GAUSS

Language Reference

Aptech Systems, Inc.— Mathematical and Statistical System

Information in this document is subject to change without notice and does not represent a commitment on the part of Aptech Systems, Inc. The software described in this document is furnished under a license agreement or nondisclosure agreement. The software may be used or copied only in accordance with the terms of this agreement. The purchaser may make one copy of the software for backup purposes. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, for any purpose other than the purchaser's personal use without the written permission of Aptech Systems, Inc.

© 1984, 2002 Aptech Systems, Inc. All rights reserved.

GAUSS and GAUSS Light are trademarks of Aptech Systems, Inc. GEM is a trademark of Digital Research, Inc. Lotus is a trademark of Lotus Development Corp. HP Laser Jet and HP-GL are trademarks of Hewlett-Packard Corp. PostScript is a trademark of Adobe Systems Inc. IBM is a trademark of International Business Machines Corporation. Hercules is a trademark of Hercules Computer Technology, Inc. GraphicC is a trademark of Scientific Endeavors Corporation. Tektronix is a trademark of Tektronix, Inc. Windows is a registered trademark of Microsoft Corporation. Other trademarks are the property of their respective owners.

Part Number: 2368 Version 4.0 Revised January 25, 2002

Contents

Contents1-iii
Introduction
Documentation Conventions
Using This Manual
Global Control Variables
Commands by Category
Mathematical Functions
Finance Functions
Matrix Manipulation
Data Handling
Compiler Control
Program Control
OS Functions
Workspace Management 2-23
Error Handling and Debugging2-24
String Handling
Time and Date Functions 2-25
Console I/O 2-26
Output Functions
Graphics
Command Reference 3-1
Command Components
Obsolete CommandsA-1
Colors AppendixB-1

Introduction

This GAUSS[™] Language Reference describes each of the commands, procedures, and functions available in the GAUSS programming language. These functions can be divided into four categories:

- Mathematical, statistical, and scientific functions.
- Data handling routines, including data matrix manipulation and description routines, and file I/O.
- Programming statements, including branching, looping, display features, error checking, and shell commands.
- Graphics functions.

The first category contains those functions to be expected in a high-level mathematical language: trigonometric functions and other transcendental functions, distribution functions, random number generators, numerical differentiation and integration routines, Fourier transforms, Bessel functions, and polynomial evaluation routines. And, as a matrix programming language, GAUSS includes a variety of routines that perform standard matrix operations. Among these are routines to calculate determinants, matrix inverses, decompositions, eigenvalues and eigenvectors, and condition numbers.

Data handling routines include functions that return dimensions of matrices, and information about elements of data matrices, including functions to locate values lying in specific ranges or with certain values. Also under data handling routines fall all

those functions that create, save, open, and read from and write to GAUSS data sets. A variety of sorting routines that will operate on both numeric and character data are also available.

Programming statements are all of the commands that make it possible to write complex programs in GAUSS. These include conditional and unconditional branching, looping, file I/O, error handling, and system-related commands to execute OS shells and access directory and environment information.

The graphics functions of GAUSS Publication Quality Graphics (PQG) are a set of routines built on the graphics functions in GraphiC by Scientific Endeavors Corporation. GAUSS PQG consists of a set of main graphing procedures and several additional procedures and global variables for customizing the output.

Documentation Conventions

The following table describes how text formatting is used to identify GAUSS programming elements.

Text Style	Use	Example
regular text	narrative	" text formatting is used"
bold text	emphasis	"not supported under UNIX."
italic text	variables	" If <i>vnames</i> is a string or has fewer elements than <i>x</i> has columns, it will be"
monospace	code example	<pre>if scalerr(cm);</pre>
		cm = inv(x);
		endif;
monospace bold	Refers to a GAUSS programming element within a narrative paragraph.	"as explained under create "

Using This Manual

Users who are new to GAUSS should make sure they have familiarized themselves with "Language Fundamentals" in the *User's Guide* before proceeding here. That chapter contains the basics of GAUSS programming.

In all, there are over 400 routines described in this GAUSS Language Reference. We suggest that new GAUSS users skim through Chapter 2, and then browse through Chapter 3, the main part of this manual. Here, users can familiarize themselves with the kinds of tasks that GAUSS can handle easily.

Chapter 2 gives a categorical listing of all functions in this GAUSS Language Reference, and a short discussion of the functions in each category. Complete syntax, description of input and output arguments, and general remarks regarding each function are given in Chapter 3.

If a function is an "extrinsic" (that is, part of the Run-Time Library), its source code can be found on the .src subdirectory. The name of the file containing the source code is given in Chapter 3 under the discussion of that function.

Global Control Variables

Several GAUSS functions use global variables to control various aspects of their performance. The files gauss.ext, gauss.dec, and gauss.lcg contain the **external** statements, **declare** statements, and **library** references to these globals. All globals used by the GAUSS Run-Time library begin with an underscore '_'.

Default values for these common globals can be found in the file gauss.dec, located on the .src subdirectory. The default values can be changed by editing this file.

Changing the Default Values

To permanently change the default setting of a common global, two files need to be edited: gauss.dec and gauss.src.

To change the value of the common global ___output from 2 to 0, for example, edit the file gauss.dec and change the statement

```
declare matrix __output = 2;
```

to read

```
declare matrix __output = 0;
```

Also, edit the procedure **gausset**, located in the file gauss.src, and modify the statement

```
\_output = 2;
```

similarly.

The Procedure gausset

The global variables affect your program, even if you have not set them directly in a particular command file. If you have changed them in a previous run, they will retain their changed values until you exit GAUSS or execute the **new** command.

The procedure **gausset** will reset the Run-Time Library globals to their default values:

gausset;

If your program changes the values of these globals, you can use **gausset** to reset them whenever necessary. **gausset** resets the globals as a whole; you can write your own routine to reset specific ones.

Commands 22 by Category

Mathematical Functions

Scientific Functions

abs	Returns absolute value of argument.
arccos	Computes inverse cosine.
arcsin	Computes inverse sine.
atan	Computes inverse tangent.
atan2	Computes angle given a point <i>x</i> , <i>y</i> .
besselj	Computes Bessel function, first kind.
bessely	Computes Bessel function, second kind.
cos	Computes cosine.
cosh	Computes hyperbolic cosine.
exp	Computes the exponential function of <i>x</i> .
gamma	Computes gamma function value.
ln	Computes the natural log of each element.
lnfact	Computes natural log of factorial function

log	Computes the \log_{10} of each element.
pi	Returns π .
sin	Computes sine.
sinh	Computes the hyperbolic sine.
spline1D	Computes a smoothing spline for a curve.
spline2D	Computes a smoothing spline for a surface.
sqrt	Computes the square root of each element.
tan	Computes tangent.
tanh	Computes hyperbolic tangent

All trigonometric functions take or return values in radian units.

Differentiation and Integration

gradp	Computes first derivative of a function.
hessp	Computes second derivative of a function.
intgrat2	Integrates a 2-dimensional function over a user-defined region.
intgrat3	Integrates a 3-dimensional function over a user-defined region.
intquad1	Integrates a 1-dimensional function.
intquad2	Integrates a 2-dimensional function over a user-defined rectangular region.
intquad3	Integrates a 3-dimensional function over a user-defined rectangular region.
intsimp	Integrates by Simpson's method.

gradp and hessp use a finite difference approximation to compute the first and second derivatives. Use gradp to calculate a Jacobian.

intquad1, intquad2, and intquad3 use Gaussian quadrature to calculate the integral of the user-defined function over a rectangular region.

To calculate an integral over a region defined by functions of x and y, use **intgrat2** and **intgrat3**.

To get a greater degree of accuracy than that provided by **intquad1**, use **intsimp** for 1-dimensional integration.

Linear Algebra

balance Balances a matrix.

chol	Computes Cholesky decomposition, $X = Y'Y$.
choldn	Performs Cholesky downdate on an upper triangular matrix.
cholsol	Solves a system of equations given the Cholesky factorization of a matrix.
cholup	Performs Cholesky update on an upper triangular matrix.
cond	Computes condition number of a matrix.
crout	Computes Crout decomposition, $X = LU$ (real matrices only).
croutp	Computes Crout decomposition with row pivoting (real matrices only).
det	Computes determinant of square matrix.
detl	Computes determinant of decomposed matrix.
hess	Computes upper Hessenberg form of a matrix (real matrices only).
inv	Inverts a matrix.
invpd	Inverts a positive definite matrix.
invswp	Generalized sweep inverse.
lapeighb	Computes eigenvalues only of a real symmetric or complex Hermitian matrix selected by bounds.
lapeighi	Computes eigenvalues only of a real symmetric or complex Hermitian matrix selected by index.
lapeighvb	Computes eigenvalues and eigenvectors of a real symmetric or complex Hermitian matrix selected by bounds.
lapeighvi	Computes selected eigenvalues and eigenvectors of a real symmetric or complex Hermitian matrix.
lapgeig	Computes generalized eigenvalues for a pair of real or complex general matrices.
lapgeigh	Computes generalized eigenvalues for a pair of real symmetric or Hermitian matrices.
lapgeighv	Computes generalized eigenvalues and eigenvectors for a pair of real symmetric or Hermitian matrices.
lapgeigv	Computes generalized eigenvalues, left eigenvectors, and right eigenvectors for a pair of real or complex general matrices.
lapgsvds	Compute the generalized singular value decomposition of a pair of real or complex general matrices.
lapgsvdcst	Compute the generalized singular value decomposition of a pair of real or complex general matrices.

lapgsvdst	Compute the generalized singular value decomposition of a pair of real or complex general matrices.
lapschur	Compute the generalized Schur form of a pair of real or complex general matrices.
lapsvdcusv	Computes the singular value decomposition a real or complex rectangular matrix, returns compact u and v.
lapsvds	Computes the singular values of a real or complex rectangular matrix
lapsvdusv	Computes the singular value decomposition a real or complex rectangular matrix.
lu	Computes LU decomposition with row pivoting (real and complex matrices).
null	Computes orthonormal basis for right null space.
null1	Computes orthonormal basis for right null space.
orth	Computes orthonormal basis for column space <i>x</i> .
pinv	Generalized pseudo-inverse: Moore-Penrose.
ddr	QR decomposition: returns Q_1 and R .
qqre	QR decomposition: returns Q_1 , R , and a permutation vector, E .
qqrep	QR decomposition with pivot control: returns Q_1 , R , and E .
qr	QR decomposition: returns <i>R</i> .
qre	QR decomposition: returns <i>R</i> and <i>E</i> .
qrep	QR decomposition with pivot control: returns <i>R</i> and <i>E</i> .
qrsol	Solves a system of equations $Rx=b$ given an upper triangular matrix, typically the R matrix from a QR decomposition.
qrtsol	Solves a system of equations $R'x = b$ given an upper triangular matrix, typically the <i>R</i> matrix from a QR decomposition.
qtyr	QR decomposition: returns $Q'Y$ and R.
qtyre	QR decomposition: returns $Q'Y$, R, and E.
qtyrep	QR decomposition with pivot control: returns $Q'Y$, R , and E .
qyr	QR decomposition: returns QY and R.
qyre	QR decomposition: returns QY, R, and E.
qyrep	QR decomposition with pivot control: returns QY , R , and E .
rank	Computes rank of a matrix.

rcondl	Returns reciprocal of the condition number of last decomposed matrix.
rref	Computes reduced row echelon form of a matrix.
schur	Computes Schur decomposition of a matrix (real matrices only).
solpd	Solves a system of positive definite linear equations.
svd	Computes the singular values of a matrix.
svdl	Computes singular value decomposition, $X = USV'$.
svd2	Computes $svd1$ with compact U.

The decomposition routines are **chol** for Cholesky decomposition, **crout** and **croutp** for Crout decomposition, **qqr-qyrep** for QR decomposition, and **svd**, **svd1**, and **svd2** for singular value decomposition.

null, null1, and orth calculate orthonormal bases.

inv, invpd, solpd, cholsol, qrsol, and the "/" operator can all be used to solve linear systems of equations.

rank and **rref** will find the rank and reduced row echelon form of a matrix.

det, det1, and cond will calculate the determinant and condition number of a matrix.

Eigenvalues

eig	Computes eigenvalues of general matrix.
eigh	Computes eigenvalues of complex Hermitian or real symmetric matrix.
eighv	Computes eigenvalues and eigenvectors of complex Hermitian or real symmetric matrix.
eigv	Computes eigenvalues and eigenvectors of general matrix.

There are four eigenvalue-eigenvector routines. Two calculate eigenvalues only, and two calculate eigenvalues and eigenvectors. The types of matrices handled by these routines are:

General:	eig, eigv
Symmetric or Hermitian:	eigh, eighv

Polynomial Operations

polychar Computes characteristic polynomial of a square matrix.

polyeval	Evaluates polynomial with given coefficients.
polyint	Calculates N^{th} order polynomial interpolation given known point pairs.
polymake	Computes polynomial coefficients from roots.
polymat	Returns sequence powers of a matrix.
polymult	Multiplies two polynomials together.
polyroot	Computes roots of polynomial from coefficients.

See also recserre, recserce, and conv.

Fourier Transforms

dfft	Computes discrete 1-D FFT.
dffti	Computes inverse discrete 1-D FFT.
fft	Computes 1- or 2-D FFT.
ffti	Computes inverse 1- or 2-D FFT.
fftm	Computes multi-dimensional FFT.
fftmi	Computes inverse multi-dimensional FFT.
fftn	Computes 1- or 2-D FFT using prime factor algorithm.
rfft	Computes real 1- or 2-D FFT.
rffti	Computes inverse real 1- or 2-D FFT.
rfftip	Computes inverse real 1- or 2-D FFT from packed format FFT.
rfftn	Computes real 1- or 2-D FFT using prime factor algorithm.
rfftnp	Computes real 1- or 2-D FFT using prime factor algorithm, returns packed format FFT.
rfftp	Computes real 1- or 2-D FFT, returns packed format FFT.

Random Numbers

rndbeta	Computes random numbers with beta distribution.
rndcon	Changes constant of the LC random number generator.
rndgam	Computes random numbers with gamma distribution.
rndi	Returns random integers, $0 \le y \le 2^32$.
rndKMbeta	Computes beta pseudo-random numbers.
rndKMgam	Computes gamma pseudo-random numbers.
rndKMi	Returns random integers, $0 \le y \le 2^32$.

rndKMn	Computes standard normal pseudo-random numbers.
rndKMnb	Computes negative binomial pseudo-random numbers.
rndKMp	Computes Poisson pseudo-random numbers.
rndKMu	Computes uniform pseudo-random numbers.
rndKMvm	Computes von Mises pseudo-random numbers.
rndLCbeta	Computes beta pseudo-random numbers.
rndLCgam	Computes gamma pseudo-random numbers.
rndLCi	Returns random integers, $0 \le y \le 2^32$.
rndLCn	Computres standard normal pseudo-random numbers.
rndLCnb	Computes negative binomial pseudo-random numbers.
rndLCp	Computes Poisson pseudo-random numbers.
rndLCu	Computes uniform pseudo-random numbers.
rndLCvm	Computes von Mises pseudo-random numbers.
rndmult	Changes multiplier of the LC random number generator.
rndn	Computes random numbers with Normal distribution.
rndnb	Computes random numbers with negative binomial distribution.
rndp	Computes random numbers with Poisson distribution.
rndseed	Changes seed of the LC random number generator.
rndu	Computes random numbers with uniform distribution.

Fuzzy Conditional Functions

dotfeq	Fuzzy .==
dotfge	Fuzzy .≥
dotfgt	Fuzzy .>
dotfle	Fuzzy .≤
dotflt	Fuzzy .<
dotfne	Fuzzy ./=
feq	Fuzzy ==
fge	Fuzzy≥
fgt	Fuzzy >
fle	Fuzzy ≤
flt	Fuzzy <
fne	Fuzzy /=

The global variable **_fcomptol** controls the tolerance used for comparison. By default, this is 1e-15. The default can be changed by editing the file fcompare.dec.

Statistical Functions

acf	Computes sample autocorrelations.
conv	Computes convolution of two vectors.
corrm	Computes correlation matrix of a moment matrix.
corrvc	Computes correlation matrix from a variance-covariance matrix.
corrx	Computes correlation matrix.
crossprd	Computes cross product.
design	Creates a design matrix of 0's and 1's.
dstat	Computes descriptive statistics of a data set or matrix.
loess	Computes coefficients of locally weighted regression.
meanc	Computes mean value of each column of a matrix.
median	Computes medians of the columns of a matrix.
moment	Computes moment matrix $(x'x)$ with special handling of missing values.
momentd	Computes moment matrix from a data set.
ols	Computes least squares regression of data set or matrix.
olsqr	Computes OLS coefficients using QR decomposition.
olsqr2	Computes OLS coefficients, residuals, and predicted values using QR decomposition.
pacf	Computes sample partial autocorrelations.
princomp	Computes principal components of a data matrix.
stdc	Computes standard deviation of the columns of a matrix.
toeplitz	Computes Toeplitz matrix from column vector.
varmall	Computes the log-likelihood of a Vector ARMA model.
varmares	Computes the residuals of a Vector ARMA model.
vcm	Computes a variance-covariance matrix from a moment matrix.
vcx	Computes a variance-covariance matrix from a data matrix.

Advanced statistics and optimization routines are available in the GAUSS Applications programs. (Contact Aptech Systems for more information.)

Optimization and Solution

eqsolve	Solves a system of nonlinear equations.
QNewton	Optimizes a function using the BFGS descent algorithm.
QProg	Solves the quadratic programming problem.
sqpSolve	Solves the nonlinear programming problem using a sequential quadratic programming method.

Statistical Distributions

cdfbeta	Computes integral of beta function.
cdfbvn	Computes lower tail of bivariate Normal cdf.
cdfchic	Computes complement of cdf of χ^2 .
cdfchii	Computes χ^{2} abscissae values given probability and degrees of freedom.
cdfchinc	Computes integral of noncentral χ^2 .
cdffc	Computes complement of cdf of F.
cdffnc	Computes integral of noncentral F.
cdfgam	Computes integral of incomplete Γ function.
cdfmvn	Computes multivariate Normal cdf.
cdfn	Computes integral of Normal distribution: lower tail, or cdf.
cdfn2	Computes interval of Normal cdf.
cdfnc	Computes complement of cdf of Normal distribution (upper tail).
cdftc	Computes complement of cdf of <i>t</i> -distribution.
cdftnc	Computes integral of noncentral <i>t</i> -distribution.
cdftvn	Computes lower tail of trivariate Normal cdf.
erf	Computes Gaussian error function.
erfc	Computes complement of Gaussian error function.
lncdfbvn	Computes natural log of bivariate Normal cdf.
lncdfmvn	Computes natural log of multivariate Normal cdf.
lncdfn	Computes natural log of Normal cdf.
lncdfn2	Computes natural log of interval of Normal cdf.
lncdfnc	Computes natural log of complement of Normal cdf.
lnpdfmvn	Computes multivariate Normal log-probabilities.

lnpdfn	Computes Normal log-probabilities.
pdfn	Computes standard Normal probability density function.

Series and Sequence Functions

recserar	Computes autoregressive recursive series.
recsercp	Computes recursive series involving products.
recserrc	Computes recursive series involving division.
seqa	Creates an additive sequence.
seqm	Creates a multiplicative sequence.

Precision Control

base10	Converts number to <i>x.xxx</i> and a power of 10.
ceil	Rounds up towards $+\infty$.
floor	Rounds down towards $-\infty$.
prcsn	Sets computational precision for matrix operations.
round	Rounds to the nearest integer.
trunc	Truncates toward 0.

All calculations in GAUSS are done in double precision, with the exception of some of the intrinsic functions on OS/2 and DOS. These may use extended precision (18-19 digits of accuracy). Use **prcsn** to change the internal accuracy used in these cases.

round, trunc, ceil, and floor convert floating point numbers into integers. The internal representation for the converted integer is double precision (64 bits).

Each matrix element in memory requires 8 bytes of memory.

Finance Functions

AmericanBinomCall	American binomial method Call.
AmericanBinomCall_Greeks	American binomial method call Delta, Gamma, Theta, Vega, and Rho.
AmericanBinomCall_ImpVol	Implied volatilities for American binomial method calls.
AmericanBinomPut	American binomial method Put.

AmericanBinomPut_Greeks	American binomial method put Delta, Gamma, Theta, Vega, and Rho.
AmericanBinomPut_ImpVol	Implied volatilities for American binomial method puts.
AmericanBSCall	American Black and Scholes Call.
AmericanBSCall_Greeks	American Black and Scholes call Delta, Gamma, Omega, Theta, and Vega.
AmericanBSCall_ImpVol	Implied volatilities for American Black and Scholes calls.
AmericanBSPut	American Black and Scholes Put.
AmericanBSPut_Greeks	American Black and Scholes put Delta, Gamma, Omega, Theta, and Vega.
AmericanBSPut_ImpVol	Implied volatilities for American Black and Scholes puts.
annualTradingDays	Compute number of trading days in a given year.
elapsedTradingDays	Compute number of trading days between two dates inclusively.
EuropeanBinomCall	European binomial method call.
EuropeanBinomCall_Greeks	European binomial method call Delta, Gamma, Theta, Vega and Rho.
EuropeanBinomCall_ImpVol	Implied volatilities for European binomial method calls.
EuropeanBinomPut	European binomial method Put.
EuropeanBinomPut_Greeks	European binomial method put Delta, Gamma, Theta, Vega, and Rho.
EuropeanBinomPut_ImpVol	Implied volatilities for European binomial method puts.
EuropeanBSCall	European Black and Scholes Call.
EuropeanBSCall_Greeks	European Black and Scholes call Delta, Gamma, Omega, Theta, and Vega.
EuropeanBSCall_ImpVol	Implied volatilities for European Black and Scholes calls.
EuropeanBSPut	European Black and Scholes Put.
EuropeanBSPut_Greeks	European Black and Scholes put Delta, Gamma, Omega, Theta, and Vega.

EuropeanBSPut_ImpVol	Implied volatilities for European Black and Scholes puts.
getNextTradingDay	Returns the next trading day.
getNextWeekDay	Returns the next day that is not on a weekend.
getPreviousTradingDay	Returns the previous trading day.
getPreviousWeekDay	Returns the previous day that is not on a weekend.

Matrix Manipulation

Creating Vectors and Matrices

editm	Simple matrix editor.
eye	Creates identity matrix.
let	Creates matrix from list of constants.
matalloc	Allocates a matrix with unspecified contents.
matinit	Allocates a matrix with unspecified contents.
medit	Full-screen spreadsheet-like matrix editor.
ones	Creates a matrix of ones.
zeros	Creates a matrix of zeros.

Use **zeros** or **ones** to create a constant vector or matrix.

medit is a full-screen editor that can be used to create matrices to be stored in memory, or to edit matrices that already exist.

Matrices can also be loaded from an ASCII file, from a GAUSS matrix file, or from a GAUSS data set. (See "Procedures and Keywords" in the *User Guide* for more information.)

Loading and Storing Matrices

loadd	Loads matrix from data set.
loadm	Loads matrix from ASCII or matrix file.
save	Saves matrix to matrix file.
saved	Saves matrix to data set.

Size, Ranking, and Range

cols	Returns number of columns in a matrix.
colsf	Returns number of columns in an open data set.
counts	Returns number of elements of a vector falling in specified ranges.
countwts	Returns weighted count of elements of a vector falling in specified ranges.
cumprodc	Computes cumulative products of each column of a matrix.
cumsumc	Computes cumulative sums of each column of a matrix.
indexcat	Returns indices of elements falling within a specified range.
maxc	Returns largest element in each column of a matrix.
maxindc	Returns row number of largest element in each column of a matrix.
minc	Returns smallest element in each column of a matrix.
minindc	Returns row number of smallest element in each column of a matrix.
prodc	Computes the product of each column of a matrix.
rankindx	Returns rank index of Nx1 vector. (Rank order of elements in vector.)
rows	Returns number of rows in a matrix.
rowsf	Returns number of rows in an open data set.
sumc	Computes the sum of each column of a matrix.

These functions are used to find the minimum, maximum and frequency counts of elements in matrices.

Use **rows** and **cols** to find the number of rows or columns in a matrix. Use **rowsf** and **colsf** to find the numbers of rows or columns in an open GAUSS data set.

Sparse Matrix Functions

denseSubmat	Returns dense submatrix of sparse matrix.
isSparse	Tests whether a matrix is a sparse matrix.
sparseCols	Returns number of columns in sparse matrix
sparseEye	Creates sparse identity matrix.
sparseFD	Converts dense matrix to sparse matrix.
sparseFP	Converts packed matrix to sparse matrix.

sparseHConcat	Horizontally concatenates sparse matrices.
sparseNZE	Returns the number of nonzero elements in sparse matrix.
sparseOnes	Generates sparse matrix of ones and zeros.
sparseRows	Returns number of rows in sparse matrix.
sparseSet	Resets sparse library globals.
sparseSolve	Solves $Ax = B$ for x where A is a sparse matrix.
sparseSubmat	Returns sparse submatrix of sparse matrix.
sparseTD	Multiplies sparse matrix by dense matrix.
sparseTrTD	Multiplies sparse matrix transposed by dense matrix.
sparseVConcat	Vertically concatenates sparse matrices.

Miscellaneous Matrix Manipulation

complex	Creates a complex matrix from two real matrices.
delif	Deletes rows from a matrix using a logical expression.
diag	Extracts the diagonal of a matrix.
diagrv	Puts a column vector into the diagonal of a matrix.
exctsmpl	Creates a random subsample of data set, with replacement.
imag	Returns the imaginary part of a complex matrix.
intrsect	Returns the intersection of two vectors.
lowmat	Returns the main diagonal and lower triangle.
lowmat1	Returns a main diagonal of 1's and the lower triangle.
real	Returns the real part of a complex matrix.
reshape	Reshapes a matrix to new dimensions.
rev	Reverses the order of rows of a matrix.
rotater	Rotates the rows of a matrix, wrapping elements as necessary.
selif	Selects rows from a matrix using a logical expression.
setdif	Returns elements of one vector that are not in another.
shiftr	Shifts rows of a matrix, filling in holes with a specified value.
submat	Extracts a submatrix from a matrix.
trimr	Trims rows from top or bottom of a matrix.
union	Returns the union of two vectors.
upmat	Returns the main diagonal and upper triangle.
upmat1	Returns a main diagonal of 1's and the upper triangle.

vec	Stacks columns of a matrix to form a single column.
vech	Reshapes the lower triangular portion of a symmetric matrix into a column vector.
vecr	Stacks rows of a matrix to form a single column.
xpnd	Expands a column vector into a symmetric matrix.

vech and **xpnd** are complementary functions. **vech** provides an efficient way to store a symmetric matrix; **xpnd** expands the stored vector back to its original symmetric matrix.

delif and **selif** are complementary functions. **delif** deletes rows of a matrix based on a logical comparison; **selif** selects rows based on a logical comparison.

lowmat, lowmat1, upmat, and upmat1 extract triangular portions of a matrix.

To delete rows that contain missing values from a matrix in memory, see **packr**.

Data Handling

Data Sets

close	Closes an open data set (.dat file).
closeall	Closes all open data sets.
create	Creates and opens a data set.
eof	Tests for end of file.
iscplxf	Returns whether a data set is real or complex.
loadd	Loads a small data set.
open	Opens an existing data set.
readr	Reads rows from open data set.
saved	Creates small data sets.
seekr	Moves pointer to specified location in open data set.
typef	Returns the element size (2, 4, or 8 bytes) of data in open data set.
writer	Writes matrix to an open data set.

These functions all operate on GAUSS data sets (.dat files). (See "File I/O" in the *User's Guide* for more information.)

To create a GAUSS data set from a matrix in memory, use **saved**. To create a data set from an existing one, use **create**. To create a data set from a large ASCII file, use the utility **atog**. (See "Utilities" in the *User's Guide*.)

Data sets can be opened, read from, and written to using **open**, **readr**, **seekr** and **writer**. Test for the end of a file using **eof**, and close the data set using **close** or **closeall**.

The data in data sets may be specified as character or numeric. (See "File I/O" in the *User's Guide*.) See also **create** and **vartypef**.

typef returns the element size of the data in an open data set.

Data Set Variable Names

getname	Returns column vector of variable names in a data set.
getnamef	Returns string array of variable names in a data set.
indcv	Returns column numbers of variables within a data set.
indices	Retrieves column numbers and names from a data set.
indices2	Similar to indices , but matches columns with names for dependent and independent variables.
makevars	Decomposes matrix to create column vectors.
mergevar	Concatenates column vectors to create larger matrix.
setvars	Creates globals using the names in a data set.
vartype	Returns column vector of variable types (numeric/character) in a data set.
vartypef	Returns column vector of variable types (numeric/character) in a data set.

Use **getnamef** to retrieve the variable names associated with the columns of a GAUSS data set, and **vartypef** to retrieve the variable types. Use **makevars** and **setvars** to create global vectors from those names. Use **indices** and **indices2** to match names with column numbers in a data set.

getname and vartype are supported for backwards compatibility.

Data Coding

code	Codes the data in a vector by applying a logical set of rules to assign each data value to a category.
dummy	Creates a dummy matrix, expanding values in vector to rows with ones in columns corresponding to true categories and zeros elsewhere.

dummybr	Similar to dummy .
dummydn	Similar to dummy .
ismiss	Returns 1 if matrix has any missing values, 0 otherwise.
isinfnanmiss	Returns true if the argument contains an infinity, NaN, or missing value.
miss	Changes specified values to missing value code.
missex	Changes elements to missing value using logical expression.
missrv	Changes missing value codes to specified values.
msym	Sets symbol to be interpreted as missing value.
packr	Deletes rows with missing values.
recode	Similar to code , but leaves the original data in place if no condition is met.
scalinfnanmiss	Returns true if the argument is a scalar infinity, NaN, or missing value.
scalmiss	Tests whether a scalar is the missing value code.
subscat	Simpler version of recode , but uses ascending bins instead of logical conditions.
substute	Similar to recode , but operates on matrices.

code, recode, and subscat allow the user to code data variables and operate on vectors in memory. substute operates on matrices, and dummy, dummybr, and dummydn create matrices.

missex, missrv, and miss should be used to recode missing values.

Sorting and Merging

intrleav	Produces one large sorted data file from two smaller sorted files having the same keys.
mergeby	Produces one large sorted data file from two smaller sorted files having a single key column in common.
sortc	Quick-sorts rows of matrix based on numeric key.
sortcc	Quick-sorts rows of matrix based on character key.
sortd	Sorts data set on a key column.
sorthc	Heap-sorts rows of matrix based on numeric key.
sorthcc	Heap-sortsrows of matrix based on character key.
sortind	Returns a sorted index of a numeric vector.
sortindc	Returns a sorted index of a character vector.

sortmc	Sorts rows of matrix on the basis of multiple columns.
uniqindx	Returns a sorted unique index of a vector.
unique	Removes duplicate elements of a vector.

sortc, sorthc, and sortind operate on numeric data only. sortcc, sorthcc, and sortindc operate on character data only.

Sortd, **sortmc**, **unique**, and **uniqindx** operate on both numeric and character data.

Use **sortd** to sort the rows of a data set on the basis of a key column.

Both intrleav and mergeby operate on data sets.

Compiler Control

#define	Defines a case-insensitive text-replacement or flag variable.
#definecs	Defines a case-sensitive text-replacement or flag variable.
#else	Alternates clause for #if-#else-#endif code block.
#endif	End of #if-#else-#endif code block.
#ifdef	Compiles code block if a variable has been #define 'd.
#ifdos	Compiles code block if running DOS.
#iflight	Compiles code block if running GAUSS Light.
#ifndef	Compiles code block if a variable has not been #define 'd.
#ifos2win	Compiles code block if running OS/2 or Windows.
#ifunix	Compiles code block if running UNIX.
#include	Includes code from another file in program.
#linesoff	Compiles program without line number and file name records.
#lineson	Compiles program with line number and file name records.
#srcfile	Inserts source file name record at this point (currently used when doing data loop translation).
#srcline	Inserts source file line number record at this point (currently used when doing data loop translation).
#undef	Undefines a text-replacement or flag variable.

These commands are compiler directives. That is, they do not generate GAUSS program instructions; rather, they are instructions that tell GAUSS how to process a program during compilation. They determine what the final compiled form of a

program will be. They are not executable statements and have no effect at run-time. (See "Language Fundamentals" in the *User's Guide* for more information.)

Program Control

Execution Control

end	Terminates a program and close all files.
pause	Pauses for the specified time.
run	Runs a program in a text file.
sleep	Sleeps for the specified time.
stop	Stops a program and leave files open.
system	Quits and returns to the OS.

Both **stop** and **end** will terminate the execution of a program; **end** will close all open files, and **stop** will leave those files open. Neither **stop** nor **end** is required in a GAUSS program.

Branching

```
goto Unconditional branching.
if..endif Conditional branching.
pop Retrieve goto arguments.
if iter > itlim;
   goto errout("Iteration limit exceeded");
elseif iter == 1;
   j = setup(x,y);
else;
   j = iterate(x,y);
endif;
.
```

```
errout:
   pop errmsg;
   print errmsg;
   end;
```

Looping

```
break
                 Jump out the bottom of a do or for loop.
                Jump to the top of a do or for loop.
continue
do while..endo
            Loop if TRUE.
                 Loop if FALSE.
do until..endo
for.. endfor
                  Loop with integer counter.
   iter = 0;
   do while dif > tol;
      { x,x0 } = eval(x,x0);
      dif = abs(x-x0);
      iter = iter + 1;
      if iter > maxits;
         break;
      endif;
      if not prtiter;
         continue;
      endif;
      format /rdn 1,0;
      print "Iteration: " iter;;
      format /re 16,8;
      print ", Error: "maxc(dif);
   endo;
```

for i (1, cols(x), 1);
 for j (1, rows(x), 1);
 x[i,j] = x[i,j] + 1;
 endfor;
endfor;

Subroutines

gosub	Branch to subroutine.
рор	Retrieve gosub arguments.
return	Return from subroutine.

Arguments can be passed to subroutines in the branch to the subroutine label and then popped, in first-in-last-out order, immediately following the subroutine label definition. See Chapter 3, "Command Reference", for details.

Arguments can then be returned in an analogous fashion through the **return** statement.

Procedures

endp	Terminates a procedure definition.
local	Declares variables local to a procedure.
proc	Begins definition of multi-line procedure.
retp	Returns from a procedure.

Here is an example of a GAUSS procedure:

```
proc (3) = crosprod(x,y);
local r1, r2, r3;
r1 = x[2,.].*y[3,.]-x[3,.].*y[2,.];
r2 = x[3,.].*y[1,.]-x[1,.].*y[3,.];
r3 = x[1,.].*y[2,.]-x[2,.].*y[1,.];
retp( r1,r2,r3 );
endp;
```

The "(3) = " indicates that the procedure returns three arguments. All local variables, except those listed in the argument list, must appear in the **local** statement. Procedures may reference global variables. There may be more than one **retp** per procedure definition; none is required if the procedure is defined to return 0 arguments. The **endp** is always necessary and must appear at the end of the procedure definition. Procedure definitions cannot be nested. The syntax for using this example function is

 $\{a1,a2,a3\} = crosprod(u,v);$

See "Procedures and Keywords" and "Libraries" in the User's Guide for details.

Libraries

call	Calls function and discard return values.
declare	Initializes variables at compile time.
external	External symbol definitions.
lib	Builds or updates a GAUSS library.
library	Sets up list of active libraries.

call allows functions to be called when return values are not needed. This is especially useful if a function produces printed output (**dstat**, **ols** for example) as well as return values.

Compiling

compile	Compiles and saves a program to a .gcg file.
loadp	Loads compiled procedure.
save	Saves the compiled image of a procedure to disk.
saveall	Saves the contents of the current workspace to a file.
use	Loads previously compiled code.

GAUSS procedures and programs may be compiled to disk files. By then using this compiled code, the time necessary to compile programs from scratch is eliminated. Use **compile** to compile a command file. All procedures, matrices and strings referenced by that program will be compiled as well.

Stand-alone applications may be created by running compiled code under the Run-Time Module. (Contact Aptech Systems for more information on this product.)

To save the compiled images of procedures that do not make any global references, use **save**. This will create an .fcg file. To load the compiled procedure into memory, use **loadp**. (This is not recommended because of the restriction on global

references and the need to explicitly load the procedure in each program that references it. It is included here to maintain backward compatibility with previous versions.)

OS Functions

cdir	Returns current directory.
ChangeDir	Changes directory in program.
chdir	Changes directory interactively.
dfree	Returns free space on disk.
envget	Gets an environment string.
exec	Executes an executable program file.
fileinfo	Takes a file specification, returns names and information of files that match.
files	Takes a file specification, returns names of files that match.
filesa	Takes a file specification, returns names of files that match.
shell	Shells to OS.

Workspace Management

clear	Sets matrices equal to 0.
clearg	Sets global symbols to 0.
delete	Deletes specified global symbols.
hasimag	Examines matrix for nonzero imaginary part.
iscplx	Returns whether a matrix is real or complex.
maxvec	Returns maximum allowed vector size.
new	Clears current workspace.
show	Displays global symbol table.
type	Returns types of argument (matrix or string).
typecv	Returns types of symbol (argument contains the names of the symbols to be checked).

When working with limited workspace, it is a good idea to **clear** large matrices that are no longer needed by your program.

coreleft is most commonly used to determine how many rows of a data set may be read into memory at one time.

Error Handling and Debugging

Omits line number and file name records from program.
Includes line number and file name records in program.
Executes a program under the source level debugger.
Disabls invalid operation interrupt of coprocessor.
Enables invalid operation interrupt of coprocessor.
Creates user-defined error code.
Sendserror message to screen and log file.
Examines status word of coprocessor.
Clears coprocessor exception flags.
Sets and gets coprocessor control word.
Tests for a scalar error code.
Traces program execution for debugging.
Controls trapping of program errors.
Examines the trap flag.

To trace the execution of a program, use **trace**.

User-defined error codes may be generated using **error**.

