x 1≤

1 x 5≤<

5 x 7≤<

7 x<
����

Command Reference

dummybr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dummybr

���$��� Creates a set of dummy (0/1) variables. The highest (rightmost) category
is bounded on the right.

����� y = dummybr(x,v);

��$��

�#��$��

�%���+� Missings are deleted before the dummy variables are created.

All categories are open on the left (i.e., do not contain their left
boundaries) and are closed on the right (i.e., do contain their right
boundaries). Thus, K breakpoints are required to specify K dummy
variables.

The function dummy is similar to dummybr, but in that function the
highest category is unbounded on the right.

")�$��

y = dummybr(x,v);

The resulting matrix y looks like this:

x Nx1 vector of data that is to be broken up into dummy variables.
v Kx1 vector specifying the K breakpoints (these must be in

ascending order) that determine the K categories to be used.
These categories should not overlap.

y NxK matrix containing the K dummy variables. Each row will
have a maximum of one 1.

x = { 0,

2,

4,

6};

v = { 1,

5,

7};
�����

GAUSS Language Reference

dummybr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The vector v = 1 5 7 will produce 3 dummies satisfying the following
conditions:

������ datatran.src

������� dummydn, dummy

1 0 0

0 1 0

0 1 0

0 0 1

 x 1≤

1 x 5≤<

5 x 7≤<
�����

Command Reference

dummydn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dummydn

���$��� Creates a set of dummy (0/1) variables by breaking up a variable into
specified categories. The highest (rightmost) category is unbounded on
the right, and a specified column of dummies is dropped.

����� y = dummydn(x,v,p);

��$��

�#��$��

�%���+� This is just like the function dummy, except that the pth column of the
matrix of dummies is dropped. This ensures that the columns of the
matrix of dummies do not sum to 1, and so these variables will not be
collinear with a vector of ones.

Missings are deleted before the dummy variables are created.

All categories are open on the left (i.e., do not contain their left
boundaries) and all but the highest are closed on the right (i.e., do contain
their right boundaries). The highest (rightmost) category is unbounded on
the right. Thus, only K-1 breakpoints are required to specify K dummy
variables.

")�$�� x = { 0, 2, 4, 6 };

v = { 1, 5, 7 };

p = 2;

y = dummydn(x,v,p);

x Nx1 vector of data to be broken up into dummy variables.
v Kx1 vector specifying the K-1 breakpoints (these must be in

ascending order) that determine the K categories to be used.
These categories should not overlap.

p positive integer in the range [1,K], specifying which column
should be dropped in the matrix of dummy variables.

y Nx(K-1) matrix containing the K-1 dummy variables.
�����

GAUSS Language Reference

dummydn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The resulting matrix y looks like this:

The vector v = 1 5 7 will produce 4 dummies satisfying the following
conditions:

������ datatran.src

������� dummy, dummybr

1 0 0

0 0 0

0 0 0

0 1 0

 x 1≤

1 x 5≤<

5 x 7≤<

7 x<
�����

Command Reference

ed

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ed

���$��� Accesses an alternate editor.

����� ed filename;

��$��

�%���+� The default name of the editor is set in gauss.cfg. To change the name
of the editor used type:

ed = editor_name flags;

or

ed = “editor_name flags”;

The flags are any command line flags you may want between the name of
the editor and the filename when your editor is invoked. The quoted
version will prevent the flags, if any, from being forced to uppercase.

This command can be placed in the startup file so it will be set for you
automatically when you start GAUSS.

filename The name of the file to be edited.
�����

GAUSS Language Reference

edit

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
edit

���$��� Edits a disk file.

����� edit filename;

%���+� The edit command does not follow the src_path to locate files. You must
specify the location in the filename. The default location is the current
directory.

")�$�� edit test1.e;

������� run
�����

Command Reference

eig

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eig

���$��� Computes the eigenvalues of a general matrix.

����� va = eig(x);

��$��

�#��$��

�%���+� If the eigenvalues cannot all be determined, va[1] is set to an error code.
Passing va[1] to the scalerr function will return the index of the
eigenvalue that failed. The eigenvalues for indices scalerr(va[1])+1 to
N should be correct.

Error handling is controlled with the low bit of the trap flag.

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first.

")�$��

va = eig(x);

�������� eigh, eighv, eigv

x NxN matrix.

va Nx1 vector, the eigenvalues of x.

trap 0 set va[1] and terminate with message
trap 1 set va[1] and continue execution

x = { 4 8 1 ,

9 4 2 ,

5 5 7 };

va
4.4979246–

 14.475702

 5.0222223

=

�����

GAUSS Language Reference

eigcg

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eigcg

���$��� Computes the eigenvalues of a complex, general matrix. (Included for
backwards compatibility — use eig instead.)

����� { var,vai } = eigcg(xr,xi);

��$��

�#��$��

�%���+� Error handling is controlled with the low bit of the trap flag.

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first.

������ eigcg.src

������ _eigerr

������� eigcg2, eigch, eigrg, eigrs

xr NxN matrix, real part.
xi NxN matrix, imaginary part.

var Nx1 vector, real part of eigenvalues.
vai Nx1 vector, imaginary part of eigenvalues.
_eigerr global scalar, if all the eigenvalues can be determined

_eigerr = 0, otherwise _eigerr is set to the index of
the eigenvalue that failed. The eigenvalues for indices
_eigerr+1 to N should be correct.

trap 0 set _eigerr and terminate with message
trap 1 set _eigerr and continue execution
�����

Command Reference

eigcg2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eigcg2

���$��� Computes eigenvalues and eigenvectors of a complex, general matrix.
(Included for backwards compatibility — use eigv instead.)

����� { var,vai,ver,vei } = eigcg2(xr,xi);

��$��

�#��$��

���������$��

%���+� Error handling is controlled with the low bit of the trap flag.

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first. The columns of ver and vei contain the real
and imaginary eigenvectors of x in the same order as the eigenvalues. The
eigenvectors are not normalized.

������ eigcg.src

������ _eigerr

������� eigcg, eigch, eigrg, eigrs

xr NxN matrix, real part.
xi NxN matrix, imaginary part.

var Nx1 vector, real part of eigenvalues.
vai Nx1 vector, imaginary part of eigenvalues.
ver NxN matrix, real part of eigenvectors.
vei NxN matrix, imaginary part of eigenvectors.

_eigerr global scalar, if all the eigenvalues can be determined
_eigerr = 0, otherwise _eigerr is set to the index
of the eigenvalue that failed. The eigenvalues for indices
_eigerr+1 to N should be correct. The eigenvectors
are not computed.

trap 0 set _eigerr and terminate with message
trap 1 set _eigerr and continue execution
����	

GAUSS Language Reference

eigch

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eigch

���$��� Computes the eigenvalues of a complex, hermitian matrix. (Included for
backwards compatibility — use eigh instead.)

����� va = eigch(xr,xi);

��$��

�#��$��

�%���+� Error handling is controlled with the low bit of the trap flag.

The eigenvalues are in ascending order. The eigenvalues for a complex
hermitian matrix are always real so this procedure returns only one vector.

������ eigch.src

������ _eigerr

������� eigch2, eigcg, eigrg, eigrs

xr NxN matrix, real part.
xi NxN matrix, imaginary part.

va Nx1 vector, real part of eigenvalues.
_eigerr global scalar, if all the eigenvalues can be determined

_eigerr = 0, otherwise _eigerr is set to the index of the
eigenvalue that failed. The eigenvalues for indices 1 to
_eigerr-1 should be correct.

trap 0 set _eigerr and terminate with message
trap 1 set _eigerr and continue execution
����

Command Reference

eigch2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eigch2

���$��� Computes eigenvalues and eigenvectors of a complex, hermitian matrix.
(Included for backwards compatibility — use eighv instead.)

����� { var,vai,ver,vei } = eigch2(xr,xi);

��$��

�#��$��

�%���+� Error handling is controlled with the low bit of the trap flag.

The eigenvalues are in ascending order. The eigenvalues of a complex
hermitian matrix are always real. This procedure returns a vector of zeros
for the imaginary part of the eigenvalues so the syntax is consistent with
other eigxx procedure calls. The columns of ver and vei contain the real
and imaginary eigenvectors of x in the same order as the eigenvalues. The
eigenvectors are orthonormal.

������ eigch.src

������ _eigerr

������� eigch, eigcg, eigrg, eigrs

xr NxN matrix, real part.
xi NxN matrix, imaginary part.

var Nx1 vector, real part of eigenvalues.
vai Nx1 vector, imaginary part of eigenvalues.
ver NxN matrix, real part of eigenvectors.
vei NxN matrix, imaginary part of eigenvectors.
_eigerr global scalar, if all the eigenvalues can be determined

_eigerr = 0, otherwise _eigerr is set to the index of the
eigenvalue that failed. The eigenvalues for indices 1 to
_eigerr-1 should be correct. The eigenvectors are not
computed.

trap 0 set _eigerr and terminate with message
trap 1 set _eigerr and continue execution
�����

GAUSS Language Reference

eigh

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eigh

���$��� Computes the eigenvalues of a complex hermitian or real symmetric
matrix.

����� va = eigh(x);

��$��

�#��$��

�%���+� If the eigenvalues cannot all be determined, va[1] is set to an error code.
Passing va[1] to the scalerr function will return the index of the
eigenvalue that failed. The eigenvalues for indices 1 to scalerr(va[1])-
1 should be correct.

Error handling is controlled with the low bit of the trap flag.

The eigenvalues are in ascending order.

The eigenvalues of a complex hermitian or real symmetric matrix are
always real.

������� eig, eighv, eigv

x NxN matrix.

va Nx1 vector, the eigenvalues of x.

trap 0 set va[1] and terminate with message
trap 1 set va[1] and continue execution
�����

Command Reference

eighv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eighv

���$��� Computes eigenvalues and eigenvectors of a complex hermitian or real
symmetric matrix.

����� { va,ve } = eighv(x);

��$��

�#��$��

�%���+� If the eigenvalues cannot all be determined, va[1] is set to an error code.
Passing va[1] to the scalerr function will return the index of the
eigenvalue that failed. The eigenvalues for indices 1 to scalerr(va[1])-
1 should be correct. The eigenvectors are not computed.

Error handling is controlled with the low bit of the trap flag.

The eigenvalues are in ascending order. The columns of ve contain the
eigenvectors of x in the same order as the eigenvalues. The eigenvectors
are orthonormal.

The eigenvalues of a complex hermitian or real symmetric matrix are
always real.

������� eig, eigh, eigv

x NxN matrix.

va Nx1 vector, the eigenvalues of x.
ve NxN matrix, the eigenvectors of x.

trap 0 set va[1] and terminate with message
trap 1 set va[1] and continue execution
�����

GAUSS Language Reference

eigrg

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eigrg

���$��� Computes the eigenvalues of a real, general matrix. (Included for
backwards compatibility — use eig instead.)

����� { var,vai } = eigrg(x);

��$��

�#��$��

�%���+� Error handling is controlled with the low bit of the trap flag.

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first.

")�$��

{y,n} = eigrg(x);

x NxN matrix.

var Nx1 vector, real part of eigenvalues.
vai Nx1 vector, imaginary part of eigenvalues.
_eigerr global scalar, if all the eigenvalues can be determined

_eigerr = 0, otherwise _eigerr is set to the index of the
eigenvalue that failed. The eigenvalues for indices
_eigerr+1 to N should be correct.

trap 0 set _eigerr and terminate with message
trap 1 set _eigerr and continue execution

x = { 1 2i 3,

 4i 5+3i 6,

 7 8 9i };

y
6.3836054–

 2.0816489

 10.301956

=

n
 7.2292503

1.4598755–

 6.2306252

=

�����

Command Reference

eigrg

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� eigrg.src

������ _eigerr

������� eigrg2, eigcg, eigch, eigrs
�����

GAUSS Language Reference

eigrg2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eigrg2

���$��� Computes eigenvalues and eigenvectors of a real, general matrix.
(Included for backwards compatibility — use eigv instead.)

����� { var,vai,ver,vei } = eigrg2(x);

��$��

�#��$��

�%���+� Error handling is controlled with the low bit of the trap flag.

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first. The columns of ver and vei contain the real
and imaginary eigenvectors of x in the same order as the eigenvalues. The
eigenvectors are not normalized.

������ eigrg.src

������ _eigerr

������� eigrg, eigcg, eigch, eigrs

x NxN matrix.

var Nx1 vector, real part of eigenvalues.
vai Nx1 vector, imaginary part of eigenvalues.
ver NxN matrix, real part of eigenvectors.
vei NxN matrix, imaginary part of eigenvectors.
_eigerr global scalar, if all the eigenvalues can be determined

_eigerr = 0, otherwise _eigerr is set to the index of the
eigenvalue that failed. The eigenvalues for indices
_eigerr+1 to N should be correct. The eigenvectors are
not computed.

trap 0 set _eigerr and terminate with message
trap 1 set _eigerr and continue execution
�����

Command Reference

eigrs

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eigrs

���$��� Computes the eigenvalues of a real, symmetric matrix. (Included for
backwards compatibility — use eigh instead.)

����� va = eigrs(x);

��$��

�#��$��

�%���+� Error handling is controlled with the low bit of the trap flag.

The eigenvalues are in ascending order. The eigenvalues for a real
symmetric matrix are always real so this procedure returns only one
vector.

������ eigrs.src

������ _eigerr

������� eigrs2, eigcg, eigch, eigrg

x NxN matrix.

va Nx1 vector, eigenvalues of x.
_eigerr global scalar, if all the eigenvalues can be determined

_eigerr = 0, otherwise _eigerr is set to the index of the
eigenvalue that failed. The eigenvalues for indices 1 to
_eigerr-1 should be correct.

trap 0 set _eigerr and terminate with message
trap 1 set _eigerr and continue execution
�����

GAUSS Language Reference

eigrs2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eigrs2

���$��� Computes eigenvalues and eigenvectors of a real, symmetric matrix.
(Included for backwards compatibility — use eighv instead.)

����� { va,ve } = eigrs2(x);

��$��

�#��$��

�%���+� Error handling is controlled with the low bit of the trap flag.

The eigenvalues are in ascending order. The columns of ve contain the
eigenvectors of x in the same order as the eigenvalues. The eigenvectors
are orthonormal.

The eigenvalues and eigenvectors for a real symmetric matrix are always
real so this procedure returns only the real parts.

������ eigrs.src

������ _eigerr

������� eigrs, eigcg, eigch, eigrg

x NxN matrix.

va Nx1 vector, eigenvalues of x.
ve NxN matrix, eigenvectors of x.
_eigerr global scalar, if all the eigenvalues can be determined

_eigerr = 0, otherwise _eigerr is set to the index of the
eigenvalue that failed. The eigenvalues and eigenvectors for
indices 1 to _eigerr-1 should be correct.

trap 0 set _eigerr and terminate with message
trap 1 set _eigerr and continue execution
�����

Command Reference

eigv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eigv

���$��� Computes eigenvalues and eigenvectors of a general matrix.

����� { va,ve } = eigv(x);

��$��

�#��$��

�%���+� If the eigenvalues cannot all be determined, va[1] is set to an error code.
Passing va[1] to the scalerr function will return the index of the
eigenvalue that failed. The eigenvalues for indices scalerr(va[1])+1 to
N should be correct. The eigenvectors are not computed.

Error handling is controlled with the low bit of the trap flag.

The eigenvalues are unordered except that complex conjugate pairs of
eigenvalues will appear consecutively with the eigenvalue having the
positive imaginary part first. The columns of ve contain the eigenvectors
of x in the same order as the eigenvalues. The eigenvectors are not
normalized.

")�$��

{y,n} = eigv(x);

x NxN matrix.

va Nx1 vector, the eigenvalues of x.
ve NxN matrix, the eigenvectors of x.

trap 0 set va[1] and terminate with message
trap 1 set va[1] and continue execution

x = { 4 8 1,

 9 4 2,

 5 5 7 };

y
4.4979246–

 14.475702

 5.0222223

=

n
0.66930459– 0.64076622– 0.40145623–

 0.71335708 0.72488533– 0.26047487–

0.01915672– 0.91339349– 1.6734214

=

����	

GAUSS Language Reference

eigv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� eig, eigh, eighv
����

Command Reference

elapsedTradingDays

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
elapsedTradingDays

���$��� Compute number of trading days between two dates inclusively.

����� n = elapsedTradingDays(a,b);

��$��

#��$��

%���+� A trading day is a weekday that is not a holiday as defined by the New
York Stock Exchange from 1888 through 2004. Holidays are defined in
holidays.asc. You may edit that file to modify or add holidays.

������ finutils.src

a scalar, date in DT scalar format.
b scalar, date in DT scalar format.

n number of trading days between dates inclusively, that is,
elapsed time includes the dates a and b.
�����

GAUSS Language Reference

end

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
end

���$��� Terminates a program.

����� end;

%���+� end causes GAUSS to revert to interactive mode, and closes all open
files. end also closes the auxiliary output file and turns the screen on. It is
not necessary to put an end statement at the end of a program.

An end command can be placed above a label which begins a subroutine
to make sure that a program does not enter a subroutine without a gosub.

stop also terminates a program but closes no files and leaves the screen
setting as it is.

")�$�� output on;

screen off;

print x;

end;

In this example, a matrix x is printed to the auxiliary output. The output to
the screen is turned off to speed up the printing. The end statement is
used to terminate the program so the output file will be closed and the
screen will be turned back on.

������� new, stop, system
�����

Command Reference

endp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
endp

���$��� Closes a procedure or keyword definition.

����� endp;

%���+� endp marks the end of a procedure definition that began with a proc or
keyword statement. (For details on writing and using procedures, see
“Procedures and Keywords” in the User’s Guide.)

")�$�� proc regress(y,x);

retp(inv(x’x)*x’y);

endp;

x = { 1 3 2, 7 4 9, 1 1 6, 3 3 2 };

y = { 3, 5, 2, 7 };

b = regress(y,x);

x

1.00000000 3.00000000 2.00000000

7.00000000 4.00000000 9.00000000

1.00000000 1.00000000 6.00000000

3.00000000 3.00000000 2.00000000

=

y

3.00000000

5.00000000

2.00000000

7.00000000

=

b
 0.15456890

 1.50276345

0.12840825–

=

�����

GAUSS Language Reference

endp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� proc, keyword, retp
�����

Command Reference

endwind

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
endwind

���$��� Ends graphic panel manipulation; display graphs with rerun.

 	���� pgraph

����� endwind;

%���+� This function uses rerun to display the most recently created .tkf file.

������ pwindow.src

������� begwind, window, makewind, setwind, nextwind,
getwind
�����

GAUSS Language Reference

envget

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
envget

���$��� Searches the environment table for a defined name.

����� y = envget(s);

��$��

�#��$��

�")�$�� proc dopen(file);

local fname,fp;

fname = envget(“DPATH”);

if fname $== “”;

fname = file;

else;

if strsect(fname,strlen(fname),1) $== “\\”;

fname = fname $+ file;

else;

fname = fname $+ “\\” $+ file;

endif;

endif;

open fp = ^fname;

retp(fp);

endp;

This is an example of a procedure which will open a data file using a path
stored in an environment string called DPATH. The procedure returns the
file handle and is called as follows:

fp = dopen(“myfile”);

������� cdir

s string, the name to be searched for.

y string, the string that corresponds to that name in the
environment or a null string if it is not found.
�����

Command Reference

eof

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eof

���$��� Tests if the end of a file has been reached.

����� y = eof(fh);

��$��

�#��$��

�%���+� This function is used with the readr and fgetsxxx commands to test
for the end of a file.

The seekr function can be used to set the pointer to a specific row
position in a data set; the fseek function can be used to set the pointer to
a specific byte offset in a file opened with fopen.

")�$�� open f1 = dat1;

xx = 0;

do until eof(f1);

xx = xx+moment(readr(f1,100),0);

endo;

In this example, the data file dat1.dat is opened and given the handle
f1. Then the data are read from this data set and are used to create the
moment (x’x) matrix of the data. On each iteration of the loop, 100
additional rows of data are read in and the moment matrix for this set of
rows is computed, and added to the matrix xx. When all the data have
been read, xx will contain the entire moment matrix for the data set.

GAUSS will keep reading until eof(f1) returns the value 1, which it
will when the end of the data set has been reached. On the last iteration of
the loop, all remaining observations are read in if there are 100 or fewer
left.

������� open, readr, seekr

fh scalar, file handle.

y scalar, 1 if end of file has been reached, else 0.
�����

GAUSS Language Reference

eqSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eqSolve

���$��� Solves a system of nonlinear equations

����� { x, retcode } = eqSolve(&F,start);

��$��

��������$�� The folowing are set by eqsolveset.

The following are set by gausset.

start Kx1 vector, starting values.
&F scalar, a pointer to a procedure which computes the value at x of

the equations to be solved.

_eqs_JacobianProc pointer to a procedure which computes the
analytical Jacobian. By default, eqSolve
will compute the Jacobian numerically.

_eqs_MaxIters scalar, the maximum number of iterations.
Default = 100.

_eqs_StepTol scalar, the step tolerance.
Default = __macheps^(2/3).

_eqs_TypicalF Kx1 vector of the typical F(x) values at a point
not near a root, used for scaling. This becomes
important when the magnitudes of the
components of F(x) are expected to be very
different. By default, function values are not
scaled.

_eqs_TypicalX Kx1 vector of the typical magnitude of x, used
for scaling. This becomes important when the
magnitudes of the components of x are
expected to be very different. By default,
variable values are not scaled.

_eqs_IterInfo scalar, if nonzero, iteration information is
printed. Default = 0.

__Tol scalar, the tolerance of the scalar function
f = 0.5*||F(x)||2 required to terminate the
algorithm. Default = 1e-5.
�����

Command Reference

eqSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
#��$��

�%���+� The equation procedure should return a column vector containing the
result for each equation. For example:

Equation 1: x1^2 + x2^2 - 2 = 0

Equation 2: exp(x1-1) + x2^3 - 2 = 0

__altnam Kx1 character vector of alternate names to be
used by the printed output. By default, the
names X1, X2, X3... or X01, X02, X03
(depending on how __vpad is set) will be
used.

__output scalar. If non-zero, final results are printed.
__title string, a custom title to be printed at the top of

the iterations report. By default, only a generic
title will be printed.

x Kx1 vector, solution.
retcode scalar, the return code:

1 Norm of the scaled function value is less than __Tol.
x given is an approximate root of F(x) (unless __Tol is
too large).

2 The scaled distance between the last two steps is less than
the step-tolerance (_eqs_StepTol). x may be an
approximate root of F(x), but it is also possible that the
algorithm is making very slow progress and is not near a
root, or the step-tolerance is too large.

3 The last global step failed to decrease norm2(F(x))
sufficiently; either x is close to a root of F(x) and no more
accuracy is possible, or an incorrectly coded analytic
Jacobian is being used, or the secant approximation to the
Jacobian is inaccurate, or the step-tolerance is too large.

4 Iteration limit exceeded.
5 Five consecutive steps of maximum step length have been

taken; either norm2(F(x)) asymptotes from above to a
finite value in some direction or the maximum step length
is too small.

6 x seems to be an approximate local minimizer of
norm2(F(x)) that is not a root of F(x). To find a root of
F(x), restart eqSolve from a different region.
����	

GAUSS Language Reference

eqSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
proc f(var);

local x1,x2,eqns;

x1 = var[1];

x2 = var[2];

eqns[1] = x1^2 + x2^2 - 2; /* Equation 1 */

eqns[2] = exp(x1-1) + x2^3 - 2; /* Equation

 /* 2 */

retp(eqns);

endp;

")�$�� eqSolveset;

proc f(x);

local f1,f2,f3;

f1 = 3*x[1]^3 + 2*x[2]^2 + 5*x[3] - 10;

f2 = -x[1]^3 - 3*x[2]^2 + x[3] + 5;

f3 = 3*x[1]^3 + 2*x[2]^2 - 4*x[3];

retp(f1|f2|f3);

endp;

proc fjc(x);

local fjc1,fjc2, fjc3;

fjc1 = 9*x[1]^2 ~ 4*x[2] ~ 5;

fjc2 = -3*x[1]^2 ~ -6*x[2] ~ 1;

fjc3 = 9*x[1]^2 ~ 4*x[2] ~ -4;

retp(fjc1|fjc2|fjc3);

endp;
����

Command Reference

eqSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
start = { -1, 12, -1 };

_eqs_JacobianProc = &fjc;

{ x,tcode } = eqSolve(&f,start);

Produces

������ eqsolve.src

==

EqSolve Version 3.2.22 2/24/97 9:54 am

==

||F(X)|| at final solution: 0.93699762

--

Termination Code = 1:

Norm of the scaled function value is less than

__Tol;

--

--

VARIABLE START ROOTS F(ROOTS)

--

X1 -1.00000 0.54144351 4.4175402e-06

X2 12.00000 1.4085912 -6.6263102e-06

X3 -1.00000 1.1111111 4.4175402e-06

--
�����

GAUSS Language Reference

eqSolveset

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eqSolveset

���$��� Sets global input used by eqSolve to default values.

����� eqSolveset;

�����
#��$��

__eqs_TypicalX = 0

__eqs_TypicalF = 0

__eqs_IterInfo = 0

__eqs_JacobianProc = 0

__eqs_MaxIters = 100

__eqs_StepTol __macheps^(2/3)
�����

Command Reference

erf, erfc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
erf, erfc

���$��� Computes the Gaussian error function (erf) and its complement (erfc).

����� y = erf(x);
y = erfc(x);

��$��

�#��$��

�%���+� The allowable range for x is:

The erf and erfc functions are closely related to the Normal
distribution:

")�$��

y = erf(x);

y = erfc(x);

x NxK matrix.

y NxK matrix.

x 0≥

cdfn x()

1
2
--- 1 erf

x

2

 +
 x 0≥

1
2
---erfc

x–

2

 x 0<

=

x = { .5 .4 .3 ,

.6 .8 .3 };

x = { .5 .4 .3 ,

.6 .8 .3 };

y 0.52049988 0.42839236 0.32862676

0.60385609 0.74210096 0.32862676
=

y 0.47950012 0.57160764 0.67137324

0.39614391 0.25789904 0.67137324
=

�����

GAUSS Language Reference

erf, erfc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� cdfn, cdfnc

�����	��
&����

erf and erfc are computed by summing the appropriate series and
continued fractions. They are accurate to about 10 digits.
�����

Command Reference

error

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
error

���$��� Allows the user to generate a user-defined error code which can be tested
quickly with the scalerr function.

����� y = error(x);

��$��

�#��$��

�%���+� The user may assign any number in the range 0-65535 to denote particular
error conditions. This number may be tested for as an error code by
scalerr.

The scalerr function will return the value of the error code and so is
the reverse of error. These user-generated error codes work in the same
way as the intrinsic GAUSS error codes which are generated
automatically when trap 1 is on and certain GAUSS functions detect a
numerical error such as a singular matrix.

error(0) is equal to the missing value code.

")�$�� proc syminv(x);

local oldtrap,y;

if not x == x’;

retp(error(99));

endif;

oldtrap = trapchk(0xffff);

trap 1;

y = invpd(x);

if scalerr(y);

y = inv(x);

endif;

x scalar, in the range 0-65535.

y scalar error code which can be interpreted as an integer
with the scalerr function.
�����

GAUSS Language Reference

error

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
trap oldtrap,0xffff;

retp(y);

endp;

The procedure syminv returns error code 99 if the matrix is not
symmetric. If invpd fails, it returns error code 20. If inv fails, it returns
error code 50. The original trap state is restored before the procedure
returns.

������� scalerr, trap, trapchk
�����

Command Reference

errorlog

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
errorlog

���$��� Prints an error message to the window and error log file.

����� errorlog str;

��$��

�%���+� This function prints to the screen and the error log file.

str string, the error message to print.
�����

GAUSS Language Reference

etdays

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
etdays

���$��� Computes the difference between two times, as generated by the date
command, in days.

����� days = etdays(tstart,tend);

��$��

�#��$��

�%���+� This will work correctly across leap years and centuries. The assumptions
are a Gregorian calendar with leap years on the years evenly divisible by
4 and not evenly divisible by 400.

")�$�� let date1 = 1986 1 2;

let date2 = 1987 10 25;

d = etdays(date1,date2);

������ time.src

������� dayinyr

tstart 3x1 or 4x1 vector, starting date, in the order: yr, mo, day. (Only
the first 3 elements are used.)

tend 3x1 or 4x1 vector, ending date, in the order: yr, mo, day. (Only
the first 3 elements are used.) MUST be later than tstart.

days scalar, elapsed time measured in days.

d 661=
�����

Command Reference

ethsec

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ethsec

���$��� Computes the difference between two times, as generated by the date
command, in hundredths of a second.

����� hs = ethsec(tstart,tend);

��$��

�#��$��

�%���+� This will work correctly across leap years and centuries. The assumptions
are a Gregorian calendar with leap years on the years evenly divisible by
4 and not evenly divisible by 400.

")�$�� let date1 = 1986 1 2 0;

let date2 = 1987 10 25 0;

t = ethsec(date1,date2);

������ time.src

������� dayinyr

tstart 4x1 vector, starting date, in the order: yr, mo, day, hundredths of
a second.

tend 4x1 vector, ending date, in the order: yr, mo, day, hundredths of a
second. MUST be later than tstart.

hs scalar, elapsed time measured in hundredths of a second.

t 5711040000=
����	

GAUSS Language Reference

etstr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
etstr

���$��� Formats an elapsed time, measured in hundredths of a second, to a string.

����� str = etstr(tothsecs);

��$��

�#��$��

�")�$�� d1 = { 86, 1, 2, 0 };

d2 = { 86, 2, 5, 815642 };

t = ethsec(d1,d2);

str = etstr(t);

str = 34 days 2 hours 15 minutes 56.42 seconds

������ time.src

tothsecs scalar, an elapsed time measured in hundredths of a second, as
given, for instance, by the ethsec function.

str string containing the elapsed time in the form:

days # hours # minutes #.## seconds

t 2.9457564e 08+=
����

Command Reference

EuropeanBinomCall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBinomCall

���$��� European binomial method call.

����� c = EuropeanBinomCall(S0,K,r,div,tau,sigma,N);

��$��

#��$��

")�$�� S0 = 718.46;

K = { 720, 725, 730 };

b = .0498;

r = .0498;

sigma = .2493;

t0 = dtday (2001, 1, 30);

t1 = dtday (2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

c = EuropeanBinomCall(S0,K,r,div,tau,sigma,N);

print c;

17.1071

15.0067

S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility
N number of time segments

c Mx1 vector, call premiums
�����

GAUSS Language Reference

EuropeanBinomCall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
12.9064

������ finprocs.src

�����	��
&����

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a
simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.
�����

Command Reference

EuropeanBinomCall_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBinomCall_Greeks

���$��� European binomial method call Delta, Gamma, Theta, Vega and Rho.

����� { d,g,t,v,rh } =
EuropeanBinomCall_Greeks(S0,K,r,div,tau,sigma,N);

��$��

#��$��

")�$�� S0 = 305;

K = 300;

r = .08;

sigma = .25;

tau = .33;

N = 30;

{ d,g,t,v,rh } = EuropeanBinomCall_Greeks

(S0,K,r,div,tau,sigma,N);

print d;

print g;

print t;

S0 scalar, current price
K Mx1 vector, strike price
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility
N number of time segments

d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
v Mx1 vector, vega
rh Mx1 vector, rho
�����

GAUSS Language Reference

EuropeanBinomCall_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print v;

print rh;

0.6738

0.0008

-44.7874

69.0880

96.9225

������ finprocs.src

������

�����	��
&����

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a
simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.
�����

Command Reference

EuropeanBinomCall_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBinomCall_ImpVol

���$��� Implied volatilities for European binomial method calls.

����� sigma =
EuropeanBinomCall_ImpVol(c,S0,K,r,div,tau,N);

��$��

#��$��

")�$�� c = { 13.70, 11.90, 9.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

t0 = dtday (2001, 1, 30);

t1 = dtday (2001, 2, 16);

tau = elapsedTradingDays(t0,t1) / annualTrading-

Days(2001);

N = 30;

sigma = EuropeanBinomCall_ImpVol

(c,S0,K,r,div,tau,N);

print sigma;

0.1982

c Mx1 vector, call premiums
S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
N number of time segments

sigma Mx1 vector, volatility
�����

GAUSS Language Reference

EuropeanBinomCall_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
0.1716

0.1301

������ finprocs.src

�����	��
&����

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a
simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.
�����

Command Reference

EuropeanBinomPut

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBinomPut

���$��� European binomial method Put.

����� c = EuropeanBinomPut(S0,K,r,div,tau,sigma,N);

��$��

#��$��

")�$��1 S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

t0 = dtday (2001, 1, 30);

t1 = dtday (2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

N = 30;

c = EuropeanBinomPut

(S0,K,r,div,tau,sigma,N);

print c;

16.6927

S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility
N number of time segments

c Mx1 vector, put premiums
�����

GAUSS Language Reference

EuropeanBinomPut

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
19.5266

22.3604

������ finprocs.src
�����

Command Reference

EuropeanBinomPut_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBinomPut_Greeks

���$��� European binomial method put Delta, Gamma, Theta, Vega, and Rho.

����� { d,g,t,v,rh } =
EuropeanBinomPut_Greeks(S0,K,r,div,tau,sigma,N);

��$��

#��$��

")�$�� S0 = 305;

K = 300;

r = .08;

sigma = .25;

tau = .33;

N = 30;

{ d,g,t,v,rh } = EuropeanBinomPut_Greeks

(S0,K,r,div,tau,sigma,N);

print d;

print g;

print t;

S0 scalar, current price
K Mx1 vector, strike price
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility
N number of time segments

d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
v Mx1 vector, vega
rh Mx1 vector, rho
����	

GAUSS Language Reference

EuropeanBinomPut_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print v;

print rh;

-0.3804

0.0038

-17.9838

69.0880

-33.7666

������

������ finprocs.src

�����	��
&����

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a
simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.

_fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

_fin_epsilon scalar, finite difference stepsize. Default = 1e-8.
����

Command Reference

EuropeanBinomPut_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBinomPut_ImpVol

���$��� Implied volatilities for European binomial method puts.

����� sigma = EuropeanBinomPut_ImpVol(c,S0,K,r,div,tau,N);

��$��

#��$��

")�$��1 p = { 14.60, 17.10, 20.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

t0 = dtday (2001, 1, 30);

t1 = dtday (2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

N = 30;

sigma = EuropeanBinomPut_ImpVol

(p,S0,K,r,div,tau,N);

print sigma;

0.1307

c Mx1 vector, put premiums
S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
N number of time segments

sigma Mx1 vector, volatility
�����

GAUSS Language Reference

EuropeanBinomPut_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
0.1714

0.2165

������ finprocs.src

�����	��
&����

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a
simplified approach", Journal of Financial Economics, 7:229:264) as
described in Options, Futures, and other Derivatives by John C. Hull is
the basis of this procedure.
�����

Command Reference

EuropeanBSCall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBSCall

���$��� European Black and Scholes Call.

����� c = EuropeanBSCall(S0,K,r,div,tau,sigma);

��$��

#��$��

")�$�� S0 = 718.46;

K = { 720, 725, 730 };

b = .0498;

r = .0498;

div = 0;

sigma = .2493;

t0 = dtday (2001, 1, 30);

t1 = dtday (2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

c = EuropeanBSCall(S0,K,r,div,tau,sigma);

print c;

17.0975

14.7583

S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility

c Mx1 vector, call premiums
�����

GAUSS Language Reference

EuropeanBSCall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
12.6496

������ finprocs.src
�����

Command Reference

EuropeanBSCall_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBSCall_Greeks

���$��� European Black and Scholes call Delta, Gamma, Omega, Theta, and
Vega.

����� { d,g,t,v,rh } =
EuropeanBSCall_Greeks(S0,K,r,div,tau,sigma);

��$��

#��$��

")�$�� S0 = 305;

K = 300;

r = .08;

sigma = .25;

tau = .33;

{ d,g,t,v,rh } = EuropeanBSCall_Greeks

(S0,K,r,div,tau,sigma);

print d;

print g;

print t;

print v;

S0 scalar, current price
K Mx1 vector, strike price
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility

d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
v Mx1 vector, vega
rh Mx1 vector, rho
�����

GAUSS Language Reference

EuropeanBSCall_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print rh;

0.6446

0.0085

-38.5054

65.2563

56.8720

������ finprocs.src

������ _fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.
�����

Command Reference

EuropeanBSCall_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBSCall_ImpVol

���$��� Implied volatilities for European Black and Scholes calls.

����� sigma = EuropeanBSCall_ImpVol(c,S0,K,r,div,tau);

��$��

#��$��

")�$�� c = { 13.70, 11.90, 9.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

div = 0;

t0 = dtday (2001, 1, 30);

t1 = dtday (2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

sigma = EuropeanBSCall_ImpVol

(c,S0,K,r,div,tau);

print sigma;

0.1991

0.1725

c Mx1 vector, call premiums
S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading

sigma Mx1 vector, volatility
�����

GAUSS Language Reference

EuropeanBSCall_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
0.1310

������ finprocs.src
�����

Command Reference

EuropeanBSPut

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBSPut

���$��� European Black and Scholes Put.

����� c = EuropeanBSPut(S0,K,r,div,tau,sigma);

��$��

#��$��

")�$�� S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

sigma = .2493;

div = 0;

t0 = dtday (2001, 1, 30);

t1 = dtday (2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

c = EuropeanBSPut(S0,K,r,div,tau,sigma);

print c;

16.6403

19.2872

22.1647

S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility

c Mx1 vector, put premiums
����	

GAUSS Language Reference

EuropeanBSPut

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������ finprocs.src
����

Command Reference

EuropeanBSPut_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBSPut_Greeks

���$��� European Black and Scholes put Delta, Gamma, Omega, Theta, and Vega.

����� { d,g,t,v,rh } =
EuropeanBSPut_Greeks(S0,K,r,div,tau,sigma);

��$��

#��$��

")�$�� S0 = 305;

K = 300;

r = .08;

sigma = .25;

tau = .33;

{ d,g,t,v,rh } = EuropeanBSPut_Greeks

(S0,K,r,div,tau,sigma);

print d;

print g;

print t;

print v;

S0 scalar, current price
K Mx1 vector, strike price
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading
sigma scalar, volatility

d Mx1 vector, delta
g Mx1 vector, gamma
t Mx1 vector, theta
v Mx1 vector, vega
rh Mx1 vector, rho
�����

GAUSS Language Reference

EuropeanBSPut_Greeks

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print rh;

-0.3554

0.0085

-15.1307

65.2563

-39.5486

������ finprocs.src

������ _fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.
���	�

Command Reference

EuropeanBSPut_ImpVol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
EuropeanBSPut_ImpVol

���$��� Implied volatilities for European Black and Scholes puts.

����� sigma = EuropeanBSPut_ImpVol(c,S0,K,r,div,tau);

��$��

#��$��

")�$�� p = { 14.60, 17.10, 20.10 };

S0 = 718.46;

K = { 720, 725, 730 };

r = .0498;

t0 = dtday (2001, 1, 30);

t1 = dtday (2001, 2, 16);

tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

sigma = EuropeanBSPut_ImpVol(p,S0,K,r,div,tau);

print sigma;

0.2123

0.2493

0.2937

������ finprocs.src

c Mx1 vector, put premiums
S0 scalar, current price
K Mx1 vector, strike prices
r scalar, risk free rate
div continuous dividend yield
tau scalar, elapsed time to exercise in annualized days of

trading

sigma Mx1 vector, volatility
���	�

GAUSS Language Reference

exctsmpl

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
exctsmpl

���$��� Computes a random subsample of a data set.

����� n = exctsmpl(infile,outfile,percent);

��$��

�#��$��

�%���+� Random sampling is done with replacement. Thus, an observation may be
in the resulting sample more than once. If percent is 100, the resulting
sample will not be identical to the original sample, though it will be the
same size.

")�$�� n = exctsmpl(“freq.dat”,“rout”,30);

freq.dat is an example data set provided with GAUSS. Switching to
the GAUSS examples directory will make it possible to do the above
example as shown. Otherwise substitute data set names will need to be
used.

������ exctsmpl.src

infile string, the name of the original data set.
outfile string, the name of the data set to be created.
percent scalar, the percentage random sample to take. This must be in

the range 0-100.

n scalar, number of rows in output data set.

Error returns are controlled by the low bit of the trap flag.
trap 0 terminate with error message
trap 1 return scalar negative integer

-1 can’t open input file
-2 can’t open output file
-3 disk full

n 30=
���	�

Command Reference

exec

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
exec

���$��� Executes an executable program and returns the exit code to GAUSS.

����� y = exec(program,comline);

��$��

�#��$��

�%���+� Under Windows, the file can be given an extension or a “.” meaning no
extension. Otherwise the file will be searched for with the following
extensions in their given order: .com, .exe, .bat, .cmd.

")�$�� y = exec(“atog”,“comd1.cmd”);

if y;

errorlog “atog failed”;

end;

endif;

In this example, the ATOG ASCII conversion utility is executed under the
exec function. The name of the command file to be used, comd1.cmd,
is passed to ATOG on its command line. The exit code y returned by
exec is tested to see if ATOG was successful; if not, the program will be
terminated after printing an error message. See “Utilities” in the User
Guide.

program string, the name of the program to be executed.
comline string, the arguments to be placed on the command line of

the program being executed.

y the exit code returned by program.

If exec cannot execute program, the error returns will be negative.
-1 file not found
-2 the file is not an executable file
-3 not enough memory
-4 command line too long
���	�

GAUSS Language Reference

exp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
exp

���$��� Calculates the exponential function.

����� y = exp(x);

��$��

�#��$��

�")�$�� x = eye(3);

y = exp(x);

This example creates a 3x3 identity matrix and computes the exponential
function for each one of its elements. Note that exp(1) returns e, the
base of natural logs.

������� ln

x NxK matrix.

y NxK matrix containing e, the base of natural logs, raised to the
powers given by the elements of x.

x
1.000000 0.000000 0.000000

0.000000 1.000000 0.000000

0.000000 0.000000 1.000000

=

y
2.718282 1.000000 1.000000

1.000000 2.718282 1.000000

1.000000 1.000000 2.718282

=

���	�

Command Reference

export

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
export

���$��� Exports a GAUSS matrix to a spreadsheet, database or ASCII file.

����� ret = export(x,fname,namel);

��$��

�����������#��$��

�����	�	�� Windows only

%���+� Setting namel to 0 results in default column names of Var:1 to Var:K.

")�$�� fname = “c:\\temp\\testdata.xls”;

matx = rndn(7,4);

let names = gnp invest pop export;

call export(matx, fname, names);

This will export the matrix matx to the file c:\temp\
testdata.xls in Excel format.

If the first line had been

fname = "c:\\temp\\testdata.dbf";

the file would have been exported in dBase format.

������ _dxaschdr, _dxftype, _dxmiss, _dxprcn, _dxprint,

_dxtxdlim, _dxtype, _dxwidth, _dxwkshd

������� exportf, import, importf

x MxK matrix, data to export.
fname string, name of file to export with optional path.
namel Kx1 vector, column names, or scalar 0 for default column names.

ret scalar, success flag, 1 if successful, 0 if not.
fname file in the selected format.
���	�

GAUSS Language Reference

exportf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
exportf

���$��� Exports a GAUSS data set to a spreadsheet, database, or ASCII file.

����� ret = exportf(dname,fname,namel);

��$��

�����������#��$��

�����	�	�� Windows only

%���+� The columns of the data set listed in namel will be exported. If namel is 0,
the entire data set will be exported.

")�$�� dname = “c:\\gauss\\data\\mydata.dat”;

fname = “c:\\temp\\testdata2.wk1”;

call exportf(dname, fname, 0);

This will export the data set dname to the file c:\temp\
testdata2.wk1 in Lotus format.

������ _dxaschdr, _dxftype, _dxmiss, _dxprcn, _dxprint,

_dxtxdlim, _dxtype, _dxwidth, _dxwkshdr

������� export, import, importf

dname string, name of GAUSS data set with optional path
fname string, name of file to export with optional path.
namel Kx1 vector, column names, or 0 for all columns.

ret scalar, success flag, 1 if successful, 0 if not.
fname file in the specified format.
���	�

Command Reference

extern (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
extern (dataloop)

���$��� Allows access to matrices or strings in memory from inside a data loop.

����� extern variable_list;

%���+� Commas in variable_list are optional.

extern tells the translator not to generate local code for the listed
variables, and not to assume they are elements of the input data set.

extern statements should be placed before any reference to the symbols
listed. The specified names should not exist in the input data set, or be
used in a make statement.

")�$�� This example shows how to assign the contents of an external vector to a
new variable in the data set, by iteratively assigning a range of elements
to the variable. The reserved variable x_x contains the data read from the
input data set on each iteration. The external vector must have at least as
many rows as the data set.

base = 1; /* used to index a range of elements

 /* from exvec */

dataloop oldata newdata;

extern base, exvec;

make ndvar = exvec[seqa(base,1,rows(x_x))];

/* execute command literally */

base = base + rows(x_x);

endata;
���		

GAUSS Language Reference

external

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
external

���$��� Lets the compiler know about symbols that are referenced above or in a
separate file from their definitions.

����� external proc dog,cat;
external keyword dog;
external fn dog;
external matrix x,y,z;
external string mstr,cstr;

%���+� See “Procedures and Keywords” in the User’s Guide.

You may have several procedures in different files that reference the same
global variable. By placing an external statement at the top of each
file, you can let the compiler know if the symbol is a matrix, string, or
procedure. If the symbol is listed and strongly typed in an active library,
no external statement is needed.

If a matrix or string appears in an external statement it needs to appear
once in a declare statement. If no declaration is found, an
Undefined symbol error will result.

")�$�� The general eigenvalue procedure, eigrg, sets a global variable
_eigerr if it cannot compute all of the eigenvalues.

external matrix _eigerr;

x = rndn(4,4);

xi = inv(x);

xev = eigrg(x);

if _eigerr;

print “Eigenvalues not computed”;

end;

endif;

Without the external statement, the compiler would assume that
_eigerr was a procedure and incorrectly compile this program. The file
���	

Command Reference

external

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
containing the eigrg procedure also contains an external statement that
defines _eigerr as a matrix, but this would not be encountered until the
if statement containing the reference to _eigerr in the main program
file had already been incorrectly compiled.

������� declare
���	�

GAUSS Language Reference

eye

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
eye

���$��� Creates an identity matrix.

����� y = eye(n);

��$��

�#��$��

�%���+� If n is not an integer, it will be truncated to an integer.

The matrix created will contain 1’s down the diagonal and 0’s everywhere
else.

")�$�� x = eye(3);

������� zeros, ones

n scalar, size of identity matrix to be created.

y NxN identity matrix.

x
1.000000 0.000000 0.000000

0.000000 1.000000 0.000000

0.000000 0.000000 1.000000

=

���
�

Command Reference

fcheckerr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fcheckerr

���$��� Gets the error status of a file.

����� err = fcheckerr(f);

��$��

#��$��

�%���+� If there has been a read or write error on a file, fcheckerr returns 1,
otherwise 0.

If you pass fcheckerr the handle of a file opened with open (i.e., a
data set or matrix file), your program will terminate with a fatal error.

f scalar, file handle of a file opened with fopen.

err scalar, error status.
���
�

GAUSS Language Reference

fclearerr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fclearerr

���$��� Gets the error status of a file, then clears it.

����� err = fclearerr(f);

��$��

�#��$��

�%���+� Each file has an error flag that is set when there is an I/O error on the file.
Typically, once this flag is set, you can no longer do I/O on the file, even
if the error is a recoverable one. fclearerr clears the file’s error flag,
and you can attempt to continue using it.

If there has been a read or write error on a file, fclearerr returns 1,
otherwise 0.

If you pass fclearerr the handle of a file opened with open (i.e., a
data set or matrix file), your program will terminate with a fatal error.

The flag accessed by fclearerr is not the same as that accessed by
fstrerror.

f scalar, file handle of a file opened with fopen.

err scalar, error status.
���
�

Command Reference

feq, fge, fgt, fle, flt, fne

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
feq, fge, fgt, fle, flt, fne

���$��� Fuzzy comparison functions. These functions use _fcmptol to fuzz the
comparison operations to allow for roundoff error.

����� y = feq(a,b);
y = fge(a,b);
y = fgt(a,b);
y = fle(a,b);
y = flt(a,b);
y = fne(a,b);

��$��

��������$��

#��$��

�%���+� The return value is true if every comparison is true.

The statement:

y = feq(a,b);

is equivalent to:

y = a eq b;

The calling program can reset _fcmptol before calling these
procedures.

_fcmptol = 1e-12;

")�$�� x = rndu(2,2);

y = rndu(2,2);

t = fge(x,y);

a NxK matrix, first matrix.
b LxM matrix, second matrix, ExE compatible with a.

_fcmptol global scalar, comparison tolerance. The default value is
1.0e-15.

y scalar, 1 (true) or 0 (false).
���
�

GAUSS Language Reference

feq, fge, fgt, fle, flt, fne

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������ fcompare.src

������ _fcmptol

������� dotfeq-dotfne

x 0.0382895 0.07253527

0.01471395 0.96863611
=

y 0.25622293 0.70636474

0.00361912 0.35913385
=

t 0.0000000=
���
�

Command Reference

fflush

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fflush

���$��� Flushes a file’s output buffer.

����� ret = fflush(f);

��$��

�#��$��

�%���+� If fflush fails, you can call fstrerror to find out why.

If you pass fflush the handle of a file opened with open (i.e., a data set
or matrix file), your program will terminate with a fatal error.

f scalar, file handle of a file opened with fopen.

ret scalar, 0 if successful, -1 if not.
���
�

GAUSS Language Reference

fft

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fft

���$��� Computes a 1- or 2-D Fast Fourier transform.

����� y = fft(x);

��$��

�#��$��

�%���+� This computes the FFT of x, scaled by 1/N.

This uses a Temperton Fast Fourier algorithm.

If N or K is not a power of 2, x will be padded out with zeros before
computing the transform.

")�$��

y = fft(x);

������� ffti, rfft, rffti

x NxK matrix.

y LxM matrix, where L and M are the smallest powers of 2 greater
than or equal to N and K, respectively.

x = { 22 24 ,

23 25 };

y 23.500000 1.000000–

0.5000000– 0.00000000
=

���
�

Command Reference

ffti

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ffti

���$��� Computes an inverse 1- or 2-D Fast Fourier transform.

����� y = ffti(x);

��$��

�#��$��

�%���+� Computes the inverse FFT of x, scaled by 1/N.

This uses a Temperton prime factor Fast Fourier algorithm.

")�$��

y = fft(x);

fi = ffti(y);

������� fft, rfft, rffti

x NxK matrix.

y LxM matrix, where L and M are the smallest prime factor
products greater than or equal to N and K, respectively.

x = { 22 24 ,

23 25 };

y 23.500000 1.000000–

0.500000– 0.0000000
=

fi 22.000000 24.000000

23.000000 25.000000
=

���
	

GAUSS Language Reference

fftm

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fftm

����$��� Computes a multi-dimensional FFT.

����� y = fftm(x,dim);

��$��

#��$��

�%���+� The multi-dimensional data are laid out in a recursive or heirarchical
fashion in the vector x. That is to say, the elements of any given
dimension are stored in sequence left to right within the vector, with each
element containing a sequence of elements of the next smaller dimension.
In abstract terms, a 4-dimensional 2x2x2x2 hypercubic x would consist of
two cubes in sequence, each cube containing two matrices in sequence,
each matrix containing two rows in sequence, and each row containing
two columns in sequence. Visually, x would look something like this:

Or, in an extended GAUSS notation, x would be:

To be explicit, x would be laid out like this:

x Mx1 vector, data.
dim Kx1 vector, size of each dimension.

y Lx1 vector, FFT of x.

Xhyper = Xcube1 | Xcube2

Xcube1 = Xmat1 | Xmat2

Xmat1 = Xrow1 | Xrow2

Xrow1 = Xcol1 | Xcol2

Xhyper = x[1,.,.,.] | x[2,.,.,.];

Xcube1 = x[1,1,.,.] | x[1,2,.,.];

Xmat1 = x[1,1,1,.] | x[1,1,2,.];

Xrow1 = x[1,1,1,1] | x[1,1,1,2];

x[1,1,1,1] x[1,1,1,2] x[1,1,2,1] x[1,1,2,2]

x[1,2,1,1] x[1,2,1,2] x[1,2,2,1] x[1,2,2,2]

x[2,1,1,1] x[2,1,1,2] x[2,1,2,1] x[2,1,2,2]

x[2,2,1,1] x[2,2,1,2] x[2,2,2,1] x[2,2,2,2]
���

Command Reference

fftm

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
If you look at the last diagram for the layout of x you’ll notice that each
line actually constitutes the elements of an ordinary matrix in normal
row-major order. This is easy to achieve with vecr. Further, each pair of
lines or “matrices” constitutes one of the desired cubes, again with all the
elements in the correct order. And finally, the two cubes combine to form
the hypercube. So, the process of construction is simply a sequence of
concatenations of column vectors, with a vecr step if necessary to get
started.

Here’s an example, this time working with a 2x3x2x3 hypercube.

let dim = 2 3 2 3;

let x1[2,3] = 1 2 3 4 5 6;

let x2[2,3] = 6 5 4 3 2 1;

let x3[2,3] = 1 2 3 5 7 11;

xc1 = vecr(x1)|vecr(x2)|vecr(x3); /* cube 1 */

let x1 = 1 1 2 3 5 8;

let x2 = 1 2 6 24 120 720;

let x3 = 13 17 19 23 29 31;

xc2 = x1|x2|x3; /* cube 2 */

xh = xc1|xc2; /* hypercube */

xhfft = fftm(xh,dim);

let dimi = 2 4 2 4;

xhffti = fftmi(xhfft,dimi);

We left out the vecr step for the 2nd cube. It’s not really necessary when
you’re constructing the matrices with let statements.

dim contains the dimensions of x, beginning with the highest dimension.
The last element of dim is the number of columns, the next to the last
element of dim is the number of rows, and so on. Thus
���
�

GAUSS Language Reference

fftm

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
dim = { 2, 3, 3 };

indicates that the data in x is a 2x3x3 three-dimensional array, i.e., two
3x3 matrices of data. Suppose that x1 is the first 3x3 matrix and x2 the
second 3x3 matrix, then x = vecr(x1) | vecr(x2).

The size of dim tells you how many dimensions x has.

The arrays have to be padded in each dimension to the nearest power of
two. Thus the output array can be larger than the input array. In the
2x3x2x3 hypercube example, x would be padded from 2x3x2x3 out to
2x4x2x4. The input vector would contain 36 elements, while the output
vector would contain 64 elements. You may have noticed that we used a
dimi with padded values at the end of the example to check our answer.

������ fftm.src

������� fftmi, fft, ffti, fftn
�����

Command Reference

fftmi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fftmi

����$��� Computes a multi-dimensional inverse FFT.

����� y = fftmi(x,dim);

��$��

#��$��

�%���+� The multi-dimensional data are laid out in a recursive or heirarchical
fashion in the vector x. That is to say, the elements of any given
dimension are stored in sequence left to right within the vector, with each
element containing a sequence of elements of the next smaller dimension.
In abstract terms, a 4-dimensional 2x2x2x2 hypercubic x would consist of
two cubes in sequence, each cube containing two matrices in sequence,
each matrix containing two rows in sequence, and each row containing
two columns in sequence. Visually, x would look something like this:

Or, in an extended GAUSS notation, x would be:

To be explicit, x would be laid out like this:

x Mx1 vector, data.
dim Kx1 vector, size of each dimension.

y Lx1 vector, inverse FFT of x.

Xhyper = Xcube1 | Xcube2

Xcube1 = Xmat1 | Xmat2

Xmat1 = Xrow1 | Xrow2

Xrow1 = Xcol1 | Xcol2

Xhyper = x[1,.,.,.] | x[2,.,.,.];

Xcube1 = x[1,1,.,.] | x[1,2,.,.];

Xmat1 = x[1,1,1,.] | x[1,1,2,.];

Xrow1 = x[1,1,1,1] | x[1,1,1,2];

x[1,1,1,1] x[1,1,1,2] x[1,1,2,1] x[1,1,2,2]

x[1,2,1,1] x[1,2,1,2] x[1,2,2,1] x[1,2,2,2]

x[2,1,1,1] x[2,1,1,2] x[2,1,2,1] x[2,1,2,2]

x[2,2,1,1] x[2,2,1,2] x[2,2,2,1] x[2,2,2,2]
�����

GAUSS Language Reference

fftmi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
If you look at the last diagram for the layout of x you’ll notice that each
line actually constitutes the elements of an ordinary matrix in normal
row-major order. This is easy to achieve with vecr. Further, each pair of
lines or “matrices” constitutes one of the desired cubes, again with all the
elements in the correct order. And finally, the two cubes combine to form
the hypercube. So, the process of construction is simply a sequence of
concatenations of column vectors, with a vecr step if necessary to get
started.

Here’s an example, this time working with a 2x3x2x3 hypercube.

let dim = 2 3 2 3;

let x1[2,3] = 1 2 3 4 5 6;

let x2[2,3] = 6 5 4 3 2 1;

let x3[2,3] = 1 2 3 5 7 11;

xc1 = vecr(x1)|vecr(x2)|vecr(x3); /* cube 1 */

let x1 = 1 1 2 3 5 8;

let x2 = 1 2 6 24 120 720;

let x3 = 13 17 19 23 29 31;

xc2 = x1|x2|x3; /* cube 2 */

xh = xc1|xc2; /* hypercube */

xhffti = fftmi(xh,dim);

We left out the vecr step for the 2nd cube. It’s not really necessary when
you’re constructing the matrices with let statements.

dim contains the dimensions of x, beginning with the highest dimension.
The last element of dim is the number of columns, the next to the last
element of dim is the number of rows, and so on. Thus

dim = { 2, 3, 3 };

indicates that the data in x is a 2x3x3 three-dimensional array, i.e., two
3x3 matrices of data. Suppose that x1 is the first 3x3 matrix and x2 the
second 3x3 matrix, then x = vecr(x1) | vecr(x2).
�����

Command Reference

fftmi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The size of dim tells you how many dimensions x has.

The arrays have to be padded in each dimension to the nearest power of
two. Thus the output array can be larger than the input array. In the
2x3x2x3 hypercube example, x would be padded from 2x3x2x3 out to
2x4x2x4. The input vector would contain 36 elements, while the output
vector would contain 64 elements.

������ fftm.src

������� fftmi, fft, ffti, fftn
�����

GAUSS Language Reference

fftn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fftn

����$��� Computes a complex 1- or 2-D FFT.

����� y = fftn(x);

��$��

#��$��

�%���+� fftn uses the Temperton prime factor FFT algorithm. This algorithm
can compute the FFT of any vector or matrix whose dimensions can be
expressed as the product of selected prime number factors. GAUSS
implements the Temperton algorithm for any power of 2, 3, and 5, and
one factor of 7. Thus, fftn can handle any matrix whose dimensions can
be expressed as

If a dimension of x does not meet this requirement, it will be padded with
zeros to the next allowable size before the FFT is computed.

fftn pads matrices to the next allowable dimensions; however, it
generally runs faster for matrices whose dimensions are highly composite
numbers, i.e., products of several factors (to various powers), rather than
powers of a single factor. For example, even though it is bigger, a
33600x1 vector can compute as much as 20% faster than a 32768x1
vector, because 33600 is a highly composite number, 26 x 3 x 52 x 7,
whereas 32768 is a simple power of 2, 215. For this reason, you may want
to hand-pad matrices to optimum dimensions before passing them to
fftn. The Run-Time Library includes a routine, optn, for determining
optimum dimensions.

The Run-Time Library also includes the nextn routine, for determining
allowable dimensions for a matrix. (You can use this to see the
dimensions to which fftn would pad a matrix.)

fftn scales the computed FFT by 1/(L*M).

������� fft, ffti, fftm, fftmi, rfft, rffti, rfftip,
rfftn, rfftnp, rfftp

x NxK matrix.

y LxM matrix, where L and M are the smallest prime factor
products greater than or equal to N and K, respectively.

2p x 3q x 5r x 7s, p,q,r nonnegative integers
s = 0 or 1
�����

Command Reference

fgets

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fgets

���$��� Reads a line of text from a file.

����� str = fgets(f,maxsize);

��$��

#��$��

�%���+� fgets reads text from a file into a string. It reads up to a newline, the end
of the file, or maxsize-1 characters. The result is placed in str, which is
then terminated with a null byte. The newline, if present, is retained.

If the file is already at end-of-file when you call fgets, your program
will terminate with an error. Use eof in conjunction with fgets to
avoid this.

If the file was opened for update (see fopen) and you are switching from
writing to reading, don’t forget to call fseek or fflush first, to flush
the file’s buffer.

If you pass fgets the handle of a file opened with open (i.e., a data set
or matrix file), your program will terminate with a fatal error.

f scalar, file handle of a file opened with fopen.
maxsize scalar, maximum size of string to read in, including the

terminating null byte.

str string.
�����

GAUSS Language Reference

fgetsa

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fgetsa

���$��� Reads lines of text from a file into a string array.

����� sa = fgetsa(f,numl);

��$��

#��$��

%���+� fgetsa reads up to numl lines of text. If fgetsa reaches the end of the
file before reading numl lines, sa will be shortened. Lines are read in the
same manner as fgets, except that no limit is placed on the size of a
line. Thus, fgetsa always returns complete lines of text. Newlines are
retained. If numl is 1, fgetsa returns a string. (This is one way to read a
line from a file without placing a limit on the length of the line.)

If the file is already at end-of-file when you call fgetsa, your program
will terminate with an error. Use eof in conjunction with fgetsa to
avoid this. If the file was opened for update (see fopen) and you are
switching from writing to reading, don’t forget to call fseek or fflush
first, to flush the file’s buffer.

If you pass fgetsa the handle of a file opened with open (i.e., a data set
or matrix file), your program will terminate with a fatal error.

f scalar, file handle of a file opened with fopen.
numl scalar, number of lines to read.

sa Nx1 string array, N ≤ numl.
�����

Command Reference

fgetsat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fgetsat

���$��� Reads lines of text from a file into a string array.

����� sa = fgetsat(f,numl);

��$��

#��$��

�%���+� fgetsat operates identically to fgetsa, except that newlines are not
retained as text is read into sa.

In general, you don’t want to use fgetsat on files opened in binary
mode (see fopen). fgetsat drops the newlines, but it does NOT drop
the carriage returns that precede them on some platforms. Printing out
such a string array can produce unexpected results.

f scalar, file handle of a file opened with fopen.
numl scalar, number of lines to read.

sa Nx1 string array, N ≤ numl.
����	

GAUSS Language Reference

fgetst

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fgetst

���$��� Reads a line of text from a file.

����� str = fgetst(f,maxsize);

��$��

#��$��

�%���+� fgetst operates identically to fgets, except that the newline is not
retained in the string.

In general, you don’t want to use fgetst on files opened in binary mode
(see fopen). fgetst drops the newline, but it does NOT drop the
preceding carriage return used on some platforms. Printing out such a
string can produce unexpected results.

f scalar, file handle of a file opened with fopen.
maxsize scalar, maximum size of string to read in, including the null

terminating byte.

str string.
����

Command Reference

fileinfo

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fileinfo

���$��� Returns names and information for files that match a specification.

����� { fnames,finfo } = fileinfo(fspec);

��$��

�#��$��

fspec string, file specification. Can include path. Wildcards are
allowed in the filename.

fnames Nx1 string array of all filenames that match, null string if none
are found.

finfo Nx13 matrix, information about matching files.
UNIX

[N, 1] filesystem ID
[N, 2] inode number
[N, 3] mode bit mask
[N, 4] number of links
[N, 5] user ID
[N, 6] group ID
[N, 7] device ID (char/block special files

only)
[N, 8] size in bytes
[N, 9] last access time
[N,10] last data modification time
[N,11] last file status change time
[N,12] preferred I/O block size
[N,13] number of 512-byte blocks allocated

OS/2, Windows
[N, 1] drive number (A = 0, B = 1, etc.)
[N, 2] n/a, 0
[N, 3] mode bit mask
[N, 4] number of links, always 1
[N, 5] n/a, 0
[N, 6] n/a, 0
[N, 7] n/a, 0
[N, 8] size in bytes
�����

GAUSS Language Reference

fileinfo

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�%���+� fnames will contain file names only; any path information that was passed
is dropped.

The time stamp fields (finfo[N,9]-[N,11]) are expressed as the number of
seconds since midnight, Jan. 1, 1970, Coordinated Universal Time
(UTC).

������� files, filesa

[N, 9] last access time
[N,10] last data modification time
[N,11] creation time
[N,12] n/a, 0
[N,13] n/a, 0

DOS
[N, 1] drive number (A = 0, B = 1, etc.)
[N, 2] n/a, 0
[N, 3] mode bit mask
[N, 4] number of links, always 1
[N, 5] n/a, 0
[N, 6] n/a, 0
[N, 7] n/a, 0
[N, 8] size in bytes
[N, 9] n/a, 0
[N,10] last data modification time
[N,11] n/a, 0
[N,12] n/a, 0
[N,13] n/a, 0

finfo will be a scalar zero if no matches are found.
�����

Command Reference

filesa

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
filesa

���$��� Returns a string array of file names.

����� y = filesa(n);

��$��

�#��$��

�%���+� y will contain file names only; any path information that was passed is
dropped.

")�$�� y = filesa(“ch*”);

In this example all files listed in the current directory that begin with “ch”
will be returned.

proc exist(filename);

retp(not filesa(filename) $== “”);

endp;

This procedure will return 1 if the file exists or 0 if not.

������� fileinfo, files, shell

n string, file specification to search for. Can include path.
Wildcards are allowed in the filename.

y Nx1 string array of all filenames that match, or null string if none
are found.
�����

GAUSS Language Reference

floor

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
floor

���$��� Rounds down toward -∞.

����� y = floor(x);

��$��

�#��$��

�%���+� This rounds every element in the matrix x down to the nearest integer.

")�$�� x = 100*rndn(2,2);

f = floor(x);

������� ceil, round, trunc

x NxK matrix.

y NxK matrix containing the elements of x rounded down.

x 77.68 14.10–

 4.73 158.88–
=

f 77.00 15.00–

 4.00 159.00–
=

�����

Command Reference

fmod

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fmod

���$��� Computes the floating-point remainder of x/y.

����� r = fmod(x,y);

��$��

#��$��

%���+� Returns the floating-point remainder r of x/y such that x = iy + r, where i is
an integer, r has the same sign as x, and |r| < |y|.

Compare this with %, the modulo division operator. (See “Operators” in
the User’s Guide.)

")�$�� x = seqa(1.7,2.3,5)’;

y = 2;

r = fmod(x,y);

x NxK matrix.
y LxM matrix, ExE conformable with x.

r max(N,L) by max(K,M) matrix.

x 1.7 4 6.3 8.6 10.9=

r 1.7 0 0.3 0.6 0.9=
�����

GAUSS Language Reference

fn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fn

���$��� Allows user to create one-line functions.

����� fn fn_name(args) = code_for_function;

�%���+� Functions can be called in the same way as other procedures.

")�$�� fn area(r) = pi*r*r;

a = area(4);

a 50.265482=
�����

Command Reference

fonts

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fonts

���$��� Loads fonts to be used in the graph.

 	���� pgraph

����� fonts(str);

��$��

%���+� For information on how to select fonts within a text string, see
“Publication Quality Graphics in the User’s Guide.

������ pgraph.src

������� title, xlabel, ylabel, zlabel

str string or character vector containing the names of fonts to be
used in the plot.

Simplex standard sans serif font.
Simgrma Simplex Greek, math.
Microb bold and boxy.
Complex standard font with serif.

The first font specified will be used for the axes numbers.
If str is a null string, or fonts is not called, Simplex is loaded
by default.
�����

GAUSS Language Reference

fopen

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fopen

���$��� Opens a file.

����� f = fopen(filename,omode);

��$��

�#��$��

�����	�	�� UNIX

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX a newline is simply a linefeed.

%���+� filename can contain a path specification.

omode is a sequence of characters that specify the mode in which to open
the file. The first character must be one of:

To this can be appended a + and/or a b. The + indicates the file is to
opened for reading and writing, or update, as follows:

Finally, the b indicates whether the file is to be opened in text or binary
mode. If the file is opened in binary mode, the contents of the file are read
verbatim; likewise, anything output to the file is written verbatim. In text
mode (the default), carriage return-linefeed sequences are converted on

filename string, name of file to open.
omode string, file I/O mode. (See Remarks, below.)

f scalar, file handle.

r Open an existing file for reading. If the file does not exist,
fopen fails.

w Open or create a file for writing. If the file already exists, its
current contents will be destroyed.

a Open or create a file for appending. All output is appended to the
end of the file.

r+ Open an existing file for update. You can read from or write to
any location in the file. If the file does not exist, fopen fails.

w+ Open or create a file for update. You can read from or write to
any location in the file. If the file already exists, its current
contents will be destroyed.

a+ Open or create a file for update. You can read from any location
in the file, but all output will be appended to the end of the file.
�����

Command Reference

fopen

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
input to linefeeds, or newlines. Likewise on output, newlines are
converted to carriage return-linefeeds. Also in text mode, if a CTRL-Z
(char 26) is encountered during a read, it is interpreted as an end-of-file
character, and reading ceases. In binary mode, CTRL-Z is read in
uninterpreted.

The order of + and b is not significant; rb+ and r+b mean the same
thing.

You can both read from and write to a file opened for update. However,
before switching from one to the other, you must make an fseek or
fflush call, to flush the file’s buffer.

If fopen fails, it returns a 0.

Use close and closeall to close files opened with fopen.
����	

GAUSS Language Reference

for

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
for

���$��� Begins a for loop.

����� for i (start, stop, step);
.

.

.

endfor;

��$��

%���+� The counter is strictly local to the loop. The expressions start, stop, and
step are evaluated only once when the loop initializes. They are converted
to integers and stored local to the loop.

The for loop is optimized for speed and is much faster than a do loop.

The commands break and continue are supported. The continue
command steps the counter and jumps to the top of the loop. The break
command terminates the current loop.

The loop terminates when the value of i exceeds stop. If break is used to
terminate the loop and you want the final value of the counter, you need to
assign it to a variable before the break statement (see the third example,
following).

")�$�� Example 1

x = zeros(10, 5);

for i (1, rows(x), 1);

for j (1, cols(x), 1);

x[i,j] = i*j;

endfor;

endfor;

i literal, the name of the counter variable.
start scalar expression, the initial value of the counter.
stop scalar expression, the final value of the counter.
step scalar expression, the increment value.
����

Command Reference

for

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Example 2

x = rndn(3,3);

y = rndn(3,3);

for i (1, rows(x), 1);

for j (1, cols(x), 1);

if x[i,j] ≥ y[i,j];

continue;

endif;

temp = x[i,j];

x[i,j] = y[i,j];

y[i,j] = temp;

endfor;

endfor;

Example 3

li = 0;

x = rndn(100,1);

y = rndn(100,1);

for i (1, rows(x), 1);

if x[i] /= y[i];

li = i;

break;

endif;

endfor;

if li;

print “Compare failed on row ” li;

endif;
�����

GAUSS Language Reference

format

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
format

���$��� Controls the format of matrices and numbers printed out with print or
lprint statements.

����� format [[/typ]] [[/fmted]] [[/mf]] [[/jnt]] [[f,p]] ;

��$��

/typ literal, symbol type flag(s). Indicate which symbol types you are
setting the output format for.
/mat, /sa, /str Formatting parameters are maintained

separately for matrices (/mat), string
arrays (/sa), and strings (/str). You
can specify more than one /typ flag; the
format will be set for all types indicated.
If no /typ flag is listed, format assumes
/mat.

/fmted literal, enable formatting flag.
/on, /off Enable/disable formatting. When

formatting is disabled, the contents of a
variable are dumped to the window in a
“raw” format. /off is currently
supported only for strings. Raw format
for strings means that the entire string is
printed, starting at the current cursor
position. When formatting is enabled
for strings, they are handled the same as
string arrays. This shouldn’t be too
surprising, since a string is actually a
1x1 string array.

/mf literal, matrix row format flag.
/m0 no delimiters before or after rows when

printing out matrices.
/m1 or /mb1 print 1 carriage return/line feed pair

before each row of a matrix with more
than 1 row.

/m2 or /mb2 print 2 carriage return/line feed pairs
before each row of a matrix with more
than 1 row.

/m3 or /mb3 print “Row 1”, “Row 2”... before each
row of a matrix with more than one row.
�����

Command Reference

format

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
/ma1 print 1 carriage return/line feed pair
after each row of a matrix with more
than 1 row.

/ma2 print 2 carriage return/line feed pairs
after each row of a matrix with more
than 1 row.

/a1 print 1 carriage return/line feed pair
after each row of a matrix.

/a2 print 2 carriage return/line feed pairs
after each row of a matrix.

/b1 print 1 carriage return/line feed pair
before each row of a matrix.

/b2 print 2 carriage return/line feed pairs
before each row of a matrix.

/b3 print “Row 1”, “Row 2”... before each
row of a matrix.

/jnt literal, matrix element format flagcontrols justification,
notation and trailing character.
Right-Justified
/rd Signed decimal number in the form

 [[]]- ####.####, where #### is one or
more decimal digits. The number of
digits before the decimal point depends
on the magnitude of the number, and the
number of digits after the decimal point
depends on the precision. If the
precision is 0, no decimal point will be
printed.

/re Signed number in the form
 [[]]- ####.####, where # is one decimal
digit, ## is one or more decimal digits
depending on the precision, and ### is
three decimal digits. If precision is 0,
the form will be [[]]- #E±### with no
decimal point printed.
�����

GAUSS Language Reference

format

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
/ro This will give a format like /rd or /re
depending on which is most compact
for the number being printed. A format
like /re will be used only if the
exponent value is less than -4 or greater
than the precision. If a /re format is
used, a decimal point will always
appear. The precision signifies the
number of significant digits displayed.

/rz This will give a format like /rd or /re
depending on which is most compact
for the number being printed. A format
like /re will be used only if the
exponent value is less than -4 or greater
than the precision. If a /re format is
used, trailing zeros will be supressed
and a decimal point will appear only if
one or more digits follow it. The
precision signifies the number of
significant digits displayed.

Left-Justified
/ld Signed decimal number in the form [[]]-

####.####, where #### is one or more
decimal digits. The number of digits
before the decimal point depends on the
magnitude of the number, and the
number of digits after the decimal point
depends on the precision. If the
precision is 0, no decimal point will be
printed. If the number is positive, a
space character will replace the leading
minus sign.

/le Signed number in the form [[]]-
#.##E±###, where # is one decimal
digit, ## is one or more decimal digits
depending on the precision, and ### is
three decimal digits. If precision is 0,
the form will be [[]]- #E±### with no
decimal point printed. If the number is
positive, a space character will replace
the leading minus sign.
�����

Command Reference

format

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
%���+� If character elements are to be printed, the precision should be at least 8 or
the elements will be truncated. This does not affect the string data type.

/lo This will give a format like /ld or /le
depending on which is most compact
for the number being printed. A format
like /le will be used only if the
exponent value is less than -4 or greater
than the precision. If a /le format is
used, a decimal point will always
appear. If the number is positive, a
space character will replace the leading
minus sign. The precision specifies the
number of significant digits displayed.

/lz This will give a format like /ld or /le
depending on which is most compact
for the number being printed. A format
like /le will be used only if the
exponent value is less than -4 or greater
than the precision. If a /le format is
used, trailing zeros will be supressed
and a decimal point will appear only if
one or more digits follow it. If the
number is positive, a space character
will replace the leading minus sign. The
precision specifies the number of
significant digits displayed.

Trailing Character
The following characters can be added to the /jnt parameters
above to control the trailing character if any:

 format /rdn 1,3;

s The number will be followed
immediately by a space character. This
is the default.

c The number will be followed
immediately by a comma.

t The number will be followed
immediately by a tab character.

n No trailing character.
f scalar expression, controls the field width.
p scalar expression, controls the precision.
�����

GAUSS Language Reference

format

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
For numeric values in matrices, p sets the number of significant digits to
be printed. For string arrays, strings, and character elements in matrices, p
sets the number of characters to be printed. If a string is shorter than the
specified precision, the entire string is printed. For string arrays and
strings, p = -1 means print the entire string, regardless of its length. p = -1
is illegal for matrices; setting p ≥ 8 means the same thing for character
elements.

The /xxx slash parameters are optional. Field and precision are optional
also but if one is included, then both must be included.

Slash parameters, if present, must precede the field and precision
parameters.

A format statement stays in effect until it is overridden by a new
format statement. The slash parameters may be used in a print
statement to override the current default.

f and p may be any legal expressions that return scalars. Nonintegers will
be truncated to integers.

The total width of field will be overridden if the number is too big to fit
into the space allotted. For instance, format /rds 1,0 can be used to
print integers with a single space between them, regardless of the
magnitudes of the integers.

Complex numbers are printed with the sign of the imaginary half
separating them and an “i” appended to the imaginary half. Also, the field
parameter refers to the width of field for each half of the number, so a
complex number printed with a field of 8 will actually take (at least) 20
spaces to print. The character printed after the imaginary part can be
changed (for example, to a “j”) with the sysstate function, case 9.

The default when GAUSS is first started is:

format /mb1 /ros 16,8;
�����

Command Reference

format

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� This code:

x = rndn(3,3);

format /m1 /rd 16,8;

print x;

produces:

This code:

format /m1 /rzs 1,10;

print x;

produces:

This code:

format /m3 /rdn 16,4;

print x;

produces:

Row 1

-1.6353 1.6135 -1.0630

Row 2

 0.2617 0.2797 -1.3894

Row 3

 0.5889 0.4681 1.0881

 1.63533465– 1.61350700 1.06295179–

 0.26171282 0.27972294 1.38937242–

 0.58891114 0.46812202 1.08805960

1.6353346– 1.613507 1.0629518–

0.26171282 0.27972294 1.3893724–

0.58891114 0.46812202 1.0880596
�����

GAUSS Language Reference

format

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
This code:

format /m1 /ldn 16,4;

print x;

produces:

This code:

format /m1 /res 12,4;

print x;

produces:

�������� formatcv, formatnv, print, lprint, output

 1.6353– 1.6135 1.0630–

 0.2617 0.2797 1.3894–

 0.5889 0.4681 1.0881

 -1.6353E+000 1.6135E+000 -1.0630E+000

 2.6171E-001 2.7972E-001 -1.3894E+000

 5.8891E-001 4.6812E-001 1.0881E+000
�����

Command Reference

formatcv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
formatcv

���$��� Sets the character data format used by printfmt.

����� oldfmt = formatcv(newfmt);

��$��

�#��$��

�%���+� See printfm for details on the format vector.

")�$�� This example saves the old format, sets the format desired for printing x,
prints x, then restores the old format. This code:

x = { A 1, B 2, C 3 };

oldfmt = formatcv(“*.*s” ~ 3 ~ 3);

call printfmt(x,0~1);

call formatcv(oldfmt);

produces:

A 1

B 2

C 3

������� gauss.src

������ __fmtcv

������� formatnv, printfm, printfmt

newfmt 1x3 vector, the new format specification.

oldfmt 1x3 vector, the old format specification.
����	

GAUSS Language Reference

formatnv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
formatnv

���$��� Sets the numeric data format used by printfmt.

����� oldfmt = formatnv(newfmt);

��$��

�#��$��

�%���+� See printfm for details on the format vector.

")�$�� This example saves the old format, sets the format desired for printing x,
prints x, then restores the old format. This code:

x = { A 1, B 2, C 3 };

oldfmt = formatnv(“*.*lf” ~ 8 ~ 4);

call printfmt(x,0~1);

call formatnv(oldfmt);

produces:

A 1

B 2

C 3

������� gauss.src

������ __fmtnv

������� formatcv, printfm, printfmt

newfmt 1x3 vector, the new format specification.

oldfmt 1x3 vector, the old format specification.
����

Command Reference

fputs

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fputs

���$��� Writes strings to a file.

����� numl = fputs(f,sa);

���$��

�#��$��

������	�	�� UNIX

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX a newline is simply a linefeed.

%���+� fputs writes the contents of each string in sa, minus the null terminating
byte, to the file specified. If the file was opened in text mode (see
fopen), any newlines present in the strings are converted to carriage
return-linefeed sequences on output. If numl is not equal to the number of
elements in sa, there may have been an I/O error while writing the file.
You can use fcheckerr or fclearerr to check this. If there was an
error, you can call fstrerror to find out what it was. If the file was
opened for update (see fopen) and you are switching from reading to
writing, don’t forget to call fseek or fflush first, to flush the file’s
buffer. If you pass fputs the handle of a file opened with open (i.e., a
data set or matrix file), your program will terminate with a fatal error.

f scalar, file handle of a file opened with fopen.
sa string or string array.

numl scalar, the number of lines written to the file.
�����

GAUSS Language Reference

fputst

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fputst

���$��� Writes strings to a file.

����� numl = fputst (f,sa);

��$��

�#��$��

�����	�	�� UNIX

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX a newline is simply a linefeed.

%���+� fputst works identically to fputs, except that a newline is appended
to each string that is written to the file. If the file was opened in text mode
(see fopen), these newlines are also converted to carriage return-
linefeed sequences on output.

f scalar, file handle of a file opened with fopen.
sa string or string array.

numl scalar, the number of lines written to the file.
�����

Command Reference

fseek

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fseek

���$��� Positions the file pointer in a file.

����� ret = fseek(f,offs,base);

��$��

#��$��

�����	�	�� UNIX

Carriage return-linefeed conversion for files opened in text mode is
unnecessary, because in UNIX a newline is simply a linefeed.

%���+� fseek moves the file pointer offs bytes from the specified base position.
offs can be positive or negative. The call may fail if the file buffer needs to
be flushed (see fflush).

If fseek fails, you can call fstrerror to find out why.

For files opened for update (see fopen), the next operation can be a read
or a write.

fseek is not reliable when used on files opened in text mode (see
fopen). This has to do with the conversion of carriage return-linefeed
sequences to newlines. In particular, an fseek that follows one of the
fgetsxx or fputsxx commands may not produce the expected result.
For example:

p = ftell(f);

s = fgetsa(f,7);

call fseek(f,p,0);

is not reliable. The best results are obtained by fseek’ing to the
beginning of the file and then fseek’ing to the desired location, as in

f scalar, file handle of a file opened with fopen.
offs scalar, offset (in bytes).
base scalar, base position.

0 beginning of file.
1 current position of file pointer.
2 end of file.

ret scalar, 0 if successful, 1 if not.
�����

GAUSS Language Reference

fseek

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
p = ftell(f);

s = fgetsa(f,7);

call fseek(f,0,0);

call fseek(f,p,0);

If you pass fseek the handle of a file opened with open (i.e., a data set
or matrix file), your program will terminate with a fatal error.
�����

Command Reference

fstrerror

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
fstrerror

���$��� Returns an error message explaining the cause of the most recent file I/O
error.

����� s = fstrerror;

#��$��

�%���+� Any time an I/O error occurs on a file opened with fopen, an internal
error flag is updated. (This flag, unlike those accessed by fcheckerr
and fclearerr, is not specific to a given file; rather, it is system-wide.)
fstrerror returns an error message based on the value of this flag,
clearing it in the process. If no error has occurred, a null string is returned.

Since fstrerror clears the error flag, if you call it twice in a row, it
will always return a null string the second time.

s string, error message.
�����

GAUSS Language Reference

ftell

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ftell

���$��� Gets the position of the file pointer in a file.

����� pos = ftell(f);

��$��

#��$��

%���+� ftell returns the position of the file pointer in terms of bytes from the
beginning of the file. The call may fail if the file buffer needs to be
flushed (see fflush).

If an error occurs, ftell returns -1. You can call fstrerror to find
out what the error was.

If you pass ftell the handle of a file opened with open (i.e., a data set
or matrix file), your program will terminate with a fatal error.

f scalar, file handle of a file opened with fopen.

pos scalar, current position of the file pointer in a file.
�����

Command Reference

ftocv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ftocv

���$��� Converts a matrix containing floating point numbers into a matrix
containing the decimal character representation of each element.

����� y = ftocv(x,field,prec);

��$��

�#��$��

�%���+� If a number is narrower than field, it will be padded on the left with zeros.

If prec = 0, the decimal point will be suppressed.

")�$�� y = seqa(6,1,5);

x = 0 $+ “cat” $+ ftocv(y,2,0);

Notice that the (0 $+) above was necessary to force the type of the result
to matrix because the string constant cat would be of type string. The
left operand in an expression containing a $+ operator controls the type of
the result.

������� ftos

x NxK matrix containing numeric data to be converted.
field scalar, minimum field width.
prec scalar, the numbers created will have prec places after the

decimal point.

y NxK matrix containing the decimal character equivalent of the
corresponding elements in x in the format defined by field and
prec.

x

cat06
cat07

cat08

cat09

cat10

=

�����

GAUSS Language Reference

ftos

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ftos

���$��� Converts a scalar into a string containing the decimal character
representation of that number.

����� y = ftos(x,fmat,field,prec);

��$��

�#��$��

�%���+� The format string corresponds to the format /jnt (justification, notation,
trailing character) slash parameter as follows:

/rdn “%*.*lf”

/ren “%*.*lE”

/ron “%#*.*lG”

/rzn “%*.*lG”

/ldn “%- *.*lf”

/len “%- *.*lE”

/lon “%-# *.*lG”

/lzn “%- *.*lG”

If x is complex, you can specify separate formats for the real and
imaginary parts by putting two format specifications in the format string.
You can also specify separate fields and precisions. You can position the
sign of the imaginary part by placing a “+” between the two format
specifications. If you use two formats, no “i” is appended to the imaginary

x scalar, the number to be converted.
fmat string, the format string to control the conversion.
field scalar or 2x1 vector, the minimum field width. If field is 2x1, it

specifies separate field widths for the real and imaginary parts of
x.

prec scalar or 2x1 vector, the number of places following the decimal
point. If prec is 2x1, it specifies separate precisions for the real
and imaginary parts of x.

y string containing the decimal character equivalent of x in the
format specified.
�����

Command Reference

ftos

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
part. This is so you can use an alternate format if you prefer, for example,
prefacing the imaginary part with a “j”.

The format string can be a maximum of 80 characters.

If you want special characters to be printed after x, include them as the
last characters of the format string. For example:

You can embed the format specification in the middle of other text.

“Time: %*.*lf seconds.”

If you want the beginning of the field padded with zeros, then put a “0”
before the first “*” in the format string:

If prec = 0, the decimal point will be suppressed.

")�$�� You can create custom formats for complex numbers with ftos. For
example,

let c = 24.56124+6.3224e-2i;

field = 1;

prec = 3|5;

fmat = “%lf + j%le is a complex number.”;

cc = ftos(c,fmat,field,prec);

results in

cc = “24.561 + j6.32240e-02 is a complex

number.”

Some other things you can do with ftos:

let x = 929.857435324123;

let y = 5.46;

let z = 5;

“%*.*lf,” right-justified decimal followed by a comma.
“%-*.*s” left-justified string followed by a space.
“%*.*lf” right-justified decimal followed by nothing.

“%0*.*lf” right-justified decimal.
����	

GAUSS Language Reference

ftos

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
field = 1;

prec = 0;

fmat = “%*.*lf”;

zz = ftos(z,fmat,field,prec);

field = 1;

prec = 10;

fmat = “%*.*lE”;

xx = ftos(x,fmat,field,prec);

field = 7;

prec = 2;

fmat = “%*.*lf seconds”;

s1 = ftos(x,fmat,field,prec);

s2 = ftos(y,fmat,field,prec);

field = 1;

prec = 2;

fmat = “The maximum resistance is %*.*lf

 ohms.”;

om = ftos(x,fmat,field,prec);

The results:

zz = “5”

xx = “9.2985743532E+02”

s1 = “ 929.86 seconds”

s2 = “ 5.46 seconds”

om = “The maximum resistance is 929.86 ohms.”
����

Command Reference

ftos

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� ftocv, stof, format
�����

GAUSS Language Reference

ftostrC

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ftostrC

���$��� Converts a matrix to a string array using a C language format
specification.

����� sa = ftostrC(x, fmt);

��$��

#��$��

%���+� If fmt has K elements, each column of sa can be formatted separately. If x
is complex, there must be two format specifications in each element of
fmt.

")�$�� declare string fmtr = {

"%6.3lf",

"%11.8lf"

};

declare string fmtc = {

"(%6.3lf, %6.3lf)",

"(%11.8lf, %11.8lf)"

};

xr = rndn(4, 2);

xc = sqrt(xr’)’;

sar = ftostrC(xr, fmtr);

sac = ftostrC(xc, fmtc);

x NxK matrix, real or complex.
fmt Kx1, 1xK or 1x1 string array containing format information.

sa NxK string array.
�����

Command Reference

ftostrC

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print sar;

print sac;

produces:

-0.166 1.05565441

-1.590 -0.79283296

 0.130 -1.84886957

 0.789 0.86089687

(0.000, -0.407) (1.02745044, 0.00000000)

(0.000, -1.261) (0.00000000, -0.89041168)

(0.361, 0.000) (0.00000000, -1.35973143)

(0.888, 0.000) (0.92784529, 0.00000000)

������� strtof, strtofcplx
�����

GAUSS Language Reference

gamma

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
gamma

���$��� Returns the value of the gamma function.

����� y = gamma(x);

��$��

�#��$��

�%���+� For each element of x, this function returns the integral

All elements of x must be positive and less than or equal to 169. Values of
x greater than 169 will cause an overflow.

The natural log of gamma is often what is required and it can be
computed without the overflow problems of gamma. lnfact can be
used to compute log gamma.

")�$�� y = gamma(2.5);

������� cdfchic, cdfbeta, cdffc, cdfn, cdfnc, cdftc, erf,
erfc

x NxK matrix.

y NxK matrix.

t
x 1–()

e t– td
0

∞

∫

y 1.32934=
�����

Command Reference

gammaii

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
gammaii

���$��� Computes the inverse incomplete gamma function.

����� x = gammaii(a,p);

��$��

#��$��

������ cdfchii.src

������ _ginvinc, __macheps

a MxN matrix, exponents.
p KxL matrix, ExE conformable with a, incomplete gamma

values.

x max(M,K) by max(N,L) matrix, abscissae.
�����

GAUSS Language Reference

gausset

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
gausset

���$��� Resets the global control variables declared in gauss.dec.

����� gausset;

������ gauss.src

������ __altnam, __con, __ff, __fmtcv, __fmtnv,

__header, __miss, __output, __row, __rowfac,

__sort, __title, __tol, __vpad, __vtype, __weight
�����

Command Reference

getf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
getf

���$��� Loads an ASCII or binary file into a string.

����� y = getf(filename,mode);

��$��

�#��$��

�%���+� If the file is loaded in ASCII mode, it will be tested to see if it contains
any end of file characters. These are ^Z (ASCII 26). The file will be
truncated before the first ^Z and there will be no ^Z’s in the string. This is
the correct way to load most text files because the ^Z’s can cause
problems when trying to print the string to a printer.

If the file is loaded in binary mode, it will be loaded just like it is with no
changes.

")�$�� Create a file examp.e containing the following program.

library pgraph;

graphset;

x = seqa(0,0.1,100);

y = sin(x);

xy(x,y);

Then execute the following.

y = getf(“examp.e”,0);

print y;

filename string, any valid file name.
mode scalar 1 or 0 which determines if the file is to be loaded in

ASCII mode (0) or binary mode (1).

y string containing the file.
�����

GAUSS Language Reference

getf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
This produces:

library pgraph;

graphset;

x = seqa(0,0.1,100);

y = sin(x);

xy(x,y);

�������� load, save, let, con
�����

Command Reference

getname

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
getname

���$��� Returns a column vector containing the names of the variables in a
GAUSS data set.

����� y = getname(dset);

��$��

�#��$��

�%���+� The output, y, will have as many rows as there are variables in the data
set.

")�$�� y = getname(“olsdat”);

format 8,8;

print $y;

produces:

TIME

DIST

TEMP

FRICT

The above example assumes the data set olsdat contained the variables
TIME, DIST, TEMP, FRICT.

Note that the extension is not included in the filename passed to the
getname function.

������� getnamef, indcv

dset string specifying the name of the data set from which the
function will obtain the variable names.

y Nx1 vector containing the names of all of the variables in the
specified data set.
����	

GAUSS Language Reference

getnamef

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
getnamef

���$��� Returns a string array containing the names of the variables in a GAUSS
data set.

����� y = getnamef(f);

��$��

�#��$��

�%���+� The output, y, will have as many rows as there are variables in the data
set.

")�$�� open f = olsdat for read;

y = getnamef(f);

t = vartypef(f);

print y;

produces:

time

dist

temp

frict

The above example assumes the data set olsdat contained the variables
time, dist, temp, frict.

Note the use of vartypef to determine the types of these variables.

������� getname, indcv, vartypef

f scalar, file handle of an open data set.

y Nx1 string array containing the names of all of the variables in
the specified data set.
����

Command Reference

getNextTradingDay

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
getNextTradingDay

���$��� Returns the next trading day.

����� n = getNextTradingDay(a)

��$��

#��$��

%���+� A trading day is a weekday that is not a holiday as defined by the New
York Stock Exchange from 1888 through 2004. Holidays are defined in
holidays.asc. You may edit that file to modify or add holidays.

������ finutils.src

a scalar, date in DT scalar format.

n next trading day in DT scalar format
�����

GAUSS Language Reference

getNextWeekDay

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
getNextWeekDay

���$��� Returns the next day that is not on a weekend.

����� n = getNextWeekDay(a)

��$��

#��$��

������ finutils.src

a scalar, date in DT scalar format.

n next week day in DT scalar format
�����

Command Reference

getnr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
getnr

���$��� Computes number of rows to read per iteration for a program that reads
data from a disk file in a loop.

����� nr = getnr(nsets,ncols);

��$��

#��$��

%���+� If __row is greater than 0, nr will be set to __row.

If an insufficient memory error is encountered, change __rowfac to a
number less than 1.0 (e.g., 0.75). The number of rows read will be
reduced in size by this factor.

������ gauss.src

������ __row, __rowfac

nsets scalar, estimate of the maximum number of duplicate copies of
the data matrix read by readr to be kept in memory during each
iteration of the loop.

ncols scalar, columns in the data file.

nr scalar, number of rows readr should read per iteration of the
read loop.
�����

GAUSS Language Reference

getpath

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
getpath

���$��� Returns an expanded filename including the drive and path.

����� fname = getpath(pfname);

��$��

#��$��

%���+� This function handles relative path references.

")�$�� y = getpath(“temp.e”);

print y;

produces:

/gauss/temp.e

������ getpath.src

pfname string, partial filename with only partial or missing path
information.

fname string, filename with full drive and path.
�����

Command Reference

getPreviousTradingDay

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
getPreviousTradingDay

���$��� Returns the previous trading day.

����� n = getPreviousTradingDay(a)

��$��

#��$��

%���+� A trading day is a weekday that is not a holiday as defined by the New
York Stock Exchange from 1888 through 2004. Holidays are defined in
holidays.asc. You may edit that file to modify or add holidays.

������ finutils.src

a scalar, date in DT scalar format.

n Previous trading day in DT scalar format
�����

GAUSS Language Reference

getPreviousWeekDay

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
getPreviousWeekDay

���$��� Returns the previous day that is not on a weekend.

����� n = getPreviousWeekDay(a)

��$��

#��$��

������ finutils.src

a scalar, date in DT scalar format.

n previous week day in DT scalar format
�����

Command Reference

getwind

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
getwind

���$��� Retrieves the current graphic panel number.

 	���� pgraph

����� n = getwind;

#��$��

%���+� The current graphic panel is the graphic panel in which the next graph
will be drawn.

������ pwindow.src

������� endwind, begwind, window, setwind, nextwind

n scalar, graphic panel number of current graphic panel.
�����

GAUSS Language Reference

gosub

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
gosub

���$��� Causes a branch to a subroutine.

����� gosub label;

.

.

.

label:

.

.

.

return;

%���+� For multi-line recursive user-defined functions, see “Procedures and
Keywords” in the User’s Guide.

When a gosub statement is encountered, the program will branch to the
label and begin executing from there. When a return statement is
encountered, the program will resume executing at the statement
following the gosub statement. Labels are 1-32 characters long and are
followed by a colon. The characters can be A-Z or 0-9 and they must
begin with an alphabetic character. Uppercase or lowercase is allowed.

It is possible to pass parameters to subroutines and receive parameters
from them when they return. See the second example, following.

The only legal way to enter a subroutine is with a gosub statement.

If your subroutines are at the end of your program, you should have an
end statement before the first one to prevent the program from running
into a subroutine without using a gosub. This will result in a “return
without gosub” error message.
�����

Command Reference

gosub

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The variables used in subroutines are not local to the subroutine and can
be accessed from other places in your program. (See “Procedures and
Keywords” in the User’s Guide.)

")�$�� In the program below, the name mysub is a label. When the gosub
statement is executed, the program will jump to the label mysub and
continue executing from there. When the return statement is executed,
the program will resume executing at the statement following the gosub.

x = rndn(3,3); z = 0;

gosub mysub;

print z;

end;

/* ------ Subroutines Follow ------ */

mysub:

z = inv(x);

return;

Parameters can be passed to subroutines in the following way (line
numbers are added for clarity):

1. gosub mysub(x,y);

2. pop j; /* b will be in j */

3. pop k; /* a will be in k */

4. t = j*k;

5. print t;

6. end;

7.

8. /* ---- Subroutines Follow ----- */

9.

10. mysub:
����	

GAUSS Language Reference

gosub

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
11. pop b; /* y will be in b */

12. pop a; /* x will be in a */

13.

14. a = inv(b)*b+a;

15. b = a’b;

16. return(a,b);

In the previous example, when the gosub statement is executed, the
following sequence of events results:

Matrices are pushed on a last-in/first-out stack in the gosub() and
return() statements. They must be popped off in the reverse order. No
intervening statements are allowed between the label and the pop or the
gosub and the pop. Only one matrix may be popped per pop statement.

������� goto, proc, pop, return

1. x and y are pushed on the stack and the program branches to the
label mysub in line 10.

11. the second argument that was pushed, y, is pop’ped into b.
12. the first argument that was pushed, x, is pop’ped into a.
14. inv(b)*b+a is assigned to a.
15. a/b is assigned to b.
16. a and b are pushed on the stack and the program branches to the

statement following the gosub, which is line 2.
2. the second argument that was pushed, b, is pop’ped into j.
3. the first argument that was pushed, a, is pop’ped into k.
4. j*k is assigned to t.
5. t is printed.
6. the program is terminated with the end statement.
����

Command Reference

goto

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
goto

���$��� Causes a branch to a label.

����� goto label;
.

.

.

label:

%���+� Label names can be any legal GAUSS names up to 32 alphanumeric
characters, beginning with an alphabetic character or an underscore, not a
reserved word.

Labels are always followed immediately by a colon.

Labels do not have to be declared before they are used. GAUSS knows
they are labels by the fact that they are followed immediately by a colon.

When GAUSS encounters a goto statement, it jumps to the specified
label and continues execution of the program from there.

Parameters can be passed in a goto statement the same way as they can
with a gosub.

")�$�� x = seqa(.1,.1,5);

n = { 1 2 3 };

goto fip;

print x;

end;

fip:

print n;

produces:

1.0000000 2.0000000 3.0000000
�����

GAUSS Language Reference

goto

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� gosub, if
�����

Command Reference

gradp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
gradp

���$��� Computes the gradient vector or matrix (Jacobian) of a vector-valued
function that has been defined in a procedure. Single-sided (forward
difference) gradients are computed.

����� g = gradp(&f,x0);

��$��

�#��$��

�%���+� gradp will return a row for every row that is returned by f. For instance,
if f returns a scalar result, then gradp will return a 1xK row vector. This
allows the same function to be used regardless of N, where N is the
number of rows in the result returned by f. Thus, for instance, gradp can
be used to compute the Jacobian matrix of a set of equations.

")�$�� proc myfunc(x);

retp(x.*2 .* exp(x.*x./3));

endp;

x0 = 2.5|3.0|3.5;

y = gradp(&myfunc,x0);

&f a pointer to a vector-valued function (f:Kx1 - > Nx1)
defined as a procedure. It is acceptable for f(x) to have been
defined in terms of global arguments in addition to x, and
thus f can return an Nx1 vector:

proc f(x);

retp(exp(x.*b));

endp;

x0 Kx1 vector of points at which to compute gradient.

g NxK matrix containing the gradients of f with respect to the
variable x at x0.

y
82.98901842 0.00000000 0.00000000

 0.00000000 281.19752975 0.00000000

 0.00000000 0.00000000 1087.95414117

=

�����

GAUSS Language Reference

gradp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
It is a 3x3 matrix because we are passing it 3 arguments and myfunc
returns 3 results when we do that; the off-diagonals are zeros because the
cross-derivatives of 3 arguments are 0.

������ gradp.src

������� hessp
�����

Command Reference

graphprt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
graphprt

���$��� Controls automatic printer hardcopy and conversion file output.

 	���� pgraph

����� graphprt(str);

��$��

�����	�	�� UNIX

Not supported, use WinPrintPQG instead.

%���+� graphprt is used to create hardcopy output automatically without user
intervention. The input string str can have any of the following items,
separated by spaces. If str is a null string, the interactive mode is entered.
This is the default.
.

If you are not using graphic panels, you can call graphprt anytime
before the call to the graphics routine. If you are using graphic panels, call
graphprt just before the endwind statement.

The print option default values are set from the viewer application. Any
parameters passed through graphprt will override the default values.
(See “Publication Quality Graphics” in the User’s Guide.)

Under DOS, this uses a utility called vwr.exe by default.

str string, control string.

-P print graph.
-PO=c set print orientation.

L landscape.
P portrait.

-C=n convert to another file format.
1 Encapsulated PostScript file.
3 HPGL Plotter file.
5 BMP (Windows only)
8 WMF (Windows only)

-CF=name set converted output file name.
-I Minimize (iconize) the graphics window.
-Q Close window after processing.
-W=n display graph, wait n seconds, then continue.
�����

GAUSS Language Reference

graphprt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� Automatic print using a single graphics call.

library pgraph;

graphset;

load x,y;

graphprt(“-p”); /* tell “xy” to print */

xy(x,y); /* create graph and print */

Automatic print using multiple graphics graphic panels. Note graphprt
is called once just before the endwind call.

library pgraph;

graphset;

load x,y;

begwind;

window(1,2,0); /* create two windows */

setwind(1);

xy(x,y); /* first graphics call */

nextwind;

xy(x,y); /* second graphics call */

graphprt(“-p”);

endwind; /* print page containing all graphs */

The next example shows how to build a string to be used with
graphprt.

library pgraph;

graphset;

load x,y;
�����

Command Reference

graphprt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
cvtnam = “mycvt.eps”; /* name of output file

/* concatenate options into one string */

cmdstr = “-c=1” $+ “ -cf=” $+ cvtnam;

cmdstr = cmdstr $+ “n-q”;

graphprt(cmdstr); /* tell “xy” to convert and

close*/

xy(x,y); /* create graph and print */

The above string cmdstr will produce:

“-c = 1n - cf = mycvt.epsn - q”

������ pgraph.src
�����

GAUSS Language Reference

graphset

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
graphset

���$��� Resets graphics globals to default values.

 	���� pgraph

����� graphset;

%���+� This procedure is used to reset the defaults between graphs.

graphset may be called between each graphic panel to be displayed.

To change the default values of the global control variables, make the
appropriate changes in the file pgraph.dec and to the procedure
graphset.

������ pgraph.src
�����

Command Reference

hasimag

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
hasimag

���$��� Tests whether the imaginary part of a complex matrix is negligible.

����� y = hasimag(x);

��$��

#��$��

The function iscplx tests whether x is a complex matrix or not, but it
does not test the contents of the imaginary part of x. hasimag tests the
contents of the imaginary part of x to see if it is zero.

hasimag actually tests the imaginary part of x against a tolerance to
determine if it is negligible. The tolerance used is the imaginary tolerance
set with the sysstate command, case 21.

Some functions are not defined for complex matrices. iscplx can be
used to determine whether a matrix has no imaginary part and so can pass
through those functions. hasimag can be used to determine whether a
complex matrix has a negligible imaginary part and could thus be
converted to a real matrix to pass through those functions.

iscplx is useful as a preliminary check because for large matrices it is
much faster than hasimag.

")�$��

y = hasimag(x);

������� iscplx

x NxK matrix.

y scalar, 1 if the imaginary part of x has any nonzero elements, 0 if
it consists entirely of 0’s.

x = { 1 2 3i,

4-i 5 6i,

7 8i 9 };

y 1.0000000=
����	

GAUSS Language Reference

header

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
header

���$��� Prints a header for a report.

����� header(prcnm,dataset,ver);

��$��

��������$��

������ gauss.src

������ __header, __title

prcnm string, name of procedure that calls header.
dataset string, name of data set.
ver 2x1 numeric vector, the first element is the major version

number of the program, the second element is the revision
number. Normally this argument will be the version/revision
global (__??_ver) associated with the module within
which header is called. This argument will be ignored if set to
0.

__header string, containing the letters:
t title is to be printed
l lines are to bracket the title
d a date and time is to be printed
v version number of program is printed
f file name being analyzed is printed

__title string, title for header.
����

Command Reference

hess

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
hess

���$��� Computes the Hessenberg form of a square matrix.

����� { h,z } = hess(x);

��$��

�#��$��

%���+� hess computes the Hessenberg form of a square matrix. The Hessenberg
form is an intermediate step in computing eigenvalues. It also is useful for
solving certain matrix equations that occur in control theory (see Van
Loan, Charles F. “Using the Hessenberg Decomposition in Control
Theory,” Algorithms and Theory in FIltering and Control. Sorenson,
D.C., and R.J. Wets, eds., Mathematical Programming Study No. 18, No.
Holland, Amsterdam, 1982, 102-11).

z is an orthogonal matrix that transforms x into h and vice versa. Thus:

h = z′x z

and since z is orthogonal,

x = z h z′

x is reduced to upper Hessenberg form using orthogonal similiarity
transformations. This preserves the Frobenious norm of the matrix and
the condition numbers of the eigenvalues.

hess uses the ORTRAN and ORTHES functions from EISPACK.

")�$��

{ h,z } = hess(x);

x KxK matrix.

h KxK matrix, Hessenberg form.
z KxK matrix, transformation matrix.

let x[3,3] = 1 2 3

4 5 6

7 8 9;

h
 1.00000000 3.59700730– 0.24806947–

8.06225775– 14.04615385 2.83076923

 0.00000000 0.83076923 0.04615385–

=

�����

GAUSS Language Reference

hess

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� schur

z
1.00000000 0.00000000 0.00000000

0.00000000 0.49613894– 0.86824314–

0.00000000 0.86824314– 0.49613894

=

�����

Command Reference

hessp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
hessp

���$��� Computes the matrix of second partial derivatives (Hessian matrix) of a
function defined as a procedure.

����� h = hessp(&f,x0);

��$��

�#��$��

�%���+� This procedure requires K*(K+1)/2 function evaluations. Thus if K is
large, it may take a long time to compute the Hessian matrix.

No more than 3-4 digit accuracy should be expected from this function,
though it is possible for greater accuracy to be achieved with some
functions.

It is important that the function be properly scaled, in order to obtain
greatest possible accuracy. Specifically, scale it so that the first
derivatives are approximately the same size. If these derivatives differ by
more than a factor of 100 or so, the results can be meaningless.

")�$�� x = { 1, 2, 3 };

proc g(b);

retp(exp(x’b));

endp;

b0 = { 3, 2, 1 };

h = hessp(&g,b0);

&f pointer to a single-valued function f(x), defined as a procedure,
taking a single Kx1 vector argument (f:Kx1 -> 1x1); f(x) may be
defined in terms of global arguments in addition to x.

x0 Kx1 vector specifying the point at which the Hessian of f(x) is to
be computed.

h KxK matrix of second derivatives of f with respect to x at x0; this
matrix will be symmetric.
�����

GAUSS Language Reference

hessp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The resulting matrix of second partial derivatives of g(b) evaluated at
b=b0 is:

������ hessp.src

������� gradp

22027.12898372 44054.87238165 66083.36762901

44054.87238165 88111.11102645 132168.66742899

66083.36762901 132168.66742899 198256.04087836
�����

Command Reference

hist

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
hist

���$��� Computes and graphs a frequency histogram for a vector. The actual
frequencies are plotted for each category.

 	���� pgraph

����� { b,m,freq } = hist(x,v);

��$��

#��$��

%���+� If a vector of breakpoints is specified, a final breakpoint equal to the
maximum value of x will be added if the maximum breakpoint value is
smaller.

If a number of categories is specified, the data will be divided into v
evenly spaced categories.

Each time an element falls into one of the categories specified in b, the
corresponding element of freq will be incremented by one. The categories
are interpreted as follows:

x Mx1 vector of data.
v Nx1 vector, the breakpoints to be used to compute the

frequencies,

or

scalar, the number of categories.

b Px1 vector, the breakpoints used for each category.
m Px1 vector, the midpoints of each category.
freq Px1 vector of computed frequency counts.

freq[1] = x ≤ b[1]
freq[2] = b[1] < x ≤ b[2]
freq[3] = b[2] < x ≤ b[3]

freq[P] = b[P-1] < x ≤ b[P]
�����

GAUSS Language Reference

hist

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� library pgraph;

x = rndn(5000,1);

{ b,m,f } = hist(x,20);

������ phist.src

������� histp, histf, bar
�����

Command Reference

histf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
histf

���$��� Graphs a histogram given a vector of frequency counts.

 	���� pgraph

����� histf(f,c);

��$��

%���+� The axes are not automatically labeled. Use xlabel for the category axis
and ylabel for the frequency axis.

������ phist.src

������� hist, bar, xlabel, ylabel

f Nx1 vector, frequencies to be graphed.
c Nx1 vector, numeric labels for categories. If this is a scalar 0, a

sequence from 1 to rows(f) will be created.
�����

GAUSS Language Reference

histp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
histp

���$��� Computes and graphs a percent frequency histogram of a vector. The
percentages in each category are plotted.

 	���� pgraph

����� { b,m,freq } = histp(x,v);

��$��

#��$��

%���+� If a vector of breakpoints is specified, a final breakpoint equal to the
maximum value of x will be added if the maximum breakpoint value is
smaller.

If a number of categories is specified, the data will be divided into v
evenly spaced categories.

Each time an element falls into one of the categories specified in b, the
corresponding element of freq will be incremented by one. The categories
are interpreted as follows:

������ phist.src

������� hist, histf, bar

x Mx1 vector of data.
v Nx1 vector, the breakpoints to be used to compute the

frequencies,

or
scalar, the number of categories.

b Px1 vector, the breakpoints used for each category.
m Px1 vector, the midpoints of each category.
freq Px1 vector of computed frequency counts. This is the vector of

counts, not percentages.

freq[1] = x ≤ b[1]
freq[2] = b[1] < x ≤ b[2]
freq[3] = b[2] < x ≤ b[3]

freq[P] = b[P-1] < x ≤ b[P]
�����

Command Reference

hsec

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
hsec

���$��� Returns the number of hundredths of a second since midnight.

����� y = hsec;

%���+� The number of hundredths of a second since midnight can also be
accessed as the [4,1] element of the vector returned by the date function.

")�$�� x = rndu(100,100);

ts = hsec;

y = x*x;

et = hsec-ts;

In this example, hsec is used to time a 100x100 multiplication in
GAUSS. A 100x100 matrix, x, is created, and the current time, in
hundredths of a second since midnight, is stored in the variable ts. Then
the multiplication is carried out. Finally, ts is subtracted from hsec to
give the time difference which is assigned to et.

������� date, time, timestr, ethsec, etstr
����	

GAUSS Language Reference

if

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
if

���$��� Controls program flow with conditional branching.

����� if scalar_expression;
list of statements;

elseif scalar_expression;
list of statements;

elseif scalar_expression;
list of statements;

else;

list of statements;

endif;

%���+� scalar_expression is any expression that returns a scalar. It is TRUE if it is
not zero, and FALSE if it is zero.

A list of statements is any set of GAUSS statements.

GAUSS will test the expression after the if statement. If it is TRUE
(nonzero), then the first list of statements is executed. If it is FALSE
(zero), then GAUSS will move to the expression after the first elseif
statement if there is one and test it. It will keep testing expressions and
will execute the first list of statements that corresponds to a TRUE
expression. If no expression is TRUE, then the list of statements following
the else statement is executed. After the appropriate list of statements is
executed, the program will go to the statement following the endif and
continue on.

if statements can be nested.

One endif is required per if statement. If an else statement is used,
there may be only one per if statement. There may be as many
elseif’s as are required. There need not be any elseif’s or any
else statement within an if statement.

Note the semicolon after the else statement.
����

Command Reference

if

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� if x < 0;

y = -1;

elseif x > 0;

y = 1;

else;

y = 0;

endif;

�������� do
�����

GAUSS Language Reference

imag

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
imag

���$��� Returns the imaginary part of a matrix.

����� zi = imag(x);

��$��

�#��$��

�%���+� If x is real, zi will be an NxK matrix of zeros.

")�$��

y = imag(x);

������� complex, real

x NxK matrix.

zi NxK matrix, the imaginary part of x.

x = { 4i 9 3,

2 5-6i 7i };

y 4.0000000 0.0000000 0.0000000

0.0000000 6.0000000– 7.0000000
=

���	�

Command Reference

import

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
import

���$��� Imports a spreadsheet, database, or ASCII file into a matrix.

������ { x,namel } = import(fname,range,sheet);

��$��

�����������#��$��

�����	�	�� Windows only

%���+� If sheet is 0, import will import the first (possibly only) sheet of a
spreadsheet.

For spreadsheets, range indicates the columns to be imported, and can be
expressed in the form B7:K243 or B7..K243. A range of 0 imports
all data.

For packed ASCII files, range is a descriptor that defines field name,
type, width, and optionally precision. It is a single string of the form

name [[type]] fldspec [[name [[type]] fldspec...]]

where

name is the column name for the field.

type is $ for a character field, blank for a numeric field.

fldspec is either a column range (e.g., 5-8), a start column and field width
(e.g., 5,4 or 5,4.2), or a field width only (e.g., 4 or 4.2). If only a field
width is given, the start column is input from the previous field. If the
field width is specified with a decimal (e.g., 4.2), then a decimal point
will be inserted that many places in from the right edge of the field.

A shorthand for a set of columns is available (e.g., x01-x09); the
subsequent type and fldspec are applied to all columns in the set.

fname string, file name with path.
range string, range of cells (spreadsheet only), field descriptor (ASCII

files), or 0.
sheet scalar, sheet number of multi-sheet spreadsheet or 0.

x NxK matrix, imported data.
namel Kx1 vector, column headers.
���	�

GAUSS Language Reference

import

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� fname = “c:\\temp\\testdata.xls”;

{mmx, names} = import(fname, “A3:D12”, 3);

This will import the range of cells A3 to D12 of the third sheet of
testdata.xls into the GAUSS matrix mmx with the column headings
defined by names. Substituting a 0 or 1 for the 3 would have imported
the first (possibly only) sheet.

fname = “c:\\temp\\tstdta.asc”;

range = “var1 $ 6,2 var2 8-15 var3 18,4.1 gnp 7

cons 6.2 xs1-xs20 2”;

{x,names} = import(fname,range,0);

Here, a GAUSS matrix x is created from a packed ASCII data set, using
the descriptor shown.

������ _dxaschdr, _dxftype, _dxmiss, _dxprcn, _dxprint,

_dxtxdlim, _dxtype, _dxwidth, _dxwkshdr

������� export, exportf, importf
���	�

Command Reference

importf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
importf

���$��� Imports a spreadsheet, database, or ASCII file to a GAUSS data set.

����� ret = importf(fname,dset,range,sheet);

��$��

�����������#��$��

�����	�	�� Windows only

%���+� See import for details on the range and sheet parameters.

")�$�� fname = “c:\\temp\\testdata2.dbf”;

dname = “c:\\gauss\\data\\mydata.dat”;

call importf(dname, fname, 0, 0);

This will create a GAUSS data set c:\gauss\data\mydata.dat
from the data in the dBase III file c:\temp\testdata2.dbf.

������ _dxaschdr, _dxftype, _dxmiss, _dxprcn, _dxprint,

_dxtxdlim, _dxtype, _dxwidth, _dxwkshdr

������� export, exportf, import

fname string, file name with optional path.
dset string, name of data set with optional path.
range string, range of cells (spreadsheet only), field descriptor

(ASCII files), or 0.
sheet scalar, sheet number of multi-sheet spreadsheet or 0.

ret scalar, success flag, 1 if successful, 0 if not.
dset GAUSS data set.
���	�

GAUSS Language Reference

#include

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
#include

���$��� Inserts code from another file into a GAUSS program.

����� #include filename;
#include “filename”;

%���+� filename can be any legitimate file name.

This command makes it possible to write a section of general-purpose
code, and insert it into other programs.

The code from the #include’d file is inserted literally as if it were
merged into that place in the program with a text editor.

If a path is specified for the file, then no additional searching will be
attempted if the file is not found.

If a path is not specified, the current directory will be searched first, then
each directory listed in src_path. src_path is defined in
gauss.cfg.

Compile time errors will return the line number and the name of the file in
which they occur. For execution time errors, if a program is compiled
with #lineson, the line number and name of the file where the error
occurred will be printed. For files that have been #include’d this
reflects the actual line number within the #include’d file. See
#lineson for a more complete discussion of the use of and the validity
of line numbers when debugging.

#include /gauss/myprog.prc; No additional search will be
made if the file is not found.

#include myprog.prc; The directories listed in
src_path will be searched
for myprog.prc if the file
is not found in the current
directory.
���	�

Command Reference

#include

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� #include “/gauss/inc/cond.inc”;

The command will cause the code in the file cond.inc to be merged
into the current program at the point at which this statement appears.

������� run, #lineson
���	�

GAUSS Language Reference

indcv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
indcv

���$��� Checks one character vector against another and returns the indices of the
elements of the first vector in the second vector.

����� z = indcv(what,where);

��$��

�#��$��

�%���+� If no matches are found for any of the elements in what, then the
corresponding elements in the returned vector are set to the GAUSS
missing value code.

Both arguments will be forced to uppercase before the comparison.

If there are duplicate elements in where, the index of the first match will
be returned.

")�$�� let what = AGE PAY SEX;

let where = AGE SEX JOB “date” PAY;

z = indcv(what,where);

what Nx1 character vector which contains the elements to be found in
vector where.

where Mx1 character vector to be searched for matches to the elements
of what.

z Nx1 vector of integers containing the indices of the
corresponding element of what in where.

what
AGE

PAY

SEX

=

where

AGE

SEX

JOB

date

PAY

=

���	�

Command Reference

indcv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Z
1

5

2

=

���		

GAUSS Language Reference

indexcat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
indexcat

���$��� Returns the indices of the elements of a vector which fall into a specified
category.

����� y = indexcat(x,v);

��$��

#��$��

�%���+� Use a loop to pull out indices of multiple categories.

")�$�� let x = 1.0 4.0 3.3 4.2 6.0 5.7 8.1 5.5;

let v = 4 6;

y = indexcat(x,v);

x Nx1 vector.
v scalar or 2x1 vector.

If scalar, the function returns the indices of all elements of x
equal to v.
If 2x1, then the function returns the indices of all elements of x
that fall into the range:

v[1] < x ≤ v[2].
If v is scalar, it can contain a single missing to specify the
missing value as the category.

y Lx1 vector, containing the indices of the elements of x which fall
into the category defined by v. It will contain error code 13 if
there are no elements in this category.

x

1.0

4.0

3.3

4.2

6.0

5.7

8.1

5.5

=

���	

Command Reference

indexcat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
v 4

6
=

y

4

5

6

8

=

���	�

GAUSS Language Reference

indices

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
indices

���$��� Processes a set of variable names or indices and returns a vector of
variable names and a vector of indices.

����� { name,indx } = indices(dataset,vars);

��$��

�#��$��

%���+� If an error occurs, indices will either return a scalar error code or
terminate the program with an error message, depending on the trap
state. If the low order bit of the trap flag is 0, indices will terminate
with an error message. If the low order bit of the trap flag is 1, indices
will return an error code. The value of the trap flag can be tested with
trapchk; the return from indices can be tested with scalerr. You
only need to check one argument; they will both be the same. The
following error codes are possible:

������ indices.src

dataset string, the name of the data set.
vars Nx1 vector, a character vector of names or a numeric vector of

column indices.
If scalar 0, all variables in the data set will be selected.

name Nx1 character vector, the names associated with vars.
indx Nx1 numeric vector, the column indices associated with vars.

1 Can’t open dataset.
2 Index of variable out of range, or undefined data set

variables.
���
�

Command Reference

indices2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
indices2

���$��� Processes two sets of variable names or indices from a single file. The
first is a single variable and the second is a set of variables. The first must
not occur in the second set and all must be in the file.

����� { name1,indx1,name2,indx2 } =
indices2(dataset,var1,var2);

��$��

#��$��

%���+� If an error occurs, indices2 will either return a scalar error code or
terminate the program with an error message, depending on the trap
state. If the low order bit of the trap flag is 0, indices2 will terminate
with an error message. If the low order bit of the trap flag is 1,
indices2 will return an error code. The value of the trap flag can be
tested with trapchk; the return from indices2 can be tested with
scalerr. You only need to check one argument; they will all be the
same. The following error codes are possible:

dataset string, the name of the data set.
var1 string or scalar, variable name or index.

This can be either the name of the variable, or the column
index of the variable.
If null or 0, the last variable in the data set will be used.

var2 Nx1 vector, a character vector of names or a numeric vector of
column indices.
If scalar 0, all variables in the data set except the one
associated with var1 will be selected.

name1 scalar character matrix containing the name of the variable
associated with var1.

indx1 scalar, the column index of var1.
name2 Nx1 character vector, the names associated with var2.
indx2 Nx1 numeric vector, the column indices of var2.

1 Can’t open dataset.
2 Index of variable out of range, or undefined data set

variables.
3 First variable must be a single name or index.
4 First variable contained in second set.
���
�

GAUSS Language Reference

indices2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� indices2.src
���
�

Command Reference

indnv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
indnv

���$��� Checks one numeric vector against another and returns the indices of the
elements of the first vector in the second vector.

����� z = indnv(what,where);

��$��

�#��$��

�%���+� If no matches are found for any of the elements in what, then those
elements in the returned vector are set to the GAUSS missing value code.

If there are duplicate elements in where, the index of the first match will
be returned.

")�$�� let what = 8 7 3;

let where = 2 7 8 4 3;

z = indnv(what,where);

what Nx1 numeric vector which contains the values to be found in
vector where.

where Mx1 numeric vector to be searched for matches to the values in
what.

z Nx1 vector of integers, the indices of the corresponding elements
of what in where.

what
8

7

3

=

where

2

7

8

4

3

=

���
�

GAUSS Language Reference

indnv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
z
3

2

5

=

���
�

Command Reference

intgrat2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
intgrat2

���$��� Integrates the following double integral, using user-defined functions f, g1
and g2, and scalars a and b:

������ y = intgrat2(&f,xl,gl);

��$��

��������$��

#��$��

%���+� The user-defined functions specified by f and gl must either

f x y,() yd xd
g

2
x()

g
1 x()

∫
a

b

∫

&f scalar, pointer to the procedure containing the function to be
integrated.

xl 2x1 or 2xN matrix, the limits of x. These must be scalar
limits.

gl 2x1 or 2xN matrix of function pointers, the limits of y.
For xl and gl, the first row is the upper limit and the second
row is the lower limit. N integrations are computed.

_intord scalar, the order of the integration. The larger _intord,
the more precise the final result will be. _intord may
be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.
Default = 12.

_intrec scalar. This variable is used to keep track of the level of
recursion of intgrat2 and may start out with a
different value if your program terminated inside of the
integration function on a previous run. Always set
_intrec explicitly to 0 before any call to intgrat2.

y Nx1 vector of the estimated integral(s) of f(x,y) evaluated
between the limits given by xl and gl.

Return a scalar constant, OR
Return a vector of function values. intgrat2 will pass to user-
defined functions a vector or matrix for x and y and expect a
vector or matrix to be returned. Use .* and ./ instead of * and
/.
���
�

GAUSS Language Reference

intgrat2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� proc f(x,y);

retp(cos(x) + 1).*(sin(y) + 1));

endp;

proc g1(x);

retp(sqrt(1-x^2));

endp;

proc g2(x);

retp(0);

endp;

xl = 1|-1;

g0 = &g1|&g2;

_intord = 40;

_intrec = 0;

y = intgrat2(&f,xl,g0);

This will integrate the function f(x,y) = (cos(x)+1)(sin(y)+1) over the
upper half of the unit circle. Note the use of the .* operator instead of just
* in the definition of f(x,y). This allows f to return a vector or matrix of
function values.

������ intgrat.src

������ _intord, _intq12, _intq16, _intq2, _intq20,

_intq24, _intq3, _intq32, _intq4, _intq40,

_intq6, _intq8, _intrec

������� intgrat3, intquad1, intquad2, intquad3, intsimp
���
�

Command Reference

intgrat3

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
intgrat3

���$��� Integrates the following triple integral, using user-defined functions and
scalars for bounds:

����� y = intgrat3(&f,xl,gl,hl);

��$��

���������$��

#��$��

f x y z, ,() zd yd xd
h

2 x y(,)

h
1 x y(,)

∫
g

2 x()

g
1 x()

∫
a

b

∫

&f scalar, pointer to the procedure containing the function to be
integrated. F is a function of (x,y,z).

xl 2x1 or 2xN matrix, the limits of x. These must be scalar
limits.

gl 2x1 or 2xN matrix of function pointers. These procedures
are functions of x.

hl 2x1 or 2xN matrix of function pointers. These procedures
are functions of x and y.