String Handling

chrs	Converts ASCII values to a string.
ftocv	Converts an NxK matrix to a character matrix.
ftos	Converts a floating point scalar to string.
ftostrC	Converts a matrix to a string array using a C language format specification.
getf	Loads ASCII or binary file into string.
loads	Loads a string file (.fst file).
lower	Converts a string to lowercase.
putf	Writes a string to disk file.
stof	Converts a string to floating point numbers.
strindx	Finds starting location of one string in another string.
strlen	Returns length of a string.

strrindx	Finds starting location of one string in another string, searching from the end to the start of the string.
strsect	Extracts a substring of a string.
strsplit	Splits an Nx1 string vector into an NxK string array of the individual tokens.
strsplitPad	Splits a string vector into a string array of the individual tokens. Pads on the right with null strings.
strtof	Converts a string array to a numeric matrix.
strtofcplx	Converts a string array to a complex numeric matrix.
upper	Changes a string to uppercase.
vals	Converts a string to ASCII values.
varget	Accesses the global variable named by a string.
vargetl	Accesses the local variable named by a string.
varput	Assigns a global variable named by a string.
varputl	Assigns a local variable named by a string.

strlen, **strindx**, **strrindx**, and **strsect** can be used together to parse strings.

Use **ftos** to print to a string.

To create a list of generic variable names (X1, X2, X3, X4... for example), use **ftocv**.

Time and Date Functions

date	Returns current system date.
datestr	Formats date as "mm/dd/yy".
datestring	Formats date as "mm/dd/yyyy".
datestrymd	Formats date as "yyyymmdd".
dayinyr	Returns day number of a date.
dayofweek	Returns day of week.
dtdate	Creates a matrix in DT scalar format.
dtday	Creates a matrix in DT scalar format containing only the year, month and day. Time of day information is zeroed out.
dttime	Creates a matrix in DT scalar format containing only the hour, minute and second. The date information is zeroed out.
dttodtv	Converts DT scalar format to DTV vector format.

dttostr	Converts a matrix containing dates in DT scalar format to a
	string array.
dttoutc	Converts DT scalar format to UTC scalar format.
dtvnormal	Normalizes a date and time (DTV) vector.
dtvtodt	Converts DT vector format to DT scalar format.
etdays	Difference between two times in days.
ethsec	Difference between two times in 100ths of a second.
etstr	Converts elapsed time to string.
hsec	Returns elapsed time since midnight in 100ths of a second.
strtodt	Converts a string array of dates to a matrix in DT scalar format.
time	Returns current system time.
timedt	Returns system date and time in DT scalar format.
timestr	Formats time as "hh:mm:ss".
todaydt	Returns system date in DT scalar format. The time returned is always midnight (00:00:00), the beginning of the returned day.
utctodt	Converts UTC scalar format to DT scalar format.
utctodtv	Converts UTC scalar format to DTV vector format.

Use **hsec** to time segments of code. For example,

```
et = hsec;
x = y*y;
et = hsec - et;
```

will time the GAUSS multiplication operator.

Console I/O

con	Requests console input, create matrix.
cons	Requests console input, create string.
key	Gets the next key from the keyboard buffer. If buffer is empty, returns a 0.
keyav	Check if keystroke is available.
keyw	Gets the next key from the keyboard buffer. If buffer is empty, waits for a key.
wait	Waits for a keystroke.

waitc Flushes buffer, then waits for a keystroke.

key can be used to trap most keystrokes. For example, the following loop will trap the ALT-H key combination:

```
kk = 0;
do until kk == 1035;
     kk = key;
endo;
```

Other key combinations, function keys, and cursor key movement can also be trapped. See **key**.

cons and **con** can be used to request information from the console. **keyw**, **wait**, and **waitc** will wait for a keystroke.

Output Functions

Text Output

cls	Clears the window.
color	Sets pixel, text, background colors.
comlog	Controls interactive command logging.
csrcol	Gets column position of cursor on window.
csrlin	Gets row position of cursor on window.
ed	Accesses an alternate editor.
edit	Edits a file with the GAUSS editor.
format	Defines format of matrix printing.
locate	Positions the cursor on the window.
lpos	Returns print head position in printer buffer.
lprint	Prints expression to the printer.
lprint [[on off]]	Switches auto printer mode on and off.
lpwidth	Specifies printer width.
lshow	Prints global symbol table on the printer.
output	Redirects print statements to auxiliary output.
outwidth	Sets line width of auxiliary output.

plot	Plots elements of two matrices in text mode.
plotsym	Controls data symbol used by plot .
print	Prints to window.
print [[on off]]	Turns auto window print on and off.
printdos	Prints a string for special handling by the OS.
printfm	Prints matrices using a different format for each column.
screen [[on off]]	Directs/suppresses print statements to window.
screen out	Dumps snapshot of window to auxiliary output.
scroll	Scrolls a section of the window.
tab	Positions the cursor on the current line.

The results of all printing can be sent to an output file using **output**. This file can then be printed or ported as an ASCII file to other software.

printdos can be used to print in reverse video, or using different colors. It requires that ansi.sys be installed.

To produce boxes, etc. using characters from the extended ASCII set, use chrs.

Window Graphics

color	Sets color.
graph	Sets pixels.
line	Draws lines.
setvmode	Sets video mode.

graph allows the user to plot individual pixels.

Graphics

This section summarizes all procedures and global variables available within the Publication Quality Graphics (PQG) System. A general usage description will be found in "Publications Quality Graphics" in the *User's Guide*.

Graph Types

bar	Generates bar graph.
box	Graphs data using the box graph percentile method.
contour	Graphs contour data.
draw	Supplies additional graphic elements to graphs.
---------	--
hist	Computes and graphs frequency histogram.
histf	Graphs a histogram given a vector of frequency counts.
histp	Graphs a percent frequency histogram of a vector.
loglog	Graphs X,Y using logarithmic X and Y axes.
logx	Graphs X,Y using logarithmic X axis.
logy	Graphs X,Y using logarithmic Y axis.
surface	Graphs a 3-D surface.
ху	Graphs X,Y using Cartesian coordinate system.
xyz	Graphs X, Y, Z using 3-D Cartesian coordinate system.

Axes Control and Scaling

Controls precision of numbers on X axis.
Turns axes on or off.
Controls where axes intersect.
Controls major and minor grid lines.
Controls direction of tick marks on axes.
Controls use of scientific notation on X axis.
Controls precision of numbers on Y axis.
Controls use of scientific notation on Y axis.
Controls precision of numbers on Z axis.
Controls use of scientific notation on Z axis.
Scales X,Y axes for 2-D plots.
Scales X, Y, and Z axes for 3-D plots.
Scales X axis and control tick marks.
Scales Y axis and control tick marks.
Scales Z axis and control tick marks.

Text, Labels, Titles, and Fonts

_pnumht	Controls size of axes numeric labels.
_ptitlht	Controls main title size.
_paxht	Controls size of axes labels.
_pdate	Dates string contents and control.

_plegctl	Sets location and size of plot legend.
_plegstr	Specifies legend text entries.
pmsgctl	Controls message position.
_pmsgstr	Specifies message text.
_pnum	Axes numeric label control and orientation.
asclabel	Defines character labels for tick marks.
fonts	Loads fonts for labels, titles, messages and legend.
title	Specifies main title for graph.
xlabel	X axis label.
ylabel	Y axis label.
zlabel	Z axis label.

Main Curve Lines and Symbols

_pboxctl	Controls box plotter.
_pboxlim	Outputs percentile matrix from box plotter.
_pcolor	Controls line color for main curves.
_plctrl	Controls main curve and frequency of data symbols.
_pltype	Controls line style for main curves.
_plwidth	Controls line thickness for main curves.
_pstype	Controls symbol type for main curves.
_psymsiz	Controls symbol size for main curves.
_pzclr	Z level color control for contour and surface .

Extra Lines and Symbols

_parrow	Creates arrows.
_parrow3	Creates arrows for 3-D graphs.
_perrbar	Plots error bars.
_pline	Plots extra lines and circles.
_pline3d	Plots extra lines for 3-D graphs.
_psym	Plots extra symbols.
_psym3d	Plots extra symbols for 3-D graphs.

Graphic Panel, Page, and Plot Control

_pageshf	Shifts the graph for printer output.
_pagesiz	Controls size of graph for printer output.
_plotshf	Controls plot area position.
_plotsiz	Controls plot area size.
_protate	Rotates the graph 90 degrees.
axmargin	Controls axes margins and plot size.
begwind	Graphic panel initialization procedure.
endwind	End graphic panel manipulation, display graphs.
getwind	Gets current graphic panel number.
loadwind	Loads a graphic panel configuration from a file.
makewind	Creates graphic panel with specified size and position.
margin	Controls graph margins.
nextwind	Sets to next available graphic panel number.
savewind	Saves graphic panel configuration to a file.
setwind	Sets to specified graphic panel number.
window	Creates tiled graphic panels of equal size.

axmargin is preferred to the older **_plotsiz** and **_plotshf** globals for establishing an absolute plot size and position.

Output Options

Controls graphics output to window.
Controls final beep.
Controls creation and name of graphics.tkf file.
Specifies zoom parameters.
Generates print, conversion file.
Sets the graphics viewer mode.
Sets the graphics viewer mode.
Converts .tkf file to Encapsulated PostScript file.
Converts .tkf file to PostScript file.

Miscellaneous

_pbox	Draws a border around graphic panel/window.
_pcrop	Controls cropping of graphics data outside axes area.
_pframe	Draws a frame around 2-D, 3-D plots.
_pmcolor	Controls colors to be used for axes, title, x and y labels, date, box, and background.
graphset	Resets all PQG globals to default values.
rerun	Displays most recently created graph.
view	Sets 3-D observer position in workbox units.
viewxyz	Sets 3-D observer position in plot coordinates.
volume	Sets length, width, and height ratios of 3-D workbox.

Command 3 Reference

Command Components

The following list describes each of the components used in the GAUSS Language Command Reference.

Purpose	Describes the function of the command.
Library	Describes where the Run-Time Library functions can be found in the GAUSS program structure.
Format	Illustrates use of the command syntax.
Input	Describes the input parameters of the command.
Global Input	Describes the global variables that are referenced by the command.
Output	Describes the parameters that will be returned as a result of the input.

Command Reference

Global Output	Describes the global variables that are updated by the command.
Portability	Describes how GAUSS behaves under various operating systems.
Remarks	Explanatory material pertinent to the command.
Example	Sample code strings using the command.
Source	The source file in which Run-Time Library function is defined.
Globals	Global variables that are accessed by the command.
See also	Other commands that have similar characteristics.
Technical Notes	Technical discussion and reference source citations.

References Reference material citations.

abs

a

abs

Purpose	Returns the absolute value or complex modulus of <i>x</i> .
Format	y = abs(x);
Input	<i>x</i> NxK matrix.
Output	<i>y</i> NXK matrix containing absolute values of <i>x</i> .
Example	x = rndn(2,2);
	y = abs(x);
	x = 0.675243 1.053485
	-0.190746 -1.229539
	v = 0.675243 1.053485
	0.190746 1.229539

In this example, a $2x^2$ matrix of Normal random numbers is generated and the absolute value of the matrix is computed.

acf

acf

Purpose	Computes sample autocorrelations.
Format	rk = acf(y,k,d);
Input	 y Nx1 vector, data. k scalar, maximum number of autocorrelations to compute. d scalar, order of differencing.
Output	<i>rk</i> Kx1 vector, sample autocorrelations.
Example	<pre>x = { 20.80, 18.58, 23.39, 20.47, 21.78, 19.56, 19.58, 18.91, 20.08, 21.88 };</pre>
	<pre>rk = acf(x,4,2); print rk;</pre>
	-0.74911771 0.48360914 -0.34229330 0.17461180
Source	tsutil.src

AmericanBinomCall

AmericanBinomCall

Purpose	American binomial method Call.	Č
		t
Format	c = AmericanBinomCall(SO, K, r, div, tau, sigma, N);	C
Input	<i>S0</i> scalar, current price	C
	<i>K</i> Mx1 vector, strike prices	6
	<i>r</i> scalar, risk free rate	
	<i>div</i> continuous dividend yield	1
	<i>tau</i> scalar, elapsed time to exercise in annualized days of trading	Ę
	sigma scalar, volatility	
	<i>N</i> number of time segments	
Output	<i>c</i> Mx1 vector, call premiums	
Example	S0 = 718.46;	ł
-	$K = \{ 720, 725, 730 \};$]
	r = 0.498:	n
		ľ
	sigma = .2493;	
	t0 = dtday(2001, 1, 30);	(
	t1 = dtday(2001, 2, 16);	
	tau = elapsedTradingDays(t0,t1) /	C
	annualTradingDays(2001);]
	<pre>c = AmericanBinomCall(S0,K,r,0,tau,sigma,60);</pre>	5
	print c;	
	17.190224	ι
	14 905054	N
	T4.909034	X
	12.673322	

AmericanBinomCall

Source finprocs.src

Technical Notes

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified approach", Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.

AmericanBinomCall_Greeks

AmericanBinomCall_Greeks

<pre>Format { d,g,t,v,rh } = AmericanBinomCall_Greeks(S0,K,r,div,tau,sigma,N); input S0 scalar, current price K Mx1 vector, strike price r scalar, risk free rate div continuous dividend yield tau scalar, elapsed time to exercise in annualized days of trading sigma scalar, volatility N number of time segments Output d Mx1 vector, delta g Mx1 vector, gamma t Mx1 vector, theta v Mx1 vector, vega rh Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print t;</pre>	Purpose	American binomial method call Delta, Gamma, Theta, Vega, and Rho.			
<pre>Input S0 scalar, current price K Mx1 vector, strike price r scalar, risk free rate div continuous dividend yield tau scalar, elapsed time to exercise in annualized days of trading sigma scalar, volatility N number of time segments Output d Mx1 vector, delta g Mx1 vector, gamma t Mx1 vector, theta v Mx1 vector, theta v Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d.g.t.v.rh } = AmericanBinomCall_Greeks (S0,K.r.div,tau,sigma,30); print d; print t; </pre>	Format	<pre>{ d,g,t,v,rh } = AmericanBinomCall_Greeks(S0,K,r,div,tau,sigma,N);</pre>			
KMXI vector, sinke pricerscalar, risk free rate div continuous dividend yield tau scalar, elapsed time to exercise in annualized days of trading $sigma$ scalar, volatilityNnumber of time segments Output dMX1 vector, delta ggMX1 vector, theta vvMX1 vector, theta vvMX1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { div = 0; { div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print d; print t;	Input	SO scalar, current price			
<pre>div continuous dividend yield tau scalar, elapsed time to exercise in annualized days of trading sigma scalar, volatility N number of time segments Output d Mx1 vector, delta g Mx1 vector, gamma t Mx1 vector, theta v Mx1 vector, theta v Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>		K MXI vector, sinke price			
<pre>tav continuous uvident yield tau scalar, elapsed time to exercise in annualized days of trading sigma scalar, volatility N number of time segments Output d Mx1 vector, delta g Mx1 vector, gamma t Mx1 vector, theta v Mx1 vector, vega rh Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>		<i>div</i> continuous dividend vield			
<pre>sigma scalar, volatility N number of time segments Output d Mx1 vector, delta g Mx1 vector, gamma t Mx1 vector, gamma t Mx1 vector, theta v Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks</pre>		<i>tau</i> scalar, elapsed time to exercise in annualized days of trading			
<pre>N number of time segments Output d Mx1 vector, delta g Mx1 vector, gamma t Mx1 vector, theta v Mx1 vector, rega rh Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>		sigma scalar, volatility			
<pre>Output d Mx1 vector, delta g Mx1 vector, gamma t Mx1 vector, theta v Mx1 vector, vega rh Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>		N number of time segments			
<pre>Output d Mx1 vector, delta g Mx1 vector, gamma t Mx1 vector, theta v Mx1 vector, vega rh Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>	• • • •				
<pre>g Mx1 vector, gamma t Mx1 vector, theta v Mx1 vector, vega rh Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>	Output	d Mx1 vector, delta			
<pre>t Mx1 vector, theta v Mx1 vector, vega rh Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>		g Mx1 vector, gamma			
<pre>v Mx1 vector, vega rh Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>		t Mx1 vector, theta			
<pre>rh Mx1 vector, rho Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>		v Mx1 vector, vega			
<pre>Example S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks</pre>		<i>rh</i> Mx1 vector, rho			
<pre>K = 300; r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print d; print g; print t;</pre>	Example	S0 = 305;			
<pre>r = .08; sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>		K = 300;			
<pre>sigma = .25; tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print d; print g; print t;</pre>		r = .08;			
<pre>tau = .33; div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print d; print g; print t;</pre>		sigma = .25;			
<pre>div = 0; { d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>		tau = .33;			
<pre>{ d,g,t,v,rh } = AmericanBinomCall_Greeks (S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>		div = 0;			
<pre>(S0,K,r,div,tau,sigma,30); print d; print g; print t;</pre>		{ d.g.t.v.rh } = AmericanBinomCall Greeks			
<pre>print d; print g; print t;</pre>		(20 Km div tou div 20):			
print d; print g; print t;		(50, K, I, UIV, Cau, SIgma, 50),			
print g; print t;		print d;			
print t;		print g;			
		print t;			

a

AmericanBinomCall_Greeks

	print v;	
	print rh;	
	0.706312	
	0.000764	
	-17.400851	
	68.703849	
	76.691829	
Source	finprocs.src	
Globals	_fin_thetaType	scalar, if 1, one day look ahead, else, infinitesmal. Default = 0.
	_fin_epsilon	scalar, finite difference stepsize. Default = $1e-8$.
Technical Notes	The binomial method simplified approach",	of Cox, Ross, and Rubinstein ("Option pricing: a Journal of Financial Economics, 7:229:264) as

Notes simplified approach", Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.

a

AmericanBinomCall_ImpVol

AmericanBinomCall_ImpVol

Format $sigma =$ AmericanBinomCall_ImpVol(c , SO , K , r , div , tau , N);Input c Mx1 vector, call premiums SOSOscalar, current price K Mx1 vector, strike prices r r scalar, risk free rate div continuous dividend yield tau tau scalar, elapsed time to exercise in annualized days of trading N number of time segments	Purpose	Implied volatilities for American binomial method calls.			
Input c Mx1 vector, call premiumsS0scalar, current priceKMx1 vector, strike prices r scalar, risk free rate div continuous dividend yield tau scalar, elapsed time to exercise in annualized days of tradingNnumber of time segments	Format	<pre>sigma = AmericanBinomCall_ImpVol(c,S0,K,r,div,tau,N);</pre>			
e e e e e e e e e e e e e e e e e e e	Input	 <i>c</i> Mx1 vector, call premiums <i>S0</i> scalar, current price <i>K</i> Mx1 vector, strike prices <i>r</i> scalar, risk free rate <i>div</i> continuous dividend yield <i>tau</i> scalar, elapsed time to exercise in annualized days of trading <i>N</i> number of time segments 			
Output sigma Mx1 vector, volatility	Output	sigma Mx1 vector, volatility			
<pre>Example c = { 13.70, 11.90, 9.10 }; S0 = 718.46; K = { 720, 725, 730 }; r = .0498; div = 0; t0 = dtday(2001, 1, 30); t1 = dtday(2001, 2, 16); tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001); sigma = AmericanBinomCall_ImpVol (c,S0,K,r,div,tau,30); print sigma;</pre>	Example	<pre>c = { 13.70, 11.90, 9.10 }; S0 = 718.46; K = { 720, 725, 730 }; r = .0498; div = 0; t0 = dtday(2001, 1, 30); t1 = dtday(2001, 2, 16); tau = elapsedTradingDays(t0,t1) /</pre>			

AmericanBinomCall_ImpVol

0	•	1	7	1	5

0.1301

Source finprocs.src

Technical Notes

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified approach", Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.

AmericanBinomPut

AmericanBinomPut

Purnose	American binomial method Put	ä
i ui pose		b
Format	<pre>c = AmericanBinomPut(S0,K,r,div,tau,sigma,N);</pre>	С
Input	<i>S0</i> scalar, current price	d
	<i>K</i> Mx1 vector, strike prices	е
	r scalar, risk free rate	
	<i>div</i> continuous dividend yield	1
	<i>tau</i> scalar, elapsed time to exercise in annualized days of trading	٤
	sigma scalar, volatility	
	<i>N</i> number of time segments	i
Output	<i>c</i> Mx1 vector, put premiums	j
Example:	S0 = 718.46;	k
•	$K = \{720, 725, 730\};$	1
		n
	r = .0498	17
	sigma = .2493;	1
	t0 = dtday(2001, 1, 30);	C
	t1 = dtday(2001, 2, 16);	p
	tau = elapsedTradingDays(t0,t1) /	q
	annualTradingDays(2001);	ľ
	<pre>c = AmericanBinomPut(S0,K,r,0,tau,sigma,60);</pre>	s
	print c;	4
	16.862683	u
	19 606573	V
		W
	22.433390	

AmericanBinomPut

Source finprocs.src

Technical Notes

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified approach", Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.

AmericanBinomPut_Greeks

AmericanBinomPut_Greeks

Purpose	Americ	can binomial method put Delta, Gamma, Theta, Vega, and Rho.	
•			
Format	$\begin{cases} d, g \end{cases}$	$\{t, t, v, rh\} =$	
	Ameri	cansinomput_Greeks(S0,K,r,aw,law,sigma,W);	
Input	SO	scalar, current price	
	Κ	Mx1 vector, strike price	
	r	scalar, risk free rate	
	div	continuous dividend yield	
	tau	scalar, elapsed time to exercise in annualized days of trading	
	sigma	scalar, volatility	
	Ν	number of time segments	
Output	d	Mx1 vector, delta	
	8	Mx1 vector, gamma	
	t	Mx1 vector, theta	
	V	Mx1 vector, vega	
	rh	Mx1 vector, rho	
Example	S0 =	3057	
	K = 3	300;	
	r = .	08;	
	div =	= 0;	
	sıgma	A = .25i	
	tau =	= .33;	
	{ d,g	g,t,v,rh } = AmericanBinomPut_Greeks	
		(S0,K,r,div,tau,sigma,60);	
	print	d;	
	print	g;	
	print	t;	
	-		

а

AmericanBinomPut_Greeks

	print v;	
	print rh;	
	-0.38324908	
	0.00076381912	
	8.1336630	
	68.337294	
	-27.585043	
Source	finprocs.src	
Globals	_fin_thetaType	scalar, if 1, one day look ahead, else, infinitesmal. Default = 0.
	_fin_epsilon	scalar, finite difference stepsize. Default = 1e-8.
Technical Notes	The binomial method simplified approach", described in Options, the basis of this proce	of Cox, Ross, and Rubinstein ("Option pricing: a Journal of Financial Economics, 7:229:264) as Futures, and other Derivatives by John C. Hull is dure.

AmericanBinomPut_ImpVol

AmericanBinomPut_ImpVol

Burnasa	Implied velotilities for American binomial method puts	a
ruipose	implied volatilities for American onionilar method puts.	b
Format	<pre>sigma = AmericanBinomPut_ImpVol(c,S0,K,r,div,tau,N);</pre>	С
Input	c Mx1 vector, put premiums	d
	<i>SO</i> scalar, current price	e
	<i>K</i> Mx1 vector, strike prices	
	r scalar, risk free rate	1
	<i>div</i> continuous dividend yield	
	tau scalar, elapsed time to exercise in annualized days of trading	h
	N number of time segments	
		1
Output	sigma Mx1 vector, volatility	j
Example	$p = \{ 14.60, 17.10, 20.10 \};$	k
•	S0 = 718.46;	1
	κ = { 720, 725, 730 };	m
	r = .0498;	n
	div = 0;	0
	t0 = dtday(2001, 1, 30);	р
	t1 = dtday(2001, 2, 16);	q
	tau = elapsedTradingDays(t0,t1) /	r
	annualTradingDays(2001);	s
	sigma = AmericanBinomPut_ImpVol	+
	(p,S0,K,r,div,tau,30);	
	print sigma;	u
	F	V
	0.1254	W
		x v

AmericanBinomPut_ImpVol

0	•	1	6	6	8

- 0.2134
- Source finprocs.src

Technical Notes

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified approach", Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.

AmericanBSCall

AmericanBSCall

Durnasa	American Plack and Scholas Call	a
Furpose	American Black and Scholes Can.	b
Format	c = AmericanBSCall(S0,K,r,div,tau,sigma);	C
Input	<i>S0</i> scalar, current price	d
	<i>K</i> Mx1 vector, strike prices	е
	<i>r</i> scalar, risk free rate	
	<i>div</i> continuous dividend yield	f
	<i>tau</i> scalar, elapsed time to exercise in annualized days of trading	g
	sigma scalar, volatility	h
Output:	<i>c</i> Mx1 vector, call premiums	i
_		j
Example	S0 = 718.46;	k
	$K = \{ 720, 725, 730 \};$	1
	r = .0498;	m
	sigma = .2493;	
	t0 = dtday(2001, 1, 30);	n
	t1 = dtday(2001, 2, 16);	0
	tau = elapsedTradingDays(t0,t1) /	p
	annualTradingDays(2001);	q
	<pre>c = AmericanBSCall(S0,K,r,0,tau,sigma);</pre>	r
	print c;	S
		t.
	16.093640	u
	13.846830	V
	11.829059	
Source	finprocs src	W
300100	<u>-</u>	

AmericanBSCall_Greeks

AmericanBSCall_Greeks

American Black and Scholes call Delta, Gamma, Omega, Theta, and Vega.		
<pre>{ d,g,t,v,rh } = AmericanBSCall_Greeks(S0,K,r,div,tau,sigma);</pre>		
S0scalar, current priceKMx1 vector, strike pricerscalar, risk free ratedivcontinuous dividend yieldtauscalar, elapsed time to exercise in annualized days of tradingsigmascalar, volatility		
dMx1 vector, deltagMx1 vector, gammatMx1 vector, thetavMx1 vector, vegarhMx1 vector, rho		
<pre>S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; { d,g,t,v,rh } = AmericanBSCall_Greeks (S0,K,r,0,tau,sigma); print d; print d; print t; print t;</pre>		

AmericanBSCall_Greeks

	print rh;	
	0.40034039	
	0.016804021	
	-55.731079	
	115.36906	
	46.374528	
Source	finprocs.src	
Globals	_fin_thetaType	scalar, if 1, one day look ahead, else, infinitesmal. Default = 0 .
	_fin_epsilon	scalar, finite difference stepsize. Default = 1e-8.

AmericanBSCall_ImpVol

AmericanBSCall_ImpVol

Purpose	Implied volatilities for American Black and Scholes calls.		
Format	<pre>sigma = AmericanBSCall_ImpVol(c,S0,K,r,div,tau);</pre>		
Input	 <i>c</i> Mx1 vector, call premiums S0 scalar, current price <i>K</i> Mx1 vector, strike prices <i>r</i> scalar, risk free rate <i>div</i> continuous dividend yield <i>tau</i> scalar, elapsed time to exercise in annualized days of trading 		
Output	sigma Mx1 vector, volatility		
Example	<pre>c = { 13.70, 11.90, 9.10 }; S0 = 718.46; K = { 720, 725, 730 }; r = .0498; t0 = dtday(2001, 1, 30); t1 = dtday(2001, 2, 16); tau = elapsedTradingDays(t0,t1) /</pre>		
	0.066876221		

AmericanBSCall_ImpVol

Source finprocs.src

	1	a	
_			
_			
_			
_			

AmericanBSPut

AmericanBSPut

Purpose	American Black and Scholes Put.		
Format	c = AmericanBSPut(S0,K,r,div,tau,sigma);		
Input	S0scalar, current priceKMx1 vector, strike pricesrscalar, risk free ratedivcontinuous dividend yieldtauscalar, elapsed time to exercise in annualized days of tradingsigmascalar, volatility		
Output	<i>c</i> Mx1 vector, put premiums		
Example	<pre>S0 = 718.46; K = { 720, 725, 730 }; r = .0498; sigma = .2493; t0 = dtday(2001, 1, 30); t1 = dtday(2001, 2, 16); tau = elapsedTradingDays(t0,t1) /</pre>		
	16.748987 19.41627 22.318856		
Source	finprocs.src		

a

AmericanBSPut_Greeks

Purpose	Americ Vega.	an Black and Scholes put Delta, Gamma, Omega, Theta, and	
Format	{ d,g Ameri	<pre>,t,v,rh } = canBSPut_Greeks(S0,K,r,div,tau,sigma);</pre>	
Input	S0	scalar, current price	
	Κ	Mx1 vector, strike price	- 1
	r	scalar, risk free rate	
	div	continuous dividend yield	
	tau	scalar, elapsed time to exercise in annualized days of trading	
	sigma	scalar, volatility	
Output	d	Mx1 vector, delta	
	g	Mx1 vector, gamma	
	t	Mx1 vector, theta	
	v	Mx1 vector, vega	
	rh	Mx1 vector, rho	
Example	S0 =	305;	
-	K = 3	00;	
	r = .	08;	
	sigma	= .25;	
	tau =	.33;	
	{ d,g	r,t,v,rh } =	
		<pre>AmericanBSPut_Greeks(S0,K,r,0,tau,sigma);</pre>	
	print	d;	
	print	g;	
	print	t;	
	print	vi	

AmericanBSPut_Greeks

	print rh;	
	-0.33296721	
	0.0091658294	
	-17.556118	
	77.614238	
	-40.575963	
Source	finprocs.src	
Globals	_fin_thetaType	scalar, if 1, one day look ahead, else, infinitesmal. Default = 0 .
	_fin_epsilon	scalar, finite difference stepsize. Default = 1e-8.

a

AmericanBSPut_ImpVol

Purpose	Implied volatilities for American Black and Scholes puts.		
Format	<pre>sigma = AmericanBSPut_ImpVol(c,S0,K,r,div,tau);</pre>		
Input	 <i>c</i> Mx1 vector, put premiums <i>S0</i> scalar, current price <i>K</i> Mx1 vector, strike prices <i>r</i> scalar, risk free rate <i>div</i> continuous dividend yield <i>tau</i> scalar, elapsed time to exercise in annualized days of trading 		
Output	sigma Mx1 vector, volatility		
Example	<pre>p = { 14.60, 17.10, 20.10 }; S0 = 718.46; K = { 720, 725, 730 }; r = .0498; t0 = dtday(2001, 1, 30); t1 = dtday(2001, 2, 16); tau = elapsedTradingDays(t0,t1) /</pre>		
	0.12829346 0.16885986 0.21544312		
Source	finprocs.src	X	

annualTradingDays

annualTradingDays

Purpose	Compute number of trading days in a given year.	
Format	<pre>n = annualTradingDays(a);</pre>	
Input	<i>a</i> scalar, year.	
Output	<i>n</i> number of trading days in year	
Remarks	A trading day is a weekday that is not a holiday as defined by the New York Stock Exchange from 1888 through 2004. Holidays are defined holidays.asc. You may edit that file to modify or add holidays.	
•		

Source finutils.src

arccos

arccos

Purpose	Computes the inverse cosine.	
Format	$y = \arccos(x);$	
Input	<i>x</i> NxK matrix.	
Output	<i>y</i> NXK matrix containing the angle in radians whose cosine is <i>x</i> .	
Remarks	If x is complex or has any elements whose absolute value is greater than 1, complex results are returned.	
Example	<pre>x = { -1, -0.5, 0, 0.5, 1 }; y = arccos(x);</pre>	
	$ \begin{array}{rcl} -1.000000 \\ -0.500000 \\ x &= & 0.000000 \\ & & 0.500000 \\ & & 1.000000 \end{array} $	
	$\begin{array}{rcl} 3.141593\\ 2.094395\\ y &=& 1.570796\\ & 1.047198\\ & 0.000000 \end{array}$	
Source	trig.src	

arcsin

arcsin

Purpose	Computes the inverse sine.		
Format	$y = \arcsin(x);$		
Input	<i>x</i> NxK matrix.		
Output	<i>y</i> NXK matrix, the angle in radians whose sine is <i>x</i> .		
Remarks	If x is complex or has any elements whose absolute value is greater than 1, complex results are returned.		
Example	<pre>x = { -1, -0.5, 0, 0.5, 1 }; y = arcsin(x);</pre>		
	$ \begin{array}{rcl} -1.000000 \\ -0.500000 \\ x &= & 0.000000 \\ & 0.500000 \\ & 1.000000 \end{array} $		
	$y = \begin{array}{c} -1.570796 \\ -0.523599 \\ 0.000000 \\ 0.523599 \\ 1.570796 \end{array}$		
Source	trig.src		

asclabel

asclabel

Purpose	Sets up character labels for the X and Y axes.		
Library	pgraph		
Format	<pre>asclabel(xl,yl);</pre>		
Input	 <i>xl</i> string or Nx1 character vector, labels for the tick marks on the X axis. Set to 0 if no character labels for this axis are desired. <i>yl</i> string or Mx1 character vector, labels for the tick marks on the Y axis. Set to 0 if no character labels for this axis are desired. 		
Example	This illustrates how to label the X axis with the months of the year: let lab = JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC; asclabel(lab,0);		
	<pre>This will also work: lab = "JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC"; asclabel(lab,0); If the string format is used, then ascense characters may be embedded in</pre>		
	the labels. For example, the following produces character labels that are multiples of λ . The font Simgrma must be previously loaded in a fonts command. (See Chapter 13 in Using GAUSS for Windows95.)		

```
fonts("simplex simgrma");
lab = "\2010.25\2021 \2010.5\2021
\2010.75\2021 l";
asclabel(lab,0);
```

Here, the **2021** produces the " λ " symbol from Simgrma.

Source pgraph.src

asclabel

See also xtics, ytics, scale, scale3d, fonts

atan

atan

Purpose	Returns the arctangent of its argument.
Format	$y = \operatorname{atan}(x);$
Input	<i>x</i> NxK matrix.
Output	<i>y</i> NXK matrix containing the arctangent of <i>x</i> in radians.
Remarks	y will be a matrix the same size as x , containing the arctangents of the corresponding elements of x .
	For real <i>x</i> , the arctangent of <i>x</i> is the angle whose tangent is <i>x</i> . The result is
	a value in radians in the range $\frac{-\pi}{2}$ to $\frac{+\pi}{2}$. To convert radians to degrees,
	multiply by $\frac{180}{\pi}$.
	For complex x , the arctangent is defined everywhere except i and $-i$. If x is complex, y will be complex.
Example	$x = \{ 2, 4, 6, 8 \};$
	z = x/2;
	y = atan(z);
	0.785398
	" _
	y – 1.249046
	1.325818
See also	atan2, sin, cos, pi, tan

atan2

atan2

Purpose	Computes an angle from an <i>x</i> , <i>y</i> coordinate.
Format	$z = \mathtt{atan2}(y,x);$
Input	<i>y</i> NxK matrix, the <i>Y</i> coordinate.<i>x</i> LxM matrix, ExE conformable with <i>y</i>, the <i>X</i> coordinate.
Output	$z = \max(N,L)$ by $\max(K,M)$ matrix.
Remarks	Given a point x, y in a Cartesian coordinate system, atan2 will give the correct angle with respect to the positive X axis. The answer will be in radians from -pi to +pi.
	To convert radians to degrees, multiply by $\frac{180}{\pi}$.
	atan2 operates only on the real component of <i>x</i> , even if <i>x</i> is complex.
Example	x = 2i
	y = { 2, 4, 6, 8 };
	z = atan2(y,x);
	$z = \begin{cases} 0.785398 \\ 1.107149 \\ 1.249046 \\ 1.325818 \end{cases}$
See also	atan, sin, cos, pi, tan, arcsin, arccos
axmargin

axmargin

Purpose	Set absolute margins for the plot axes which control placement and size of plot.			
Library	pgraph			
Format	<pre>axmargin(l,r,t,b);</pre>			
Input	 <i>l</i> scalar, the left margin in inches. <i>r</i> scalar, the right margin in inches. <i>t</i> scalar, the top margin in inches. <i>b</i> scalar, the bottom margin in inches. 			
Remarks	axmargin sets an absolute distance from the axes to the edge of the graphic panel. Note that the user is responsible for allowing enough space in the margin if axes labels, numbers, and title are used on the graph, since axmargin does not size the plot automatically as in the case of margin .			
	All input inch values for this procedure are based on a full size window of 9 x 6.855 inches. If this procedure is used within a graphic panel, the values will be scaled to window inche s automatically.			
	If both margin and axmargin are used for a graph, axmargin will override any sizes specified by margin .			
Example	The statement axmargin(1,1,.5,.855); will create a plot area of 7 inches horizontally by 5.5 inches vertically, and positioned 1 inch right and 855 up from the lower left corner of the			
Source	positioned 1 men right and .855 up from the lower left corner of the graphic panel/page.			

a

balance

balance

Purpose	Balances a square matrix.			
Format	$\{b,z\}$ = balance(x)			
Input	<i>x</i> KxK matrix.			
Output	 <i>b</i> KxK matrix, balanced matrix. <i>z</i> KxK matrix, diagonal scale matrix. 			
Remarks	balance returns a balanced matrix b and another matrix z with scale factors in powers of two on its diagonal. b is balanced in the sense that the absolute sums of the magnitudes of elements in corresponding rows and columns are nearly equal.			
	balance is most often used to scale matrices to improve the numerical stability of the calculation of their eigenvalues. It is also useful in the solution of matrix equations.			
	In particular,			
	$b = z^{-1}xz$			
	balance uses the BALANC function from EISPACK.			
Example	let $x[3,3] = 100 \ 200 \ 300 \ 40 \ 50 \ 60 \ 7 \ 8 \ 9;$			
	{ b,z } = balance(x);			
	$= \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$\begin{array}{rcrcrcrcrc} 4.0 & 0.0 & 0.0 \\ = & 0.0 & 2.0 & 0.0 \\ & 0.0 & 0.0 & 0.5 \end{array}$			

band

band

Purpose	Extracts bands from a symmetric banded matrix.				
Format	a = band(y,n);				
Input	<i>y</i> KXK symmetric banded matrix.<i>n</i> scalar, number of subdiagonals.				
Output	a Kx(N+1) matrix, 1 subdiagonal per column.				
Remarks	y can actually be a rectangular PxQ matrix. K is then defined as min(P,Q). It will be assumed that a is symmetric about the principal diagonal for $y[1:K,1:K]$.				
	The subdiagonals of y are stored right to left in a, with the principal diagonal in the rightmost (N+1'th) column of a. The upper left corner of a is unused; it is set to 0.				
	This compact form of a banded matrix is what bandchol expects.				
Example	x = { 1 2 0 0, 2 8 1 0, 0 1 5 2, 0 0 2 3 }; bx = band(x,1);				
	$bx = \begin{cases} 0.0000000 & 1.0000000 \\ 2.0000000 & 8.0000000 \\ 1.0000000 & 5.0000000 \\ 2.0000000 & 3.0000000 \end{cases}$				

bandchol

bandchol

- **Purpose** Computes the Cholesky decomposition of a positive definite banded matrix.
 - **Format** *l* = bandchol(*a*);
 - **Input** *a* KxN compact form matrix.
 - **Output** *l* KxN compact form matrix, lower triangle of the Cholesky decomposition of *a*.
- **Remarks** Given a positive definite banded matrix A, there exists a matrix L, the lower triangle of the Cholesky decomposition of A, such that $A = L \ge L'$. a is the compact form of A. See **band** for a description of the format of a.

l is the compact form of *L*. This is the form of matrix that **bandcholsol** expects.

Example x = { 1 2 0 0, 2 8 1 0, 0 1 5 2,

- 0 0 2 3 }; bx = band(x,1);
 - $bx = \begin{cases} 0.0000000 & 1.0000000 \\ 2.0000000 & 8.0000000 \\ 1.0000000 & 5.0000000 \\ 2.0000000 & 3.0000000 \end{cases}$

cx = bandchol(bx);

 $cx = \begin{bmatrix} 0.000000 & 1.000000 \\ 2.000000 & 2.000000 \\ 0.5000000 & 2.1794495 \\ 0.91766294 & 1.4689774 \end{bmatrix}$

bandcholsol

bandcholsol

Solves the system of equations $Ax = b$ for x , given the lower triangle of the Cholesky decomposition of a positive definite banded matrix A .			
x = bandcholsol(b,l);			
<i>b</i> KxM matrix.<i>l</i> KxN compact form matrix.			
<i>x</i> KxM matrix.			
Given a positive definite banded matrix A, there exists a matrix L, the lower triangle of the Cholesky decomposition of A, such that $A = L^*L'$. <i>l</i> is the compact form of L; see band for a description of the format of <i>l</i> .	i		
<i>b</i> can have more than one column. If so, $Ax = b$ is solved for each column. That is,			
A*x[.,i] = b[.,i]			
$ x = \{ 1 2 0 0, \\ 2 8 1 0, \} $			
0 1 5 2,	ï		
bx = band(x,1);	ļ		
$bx = \begin{cases} 0.0000000 & 1.0000000 \\ 2.0000000 & 8.0000000 \\ 1.0000000 & 5.0000000 \\ 2.0000000 & 3.0000000 \end{cases}$			
	Solves the system of equations $Ax = b$ for x, given the lower triangle of the Cholesky decomposition of a positive definite banded matrix A. x = bandcholsol(b,l); b KxM matrix. x KxM compact form matrix. x KxM matrix. Given a positive definite banded matrix A, there exists a matrix L, the lower triangle of the Cholesky decomposition of A, such that $A = L^*L^*.l$ is the compact form of L; see band for a description of the format of l . b can have more than one column. If so, $Ax = b$ is solved for each column. That is, $A^*x[.,i] = b[.,i]$ $x = \{ 1 2 0 0, 2 8 1 0, 0 1 5 2, 0 1 2 3 \};$ bx = band(x,1); bx = band(x,1);		

b

bandcholsol

cx = bandchol(bx);

10
)0
95
14

xi = bandcholsol(eye(4),cx);

	2.0731707	-0.05365854	0.14634146	0.09756098
ri –	-0.53658537	0.26829268	-0.07317073	0.04878049
	0.14634146	-0.07317073	0.29268293	-0.19512195
	-0.09756098	0.04878049	-0.19512195	0.46341463

bandltsol

bandltsol

Solves the system of equations $Ax = b$ for x , where A is a lower triangular banded matrix.		
x = bandltsol(b,A);		
<i>b</i> KxM matrix.<i>A</i> KxN compact form matrix.		
<i>x</i> KxM matrix.		
A is a lower triangular banded matrix in compact form. See band for a description of the format of A.		
<i>b</i> can have more than one column. If so, $Ax = b$ is solved for each column. That is,		
A*x[.,i] = b[.,i]	_	
$bx = \begin{cases} 0.0000000 & 1.0000000 \\ 2.0000000 & 8.0000000 \\ 1.0000000 & 5.0000000 \\ 2.0000000 & 3.0000000 \end{cases}$		
<pre>cx = bandchol(bx);</pre>		
$cx = \begin{cases} 0.0000000 & 1.0000000 \\ 2.0000000 & 2.0000000 \\ 0.50000000 & 2.1794495 \\ 0.91766294 & 1.4689774 \end{cases}$		
	Solves the system of equations $Ax = b$ for x, where A is a lower triangular banded matrix. x = bandltsol(b,A); b KxM matrix. A KxN compact form matrix. x KxM matrix. A is a lower triangular banded matrix in compact form. See band for a description of the format of A. b can have more than one column. If so, $Ax = b$ is solved for each column. That is, A*x[.,i] = b[.,i] $b.x = \begin{cases} 0.0000000 & 1.0000000 \\ 2.0000000 & 5.0000000 \\ 2.0000000 & 3.0000000 \\ 2.0000000 & 3.0000000 \\ 2.0000000 & 3.0000000 \\ 2.0000000 & 1.0000000 \\ 0.50000000 & 2.1794495 \\ 0.91766294 & 1.4689774 \end{cases}$	

bandltsol

xci = bandltsol(eye(4),cx);

xci =	1.0000000	0.0000000	0.0000000	0.0000000
	-1.0000000	0.50000000	0.0000000	0.0000000
	0.22941573	-0.11470787	0.45883147	0.0000000
	-0.14331487	0.07165744	-0.28662975	0.68074565

bandrv

bandrv

Creates a symmetric banded matrix, given its compact form.			
y = bandrv(a);			
<i>a</i> KXN compact form matrix.			
y KxK symmetrix banded matrix.			
<i>a</i> is the compact form of a symmetric banded matrix, as generated by band . <i>a</i> stores subdiagonals right to left, with the principal diagonal in the rightmost (N^{th}) column. The upper left corner of <i>a</i> is unused. bandchol expects a matrix of this form.			
$bx = \begin{cases} 0.0000000 & 1.0000000 \\ 2.0000000 & 8.0000000 \\ 1.0000000 & 5.0000000 \\ 2.0000000 & 3.0000000 \end{cases}$			
x = bandrv(bx);			
$x = \begin{bmatrix} 1.0000000 & 2.0000000 & 0.0000000 & 0.0000000 \\ 2.0000000 & 8.0000000 & 1.0000000 & 0.0000000 \\ 0.0000000 & 1.0000000 & 5.0000000 & 2.0000000 \\ 0.0000000 & 0.0000000 & 2.0000000 & 3.0000000 \end{bmatrix}$			

bandsolpd

bandsolpd

- **Purpose** Solves the system of equations Ax = b for x, where A is a positive definite banded matrix.
 - **Format** x = bandsolpd(b,A);
 - **Input** *b* KxM matrix.
 - *A* KxN compact form matrix.
 - **Output** *x* KxM matrix.
- **Remarks** A is a positive definite banded matrix in compact form. See **band** for a description of the format of A.

b can have more than one column. If so, Ax = b is solved for each column. That is,

A*x[.,i] = b[.,i]

bar

bar

Purpose	Bar graph.			
Library	pgraph			
Format	bar(val,ht);			
Input	val	Nx1 nu from 1	meric vector, bar labels. If scalar 0, a sequence to rows (<i>ht</i>) will be created.	
	ht	NxK nı	umeric vector, bar heights.	
		K overl graphed	apping or side-by-side sets of N bars will be d.	
		For ove set of b should Otherw by the b are plot	erlapping bars, the first column should contain the ars with the greatest height and the last column contain the set of bars with the least height. ise, the bars that are drawn first may be obscured bars drawn last. This is not a problem if the bars atted side-by-side.	
Global Input	_pbarwid	global scalar, width and positioning of bars in bar graphs and histograms. The valid range is 0-1. If this is 0, the bars will be a single pixel wide. If this is 1, the bars will touch each other.		
		If this v the bars	value is positive, the bars will overlap. If negative, s will be plotted side-by-side. The default is 0.5.	
	_pbartyp	Kx2 ma	atrix.	
		The first	st column controls the bar shading:	
		0	no shading.	
		1	dots.	
		2	vertical cross-hatch.	
		3	diagonal lines with positive slope.	
		4	diagonal lines with negative slope.	
		5	diagonal cross-hatch.	
		6	solid.	
		The sec Append	cond column controls the bar color. See "Colors lix" on page B-1.	

bar

Remarks	Use scale or ytics to fix the scaling for the bar heights.			
Example	In this example, three overlapping sets of bars will be created. The three heights for the i^{th} bar are stored in $x[i,.]$.			
	library pgraph;			
	graphset;			
	t (0, 1, 10);			
	t = seqa(0, 1, 10),			
	$x = (t^2/2) \cdot (1 - 0.7 - 0.3);$			
	_plegctl = { 1 4 };			
	_plegstr = "Accnt #1\000Accnt #2\000Accnt #3";			
	<pre>title("Theoretical Savings Balance");</pre>			
	<pre>xlabel("Years");</pre>			
	<pre>ylabel("Dollars x 1000");</pre>			
	_pbartyp = { 1 10 }; /* Set color of the */			
	<pre>/* bars to 10 (magenta) */</pre>			
	_pnum = 2;			
	<pre>bar(t,x); /* Use t vector to label X axis */</pre>			
Source	pbar.src			
See also	asclabel, xy, logx, logy, loglog, scale, hist			

base10

b

base10

Purpose	Break number into a number of the form #.##### and a power of 10.		
Format	$\{ M, P \} = basel0(x);$		
Input	<i>x</i> scalar, number to break down.		
Output	Mscalar, in the range $-10 < M < 10$.Pscalar, integer power such that: $M * 10^P = x$		
Example	<pre>{ b, e } = basel0(4500); b = 4.5000000 e = 3.0000000</pre>		
Source	base10.src		

r s t w yz

begwind

begwind

- **Purpose** Initialize global graphic panel variables.
 - Library pgraph
 - Format begwind;
- **Remarks** This procedure must be called before any other graphic panel functions are called.
 - **Source** pwindow.src
- **See also** endwind, window, makewind, setwind, nextwind, getwind

besselj

b

besselj

Purpose	Computes a Bessel function of the first kind, $J_n(x)$.	
Format	y = besselj(n,x);	ī
Input	 <i>n</i> NxK matrix, the order of the Bessel function. Nonintegers will be truncated to an integer. <i>x</i> LxM matrix, ExE conformable with <i>n</i>. 	
Output	$y = \max(N,L)$ by $\max(K,M)$ matrix.	
Example	<pre>n = { 0, 1 }; x = { 0.1 1.2, 2.3 3.4 }; y = besselj(n,x);</pre>	
	$= \begin{array}{c} 0.99750156 & 0.67113274 \\ 0.53987253 & 0.17922585 \end{array}$	
See also	bessely, mbesseli	

bessely

bessely

- **Purpose** To compute a Bessel function of the second kind (Weber's function), $Y_n(x)$.
 - **Format** y = bessely(n,x);
 - **Input** *n* NxK matrix, the order of the Bessel function. Nonintegers will be truncated to an integer.
 - *x* LxM matrix, ExE conformable with *n*.
 - **Output** y max(N,L) by max(K,M) matrix.
- **Example** n = { 0, 1 };
 - $x = \{ 0.1 1.2, 2.3 3.4 \};$
 - y = bessely(n,x);
 - $y = \begin{array}{c} -1.5342387 & 0.22808351 \\ 0.05227732 & 0.40101529 \end{array}$

See also besselj, mbesseli

\mathbf{box}

box

Purpose	Graph data using the box graph percentile method.		
Library	pgraph		
Format	box(grp,y);	
Input	grp y	1xM ve to each cols() NxM m an indiv	ctor. This contains the group numbers corresponding column of y data. If scalar 0, a sequence from 1 to y) will be generated automatically for the X axis. atrix. Each column represents the set of y values for vidual percentiles box symbol.
Global Input	_pboxctl 5x1 vector, controls box style, width, and color.		ector, controls box style, width, and color.
		[1]	box width between 0 and 1. If zero, the box plot is drawn as two vertical lines representing the quartile
			ranges with a filled circle representing the 50 th
		[2]	box color. If this is set to 0, the colors may be individually controlled using the global variable pcolor.
		[3]	Min/max style for the box symbol. One of the following:
			1 Minimum and maximum taken from the actual limits of the data. Elements 4 and 5 are ignored.
			2 Statistical standard with the minimum and maximum calculated according to interquartile range as follows:
			$\begin{array}{ll} intqrange &= 75^{th} - 25^{th} \\ min &= 25^{th} - 1.5 intqrange \\ max &= 75^{th} + 1.5 intqrange \end{array}$
			Elements 4 and 5 are ignored.
			3 Minimum and maximum percentiles taken from elements 4 and 5.
		[4]	Minimum percentile value (0-100) if _pboxctl[3] = 3.

b

\mathbf{box}

		[5]	Maximum percentile value (0-100) if _pboxctl[3] = 3.
	_plctrl	1xM	vector or scalar as follows:
		0	Plot boxes only, no symbols.
		1	Plot boxes and plot symbols that lie outside the min and max box values.
		2	Plot boxes and all symbols.
		-1	Plot symbols only, no boxes.
		Thes capa	e capabilities are in addition to the usual line control bilities of _plctrl.
	_pcolor	1xM syml page	vector or scalar for symbol colors. If scalar, all bols will be one color. See "Colors Appendix" on B-1.
Remarks	If missing va during calcul	lues a	re encountered in the <i>y</i> data, they will be ignored and will not be plotted.

Source pbox.src

boxcox

boxcox

Purpose	Computes the Box-Cox function.		
Format	$y = \mathbf{boxcox} (x, lambda);$		
Input	<i>x</i> MxN matrix.		
	<i>lambda</i> KxL matrix, ExE conformable to x.		
Output	$y = \max(M,L) \times \max(N,K).$		
Remarks	Allowable range for x is:		
	<i>x</i> > 0		
	The boxcox function computes		
	$boxcox(x) = \frac{x^{\lambda} - 1}{2}$		
	λ		
Example	$x = \{.2,.3, 1.5, 2.5\};$		
	lambda = {.4, 2};		
	<pre>y = boxcox(x,lambda)</pre>		
	-1.1867361 -0.95549787		
	y = 0.62500000 2.62500000	g	

break

break

```
Purpose
            Breaks out of a do or for loop.
 Format
            break;
Example
            x = rndn(4,4);
            r = 0;
            do while r < rows(x);
                r = r + 1;
                c = 0;
               do while c < cols(x);
                   c = c + 1;
                   if c == r;
                      x[r,c] = 1;
                   elseif c > r_i
                      break; /* terminate inner do loop */
                   else;
                      x[r,c] = 0;
                   endif;
                endo; /* break jumps to the statement */
                        /* after this endo */
             endo;
                  1.000 \quad 0.326 \quad -2.682 \quad -0.594
                 0.000 1.000 -0.879 0.056
             x =
                  0.000 0.000 1.000 -0.688
                  0.000 0.000 0.000 1.000
            This command works just like in C.
Remarks
```

break

See also continue, do, for

call

call

Purpose Calls a function or procedure when the returned value is not needed and can be ignored, or when the procedure is defined to return nothing.

Format call function_name(argument_list);
 call function_name;

Remarks This is useful when you need to execute a function or procedure and do not need the value that it returns. It can also be used for calling procedures that have been defined to return nothing.

function_name can be any intrinsic GAUSS function, a procedure (proc), or any valid expression.

Example call chol(x);

y = detl;

The above example is the fastest way to compute the determinant of a positive definite matrix. The result of **chol** is discarded and **detl** is used to retrieve the determinant that was computed during the call to **chol**.

See also proc

cdfbeta

c

cdfbeta

Purpose	Computes the incomplete beta function (i.e., the cumulative distribution function of the beta distribution).	
Format	y = cdfbeta(x,a,b);	-
Input	 <i>x</i> NxK matrix. <i>a</i> LxM matrix, ExE conformable with <i>x</i>. <i>b</i> PxQ matrix, ExE conformable with <i>x</i> and <i>a</i>. 	
Output	$y = \max(N,L,P)$ by $\max(K,M,Q)$ matrix.	
Remarks	y is the integral from 0 to x of the beta distribution with parameters a and b. Allowable ranges for the arguments are: $0 \le x \le 1$ a > 0 b > 0	
	A -1 is returned for those elements with invalid inputs.	
Example	<pre>x = { .1, .2, .3, .4 }; a = 0.5; b = 0.3; y = cdfbeta(x,a,b); 0.142285</pre>	
See also	$y = \begin{array}{c} 0.206629 \\ 0.260575 \\ 0.310875 \end{array}$	
	calcine, callo, calm, calmo, calco, gamma	

V W

cdfbeta

Technical	cdfbeta has the following approximate accuracy:			
Notes	$max(a,b) \le 500$ $500 < max(a,b) \le 10,000$ $10,000 < max(a,b) \le 200,000$	the absolute error is approx. $\pm 5e-13$ the absolute error is approx. $\pm 5e-11$ the absolute error is approx. $\pm 1e-9$		
	$200,000 < \max(a,b)$	Normal approximations are used and the absolute error is approx. $\pm 2e-9$		
References	Bol'shev, L.N. "Asymptotically Pearson's Transformations." Teor. Veroyat. Primen. (<i>Theory of Probability and its Applications</i>). Vol. 8 No. 2, 1963, 129-55.			
	Bosten, N. E., and E.L. Battiste. "Remark on Algorithm 179 Incomplete Beta Ratio." <i>Comm. ACM</i> . Vol. 17 No. 3, March 1974, 156-57.			
	Ludwig, O.G. "Algorithm 179 Incomplete Beta Ratio." <i>Comm. ACM.</i> Vol. 6 No. 6, June 1963, 314.			
	Mardia, K.V., and P.J. Zemroch. "Tables of the F- and related distributions with algorithms." Academic Press, NY, 1978. ISBN 0-12-471140-5			
	Peizer, D.B., and J.W. Pratt. "A Normal Approximation for Binomial, F, Beta, and Other Common, Related Tail Probabilities, I." <i>Journal of American Statistical Association</i> . Vol. 63, Dec. 1968, 1416-56.			
	Pike, M.C., and I.D. Hill. "Remark on Algorithm 179 Incomplete Beta Ratio." <i>Comm. ACM</i> . Vol. 10 No. 6, June 1967, 375-76.			

cdfbvn

cdfbvn

Purpose	Computes the cumulative distribution function of the standardized bivariate Normal density (lower tail).
Format	c = cdfbvn(h,k,r);
Input	<i>h</i> NxK matrix, the upper limits of integration for variable 1.
	<i>k</i> LXM matrix, EXE conformable with <i>h</i> , the upper limits of integration for variable 2.
	<i>r</i> PxQ matrix, ExE conformable with <i>h</i> and <i>k</i> , the correlation coefficients between the two variables.
Output	<i>c</i> max(N,L,P) by max(K,M,Q) matrix, the result of the double integral from $-\infty$ to <i>h</i> and $-\infty$ to <i>k</i> of the standardized bivariate Normal density $f(x,y,r)$.

Remarks The function integrated is:

$$f(x, y, r) = \frac{e^{-0.5w}}{2\pi\sqrt{1 - r^2}}$$

with

$$w = \frac{x^2 - 2rxy + y^2}{1 - r^2}$$

Thus, *x* and *y* have 0 means, unit variances, and correlation = r.

Allowable ranges for the arguments are:

 $\begin{array}{ll} -\infty & < h & < +\infty \\ -\infty & < k & < +\infty \\ -1 & \le r & \le 1 \end{array}$

A -1 is returned for those elements with invalid inputs.

To find the integral under a general bivariate density, with *x* and *y* having nonzero means and any positive standard deviations, use the transformation equations:

```
h = (ht - ux) ./ sx;
k = (kt - uy) ./ sy;
```

cdfbvn

where \mathbf{ux} and \mathbf{uy} are the (vectors of) means of x and y, \mathbf{sx} and \mathbf{sy} are the (vectors of) standard deviations of x and y, and \mathbf{ht} and \mathbf{kt} are the (vectors of) upper integration limits for the untransformed variables, respectively.

See also	cdfn, cdftvn
Technical Notes	The absolute error for cdfbvn is approximately $\pm 5.0e-9$ for the entire range of arguments.
References	Daley, D.J. "Computation of Bi- and Tri-variate Normal Integral." <i>Appl. Statist.</i> Vol. 23 No. 3, 1974, 435-38.
	Owen, D.B. "A Table of Normal Integrals." <i>Commun. StatistSimula. Computa.</i> , B9(4). 1980, 389-419.

cdfbvn2

с

cdfbvn2

Purpose	Returns cdfbvn of a bounded rectangle.		
Format	y = cdfbvn2(h,dh,k,dk,r);		
Input	 h Nx1 vector, starting points of integration for variable 1. dh Nx1 vector, increments for variable 1. k Nx1 vector, starting points of integration for variable 2. dk Nx1 vector, increments for variable 2. r Nx1 vector, correlation coefficients between the two variables. 		
Output	<i>y</i> Nx1 vector, the integral over the rectangle bounded by h , $h+dh$, k , and $k+dk$ of the standardized bivariate Normal distribution.		
Remarks	 Scalar input arguments are okay; they will be expanded to Nx1 vectors. cdfbvn2 computes: cdfbvn(h+dh,k+dk,r) + cdfbvn(h,k,r) - cdfbvn(h,k+dk,r) - cdfbvn(h+dh,k,r). cdfbvn2 computes an error estimate for each set of inputs. The size of the error depends on the input arguments. If trap 2 is set, a warning message is displayed when the error reaches 0.01*abs(y). For an estimate of the actual error, see cdfbvn2e. 		
Example	Example 1 cdfbvn2(1,-1,1,-1,0.5); produces: 1.4105101488974692e-001 Example 2 cdfbvn2(1,-1e-15,1,-1e-15,0.5); produces: 4.9303806576313238e-32		

cdfbvn2	
	Example 3 cdfbvn2(1,-1e-45,1,-1e-45,0.5);
	produces: 0.000000000000000000e+000
	Example 4 trap 2,2; cdfbvn2(1,-1e-45,1,1e-45,0.5);
	<pre>produces: WARNING: Dubious accuracy from cdfbvn2: 0.000e+000 +/- 2.8e-060 0.000000000000000e+000</pre>
Source	lncdfn.src

See also cdfbvn2e, lncdfbvn2

cdfbvn2e

с

cdfbvn2e

D				
Purpose	Returns cdfbvn of a bounded rectangle.			
Format	$\{y, e\} = cdfbvn2e(h, dh, k, dk, r);$			
Input	 h Nx1 vector, starting points of integration for variable 1. dh Nx1 vector, increments for variable 1. k Nx1 vector, starting points of integration for variable 2. dk Nx1 vector, increments for variable 2. 			
	<i>r</i> Nx1 vector, correlation coefficients between the two variables.			
Output	y Nx1 vector, the integral over the rectangle bounded by h , $h+dh$, k , and $k+dk$ of the standardized bivariate Normal distribution.			
	<i>e</i> Nx1 vector, an error estimate.			
Remarks	Scalar input arguments are okay; they will be expanded to Nx1 vectors. cdfbvn2e computes cdfbvn $(h+dh,k+dk,r)$ + cdfbvn (h,k,r) - cdfbvn $(h,k+dk,r)$ - cdfbvn $(h+dh,k,r)$.			
	The real answer is $y \pm e$. The size of the error depends on the input arguments.			
Example	Example 1 cdfbvn2e(1,-1,1,-1,0.5);			
	produces: 1.4105101488974692e-001 1.9927918166193113e-014			
	Example 2			

cdfbvn2e(1,-1e-15,1,-1e-15,0.5);

produces:

cdfbvn2e

7.3955709864469857e-032 2.8306169312687801e-030 Example 3 cdfbvn2e(1,-1e-45,1,-1e-45,0.5); produces: 0.000000000000000e+000 2.8306169312687770e-060

See also cdfbvn2, lncdfbvn2

cdfchic

cdfchic

Purpose	Computes the complement of the cdf of the chi-square distribution.
Format	y = cdfchic(x,n)
Input	xNxK matrix. n LxM matrix, ExE conformable with x .
Output	$y = \max(N,L)$ by $\max(K,M)$ matrix.
Remarks	y is the integral from x to ∞ of the chi-square distribution with n degrees of freedom.
	The elements of n must all be positive integers. The allowable ranges for the arguments are:
	$x \ge 0$
	n > 0
	A -1 is returned for those elements with invalid inputs.
	This equals $1-F(x,n)$, where F is the chi-square cdf with n degrees of freedom. Thus, to get the chi-square cdf, subtract cdfchic (x,n) from 1. The complement of the cdf is computed because this is what is most commonly needed in statistical applications, and because it can be computed with fewer problems of roundoff error.
Example	$x = \{ .1, .2, .3, .4 \};$
	n = 3;
	y = cdfchic(x,n);
	$y = \begin{array}{c} 0.991837 \\ 0.977589 \\ 0.960028 \\ 0.940242 \end{array}$

See also cdfbeta, cdffc, cdfn, cdfnc, cdftc, gamma

cdfchic

Technical Notes	For $n \le 1000$, the incomplete gamma function is used and the absolute error is approx. $\pm 6e-13$. For $n > 1000$, a Normal approximation is used and the absolute error is $\pm 2e-8$. For higher accuracy when $n > 1000$, use:
	1-cdfgam(0.5*x,0.5*n);
References	Bhattacharjee, G.P. "Algorithm AS 32, The Incomplete Gamma Integral." <i>Applied Statistics</i> . Vol. 19, 1970, 285-87.
	Mardia, K.V., and P.J. Zemroch. "Tables of the F- and related distributions with algorithms." Academic Press, NY, 1978. ISBN 0-12-471140-5
	Peizer, D.B., and J.W. Pratt. "A Normal Approximation for Binomial, F, Beta, and Other Common, Related Tail Probabilities, I." <i>Journal of American Statistical Association</i> . Vol. 63, Dec. 1968, 1416-56.

cdfchii

cdfchii

Purpose	Compute chi-square abscissae values given probability and degrees of freedom.
Format	<pre>c = cdfchii(p,n);</pre>
Input	 <i>p</i> MxN matrix, probabilities. <i>n</i> LxK matrix, ExE conformable with <i>p</i>, degrees of freedom.
Output	<i>c</i> max(M,L) by max(N,K) matrix, abscissae values for chi-square distribution.
Example	The following generates a 3x3 matrix of pseudo-random numbers with a chi-squared distribution with expected value of 4:
	rndseed 464578;
	x = cdfchii(rndu(3,3),4+zeros(3,3));
	2.1096456 1.9354989 1.7549182
	$x = 4.4971008 \ 9.2643386 \ 4.3639694$
	4.5737473 1.3706243 2.5653688
Source	cdfchii.src
See also	gammaii

с

cdfchinc

cdfchinc

Purpose	The integral under noncentral chi-square distribution, from 0 to x . It can return a vector of values, but the degrees of freedom and noncentrality parameter must be the same for all values of x .
Format	y = cdfchinc(x, v, d);
Input	<i>x</i> Nx1 vector, values of upper limits of integrals, must be greater than 0.
	v scalar, degrees of freedom, $v > 0$.
	d scalar, noncentrality parameter, $d > 0$.
	This is the square root of the noncentrality parameter that sometimes goes under the symbol lambda. (See Scheffe, <i>The Analysis of Variance</i> , App. IV. 1959.)
Output	y Nx1 vector, integrals from 0 to x of noncentral chi-square.
Example	$x = \{ .5, 1, 5, 25 \};$
	p = cdfchinc(x, 4, 2);
	0.0042086234
	0.016608592
	0.30954232
	0.99441140
Source	cdfnonc.src
See also	cdffnc, cdftnc
Technical	Relation to cdfchic:
Notes	cdfchic(x,v) = 1 - cdfchinc(x,v,0);
	The formula used is taken from Abramowitz and Stegun, <i>Handbook of Mathematical Functions</i> . Formula 26.4.25. 1970, 942.

cdffc

с

cdffc

Purpose	Computes the complement of the cdf of the F distribution.
Format	y = cdffc(x,n1,n2);
Input	xNxK matrix. $n1$ LxM matrix, ExE conformable with x . $n2$ PxQ matrix, ExE conformable with x and $n1$.
Output	$y = \max(N,L,P)$ by $\max(K,M,Q)$ matrix.
Remarks	<i>y</i> is the integral from x to ∞ of the <i>F</i> distribution with <i>n1</i> and <i>n2</i> degrees of freedom.
	 n1 > 0 n2 > 0 A -1 is returned for those elements with invalid inputs. This equals 1-G(x,n1,n2), where G is the F cdf with n1 and n2 degrees of freedom. Thus, to get the F cdf, subtract cdffc(x,n1,n2) from 1. The complement of the cdf is computed because this is what is most commonly needed in statistical applications, and because it can be computed with fewer problems of roundoff error.
Example	$x = \{ .1, .2, .3, .4 \};$ n1 = 0.5; n2 = 0.3; y = cdffc(x,n1,n2); $y = \frac{0.751772}{0.680365}$
	0.659816

See also	cdfbeta, cdfchic, cdfn, cdfnc, cdftc, gamma
Technical Notes	For $\max(n1,n2) \le 1000$, the absolute error is approximately $\pm 5e-13$. For $\max(n1,n2) > 1000$, Normal approximations are used and the absolute error is approximately $\pm 2e-6$.
	For higher accuracy when $max(n1,n2) > 1000$, use:
	cdfbeta(n2/(n2+n1*x), n2/2, n1/2);
References	Bol'shev, L.N. "Asymptotically Pearson's Transformations." Teor. Veroyat. Primen. (<i>Theory of Probability and its Applications</i>). Vol. 8 No. 2, 1963, 129-55.
	Bosten, N. E., and E.L. Battiste. "Remark on Algorithm 179 Incomplete Beta Ratio." <i>Comm. ACM.</i> Vol. 17 No. 3, March 1974, 156-57.
	Kennedy, W.J., Jr., and J.E. Gentle. <i>Statistical Computing</i> . Marcel Dekker, Inc., NY, 1980.
	Ludwig, O.G. "Algorithm 179 Incomplete Beta Ratio." <i>Comm. ACM.</i> Vol. 6 No. 6, June 1963, 314.
	Mardia, K.V., and P.J. Zemroch. "Tables of the F- and related distributions with algorithms." Academic Press, NY, 1978. ISBN 0-12-471140-5
	Peizer, D.B., and J.W. Pratt. "A Normal Approximation for Binomial, F, Beta, and Other Common, Related Tail Probabilities, I." <i>Journal of American Statistical Association</i> . Vol. 63, Dec. 1968, 1416-56.
	Pike, M.C., and I.D. Hill. "Remark on Algorithm 179 Incomplete Beta Ratio." <i>Comm. ACM</i> . Vol. 10 No. 6, June 1967, 375-76.
cdffnc

cdffnc

Purpose	The integral under noncentral F distribution, from 0 to x .		
Format	y = cdffnc(x,v1,v2,d);		
Input	xNx1 vector, values of upper limits of integrals, $x > 0$.v1scalar, degrees of freedom of numerator, $v1 > 0$.v2scalar, degrees of freedom of denominator, $v2 > 0$.dscalar, noncentrality parameter, $d > 0$.This is the square root of the noncentrality parameter that sometimes goes under the symbol lambda. (See Scheffe, <i>The Analysis of Variance</i> , App. IV. 1959.)		
Output	y Nx1 vector of integrals from 0 to x of noncentral F.		
Source	cdfnonc.src		
See also	cdftnc, cdfchinc		
Technical Notes	<pre>Relation to cdffc: cdffc(x,v1,v2) = 1 - cdffnc(x,v1,v2,0);</pre>		

The formula used is taken from Abramowitz and Stegun, *Handbook of Mathematical Functions*. Formula 26.6.20. 1970, 947.

cdfgam

cdfgam

Purpose	Incomplete gamma function.		
Format	g = cdfgam(x,intlim);		
Input	 <i>x</i> NxK matrix of data. <i>intlim</i> LxM matrix, ExE compatible with <i>x</i>, containing the integration limit. 		
Output	g max(N,L) by max(K,M) matrix.		
Remarks	The incomplete gamma function returns the integral $\int_{0}^{intlim} \frac{e^{-t}t^{(x-1)}}{gamma(x)} dt$		
	The allowable ranges for the arguments are: x > 0 <i>intlim</i> ≥ 0		
	A -1 is returned for those elements with invalid inputs.		
Example	<pre>x = { 0.5 1 3 10 }; intlim = seqa(0,.2,6); g = cdfgam(x,intlim);</pre>		
	$x = 0.500000 \ 1.00000 \ 3.00000 \ 10.00000$		
	$intlim = \begin{array}{l} 0.000000\\ 0.200000\\ 0.400000\\ 0.600000\\ 0.800000\\ 1.000000 \end{array}$		

cdfgam

	0.000000	0.000000	0.000000	0.000000
	0.472911	0.181269	0.00114848	2.35307E - 014
<i>g</i> =	0.628907	0.329680	0.00792633	2.00981E - 011
0	0.726678	1.451188	0.0231153	9.66972 <i>E</i> - 010
	0.794097	0.550671	0.0474226	1.43310E - 008
	0.842701	0.632120	0.0803014	1.11425E - 007

This computes the integrals over the range from 0 to 1, in increments of .2, at the parameter values 0.5, 1, 3, 10.

Technical Notes	cdfgam has the following approximate accuracy:		
	<i>x</i> < 500	the absolute error is approx. $\pm 6e-13$	
	$500 \le x \le 10,000$	the absolute error is approx. $\pm 3e-11$	
	10,000 < <i>x</i>	a Normal approximation is used and the absolute error is approx. $\pm 3e-10$	
References	Bhattacharjee, G.P. "Algorithm AS 32, The Incomplete Gamma Integral." <i>Applied Statistics</i> . Vol. 19, 1970, 285-87.		
	Peizer, D.B., and J.W. Pr Beta, and Other Common American Statistical Asso	att. "A Normal Approximation for Binomial, F, n, Related Tail Probabilities, I." <i>Journal of</i> <i>pociation</i> . Vol. 63, Dec. 1968, 1416-56.	
	Pike, M.C., and I.D. Hill Ratio." <i>Comm. ACM</i> . Vo	. "Remark on Algorithm 179 Incomplete Beta l. 10 No. 6, June 1967, 375-76.	

cdfmvn

cdfmvn

Purpose	Computes multivariate Normal cumulative distribution function.	
Format	y = cdfmvn(x,r);	
Input	<i>x</i> KxL matrix, abscissae.<i>r</i> KxK matrix, correlation matrix.	
Output	y Lx1 vector, $Pr(X < x r)$.	
Source	lncdfn.src	
See also	cdfbvn, cdfn, cdftvn, lncdfmvn	

cdfn, cdfnc

cdfn, cdfnc

Purpose cdfn computes the cumulative distribution function (cdf) of the Normal distribution. cdfnc computes 1 minus the cdf of the Normal distribution.

- **Format** n = cdfn(x);
 - nc = cdfnc(x);
 - **Input** *x* NxK matrix.
- **Output** *n* NxK matrix.
 - *nc* NxK matrix.

Remarks *n* is the integral from $-\infty$ to *x* of the Normal density function, and *nc* is the integral from x to $+\infty$.

Note that: $\mathbf{cdfn}(x) + \mathbf{cdfnc}(x) = 1$. However, many applications expect $\mathbf{cdfn}(x)$ to approach 1, but never actually reach it. Because of this, we have capped the return value of \mathbf{cdfn} at 1 - machine epsilon, or approximately 1 - 1.11e-16. As the relative error of \mathbf{cdfn} is about $\pm 5e-15$ for $\mathbf{cdfn}(x)$ around 1, this does not invalidate the result. What it does mean is that for $\mathbf{abs}(x) > (approx.)$ 8.2924, the identity does not hold true. If you have a need for the uncapped value of \mathbf{cdfn} , the following code will return it:

```
n = cdfn(x);
if n >= 1-eps;
    n = 1;
endif;
```

where the value of machine epsilon is obtained as follows:

```
x = 1;
do while 1-x /= 1;
    eps = x;
    x = x/2;
endo;
```

Note that this is an alternate definition of machine epsilon. Machine epsilon is usually defined as the smallest number such that 1 + machine

cdfn, cdfnc

epsilon > 1, which is about 2.23e-16. This defines machine epsilon as the smallest number such that 1 - machine epsilon < 1, or about 1.11e-16.

The **erf** and **erfc** functions are also provided, and may sometimes be more useful than **cdfn** and **cdfnc**.

Example x

- $\mathbf{x} = \{ -2 -1 \ 0 \ 1 \ 2 \};$ n = cdfn(x);nc = cdfnc(x);0.00000 1.00000 x =-2.00000 -1.00000 2.00000 0.02275 0.15866 0.50000 0.84134 0.97725 n =0.97725 0.84134 0.50000 0.15866 0.02275 nc =
- **See also** erf, erfc, cdfbeta, cdfchic, cdftc, cdffc, gamma

For the integral from $-\infty$ to *x*:

Technical Notes

$x \leq -37$,	cdfn underflows and 0.0 is returned
-36 < x < -10,	cdfn has a relative error of approx. ±5e-12
-10 < x < 0,	cdfn has a relative error of approx. ±1e-13
0 < x,	cdfn has a relative error of approx. ±5e-15

For **cdfnc**, i.e., the integral from x to $+\infty$, use the above accuracies but change x to -x.

References Adams, A.G. "Remark on Algorithm 304 Normal Curve Integral." *Comm. ACM*. Vol. 12 No. 10, Oct. 1969, 565-66.

Hill, I.D., and S.A. Joyce. "Algorithm 304 Normal Curve Integral." *Comm. ACM.* Vol. 10 No. 6, June 1967, 374-75.

Holmgren, B. "Remark on Algorithm 304 Normal Curve Integral." *Comm. ACM.* Vol. 13 No. 10, Oct. 1970.