For xl, gl, and hl, the first row is the upper limit and the second row is the
lower limit. N integrations are computed.

_intord scalar, the order of the integration. The larger _intord,
the more precise the final result will be. _intord may
be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.
Default = 12.

_intrec scalar. This variable is used to keep track of the level of
recursion of intgrat3 and may start out with a
different value if your program terminated inside of the
integration function on a previous run. Always set
_intrec explicitly to 0 before any call to intgrat3.

y Nx1 vector of the estimated integral(s) of f(x,y,z) evaluated
between the limits given by xl, gl, and hl.
���
	

GAUSS Language Reference

intgrat3

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�%���+� User-defined functions f, and those used in gl and hl, must either:

")�$�� proc f(x,y,z);

retp(2);

endp;

proc g1(x);

retp(sqrt(25-x^2));

endp;

proc g2(x);

retp(-g1(x));

endp;

proc h1(x,y);

retp(sqrt(25 - x^2 - y^2));

endp;

proc h2(x,y);

retp(-h1(x,y));

endp;

Return a scalar constant, OR
Return a vector of function values. intgrat3 will pass to user-
defined functions a vector or matrix for x and y and expect a
vector or matrix to be returned. Use .* and ./ operators instead
of just * or /.
���

Command Reference

intgrat3

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
xl = 5|-5;

g0 = &g1|&g2;

h0 = &h1|&h2;

_intrec = 0;

_intord = 40;

y = intgrat3(&f,xl,g1,hl);

This will integrate the function f(x,y,z) = 2 over the sphere of radius 5. The
result will be approximately twice the volume of a sphere of radius 5.

������ intgrat.src

������ _intord, _intq12, _intq16, _intq2, _intq20,

_intq24, _intq3, _intq32, _intq4, _intq40,

_intq6, _intq8, _intrec

������� intgrat2, intquad1, intquad2, intquad3, intsimp
���
�

GAUSS Language Reference

intquad1

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
intquad1

���$��� Integrates a specified function using Gauss-Legendre quadrature. A suite
of upper and lower bounds may be calculated in one procedure call.

����� y = intquad1(&f,xl);

��$��

���������$��

#��$��

�%���+� The user-defined function f must return a vector of function values.
intquad1 will pass to the user-defined function a vector or matrix for x
and expect a vector or matrix to be returned. Use the .* and ./ instead of
* and /.

")�$�� proc f(x);

retp(x.*sin(x));

endp;

xl = 1|0;

y = intquad1(&f,xl);

&f scalar, pointer to the procedure containing the function to be
integrated. This must be a function of x.

xl 2xN matrix, the limits of x.
The first row is the upper limit and the second row is the
lower limit. N integrations are computed.

_intord scalar, the order of the integration. The larger _intord, the
more precise the final result will be. _intord may be set to
2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.
 Default = 12.

_intord scalar, the order of the integration. The larger _intord,
the more precise the final result will be. _intord may
be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.
Default = 12.

y Nx1 vector of the estimated integral(s) of f(x) evaluated between
the limits given by xl.
�����

Command Reference

intquad1

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
This will integrate the function f(x) = xsin(x) between 0 and 1. Note the
use of the .* instead of *.

������� integral.src

������ _intord, _intq12, _intq16, _intq2, _intq20,

_intq24, _intq3, _intq32, _intq4, _intq40,

_intq6, _intq8

������� intsimp, intquad2, intquad3, intgrat2, intgrat3
�����

GAUSS Language Reference

intquad2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
intquad2

���$��� Integrates a specified function using Gauss-Legendre quadrature. A suite
of upper and lower bounds may be calculated in one procedure call.

����� y = intquad2(&f,xl,yl);

��$��

���������$��

#��$��

�%���+� The user-defined function f must return a vector of function values.
intquad2 will pass to user-defined functions a vector or matrix for x
and y and expect a vector or matrix to be returned. Use .* and ./ instead
of * and /.

intquad2 will expand scalars to the appropriate size. This means that
functions can be defined to return a scalar constant. If users write their
functions incorrectly (using * instead of .*, for example), intquad2
may not compute the expected integral, but the integral of a constant
function.

To integrate over a region which is bounded by functions, rather than just
scalars, use intgrat2 or intgrat3.

&f scalar, pointer to the procedure containing the function to be
integrated.

xl 2x1 or 2xN matrix, the limits of x.
yl 2x1 or 2xN matrix, the limits of y.

For xl and yl, the first row is the upper limit and the second
row is the lower limit. N integrations are computed.

_intord global scalar, the order of the integration. The larger
_intord, the more precise the final result will be.
_intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32,
40.
Default = 12.

_intrec global scalar. This variable is used to keep track of the
level of recursion of intquad2 and may start out with
a different value if your program terminated inside of the
integration function on a previous run. Always set
_intrec explicitly to 0 before any calls to
intquad2.

y Nx1 vector of the estimated integral(s) of f(x,y) evaluated
between the limits given by xl and yl.
�����

Command Reference

intquad2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� proc f(x,y);

retp(x.*sin(x+y));

endp;

xl = 1|0;

yl = 1|0;

_intrec = 0;

y = intquad2(&f,xl,yl);

This will integrate the function x.*sin(x+y) between x = 0 and 1, and
between y = 0 and 1.

������ integral.src

������ _intord, _intq12, _intq16, _intq2, _intq20,

_intq24, _intq3, _intq32, _intq4, _intq40,

_intq6, _intq8, _intrec

������� intquad1, intquad3, intsimp, intgrat2, intgrat3
�����

GAUSS Language Reference

intquad3

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
intquad3

���$��� Integrates a specified function using Gauss-Legendre quadrature. A suite
of upper and lower bounds may be calculated in one procedure call.

����� y = intquad3(&f,xl,yl,zl);

��$��

���������$��

#��$��

�%���+� The user-defined function f must return a vector of function values.
intquad3 will pass to the user-defined function a vector or matrix for x,
y, and z and expect a vector or matrix to be returned. Use .* and ./
instead of * and /.

intquad3 will expand scalars to the appropriate size. This means that
functions can be defined to return a scalar constant. If users write their
functions incorrectly (using * instead of .*, for example), intquad3
may not compute the expected integral, but the integral of a constant
function.

&f scalar, pointer to the procedure containing the function to be
integrated. f is a function of (x,y,z).

xl 2x1 or 2xN matrix, the limits of x.
yl 2x1 or 2xN matrix, the limits of y.
zl 2x1 or 2xN matrix, the limits of z.

For xl, yl, and zl, the first row is the upper limit and the
second row is the lower limit. N integrations are computed.

_intord global scalar, the order of the integration. The larger
_intord, the more precise the final result will be.
_intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32,
40.
Default = 12.

_intrec global scalar. This variable is used to keep track of the
level of recursion of intquad3 and may start out with
a different value if your program terminated inside of the
integration function on a previous run. Always set
_intrec explicitly to 0 before any calls to
intquad3.

y Nx1 vector of the estimated integral(s) of f(x,y,z) evaluated
between the limits given by xl, yl, and zl.
�����

Command Reference

intquad3

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
To integrate over a region which is bounded by functions, rather than just
scalars, use intgrat2 or intgrat3.

")�$�� proc f(x,y,z);

retp(x.*y.*z);

endp;

xl = 1|0;

yl = 1|0;

zl = { 1 2 3, 0 0 0 };

_intrec = 0;

y = intquad3(&f,xl,yl,zl);

This will integrate the function f(x) = x*y*z over 3 sets of limits,
since zl is defined to be a 2x3 matrix.

������ integral.src

������ _intord, _intq12, _intq16, _intq2, _intq20,

_intq24, _intq3, _intq32, _intq4, _intq40,

_intq6, _intq8, _intrec

������� intquad1, intquad2, intsimp, intgrat2, intgrat3
�����

GAUSS Language Reference

intrleav

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
intrleav

���$��� Interleaves the rows of two files that have been sorted on a common
variable, to give a single file sorted on that variable.

����� intrleav(infile1,infile2,outfile,keyvar,keytyp);

��$��

�%���+� The two files MUST have exactly the same variables, i.e., the same
number of columns AND the same variable names. They must both
already be sorted on the key column. This procedure will combine them
into one large file, sorted by the key variable.

If the inputs are null or 0, the procedure will ask for them.

")�$�� intrleav(“freq.dat”,“freqata.dat”,

“intfile”,“AGE”,1);

������ sortd.src

infile1 string, name of input file 1.
infile2 string, name of input file 2.
outfile string, name of output file.
keyvar string, name of key variable, this is the column the files are

sorted on.
keytyp scalar, data type of key variable.

 1 numeric key, ascending order
 2 character key, ascending order
-1 numeric key, descending order
-2 character key, descending order
�����

Command Reference

intrsect

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
intrsect

���$��� Returns the intersection of two vectors, with duplicates removed.

����� y = intrsect(v1,v2,flag);

��$��

�#��$��

�%���+� Place smaller vector first for fastest operation.

If there are a lot of duplicates within a vector, it is faster to remove them
with unique before calling intrsect.

������ intrsect.src

")�$�� let v1 = mary jane linda dawn;

let v2 = mary sally lisa ruth linda;

y = intrsect(v1,v2,0);

v1 Nx1 vector.
v2 Mx1 vector.
flag scalar; if 1, v1, and v2 are numeric, if 0, character.

y Lx1 vector containing all unique values that are in both v1 and
v2, sorted in ascending order.

y LINDA

MARY
=

����	

GAUSS Language Reference

intsimp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
intsimp

���$��� Integrates a specified function using Simpson’s method with end
correction. A single integral is computed in one function call.

����� y = intsimp(&f,xl,tol);

��$��

#��$��

�")�$�� proc f(x);

retp(sin(x));

endp;

y = intsimp(&f,xl,1E-8);

This will integrate the function between 0 and 1.

������ intsimp.src

������� intquad1, intquad2, intquad3, intgrat2, intgrat3

&f pointer to the procedure containing the function to be integrated.
xl 2x1 vector, the limits of x.

The first element is the upper limit and the second element is the
lower limit.

tol The tolerance to be used in testing for convergence.

y The estimated integral of f(x) between xl[1] and xl[2].

let xl = { 1,

0 };

y 0.45969769=
����

Command Reference

inv, invpd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
inv, invpd

���$��� inv returns the inverse of an invertible matrix.

invpd returns the inverse of a symmetric, positive definite matrix.

����� y = inv(x);
y = invpd(x);

��$��

�#��$��

�%���+� x can be any legitimate matrix expression that returns a matrix that is legal
for the function.

For inv, x must be square and invertible.

For invpd, x must be symmetric and positive definite.

If the input matrix is not invertible by these functions, they will either
terminate the program with an error message or return an error code
which can be tested for with the scalerr function. This depends on the
trap state as follows:

If the input to invpd is not symmetric, it is possible that the function will
(erroneously) appear to operate successfully.

Positive definite matrices can be inverted by inv. However, for
symmetric, positive definite matrices (such as moment matrices), invpd
is about twice as fast as inv.

x NxN matrix.

y NxN matrix containing the inverse of x.

trap 1, return error code
inv invpd

50 20
trap 0, terminate with error message

inv invpd

Matrix singular Matrix not positive
definite
�����

GAUSS Language Reference

inv, invpd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� n = 4000;

x1 = rndn(n,1);

x = ones(n,1)~x1;

btrue = { 1, 0.5 };

y = x*btrue + rndn(n,1);

bols = invpd(x’x)*x’y;

This example simulates some data and computes the ols coefficient
estimator using the invpd function. First, the number of observations is
specified. Second, a vector x1 of standard Normal random variables is
generated and is concatenated with a vector of 1’s (to create a constant
term). The true coefficients are specified, and the dependent variable y is
created. Then the ols coefficient estimates are computed.

������� scalerr, trap, prcsn

�����	��
�&����

For complex matrices, inv uses the ZGECO, ZGEDI path in the
LINPACK routines. For real matrices, it uses the croutp function.

The inv function uses the Crout decomposition. The advantage of this
routine is that on some platforms it allows most of the intermediate results
to be computed in extended precision.

The invpd function uses the Cholesky decomposition and is based upon
the LINPACK routines for positive definite matrices. On OS/2 and DOS,
if prcsn 80 is in effect, all intermediate calculations and intermediate
results will be in the 80-bit extended precision of the 80x87 temporary
real format. The final results will be rounded to 64-bit double precision.

The tolerance used to determine singularity is 1.0e-14. This can be
changed. See “Singularity Tolerance” in the User’s Guide.

bols 1.017201 0.484244=
�����

Command Reference

invswp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
invswp

���$��� Computes a generalized sweep inverse.

����� y = invswp(x);

��$��

�#��$��

�%���+� This will invert any general matrix. That is, even matrices which will not
invert using inv because they are singular will invert using invswp.

x and y will satisfy the four Moore-Penrose conditions:

The tolerance used to determine if a pivot element is zero is taken from
the crout singularity tolerance. The corresponding row and column are
zeroed out. See “Appendix C” in the User’s Guide.

")�$�� let x[3,3] = 1 2 3 4 5 6 7 8 9;

y = invswp(x);

x NxN matrix.

y NxN matrix, the generalized inverse of x.

1. xyx = x
2. yxy = y
3. xy is symmetric
4. yx is symmetric

y
1.6666667– 0.66666667 0.0000000

 1.3333333 0.3333333– 0.0000000
 0.0000000 0.0000000 0.0000000

=

�����

GAUSS Language Reference

iscplx

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
iscplx

���$��� Returns whether a matrix is complex or real.

����� y = iscplx(x);

��$��

�#��$��

�")�$�� x = { 1, 2i, 3 };

y = iscplx(x);

������� hasimag, iscplxf

x NxK matrix.

y scalar, 1 if x is complex, 0 if it is real.

y 1=
�����

Command Reference

iscplxf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
iscplxf

���$��� Returns whether a data set is complex or real.

����� y = iscplxf(fh);

��$��

�#��$��

�������� hasimag, iscplx

fh scalar, file handle of an open file.

y scalar, 1 if the data set is complex, 0 if it is real.
�����

GAUSS Language Reference

isinfnanmiss

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
isinfnanmiss

���$��� Returns true if the argument contains an infinity, NaN, or missing value.

����� y = isinfnanmiss(x);

��$��

#��$��

����!��� scalinfnanmiss, ismiss, scalmiss

x NxK matrix.

y scalar, 1 if x contains any infinities, NaNs, or missing
values, else 0.
�����

Command Reference

ismiss

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ismiss

���$��� Returns a 1 if its matrix argument contains any missing values, otherwise
returns a 0.

����� y = ismiss(x);

��$��

�#��$��

�%���+� y will be a scalar 1 if the matrix x contains any missing values, otherwise
it will be a 0.

An element of x is considered to be a missing if and only if it contains a
missing value in the real part. Thus, for x = 1 + .i, ismiss(x) will return
a 0.

")�$�� x = { 1 6 3 4 };

y = ismiss(x);

������� scalmiss, miss, missrv

x NxK matrix.

y scalar, 1 or 0.

y 0=
�����

GAUSS Language Reference

isSparse

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
isSparse

���$��� Tests whether a matrix is a sparse matrix.

������ r = isSparse(x);

��$��

#��$��

������� sparse.src

x MxN sparse or dense matrix.

r scalar, 1 if x is sparse, 0 otherwise.
�����

Command Reference

keep (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
keep (dataloop)

���$��� Specifies columns (variables) to be saved to the output data set in a data
loop.

����� keep variable_list;

%���+� Commas are optional in variable_list.

Retains only the specified variables in the output data set. Any variables
referenced must already exist, either as elements of the source data set, or
as the result of a previous make, vector, or code statement.

If neither keep nor drop is used, the output data set will contain all
variables from the source data set, as well as any newly defined variables.
The effects of multiple keep and drop statements are cumulative.

")�$�� keep age, pay, sex;

������� drop
����	

GAUSS Language Reference

key

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
key

���$��� Returns the ASCII value of the next key available in the keyboard buffer.

����� y = key;

%���+� If you are working in terminal mode, key does not “see” any keystrokes
until ENTER is pressed. The value returned will be zero if no key is
available in the buffer or it will equal the ASCII value of the key if one is
available. The key is taken from the buffer at this time and the next call to
key will return the next key.

Here are the values returned if the key pressed is not a standard ASCII
character in the range of 1-255.

1015 SHIFT+TAB
1016-1025 ALT+Q, W, E, R, T, Y, U, I, O, P
1030-1038 ALT+A, S, D, F, G, H, J, K, L
1044-1050 ALT+Z, X, C, V, B, N, M
1059-1068 F1-F10
1071 HOME
1072 CURSOR UP
1073 PAGE UP
1075 LEFT ARROW
1077 RIGHT ARROW
1079 END
1080 DOWN ARROW
1081 PAGE DOWN
1082 INSERT
1083 DELETE
1084-1093 SHIFT+F1-F10
1094-1103 CTRL+F1-F10
1104-1113 ALT+F1-F10
1114 CTRL+PRINT SCREEN
1115 CTRL+LEFT ARROW
1116 CTRL+RIGHT ARROW
1117 CTRL+END
1118 CTRL+PAGE DOWN
����

Command Reference

key

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� format /rds 1,0;

kk = 0;

do until kk == 27;

kk = key;

if kk == 0;

continue;

elseif kk == vals(“ ”);

print “space \\” kk;

elseif kk == vals(“\r”);

print “carriage return \\” kk;

elseif kk ≥ vals(“0”) and kk ≤ vals(“9”);

print “digit \\” kk chrs(kk);

elseif vals(upper(chrs(kk))) ≥ vals(“A”) and

 vals(upper(chrs(kk))) ≤ vals(“Z”);

print “alpha \\” kk chrs(kk);

else;

print “\\” kk;

endif;

endo;

This is an example of a loop that processes keyboard input. This loop will
continue until the ESC key (ASCII 27) is pressed.

������� vals, chrs, upper, lower, con, cons

1119 CTRL+HOME
1120-1131 ALT+1,2,3,4,5,6,7,8,9,0,HYPHEN,

EQUAL SIGN
1132 CTRL+PAGE UP
�����

GAUSS Language Reference

keyav

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
keyav

���$��� Check if keystroke is available.

����� x = keyav;

#��$��

������� keyw, key

x scalar, value of key or 0 if no key is available.
�����

Command Reference

keyw

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
keyw

���$��� Waits for and gets a key.

����� k = keyw;

#��$��

%���+� If you are working in terminal mode, GAUSS will not see any input until
you press the ENTER key. keyw gets the next key from the keyboard
buffer. If the keyboard buffer is empty, keyw waits for a keystroke. For
normal keys, keyw returns the ASCII value of the key. See key for a
table of return values for extended and function keys.

������� key

k scalar, ASCII value of the key pressed.
�����

GAUSS Language Reference

keyword

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
keyword

���$��� Begins the definition of a keyword procedure. Keywords are user-defined
functions with local or global variables.

����� keyword name(str);

��$��

%���+� A keyword definition begins with the keyword statement and ends with
the endp statement. See “Procedures and Keywords” in User’s Guide.

Keywords always have 1 string argument and 0 returns. GAUSS will take
everything past name, excluding leading spaces, and pass it as a string
argument to the keyword. Inside the keyword, the argument is a local
string. The user is responsible to manipulate or parse the string.

An example of a keyword definition is:

keyword add(str);

local tok,sum;

sum = 0;

do until str $== “”;

{ tok, str } = token(str);

sum = sum + stof(tok);

endo;

print “Sum is: ” sum;

endp;

To use this keyword, type:

add 1 2 3 4 5;

This keyword will respond by printing:

name literal, name of the keyword. This name will be a global symbol.
str string, a name to be used inside the keyword to refer to the

argument that is passed to the keyword when the keyword is
called. This will always be local to the keyword, and cannot be
accessed from outside the keyword or from other keywords or
procedures.
�����

Command Reference

keyword

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Sum is: 15

������� proc, local, endp
�����

GAUSS Language Reference

lag (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lag (dataloop)

���$��� Lags variables a specified number of periods.

����� lag nv1 = var1:p1 [[nv2 = var2:p2...]] ;

��$��

#��$��

%���+� You can specify any number of variables to lag. Each variable can be
lagged a different number of periods. Both positive and negative lags are
allowed.

Lagging is executed before any other transformations. If the new variable
name is different from that of the variable to lag, the new variable is first
created and appended to a temporary data set. This temporary data set
becomes the input data set for the data loop, and is then automatically
deleted.

var name of the variable to lag.
p scalar constant, number of periods to lag.

nv name of the new lagged variable.
�����

Command Reference

lag1

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lag1

���$��� Lags a matrix by one time period for time series analysis.

����� y = lag1(x);

��$��

#��$��

%���+� lag1 lags x by one time period, so the first observations of y are missing.

������ lag.src

������� lagn

x NxK matrix.

y NxK matrix, x lagged 1 period.
�����

GAUSS Language Reference

lagn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lagn

���$��� Lags a matrix a specified number of time periods for time series analysis.

����� y = lagn(x,t);

��$��

#��$��

%���+� If t is positive, lagn lags x back t time periods, so the first t observations
of y are missing. If t is negative, lagn lags x forward t time periods, so
the last t observations of y are missing.

������ lag.src

������� lag1

x NxK matrix.
t scalar, number of time periods.

y NxK matrix, x lagged t periods.
�����

Command Reference

lapeighb

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapeighb

���$��� Computes eigenvalues only of a real symmetric or complex Hermitian
matrix selected by bounds.

����� ve = lapeighb(x,vl,vu);

��$��

#��$��

%���+� lapeighb computes eigenvalues only which are found on on the half
open interval (vl,vu]. To find eigenvalues within a specified range of
indices see lapeighi. For eigenvectors see lapeighvi, or
lapeighvb lapeighb is based on the LAPACK drivers DYESVX
and ZHEEVX. Further documentation of these functions may be found in
the LAPACK User’s Guide.

")�$�� x = { 5 2 1,

 2 6 2,

 1 2 9 };

vl = 5;

vu = 10;

ve = lapeighi(x,il,iu,0);

x NxN matrix, real symmetric or complex Hermitian.
vl scalar, lower bound of the interval to be searched for

eigenvalues.
vu scalar, upper bound of the interval to be searched for

eigenvalues; vu must be greater than vl.
abstol scalar, the absolute error tolerance for the eigenvalues. An

approximate eigenvalue is accepted as converged when it
is determined to lie in an interva [a,b] of width less than or
equal to ABSTOL + EPS*max(|a|,|b|), where EPS is
machine precision. If ABSTOL is less than or equal to
zero, then EPS*||T|| will be used in its place, where T is
the tridiagonal matrix obtained by reducing the input
matrix to tridiagonal form.

ve Mx1 vector, eigenvalues, where M is the number of
eigenvalues on the half open interval (vl,vu]. If no
eigenvalues are found then s is a scalar missing value.
����	

GAUSS Language Reference

lapeighb

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print ve;

6.0000

������� lapeighb, lapeighvi, lapeighvb
����

Command Reference

lapeighi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapeighi

���$��� Computes eigenvalues only of a real symmetric or complex Hermitian
matrix selected by index.

����� ve = lapeighi(x,il,iu,abstol);

��$��

#��$��

%���+� lapeighi computes iu-il+1 eigenvalues only given a range of indices,
i.e., the i-th to j-th eigenvalues, ranking them from smallest to largest. To
find eigenvalues within a specified range see lapeighxb. For
eigenvectors see LEIGHVX, lapeighvi, or lapeighvb. lapeighi
is based on the LAPACK drivers DYESVX and ZHEEVX. Further
documentation of these functions may be found in the LAPACK User’s
Guide.

")�$�� x = { 5 2 1,

 2 6 2,

 1 2 9 };

il = 2;

iu = 3;

ve = lapeighi(x,il,iu,0);

print ve;

x NxN matrix, real symmetric or complex Hermitian.
il scalar, index of the smallest desired eigenvalue ranking

them from smallest to largest.
iu scalar, index of the largest desired eigenvalue, iu must be

greater than il.
abstol scalar, the absolute error tolerance for the eigenvalues. An

approximate eigenvalue is accepted as converged when it
is determined to lie in an interval [a,b] of width less than
or equal to ABSTOL + EPS*max(|a|,|b|), where EPS is
machine precision. If ABSTOL is less than or equal to
zero, then EPS*||T|| will be used in its place, where T is the
tridiagonal matrix obtained by reducing the input matrix to
tridiagonal form.

ve (iu-il+1)x1 vector, eigenvalues.
�����

GAUSS Language Reference

lapeighi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
6.0000 10.6056

�������� lapeighb, lapeighvi, lapeighvb
�����

Command Reference

lapeighvb

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapeighvb

���$��� Computes eigenvalues and eigenvectors of a real symmetric or complex
Hermitian matrix selected by bounds.

����� { ve,va } = lapeighvb(x,vl,vu,abstol);

��$��

#��$��

%���+� lapeighvb computes eigenvalues and eigenvectors which are found on
the half open interval (vl,vu]. lapeighvb is based on the LAPACK
drivers DYESVX and ZHEEVX. Further documentation of these
functions may be found in the LAPACK User’s Guide.

")�$�� x = { 5 2 1,

 2 6 2,

 1 2 9 };

vl = 5;

vu = 10;

{ ve,va } = lapeighvb(x,il,iu,0);

x NxN matrix, real symmetric or complex Hermitian.
vl scalar, lower bound of the interval to be searched for

eigenvalues.
vu scalar, upper bound of the interval to be searched for

eigenvalues; vu must be greater than vl.
abstol scalar, the absolute error tolerance for the eigenvalues. An

approximate eigenvalue is accepted as converged when it
is determined to lie in an interval [a,b] of width less than
or equal to ABSTOL + EPS*max(|a|,|b|), where EPS is
machine precision. If ABSTOL is less than or equal to
zero, then EPS*||T|| will be used in its place, where T is the
tridiagonal matrix obtained by reducing the input matrix to
tridiagonal form.

ve Mx1 vector, eigenvalues, where M is the number of
eigenvalues on the half open interval (vl,vu]. If no
eigenvalues are found then s is a scalar missing value.

va NxM matrix, eigenvectors.
�����

GAUSS Language Reference

lapeighvb

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print ve;

6.0000

print va;

-0.5774 -0.5774

 0.5774

������� lapeighvb
�����

Command Reference

lapeighvi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapeighvi

���$��� Computes selected eigenvalues and eigenvectors of a real symmetric or
complex Hermitian matrix.

����� { ve,va } = lapeighvi(x,il,iu,abstol);

��$��

#��$��

%���+� lapeighvi computes iu-il+1 eigenvalues and eigenvectors given a
range of indices, i.e., the i-th to j-th eigenvalues, ranking them from
smallest to largest. To find eigenvalues and eigenvectors within a
specified range see lapeighvb. lapeighvi is based on the LAPACK
drivers DYESVX and ZHEEVX. Further documentation of these
functions may be found in the LAPACK User’s Guide.

")�$�� x = { 5 2 1,

 2 6 2,

 1 2 9 };

il = 2;

iu = 3;

{ ve,va } = lapeighvi(x,il,iu,0);

x NxN matrix, real symmetric or complex Hermitian.
il scalar, index of the smallest desired eigenvalue ranking

them from smallest to largest.
iu calar, index of the largest desired eigenvalue, iu must be

greater than il.
abstol scalar, the absolute error tolerance for the eigenvalues. An

approximate eigenvalue is accepted as converged when it
is determined to lie in an interval [a,b] of width less than
or equal to ABSTOL + EPS*max(|a|,|b|), where EPS is
machine precision. If ABSTOL is less than or equal to
zero, then EPS*||T|| will be used in its place, where T is the
tridiagonal matrix obtained by reducing the input matrix to
tridiagonal form.

ve (iu-il+1)x1 vector, eigenvalues.
va Nx(iu-il+1) matrix, eigenvectors.
�����

GAUSS Language Reference

lapeighvi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print ve;

6.0000 10.6056

print va;

-0.5774 0.3197 -0.5774 0.4908

 0.5774 0.8105

������� lapeighvb, lapeighb
�����

Command Reference

lapgeig

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapgeig

���$��� Computes generalized eigenvalues for a pair of real or complex general
matrices.

����� { va1,va2 } = lapgeig(A,B);

��$��

��#��$��

%���+� va1 and va2 are the vectors of the numerators and denominators
respectively of the eigenvalues of the solution of the generalized
symmetric eigenproblem of the form Aw = eBw where A and B are real or
complex general matrices and w = va1 ./ va2. The generalized
eigenvalues are not computed directly because some elements of va2 may
be zero, i.e., the eigenvalues may be infinite. This procedure calls the
LAPACK routines DGEGV and ZGEGV.

������� lapgeig, lapgeigh

A NxN matrix, real or complex general matrix.
B NxN matrix, real or complex general matrix.

va1 Nx1 vector, numerator of eigenvalues.
va2 Nx1 vector, denominator of eigenvalues.
�����

GAUSS Language Reference

lapgeigh

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapgeigh

���$��� Computes generalized eigenvalues for a pair of real symmetric or
Hermitian matrices.

����� ve = lapgeigh(A,B);

��$��

#��$��

%���+� ve is the vector of eigenvalues of the solution of the generalized
symmetric eigenproblem of the form Ax = λBx.

")�$�� A = { 3 4 5,

 2 5 2,

 3 2 4 };

B = { 4 2 2,

 2 6 1,

 2 1 8 };

ve = lapgeigh(A,B);

print ve;

-0.18577146

 0.50880165 1.1335370

This procedure calls the LAPACK routines DSYGV and ZHEGV.

������� lapgeig, lapgeighv

A NxN matrix, real or complex symmetric or Hermitian
matrix.

B NxN matrix, real or complex positive definite symmetric
or Hermitian matrix.

ve Nx1 vector, eigenvalues.
�����

Command Reference

lapgeighv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapgeighv

���$��� Computes generalized eigenvalues and eigenvectors for a pair of real
symmetric or Hermitian matrices.

����� { ve,va } = lapgeighv(A,B);

��$��

#��$��

%���+� ve and va are the eigenvalues and eigenvectors of the solution of the
generalized symmetric eigenproblem of the form Ax = λBx.
Equivalently, va diagonalizes U’-1 A U-1 in the following way

where B = U’U. This procedure calls the LAPACK routines DSYGV and
ZHEGV.

")�$�� A = { 3 4 5,

 2 5 2,

 3 2 4 };

B = { 4 2 2,

 2 6 1,

 2 1 8 };

{ ve, va } = lapgeighv(A,B);

print ve;

-0.0425

 0.5082

 0.8694

A NxN matrix, real or complex symmetric or Hermitian
matrix.

B NxN matrix, real or complex positive definite symmetric
or Hermitian matrix.

ve Nx1 vector, eigenvalues.
va NxN matrix, eigenvectors.

vaU′ 1–
AU

1–
va′ e=
����	

GAUSS Language Reference

lapgeighv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print va;

 0.3575 -0.0996 0.9286

-0.2594 0.9446 0.2012

-0.8972 -0.3128 0.3118

������� lapgeig, lapgeigh
����

Command Reference

lapgeigv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapgeigv

���$��� Computes generalized eigenvalues, left eigenvectors, and right
eigenvectors for a pair of real or complex general matrices.

����� { va1,va2,lve,rve } = lapgeigv(A,B);

��$��

#��$��

%���+� va1 and va2 are the vectors of the numerators and denominators
respectively of the eigenvalues of the solution of the generalized
symmetric eigenproblem of the form Aw = λBw where A and B are real or
complex general matrices and w = va1 ./ va2. The generalized
eigenvalues are not computed directly because some elements of va2 may
be zero, i.e., the eigenvalues may be infinite.

The left and right eigenvectors diagonalize U’-1 A U-1 where
B = U’U, that is,

and

This procedure calls the LAPACK routines DGEGV and ZGEGV.

������� lapgeig,lapgeigh

A NxN matrix, real or complex general matrix.
B NxN matrix, real or complex general matrix.

va1 Nx1 vector, numerator of eigenvalues.
va2 Nx1 vector, denominator of eigenvalues.
lve NxN left eigenvectors.
rve NxN right eigenvectors.

lve U ′ 1–
AU lve′ w=

rve′U′ 1–
AU

1–
rve w=
�����

GAUSS Language Reference

lapgsvds

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapgsvds

���$��� Compute the generalized singular value decomposition of a pair of real or
complex general matrices.

����� { C,S,R } = lapgsvds(A,B);

��$��

#��$��

%���+� (1) The generalized singular value decomposition of A and B is

where U, V, and Q are orthogonal matrices (see lapgsvdcst and
lapgsvdst). Letting K+L = the rank of A|B then R is a (K+L)x(K+L)
upper triangular matrix, D1 and D2 are Mx(K+L) and Px(K+L) matrices
with entries on the diagonal, Z = [0 R], and if M-K-L >= 0

A MxN real or complex matrix.
B PxN real or complex matrix.

C Lx1 vector, singular values for A.
S Lx1 vector, singular values for B.
R (K+L)x(K+L) upper triangular matrix.

U′AQ D1Z=

V′BQ D2Z=

D1

K

L

M K– L–

K L

I O

O C

O O

=

D2
L

P L–

K L

O S

O O
=

�����

Command Reference

lapgsvds

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
(2) Form the matrix

then

where .

O R[] K

L

N K– L– K L

O R11 R12

O O R22

=

D1
K

M K–

K M K– K L M–+

I O O

O C O
=

D2

M K–

K L M–+
P L–

K M K– K L M–+

O S O

O O I

O O O

=

O R[]
K

M K–

K L M–+

N K– L– K M K– K L M–+

O R11 R12 R13

O O R22 R23

O O O R33

=

X Q
I O

O R
1–

=

A U′ 1–
E1X=

B V′ 1–
E2X

1–
=

E1 O D2= E2 O A2=
�����

GAUSS Language Reference

lapgsvds

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
(3) The generalized singular value decomposition of A and B implicitly
produces the singular value decomposition of AB-1:

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

!������� lapgsvdcst and lapgsvdst

AB
1–

UD1D2
1–
V′=
�����

Command Reference

lapgsvdcst

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapgsvdcst

���$��� Compute the generalized singular value decomposition of a pair of real or
complex general matrices.

����� { C,S,R,U,V,Q } = lapgsvdcst(A,B);

��$��

#��$��

%���+� (1) The generalized singular value decomposition of A and B is

where U, V, and Q are orthogonal matrices (see lapgsvdcst and
lapgsvdst). Letting K+L = the rank of A|B then R is a (K+L)x(K+L)
upper triangular matrix, D1 and D2 are Mx(K+L) and Px(K+L) matrices
with entries on the diagonal, Z = [0 R], and if M-K-L >= 0

A MxN matrix.
B PxN matrix.

C Lx1 vector, singular values for A.
S Lx1 vector, singular values for B.
R (K+L)x(K+L) upper triangular matrix.
U MxM matrix, orthogonal transformation matrix.
V PxP matrix, orthogonal transformation matrix.
U NxN matrix, orthogonal transformation matrix.

U′AQ D1Z=

V′BQ D2Z=

D1

K

L

M K– L–

K L

I O

O C

O O

=

D2
L

P L–

K L

O S

O O
=

�����

GAUSS Language Reference

lapgsvdcst

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
(2) Form the matrix

then

where .

O R[] K

L

N K– L– K L

O R11 R12

O O R22

=

D1
K

M K–

K M K– K L M–+

I O O

O C O
=

D2

M K–

K L M–+
P L–

K M K– K L M–+

O S O

O O I

O O O

=

O R[]
K

M K–

K L M–+

N K– L– K M K– K L M–+

O R11 R12 R13

O O R22 R23

O O O R33

=

X Q
I O

O R
1–

=

A U′ 1–
E1X=

B V′ 1–
E2X

1–
=

E1 O D2= E2 O A2=
�����

Command Reference

lapgsvdcst

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
(3) The generalized singular value decomposition of A and B implicitly
produces the singular value decomposition of AB-1:

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

������� lapgsvds and lapgsvdst

AB
1–

UD1D2
1–
V′=
�����

GAUSS Language Reference

lapgsvdst

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapgsvdst

���$��� Compute the generalized singular value decomposition of a pair of real or
complex general matrices.

����� { D1,D2,Z,U,V,Q } = lapgsvdst(A,B);

��$��

#��$��

%���+� (1) The generalized singular value decomposition of A and B is

where U, V, and Q are orthogonal matrices (see lapgsvdcst and
lapgsvdst). Letting K+L = the rank of A|B then R is a (K+L)x(K+L)
upper triangular matrix, D1 and D2 are Mx(K+L) and Px(K+L) matrices
with entries on the diagonal, Z = [0 R], and if M-K-L >= 0

A MxN matrix.
B PxN matrix.

D1 Mx(K+L) matrix, with singular values for A on diagonal.
D2 Px(K+L) matrix, with singular values for B on diagonal.
Z (K+L)xN matrix, partitioned matrix composed of a zero

matrix and upper triangular matrix.
U MxM matrix, orthogonal transformation matrix.
V PxP matrix, orthogonal transformation matrix.
U NxN matrix, orthogonal transformation matrix.

U′AQ D1Z=

V′BQ D2Z=

D1

K

L

M K– L–

K L

I O

O C

O O

=

D2
L

P L–

K L

O S

O O
=

�����

Command Reference

lapgsvdst

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
(2) Form the matrix

then

where .

O R[] K

L

N K– L– K L

O R11 R12

O O R22

=

D1
K

M K–

K M K– K L M–+

I O O

O C O
=

D2

M K–

K L M–+
P L–

K M K– K L M–+

O S O

O O I

O O O

=

O R[]
K

M K–

K L M–+

N K– L– K M K– K L M–+

O R11 R12 R13

O O R22 R23

O O O R33

=

X Q
I O

O R
1–

=

A U′ 1–
E1X=

B V′ 1–
E2X

1–
=

E1 O D2= E2 O A2=
����	

GAUSS Language Reference

lapgsvdst

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
(3) The generalized singular value decomposition of A and B implicitly
produces the singular value decomposition of AB-1:

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

������� lapgsvds and lapgsvdcst

AB
1–

UD1D2
1–
V′=
����

Command Reference

lapschur

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapschur

���$��� Compute the generalized Schur form of a pair of real or complex general
matrices.

����� { sa, sb, q, z } = lapschur(A,B);

��$��

#��$��

%���+� The pair of matrices A and B are in generalized real Schur form when B is
upper triangular with non-negative diagonal, and A is block upper
triangular with 1x1 and 2x2 blocks. The 1x1 blocks correspond to real
generalized eigenvalues and the 2x2 blocks to pairs of complex conjugate
eigenvalues. The real generalized eigenvalues can be computed by
dividing the diagonal element of sa by the corresponding diagonal
element of sb. The complex generalized eigenvalues are computed by
first constructing two complex conjugate numbers from 2x2 block where
the real parts are on the diagonal of the block and the imaginary part on
the off-diagonal. The eigenvalues are then computed by dividing the two
complex conjugate values by their corresponding diagonal elements of sb.
The generalized Schur vectors q and z are orthogonal matrices that reduce
A and B to Schur form:

sa = q’ A z

sb q’ B z

This procedure calls the LAPACK routines DGEGS and ZGEGS.

A NxN matrix, real or complex general matrix.
B NxN matrix, real or complex general matrix.

sa NxN matrix, Schur form of A.
sb NxN matrix, Schur form of B.
q NxN matrix, left Schur vectors.
z NxN matrix, right Schur vectors.
�����

GAUSS Language Reference

lapsvdcusv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapsvdcusv

���$��� Computes the singular value decomposition a real or complex rectangular
matrix, returns compact u and v.

����� { u,s,v } = lapsvdcusv(x);

��$��

#��$��

%���+� lapsvdcusv computes the singular value decomposition of a real or
complex rectangular matrix. The SVD is

x = usv’

where v is the matrix of right singular vectors. lapsvdcusv is based on
the LAPACK drivers DGESVD and ZGESVD. Further documentation
of these functions may be found in the LAPACK User’s Guide.

")�$�� x = { 2.143 4.345 6.124,

1.244 5.124 3.412, 0.235 5.657 8.214 };

{ u,s,v } = lapsvdusv(x);

print s;

x MxN matrix, real or complex rectangular matrix.

u Mxmin(M,N) matrix, left singular vectors.
s min(M,N)xN matrix, singular values.
v NxN matrix, right singular values.

0.55531277– 0.04904843 1.83019394

0.43090168– 1.83684123 0.33766923–

0.71130266– 0.54524400– 0.44357356–
�����

Command Reference

lapsvdcusv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print s;

print v;

������� lapsvds, lapsvdusv

13.895868 0.0000000 0.0000000

0.0000000 2.1893939 0.0000000

0.0000000 0.0000000 1.4344261

0.13624432– 0.62209955– 0.77099263–

0.46497296 0.64704876 0.60425826–

0.87477862 0.44081748– 0.20110275
�����

GAUSS Language Reference

lapsvds

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapsvds

���$��� Computes the singular values of a real or complex rectangular matrix

����� s = lapsvds(x);

��$��

#��$��

%���+� lapsvd computes the singular values of a real or complex rectangular
matrix. The svd is

x = usv’

where v is the matrix of right singular vectors. For the computation of the
singular vectors, see lapsvdcusv and lapsvdusv.

lapsvd is based on the LAPACK drivers DGESVD and ZGESVD.
Further documentation of these functions may be found in the LAPACK
User’s Guide.

")�$�� x = { 2.143 4.345 6.124,

1.244 5.124 3.412,

 0.235 5.657 8.214 };

va = lapsvd(x); print va;

13.895868 2.1893939 1.4344261

xi = { 4+1 3+1 2+2,

 1+2 5+3 2+2,

 1+1 2+1 6+2 };

ve = lapsvds(xi); print ve;

 10.352877 4.0190557 2.3801546

������� lapsvdcusv, lapsvdusv

x MxN matrix, real or complex rectangular matrix.

s MiN(M,N)x1 vector, singular values.
�����

Command Reference

lapsvdusv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lapsvdusv

���$��� Computes the singular value decomposition a real or complex
rectangular matrix.

����� { u,s,v } = lapsvdusv(x);

��$��

#��$��

%���+� lapsvdusv computes the singular value decomposition of a real or
complex rectangular matrix. The SVD is

x = usv’

where v is the matrix of right singular vectors. lapsvdusv is based on
the LAPACK drivers DGESVD and ZGESVD. Further documentation of
these functions may be found in the LAPACK User’s Guide.

")�$�� x = { 2.143 4.345 6.124,

 1.244 5.124 3.412,

 0.235 5.657 8.214 };

{ u,s,v } = lapsvdusv(x);

print u;

-0.5553 0.0490 0.8302

-0.4309 0.8368 -0.3377

-0.7113 -0.5452 -0.4436

print s;

13.8959 0.0000 0.0000

 0.0000 2.1894 0.0000

 0.0000 0.0000 1.4344

x MxN matrix, real or complex rectangular matrix.

u MxM matrix, left singular vectors.
s MxN matrix, singular values.
v NxN matrix, right singular values.
�����

GAUSS Language Reference

lapsvdusv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print v;

-0.1362 0.4650 0.8748

 0.6221 0.6470 -0.4408 -0.7710 -0.6043 0.2011

������� lapsvds, lapsvdcusv
�����

Command Reference

let

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
let

���$��� Creates a matrix from a list of numeric or character values. The result is
always of type matrix, string or string array.

����� let x = constant_list;

%���+� Expressions and matrix names are not allowed in the let command.
Expressions such as this:

let x[2,1] = 3*a b

are illegal. To define matrices by combining matrices and expressions,
use an expression containing the concatenation operators: ~ and | .

Numbers can be entered in scientific notation. The syntax is dE±n, where
d is a number and n is an integer (denoting the power of 10).

let x = 1e+10 1.1e-4 4.019e+2;

Complex numbers can be entered by joining the real and imaginary parts
with a sign (+ or -); there should be no spaces between the numbers and
the sign. Numbers with no real part can be entered by appending an “i” to
the number.

let x = 1.2+23 8.56i 3-2.1i -4.2e+6i

1.2e-4-4.5e+3i;

If curly braces are used, the let is optional. You will need the let for
statements that you want to protect from the beautifier using the -l flag
on the beautifier command line.

let x = { 1 2 3, 4 5 6, 7 8 9 };

x = { 1 2 3, 4 5 6, 7 8 9 };

If indices are given, a matrix of that size will be created:

let x[2,2] = 1 2 3 4;

If indices are not given, a column vector will be created:

x 1 2

3 4
=

�����

GAUSS Language Reference

let

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
let x = 1 2 3 4;

You can create matrices with no elements, i.e., “empty matrices”. Just use
a set of empty curly braces.

x = {};

Empty matrices are chiefly used as the starting point for building up a
matrix, for example in a do loop. For more information on empty
matrices, see “Language Fundamentals” in the User’s Guide.

Character elements are allowed in a let statement:

let x = age pay sex;

Lowercase elements can be created if quotation marks are used. Note that
each element must be quoted.

let x = “age” “pay” “sex”;

")�$�� let x;

let x = { 1 2 3, 4 5 6, 7 8 9 };

x

1

2

3

4

=

x
AGE

PAY

SEX

=

x
age

pay

sex

=

x 0=
�����

Command Reference

let

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
let x[3,3] = 1 2 3 4 5 6 7 8 9;

let x[3,3] = 1;

let x[3,3];

x
1 2 3

4 5 6

7 8 9

=

x
1 2 3

4 5 6

7 8 9

=

x
1 1 1

1 1 1

1 1 1

=

x
0 0 0

0 0 0

0 0 0

=

����	

GAUSS Language Reference

let

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
let x = 1 2 3 4 5 6 7 8 9;

let x = dog cat;

let x = “dog” “cat”;

let string x = { “Median Income”

“Country”;

������� con, cons, declare, load

x

1

2

3

4

5

6

7

8

9

=

x DOG

CAT
=

x dog

cat
=

x Median Income

Country
=

����

Command Reference

lib

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lib

���$��� Builds and updates library files.

����� lib library [[file]] [[-flag -flag...]] ;

��$�� library literal, name of library.
file optional literal, name of source file to be updated or added.
flags optional literal preceded by ‘-’, controls operation of library

update. To control handling of path information on source
filenames:

-addpath (default) add paths to entries without
paths and expand relative paths.

-gausspath reset all paths using a normal file
search.

-leavepath leave all path information untouched.
-nopath drop all path information.

To specify a library update or a complete library build:
-update (default) update the symbol information

for the specified file only.
-build update the symbol information for every

library entry by compiling the actual
source file.

-delete delete a file from the library.
-list list files in a library.

To control the symbol type information placed in the library
file:

 -strong (default) use strongly typed symbol
entries.

-weak save no type information. This should
only be used to build a library
compatible with a previous version of
GAUSS.
�����

GAUSS Language Reference

lib

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
%���+� The flags can be shortened to one or two letters, as long as they remain
unique — for example, -b to -build a library, -li to list files in a
library.

If the filenames include a full path, the compilation process is faster
because no unnecessary directory searching is needed during the
autoloading process. The default path handling adds a path to each file
listed in the library and also expands any relative paths so the system will
work from any drive or subdirectory.

When a path is added to a filename containing no path information, the
file is searched for on the current directory and then on each subdirectory
listed in src_path. The first path encountered that contains the file is
added to the filename in the library entry.

������� library

To control location of temporary files for a complete library
build:

-tmp (default) use the directory pointed to by
the tmp_path configuration variable.
The directory will usually be on a RAM
disk. If tmp_path is not defined, lib
will look for a tmp environment
variable.

-disk use the same directory listed in the
lib_path configuration variable.
�����

Command Reference

library

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
library

���$��� Sets up the list of active libraries.

����� library [[-l]] lib1,lib2,lib3,lib4;
library;

%���+� If no arguments are given, the list of current libraries will be printed out.

The -l option will write a file containing a listing of libraries, files, and
symbols for all active libraries. This file will reside in the directory
defined by the lib_path configuration variable. Under Windows and
UNIX, the file will have a unique name beginning with liblst_. Under
OS/2 and DOS, the file will be called gausslib.lst; if it already
exists it will be overwritten.

For more information about the library system, see “Libraries” in the
User’s Guide.

The default extension for library files is .lcg.

If a list of library names is given, they will be the new set of active
libraries. The two default libraries are user.lcg and gauss.lcg.
Unless otherwise specified, user.lcg will be searched first and
gauss.lcg will be searched last. Any other user-specified libraries will
be searched after user.lcg in the order they were entered in the
library statement.

If the statement:

y = dog(x);

is encountered in a program, dog will be searched for in the active
libraries. If it is found, it will be compiled. If it cannot be found in a
library, the deletion state determines how it is handled:

If dog calls cat and cat calls bird and they are all in separate files,
they will all be found by the autoloader.

The source browser and the help facility will search for dog in exactly
the same sequence as the autoloader. The file containing dog will be
displayed in the window and you can scroll up and down and look at the
code and comments.

autodelete on search for dog.g
autodelete off return Undefined symbol error message
�����

GAUSS Language Reference

library

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Library files are simple ASCII files that you can create with the editor.
Here is an example:

The lines not indented are the file names. The lines that are indented are
the symbols defined in that file. As you can see, a GAUSS library is a
dictionary of files and the global symbols they contain.

Any line beginning with /*, ** or */ is considered a comment. Blank
lines are okay.

Here is a debugging hint. If your program is acting strange and you
suspect it is autoloading the wrong copy of a procedure, use the source
browser or help facility to locate the suspected function. It will use the
same search path that the autoloader uses.

������� declare, external, lib, proc

/*

** This is a GAUSS library file.

*/

eig.src

eig : proc

eigsym : proc

_eigerr : matrix

svd.src

cond : proc

pinv : proc

rank : proc

svd : proc

_svdtol : matrix
�����

Command Reference

#lineson, #linesoff

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
#lineson, #linesoff

���$��� The #lineson command causes GAUSS to embed line number and
file name records in a program for the purpose of reporting the location
where an error occurs. The #linesoff command causes GAUSS to
stop embedding line and file records in a program.

����� #lineson;

#linesoff;

%���+� In the “lines on” mode, GAUSS keeps track of line numbers and file
names and reports the location of an error when an execution time error
occurs. In the “lines off” mode, GAUSS does not keep track of lines and
files at execution time. During the compile phase, line numbers and file
names will always be given when errors occur in a program stored in a
disk file.

It is easier to debug a program when the locations of errors are reported,
but this slows down execution. In programs with several scalar
operations, the time spent tracking line numbers and file names is most
significant.

These commands have no effect on interactive programs (that is, those
typed in the window and run from the command line), since there are no
line numbers in such programs.

Line number tracking can be turned on and off through the user interface,
but the #lineson and #linesoff commands will override that.

The line numbers and file names given at run-time will reflect the last
record encountered in the code. If you have a mixture of procedures that
were compiled without line and file records and procedures that were
compiled with line and file records, use the trace command to locate
exactly where the error occurs.

The Currently active call error message will always be correct.
If it states that it was executing procedure xyz at line number nnn in file
ABC and xyz has no line nnn or is not in file ABC, you know that it just
did not encounter any line or file records in xyz before it crashed.

When using #include’d files, the line number and file name will be
correct for the file the error was in, within the limits stated above.

������� trace
�����

GAUSS Language Reference

listwise (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
listwise (dataloop)

���$��� Controls listwise deletion of missing values.

����� listwise [[read]] |[[write]] ;

%���+� If read is specified, the deletion of all rows containing missing values
happens immediately after reading the input file and before any
transformations. If write is specified, the deletion of missing values
happens after any transformations and just before writing to the output
file. If no listwise statement is present, rows with missing values are
not deleted.

The default is read.
�����

Command Reference

ln

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ln

���$��� Computes the natural log of all elements of a matrix.

����� y = ln(x);

��$��

�#��$��

�%���+� ln is defined for x ≠ 0.

If x is negative, complex results are returned.

You can turn the generation of complex numbers for negative inputs on or
off in the GAUSS configuration file, and with the sysstate function,
case 8. If you turn it off, ln will generate an error for negative inputs.

If x is already complex, the complex number state doesn’t matter; ln will
compute a complex result.

x can be any expression that returns a matrix.

")�$�� y = ln(16);

x NxK matrix.

y NxK matrix containing the natural log values of the elements of
x.

y 2.7725887=
�����

GAUSS Language Reference

lncdfbvn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lncdfbvn

���$��� Computes natural log of bivariate Normal cumulative distribution
function.

����� y = lncdfbvn(x1,x2,r);

��$��

#��$��

%���+� x1, x2, and r must be ExE conformable.

������� lncdfn.src

�������� cdfbvn, lncdfmvn

x1 NxK matrix, abscissae.
x2 LxM matrix, abscissae.
r PxQ matrix, correlations.

y max(N,L,P) x max(K,M,Q) matrix, ln Pr(X < x1, X < x2 | r).
�����

Command Reference

lncdfbvn2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lncdfbvn2

���$��� Returns log of cdfbvn of a bounded rectangle.

����� y = lncdfbvn2(h,dh,k,dk,r);

��$��

�#��$��

�%���+� Scalar input arguments are okay; they will be expanded to Nx1 vectors.

lncdfbvn2 will abort if the computed integral is negative.

lncdfbvn2 computes an error estimate for each set of inputs--the real
integral is exp(y)±err. The size of the error depends on the input
arguments. If trap 2 is set, a warning message is displayed when err ≥
exp(y)/100.

For an estimate of the actual error, see cdfbvn2e.

�")�$�� Example 1

lncdfbvn2(1,1,1,1,0.5);

produces:

-3.2180110258198771e+000

Example 2

trap 0,2;

lncdfbvn2(1,1e-15,1,1e-15,0.5);

produces:

-7.1171016046360151e+001

h Nx1 vector, upper limits of integration for variable 1.
dh Nx1 vector, increments for variable 1.
k Nx1 vector, upper limits of integration for variable 2.
dk Nx1 vector, increments for variable 2.
r Nx1 vector, correlation coefficients between the two variables.

 y Nx1 vector, the log of the integral from h,k to h+dh,k+dk of the
standardized bivariate Normal distribution.
����	

GAUSS Language Reference

lncdfbvn2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Example 3

trap 2,2;

lncdfbvn2(1,-1e-45,1,1e-45,0.5);

WARNING: Dubious accuracy from lncdfbvn2:

0.000e+000 ± 2.8e-060

-INF

������� cdfbvn2, cdfbvn2e
����

Command Reference

lncdfmvn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lncdfmvn

���$��� Computes natural log of multivariate Normal cumulative distribution
function.

����� y = lncdfmvn(x,r);

��$��

#��$��

%���+� You can pass more than one set of abscissae at a time; each column of x is
treated separately.

������ lncdfn.src

������� cdfmvn, lncdfbvn

x KxL matrix, abscissae.
r KxK matrix, correlation matrix.

y Lx1 vector, ln Pr(X < x | r).
�����

GAUSS Language Reference

lncdfn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lncdfn

���$��� Computes natural log of Normal cumulative distribution function.

����� y = lncdfn(x);

��$��

#��$��

������� lncdfn.src

x NxK matrix, abscissae.

y NxK matrix, ln Pr(X < x).
�����

Command Reference

lncdfn2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lncdfn2

���$��� Computes natural log of interval of Normal cumulative distribution
function.

����� y = lncdfn2(x,r);

��$��

#��$��

�%���+� The relative error is:

A relative error of ±1e-14 implies that the answer is accurate to better
than ±1 in the 14th digit.

")�$�� print lncdfn2(-10,29);

-7.6198530241605269e-24

print lncdfn2(0,1);

-1.0748623268620716e+00

print lncdfn2(5,1);

-1.5068446096529453e+01

������ lncdfn.src

������� cdfn2

x MxN matrix, abscissae.
r KxL matrix, ExE conformable with x, intervals.

y max(M,K) x max(N,L) matrix, the log of the integral from x to
x+dx of the Normal distribution, i.e., ln Pr(x < X < x + dx).

|x| ≤ 1 and dx ≤ 1 ±1e-14
1 < |x| < 37 and |dx| < 1|x| ±1e-13
min(x,x + dx) > -37 and y > -690 ±1e-11 or better
�����

GAUSS Language Reference

lncdfnc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lncdfnc

���$��� Computes natural log of complement of Normal cumulative distribution
function.

����� y = lncdfnc(x);

��$��

#��$��

������ lncdfn.src

x NxK matrix, abscissae.

y NxK matrix, ln (1 - Pr(X < x)).
�����

Command Reference

lnfact

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lnfact

���$��� Computes the natural log of the factorial function and can be used to
compute log gamma.

����� y = lnfact(x);

��$��

�#��$��

�%���+� For integer x, this is (approximately) ln(x!). However, the computation is
done using a formula, and the function is defined for noninteger x.

In most formulae in which the factorial operator appears, it is possible to
avoid computing the factorial directly, and to use lnfact instead. The
advantage of this is that lnfact does not have the overflow problems
that the factorial (!) operator has.

For x ≥ 1, this function has at least 6 digit accuracy, for x > 4 it has at least
9 digit accuracy, and for x > 10 it has at least 12 digit accuracy. For
0 < x < 1, accuracy is not known completely but is probably at least 6
digits.

Sometimes log gamma is required instead of log factorial. These
functions are related by:

lngamma(x) = lnfact(x-1);

")�$�� let x = 100 500 1000;

y = lnfact(x);

������ lnfact.src

������� gamma

x NxK matrix, all elements must be positive.

y NxK matrix containing the natural log of the factorial of each of
the elements of x.

y
363.739375560

2611.33045846

5912.12817849

=

�����

GAUSS Language Reference

lnfact

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�����	��
�&����

For x > 1, Stirling’s formula is used.

For 0 < x ≤ 1, ln(gamma(x+1)) is used.
�����

Command Reference

lnpdfn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lnpdfn

���$��� Computes standard Normal log-probabilities.

����� z = lnpdfn(x);

��$��

#��$��

%���+� This computes the log of the scalar Normal density function for each
element of x. z could be computed by the following GAUSS code:

y = -ln(sqrt(2*pi))-x.*x/2;

For multivariate log-probabilities, see lnpdfmvn.

")�$�� x = { .2, -1, 0, 1, 2 };

z = lnpdfn(x);

x NxK matrix, data.

z NxK matrix, log-probabilities.

z

2.9189385–

1.4189385–

0.91893853–

1.4189385–

2.9189385–

=

�����

GAUSS Language Reference

lnpdfmvn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lnpdfmvn

���$��� Computes multivariate Normal log-probabilities.

����� z = lnpdfmvn(x,s);

��$��

#��$��

�%���+� This computes the multivariate Normal log-probability for each row of x.

x NxK matrix, data.
s KxK matrix, covariance matrix.

z Nx1 vector, log-probabilities.
�����

Command Reference

lnpdfmvt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lnpdfmvt

���$��� Computes multivariate Student’s t log-probabilities.

����� z = lnpdfmvt(x,s,nu);

��$��

#��$��

x NxK matrix, data.
s KxK matrix, covariance matrix.
nu scalar, degrees of freedom.

z Nx1 vector, log-probabilities.
����	

GAUSS Language Reference

lnpdft

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lnpdft

���$��� Computes Student’s t log-probabilities.

����� z = lnpdft(x,nu);

��$��

#��$��

%���+� This does not compute the log of the joint Student’s t pdf. Instead, the
scalar Normal density function is computed element by element.

For multivariate probabilities with covariance matrix see lnpdfmvt.

x NxK matrix, data.
nu scalar, degrees of freedom.

z NxK matrix, log-probabilities.
����

Command Reference

load, loadf, loadk, loadm, loadp, loads

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
load, loadf, loadk, loadm, loadp, loads

���$��� Loads from a disk file.

����� load [[path=path]] x, y[]=filename, z=filename;

%���+� All the loadxx commands use the same syntax — they only differ in the
types of symbols you use them with.

If no filename is given as with x above, then the symbol name the file is to
be loaded into is used as the filename and the proper extension is added.

If more than one item is to be loaded in a single statement, the names
should be separated by commas.

The filename can be either a literal or a string. If the filename is in a string
variable, then the ^ (caret) operator must precede the name of the string,
as in:

filestr = “mydata/char”;

loadm x = ^filestr;

If no extension is supplied, the proper extension for each type of file will
be used automatically as follows:

These commands also signal to the compiler what type of object the
symbol is so that later references to it will be compiled correctly.

A dummy definition must exist in the program for each symbol that is
loaded in using loadf, loadk, or loadp. This resolves the need to

load, loadm matrix
loads string
loadf function (fn)
loadk keyword (keyword)
loadp procedure (proc)

load .fmt - matrix file or delimited ASCII file
loadm .fmt - matrix file or delimited ASCII file
loads .fst - string file
loadf .fcg - user-defined function (fn) file
loadk .fcg - user-defined keyword (keyword) file
loadp .fcg - user-defined procedure (proc) file
�����

GAUSS Language Reference

load, loadf, loadk, loadm, loadp, loads

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
have the symbol initialized at compile time. When the load executes, the
dummy definition will be replaced with the saved definition.

proc corrmat; endp;

loadp corrmat;

y = corrmat;

keyword regress(x); endp;

loadk regress;

regress x on y z t from data01;

fn sqrd=;

loadf sqrd;

y = sqrd(4.5);

To load GAUSS files created with the save command, no brackets are
used with the symbol name.

If you use save to save a scalar error code 65535 (i.e.,
error(65535)), it will be interpreted as an empty matrix when you
load it again.

ASCII data files

To load ASCII data files, square brackets follow the name of the symbol.

Numbers in ASCII files must be delimited with spaces, commas, tabs, or
newlines. If the size of the matrix to be loaded is not explicitly given, as
in:

load x[] = data.asc;

GAUSS will load as many elements as possible from the file and create an
Nx1 matrix. This is the preferred method of loading ASCII data from a
file, especially when you want to verify if the load was successful. Your
program can then see how many elements were actually loaded by testing
the matrix with the rows command, and if that is correct, the Nx1 matrix
can be reshaped to the desired form. You could, for instance, put the
number of rows and columns of the matrix right in the file as the first and
second elements and reshape the remainder of the vector to the desired
form using those values.
���	�

Command Reference

load, loadf, loadk, loadm, loadp, loads

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
If the size of the matrix is explicitly given in the load command, then no
checking will be done. If you use:

load x[500,6] = data.asc;

GAUSS will still load as many elements as possible from the file into an
Nx1 matrix and then automatically reshape it using the dimensions given.

If your file contains nine numbers (1 2 3 4 5 6 7 8 9), then the matrix x
that was created would be as follows:

load x[1,9] = data.asc;

load x[3,3] = data.asc;

load x[2,2] = data.asc;

load x[2,9] = data.asc;

load x[3,5] = data.asc;

load accepts pathnames. The following is legal:

loadm k = /gauss/x;

This will load /gauss/x.fmt into k.

x 1 2 3 4 5 6 7 8 9=

x
1 2 3

4 5 6

7 8 9

=

x 1 2

3 4
=

x 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
=

x
1 2 3 4 5

6 7 8 9 1

2 3 4 5 6

=

���	�

GAUSS Language Reference

load, loadf, loadk, loadm, loadp, loads

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
If the path= subcommand is used with load and save, the path string
will be remembered until changed in a subsequent command. This path
will be used whenever none is specified. There are four separate paths for:

Setting any of the four paths will not affect the others. The current path
settings can be obtained (and changed) with the sysstate function,
cases 4-7.

loadm path = /data;

This will change the loadm path without loading anything.

load path = /gauss x,y,z;

This will load x.fmt, 0y.fmt, and z.fmt using /gauss as a path.
This path will be used for the next load if none is specified.

The load path or save path can be overridden in any particular load or
save by putting an explicit path on the filename given to load from or save
to as follows:

loadm path = /miscdata;

loadm x = /data/mydata1, y, z = hisdata;

In the above program:

/data/mydata1.fmt would be loaded into a matrix called x.

/miscdata/y.fmt would be loaded into a matrix called y.

/miscdata/hisdata.fmt would be loaded into a matrix called z.

oldmpath = sysstate(5,“/data”);

load x, y;

call sysstate(5,oldmpath);

This will get the old loadm path, set it to /data, load x.fmt and
y.fmt, and reset the loadm path to its original setting.

������� loadd, save, let, con, cons, sysstate

1. load, loadm

2. loadf, loadp

3. loads

4. save
���	�

Command Reference

loadd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
loadd

���$��� Loads a data set.

����� y = loadd(dataset);

��$��

#��$��

%���+� The data set must not be larger than a single GAUSS matrix.

If dataset is a null string or 0, the data set temp.dat will be loaded. To
load a matrix file, use an .fmt extension on dataset.

������ saveload.src

������ __maxvec

dataset string, name of data set.

y NxK matrix of data.
���	�

GAUSS Language Reference

loadwind

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
loadwind

���$��� Loads a previously saved graphic panel configuration.

 	���� pgraph

����� err = loadwind(namestr);

��$��

#��$��

������ pwindow.src

������� savewind

namestr string, name of file to be loaded.

err scalar, 0 if successful, 1 if graphic panel matrix is invalid. Note
that the current graphic panel configuration will be overwritten
in either case.
���	�

Command Reference

local

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
local

���$��� Declares variables that are to exist only inside a procedure.

����� local x, y, f:proc;

%���+� The statement above would place the names x, y, and f in the local symbol
table for the current procedure being compiled. This statement is legal
only between the proc statement and the endp statement of a procedure
definition.

These symbols cannot be accessed outside of the procedure.

The symbol f in the example above will be treated as a procedure
whenever it is accessed in the procedure. What is actually passed in is a
pointer to a procedure.

See “Procedures and Keywords” in the User’s Guide.

������� proc
���	�

GAUSS Language Reference

locate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
locate

���$��� Positions the cursor in the window.

����� locate m, n;

�����	�	�� Windows only
Locates the cursor in the current output window.

%���+� m and n denote the row and column, respectively, at which the cursor is to
be located.

The origin (1,1) is the upper left corner.

m and n may be any expressions that return scalars. Nonintegers will be
truncated to an integer.

")�$�� r = csrlin;

c = csrcol;

cls;

locate r,c;

In this example the window is cleared without affecting the cursor
position.

������� csrlin, csrcol
���	�

Command Reference

loess

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
loess

���$��� Computes coefficients of locally weighted regression.

������ { yhat,ys,xs } = loess(depvar,indvars);

��$��

��������$��

#��$��

�%���+� Based on Cleveland, William S. “Robust Locally Weighted Regression
and Smoothing Scatterplots.” JASA. Vol. 74, 1979, 829-36.

������� loess.src

depvar Nx1 vector, dependent variable.
indvars NxK matrix, independent variables.

_loess_Span scalar, degree of smoothing. Must be greater than
2 / N. Default = .67777.

_loess_NumEval scalar, number of points in ys and xs. Default = 50.
_loess_Degree scalar, if 2, quadratic fit, otherwise linear. Default

= 1.
_loess_WgtType scalar, type of weights. If 1, robust, symmetric

weights, otherwise Gaussian. Default = 1.
__output scalar, if 1, iteration information and results are

printed, otherwise nothing is printed.

yhat Nx1 vector, predicted depvar given indvars.
ys _loess_numEvalx1 vector, ordinate values given abscissae

values in xs.
xs _loess_numEvalx1 vector, equally spaced abscissae values.
���		

GAUSS Language Reference

log

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
log

���$��� Computes the log10 of all elements of a matrix.

����� y = log(x);

��$��

�#��$��

�%���+� log is defined for x ≠ 0.

If x is negative, complex results are returned.

You can turn the generation of complex numbers for negative inputs on or
off in the GAUSS configuration file, and with the sysstate function,
case 8. If you turn it off, log will generate an error for negative inputs.

If x is already complex, the complex number state doesn’t matter; log
will compute a complex result.

x can be any expression that returns a matrix.

")�$�� x = round(rndu(3,3)*10+1);

y = log(x);

x NxK matrix.

y NxK matrix containing the log 10 values of the elements of x.

x
 4.0000000000 2.0000000000 1.0000000000

10.0000000000 4.0000000000 8.0000000000

 7.0000000000 2.0000000000 6.0000000000

=

y
0.60205999 0.30103 0.30103

1.0000000000 0.60205999 0.90308999

0.8450980400 0.30103 0.77815125

=

���	

Command Reference

loglog

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
loglog

���$��� Graphs X vs. Y using log coordinates.

 	���� pgraph

����� loglog(x,y);

��$��

������ ploglog.src

������� xy, logy, logx

x Nx1 or NxM matrix. Each column contains the X values for a
particular line.

y Nx1 or NxM matrix. Each column contains the Y values for a
particular line.
���	�

GAUSS Language Reference

logx

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
logx

���$��� Graphs X vs. Y using log coordinates for the X axis.

 	���� pgraph

����� logx(x,y);

��$��

������ plogx.src

������� xy, logy, loglog

x Nx1 or NxM matrix. Each column contains the X values for a
particular line.

y Nx1 or NxM matrix. Each column contains the Y values for a
particular line.
���
�

Command Reference

logy

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
logy

���$��� Graphs X vs. Y using log coordinates for the Y axis.

 	���� pgraph

����� logy(x,y);

��$��

������ plogy.src

������� xy, logx, loglog

x Nx1 or NxM matrix. Each column represents the X values for a
particular line.

y Nx1 or NxM matrix. Each column represents the Y values for a
particular line.
���
�

GAUSS Language Reference

lower

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lower

���$��� Converts a string or character matrix to lowercase.

����� y = lower(x);

��$��

�#��$��

�%���+� If x is a numeric matrix, y will contain garbage. No error message will be
generated since GAUSS does not distinguish between numeric and
character data in matrices.

")�$�� x = “MATH 401”;

y = lower(x);

print y;

produces:

math 401

������� upper

x string or NxK matrix of character data to be converted to
lowercase.

y string or NxK matrix which contains the lowercase equivalent of
the data in x.
���
�

Command Reference

lowmat, lowmat1

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lowmat, lowmat1

���$��� Returns the lower portion of a matrix. lowmat returns the main diagonal
and every element below. lowmat1 is the same except it replaces the
main diagonal with ones.

����� L = lowmat(x);
L = lowmat1(x);

��$��

�#��$��

")�$��

L = lowmat(x);

L1 = lowmat1(x);

The resulting matrices are:

������ diag.src

������� upmat, upmat1, diag, diagrv, crout, croutp

x NxN matrix.

L NxN matrix containing the lower elements of the matrix. The
upper elements are replaced with zeros. lowmat returns the
main diagonal intact. lowmat1 replaces the main diagonal with
ones.

x = { 1 2 -1,

2 3 -2,

1 -2 1 };

L
1 0 0

2 3 0

1 2– 1

=

L1
1 0 0

2 1 0

1 2– 1

=

���
�

GAUSS Language Reference

lpos

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lpos

���$��� Returns the current position of the print head within the printer buffer for
the printer.

����� y = lpos;

%���+� This function is basically equivalent to function csrcol but this returns
the current column position for the standard printer.

The value returned is the column position of the next character to be
printed to the printer buffer. This does not necessarily reflect the actual
physical position of the print head at the time of the call.

If this function returns a number greater than 1, there are characters in the
buffer for the standard printer which have not yet been sent to the printer.
This buffer can be flushed at any time by lprint’ing a carriage return/
line feed sequence, or a form feed character.

")�$�� if lpos > 60;

lprint;

endif;

In this example, if the print buffer contains 60 characters or more, a
carriage return/line feed sequence will be printed.

������� lprint, lpwidth
���
�

Command Reference

lprint

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lprint

���$��� Controls printing to the line printer.

����� lprint [[/typ]] [[/fmted]] [[/mf]] [[/jnt]] [[list of expressions separated by
spaces]] [[;]] ;

%���+� This function was originally written for line printers. It is still supported
for backwards compatibility purposes, but if you’re using a page-oriented
printer (such as a laser or inkjet printer), it may not give you the results
you’re expecting.

lprint statements work in essentially the same way that print
statements work. The main difference is that lprint statements cannot
be directed to the auxiliary output. Also, the locate statement has no
meaning with lprint.

Two semicolons following an lprint statement will suppress the final
line feed.

See print for information on /typ, /fmted, /mf, and /jnt.

A list of expressions is a list of GAUSS expressions, separated by spaces.
In lprint statements, because a space is the delimiter between
expressions, no spaces are allowed inside expressions unless they are
within index brackets, they are in quotes, or the whole expression is in
parentheses.

Printer width can be specified by the lpwidth statement:

lpwidth 132;

This statement remains in effect until cancelled. The default printer width
is 80. That is, GAUSS automatically sends a line feed to the printer after
printing 80 characters.

lpos can be used to determine the (column) position of the next
character that will be printed in the buffer.

An lprint statement by itself will cause a blank line to be printed:

lprint;

The printing of special characters is accomplished by the use of the
backslash (\) within double quotes. The options are:

“\b” backspace (ASCII 8)
“\e” escape (ASCII 27)
���
�

GAUSS Language Reference

lprint

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
GAUSS also has an automatic line printer mode which causes the results
of all global assignment statements to be printed out on the printer. This is
controlled by the lprint on and lprint off commands. (See
lprint on, lprint off.)

")�$�� lprint 3*4 5+2;

�������� print, lprint on, lpos, lpwidth, format

“\f” form feed (ASCII 12)
“\l” line feed (ASCII 10)
“\r” carriage return (ASCII 13)
“ t” tab (ASCII 9)
“\###” the character whose ASCII value is “###” (decimal)
���
�

Command Reference

lpwidth

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lpwidth

���$��� Specifies the width of the printer.

����� lpwidth n;

%���+� n is a scalar which specifies the width of the printer in columns
(characters). That is, after printing n characters on a line, GAUSS will
send a carriage return and a line feed, so that the print head will move to
the beginning of the next line.

If a matrix is being printed, the line feed sequence will always be inserted
between separate elements of the matrix rather than being inserted
between digits of a single element.

n may be any scalar-valued expression. Nonintegers will be truncated to
an integer.

The default is 80 columns.

Note: This does not send control characters to the printer to automatically
switch the mode of the printer to a different character pitch because each
printer is different. This only controls the frequency of carriage return/line
feed sequences.

")�$�� lpwidth 132;

This statement will change the printer width to 132 columns.

������� lprint, lpos, outwidth
���
	

GAUSS Language Reference

ltrisol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ltrisol

���$��� Computes the solution of Lx = b where L is a lower triangular matrix.

����� x = ltrisol(b,L);

��$��

�#��$��

ltrisol applies a forward solve to Lx = b to solve for x. If b has more
than one column, each column will be solved for separately, i.e.,
ltrisol will apply a forward solve to L * x[.,i] = b[.,i].

b PxK matrix.
L PxP lower triangular matrix.

x PxK matrix.
���

Command Reference

lu

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lu

���$��� Computes the LU decomposition of a square matrix with partial (row)
pivoting, such that X = LU.

������ { l,u } = lu(x);

��$��

�#��$��

�")�$�� rndseed 13;

format /rd 10,4;

x = complex(rndn(3,3),rndn(3,3));

{ l,u } = lu(x);

x2 = l*u;

x NxN square nonsingular matrix.

l NxN “scrambled” lower triangular matrix. This is a lower
triangular matrix that has been reordered based on the row
pivoting.

u NxN upper triangular matrix.

x
 0.1523 0.7685i+ 0.8957– 0.0342i+ 2.4353 2.7736i+

1.1953– 1.2187i+ 1.2118 0.2571i+ 0.0446– 1.7768i–

 0.8038 1.3668i+ 1.2950 1.6929i– 1.6267 0.2844i+

=

l
0.2589 0.3789i– 1.2417– 0.5225i+ 1.0000

 1.0000 0.0000 0.0000

0.2419 0.8968i– 1.0000 0.0000

=

u
1.1953– 1.2187i+ 1.2118 0.2571i+ 0.0446– 1.7768i–

 0.0000 0.7713 0.6683i– 3.2309 0.6742i+

 0.0000 0.0000 6.7795 5.7420i+

=

���
�

GAUSS Language Reference

lu

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� crout, croutp, chol

x2
 0.1523 0.7685i+ 0.8957– 0.0342i+ 2.4353 2.7736i+

1.1953– 1.2187i+ 1.2118 0.2571i+ 0.0446– 1.7768i–

 0.8038 1.3668i+ 1.2950 1.6929i– 1.6267 0.2844i+

=

�����

Command Reference

lusol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
lusol

���$��� Computes the solution of LUx = b where L is a lower triangular matrix
and U is an upper triangular matrix.

����� x = lusol(b,L,U);

��$��

#��$��

�%���+� If b has more than one column, each column is solved for separately, i.e.,
lusol solves LUx[.,i] = b[.,i].

b PxK matrix.
L PxP lower triangular matrix.
U PxP upper triangular matrix.

x PxK matrix.
�����

GAUSS Language Reference

make (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
make (dataloop)

���$��� Specifies the creation of a new variable within a data loop.

����� make [[#]] numvar = numeric_expression;
make $ charvar = character_expression;

%���+� A numeric_expression is any valid expression returning a numeric vector.
A character_expression is any valid expression returning a character
vector. If neither ‘$’ nor ‘#’ is specified, ‘#’ is assumed.

The expression may contain explicit variable names and/or GAUSS
commands. Any variables referenced must already exist, either as
elements of the source data set, as externs, or as the result of a previous
make, vector, or code statement. The variable name must be unique.
A variable cannot be made more than once, or an error is generated.

")�$�� make sqvpt = sqrt(velocity * pressure * temp);

make $ sex = lower(sex);

������� vector
�����

Command Reference

makevars

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
makevars

���$��� Creates separate global vectors from the columns of a matrix.

����� makevars(x,vnames,xnames);

��$��

%���+� If xnames = 0, the prefix X will be used to create names. Therefore, if
there are 9 columns in x, the names will be X1-X9, if there are 10, they
will be X01-X10, and so on.

If xnames or vnames is a string, the individual names must be separated
by spaces or commas.

vnames = “age pay sex";

Since these new vectors are created at execution time, the compiler will
not know they exist until after makevars has executed once. This means
that you cannot access them by name unless you previously clear them
or otherwise add them to the symbol table. (See setvars for a quick
interactive solution to this.)

This function is the opposite of mergevar.

")�$��

let xnames = id age pay;

let vnames = age pay;

makevars(x,vnames,xnames);

Two global vectors, called age and pay, are created from the columns of
x.

x NxK matrix whose columns will be converted into individual
vectors.

vnames string or Mx1 character vector containing names of global
vectors to create. If 0, all names in xnames will be used.

xnames string or Kx1 character vector containing names to be
associated with the columns of the matrix x.

let x[3,3] = 101 35 50000

102 29 13000

103 37 18000;
�����

GAUSS Language Reference

makevars

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
xnames = "id age pay";

vnames = "age pay";

makevars(x,vnames,xnames);

This is the same as the example above, except that strings are used for the
variable names.

������ vars.src

������ __vpad

������� mergevar, setvars

let x[3,3] = 101 35 50000

102 29 13000

103 37 18000;
�����

Command Reference

makewind

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
makewind

���$��� Creates a graphic panel of specific size and position and add it to the list
of graphic panels.

 	���� pgraph

����� makewind(xsize,ysize,xshft,yshft,typ);

��$��

%���+� Note that if this procedure is used when rotating the page, the passed
parameters are scaled appropriately to the newly oriented page. The size
and shift values will not be true inches when printed, but the graphic
panel size to page size ratio remains the same. The result of this
implementation automates the rotation and eliminates the required
graphic panel recalculations by the user.

See the window command for creating tiled graphic panels. For more
information on using graphic panels, see “Publication Quality Graphics”
in the User’s Guide.

������ pwindow.src

������� window, endwind, setwind, getwind, begwind,
nextwind

xsize scalar, horizontal size of the graphic panel in inches.
ysize scalar, vertical size of the graphic panel in inches.
xshft scalar, horizontal distance from left edge of window in inches.
yshft scalar, vertical distance from bottom edge of window in inches.
typ scalar, graphic panel attribute type. If this value is 1, the graphic

panels will be transparent. If 0, the graphic panels will be
nontransparent.
�����

GAUSS Language Reference

margin

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
margin

���$��� Sets the margins for the current graph graphic panel.

 	���� pgraph

����� margin(l,r,t,b);

��$��

%���+� By default, the dimensions of the graph are the same as the graphic panel
dimensions. With this function the graph dimensions may be decreased.
The result will be a smaller plot area surrounded by the specified margin.
This procedure takes into consideration the axes labels and numbers for
correct placement.

All input inch values for this procedure are based on a full size window of
9 x 6.855 inches. If this procedure is used with a graphic panel, the values
will be scaled to window inches automatically.

If the axes must be placed an exact distance from the edge of the page,
axmargin should be used.

������ pgraph.src

������� axmargin

l scalar, the left margin in inches.
r scalar, the right margin in inches.
t scalar, the top margin in inches.
b scalar, the bottom margin in inches.
�����

Command Reference

matalloc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
matalloc

���$��� Allocates a matrix with unspecified contents.

����� y = matalloc(r,c);

��$��

#��$��

%���+� The contents are unspecified. This function is used to allocate a matrix
that will be written to in sections using indexing or used with the Foreign
Language Interface as an output matrix for a function called with
dllcall().

����!��� matinit, ones, zeros, eye

r scalar, rows.
c scalar, columns.

y rxc matrix.
����	

GAUSS Language Reference

matinit

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
matinit

���$��� Allocates a matrix with unspecified contents.

����� y = matinit(r,c,v);

��$��

#��$��

����!��� matalloc, ones, zeros, eye

r scalar, rows.
c scalar, columns.
v scalar, value to initialize.

y rxc matrix with each element equal to the value of v.
����

Command Reference

maxc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
maxc

���$��� Returns a column vector containing the largest element in each column of
a matrix.

����� y = maxc(x);

��$��

�#��$��

�%���+� If x is complex, maxc uses the complex modulus (abs(x)) to determine
the largest elements.

To find the maximum elements in each row of a matrix, transpose the
matrix before applying the maxc function.

To find the maximum value in the whole matrix if the matrix has more
than one column, nest two calls to maxc:

y = maxc(maxc(x));

")�$�� x = rndn(4,2);

y = maxc(x);

������� minc, maxindc, minindc

x NxK matrix.

y Kx1 matrix containing the largest element in each column of x.

x

2.124474– 1.376765

 0.348110 1.172391

0.027064– 0.796867

 1.421940 0.351313–

=

y 1.421940

1.376765
=

�����

GAUSS Language Reference

maxindc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
maxindc

���$��� Returns a column vector containing the index (i.e., row number) of the
maximum element in each column in a matrix.

����� y = maxindc(x);

��$��

�#��$��

�%���+� If x is complex, maxc uses the complex modulus (abs(x)) to determine
the largest elements.

To find the index of the maximum element in each row of a matrix,
transpose the matrix before applying maxindc.

 If there are two or more “largest” elements in a column (i.e., two or more
elements equal to each other and greater than all other elements), then
maxindc returns the index of the first one found, which will be the
smallest index.

")�$�� x = round(rndn(4,4)*5);

y = maxc(x);

z = maxindc(x);

x NxK matrix.

y Kx1 matrix containing the index of the maximum element in
each column of x.

x

 1 11– 0 5

 0 0 2– 6–

 8– 0 3 2

11– 5 4– 5

=

y

1

5

3

5

=

�����

Command Reference

maxindc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� maxc, minindc, minc

z

1

4

3

1

=

�����

GAUSS Language Reference

maxvec

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
maxvec

���$��� Returns maximum vector length allowed.

����� y = maxvec;

��������$��

�#��$��

�%���+� maxvec returns the value in the global scalar __maxvec, which can be
reset in the calling program. This must never be set to 8190.

maxvec is called by Run-Time Library functions and applications when
determining how many rows can be read from a data set in one call to
readr.

On systems without virtual memory you can use 536870910. Otherwise a
smaller value like 20000-30000 is necessary to prevent excessive disk
thrashing. The trick is to allow the algorithm making the disk reads to
execute entirely in RAM.

")�$�� y = maxvec;

print y;

produces:

������ system.src

__maxvec scalar, maximum vector length allowed.

y scalar, maximum vector length.

20000.000
�����

Command Reference

mbesseli

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
mbesseli

���$��� Computes modified and exponentially scaled modified Bessels of the first
kind of the nth order.

������ y = mbesseli(x,n,alpha);
y = mbesseli0(x);
y = mbesseli1(x);

y = mbesselei(x,n,alpha);
y = mbesselei0(x);
y = mbesselei1(x);

��$��

#��$��

�%���+� For the functions that permit you to specify the order, the returned matrix
contains a sequence of modified or exponentially scaled modified Bessel
values of different orders. For the ith row of y:

y[i,.] = Iα(x[i]) Iα+1(x[i]) ... Iα+n-1(x[i])

The remaining functions generate modified Bessels of only the specified
order.

The exponentially scaled modified Bessels are related to the unscaled
modifed Bessels in the following way:

mbesselei0(x) = exp(-x) * mbesseli0(x)

The use of the scaled versions of the modified Bessel can improve the
numerical properties of some calculations by keeping the intermediate
numbers small in size.

")�$�� This example produces estimates for the “circular” response regression
model (Fisher, N.I. Statistical Analysis of Circular Data. NY: Cambridge

x Kx1 vector, abscissae.
n scalar, highest order.
alpha scalar, 0 ≤ alpha < 1.

y KxN matrix, evaluations of the modified Bessel or the
exponentially scaled modified Bessel of the first kind of the nth
orders.
�����

GAUSS Language Reference

mbesseli

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
University Press, 1993.), where the dependent variable varies between -π
and π in a circular manner. The model is

y = µ + G(XB)

where B is a vector of regression coefficients, X a matrix of independent
variables with a column of 1’s included for a constant, and y a vector of
“circular” dependent variables, and where G() is a function mapping XB
onto the [-π, π] interval.

The log-likelihood for this model is from Fisher, N.I. ... 1993, 159;

To generate estimates it is necessary to maximize this function using an
iterative method. QNewton is used here.

κ is required to be nonnegative and therefore in the example below, the
exponential of this parameter is estimated instead. Also, the exponentially
scaled modified Bessel is used to improve numerical properties of the
calculations.

The arctan function is used in G()to map XB to the [-π, π] interval as
suggested by Fisher, N.I. ... 1993, 158.

proc G(u);

retp(2*atan(u));

endp;

proc lpr(b);

local dev;

logL = -N x ln I0 κ()() κ+() yi µ– G XiB()–()cos

i

N

∑

�����

Command Reference

mbesseli

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
/*

** b[1] - kappa

** b[2] - mu

** b[3] - constant

** b[4:rows(b)] - coefficients

*/

dev = y - b[2]- G(b[3] + x * b[4:rows(b)]);

retp(rows(dev)*ln(mbesselei0(exp(b[1])) -

sumc(exp(b[1])*(cos(dev)-1))));

endp;

loadm data;

y0 = data[.,1];

x0 = data[.,2:cols(data)];

b0 = 2*ones(cols(x),1);

{ b,fct,grd,ret } = QNewton(&lpr,b0);

cov = invpd(hessp(&lpr,b));

print “estimates standard errors”;

print;

print b~sqrt(diag(cov));

������� ribesl.src
�����

GAUSS Language Reference

meanc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
meanc

���$��� Computes the mean of every column of a matrix.

����� y = meanc(x);

��$��

�#��$��

")�$�� x = meanc(rndu(2000,4));

In this example, 4 columns of uniform random numbers are generated in a
matrix, and the mean is computed for each column.

������� stdc

x NxK matrix.

y Kx1 matrix containing the mean of every column of x.

x

0.492446

0.503543

0.502905

0.509283

=

�����

Command Reference

median

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
median

���$��� Computes the medians of the columns of a matrix.

����� m = median(x);

��$��

�#��$��

")�$��

y = median(x);

������ median.src

x NxK matrix.

m Kx1 vector containing the medians of the respective columns of
x.

x = { 8 4,

6 8,

3 7 };

y 6.0000000

7.0000000
=

����	

GAUSS Language Reference

mergeby

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
mergeby

���$��� Merges two sorted files by a common variable.

����� mergeby(infile1,infile2,outfile,keytyp);

��$��

%���+� This will combine the variables in the two files to create a single large
file. The following assumptions hold:

The output file will contain the key variable in its first column.

It is not necessary for the two files to have the same number of rows. For
each row for which the key variables match, a row will be created in the
output file. outfile will contain the columns from infile1 followed by the
columns of infile2 minus the key column from the second file.

If the inputs are null or 0, the procedure will ask for them.

")�$�� mergeby(“freq”, “freqdata”, “mergex”,1);

������� sortd.src

infile1 string, name of input file 1.
infile2 string, name of input file 2.
outfile string, name of output file.
keytyp scalar, data type of key variable.

1 numeric
2 character

1. Both files have the key variable in the first column.
2. All of the values of the key variable within a file are unique.
3. Each file is already sorted on that variable.
����

Command Reference

mergevar

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
mergevar

���$��� Accepts a list of names of global matrices, and concatenates the
corresponding matrices horizontally to form a single matrix.

����� x = mergevar(vnames);

��$��

#��$��

%���+� The matrices specified in vnames must be globals and they must all have
the same number of rows.

This function is the opposite of makevars.

")�$�� let vnames = age pay sex;

x = mergevar(vnames);

The matrices age, pay, and sex will be concatenated horizontally to
create x.

������ vars.src

������� makevars

vnames string or Kx1 column vector containing the names of K global
matrices.

x NxM matrix that contains the concatenated matrices, where M is
the sum of the columns in the K matrices specified in vnames.
�����

GAUSS Language Reference

minc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
minc

���$��� Returns a column vector containing the smallest element in each column
in a matrix.

����� y = minc(x);

��$��

�#��$��

�%���+� If x is complex, minc uses the complex modulus (abs(x)) to determine
the smallest elements.

To find the minimum element in each row, transpose the matrix before
applying the minc function.

To find the minimum value in the whole matrix, nest two calls to minc:

y = minc(minc(x));

")�$�� x = rndn(4,2);

y = minc(x);

������� maxc, minindc, maxindc

x NxK matrix.

y Kx1 matrix containing the smallest element in each column of x.

x

1.061321– 0.729026–

0.021965– 0.184246

 1.843242 1.847015–

 1.977621 0.532307–

=

y 1.061321–

1.847015–
=

�����

Command Reference

minindc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
minindc

���$��� Returns a column vector containing the index (i.e., row number) of the
smallest element in each column in a matrix.

����� y = minindc(x);

��$��

�#��$��

�%���+� If x is complex, minindc uses the complex modulus (abs(x)) to
determine the smallest elements.

To find the index of the smallest element in each row, transpose the matrix
before applying minindc.

If there are two or more “smallest” elements in a column (i.e., two or
more elements equal to each other and less than all other elements), then
minindc returns the index of the first one found, which will be the
smallest index.

")�$�� x = round(rndn(5,4)*5);

y = minc(x);

z = minindc(x);

x NxK matrix.

y Kx1 matrix containing the index of the smallest element in each
column of x.

x

5– 6 4– 1–

 2 2– 1 3

 6 0 1 7–

6– 0 8 4–

 7 4– 8 3

=

y

6–

4–

4–

7–

=

�����

GAUSS Language Reference

minindc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� maxindc, minc, maxc

x

4

5

1

3

=

�����

Command Reference

miss, missrv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
miss, missrv

���$��� miss converts specified elements in a matrix to GAUSS’s missing value
code. missrv is the reverse of this, and converts missing values into
specified values.

����� y = miss(x,v);
y = missrv(x,v);

��$��

�#��$��

�%���+� For miss, elements in x that are equal to the corresponding elements in v
will be replaced with the GAUSS missing value code.

For missrv, elements in x that are equal to the GAUSS missing value
code will be replaced with the corresponding element of v.

For complex matrices, the missing value code is defined as a missing
value entry in the real part of the matrix. For complex x, then, miss
replaces elements with a “. + 0i” value, and missrv examines only the
real part of x for missing values. If, for example, an element of x = 1 + .i,
missrv will not replace it.

These functions act like element-by-element operators. If v is a scalar, for
instance -1, then all -1’s in x are converted to missing. If v is a row
(column) vector with the same number of columns (rows) as x, then each
column (row) in x is transformed to missings according to the
corresponding element in v. If v is a matrix of the same size as x, then the
transformation is done corresponding element by corresponding element.

Missing values are given special treatment in the following functions and
operators: b/a (matrix division when a is not square and neither a nor b is
scalar), counts, ismiss, maxc, maxindc, minc, minindc, miss,
missex, missrv, moment, packr, scalmiss, sortc.

As long as you know a matrix contains no missings to begin with, miss
and missrv can be used to convert one set of numbers into another. For
example:

y=missrv(miss(x,0),1);

will convert 0’s to 1’s.

x NxK matrix.
v LxM matrix, ExE conformable with x.

y max(N,L) by max(K,M) matrix.
�����

GAUSS Language Reference

miss, missrv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� v = -1~4~5;

y = miss(x,v);

If x has 3 columns, all -1’s in the first column will be changed to
missings, along with all 4’s in the second column and 5’s in the third
column.

������� counts, ismiss, maxc, maxindc, minc, minindc,
missex, moment, packr, scalmiss, sortc
�����

Command Reference

missex

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
missex

���$��� Converts numeric values to the missing value code according to the
values given in a logical expression.

����� y = missex(x,e);

��$��

�#��$��

�%���+� The matrix e will usually be created by a logical expression. For instance,
to convert all numbers between 10 and 15 in x to missing, the following
code could be used:

y = missex(x, (x .> 10) .and (x .< 15));

Note that “dot” operators MUST be used in constructing the logical
expressions.

For complex matrices, the missing value code is defined as a missing
value entry in the real part of the matrix. For complex x, then, missex
replaces elements with a “. + 0i” value.

This function is like miss, but is more general in that a range of values
can be converted into missings.

")�$�� x = rndu(3,2);

/* logical expression */

e = (x .> .10) .and (x .< .20);

y = missex(x,e);

A 3x2 matrix of uniform random numbers is created. All values in the
interval (0.10, 0.20) are converted to missing.

������ datatran.src

������� miss, missrv

x NxK matrix.
e NxK logical matrix (matrix of 0’s and 1’s) that serves as a

“mask” for x; the 1’s in e correspond to the values in x that are to
be converted into missing values.

y NxK matrix that equals x, but with those elements that
correspond to the 1’s in e converted to missing.
�����

GAUSS Language Reference

moment

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
moment

���$��� Computes a cross-product matrix. This is the same as x′x.

����� y = moment(x,d);

��$��

#��$��

�%���+� The fact that the moment matrix is symmetric is taken into account to cut
execution time almost in half.

If there is no missing data then d = 0 should be used because it will be
faster.

The / operator (matrix division) will automatically form a moment
matrix (performing pairwise deletions if trap 2 is set) and will compute
the ols coefficients of a regression. However, it can only be used for data
sets that are small enough to fit into a single matrix. In addition, the
moment matrix and its inverse cannot be recovered if the / operator is
used.

x NxK matrix.
d scalar, controls handling of missing values.

0 missing values will not be checked for. This is the fastest
option.

1 “listwise deletion” is used. Any row that contains a
missing value in any of its elements is excluded from the
computation of the moment matrix. If every row in x
contains missing values, then moment(x,1) will return a
scalar zero.

2 “pairwise deletion” is used. Any element of x that is
missing is excluded from the computation of the moment
matrix. Note that this is seldom a satisfactory method of
handling missing values, and special care must be taken in
computing the relevant number of observations and
degrees of freedom.

y KxK matrix which equals x′x.
�����

Command Reference

moment

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� xx = moment(x,2);

ixx = invpd(xx);

b = ixx*missrv(x,0)’y;

In this example, the regression of y on x is computed. The moment matrix
xx is formed using the moment command (with pairwise deletion, since
the second parameter is 2). Then xx is inverted using the invpd
function. Finally, the ols coefficients are computed. missrv is used to
emulate pairwise deletion by setting missing values to 0.
����	

GAUSS Language Reference

momentd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
momentd

���$��� Computes a moment (X′X) matrix from a GAUSS data set.

����� m = momentd(dataset,vars);

��$��

��������$��

�#��$��

dataset string, name of data set.
vars Kx1 character vector, names of variables.

 or
Kx1 numeric vector, indices of columns.

These can be any size subset of the variables in the data set, and can be in
any order. If a scalar 0 is passed, all columns of the data set will be used.

Defaults are provided for the following global input variables so they can
be ignored unless you need control over the other options provided by
this procedure.

__con scalar, default 1.
1 a constant term will be added.
0 no constant term will be added.

__miss scalar, default 0.
0 there are no missing values (fastest).
1 do listwise deletion, drop an observation if any

missings occur in it.
2 do pairwise deletion. This is equivalent to setting

missings to 0 when calculating m.
__row scalar, default 0, the number of rows to read per iteration of

the read loop.
If 0, the number of rows will be calculated internally.
If you get an Insufficient memory error message, or
you want the rounding to be exactly the same between runs,
you can set the number of rows to read before calling
momentd.

m MxM matrix, where M = K + __con, the moment matrix
constructed by calculating X′X where X is the data, with or
without a constant vector of ones.
Error handling is controlled by the low order bit of the trap
flag.
����

Command Reference

momentd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� z = { age, pay, sex };

m = momentd(“freq”,z);

������� momentd.src

������ __con, __miss, __row

trap 0 terminate with error message
trap 1 return scalar error code in m

33 too many missings
34 file not found
�����

GAUSS Language Reference

msym

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
msym

���$��� Allows the user to set the symbol that GAUSS uses when missing values
are converted to ASCII and vice versa.

����� msym str;

��$��

�%���+� The entire string will be printed out when converting to ASCII in print,
lprint, and printfm statements.

When converting ASCII to binary in loadm and let statements, only
the first character is significant. In other words,

msym HAT;

will cause ‘H’ to be converted to missing on input.

This does not affect writer which outputs data in binary format.

������� print, lprint, printfm

str literal or ^string (up to 8 letters) which, if not surrounded by
quotes, is forced to uppercase. This is the string to be printed for
missing values. The default is ‘.’.
�����

Command Reference

nametype

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
nametype

���$��� Provides support for programs following the upper/lowercase convention
in GAUSS data sets. (See “File I/O” in the User’s Guide.) Returns a
vector of names of the correct case and a 1/0 vector of type information.

����� { vname,vtype } = nametype(vname,vtype);

��$��

�#��$��

")�$�� vn = { age, pay, sex };

vt = { 1, 1, 0 };

{ vn, vt } = nametype(vn,vt);

print $vn;

������ nametype.src

������ vartype

.

vname Nx1 character vector of variable names.
vtype scalar or Nx1 vector of 1’s and 0’s to determine the type and

therefore the case of the output vname. If this is scalar 0 or 1 it
will be expanded to Nx1. If -1, nametype will assume that
vname follows the upper/lowercase convention.

vname Nx1 character vector of variable names of the correct case,
uppercase if numeric, lowercase if character.

vtype Nx1 vector of ones and zeros, 1 if variable is numeric, 0 if
character.

vn
AGE

PAY

sex

=

�����

GAUSS Language Reference

new

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
new

���$��� Erases everything in memory including the symbol table; closes all open
files, the auxiliary output, and turns the window on if it was off; also
allows the size of the new symbol table and the main program space to be
specified.

����� new [[nos [[,mps]]]] ;

��$��

%���+� Procedures, user-defined functions, and global matrices strings and string
arrays are all global symbols.

The main program space is the amount of memory available for
nonprocedure, nonfunction program code.

This command can be used with arguments as the first statement in a
program to clear the symbol table and to allocate only as much space for
program code as your program actually needs. When used in this manner,
the auxiliary output will not be closed. This will allow you to open the
auxiliary output from command level and run a program without having
to remove the new at the beginning of the program. If this command is
not the first statement in your program, it will cause the program to
terminate.

nos scalar, which indicates the maximum number of global symbols
allowed. See your platform supplement for the maximum
number of globals allowed in this implementation.

mps scalar, which indicates the number of bytes of main program
space to be allocated. See your platform supplement for the
maximum amount allowed in this implementation.
�����

Command Reference

new

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$��

������� clear, delete, output

new; /* clear global symbols. */

new 300; /*
/*
/*
/*

clear global symbols, set */
maximum number of global */
symbols to 300, and leave */
program space unchanged. */

new
200,100000;

/*
/*
/*
/*
/*

clear global symbols, set */
maximum number of global */
symbols to 200, and allocate */
100000 bytes for main */
program code. */

 new ,100000; /*
/*
/*
/*
/*

clear global symbols, */
allocate 100000 bytes for */
main program code, and leave */
maximum number of globals */
unchanged. */
�����

GAUSS Language Reference

nextn, nextnevn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
nextn, nextnevn

���$��� Returns allowable matrix dimensions for computing FFT’s.

����� n = nextn(n0);
n = nextnevn(n0);

��$��

�#��$��

�%���+� nextn and nextnevn determine allowable matrix dimensions for
computing FFT’s. The Temperton FFT routines (see table below) can
handle any matrix whose dimensions can be expressed as:

with one restriction: the vector length or matrix column size must be even
(p must be positive) when computing RFFT’s.

fftn, etc., automatically pad matrices (with zeros) to the next allowable
dimensions; nextn and nextnevn are provided in case you want to
check or fix matrix sizes yourself.

Use the following table to determine what to call for a given function and
matrix:

")�$�� n = nextn(456);

n0 scalar, the length of a vector or the number of rows or columns in
a matrix.

n scalar, the next allowable size for the given dimension for
computing an FFT or RFFT. n ≥ n0.

2p x 3q x 5r x 7s, p,q,r nonnegative integers

s = 0 or 1

FFT Vector Matrix Matrix

Function Length Rows Columns

fftn nextn nextn nextn

rfftn nextnevn nextn nextnevn

rfftnp nextnevn nextn nextnevn

n 480=
�����

Command Reference

nextn, nextnevn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� optim.src

������� fftn, optn, optnevn, rfftn, rfftnp
�����

GAUSS Language Reference

nextwind

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
nextwind

���$��� Sets the current graphic panel to the next available graphic panel.

 	���� pgraph

����� nextwind;

%���+� This function selects the next available graphic panel to be the current
graphic panel. This is the graphic panel in which the next graph will be
drawn.

See the discussion on using graphic panels in “Publication Quality
Graphics” in the User’s Guide.

������ pwindow.src

������� endwind, begwind, setwind, getwind, makewind,
window
�����

Command Reference

null

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
null

���$��� Computes an orthonormal basis for the (right) null space of a matrix.

����� b = null(x);

��$��

�#��$��

�%���+� The orthogonal complement of the column space of x′ is computed using
the QR decomposition. This provides an orthonormal basis for the null
space of x.

")�$��

b = null(x);

z = x*b;

i = b’b;

������ null.src

������� _qrdc, _qrsl

x NxM matrix.

b MxK matrix, where K is the nullity of X, such that:

x*b = 0 (NxK matrix of zeros)

and

b′b = I (MxM identity matrix)

The error returns are returned in b:

error code reason

1 there is no null space

2 b is too large to return in a single matrix

Use scalerr to test for error returns.

let x[2,4] = 2 1 3 -1

3 5 1 2;
����	

GAUSS Language Reference

null1

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
null1

���$��� Computes an orthonormal basis for the (right) null space of a matrix.

����� nu = null1(x,dataset);

��$��

#��$��

%���+� null1 computes an MxK matrix b, where K is the nullity of x, such that:

The transpose of b is written to the data set named by dataset, unless the
nullity of x is zero. If nu is zero, the data set is not written.

������ null.src

������� _qrdc, _qrsl

x NxM matrix.
dataset string, the name of a data set null1 will write.

nu scalar, the nullity of x.

x*b = 0 (NxK matrix of zeros)
and
b′b = I (MxM identity matrix)
����

Command Reference

ols

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ols

���$��� Computes a least squares regression.

����� { vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat }
= ols(dataset,depvar,indvars);

��$��

��������$��

dataset string, name of data set or null string.
If dataset is a null string, the procedure assumes that the
actual data has been passed in the next two arguments.

depvar If dataset contains a string:
string, name of dependent variable.
scalar, index of dependent variable. If scalar 0, the last
column of the data set will be used.

If dataset is a null string or 0:
Nx1 vector, the dependent variable.

indvars If dataset contains a string:
Kx1 character vector, names of independent variables.
Kx1 numeric vector, indices of independent variables.

These can be any size subset of the variables in the data set
and can be in any order. If a scalar 0 is passed, all columns of
the data set will be used except for the one used for the
dependent variable.
If dataset is a null string or 0:

NxK matrix, the independent variables.

Defaults are provided for the following global input variables, so they can
be ignored unless you need control over the other options provided by
this procedure.
__altnam global vector, default 0.

This can be a (K+1)x1 or (K+2)x1 character vector of
alternate variable names for the output. If __con is 1, this
must be (K+2)x1. The name of the dependent variable is
the last element.

__con global scalar, default 1.
1 a constant term will be added, D = K+1.
0 no constant term will be added, D = K.
�����

GAUSS Language Reference

ols

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
#��$��

A constant term will always be used in constructing the
moment matrix m.

__miss global scalar, default 0.
0 there are no missing values (fastest).
1 listwise deletion, drop any cases in which

missings occur.
2 pairwise deletion, this is equivalent to

setting missings to 0 when calculating m.
The number of cases computed is equal to
the total number of cases in the data set.

__output global scalar, default 1.
1 print the statistics.
0 do not print statistics.

__row global scalar, the number of rows to read per iteration of
the read loop. Default 0.
If 0, the number of rows will be calculated internally. If
you get an Insufficient memory error message
while executing ols, you can supply a value for __row
that works on your system.
The answers may vary slightly due to rounding error
differences when a different number of rows is read per
iteration. You can use __row to control this if you want to
get exactly the same rounding effects between several runs.

_olsres global scalar, default 0.
1 compute residuals (resid) and Durbin-

Watson statistic(dwstat).
0 resid = 0, dwstat = 0.

vnam (K+2)x1 or (K+1)x1 character vector, the variable names used in
the regression. If a constant term is used, this vector will be
(K+2)x1, and the first name will be “CONSTANT”. The last
name will be the name of the dependent variable.

m MxM matrix, where M = K+2, the moment matrix constructed
by calculating X′X where X is a matrix containing all useable
observations and having columns in the order:

1.0 indvars depvar

(constant) (independent variables) (dependent variable)

A constant term is always used in computing m.

b Dx1 vector, the least squares estimates of parameters.
�����

Command Reference

ols

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�%���+� No output file is modified, opened, or closed by this procedure. If you
want output to be placed in a file, you need to open an output file before
calling ols.

Error handling is controlled by the low order bit of the trap flag.
trap 0 terminate with error message
trap 1 return scalar error code in b

30 system singular
31 system underdetermined
32 same number of columns as rows
33 too many missings
34 file not found
35 no variance in an independent variable

The system can become underdetermined if you use listwise
deletion and have missing values. In that case, it is possible to
skip so many cases that there are fewer useable rows than
columns in the data set.

stb Kx1 vector, the standardized coefficients.
vc DxD matrix, the variance-covariance matrix of estimates.
stderr Dx1 vector, the standard errors of the estimated parameters.
sigma scalar, standard deviation of residual.
cx (K+1)x(K+1) matrix, correlation matrix of variables with the

dependent variable as the last column.
rsq scalar, R square, coefficient of determination.
resid residuals, resid = y - x * b.

If _olsres = 1, the residuals will be computed.
If the data is taken from a data set, a new data set will be created
for the residuals, using the name in the global string variable
_olsrnam. The residuals will be saved in this data set as an
Nx1 column. The resid return value will be a string containing
the name of the new data set containing the residuals.
If the data is passed in as a matrix, the resid return value will be
the Nx1 vector of residuals.

dwstat scalar, Durbin-Watson statistic.
�����

GAUSS Language Reference

ols

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$��

output file = ols.out reset;

call ols(0,y,x);

output off;

In this example, the output from ols was put into a file called ols.out
as well as being printed in the window. This example will compute a least
squares regression of y on x. The return values were discarded by using a
call statement.

data = “olsdat”;

depvar = { score };

indvars = { region,age,marstat };

_olsres = 1;

output file = lpt1 on;

{ nam,m,b,stb,vc,std,sig,cx,rsq,resid,dbw } =

 ols(data,depvar,indvars);

output off;

In this example, the data set olsdat.dat was used to compute a
regression. The dependent variable is score. The independent variables
are region, age, and marstat. The residuals and Durbin-Watson
statistic will be computed. The output will be sent to the printer as well as
the window and the returned values are assigned to variables.

y = { 2,

3,

1,

7,

5 };

x = { 1 3 2,

2 3 1,

7 1 7,

5 3 1,

3 5 5 };
�����

Command Reference

ols

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������ ols.src

������ _olsres, _olsrnam, __altnam, __con, __miss,

__output, __row, __vpad

������� olsqr
�����

GAUSS Language Reference

olsqr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
olsqr

���$��� Computes OLS coefficients using QR decomposition.

����� b = olsqr(y,x);

��$��

��������$��

�#��$��

�%���+� This provides an alternative to y/x for computing least squares
coefficients.

This procedure is slower than the / operator. However, for near singular
matrices it may produce better results.

olsqr handles matrices that do not have full rank by returning zeros for
the coefficients that cannot be estimated.

������ olsqr.src

������� _olsqtol

������� ols, olsqr2, orth, qqr

y Nx1 vector containing dependent variable.
x NxP matrix containing independent variables.

_olsqtol global scalar, the tolerance for testing if diagonal elements
are approaching zero. The default value is 10e-14.

b Px1 vector of least squares estimates of regression of y on x. If x
does not have full rank, then the coefficients that cannot be
estimated will be zero.
�����

Command Reference

olsqr2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
olsqr2

���$��� Computes OLS coefficients, residuals, and predicted values using the QR
decomposition.

����� { b,r,p } = olsqr2(y,x);

��$��

��������$��

#��$��

�%���+� This provides an alternative to y/x for computing least squares
coefficients.

This procedure is slower than the / operator. However, for near singular
matrices, it may produce better results.

olsqr2 handles matrices that do not have full rank by returning zeros
for the coefficients that cannot be estimated.

������ olsqr.src

������ _olsqtol

������� olsqr, orth, qqr

y Nx1 vector containing dependent variable.
x NxP matrix containing independent variables.

_olsqtol global scalar, the tolerance for testing if diagonal elements
are approaching zero. The default value is 10e-14.

b Px1 vector of least squares estimates of regression of y on x. If x
does not have full rank, then the coefficients that cannot be
estimated will be zero.

r Px1 vector of residuals. (r = y - x*b)
p Px1 vector of predicted values. (p = x*b)
�����

GAUSS Language Reference

ones

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ones

���$��� Creates a matrix of ones.

����� y = ones(r,c);

��$��

�#��$��

�%���+� Noninteger arguments will be truncated to an integer.

")�$�� x = ones(3,2);

������� zeros, eye

r scalar, number of rows.
c scalar, number of columns.

y RxC matrix of ones.

x
1 1

1 1

1 1

=

�����

Command Reference

open

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
open

���$��� Opens an existing GAUSS data file.

����� open fh=filename [[for mode]] [[varindxi [[offs]]]] ;

��$�� filename literal or ^string.
filename is the name of the file on the disk. The name can
include a path if the directory to be used is not the current
directory. This filename will automatically be given the
extension .dat. If an extension is specified, the .dat will
be overridden. If the file is an .fmt matrix file, the
extension must be explicitly given. If the name of the file is
to be taken from a string variable, the name of the string
must be preceded by the ^ (caret) operator.

mode [[read]] , append, update
The modes supported with the optional for subcommand
are:
read This is the default file opening mode and will be

the one used if none is specified. Files opened in
this mode cannot be written to. The pointer is set
to the beginning of the file and the writer
function is disabled for files opened in this way.
This is the only mode available for matrix files
(.fmt), which are always written in one piece
with the save command.

append Files opened in this mode cannot be read. The
pointer will be set to the end of the file so that a
subsequent write to the file with the writer
function will add data to the end of the file without
overwriting any of the existing data in the file. The
readr function is disabled for files opened in this
way. This mode is used to add additional rows to
the end of a file.

update Files opened in this mode can be read from and
written to. The pointer will be set to the beginning
of the file. This mode is used to make changes in a
file.

offs scalar.
����	

GAUSS Language Reference

open

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The optional varindxi subcommand tells GAUSS to
create a set of global scalars that contain the index (column
position) of the variables in a GAUSS data file. These “index
variables” will have the same names as the corresponding
variables in the data file but with “i” added as a prefix. They
can be used inside index brackets, and with functions like
submat to access specific columns of a matrix without
having to remember the column position.
The optional offs is an offset that will be added to the index
variables. This is useful if data from multiple files are
concatenated horizontally in one matrix. It can be any scalar
expression. The default is 0.
The index variables are useful for creating submatrices of
specific variables without requiring that the positions of the
variables be known. For instance, if there are two variables,
xvar and yvar in the data set, the index variables will have
the names ixvar, iyvar. If xvar is the first column in the
data file, and yvar is the second, and if no offset, offs, has
been specified, then ixvar and iyvar will equal 1 and 2,
respectively. If an offset of 3 had been specified, then these
variables would be assigned the values 4 and 5, respectively.
The varindxi and varindx options cannot be used with
.fmt matrix files because no column names are stored with
them.
If varindxi is used, GAUSS will ignore the Undefined
symbol error message for global symbols that start with
“i”. This makes it much more convenient to use index
variables because they don’t have to be cleared before they
are accessed in the program. Clearing is otherwise necessary
because the index variables do not exist until execution time
when the data file is actually opened and the names are read
in from the header of the file. At compile time a statement
like: y=x[.,ixvar]; will be illegal if the compiler has
never heard of ixvar. If varindxi is used, this error will
be ignored for symbols beginning with “i”. Any symbols
that are accessed before they have been initialized with a real
value will be trapped at execution time with a Variable
not initialized error message.
����

Command Reference

open

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
#��$��

%���+� The file must exist before it can be opened with the open command. (To
create a new file, see create or save.)

A file can be opened simultaneously under more than one handle. See the
second example following.

If the value that is in the file handle when the open command begins to
execute matches that of an already open file, the process will be aborted
and a File already open error message will be given. This gives
you some protection against opening a second file with the same handle
as a currently open file. If this happens, you would no longer be able to
access the first file.

It is important to set unused file handles to zero because both open and
create check the value that is in a file handle to see if it matches that of
an open file before they proceed with the process of opening a file. This
should be done with close or closeall.

")�$�� fname = “/data/rawdat”;

open dt = ^fname for append;

if dt == -1;

print “File not found”;

end;

endif;

y = writer(dt,x);

if y /= rows(x);

print “Disk Full”;

end;

endif;

dt = close(dt);

fh scalar.
fh is the file handle which will be used by most commands
to refer to the file within GAUSS. This file handle is
actually a scalar containing an integer value that uniquely
identifies each file. This value is assigned by GAUSS
when the open command is executed. If the file was not
successfully opened, the file handle will be set to -1.
�����

GAUSS Language Reference

open

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
 In the example above, the existing data set /data/rawdat.dat is
opened for appending new data. The name of the file was in the string
variable fname. In this example the file handle is tested to see if the file
was opened successfully. The matrix x is written to this data set. The
number of columns in x must be the same as the number of columns in
the existing data set. The first row in x will be placed after the last row in
the existing data set. The writer function will return the number of
rows actually written. If this does not equal the number of rows that were
attempted, then the disk is probably full.

open fin = mydata for read;

open fout = mydata for update;

do until eof(fin);

x = readr(fin,100);

x[.,1 3] = ln(x[.,1 3]);

call writer(fout,x);

endo;

closeall fin,fout;

In the above example, the same file, mydata.dat, is opened twice with
two different file handles. It is opened for read with the handle fin, and it
is opened for update with the handle fout. This will allow the file to be
transformed in place without taking up the extra space necessary for a
separate output file. Notice that fin is used as the input handle and fout
is used as the output handle. The loop will terminate as soon as the input
handle has reached the end of the file. Inside the loop the file is read into a
matrix called x using the input handle, the data are transformed (columns
1 and 3 are replaced with their natural logs), and the transformed data is
written back out using the output handle. This type of operation works
well as long as the total number of rows and columns does not change.

The following example assumes a data file named dat1.dat that has
the variables: visc, temp, lub, rpm.

open f1 = dat1 varindxi;

dtx = readr(f1,100);

x = dtx[.,irpm ilub ivisc];

y = dtx[.,itemp];

call seekr(f1,1);
�����

Command Reference

open

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
In this example, the data set dat1.dat is opened for reading (the .dat
and the for read are implicit). varindxi is specified with no
constant. Thus, index variables are created that give the positions of the
variables in the data set. The first 100 rows of the data set are read into the
matrix dtx. Then, specified variables in a specified order are assigned to
the matrices x and y using the index variables. The last line uses the
seekr function to reset the pointer to the beginning of the file.

open q1 = dat1 varindx;

open q2 = dat2 varindx colsf(q1);

nr = 100;

y = readr(q1,nr)~readr(q2,nr);

closeall q1,q2;

In this example, two data sets are opened for reading and index variables
are created for each. A constant is added to the indices for the second data
set (q2), equal to the number of variables (columns) in the first data set
(q1). Thus, if there are three variables x1, x2, x3 in q1, and three
variables y1, y2, y3 in q2, the index variables that were created when
the files were opened would be ix1, ix2, ix3, iy1, iy2, iy3. The
values of these index variables would be 1, 2, 3, 4, 5, 6, respectively. The
first 100 rows of the two data sets are read in and concatenated to give the
matrix y. The index variables will thus give the correct positions of the
variables in y.

open fx = x.fmt;

i = 1; rf = rowsf(fx);

sampsize = round(rf*0.1);

rndsmpx = zeros(sampsize,colsf(fx));

do until i > sampsize;

r = ceil(rndu(1,1)*rf);

call seekr(fx,r);

rndsmpx[i,.] = readr(fx,1);

i = i+1;

endo;

fx = close(fx);
�����

GAUSS Language Reference

open

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
In this example, a 10% random sample of rows is drawn from the matrix
file x.fmt and put into the matrix rndsmpx. Note that the extension
.fmt must be specified explicitly in the open statement. The rowsf
command is used to obtain the number of rows in x.fmt. This number is
multiplied by 0.10 and the result is rounded to the nearest integer; this
yields desired sample size. Then random integers (r) in the range 1 to rf
are generated. seekr is used to locate to the appropriate row in the
matrix, and the row is read with readr and placed in the matrix
rndsmpx. This is continued until the complete sample has been
obtained.

������� create, close, closeall, readr, writer, seekr,
eof
�����

Command Reference

optn, optnevn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
optn, optnevn

����$��� Returns optimal matrix dimensions for computing FFT’s.

����� n = optn(n0);
n = optnevn(n0);

��$��

�#��$��

�%���+� optn and optnevn determine optimal matrix dimensions for
computing FFT’s. The Temperton FFT routines (see table following) can
handle any matrix whose dimensions can be expressed as:

with one restriction: the vector length or matrix column size must be even
(p must be positive) when computing RFFT’s.

fftn, etc., pad matrices to the next allowable dimensions; however, they
generally run faster for matrices whose dimensions are highly composite
numbers, that is, products of several factors (to various powers), rather
than powers of a single factor. For example, even though it is bigger, a
33600x1 vector can compute as much as 20 percent faster than a 32768x1
vector, because 33600 is a highly composite number, 26 x 3 x 52 x 7,
whereas 32768 is a simple power of 2, 215. optn and optnevn are
provided so you can take advantage of this fact by hand-sizing matrices to
optimal dimensions before computing the FFT.

n0 scalar, the length of a vector or the number of rows or columns in
a matrix.

n scalar, the next optimal size for the given dimension for
computing an FFT or RFFT. n ≥ n0.

2p x 3 q x 5r x 7s, p, q, r nonnegative integers

s = 0 or 1
�����

GAUSS Language Reference

optn, optnevn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Use the following table to determine what to call for a given function and
matrix:

")�$�� n = optn(231);

������� fftn, nextn, nextnevn, rfftn, rfftnp

FFT Vector Matrix Matrix

Function Length Rows Columns

fftn optn optn optn

rfftn optnevn optn optnevn

rfftnp optnevn optn optnevn

n 240.00000=
�����

Command Reference

orth

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z

orth

���$��� Computes an orthonormal basis for the column space of a matrix.

����� y = orth(x);

��$��

��������$��

#��$��

")�$��

y = orth(x);

������ qqr.src

������� _orthtol

������� qqr, olsqr

x NxK matrix.

_orthtol global scalar, the tolerance for testing if diagonal elements
are approaching zero. The default is 1.0e-14.

y NxL matrix such that y′y = eye(L) and whose columns span the
same space as the columns of x; L is the rank of x.

x = { 6 5 4,

2 7 5 };

y 0.58123819– 0.81373347–

0.81373347– 0.58123819
=

�����

GAUSS Language Reference

output

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
output

���$��� This command makes it possible to direct the output of print statements
to two different places simultaneously. One output device is always the
window or standard output. The other can be selected by the user to be
any disk file or other suitable output device such as a printer.

����� output [[file=filename]] [[on|off|reset]] ;

��$��

%���+� After you have written to an output file you have to close the file before
you can print it or edit it with the GAUSS editor. Use output off.

The selection of the auxiliary output file or device remains in effect until a
new selection is made, or until you exit GAUSS. Thus, if a file is named
as the output device in one program, it will remain the output device in
subsequent programs until a new file=filename subcommand is
encountered.

filename literal or ^string.
The file=filename subcommand selects the file or
device to which output is to be sent.
If the name of the file is to be taken from a string
variable, the name of the string must be preceded by
the ^ (caret) operator.
The default file name is output.out.

on, off,
reset

literal, mode flag

on opens the auxiliary output file or device and
causes the results of all print statements
to be sent to that file or device. If the file
already exists, it will be opened for
appending. If the file does not already exist,
it will be created.

off closes the auxiliary output file and turns off
the auxiliary output.

reset similar to the on subcommand, except that
it always creates a new file. If the file
already exists, it will be destroyed and a
new file by that name will be created. If it
does not exist, it will be created.
�����

Command Reference

output

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The command output file=filename; will select the file or device
but will not open it. A subsequent output on; or output reset;
will open it and turn on the auxiliary output.

The command output off will close the file and turn off the auxiliary
output. The filename will remain the same. A subsequent output on
will cause the file to be opened again for appending. A subsequent
output reset will cause the existing file to be destroyed and then
recreated and will turn on the auxiliary output.

The command output by itself will cause the name and status (i.e., open
or closed) of the current auxiliary output file to be printed in the window.

The output to the console can be turned off and on using the screen
off and screen on commands. Output to the auxiliary file or device
can be turned off or on using the output off or output on
command. The defaults are screen on and output off.

The auxiliary file or device can be closed by an explicit output off
statement, by an end statement, or by an interactive new statement.
However, a new statement at the beginning of a program will not close
the file. This allows programs with new statements in them to be run
without reopening the auxiliary output file.

If a program sends data to a disk file, it will execute much faster if the
window is off.

The outwidth command will set the line width of the output file. The
default is 80.
����	

GAUSS Language Reference

output

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� output file = out1.out on;

This statement will open the file out1.out and will cause the results of
all subsequent print statements to be sent to that file. If out1.out
already exists, the new output will be appended.

output file = out2.out;

output on;

This is equivalent to the previous example.

output reset;

This statement will create a new output file using the current filename. If
the file already exists, any data in it will be lost.

output file = mydata.asc reset;

screen off;

format /m1/rz 1,8;

open fp = mydata;

do until eof(fp);

print readr(fp,200);;

endo;

fp = close(fp);

end;

The program above will write the contents of the GAUSS file
mydata.dat into an ASCII file called mydata.asc. If there had been
an existing file by the name of mydata.asc, it would have been
overwritten.

The /m1 parameter in the format statement in combination with the ;;
at the end of the print statement will cause one carriage return/line feed
pair to be written at the beginning of each row of the output file. There
will not be an extra line feed added at the end of each 200 row block.

The end statement above will automatically perform output off and
screen on.

������� outwidth, screen, end, new
����

Command Reference

outtyp (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
outtyp (dataloop)

���$��� Specifies the precision of the output data set.

����� outtyp num_constant;

%���+� num_constant must be 2, 4, or 8, to specify integer, single precision, or
double precision, respectively.

If outtyp is not specified, the precison of the output data set will be that
of the input data set. If character data is present in the data set, the
precision will be forced to double.

")�$�� outtyp 8;
�����

GAUSS Language Reference

outwidth

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
outwidth

���$��� Specifies the width of the auxiliary output.

����� outwidth n;

%���+� n specifies the width of the auxiliary output in columns (characters). After
printing n characters on a line, GAUSS will output a line feed.

If a matrix is being printed, the line feed sequence will always be inserted
between separate elements of the matrix rather than being inserted
between digits of a single element.

n may be any scalar-valued expression in the range of 2-256. Nonintegers
will be truncated to an integer. If 256 is used, no additional lines will be
inserted.

The default is 80 columns.

")�$�� outwidth 132;

This statement will change the auxiliary output width to 132 columns.

������� lpwidth, output, print
�����

Command Reference

pacf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
pacf

���$��� Computes sample partial autocorrelations.