Mardia, K.V., and P.J. Zemroch. "Tables of the F- and related distributions with algorithms." Academic Press, NY, 1978. ISBN 0-12-471140-5

cdfn2

cdfn2

Purpose	Computes the integral over a Normal density function interval.		
Format	y = cdfn2(x,dx);		
Input	x dx	MxN matrix, abscissae. KxL matrix, ExE conformable to	<i>x</i> , intervals.
Output	у	max(M,K) by $max(N,L)$ matrix, t $x+dx$ of the Normal distribution, i	he integral from x to i.e., $Pr(x \le X \le x + dx)$.
Remarks	The re	elative error is:	
	<i>x</i> 1 <i>m</i>	$ \le 1$ and $dx \le 1$ < $ x < 37$ and $ dx < 1/ x $ in(x,x+dx) > -37 and $y > 1e-300$	±1 <i>e</i> -14 ±1 <i>e</i> -13 ±1 <i>e</i> -11 or better
	A rela than ±	tive error of $\pm 1e$ -14 implies that the 1 in the 14th digit.	e answer is accurate to better
Example	prin	t cdfn2(1,0.5);	
	9.18	48052662599017e-02	
	prin	t cdfn2(20,0.5);	
	2.75	35164718736454e-89	
	prin	t cdfn2(20,1e-2);	
	5.00	38115018684521e-90	
	prin	t cdfn2(-5,2);	
	1.34	96113800582164e-03	
	prin	t cdfn2(-5,0.15);	
	3.30	65580013000255e-07	
Source	lncd	fn.src	
See also	lncd	fn2	

cdfni

cdfni

Purpose	Computes the inverse of the cdf of the Normal distribution.		
Format	<pre>x = cdfni(p);</pre>		
Input	<i>p</i> NxK real matrix, Norm	nal probability levels, $0 \le p \le 1$.	
Output	<i>x</i> NxK real matrix, Norm	nal deviates, such that $cdfn(x) = p$	
Remarks	cdfn(cdfni(p)) = p to within the errors given below:		
	$p \le 4.6e-308$ $4.6e-308 5e-24 0.5 p \ge 1 - 2.22045e-16$	-37.5 is returned accurate to ± 5 in 12th digit accurate to ± 1 in 13th digit accurate to ± 5 in 15th digit 8.12589 is returned	

cdftc

cdftc

Purpose	Computes the complement of the cdf of the Student's <i>t</i> distribution.		
Format	y = cdftc(x,n);		
Input	xNxK matrix. n LxM matrix, ExE conformable with x .		
Output	y $\max(N,L)$ by $\max(K,M)$ matrix.		
Remarks	y is the integral from x to ∞ of the t distribution with n degrees of freedom.		
	Allowable ranges for the arguments are:		
	$-\infty < X < +\infty$		
	n > 0		
	A -1 is returned for those elements with invalid inputs.		
	This equals $1-F(x,n)$, where F is the t cdf with n degrees of freedom. Thus, to get the t cdf, subtract cdftc(x,n) from 1. The complement of the cdf is computed because this is what is most commonly needed in statistical applications, and because it can be computed with fewer problems of roundoff error.		
Example	$x = \{ .1, .2, .3, .4 \};$		
	n = 25;		
	<pre>y = cdftc(x,n);</pre>		
	print y;		
	$y = \begin{array}{c} 0.473165 \\ 0.447100 \\ 0.422428 \\ 0.399555 \end{array}$		
See also	cdfbeta, cdfchic, cdffc, cdfn, cdfnc, gamma		

cdftc

Technical Notes	For results greater than 0.5e-30, the absolute error is approximately $\pm 1e-14$ and the relative error is approximately $\pm 1e-12$. If you multiply the relative error by the result, then take the minimum of that and the absolute error, you have the maximum actual error for any result. Thus, the actual error is approximately $\pm 1e-14$ for results greater than 0.01. For results less than 0.01, the actual error will be less. For example, for a result of 0.5e-30, the actual error is only $\pm 0.5e-42$.
References	Abramowitz, M., and I. A. Stegun, eds. <i>Handbook of Mathematical Functions</i> . 7th ed. Dover, NY, 1970. ISBN 0-486-61272-4
	Hill, G.W. "Algorithm 395 Student's t-Distribution." <i>Comm. ACM.</i> Vol. 13 No. 10, Oct. 1970.
	Hill, G.W. "Student's t-Distribution Quantiles to 20D." <i>Division of Mathematical Statistics Technical Paper No. 35</i> . Commonwealth Scientific and Industrial Research Organization, Australia, 1972.

cdftci

cdftci

Purpose	Computes the inverse of the complement of the Student's t cdf.	
Format	x = cdftci(p,n);	
Input	<i>p</i> NxK real matrix, complementary Student's t probability levels, $0 \le p \le 1$.	
	<i>n</i> LXM real matrix, degrees of freedom, $n \ge 1$, <i>n</i> need not be integral. EXE conformable with <i>p</i> .	
Output	x $\max(N,L)$ by $\max(K,M)$ real matrix, Student's t deviates, such that $cdftc(x,n) = p$.	
Remarks	cdftc (cdftci (p , n)) = p to within the errors given below:	
	$0.5e-30 accurate to \pm 1 in 12th digit0.01 < paccurate to \pm 1e-14$	
	Extreme values of arguments can give rise to underflows, but no	

overflows are generated.

cdftnc

cdftnc

Purpose	The integral under noncentral Student's <i>t</i> distribution, from $-\infty$ to <i>x</i> . It can
-	return a vector of values, but the degrees of freedom and noncentrality
	parameter must be the same for all values of x.

- **Format** y = cdftnc(x,v,d);
 - **Input** x Nx1 vector, values of upper limits of integrals.
 - v scalar, degrees of freedom, v > 0.
 - d scalar, noncentrality parameter.
 This is the square root of the noncentrality parameter that sometimes goes under the symbol lambda. (See Scheffe, *The Analysis of Variance*, App. IV. 1959.)
- **Output** y Nx1 vector, integrals from $-\infty$ to x of noncentral t.
- Source cdfnonc.src
- See also cdffnc, cdfchinc

Technical Notes

Relation to **cdftc**:

cdftc(x,v) = 1 - cdftnc(x,v,0);

The formula used is based on the formula in *SUGI Supplemental Library User's Guide*. SAS Institute. 1983, 232 (which is attributed to Johnson and Kotz, 1970).

The formula used here is a modification of that formula. It has been tested against direct numerical integration, and against simulation experiments in which noncentral t random variates were generated and the cdf found directly.

cdftvn

cdftvn

Purpose	Computes the cumulative distribution function of the standardized trivariate Normal density (lower tail).		
Format	c = cdftvn(x1,x2,x3,rho12,rho23,rho31);		
Input	xl	Nx1 vector of upper limits of integration for variable 1.	
	r^{3}	Nx1 vector of upper limits of integration for variable 3	
	rho12	scalar or N×1 vector of correlation coefficients between the two variables $x1$ and $x2$.	
	rho23	scalar or Nx1 vector of correlation coefficients between the two variables x^2 and x^3 .	
	rho31	scalar or Nx1 vector of correlation coefficients between the two variables $x1$ and $x3$.	
Output	С	Nx1 vector containing the result of the triple integral from $-\infty$ to $x1$, $-\infty$ to $x2$, and $-\infty$ to $x3$ of the standardized trivariate Normal density:	
		f(x1,x2,x3,rho12,rho23,rho31)	
Remarks	Allowa	able ranges for the arguments are:	
	-∞	$\langle xl \rangle \langle +\infty \rangle$	
	-∞	$< x2 < +\infty$	
	-∞	$< x\beta < +\infty$	
	-1	< rho12 < 1	
	-1	< <i>rho23</i> < 1	
	-1	< rho31 < 1	
	In addi	tion rho12 rho23 and rho31 must come from a legitimate	

In addition, *rho12*, *rho23*, and *rho31* must come from a legitimate positive definite matrix. A -1 is returned for those rows with invalid inputs.

A separate integral is computed for each row of the inputs.

The first 3 arguments (x1,x2,x3) must be the same length, *N*. The second 3 arguments (rho12,rho23,rho31) must also be the same length, and this

cdftvn

length must be N or 1. If it is 1, then these values will be expanded to apply to all values of x1, x2, x3. All inputs must be column vectors.

To find the integral under a general trivariate density, with x1, x2, and x3 having nonzero means and any positive standard deviations, transform by subtracting the mean and dividing by the standard deviation. For example:

x1 = (x1 - meanc(x1)) / stdc(x1);

See also cdfn, cdfbvn

Technical The absolute error for **cdftvn** is approximately ±2.5e-8 for the entire range of arguments.

References Daley, D.J. "Computation of Bi- and Tri-variate Normal Integral." *Appl. Statist.* Vol. 23 No. 3, 1974, 435-38.

Steck, G.P. "A Table for Computing Trivariate Normal Probabilities." *Ann. Math. Statist.* Vol. 29, 780-800.

cdir

cdir

Purpose	Returns the current directory.	
Format	y = cdir(s);	
Input	s string, if the first character is 'A'-'Z' and the second character is a colon ':' then that drive will be used. If not, the current default drive will be used.	
Output	<i>y</i> string containing the drive and full path name of the current directory on the specified drive.	
Remarks	If the current directory is the root directory, the returned string will end with a backslash, otherwise it will not.	
	A null string or scalar zero can be passed in as an argument to obtain the current drive and path name.	
Example	x = cdir(0);	
	y = cdir("d:");	
	print x;	
	print y;	
	C:\GAUSS	
	D:/	
See also	files	

3-83

c

ceil

ceil

Purpose	Round up toward $+\infty$.		
Format	$y = \operatorname{ceil}(x);$		
Input	<i>x</i> NxK matrix.		
Output	y NxK matrix.		
Remarks	This rounds every element in the matrix <i>x</i> to an integer. The elements are rounded up toward $+\infty$.		
Example	<pre>x = 100*rndn(2,2); y = ceil(x);</pre>		
	$x = \begin{array}{r} 77.68 & -14.10 \\ 4.73 & -158.88 \end{array}$		
	$y = \frac{78.00 - 14.00}{5.00 - 158.00}$		
See also	floor, trunc		

ChangeDir

ChangeDir

Purpose	Changes the working directory.	
Format	<pre>d = ChangeDir(s);</pre>	
Input	<i>s</i> string, directory to change to.	
Output	<i>d</i> string, new working directory, or null string if change failed.	
See also	chdir	

chdir

chdir

Purpose	Changes working directory.		
Format	chdir dirs	str;	
Input	dirstr	literal or ^string, directory to change to.	
Remarks	This is for in	nteractive use. Use ChangeDir in a program.	
	If the directo	bry change fails, chdir prints an error message.	

chol

c

chol

Purpose	Computes the Cholesky decomposition of a symmetric, positive definite matrix.		
Format	$y = \operatorname{chol}(x);$		
Input	x NxN matrix.		
Output	<i>y</i> NXN matrix containing the Cholesky decomposition of <i>x</i> .		
Remarks	<i>y</i> is the "square root" matrix of <i>x</i> . That is, it is an upper triangular matrix such that $x = y'y$.		
	chol does not check to see that the matrix is symmetric. chol will look only at the upper half of the matrix including the principal diagonal.		
	If the matrix <i>x</i> is symmetric but not positive definite, either an error message or an error code will be generated, depending on the lowest order bit of the trap flag:		
	trap 0 Print error message and terminate program.		
	trap 1 Return scalar error code 10.		
	See scalerr and trap for more details about error codes.		
Evomplo			
Example	$\mathbf{x} = \text{moment}(\text{rnan}(100, 4), 0),$		
	y = chol(x);		
	ypy = y'y;		
	90 746566 _6 467195 _1 927489 _15 696056		
	-6.467195 87.806557 6.319043 -2.435953		
	x = -1.927489 + 6.319043 + 101.973276 + 4.355520		
	-15.696056 -2.435953 4.355520 99.042850		
	9.526099-0.678892 -0.202338 -1.647690		
	$v = 0.000000 \ 9.345890 \ 0.661433 \ -0.380334$		
	0.000000 0.000000 10.074465 0.424211		
	0.000000 0.000000 0.000000 9.798130		

chol

<i>ypy</i> =	90.746566	-6.467195	-1.927489	-15.696056
	-6.467195	87.806557	6.319043	-2.435953
	-1.927489	6.319043	101.973276	4.355520
	-15.696056	-2.435953	4.355520	99.042850

choldn

с

choldn

Purpose	Performs a Cholesk triangular matrix.	y downdate of one	or more rows on a	an upper
Format	r = choldn(C,x);		
Input	C KxK upper x NxK matrix	triangular matrix. , the rows to down	ndate C with.	
Output	r KxK upper	triangular matrix,	the downdated ma	trix.
Remarks	C should be a Chole	esky factorization.		
	choldn(C,x) is equivalent to chol(C'C - $x'x$) , but choldn is numerically much more stable.			
	Warning: it is possi definite with chol diagonal element of longer be positive of number of the matr	ble to render a Cho dn. You should ke f r to the smallest – lefinite. This ratio i ix.	blesky factorization ep an eye on the ra — if it gets very lan is a rough estimate	in non-positive atio of the largest arge, r may no be of the condition
Example	let C[3,3] =	20.16210005 0 0	16.50544413 11.16601462 0	9.86676135 2.97761666 11.65496052;
	let x[2,3] =	1.76644971 6.87691156	7.49445820 4.41961438	9.79114666 4.32476921;
	<pre>r = choldn(C,</pre>	x);		
	$r = \begin{array}{c} 18.8705596 \\ 0.0000000 \\ 0.0000000 \end{array}$	4 15.32294435 0 9.30682813 - 0 0.00000000	8.04947012 -2.12009339 7.62878355	
See also	cholup			

3-89

cholsol

cholsol

- **Purpose** Solves a system of linear equations given the Cholesky factorization of the system.
 - **Format** x = cholsol(b,C);
 - Input *b* NxK matrix. *C* NxN matrix.
 - **Output** *x* NxK matrix.
- **Remarks** *C* is the Cholesky factorization of a linear system of equations *A*. *x* is the solution for Ax = b. *b* can have more than one column. If so, the system is solved for each column, i.e., $A^*x[.,i] = b[.,i]$.

cholsol(eye(N),C) is equivalent to invpd(A). Thus, if you have the Cholesky factorization of A, **cholsol** is the most efficient way to obtain the inverse of A.

Example let b[3,1] = 0.03177513 0.41823100 1.70129375; let C[3,3] = 1.73351215 1.53201723 1.78102499 0 1.09926365 0.63230050 0 0 0.67015361;

x = cholsol(b,C);

-1.94396905

x = -1.526867683.21579513

3.00506436 2.65577048 3.08742844

 $A0 = 2.65577048 \ 3.55545737 \ 3.42362593 \ 3.08742844 \ 3.42362593 \ 4.02095978$

cholup

с

cholup

Purpose	Performs a Cholesky update of one or more rows on an upper triangular matrix.		
Format	r = cholup(C, x);		
Input	<i>C</i> KxK upper triangular matrix.<i>x</i> NxK matrix, the rows to update <i>C</i> with.		
Output	<i>r</i> KXK upper triangular matrix, the updated matrix.		
Remarks	<i>C</i> should be a Cholesky factorization. cholup(C,x) is equivalent to chol(C'C + x'x) , but cholup is numerically much more stable.		
Example	let $C[3,3] = 18.87055964$ 15.32294435 8.04947012 0 9.30682813 -2.12009339 0 0 7.62878355; let $x[2,3] = 1.76644971$ 7.49445820 9.79114666 6.87691156 4.41961438 4.32476921; r = cholup(C,x); 20.16210005 16.50544413 9.86676135 r = 0.00000000 11.16601462 2.97761666		
0	0.00000000 0.00000000 11.65496052		

See also choldn

w x y z

chrs

chrs

- **Purpose** Converts a matrix of ASCII values into a string containing the appropriate characters.
 - **Format** y = chrs(x);
 - **Input** *x* NxK matrix.
 - **Output** *y* string of length N*K containing the characters whose ASCII values are equal to the values in the elements of *x*.
- **Remarks** This function is useful for embedding control codes in strings and for creating variable length strings when formatting printouts, reports, etc.
- **Example** n = 5;
 - print chrs(ones(n,1)*42);
 - * * * * *
 - Since the ASCII value of the asterisk character is 42, the program above will print a string of **n** asterisks.

```
y = chrs(67~65~84);
print y;
```

CAT

See also vals, ftos, stof

clear

clear

Purpose	Clears space in memory by setting matrices equal to scalar zero.		
Format	clear x, y;		
Remarks	clear x ; is equivalent to $x = 0$;		
	Matrix names are retained in the symbol table after they are cleared.		
	Matrices can be clear 'ed even though they have not previously been defined. clear can be used to initialize matrices to scalar 0.		
Example	clear x;		
See also	clearg, new, show, delete		

clearg

clearg

Purpose This command clears global symbols by setting them equal to scalar zero. Format clearg *a,b,c*; Output a,b,cscalar global matrices containing 0. Remarks **clearg** \mathbf{x} ; is equivalent to $\mathbf{x} = \mathbf{0}$;, where \mathbf{x} is understood to be a global symbol. **clearg** can be used to initialize symbols not previously referenced. This command can be used inside procedures to clear global matrices. It will ignore any locals by the same name. Example x = 45;clearg x; x = 0.0000000See also clear, delete, new, show, local

close

close

Purpose	Close a GAUSS file.		
Format	y = close(handle);		
Input	<i>handle</i> scalar, the file handle given to the file when it was opened with the open , create , or fopen command.		
Output	y scalar, 0 if successful, -1 if unsuccessful.		
Remarks	<i>handle</i> is the scalar file handle created when the file was opened. It will contain an integer which can be used to refer to the file.		
	close will close the file specified by handle, and will return a 0 if successful and a -1 if not successful. The handle itself is not affected by close unless the return value of close is assigned to it.		
	If $f1$ is a file handle and it contains the value 7, then after:		
	call close(fI);		
	the file will be closed but fI will still have the value 7. The best procedure is to do the following:		
	fI = close(fI);		
	This will set $f1$ to 0 upon a successful close.		
	It is important to set unused file handles to zero because both open and create check the value that is in a file handle before they proceed with the process of opening a file. During open or create , if the value that is in the file handle matches that of an already open file, the process will be aborted and a "File already open" message will be given. This gives you some protection against opening a second file with the same handle as a currently open file. If this happened, you would no longer be able to access the first file.		
	An advantage of the close function is that it returns a result which can be tested to see if there were problems in closing a file. The most common reason for having a problem in closing a file is that the disk on which the file is located is no longer in the disk drive — or the handle was invalid. In both of these cases, close will return a -1.		

Files are not automatically closed when a program terminates. This allows users to run a program that opens files, and then access the files

close

from interactive mode after the program has been run. Files are automatically closed when GAUSS exits to the operating system or when a program is terminated with the **end** statement. **stop** will terminate a program but not close files.

As a rule it is good practice to make **end** the last statement in a program, unless further access to the open files is desired from interactive mode. You should close files as soon as you are done writing to them to protect against data loss in the case of abnormal termination of the program due to a power or equipment failure.

The danger in not closing files is that anything written to the files may be lost. The disk directory will not reflect changes in the size of a file until the file is closed and system buffers may not be flushed.

Example open f1 = dat1 for append;

y = writer(f1,x);

f1 = close(f1);

See also closeall

closeall

closeall

Purpose	Close all currently open GAUSS files.
Format	<pre>closeall; closeall list_of_handles;</pre>
Remarks	<pre>closeall list_of_handles; list_of_handles is a comma-delimited list of file handles. closeall with no specified list of handles will close all files. The file handles will not be affected. The main advantage of using closeall is ease of use; the file handles do not have to be specified, and one statement will close all files. When a list of handles follows closeall, all files are closed and the file handles listed are set to scalar 0. This is safer than closeall without a list of handles because the handles are cleared. It is important to set unused file handles to zero because both open and create check the value that is in a file handle before they proceed with the process of opening a file. During open or create, if the value that is in the file handle matches that of an already open file, the process will be aborted and a "File already open" message will be given. This gives you some protection against opening a second file with the same handle as a currently open file. If this happened, you would no longer be able to access the first file. Files are not automatically closed when a program terminates. This allows users to run a program that opens files, and then access the files from interactive mode after the program has been run. Files are automatically closed when GAUSS exits to the operating system or when a program is terminated with the end statement. stop will terminate a program but not close files. As a rule it is good practice to make end the last statement in a program, unless further access to the open files is desired from interactive mode. You should close files as soon as you are done writing to them to protect against data loss in the case of abnormal termination of the program due to a power or equipment failure. The danger in not closing files is that anything written to the files may be</pre>
	lost. The disk directory will not reflect changes in the size of a file until the file is closed and system buffers may not be flushed.

closeall

Example	open f1 = dat1 for read;
	open f2 = dat1 for update;
	<pre>x = readr(f1,rowsf(f1));</pre>
	x = sqrt(x);
	<pre>call writer(f2,x);</pre>
	closeall f1,f2;

See also close, open

cls

cls

Purpose	Clear the window.	
Format	cls;	
Portability	UNIX 3.2 only	
	cls clears the active graphic panel. For Text graphic panels, this means the graphic panel buffer is cleared to the background color. For TTY graphic panels, the current output line is panned to the top of the graphic panel, effectively clearing the display. The output log is still intact. To clear the output log of a TTY graphic panel, use WinClearTTYLog . For PQG graphic panels, the graphic panel is cleared to the background color, and the related graphics file is truncated to zero length.	
	UNIX 3.5+	
	cls will clear the screen on some terminals.	
	Windows	
	cls clears the Command window if you're in Cmnd I/O mode, the Output window if you're in Split I/O mode.	
	OS/2	
	cls clears the Main window.	
Remarks	This command will cause the window to clear and will locate the cursor at the upper left hand corner of the window.	
See also	locate	

code

code

- **Purpose** Allows a new variable to be created (coded) with different values depending upon which one of a set of logical expressions is true.
 - **Format** y = code(e,v);
 - **Input** *e* NxK matrix of 1's and 0's. Each column of this matrix is created by a logical expression using "dot" conditional and boolean operators. Each of these expressions should return a column vector result. The columns are horizontally concatenated to produce *e*. If more than one of these vectors contains a 1 in any given row, the **code** function will terminate with an error message.
 - v (K+1)x1 vector containing the values to be assigned to the new variable.
 - **Output** *y* Nx1 vector containing the new values.
- **Remarks** If none of the K expressions is true, the new variable is assigned the default value, which is given by the last element of *v*.

Example let x1 = 0 /* column vector of original values */
5
10
15
20;
let v = 1 /* column vector of new values */
2
3; /* the last element of v is the
:: "default"

*/

```
Command Reference
```

С

```
code
e1 = (0 .lt x1) .and (x1 .le 5); /* expression 1
                                     * /
e2 = (5 .lt x1) .and (x1 .le 25); /* expression 2
                                      */
e = e1~e2; /* concatenate e1 & e2 to make a 1,0
            :: mask with one less column than the
            :: number of new values in v.
            */
y = code(e, v);
            0
            5
x1[5, 1] =
                        (column vector of original values)
           10
           15
           20
v[3,1] = 123
                             (Note: v is a column vector)
          0 0
          1.0
e[5,2] = 01
          0 1
          0 1
          3
          1
y[5, 1] =
          2
          2
          2
```

For every row in e, if a 1 is in the first column, the first element of v is used. If a 1 is in the second column, the second element of v is used, and

code

so on. If there are only zeros in the row, the last element of v is used. This is the default value.

If there is more than one 1 in any row of e, the function will terminate with an error message.

Source datatran.src

See also recode, substute

code (dataloop)

code (dataloop)

Purpose	Creates new variables with different values based on a set of logical expressions.		
Format	<pre>code [[#]] [[\$]] var [[default defval]] with val_1 for expression_1, val_2 for expression_2,</pre>		

val_n for expression_n;

Input	var	literal, the new variable name.	
	defval	scalar, the default value if none of the expressions are <i>TRUE</i> .	
	val	scalar, value to be used if corresponding expression is <i>TRUE</i> .	
	expression	logical scalar-returning expression that returns nonzero <i>TRUE</i> or zero <i>FALSE</i> .	
Remarks	If '\$' is specified, the new variable will be considered a character variable. If '#' or nothing is specified, the new variable will be considered numeric.		
	The logical expressions must be mutually exclusive; i.e., only one may return <i>TRUE</i> for a given row (observation).		
	Any variables referenced must already exist, either as elements of the source data set, as externs, or as the result of a previous make , vector ,		

If no default value is specified, 999 is used.

or **code** statement.

<pre>Example code agecat default 5 with 1 for age < 21, 2 for age >= 21 and age < 35, 3 for age >= 35 and age < 50, 4 for age >= 50 and age < 65, code \$ sex with</pre>	code	(dataloop)	
<pre>1 for age < 21, 2 for age >= 21 and age < 35, 3 for age >= 35 and age < 50, 4 for age >= 50 and age < 65, code \$ sex with</pre>		Example	code agecat default 5 with
<pre>2 for age >= 21 and age < 35, 3 for age >= 35 and age < 50, 4 for age >= 50 and age < 65, code \$ sex with</pre>			1 for age < 21,
3 for age >= 35 and age < 50 4 for age >= 50 and age < 65 code \$ sex with "MALE" for gender == 1, "FEMALE" for gender == 0; See also recode			2 for age >= 21 and age < 35,
<pre>4 for age >= 50 and age < 65. code \$ sex with</pre>			3 for age >= 35 and age < 50,
<pre>code \$ sex with</pre>			4 for age >= 50 and age < 65;
<pre>"MALE" for gender == 1, "FEMALE" for gender == 0;</pre> See also recode			code \$ sex with
"FEMALE" for gender == 0; See also recode			"MALE" for gender == 1,
See also recode			"FEMALE" for gender == 0;
		See also	recode
color

color

Purpose	Set pixel, text, background color, or VGA palette color registers.				
Format	y = c	y = color(cv)			
Input	<i>cv</i> scalar, 2x1 or 3x1 vector of color values or Nx4 matrix color values. See Portability, below, for platform specif				
	If the input vector is smaller than 3x1 or the corresponding element in the input vector is -1, the corresponding color will be left unchanged.				
		If the input is an Nx4 matrix, it will initialize the VGA palette (DOS) or active graphic panel's colormap (UNIX) with user- defined RGB colors interpreted as follows:			
		[N,1] palette register index 0-255			
		[N,2] red value 0-63			
		[N,3] green value 0-63			
		[N,4] blue value 0-63			
Output	у	vector, or Nx4 matrix the same size as the input which contains the original color values or palette values.			
Portability	DOS				
	[1] pixel color				
	[2] text	color			
	[3] igno	bred			
	UNIX 3.2 only				
	color affects the active graphic panel. X supports foreground and background colors. The color command makes no distinction between text and pixel colors; both affect the foreground color of the active graphic panel. If both a pixel color and text color are specified, the pixel color will be ignored, and the text color will be used to set the foreground				

[1] foreground

color. Thus:

- or
- [1] ignored

color

[2] foreground

or

[1] ignored

[2] foreground

[3] background

OS/2, Windows, UNIX 3.5+

This function is not supported under OS/2 or Windows.

Remarks This changes the window colors for your program's output. The editor and interactive mode will not be affected.

See "Colors Appendix" on page B-1 for a color value table.

Under DOS, the VGA color palette registers may be set only if the display adapter has been already been initialized to VGA graphics mode 19 (320x200, 256 colors) with the **setvmode** command. The registers will retain the new values until the adapter is reset to text mode, which resets the palette to the default VGA colors.

This function is useful for obtaining 64 shades of a single color and/or mixing colors to user-specification.

See also graph, line, setvmode

cols, colsf

cols, colsf

Purpose	cols returns the number of columns in a matrix. colsf returns the number of columns in a GAUSS data (.dat) file or GAUSS matrix (.fmt) file.				
Format	<pre>y = cols(x); yf = colsf(fh);</pre>				
Input	<i>x</i> any valid expression that returns a matrix.<i>fh</i> file handle of an open file.				
Output	<i>y</i> number of columns in <i>x</i>.<i>yf</i> number of columns in the file that has the handle <i>fh</i>.				
Remarks	If x is an empty matrix, $rows(x)$ and $cols(x)$ return 0. For $colsf$, the file must be open.				
Example	<pre>x = rndn(100,3); y = cols(x);</pre>				
	y = 3.000000				
	create fp = myfile with x,10,4;				
	D = COIST(ID);				
See also	<pre>p = 10.000000 rows, rowsf, show, lshow</pre>				

с

comlog

comlog

Purpose	Controls logging of interactive mode commands to a disk file.			
Format	<pre>comlog [[file=filename]] [[on off reset]];</pre>			
Input	filename	<i>ne</i> literal or ^string.		
		The file = <i>filename</i> subcommand selects the file to log interactive mode statements to. This can be any legal file name.		
		If the name of the file is to be taken from a string variable, the name of the string must be preceded by the ^ (caret) operator.		
		There is	no default file name.	
	on, off, reset	literal, m	node command:	
		on	turns on command logging to the current log file. If the file already exists, subsequent commands will be appended.	
		off	closes the log file and turns off command logging.	
		reset	similar to the on subcommand, except that it resets the log file by deleting any previous commands.	
Remarks	Interactive mode statements are always logged into the file specified in the log_file configuration variable, regardless of the state of comlog .			
	The command comlog file = <i>filename</i> selects the file but does not turn on logging.			
	The command comlog off will turn off logging. The filename will remain the same. A subsequent comlog on will cause logging to resume. A subsequent comlog reset will cause the existing contents of the log file to be destroyed and a new file created.			
	The command comlog by itself will cause the name and status of the current log file to be printed in the window.			
	In interactive mode under DOS, F10 will load the current log file into the editor if logging is on . If logging is off , the default log file listed in the log_file configuration variable will be loaded into the editor.			

compile

compile

Purpose	Compiles a source file to a compiled code file. See also "Compiler" in the
-	User's Guide.

- **Format** compile source fname;
 - Inputsourceliteral or ^string, the name of the file to be compiled.fnameliteral or ^string, optional, the name of the file to be created. If
not given, the file will have the same filename and path as
source. It will have a .gcg extension.
- **Remarks** The *source* file will be searched for in the **src_path** if the full path is not specified and it is not present in the current directory.

The source file is a regular DOS text file containing a GAUSS program. There can be references to global symbols, Run-Time Library references, etc.

If there are **library** statements in *source*, they will be used during the compilation to locate various procedures and symbols used in the program. Since all of these library references are resolved at compile time, the **library** statements are not transferred to the compiled file. The compiled file can be run without activating any libraries.

If you do not want extraneous matter saved in the compiled image, put a **new** at the top of the *source file* or execute a **new** from interactive level before compiling.

The program saved in the compiled file can be run with the **run** command. If no extension is given, the **run** command will look for a file with the correct extension for the version of GAUSS. The **src_path** will be used to locate the file if the full path name is not given and it is not located on the current directory.

When the compiled file is **run**, all previous symbols and procedures are deleted before the program is loaded. It is therefore unnecessary to execute a **new** before **run**'ning a compiled file.

If you want line number records in the compiled file you can put a **#lineson** statement in the *source* file or turn line tracking on from the Options menu.

Do not try to include compiled files with **#include**.

compile

Example compile qxy.e;

In this example, the **src_path** would be searched for qxy.e, which would be compiled to a file called qxy.gcg on the same subdirectory qxy.e was found.

compile qxy.e xy;

In this example, the **src_path** would be searched for qxy.e which would be compiled to a file called xy.gcg on the current subdirectory.

See also run, use, saveall

complex

complex

Purpose	Converts a pair of real matrices to a complex matrix.		
Format	z = complex(xr,xi);		
Input	 <i>xr</i> NxK real matrix, the real elements of <i>z</i>. <i>xi</i> NxK real matrix or scalar, the imaginary elements of <i>z</i>. 		
Output	<i>z</i> NxK complex matrix.		
Example	x = { 4 6 , 9 8 };		
	y = { 3 5 , 1 7 };		
	<pre>t = complex(x,y);</pre>		
	$t = \begin{array}{l} 4.0000000 + 3.0000000i \ 6.0000000 + 5.0000000i \\ 9.0000000 + 1.0000000i \ 8.0000000 + 7.0000000i \end{array}$		
See also	imag, real		

con

con

Purpose	Requests input from the keyboard, and returns it in a matrix.						
Format	<i>x</i> = 0	con(<i>r,c</i>)	;				
Input	r c	scalar, r scalar, c	ow dime column d	ensi ime	on of matrix. ension of matrix.		
Output	x	RxC ma	atrix.				
Remarks	Enter comm	? to get a ands are a	help scre vailable:	een	at the con function prompt. The following		
			u		Up one row	U	First row
			d		Down one row	D	Last row
			1		Left one column	L	First column
			r		Right one column	R	Last column
			t		First element		
			b		Last element		
			g #,	#	Goto element		
			g #		Goto element of vect	or	
			h		Move horizontally, de	efault	
			v		Move vertically		
			\		Move diagonally		
			S		Show size of matrix		
			n		Display element as n	umeric,	default
			С		Display element as cl	haracter	
			е		exp(1)		
			р		pi		
					missing value		
			?		help		

con

x exit

Use a leading single quote for character inp	out.
--	------

See also cons, let, load

cond

cond

- **Purpose** This procedure will compute the condition number of a matrix using the singular value decomposition.
 - **Format** c = cond(x);
 - **Input** *x* NxK matrix.
 - **Output** c scalar, an estimate of the condition number of x. This equals the ratio of the largest singular value to the smallest. If the smallest singular value is zero or not all of the singular values can be computed, the return value is 10^{300} .

Example x = { 4 2 6, 8 5 7, 3 8 9 }; y = cond(x);

y = 9.8436943

Source svd.src

conj

conj

Purpose	Returns the complex conjugate of a matrix.			
Format	$y = \operatorname{conj}(x);$			
Input	<i>x</i> NxK matrix.			
Output	<i>y</i> NxK matrix, the complex conjugate of <i>x</i> .			
Remarks	Compare conj with the transpose (') operator.			
Example	<pre>x = { 1+9i 2,</pre>			
	$x = \begin{array}{rrrr} 1.0000000 + 9.0000000i & 2.0000000 \\ 4.0000000 + 4.0000000i & 0.0000000 + 5.0000000i \\ 0.0000000 + 7.0000000i & 8.0000000 - 2.0000000i \end{array}$			
	$y = \begin{array}{l} 1.000000 - 9.000000i & 2.000000 \\ 4.000000 - 4.000000i & 0.000000 - 5.000000i \\ 0.000000 - 7.000000i & 8.000000 + 2.000000i \end{array}$			

cons

cons

Purpose Retrieves a character string from the keyboard.

Format x = cons;

- **Output** The characters entered from the keyboard. The output will be of type string.
- **Remarks** If you are working in terminal mode GAUSS will not "see" any input until you press ENTER. *x* is assigned the value of a character string typed in at the keyboard. The program will pause to accept keyboard input. The maximum length of the string that can be entered is 254 characters. The program will resume execution when the ENTER key is pressed. The standard DOS editing keys will be in effect.

Example x = cons;

At the cursor enter:

probability

x = "probability"

See also con

continue

continue

Purpose	Jumps to the top of a do or for loop.			
Format	continue;			
Remarks	This command works just like in C.			
Example	x = rndn(4, 4);			
	r = 0;			
	<pre>do while r < rows(x);</pre>			
	r = r + 1;			
	c = 0;			
	do while c < cols(x); /* continue jumps here */			
	c = c + 1;			
	if c == r;			
	continue;			
	endif;			
	x[r,c] = 0;			
	endo;			
	endo;			
	-1.032195 0000000 0.000000 0.000000			
	$x = 0.000000 - 1.033763 \ 0.000000 \ 0.000000$			
	0.000000 0.000000 0.061205 0.000000			
	0.000000 0.000000 0.000000 -0.225936			

c

contour

contour

Purpose	To graph a matrix of contour data.		
Library	pgraph		
Format	contour((x,y,z);	
Input	x y z	1xK vector, the X axis data. K must be odd.Nx1 vector, the Y axis data. N must be odd.NxK matrix, the matrix of height data to be plotted.	
Global Input	_plev _pzclr	 Kx1 vector, user-defined contour levels for contour. Default 0. Nx1 or Nx2 vector. This controls the Z level colors. See surface for a complete description of how to set this global. 	
Remarks	 A vector of evenly spaced contour levels will be generated automatically from the <i>z</i> matrix data. Each contour level will be labeled. For unlabeled contours, use ztics. To specify a vector of your own unequal contour levels, set the vector _plev before calling contour. To specify your own evenly spaced contour levels, see ztics. 		
Source	pcontour.src		
See also	surface		

conv

conv

Purpose	Computes the convolution of two vectors.			
Format	$c = \operatorname{conv}(b, x, f, l);$			
Input	 b Nx1 vector. x Lx1 vector. f scalar, the first convolution to compute. l scalar, the last convolution to compute. 			
Output	c Qx1 result, where $Q = (l - f + 1)$. If f is 0, the first to the l'th convolutions are computed. If l is 0, the f'th to the last convolutions are computed. If f and l are both zero, all the convolutions are computed.			
Remarks	If <i>x</i> and <i>b</i> are vectors of polynomial coefficients, this is the same as multiplying the two polynomials.			
Example	$x = \{ 1, 2, 3, 4 \};$ $y = \{ 5, 6, 7, 8 \};$ z1 = conv(x, y, 0, 0); z2 = conv(x, y, 2, 5); $\begin{cases} 5 \\ 16 \\ 34 \\ z1 = 60 \\ 61 \\ 52 \\ 32 \end{cases}$			

c

conv

	16
72 =	34
2.2 -	60
	61

See also polymult

coreleft

с

coreleft

Purpose	Returns the amount, in bytes, of free workspace memory.
Format	y = coreleft;
Output	<i>y</i> scalar, number of bytes free.
Portability	DOS only
	All others will return the coreleft value specified in the GAUSS configuration (.cfg) file.
Remarks	The amount of free memory is dynamic and can change rapidly as expressions and procedures are being executed. coreleft returns the amount of workspace memory free at the time it is called. Workspace memory is used for storing matrices, strings, procedures, and for manipulating matrices and strings.
	This function can be used to write programs that automatically adjust their use of memory so they do not crash with the "Insufficient memory" error if they are used on machines with less free memory than the one used for development, or if the size of the data used becomes larger. A common use is to adjust the number of rows that are read per iteration of a read loop in programs that access data from a disk.
Example	open fp = myfile;
	<pre>k = colsf(fp); /* columns in file */</pre>
	fac = 4;
	<pre>/* check amount of memory available */</pre>
	<pre>nr = coreleft/(fac*k*8);</pre>
	In this example, nr , the number of rows to read, is computed by taking

In this example, **nr**, the number of rows to read, is computed by taking the number of bytes free (**coreleft**) divided by **fac*k*8**. **fac** is a guesstimate of the number of copies of the data read each iteration that the algorithm we are using will require, plus a little. **k*8** is the number of columns times the number of bytes per element.