����� rkk = pacf(y,k,d);

��$��

#��$��

")�$�� proc pacf(y,k,d);

local a,l,j,r,t;

r = acf(y,k,d);

a = zeros(k,k);

a[1,1] = r[1];

t = 1;

l = 2;

do while l le k;

a[l,l] = (r[l]-a[l-1,1:t]*rev(r[1:l-1]))/

(1-a[l-1,1:t]*r[1:t]);

j = 1;

do while j <= t;

a[l,j] = a[l-1,j] - a[l,l]*a[l-1,l-j];

j = j+1;

endo;

t = t+1;

l = l+1;

endo;

y Nx1 vector, data.
k scalar, maximum number of partial autocorrelations to compute.
d scalar, order of differencing.

rkk Kx1 vector, sample partial autocorrelations.
�����

GAUSS Language Reference

pacf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
retp(diag(a));

endp;

������ tsutil.src
�����

Command Reference

packr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
packr

���$��� Deletes the rows of a matrix that contain any missing values.

����� y = packr(x);

��$��

�#��$��

�%���+� This function is useful for handling missing values by “listwise deletion,”
particularly prior to using the / operator to compute least squares
coefficients.

If all rows of a matrix contain missing values, packr returns a scalar
missing value. This can be tested for quickly with the scalmiss
function.

")�$�� x = miss(ceil(rndu(3,3)*10),1);

y = packr(x);

In this example, the matrix x is formed with random integers and missing
values. packr is used to delete rows with missing values.

x NxK matrix.

y LxK submatrix of x containing only those rows that do not have
missing values in any of their elements.

x
. 9 10

4 2 .

3 4 9

=

y 3 4 9=
�����

GAUSS Language Reference

packr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
open fp = mydata;

obs = 0;

sum = 0;

do until eof(fp);

x = packr(readr(fp,100));

if not scalmiss(x);

obs = obs+rows(x);

sum = sum+sumc(x);

endif;

endo;

mean = sum/obs;

In this example, the sums of each column in a data file are computed as
well as a count of the rows that do not contain any missing values. packr
is used to delete rows that contain missings and scalmiss is used to
skip the two sum steps if all the rows are deleted for a particular iteration
of the read loop. Then the sums are divided by the number of observations
to obtain the means.

������� scalmiss, miss, missrv
�����

Command Reference

parse

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
parse

���$��� Parses a string, returning a character vector of tokens.

����� tok = parse(str,delim);

��$��

#��$��

%���+� The tokens in str must be 8 characters or less in size. If they are longer,
the contents of tok is unpredictable.

������� token

str string consisting of a series of tokens and/or delimiters.
delim NxK character matrix of delimiters that might be found in str.

tok Mx1 character vector consisting of the tokens contained in str.
All tokens are returned; any delimiters found in str are ignored.
�����

GAUSS Language Reference

pause

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
pause

���$��� Pauses for a specified number of seconds.

����� pause(sec);

��$��

������ pause.src

������� wait

sec seconds to pause.
�����

Command Reference

pdfn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
pdfn

���$��� Computes the standard Normal (scalar) probability density function.

����� y = pdfn(x);

��$��

�#��$��

�%���+� This does not compute the joint Normal density function. Instead, the
scalar Normal density function is computed element-by-element. y could
be computed by the following GAUSS code:

y = (1/sqrt(2*pi))*exp(-(x.*x)/2);

")�$�� x = rndn(2,2);

y = pdfn(x);

x NxK matrix.

y NxK matrix containing the standard Normal probability density
function of x.

1.828915– 0.514485

0.550219– 0.275229–
=

y 0.074915 0.349488

0.342903 0.384115
=

����	

GAUSS Language Reference

pi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z

pi

���$��� Returns the mathematical constant π.

����� y = pi;

")�$�� format /rdn 16,14;

print pi;

produces:

3.14159265358979
����

Command Reference

pinv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
pinv

���$��� Computes the Moore-Penrose pseudo-inverse of a matrix, using the
singular value decomposition.

This pseudo-inverse is one particular type of generalized inverse.

����� y = pinv(x);

��$��

��������$��

#��$��

�����
#��$��

")�$�� x = { 6 5 4, 2 7 5 } ;

y = pinv(x);

������ svd.src

������� _svdtol, _svderr

x NxM matrix.

_svdtol global scalar, any singular values less than _svdtol are
treated as zero in determining the rank of the input matrix.
The default value for _svdtol is 1.0e-13.

y MxN matrix that satisfies the 4 Moore-Penrose conditions:
XYX = X
YXY = Y
XY is symmetric
YX is symmetric

_svderr global scalar, if not all of the singular values can be
computed _svderr will be nonzero.

y
 0.22017139 0.16348055–

0.05207647– 0.13447594

 0.0151615– 0.07712591

=

�����

GAUSS Language Reference

polar

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
polar

���$��� Graphs data using polar coordinates.

 	���� pgraph

����� polar(radius,theta);

��$��

������ polar.src

������� xy, logx, logy, loglog, scale, xtics, ytics

radius Nx1 or NxM matrix. Each column contains the magnitude for
a particular line.

theta Nx1 or NxM matrix. Each column represents the angle values
for a particular line.
�����

Command Reference

polychar

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
polychar

���$��� Computes the characteristic polynomial of a square matrix.

����� c = polychar(x);

��$��

�#��$��

�%���+� The coefficient of zn is set to unity (c[1]=1).

������� poly.src

������� polymake, polymult, polyroot, polyeval

x NxN matrix.

c (N+1)x1 vector of coefficients of the Nth order characteristic
polynomial of x:

p(z)=c[1]*zn + c[2]*z(n-1) + ... + c[n]*z + c[n+1];
�����

GAUSS Language Reference

polyeval

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
polyeval

���$��� Evaluates polynomials. Can either be 1 or more scalar polynomials or a
single matrix polynomial.

����� y = polyeval(x,c);

��$��

�#��$��

�%���+� In both the scalar and the matrix case, Horner’s rule is used to do the
evaluation. In the scalar case, the function recsercp is called (this
implements an elaboration of Horner’s rule).

")�$�� x = 2;

let c = 1 1 0 1 1;

y = polyeval(x,c);

The result is 27. Note that this is the decimal value of the binary number
11011.

y = polyeval(x,1|zeros(n,1));

This will raise the matrix x to the nth power (e.g: x*x*x*x*...*x).

������ poly.src

������� polymake, polychar, polymult, polyroot

x 1xK or NxN; that is, x can either represent K separate scalar
values at which to evaluate the (scalar) polynomial(s), or it can
represent a single NxN matrix.

c (P+1)xK or (P+1)x1 matrix of coefficients of polynomials to
evaluate. If x is 1xK, then c must be (P+1)xK. If x is NxN, c must
be (P+1)x1. That is, if x is a matrix, it can only be evaluated at a
single set of coefficients.

y Kx1 vector (if c is (P+1)xK) or NxN matrix (if c is (P+1)x1 and x
is NxN):

y = (c[1,.].*xp + c[2,.].*x(p-1) + ... + c[p+1,.])′;
�����

Command Reference

polyint

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
polyint

���$��� Calculates an Nth order polynomial interpolation.

����� y = polyint(xa,ya,x);

��$��

��������$��

#��$��

�����
#��$��

%���+� Calculates an Nth order polynomial interpolation or extrapolation of X on
Y given the vectors xa and ya and the scalar x. The procedure uses
Neville’s algorithm to determine an up to Nth order polynomial and an
error estimate.

Polynomials above degree 6 are not likely to increase the accuracy for
most data. Test _polerr to determine the required _poldeg for your
problem.

������ polyint.src

�����	��
�&����

Press, W.P., B.P. Flannery, S.A. Tevkolsky, and W.T. Vettering. Numerical
Recipes: The Art of Scientific Computing. NY: Cambridge Press, 1986.

xa Nx1 vector, X values.
ya Nx1 vector, Y values.
x scalar, X value to solve for.

_poldeg global scalar, the degree of polynomial required, default 6.

y result of interpolation or extrapolation.

_polerr global scalar, interpolation error.
�����

GAUSS Language Reference

polymake

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
polymake

���$��� Computes the coefficients of a polynomial given the roots.

����� c = polymake(r);

��$��

�#��$��

�%���+� The coefficient of zn is set to unity (c[1]=1).

")�$�� r = { 2, 1, 3 };

c = polymake(r);

������ poly.src

������� polychar, polymult, polyroot, polyeval

r Nx1 vector containing roots of the desired polynomial.

c (N+1)x1 vector containing the coefficients of the Nth order
polynomial with roots r:

p(z)=c[1]*zn+ c[2]*z(n-1) + ...+ c[n]*z + c[n+1];

c

1.0000000–

6.0000000–

 11.000000

6.0000000–

=

�����

Command Reference

polymat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
polymat

���$��� Returns a matrix containing the powers of the elements of x from 1 to p.

����� y = polymat(x,p);

��$��

#��$��

%���+� To do polynomial regression use ols:

{ vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,

dwstat } = ols(0,y,polymat(x,p));

������� polymat.src

x NxK matrix.
p scalar, positive integer.

y Nx(p*K) matrix containing powers of the elements of x from 1 to
p. The first K columns will contain first powers, the second K
columns contain the second powers, and so on.
�����

GAUSS Language Reference

polymroot

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
polymroot

���$��� Computes the roots of the determinant of a matrix polynomial

����� r = polymroot(c);

��$��

#��$��

%���+� c is constructed of N+1 KxK coefficient matrices stacked vertically with
the coefficient matrix of the t^n at the top, t^(n-1) next, down to the t^0
matrix at the bottom.

Note that this procedure solves the scalar problem as well, that is, the one
that POLYROOT solves.

")�$�� Solve det(A2*t^2 + A1*t + A0) = 0 where:

A2 = [1 2]

 [2 1]

A1 = [5 8]

 [10 7]

A0 = [3 4]

 [6 5]

a2 = { 1 2, 2 1 };

a1 = { 5 8, 10 7 };

a0 = { 3 4, 6 5 };

print polymroot(a2|a1|a0);

 -4.3027756

 -.69722436

 -2.6180340

 -.38196601

c (N+1)*KxK matrix of coefficients of an Nth order
polynomial of rank K.

r K*N vector containing the roots of the determinantal equation.
�����

Command Reference

polymult

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
polymult

���$��� Multiplies polynomials.

����� c = polymult(c1,c2);

��$��

�#��$��

")�$�� c1 = { 2, 1 };

c2 = { 2, 0, 1 };

c = polymult(c1,c2);

������ poly.src

������� polymake, polychar, polyroot, polyeval

������	��
�&����

If the degree of c1 is D1 (e.g., if D1=3, then the polynomial
corresponding to c1 is cubic), then there must be D1+1 elements in c1
(e.g., 4 elements for a cubic). Thus, for instance the coefficients for the
polynomial 5*x3 + 6*x + 3 would be: c1=5|0|6|3. (Note that zeros must be
explicitly given if there are powers of x missing.)

c1 (D1+1)x1 vector containing the coefficients of the first
polynomial.

c2 (D2+1)x1 vector containing the coefficients of the second
polynomial.

c (D1+D2)x1 vector containing the coefficients of the product of
the two polynomials.

c

4.0000000

2.0000000

2.0000000

1.0000000

=

����	

GAUSS Language Reference

polyroot

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
polyroot

���$��� Computes the roots of a polynomial given the coefficients.

����� y = polyroot(c);

��$��

�#��$��

������� poly.src

������� polymake, polychar, polymult, polyeval

c (N+1)x1 vector of coefficients of an Nth order polynomial:

p(z)=c[1]*zn + c[2]*z(n-1)+ ...+c[n]*z + c[n+1]
Zero leading terms will be stripped from c. When that occurs the
order of y will be the order of the polynomial after the leading
zeros have been stripped.
c[1] need not be normalized to unity.

y Nx1 vector, the roots of c.
����

Command Reference

pop

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
pop

���$��� Provides access to a last-in, first-out stack for matrices.

����� pop b; pop a;

%���+� This is used with gosub, goto, and return statements with
parameters. It permits passing parameters to subroutines or labels, and
returning parameters from subroutines.

The gosub syntax allows an implicit push statement. This syntax is
almost the same as that of a standard gosub, except that the matrices to
be push’ed “into the subroutine” are in parentheses following the label
name. The matrices to be push’ed back to the main body of the program
are in parentheses following the return statement. The only limit on the
number of matrices that can be passed to and from subroutines in this way
is the amount of room on the stack.

No matrix expressions can be executed between the (implicit) push and
the pop. Execution of such expressions will alter what is on the stack.

Matrices must be pop’ped in the reverse order that they are push’ed,
therefore the statements:

goto label(x,y,z);

.

.

.

label:

pop c;

pop b;

pop a;

Note that matrices are pop’ped in reverse order, and that there is a
separate pop statement for each matrix popped.

������� gosub, goto, return

c = z b = y a = x
�����

GAUSS Language Reference

pqgwin

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
pqgwin

���$��� Sets the graphics viewer mode.

 	���� pgraph

����� pqgwin arg;

��$��

%���+� If "one" is set, the viewer executable will be vwr.exe.

"manual" and "auto" are supported for backwards compatibility,
manual=one, auto=many.

")�$��1 pqgwin one;

pqgwin many;

������ pgraph.src

������� setvwrmode

arg string literal.
"one" Use only one viewer.
"many" Use a new viewer for each graph.
���	�

Command Reference

prcsn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
setvwrmode

prcsn

���$��� Sets the computational precision of some of the matrix operators.

����� prcsn n;

��$��

�����	�	�� UNIX, Windows

This function has no effect under UNIX or Windows. All computations
are done in 64-bit precision.

%���+� n is a scalar containing either 64 or 80. The operators affected by this
command are chol, solpd, invpd, and b/a (when neither a nor b is
scalar and a is not square).

prcsn 80 is the default. Precision is set to 80 bits (10 bytes), which
corresponds to about 19 digits of precision.

prcsn 64 sets the precision to 64 bits (8 bytes), which is standard IEEE
double precision. This corresponds to 15-16 digits of precision. 80-bit
precision is still maintained within the 80x87 math coprocessor so that
actual precision is better than double precision.

When prcsn 80 is in effect, all temporary storage and all computations
for the operators listed above are done in 80 bits. When the operator is
finished, the final result is rounded to 64-bit double precision.

������� chol, solpd, invpd

n scalar, 64 or 80.
���	�

GAUSS Language Reference

princomp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
princomp

���$��� Computes principal components of a data matrix.

����� {p,v,a} = princomp(x,j);

��$��

#��$��

%���+� Adapted from a program written by Mico Loretan.

The algorithm is based on Theil, Henri “Principles of Econometrics.”
Wiley, NY, 1971, 46-56.

x NxK data matrix, N > K, full rank.
j scalar, number of principal components to be computed (J ≤ K).

p NxJ matrix of the first j principal components of x in descending
order of amount of variance explained.

v Jx1 vector of fractions of variance explained.
a JxK matrix of factor loadings, such that x = p*a +error.
���	�

Command Reference

print

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print

���$��� Prints matrices or strings to the window and/or auxiliary output.

����� print [[/flush]] [[/typ]] [[/fmted]] [[/mf]] [[/jnt]]
list_of_expressions [[;]] ;

��$�� /typ literal, symbol type flag.

/mat, /sa,
/str

Indicate which symbol types you are
setting the output format for: matrices
(/mat), string arrays (/sa), and/or
strings (/str). You can specify more
than one /typ flag; the format will be set
for all types indicated. If no /typ flag is
listed, print assumes /mat.

/fmted literal, enable formatting flag.

/on, /off Enable/disable formatting. When
formatting is disabled, the contents of a
variable are dumped to the window in a
“raw” format.

/mf literal, matrix format. It controls the way rows of a matrix are
separated from one another. The possibilities are:

/m0 no delimiters before or after rows when
printing out matrices.

/m1 or /mb1 print 1 carriage return/line feed pair
before each row of a matrix with more
than 1 row.

/m2 or /mb2 print 2 carriage return/line feed pairs
before each row of a matrix with more
than 1 row.

/m3 or /mb3 print “Row 1”, “Row 2”... before each
row of a matrix with more than one row.

/ma1 print 1 carriage return/line feed pair after
each row of a matrix with more than 1
row.

/ma2 print 2 carriage return/line feed pairs after
each row of a matrix with more than 1
row.
���	�

GAUSS Language Reference

print

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
/a1 print 1 carriage return/line feed pair after
each row of a matrix.

/a2 print 2 carriage return/line feed pairs after
each row of a matrix.

/b1 print 1 carriage return/line feed pair
before each row of a matrix.

/b2 print 2 carriage return/line feed pairs
before each row of a matrix.

/b3 print “Row 1”, “Row 2”... before each
row of a matrix.

/jnt literal, controls justification, notation, and the trailing character.

Right-Justified

/rd Signed decimal number in the form
 [[-]] ####.#### where #### is one or more
decimal digits. The number of digits
before the decimal point depends on the
magnitude of the number, and the number
of digits after the decimal point depends
on the precision. If the precision is 0, no
decimal point will be printed.

/re Signed number in the form [[-]] #.##E±###,
where # is one decimal digit, ## is one or
more decimal digits depending on the
precision, and ### is three decimal digits.
If precision is 0, the form will be
 [[-]] #E±### with no decimal point printed.

/ro This will give a format like /rd or /re
depending on which is most compact for
the number being printed. A format like
/re will be used only if the exponent
value is less than -4 or greater than the
precision. If a /re format is used a
decimal point will always appear. The
precision signifies the number of
significant digits displayed.
���	�

Command Reference

print

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
/rz This will give a format like /rd or /re
depending on which is most compact for
the number being printed. A format like
/re will be used only if the exponent
value is less than -4 or greater than the
precision. If a /re format is used, trailing
zeros will be supressed and a decimal
point will appear only if one or more
digits follow it. The precision signifies the
number of significant digits displayed.

Left-Justified

/ld Signed decimal number in the form
 [[-]] ####.####, where #### is one or more
decimal digits. The number of digits
before the decimal point depends on the
magnitude of the number, and the number
of digits after the decimal point depends
on the precision. If the precision is 0, no
decimal point will be printed. If the
number is positive, a space character will
replace the leading minus sign.

/le Signed number in the form
 [[-]] #.##E±###, where # is one decimal
digit, ## is one or more decimal digits
depending on the precision, and ### is
three decimal digits. If precision is 0, the
form will be [[-]] #E±### with no decimal
point printed. If the number is positive, a
space character will replace the leading
minus sign.

/lo This will give a format like /ld or /le
depending on which is most compact for
the number being printed. A format like
/le will be used only if the exponent
value is less than -4 or greater than the
precision. If a /le format is used a
decimal point will always appear. If the
number is positive, a space character will
replace the leading minus sign. The
precision specifies the number of
significant digits displayed.
���	�

GAUSS Language Reference

print

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
/lz This will give a format like /ld or /le
depending on which is most compact for
the number being printed. A format like
/le will be used only if the exponent
value is less than -4 or greater than the
precision. If a /le format is used, trailing
zeros will be supressed and a decimal
point will appear only if one or more
digits follow it. If the number is positive, a
space character will replace the leading
minus sign. The precision specifies the
number of significant digits displayed.

Trailing Character

The following characters can be added to the /jnt parameters
above to control the trailing character if any:

 format /rdn 1,3;

s The number will be followed immediately
by a space character. This is the default.

c The number will be followed immediately
with a comma.

t The number will be followed immediately
with a tab character.

n No trailing character.

The default when GAUSS is first started is:

 format /m1 /r0 16,8;

;; Double semicolons following a print
statement will suppress the final carriage
return/line feed.
���	�

Command Reference

print

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
%���+� The list of expressions MUST be separated by spaces. In print
statements, because a space is the delimiter between expressions, NO
SPACES are allowed inside expressions unless they are within index
brackets, quotes, or parentheses.

The printing of special characters is accomplished by the use of the
backslash (\) within double quotes. The options are:

Thus, \13\10 is a carriage return/line feed sequence. The first three
digits will be picked up here. So if the character to follow a special
character is a digit, be sure to use three digits in the escape sequence. For
example: \0074 will be interpreted as 2 characters (ASCII 7 followed by
the character “4”).

An expression with no assignment operator is an implicit print
statement.

If output on has been specified, then all subsequent print
statements will be directed to the auxiliary output as well as the window.
(See output.) The locate statement has no effect on what will be sent
to the auxiliary output, so all formatting must be accomplished using tab
characters or some other form of serial output.

If the name of the symbol to be printed is prefixed with a ‘$’, it is
assumed that the symbol is a matrix of characters.

print $x;

Note that GAUSS makes no distinction between matrices containing
character data and those containing numeric data, so it is the
responsibility of the user to use functions which operate on character
matrices only on those matrices containing character data.

These matrices of character strings have a maximum of 8 characters per
element. A precision of 8 or more should be set when printing out
character matrices or the elements will be truncated.

\b backspace (ASCII 8)
\e escape (ASCII 27)
\f form feed (ASCII 12)
\g beep (ASCII 7)
\l line feed (ASCII 10)
\r carriage return (ASCII 13)
\t tab (ASCII 9)
\### the character whose ASCII value is “###” (decimal).
���		

GAUSS Language Reference

print

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Complex numbers are printed with the sign of the imaginary half
separating them and an “i” appended to the imaginary half. Also, the
current field width setting (see format) refers to the width of field for
each half of the number, so a complex number printed with a field of 8
will actually take (at least) 20 spaces to print.

A print statement by itself will cause a blank line to be printed:

print;

GAUSS also has an automatic print mode which causes the results of all
global assignment statements to be printed out. This is controlled by the
print on and print off commands. (See print on.)

")�$�� x = rndn(3,3);

format /rd 16,8;

print x;

format /re 12,2;

print x;

print /rd/m3 x;

Row 1

0.14 -1.39 -0.92

Row 2

0.51 -0.02 -0.03

Row 3

-1.55 -1.05 0.08

 0.14357994 1.39272762– 0.91942414–

 0.51061645 0.02332207– 0.02511298–

1.54675893– 1.04988540– 0.07992059

 1.44E-001 1.39E+000– 9.19E-001–

 5.11E-001 2.33E-002– 2.51E-002–

1.55E+000– 1.05E+000– 7.99E-002
���	

Command Reference

print

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
In this example, a 3x3 random matrix is printed using 3 different formats.
Notice that in the last statement the format is overridden in the print
statement itself but the field and precision remain the same.

let x = AGE PAY SEX;

format /m1 8,8;

print $x;

produces:

AGE

PAY

SEX

������� lprint, print on, lprint on, printfm, printdos
���	�

GAUSS Language Reference

printdos

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
printdos

���$��� Prints a string to the standard output.

����� printdos s;

��$��

��%���+� This function is useful for printing messages to the window when
screen off is in effect. The output of this function will not go to the
auxiliary output.

This function can also be used to send escape sequences to the
ansi.sys device driver.

")�$�� printdos “\27[7m”; /* set for reverse video */

printdos “\27[0m”; /* set for normal text */

See the DOS manuals for more complete information.

������� print, lprint, printfm, screen

s string, containing the string to be printed to the standard output.
���
�

Command Reference

printfm

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
printfm

���$��� Prints a matrix using a different format for each column of the matrix.

����� y = printfm(x,mask,fmt);

��$��

�#��$��

%���+� The mask is applied to the matrix x following the rules of standard
element-by-element operations. If the corresponding element of mask is
0, then that element of x is printed as a character string of up to 8
characters. If mask contains a 1, then that element of x is assumed to be a
double precision floating point number.

The contents of fmt are as follows:

The format strings correspond to the format slash commands as
follows:

x NxK matrix which is to be printed and which may contain both
character and numeric data.

mask LxM matrix, ExE conformable with x, containing ones and zeros
which is used to specify whether the particular row, column, or
element is to be printed as a string (0) or numeric (1) value.

fmt Kx3 or 1x3 matrix where each row specifies the format for the
respective column of x.

y scalar, 1 if the function is successful and 0 if it fails.

[K,1] format string, a string 8 characters maximum.
[K,2] field width, a number < 80.
[K,3] precision, a number < 17.

/rdn “*.*lf”

/ren “*.*lE”

/ron “#*.*lG”

/rzn “*.*lG”

/ldn “-*.*lf”

/len “-*.*lE”

/lon “-#*.*lG”

/lzn “-*.*lG”
���
�

GAUSS Language Reference

printfm

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Complex numbers are printed with the sign of the imaginary half
separating them and an “i” appended to the imaginary half. The field
width refers to the width of field for each half of the number, so a
complex number printed with a field of 8 will actually take (at least) 20
spaces to print.

If the precision = 0, the decimal point will be suppressed.

The format string can be a maximum of 8 characters and is appended to a
% sign and passed directly to the fprintf function in the standard C
language I/O library. The lf, etc., are case sensitive. If you know C, you
will easily be able to use this.

If you want special characters to be printed after x, then include them as
the last characters of the format string. For example:

If you want the beginning of the field padded with zeros, then put a “0”
before the first “*” in the format string:

 “0*.*lf” right-justified decimal

")�$�� Here is an example of printfm being used to print a mixed numeric and
character matrix:

let x[4,3] =

“AGE” 5.12345564 2.23456788

“PAY” 1.23456677 1.23456789

“SEX” 1.14454345 3.44718234

“JOB” 4.11429432 8.55649341;

let mask[1,3] = 0 1 1; /* character numeric */

 /* numeric */

let fmt[3,3] =

“-*.*s” 8 8 /* first column format */

“*.*lf,” 10 3 /* second column format */

“*.*lf,” right-justified decimal followed by a comma.
“-*.*s” left-justified string followed by a space.
“*.*lf” right-justified decimal followed by nothing.
���
�

Command Reference

printfm

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
“*.*le” 12 4; /* third column format */

d = printfm(x,mask,fmt);

The output looks like this:

AGE 5.123, 2.2346E+000

PAY 1.235, 1.2346E+000

SEX 1.145, 3.4471E+000

JOB 4.114, 8.5564E+000

When the column of x to be printed contains all string elements, use a
format string of “*.*s” if you want it right-justified, or “-*.*s” if
you want it left-justified. If the column is mixed string and numeric
elements, then use the correct numeric format and printfm will
substitute a default format string for those elements in the column that are
strings.

Remember, the mask value controls whether an element will be printed as
a number or a string.

������� print, lprint, printdos
���
�

GAUSS Language Reference

printfmt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
printfmt

���$��� Prints character, numeric, or mixed matrix using a default format
controlled by the functions formatcv and formatnv.

����� y = printfmt(x,mask);

��$��

#��$��

�%���+� Default format for numeric data is: “*.*lg” 16 8

Default format for character data is: “*.*s” 8 8

")�$�� x = rndn(5,4);

call printfmt(x,1);

������ gauss.src

������ __fmtcv, __fmtnv

������� formatcv, formatnv

x NxK matrix which is to be printed.
mask scalar, 1 if x is numeric or 0 if x is character.

or
1xK vector of 1’s and 0’s.
The corresponding column of x will be printed as numeric where
mask = 1 and as character where mask = 0.

y scalar, 1 if the function is successful and 0 if it fails.
���
�

Command Reference

proc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
proc

���$��� Begins the definition of a multi-line recursive procedure. Procedures are
user-defined functions with local or global variables.

����� proc [[(nrets) =]] name(arglist);

��$��

%���+� A procedure definition begins with the proc statement and ends with the
endp statement.

An example of a procedure definition is:

proc dog(x,y,z); /* procedure declaration */

local a,b; /* local variable declarations */

a = x .* x;

b = y .* y;

a = a ./ x;

b = b ./ y;

z = z .* z;

z = inv(z);

retp(a’b*z); /* return with value of */

 /* a’b*z */

endp; /* end of procedure definition */

nrets constant, number of objects returned by the procedure. If nrets is
not explicitly given, the default is 1. Legal values are 0 to 1023.
The retp statement is used to return values from a procedure.

name literal, name of the procedure. This name will be a global
symbol.

arglist a list of names, separated by commas, to be used inside the
procedure to refer to the arguments that are passed to the
procedure when the procedure is called. These will always be
local to the procedure, and cannot be accessed from outside the
procedure or from other procedures.
���
�

GAUSS Language Reference

proc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Procedures can be used just as if they were functions intrinsic to the
language. Below are the possible variations depending on the number of
items the procedure returns.

Returns 1 item:

y = dog(i,j,k);

Returns multiple items:

{ x,y,z } = cat(i,j,k);

Returns no items:

fish(i,j,k);

If the procedure does not return any items or you want to discard the
returned items:

call dog(i,j,k);

Procedure definitions may not be nested.

For more details on writing procedures, see “Procedures and Keywords”
in the User’s Guide.

������� keyword, call, endp, local, retp
���
�

Command Reference

prodc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
prodc

���$��� Computes the products of all elements in each column of a matrix.

����� y = prodc(x);

��$��

�#��$��

�%���+� To find the products of the elements in each row of a matrix, transpose
before applying prodc. If x is complex, use the bookkeeping
transpose (.′).

To find the products of all of the elements in a matrix, use the vecr
function before applying prodc.

")�$��

y = prodc(x);

������� sumc, meanc, stdc

x NxK matrix.

y Kx1 matrix containing the products of all elements in each
column of x.

let x[3,3] = 1 2 3

4 5 6

7 8 9;

y
28

80

162

=

���
	

GAUSS Language Reference

putf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
putf

���$��� Writes the contents of a string to a file.

����� ret = putf(filename,str,start,len,mode,append);

��$��

�#��$��

%���+� If mode is set to (1) binary, a string of length len will be written to
filename. If mode is set to (0) ASCII, the string will be output up to length
len or until putf encounters a ^Z (ASCII 26) in str. The ^Z will not be
written to filename.

If append is set to (0) overwrite, the current contents of filename will be
destroyed. If append is set to (1) append, filename will be created if it
does not already exist.

If an error occurs, putf will either return an error code or terminate the
program with an error message, depending on the trap state. If bit 2 (the
4’s bit) of the trap flag is 0, putf will terminate with an error message. If
bit 2 of the trap flag is 1, putf will return an error code. The value of the
trap flag can be tested with trapchk.

filename string, name of output file.
str string to be written to filename. All or part of str may be

written out.
start scalar, beginning position in str of output string.
len scalar, length of output string.
mode scalar, output mode, (0) ASCII or (1) binary.
append scalar, file write mode, (0) overwrite or (1) append.

ret scalar, return code.
���

Command Reference

putf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ret can have the following values:

������� putf.src

������� getf

0 normal return
1 null file name
2 file open error
3 file write error
4 output string too long
5 null output string, or illegal mode value
6 illegal append value
16 append specified but file did not exist; file was created

(warning only)
���
�

GAUSS Language Reference

QNewton

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
QNewton

���$��� Optimizes a function using the BFGS descent algorithm.

����� { x,f,g,ret } = QNewton(&fct,start);

���$��

��������$��

#��$��

&fct pointer to a procedure that computes the function to be
minimized. This procedure must have one input argument, a
vector of parameter values, and one output argument, the value
of the function evaluated at the input vector of parameter values.

start Kx1 vector, start values.

_qn_RelGradTol scalar, convergence tolerance for relative
gradient of estimated coefficients. Default =
1e-5.

_qn_GradProc scalar, pointer to a procedure that computes the
gradient of the function with respect to the
parameters. This procedure must have a single
input argument, a Kx1 vector of parameter
values, and a single output argument, a Kx1
vector of gradients of the function with respect
to the parameters evaluated at the vector of
parameter values. If _qn_GradProc is 0,
QNewton uses gradp.

_qn_MaxIters scalar, maximum number of iterations.
Default = 1e+5. Termination can be forced by
pressing C on the keyboard.

_qn_PrintIters scalar, if 1, print iteration information. Default
= 0. Can be toggled during iterations by
pressing P on the keyboard.

_qn_ParNames Kx1 vector, labels for parameters.
_qn_PrintResults scalar, if 1, results are printed.

x Kx1 vector, coefficients at the minimum of the function.
f scalar, value of function at minimum.
g Kx1 vector, gradient at the minimum of the function.
ret scalar, return code.

0 normal convergence
�����

Command Reference

QNewton

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
%���+� If you are running in terminal mode, GAUSS will not see any input until
you press ENTER. Pressing C on the keyboard will terminate iterations,
and pressing P will toggle iteration output.

To reset global variables for this function to their default values, call
qnewtonset.

")�$�� This example computes maximum likelihood coefficients and standard
errors for a Tobit model:

/*

** qnewton.e - a Tobit model

*/

z = loadd(“tobit”); /* get data */

b0 = { 1, 1, 1, 1 };

{b,f,g,retcode} = qnewton(&lpr,b0);

/*

** covariance matrix of parameters

*/

h = hessp(&lpr,b);

output file = qnewton.out reset;

print “Tobit Model”;

print;

1 forced termination
2 max iterations exceeded
3 function calculation failed
4 gradient calculation failed
5 step length calculation failed
6 function cannot be evaluated at initial parameter values
�����

GAUSS Language Reference

QNewton

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
print “coefficients standard errors”;

print b~sqrt(diag(invpd(h)));

output off;

/*

** log-likelihood proc

*/

proc lpr(b);

local s,m,u;

s = b[4];

if s ≤ 1e-4;

retp(error(0));

endif;

m = z[.,2:4]*b[1:3,.];

u = z[.,1] ./= 0;

retp(-sumc(u.*lnpdfn2(z[.,1]-m,s) +

(1-u).*(ln(cdfnc(m/sqrt(s))))));

endp;

produces:

Tobit Model

coefficients standard errors

������ qnewton.src

0.010417884 0.080220019

-0.20805753 0.094551107

-0.099749592 0.080006676

0.65223067 0.099827309
�����

Command Reference

QProg

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
QProg

���$��� Solves the quadratic programming problem.

������ { x,u1,u2,u3,u4,ret } = QProg(start,q,r,a,b,c,d,bnds);

���$��

���������$��

#��$��

start Kx1 vector, start values.
q KxK matrix, symmetric model matrix.
r Kx1 vector, model constant vector.
a MxK matrix, equality constraint coefficient matrix, or

scalar 0, no equality constraints.
b Mx1 vector, equality constraint constant vector, or scalar

0, will be expanded to Mx1 vector of zeros.
c NxK matrix, inequality constraint coefficient matrix, or

scalar 0, no inequality constraints.
d Nx1 vector, inequality constraint constant vector, or scalar

0, will be expanded to Nx1 vector of zeros.
bnds Kx2 matrix, bounds on x, the first column contains the

lower bounds on x, and the second column the upper
bounds. If scalar 0, the bounds for all elements will default
to ±1e200.

_qprog_maxit scalar, maximum number of iterations.
Default = 1000.

x Kx1 vector, coefficients at the minimum of the function.
u1 Mx1 vector, Lagrangian coefficients of equality constraints.
u2 Nx1 vector, Lagrangian coefficients of inequality constraints.
u3 Kx1 vector, Lagrangian coefficients of lower bounds.
u4 Kx1 vector, Lagrangian coefficients of upper bounds.
ret scalar, return code.

0 successful termination
1 max iterations exceeded
2 machine accuracy is insufficient to maintain decreasing

function values
3 model matrices not conformable

<0 active constraints inconsistent
�����

GAUSS Language Reference

QProg

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
��%���+� QProg solves the standard quadratic programming problem:

subject to constraints,

and bounds,

������ qprog.src

min
1
2
---x′Qx x′R–

Ax B=

Cx D≥

xlow x xup≤ ≤
�����

Command Reference

qqr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qqr

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X,
such that:

����� { q1,r } = qqr(x);

��$��

#��$��

%���+� Given X, there is an orthogonal matrix Q such that Q′X is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X. If X has linearly independent columns, R is
also the Cholesky factorization of the moment matrix of X, i.e., of X’X.

If you want only the R matrix, see the function qr. Not computing Q1 can
produce significant improvements in computing time and memory usage.

An unpivoted R matrix can also be generated using cholup:

r = cholup(zeros(cols(x),cols(x)),x);

For linear equation or least squares problems, which require Q2 for
computing residuals and residual sums of squares, see olsqr and qtyr.

X Q1R=

x NxP matrix.

q1 NxK unitary matrix, K = min(N,P).
r KxP upper triangular matrix.

Q′X R

0
=

Q Q1 Q2=

X Q1R=
�����

GAUSS Language Reference

qqr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
For most problems an explicit copy of Q1 or Q2 is not required. Instead
one of the following, Q′Y, QY, , Q1Y, , or Q2Y, for some Y, is
required. These cases are all handled by qtyr and qyr. These functions
are available because Q and Q1 are typically very large matrices while
their products with Y are more manageable.

If N < P the factorization assumes the form:

where R1 is a PxP upper triangular matrix and R2 is Px(N – P). Thus Q is
a PxP matrix and R is a PxN matrix containing R1 and R2. This type of
factorization is useful for the solution of underdetermined systems.
However, unless the linearly independent columns happen to be the initial
rows, such an analysis also requires pivoting (see qre and qrep).

������ qqr.src

������� qre, qrep, qtyr, qtyre, qtyrep, qyr, qyre, qyrep,
olsqr

Q′1Y Q′2Y

Q′X R1 R2=
�����

Command Reference

qqre

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qqre

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X,
such that:

����� { q1,r,e } = qqre(x);

��$��

#��$��

%���+� Given X[.,E], where E is a permutation vector that permutes the columns
of X, there is an orthogonal matrix Q such that Q′X[.,E] is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X[.,E].

If you want only the R matrix, see qre. Not computing Q1 can produce
significant improvements in computing time and memory usage.

If X has rank P, then the columns of X will not be permuted. If X has rank
M < P, then the M linearly independent columns are permuted to the front
of X by E. Partition the permuted X in the following way:

X . E,[] Q1R=

x NxP matrix.

q1 NxK unitary matrix, K = min(N,P).
r KxP upper triangular matrix.
e Px1 permutation vector.

Q′X . E,[] R

0
=

Q Q1 Q2=

X . E,[] Q1R=

X . E,[] X1 X2=
����	

GAUSS Language Reference

qqre

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
where X1 is NxM and X2 is Nx(P – M). Further partition R in the
following way:

where R11 is MxM and R12 is Mx(P – M). Then

and

that is, A is an Mx(P – N) matrix defining the linear combinations of X2
with respect to X1.

If N < P the factorization assumes the form:

where R1 is a PxP upper triangular matrix and R2 is Px (N – P). Thus Q is
a PxP matrix and R is a PxN matrix containing R1 and R2. This type of
factorization is useful for the solution of underdetermined systems. For
the solution of

it can be shown that

b = qrsol(Q′Y,R1) | zeros(N-P,1);

The explicit formation here of Q, which can be a very large matrix, can be
avoided by using the function qtyre.

For further discussion of QR factorizations see the remarks under qqr.

������ qqr.src

������� qqr, qtyre, olsqr

R
R11 R12

0 0
=

A R
1–

11R12=

X2 X1A=

Q′X R1 R2=

X . E,[]b Y=
����

Command Reference

qqrep

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qqrep

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X,
such that:

����� { q1,r,e } = qqrep(x,pvt);

��$��

#��$��

%���+� Given X[.,E], where E is a permutation vector that permutes the columns
of X, there is an orthogonal matrix Q such that Q′X[.,E] is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X[.,E].

X . E,[] Q1R=

x NxP matrix.
pvt Px1 vector, controls the selection of the pivot columns:

if pvt[i] > 0, x[i] is an initial column

if pvt[i] = 0, x[i] is a free column

if pvt[i] < 0, x[i] is a final column

The initial columns are placed at the beginning of the
matrix and the final columns are placed at the end. Only
the free columns will be moved during the decomposition.

q1 NxK unitary matrix, K = min(N,P).
r KxP upper triangular matrix.
e Px1 permutation vector.

Q′X . E,[] R

0
=

Q Q1 Q2=

X . E,[] Q1 R=
�����

GAUSS Language Reference

qqrep

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qqrep allows you to control the pivoting. For example, suppose that X is
a data set with a column of ones in the first column. If there are linear
dependencies among the columns of X, the column of ones for the
constant may get pivoted away. This column can be forced to be included
among the linearly independent columns using pvt.

If you want only the R matrix, see qrep. Not computing Q1 can produce
significant improvements in computing time and memory usage.

������ qqr.src

������� qqr, qre, olsqr
�����

Command Reference

qr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qr

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X,
such that:

����� r = qr(x);

��$��

#��$��

%���+� qr is the same as qqr but doesn’t return the Q1 matrix. If Q1 is not
wanted, qr will save a significant amount of time and memory usage,
especially for large problems.

Given X, there is an orthogonal matrix Q such that Q′X is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X. If X has linearly independent columns, R is
also the Cholesky factorization of the moment matrix of X, i.e., of X′X.

qr does not return the Q1 matrix because in most cases it is not required
and can be very large. If you need the Q1 matrix see the function qqr. If
you need the entire Q matrix call qyr with Y set to a conformable identity
matrix.

For most problems Q′Y, , or Q Y, Q1Y, for some Y, are required. For
these cases see qtyr and qyr.

X Q1R=

x NxP matrix.

r KxP upper triangular matrix, K = min(N,P).

Q′X R

0
=

Q Q1 Q2=

X Q1R=

Q′1Y
�����

GAUSS Language Reference

qr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
For linear equation or least squares problems, which require Q2 for
computing residuals and residual sums of squares, see olsqr.

If N < P the factorization assumes the form:

where R1 is a PxP upper triangular matrix and R2 is Px(N – P). Thus Q is
a PxP matrix and R is a PxN matrix containing R1 and R2. This type of
factorization is useful for the solution of underdetermined systems.
However, unless the linearly independent columns happen to be the initial
rows, such an analysis also requires pivoting (see qre and qrep).

������� qr.src

������� qqr, qrep, qtyre

Q′X R1 R2=
�����

Command Reference

qre

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qre

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X,
such that:

����� { r,e } = qre(x);

��$��

#��$��

%���+� qre is the same as qqre but doesn’t return the Q1 matrix. If Q1 is not
wanted, qre will save a significant amount of time and memory usage,
especially for large problems.

Given X[.,E], where E is a permutation vector that permutes the columns
of X, there is an orthogonal matrix Q such that Q′X[.,E] is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X[.,E].

qre does not return the Q1 matrix because in most cases it is not required
and can be very large. If you need the Q1 matrix see the function qqre. If
you need the entire Q matrix call qyre with Y set to a conformable
identity matrix. For most problems Q′Y, , or QY, Q1Y, for some Y, are
required. For these cases see qtyre and qyre.

X . E,[] Q1R=

x NxP matrix.

r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Q′X . E,[] R

0
=

Q Q1 Q2=

X . E,[] Q1R=

Q′1Y
�����

GAUSS Language Reference

qre

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
If X has rank P, then the columns of X will not be permuted. If X has rank
M < P, then the M linearly independent columns are permuted to the front
of X by E. Partition the permuted X in the following way:

where X1 is NxM and X2 is Nx(P – M). Further partition R in the
following way:

where R11 is MxM and R12 is Mx(P – M). Then

and

that is, A is an Mx(P – N) matrix defining the linear combinations of X2
with respect to X1.

If N < P the factorization assumes the form:

where R1 is a PxP upper triangular matrix and R2 is Px(N – P). Thus Q is
a PxP matrix and R is a PxN matrix containing R1 and R2. This type of
factorization is useful for the solution of underdetermined systems. For
the solution of

it can be shown that

b = qrsol(Q′Y,R1) | zeros(N-P,1);

The explicit formation here of Q, which can be a very large matrix, can be
avoided by using the function qtyre.

For further discussion of QR factorizations see the remarks under qqr.

������ qr.src

������� qqr, olsqr

X . E,[] X1 X2=

R
R11 R12

0 0
=

A R
1–

11R12=

X2 X1A=

Q′X R1 R2=

X . E,[]b Y=
�����

Command Reference

qrep

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qrep

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X,
such that:

����� { r,e } = qrep(x,pvt);

��$��

#��$��

%���+� qrep is the same as qqrep but doesn’t return the Q1 matrix. If Q1 is not
wanted, qrep will save a significant amount of time and memory usage,
especially for large problems.

Given X[.,E], where E is a permutation vector that permutes the columns
of X, there is an orthogonal matrix Q such that Q′X[.,E] is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

X . E,[] Q1R=

x NxP matrix.
pvt Px1 vector, controls the selection of the pivot columns:

if pvt[i] > 0, x[i] is an initial column

if pvt[i] = 0, x[i] is a free column

if pvt[i] < 0, x[i] is a final column

The initial columns are placed at the beginning of the
matrix and the final columns are placed at the end. Only
the free columns will be moved during the decomposition.

r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Q′X . E,[] R

0
=

Q Q1 Q2=

X . E,[] Q1R=
�����

GAUSS Language Reference

qrep

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
is the QR decomposition of X[.,E].

qrep does not return the Q1 matrix because in most cases it is not
required and can be very large. If you need the Q1 matrix see the function
qqrep. If you need the entire Q matrix call qyrep with Y set to a
conformable identity matrix. For most problems Q′Y, , or QY, Q1Y, for
some Y, are required. For these cases see qtyrep and qyrep.

qrep allows you to control the pivoting. For example, suppose that X is a
data set with a column of ones in the first column. If there are linear
dependencies among the columns of X, the column of ones for the
constant may get pivoted away. This column can be forced to be included
among the linearly independent columns using pvt.

������ qr.src

������� qr, qre, qqrep

Q′1Y
�����

Command Reference

qrsol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qrsol

���$��� Computes the solution of Rx = b where R is an upper triangular matrix.

����� x = qrsol(b,R);

��$��

#��$��

%���+� qrsol applies a backsolve to Rx = b to solve for x. Generally R will be
the R matrix from a QR factorization. qrsol may be used, however, in
any situation where R is upper triangular.

������ qrsol.src

������� qqr, qr, qtyr, qrtsol

b PxL matrix.
R PxP upper triangular matrix.

x PxL matrix.
����	

GAUSS Language Reference

qrtsol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qrtsol

���$��� Computes the solution of R’ x = b where R is an upper triangular matrix.

����� x = qrtsol(b,R);

��$��

#��$��

%���+� qrtsol applies a forward solve to R’x = b to solve for x. Generally R
will be the R matrix from a QR factorization. qrtsol may be used,
however, in any situation where R is upper triangular. If R is lower
triangular, transpose before calling qrtsol.

If R is not transposed, use qrsol.

������ qrsol.src

������� qqr, qr, qtyr, qrsol

b PxL matrix.
R PxP upper triangular matrix.

x PxL matrix.
����

Command Reference

qtyr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qtyr

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X
and returns Q′Y and R.

����� { qty,r } = qtyr(y,x);

��$��

#��$��

%���+� Given X, there is an orthogonal matrix Q such that Q′X is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X. If X has linearly independent columns, R is
also the Cholesky factorization of the moment matrix of X, i.e., of X’X.
For most problems Q or Q1 is not what is required. Rather, we require
Q′Y or where Y is an NxL matrix (if either QY or Q1Y are required,
see qyr). Since Q can be a very large matrix, qtyr has been provided for
the calculation of Q′Y which will be a much smaller matrix. will be
a submatrix of Q′Y. In particular,

and is the remaining submatrix:

y NxL matrix.
x NxP matrix.

qty NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).

Q′X R

0
=

Q Q1 Q2=

X Q1R=

Q′1Y

Q′1Y

G Q′
1
Y qty[1 : P .],==

Q′2Y
�����

GAUSS Language Reference

qtyr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Suppose that X is an NxK data set of independent variables, and v is an
Nx1 vector of dependent variables. Then it can be shown that

and

where b is a PxL matrix of least squares coefficients and s is a 1xL vector
of residual sums of squares. Rather than invert R directly, however, it is
better to apply qrsol to

For rank deficient least squares problems, see qtyre and qtyrep.

")�$�� The QR algorithm is the superior numerical method for the solution of
least squares problems:

loadm x, y;

{ qty, r } = qtyr(y,x);

q1ty = qty[1:rows(r),.];

q2ty = qty[rows(r)+1:rows(qty),.];

b = qrsol(q1ty,r); /* LS coefficients */

s2 = sumc(q2ty^2); /* residual sums of squares */

������� qtyr.src

������� qqr, qtyre, qtyrep, olsqr

H Q ′
2

Y qty[P 1 : + N .],==

b R
1–
G=

sj Hi j, j,
i 1=

N P–

∑ 1 2 …L, ,= =

Rb Q ′
1

Y=
�����

Command Reference

qtyre

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qtyre

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X
and returns Q’Y and R.

����� { qty,r,e } = qtyre(y,x);

��$��

#��$��

%���+� Given X[.,E], where E is a permutation vector that permutes the columns
of X, there is an orthogonal matrix Q such that Q′X[.,E] is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X[.,E].

If X has rank P, then the columns of X will not be permuted. If X has rank
M < P, then the M linearly independent columns are permuted to the front
of X by E. Partition the permuted X in the following way:

where X1 is NxM and X2 is Nx(P – M). Further partition R in the
following way:

y NxL matrix.
x NxP matrix.

qty NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Q′X . E,[] R

0
=

Q Q1 Q2=

X . E,[] Q1R=

X . E,[] X1 X2=
�����

GAUSS Language Reference

qtyre

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
where R11 is MxM and R12 is Mx(P – M). Then

and

that is, A is an Mx(P – N) matrix defining the linear combinations of X2
with respect to X1.

For most problems Q or Q1 is not what is required. Rather, we require Q′Y
or where Y is an NxL matrix. Since Q can be a very large matrix,
qtyre has been provided for the calculation of Q′Y which will be a much
smaller matrix. will be a submatrix of Q′Y. In particular,

and is the remaining submatrix:

Suppose that X is an NxK data set of independent variables and Y is an
Nx1 vector of dependent variables. Suppose further that X contains
linearly dependent columns, i.e., X has rank M < P. Then define

and the vector (or matrix of L > 1) of least squares coefficients of the
reduced, linearly independent problem is the solution of

To solve for b use qrsol:

 b = qrsol(C,A);

R
R11 R12

0 0
=

A R
1–

11R12=

X2 X1A=

Q′1Y

Q′1Y

Q ′1 Y qty[1:P .],=

Q′2Y

Q ′
2

Y qty[P 1 : + N .],=

C Q′
2
Y 1 : M .,[]=

A R[1:M 1:M],=

Ab C=
�����

Command Reference

qtyre

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
If N < P the factorization assumes the form:

where R1 is a PxP upper triangular matrix and R2 is Px(N – P). Thus Q is
a PxP matrix and R is a PxN matrix containing R1 and R2. This type of
factorization is useful for the solution of underdetermined systems. For
the solution of

it can be shown that

b = qrsol(Q′Y,R1) | zeros(N-P,1);

������ qtyr.src

������� qqr, qre, qtyr

Q′X . E,[] R1 R2=

X . E,[]b Y=
�����

GAUSS Language Reference

qtyrep

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qtyrep

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X
using a pivot vector and returns Q′Y and R.

����� { qty,r,e } = qtyrep(y,x,pvt);

��$��

#��$��

%���+� Given X[.,E], where E is a permutation vector that permutes the columns
of X, there is an orthogonal matrix Q such that Q′X[.,E] is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X[.,E].

y NxL matrix.
x NxP matrix.
pvt Px1 vector, controls the selection of the pivot columns:

if pvt[i] > 0, x[i] is an initial column

if pvt[i] = 0, x[i] is a free column

if pvt[i] < 0, x[i] is a final column

The initial columns are placed at the beginning of the
matrix and the final columns are placed at the end. Only
the free columns will be moved during the decomposition.

qty NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Q′X . E,[] R

0
=

Q Q1 Q2=

X . E,[] Q1R=
�����

Command Reference

qtyrep

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qtyrep allows you to control the pivoting. For example, suppose that X
is a data set with a column of ones in the first column. If there are linear
dependencies among the columns of X, the column of ones for the
constant may get pivoted away. This column can be forced to be included
among the linearly independent columns using pvt.

")�$��

pvt = { 11, 10, 3 };

{ qty, r, e } = qtyrep(y,x,pvt);

������ qtyr.src

������� qrep, qtyre

y = { 4 7 2,

5 9 1,

6 3 3 };

x = { 12 9 5,

4 3 5,

4 2 7 };

qty
6.9347609–

4.0998891

3.4785054

9.9498744–

3.5527137e 15–

6.3245553

3.0151134–

2.1929640

0.31622777

=

r
13.266499–

0.0000000

0.0000000

9.6483630–

0.95346259–

0.0000000

8.1408063–

4.7673129

3.1622777

=

e
1.0000000

2.0000000

3.0000000

=

�����

GAUSS Language Reference

quantile

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
quantile

���$��� Computes quantiles from data in a matrix, given specified probabilities.

����� y = quantile(x,e)

���$��

�#��$��

�%���+� quantile will not succeed if N*minc(e) is less than 1, or N*maxc(e)
is greater than N - 1. In other words, to produce a quantile for a level of
.001, the input matrix must have more than 1000 rows.

�")�$�� rndseed 345567;

x = rndn(1000,4); /* data */

e = { .025, .5, .975 }; /* quantile levels */

y = quantile(x,e);

print "medians";

print y[2,.];

print;

print "95 percentiles";

print y[1,.];

print y[3,.];

produces:

medians

-0.0020 -0.0408 -0.0380 -0.0247

95 percentiles

-1.8677 -1.9894 -2.1474 -1.8747

x NxK matrix of data.
e Lx1 vector, quantile levels or probabilities.

y LxK matrix, quantiles.
�����

Command Reference

quantile

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
 1.9687 2.0899 1.8576 2.0545

������� quantile.src
����	

GAUSS Language Reference

quantiled

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
quantiled

���$��� Computes quantiles from data in a data set, given specified probabilities.

����� y = quantiled(dataset,e,var);

���$��

�#��$��

�%���+� quantiled will not succeed if N*minc(e) is less than 1, or N*maxc(e)
is greater than N - 1. In other words, to produce a quantile for a level of
.001, the input matrix must have more than 1000 rows.

�")�$�� y = quantiled("tobit",e,0);

print "medians";

print y[2,.];

print;

print "95 percentiles";

print y[1,.];

print y[3,.];

produces:

medians

0.0000 1.0000 -0.0021 -0.1228

95 percentiles

-1.1198 1.0000 -1.8139 -2.3143

dataset string, data set name, or NxM matrix of data.
e Lx1 vector, quantile levels or probabilities.
var Kx1 vector or scalar zero. If Kx1, character vector of labels

selected for analysis, or numeric vector of column numbers in
data set of variables selected for analysis. If scalar zero, all
columns are selected.

If dataset is a matrix var cannot be a character vector.

y LxK matrix, quantiles.
����

Command Reference

quantiled

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
 2.3066 1.0000 1.4590 1.6954

������� quantile.src
�����

GAUSS Language Reference

qyr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qyr

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X
and returns QY and R.

����� { qy,r } = qyr(y,x);

��$��

#��$��

%���+� Given X, there is an orthogonal matrix Q such that Q′X is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X. If X has linearly independent columns, R is
also the Cholesky factorization of the moment matrix of X, i.e., of X′X.

For most problems Q or Q1 is not what is required. Since Q can be a very
large matrix, qyr has been provided for the calculation of QY, where Y is
some NxL matrix, which will be a much smaller matrix.

 If either Q′Y or are required, see qtyr.

")�$�� x = { 1 11, 7 3, 2 1 };

y = { 2 6, 5 10, 4 3 };

{ qy, r } = qyr(y,x);

y NxL matrix.
x NxP matrix.

qy NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).

Q′X R

0
=

Q Q1 Q2=

X Q1R=

Q′1Y
�����

Command Reference

qyr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������ qyr.src

������� qqr, qyre, qyrep, olsqr

qy
4.6288991 9.0506281

3.6692823– 7.8788202–

3.1795692 1.0051489

=

r 7.3484692– 4.6268140–

0.0000000 10.468648
=

�����

GAUSS Language Reference

qyre

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qyre

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X
and returns QY and R.

����� { qy,r,e } = qyre(y,x);

��$��

#��$��

%���+� Given X[.,E], where E is a permutation vector that permutes the columns
of X, there is an orthogonal matrix Q such that Q’X[.,E] is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X[.,E].

For most problems Q or Q1 is not what is required. Since Q can be a very
large matrix, qyre has been provided for the calculation of QY, where Y
is some NxL matrix, which will be a much smaller matrix.

If either Q′Y or are required, see qtyre.

If N < P the factorization assumes the form:

y NxL matrix.
x NxP matrix.

qy NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Q′X . E,[] R

0
=

Q Q1 Q2=

X . E,[] Q1R=

Q′1Y

Q′X . E,[] R1 R2=
�����

Command Reference

qyre

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
where R1 is a PxP upper triangular matrix and R2 is Px(N – P). Thus Q is
a PxP matrix and R is a PxN matrix containing R1 and R2.

")�$�� x = { 1 11, 7 3, 2 1 };

y = { 2 6, 5 10, 4 3 };

{ qy, r, e } = qyre(y,x);

������ qyr.src

������� qqr, qre, qyr

qy
0.5942276– 3.0456088–

6.2442636– 11.647846–

2.3782485 0.22790230–

=

r 11.445523– 2.9705938–

0.0000000 6.7212776–
=

e 2.0000000

1.0000000
=

�����

GAUSS Language Reference

qyrep

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qyrep

���$��� Computes the orthogonal-triangular (QR) decomposition of a matrix X
using a pivot vector and returns QY and R.

����� { qy,r,e } = qyrep(y,x,pvt);

��$��

#��$��

%���+� Given X[.,E], where E is a permutation vector that permutes the columns
of X, there is an orthogonal matrix Q such that Q′X[.,E] is zero below its
diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X[.,E].

y NxL matrix.
x NxP matrix.
pvt Px1 vector, controls the selection of the pivot columns:

if pvt[i] > 0, x[i] is an initial column

if pvt[i] = 0, x[i] is a free column

if pvt[i] < 0, x[i] is a final column

The initial columns are placed at the beginning of the
matrix and the final columns are placed at the end. Only
the free columns will be moved during the decomposition.

qy NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Q′X . E,[] R

0
=

Q Q1 Q2=

X . E,[] Q1R=
�����

Command Reference

qyrep

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
qyrep allows you to control the pivoting. For example, suppose that X is
a data set with a column of ones in the first column. If there are linear
dependencies among the columns of X, the column of ones for the
constant may get pivoted away. This column can be forced to be included
among the linearly independent columns using pvt.

For most problems Q or Q1 is not what is required. Since Q can be a very
large matrix, qyrep has been provided for the calculation of QY, where Y
is some NxL matrix, which will be a much smaller matrix.

If either Q′Y or are required, see qtyrep.

If N < P the factorization assumes the form:

where R1 is a PxP upper triangular matrix and R2 is Px(N – P). Thus Q is
a PxP matrix and R is a PxN matrix containing R1 and R2.

������ qyr.src

������� qr, qqrep, qrep, qtyrep

Q′1Y

Q′X . E,[] R1 R2=
�����

GAUSS Language Reference

rank

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rank

���$��� Computes the rank of a matrix, using the singular value decomposition.

����� k = rank(x);

��$��

���������$��

�#��$��

������
#��$��

������ svd.src

x NxP matrix.

_svdtol global scalar, the tolerance used in determining if any of
the singular values are effectively 0. The default value is
10e-13. This can be changed before calling the procedure.

k an estimate of the rank of x. This equals the number of
singular values of x that exceed a prespecified tolerance in
absolute value.

_svderr global scalar, if not all of the singular values can be
computed _svderr will be nonzero.
�����

Command Reference

rankindx

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rankindx

���$��� Returns the vector of ranks of a vector.

����� y = rankindx(x,flag);

��$��

#��$��

�%���+� rankindx assigns different ranks to elements that have equal values
(ties). Missing values are assigned the lowest ranks.

")�$�� let x = 12 4 15 7 8;

r = rankindx(x,1);

x Nx1 vector.
flag scalar, 1 for numeric data or 0 for character data.

y Nx1 vector containing the ranks of x. That is, the rank of
the largest element is N and the rank of the smallest is 1.
(To get ranks in descending order, subtract y from N+1).

r

4

1

5

2

3

=

����	

GAUSS Language Reference

readr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
readr

���$��� Reads a specified number of rows of data from a GAUSS data set (.dat)
file or a GAUSS matrix (.fmt) file.

����� y = readr(f1,r);

��$��

�#��$��

�%���+� The first time a readr statement is encountered, the first r rows will be
read. The next time it is encountered, the next r rows will be read in, and
so on. If the end of the data set is reached before r rows can be read, then
only those rows remaining will be read.

After the last row has been read, the pointer is placed immediately after
the end of the file. An attempt to read the file in these circumstances will
cause an error message.

To move the pointer to a specific place in the file use seekr.

")�$�� open dt = dat1.dat;

m = 0;

do until eof(dt);

x = readr(dt,400);

m = m+moment(x,0);

endo;

dt = close(dt);

This code reads data from a data set 400 rows at a time. The moment
matrix for each set of rows is computed and added to the sum of the
previous moment matrices. The result is the moment matrix for the entire
data set. eof(dt) returns 1 when the end of the data set is encountered.

������� open, create, writer, seekr, eof

fl scalar, file handle of an open file.
r scalar, number of rows to read.

y NxK matrix, the data read from the file.
����

Command Reference

real

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
real

���$��� Returns the real part of a matrix.

����� zr = real(x);

��$��

�#��$��

�����%���+� If x is not complex, zr will be equal to x.

")�$�� x = { 1 11,

 7i 3,

 2+i 1 };

zr = real(x);

�������� complex, imag

x NxK matrix.

zr NxK matrix, the real part of x.

zr
1.0000000 11.0000000

0.0000000 3.0000000

2.0000000 1.0000000

=

�����

GAUSS Language Reference

recode

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
recode

���$��� Changes the values of an existing vector from a vector of new values.
Used in data transformations.

����� y = recode(x,e,v);

��$��

#��$��

������%���+� There should be no more than a single 1 in any row of e.

For any given row N of x and e, if the Kth column of e is 1, the Kth element
of v will replace the original element of x.

If every column of e contains a 0, the original value of x will be
unchanged.

")�$��

e1 = (20 .lt x) .and (x .le 30);

e2 = (30 .lt x) .and (x .le 40);

e3 = (40 .lt x) .and (x .le 50);

e4 = (50 .lt x) .and (x .le 60);

e = e1~e2~e3~e4;

x Nx1 vector to be recoded (changed).
e NxK matrix of 1’s and 0’s.
v Kx1 vector containing the new values to be assigned to the

recoded variable.

y Nx1 vector containing the recoded values of x.

x = { 20,

 45,

 32,

 63,

 29 };
�����

Command Reference

recode

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
v = { 1,

2,

3,

4 };

y = recode(x,e,v);

������ datatran.src

������� code, substute

x

20

45

32

63

29

=

e

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1 0 0 0

=

v

1

2

3

4

=

y

20

3

2

63

1

=

�����

GAUSS Language Reference

recode (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
recode (dataloop)

���$��� Changes the value of a variable with different values based on a set of
logical expressions.

����� recode [[#]] [[$]] var with
val_1 for expression_1,
val_2 for expression_2,
 .
 .
 .
val_n for expression_n;

��$��

%���+� If ‘$’ is specified, the variable will be considered a character variable. If
‘#’ is specified, the variable will be considered numeric. If neither is
specified, the type of the variable will be left unchanged.