See also dfree, new

ху

corrm, corrvc, corrx

corrm, corrvc, corrx

Purpose	Computes a correlation matrix.		
Format	cx = corrm(m); cx = corrvc(vc); cx = corrx(x);		
Input	 <i>m</i> KxK moment (<i>x'x</i>) matrix. A constant term MUST have been the first variable when the moment matrix was computed. <i>vc</i> KxK variance-covariance matrix (of data or parameters). <i>x</i> NxK matrix of data. 		
Output	<i>cx</i> PxP correlation matrix. For corrm , $P = K$ -1. For corrvc and corrx , $P = K$.		
Source	corr.src		
See also	momentd		

cos

COS

Purpose	Returns the cosine of its argument.		
Format	$y = \cos(x);$		
Input	<i>x</i> NxK matrix.		
Output	y NxK matrix.		
Remarks	For real matrices, x should contain angles measured in radians.		
	To convert degrees to radians, multiply the degrees by $\frac{\pi}{180}$.		
Example	$x = \{ 0, .5, 1, 1.5 \};$ y = cos(x); 1.00000000		
	$y = \begin{array}{c} 0.87758256\\ 0.54030231\\ 0.07073720 \end{array}$		

See also atan, atan2, pi

\cosh

cosh

Purpose	Computes the hyperbolic cosine.
Format	$y = \cosh(x);$
Input	<i>x</i> NxK matrix.
Output	<i>y</i> NxK matrix containing the hyperbolic cosines of the elements of <i>x</i> .
Example	<pre>x = { -0.5, -0.25, 0, 0.25, 0.5, 1 }; x = x * pi; y = cosh(x);</pre>
	$x = \begin{bmatrix} -1.570796 \\ -0.785398 \\ 0.000000 \\ 0.785398 \\ 1.570796 \\ 3.141593 \end{bmatrix}$
	$y = \begin{bmatrix} 2.509178 \\ 1.324609 \\ 1.000000 \\ 1.324609 \\ 2.509178 \\ 11.591953 \end{bmatrix}$
Source	trig.src

counts

counts

Purpose	Count the numbers of elements of a vector that fall into specified ranges.	
Format	c = counts(x, v);	
Input	 <i>x</i> Nx1 vector containing the numbers to be counted. <i>v</i> Px1 vector containing breakpoints specifying the ranges within which counts are to be made. The vector <i>v</i> MUST be sorted in ascending order. 	
Output	c Px1 vector, the counts of the elements of x that fall into the regions: $ \begin{array}{l} x \leq v[1], \\ v[1] < x \leq v[2], \\ \vdots \\ v[p-1] < x \leq v[p]. \end{array} $	
Remarks	If the maximum value of x is greater than the last element (the maximum value) of v, the sum of the elements of the result, c, will be less than N, the total number of elements in x. If $ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ x = 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array} $	

counts

then

$$c = 1$$
3

The first category can be a missing value if you need to count missings directly. Also $+\infty$ or $-\infty$ are allowed as breakpoints. The missing value must be the first breakpoint if it is included as a breakpoint and infinities must be in the proper location depending on their sign. $-\infty$ must be in the [2,1] element of the breakpoint vector if there is a missing value as a category as well, otherwise it has to be in the [1,1] element. If $+\infty$ is included, it must be the last element of the breakpoint vector.

 $c = \begin{array}{c} 2.000000\\ 1.000000\\ 2.000000\\ 1.000000 \end{array}$

countwts

countwts

- **Purpose** Returns a weighted count of the numbers of elements of a vector that fall into specified ranges.
 - **Format** c = countwts(x, v, w);
 - **Input** x Nx1 vector, the numbers to be counted.
 - Px1 vector, the breakpoints specifying the ranges within which counts are to be made. This MUST be sorted in ascending order (lowest to highest).
 - *w* Nx1 vector, containing weights.
 - **Output** c Px1 vector, the counts of the elements of x that fall into the regions:

$$x \le v[1], \\ v[1] < x \le v[2], \\ \vdots \\ . \\ . \\ . \\ . \\ v[p-1] < x \le v[p].$$

That is, when x[i] falls into region *j*, the weight w[i] is added to the *j*th counter.

Remarks If any elements of *x* are greater than the last element of *v*, they will not be counted.

Missing values are not counted unless there is a missing in v. A missing value in v MUST be the first element in v.

countwts

Example	$x = \{ 1, 3, 2, 4, 1, 3 \};$
	w = { .25, 1, .333, .1, .25, 1 };
	$v = \{ 0, 1, 2, 3, 4 \};$
	c = countwts(x,v,w);
	$c = \begin{array}{c} 0.000000\\ 0.500000\\ 2.00000\\ 0.100000 \end{array}$

create

Purpose	Creates a	nd opens a GAUSS data set for subsequent writing.
Format	create	<pre>[[vflag]] [[complex]] fh = filename with</pre>
	create	<pre>[[vflag]] [[complex]] fh = filename using comfile;</pre>
Input	vflag filename	<pre>version flag. -v89 supported for read -v92 for read/write -v96 for read/write For details on the various versions, see "File I/O" in the User's Guide. The default format can be specified in gauss.cfg by setting the dat_fmt_version configuration variable. If dat_fmt_version is not set, the default is v96. literal or ^string. filename is the name to be given the file on the disk. The name can include a path if the directory to be used is not the current directory. This file will automatically be given the extension</pre>
	create vnames	with literal or ^string or ^character matrix. <i>vnames</i> controls the names to be given to the columns of the data file. If the names are to be taken from a string or character matrix, the ^ (caret) operator.
		of the string or character matrix. The number of columns parameter, <i>col</i> , also has an effect on the way the names will be created. See below and see the examples for details on the ways names are assigned to a data file.

col	scalar expre	ssion.		
	<i>col</i> is a scala the data file controlled b will contain column will parameter. S	ar express If <i>col</i> is by the con <i>col</i> column be create See the exp	sion containing the number of columns i 0, the number of columns will be tents of <i>vnames</i> . If <i>col</i> is positive, the fil mns and the names to be given each ed as necessary depending on the <i>vname</i> camples.	in le ?s
dtyp	scalar expre	ssion.		
	<i>dtyp</i> is the p expression of per element	precision containing	used to store the data. This is a scalar g 2, 4, or 8, which is the number of byte	s
	2	sigr	ned integer	
	4	sing	gle precision	
	8	dou	ble precision	
	Data Type	Digits	Range	
	integer	4	$-32768 \le X \le 32767$	
	single	6-7	$8.43 \times 10^{-37} \le X \le 3.37 \times 10^{+38}$	
	double	15-16	$4.19 \text{x} 10^{-307} \leq X \leq 1.67 \text{x} 10^{+308}$	
	If the intege	r type is s	specified, numbers will be rounded to th	ne

If the integer type is specified, numbers will be rounded to the nearest integer as they are written to the data set. If the data to be written to the file contains character data, the precision must be 8 or the character information will be lost.

vtyp

matrix, types of variables.

The types of the variables in the data set. If

rows(vtyp)*cols(vtyp) < col only the first element is used. Otherwise nonzero elements indicate a numeric variable and zero elements indicate character variables. vtyp is ignored for v89 files.

create... using...

comfile literal or ^string.

comfile is the name of a command file that contains the information needed to create the file. The default extension for the command file is .gcf, which can be overridden.

There are three possible commands in this file:

numvar n str; outvar varlist;

outtyp dtyp;

numvar and **outvar** are alternate ways of specifying the number and names of the variables in the data set to be created.

When **numvar** is used, *n* is a constant which specifies the number of variables (columns) in the data file and *str* is a string literal specifying the prefix to be given to all the variables. Thus:

numvar 10 xx;

says that there are 10 variables and that they are to be named xx01 through xx10. The numeric part of the names will be padded on the left with zeros as necessary so the names will sort correctly:

xx1,	• • •	xx9	1-9 names
xx01,		xx10	10-99 names
xx001,		xx100	100-999 names
xx0001,		xx1000	1000-8100 names

If str is omitted, the variable prefix will be "X".

When **outvar** is used, *varlist* is a list of variable names, separated by spaces or commas. For instance:

outvar x1, x2, zed;

specifies that there are to be 3 variables per row of the data set, and that they are to be named **x1**, **x2**, **zed**, in that order.

outtyp specifies the precision. It can be a constant: 2, 4, or 8, or it can be a literal: I, F, or D. For an explanation of the available data types, see *dtyp* in **create... with...**, previously.

The **outtyp** statement does not have to be included. If it is not, then all data will be stored in 4 bytes as single precision floating point numbers.

Output	 scalar. <i>fh</i> is the file handle which will be used by most commands to refer to the file within GAUSS. This file handle is actually a scalar containing an integer value that uniquely identifies each file. This value is assigned by GAUSS when the create (or open) command is executed. 				
Remarks	If the complex flag is included, the new data set will be initialized to store complex number data. Complex data is stored a row at a time, with the real and imaginary halves interleaved, element by element.				
Example	let vnames = age sex educat wage occ;				
	create II = simulat with ^vhames,0,8;				
	obs = 0;				
	nr = 1000;				
	do while obs < 10000;				
	<pre>data = rndn(nr,colsf(f1));</pre>				
	if writer(fl,data) /= nr;				
	print "Disk Full";				
	end;				
	endif;				
	obs = obs+nr;				
	endo;				
	closeall f1;				
	uses create with to create a double precision data file called simdat.dat on the default drive with 5 columns. The writer command is used to write 10000 rows of Normal random numbers into the file. The variables (columns) will be named: AGE , SEX , EDUCAT , WAGE , OCC .				
	Following are examples of the variable names that will result when using				

Following are examples of the variable names that will result when using a character vector of names in the argument to the **create** function.

vnames = { AGE PAY SEX JOB }; typ = { 1, 1, 0, 0 }; create fp = mydata with ^vnames,0,2,typ;

The names in this example will be: AGE PAY SEX JOB

AGE and PAY are numeric variables, SEX and JOB are character variables.

create fp = mydata with ^vnames,3,2;

The names will be: AGE PAY SEX

create fp = mydata with ^vnames,8,2;

The names will now be: AGE PAY SEX JOB1 JOB2 JOB3 JOB4 JOB5

If a literal is used for the *vnames* parameter, the number of columns should be explicitly given in the *col* parameter and the names will be created as follows:

```
create fp = mydata with var,4,2;
```

```
giving the names: var1 var2 var3 var4
```

The next example assumes a command file called comd.gcf containing the following lines created using a text editor:

```
outvar age, pay, sex;
outtyp i;
```

Then the following could be used to write 100 rows of random integers into a file called smpl.dat in the subdirectory called /gauss/data:

```
filename = "/gauss/data/smpl";
create fh = ^filename using comd;
x = rndn(100,3)*10;
if writer(fh,x) /= rows(x);
   print Disk Full;
   end;
endif;
closeall fh;
```

С

For platforms using the backslash as a path separator, remember that two backslashes ($\langle \rangle$) are required to enter one backslash inside double quotes. This is because a backslash is the escape character used to embed special characters in strings.

See also open, readr, writer, eof, close, output, iscplxf

crossprd

crossprd

Purpose	Computes the cross-products (vector products) of sets of 3x1 vectors.		
Format	z = crossprd(x,y);		
Input	 x 3xK matrix, each column is treated as a 3x1 vector. y 3xK matrix, each column is treated as a 3x1 vector. 		
Output	<i>z</i> $3xK$ matrix, each column is the cross-product (sometimes called vector product) of the corresponding columns of <i>x</i> and <i>y</i> .		
Remarks	The cross-product vector z is orthogonal to both x and y. sumc(x . $*z$) and sumc(y . $*z$) will be Kx1 vectors all of whose elements are 0 (except for rounding error).		
Example	x = { 10 4, 11 13, 14 13 };		
	$Y = \{ 3 11, \\ 5 12, \\ 7 9 \};$		
	z = crossprd(x,y);		
	7.0000000 -39.000000		
	z = -28.000000 107.00000		
	17.000000 -95.000000		
Source	crossprd.src		

crout

crout

Purpose	Computes the Crout decomposition of a square matrix without row
-	pivoting, such that: $X = LU$.

- **Format** $y = \operatorname{crout}(x)$;
 - **Input** *x* NxN square nonsingular matrix.
- **Output** y NxN matrix containing the lower (L) and upper (U) matrices of the Crout decomposition of x. The main diagonal of y is the main diagonal of the lower matrix L. The upper matrix has an implicit main diagonal of ones. Use lowmat and upmat1 to extract the L and U matrices from y.
- **Remarks** Since it does not do row pivoting, it is intended primarily for teaching purposes. (See **croutp** for a decomposition with pivoting.)
- Example $X = \{ 1 2 -1, 2 3 -2, 1 -2 1 \};$ y = crout(x); L = lowmat(y); U = upmatl(y); y = 2 -1 0 1 -4 2
 - $L = \begin{array}{c} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 1 & -4 & 2 \end{array}$

crout

c

	$U = \begin{array}{c} 1 & 2 & -1 \\ 0 & 1 & 0 \end{array}$							
	0 0	1						
See also	croutp, d	hol,	lowmat,	lowmat1,	lu,	upmat,	upmat1	

croutp

croutp

- **Purpose** Computes the Crout decomposition of a square matrix with partial (row) pivoting.
 - **Format** $y = \operatorname{croutp}(x)$;
 - **Input** *x* NxN square nonsingular matrix.
 - **Output** y (N+1)XN matrix containing the lower (L) and upper (U) matrices of the Crout decomposition of a permuted x. The N+1 row of the matrix y gives the row order of the y matrix. The matrix must be reordered prior to extracting the L and U matrices. Use lowmat and upmat1 to extract the L and U matrices from the reordered y matrix.
- **Example** This example illustrates a procedure for extracting L and U of the permuted x matrix. It continues by sorting the result of LU to compare with the original matrix x.

croutp

1 2 - 1	
A = 2 3 = 2 1 = 2 = 1	a
1 - 2 - 1	b
1 0.5 0.2857	с
$y = \begin{pmatrix} 2 & 1.5 & -1 \\ 1 & 2.5 & 0.5714 \end{pmatrix}$	d
1 - 3.5 - 0.5/14 2 3 1	е
	f
$r \equiv 4$	g
2	h
indx = 3	i
1	i
2 1.5 -1	k
z = 1 - 3.5 - 0.5714	1
1 0.5 0.2857	m
2 0 0	n
$L = 1 - 3.5 \qquad 0$	
1 0.5 0.2857	n
1 1 5 -1	P
U = 0 1 -0.5714	q
0 0 1	r
1 1 2 1	S
q = 2 2 3 - 2	t
3 1 -2 1	u
	V

ху

croutp

See also crout, chol, lowmat, lowmat1, lu, upmat, upmat1
csrcol, csrlin

Purpose Returns the position of the cursor.

Format y = csrcol; y = csrlin;

Portability UNIX 3.2 only

csrcol returns the cursor column for the active graphic panel. For Text graphic panels, this value is the cursor column with respect to the text buffer. For TTY graphic panels, this value is the cursor column with respect to the current output line, i.e., it will be the same whether the text is wrapped or not. For PQG graphic panels, this value is meaningless.

csrlin returns the cursor line for the active graphic panel. For Text graphic panels, this value is the cursor row with respect to the text buffer. For TTY graphic panels, this value is the current output line number (i.e., the number of lines logged + 1). For PQG graphic panels, this value is meaningless.

UNIX 3.5+

csrcol and **csrlin** always return 1.

OS/2, Windows

csrcol returns the cursor column with respect to the current output line, i.e., it will return the same value whether the text is wrapped or not. **csrlin** returns the cursor line with respect to the top line in the graphic panel.

DOS

Under DOS, columns are usually numbered 1-80, rows are usually numbered 1-25. **setvmode** will return the current window dimensions.

Remarks *y* will contain the current column or row position of the cursor in the graphic panel. The upper left corner is (1,1).

csrcol returns the column position of the cursor. **csrlin** returns the row position.

The **locate** statement allows the cursor to be positioned at a specific row and column.

Example r = csrlin;

С

csrcol, csrlin

c = csrcol; cls; locate r,c;

In this example the window is cleared without affecting the cursor position.

See also cls, locate, lpos

csrtype

csrtype

Purpose	To set	To set the cursor shape.	
Format	<pre>old = csrtype(mode);</pre>		
Portability	UNIX		
	This fu	inction	is not supported in terminal mode.
	OS/2,	Windo	ows
	This function is not supported under OS/2 or Windows.		
Input	mode	scala DOS 0 1 2 UNE 0 1 2	r, cursor type to set. cursor off normal cursor large cursor X 3.2 cursor off normal cursor large cursor large cursor
		3	triangular cursor
Output	old	scala	r, original cursor type.
Remarks	Under already	DOS, / using	this function will set the same cursor shape that GAUSS is for its three modes.
Example	x = 0	csrty	pe(2);
See also	csrco	ol, c	srlin

c

cumprodc

cumprodc

Purpose	Computes the cumulative products of the columns of a matrix.		
Format	$y = \operatorname{cumprodc}(x);$		
Input	<i>x</i> NxK matrix.		
Output	<i>y</i> NxK matrix containing the cumulative products of the columns of <i>x</i> .		
Remarks	This is based on the recursive series recsercp . recsercp could be called directly as follows:		
	<pre>recserp(x,zeros(1,cols(x)))</pre>		
	to accomplish the same thing.		
Example	x = { 1 -3, 2 2, 3 -1 }; y = cumprodc(x);		
	$y = \begin{array}{c} 1.00 & -3.00 \\ 2.00 & -6.00 \\ 6.00 & 6.00 \end{array}$		
Source	cumprodc.src		
See also	cumsumc, recsercp, recserar		

cumsumc

cumsumc

Purpose	Computes the cumulative sums of the columns of a matrix.		
Format	$y = \operatorname{cumsumc}(x);$		
Input	<i>x</i> NxK matrix.		
Output	<i>y</i> NxK matrix containing the cumulative sums of the columns of <i>x</i> .		
Remarks	This is based on the recursive series function recserar . recserar could be called directly as follows:		
	recserar(x,x[1,.], ones(1,cols(x)))		
	to accomplish the same thing.		
Example	$x = \{ 1 - 3, 2 2, \}$		
	$3 -1 \};$ y = cumsumc(x);		
	1 2		
	1 - 5 $y = 2 - 1$		
	5 - 3 - 1 6 - 2		
Source	cumsumc.src		
See also	cumprodc, recsercp, recserar		

с

curve

curve

Purpose	Computes a one-dimensional smoothing curve.		
Format	<pre>{ u,v } = curve(x,y,d,s,sigma,G);</pre>		
Input	xKx1 vector, x-abscissae (x-axis values). y Kx1 vector, y-ordinates (y-axis values). d Kx1 vector or scalar, observation weights. s scalar, smoothing parameter. If $s = 0$, curve performs an interpolation. If d contains standard deviation estimates, a reasonable value for s is K.sigmascalar, tension factor. G scalar, grid size factor.		
Output	 <i>u</i> K*Gx1 vector, x-abscissae, regularly spaced. <i>v</i> K*Gx1 vector, y-ordinates, regularly spaced. 		
Remarks	<i>sigma</i> contains the tension factor. This value indicates the curviness desired. If <i>sigma</i> is nearly zero (e.g., .001), the resulting curve is approximately the tensor product of cubic curves. If <i>sigma</i> is large, (e.g., 50.0) the resulting curve is approximately bi-linear. If <i>sigma</i> equals zero, tensor products of cubic curves result. A standard value for <i>sigma</i> is approximately 1.		
	<i>G</i> is the grid size factor. It determines the fineness of the output grid. For $G = 1$, the input and output vectors will be the same size. For $G = 2$, the output grid is twice as fine as the input grid, i.e., <i>u</i> and <i>v</i> will have twice as many rows as <i>x</i> and <i>y</i> .		
Source	spline.src		

cvtos

cvtos

Purpose	Converts a character vector to a string.		
Format	$s = \operatorname{cvtos}(v);$		
Input	<i>v</i> Nx1 character vector, to be converted to a string.		
Output	<i>s</i> string, contains the contents of <i>v</i> .		
Remarks	cvtos in effect appends the elements of v together into a single string.		
	cvtos was written to operate in conjunction with stocv . If you pass it a character vector that does not conform to the output of stocv , you may get unexpected results. For example, cvtos DOES NOT look for 0 terminating bytes in the elements of v ; it assumes every element except the last is 8 characters long. If this is not true, there will be 0's in the middle of s .		
	If the last element of v does not have a terminating 0 byte, cvtos supplies one for s .		
Example	<pre>let v = { "Now is t" "he time " "for all " "good men" };</pre>		
	s = cvtos(v);		
	s = "Now is the time for all good men"		
See also	stocv, vget, vlist, vput, vread		

datalist

datalist

Purpose	List selected variables from a data set.		
Format	datalist d	lataset [[var1 [[var2]]]] ;	
Input	dataset li var# li	teral, name of the dataset. teral, the names of the variables to list.	
Global Input	_range	global scalar, the range of rows to list. The default is all rows.	
	_miss	global scalar, controls handling of missing values.	
		0 display rows with missing values.	
		1 do not display rows with missing values.	
		The default is 0.	
	_prec	global scalar, the number of digits to the right of the decimal point to display. The default is 3.	
Remarks	The variables a columns as wi keys to pan an	are listed in an interactive mode. As many rows and ll fit in the window are displayed. You can use the cursor d scroll around in the listing.	
Example	datalist f	Treq age sex pay;	
	This command data set freq	l will display the variables age , sex , and pay from the .dat.	
Source	datalist.s	erc	

dataloop (dataloop)

Purpose	Specifies the beginning of a data loop.		
Format	dataloop infile outfile;		
Input	<i>infile</i> string variable or literal, the name of the source data set.		
Output	<i>outfile</i> string variable or literal, the name of the output data set.		
Remarks	The statements between the dataloop endata commands are assumed to be metacode to be translated at compile time. The data from <i>infile</i> is manipulated by the specified statements, and stored to the data set <i>outfile</i> . Case is not significant within the dataloop endata section, except for within quoted strings. Comments can be used as in any GAUSS code.		
Example	<pre>src = "source"; dataloop ^src dest; make newvar = x1 + x2 + log(x3); x6 = sqrt(x4); keep x6, x5, newvar; endata;</pre>		
	CIIdala		

Here, $\verb+src+is$ a string variable requiring the caret operator (^), while $\verb+dest+is$ a string literal.

date

date

- **Purpose** Returns the current date in a 4-element column vector, in the order: year, month, day, and hundredths of a second since midnight.
- **Format** y = date;
- **Remarks** The hundredths of a second since midnight can be accessed using **hsec**.
- **Example** print date;

1998.0000
6.000000
15.000000
4011252.7

See also time, timestr, ethsec, hsec, etstr

datestr

datestr

Purpose	Returns a date in a string.		
Format	<pre>str = datestr(d);</pre>		
Input	d 4x1 vector, like the date function returns. If this is 0, the date function will be called for the current system date.		
Output	<i>str</i> 8 character string containing current date in the form: mo/ dy/yr		
Example	<pre>d = { 1998, 6, 15, 0 }; y = datestr(d); print y;</pre>		
	6/15/98		
Source	time.src		
0	• • • • • • • • • • • • • • •		

See also date, datestring, datestrymd, time, timestr, ethsec

datestring

datestring

Purpose	Returns a date in a year-2000-compliant string.		
Format	<pre>str = datestring(d);</pre>		
Input	d 4x1 vector, like the date function returns. If this is 0, the date function will be called for the current system date.		
Output	<i>str</i> 10 character string containing current date in the form: mm/dd/yyyy		
Example	<pre>y = datestring(0); print y;</pre>		
	6/15/1998		
Source	time.src		
See also	date, datestr, datestrymd, time, timestr, ethsec		

datestrymd

datestrymd

Purpose	Returns a date in a string.		
Format	<pre>str = datestrymd(d);</pre>		
Input	d 4x1 vector, like the date function returns. If this is 0, the date function will be called for the current system date.		
Output	<i>str</i> 8 character string containing current date in the form: yyyymmdd		
Example	<pre>d = { 1998, 6, 15, 0 }; y = datestrymd(d); print y;</pre>		
	19980615		
Source	time.src		
See also	date, datestr, datestring, time, timestr, ethsec		

dayinyr

dayinyr

Purpose	Returns day number in the year of a given date.				
Format	<pre>daynum = dayinyr(dt);</pre>				
Input	<i>dt</i> 3x1 or 4x1 vector, date to check. The date should be in the form returned by date .				
Output	<i>daynum</i> scalar, the day number of that date in that year, 1-366.				
Example	$x = \{ 1998, 6, 15, 0 \};$				
	y = dayinyr(x);				
	print y;				
	166.00000				
Source	time.src				
Globals	_isleap				

dayofweek

dayofweek

Purpose	Returns day of week.				
Format	d = dayofw	eek(a);			
Input	a Nx1 ve	ector, dates in DT format.			
Output	d Nx1 ve	ector, integers indicating day of week of each date:			
	[1]	Sunday			
	[2]	Monday			
	[3]	Tuesday			
	[4]	Wednesday			
	[5]	Thursday			
	[6]	Friday			
	[7]	Saturday			
Remarks	The DT scalar time. In the DT	format is a double precision representation of the date and S scalar format, the number			
	200104211832	07			
	represents 18:3	2:07 or 6:32:07 PM on April 21, 2001.			
Source	time.src				

d

debug

debug

Purpose	Runs a program under the source level debugger.
Format	debug filename;
Input	<i>filename</i> Literal or name of file to debug.
Remarks	See "Debugging" in the User's Guide.

declare

declare

To initialize matrices and strings at compile time.					
declare [[type]] symbol [[aop clist]];					
type	optional literal, specifying the type of the symbol. matrix				
	string				
	if <i>type</i> is not specified, matrix is assumed.				
symbol	the name of the symbol being declared.				
aop	the type of assignment to be made.				
	 if not initialized, initialize. if already initialized, reinitialize. 				
	!= if not initialized, initialize. if already initialized, reinitialize.				
	:= if not initialized, initialize. if already initialized, redefinition error.				
	?= if not initialized, initialize. if already initialized, leave as is.				
	If <i>aop</i> is specified, <i>clist</i> must be also.				
clist	a list of constants to assign to symbol.				
	If <i>aop clist</i> is not specified, <i>symbol</i> is initialized as a scalar 0 or a null string.				
The dec	lare syntax is similar to the let statement.				
declare generates no executable code. This is strictly for compile time initialization. The data on the right-hand side of the equal sign must be constants. No expressions or variables are allowed.					
 declare statements are intended for initialization of global matrices and strings that are used by procedures in a library system. It is best to place declare statements in a separate file from procedure definitions. This will prevent redefinition errors when rerunning the sam program without clearing your workspace. 					
	To initial declar type symbol aop clist Cl				

declare

the sign. Numbers with no real part can be entered by appending an 'i' to the number.

There should be only one declaration for any symbol in a program. Multiple declarations of the same symbol should be considered a programming error. When GAUSS is looking through the library to reconcile a reference to a matrix or a string, it will quit looking as soon as a symbol with the correct name is found. If another symbol with the same name existed in another file, it would never be found. Only the first one in the search path would be available to programs.

Here are some of the possible uses of the three forms of declaration:

!=, = Interactive programming or any situation where a global
by the same name will probably be listed in the symbol
table when the file containing the declare statement is
compiled. The symbol will be reset.

This allows mixing **declare** statements with the procedure definitions that reference the global matrices and strings, or placing them in your main file.

: = Redefinition is treated as an error. This will not allow you to assign one symbol with another value already in your program. Rename one of them.

Place **declare** statements in a separate file from the rest of your program and procedure definitions.

?= Interactive programming where some global defaults were set when you started and you do not want them reset for each successive run even if the file containing the declare's gets recompiled. Be careful when using.

CTRL+W controls the **declare** statement warning level. If **declare** warnings are on, you will be warned whenever a **declare** statement encounters a symbol that is already initialized. This happens when you declare a symbol that is already initialized when **declare** warnings are turned on:

declare !=	Reinitialize and warn.
declare :=	Crash with fatal error.
declare ?=	Leave as is and warn.

If **declare** warnings are off, no warnings are given for the **!=** and **?=** cases.

Example declare matrix x,y,z;

declare

d

```
x = 0
  y = 0
   z = 0
declare string x = "This string.";
  x = "This string."
declare matrix x;
x = 0
declare matrix x != { 1 2 3, 4 5 6, 7 8 9 };
     1 2 3
x = 456
    789
declare matrix x[3,3] = 1 2 3 4 5 6 7 8 9;
    1 2 3
x = 456
    789
declare matrix x[3,3] = 1;
     1 1 1
x = 1 1 1
     1 1 1
declare matrix x[3,3];
    000
x = 0 0 0
    000
```

See also

declare

decl	are	matrix	х	=	1	2	3	4	5	6	7	8	9;
	1 2												
	3												
	4												
x =	5												
	6												
	7												
	8												
	9												
decl	are	matrix	x	=	dc	g	Ca	ati	;				
<i>x</i> =	DO CA	G T											
decl	are	matrix	x	=	°C	log	9″	٣٥	at	- " i	;		
<i>x</i> =	dog cat												
let,	ext	cernal											

delete

delete

Purpose	Deletes global symbols from the symbol table.			
Format	<pre>delete [[-flags]] [[symbol1]] [[symbol2]] [[symbol3]];</pre>			
Input	<i>flags</i> specify the type(s) of symbols to be deleted			
		P	procedures	
		k	keywords	
		f	fn functions	
		m	matrices	
		s	strings	
		a	only symbols with global references	
		1	only symbols with all local references	
		n	no pause for confirmation	
	symbol	literal,	, name of symbol to be deleted. If symbol	
		leadin	g characters will be deleted.	
			6	
Remarks	This complet and workspace	ely and i ce.	irrevocably deletes symbols from GAUSS's memory	
	Flags must be preceded by a slash (e.g., -pfk). If the n (no pause) flag is used, you will not be asked for confirmation for each symbol.			
	This comman interpreter ex- invalidate a p any program keywords, an	nd is sup accutes a previousl it was a nd function	ported only from interactive level. Since the compiled pseudo-code, this command would ly compiled code image and therefore would destroy part of. If any symbols are deleted, all procedures, ons with global references will be deleted as well.	
Example	print x;			
	96.000	000		
	6.0000	000		
	14.000	000		
	350296	5.9		

d

delete

delete -m x;

At the Delete? [Yes No Previous Quit] prompt, enter y.

show x;

x no longer exists.

delete (dataloop)

delete (dataloop)

Purpose	Removes specific rows in a data loop based on a logical expression.			
Format	delete logical expression;			
Remarks	Deletes only those rows for which <i>logical expression</i> is <i>TRUE</i> . Any variables referenced must already exist, either as elements of the source data set, as externs, or as the result of a previous make , vector , or code statement.			
	GAUSS expects <i>logical expression</i> to return a row vector of 1's and 0's. The relational and other operators (e.g., <) are already interpreted in terms of their dot equivalents (\cdot <), but it is up to the user to make sure that function calls within <i>logical expression</i> result in a vector.			
Example	<pre>delete age < 40 or sex == `FEMALE';</pre>			
See also	select			

delif

delif

- **Purpose** Deletes rows from a matrix. The rows deleted are those for which there is a 1 in the corresponding row of *e*.
 - **Format** y = delif(x,e);
 - InputxNxK data matrix.eNx1 logical vector (vector of 0's and 1's).
 - **Output** y MxK data matrix consisting of the rows of y for which there is a 0 in the corresponding row of e. If no rows remain, **delif** will return a scalar missing.
- **Remarks** The input *e* will usually be generated by a logical expression using dot operators. For instance:

y = delif(x, x[.,2] .> 100);

will delete all rows of x whose second element is greater than 100. The remaining rows of x will be assigned to y.

Example	x = { 0 10 20,
	30 40 50,
	60 70 80};
	/* logical vector */
	e = (x[.,1] .gt 0) .and (x[.,3] .lt 100);
	y = delif(x,e);
	Here is the resulting matrix <i>y</i> :
	0 10 20
	All some for which the elements in column 1 are exceted then (

All rows for which the elements in column 1 are greater than 0 and the elements in column 3 are less than 100 are deleted.

Source datatran.src

delif

d

See also selif

denseSubmat

denseSubmat

Purpose	Returns dense submatrix of sparse matrix.				
Format	<pre>e = denseSubmat(x,r,c);</pre>				
Input	 <i>x</i> MxN sparse matrix. <i>r</i> Kx1 vector, row indices. <i>c</i> Lx1 vector, column indices. 				
Output	<i>e</i> KxL dense matrix.				
Remarks	If r or c are scalar zeros, all rows or columns will be returned.				
Source	sparse.src				
See also	sparseFd, sparseFp				

design

design

Purpose	Creates a design matrix of 0's and 1's from a column vector of numbers specifying the columns in which the 1's should be placed.				
Format	y = design(x);				
Input	x Nx1 vector.				
Output	y NxK matrix, where $K = maxc(x)$; each row of y will contain a single 1, and the rest 0's. The one in the i^{th} row will be in the round(x[i,1]) column.				
Remarks	Note that <i>x</i> does not have to contain integers: it will be rounded to nearest if necessary.				
Example	$x = \{ 1, 1.2, 2, 3, 4.4 \};$ y = design(x); $y = \begin{array}{c} 1 \ 0 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 1 \end{array}$				
Source	design.src				
See also	cumprodc, cumsumc, recserrc				

det

det

Purpose	Returns the determinant of a square matrix.			
Format	$y = \det(x);$			
Input	x NxN square matrix.			
Output	<i>y</i> determinant of <i>x</i> .			
Remarks	<i>x</i> may be any valid expression that returns a square matrix (number of rows equals number of columns).			
	det computes a LU decomposition.			
	detl can be much faster in many applications.			
Example	x = { 3 2 1, 0 1 -2, 1 3 4}; y = det(x);			
See also	$x = \begin{array}{ccc} 3 & 2 & 1 \\ 0 & 1 & -2 \\ 1 & 3 & 4 \end{array}$ $y = 25$ $detl$			

detl

detl

Purpose Returns the determinant of the last matrix that was passed to one of the intrinsic matrix decomposition routines.

Format y = detl;

Remarks Whenever one of the following functions is executed, the determinant of the matrix is also computed and stored in a system variable. This function will return the value of that determinant and, because the value has been computed in a previous instruction, this will require no computation.

The following functions will set the system variable used by **detl**:

chol(x)	
crout(x)	
croutp(x)	
det(x)	
<pre>inv(x)</pre>	
<pre>invpd(x)</pre>	
solpd(y,x)	determinant of x
y/x	determinant of x when neither argument is a scalar
	or
	determinant of $x'x$ if x is not square

Example If both the inverse and the determinant of the matrix are needed, the following two commands will return both with the minimum amount of computation:

xi = inv(x); xd = detl;

The function det(x) returns the determinant of a matrix using the Crout decomposition. If you only want the determinant of a positive definite matrix, the following code will be the fastest for matrices larger than 10x10:

```
call chol(x);
xd = detl;
```

detl

The Cholesky decomposition is computed and the result from that is discarded. The determinant saved during that instruction is retrieved using detl. This can execute up to 2.5 times faster than det(x) for large positive definite matrices.

See also det

dfft

dfft

Purpose	Computes a discrete Fourier transform.		
Format	y = dfft(x);		
Input	x Nx1 vector.		
Output	y Nx1 vector.		
Remarks	The transform is divided by <i>N</i> .		
	This uses a second-order Goertzel algorithm. It is considerably slower than fft , but it may have some advantages in some circumstances. For one thing, N does not have to be an even power of 2.		
Source	dfft.src		
See also	dffti, fft, ffti		

3-171

d

dffti

dffti

Purpose	Computes inverse discrete Fourier transform.		
Format	y = dffti(x);		
Input	x Nx1 vector.		
Output	y Nx1 vector.		
Remarks	The transform is divided by <i>N</i> . This uses a second-order Goertzel algorithm. It is considerably slower than ffti , but it may have some advantages in some circumstances. For one thing, <i>N</i> does not have to be an even power of 2.		
Source	dffti.src		

See also fft, dffti, ffti

dfree (DOS only)

dfree (DOS only)

Purpose	Returns the amount of room left on a diskette or hard disk.		
Format	y = dfree(drive);		
Input	<i>drive</i> scalar, valid disk drive number.		
Output	<i>y</i> number of bytes free.		
Portability	All others return -1		
Remarks	Valid disk drive numbers are $0 = \text{default}$, $1 = A$, $2 = B$, etc. If an error is encountered, dfree will return -1.		
See also	coreleft		

diag

diag

Purpose	Creates a column vector from the diagonal of a matrix.			
Format	y = diag(x);			
Input	<i>x</i> NxK matrix.			
Output	y $\min(N,K)x1$ vector.			
Remarks	The matrix need not be square. diagrv reverses the procedure and puts a vector into the diagonal of a matrix.			
Example	<pre>x = rndu(3,3); y = diag(x);</pre>			
	$x = \begin{array}{l} 0.660818 \ 0.367424 \ 0.302208 \\ 0.204800 \ 0.077357 \ 0.145755 \\ 0.712284 \ 0.353760 \ 0.642567 \end{array}$			
	$y = \begin{array}{c} 0.660818\\ 0.077357\\ 0.642567 \end{array}$			
See also	diagrv			

diagrv

diagrv

Purpose	Inserts a vector into the diagonal of a matrix.		
Format	y = diagrv(x, v);		
Input	xNxK matrix. v min(N,K) vector.	d e	
Output	y NxK matrix equal to x with its principal diagonal elements equal to those of <i>v</i> .	f o	
Remarks	diag reverses the procedure and pulls the diagonal out of a matrix.	b b	
Example	<pre>x = rndu(3,3); v = ones(3,1); y = diagrv(x,v); x = 0.660818 0.367424 0.302208 x = 0.204800 0.077357 0.145755 0.712284 0.353760 0.642567</pre>	i j k 1 m	
	$v = \begin{cases} 1.000000 \\ 1.000000 \\ 1.000000 \end{cases}$ $y = \begin{cases} 1.000000 \ 0.367424 \ 0.302208 \\ 0.204800 \ 1.000000 \ 0.145755 \\ 0.712284 \ 0.353760 \ 1.000000 \end{cases}$	o p q r s	
See also	diag	u v	

dlibrary

dlibrary

Purpose	Dynamically links and unlinks shared libraries.		
Format	<pre>dlibrary lib1 [lib2]; dlibrary -a lib1 [lib2]; dlibrary -d dlibrary</pre>		
Input	-a -d	 literal, the base name of the library or the pathed name of the library. dlibrary takes two types of arguments, "base" names and file names. Arguments without any "\" path separators are assumed to be library base names, and are expanded by adding the suffix .dll. They are searched for in the default dynamic library directory. Arguments that include "\" path separators are assumed to be file names, and are not expanded. Relatively pathed file names are assumed to be specified relative to the current working directory, not relative to the dynamic library directory. append flag, the DLL's listed are added to the current set of DLL's rather than replacing them. For search purposes, the new DLL's follow the already active ones. Without the -a flag, any previously linked libraries are dumped. dump flag, ALL DLL's are unlinked and the functions they contain are no longer available to your programs. If you use dllcall to call one of your functions after executing a dlibrary -d, your program will terminate with an error. 	
Remarks	If no flags are used, the DLL's listed are linked into GAUSS and any previously linked libraries are dumped. When you call dllcall, the DLL's will be searched in the order listed for the specified function. The first instance of the function found will be called. dlibrary with no arguments prints out a list of the currently linked DLL's. The order in which they are listed is the order in which they are searched for functions. dlibrary recognizes a default directory in which to look for dynamic libraries. You can specify this by setting the variable dlib_path in gauss.cfg. Set it to point to a single directory, not a sequence of		
dlibrary

directories. A new case (case 24) has also been added to **sysstate** for getting and setting this default.