The logical expressions must be mutually exclusive, that is only one may
return TRUE for a given row (observation).

If none of the expressions is TRUE for a given row (observation), its
value will remain unchanged.

Any variables referenced must already exist, either as elements of the
source data set, as externs, or as the result of a previous make,
vector, or code statement.

var literal, the new variable name.
val scalar, value to be used if corresponding expression is true.
expression logical scalar-returning expression that returns nonzero

TRUE or zero FALSE.
�����

Command Reference

recode (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� recode age with

1 for age < 21,

2 for age ≥ 21 and age < 35,

3 for age ≥ 35 and age < 50,

4 for age ≥ 50 and age < 65,

5 for age ≥ 65;

recode $ sex with

“MALE” for sex == 1,

“FEMALE” for sex == 0;

recode # sex with

1 for sex $== “MALE”,

0 for sex $== “FEMALE”;

������� code
�����

GAUSS Language Reference

recserar

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
recserar

���$��� Computes a vector of autoregressive recursive series.

����� y = recserar(x,y0,a);

��$��

�#��$��

�%���+� recserar is particularly useful in dealing with time series.

Typically, the result would be thought of as K vectors of length N.

y0 contains the first P values of each of these vectors (thus, these are
prespecified). The remaining elements are constructed by computing a Pth
order “autoregressive” recursion, with weights given by a, and then by
adding the result to the corresponding elements of x. That is, the tth row of
y is given by:

and

Note that the first P rows of x are not used.

")�$�� n = 10;

fn multnorm(n,sigma) =

rndn(n,rows(sigma))*chol(sigma);

let sig[2,2] = { 1 -.3, -.3 1 };

rho = 0.5~0.3;

y0 = 0~0;

e = multnorm(n,sig);

x = ones(n,1)~rndn(n,3);

b = 1|2|3|4;

x NxK matrix
y0 PxK matrix.
a PxK matrix.

y NxK matrix containing the series.

y t .,[] x t .,[] a 1 .,[] * y[t - 1,.] + … a P .,[] * y[t - P,.], t = P + 1,… N,++=

y t .,[] y0 t .,[] t, 1 … P, ,= =
�����

Command Reference

recserar

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
y = recserar(x*b+e,y0,rho);

In this example, two autoregressive series are formed using simulated
data. The general form of the series can be written:

y[1,t] = rho[1,1]*y[1,t-1] + x[t,.]*b + e[1,t]

y[2,t] = rho[2,1]*y[2,t-1] + x[t,.]*b + e[2,t]

The error terms (e[1,t] and e[2,t]) are not individually serially
correlated, but they are contemporaneously correlated with each other.
The variance-covariance matrix is sig.

������� recsercp, recserrc
�����

GAUSS Language Reference

recsercp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
recsercp

���$��� Computes a recursive series involving products. Can be used to compute
cumulative products, to evaluate polynomials using Horner’s rule, and to
convert from base b representations of numbers to decimal
representations among other things.

����� y = recsercp(x,z);

��$��

�#��$��

%���+� The following GAUSS code could be used to emulate recsercp when
the number of rows in x and z is the same:

n = rows(x); /* assume here that rows(z) */

 /* is also n */

y = zeros(n,1);

y[1,.] = x[1,.] + z[1,.];

i = 2;

do until i > n;

y[i,.] = y[i-1,.] .* x[i,.] + z[i,.];

i = i +1;

endo;

Note that K series can be computed simultaneously, since x and z can
have K columns (they must both have the same number of columns).

recsercp allows either x or z to have only 1 row.

x NxK or 1xK matrix
z NxK or 1xK matrix.

y NxK matrix in which each column is a series generated by a
recursion of the form:

y 1() x 1() z 1()+=

y t() y t 1–() x t() z t()+× t 2 ...N,=,=
�����

Command Reference

recsercp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
recsercp(x,0) will produce the cumulative products of the elements in
x.

")�$�� c1 = c[1,.];

n = rows(c) - 1;

y = recsercp(x,trim(c ./ c1,1,0));

p = c1 .* y[n,.];

If x is a scalar and c is an (N+1)x1 vector, the result p will contain the
value of the polynomial whose coefficients are given in c. That is:

Note that both x and c could contain more than 1 column, and then this
code would evaluate the entire set of polynomials at the same time. Note
also that if x = 2, and if c contains the digits of the binary representation
of a number, then p will be the decimal representation of that number.

������� recserar, recserrc

p c 1 .,[]. x
n× c 2 .,[]. x

n 1–()× ... c n 1 .,+[]+ + +=
����	

GAUSS Language Reference

recserrc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
recserrc

���$��� Computes a recursive series involving division.

����� y = recserrc(x,z);

��$��

#��$��

%���+� Can be used to convert from decimal to other number systems (radix
conversion).

")�$�� x = 2|8|10;

b = 2;

n = maxc(log(x)./log(b)) + 1;

z = reshape(b, n, rows(x));

y = rev(recserrc(x, z))’ ;

The result, y, will contain in its rows (note that it is transposed in the last
step) the digits representing the decimal numbers 2, 8, and 10 in base 2:

������ recserrc.src

������� recserar, recsercp

x 1xK or Kx1 vector.
z NxK matrix.

y NxK matrix in which each column is a series generated by
a recursion of the form:

y[1] = x mod z[1], x = trunc(x / z[1])
y[2] = x mod z[2], x = trunc(x / z[2])
y[3] = x mod z[3], x = trunc(x / z[3])

. . .
y[n] = x mod z[n]

0 0 1 0

1 0 0 0

1 0 1 0
����

Command Reference

rerun

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
L

rerun

���$��� Displays the most recently created graphics file.

 	���� pgraph

����� rerun;

�����	�	�� DOS only

rerun invokes the graphics utility pqgrun.exe.

%���+� rerun is used by the endwind function.

������ pcart.src

������ _pcmdlin, _pnotify, _psilent, _ptek, _pzoom
�����

GAUSS Language Reference

reshape

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
reshape

���$��� Reshapes a matrix.

����� y = reshape(x,r,c);

��$��

�#��$��

��%���+� Matrices are stored in row major order.

The first c elements are put into the first row of y, the second in the second
row, and so on. If there are more elements in x than in y, the remaining
elements are discarded. If there are not enough elements in x to fill y, then
when reshape runs out of elements, it goes back to the first element of x
and starts getting additional elements from there.

")�$�� y = reshape(x,2,6);

If then

If then

If then

If then

If then

x NxK matrix.
r scalar, new row dimension.
c scalar, new column dimension.

y RxC matrix created from the elements of x.

x
1 2 3 4

5 6 7 8

9 10 11 12

= y 1 2 3 4 5 6

7 8 9 10 11 12
=

x
1 2 3

4 5 6

7 8 9

= y 1 2 3 4 5 6

7 8 9 1 2 3
=

x
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

= y 1 2 3 4 5 6

7 8 9 10 11 12
=

x 1 2

3 4
= y 1 2 3 4 1 2

3 4 1 2 3 4
=

x 1= y 1 1 1 1 1 1

1 1 1 1 1 1
=

�����

Command Reference

reshape

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� submat, vec
�����

GAUSS Language Reference

retp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
retp

���$��� Returns from a procedure or keyword.

����� retp;

retp(x,y,...);

%���+� For more details, see “Procedures and Keywords” in the User’s Guide.

In a retp statement 0-1023 items may be returned. The items may be
expressions. Items are separated by commas.

It is legal to return with no arguments, as long as the procedure is defined
to return 0 arguments.

������� proc, keyword, endp
�����

Command Reference

return

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
return

���$��� Returns from a subroutine.

����� return;

return(x,y,...);

%���+� The number of items that may be returned from a subroutine in a return
statement is limited only by stack space. The items may be expressions.
Items are separated by commas.

It is legal to return with no arguments and therefore return nothing.

������� gosub, pop
�����

GAUSS Language Reference

rev

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rev

���$��� Reverses the order of the rows in a matrix.

����� y = rev(x);

��$��

�#��$��

�%���+� The first row of y will be where the last row of x was and the last row will
be where the first was and so on. This can be used to put a sorted matrix in
descending order.

")�$�� x = round(rndn(5,3)*10);

y = rev(x);

������� sortc

x NxK matrix.

y NxK matrix containing the reversed rows of x.

x

10 7 8

7 4 9–

11– 0 3–

3 18 0

9 1– 20

=

y

9 1– 20

3 18 0

11– 0 3–

7 4 9–

10 7 8

=

�����

Command Reference

rfft

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rfft

���$��� Computes a real 1- or 2-D Fast Fourier transform.

����� y = rfft(x);

��$��

�����#��$��

����%���+� Computes the RFFT of x, scaled by 1/(L*M).

This uses a Temperton Fast Fourier algorithm.

If N or K is not a power of 2, x will be padded out with zeros before
computing the transform.

")�$�� x = { 6 9, 8 1 };

y = rfft(x);

������� rffti, fft, ffti, fftm, fftmi

x NxK real matrix.

y LxM matrix, where L and M are the smallest powers of 2
greater than or equal to N and K, respectively.

y 6.0000000 1.0000000

1.5000000 2.5000000–
=

�����

GAUSS Language Reference

rffti

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rffti

���$��� Computes inverse real 1- or 2-D Fast Fourier transform.

����� y = rffti(x);

��$��

�����#��$��

%���+� It is up to the user to guarantee that the input will return a real result. If in
doubt, use ffti.

")�$�� x = { 6 1, 1.5 -2.5 };

y = rffti(x);

������� rfft, fft, ffti, fftm, fftmi

x NxK matrix.

y LxM real matrix, where L and M are the smallest prime
factor products greater than or equal to N and K.

y 6.0000000 9.0000000

8.0000000 1.0000000
=

�����

Command Reference

rfftip

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rfftip

���$��� Computes an inverse real 1- or 2-D FFT. Takes a packed format FFT as
input.

����� y = rfftip(x);

��$��

#��$��

�%���+� rfftip assumes that its input is of the same form as that output by
rfftp and rfftnp.

rfftip uses the Temperton prime factor FFT algorithm. This algorithm
can compute the inverse FFT of any vector or matrix whose dimensions
can be expressed as the product of selected prime number factors.
GAUSS implements the Temperton algorithm for any integer power of 2,
3, and 5, and one factor of 7. Thus, rfftip can handle any matrix whose
dimensions can be expressed as:

If a dimension of x does not meet this requirement, it will be padded with
zeros to the next allowable size before the inverse FFT is computed. Note
that rfftip assumes the length (for vectors) or column dimension (for
matrices) of x is K-1 rather than K, since the last element or column does
not hold FFT information, but the Nyquist frequencies.

The sizes of x and y are related as follows: L will be the smallest prime
factor product greater than or equal to N, and M will be twice the smallest
prime factor product greater than or equal to K-1. This takes into account
the fact that x contains both positive and negative frequencies in the row
dimension (matrices only), but only positive frequencies, and those only
in the first K-1 elements or columns, in the length or column dimension.

It is up to the user to guarantee that the input will return a real result. If in
doubt, use ffti. Note, however, that ffti expects a full FFT, including
negative frequency information, for input.

Do not pass rfftip the output from rfft or rfftn—it will return
incorrect results. Use rffti with those routines.

x NxK matrix or K-length vector.

y LxM real matrix or M-length vector.

2
p

3
q

× 5
r

× 7
s× , p q r 0≥, ,

s 0 or = 1
����	

GAUSS Language Reference

rfftip

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftn,
rfftnp, rfftp
����

Command Reference

rfftn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rfftn

���$��� Computes a real 1- or 2-D FFT.

����� y = rfftn(x);

��$��

#��$��

�%���+� rfftn uses the Temperton prime factor FFT algorithm. This algorithm
can compute the FFT of any vector or matrix whose dimensions can be
expressed as the product of selected prime number factors. GAUSS
implements the Temperton algorithm for any power of 2, 3, and 5, and
one factor of 7. Thus, rfftn can handle any matrix whose dimensions
can be expressed as:

If a dimension of x does not meet these requirements, it will be padded
with zeros to the next allowable size before the FFT is computed.

rfftn pads matrices to the next allowable size; however, it generally
runs faster for matrices whose dimensions are highly composite numbers,
i.e., products of several factors (to various powers), rather than powers of
a single factor. For example, even though it is bigger, a 33600x1 vector
can compute as much as 20 percent faster than a 32768x1 vector, because
33600 is a highly composite number, 26 x 3 x 52 x 7, whereas 32768 is a
simple power of 2, 215. For this reason, you may want to hand-pad
matrices to optimum dimensions before passing them to rfftn. The
Run-Time Library includes two routines, optn and optnevn, for
determining optimum dimensions. Use optn to determine optimum rows
for matrices, and optnevn to determine optimum columns for matrices
and optimum lengths for vectors.

The Run-Time Library also includes the nextn and nextnevn
routines, for determining allowable dimensions for matrices and vectors.

x NxK real matrix.

y LxM matrix, where L and M are the smallest prime factor
products greater than or equal to N and K, respectively.

2
p

3
q

× 5
r

× 7
s,×

p q r 0 for rows of matrix≥, ,
p 0 q r 0 for columns of matrix≥, ,>
p 0 q r 0 for length of vector≥, ,>
s 0 or 1 for all dimensions=
�����

GAUSS Language Reference

rfftn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
(You can use these to see the dimensions to which rfftn would pad a
matrix or vector.)

rfftn scales the computed FFT by 1/(L*M).

������� fft, ffti, fftm, fftmi, fftn, rfft, rffti,
rfftip, rfftnp, rfftp
�����

Command Reference

rfftnp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rfftnp

���$��� Computes a real 1- or 2-D FFT. Returns the results in a packed format.

����� y = rfftnp(x);

��$��

�#��$��

�%���+� For 1-D FFT’s, rfftnp returns the positive frequencies in ascending
order in the first M/2 elements, and the Nyquist frequency in the last
element. For 2-D FFT’s, rfftnp returns the positive and negative
frequencies for the row dimension, and for the column dimension it
returns the positive frequencies in ascending order in the first M/2
columns, and the Nyquist frequencies in the last column. Usually the FFT
of a real function is calculated to find the power density spectrum or to
perform filtering on the waveform. In both these cases only the positive
frequencies are required. (See also rfft and rfftn for routines that
return the negative frequencies as well.)

rfftnp uses the Temperton prime factor FFT algorithm. This algorithm
can compute the FFT of any vector or matrix whose dimensions can be
expressed as the product of selected prime number factors. GAUSS
implements the Temperton algorithm for any power of 2, 3, and 5, and
one factor of 7. Thus, rfftnp can handle any matrix whose dimensions
can be expressed as:

If a dimension of x does not meet these requirements, it will be padded
with zeros to the next allowable size before the FFT is computed.

rfftnp pads matrices to the next allowable size; however, it generally
runs faster for matrices whose dimensions are highly composite numbers,
i.e., products of several factors (to various powers), rather than powers of

x NxK real matrix or K-length real vector.

y Lx(M/2+1) matrix or (M/2+1)-length vector, where L and
M are the smallest prime factor products greater than or
equal to N and K, respectively.

2
p

3
q

× 5
r

× 7
s,× p q r 0 for rows of matrix≥, ,

p 0 q r 0 for columns of matrix≥, ,>
p 0 q r 0 for length of vector≥, ,>
s 0 or 1 for all dimensions=
�����

GAUSS Language Reference

rfftnp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
a single factor. For example, even though it is bigger, a 33600x1 vector
can compute as much as 20 percent faster than a 32768x1 vector, because
33600 is a highly composite number, 26 x 3 x 52 x 7, whereas 32768 is a
simple power of 2, 215. For this reason, you may want to hand-pad
matrices to optimum dimensions before passing them to rfftnp. The
Run-Time Library includes two routines, optn and optnevn, for
determining optimum dimensions. Use optn to determine optimum rows
for matrices, and optnevn to determine optimum columns for matrices
and optimum lengths for vectors.

The Run-Time Library also includes the nextn and nextnevn
routines, for determining allowable dimensions for matrices and vectors.
(You can use these to see the dimensions to which rfftnp would pad a
matrix or vector.)

rfftnp scales the computed FFT by 1/(L*M).

������� fft, ffti, fftm, fftmi, fftn, rfft, rffti,
rfftip, rfftn, rfftp
�����

Command Reference

rfftp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rfftp

����$��� Computes a real 1- or 2-D FFT. Returns the results in a packed format.

����� y = rfftp(x);

��$��

#��$��

%���+� If a dimension of x is not a power of 2, it will be padded with zeros to the
next allowable size before the FFT is computed.

For 1-D FFT’s, rfftp returns the positive frequencies in ascending
order in the first M/2 elements, and the Nyquist frequency in the last
element. For 2-D FFT’s, rfftp returns the positive and negative
frequencies for the row dimension, and for the column dimension it
returns the positive frequencies in ascending order in the first M/2
columns, and the Nyquist frequencies in the last column. Usually the FFT
of a real function is calculated to find the power density spectrum or to
perform filtering on the waveform. In both these cases only the positive
frequencies are required. (See also rfft and rfftn for routines that
return the negative frequencies as well.)

rfftp scales the computed FFT by 1/(L*M).

rfftp uses the Temperton FFT algorithm.

������� fft, ffti, fftm, fftmi, fftn, rfft, rffti,
rfftip, rfftn, rfftnp

x NxK real matrix or K-length real vector.

y Lx(M/2+1) matrix or (M/2+1)-length vector, where L and
M are the smallest powers of 2 greater than or equal to N
and K, respectively.
�����

GAUSS Language Reference

rndbeta

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndbeta

���$��� Computes pseudo-random numbers with beta distribution.

����� x = rndbeta(r,c,a,b);

��$��

#��$��

�����%���+� The properties of the pseudo-random numbers in x are:

������� random.src

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
a MxN matrix, ExE conformable with RxC resulting matrix,

shape parameters for beta distribution.
b KxL matrix, ExE conformable with RxC resulting matrix,

shape parameters for beta distribution.

x RxC matrix, beta distributed pseudo-random numbers.

E(x) = a / (a + b)

Var(x) = a x b / (a + b + 1) x (a + b)2

x > 0
x < 1
a > 0
b > 0
�����

Command Reference

rndcon, rndmult, rndseed

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndcon, rndmult, rndseed

���$��� Resets the parameters of the linear congruential random number generator
that is the basis for rndu, rndi and rndn.

����� rndcon c;
rndmult a;
rndseed seed;

�����	�	�� Windows, UNIX, OS/2

Parameter default values and ranges:

%���+� A linear congruential uniform random number generator is used by
rndu, and is also called by rndn. These statements allow the parameters
of this generator to be changed.

The procedure used to generate the uniform random numbers is as
follows. First, the current “seed” is used to generate a new seed:

new_seed = (((a * seed) % 232)+ c) % 232

(where % is the mod operator). Then a number between 0 and 1 is created
by dividing the new seed by 232:

x = new_seed / 232

rndcon resets c.

rndmult resets a.

rndseed resets seed. This is the initial seed for the generator. The
default is that GAUSS uses the clock to generate an initial seed when
GAUSS is invoked.

GAUSS goes to the clock to seed the generator only when it is first started
up. Therefore, if GAUSS is allowed to run for a long time, and if large
numbers of random numbers are generated, there is a possibility of
recycling (that is, the sequence of “random numbers” will repeat itself).
However, the generator used has an extremely long cycle, and so that
should not usually be a problem.

 seed time(0), 0 < seed < 2^32
 a 1664525 0 < a < 2^32
 c 1013904223 0 ≤ c < 2^32
�����

GAUSS Language Reference

rndcon, rndmult, rndseed

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The parameters set by these commands remain in effect until new
commands are encountered, or until GAUSS is restarted.

������� rndu, rndn, rndi, rndLCi, rndKMi
�����

Command Reference

rndgam

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndgam

���$��� Computes pseudo-random numbers with gamma distribution.

������ x = rndgam(r,c,alpha);

��$��

#��$��

�����%���+� The properties of the pseudo-random numbers in x are:

To generate gamma (alpha,theta) pseudo-random numbers where theta
is a scale parameter, multiply the result of rndgam by theta. Thus:

 z = theta * rndgam(1,1,alpha)

has the properties

������ random.src

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
alpha MxN matrix, ExE conformable with RxC resulting

matrix, shape parameters for gamma distribution.

x RxC matrix, gamma distributed pseudo-random numbers.

E(x) = alpha
Var(x) = alpha

x > 0
alpha > 0

E(z) = alpha x theta

Var(z) = alpha x theta2

z > 0
alpha > 0
theta > 0
����	

GAUSS Language Reference

rndi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndi

���$��� Returns a matrix of random integers, 0 <= y < 2^32.

����� y = rndi(r,c);

��$��

#��$��

%���+� r and c will be truncated to integers if necessary.

This generator is automatically seeded using the system clock when
GAUSS first starts. However, that can be overridden using the rndseed
statement or using rndus.

Each seed is generated from the preceding seed, using the formula

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator. The new seeds are the values returned. The
muliplicative constant and the additive constant may be changed using
rndmult and rndcon respectively.

������� rndu, rndus, rndn, rndcon, rndmult

r scalar, row dimension.
c scalar, column dimension.

y rxc matrix of random integers between 0 and 2^32 - 1,
inclusive.
����

Command Reference

rndKMbeta

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndKMbeta

���$��� Computes beta pseudo-random numbers.

����� { x, newstate } = rndKMbeta(r,c,a,b,state);

��$��

#��$��

%���+� The properties of the pseudo-random numbers in x are:

0 < x < 1, a > 0, b > 0

r and c will be truncated to integers if necessary.

������ randkm.src

�����	��
&����

rndKMbeta uses the recur-with-carry KISS+Monster algorithm
described in the rndKMi Technical Notes.

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
a rxc matrix, or rx1 vector, or 1xc vector, or scalar, first shape

argument for beta distribution.
b rxc matrix, or rx1 vector, or 1xc vector, or scalar, second shape

argument for beta distribution.
state scalar or 500x1 vector.

Scalar case:
state = starting seed value only. If -1, GAUSS computes the
starting seed based on the system clock.
500x1 vector case:
state = the state vector returned from a previous call to one of
the rndKM random number functions.

x rxc matrix, beta distributed random numbers.
newstate 500x1 vector, the updated state.

E x() a
a b+
------------ Var x(), a*b()

a b 1+ +()* a b+()2
--= =
�����

GAUSS Language Reference

rndKMgam

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndKMgam

���$��� Computes Gamma pseudo-random numbers.

����� { x, newstate } = rndKMgam(r,c,alpha,state);

��$��

#��$��

%���+� The properties of the pseudo-random numbers in x are:

E(x) = alpha, Var(x) = alpha

x > 0, alpha > 0.

To generate gamma(alpha, theta) pseudo-random numbers where theta is
a scale parameter, multiply the result of rndgam by theta.

Thus

z = theta * rndgam(1,1,alpha);

has the properties

E(z) = alpha * theta, Var(z) = alpha * theta ^ 2

z > 0, alpha > 0, theta > 0.

r and c will be truncated to integers if necessary.

������ randkm.src

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
alpha rxc matrix, or rx1 vector, or 1xc vector, or scalar, shape

argument for gamma distribution.
state scalar or 500x1 vector.

Scalar case:
state = starting seed value only. If -1, GAUSS computes the
starting seed based on the system clock.
500x1 vector case:
state = the state vector returned from a previous call to one of
the rndKM random number functions.

x rxc matrix, gamma distributed random numbers.
newstate 500x1 vector, the updated state.
�����

Command Reference

rndKMgam

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�����	��
&����

rndKMgam uses the recur-with-carry KISS+Monster algorithm described
in the rndKMi Technical Notes.
�����

GAUSS Language Reference

rndKMi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndKMi

���$��� Returns a matrix of random integers, 0 <= y < 2^32, and the state of the
random number generator.

����� { y, newstate } = rndKMi(r,c,state);

��$��

#��$��

%���+� r and c will be truncated to integers if necessary.

")�$�� This example generates two thousand vectors of random integers, each
with one million elements. The state of the random number generator
after each iteration is used as an input to the next generation of random
numbers.

state = 13;

n = 2000;

k = 1000000;

c = 0;

min = 2^32+1;

max = -1;

r scalar, row dimension.
c scalar, column dimension.
state scalar or 500x1 vector.

Scalar case:
state = starting seed value. If -1, GAUSS computes the starting
seed based on the system clock.
500x1 vector case:
state = the state vector returned from a previous call to one of
the rndKM random number generators.

y rxc matrix of random integers between 0 and 2^32 - 1,
inclusive.

newstate 500x1 vector, the updated state.
�����

Command Reference

rndKMi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
do while c < n;

{ y,state } = rndKMi(k,1,state);

min = minc(min | minc(y));

max = maxc(max | maxc(y));

c = c + k;

endo;

print "min " min;

print "max " max;

�������� rndKMn, rndKMu

�����	��
&����

rndKMi generates random integers using a KISS+Monster algorithm
developed by George Marsaglia. KISS initializes the sequence used in the
recur-with-carry Monster random number generator. For more
information on this generator see http://www.Aptech.com/random.
�����

GAUSS Language Reference

rndKMn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndKMn

���$��� Returns a matrix of standard normal (pseudo) random variables and the
state of the random number generator.

����� { y, newstate } = rndKMn(r,c,state);

��$��

#��$��

%���+� r and c will be truncated to integers if necessary.

")�$�� This example generates two thousand vectors of standard normal random
numbers, each with one million elements. The state of the random number
generator after each iteration is used as an input to the next generation of
random numbers.

state = 13;

n = 2000;

k = 1000000;

c = 0;

submean = {};

r scalar, row dimension.
c scalar, column dimension.
state scalar or 500x1 vector.

Scalar case:
state = starting seed value. If -1, GAUSS computes the starting
seed based on the system clock.
500x1 vector case:
state = the state vector returned from a previous call to one of
the rndKM random number generators.

y rxc matrix of standard normal random numbers.
newstate 500x1 vector, the updated state.
�����

Command Reference

rndKMn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
do while c < n;

{ y,state } = rndKMn(k,1,state);

submean = submean | meanc(y);

c = c + k;

endo;

mean = meanc(submean);

print mean;

������� rndKMu, rndKMi

�����	��
&����

rndKMn calls the uniform random number generator that is the basis for
rndKMu multiple times for each normal random number generated. This
is the recur-with-carry KISS+Monster algorithm described in the
rndKMi Technical Notes. Potential normal random numbers are filtered
using the fast acceptance-rejection algorithm proposed by Kinderman,
A.J. and J.G. Ramage, "Computer Generation of Normal Random
Numbers," Journal of the American Statistical Association, December
1976, Volume 71, Number 356, pp. 893-896.
�����

GAUSS Language Reference

rndKMnb

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndKMnb

���$��� Computes negative binomial pseudo-random numbers.

����� { x, newstate } = rndKMnb(r,c,k,p,state);

��$��

#��$��

%���+� The properties of the pseudo-random numbers in x are:

x = 0, 1, ..., k > 0, 0 < p < 1

r and c will be truncated to integers if necessary.

������ randkm.src

�����	��
&����

rndKMnb uses the recur-with-carry KISS+Monster algorithm described
in the rndKMi Technical Notes.

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
k rxc matrix, or rx1 vector, or 1xc vector, or scalar, "event"

argument for negative binomial distribution.
p rxc matrix, or rx1 vector, or 1xc vector, or scalar, "probability"

argument for negative binomial distribution.
state scalar or 500x1 vector.

Scalar case:
state = starting seed value only. If -1, GAUSS computes the
starting seed based on the system clock.
500x1 vector case:
state = the state vector returned from a previous call to one of
the rndKM random number functions.

x rxc matrix, negative binomial distributed random numbers.
newstate 500x1 vector, the updated state.

E x() k*p
1 p–()

---------------- Var x(), k*p
1 p–()2

-------------------= =
�����

Command Reference

rndKMp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndKMp

���$��� Computes Poisson pseudo-random numbers.

����� { x, newstate } = rndKMp(r,c,lambda,state);

��$��

#��$��

%���+� The properties of the pseudo-random numbers in x are:

E(x) = lambda, Var(x) = lambda

x = 0, 1,, lambda > 0.

r and c will be truncated to integers if necessary.

������ randkm.src

�����	��
&����

rndKMp uses the recur-with-carry KISS+Monster algorithm described in
the rndKMi Technical Notes.

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
lambda rxc matrix, or rx1 vector, or 1xc vector, or scalar, shape

argument for Poisson distribution.
state scalar or 500x1 vector.

Scalar case:
state = starting seed value only. If -1, GAUSS computes the
starting seed based on the system clock.
500x1 vector case:
state = the state vector returned from a previous call to one of
the rndKM random number functions.

x rxc matrix, Poisson distributed random numbers.
newstate 500x1 vector, the updated state.
����	

GAUSS Language Reference

rndKMu

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndKMu

���$��� Returns a matrix of uniform (pseudo) random variables and the state of
the random number generator.

����� { y, newstate } = rndKMu(r,c,state);

��$��

#��$��

%���+� r and c will be truncated to integers if necessary.

")�$�� This example generates two thousand vectors of uniform random
numbers, each with one million elements. The state of the random number
generator after each iteration is used as an input to the next generation of
random numbers.

state = 13;

n = 2000;

k = 1000000;

c = 0;

submean = {};

r scalar, row dimension.
c scalar, column dimension.
state scalar, 2x1 vector, or 500x1 vector.

Scalar case:
state = starting seed value. If -1, GAUSS computes the starting
seed based on the system clock.
2x1 vector case:
[1] the starting seed, uses the system clock if -1
[2] 0 for 0 <= y < 1

1 for 0 <= y <= 1
500x1 vector case:
state = the state vector returned from a previous call to one of
the rndKM random number generators.

y rxc matrix of uniform random numbers, 0 <= y < 1.
newstate 500x1 vector, the updated state.
����

Command Reference

rndKMu

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
do while c < n;

{ y,state } = rndKMu(k,1,state);

submean = submean | meanc(y);

c = c + k;

endo;

mean = meanc(submean);

print 0.5-mean;

������� rndKMn, rndKMi

�����	��
&����

rndKMu uses the recur-with-carry KISS-Monster algorithm described in
the rndKMi Technical Notes. Random integer seeds from 0 to 2^32-1 are
generated. Each integer is divided by 2^32 or 2^32-1.
�����

GAUSS Language Reference

rndKMvm

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndKMvm

���$��� Computes von Mises pseudo-random numbers.

����� { x, newstate } = rndKMvm(r,c,m,k,state);

��$��

#��$��

%���+� r and c will be truncated to integers if necessary.

������ randkm.src

�����	��
&����

rndKMvm uses the recur-with-carry KISS+Monster algorithm described
in the rndKMi Technical Notes.

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
m rxc matrix, or rx1 vector, or 1xc vector, or scalar, means for

vm distribution.
k rxc matrix, or rx1 vector, or 1xc vector, or scalar, shape

argument for vm distribution.
state scalar or 500x1 vector.

Scalar case:
state = starting seed value only. If -1, GAUSS computes the
starting seed based on the system clock.
500x1 vector case:
state = the state vector returned from a previous call to one of
the rndKM random number functions.

x rxc matrix, von Mises distributed random numbers.
newstate 500x1 vector, the updated state.
���	�

Command Reference

rndLCbeta

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndLCbeta

���$��� Computes beta pseudo-random numbers.

����� { x, newstate } = rndLCbeta(r,c,a,b,state);

��$��

#��$��

%���+�1 The properties of the pseudo-random numbers in x are:

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
a rxc matrix, or rx1 vector, or 1xc vector, or scalar, first shape

argument for beta distribution.
b rxc matrix, or rx1 vector, or 1xc vector, or scalar, second shape

argument for beta distribution.
state scalar, 3x1 vector, or a 4x1 state vector from a previous call to

the function.
Scalar case:
state = starting seed value only. System default values are used
for the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.
if state = -1, GAUSS computes the starting seed based on the
system clock.
3x1 vector case:
[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant
[3] the additive constant

x rxc matrix, beta distributed random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

E x() a
a b+
------------ Var x(), a*b()

a b 1+ +()* a b+()2
--= =
���	�

GAUSS Language Reference

rndLCbeta

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
0 < x < 1, a > 0, b > 0

r and c will be truncated to integers if necessary.

������ randlc.src

�����	��
&����

This function uses a linear congruential method, discussed in Kennedy,
W.J. Jr., and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980,
pp. 136-147. Each seed is generated from the preceding seed using the
formula

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant
and c is the additive constant.
���	�

Command Reference

rndLCgam

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndLCgam

���$��� Computes Gamma pseudo-random numbers.

����� { x, newstate } = rndLCgam(r,c,alpha,state);

��$��

#��$��

%���+� The properties of the pseudo-random numbers in x are:

E(x) = alpha, Var(x) = alpha

x > 0, alpha > 0.

To generate gamma (alpha, theta) pseudo-random numbers where theta is
a scale parameter, multiply the result of rndgam by theta.

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
alpha rxc matrix, or rx1 vector, or 1xc vector, or scalar, shape

argument for gamma distribution.
state scalar, 3x1 vector, or a 4x1 state vector from a previous call to

the function.
Scalar case:
state = starting seed value only. System default values are used
for the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.
if state = -1, GAUSS computes the starting seed based on the
system clock.
3x1 vector case:
[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant
[3] the additive constant

x rxc matrix, gamma distributed random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed
���	�

GAUSS Language Reference

rndLCgam

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Thus

z = theta * rndgam(1,1,alpha);

has the properties

E(z) = alpha * theta, Var(z) = alpha * theta ^ 2

z > 0, alpha > 0, theta > 0.

r and c will be truncated to integers if necessary.

������ randlc.src

�����	��
&����

This function uses a linear congruential method, discussed in Kennedy,
W.J. Jr., and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980,
pp. 136-147. Each seed is generated from the preceding seed using the
formula

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant
and c is the additive constant.
���	�

Command Reference

rndLCi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndLCi

���$��� Returns a matrix of random integers, 0 <= y < 2^32, and the state of the
random number generator.

����� { y, newstate } = rndLCi(r,c,state);

��$��

#��$��

%���+� r and c will be truncated to integers if necessary.

Each seed is generated from the preceding seed, using the formula

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant
and c is the additive constant. The new seeds are the values returned.

r scalar, row dimension.
c scalar, column dimension.
state scalar, 3x1 vector, or a 4x1 state vector from a previous call to

the function.
Scalar case:
state = starting seed value only. System default values are used
for the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.
if state = 0, GAUSS computes the starting seed based on the
system clock.
3x1 vector case:
[1] the starting seed, uses the system clock if 0
[2] the multiplicative constant
[3] the additive constant

y rxc matrix of random integers between 0 and 2^32 - 1,
inclusive.

newstate 4x1 vector:
[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed
���	�

GAUSS Language Reference

rndLCi

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�")�$�� state = 13;

n = 2000000000;

k = 1000000;

c = 0;

min = 2^32+1;

max = -1;

do while c < n;

{ y,state } = rndLCi(k,1,state);

min = minc(min | minc(y));

max = maxc(max | maxc(y));

c = c + k;

endo;

print "min " min;

print "max " max;

�������� rndLCn, rndLCu, rndcon, rndmult
���	�

Command Reference

rndLCn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndLCn

���$��� Returns a matrix of standard normal (pseudo) random variables and the
state of the random number generator.

����� { y, newstate } = rndLCn(r,c,state);

��$��

#��$��

%���+� r and c will be truncated to integers if necessary.

")�$�� state = 13;

n = 2000000000;

k = 1000000;

c = 0;

r scalar, row dimension.
c scalar, column dimension.
state scalar, 3x1 vector, or a 4x1 state vector from a previous call to

the function.
Scalar case:
state = starting seed value only. System default values are used
for the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.
if state = 0, GAUSS computes the starting seed based on the
system clock.
3x1 vector case:
[1] the starting seed, uses the system clock if 0
[2] the multiplicative constant
[3] the additive constant

y rxc matrix of standard normal random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed
���		

GAUSS Language Reference

rndLCn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
submean = {};

do while c < n;

{ y,state } = rndLCn(k,1,state);

submean = submean | meanc(y);

c = c + k;

endo;

mean = meanc(submean);

print mean;

������� rndLCu, rndLCi, rndcon, rndmult

�����	��
&����

The normal random number generator is based on the uniform random
number generator, using the fast acceptance-rejection algorithm proposed
by Kinderman, A.J. and J.G. Ramage, "Computer Generation of Normal
Random Numbers," Journal of the American Statistical Association,
December 1976, Volume 71, Number 356, pp. 893-896. This algorithm
calls the linear congruential uniform random number generator multiple
times for each normal random number generated. See rndLCu for a
description of the uniform random number generator algorithm.
���	

Command Reference

rndLCnb

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndLCnb

���$��� Computes negative binomial pseudo-random numbers.

����� { x, newstate } = rndLCnb(r,c,k,p,state);

��$��

#��$��

%���+� The properties of the pseudo-random numbers in x are:

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
k rxc matrix, or rx1 vector, or 1xc vector, or scalar, "event"

argument for negative binomial distribution.
p rxc matrix, or rx1 vector, or 1xc vector, or scalar, "probability"

argument for negative binomial distribution.
state scalar, 3x1 vector, or a 4x1 state vector from a previous call to

the function.
Scalar case:
state = starting seed value only. System default values are used
for the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.
if state = -1, GAUSS computes the starting seed based on the
system clock.
3x1 vector case:
[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant
[3] the additive constant

x rxc matrix, negative binomial distributed random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

E x() k*p
1 p–()

---------------- Var x(), k*p
1 p–()2

-------------------= =
���	�

GAUSS Language Reference

rndLCnb

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
x = 0, 1, ..., k > 0, 0 < p < 1

r and c will be truncated to integers if necessary.

������ randlc.src

�����	��
&����

This function uses a linear congruential method, discussed in Kennedy,
W.J. Jr., and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980,
pp. 136-147. Each seed is generated from the preceding seed using the
formula

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant
and c is the additive constant.
���
�

Command Reference

rndLCp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndLCp

���$��� Computes Poisson pseudo-random numbers.

����� { x, newstate } = rndLCp(r,c,lambda,state);

��$��

#��$��

%���+� The properties of the pseudo-random numbers in x are:

E(x) = lambda, Var(x) = lambda

x = 0, 1,, lambda > 0.

r and c will be truncated to integers if necessary.

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
lambda rxc matrix, or rx1 vector, or 1xc vector, or scalar, shape

argument for Poisson distribution.
state scalar, 3x1 vector, or a 4x1 state vector from a previous call to

the function.
Scalar case:
state = starting seed value only. System default values are used
for the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.
if state = -1, GAUSS computes the starting seed based on the
system clock.
3x1 vector case:
[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant
[3] the additive constant

x rxc matrix, Poisson distributed random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed
���
�

GAUSS Language Reference

rndLCp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������ randlc.src

�����	��
&����

This function uses a linear congruential method, discussed in Kennedy,
W.J. Jr., and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980,
pp. 136-147. Each seed is generated from the preceding seed using the
formula

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant
and c is the additive constant.
���
�

Command Reference

rndLCu

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndLCu

���$��� Returns a matrix of uniform (pseudo) random variables and the state of
the random number generator.

����� { y, newstate } = rndLCu(r,c,state);

��$��

#��$��

%���+� r and c will be truncated to integers if necessary.

Each seed is generated from the preceding seed, using the formula

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant
and c is the additive constant. A number between 0 and 1 is created by
dividing new_seed by 2^32.

r scalar, row dimension.
c scalar, column dimension.
state scalar, 3x1 vector, or a 4x1 state vector from a previous call to

the function.
Scalar case:
state = starting seed value only. System default values are used
for the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.
if state = 0, GAUSS computes the starting seed based on the
system clock.
3x1 vector case:
[1] the starting seed, uses the system clock if 0
[2] the multiplicative constant
[3] the additive constant

y rxc matrix of uniform random numbers, 0 <= y < 1.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed
���
�

GAUSS Language Reference

rndLCu

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� state = 13;

n = 2000000000;

k = 1000000;

c = 0;

submean = {};

do while c < n;

{ y,state } = rndLCu(k,1,state);

submean = submean | meanc(y);

c = c + k;

endo;

mean = meanc(submean);

print 0.5-mean;

������� rndLCn, rndLCi, rndcon, rndmult

���������
	
���

This function uses a linear congruential method, discussed in Kennedy,
W. J. Jr., and J. E. Gentle, Statistical Computing, Marcel Dekker, Inc.,
1980, pp. 136-147.
���
�

Command Reference

rndLCvm

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndLCvm

���$��� Computes von Mises pseudo-random numbers.

����� { x, newstate } = rndLCvm(r,c,m,k,state);

��$��

#��$��

%���+� r and c will be truncated to integers if necessary.

������ randlc.src

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
m rxc matrix, or rx1 vector, or 1xc vector, or scalar, means for

vm distribution.
k rxc matrix, or rx1 vector, or 1xc vector, or scalar, shape

argument for vm distribution.
state scalar, 3x1 vector, or a 4x1 state vector from a previous call to

the function.
Scalar case:
state = starting seed value only. System default values are used
for the additive and multiplicative constants.
The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.
if state = -1, GAUSS computes the starting seed based on the
system clock.
3x1 vector case:
[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant
[3] the additive constant

x rxc matrix, von Mises distributed random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed
���
�

GAUSS Language Reference

rndLCvm

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�����	��
&����

This function uses a linear congruential method, discussed in Kennedy,
W.J. Jr., and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980,
pp. 136-147. Each seed is generated from the preceding seed using the
formula

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant
and c is the additive constant.
���
�

Command Reference

rndn

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndn

���$��� Creates a matrix of standard Normal (pseudo) random numbers.

����� y = rndn(r,c);

��$��

�#��$��

�%���+� r and c will be truncated to integers if necessary.

The Normal random number generator is based upon the uniform random
number generator. To reseed them both, use the rndseed statement. The
other parameters of the uniform generator can be changed using rndcon,
rndmod, and rndmult.

")�$�� x = rndn(8100,1);

m = meanc(x);

s = stdc(x);

m = 0.002810

s = 0.997087

In this example, a sample of 8100 Normal random numbers is drawn, and
the mean and standard deviation are computed for the sample.

������� rndu, rndcon

�����	��
&����

This function uses the fast acceptance-rejection algorithm proposed by
Kinderman, A. J., and J. G. Ramage. “Computer Generation of Normal
Random Numbers.” Journal of the American Statistical Association. Vol.
71 No. 356, Dec. 1976, 893-96.

r scalar, row dimension.
c scalar, column dimension.

y RxC matrix of Normal random numbers having a mean of
0 and standard deviation of 1.
���
	

GAUSS Language Reference

rndnb

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndnb

���$��� Computes pseudo-random numbers with negative binomial distribution.

����� x = rndnb(r,c,k,p);

��$��

#��$��

%���+� The properties of the pseudo-random numbers in x are:

������� random.src

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
k MxN matrix, ExE conformable with RxC resulting matrix,

“event” parameters for negative binomial distribution.
p KxL matrix, ExE conformable with RxC resulting matrix,

probability parameters for negative binomial distribution.

x RxC matrix, negative binomial distributed pseudo-random
numbers.

E(x) = k x p / (1 – p)

Var(x) = k x p / (1 – p)2

x = 0, 1, 2, …, k
k > 0
p > 0
p < 1
���

Command Reference

rndp

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndp

���$��� Computes pseudo-random numbers with Poisson distribution.

����� x = rndp(r,c,lambda);

��$��

�#��$��

�%���+� The properties of the pseudo-random numbers in x are:

������ random.src

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
lambda MxN matrix, ExE conformable with RxC resulting

matrix, shape parameters for Poisson distribution.

x RxC matrix, Poisson distributed pseudo-random numbers.

Ex lambda=

Var x() lambda=

x 0 1 2 ..., , ,=

lambda 0>
���
�

GAUSS Language Reference

rndu

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndu

���$��� Creates a matrix of uniform (pseudo) random variables.

����� y = rndu(r,c);

��$��

�#��$��

�%���+� r and c will be truncated to integers if necessary.

This generator is automatically seeded using the clock when GAUSS is
first started. However, that can be overridden using the rndseed
statement or by using rndus.

The seed is automatically updated as a random number is generated (see
above under rndcon). Thus, if GAUSS is allowed to run for a long time,
and if large numbers of random numbers are generated, there is a
possibility of recycling. This is a 32-bit generator, though, so the range is
sufficient for most applications.

")�$�� x = rndu(8100,1);

y = meanc(x);

z = stdc(x);

y = 0.500205

z = 0.289197

In this example, a sample of 8100 uniform random numbers is generated,
and the mean and standard deviation are computed for the sample.

������� rndn, rndcon, rndmod, rndmult, rndseed

�����	��
&����

This function uses a multiplicative-congruential method. This method is
discussed in Kennedy, W.J., Jr., and J.E. Gentle. Statistical Computing.
Marcel Dekker, Inc., NY, 1980, 136-147.

r scalar, row dimension.
c scalar, column dimension.

y RxC matrix of uniform random variables between
0 and 1.
�����

Command Reference

rndvm

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rndvm

���$��� Computes von Mises pseudo-random numbers.

������ x = rndvm(r,c,m,k);

���$��

#��$��

������ random.src

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
m NxK matrix, ExE conformable with rxc, means for von Mises

distribution.
k LxM matrix, ExE conformable with rxc, shape arrgument for

von Mises distribution.

x rxc matrix, von Mises distributed random numbers.
�����

GAUSS Language Reference

rotater

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rotater

���$��� Rotates the rows of a matrix.

����� y = rotater(x,r);

��$��

�#��$��

�%���+� The rotation is performed horizontally within each row of the matrix.
A positive rotation value will cause the elements to move to the right.
A negative rotation value will cause the elements to move to the left. In
either case, the elements that are pushed off the end of the row will wrap
around to the opposite end of the same row.

If the rotation value is greater than or equal to the number of columns in x,
then the rotation value will be calculated using (r % cols(x)).

")�$�� y = rotater(x,r);

If and Then

If and Then

������� shiftr

x NxK matrix to be rotated.
r Nx1 or 1x1 matrix specifying the amount of rotation.

y NxK rotated matrix.

x 1 2 3

4 5 6
= r 1

1–
= y 3 1 2

5 6 4
=

x

1 2 3

4 5 6

7 8 9

10 11 12

= r

0

1

2

3

= y

1 2 3

6 4 5

8 9 7

10 11 12

=

�����

Command Reference

round

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
round

���$��� Rounds to the nearest integer.

����� y = round(x);

��$��

�#��$��

���")�$��

������� trunc, floor, ceil

x NxK matrix.

y NxK matrix containing the rounded elements of x.

let x = { 77.68 -14.10,

4.73 -158.88 };

y = round(x);

y 78 14–

5 159–
=

�����

GAUSS Language Reference

rows

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rows

���$��� Returns the number of rows in a matrix.

����� y = rows(x);

��$��

�#��$��

�%���+� If x is an empty matrix, rows(x) and cols(x) return 0.

")�$�� x = ones(3,5);

y = rows(x);

������� cols, show

x NxK matrix.

y scalar, number of rows in the specified matrix.

x
1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

=

y 3=
�����

Command Reference

rowsf

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rowsf

���$��� Returns the number of rows in a GAUSS data set (.dat) file or GAUSS
matrix (.fmt) file.

����� y = rowsf(f);

��$��

�#��$��

���")�$�� open fp = myfile;

r = rowsf(fp);

c = colsf(fp);

�������� colsf, open, typef

f file handle of an open file.

y scalar, number of rows in the specified file.
�����

GAUSS Language Reference

rref

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
rref

���$��� Computes the reduced row echelon form of a matrix.

����� y = rref(x);

��$��

�#��$��

�%���+� The tolerance used for zeroing elements is computed inside the procedure
using:

tol = maxc(m|n) * eps * maxc(abs(sumc(x′)));

where eps = 2.24e–16;

This procedure can be used to find the rank of a matrix. It is not as stable
numerically as the singular value decomposition (which is used in the
rank function), but it is faster for large matrices.

There is some speed advantage in having the number of rows be greater
than the number of columns, so you may want to transpose if all you care
about is the rank.

The following code can be used to compute the rank of a matrix:

r = sumc(sumc(abs(y′)) .> tol);

where y is the output from rref, and tol is the tolerance used. This
finds the number of rows with any nonzero elements, which gives the
rank of the matrix, disregarding numeric problems.

")�$��

������ rref.src

x MxN matrix.

y MxN matrix containing reduced row echelon form of x.

let x[3,3] = 1 2 3

4 5 6

7 8 9;

y = rref(x);

y
1 0 1–

0 1 2

0 0 0

=

�����

Command Reference

run

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
run

���$��� Runs a source code or compiled code program.

����� run filename;

��$��

%���+� The filename can be any legal file name. Filename extensions can be
whatever you want, except for the compiled file extension, .gcg.
Pathnames are okay. If the name is to be taken from a string variable, then
the name of the string variable must be preceded by the ^ (caret) operator.

The run statement can be used both from the command line and within a
program. If used in a program, once control is given to another program
through the run statement there is no return to the original program.

If you specify a filename without an extension, GAUSS will first look for
a compiled code program (i.e., a .gcg file) by that name, then a source
code program by that name. For example, if you enter

run dog;

GAUSS will first look for the compiled code file dog.gcg, and run that
if it finds it. If GAUSS cannot find dog.gcg, it will then look for the
source code file dog with no extension.

If a path is specified for the file, then no additional searching will be
attempted if the file is not found.

If a path is not specified the current directory will be searched first, then
each directory listed in src_path. The first instance found is run.
src_path is defined in gauss.cfg.

Programs can also be run by typing the filename on the OS command line
when starting GAUSS.

")�$�� ")�$���2

run myprog.prg;

filename literal or ^string, name of file to run.

run /gauss/myprog.prc; No additional search will be made if
the file is not found.

run myprog.prc; The directories listed in src_path
will be searched for myprog.prc if
the file is not found in the current
directory.
����	

GAUSS Language Reference

run

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$���3

name = “myprog.prg”;

run ^name;

������� #include
����

Command Reference

save

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
save

���$��� Saves matrices, strings, or procedures to a disk file.

����� save [[vflag]] [[path=path]] x, [[lpath=]] y;

��$��

%���+� save can be used to save matrices, strings, procedures, and functions.
Procedures and functions must be compiled and resident in memory
before they can be save’d.

The following extensions will be given to files that are saved:

if the path= subcommand is used with save, the path string will be
remembered until changed in a subsequent command. This path will be

vflag version flag.
-v89 supported on DOS, OS/2, Windows
-v92 supported on UNIX, Windows
-v96 supported on all platforms

See also “File I/O” in the User’s Guide for details on the
various versions. The default format can be specified in
gauss.cfg by setting the dat_fmt_version
configuration variable. If dat_fmt_version is not set, the
default is v96.

path literal or ^string, a default path to use for this and subsequent
saves.

x a symbol name, the name of the file the symbol will be saved
in is the same as this with the proper extension added for the
type of the symbol.

lpath literal or ^string, a local path and filename to be used for a
particular symbol. This path will override the path previously
set and the filename will override the name of the symbol
being saved. The extension cannot be overridden.

y the symbol to be saved to lpath.

matrix .fmt

string .fst

procedure .fcg

function .fcg

keyword .fcg
�����

GAUSS Language Reference

save

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
used whenever none is specified. The save path can be overridden in any
particular save by specifying an explicit path and filename.

")�$�� spath = “/gauss”;

save path = ^spath x,y,z;

Save x, y, and z using /gauss as a path. This path will be used for the
next save if none is specified.

svp = “/gauss/data”;

save path = ^svp n, k, /gauss/quad1=quad;

n and k will be saved using /gauss/data as the save path, quad will
be saved in /gauss with the name quad1.fmt. On platforms that use
the backslash as the path separator, the double backslash is required inside
double quotes to get a backslash, because it is the escape character in
quoted strings. It is not required when specifying literals.

save path=/procs;

Changes save path to /procs.

save path = /miscdata;

save /data/mydata1 = x, y, hisdata = z;

In the above program:

x would be saved in /data/mydata1.fmt

y would be saved in /miscdata/y.fmt

z would be saved in /miscdata/hisdata.fmt

������� load, saveall, saved
��	��

Command Reference

saveall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
saveall

���$��� Saves the current state of the machine to a compiled file. All procedures,
global matrices and strings will be saved.

����� saveall fname;

��$��

�%���+� The file extension will be .gcg.

A file will be created containing all your matrices, strings, and
procedures. No main code segment will be saved. This just means it will
be a .gcg file with no main program code (see compile). The rest of
the contents of memory will be saved including all global matrices,
strings, functions and procedures. Local variables are not saved. This can
be used inside a program to take a snapshot of the state of your global
variables and procedures. To reload the compiled image use run or use.

library pgraph;

external proc xy,logx,logy,loglog,hist;

saveall pgraph;

This would create a file called pgraph.gcg containing all the
procedures, strings and matrices needed to run Publication Quality
Graphics programs. Other programs could be compiled very quickly with
the following statement at the top of each:

use pgraph;

�������� compile, run, use

fname literal or ^string, the path and filename of the compiled file to be
created.
��	��

GAUSS Language Reference

saved

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
saved

���$��� Writes a matrix in memory to a GAUSS data set on disk.

����� y = saved(x,dataset,vnames);

��$��

#��$��

%���+� If dataset is null or 0, the data set name will be temp.dat.

if vnames is a null or 0, the variable names will begin with “X” and be
numbered 1-K.

If vnames is a string or has fewer elements than x has columns, it will be
expanded as explained under create.

The output data type is double precision.

")�$�� x = rndn(100,3);

dataset = “mydata”;

vnames = { height, weight, age };

if not saved(x,dataset,vnames);

errorlog “Write error”;

end;

endif;

������� saveload.src

������� loadd, writer, create

x NxK matrix to save in .dat file.
dataset string, name of data set.
vnames string or Kx1 character vector, names for the columns of the

data set.

y scalar, 1 if successful, 0 if fail.
��	��

Command Reference

savewind

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
savewind

���$��� Saves the current graphic panel configuration to a file.

 	���� pgraph

����� err = savewind(filename);

��$��

#��$��

%���+� See the discussion on using graphic panels in “Publication Quality
Graphics” in the User’s Guide.

������ pwindow.src

������� loadwind

filename Name of file.

err scalar, 0 if successful, 1 if graphic panel matrix is invalid.
Note that the file is written in either case.
��	��

GAUSS Language Reference

scale

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
scale

���$��� Fixes the scaling for subsequent graphs. The axes endpoints and
increments are computed as a best guess based on the data passed to it.

 	���� pgraph

����� scale(x,y);

��$��

%���+� x and y must each have at least 2 elements. Only the minimum and
maximum values are necessary.

This routine fixes the scaling for all subsequent graphs until graphset
is called. This also clears xtics and ytics whenever it is called.

If either of the arguments is a scalar missing, the main graphics function
will set the scaling for that axis using the actual data.

If an argument has 2 elements, the first will be used for the minimum and
the last will be used for the maximum.

If an argument has 2 elements, and contains a missing value, that end of
the axis will be scaled from the data by the main graphics function.

If you want direct control over the axes endpoints and tick marks, use
xtics or ytics. If xtics or ytics have been called after scale,
they will override scale.

������ pscale.src

������� xtics, ytics, ztics, scale3d

x matrix, the X axis data.
y matrix, the Y axis data.
��	��

Command Reference

scale3d

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
scale3d

���$��� Fixes the scaling for subsequent graphs. The axes endpoints and
increments are computed as a best guess based on the data passed to it.

 	���� pgraph

����� scale3d(x,y,z);

��$��

%���+� x, y and z must each have at least 2 elements. Only the minimum and
maximum values are necessary.

This routine fixes the scaling for all subsequent graphs until graphset
is called. This also clears xtics, ytics and ztics whenever it is
called.

If any of the arguments is a scalar missing, the main graphics function
will set the scaling for that axis using the actual data.

If an argument has 2 elements, the first will be used for the minimum and
the last will be used for the maximum.

If an argument has 2 elements, and contains a missing value, that end of
the axis will be scaled from the data by the main graphics function.

If you want direct control over the axes endpoints and tick marks, use
xtics, ytics, or ztics. If one of these functions have been called,
they will override scale3d.

������ pscale.src

������� scale, xtics, ytics, ztics

x matrix, the X axis data.
y matrix, the Y axis data.
z matrix, the Z axis data.
��	��

GAUSS Language Reference

scalerr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
scalerr

���$��� Tests for a scalar error code.

����� y = scalerr(c);

��$��

#��$��

%���+� Error codes in GAUSS are NaN’s (Not A Number). These are not just
scalar integer values. They are special floating point encodings that the
math chip recognizes as not representing a valid number. See also error.

scalerr can be used to test for either those error codes which are
predefined in GAUSS or an error code which the user has defined using
error.

If c is an empty matrix, scalerr will return 65535.

Certain functions will either return an error code or terminate a program
with an error message, depending on the trap state. The trap command
is used to set the trap state. The error code that will be returned will
appear to most commands as a missing value code, but the scalerr
function can distinguish between missing values and error codes and will
return the value of the error code.

Following are some of the functions affected by the trap state:

c NxK matrix, generally the return argument of a function or
procedure call.

y scalar, which is returned as a 0 if its argument is not a
scalar error code. If the argument is an error code, then
scalerr returns the value of the error code as an integer.

function
trap 1
error code

trap 0
error message

chol 10 Matrix not positive definite

invpd 20 Matrix not positive definite

solpd 30 Matrix not positive definite

/ 40 Matrix not positive definite
(second argument not square)

41 Matrix singular
(second argument is square)

inv 50 Matrix singular
��	��

Command Reference

scalerr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� trap 1;

cm = invpd(x);

trap 0;

if scalerr(cm);

cm = inv(x);

endif;

In this example invpd will return a scalar error code if the matrix x is
not positive definite. If scalerr returns with a nonzero value, the
program will use the inv function, which is slower, to compute the
inverse. Since the trap state has been turned off, if inv fails the program
will terminate with a Matrix singular error message.

������� error, trap, trapchk
��	�	

GAUSS Language Reference

scalinfnanmiss

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
scalinfnanmiss

���$��� Returns true if the argument is a scalar infinity, NaN, or missing value.

����� y = scalinfnanmiss(x);

��$��

#��$��

����!��� isinfnanmiss, ismiss, scalmiss

x NxK matrix.

y scalar, 1 if x is a scalar, infinity, NaN, or missing value,
else 0.
��	�

Command Reference

scalmiss

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
scalmiss

���$��� Tests to see if its argument is a scalar missing value.

����� y = scalmiss(x);

��$��

�#��$��

�%���+� scalmiss first tests to see if the argument is a scalar. If it is not scalar,
scalmiss returns a 0 without testing any of the elements.

The ismiss function will test each element of the matrix and return 1 if
it encounters any missing values. scalmiss will execute much faster if
the argument is a large matrix since it will not test each element of the
matrix but will simply return a 0.

An element of x is considered to be a missing if and only if it contains a
missing value in the real part. Thus, scalmiss and ismiss would
return a 1 for complex x = . + 1i, , a 0 for x = 1 + .i.

")�$�� clear s;

do until eof(fp);

y = readr(fp,nr);

y = packr(y);

if scalmiss(y);

continue;

endif;

s = s+sumc(y);

endo;

In this example the packr function will return a scalar missing if every
row of its argument contains missing values, otherwise it will return a
matrix that contains no missing values. scalmiss is used here to test for
a scalar missing returned from packr. If that is true, then the sum step
will be skipped for that iteration of the read loop because there were no
rows left after the rows containing missings were packed out.

x NxK matrix.

y scalar, 1 if argument is a scalar missing value, 0 if not.
��	��

GAUSS Language Reference

schtoc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
schtoc

���$��� To reduce any 2x2 blocks on the diagional of the real Schur matrix
returned from schur. The transformation matrix is also updated.

����� { schc, transc } = schtoc(sch,trans);

��$��

�#��$��

%���+� Other than checking that the inputs are strictly real matrices, no other
checks are made. If the input matrix sch is already upper triangular it is
not changed. Small off-diagional elements are considered to be zero. See
the source code for the test used.

")�$�� { schc, transc } = schtoc(schur(a));

This example calculates the complex Schur form for a real matrix a.

������ schtoc.src

������� schur

sch real NxN matrix in Real Schur form, i.e., upper triangular
except for possibly 2x2 blocks on the diagonal.

trans real NxN matrix, the associated transformation matrix.

schc NxN matrix, possibly complex, strictly upper triangular.
The diagonal entries are the eigenvalues.

transc NxN matrix, possibly complex, the associated
transformation matrix.
��	��

Command Reference

schur

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
schur

���$��� Computes the Schur form of a square matrix.

����� { s,z } = schur(x)

���$��

��#��$��

�%���+� schur computes the real Schur form of a square matrix. The real Schur
form is an upper quasi-triangular matrix, that is, it is block triangular
where the blocks are 2x2 submatrices which correspond to complex
eigenvalues of x. If x has no complex eigenvalues, s will be strictly upper
triangular. To convert s to the complex Schur form, use the Run-Time
Library function schtoc.

x is first reduced to upper Hessenberg form using orthogonal similiarity
transformations, then reduced to Schur form through a sequence of QR
decompositions.

schur uses the ORTRAN, ORTHES and HQR2 functions from
EISPACK.

z is an orthogonal matrix that transforms x into s and vice versa. Thus

and since z is orthogonal,

")�$��

x KxK matrix.

s KxK matrix, Schur form.
z KxK matrix, transformation matrix.

s z′xz=

x zsz′=

let x[3,3] = 1 2 3

4 5 6

7 8 9;

{ s, z } = schur(x);

s
16.11684397 4.89897949 0.0000000

0.0000000– 1.11684397– 0.0000000–

0.0000000 0.0000000 0.0000000

=

��	��

GAUSS Language Reference

schur

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� hess

z
0.23197069 0.88290596 0.40824829

0.52532209 0.23952042 0.81649658–

0.81867350 0.40386512– 0.40824829

=

��	��

Command Reference

screen

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
screen

���$��� Controls output to the screen.

����� screen on;

screen off;

screen;

%���+� When this is on, the results of all print statements will be directed to the
window. When this is off, print statements will not be sent to the
window. This is independent of the statement output on, which will
cause the results of all print statements to be routed to the current
auxiliary output file.

If you are sending a lot of output to the auxiliary output file on a disk
drive, turning the window off will speed things up.

The end statement will automatically do output off and screen
on.

screen with no arguments will print “Screen is on” or “Screen
is off” on the console.
��	��

GAUSS Language Reference

screen

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� output file = mydata.asc reset;

screen off;

format /m1/rz 1,8;

open fp = mydata;

do until eof(fp);

print readr(fp,200);;

endo;

fp = close(fp);

end;

The program above will write the contents of the GAUSS file
mydata.dat into an ASCII file called mydata.asc. If
mydata.asc already exists, it will be overwritten.