GAUSS maintains its own DLL, gauss.dll.gauss.dll is listed when you execute **dlibrary** with no arguments, and searched when you call **dllcall**. By default, gauss.dll is searched last, after all other DLL's but you can force it to be searched earlier by listing it explicitly in a **dlibrary** statement.gauss.dll is always active. It is not unlinked when you execute **dlibrary** -d.gauss.dll is located in the gauss.exe directory.

See also dllcall, sysstate-case 24

dllcall

dllcall

Purpose	Calls functions located in dynamic libraries.		
Format	dllcall [-r] [-v] func[(arg1[,arg2])];		
	dllcall works in conjunction with dlibrary . dlibrary is used to link dynamic-link libraries (DLL's) into GAUSS; dllcall is used to access the functions contained in those DLL's. dllcall searches the DLL's (see dlibrary for an explanation of the search order) for a function named <i>func</i> , and calls the first instance it finds. The default DLL, gauss.dll, is searched last.		
Input	<i>func</i> the name of a function contained in a DLL (linked into GAUSS with dlibrary). If <i>func</i> is not specified or cannot be located in a DLL, dllcall will fail.		
	<i>arg#</i> arguments to be passed to <i>func</i> ; optional. These must be elementary variable; they cannot be expressions.		
	-r optional flag. If -r is specified, dllcall examines the value returned by <i>func</i> , and fails if it is nonzero.		
	 -v optional flag. Normally, dllcall passes parameters to <i>func</i> in a list. If -v is specified, dllcall passes them in a vector. See below for more details. 		
Remarks	<i>func</i> should be written to:		
	1. Take 0 or more pointers to doubles as arguments.		
	2. Take arugments either in a list of a vector.		
	3. Return an integer.		
	In C syntax, func should take one of the following forms:		
	1. int func (void);		
	<pre>2. int func (double *arg1[,double *arg2]);</pre>		
	<pre>3. int func (double *argv[]);</pre>		
	dllcall can pass a list of up to 100 arguments to <i>func</i> ; if it requires more arguments than that, you MUST write it to take a vector of arguments, and you MUST specify the -v flag when calling it. dllcall can pass up to 1000 arguments in vector format. In addition, in vector format dllcall appends a null pointer to the vector, so you can write		

dllcall

func to take a variable number of arguments and just test for the null pointer.

Arguments are passed to *func* by reference. This means you can send back more than just the return value, which is usually jsut a success/failure code. (It also means that you need to be careful not to overwrite the contents of matrices or strings you want to preserve.) To return data from *func*, simply set up one or more of its arguments as return matrices (basically, by making them the size of what you intend to return), and inside *func* assign the results to them before returning.

See also dlibrary, sysstate-case 24

do while, do until

do while, do until

Purpose Executes a series of statements in a loop as long as a given expression is true (or false).

Format do while expression; or do until expression;

statements in loop

endo;

Remarks *expression* is any expression that returns a scalar. It is TRUE if it is nonzero and FALSE if it is zero.

In a **do while** loop, execution of the loop will continue as long as the expression is TRUE.

In a **do until** loop, execution of the loop will continue as long as the expression is FALSE.

The condition is checked at the top of the loop. If execution can continue, the statements of the loop are executed until the **endo** is encountered. Then GAUSS returns to the top of the loop and checks the condition again.

The **do** loop does not automatically increment a counter. See the first example, following.

do loops may be nested.

do while, do until

It is often possible to avoid using loops in GAUSS by using the appropriate matrix operator or function. It is almost always preferable to avoid loops when possible, since the corresponding matrix operations can be much faster.

Example format /rdn 1,0; space = " *"*; comma = ","; i = 1;do while i <= 4;</pre> i = 1;do while j <= 3;</pre> print space i comma j;; j = j+1;endo; i = i + 1;print; endo; 1, 1 1, 2 1, 3 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3 4, 1 4, 2 4, 3

In the example above, two nested loops are executed and the loop counter values are printed out. Note that the inner loop counter must be reset inside the outer loop before entering the inner loop. An empty **print** statement is used to print a carriage return/line feed sequence after the inner loop finishes.

do while, do until

The following are examples of simple loops that execute a predetermined number of times. These loops will both have the result shown.

First loop format /rd 1,0; i = 1;do while i <= 10; print i;; i = i+1;endo; produces 12345678910 Second loop format /rd 1,0; i = 1;do until i > 10;print i;; i = i+1;endo; produces 12345678910

```
See also continue, break
```

dos

dos

Purpose	Provides access to the operating system from within GAUSS.		
Format	dos [[s]];		
Input	<i>s</i> literal or ^string, the OS command to be executed.		
Portability	 UNIX Control and output go to the controlling terminal, if there is one. This function may be used in terminal mode. OS/2, Windows The dos function opens a new terminal. Running programs in the background is allowed in all three of the aforementioned platforms. 		
Remarks	 This allows all operating system commands to be used from within GAUSS. It allows other programs to be run even though GAUSS is still resident in memory. If no operating system command (for instance, dir or copy) or program name is specified, a shell of the operating system will be entered which can be used just like the base level OS. The exit command must be given from the shell to get back into GAUSS. If a command or program name is included, the return to GAUSS is automatic after the DOS command has been executed. 		
	 All matrices are retained in memory when the OS is accessed in this way. This command allows the use of word processing, communications, and other programs from within GAUSS. Do not execute programs that terminate and remain resident because they will be left resident inside GAUSS's workspace. Some examples are programs that create RAM disks or print spoolers. If the command is to be taken from a string variable, the ^ (caret) must precede the string. The shorthand ">" can be used in place of the word "DOS". 		

dos

comstr = "basic myprog";

```
dos ^comstr;
```

This will cause the BASIC program **myprog** to be run. When that program is finished, control will automatically return to GAUSS.

>dir *.prg;

This will use the DOS **dir** command to print a directory listing of all files with a .prg extension. When the listing is finished, control will be returned to GAUSS.

dos;

This will cause a second level OS shell to be entered. The OS prompt will appear and OS commands or other programs can be executed. To return to GAUSS, type exit.

doswin

doswin

Purpose	Opens the DOS compatibility window with default settings.		
Format	doswin;		
Portability	Windows only		
Remarks	Calling doswin is equivalent to:		
	<pre>call DOSWinOpen("",error(0));</pre>		

Source gauss.src

DOSWinCloseall

DOSWinCloseall

Purpose	Closes the DOS compatibility window.		
Format	DOSWinCloseall;		
Portability	Windows only		
Remarks	Calling DOSWinCloseall closes the DOS window immediately, without asking for confirmation. If a program is running, its I/O reverts to the Command window.		
Example	let attr = 50 50 7 0 7;		
	if not DOSWinOpen("Legacy Window", attr);		
	errorlog "Failed to open DOS window, aborting";		
	stop;		
	endif;		
	DOSWinCloseall;		

DOSWinOpen

DOSWinOpen

Purpose	Opens the DOS compatibility window and gives it the specified title and attributes.	
Format	<pre>ret = DOSWinOpen(title,attr);</pre>	
Portability	Windows 3.2 only	
Input	 title string, window title. attr 5x1 vector or scalar missing, window attributes. [1] window x position [2] window y position [3] text foreground color [4] text background color [5] close action bit flags bit 0 (1's bit)] issue dialog bit 1 (2's bit)] close window bit 2 (4's bit)] stop program 	
Output	<i>ret</i> scalar, success flag, 1 if successful, 0 if not.	
Remarks	If <i>title</i> is a null string (""), the window will be titled "GAUSS-DOS". Defaults are defined for the elements of <i>attr</i> . To use the default, set an element to a missing value. Set <i>attr</i> to a scalar missing to use all defaults [1] <i>varies</i> use x position of previous DOS window [2] <i>varies</i> use y position of previous DOS window [3] 7 white foreground [4] 0 black background [5] 6 4+2: stop program and close window without confirming If the DOS window is already open, the new title and attr will be applied to it. Elements of attr that are missing are not reset to the default values, but are left as is.	

To set the close action flags value (*attr*[5]), just sum the desired bit values. For example:

DOSWinOpen

stop program (4) + close window (2) + confirm close (1) = 7

The close action flags are only relevant when a user attempts to interactively close the DOS window while a program is running. If GAUSS is idle, the window will be closed immediately. Likewise, if a program calls **DOSWinCloseall**, the window is closed, but the program does not get terminated.

```
Example
```

```
let attr = 50 50 7 0 7;
if not DOSWinOpen("Legacy Window", attr);
errorlog "Failed to open DOS window, aborting";
stop;
```

endif;

This example opens the DOS window at screen location (50,50), with white text on a black background. The close action flags are 4 + 2 + 1 (stop program + close window + issue confirm dialog) = 7. Thus, if the user attempts to close the window while a program is running, he/she will be asked for confirmation. Upon confirmation, the window will be closed and the program terminated.

dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne

dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne

Purpose	Fuzzy comparison functions. These functions use _fcmptol to fuzz the comparison operations to allow for roundoff error.		
Format	<pre>y = dotfeq(a,b); y = dotfge(a,b); y = dotfgt(a,b); y = dotfle(a,b); y = dotflt(a,b);</pre>		
	y = dotfn	e(a,b);	
Input	a b	NxK matrix, first matrix. LxM matrix, second matrix, ExE compatible with <i>a</i> .	
Global Input	_fcmptol	global scalar, comparison tolerance. The default value is 1.0e-15.	
Output	y max((N,L) by max(K,M) matrix of 1's and 0's.	
Remarks	The return value is 1 if true and 0 if false. The statement: y = dotfeq(a,b); is equivalent to:		
	y = a The calling p procedures. _fcmpt	.eq b; program can reset _fcmptol before calling these ol = 1e-12;	

dotfeq,	dotfge,	dotfgt, dotfle, dotflt, dotfne
Example		x = rndu(2,2);
		y = rndu(2,2);
		<pre>t = dotfge(x,y);</pre>
		$x = \begin{array}{c} 0.85115559 & 0.98914218 \\ 0.12703276 & 0.43365175 \end{array}$
		$y = \begin{array}{c} 0.41907226 & 0.49648058 \\ 0.58039125 & 0.98200340 \end{array}$
		$t = \begin{array}{c} 1.0000000 \ 1.0000000 \\ 0.0000000 \ 0.0000000 \end{array}$
5	Source	fcompare.src
G	ilobals	_fcmptol
Se	e also	feq-fne

draw

draw

Purpose	Graphs lines, symbols, and text using the PQG global variables. This procedure does not require actual X, Y, or Z data since its main purpose is to manually build graphs using _pline , _pmsgctl , _psym , _paxes , _parrow and other globals.	
Library	pgraph	
Format	draw;	
Remarks	draw is especially useful when used in conjunction with transparent graphic panels.	
Example	library pgraph;	
	graphset;	
	begwind;	
	/* make full size window for plot */	
	makewind(9,6.855,0,0,0);	
	<pre>/* make small overlapping window for text*/</pre>	
	makewind(3,1,3,3,0);	
	<pre>setwind(1);</pre>	
	x = seqa(.1,.1,100);	
	y = sin(x);	
	/* plot data in first window*/	
	xy(x,y);	

draw

nextwind;

Source pdraw.src

See also window, makewind

drop (dataloop)

drop (dataloop)

Purpose	Specifies columns to be dropped from the output data set in a data loop.		
Format	drop variable_list;		
Remarks	Commas are optional in variable_list.		
	Deletes the specified variables from the output data set. Any variables referenced must already exist, either as elements of the source data set, or as the result of a previous make , vector , or code statement.		
	If neither keep nor drop is used, the output data set will contain all variables from the source data set, as well as any defined variables. The effects of multiple keep and drop statements are cumulative.		
Example	drop age, pay, sex;		
See also	keep		

dstat

dstat

Purpose	Compute of	lescriptive statistics.	
Format	<pre>{ vnam,mean,var,std,min,max,valid,mis } = dstat(dataset,vars);</pre>		
Input	dataset vars	string, name of data set. If dataset contains the name of a interpreted as: the variables. If dataset is null or 0, vars will be containing the data. KX1 character vector KX1 numeric vector These can be any size subset of th can be in any order. If a scalar 0 is data set will be used. If dataset is null or 0, vars will be NXK matrix	GAUSS data set, <i>vars</i> will be e assumed to be a matrix r names of variables. indices of columns. he variables in the data set and is passed, all columns of the e interpreted as: the data on which to compute the descriptive statistics
	Defaults are provided for the following global input variables, so they ca be ignored unless you need control over the other options provided by the procedure.		
	altna	m global matrix, default 0.	
	miss	This can be a Kx1 character names for the output.	vector of alternate variable
	row	 global scalar, default 0. there are no missing with the search of th	values (fastest). o a row if any missings occur rows to read per iteration of rows will be calculated

d

dstat

__output global scalar, controls output, default 1.

- **1** print output table.
- **0** do not print output.
- **Output** *vnam* Kx1 character vector, the names of the variables used in the statistics.
 - mean Kx1 vector, means.
 - *var* Kx1 vector, variance.
 - *std* Kx1 vector, standard deviation.
 - *min* Kx1 vector, minima.
 - *max* Kx1 vector, maxima.
 - *valid* Kx1 vector, the number of valid cases.
 - *mis* Kx1 vector, the number of missing cases.
- **Remarks** If pairwise deletion is used, the minima and maxima will be the true values for the valid data. The means and standard deviations will be computed using the correct number of valid observations for each variable.
 - **Source** dstat.src
 - **Globals** __output, _dstatd, _dstatx

dtdate

dtdate

Purpose	Creates a matrix in DT scalar format.		
Format	dt = dtdate(year, month, day, hour, minute, second);		
Input	yearNxK matrix of years.monthNxK matrix of months, 1-12.dayNxK matrix of days, 1-31.hourNxK matrix of hours, 0-23.minuteNxK matrix of minutes, 0-59.secondNxK matrix of seconds, 0-59.		
Output	<i>dt</i> NXK matrix of DT scalar format dates.		
Remarks	The arguments must be ExE conformable.		
Source	time.src		
See also	dtday, dttime, utctodt, dttostr		

dtday

dtday

Purpose	Creates a matrix in DT scalar format containing only the year, month and day. Time of day information is zeroed out.	
Format	dt = dtday(year, month, day);	
Input	 year NxK matrix of years. month NxK matrix of months, 1-12. day NxK matrix of days, 1-31. 	
Output	<i>dt</i> NxK matrix of DT scalar format dates.	
Remarks	This amounts to 00:00:00 or midnight on the given day. The arguments must be ExE conformable.	
Source	time.src	
See also	dttime, dtdate, utctodt, dttostr	

d

dttime

dttime

Purpose	Creates a matrix in DT scalar format containing only the hour, minute and second. The date information is zeroed out.	
Format	<pre>dt = dttime(hour, minute, second);</pre>	
Input	<i>hour</i> NxK matrix of hours, 0-23. <i>minute</i> NxK matrix of minutes, 0-59. <i>second</i> NxK matrix of seconds, 0-59.	
Output	<i>dt</i> NXK matrix of DT scalar format times.	
Remarks	The arguments must be ExE conformable.	
Source	time.src	
See also	dtday, dtdate, utctodt, dttostr	

dttodtv

dttodtv

Durnaca	Converte DT cooler format to DTV vegtor format		
Furpose	Converts D1 scalar format to D1 v vector format.		
Format	dtv = dttodtv(dt);		
Input	<i>dt</i> Nx1 vector, DT scalar format.		
Output	<i>dtv</i> Nx8 matrix, DTV vector format.		
Remarks	Remarks In DT scalar format, 11:06:47 on March 15, 2001 is 20010315110647. Each row of <i>dty</i> , in DTV vector format, contains:		
	[N ,1] Year	ł	
	[N,2] Month in Year, 1-12		
	[N,3] Day of month, 1-31		
	[N,4] Hours since midnight, 0-23	j	
	[N ,5] Minutes, 0-59	k	
	[N ,6] Seconds, 0-59		
	$[\mathbf{N},7] \qquad \text{Day of week, } 0-6, 0 = \text{Sunday}$	_	
	[N,8] Days since Jan 1 of current year, 0-365	n	
Example	dt = 20010326110722;	ľ	
	print "dt = " dt;	C	
	<pre>dtv = dttodtv(dt);</pre>	I	
	print "dtv = " dtv;		
	produces:	1	
	dt = 20010326110722	S	
	dtv = 2001 3 26 11 7 22 1 84	t	
Source	time.src		
See also	dtvnormal, timeutc, utctodtv, dtvtodt, dttoutc,		
dtvtodt, strtodt, dttostr			

dttostr

dttostr

Purpose	Converts a matrix containing dates in DT scalar format to a string array.			
Format	sa = dttostr(x, fmt);			
Input	<i>x</i> NxK matrix containing dates in DT scalar format.<i>fmt</i> string containing date/time format characters.			
Output	sa NxK string array.			
Remarks	The DT scalar format is a double precision representation of the date and time. In the DT scalar format, the number			
	20010421183207			
	represents 18:32:07 or 6:32:07 PM on April 21, 2001. dttostr converts a date in DT scalar format to a character string using the format string in <i>fmt</i> .			
	The following formats are supported:			
	YYYY 4 digit year			
	YR Last two digits of year			
	MO Number of month, 01-12			
	DD Day of month, 01-31			
	HH Hour of day, 00-23			
	MI Minute of hour, 00-59			
	SS Second of minute, 00-59			
Example	<pre>s0 = dttostr(utctodt(timeutc),</pre>			
	"YYYY-MO-DD HH:MI:SS"); Print ("Date and Time are: " \$+ s0);			
	produces:			
	Date and time are: 2001-03-25 14:59:40			

<pre>print dttostr(utctodt(timeutc),</pre>	
"Today is DD-MO-YR")	
produces:	a
Today is 25-03-01	b
	С
	d
<pre>s = dttostr(x, "YYYY-MO-DD");</pre>	е
	f
	g
if $x = 20000317060424$	h
20010427031213	i
20010517020437	i
20011117161422	J Iz
20010717120448	K
20010817043451	1
20010919052320	m
20011017032203	n
20011107071418	Ο
	р
	q
then $s = 2000 - 03 - 17$	r
2001-04-27	S
2001-05-17	t
2001-11-17	u
2001-07-17	
2001-08-17	
2001-09-19	- W

dttostr

2001-10-17

2001-11-07

See also	strtodt,	dttoutc,	utctodt
----------	----------	----------	---------

dttoutc

dttoutc

Purpose	Converts DT scalar format to UTC scalar format.	
Format	utc = dttoutc(dt);	
Input	<i>dt</i> Nx1 vector, DT scalar format.	
Output	<i>utc</i> Nx1 vector, UTC scalar format.	
Remarks	In DT scalar format, 11:06:47 on March 15, 2001 is 20010315110647. A UTC scalar gives the number of seconds since or before January 1, 1970 Greenwich Mean Time.	
Example	<pre>dt = 20010326085118; tc = dttoutc(dt); print "utc = " utc; produces: tc = 985633642;</pre>	
Source	time.src	
See also	dtvnormal, timeutc, utctodtv, dttodtv, dtvtodt, dtvtoutc, dtvtodt, strtodt, dttostr	

dtvnormal

dtvnormal

Purpose	Normalizes a date and time (DTV) vector.		
Format	<pre>d = dtvnormal(t);</pre>		
Input	<i>t</i> 1x8 date and time vector that has one or more elements outside the normal range.		
Output	<i>d</i> Normalized 1x8 date and time vector.		
Remarks	 The date and time vector is a 1x8 vector whose elements consist of: Year: Year, four digit integer. Month: 1-12, Month in year. Day: 1-31, Day of month. Hour: 0-23, Hours since midnight. Min: 0-59, Minutes. Sec: 0-59, Seconds. DoW: 0-6, Day of week, 0 = Sunday. DiY: 0-365, Days since Jan 1 of year. 		
	The last two elements are ignored on input.		
Example	<pre>format /rd 10,2; x = { 1996 14 21 6 21 37 0 0 }; d = dtvnormal(x); d:97.00 2.00 21.00 6.00 21.00 37.00 2.00 51.00</pre>		
See also	date, ethsec, etstr, time, timestr, timeutc, utctodtv		

dtvtodt

dtvtodt

Purpose	Converts DT vector format to DT scalar format		
i ui peee			
Format	dt = dtvtodt(dtv);		
Input	<i>dtv</i> Nx8 matrix, DTV vector format.		
Output	<i>dt</i> Nx1 vector, DT scalar format.		
Remarks In DT scalar format, 11:06:47 on March 15, 2001 is 2001031511064			
	Each row of <i>dtv</i> , in DTV vector format, contains:	g	
	[N ,1] Year	h	
	[N,2] Month in Year, 1-12	i	
	[N,3] Day of month, 1-31	1	
	[N,4] Hours since midnight, 0-23	j	
	[N ,5] Minutes, 0-59		
	$[\mathbf{N},6] \text{Seconds, 0-59}$	1	
	$[\mathbf{N}, 7]$ Day of week, 0-6, 0 = Sunday $[\mathbf{N}, 8]$ Days since Ion 1 of surrent year, 0.265	1	
	[14,6] Days since fail 1 of current year, 0-505	m	
Example	let dtv = { 2001 3 26 11 7 22 1 84 };	n	
	print "dtv = " dtv;	0	
	<pre>dt = dtvtodt(dtv);</pre>		
	print "dt = " dt;		
	produces:	r	
	dtv = 2001 3 26 11 7 22 1 84;	S	
	dt = 20010326110722	t	
Source	time.src		
See also	dtvnormal, timeutc, utctodtv, dttodtv, dtvtodt,		
	dttoutc, dtvtodt, strtodt, dttostr		

dtvtoutc

dtvtoutc

Purpose	Converts DTV vector format to UTC scalar format.			
Format	<pre>utc = dtvtoutc(dtv);</pre>			
Input	<i>dtv</i> Nx8 matrix, DTV vector format.			
Output	<i>utc</i> Nx1 vector, UTC scalar format.			
Remarks	A UTC scalar gives the number of seconds since or before January 1, 1970 Greenwich Mean Time.			
	Each ro	w of <i>dtv</i> , in DTV vector format, contains:		
	[N,1]	Year		
	[N,2]	Month in Year, 1-12		
	[N,3]	Day of month, 1-31		
	[N,4]	Hours since midnight, 0-23		
	[N,5]	Minutes, 0-59		
	[N,6]	Seconds, 0-59		
	[N,7] Day of week, $0-6$, $0 = $ Sunday			
	[N,8] Days since Jan 1 of current year, 0-365			
Example	ample dtv = utctodtv(timeutc);			
<pre>print "dtv = " dtv; utc = dtvtoutc(dtv);</pre>		"dtv = " dtv;		
		dtvtoutc(dtv);		
	print	"utc = " utc;		
produces:		28:		
	dtv = 2001 3 26 11 7 22 1			
	utc = 84985633642			
See also	dtvnormal, timeutc, utctodt, dttodtv, dttoutc, dtvtodt, dtvtoutc, strtodt, dttostr			

dummy

dummy

Purpose	Creates a set of dummy $(0/1)$ variables by breaking up a variable into specified categories. The highest (rightmost) category is unbounded on the right.		
Format	$y = \operatorname{dummy}(x, v);$		
Input	 Nx1 vector of data that is to be broken up into dummy variables. (K-1)x1 vector specifying the K-1 breakpoints (these must be in ascending order) that determine the K categories to be used. These categories should not overlap. 		
Output	<i>y</i> NxK matrix containing the K dummy variables.		
Remarks	 Missings are deleted before the dummy variables are created. All categories are open on the left (i.e., do not contain their left boundaries) and all but the highest are closed on the right (i.e., do contain their right boundaries). The highest (rightmost) category is unbounded on the right. Thus, only K-1 breakpoints are required to specify K dummy variables. The function dummybr is similar to dummy, but in that function the highest category is bounded on the right. The function dummydn is also similar to dummy, but in that function a specified column of dummies is dropped. 		
Example	$x = \{ 0, 2, 4, 6 \};$ $v = \{ 1, 5, 7 \};$ $y = dummy(x, v);$ The result y looks like this: $1 0 0 0$ $0 1 0 0$ $0 1 0 0$ $0 0 1 0$		

dummy

The vector *v* will produce 4 dummies satisfying the following conditions:

	$x \leq 1$
	$1 < x \leq 5$
	$5 < x \leq 7$
	7 < x
Source	datatran.src

See also dummybr, dummydn

dummybr

dummybr

Purpose	Creates a set of dummy $(0/1)$ variables. The highest (rightmost) category is bounded on the right.		
Format	y = dummybr(x, v);		
Input	 <i>x</i> Nx1 vector of data that is to be broken up into dummy variables. <i>v</i> Kx1 vector specifying the K breakpoints (these must be in ascending order) that determine the K categories to be used. These categories should not overlap. 		
Output	<i>y</i> NxK matrix containing the K dummy variables. Each row will have a maximum of one 1.		
Remarks	Missings are deleted before the dummy variables are created.		
	All categories are open on the left (i.e., do not contain their left boundaries) and are closed on the right (i.e., do contain their right boundaries). Thus, K breakpoints are required to specify K dummy variables.		
	The function dummy is similar to dummybr , but in that function the highest category is unbounded on the right.		
Example	$ \begin{array}{rcl} \mathbf{x} &=& \left\{ \begin{array}{c} 0 , & & \\ && 2 , & \\ && 4 , & \\ && 6 \right\} ; \end{array} $		
	$v = \{ 1, 5, 7\};$		
	y = dummybr(x,v);		
	The resulting matrix y looks like this:		

dummybr

1	0	0	
0	1	0	
0	1	0	
0	0	1	

The vector v = 157 will produce 3 dummies satisfying the following conditions:

		x	\leq	1	
1	<	x	\leq	5	
5	<	x	\leq	7	

Source	datatran.src
--------	--------------

See also dummydn, dummy

dummydn

dummydn

Purpose	Creates a set of dummy $(0/1)$ variables by breaking up a variable into specified categories. The highest (rightmost) category is unbounded on the right, and a specified column of dummies is dropped.		
Format	$y = \operatorname{dummydn}(x, v, p);$		
Input	 x Nx1 vector of data to be broken up into dummy variables. v Kx1 vector specifying the K-1 breakpoints (these must be in ascending order) that determine the K categories to be used. These categories should not overlap. p positive integer in the range [1,K], specifying which column should be dropped in the matrix of dummy variables. 		
Output	<i>y</i> Nx(K-1) matrix containing the K-1 dummy variables.		
Remarks	This is just like the function dummy , except that the p^{th} column of the matrix of dummies is dropped. This ensures that the columns of the matrix of dummies do not sum to 1, and so these variables will not be collinear with a vector of ones.		
	Missings are deleted before the dummy variables are created.		
	All categories are open on the left (i.e., do not contain their left boundaries) and all but the highest are closed on the right (i.e., do contain their right boundaries). The highest (rightmost) category is unbounded on the right. Thus, only K-1 breakpoints are required to specify K dummy variables.		
Example	<pre>x = { 0, 2, 4, 6 }; v = { 1, 5, 7 }; p = 2; y = dummydn(x,v,p);</pre>		

d

dummydn

The resulting matrix y looks like this:

0 1 0

The vector v = 157 will produce 4 dummies satisfying the following conditions:

 $x \le 1$ $1 < x \le 5$ $5 < x \le 7$ 7 < x

Source datatran.src

See also dummy, dummybr
Command Reference

ed

Purpose	Accesses an alternate editor.
Format	ed filename;
Input	<i>filename</i> The name of the file to be edited.
Remarks	The default name of the editor is set in gauss.cfg. To change the name of the editor used type:
	ed = editor_name flags;
	or
	ed = "editor_name flags";
	The flags are any command line flags you may want between the name of the editor and the filename when your editor is invoked. The quoted

This command can be placed in the startup file so it will be set for you automatically when you start GAUSS.

version will prevent the flags, if any, from being forced to uppercase.

edit

edit

Purpose	Edits a disk file.
Format	edit filename;
Remarks	The edit command does not follow the src_path to locate files. You must specify the location in the filename. The default location is the current directory.
Example	edit test1.e;
See also	run

eig

eig

Purpose	Computes the eigenvalues of a general matrix.
Format	va = eig(x);
Input	<i>x</i> NxN matrix.
Output	<i>va</i> Nx1 vector, the eigenvalues of x .
Remarks	If the eigenvalues cannot all be determined, $va[1]$ is set to an error code. Passing $va[1]$ to the scalerr function will return the index of the eigenvalue that failed. The eigenvalues for indices scalerr ($va[1]$)+1 to N should be correct.
	Error handling is controlled with the low bit of the trap flag.
	trap 0set va[1] and terminate with messagetrap 1set va[1] and continue execution
	The eigenvalues are unordered except that complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first.
Example	x = { 4 8 1 , 9 4 2 , 5 5 7 }; va = eig(x);
	$va = \begin{array}{c} -4.4979246 \\ 14.475702 \\ 5.0222223 \end{array}$
See also	eigh, eighv, eigv

e

eigcg

eigcg

Purpose	Computes the eigenvalues of a complex, general matrix. (Included for backwards compatibility — use eig instead.)
Format	<pre>{ var,vai } = eigcg(xr,xi);</pre>
Input	<i>xr</i> NXN matrix, real part.<i>xi</i> NXN matrix, imaginary part.
Output	 var Nx1 vector, real part of eigenvalues. vai Nx1 vector, imaginary part of eigenvalues. _eigerr global scalar, if all the eigenvalues can be determined _eigerr = 0, otherwise _eigerr is set to the index of the eigenvalue that failed. The eigenvalues for indices _eigerr+1 to N should be correct.
Remarks	<pre>Error handling is controlled with the low bit of the trap flag. trap 0 set _eigerr and terminate with message trap 1 set _eigerr and continue execution The eigenvalues are unordered except that complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first.</pre>
Source	eigcg.src
Globals	_eigerr
See also	eigcg2, eigch, eigrg, eigrs

eigcg2

eigcg2

Purpose	Computes eigenvalues and eigenvectors of a complex, general matrix. (Included for backwards compatibility — use eigv instead.)
Format	<pre>{ var,vai,ver,vei } = eigcg2(xr,xi);</pre>
Input	<i>xr</i> NXN matrix, real part.
	<i>xi</i> NXN matrix, imaginary part.
Output	<i>var</i> Nx1 vector, real part of eigenvalues.
	<i>vai</i> Nx1 vector, imaginary part of eigenvalues.
	<i>ver</i> NxN matrix, real part of eigenvectors.
	<i>vei</i> NxN matrix, imaginary part of eigenvectors.
Global Input	_eigerr global scalar, if all the eigenvalues can be determined _eigerr = 0, otherwise _eigerr is set to the index of the eigenvalue that failed. The eigenvalues for indices _eigerr+1 to N should be correct. The eigenvectors are not computed.
Remarks	Error handling is controlled with the low bit of the trap flag.
	trap 0 set _eigerr and terminate with message
	trap 1 set _eigerr and continue execution
	The eigenvalues are unordered except that complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first. The columns of <i>ver</i> and <i>vei</i> contain the real and imaginary eigenvectors of x in the same order as the eigenvalues. The eigenvectors are not normalized.
Source	eigcg.src
Globals	_eigerr
See also	eigcg, eigch, eigrg, eigrs

eigch

eigch

Purpose	Computes the eigenvalues of a complex, hermitian matrix. (Included for backwards compatibility — use eigh instead.)
Format	<pre>va = eigch(xr,xi);</pre>
Input	<i>xr</i> NxN matrix, real part.<i>xi</i> NxN matrix, imaginary part.
Output	 va Nx1 vector, real part of eigenvalues. _eigerr global scalar, if all the eigenvalues can be determined _eigerr = 0, otherwise _eigerr is set to the index of the eigenvalue that failed. The eigenvalues for indices 1 to _eigerr-1 should be correct.
Remarks	 Error handling is controlled with the low bit of the trap flag. trap 0 set _eigerr and terminate with message trap 1 set _eigerr and continue execution The eigenvalues are in ascending order. The eigenvalues for a complex hermitian matrix are always real so this procedure returns only one vector.
Source	eigch.src
Globals	_eigerr
See also	eigch2, eigcg, eigrg, eigrs

eigch2

eigch2

Purpose	Computes eigenvalues and eigenvectors of a complex, hermitian matrix. (Included for backwards compatibility — use eighv instead.)
Format	<pre>{ var,vai,ver,vei } = eigch2(xr,xi);</pre>
Input	<i>xr</i> NxN matrix, real part.<i>xi</i> NxN matrix, imaginary part.
Output	 var Nx1 vector, real part of eigenvalues. vai Nx1 vector, imaginary part of eigenvalues. ver NxN matrix, real part of eigenvectors. vei NxN matrix, imaginary part of eigenvectors. _eigerr = 0, otherwise _eigerr is set to the index of the eigenvalue that failed. The eigenvalues for indices 1 to _eigerr-1 should be correct. The eigenvectors are not computed.
Remarks	<pre>Error handling is controlled with the low bit of the trap flag. trap 0 set _eigerr and terminate with message trap 1 set _eigerr and continue execution The eigenvalues are in ascending order. The eigenvalues of a complex hermitian matrix are always real. This procedure returns a vector of zeros for the imaginary part of the eigenvalues so the syntax is consistent with other eigxx procedure calls. The columns of ver and vei contain the real and imaginary eigenvectors of x in the same order as the eigenvalues. The eigenvalues. The</pre>
Source	eigch.src
Globals	_eigerr
See also	eigch, eigcg, eigrg, eigrs

eigh

eigh

- **Purpose** Computes the eigenvalues of a complex hermitian or real symmetric matrix.
 - **Format** va = eigh(x);
 - **Input** *x* NxN matrix.
 - **Output** va Nx1 vector, the eigenvalues of x.

Remarks If the eigenvalues cannot all be determined, va[1] is set to an error code. Passing va[1] to the **scalerr** function will return the index of the eigenvalue that failed. The eigenvalues for indices 1 to **scalerr**(va[1])-1 should be correct.

Error handling is controlled with the low bit of the trap flag.

trap 0 set va[1] and terminate with message

trap 1 set *va*[1] and continue execution

The eigenvalues are in ascending order.

The eigenvalues of a complex hermitian or real symmetric matrix are always real.

See also eig, eighv, eigv

eighv

eighv

Purpose	Computes eigenvalues and eigenvectors of a complex hermitian or real symmetric matrix.
Format	$\{ va, ve \} = eighv(x);$
Input	<i>x</i> NXN matrix.
Output	<i>va</i> Nx1 vector, the eigenvalues of <i>x</i>.<i>ve</i> NxN matrix, the eigenvectors of <i>x</i>.
Remarks	If the eigenvalues cannot all be determined, $va[1]$ is set to an error code. Passing $va[1]$ to the scalerr function will return the index of the eigenvalue that failed. The eigenvalues for indices 1 to scalerr ($va[1]$)- 1 should be correct. The eigenvectors are not computed.
	Error handling is controlled with the low bit of the trap flag.
	trap 0 set va[1] and terminate with messagetrap 1 set va[1] and continue execution
	The eigenvalues are in ascending order. The columns of ve contain the eigenvectors of x in the same order as the eigenvalues. The eigenvectors are orthonormal.
	The eigenvalues of a complex hermitian or real symmetric matrix are always real.