Turning the window off will speed up execution. The end statement
above will automatically perform output off and screen on.

������� output, end, new
��	��

Command Reference

scroll

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
scroll

���$��� Scrolls a section of the window.

����� scroll v;

��$��

�����	�	�� Windows

%���+� This command is intended to be used in the DOS compatibility window to
support legacy programs.

The elements of v are defined as:

This assumes the origin at (1,1) in the upper left just like the locate
command. The window will be scrolled the number of lines up or down
(positive or negative 5th element) and the value of the 6th element will be
used as the attribute as follows:

If the number of lines (element 5) is 0, the entire window will be blanked.

v 6x1 vector

[1] coordinate of upper left row.
[2] coordinate of upper left column.
[3] coordinate of lower right row.
[4] coordinate of lower right column.
[5] number of lines to scroll.
[6] value of attribute.

7 regular text
112 reverse video

0 graphics black
��	��

GAUSS Language Reference

scroll

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� let v = 1 1 12 80 5 7;

scroll v;

This call would scroll a graphic panel 80 columns wide covering the
upper twelve rows of the window. The graphic panel would be scrolled up
5 lines and the new lines would be displayed in regular text mode.

������� locate, printdos
��	��

Command Reference

seekr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
seekr

���$��� Moves the pointer in a .dat or .fmt file to a particular row.

����� y = seekr(fh,r);

��$��

�#��$��

%���+� If , the current row number will be returned.

If , the pointer will be moved to the end of the file, just past the end
of the last row.

rowsf returns the number of rows in a file.

seekr(fh,0) == rowsf(fh) + 1;

Do NOT try to seek beyond the end of a file.

������� open, readr, rowsf

fh scalar, file handle of an open file.
r scalar, the row number to which the pointer is to be moved.

y scalar, the row number to which the pointer has been moved.

r 1–=

r 0=
��	�	

GAUSS Language Reference

select (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
select (dataloop)

���$��� Selects specific rows (observations) in a data loop based on a logical
expression.

����� select logical_expression;

%���+� Selects only those rows for which logical_expression is TRUE. Any
variables referenced must already exist, either as elements of the source
data set, as externs, or as the result of a previous make, vector, or
code statement.

")�$�� select age > 40 AND sex $== ‘MALE’;

������� delete
��	�

Command Reference

selif

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
selif

���$��� Selects rows from a matrix. Those selected are the rows for which there is
a 1 in the corresponding row of e.

����� y = selif(x,e);

��$��

�#��$��

�%���+� The argument e will usually be generated by a logical expression using
“dot” operators.

y will be a scalar missing if no rows are selected.

")�$�� y = selif(x,x[.,2] .gt 100);

selects all rows of x in which the second column is greater than 100.

e = (x[.,1] .gt 0) .and (x[.,3] .lt 100);

y = selif(x,e);

The resulting matrix y is:

All rows for which the element in column 1 is greater than 0 and the
element in column 3 is less than 100 are placed into the matrix y.

������ datatran.src

������� delif, scalmiss

x NxK matrix.
e Nx1 vector of 1’s and 0’s.

y MxK matrix consisting of the rows of x for which there is a 1 in
the corresponding row of e.

let x[3,3] = 0 10 20

30 40 50

60 70 80;

30 40 50

60 70 80
��	��

GAUSS Language Reference

seqa, seqm

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
seqa, seqm

���$��� seqa creates an additive sequence. seqm creates a multiplicative
sequence.

����� y = seqa(start,inc,n);
y = seqm(start,inc,n);

��$��

�#��$��

�%���+� For seqa, y will contain a first element equal to start, the second equal
to start+inc, and the last equal to start+inc*(n-1).

For instance,

seqa(1,1,10)

will create a column vector containing the numbers 1, 2, … 10.

For seqm, y will contain a first element equal to start, the second equal to
start*inc, and the last equal to start*inc(n-1).

For instance,

seqm(10,10,10)

will create a column vector containing the numbers 10, 100, … 1010.

")�$�� a = seqa(2,2,10)’;

m = seqm(2,2,10)’;

a = 2 4 6 8 10 12 14 16 18 20

m = 2 4 8 16 32 64 128 256 512 1024

Note that the results have been transposed in this example. Both functions
return Nx1 (column) vectors.

������� recserar, recsercp

start scalar specifying the first element.
inc scalar specifying increment.
n scalar specifying the number of elements in the sequence.

y Nx1 vector containing the specified sequence.
��	��

Command Reference

setdif

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
setdif

���$��� Returns the unique elements in one vector that are not present in a second
vector.

����� y = setdif(v1,v2,flag);

��$��

�#��$��

")�$�� let v1 = mary jane linda john;

let v2 = mary sally;

flag = 0;

y = setdif(v1,v2,flag);

������ setdif.src

v1 Nx1 vector.
v2 Mx1 vector.
flag scalar, if 0, case-sensitive character comparison.

if 1, numeric comparison.
if 2, case-insensitive character comparison.

y Lx1 sorted vector containing all unique values that are in v1 and
are not in v2, or a scalar missing.

y
JANE

JOHN

LINDA

=

��	��

GAUSS Language Reference

setvars

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
setvars

���$��� Reads the variable names from a data set header and creates global
matrices with the same names.

����� nvec = setvars(dataset);

��$��

�#��$��

�%���+� setvars is designed to be used interactively.

")�$�� nvec = setvars(“freq”);

������� vars.src

������� makevars

dataset string, the name of the GAUSS data set. Do not use a file
extension.

nvec Nx1 character vector, containing the variable names defined
in the data set.
��	��

Command Reference

setvwrmode

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
setvwrmode

���$��� Sets the graphics viewer mode.

 	���� pgraph

����� oldmode = setvwrmode(mode);

��$��

#��$��

%���+� If mode is a null string, the current mode will be returned with no changes
made.

If "one" is set, the viewer executable will be vwr.exe.

")�$�� oldmode = setvwrmode("one");

call setvwrmode(oldmode);

������ pgraph.src

������� pqgwin

mode string, new mode or null string.
"one" Use only one viewer.
"many" Use a new viewer for each graph.

oldmode string, previous mode.
��	��

GAUSS Language Reference

setwind

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
setwind

���$��� Sets the current graphic panel to a previously created graphic panel
number.

 	���� pgraph

����� setwind(n);

��$��

%���+� This function selects the specified graphic panel to be the current graphic
panel. This is the graphic panel in which the next graph will be drawn.

See the discussion on using graphic panels in “Publication Quality
Graphics in the User’s Guide.

������ pwindow.src

������� begwind, endwind, getwind, nextwind, makewind,
window

n scalar, graphic panel number.
��	��

Command Reference

shell

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
shell

���$��� Executes an operating system command.

����� shell [[s]] ;

��$��

�%���+� shell lets you run shell commands and programs from inside GAUSS.
If a command is specified, it is executed; when it finishes, you
automatically return to GAUSS. If no command is specified, the shell is
executed and control passes to it, so you can issue commands
interactively. You have to type exit to get back to GAUSS in that case.

If you specify a command in a string variable, precede it with the
(caret) ^ .

")�$�� comstr = “ls ./src”;

shell ^comstr;

This lists the contents of the ./src subdirectory, then returns to GAUSS.

shell cmp n1.fmt n1.fmt.old;

This compares the matrix file n1.fmt to an older version of itself,
n1.fmt.old, to see if it has changed. When cmp finishes, control is
returned to GAUSS.

shell;

This executes an interactive shell. The OS prompt will appear and OS
commands or other programs can be executed. To return to GAUSS, type
exit.

������� exec

s literal or ^string, the command to be executed.
��	��

GAUSS Language Reference

shiftr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
shiftr

���$��� Shifts the rows of a matrix.

����� y = shiftr(x,s,f);

��$��

�#��$��

�%���+� The shift is performed within each row of the matrix, horizontally. If the
shift value is positive, the elements in the row will be moved to the right.
A negative shift value causes the elements to be moved to the left. The
elements that are pushed off the end of the row are lost, and the fill value
will be used for the new elements on the other end.

")�$�� y = shiftr(x,s,f);

If and and

Then

If and and

Then

������� rotater

x NxK matrix to be shifted.
s scalar or Nx1 vector specifying the amount of shift.
f scalar or Nx1 vector specifying the value to fill in.

y NxK shifted matrix.

x 1 2

3 4
= s 1

1–
= f 99

999
=

y 99 1

4 999
=

x
1 2 3

4 5 6

7 8 9

= s
0

1

2

= f 0=

y
1 2 3

0 4 5

0 0 7

=

��	��

Command Reference

show, lshow

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
show, lshow

���$��� Displays the global symbol table. The output from lshow is sent to the
printer.

����� show [[-flags]] [[symbol]] ;
lshow [[-flags]] [[symbol]] ;

��$��

�%���+� If there are no arguments, the entire symbol table will be displayed.

show is directed to the auxiliary output if it is open.

Here is an example listing with an explanation of the columns:

32000 bytes program space, 0% used
4336375 bytes workspace, 4325655 bytes free
53 global symbols, 1500 maximum, 6 shown

flags flags to specify the symbol type that is shown.
k keywords
p procedures
f fn functions
m matrices
s strings
g show only symbols with global references
l show only symbols with all local references
n no pause

symbol the name of the symbol to be shown. If the last character is an
asterisk (*), all symbols beginning with the supplied
characters will be shown.

Memory used Address Name Info Cplx Type References

32 bytes at [00081b74] AREA 1=1 FUNCTION local refs

32 bytes at [00081a14] dotfeq 1=2 PROCEDURE global refs

1144 bytes at [0007f1b4] indices2 4=3 PROCEDURE local refs

144 bytes at [0007f874] X 3,3 C MATRIX

352 bytes at [0007f6ec] _IXCAT 44,1 MATRIX

8 bytes at [0007f6dc] _olsrnam 7 char STRING
��	�	

GAUSS Language Reference

show, lshow

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
The “Memory used” column is the amount of memory used by the item.

The “Address” column is the address where the item is stored
(hexadecimal format). This will change as matrices and strings change in
size.

The “Name” column is the name of the symbol.

The “Info” column depends on the type of the symbol. If the symbol is a
procedure or a function, it gives the number of values that the function or
procedure returns and the number of arguments that need to be passed to
it when it is called. If the symbol is a matrix, then the Info column gives
the number of rows and columns. If the symbol is a string, then the Info
column gives the number of characters in the string. As follows:

The “Cplx” column contains a “C” if the symbol is a complex matrix.

The “Type” column specifies the symbol table type of the symbol. It can
be function, keyword, matrix, procedure, or string.

If the symbol is a procedure, keyword or function, the “References”
column will show if it makes any global references. If it makes only local
references, the procedure or function can be saved to disk in an .fcg file
with the save command. If the function or procedure makes any global
references, it cannot be saved in an .fcg file.

The program space is the area of space reserved for all nonprocedure,
nonfunction program code. It can be changed in size with the new
command. The workspace is the memory used to store matrices, strings,
procedures, and functions.

")�$�� show /fpg eig*;

This command will show all functions and procedures that have global
references and begin with eig.

show /mn;

This command will show all matrices without pausing when the window
is full.

������� new, delete

Rets=Args if procedure or function
Row,Col if matrix
Length if string
��	�

Command Reference

sin

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sin

���$��� Returns the sine of its argument.

����� y = sin(x);

��$��

�#��$��

�%���+� For real matrices, x should contain angles measured in radians.

To convert degrees to radians, multiply the degrees by .

")�$�� let x = { 0, .5, 1, 1.5 };

y = sin(x);

������� atan, cos, sinh, pi

x NxK matrix.

y NxK matrix containing sine of x.

π
180

y

0.00000000

0.47942554

0.84147098

0.99749499

=

��	��

GAUSS Language Reference

sinh

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sinh

���$��� Computes the hyperbolic sine.

����� y = sinh(x);

��$��

�#��$��

�")�$�� let x = { -0.5, -0.25, 0, 0.25, 0.5, 1 };

x = x * pi;

y = sinh(x);

������ trig.src

x NxK matrix.

y NxK matrix containing the hyperbolic sines of the elements of x.

x

1.570796–

0.785398–

0.000000

0.785398

1.570796

3.141593

=

y

2.301299–

0.868671–

0.000000

0.868671

2.301299

11.548739

=

��	��

Command Reference

sleep

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sleep

���$��� Sleeps for a specified number of seconds.

����� unslept = sleep(secs);

��$��

#��$��

�%���+� secs does not have to be an integer. If your system does not permit
sleeping for a fractional number of seconds, secs will be rounded to the
nearest integer, with a minimum value of 1.

If a program sleeps for the full number of secs specified, sleep returns
0; otherwise, if the program is awakened early (e.g., by a signal), sleep
returns the amount of time not slept. The DOS version always sleeps the
full number of seconds, so it always returns 0.

A program may sleep for longer than secs seconds, due to system
scheduling.

secs scalar, number of seconds to sleep.

unslept scalar, number of seconds not slept.
��	��

GAUSS Language Reference

solpd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
solpd

���$��� Solves a set of positive definite linear equations.

����� x = solpd(b,A);

��$��

�#��$��

�%���+� b can have more than one column. If so, the system of equations is solved
for each column, i.e., A*x[.,i] = b[.,i].

This function uses the Cholesky decomposition to solve the system
directly. Therefore it is more efficient than using inv(A)*b.

solpd does not check to see that the matrix A is symmetric. solpd will
look only at the upper half of the matrix including the principal diagonal.

If the A matrix is not positive definite:

One obvious use for this function is to solve for least squares coefficients.
The effect of this function is thus similar to that of the / operator.

If X is a matrix of independent variables, and Y is a vector containing the
dependent variable, then the following code will compute the least
squares coefficients of the regression of Y on X:

b = solpd(X’Y,X’X);

b NxK matrix.
A NxN symmetric positive definite matrix.

x NxK matrix, the solutions for the system of equations, Ax=b.

trap 1 return scalar error code 30.
trap 0 terminate with an error message.
��	��

Command Reference

solpd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� n = 5; format 20,8;

A = rndn(n,n);

A = A’A;

x = rndn(n,1);

b = A*x;

x2 = solpd(b,A);

print “ X solpd(b,A) Difference”;

print x~x2~x-x2;

Produces:

������� scalerr, chol, invpd, trap

 X solpd(b,A) Difference

-0.36334089 -0.36334089 0.00000000

 0.19683330 0.19683330 8.32667268E-017

 0.99361330 0.99361330 2.22044605E-016

-1.84167681 -1.84167681 0.00000000

-0.88455829 -0.88455829 1.11022302E-016
��	��

GAUSS Language Reference

sortc, sortcc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sortc, sortcc

���$��� Sorts a matrix of numeric or character data.

����� y = sortc(x,c);
y = sortcc(x,c);

��$��

�#��$��

�%���+� These functions will sort the rows of a matrix with respect to a specified
column. That is, they will sort the elements of a column and will arrange
all rows of the matrix in the same order as the sorted column.

sortc assumes the column to sort on is numeric. sortcc assumes that
the column to sort on contains character data.

The matrix may contain both character and numeric data, but the sort
column must be all of one type. Missing values will sort as if their value is
below –∞.

The sort will be in ascending order. This function uses the Quicksort
algorithm.

If you need to obtain the matrix sorted in descending order, you can use:

rev(sortc(x,c))

")�$�� let x[3,3]= 4 7 3

 1 3 2

 3 4 8;

y = sortc(x,1);

x NxK matrix.
c scalar specifying one column of x to sort on.

y NxK matrix equal to x and sorted on the column c.

x
4 7 3

1 3 2

3 4 8

=

��	��

Command Reference

sortc, sortcc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� rev

y
1 3 2

3 4 8

4 7 3

=

��	��

GAUSS Language Reference

sortd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sortd

���$��� Sorts a data file on disk with respect to a specified variable.

����� sortd(infile,outfile,keyvar,keytyp);

��$��

%���+� The data set infile will be sorted on the variable keyvar, and will be placed
in outfile.

If the inputs are null or 0, the procedure will ask for them.

������ sortd.src

infile string, name of input file.
outfile string, name of output file, must be different.
keyvar string, name of key variable.
keytyp scalar, type of key variable.

 1 numeric key, ascending order.
 2 character key, ascending order.
-1 numeric key, descending order.
-2 character key, descending order.
��	��

Command Reference

sorthc, sorthcc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sorthc, sorthcc

���$��� Sorts a matrix of numeric or character data.

����� y = sorthc(x,c);
y = sorthcc(x,c);

��$��

�#��$��

�%���+� These functions will sort the rows of a matrix with respect to a specified
column. That is, they will sort the elements of a column and will arrange
all rows of the matrix in the same order as the sorted column.

sorthc assumes that the column to sort on is numeric. sorthcc
assumes that the column to sort on contains character data.

The matrix may contain both character and numeric data, but the sort
column must be all of one type. Missing values will sort as if their value is
below –∞.

The sort is in ascending order. This function uses the heap sort algorithm.

If you need to obtain the matrix sorted in descending order, you can use:

rev(sorthc(x,c))

")�$�� let x[3,3]= 4 7 3

 1 3 2

 3 4 8;

y = sorthc(x,1);

x NxK matrix.
c scalar specifying one column of x to sort on.

y NxK matrix equal to x and sorted on the column c.

x
4 7 3

1 3 2

3 4 8

=

��	�	

GAUSS Language Reference

sorthc, sorthcc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� sortc, rev

y
1 3 2

3 4 8

4 7 3

=

��	�

Command Reference

sortind, sortindc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sortind, sortindc

���$��� Returns the sorted index of x.

����� ind = sortind(x);
ind = sortindc(x);

��$��

#��$��

�%���+� sortind assumes x contains numeric data. sortindc assumes x
contains character data.

This function can be used to sort several matrices in the same way that
some other reference matrix is sorted. To do this, create the index of the
reference matrix, then use submat to rearrange the other matrices in the
same way.

")�$�� let x = 5 4 4 3 3 2 1;

ind = sortind(x);

y = x[ind];

x Nx1 column vector.

ind Nx1 vector representing sorted index of x.
��	��

GAUSS Language Reference

sortmc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sortmc

���$��� Sorts a matrix on multiple columns.

����� y = sortmc(x,v);

��$��

�#��$��

�%���+� The function works recursively and the number of sort columns is limited
by the available workspace.

������ sortmc.src

x NxK matrix to be sorted.
v Lx1 vector containing integers specifying the columns, in order,

that are to be sorted. If an element is negative, that column will
be interpreted as character data.

y NxK sorted matrix.
��	��

Command Reference

sparseCols

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseCols

���$��� Returns the number of columns in a sparse matrix.

������ c = sparseCols(x);

��$��

#��$��

������� sparse.src

x MxN sparse matrix.

c scalar, number of columns.
��	��

GAUSS Language Reference

sparseEye

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseEye

���$��� Returns a sparse identity matrix.

����� y = sparseEye(n);

��$��

#��$��

")�$�� y = sparseEye(3);

d = denseSubmat(y,0,0);

n scalar, order of identity matrix.

y NxN sparse identity matrix.

d
1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

=

��	��

Command Reference

sparseFD

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z

sparseFD

���$��� Converts dense matrix gto sparse matrix.

������ y = sparseFD(x,eps);

��$��

#��$��

%���+� A dense matrix is just a normal format matrix.

������� sparse.src

x MxN dense matrix.
eps scalar, elements of x less than eps will be treated as zero.

y MxN sparse matrix.
��	��

GAUSS Language Reference

sparseFP

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseFP

���$��� Converts packed matrix to sparse matrix.

������ y = sparseFP(x,r,c);

��$��

�#��$��

%���+� x contains the nonzero elements of the sparse matrix. The first column of
x contains the element value, the second column the row number, and the
third column the column number.

������ sparse.src

x Mx3 packed matrix, see remarks for format.
r scalar, rows of output matrix.
c scalar, columns of output matrix.

y RxC sparse matrix.
��	��

Command Reference

sparseHConcat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseHConcat

���$��� Horizontally concatenates two sparse matrices.

������ z = sparseHConcat(y,x);

��$��

#��$��

������� sparse.src

y MxN sparse matrix, left hand matrix.
x MxL sparse matrix, right hand matrix.

z Mx(N+L) sparse matrix.
��	��

GAUSS Language Reference

sparseNZE

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseNZE

���$��� Returns the number of nonzero elements in a sparse matrix.

������ r = sparseNZE(x);

��$��

#��$��

������� sparse.src

x MxN sparse matrix.

r scalar, number of nonzero elements in x.
��	��

Command Reference

sparseOnes

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseOnes

���$��� Generates sparse matrix of ones and zeros

����� y = sparseOnes(x,r,c);

��$��

#��$��

������� sparse.src

x Mx2 matrix, first column contains row numbers of the ones, and
the second column contains column numbers.

r scalar, rows of full matrix.
c scalar, columns of full matrix.

y sparse matrix of ones.
��	�	

GAUSS Language Reference

sparseRows

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseRows

���$��� Returns the number of rows in a sparse matrix.

������ r = sparseRows(x);

��$��

#��$��

������� sparse.src

x MxN sparse matrix.

r scalar, number of rows.
��	�

Command Reference

sparseSet

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseSet

���$��� Resets sparse library global matrices to default values.

������ sparseSet;

������ _sparse_ARnorm, _sparse_Acond, _sparse_Anorm,

_sparse_Atol, _sparse_Btol, _sparse_CondLimit,

_sparse_Damping, _sparse_NumIters,

_sparse_RetCode, _sparse_Rnorm, _sparse_Xnorm

������ sparse.src
��	��

GAUSS Language Reference

sparseSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseSolve

���$��� Solves Ax = B for x when A is a sparse matrix.

������ x = sparseSolve(A,B);

��$��

��������$��

#��$��

A MxN sparse matrix.
B Nx1 vector.

_sparse_Damping scalar, if nonzero, damping coefficient for
damped least squares solve, i.e.,

is solved for X where
d =_sparse_Damping, I is a conformable
identity matrix, and 0 a conformable matrix
of zeros.

_sparse_Atol scalar, an estimate of the relative error in A.
If zero, _sparse_Atol is assumed to be
machine precision. Default = 0.

_sparse_Btol an estimate of the relative error in B. If zero,
_sparse_Btol is assumed to be machine
precision. Default = 0.

_sparse_CondLimit upper limit on condition of A. Iterations will
be terminated if a computed estimate of the
condition of A exceeds
_sparse_CondLimit. If zero, set to 1 /
machine precision.

_sparse_NumIters maximum number of iterations.

A

dI

B

0
=

x Nx1 vector, solution of Ax = B.
��	��

Command Reference

sparseSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�����
#��$��

������ sparse.src

_sparse_RetCode scalar, termination condition.
0 x is the exact solution, no iterations

performed.
1 solution is nearly exact with accuracy

on the order of _sparse_Atol
and_sparse_Btol.

2 solution is not exact and a least squares
solution has been found with accuracy
on the order of _sparse_Atol.

3 the estimate of the condition of A has
exceeded _sparse_CondLimit.
The system appears to be ill-
conditioned.

4 solution is nearly exact with reasonable
accuracy.

5 solution is not exact and a least squares
solution has been found with
reasonable accuracy.

6 iterations halted due to poor condition
given machine precision.

7 _sparse_NumIters exceeded.
_sparse_Anorm scalar, estimate of Frobenius norm of

_sparse_Acond estimate of condition of A.
_sparse_Rnorm estimate of norm of

_sparse_ARnorm estimate of norm of

_sparse_XAnorm estimate of norm of x.

A

dI

A

dI
x B

0
–

A

dI

′ A

dI
��	��

GAUSS Language Reference

sparseSubmat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseSubmat

���$��� Returns (sparse) submatrix of sparse matrix.

����� e = sparseSubmat(x,r,c);

��$��

#��$��

%���+� If r or c are scalar zeros, all rows or columns will be returned.

������� sparse.src

x MxN sparse matrix.
r Kx1 vector, row indices.
c Lx1 vector, column indices.

e KxL sparse matrix.
��	��

Command Reference

sparseTD

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseTD

���$��� Multiplies sparse matrix by dense matrix.

����� z = sparseTD(s,d);

��$��

#��$��

������� sparse.src

s MxN sparse matrix.
d NxL dense matrix.

z MxL dense matrix, the result of s x d.
��	��

GAUSS Language Reference

sparseTrTD

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseTrTD

���$��� Multiplies sparse matrix transposed by dense matrix.

����� z = sparseTrTD(s,d);

��$��

#��$��

������� sparse.src

s NxM sparse matrix.
d NxL dense matrix.

z MxL dense matrix, the result of s’d.
��	��

Command Reference

sparseVConcat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sparseVConcat

���$��� Vertically concatenates two sparse matrices.

������ z = sparseVConcat(y,x);

��$��

#��$��

������� sparse.src

y MxN sparse matrix, top matrix.
x LxN sparse matrix, bottom matrix.

z (M+L)xN sparse matrix.
��	��

GAUSS Language Reference

spline

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
spline

���$��� Computes a two-dimensional interpolatory spline.

������ { u,v,w } = spline(x,y,z,sigma,g);

��$��

#��$��

%���+� sigma contains the tension factor. This value indicates the curviness
desired. If sigma is nearly zero (e.g., .001), the resulting surface is
approximately the tensor product of cubic splines. If sigma is large
(e.g., 50.0), the resulting surface is approximately bi-linear. If sigma
equals zero, tensor products of cubic splines result. A standard value for
sigma is approximately 1.

g is the grid size factor. It determines the fineness of the output grid. For
g = 1, the output matrices are identical to the input matrices. For g = 2, the
output grid is twice as fine as the input grid, i.e., u will have twice as
many columns as x, v will have twice as many rows as y, and w will have
twice as many rows and columns as z.

������ spline.src

x 1xK vector, x-abscissae (x-axis values).
y Nx1 vector, y-abscissae (y-axis values).
z KxN matrix, ordinates (z-axis values).
sigma scalar, tension factor.
g scalar, grid size factor.

u 1xK*G vector, x-abscissae, regularly spaced.
v N*Gx1 vector, y-abscissae, regularly spaced.
w K*G x N*G matrix, interpolated ordinates.
��	��

Command Reference

spline1D

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
spline1D

���$��� Computes a smoothing spline for a curve.

����� { u,v } = spline1D(x,y,d,s,sigma,g);

��$��

#��$��

%���+� sigma contains the tension factor. This value indicates the curviness
desired. If sigma is nearly zero (e.g. 0.001), the resulting curve is
approximately the tensor product of cubic splines. If sigma is large (e.g.
50), the resulting curve is approximately bi-linear. If sigma equals zero,
tensor products of cubic splines result. A standard value for sigma is
approximately 1.

G is the grid size factor. It determines the fineness of the output grid. For
G = 1, the output matrices are identical to the input matrices. For G = 2,
the output grid is twice as fine as the input grid, i.e., u will have twice as
many columns as x, and v will have twice as many rows as y.

x Kx1 vector, x-abscissae (x-axis values).
y Kx1 vector, y-ordinates (y-axis values).
d Kx1 vector or scalar, observation weights.
s scalar, smoothing parameter, if s = 0, curve performs an

interpolation. If d contains standard deviation estimates, a
reasonable value for s is K.

sigma scalar, tension factor.
G scalar, grid size factor.

u K*Gx1vector, x-abscissae, regularly spaced.
v N*Gx1 vector, interpolated ordinates, regularly spaced.
��	�	

GAUSS Language Reference

spline2D

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
spline2D

���$��� Computes a smoothing spline for a surface.

����� { u,v,w } = spline2D(x,y,z,sigma,g);

��$��

#��$��

%���+� sigma contains the tension factor. This value indicates the curviness
desired. If sigma is nearly zero (e.g. 0.001), the resulting surface is
approximately the tensor product of cubic splines. If sigma is large (e.g.
50.), the resulting surface is approximately bi-linear. If sigma equals zero,
tensor products of cubic splines result. A standard value for sigma is
approximately 1.

G is the grid size factor. It determines the fineness of the output grid. For
G = 1, the output matrices are identical to the input matrices. For G = 2,
the output grid is twice as fine as the input grid, i.e., u will have twice as
many columns as x, and v will have twice as many rows as y.

x Kx1 vector, x-abscissae (x-axis values).
y Nx1 vector, y-abscissae (y-axis values).
z KxN matrix, ordinates (z-axis values).
sigma scalar, tension factor.
G scalar, grid size factor.

u 1xK*G vector, x-abscissae, regularly spaced.
v N*Gx1 vector, y-abscissae, regularly spaced.
w K*GxN*G matrix, interpolated ordinates.
��	�

Command Reference

sqpSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sqpSolve

���$��� Solves the nonlinear programming problem using a sequential quadratic
programming method.

����� { x,f,lagr,retcode } = sqpSolve(&fct,start);

���$��

�����
��$��

&fct pointer to a procedure that computes the function to be
minimized. This procedure must have one input argument,
a vector of parameter values, and one output argument, the
value of the function evaluated at the input vector of
parameter values.

start Kx1 vector of start values.

_sqp_A MxK matrix, linear equality constraint
coefficients.

_sqp_B Mx1 vector, linear equality constraint
constants.

These globals are used to specify linear
equality constraints of the following type:

_sqp_A * X = _sqp_B

where X is the Kx1 unknown parameter
vector.
��	��

GAUSS Language Reference

sqpSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
_sqp_EqProc scalar, pointer to a procedure that computes
the nonlinear equality constraints. For
example, the statement:

_sqp_EqProc = eqproc;

tells sqpSolve that nonlinear equality
constraints are to be placed on the parameters
and where the procedure computing them is to
be found. The procedure must have one input
argument, the Kx1 vector of parameters, and
one output argument, the Rx1 vector of
computed constraints that are to be equal to
zero. For example, suppose that you wish to
place the following constraint:

P[1] * P[2] = P[3]

The procedure for this is:

proc eqproc(p);

retp(p[1]*[2]-p[3]);

endp;

_sqp_C MxK matrix, linear inequality constraint
coefficients.

_sqp_D Mx1 vector, linear inequality constraint
constants.

These globals are used to specify linear
inequality constraints of the following type:

_sqp_C * X ≥ _sqp_D

where X is the Kx1 unknown parameter
vector.
��	��

Command Reference

sqpSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
_sqp_IneqProc scalar, pointer to a procedure that computes
the nonlinear inequality constraints. For
example the statement:

_sqp_EqProc = &ineqproc;

tells sqpSolve that nonlinear equality
constraints are to be placed on the parameters
and where the procedure computing them is to
be found. The procedure must have one input
argument, the Kx1 vector of parameters, and
one output argument, the Rx1 vector of
computed constraints that are to be equal to
zero. For example, suppose that you wish to
place the following constraint:

P[1] * P[2] ≥ P[3]

The procedure for this is:

proc ineqproc(p);

retp(p[1]*[2]-p[3]);

endp;

_sqp_Bounds Kx2 matrix, bounds on parameters. The first
column contains the lower bounds, and the
second column the upper bounds. If the
bounds for all the coefficients are the same, a
1x2 matrix may be used. Default is:

[1] -1e256

[2] 1e256
��	��

GAUSS Language Reference

sqpSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
_sqp_GradProc scalar, pointer to a procedure that computes
the gradient of the function with respect to the
parameters. For example, the statement:

_sqp_GradProc = &gradproc;

tells sqpSolve that a gradient procedure
exists and where to find it. The user-provided
procedure has two input arguments, a Kx1
vector of parameter values and an NxP matrix
of data. The procedure returns a single output
argument, an NxK matrix of gradients of the
log-likelihood function with respect to the
parameters evaluated at the vector of
parameter values.

Default = 0, i.e., no gradient procedure has
been provided.

_sqp_HessProc scalar, pointer to a procedure that computes
the Hessian, i.e., the matrix of second order
partial derivatives of the function with respect
to the parameters. For example, the
instruction:

_sqp_HessProc = &hessproc;

will tell sqpSolve that a procedure has been
provided for the computation of the Hessian
and where to find it. The procedure that is
provided by the user must have two input
arguments, a Px1 vector of parameter values
and an NxK data matrix. The procedure
returns a single output argument, the PxP
symmetric matrix of second order derivatives
of the function evaluated at the parameter
values.

_sqp_MaxIters scalar, maximum number of iterations.
Default = 1e+5. Termination can be forced by
pressing C on the keyboard.

_sqp_DirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When
this criterion has been satisifed sqpSolve
will exit the iterations.

_sqp_ParNames Kx1 character vector, parameter names.
��	��

Command Reference

sqpSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�#��$��

_sqp_PrintIters scalar, if nonzero, prints iteration information.
Default = 0. Can be toggled during iterations
by pressing P on the keyboard.

_sqp_FeasibleTest scalar, if nonzero, parameters are tested for
feasibility before computing function in line
search. If function is defined outside
inequality boundaries, then this test can be
turned off.

_sqp_RandRadius scalar, If zero, no random search is attempted.
If nonzero it is the radius of random search
which is invoked whenever the usual line
search fails. Default = .01.

__output scalar, if nonzero, results are printed. Default
= 0.

x Kx1 vector of parameters at minimum.
f scalar, function evaluated at x.
lagr vector, created using vput. Contains the Lagrangean for the

constraints. They may be extracted with the vread
command using the following strings:
“lineq” Lagrangeans of linear equality constraints
“nlineq” Lagrangeans of nonlinear equality constraints
“linineq” Lagrangeans of linear inequality constraints
“nlinineq” Lagrangeans of nonlinear inequality

constraints
“bounds” Lagrangeans of bounds
Whenever a constraint is active, its associated Lagrangean
will be nonzero.

retcode return code:
0 normal convergence
1 forced exit
2 maximum number of iterations exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 error with constraints
��	��

GAUSS Language Reference

sqpSolve

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
��%���+� Pressing C on the keyboard will terminate iterations, and pressing P will
toggle iteration output.

sqpSolve is recursive, that is, it can call itself with another function and
set of global variables.

To reset global variables for this function to their default values, call
sqpSolveSet.

")�$�� sqpSolveSet;

proc fct(x);

retp((x[1] + 3*x[2] + x[3])^2 + 4*(x[1] -

x[2])^2);

endp;

proc ineqp(x);

retp(6*x[2] + 4*x[3] - x[1]^3 - 3);

endp;

proc eqp(x);

retp(1-sumc(x));

endp;

_sqp_Bounds = { 0 1e256 };

start = { .1, .7, .2 };

_sqp_IneqProc = &ineqp;

_sqp_EqProc = &eqp;

{ x,f,lagr,ret } = sqpSolve(&fct,start);

������� sqpsolve.src
��	��

Command Reference

sqrt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z

sqrt

���$��� Computes the square root of every element in a matrix.

����� y = sqrt(x);

��$��

�#��$��

��%���+� If x is negative, complex results are returned.

You can turn the generation of complex numbers for negative inputs on or
off in the GAUSS configuration file, and with the sysstate function,
case 8. If you turn it off, sqrt will generate an error for negative inputs.

If x is already complex, the complex number state doesn’t matter; sqrt
will compute a complex result.

")�$�� let x[2,2] = 1 2 3 4;

y = sqrt(x);

x NxK matrix.

y NxK matrix, the square roots of each element of x.

x 1.00000000 2.00000000

3.00000000 4.00000000
=

y 1.00000000 1.41421356

1.73205081 2.00000000
=

��	��

GAUSS Language Reference

stdc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
stdc

���$��� Computes the standard deviation of the elements in each column of a
matrix.

����� y = stdc(x);

��$�� [

�#��$��

�%���+� This function essentially computes:

sqrt(1/(N-1)*sumc((x-meanc(x)’)^2))

Thus, the divisor is N-1 rather than N, where N is the number of elements
being summed. To convert to the alternate definition, multiply by

sqrt((N-1)/N)

")�$�� y = rndn(8100,1);

std = stdc(y);

std = 1.008377

In this example, 8100 standard Normal random variables are generated,
and their standard deviation is computed.

������� meanc

x NxK matrix.

y Kx1 vector, the standard deviation of each column of x.
��	��

Command Reference

stocv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
stocv

���$��� Converts a string to a character vector.

����� v = stocv(s);

��$��

#��$��

%���+� stocv breaks s up into a vector of 8-character length matrix elements.
Note that the character information in the vector is not guaranteed to be
null-terminated.

")�$�� s = “Now is the time for all good men”;

v = stocv(s);

������� cvtos, vget, vlist, vput, vread

s string, to be converted to character vector.

v Nx1 character vector, contains the contents of s.

″Now is t″
″he time ″
″for all ″

″good men″

=

��	�	

GAUSS Language Reference

stof

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
stof

���$��� Converts a string to floating point.

����� y = stof(x);

��$��

�#��$��

�%���+� If x is a string containing “1 2 3”, then stof will return a 3x1 matrix
containing the numbers 1, 2, and 3.

If x is a null string, stof will return a 0.

This uses the same input conversion routine as loadm and let. It will
convert character elements and missing values. stof also converts
complex numbers in the same manner as let.

������� ftos, ftocv, chrs

x string, or NxK matrix containing character elements to be
converted.

y matrix, the floating point equivalents of the ASCII numbers in x.
��	�

Command Reference

stop

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
stop

���$��� Stops a program and returns to the command prompt. Does not close files.

����� stop;

%���+� This command has the same effect as end, except it does not close files
or the auxiliary output.

It is not necessary to put a stop or an end statement at the end of a
program. If neither is found, an implicit stop is executed.

������� end, new, system
��	��

GAUSS Language Reference

strindx

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
strindx

���$��� Finds the index of one string within another string.

����� y = strindx(where,what,start);

��$��

#��$��

%���+� An example of the use of this function is the location of a name within a
string of names:

z = “Whatchmacallit”;

x = “call”;

y = strindx(z,x,1);

This function is used with strsect for extracting substrings.

������� strrindx, strlen, strsect, strput

where string or scalar, the data to be searched.
what string or scalar, the substring to be searched for in where.
start scalar, the starting point of the search in where for an occurrence

of what. The index of the first character in a string is 1.

y scalar containing the index of the first occurrence of what, within
where, which is greater than or equal to start. If no occurrence is
found, it will be 0.

y 9=
��		�

Command Reference

strlen

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
strlen

���$��� Returns the length of a string.

����� y = strlen(x);

��$��

�#��$��

�%���+� The null character (ASCII 0) is a legal character within strings and so
embedded nulls will be counted in the length of strings. The final
terminating null byte is not counted, though.

For character matrices, the length is computed by counting the characters
(maximum of 8) up to the first null in each element of the matrix. The null
character, therefore, is not a valid character in matrices containing
character data and is not counted in the lengths of the elements of those
matrices.

")�$�� x = “How long?”;

y = strlen(x);

������� strsect, strindx, strrindx

x string or NxK matrix of character data.

y scalar containing the exact length of the string x or NxK
matrix of the lengths of the elements in the matrix x.

y 9=
��		�

GAUSS Language Reference

strput

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
strput

���$��� Lays a substring over a string.

����� y = strput(substr,str,off);

��$��

#��$��

�")�$�� str = “max”;

sub = “imum”;

f = 4;

y = strput(sub,str,f);

print y;

Produces:

maximum

������� strput.src

substr string, the substring to be laid over the other string.
str string, the string to receive the substring.
off scalar, the offset in str to place substr. The offset of the

first byte is 1.

y string, the new string.
��		�

Command Reference

strrindx

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
strrindx

���$��� Finds the index of one string within another string. Searches from the end
of the string to the beginning.

����� y = strrindx(where,what,start);

��$��

#��$��

%���+� A negative value for start causes the search to begin at the end of the
string. An example of the use of strrindx is extracting a file name
from a complete path specification:

path = “/gauss/src/ols.src”;

ps = “/”;

pos = strrindx(path,ps,-1);

if pos;

name = strsect(path,pos+1,strlen(path));

else;

name = “”;

endif;

strrindx can be used with strsect for extracting substrings.

������� strindx, strlen, strsect, strput

where string or scalar, the data to be searched.
what string or scalar, the substring to be searched for in where.
start scalar, the starting point of the search in where for an

occurrence of what. where will be searched from this point
backward for what.

y scalar containing the index of the last occurrence of what,
within where, which is less than or equal to start. If no
occurrence is found, it will be 0.

pos 11=

name ″ols.src″=
��		�

GAUSS Language Reference

strsect

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
strsect

���$��� Extracts a substring of a string.

����� y = strsect(str,start,len);

��$��

�#��$��

�%���+� If there are not enough characters in a string for the defined substring to
be extracted, then a short string or a null string will be returned.

If str is a matrix containing character data, it must be scalar.

")�$�� strng = “This is an example string.”

y = strsect(strng,12,7);

������� strlen, strindx, strrindx

str string or scalar from which the segment is to be obtained.
start scalar, the index of the substring in str.

The index of the first character is 1.
len scalar, the length of the substring.

y string, the extracted substring, or a null string if start is
greater than the length of str.

y example=
��		�

Command Reference

strsplit

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
strsplit

���$��� Splits an Nx1 string vector into an NxK string array of the individual
tokens.

����� sa = strsplit(sv);

��$��

#��$��

%���+� Each row of sv must contain the same number of tokens. The following
characters are considered delimiters between tokens:

Tokens containing delimiters must be enclosed in single or double quotes
or parentheses. Tokens enclosed in single or double quotes will NOT
retain the quotes upon translation. Tokens enclosed in parentheses WILL
retain the parentheses after translation. Parentheses cannot be nested.

")�$�� let string sv = {

"dog ’cat fish’ moose",

"lion, zebra, elk",

"seal owl whale"

};

sa = strsplit(sv);

sv Nx1 string array.

sa NxK string array.

space ASCII 32
tab ASCII 9
comma ASCII 44
newline ASCII 10
carriage return ASCII 13
��		�

GAUSS Language Reference

strsplit

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
 ’dog’ ’cat fish’ ’moose’

sa = ’lion’ ’zebra’ ’elk’

 ’seal’ ’owl’ ’whale’

������� strsplitPad
��		�

Command Reference

strsplitPad

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
strsplitPad

���$��� Splits a string vector into a string array of the individual tokens. Pads on
the right with null strings.

����� sa = strsplitPad(sv, cols);

��$��

#��$��

%���+� Rows containing more than cols tokens are truncated and rows containing
fewer than cols tokens are padded on the right with null strings. The
following characters are considered delimiters between tokens:

Tokens containing delimiters must be enclosed in single or double quotes
or parentheses. Tokens enclosed in single or double quotes will NOT
retain the quotes upon translation. Tokens enclosed in parentheses WILL
retain the parentheses after translation. Parentheses cannot be nested.

")�$�� let string sv = {

"dog ’cat fish’ moose",

"lion, zebra, elk, bird",

"seal owl whale"

};

sa = strsplitPad(sv, 4);

sv Nx1 string array.
cols scalar, number of columns of output string array.

sa Nxcols string array.

space ASCII 32
tab ASCII 9
comma ASCII 44
newline ASCII 10
carriage return ASCII 13
��			

GAUSS Language Reference

strsplitPad

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
 ’dog’ ’cat fish’ ’moose’ ’’

sa = ’lion’ ’zebra’ ’elk’ ’bird’

 ’seal’ ’owl’ ’whale’ ’’

������� strsplit
��		

Command Reference

strtodt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
strtodt

���$��� Converts a string array of dates to a matrix in DT scalar format.

����� x = strtodt(sa, fmt);

��$��

#��$��

%���+� The DT scalar format is a double precision representation of the date and
time. In the DT scalar format, the number

20010421183207

represents 18:32:07 or 6:32:07 PM on April 21, 2001.

")�$�� x = strtodt("2001-03-25 14:58:49",

"YYYY-MO-DD HH:MI:SS");

print x;

produces:

20010325145849.0

sa NxK string array containing dates.
fmt string containing date/time format characters.

x NxK matrix of dates in DT scalar format.

The following formats are supported:
YYYY 4 digit year
YR Last two digits of year
MO Number of month, 01-12
DD Day of month, 01-31
HH Hour of day, 00-23
MI Minute of hour, 00-59
SS Second of minute, 00-59
��		�

GAUSS Language Reference

strtodt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
x = strtodt("2001-03-25 14:58:49", "YYYY-MO-DD");

print x;

produces:

20010325000000.0

x = strtodt("14:58:49", "HH:MI:SS");

print x;

produces:

145849.0

x = strtodt("04-15-00", "MO-DD-YR");

print x;

produces:

20000415000000.0

������� dttostr, dttoutc, utctodt
��	
�

Command Reference

strtof

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
strtof

���$��� Converts a string array to a numeric matrix.

����� x = strtof(sa);

��$��

#��$��

%���+� This function supports real matrices only. Use strtofcplx for
complex data.

������� strtofcplx, ftostrC

sa NxK string array containing numeric data.

x NxK matrix.
��	
�

GAUSS Language Reference

strtofcplx

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
strtofcplx

���$��� Converts a string array to a complex numeric matrix.

����� x = strtofcplx(sa);

��$��

#��$��

%���+� strtofcplx supports both real and complex data. It is slower than
strtof for real matrices. strtofcplx requires the presence of the
real part. The imaginary part can be absent.

������� strtof, ftostrC

sa NxK string array containing numeric data.

x NxK complex matrix.
��	
�

Command Reference

submat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
submat

���$��� Extracts a submatrix of a matrix, with the appropriate rows and columns
given by the elements of vectors.

����� y = submat(x,r,c);

��$��

�#��$��

�%���+� If r = 0, then all rows of x will be used. If c = 0, then all columns of x will
be used.

")�$�� let x[3,4] = 1 2 3 4 5 6 7 8 9 10 11 12;

let v1 = 1 3;

let v2 = 2 4;

y = submat(x,v1,v2);

z = submat(x,0,v2);

������� diag, vec, reshape

x NxK matrix.
r LxM matrix of row indices.
c PxQ matrix of column indices.

y (L*M)x(P*Q) submatrix of x, y may be larger than x.

x
1 2 3 4

5 6 7 8

9 10 11 12

=

y 2 4

10 12
=

z
2 4

6 8

10 12

=

��	
�

GAUSS Language Reference

subscat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
subscat

���$��� Changes the values in a vector depending on the category a particular
element falls in.

����� y = subscat(x,v,s);

��$��

#��$��

x Nx1 vector.
v Px1 numeric vector, containing breakpoints specifying the

ranges within which substitution is to be made. This
MUST be sorted in ascending order.

v can contain a missing value as a separate category if the
missing value is the first element in v.

If v is a scalar, all matches must be exact for a substitution
to be made.

s Px1 vector, containing values to be substituted.

y Nx1 vector, with the elements in s substituted for the
original elements of x according to which of the regions
the elements of x fall into:

…

If missing is not a category specified in v, missings in x are
passed through without change.

v[1] x v 1[] s 1[]→≤
x v 2[] s 2[]→≤

<

v[p 1]– x v[p] s[p]→≤
x v[p] the original value of x→>

<

��	
�

Command Reference

subscat

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
����")�$�� let x = 1 2 3 4 5 6 7 8 9 10;

let v = 4 5 8;

let s = 10 5 0;

y = subscat(x,v,s);

y

10

10

10

10

5

0

0

0

9

10

=

��	
�

GAUSS Language Reference

substute

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
substute

���$��� Substitutes new values for old values in a matrix, depending on the
outcome of a logical expression.

����� y = substute(x,e,v);

��$��

�#��$��

%���+� The e matrix is usually the result of an expression or set of expressions
using dot conditional and boolean operators.

")�$��

e = x[.,1] .$== “Y” .and x[.,2] .≥ 55 .and x[.,3] .≥

30;

x[.,1] = substute(x[.,1],e,0$+“R”);

x NxK matrix containing the data to be changed.
e LxM matrix, ExE conformable with x containing 1’s and

0’s.

Elements of x will be changed if the corresponding
element of e is 1.

v PxQ matrix, ExE conformable with x and e, containing the
values to be substituted for the original values of x when
the corresponding element of e is 1.

y max(N,L,P) by max(K,M,Q) matrix.

x = { Y 55 30,

N 57 18,

Y 24 3,

N 63 38,

Y 55 32,

N 37 11 };
��	
�

Command Reference

substute

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Here is what x looks like after substitution:

������ datatran.src

������� code, recode

e

1

0

0

0

1

0

=

y

R 55 30

N 57 18

Y 24 3

N 63 38

R 55 32

N 37 11

=

��	
	

GAUSS Language Reference

sumc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sumc

���$��� Computes the sum of each column of a matrix.

����� y = sumc(x);

��$�� x

�#��$��

%���+� To find the sums of the elements in each row of a matrix, transpose before
applying sumc. If x is complex, use the bookkeeping transpose (.′).

To find the sums of all of the elements in a matrix, use the vecr function
before applying sumc.

")�$�� x = round(rndu(5,3)*5);

y = sumc(x);

������� cumsumc, meanc, stdc

x NxK matrix.

y Kx1 vector, the sums of each column of x.

x

2 4 3

2 1 2

5 1 3

5 1 1

3 3 4

=

y
17

10

13

=

��	

Command Reference

surface

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
surface

���$��� Graphs a 3-D surface.

 	���� pgraph

����� surface(x,y,z);

��$��

��������$��

x 1xK vector, the X axis data.
y Nx1 vector, the Y axis data.
z NxK matrix, the matrix of height data to be plotted.

_psurf 2x1 vector, controls 3-D surface characteristics.
[1] if 1, show hidden lines. Default 0.
[2] color for base (default 7). The base is an outline of

the X-Y plane with a line connecting each corner to
the surface. If 0, no base is drawn.

_pticout scalar, if 0 (default), tick marks point inward, if 1, tick
marks point outward.

_pzclr Z level color control.

There are 3 ways to set colors for the Z levels of a surface
graph.
1. To specify a single color for the entire surface plot,

set the color control variable to a scalar value 1−15.
Example:

_pzclr = 15;

2. To specify multiple colors distributed evenly over
the entire Z range, set the color control variable to a
vector containing the desired colors only. GAUSS
will automatically calculate the required
corresponding Z values for you. The following
example will produce a three color surface plot, the
Z ranges being lowest=blue, middle=light blue,
highest=white:

_pzclr = { 1, 10, 15 };
��	
�

GAUSS Language Reference

surface

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������ psurface.src

������� volume, view

3. To specify multiple colors distributed over selected
ranges, the Z ranges as well as the colors must be
manually input by the user. The following example
assumes -0.2 to be the minimum value in the z
matrix:

_pzclr = {-0.2 1, /* z ≥ -0.2 */

 /* blue */

0.0 10, /* z ≥ 0.0 light blue */

0.2 15 }; /* z ≥ 0.2 white */

Since a Z level is required for each selected color, the
user must be responsible to compute the minimum
value of the z matrix as the first Z range element.
This may be most easily accomplished by setting the
_pzclr matrix as shown above (the first element
being an arbitrary value), then reset the first element
to the minimum z value as follows:

_pzclr = { -0.0 1,

 0.0 10,

 0.2 15 };

_pzclr [1,1] = minc(minc(z));

 0 Black 8 Dark Grey
 1 Blue 9 Light Blue
 2 Green 10 Light Green
 3 Cyan 11 Light Cyan
 4 Red 12 Light Red
 5 Magenta 13 Light Magenta
 6 Brown 14 Yellow
 7 Grey 15 White
��	��

Command Reference

svd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
svd

���$��� Computes the singular values of a matrix.

����� s = svd(x);

��$��

#��$��

�����
#��$��

%���+� Error handling is controlled with the low bit of the trap flag.

")�$��

������ svd.src

������� svd1, svd2, svds

x NxP matrix whose singular values are to be computed.

s Mx1 vector, where M = min(N,P), containing the singular
values of x arranged in descending order.

_svderr global scalar, if not all of the singular values can be
computed _svderr will be nonzero. The singular values
in s[_svderr+1], … s[M] will be correct.

trap 0 set _svderr and terminate with message
trap 1 set _svderr and continue execution

x = { 4 3 6 7,

8 2 9 5 },

y = svd(x);

y 16.521787

3.3212254
=

��	��

GAUSS Language Reference

svd1

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
svd1

���$��� Computes the singular value decomposition of a matrix so that:
x = u * s * v’.

����� { u,s,v } = svd1(x);

��$��

#��$��

�����
#��$��

%���+� Error handling is controlled with the low bit of the trap flag.

")�$�� x = rndu(3,3);

{ u, s, v } = svd1(x);

x NxP matrix whose singular values are to be computed.

u NxN matrix, the left singular vectors of x.
s NxP diagonal matrix, containing the singular values of x

arranged in descending order on the principal diagonal.
v PxP matrix, the right singular vectors of x.

_svderr global scalar, if all of the singular values are correct,
_svderr is 0. If not all of the singular values can be
computed, _svderr is set and the diagonal elements of s
with indices greater than _svderr are correct.

trap 0 set _svderr and terminate with message
trap 1 set _svderr and continue execution

x
0.97847012 0.20538614 0.59906497

0.85474208 0.79673540 0.22482095

0.33340653 0.74443792 0.75698778

=

u
0.57955818– 0.65204491 1.48882486

0.61005618– 0.05056673 0.79074298–

0.54031821– 0.75649219– 0.36847767

=

��	��

Command Reference

svd1

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������ svd.src

������� svd, svd2, svdusv

s
1.84994646 0.00000000 0.00000000

0.00000000 0.60370542 0.00000000

0.00000000 0.00000000 0.47539239

=

v
0.68578561– 0.71062560 0.15719208–

0.54451302– 0.64427479– 0.53704336–

0.48291165– 0.28270348– 0.82877927

=

��	��

GAUSS Language Reference

svd2

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
svd2

���$��� Computes the singular value decomposition of a matrix so that:
x = u * s * v’ (compact u).

����� { u,s,v } = svd2(x);

��$��

#��$��

������
#��$��

%���+� Error handling is controlled with the low bit of the trap flag.

������ svd.src

������ _svderr

������� svd, svd1, svdcusv

x NxP matrix whose singular values are to be computed.

u NxN or NxP matrix, the left singular vectors of x. If N > P,
then u will be NxP containing only the P left singular
vectors of x.

s NxP or PxP diagonal matrix, containing the singular
values of x arranged in descending order on the principal
diagonal. If N > P, then s will be PxP.

v PxP matrix, the right singular vectors of x.

_svderr global scalar, if all of the singular values are correct,
_svderr is 0. If not all of the singular values can be
computed, _svderr is set and the diagonal elements of s
with indices greater than _svderr are correct.

trap 0 set _svderr and terminate with message
trap 1 set _svderr and continue execution
��	��

Command Reference

svdcusv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
svdcusv

���$��� Computes the singular value decomposition of a matrix so that:
x = u * s * v’ (compact u).

����� { u,s,v } = svdcusv(x);

��$��

#��$��

%���+� If not all the singular values can be computed, s[1,1] is set to a scalar
error code. Use scalerr to convert this to an integer. The diagonal
elements of s with indices greater than scalerr(s[1,1]) are correct. If
scalerr(s[1,1]) returns a 0, all the singular values have been
computed.

������� svd2, svds, svdusv

x NxP matrix whose singular values are to be computed.

u NxN or NxP matrix, the left singular vectors of x. If N > P,
u is NxP containing only the P left singular vectors of x.

s NxP or PxP diagonal matrix, the singular values of x
arranged in descending order on the principal diagonal.
If N > P, s is PxP.

v PxP matrix, the right singular vectors of x.
��	��

GAUSS Language Reference

svds

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
svds

���$��� Computes the singular values of a matrix.

����� s = svds(x);

��$��

#��$��

%���+� If not all the singular values can be computed, s[1] is set to a scalar error
code. Use scalerr to convert this to an integer. The elements of s with
indices greater than scalerr(s[1]) are correct. If scalerr(s[1])
returns a 0, all the singular values have been computed.

������� svd, svdcusv, svdusv

x NxP matrix whose singular values are to be computed.

s min(N,P)x1 vector, the singular values of x arranged in
descending order.
��	��

Command Reference

svdusv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
svdusv

���$��� Computes the singular value decomposition of a matrix so that:
x = u * s * v’.

����� { u,s,v } = svdusv(x);

��$��

#��$��

%���+� If not all the singular values can be computed, s[1,1] is set to a scalar
error code. Use scalerr to convert this to an integer. The diagonal
elements of s with indices greater than scalerr(s[1,1]) are correct. If
scalerr(s[1,1]) returns a 0, all the singular values have been
computed.

������� svd1, svdcusv, svds

x NxP matrix whose singular values are to be computed.

u NxN matrix, the left singular vectors of x.
s NxP diagonal matrix, the singular values of x arranged in

descending order on the principal diagonal.
v PxP matrix, the right singular vectors of x.
��	�	

GAUSS Language Reference

sysstate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
sysstate

���$��� Gets or sets general system parameters.

����� { rets... } = sysstate(case,y);

��$�� Case 1 Version Information

Returns the current GAUSS version information in an
8-element numeric vector.

Cases 2
through 7

GAUSS System Paths

Get or set GAUSS system path.
Case 8 Complex Number Toggle

Controls automatic generation of complex numbers in
sqrt, ln, and log for negative arguments.

Case 9 Complex Trailing Character

Get and set trailing character for the imaginary part of a
complex number.

Case 10 Printer Width

Get and set lprint width.
Case 11 Auxiliary Output Width

Get and set the auxiliary output width.
Case 12 Precision

Get and set precision for positive definite matrix routines.
Case 13 LU Tolerance

Get and set singularity tolerance for LU decomposition.
Case 14 Cholesky Tolerance

Get and set singularity tolerance for Cholesky
decomposition.

Case 15 Screen State

Get and set window state as controlled by screen
command.

Case 16 Automatic print Mode

Get and set automatic print mode.
��	�

Command Reference

sysstate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
����21 Version Information

Returns the current GAUSS version information in an 8-element numeric
vector.

����� vi = sysstate(1,0);

#��$��

Case 17 Automatic lprint Mode

Get and set automatic lprint mode.
Case 18 Auxiliary Output

Get auxiliary output parameters.
Case 19 Get/Set Format

Get and set format parameters.
Case 21 Imaginary Tolerance

Get and set the imaginary tolerance.
Case 22 Source Path

Get and set the path the compiler will search for source files.
Case 24 Dynamic Library Directory

Get and set the path for the default dynamic library directory.
Case 25 Temporary File Path
Case 26 Interface Mode

Returns the current interface mode.
Case 28 Random Number Generator Parameters
Case 30 Base Year Toggle

Specifies whether year value returned by date is to include
base year (1900) or not.

vi 8x1 numeric vector containing version information:
[1] Major version number.
[2] Minor version number.
[3] Revision.
[4] Machine type.
[5] Operating system.
[6] Runtime module.
[7] Light version.
[8] Always 0.
��	��

GAUSS Language Reference

sysstate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
�����3
��������41 GAUSS System Paths

Get or set GAUSS system path.

����� oldpath = sysstate(case,path);

��$��

#��$��

%���+� If path is of type matrix, the path will be returned but not modified.

vi[4] indicates the type of machine on which GAUSS is
running:
1 Intel x86
2 Sun SPARC
3 IBM RS/6000
4 HP 9000
5 SGI MIPS
6 DEC Alpha
vi[5] indicates the operating system on which GAUSS is
running:
1 DOS
2 SunOS 4.1.x
3 Solaris 2.x
4 AIX
5 HP-UX
6 IRIX
7 OSF/1
8 OS/2
9 Windows

case scalar 2-7, path to set.
2 .exe file location.
3 loadexe path.
4 save path.
5 load, loadm path.
6 loadf, loadp path.
7 loads path.

path scalar 0 to get path, or string containing the new path.

oldpath string, original path.
��
��

Command Reference

sysstate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
����51 Complex Number Toggle

Controls automatic generation of complex numbers in sqrt, ln and log
for negative arguments.

����� oldstate = sysstate(8,state);

��$��

#��$��

%���+� If state = 1, log, ln, and sqrt will return complex numbers for
negative arguments. If state = 0, the program will terminate with an error
message when negative numbers are passed to log, ln, and sqrt. If
state = -1, the current state is returned and left unchanged. The default
state is 1.

����61 Complex Trailing Character

Get and set trailing character for the imaginary part of a complex number.

����� oldtrail = sysstate(9,trail);

��$��

#��$��

%���+� The default character is “i”.

����271 Printer Width

Get and set lprint width.

����� oldwidth = sysstate(10,width);

��$��

#��$��

%���+� If width is 0, the printer width will not be changed.

This may also be set with the lpwidth command.

������� lpwidth

state scalar, 1, 0, or -1.

oldstate scalar, the original state.

trail scalar 0 to get character, or string containing the new
trailing character.

oldtrail string, the original trailing character.

width scalar, new printer width.

oldwidth scalar, the current original width.
��
��

GAUSS Language Reference

sysstate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
����221 Auxiliary Output Width

Get and set the auxiliary output width.

����� oldwidth = sysstate(11,width);

��$��

#��$��

%���+� If width is 0 then the output width will not be changed.

This may also be set with the outwidth command.

������� outwidth

����231 Precision

Get and set precision for positive definite matrix routines.

����� oldprec = sysstate(12,prec);

��$��

#��$��

�����	�	�� Windows, UNIX

This function has no effect under Windows or UNIX. All computations
are done in 64-bit precision (except for operations done entirely within
the 80x87 on Intel machines).

%���+� The precision will be changed if prec is either 64 or 80. Any other number
will leave the precision unchanged.

������� prcsn

����281 LU Tolerance

Get and set singularity tolerance for LU decomposition.

����� oldtol = sysstate(13,tol);

��$��

#��$��

width scalar, new output width.

oldwidth scalar, the original output width.

prec scalar, 64 or 80.

oldprec scalar, the original value.

tol scalar, new tolerance.

oldtol scalar, the original tolerance.
��
��

Command Reference

sysstate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
%���+� The tolerance must be >= 0. If tol is negative, the tolerance is returned
and left unchanged.

������� croutp, inv

����291 Cholesky Tolerance

Get and set singularity tolerance for Cholesky decomposition.

����� oldtol = sysstate(14,tol);

��$��

#��$��

%���+� The tolerance must be >= 0. If tol is negative, the tolerance is returned
and left unchanged.

������� chol, invpd, solpd

����2:1 Screen State

Get and set window state as controlled by screen command.

����� oldstate = sysstate(15,state);

��$��

#��$��

%���+� If state = 1, window output is turned on. If state = 0, window output is
turned off. If state = -1, the state is returned unchanged.

������� screen

����2;1 Automatic print Mode

Get and set automatic print mode.

����� oldmode = sysstate(16,mode);

��$��

tol scalar, new tolerance.

oldtol scalar, the original tolerance.

state scalar, new window state.

oldstate scalar, the original window state.

mode scalar, mode.
��
��

GAUSS Language Reference

sysstate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
#��$��

%���+� If mode = 1, automatic print mode is turned on. If mode = 0, it is turned
off. If mode = -1, the mode is returned unchanged.

������� print on/off

����241 Automatic lprint Mode

Get and set automatic lprint mode.

����� oldmode = sysstate(17,mode);

���$��

#��$��

%���+� If mode = 1, automatic lprint mode is turned on. If mode = 0, it is
turned off. If mode = -1, the mode is returned unchanged.