See also eig, eigh, eigv

eigrg

eigrg

Purpose	Computes the eigenvalues of a real, general matrix. (Included for backwards compatibility — use eig instead.)
Format	$\{ var, vai \} = eigrg(x);$
Input	<i>x</i> NxN matrix.
Output	 var Nx1 vector, real part of eigenvalues. vai Nx1 vector, imaginary part of eigenvalues. _eigerr global scalar, if all the eigenvalues can be determined _eigerr = 0, otherwise _eigerr is set to the index of the eigenvalue that failed. The eigenvalues for indices _eigerr+1 to N should be correct.
Remarks	<pre>Error handling is controlled with the low bit of the trap flag. trap 0 set _eigerr and terminate with message trap 1 set _eigerr and continue execution The eigenvalues are unordered except that complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first.</pre>
Example	$x = \{ 1 2i 3, 4i 5+3i 6, 7 8 9i \}; \{y,n\} = eigrg(x); -6.3836054 y = 2.0816489 10.301956$
	n = -1.4598755 6.2306252

eigrg

Globals _eigerr

See also eigrg2, eigcg, eigch, eigrs

e

eigrg2

eigrg2

Purpose	Computes eigenvalues and eigenvectors of a real, general matrix. (Included for backwards compatibility — use eigv instead.)
Format	<pre>{ var, vai, ver, vei } = eigrg2(x);</pre>
Input	x NXN matrix.
Output	 var Nx1 vector, real part of eigenvalues. vai Nx1 vector, imaginary part of eigenvalues. ver NxN matrix, real part of eigenvectors. vei NxN matrix, imaginary part of eigenvectors. _eigerr = 0, otherwise _eigerr is set to the index of the eigenvalue that failed. The eigenvalues for indices _eigerr+1 to N should be correct. The eigenvectors are not computed.
Remarks	 Error handling is controlled with the low bit of the trap flag. trap 0 set _eigerr and terminate with message trap 1 set _eigerr and continue execution The eigenvalues are unordered except that complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first. The columns of <i>ver</i> and <i>vei</i> contain the real and imaginary eigenvectors of <i>x</i> in the same order as the eigenvalues. The eigenvectors are not normalized.
Source	eigrg.src
Globals	_eigerr
See also	eigrg, eigcg, eigch, eigrs

eigrs

eigrs

Purpose	Computes the eigenvalues of a real, symmetric matrix. (Included for backwards compatibility — use eigh instead.)
Format	va = eigrs(x);
Input	x NXN matrix.
Output	 va Nx1 vector, eigenvalues of x. _eigerr global scalar, if all the eigenvalues can be determined _eigerr = 0, otherwise _eigerr is set to the index of the eigenvalue that failed. The eigenvalues for indices 1 to _eigerr-1 should be correct.
Remarks	Error handling is controlled with the low bit of the trap flag. trap 0 set _eigerr and terminate with message trap 1 set _eigerr and continue execution The eigenvalues are in ascending order. The eigenvalues for a real symmetric matrix are always real so this procedure returns only one vector.
Source	eigrs.src
Globals	_eigerr
See also	eigrs2, eigcg, eigch, eigrg

eigrs2

eigrs2

Purpose	Computes eigenvalues and eigenvectors of a real, symmetric matrix. (Included for backwards compatibility — use eighv instead.)		
Format	<pre>{ va,ve } = eigrs2(x);</pre>		
Input	x NxN matrix.		
Output	 va Nx1 vector, eigenvalues of x. ve NxN matrix, eigenvectors of x. _eigerr global scalar, if all the eigenvalues can be determined _eigerr = 0, otherwise _eigerr is set to the index of the eigenvalue that failed. The eigenvalues and eigenvectors for indices 1 to _eigerr-1 should be correct. 		
Remarks	 Error handling is controlled with the low bit of the trap flag. trap 0 set _eigerr and terminate with message trap 1 set _eigerr and continue execution The eigenvalues are in ascending order. The columns of <i>ve</i> contain the eigenvectors of <i>x</i> in the same order as the eigenvalues. The eigenvectors are orthonormal. The eigenvalues and eigenvectors for a real symmetric matrix are always real so this procedure returns only the real parts. 		
Source	eigrs.src		
Globals	_eigerr		
See also	eigrs, eigcg, eigch, eigrg		

eigv

eigv

Purpose	Computes eigenvalues and eigenvectors of a general matrix.			
Format	$\{ va, ve \} = eigv(x);$			
Input	x NxN matrix.			
Output	vaNx1 vector, the eigenvalues of x . ve NxN matrix, the eigenvectors of x .			
Remarks	If the eigenvalues cannot all be determined, $va[1]$ is set to an error code. Passing $va[1]$ to the scalerr function will return the index of the eigenvalue that failed. The eigenvalues for indices scalerr ($va[1]$)+1 to N should be correct. The eigenvectors are not computed.			
	Error handling is controlled with the low bit of the trap flag.			
	trap 0 set va[1] and terminate with messagetrap 1 set va[1] and continue execution			
	The eigenvalues are unordered except that complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first. The columns of ve contain the eigenvectors of x in the same order as the eigenvalues. The eigenvectors are not normalized.			
Example	x = { 4 8 1, 9 4 2, 5 5 7 }; {y,n} = eigv(x);			
	$y = \begin{array}{c} -4.4979246 \\ 14.475702 \\ 5.0222223 \end{array}$			
	$n = \begin{array}{cccc} -0.66930459 & -0.64076622 & -0.40145623 \\ 0.71335708 & -0.72488533 & -0.26047487 \\ -0.01915672 & -0.91339349 & 1.6734214 \end{array}$			

e

eigv

See also eig, eigh, eighv

elapsedTradingDays

elapsedTradingDays

Purpose	Compute number of trading days between two dates inclusively.		
Format	<pre>n = elapsedTradingDays(a,b);</pre>		
Input	a scalar, date in DT scalar format.b scalar, date in DT scalar format.		
Output	<i>n</i> number of trading days between dates inclusively, that is, elapsed time includes the dates <i>a</i> and <i>b</i> .		
Remarks	A trading day is a weekday that is not a holiday as defined by the New York Stock Exchange from 1888 through 2004. Holidays are defined in holidays.asc. You may edit that file to modify or add holidays.		
Source	finutils.src		

end

end	
Purpose	Terminates a program.
Format	end;
Remarks	end causes GAUSS to revert to interactive mode, and closes all open files. end also closes the auxiliary output file and turns the screen on. It is not necessary to put an end statement at the end of a program.
	An end command can be placed above a label which begins a subroutine to make sure that a program does not enter a subroutine without a gosub .
	stop also terminates a program but closes no files and leaves the screen setting as it is.
Example	output on;
	screen off;
	print x;
	end;
	In this example, a matrix \mathbf{x} is printed to the auxiliary output. The output to the screen is turned off to speed up the printing. The end statement is used to terminate the program so the output file will be closed and the screen will be turned back on.
See also	new, stop, system

endp

Purpose	Closes a	procedure or	keyword	definition.
I MIPUJU	C10505 u	procedure or	Rey word	dermittion.

Format endp;

Remarks endp marks the end of a procedure definition that began with a **proc** or **keyword** statement. (For details on writing and using procedures, see "Procedures and Keywords" in the *User's Guide*.)

Example proc regress(y,x);

```
retp(inv(x'x)*x'y);
```

endp;

y

b

x = { 1 3 2, 7 4 9, 1 1 6, 3 3 2 }; y = { 3, 5, 2, 7 };

```
b = regress(y,x);
```

 $x = \begin{bmatrix} 1.0000000 & 3.0000000 & 2.0000000 \\ 7.0000000 & 4.0000000 & 9.0000000 \\ 1.0000000 & 1.0000000 & 6.0000000 \\ 3.0000000 & 3.0000000 & 2.0000000 \end{bmatrix}$

	3.00000000	
=	5.00000000	
	2.00000000	
	7.00000000	
	0.15456890	
=	1.50276345	
	-0.12840825	

e

endp

See also p	roc, key	word, ret	р
------------	----------	-----------	---

endwind

endwind

Purpose	Ends graphic panel manipulation; display graphs with rerun .
Library	pgraph
Format	endwind;
Remarks	This function uses rerun to display the most recently created .tkf file.
Source	pwindow.src
See also	begwind, window, makewind, setwind, nextwind, getwind

envget

envget

Purpose	Searches the environment table for a defined name.		
Format	y = envget(s);		
Input	<i>s</i> string, the name to be searched for.		
Output	<i>y</i> string, the string that corresponds to that name in the environment or a null string if it is not found.		
Example	<pre>proc dopen(file);</pre>		
	local fname, fp;		
	<pre>fname = envget("DPATH");</pre>		
	if fname \$== "";		
	<pre>fname = file;</pre>		
	else;		
	<pre>if strsect(fname,strlen(fname),1) \$== ``\\";</pre>		
	<pre>fname = fname \$+ file;</pre>		
	else;		
	fname = fname $+ \ \ \ \ \ $		
	endif;		
	endif;		
	open fp = ^fname;		
	<pre>retp(fp);</pre>		
	endp;		
	This is an example of a procedure which will open a data file using a path stored in an environment string called DPATH. The procedure returns the file handle and is called as follows:		

fp = dopen("myfile");

See also cdir

eof

eof

Purpose	Tests if the end of a file has been reached.			
Format	y = eof(fh);			
Input	<i>fh</i> scalar, file handle.			
Output	<i>y</i> scalar, 1 if end of file has been reached, else 0.			
Remarks	This function is used with the readr and fgets <i>xxx</i> commands to test for the end of a file.			
	The seekr function can be used to set the pointer to a specific row position in a data set; the fseek function can be used to set the pointer to a specific byte offset in a file opened with fopen .			
Example	open fl = datl;			
	xx = 0;			
	<pre>do until eof(f1);</pre>			
	<pre>xx = xx+moment(readr(f1,100),0);</pre>			
	endo;			
	In this example, the data file dat1.dat is opened and given the handle f1 . Then the data are read from this data set and are used to create the moment $(\mathbf{x'x})$ matrix of the data. On each iteration of the loop, 100 additional rows of data are read in and the moment matrix for this set of rows is computed, and added to the matrix xx . When all the data have been read, xx will contain the entire moment matrix for the data set.			
	GAUSS will keep reading until eof(f1) returns the value 1, which it will when the end of the data set has been reached. On the last iteration of the loop, all remaining observations are read in if there are 100 or fewer left.			
See also	open, readr, seekr			

eqSolve

eqSolve

Purpose	Solves a system of nonlinear equations		
Format	$\{x, retcode\} = eqSolve(\&F, start);$		
Input	 <i>start</i> Kx1 vector, starting values. <i>&F</i> scalar, a pointer to a procedure which computes the value at <i>x</i> of the equations to be solved. 		
Global Input	The folowing are set by eqsolveset.		
	_eqs_JacobianProc	pointer to a procedure which computes the analytical Jacobian. By default, eqSolve will compute the Jacobian numerically.	
	_eqs_MaxIters	scalar, the maximum number of iterations. Default = 100.	
	_eqs_StepTol	scalar, the step tolerance. Default = $\macheps^{(2/3)}$.	
	_eqs_TypicalF	Kx1 vector of the typical $F(x)$ values at a point not near a root, used for scaling. This becomes important when the magnitudes of the components of $F(x)$ are expected to be very different. By default, function values are not scaled.	
	_eqs_TypicalX	Kx1 vector of the typical magnitude of x , used for scaling. This becomes important when the magnitudes of the components of x are expected to be very different. By default, variable values are not scaled.	
	_eqs_IterInfo	scalar, if nonzero, iteration information is printed. Default = 0 .	
	The following are set by gausset .		
	Tol	scalar, the tolerance of the scalar function $f = 0.5^* F(x) ^2$ required to terminate the algorithm. Default = 1e-5.	

eqSolve

	altnam output title			Kx1 character vector of alternate names to be used by the printed output. By default, the names X1, X2, X3 or X01, X02, X03 (depending on howvpad is set) will be used. scalar. If non-zero, final results are printed. string, a custom title to be printed at the top of the iterations report. By default, only a generic title will be printed.
Output	x	Кx	1 vector, sol	ution.
	retcode	sca	lar, the retur	n code:
		1	Norm of th <i>x</i> given is a too large).	e scaled function value is less than Tol . n approximate root of $F(x)$ (unless Tol is
		2	The scaled the step-tol approximat algorithm i root, or the	distance between the last two steps is less than erance ($_eqs_StepTol$). <i>x</i> may be an e root of $F(x)$, but it is also possible that the s making very slow progress and is not near a step-tolerance is too large.
		3	The last glo sufficiently accuracy is Jacobian is Jacobian is	bbal step failed to decrease norm $2(F(x))$; either x is close to a root of $F(x)$ and no more possible, or an incorrectly coded analytic being used, or the secant approximation to the inaccurate, or the step-tolerance is too large.
		4	Iteration lir	nit exceeded.
		5	Five consect taken; either finite value is too small	cutive steps of maximum step length have been er norm2($F(x)$) asymptotes from above to a in some direction or the maximum step length l.
		6	x seems to norm2($F(x)$ F(x), restart	be an approximate local minimizer of)) that is not a root of $F(x)$. To find a root of t eqSolve from a different region.
Remarks	The equation procedure should return a column vector contain result for each equation. For example:		hould return a column vector containing the For example:	
	Equa	ati	on 1: x1	$^{2} + x2^{2} - 2 = 0$
	Equa	ati	on 2: exp	$p(x1-1) + x2^3 - 2 = 0$

Example

eqSolve

```
proc f(var);
      local x1,x2,eqns;
      x1 = var[1];
      x^2 = var[2];
      eqns[1] = x1^2 + x2^2 - 2; /* Equation 1 */
      eqns[2] = exp(x1-1) + x2^3 - 2; /* Equation
                                         /* 2 */
      retp( eqns );
   endp;
eqSolveset;
proc f(x);
      local f1,f2,f3;
      f1 = 3*x[1]^3 + 2*x[2]^2 + 5*x[3] - 10;
      f2 = -x[1]^3 - 3*x[2]^2 + x[3] + 5;
      f3 = 3*x[1]^3 + 2*x[2]^2 - 4*x[3];
      retp(f1|f2|f3);
endp;
proc fjc(x);
   local fjc1,fjc2, fjc3;
   fjc1 = 9*x[1]^2 \sim 4*x[2] \sim 5;
   f_{jc2} = -3*x[1]^2 \sim -6*x[2] \sim 1;
   f_{jc3} = 9*x[1]^2 \sim 4*x[2] \sim -4;
   retp(fjc1|fjc2|fjc3);
endp;
```

eqSolve

```
start = \{ -1, 12, -1 \};
_eqs_JacobianProc = &fjc;
{ x,tcode } = eqSolve(&f,start);
Produces
______
EqSolve Version 3.2.22
                2/24/97 9:54 am
------
||F(X)|| at final solution:
                        0.93699762
     _____
Termination Code = 1:
Norm of the scaled function value is less than
   ___Tol;
 _____
_____
            ROOTS
                    F(ROOTS)
VARIABLE START
_____
     -1.00000 0.54144351 4.4175402e-06
X1
X2
     12.00000 1.4085912 -6.6263102e-06
Х3
     -1.00000 1.1111111
                     4.4175402e-06
```

Source eqsolve.src

e

eqSolveset

eqSolveset

Purpose Sets global input used by eqSolve to default values.
Format eqSolveset;
Global
Output
____eqs_TypicalX = 0
___eqs_TypicalF = 0
___eqs_IterInfo = 0
___eqs_JacobianProc = 0
___eqs_MaxIters = 100
___eqs_StepTol ___macheps^(2/3)

erf, erfc

erf, erfc

-			
Purpose	Computes the Gaussian error function (erf) and its complement (erfc).	b	
Format	y = erf(x);	C	
	$y = \operatorname{eric}(x);$	d	
Input	<i>x</i> NxK matrix.	e	
Output	y NxK matrix.	f	
Remarks	The allowable range for <i>x</i> is:	g	
	$x \ge 0$	h	
	The erf and erfc functions are closely related to the Normal distribution:	i	
		j	
	$\left \frac{1}{2}\left(1+erf\left(\frac{x}{\sqrt{2}}\right)\right)\right x \ge 0$	k	
	$cdfn(x) = \begin{cases} 1 & (-x) \\ 1 & (-x) \end{cases}$	1	
	$\left \frac{1}{2}erfc\left(\frac{x}{\sqrt{2}}\right)\right \qquad x < 0$		
		n	
Example	$x = \{ .5 .4 .3 ,$	0	
	$.6 .8 .3 \}$; y = erf(x);	р	
	0.500,100,00, 0, 100,200,20, 0, 200,50,57,5	q	
	$y = \begin{array}{c} 0.52049988 & 0.42839236 & 0.32862676 \\ 0.60385609 & 0.74210096 & 0.32862676 \end{array}$	r	
		S	
	$x = \{ .5.4.5, .6.8.3 \};$	t	
	y = erfc(x);	u	
	0.47950012 0.57160764 0.67137324	V	
	y – 0.39614391 0.25789904 0.67137324	W	

erf, erfc

See also cdfn, cdfnc

Technical erf and erfc are computed by summing the appropriate series and continued fractions. They are accurate to about 10 digits.

error

error

Purpose	Allows the user to generate a user-defined error code which can be tested quickly with the scalerr function.		
Format	$y = \operatorname{error}(x);$		
Input	x scalar, in the range 0-65535.	ł	
Output	<i>y</i> scalar error code which can be interpreted as an integer with the scalerr function.	j	
Remarks	The user may assign any number in the range 0-65535 to denote particular error conditions. This number may be tested for as an error code by scalerr .		
	The scalerr function will return the value of the error code and so is the reverse of error . These user-generated error codes work in the same way as the intrinsic GAUSS error codes which are generated automatically when trap 1 is on and certain GAUSS functions detect a numerical error such as a singular matrix.		
	error(0) is equal to the missing value code.		
Example	<pre>proc syminv(x);</pre>		
	local oldtrap,y;		
	if not $x == x';$		
	retp(error(99));		
	endif;		
	<pre>oldtrap = trapchk(0xffff);</pre>		
	trap 1;		
	<pre>y = invpd(x);</pre>		
	if scalerr(y);		
	y = inv(x);		
	endif;		

e

error

trap oldtrap,0xffff;

retp(y);

endp;

The procedure **syminv** returns error code 99 if the matrix is not symmetric. If **invpd** fails, it returns error code 20. If **inv** fails, it returns error code 50. The original trap state is restored before the procedure returns.

See also scalerr, trap, trapchk

errorlog

errorlog

Purpose	Prints an error message to the window and error log file.	
Format	<pre>errorlog str;</pre>	
Input	<i>str</i> string, the error message to print.	
Remarks	This function prints to the screen and the error log file.	

etdays

etdays

Purpose Computes the difference between two times, as generated by the **date** command, in days. Format days = etdays(tstart,tend); Input 3x1 or 4x1 vector, starting date, in the order: yr, mo, day. (Only tstart the first 3 elements are used.) 3x1 or 4x1 vector, ending date, in the order: yr, mo, day. (Only tend the first 3 elements are used.) MUST be later than tstart. Output days scalar, elapsed time measured in days. Remarks This will work correctly across leap years and centuries. The assumptions are a Gregorian calendar with leap years on the years evenly divisible by 4 and not evenly divisible by 400. Example let date1 = 1986 1 2; let date2 = 1987 10 25; d = etdays(date1,date2); d = 661Source time.src See also dayinyr

ethsec

ethsec

Purpose	Computes the difference between two times, as generated by the date command, in hundredths of a second.		
Format	<pre>hs = ethsec(tstart,tend);</pre>		
Input	<i>tstart</i> 4x1 vector, starting date, in the order: yr, mo, day, hundredths of a second.		
	<i>tend</i> 4x1 vector, ending date, in the order: yr, mo, day, hundredths of a second. MUST be later than <i>tstart</i> .		
Output	<i>hs</i> scalar, elapsed time measured in hundredths of a second.		
Remarks	This will work correctly across leap years and centuries. The assumptions are a Gregorian calendar with leap years on the years evenly divisible by 4 and not evenly divisible by 400.		
Example	let date1 = 1986 1 2 0;		
	let date2 = 1987 10 25 0;		
	<pre>t = ethsec(date1,date2);</pre>		
	t = 5711040000		
Source	time.src		
See also	dayinyr		

etstr

etstr

Purpose	Formats an elapsed time, measured in hundredths of a second, to a string			
Format	<pre>str = etstr(tothsecs);</pre>			
Input	<i>tothsecs</i> scalar, an elapsed time measured in hundredths of a second, as given, for instance, by the ethsec function.			
Output	<pre>str string containing the elapsed time in the form: # days # hours # minutes #.## seconds</pre>			
Example	<pre>d1 = { 86, 1, 2, 0 }; d2 = { 86, 2, 5, 815642 }; t = ethsec(d1,d2); str = etstr(t); t = 2.9457564e + 08 str = 34 days 2 hours 15 minutes 56.42 seconds</pre>			

Source time.src
EuropeanBinomCall

EuropeanBinomCall

Purnose	European binomial method call	a
i uipose	European onionnai metrioù ean.	b
Format	c = EuropeanBinomCall(SO, K, r, div, tau, sigma, N);	с
Input	<i>S0</i> scalar, current price	d
	<i>K</i> Mx1 vector, strike prices	e
	<i>r</i> scalar, risk free rate	
	<i>div</i> continuous dividend yield	t
	<i>tau</i> scalar, elapsed time to exercise in annualized days of trading	g
	sigma scalar, volatility	h
	<i>N</i> number of time segments	i
Output	<i>c</i> Mx1 vector, call premiums	j
Example	S0 = 718.46;	k
-	$K = \{ 720, 725, 730 \};$	1
	b = .0498;	m
	r = .0498;	n
	sigma = .2493;	Ο
	t0 = dtday (2001, 1, 30);	р
	tl = dtday (2001, 2, 16);	q
	<pre>tau = elapsedTradingDays(t0,t1) /</pre>	r
	annualTradingDays(2001);	S
	<pre>c = EuropeanBinomCall(S0,K,r,div,tau,sigma,N);</pre>	t
	print c;	
		u
	17.1071	V
	15.0067	W
		X V

EuropeanBinomCall

12.9064

Source finprocs.src

Technical The Sim

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified approach", Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.

EuropeanBinomCall_Greeks

EuropeanBinomCall_Greeks

Purpose	European binomial method call Delta, Gamma, Theta, Vega and Rho.							
Format	{ d,g Europ	<pre>{ d,g,t,v,rh } = EuropeanBinomCall_Greeks(S0,K,r,div,tau,sigma,N);</pre>						
Input	S0 K	scalar, current price						
	r r	scalar risk free rate						
	' div	continuous dividend vield						
	tau	<i>tau</i> scalar, elapsed time to exercise in annualized days of trading						
	sigma	scalar, volatility						
	Ν	number of time segments						
Output	d	Mx1 vector, delta						
	g	Mx1 vector, gamma						
	t	Mx1 vector, theta						
	<i>v</i> Mx1 vector, vega							
	rh	Mx1 vector, rho						
Example	S0 =	305;						
	K = 300;							
	r = .08;							
	sigma = .25;							
	tau = .33;							
	N = 30;							
	{ d,g	<pre>r,t,v,rh } = EuropeanBinomCall_Greeks</pre>						
		(S0,K,r,div,tau,sigma,N);						
	print	d;						
	print	g;						
	print	t;						

EuropeanBinomCall_Greeks

	print v:	
	prine v/	
	print rh;	
	0.6738	
	0.0008	
	-44.7874	
	69.0880	
	96.9225	
Source	finprocs.src	
Globals	_fin_thetaType	scalar, if 1, one day look ahead, else, infinitesmal. Default = 0 .
	_fin_epsilon	scalar, finite difference stepsize. Default = 1e-8.
Technical Notes	The binomial method simplified approach", described in Options, the basis of this proce	of Cox, Ross, and Rubinstein ("Option pricing: a Journal of Financial Economics, 7:229:264) as Futures, and other Derivatives by John C. Hull is dure.

e

EuropeanBinomCall_ImpVol

EuropeanBinomCall_ImpVol

Purpose	Implied volatilities for European binomial method calls.				
Format	<pre>sigma = EuropeanBinomCall_ImpVol(c,S0,K,r,div,tau,N);</pre>				
Input	<i>c</i> Mx1 vector, call premiums				
	<i>SO</i> scalar, current price				
	<i>K</i> Mx1 vector, strike prices				
	<i>r</i> scalar, risk free rate				
	<i>div</i> continuous dividend yield				
	<i>tau</i> scalar, elapsed time to exercise in annualized days of trading				
	<i>N</i> number of time segments				
Output	sigma Mx1 vector, volatility				
Example	c = { 13.70, 11.90, 9.10 };				
	S0 = 718.46;				
	$K = \{720, 725, 730\};$				
	r = .0498;				
	t0 = dtday (2001, 1, 30);				
	t1 = dtday (2001, 2, 16);				
	<pre>tau = elapsedTradingDays(t0,t1) / annualTrading-</pre>				
	Days(2001);				
	N = 30;				
	sigma = EuropeanBinomCall_ImpVol				
	(c,S0,K,r,div,tau,N);				
	print sigma;				
	0.1982				

EuropeanBinomCall_ImpVol

0	•	1	7	1	6

- 0.1301
- Source finprocs.src

Technical Notes

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified approach", Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.

EuropeanBinomPut

EuropeanBinomPut

_						
Purpose	European binomial method Put.					
Format	c = EuropeanBinomPut(S0,K,r,div,tau,sigma,N);					
Input	<i>SO</i> scalar, current price	d				
	<i>K</i> Mx1 vector, strike prices	e				
	r scalar, risk free rate	c				
	<i>div</i> continuous dividend yield	İ				
	<i>div</i> continuous dividend yield					
	trading	h				
	sigma scalar, volatility					
	N number of time segments	1				
		j				
Output	<i>c</i> Mx1 vector, put premiums	k				
Example:	S0 = 718.46;	1				
	$K = \{720, 725, 730\};$	m				
	r = .0498;	n				
	sigma = .2493;	Ο				
	t0 = dtday (2001, 1, 30);	р				
	t1 = dtday (2001, 2, 16);	a				
	tau = elapsedTradingDays(t0,t1) /	1				
	annualTradingDays(2001);					
	N = 30;	S				
	c = EuropeanBinomPut	t				
	<pre>- (S0,K,r,div,tau,sigma,N);</pre>	u				
	print c;	V				
	F==== 0,	W				
	16 6927	 X_V				

EuropeanBinomPut

19.5266	
22.3604	

Source finprocs.src

EuropeanBinomPut_Greeks

EuropeanBinomPut_Greeks

Purpose	European binomial method put Delta, Gamma, Theta, Vega, and Rho.				
Format	<pre>{ d,g,t,v,rh } = EuropeanBinomPut_Greeks(S0,K,r,div,tau,sigma,N);</pre>				
Input	S0scalar, current priceKMx1 vector, strike pricerscalar, risk free ratedivcontinuous dividend yieldtauscalar, elapsed time to exercise in annualized days of tradingsigmascalar, volatilityNnumber of time segments				
Output	dMx1 vector, deltagMx1 vector, gammatMx1 vector, thetavMx1 vector, vegarhMx1 vector, rho				
Example	<pre>S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; N = 30; { d,g,t,v,rh } = EuropeanBinomPut_Greeks</pre>				
	<pre>(SU,K,r,div,tau,Sigma,N); print d; print g; print t;</pre>				

EuropeanBinomPut_Greeks

	print v;	
	print rh;	
	-0.3804	
	0.0038	
	-17.9838	
	69.0880	
	-33.7666	
Globals	_fin_thetaType	scalar, if 1, one day look ahead, else, infinitesmal. Default = 0.
	_fin_epsilon	scalar, finite difference stepsize. Default = 1e-8.
Source	finprocs.src	
Technical Notes	The binomial method simplified approach", described in Options, the basis of this proce	of Cox, Ross, and Rubinstein ("Option pricing: a Journal of Financial Economics, 7:229:264) as Futures, and other Derivatives by John C. Hull is edure.

EuropeanBinomPut_ImpVol

EuropeanBinomPut_ImpVol

Purpose	Implied volatilities for European binomial method puts.			
Format	<pre>sigma = EuropeanBinomPut_ImpVol(c,S0,K,r,div,tau,N);</pre>	b c		
Input	c Mx1 vector, put premiums	d		
	<i>SO</i> scalar, current price	е		
	<i>K</i> Mx1 vector, strike prices			
	<i>r</i> scalar, risk free rate	f		
	<i>div</i> continuous dividend yield	g		
	<i>tau</i> scalar, elapsed time to exercise in annualized days of	h		
	N number of time segments	11		
	iv number of time segments	i		
Output	sigma Mx1 vector, volatility	j		
Example:	p = { 14.60, 17.10, 20.10 };	k		
	S0 = 718.46;	1		
	$\kappa = \{ 720, 725, 730 \};$	m		
		n		
	r = .04987			
	t0 = dtday (2001, 1, 30);	0		
	t1 = dtday (2001, 2, 16);			
	tau = elapsedTradingDays(t0,t1) /	q		
	annualTradingDays(2001);			
		r		
	N = 307	S		
	sigma = EuropeanBinomPut_ImpVol	t		
	(p,S0,K,r,div,tau,N);			
	print sigma;	u		
		V		
	0.1005	W		
	0.130/			

EuropeanBinomPut_ImpVol

0	1	7	1	4

0.2165

Source finprocs.src

Technical Notes

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified approach", Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.

EuropeanBSCall

EuropeanBSCall

Purpose	European Black and Scholes Call.				
Format	c = EuropeanBSCall(S0, K, r, div, tau, sigma);				
-		C			
Input	SO scalar, current price	d			
	K MX1 vector, strike prices	e			
	<i>div</i> continuous dividend vield	f			
	<i>tau</i> scalar, elapsed time to exercise in annualized days of trading	g			
	sigma scalar, volatility	h			
Output	c Mx1 vector, call premiums	i			
Evennele		j			
Example	S0 = /18.467	k			
	K = { 720, 725, 730 };	1			
	b = .0498;	n			
	r = .0498;	n			
	div = 0;				
	sigma = .2493;	C			
	t0 = dtday (2001, 1, 30);	p			
	t1 = dtday (2001, 2, 16);	q			
	tau = elapsedTradingDays(t0,t1) /	r			
	annualTradingDays(2001);	S			
	c = EuropeanBSCall(S0,K,r,div,tau,sigma);	t			
	print c;	1			
	17.0975				
	14.7583	W			

EuropeanBSCall

12.6496

Source finprocs.src

EuropeanBSCall_Greeks

EuropeanBSCall_Greeks

Purpose	European Black and Scholes call Delta, Gamma, Omega, Theta, and Vega.	
Format	<pre>{ d,g,t,v,rh } = EuropeanBSCall_Greeks(S0,K,r,div,tau,sigma);</pre>	
Input	<i>S0</i> scalar, current price	
	<i>K</i> Mx1 vector, strike price	
	<i>r</i> scalar, risk free rate	
	<i>div</i> continuous dividend yield	
	<i>tau</i> scalar, elapsed time to exercise in annualized days of trading	
	sigma scalar, volatility	
Output	d Mx1 vector delta	
	<i>a</i> Mx1 vector, define	
	$t \qquad Mx1 \text{ vector, gamma}$	
	v Mx1 vector, vega	
	<i>rh</i> Mx1 vector, rho	
F	20. 205.	
Example	S0 = 3057	
	K = 300;	
	r = .08;	
	sigma = .25;	
	tau = .33;	
	{ d,g,t,v,rh } = EuropeanBSCall_Greeks	
	(S0,K,r,div,tau,sigma);	
	print d;	
	print g;	
	print t;	
	print v;	

e

EuropeanBSCall_Greeks

Globals	fin thetaType scalar, if 1, one day look ahead.
Source	finprocs.src
	56.8720
	65.2563
	-38.5054
	0.0085
	0.6446
	print rh;

__fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal. Default = 0.

EuropeanBSCall_ImpVol

EuropeanBSCall_ImpVol

Purpose	Implied volatilities for European Black and Scholes calls.	6
• •		k
Format	$sigma = EuropeanBSCall_ImpVol(c, SU, K, r, div, tau);$	C
Input	<i>c</i> Mx1 vector, call premiums	Ċ
	S0 scalar, current price	e
	<i>r</i> scalar, risk free rate	f
	<i>div</i> continuous dividend yield	£
	<i>tau</i> scalar, elapsed time to exercise in annualized days of trading	ł
Output	sigma Mx1 vector, volatility	i
Fxamnlo	$c = \{ 13, 70, 11, 90, 9, 10 \};$	J
Example	$C = \{13.76, 11.96, 5.16\},$	k
	$\kappa = \begin{cases} 720 & 725 & 730 \end{cases}$	
	$R = \{ 120, 123, 130 \}$	n
	I = .04987	r
	dIV = 0,	C
	$t_0 = dt day (2001, 1, 30);$	Ţ
	ti = dtday (2001, 2, 16);	~
	tau = elapsedTradingDays(t0,t1) /	
	annualTradingDays(2001);	1
	sigma = EuropeanBSCall_ImpVol	S
	(c,S0,K,r,div,tau);	t
	print sigma;	U
		N
	0.1991	v
	0.1725	 X_

EuropeanBSCall_ImpVol

0.1310

Source finprocs.src

EuropeanBSPut

EuropeanBSPut

Purpose	European Black and Scholes Put.	a
_	1	b
Format	c = EuropeanBSPut(S0, K, r, div, tau, sigma);	с
Input	SO scalar, current price	d
	<i>K</i> Mx1 vector, strike prices	e
	r scalar, risk free rate	£
	<i>div</i> continuous dividend yield	1
	trading	g
	sigma scalar, volatility	h
Output	c Mx1 vector put premiums	i
		j
Example	S0 = 718.46;	k
	$K = \{720, 725, 730\};$	1
	r = .0498;	m
	sigma = .2493;	12
	div = 0;	11
	t0 = dtday (2001, 1, 30);	0
	t1 = dtday (2001, 2, 16);	p
	<pre>tau = elapsedTradingDays(t0,t1) /</pre>	q
	annualTradingDays(2001);	r
	<pre>c = EuropeanBSPut(S0,K,r,div,tau,sigma);</pre>	S
	print c;	t
		u
	16.6403	X
	19.2872	
	22.1647	W

EuropeanBSPut

Source finprocs.src

e

EuropeanBSPut_Greeks

Purpose	European Black and Scholes put Delta, Gamma, Omega, Theta, and Vega.
Format	<pre>{ d,g,t,v,rh } = EuropeanBSPut_Greeks(S0,K,r,div,tau,sigma);</pre>
Input	S0scalar, current priceKMx1 vector, strike pricerscalar, risk free ratedivcontinuous dividend yieldtauscalar, elapsed time to exercise in annualized days of tradingsigmascalar, volatility
Output	dMx1 vector, deltagMx1 vector, gammatMx1 vector, thetavMx1 vector, vegarhMx1 vector, rho
Example	<pre>S0 = 305; K = 300; r = .08; sigma = .25; tau = .33; { d,g,t,v,rh } = EuropeanBSPut_Greeks (S0,K,r,div,tau,sigma);</pre>
	<pre>print d; print g; print t; print v;</pre>

EuropeanBSPut_Greeks

Source

print rh;
-0.3554
0.0085
-15.1307
65.2563
-39.5486
finprocs.src

Globals __fin_thetaType scalar, if 1, one day look ahead, else, infinitesmal. Default = 0.

EuropeanBSPut_ImpVol

Purpose	Implied volatilities for European Black and Scholes puts.	a 1
Format	<pre>sigma = EuropeanBSPut_ImpVol(c,S0,K,r,div,tau);</pre>	D C
Input	 <i>c</i> Mx1 vector, put premiums <i>S0</i> scalar, current price <i>K</i> Mx1 vector, strike prices 	d e
	 r scalar, risk free rate div continuous dividend yield tau scalar, elapsed time to exercise in annualized days of trading 	f g h
Output	sigma Mx1 vector, volatility	i :
Example	<pre>p = { 14.60, 17.10, 20.10 }; S0 = 718.46;</pre>	J k
	$K = \{ 720, 725, 730 \};$ r = .0498;	m
	t0 = dtday (2001, 1, 30); t1 = dtday (2001, 2, 16);	n o
	<pre>tau = elapsedTradingDays(t0,t1) / annualTradingDays(2001);</pre>	p q
	<pre>sigma = EuropeanBSPut_ImpVol(p,S0,K,r,div,tau); print sigma;</pre>	r s
	0.2123	t
	0.2493 0.2937	V
Source	finprocs.src	w xy

exctsmpl

exctsmpl

Purpose	Computes a random subsample of a data set.
Format	<pre>n = exctsmpl(infile,outfile,percent);</pre>
Input	infilestring, the name of the original data set.outfilestring, the name of the data set to be created.percentscalar, the percentage random sample to take. This must be in the range 0-100.
Output	 n scalar, number of rows in output data set. Error returns are controlled by the low bit of the trap flag. trap 0 terminate with error message trap 1 return scalar negative integer -1 can't open input file -2 can't open output file -3 disk full
Remarks	Random sampling is done with replacement. Thus, an observation may be in the resulting sample more than once. If <i>percent</i> is 100, the resulting sample will not be identical to the original sample, though it will be the same size.
Example	<pre>n = exctsmpl("freq.dat", "rout", 30); n = 30 freq.dat is an example data set provided with GAUSS. Switching to the GAUSS examples directory will make it possible to do the above example as shown. Otherwise substitute data set names will need to be used.</pre>
Source	exctsmpl.src

exec

exec

Purpose	Executes an executable program and returns the exit code to GAUSS.
Format	y = exec(program, comline);
Input	<i>program</i> string, the name of the program to be executed.<i>comline</i> string, the arguments to be placed on the command line of the program being executed.
Output	 y the exit code returned by <i>program</i>. If exec cannot execute <i>program</i>, the error returns will be negative. -1 file not found -2 the file is not an executable file -3 not enough memory -4 command line too long
Remarks	Under Windows, the file can be given an extension or a "." meaning no extension. Otherwise the file will be searched for with the following extensions in their given order: .com, .exe, .bat, .cmd.
Example	<pre>y = exec("atog", "comdl.cmd"); if y; errorlog "atog failed"; end; endif; In this example, the ATOG ASCII conversion utility is executed under the exec function. The name of the command file to be used, comdl.cmd, is passed to ATOG on its command line. The exit code y returned by exec is tested to see if ATOG was successful; if not the program will be</pre>
	terminated after printing an error message. See "Utilities" in the User

Guide.

exp

exp

-	
Purpose	Calculates the exponential function.
Format	$y = \exp(x);$
Input	<i>x</i> NxK matrix.
Output	<i>y</i> NxK matrix containing <i>e</i> , the base of natural logs, raised to the powers given by the elements of <i>x</i> .
Example	<pre>x = eye(3); y = exp(x);</pre>
	$x = \begin{array}{c} 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 1.000000 & 0.000000 \\ 0.000000 & 0.000000 & 1.000000 \end{array}$
	$y = \begin{array}{l} 2.718282 \ 1.000000 \ 1.000000 \\ 1.000000 \ 2.718282 \ 1.000000 \\ 1.000000 \ 1.000000 \ 2.718282 \end{array}$
	This example creates a $3x3$ identity matrix and computes the exponential function for each one of its elements. Note that exp(1) returns <i>e</i> , the base of natural logs.