������� lprint on/off

����251 Auxiliary Output

Get auxiliary output parameters.

����� { state,name } = sysstate(18,dummy);

��$��

#��$��

������� output

����261 Get/Set Format

Get and set format parameters.

����� oldfmt = sysstate(19,fmt);

oldmode scalar, original mode.

mode scalar, mode.

oldmode scalar, original mode.

dummy scalar, a dummy argument.

state scalar, auxiliary output state, 1 - on, 0 - off.
name string, auxiliary output filename.
��
��

Command Reference

sysstate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
��$��

#��$��

���%���+� If fmt is scalar 0, then the format parameters will be left unchanged.

������� format

����321 Imaginary Tolerance

Get and set the imaginary tolerance.

����� oldtol = sysstate(21,tol);

��$��

#��$��

%���+� The imaginary tolerance is used to test whether the imaginary part of a
complex matrix can be treated as zero or not. Functions that are not
defined for complex matrices check the imaginary part to see if it can be
ignored. The default tolerance is 2.23e–16, or machine epsilon.

If tol < 0, the current tolerance is returned.

������� hasimag

fmt scalar or 11x1 column vector containing the new format
parameters. Usually this will have come from a previous
sysstate(19,0) call. See Output for description of matrix.

oldfmt 11x1 vector containing the current format parameters:
[1] format type.
[2] justification.
[3] sign.
[4] leading zero.
[5] trailing character.
[6] row delimiter.
[7] carriage line feed position.
[8] automatic line feed for row vectors.
[9] field.
[10] precision.
[11] formatted flag

tol scalar, the new tolerance.

oldtol scalar, the original tolerance.
��
��

GAUSS Language Reference

sysstate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
����331 Source Path

Get and set the path the compiler will search for source files.

����� oldpath = sysstate(22,path);

��$��

�#��$��

%���+� If path is a matrix, the current source path is returned.

This resets the src_path configuration variable. src_path is initially
defined in the GAUSS configuration file, gauss.cfg.

path can list a sequence of directories, separated by semicolons.

Resetting src_path affects the path used for subsequent run and
compile statements.

����391 Dynamic Library Directory

Get and set the path for the default dynamic library directory.

����� oldpath = sysstate(24,path);

��$��

�#��$��

%���+� If path is a matrix, the current path is returned.

path should list a single directory, not a sequence of directories.

Changing the dynamic library path does not affect the state of any DLL’s
currently linked to GAUSS. Rather, it determines the directory that will
be searched the next time dlibrary is called.

UNIX

Changing the path has no effect on GAUSS’s default DLL,
libgauss.so. libgauss.so must always be located in the
GAUSSHOME directory.

Windows

Changing the path has no effect on GAUSS' default DLL, gauss.dll.
gauss.dll must always be located in the GAUSSHOME directory.

OS/2

path scalar 0 to get path, or string containing the new path.

oldpath string, original path.

path scalar 0 to get path, or string containing the new path.

oldpath string, original path.
��
��

Command Reference

sysstate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Changing the path has no effect on GAUSS’s default DLL, gauss.dll.
gauss.dll must always be located in the same directory as the GAUSS
executable, gauss.exe.

DOS

sysstate 24 has no effect, as dlibrary and dllcall are not
supported.

������� dlibrary, dllcall

����3:1 Temporary File Path

Get or set the path GAUSS will use for temporary files..

����� oldpath = sysstate(25,path);

��$��

#��$�� oldpath string, original path.

%���+� If path is of type matrix, the path will be returned but not modified.

����3;1 Interface Mode

Returns the current interface mode.

����� mode = sysstate(26,0);

#��$��

�%���+� A mode of 0 indicates that you’re running a non-X version of GAUSS;
i.e., a version that has no X Windows capabilities. A mode of 1 indicates
that you’re running an X Windows version of GAUSS, but in terminal
mode; i.e., you started GAUSS with the -v flag. A mode of 2 indicates
that you’re running GAUSS in X Windows mode.

����351 Random Number Generator Parameters

Get and set the random number generator (RNG) parameters.

path scalar 0 to get path, or string containing the new path.

mode scalar, interface mode flag
0 non-X mode
1 terminal (-v) mode
2 X Windows mode
��
�	

GAUSS Language Reference

sysstate

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
����� oldprms = sysstate(28,prms);

��$��

#��$��

�����	�	�� Not supported for DOS.

%���+� If prms is a scalar 0, the current parameters will be returned without being
changed.

The modulus of the RNG cannot be changed; it is fixed at 2^32.

������� rndcon, rndmult, rndseed, rndns, rndus, rndn, rndu

����871 Base Year Toggle

Specifies whether year value returned by date is to include base year
(1900) or not.

����� oldstate = sysstate(30,state);

��$��

#��$��

�����	�	�� DOS

sysstate 30 has no effect. It always returns a 4-digit year.

%���+� Internally, date acquires the number of years since 1900. sysstate 30
specifies whether date should add the base year to that value or not. If
state = 1, date adds 1900, returning a fully-qualified 4-digit year.

If state = 0, date returns the number of years since 1900. If state is a
missing value, the current state is returned. The default state is 1.

prms scalar 0 to get parameters, or 3x1 matrix of new parameters.
[1] seed, 0 < seed < 2^32
[2] multiplier, 0 < mult < 2^32
[3] constant, 0 ≤ const < 2^32

oldprms 3x1 matrix, current parameters.

state scalar, 1, 0, or missing value.

oldstate scalar, the original state.
��
�

Command Reference

system

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
system

���$��� Quits GAUSS and returns to the operating system.

����� system;

system c;

��$��

�%���+� The system command always returns an exit code to the operating system
or invoking program. If you don’t supply one, it returns 0. This is usually
interpreted as indicating success.

������� exec

c scalar, an optional exit code that can be recovered by the
program that invoked GAUSS. The default is 0. Valid arguments
are 0-255.
��
��

GAUSS Language Reference

tab

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
tab

���$��� Tabs the cursor to a specified text column.

����� tab(col);
print expr1 expr2 tab(col1) expr3 tab(col2) expr4
...;

��$��

%���+� col specifies an absolute column position. If col is not an integer, it will be
truncated.

tab can be called alone or embedded in a print statement. You cannot
embed it within a parenthesized expression in a print statement,
though. For example:

print (tab(20) c + d * e);

will not give the results you expect. If you have to use parenthesized
expressions, write it like this instead:

print tab(20) (c + d * e);

col scalar, the column position to tab to.
��
��

Command Reference

tan

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
tan

���$��� Returns the tangent of its argument.

����� y = tan(x);

��$��

�#��$��

�%���+� For real matrices, x should contain angles measured in radians.

To convert degrees to radians, multiply the degrees by .

")�$�� let x = 0 .5 1 1.5;

y = tan(x);

������� atan, pi

x NxK matrix.

y NxK matrix.

π
180

y

0.00000000

0.54630249

1.55740772

14.10141995

=

��
��

GAUSS Language Reference

tanh

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
tanh

���$��� Computes the hyperbolic tangent.

����� y = tanh(x);

��$��

�#��$��

�")�$�� let x = -0.5 -0.25 0 0.25 0.5 1;

x = x * pi;

y = tanh(x);

������ trig.src

x NxK matrix.

y NxK matrix containing the hyperbolic tangents of the elements of
x.

x

1.570796–

0.785398–

0.000000

0.785398

1.570796

3.141593

=

y

0.917152–

0.655794–

0.000000

0.655794

0.917152

0.996272

=

��
��

Command Reference

tempname

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
tempname

���$��� Creates a temporary file with a unique name.

������ tname = tempname(path,pre,suf);

���$��

#��$��

%���+� Any or all of the inputs may be a null string or 0. If path is not specified,
the current working directory is used.

If unable to create a unique file name of the form requested, tempname
returns a null string.

WARNING: GAUSS does not remove temporary files created by
tempname. It is left to the user to remove them when they are no longer
needed.

path string, path where the file will reside.
pre string, a prefix to begin the file name with.
suf string, a suffix to end the file name with.

tname string, unique temporary file name of the form
path/preXXXXnnnnnsuf, where XXXX are 4 letters, and nnnnn
is the process id of the calling process.
��
��

GAUSS Language Reference

time

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
time

���$��� Returns the current system time.

����� y = time;

#��$��

")�$�� print time;

 7.000000

31.000000

46.000000

33.000000

������� date, datestr, datestring, datestrymd, hsec,
timestr

y 4x1 numeric vector, the current time in the order: hours, minutes,
seconds, and hundredths of a second.
��
��

Command Reference

timedt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
timedt

���$��� Returns system date and time in DT scalar format.

����� dt = timedt;

#��$��

%���+� The DT scalar format is a double precision representation of the date and
time. In the DT scalar format, the number

20010421183207

represents 18:32:07 or 6:32:07 PM on April 21, 2001.

������ time.src

������� todaydt, timeutc, dtdate

dt scalar, system date and time in DT scalar format.
��
��

GAUSS Language Reference

timestr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
timestr

���$��� Formats a time in a vector to a string.

����� ts = timestr(t);

��$��

�#��$��

")�$�� t = { 7, 31, 46, 33 };

ts = timestr(t);

print ts;

Produces:

7:31:46

������ time.src

������� date, datestr, datestring, datestrymd, ethsec,
etstr, time

t 4x1 vector from the time function, or a zero. If the input is 0, the
time function will be called to return the current system time.

ts 8 character string containing current time in the format hr:mn:sc
��
��

Command Reference

timeutc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
timeutc

���$��� Returns the number of seconds since January 1, 1970 Greenwich Mean
Time.

����� tc = timeutc;

#��$��

")�$�� tc = timeutc;

utv = utctodtv(tc);

tc = 939235033

utv = 1999 10 6 11 37 13 3 278

������� dtvnormal, utctodtv

tc scalar, number of seconds since January 1, 1970 Greenwich Mean
Time.
��
�	

GAUSS Language Reference

title

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
title

���$��� Sets the title for the graph.

 	���� pgraph

����� title(str);

��$��

�����
#��$��

_ptitle

%���+� Up to three lines of title may be produced by embedding a line feed
character (“\L”) in the title string.

")�$�� title(“First title line\L Second title line\L

Third title line”);

Fonts may be specified in the title string. For instructions on using fonts,
see “Publication Quality Graphics” in the User Guide.

������ pgraph.src

������� xlabel, ylabel, fonts

str string, the title to display above the graph.
��
�

Command Reference

tkf2eps

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
tkf2eps

���$��� Converts a .tkf file to an Encapsulated PostScript file.

 	���� pgraph

����� ret = tkf2eps(tekfile, epsfile);

��$��

#��$��

%���+� The conversion is done using the global parameters in peps.dec. You
can modify these globally by editing the .dec file, or locally by setting
them in your program before calling tkf2eps.

See the header of the output Encapsulated PostScript file and a PostScript
manual if you want to modify these parameters.

tekfile string, name of .tkf file
epsfile string, name of Encapsulated PostScript file

ret scalar, 0 if successful
��
��

GAUSS Language Reference

tkf2ps

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
tkf2ps

���$��� Converts a .tkf file to a PostScript file.

 	���� pgraph

����� ret = tkf2ps(tekfile, psfile);

��$��

#��$��

%���+� The conversion is done using the global parameters in peps.dec. You
can modify these globally by editing the .dec file, or locally by setting
them in your program before calling tkf2ps.

See the header of the output Encapsulated PostScript file and a PostScript
manual if you want to modify these parameters.

tekfile string, name of .tkf file
epsfile string, name of Encapsulated PostScript file

ret scalar, 0 if successful
��
��

Command Reference

tocart

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
tocart

���$��� Converts from polar to cartesian coordinates.

����� xy = tocart(r,theta);

��$��

�#��$��

������� coord.src

r NxK real matrix, radius.
theta LxM real matrix, ExE conformable with r, angle in radians.

xy max(N,L) by max(K,M) complex matrix containing the X
coordinate in the real part and the Y coordinate in the imaginary
part.
��
��

GAUSS Language Reference

todaydt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
todaydt

���$��� Returns system date in DT scalar format. The time returned is always
midnight (00:00:00), the beginning of the returned day.

����� dt = todaydt;

#��$��

%���+� The DT scalar format is a double precision representation of the date and
time. In the DT scalar format, the number

20010421183207

represents 18:32:07 or 6:32:07 PM on April 21, 2001.

������ time.src

�������� timedt, timeutc, dtdate

dt scalar, system date in DT scalar format.
��
��

Command Reference

toeplitz

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
toeplitz

���$��� Creates a Toeplitz matrix from a column vector.

����� t = toeplitz(x);

��$��

#��$��

")�$�� x = seqa(1,1,5);

y = toeplitz(x);

������� toeplitz.src

x Kx1 vector.

t KxK Toeplitz matrix.

x

1

2

3

4

5

=

y

1 2 3 4 5

2 1 2 3 4

3 2 1 2 3

4 3 2 1 2

5 4 3 2 1

=

��
��

GAUSS Language Reference

token

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
token

���$��� Extracts the leading token from a string.

����� { token,str_left } = token(str);

��$��

#��$��

%���+� str can be delimited with commas or spaces.

The advantage of token over parse is that parse is limited to tokens
of 8 characters or less; token can extract tokens of any length.

")�$�� Here is a keyword that uses token to parse its string parameter.

keyword add(s);

local tok,sum;

sum = 0;

do until s $== “”;

{ tok, s } = token(s);

sum = sum + stof(tok);

endo;

format /rd 1,2;

print “Sum is: ” sum;

endp;

If you type:

add 1 2 3 4 5 6;

add will respond:

Sum is: 21.00

������� token.src

str string, the string to parse.

token string, the first token in str.
str_left string, str minus token.
��
��

Command Reference

token

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� parse
��
��

GAUSS Language Reference

topolar

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
topolar

���$��� Converts from cartesian to polar coordinates.

����� { r,theta } = topolar(xy);

��$��

�#��$��

������� coord.src

xy NxK complex matrix containing the X coordinate in the real part
and the Y coordinate in the imaginary part.

r NxK real matrix, radius.
theta NxK real matrix, angle in radians.
��
��

Command Reference

trace

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
trace

���$��� Allows the user to trace program execution for debugging purposes.

����� trace new;
trace new, mask;

���$��

�%���+� The trace command has no effect unless you are running your program
under GAUSS’s source level debugger. Setting the trace flag will not
generate any debugging output during normal execution of a program.

The argument is converted to a binary integer with the following
meanings:

You must set one or more of the output bits to get any output from
trace. If you set trace to 4, you’ll be doing a verbose trace of your
program, but the output won’t be displayed anywhere.

 The trace output as a program executes will be as follows:

Note that the line number trace will only produce output if the program
was compiled with line number records.

new scalar, new value for trace flag.
mask scalar, optional mask to allow leaving some bits of the trace flag

unchanged.

bit decimal meaning
ones 1 trace calls/returns
twos 2 trace line numbers
fours 4 verbose trace
eights 8 output to window
sixteens 16 output to print
thirty-twos 32 output to auxiliary output
sixty-fours 64 output to error log

(+GRAD) calling function or procedure GRAD
(-GRAD) returning from GRAD
[47] executing line 47
��
�	

GAUSS Language Reference

trace

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
To set a single bit use two arguments:

")�$��

������� #lineson

trace 16,16; turn on output to printer
trace 0,16; turn off output to printer

trace 1+8; trace fn/proc calls/returns to

standard output

trace 2+8; trace line numbers to standard

output

trace 1+2+8; trace line numbers and fn/proc

calls/returns to standard

output

trace 1+16; trace fn/proc calls/returns to

printer

trace 2+16; trace line numbers to printer

trace 1+2+16; trace line numbers and fn/proc

calls/returns to printer

trace 4+8; verbose trace to screen
��
�

Command Reference

trap

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
trap

���$��� Sets the trap flag to enable or disable trapping of numerical errors.

����� trap new;
trap new, mask;

��$��

�%���+� The trap flag is examined by some functions to control error handling.
There are 16 bits in the trap flag, but most GAUSS functions will examine
only the lowest order bit:

If we extend the use of the trap flag, we will use the lower order bits of the
trap flag. It would be wise for you to use the highest 8 bits of the trap flag
if you create some sort of user-defined trap mechanism for use in your
programs. (See the function trapchk for detailed instructions on testing
the state of the trap flag; see error for generating user-defined error
codes.)

To set only one bit and leave the others unchanged use two arguments:

")�$�� x = eye(3);

oldval = trapchk(1);

trap 1,1;

y = inv(x);

trap oldval,1;

new scalar, new trap value.
mask scalar, optional mask to allow leaving some bits of the trap flag

unchanged.

trap 1; turn trapping on
trap 0; turn trapping off

trap 1,1; set the ones bit
trap 0,1; clear the ones bit
��
��

GAUSS Language Reference

trap

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
if scalerr(y);

errorlog “WARNING: x is singular”;

else;

print “y” y;

endif;

In this example the result of inv is trapped in case x is singular. The trap
state is reset to the original value after the call to inv.

Run the example

x = eye(3);

It is inverted.

Now try

ones(3,3);

It isn’t.

������� scalerr, trapchk, error
��
��

Command Reference

trapchk

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
trapchk

���$��� Tests the value of the trap flag.

����� y = trapchk(m);

��$��

�#��$��

�%���+� To check the various bits in the trap flag, add the decimal values for the
bits you wish to check according to the chart below and pass the sum in as
the argument to the trapchk function:

If you want to test if either bit 0 or bit 8 is set, then pass an argument of
1+256 or 257 to trapchk. The following table demonstrates values that
will be returned for:

y=trapchk(257);

m scalar mask value.

y scalar which is the result of the bitwise logical AND of the
trap flag and the mask.

bit decimal value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
��
��

GAUSS Language Reference

trapchk

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
GAUSS functions that test the trap flag currently test only bits 0 and 1.

������� scalerr, trap, error

0 1 value of bit 0 in trap flag

0 0 1

1 256 257

value of bit 8 in
trap flag
��
��

Command Reference

trimr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
trimr

���$��� Trims rows from the top and/or bottom of a matrix.

����� y = trimr(x,t,b);

��$��

�#��$��

�%���+� If either t or b is zero, then no rows will be trimmed from that end of the
matrix.

")�$�� x = rndu(5,3);

y = trimr(x,2,1);

������� submat, rotater, shiftr

x NxK matrix from which rows are to be trimmed.
t scalar containing the number of rows which are to be removed

from the top of x.
b scalar containing the number of rows which are to be removed

from the bottom of x.

y RxK matrix where R=N–(t+b) containing the rows left after the
trim.

x

0.76042751 0.33841579 0.01844780

0.05334503 0.38939785 0.65029973

0.93077511 0.06961078 0.04207563

0.53640701 0.06640062 0.07222560

0.14084669 0.06033813 0.69449247

=

y 0.93077511 0.06961078 0.04207563

0.53640701 0.06640062 0.07222560
=

��
��

GAUSS Language Reference

trunc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
trunc

���$��� Converts numbers to integers by truncating the fractional portion.

����� y = trunc(x);

��$��

�#��$��

")�$�� x = 100*rndn(2,2);

y = trunc(x);

������� ceil, floor, round

x NxK matrix.

y NxK matrix containing the truncated elements of x.

x 77.68 14.10–

4.73 158.88–
=

y 77.00 14.00–

4.00 158.00–
=

��
��

Command Reference

type

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
type

���$��� Returns the symbol table type of the argument.

����� t = type(x);

��$��

�#��$��

�%���+� type returns the type of a single symbol. The related function typecv
will take a character vector of symbol names and return a vector of either
their types or the missing value code for any that are undefined. type
works for matrices, strings, and string arrays; typecv works for user-
defined procedures, keywords and functions as well. type works for
global or local symbols; typecv works only for global symbols.

")�$�� k = {“CHARS”};

print k;

if type(k) == 6;

k = “”$+k;

endif;

print k;

produces

+DEN

CHARS

������� typecv, typef

x matrix or string, can be an expression.

t scalar.
6 matrix
13 string
15 string array
��
��

GAUSS Language Reference

typecv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
typecv

���$��� Returns the symbol table type of objects whose names are given as a
string or as elements of a character vector.

����� y = typecv(x);

��$��

�#��$��

�%���+� The values returned by typecv for the various variable types are as
follows:

It will return the GAUSS missing value code if the symbol is not found,
so typecv may be used to determine if a symbol is defined or not.

")�$�� xvar = sqrt(5);

yvar = “Montana”;

fn area(r) = pi*r*r;

let names = xvar yvar area;

y = typecv(names);

x string or Nx1 character vector which contains the names of variables
whose type is to be determined.

y scalar or Nx1 vector containing the types of the respective symbols
in x.

6 Matrix (Numeric, Character, or Mixed)
8 Procedure (proc)
9 Function (fn)
5 Keyword (keyword)

13 String
15 String Array

names
XVAR

YVAR

AREA

=

��
��

Command Reference

typecv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� type, typef, varput, varget

y
6

13

9

=

��
�	

GAUSS Language Reference

typef

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
typef

���$��� Returns the type of data (the number of bytes per element) in a GAUSS
data set.

����� y = typef(fp);

��$��

�#��$��

�%���+� If fp is a valid GAUSS file handle, then y will be set to the type of the data
in the file as follows:

")�$�� infile = “dat1”;

outfile = “dat2”;

open fin = ^infile;

names = getname(infile);

create fout = ^outfile with ^names,0,typef(fin);

In this example a file dat2.dat is created which has the same variables
and variable type as the input file, dat1.dat. typef is used to return
the type of the input file for the create statement.

������� colsf, rowsf

fp scalar, file handle of an open file.

y scalar, type of data in GAUSS data set.

2 2-byte signed integer
4 4-byte IEEE floating point
8 8-byte IEEE floating point
��
�

Command Reference

union

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
union

���$��� Returns the union of two vectors with duplicates removed.

����� y = union(v1,v2,flag);

��$��

�#��$��

�%���+� The combined elements of v1 and v2 must fit into a single vector.

")�$�� let v1 = mary jane linda john;

let v2 = mary sally;

x = union(v1,v2,0);

v1 Nx1 vector.
v2 Mx1 vector.
flag scalar, 1 if numeric data, 0 if character.

y Lx1 vector containing all unique values that are in v1 and v2,
sorted in ascending order.

x

JANE

JOHN

LINDA

MARY

SALLY

=

��
��

GAUSS Language Reference

uniqindx

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z

uniqindx

���$��� Computes the sorted index of x, leaving out duplicate elements.

����� index = uniqindx(x,flag);

��$��

�#��$��

�%���+� Among sets of duplicates it is unpredictable which elements will be
indexed.

")�$�� let x = 5 4 4 3 3 2 1;

ind = uniqindx(x,1);

y = x[ind];

x Nx1 or 1xN vector.
flag scalar, 1 if numeric data, 0 if character.

index Mx1 vector, indices corresponding to the elements of x sorted in
ascending order with duplicates removed.

ind

7

6

5

2

1

=

y

1

2

3

4

5

=

��
��

Command Reference

unique

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
unique

���$��� Sorts and removes duplicate elements from a vector.

����� y = unique(x,flag);

��$��

#��$��

�")�$�� let x = 5 4 4 3 3 2 1;

y = unique(x,1);

x Nx1 or 1xN vector.
flag scalar, 1 if numeric data, 0 if character.

y Mx1 vector, sorted x with the duplicates removed.

y

1

2

3

4

5

=

��
��

GAUSS Language Reference

upmat, upmat1

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
upmat, upmat1

���$��� Returns the upper portion of a matrix. upmat returns the main diagonal
and every element above. upmat1 is the same except it replaces the main
diagonal with ones.

����� u = upmat(x);
u = upmat1(x);

��$��

�#��$��

����")�$��

u = upmat(x);

u1 = upmat1(x);

The resulting matrices are

������� diag.src

������� lowmat, lowmat1, diag, diagrv, crout

x NxK matrix.

u NxK matrix containing the upper elements of the matrix. The
lower elements are replaced with zeros. upmat returns the main
diagonal intact. upmat1 replaces the main diagonal with ones.

x = { 1 2 -1,

2 3 -2,

1 -2 1 };

u
1 2 1–

0 3 2–

0 0 1

=

u1
1 2 1–

0 1 2–

0 0 1

=

��
��

Command Reference

upper

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
upper

���$��� Converts a string or matrix of character data to uppercase.

����� y = upper(x);

��$��

�#��$��

�%���+� If x is a numeric matrix, y will contain garbage. No error message will be
generated since GAUSS does not distinguish between numeric and
character data in matrices.

")�$�� x = “uppercase”;

y = upper(x);

y = UPPERCASE

������� lower

x string or NxK matrix containing the character data to be
converted to uppercase.

y string or NxK matrix containing the uppercase equivalent of data
in x.
��
��

GAUSS Language Reference

use

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
use

���$��� Loads a compiled file at the beginning of the compilation of a source
program.

����� use fname;

��$��

�%���+� The use command can be used ONCE at the TOP of a program to load in
a compiled file which the rest of the program will be added to. In other
words, if xy.e had the following lines:

library pgraph;

external proc xy;

x = seqa(0.1,0.1,100);

It could be compiled to xy.gcg. Then the following program could be
run:

use xy;

xy(x,sin(x));

Which would be equivalent to:

new;

x = seqa(0.1,0.1,100);

xy(x,sin(x));

The use command can be used at the top of files that are to be compiled
with the compile command. This can greatly shorten compile time for a
set of closely related programs. For example:

library pgraph;

external proc xy,logx,logy,loglog,hist;

saveall pgraph;

This would create a file called pgraph.gcg containing all the
procedures, strings and matrices needed to run PQG programs. Other

fname literal or ^string, the name of a compiled file created using the
compile or the saveall command.
��
��

Command Reference

use

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
programs could be compiled very quickly with the following statement at
the top of each:

use pgraph;

or the same statement could be executed once, for instance from the
command prompt, to instantly load all the procedures for PQG.

When the compiled file is loaded with use, all previous symbols and
procedures are deleted before the program is loaded. It is therefore
unnecessary to execute a new before use’ing a compiled file.

use can appear only ONCE at the TOP of a program.

������� compile, run, saveall
��
��

GAUSS Language Reference

utctodt

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
utctodt

���$��� Converts UTC scalar format to DT scalar format.

����� dt = utctodt(utc);

��$��

#��$��

%���+� A UTC scalar gives the number of seconds since or before January 1,
1970 Greenwich Mean Time. In DT scalar format, 11:06:47 on March 15,
2001 is 20010315110647.

")�$�� tc = 985633642;

print "tc = " tc;

dt = utctodt(tc);

print "dt = " dt;

produces:

tc = 985633642

dt = 20010326110722

������ time.src

������� dtvnormal, timeutc, utctodtv, dttodtv, dtvtodt,
dttoutc, dtvtodt, strtodt, dttostr

utc Nx1 vector, UTC scalar format.

dt Nx1 matrix, DT scalar format.
��
��

Command Reference

utctodtv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
utctodtv

���$��� Converts UTC scalar format to DTV vector format.

����� dtv = utctodtv(utc);

��$��

#��$��

%���+� A UTC scalar gives the number of seconds since or before January 1,
1970 Greenwich Mean Time.

")�$�� tc = timeutc;

print "tc = " tc;

dtv = utctodtv(tc);

print "dtv = " dtv;

produces:

tc = 985633642

dtv = 2001 3 26 11 7 22 1 84

������ time.src

������� dtvnormal, timeutc, utctodt, dttodtv, dttoutc,
dtvtodt, dtvtoutc, strtodt, dttostr

utc Nx1 vector, UTC scalar format.

dtv Nx8 matrix, DTV vector format.

Each row of dtv, in DTV vector format, contains:
[N,1] Year
[N,2] Month in Year, 1-12
[N,3] Day of month, 1-31
[N,4] Hours since midnight, 0-23
[N,5] Minutes, 0-59
[N,6] Seconds, 0-59
[N,7] Day of week, 0-6, 0 = Sunday
[N,8] Days since Jan 1 of current year, 0-365
��
�	

GAUSS Language Reference

utrisol

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
utrisol

���$��� Computes the solution of where U is an upper triangular matrix.

����� x = utrisol(b,U);

��$��

#��$��

�%���+� utrisol applies a back solve to to solve for x. If b has more
than one column, each column is solved for separately, i.e., utrisol
applies a back solve to .

Ux b=

b PxK matrix.
U PxP upper triangular matrix.

x PxK matrix.

Ux b=

Ux .,i] b .,i][=[
��
�

Command Reference

vals

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vals

���$��� Converts a string into a matrix of its ASCII values.

����� y = vals(s);

��$��

�#��$��

�%���+� If the string is null, the function will fail and an error message will be
given.

")�$�� k0:

k = key;

if not k;

goto k0;

endif;

if k == vals(“Y”) or k == vals(“y”);

goto doit;

else;

end;

endif;

doit:

In this example the key function is used to read the keyboard. When key
returns a nonzero value, meaning a key has been pressed, the ASCII value
it returns is tested to see if it is an uppercase or lowercase “Y”. If it is, the
program will jump to the label doit, otherwise the program will end.

������� chrs, ftos, stof

s string of length N where N > 0.

y Nx1 matrix containing the ASCII values of the characters in the
string s.
��
��

GAUSS Language Reference

varget

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
varget

���$��� Accesses a global variable whose name is given as a string argument.

����� y = varget(s);

��$��

�#��$��

�%���+� This function searches the global symbol table for the symbol whose
name is in s and returns the contents of the variable if it exists. If the
symbol does not exist, the function will terminate with an Undefined
symbol error message. If you want to check to see if a variable exists
before using this function, use typecv.

")�$�� dog = rndn(2,2);

y = varget(“dog”);

������� typecv, varput

s string containing the name of the global symbol you wish to
access.

y contents of the matrix or string whose name is in s.

dog 0.83429985– 0.34782433

0.91032546 1.75446391
=

y 0.83429985– 0.34782433

0.91032546 1.75446391
=

��
��

Command Reference

vargetl

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vargetl

���$��� Accesses a local variable whose name is given as a string argument.

����� y = vargetl(s);

��$��

�#��$��

�%���+� This function searches the local symbol list for the symbol whose name is
in s and returns the contents of the variable if it exists. If the symbol does
not exist, the function will terminate with an Undefined symbol
error message.

")�$�� proc dog;

local x,y;

x = rndn(2,2);

y = vargetl(“x”);

print “x” x;

print “y” y;

retp(y);

endp;

z = dog;

print “z” z;

s string containing the name of the local symbol you wish to
access.

y contents of the matrix or string whose name is in s.
��
��

GAUSS Language Reference

vargetl

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
Produces:

������� varputl

x

-0.543851 -0.181701

-0.108873 0.0648738

y

-0.543851 -0.181701

-0.108873 0.0648738

z

-0.543851 -0.181701

-0.108873 0.0648738
��
��

Command Reference

varmall

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
varmall

���$��� Computes log-likelihood of a Vector ARMA model.

����� res = varmall(w, phi, theta, vc);

��$��

#��$��

%���+� varmall is adapted from code developed by Jose Alberto Mauricio of
the Universidad Complutense de Madrid. It was published as Algorithm
AS311 in Applied Statistics. Also described in “Exact Maximum
Likelihood Estimation of Stationary Vector ARMA Models,” JASA,
90:282-264.

w NxK matrix, time series.
phi K*PxK matrix, AR coefficient matrices.
theta K*QxK matrix, MA coefficient matrices.
vc KxK matrix, covariance matrix.

ll scalar, log-likelihood. If the calculation fails res is set to
missing value with error code:

Error Code Reason for Failure

1 M < 1
2 N < 1
3 P < 0
4 Q < 0
5 P = 0 and Q = 0
7 floating point work space too small
8 integer work space too small
9 qq is not positive definite
10 AR parameters too close to stationarity

boundary
11 model not stationary
12 model not invertible
13 I+M'H'HM not positive definite
��
��

GAUSS Language Reference

varmares

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
varmares

���$��� Computes residuals of a Vector ARMA model.

����� res = varmares(w, phi, theta);

��$��

#��$��

%���+� varmares is adapted from code developed by Jose Alberto Mauricio of
the Universidad Complutense de Madrid. It was published as Algorithm
AS311 in Applied Statistics. Also described in “Exact Maximum
Likelihood Estimation of Stationary Vector ARMA Models,” JASA,
90:282-264.

w NxK matrix, time series.
phi K*PxK matrix, AR coefficient matrices.
theta K*QxK matrix, MA coefficient matrices.

res NxK matrix, residuals. If the calculation fails res is set to
missing value with error code:

Error Code Reason for Failure

1 M < 1
2 N < 1
3 P < 0
4 Q < 0
5 P = 0 and Q = 0
7 floating point work space too small
8 integer work space too small
9 qq is not positive definite
10 AR parameters too close to stationarity

boundary
11 model not stationary
12 model not invertible
13 I+M'H'HM not positive definite
��
��

Command Reference

varput

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
varput

���$��� Allows a matrix or string to be assigned to a global symbol whose name is
given as a string argument.

����� y = varput(x,n);

��$��

�#��$��

�%���+� x and n may be global or local. The variable, whose name is in n, that x is
assigned to is always a global.

If the function fails, it will be because the global symbol table is full.

This function is useful for returning values generated in local variables
within a procedure to the global symbol table.

")�$�� source = rndn(2,2);

targname = “target”;

if not varput(source,targname);

print “Symbol table full”;

end;

endif;

������� varget, typecv

x NxK matrix or string which is to be assigned to the target
variable.

n string containing the name of the global symbol which will be
the target variable.

y scalar, 1 if the operation is successful and 0 if the operation fails.

source 0.93519984– 0.40642598

0.36867581– 2.57623519
=

t etarg 0.93519984– 0.40642598

0.36867581– 2.57623519
=

��
��

GAUSS Language Reference

varputl

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
varputl

���$��� Allows a matrix or string to be assigned to a local symbol whose name is
given as a string argument.

����� y = varputl(x,n);

��$��

�#��$��

�%���+� x and n may be global or local. The variable, whose name is in n, that x is
assigned to is always a local.

")�$�� proc dog(x);

local a,b,c,d,e,vars,putvar;

a=1;b=2;c=3;d=5;e=7;

vars = { a b c d e };

putvar = 0;

do while putvar $/= vars;

print “Assign x (“ $vars ”): ” ;;

putvar = upper(cons);

print;

endo;

call varputl(x,putvar);

retp(a+b*c-d/e);

endp;

format /rds 2,1;

i = 0;

x NxK matrix or string which is to be assigned to the target
variable.

n string containing the name of the local symbol which will be the
target variable.

y scalar, 1 if the operation is successful and 0 if the operation fails.
��
��

Command Reference

varputl

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
do until i ≥ 5;

z = dog(17);

print “ z is ” z;

i = i + 1;

endo;

Produces:

Assign x (A B C D E): a

z is 22.3

Assign x (A B C D E): b

z is 51.3

Assign x (A B C D E): c

z is 34.3

Assign x (A B C D E): d

z is 4.6

Assign x (A B C D E): e

z is 6.7

������� vargetl
��
�	

GAUSS Language Reference

vartype

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vartype

���$��� Returns a vector of ones and zeros that indicate whether variables in a
data set are character or numeric.

����� y = vartype(names);

��$��

#��$��

%���+� This function is being obsoleted. See vartypef.

If a variable name in names is lowercase, a 0 will be returned in the
corresponding element of the returned vector.

")�$�� names = getname(“freq”);

y = vartype(names);

print $names;

print y;

AGE

PAY

sex

WT

1.0000000

1.0000000

0.0000000

1.0000000

������� vartype.src

names Nx1 character vector of variable names retrieved from a data set
header file with the getname function.

y Nx1 vector of ones and zeros, 1 if variable is numeric, 0 if
character.
��
�

Command Reference

vartypef

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vartypef

���$��� Returns a vector of ones and zeros that indicate whether variables in a
data set are character or numeric.

����� y = vartypef(f);

��$��

#��$��

%���+� This function should be used in place of older functions that are based on
the case of the variable names. You should also use the v96 data set
format.

f file handle of an open file.

y Nx1 vector of ones and zeros, 1 if variable is numeric, 0 if
character.
��
��

GAUSS Language Reference

vcm, vcx

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vcm, vcx

���$��� Computes a variance-covariance matrix.

����� vc = vcm(m);
vc = vcx(x);

��$��

#��$��

������ corr.src

������� momentd

m KxK moment (x′x) matrix. A constant term MUST have been the
first variable when the moment matrix was computed.

x NxK matrix of data.

vc KxK variance-covariance matrix.
��
��

Command Reference

vec, vecr

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vec, vecr

���$��� Creates a column vector by appending the columns/rows of a matrix to
each other.

����� yc = vec(x);
yr = vecr(x);

��$��

�#��$��

��%���+� vecr is much faster.

")�$��

x NxK matrix.

yc (N*K)x1 vector, the columns of x appended to each other.
yr (N*K)x1 vector, the rows of x appended to each other and the

result transposed.

x = { 1 2,

3 4 };

yc = vec(x);

yr = vecr(x);

x 1.000000 2.000000

3.000000 4.000000
=

yc

1.000000

3.000000

2.000000

4.000000

=

yr

1.000000

2.000000

3.000000

4.000000

=

��
��

GAUSS Language Reference

vech

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z

vech

���$��� Vectorizes a symmetric matrix by retaining only the lower triangular
portion of the matrix.

����� v = vech(x);

��$��

�#��$��

�%���+� As you can see from the example below, vech will not check to see if x is
symmetric. It just packs the lower triangular portion of the matrix into a
column vector in row-wise order.

")�$�� x = seqa(10,10,3) + seqa(1,1,3)’;

v = vech(x);

sx = xpnd(v);

�������� xpnd

x NxN symmetric matrix.

v (N*(N+1)/2)x1 vector, the lower triangular portion of the matrix
x.

x
11 12 13

21 22 23

31 32 33

=

v

11

21

22

31

32

33

=

sx
11 21 31

21 22 32

31 32 33

=

��
��

Command Reference

vector (dataloop)

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vector (dataloop)

���$��� Specifies the creation of a new variable within a data loop.

����� vector [[#]] numvar = numeric_expression;
vector $ charvar = character_expression;

%���+� A numeric_expression is any valid expression returning a numeric value.
A character_expression is any valid expression returning a character
value. If neither ‘$’ nor ‘#’ is specified, ‘#’ is assumed.

vector is used in place of make when the expression returns a scalar
rather than a vector. vector forces the result of such an expression to a
vector of the correct length. vector could actually be used anywhere
that make is used, but would generate slower code for expressions that
already return vectors.

Any variables referenced must already exist, either as elements of the
source data set, as externs, or as the result of a previous make,
vector, or code statement.

")�$�� vector const = 1;

������� make
��
��

GAUSS Language Reference

vget

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vget

���$��� Extracts a matrix or string from a data buffer constructed with vput.

����� { x,dbufnew } = vget(dbuf,name);

��$��

#��$��

������� vpack.src

������� vlist, vput, vread

dbuf Nx1 vector, a data buffer containing various strings and
matrices.

name string, the name of the string or matrix to extract from dbuf.

x LxM matrix or string, the item extracted from dbuf.
dbufnew Kx1 vector, the remainder of dbuf after x has been extracted.
��
��

Command Reference

view

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
view

���$��� Sets the position of the observer in workbox units for 3-D plots.

 	���� pgraph

����� view(x,y,z);

��$��

%���+� The size of the workbox is set with volume. The viewer must be outside
of the workbox. The closer the position of the observer, the more
perspective distortion there will be. If x = y = z, the projection will be
isometric.

If view is not called, a default position will be calculated.

Use viewxyz to locate the observer in plot coordinates.

������ pgraph.src

������� volume, viewxyz

x scalar, the X position in workbox units.
y scalar, the Y position in workbox units.
z scalar, the Z position in workbox units.
��
��

GAUSS Language Reference

viewxyz

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
viewxyz

���$��� Sets the position of the observer in plot coordinates for 3-D plots.

 	���� pgraph

����� viewxyz(x,y,z);

��$��

%���+� The viewer must be outside of the workbox. The closer the observer, the
more perspective distortion there will be.

If viewxyz is not called, a default position will be calculated.

Use view to locate the observer in workbox units.

������ pgraph.src

������� volume, view

x scalar, the X position in plot coordinates.
y scalar, the Y position in plot coordinates.
z scalar, the Z position in plot coordinates.
��
��

Command Reference

vlist

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vlist

���$��� Lists the contents of a data buffer constructed with vput.

����� vlist(dbuf);

��$��

%���+� vlist lists the names of all the strings and matrices stored in dbuf.

������ vpack.src

������� vget, vput, vread

dbuf Nx1 vector, a data buffer containing various strings and
matrices.
��
�	

GAUSS Language Reference

vnamecv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vnamecv

���$��� Returns the names of the elements of a data buffer constructed with
vput.

����� cv = vnamecv(dbuf);

��$��

#��$��

������� vget, vput, vread, vtypecv

dbuf Nx1 vector, a data buffer containing various strings and matrices.

cv Kx1 character vector containing the names of the elements of
dbuf.
��
�

Command Reference

volume

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
volume

���$��� Sets the length, width, and height ratios of the 3-D workbox.

 	���� pgraph

����� volume(x,y,z);

��$��

%���+� The ratio between these values is what is important. If volume is not
called, a default workbox will be calculated.

������ pgraph.src

������� view

x scalar, the X length of the 3-D workbox.
y scalar, the Y length of the 3-D workbox.
z scalar, the Z length of the 3-D workbox.
��
��

GAUSS Language Reference

vput

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vput

���$��� Inserts a matrix or string into a data buffer.

����� dbufnew = vput(dbuf,x,xname);

��$��

#��$��

%���+� If dbuf already contains x, the new value of x will replace the old one.

������ vpack.src

������� vget, vlist, vread

dbuf Nx1 vector, a data buffer containing various strings and
matrices. If dbuf is a scalar 0, a new data buffer will be
created.

x LxM matrix or string, item to be inserted into dbuf.
xname string, the name of x, will be inserted with x into dbuf.

dbufnew Kx1 vector, the data buffer after x and xname have been
inserted.
��
	�

Command Reference

vread

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vread

���$��� Reads a string or matrix from a data buffer constructed with vput.

����� x = vread(dbuf,xname);

��$��

#��$��

%���+� vread, unlike vget, does not change the contents of dbuf. Reading x
from dbuf does not remove it from dbuf.

������ vpack.src

������� vget, vlist, vput

dbuf Nx1 vector, a data buffer containing various strings and
matrices.

xname string, the name of the matrix or string to read from dbuf.

x LxM matrix or string, the item read from dbuf.
��
	�

GAUSS Language Reference

vtypecv

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
vtypecv

���$��� Returns the types of the elements of a data buffer constructed with vput.

����� cv = vtypecv(dbuf);

��$��

#��$��

������� vget, vput, vread, vnamecv

dbuf Nx1 vector, a data buffer containing various strings and matrices.

cv Kx1 character vector containing the types of the elements of
dbuf.
��
	�

Command Reference

wait, waitc

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
wait, waitc

���$��� Waits until any key is pressed.

����� wait;

waitc;

%���+� If you are working in terminal mode, they don’t “see” any keystrokes
until ENTER is pressed. waitc clears any pending keystrokes before
waiting until another key is pressed.

������ wait.src, waitc.src

������� pause
��
	�

GAUSS Language Reference

window

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
window

���$��� Partitions the window into tiled regions of equal size.

 	���� pgraph

����� window(row,col,typ);

��$��

%���+� The graphic panels will be numbered from 1 to (row)x(col) starting from
the left topmost graphic panel and moving right.

See makewind for creating graphic panels of a specific size and
position. (For more information, see “Publication Quality Graphics” in
the User Guide.

������ pwindow.src

������� endwind, begwind, setwind, nextwind, getwind,
makewind

row scalar, number of rows of graphic panels.
col scalar, number of columns of graphic panels.
typ scalar, graphic panel attribute type. If 1, the graphic panels will

be transparent, if 0, the graphic panels will be nontransparent
(blanked).
��
	�

Command Reference

writer

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
writer

���$��� Writes a matrix to a GAUSS data set.

����� y = writer(fh,x);

��$��

�#��$��

�%���+� The file must have been opened with create, open for append, or
open for update.

The data in x will be written to the data set whose handle is fh starting at
the current pointer position in the file. The pointer position in the file will
be updated so the next call to writer will put the next block of data after
the first block. (See open and create for the initial pointer positions in
the file for reading and writing.)

x must have the same number of columns as the data set. colsf returns
the number of columns in a data set.

writer returns the number of rows actually written to the data set. If y
does not equal rows(x), the disk is probably full.

If the data set is not double precision, the data will be rounded to nearest
as it is written out.

If the data contain character elements, the file must be double precision or
the character information will be lost.

If the file being written to is the 2-byte integer data type, then missing
values will be written out as -32768. These will not automatically be
converted to missings on input. They can be converted with the miss
function:

x = miss(x,-32768);

Trying to write complex data to a data set that was originally created to
store real data will cause a program to abort with an error message. (See
create for details on creating a complex data set.)

fh handle of the file that data is to be written to.
x NxK matrix.

y scalar specifying the number of rows of data actually written to
the data set.
��
	�

GAUSS Language Reference

writer

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
")�$�� create fp = data with x,10,8;

if fp == -1;

errorlog “Can’t create output file”;

end;

endif;

c = 0;

do until c ≥ 10000;

y = rndn(100,10);

k = writer(fp,y);

if k /= rows(y);

errorlog “Disk Full”;

fp = close(fp);

end;

endif;

c = c+k;

endo;

fp = close(fp);

In this example, a 10000x10 data set of Normal random numbers is
written to a data set called data.dat. The variable names are X01-X10.

������� open, close, create, readr, saved, seekr
��
	�

Command Reference

xlabel

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
xlabel

���$��� Sets a label for the X axis.

 	���� pgraph

����� xlabel(str);

��$��

������ pgraph.src

������� title, ylabel, zlabel

str string, the label for the X axis.
��
		

GAUSS Language Reference

xpnd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
xpnd

���$��� Expands a column vector into a symmetric matrix.

����� x = xpnd(v);

��$��

�#��$��

�%���+� If v does not contain the right number of elements, (that is, if
sqrt(1 + 8*K) is not integral), then an error message is generated.

This function is particularly useful for hard-coding symmetric matrices,
because only about half of the matrix needs to be entered.

")�$��

y = xpnd(x);

v Kx1 vector, to be expanded into a symmetric matrix.

x MxM matrix, the results of taking v and filling in a symmetric
matrix with its elements.

M ((-1 + sqrt(1+8*K))/2)=

x = { 1,

2, 3,

4, 5, 6,

7, 8, 9, 10 };

x

1

2

3

4

5

6

7

8

9

10

=

��
	

Command Reference

xpnd

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
������� vech

y

1 2 4 7

2 3 5 8

4 5 6 9

7 8 9 10

=

��
	�

GAUSS Language Reference

xtics

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
xtics

���$��� Sets and fixes scaling, axes numbering and tick marks for the X axis.

 	���� pgraph

����� xtics(min,max,step,minordiv);

��$��

%���+� This routine fixes the scaling for all subsequent graphs until graphset
is called.

This gives you direct control over the axes endpoints and tick marks. If
xtics is called after a call to scale, it will override scale.

X and Y axes numbering may be reversed for xy, logx, logy, and
loglog graphs. This may be accomplished by using a negative step
value in the xtics and ytics functions.

������ pscale.src

������� scale, ytics, ztics

min scalar, the minimum value.
max scalar, the maximum value.
step scalar, the value between major tick marks.
minordiv scalar, the number of minor subdivisions.
��

�

Command Reference

xy

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
xy

���$��� Graphs X vs. Y using Cartesian coordinates.

 	���� pgraph

����� xy(x,y);

��$��

%���+� Missing values are ignored when plotting symbols. If missing values are
encountered while plotting a curve, the curve will end and a new curve
will begin plotting at the next non-missing value.

������ pxy.src

������� xyz, logx, logy, loglog

x Nx1 or NxM matrix. Each column contains the X values for a
particular line.

y Nx1 or NxM matrix. Each column contains the Y values for a
particular line.
��

�

GAUSS Language Reference

xyz

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
xyz

���$��� Graphs X vs. Y vs. Z using Cartesian coordinates.

 	���� pgraph

����� xyz(x,y,z);

��$��

%���+� Missing values are ignored when plotting symbols. If missing values are
encountered while plotting a curve, the curve will end and a new curve
will begin plotting at the next non-missing value.

������ pxyz.src

������� xy, surface, volume, view

x Nx1 or NxK matrix. Each column contains the X values for a
particular line.

y Nx1 or NxK matrix. Each column contains the Y values for a
particular line.

z Nx1 or NxK matrix. Each column contains the Z values for a
particular line.
��

�

Command Reference

ylabel

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ylabel

���$��� Sets a label for the Y axis.

 	���� pgraph

����� ylabel(str);

��$��

������ pgraph.src

������� title, xlabel, zlabel

str string, the label for the Y axis.
��

�

GAUSS Language Reference

ytics

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ytics

���$��� Sets and fixes scaling, axes numbering and tick marks for the Y axis.

 	���� pgraph

����� ytics(min,max,step,minordiv);

��$��

%���+� This routine fixes the scaling for all subsequent graphs until graphset
is called.

This gives you direct control over the axes endpoints and tick marks. If
ytics is called after a call to scale, it will override scale.

X and Y axes numbering may be reversed for xy, logx, logy and
loglog graphs. This may be accomplished by using a negative step
value in the xtics and ytics functions.

������ pscale.src

������� scale, xtics, ztics

min scalar, the minimum value.
max scalar, the maximum value.
step scalar, the value between major tick marks.
minordiv scalar, the number of minor subdivisions.
��

�

Command Reference

zeros

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
zeros

���$��� Creates a matrix of zeros.

����� y = zeros(r,c);

��$��

�#��$��

�%���+� This is faster than ones.

Noninteger arguments will be truncated to an integer.

")�$�� y = zeros(3,2);

������� ones, eye

r scalar, the number of rows.
c scalar, the number of columns.

y RxC matrix of zeros.

y
0.000000 0.000000

0.000000 0.000000

0.000000 0.00000

=

��

�

GAUSS Language Reference

zlabel

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
zlabel

���$��� Sets a label for the Z axis.

 	���� pgraph

����� zlabel(str);

��$��

������ pgraph.src

������� title, xlabel, ylabel

str string, the label for the Z axis.
��

�

Command Reference

ztics

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
ztics

���$��� Sets and fixes scaling, axes numbering and tick marks for the Z axis.

 	���� pgraph

����� ztics(min,max,step,minordiv);

��$��

%���+� This routine fixes the scaling for all subsequent graphs until graphset
is called.

This gives you direct control over the axes endpoints and tick marks. If
ztics is called after a call to scale3d, it will override scale3d.

������ pscale.src

������� scale3d, xtics, ytics, contour

min scalar, the minimum value.
max scalar, the maximum value.
step scalar, the value between major tick marks.
minordiv scalar, the number of minor subdivisions. If this function is

used with contour, contour labels will be placed every
minordiv levels. If 0, there will be no labels.
��

	

GAUSS Language Reference

ztics

x y z

w

v

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

x y z
��

#���������������

The following commands will no longer be supported, therefore should
not be used when creating new programs.
disable

editm

enable

files

font

FontLoad

FontUnload

FontUnloadAll

graph

line

lprint on/off

medit

ndpchk

ndpclex

ndpcntrl

plot

plotsym

print on/off

rndmod

rndns/rndus

setvmode

WinClear

WinClearArea

WinClearTTYlog

WinClose

WinCloseAll

WinGetActive

WinGetAttributes

WinGetColorCells

WinGetCursor

WinMove

WinOpenPQG

WinOpenText

WinOpenTTY

WinPan

WinPrint

WinPrintPQG

WinRefresh

WinRefreshArea

WinResize
��

GAUSS Language Reference

Obsolete Commands
WinSetActive

WinSetBackground

WinSetColorCells

WinSetColormap

WinSetCursor

WinSetForeground

WinSetRefresh

WinSetTextWrap

WinZoomPQG
��

������
!$$���)
 0 Black 8 Dark Grey

 1 Blue 9 Light Blue

 2 Green 10 Light Green

 3 Cyan 11 Light Cyan

 4 Red 12 Light Red

 5 Magenta 13 Light Magenta

 6 Brown 14 Yellow

 7 Grey 15 White
���

	Contents
	Introduction
	Documentation Conventions
	Using This Manual
	Global Control Variables
	Changing the Default Values
	The Procedure gausset

	Commands by Category
	Mathematical Functions
	Scientific Functions
	Differentiation and Integration
	Linear Algebra
	Eigenvalues
	Polynomial Operations
	Fourier Transforms
	Random Numbers
	Fuzzy Conditional Functions
	Statistical Functions
	Optimization and Solution
	Statistical Distributions
	Series and Sequence Functions
	Precision Control

	Finance Functions
	Matrix Manipulation
	Creating Vectors and Matrices
	Loading and Storing Matrices
	Size, Ranking, and Range
	Sparse Matrix Functions
	Miscellaneous Matrix Manipulation

	Data Handling
	Data Sets
	Data Set Variable Names
	Data Coding
	Sorting and Merging

	Compiler Control
	Program Control
	Execution Control
	Branching
	Looping
	Subroutines
	Procedures
	Libraries
	Compiling

	OS Functions
	Workspace Management
	Error Handling and Debugging
	String Handling
	Time and Date Functions
	Console I/O
	Output Functions
	Text Output
	Window Graphics

	Graphics
	Graph Types
	Axes Control and Scaling
	Text, Labels, Titles, and Fonts
	Main Curve Lines and Symbols
	Extra Lines and Symbols
	Graphic Panel, Page, and Plot Control
	Output Options
	Miscellaneous

	Command Reference
	Command Components
	a
	abs
	acf
	AmericanBinomCall
	AmericanBinomCall_Greeks
	AmericanBinomCall_ImpVol
	AmericanBinomPut
	AmericanBinomPut_Greeks
	AmericanBinomPut_ImpVol
	AmericanBSCall
	AmericanBSCall_Greeks
	AmericanBSCall_ImpVol
	AmericanBSPut
	AmericanBSPut_Greeks
	AmericanBSPut_ImpVol
	annualTradingDays
	arccos
	arcsin
	asclabel
	atan
	atan2
	axmargin

	b
	balance
	band
	bandchol
	bandcholsol
	bandltsol
	bandrv
	bandsolpd
	bar
	base10
	begwind
	besselj
	bessely
	box
	boxcox
	break

	c
	call
	cdfbeta
	cdfbvn
	cdfbvn2
	cdfbvn2e
	cdfchic
	cdfchii
	cdfchinc
	cdffc
	cdffnc
	cdfgam
	cdfmvn
	cdfn, cdfnc
	cdfn2
	cdfni
	cdftc
	cdftci
	cdftnc
	cdftvn
	cdir
	ceil
	ChangeDir
	chdir
	chol
	choldn
	cholsol
	cholup
	chrs
	clear
	clearg
	close
	closeall
	cls
	code
	code (dataloop)
	color
	cols, colsf
	comlog
	compile
	complex
	con
	cond
	conj
	cons
	continue
	contour
	conv
	coreleft
	corrm, corrvc, corrx
	cos
	cosh
	counts
	countwts
	create
	crossprd
	crout
	croutp
	csrcol, csrlin
	csrtype
	cumprodc
	cumsumc
	curve
	cvtos

	d
	datalist
	dataloop (dataloop)
	date
	datestr
	datestring
	datestrymd
	dayinyr
	dayofweek
	debug
	declare
	delete
	delete (dataloop)
	delif
	denseSubmat
	design
	det
	detl
	dfft
	dffti
	dfree (DOS only)
	diag
	diagrv
	dlibrary
	dllcall
	do while, do until
	dos
	doswin
	DOSWinCloseall
	DOSWinOpen
	dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne
	draw
	drop (dataloop)
	dstat
	dtdate
	dtday
	dttime
	dttodtv
	dttostr
	dttoutc
	dtvnormal
	dtvtodt
	dtvtoutc
	dummy
	dummybr
	dummydn

	e
	ed
	edit
	eig
	eigcg
	eigcg2
	eigch
	eigch2
	eigh
	eighv
	eigrg
	eigrg2
	eigrs
	eigrs2
	eigv
	elapsedTradingDays
	end
	endp
	endwind
	envget
	eof
	eqSolve
	eqSolveset
	erf, erfc
	error
	errorlog
	etdays
	ethsec
	etstr
	EuropeanBinomCall
	EuropeanBinomCall_Greeks
	EuropeanBinomCall_ImpVol
	EuropeanBinomPut
	EuropeanBinomPut_Greeks
	EuropeanBinomPut_ImpVol
	EuropeanBSCall
	EuropeanBSCall_Greeks
	EuropeanBSCall_ImpVol
	EuropeanBSPut
	EuropeanBSPut_Greeks
	EuropeanBSPut_ImpVol
	exctsmpl
	exec
	exp
	export
	exportf
	extern (dataloop)
	external
	eye

	f
	fcheckerr
	fclearerr
	feq, fge, fgt, fle, flt, fne
	fflush
	fft
	ffti
	fftm
	fftmi
	fftn
	fgets
	fgetsa
	fgetsat
	fgetst
	fileinfo
	filesa
	floor
	fmod
	fn
	fonts
	fopen
	for
	format
	formatcv
	formatnv
	fputs
	fputst
	fseek
	fstrerror
	ftell
	ftocv
	ftos
	ftostrC

	g
	gamma
	gammaii
	gausset
	getf
	getname
	getnamef
	getNextTradingDay
	getNextWeekDay
	getnr
	getpath
	getPreviousTradingDay
	getPreviousWeekDay
	getwind
	gosub
	goto
	gradp
	graphprt
	graphset

	h
	hasimag
	header
	hess
	hessp
	hist
	histf
	histp
	hsec

	i
	if
	imag
	import
	importf
	#include
	indcv
	indexcat
	indices
	indices2
	indnv
	intgrat2
	intgrat3
	intquad1
	intquad2
	intquad3
	intrleav
	intrsect
	intsimp
	inv, invpd
	invswp
	iscplx
	iscplxf
	isinfnanmiss
	ismiss
	isSparse

	k
	keep (dataloop)
	key
	keyav
	keyw
	keyword

	l
	lag (dataloop)
	lag1
	lagn
	lapeighb
	lapeighi
	lapeighvb
	lapeighvi
	lapgeig
	lapgeigh
	lapgeighv
	lapgeigv
	lapgsvds
	lapgsvdcst
	lapgsvdst
	lapschur
	lapsvdcusv
	lapsvds
	lapsvdusv
	let
	lib
	library
	#lineson, #linesoff
	listwise (dataloop)
	ln
	lncdfbvn
	lncdfbvn2
	lncdfmvn
	lncdfn
	lncdfn2
	lncdfnc
	lnfact
	lnpdfn
	lnpdfmvn
	lnpdfmvt
	lnpdft
	load, loadf, loadk, loadm, loadp, loads
	loadd
	loadwind
	local
	locate
	loess
	log
	loglog
	logx
	logy
	lower
	lowmat, lowmat1
	lpos
	lprint
	lpwidth
	ltrisol
	lu
	lusol

	m
	make (dataloop)
	makevars
	makewind
	margin
	matalloc
	matinit
	maxc
	maxindc
	maxvec
	mbesseli
	meanc
	median
	mergeby
	mergevar
	minc
	minindc
	miss, missrv
	missex
	moment
	momentd
	msym

	n
	nametype
	new
	nextn, nextnevn
	nextwind
	null
	null1

	o
	ols
	olsqr
	olsqr2
	ones
	open
	optn, optnevn
	orth
	output
	outtyp (dataloop)
	outwidth

	p
	pacf
	packr
	parse
	pause
	pdfn
	pi
	pinv
	polar
	polychar
	polyeval
	polyint
	polymake
	polymat
	polymroot
	polymult
	polyroot
	pop
	pqgwin
	prcsn
	princomp
	print
	printdos
	printfm
	printfmt
	proc
	prodc
	putf

	q
	QNewton
	QProg
	qqr
	qqre
	qqrep
	qr
	qre
	qrep
	qrsol
	qrtsol
	qtyr
	qtyre
	qtyrep
	quantile
	quantiled
	qyr
	qyre
	qyrep

	r
	rank
	rankindx
	readr
	real
	recode
	recode (dataloop)
	recserar
	recsercp
	recserrc
	rerun
	reshape
	retp
	return
	rev
	rfft
	rffti
	rfftip
	rfftn
	rfftnp
	rfftp
	rndbeta
	rndcon, rndmult, rndseed
	rndgam
	rndi
	rndKMbeta
	rndKMgam
	rndKMi
	rndKMn
	rndKMnb
	rndKMp
	rndKMu
	rndKMvm
	rndLCbeta
	rndLCgam
	rndLCi
	rndLCn
	rndLCnb
	rndLCp
	rndLCu
	rndLCvm
	rndn
	rndnb
	rndp
	rndu
	rndvm
	rotater
	round
	rows
	rowsf
	rref
	run

	s
	save
	saveall
	saved
	savewind
	scale
	scale3d
	scalerr
	scalinfnanmiss
	scalmiss
	schtoc
	schur
	screen
	scroll
	seekr
	select (dataloop)
	selif
	seqa, seqm
	setdif
	setvars
	setvwrmode
	setwind
	shell
	shiftr
	show, lshow
	sin
	sinh
	sleep
	solpd
	sortc, sortcc
	sortd
	sorthc, sorthcc
	sortind, sortindc
	sortmc
	sparseCols
	sparseEye
	sparseFD
	sparseFP
	sparseHConcat
	sparseNZE
	sparseOnes
	sparseRows
	sparseSet
	sparseSolve
	sparseSubmat
	sparseTD
	sparseTrTD
	sparseVConcat
	spline
	spline1D
	spline2D
	sqpSolve
	sqrt
	stdc
	stocv
	stof
	stop
	strindx
	strlen
	strput
	strrindx
	strsect
	strsplit
	strsplitPad
	strtodt
	strtof
	strtofcplx
	submat
	subscat
	substute
	sumc
	surface
	svd
	svd1
	svd2
	svdcusv
	svds
	svdusv
	sysstate
	system

	t
	tab
	tan
	tanh
	tempname
	time
	timedt
	timestr
	timeutc
	title
	tkf2eps
	tkf2ps
	tocart
	todaydt
	toeplitz
	token
	topolar
	trace
	trap
	trapchk
	trimr
	trunc
	type
	typecv
	typef

	v
	vals
	varget
	vargetl
	varmall
	varmares
	varput
	varputl
	vartype
	vartypef
	vcm, vcx
	vec, vecr
	vech
	vector (dataloop)
	vget
	view
	viewxyz
	vlist
	vnamecv
	volume
	vput
	vread
	vtypecv

	w
	wait, waitc
	window
	writer

	x, y, z
	xlabel
	xpnd
	xtics
	xy
	xyz
	ylabel
	ytics
	zeros
	zlabel
	ztics

	Obsolete Commands
	Colors Appendix