See also ln

export

export

Purpose	Exports a GAUSS matrix to a spreadsheet, database or ASCII file.
Format	ret = export(x, fname, namel);
Input	 <i>x</i> MxK matrix, data to export. <i>fname</i> string, name of file to export with optional path. <i>namel</i> Kx1 vector, column names, or scalar 0 for default column names.
Output	<i>ret</i> scalar, success flag, 1 if successful, 0 if not.<i>fname</i> file in the selected format.
Portability	Windows only
Remarks	Setting namel to 0 results in default column names of Var:1 to Var:K.
Example	<pre>fname = "c:\\temp\\testdata.xls";</pre>
	matx = rndn(7, 4);
	let names = gnp invest pop export;
	<pre>call export(matx, fname, names);</pre>
	This will export the matrix matx to the file c:\temp \ testdata.xls in Excel format.
	If the first line had been
	<pre>fname = "c:\\temp\\testdata.dbf";</pre>
	the file would have been exported in dBase format.
Globals	_dxaschdr, _dxftype, _dxmiss, _dxprcn, _dxprint,
	_dxtxdlim, _dxtype, _dxwidth, _dxwkshd
See also	exportf, import, importf

exportf

exportf

Exports a GAUSS data set to a spreadsheet, database, or ASCII file.
<pre>ret = exportf(dname,fname,namel);</pre>
<i>dname</i> string, name of GAUSS data set with optional path<i>fname</i> string, name of file to export with optional path.<i>namel</i> Kx1 vector, column names, or 0 for all columns.
<i>ret</i> scalar, success flag, 1 if successful, 0 if not. <i>fname</i> file in the specified format.
Windows only
The columns of the data set listed in <i>namel</i> will be exported. If <i>namel</i> is 0, the entire data set will be exported.
<pre>dname = "c:\\gauss\\data\\mydata.dat";</pre>
<pre>fname = "c:\\temp\\testdata2.wk1";</pre>
<pre>call exportf(dname, fname, 0);</pre>
This will export the data set dname to the file c:\temp \ testdata2.wk1 in Lotus format.
_dxaschdr, _dxftype, _dxmiss, _dxprcn, _dxprint,
_dxtxdlim, _dxtype, _dxwidth, _dxwkshdr
export, import, importf

extern (dataloop)

extern (dataloop)

Purpose Allows access to matrices or strings in memory from inside a data loop. Format extern variable_list; Remarks Commas in *variable_list* are optional. **extern** tells the translator not to generate local code for the listed variables, and not to assume they are elements of the input data set. extern statements should be placed before any reference to the symbols listed. The specified names should not exist in the input data set, or be used in a **make** statement. Example This example shows how to assign the contents of an external vector to a new variable in the data set, by iteratively assigning a range of elements to the variable. The reserved variable $\mathbf{x} \mathbf{x}$ contains the data read from the input data set on each iteration. The external vector must have at least as many rows as the data set. base = 1; /* used to index a range of elements /* from exvec */ dataloop oldata newdata; extern base, exvec; make ndvar = exvec[seqa(base,1,rows(x_x))]; /* execute command literally */ # base = base + rows(x_x); endata;

external

external

Purpose Lets the compiler know about symbols that are referenced above or in a separate file from their definitions.

Format external proc dog,cat; external keyword dog; external fn dog; external matrix x,y,z; external string mstr,cstr;

Remarks See "Procedures and Keywords" in the *User's Guide*.

You may have several procedures in different files that reference the same global variable. By placing an **external** statement at the top of each file, you can let the compiler know if the symbol is a matrix, string, or procedure. If the symbol is listed and strongly typed in an active library, no **external** statement is needed.

If a matrix or string appears in an **external** statement it needs to appear once in a **declare** statement. If no declaration is found, an **Undefined symbol** error will result.

Example The general eigenvalue procedure, **eigrg**, sets a global variable __**eigerr** if it cannot compute all of the eigenvalues.

external matrix _eigerr;

```
x = rndn(4,4);
xi = inv(x);
xev = eigrg(x);
if _eigerr;
    print "Eigenvalues not computed";
    end;
endif;
```

Without the **external** statement, the compiler would assume that __**eigerr** was a procedure and incorrectly compile this program. The file

external

containing the **eigrg** procedure also contains an external statement that defines _**eigerr** as a matrix, but this would not be encountered until the **if** statement containing the reference to _**eigerr** in the main program file had already been incorrectly compiled.

See also declare

eye

eye

-		
Purpose	Creates an identity matrix.	
Format	y = eye(n);	
Input	<i>n</i> scalar, size of identity matrix to be created.	
Output	y NxN identity matrix.	
Remarks	If <i>n</i> is not an integer, it will be truncated to an integer. The matrix created will contain 1's down the diagonal and 0's everywhere else.	
Example	x = eye(3); 1.000000 0.000000 0.000000	
	$x = 0.000000 \ 1.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 1.000000 \ 0.0000000 \ 0.00000000$	

See also zeros, ones

fcheckerr

fcheckerr

Purpose	Gets the error status of a file.	
Format	<pre>err = fcheckerr(f);</pre>	
Input	<i>f</i> scalar, file handle of a file opened with fopen .	
Output	<i>err</i> scalar, error status.	
Remarks	If there has been a read or write error on a file, fcheckerr returns 1, otherwise 0.	
	If you pass fcheckerr the handle of a file opened with open (i.e., a data set or matrix file), your program will terminate with a fatal error.	

fclearerr

fclearerr

Purpose	Gets the error status of a file, then clears it.	
Format	<pre>err = fclearerr(f);</pre>	
Input	<i>f</i> scalar, file handle of a file opened with fopen .	
Output	<i>err</i> scalar, error status.	
Remarks	Each file has an error flag that is set when there is an I/O error on the file Typically, once this flag is set, you can no longer do I/O on the file, ever if the error is a recoverable one. fclearerr clears the file's error flag, and you can attempt to continue using it.	
	If there has been a read or write error on a file, fclearerr returns 1, otherwise 0.	
	If you pass fclearerr the handle of a file opened with open (i.e., a data set or matrix file), your program will terminate with a fatal error.	
	The flag accessed by fclearerr is not the same as that accessed by fstrerror .	

feq, fge, fgt, fle, flt, fne

feq, fge, fgt, fle, flt, fne

Purpose	Fuzzy comparison functions. These functions use _fcmptol to fuzz the comparison operations to allow for roundoff error.		
Format	y = feq(a, b);		
	y = fge(a,b);		
	y = fgt(a,b);		
	y = fle(a,b);		
	y = flt(a,b);		
	$y = \operatorname{ine}(a,b);$		
Input	<i>a</i> NxK matrix, first matrix.		
	<i>b</i> LxM matrix, second matrix, ExE compatible with <i>a</i> .		
Global Input	_fcmptol global scalar, comparison tolerance. The default value is 1.0e-15.		
Output	v scalar 1 (true) or 0 (false)		
Remarks	The return value is true if every comparison is true.		
	The statement:		
	y = feq(a,b);		
	is equivalent to:		
	y = a eq b;		
	procedures.		
	$_fcmptol = 1e-12;$		
Example	x = rndu(2,2);		
	y = rndu(2,2);		
	t = fge(x,y);		

feq, fge, fgt, fle, flt, fne

<i>x</i> =	0.0382895	0.07253527
	0.01471395	0.96863611
<i>y</i> =	0.25622293	0.70636474
	0.00361912	0.35913385
t = 0	.0000000	
fcom	pare.src	

Globals _fcmptol

Source

See also	dotfeq-dotfne
----------	---------------
fflush

fflush

Purpose	Flushes a file's output buffer.				
Format	ret = fflush(f);				
Input	<i>f</i> scalar, file handle of a file opened with fopen .				
Output	<i>ret</i> scalar, 0 if successful, -1 if not.				
Remarks	If fflush fails, you can call fstrerror to find out why.				
	If you pass fflush the handle of a file opened with open (i.e., a data set or matrix file), your program will terminate with a fatal error.				

fft

fft

Purpose	Computes a 1- or 2-D Fast Fourier transform.				
Format	y = fft(x);				
Input	<i>x</i> NxK matrix.				
Output	y LXM matrix, where L and M are the smallest powers of 2 greater than or equal to N and K, respectively.				
Remarks	This computes the FFT of <i>x</i> , scaled by 1/N. This uses a Temperton Fast Fourier algorithm. If N or K is not a power of 2, <i>x</i> will be padded out with zeros before computing the transform.				
Example	x = { 22 24, 23 25 }; y = fft(x);				
	$y = \frac{23.500000 -1.000000}{-0.5000000 0.000000000}$				
See also	ffti, rfft, rffti				

ffti

ffti

Purpose	Computes an inverse 1- or 2-D Fast Fourier transform.			
Format	y = ffti(x);			
Input	<i>x</i> NxK matrix.			
Output	<i>y</i> LXM matrix, where L and M are the smallest prime factor products greater than or equal to N and K, respectively.			
Remarks	Computes the inverse FFT of <i>x</i> , scaled by 1/N. This uses a Temperton prime factor Fast Fourier algorithm.			
Example	x = { 22 24 , 23 25 }; y = fft(x);			
	$y = \begin{array}{c} 23.500000 -1.000000\\ -0.500000 \ 0.0000000 \end{array}$ fi = ffti(y);			
	$fi = \begin{array}{c} 22.000000 \ 24.000000 \\ 23.000000 \ 25.000000 \end{array}$			
See also	fft, rfft, rffti			

fftm

fftm

Purpose	Computes a multi-dimensional FFT.			
Format	y = fftm(x, dim);			
Input	x dim	Mx1 vector, data. Kx1 vector, size of each dimension.		
Output	у	Lx1 vector, FFT of <i>x</i> .		
Pomarke	The multi dimensional data are laid out in a r			

Remarks The multi-dimensional data are laid out in a recursive or heirarchical fashion in the vector x. That is to say, the elements of any given dimension are stored in sequence left to right within the vector, with each element containing a sequence of elements of the next smaller dimension. In abstract terms, a 4-dimensional 2x2x2x2 hypercubic x would consist of two cubes in sequence, each cube containing two matrices in sequence, each matrix containing two rows in sequence, and each row containing two columns in sequence. Visually, x would look something like this:

$$\begin{split} \mathbf{X}_{hyper} &= \mathbf{X}_{cube1} \mid \mathbf{X}_{cube2} \\ \mathbf{X}_{cube1} &= \mathbf{X}_{mat1} \mid \mathbf{X}_{mat2} \\ \mathbf{X}_{mat1} &= \mathbf{X}_{row1} \mid \mathbf{X}_{row2} \\ \mathbf{X}_{row1} &= \mathbf{X}_{col1} \mid \mathbf{X}_{col2} \end{split}$$

Or, in an extended GAUSS notation, x would be:

To be explicit, *x* would be laid out like this:

fftm

If you look at the last diagram for the layout of x you'll notice that each line actually constitutes the elements of an ordinary matrix in normal row-major order. This is easy to achieve with **vecr**. Further, each pair of lines or "matrices" constitutes one of the desired cubes, again with all the elements in the correct order. And finally, the two cubes combine to form the hypercube. So, the process of construction is simply a sequence of concatenations of column vectors, with a **vecr** step if necessary to get started.

Here's an example, this time working with a 2x3x2x3 hypercube.

let x1[2,3] = 1 2 3 4 5 6; let x2[2,3] = 6 5 4 3 2 1; let x3[2,3] = 1 2 3 5 7 11; xc1 = vecr(x1)|vecr(x2)|vecr(x3); /* cube 1 */ let x1 = 1 1 2 3 5 8; let x2 = 1 2 6 24 120 720; let x3 = 13 17 19 23 29 31; xc2 = x1|x2|x3; /* cube 2 */ xh = xc1|xc2; /* hypercube */

xhfft = fftm(xh,dim);

let dim = $2 \ 3 \ 2 \ 3;$

let dimi = 2 4 2 4; xhffti = fftmi(xhfft,dimi);

We left out the **vecr** step for the 2^{nd} cube. It's not really necessary when you're constructing the matrices with **let** statements.

dim contains the dimensions of x, beginning with the highest dimension. The last element of **dim** is the number of columns, the next to the last element of **dim** is the number of rows, and so on. Thus

fftm

dim = $\{2, 3, 3\};$

indicates that the data in x is a 2x3x3 three-dimensional array, i.e., two 3x3 matrices of data. Suppose that **x1** is the first 3x3 matrix and **x2** the second 3x3 matrix, then **x** = **vecr(x1)** | **vecr(x2)**.

The size of **dim** tells you how many dimensions *x* has.

The arrays have to be padded in each dimension to the nearest power of two. Thus the output array can be larger than the input array. In the 2x3x2x3 hypercube example, x would be padded from 2x3x2x3 out to 2x4x2x4. The input vector would contain 36 elements, while the output vector would contain 64 elements. You may have noticed that we used a **dimi** with padded values at the end of the example to check our answer.

Source fftm.src

See also fftmi, fft, ffti, fftn

fftmi

fftmi

Purpose	Computes a multi-dimensional inverse FFT.		
Format	y = fftmi(x, dim);		
Input	x dim	Mx1 vector, data. Kx1 vector, size of each dimension.	
Output	у	Lx1 vector, inverse FFT of <i>x</i> .	

Remarks The multi-dimensional data are laid out in a recursive or heirarchical fashion in the vector x. That is to say, the elements of any given dimension are stored in sequence left to right within the vector, with each element containing a sequence of elements of the next smaller dimension. In abstract terms, a 4-dimensional 2x2x2x2 hypercubic x would consist of two cubes in sequence, each cube containing two matrices in sequence, each matrix containing two rows in sequence, and each row containing two columns in sequence. Visually, x would look something like this:

$$\begin{split} \mathbf{X}_{hyper} &= \mathbf{X}_{cube1} \mid \mathbf{X}_{cube2} \\ \mathbf{X}_{cube1} &= \mathbf{X}_{mat1} \mid \mathbf{X}_{mat2} \\ \mathbf{X}_{mat1} &= \mathbf{X}_{row1} \mid \mathbf{X}_{row2} \\ \mathbf{X}_{row1} &= \mathbf{X}_{col1} \mid \mathbf{X}_{col2} \end{split}$$

Or, in an extended GAUSS notation, x would be:

Xhyper	=	x[1,.,.,.]	x[2,.,.,.];
Xcubel	=	x[1,1,.,.]	x[1,2,.,.];
Xmat1	=	x[1,1,1,.]	x[1,1,2,.];
Xrowl	=	x[1,1,1,1]	x[1,1,1,2];

To be explicit, *x* would be laid out like this:

 $\begin{array}{c} x[1,1,1,1] & x[1,1,1,2] & x[1,1,2,1] & x[1,1,2,2] \\ x[1,2,1,1] & x[1,2,1,2] & x[1,2,2,1] & x[1,2,2,2] \\ x[2,1,1,1] & x[2,1,1,2] & x[2,1,2,1] & x[2,1,2,2] \\ x[2,2,1,1] & x[2,2,1,2] & x[2,2,2,1] & x[2,2,2,2] \end{array}$

fftmi

If you look at the last diagram for the layout of x you'll notice that each line actually constitutes the elements of an ordinary matrix in normal row-major order. This is easy to achieve with **vecr**. Further, each pair of lines or "matrices" constitutes one of the desired cubes, again with all the elements in the correct order. And finally, the two cubes combine to form the hypercube. So, the process of construction is simply a sequence of concatenations of column vectors, with a **vecr** step if necessary to get started.

Here's an example, this time working with a 2x3x2x3 hypercube.

let dim = 2 3 2 3;

let x1[2,3] = 1 2 3 4 5 6; let x2[2,3] = 6 5 4 3 2 1; let x3[2,3] = 1 2 3 5 7 11; xc1 = vecr(x1)|vecr(x2)|vecr(x3); /* cube 1 */

We left out the **vecr** step for the 2^{nd} cube. It's not really necessary when you're constructing the matrices with **let** statements.

dim contains the dimensions of x, beginning with the highest dimension. The last element of **dim** is the number of columns, the next to the last element of **dim** is the number of rows, and so on. Thus

dim = $\{2, 3, 3\};$

indicates that the data in x is a 2x3x3 three-dimensional array, i.e., two 3x3 matrices of data. Suppose that **x1** is the first 3x3 matrix and **x2** the second 3x3 matrix, then **x** = **vecr(x1)** | **vecr(x2)**.

fftmi

The size of **dim** tells you how many dimensions *x* has.

The arrays have to be padded in each dimension to the nearest power of two. Thus the output array can be larger than the input array. In the 2x3x2x3 hypercube example, *x* would be padded from 2x3x2x3 out to 2x4x2x4. The input vector would contain 36 elements, while the output vector would contain 64 elements.

Source fftm.src

See also fftmi, fft, ffti, fftn

fftn

fftn

Purpose	Computes a complex 1- or 2-D FFT.					
Format	y = fftn(x);					
Input	<i>x</i> NXK matrix.					
Output	y LxM matrix, where L and M are the smallest prime factor products greater than or equal to N and K, respectively.					
Remarks	fftn uses the Temperton prime factor FFT algorithm. This algorithm can compute the FFT of any vector or matrix whose dimensions can be expressed as the product of selected prime number factors. GAUSS implements the Temperton algorithm for any power of 2, 3, and 5, and one factor of 7. Thus, fftn can handle any matrix whose dimensions can be expressed as					
	$2^p \ge 3^q \ge 5^r \ge 7^s$, p,q,r nonnegative integers s = 0 or 1					
	If a dimension of x does not meet this requirement, it will be padded with zeros to the next allowable size before the FFT is computed.					
	fftn pads matrices to the next allowable dimensions; however, it generally runs faster for matrices whose dimensions are highly composite numbers, i.e., products of several factors (to various powers), rather than powers of a single factor. For example, even though it is bigger, a 33600x1 vector can compute as much as 20% faster than a 32768x1 vector, because 33600 is a highly composite number, $2^6 \times 3 \times 5^2 \times 7$,					
	whereas 32768 is a simple power of 2, 2^{15} . For this reason, you may want to hand-pad matrices to optimum dimensions before passing them to fftn . The Run-Time Library includes a routine, optn , for determining optimum dimensions.					
	The Run-Time Library also includes the nextn routine, for determining allowable dimensions for a matrix. (You can use this to see the dimensions to which fftn would pad a matrix.)					
	fftn scales the computed FFT by $1/(L*M)$.					
See also	fft, ffti, fftm, fftmi, rfft, rffti, rfftip, rfftn, rfftnp, rfftp					

fgets

fgets

Purpose	Reads a line of text from a file.			
Format	<pre>str = fgets(f,maxsize);</pre>			
Input	<i>f</i> scalar, file handle of a file opened with fopen.<i>maxsize</i> scalar, maximum size of string to read in, including the terminating null byte.			
Output	str string.			
Remarks	fgets reads text from a file into a string. It reads up to a newline, the end of the file, or <i>maxsize-1</i> characters. The result is placed in <i>str</i> , which is then terminated with a null byte. The newline, if present, is retained.			
	If the file is already at end-of-file when you call fgets , your program will terminate with an error. Use eof in conjunction with fgets to avoid this.			
	If the file was opened for update (see fopen) and you are switching from writing to reading, don't forget to call fseek or fflush first, to flush the file's buffer.			
	If you pass fgets the handle of a file opened with open (i.e., a data set or matrix file), your program will terminate with a fatal error.			

fgetsa

fgetsa

Purpose	Reads lines of text from a file into a string array.			
Format	sa = fgetsa(f, numl);			
Input	<i>f</i> scalar, file handle of a file opened with fopen.<i>numl</i> scalar, number of lines to read.			
Output	sa Nx1 string array, $N \le numl$.			
Remarks	fgetsa reads up to <i>numl</i> lines of text. If fgetsa reaches the end of the file before reading <i>numl</i> lines, <i>sa</i> will be shortened. Lines are read in the same manner as fgets , except that no limit is placed on the size of a line. Thus, fgetsa always returns complete lines of text. Newlines are retained. If <i>numl</i> is 1, fgetsa returns a string. (This is one way to read a line from a file without placing a limit on the length of the line.)			
	If the file is already at end-of-file when you call fgetsa , your program will terminate with an error. Use eof in conjunction with fgetsa to avoid this. If the file was opened for update (see fopen) and you are switching from writing to reading, don't forget to call fseek or fflus first, to flush the file's buffer.			
	If you pass fgetsa the handle of a file opened with open (i.e., a data set or matrix file), your program will terminate with a fatal error.			

fgetsat

fgetsat

Purpose	Reads lines of text from a file into a string array.				
Format	<pre>sa = fgetsat(f,numl);</pre>				
Input	f numl	scalar, file handle of a file opened with fopen . scalar, number of lines to read.			
Output	sa	Nx1 string array, N \leq <i>numl</i> .			
Remarks	fgetsat operates identically to fgetsa , except that newlines are not retained as text is read into <i>sa</i> .				
	In gene mode (the car such a	eral, you don't want to use fgetsat on files opened in binary (see fopen). fgetsat drops the newlines, but it does NOT drop riage returns that precede them on some platforms. Printing out string array can produce unexpected results.			

fgetst

fgetst

Purpose	Reads a line of text from a file.				
Format	<pre>str = fgetst(f, maxsize);</pre>				
Input	fscalar, file handle of a file opened with fopen.maxsizescalar, maximum size of string to read in, including the null terminating byte.				
Output	str string.				
Remarks	fgetst operates identically to fgets , except that the newline is not retained in the string.				
	In general, you don't want to use fgetst on files opened in binary mod (see fopen). fgetst drops the newline, but it does NOT drop the preceding carriage return used on some platforms. Printing out such a string can produce unexpected results.				

fileinfo

f

fileinfo

Purpose	Returns names and information for files that match a specification.						
Format	{ fname	<pre>{ fnames,finfo } = fileinfo(fspec);</pre>					
Input	<i>fspec</i> string, file specification. Can include path. Wildcards are allowed in the filename.						
Output	fnames	<i>nes</i> Nx1 string array of all filenames that match, null string if none are found.					
	finfo	Nx13 matrix UNIX	k, info	ormatio	on about matching files.		
			[N,	1]	filesystem ID		
			[N,	2]	inode number		
			[N,	3]	mode bit mask		
			[N,	4]	number of links		
			[N,	5]	user ID		
			[N,	6]	group ID		
			[N,	7]	device ID (char/block special files only)		
			[N,	8]	size in bytes		
			[N,	9]	last access time		
			[N,	10]	last data modification time		
			[N,	11]	last file status change time		
			[N,	12]	preferred I/O block size		
			[N,	13]	number of 512-byte blocks allocated		
		OS/2, Wind	lows				
			[N,	1]	drive number ($A = 0, B = 1, etc.$)		
			[N,	2]	n/a, 0		
			[N,	3]	mode bit mask		
			[N,	4]	number of links, always 1		
			[N,	5]	n/a, 0		
			[N,	6]	n/a, 0		
			[N,	7]	n/a, 0		
			[N,	8]	size in bytes		

fileinfo

[N, 9]	last access time
[N,10]	last data modification time
[N,11]	creation time
[N,12]	n/a, 0
[N,13]	n/a, 0
[N, 1]	drive number $(A = 0, B = 1, etc.)$
[N, 2]	n/a, 0
[N, 3]	mode bit mask
[N, 4]	number of links, always 1
[N, 5]	n/a, 0
[N, 6]	n/a, 0
[N, 7]	n/a, 0
[N, 8]	size in bytes
[N, 9]	n/a, 0
[N,10]	last data modification time
[N,11]	n/a, 0
[N,12]	n/a, 0
[N,13]	n/a, 0

finfo will be a scalar zero if no matches are found.

Remarks *fnames* will contain file *names* only; any path information that was passed is dropped.

The time stamp fields (*finfo*[N,9]-[N,11]) are expressed as the number of seconds since midnight, Jan. 1, 1970, Coordinated Universal Time (UTC).

See also files, filesa

DOS

filesa

f

filesa

Purpose	Returns a string array of file names.		
Format	y = filesa(n);		
Input	<i>n</i> string, file specification to search for. Can include path. Wildcards are allowed in the filename.		
Output	<i>y</i> Nx1 string array of all filenames that match, or null string if none are found.		
Remarks	<i>y</i> will contain file <i>names</i> only; any path information that was passed is dropped.		
Example	<pre>y = filesa("ch*");</pre>		
	In this example all files listed in the current directory that begin with "ch" will be returned.		
	<pre>proc exist(filename);</pre>		
	<pre>retp(not filesa(filename) \$== "");</pre>		
	endp;		
	This procedure will return 1 if the file exists or 0 if not.		
• •			

See also fileinfo, files, shell

floor

floor

Purpose	Rounds down toward -∞.		
Format	y = floor(x);		
Input	<i>x</i> NxK matrix.		
Output	<i>y</i> NxK matrix containing the elements of <i>x</i> rounded down.		
Remarks	This rounds every element in the matrix x down to the nearest integer.		
Example	x = 100 * rndn(2,2);		
	$x = \begin{array}{r} 77.68 & -14.10 \\ 4.73 & -158.88 \end{array}$		
	<pre>f = floor(x);</pre>		
	$f = \begin{array}{c} 77.00 & -15.00 \\ 4.00 & -159.00 \end{array}$		
See also	ceil, round, trunc		

fmod

fmod

Purpose	Computes the floating-point remainder of x/y .		
Format	$r = \operatorname{fmod}(x, y);$		
Input	xNxK matrix. y LxM matrix, ExE conformable with x .		
Output	$r = \max(N,L)$ by $\max(K,M)$ matrix.		
Remarks	Returns the floating-point remainder <i>r</i> of x/y such that $x = iy + r$, where <i>i</i> is an integer, <i>r</i> has the same sign as <i>x</i> , and $ r < y $.		
	the User's Guide.)		
Example	x = seqa(1.7,2.3,5)'; y = 2;		
	r = Imod(x, y);		
	$x = 1.7 \ 4 \ 6.3 \ 8.6 \ 10.9$		
	r = 1.7 0 0.3 0.6 0.9		

fn

fn

Allows user to create one-line functions.
<pre>fn fn_name(args) = code_for_function;</pre>
Functions can be called in the same way as other procedures.
<pre>fn area(r) = pi*r*r;</pre>
a = area(4);
a = 50.265482

fonts

fonts

Purpose	Loads fonts to be used in the graph.		
Library	pgraph		
Format	<pre>fonts(str);</pre>		
Input	str	string or character ve used in the plot. Simplex Simgrma Microb Complex The first font specifi If <i>str</i> is a null string, by default.	ector containing the names of fonts to be standard sans serif font. Simplex Greek, math. bold and boxy. standard font with serif. ed will be used for the axes numbers. or fonts is not called, Simplex is loaded
Remarks	For information on how to select fonts within a text string, see "Publication Quality Graphics in the <i>User's Guide</i> .		
Source	pgraph.src		
See also	title, xlabel, ylabel, zlabel		

fopen

fopen

Purpose	Opens a file.		
Format	f = fopen(filename, omode);		
Input	filenamestring, name of file to open.omodestring, file I/O mode. (See Remarks, below.)		
Output	f scalar, file handle.		
Portability	UNIX Carriage return-linefeed conversion for files opened in text mode is unnecessary, because in UNIX a newline is simply a linefeed.		
Remarks	 <i>filename</i> can contain a path specification. <i>omode</i> is a sequence of characters that specify the mode in which to oper the file. The first character must be one of: r Open an existing file for reading. If the file does not exist, fopen fails. w Open or create a file for writing. If the file already exists, its current contents will be destroyed. a Open or create a file for appending. All output is appended to the end of the file. To this can be appended a + and/or a b. The + indicates the file is to opened for reading and writing, or update, as follows: r+ Open an existing file for update. You can read from or write to any location in the file. If the file does not exist, fopen fails. 		
w+ Open or create a file for update. You can read fro any location in the file. If the file already exists, i contents will be destroyed.		Open or create a file for update. You can read from or write to any location in the file. If the file already exists, its current contents will be destroyed.	
	 a+ Open or create a file for update. You can read from any location in the file, but all output will be appended to the end of the file Finally, the b indicates whether the file is to be opened in text or bina mode. If the file is opened in binary mode, the contents of the file are not verbatim; likewise, anything output to the file is written verbatim. In mode (the default), carriage return-linefeed sequences are converted or opened in text or bina converted or binary mode. 		

fopen

input to linefeeds, or newlines. Likewise on output, newlines are converted to carriage return-linefeeds. Also in text mode, if a CTRL-Z (char 26) is encountered during a read, it is interpreted as an end-of-file character, and reading ceases. In binary mode, CTRL-Z is read in uninterpreted.

The order of + and **b** is not significant; **rb**+ and **r**+**b** mean the same thing.

You can both read from and write to a file opened for update. However, before switching from one to the other, you must make an **fseek** or **fflush** call, to flush the file's buffer.

If **fopen** fails, it returns a 0.

Use **close** and **closeall** to close files opened with **fopen**.

f

for

for Purpose Begins a **for** loop. Format for i (start, stop, step); endfor; Input i literal, the name of the counter variable. scalar expression, the initial value of the counter. start stop scalar expression, the final value of the counter. step scalar expression, the increment value. Remarks The counter is strictly local to the loop. The expressions *start*, *stop*, and step are evaluated only once when the loop initializes. They are converted to integers and stored local to the loop. The **for** loop is optimized for speed and is much faster than a **do** loop. The commands break and continue are supported. The continue command steps the counter and jumps to the top of the loop. The break command terminates the current loop. The loop terminates when the value of *i* exceeds *stop*. If **break** is used to terminate the loop and you want the final value of the counter, you need to assign it to a variable before the **break** statement (see the third example, following). Example Example 1 x = zeros(10, 5);for i (1, rows(x), 1); for j (1, cols(x), 1); x[i,j] = i*j;endfor;

endfor;

for

<pre>x = rndn(3,3); y = rndn(3,3); for i (1, rows(x), 1); for j (1, cols(x), 1); if x[i,j] ≥ y[i,j]; continue; endif; temp = x[i,j];</pre>	a c d f
<pre>y = rndn(3,3); for i (1, rows(x), 1); for j (1, cols(x), 1); if x[i,j] ≥ y[i,j]; continue; endif; temp = x[i,j]; </pre>	a b d f
<pre>for i (1, rows(x), 1); for j (1, cols(x), 1); if x[i,j] ≥ y[i,j]; continue; endif; temp = x[i,j];</pre>	b c f
<pre>for j (1, cols(x), 1); if x[i,j] ≥ y[i,j]; continue; endif; temp = x[i,j]; </pre>	c fl g
<pre>if x[i,j] ≥ y[i,j]; continue; endif; temp = x[i,j];</pre>	1 e f
<pre>continue; endif; temp = x[i,j];</pre>	f
endif; temp = x[i,j];	f
temp = x[i,j];	5
x[i,j] = y[i,j];	
<pre>y[i,j] = temp;</pre>	
endfor;	
endfor;	
Example 3	
li = 0;	
x = rndn(100, 1);	
y = rndn(100, 1);	
for i (1, rows(x), 1);	
if x[i] /= y[i];	
li = i;	
break;	
endif;	
endfor;	
if li;	
print "Compare failed on row " li;	
endif;	

format

Purpose	Controls the format of matrices and numbers printed out with print or lprint statements.		
Format	format [[/typ]] [[/fmted]] [[/mf]] [[/jnt]] [[f,p]];		
Input	/typ	literal, symbol type flag setting the output forma	(s). Indicate which symbol types you are t for.
		/mat, /sa, /str	Formatting parameters are maintained separately for matrices (/mat), string arrays (/sa), and strings (/str). You can specify more than one /typ flag; the format will be set for all types indicated. If no /typ flag is listed, format assumes /mat.
	/fmted	literal, enable formatting	g flag.
		/on, /off	Enable/disable formatting. When formatting is disabled, the contents of a variable are dumped to the window in a "raw" format. / off is currently supported only for strings. Raw format for strings means that the entire string is printed, starting at the current cursor position. When formatting is enabled for strings, they are handled the same as string arrays. This shouldn't be too surprising, since a string is actually a 1x1 string array.
	/mf	literal, matrix row formation	at flag.
		/m0	no delimiters before or after rows when printing out matrices.
		/ml or /mbl	print 1 carriage return/line feed pair before each row of a matrix with more than 1 row.
		/m2 or /mb2	print 2 carriage return/line feed pairs before each row of a matrix with more than 1 row.
		/m3 or /mb3	print "Row 1", "Row 2" before each row of a matrix with more than one row.

	/mal	print 1 carriage return/line feed pair after each row of a matrix with more than 1 row.	
	/ma2	print 2 carriage return/line feed pairs after each row of a matrix with more than 1 row.	
	/al	print 1 carriage return/line feed pair after each row of a matrix.	
	/a2	print 2 carriage return/line feed pairs after each row of a matrix.	
	/b1	print 1 carriage return/line feed pair before each row of a matrix.	
	/b2	print 2 carriage return/line feed pairs before each row of a matrix.	
	/b3	print "Row 1", "Row 2" before each row of a matrix.	
/jnt	literal, matrix element format flagcontrols justification, notation and trailing character.		
	Right-Justified		
	/rd	Signed decimal number in the form [-]] ####.####, where #### is one or more decimal digits. The number of digits before the decimal point depends on the magnitude of the number, and the number of digits after the decimal point depends on the precision. If the precision is 0, no decimal point will be printed.	
	/re	Signed number in the form [[-]] ####.####, where # is one decimal digit, ## is one or more decimal digits depending on the precision, and ### is three decimal digits. If precision is 0, the form will be [[-]] #E±### with no decimal point printed.	

/ro	This will give a format like / rd or / re depending on which is most compact for the number being printed. A format like / re will be used only if the exponent value is less than -4 or greater than the precision. If a / re format is used, a decimal point will always appear. The precision signifies the number of significant digits displayed.
/rz	This will give a format like /rd or /re depending on which is most compact for the number being printed. A format like /re will be used only if the exponent value is less than -4 or greater than the precision. If a /re format is used, trailing zeros will be supressed and a decimal point will appear only if one or more digits follow it. The precision signifies the number of significant digits displayed.
Left-Justified	
/ld	Signed decimal number in the form [[-]] ####.####, where #### is one or more decimal digits. The number of digits before the decimal point depends on the magnitude of the number, and the number of digits after the decimal point depends on the precision. If the precision is 0, no decimal point will be printed. If the number is positive, a space character will replace the leading minus sign.
/le	Signed number in the form [[-]] #.##E±###, where # is one decimal digit, ## is one or more decimal digits depending on the precision, and ### is three decimal digits. If precision is 0, the form will be [[-]] #E±### with no decimal point printed. If the number is positive, a space character will replace the leading minus sign.

	/lo /lz	This will give a format like $/ld$ or $/le$ depending on which is most compact for the number being printed. A format like $/le$ will be used only if the exponent value is less than -4 or greater than the precision. If a $/le$ format is used, a decimal point will always appear. If the number is positive, a space character will replace the leading minus sign. The precision specifies the number of significant digits displayed. This will give a format like $/ld$ or $/le$ depending on which is most compact for the number being printed. A format like $/le$ will be used only if the exponent value is less than -4 or greater than the precision. If a $/le$ format is used, trailing zeros will be supressed and a decimal point will appear only if one or more digits follow it. If the number is positive, a space character will replace the leading minus sign. The precision specifies the number of
	Trailing Character	significant digits displayed.
	The following character	s can be added to the <i>/int</i> parameters
	above to control the trai	ling character if any:
		format /rdn 1,3;
	s	The number will be followed immediately by a space character. This is the default.
	с	The number will be followed immediately by a comma.
	t	The number will be followed immediately by a tab character.
	n	No trailing character.
f	scalar expression, contro	ols the field width.
р	scalar expression, controls the precision.	

Remarks

If character elements are to be printed, the precision should be at least 8 or the elements will be truncated. This does not affect the string data type.

For numeric values in matrices, p sets the number of significant digits to be printed. For string arrays, strings, and character elements in matrices, psets the number of characters to be printed. If a string is shorter than the specified precision, the entire string is printed. For string arrays and strings, p = -1 means print the entire string, regardless of its length. p = -1is illegal for matrices; setting $p \ge 8$ means the same thing for character elements.

The /xxx slash parameters are optional. Field and precision are optional also but if one is included, then both must be included.

Slash parameters, if present, must precede the field and precision parameters.

A **format** statement stays in effect until it is overridden by a new **format** statement. The slash parameters may be used in a **print** statement to override the current default.

f and p may be any legal expressions that return scalars. Nonintegers will be truncated to integers.

The total width of field will be overridden if the number is too big to fit into the space allotted. For instance, **format** /rds 1,0 can be used to print integers with a single space between them, regardless of the magnitudes of the integers.

Complex numbers are printed with the sign of the imaginary half separating them and an "i" appended to the imaginary half. Also, the field parameter refers to the width of field for each half of the number, so a complex number printed with a field of 8 will actually take (at least) 20 spaces to print. The character printed after the imaginary part can be changed (for example, to a "j") with the **sysstate** function, case 9.

The default when GAUSS is first started is:

format /mb1 /ros 16,8;

Example	This code:
	x = rndn(3,3);
	format /ml /rd 16,8;
	print x;
	produces:
	-1.63533465 1.61350700 -1.06295179 0.26171282 0.27972294 -1.38937242 0.58891114 0.46812202 1.08805960
	This code:
	format /ml /rzs 1,10;
	print x;
	produces:
	_1 6353346 1 613507 _1 0629518
	0.26171282 0.27972294 -1.3893724
	0.58891114 0.46812202 1.0880596
	This code:
	format /m3 /rdn 16,4;
	print x;
	produces:
	Row 1
	-1.6353 1.6135 -1.0630
	Row 2
	U.2617 U.2797 -1.3894 Row 3
	0.5889 0.4681 1.0881

W

f

This code: format /m1 /ldn 16,4; print x; produces: -1.6353 1.6135 -1.06300.2617 0.2797 -1.38940.5889 0.4681 1.0881 This code: format /m1 /res 12,4; print x; produces: -1.6353E+000 1.6135E+000 -1.0630E+000 2.6171E-001 2.7972E-001 -1.3894E+000 5.8891E-001 4.6812E-001 1.0881E+000

See also formatcv, formatnv, print, lprint, output

formatcv

formatcv

Purpose	Sets the character data format used by printfmt .		
Format	<pre>oldfmt = formatcv(newfmt);</pre>		
Input	newfmt	1x3 vector, the new format specification.	
Output	oldfmt	1x3 vector, the old format specification.	
Remarks	See printfm for details on the format vector.		
Example	This example saves the old format, sets the format desired for printing x , prints x , then restores the old format. This code:		
	x = {	A 1, B 2, C 3 };	
	oldfmt	= formatcv("*.*s" ~ 3 ~ 3);	
	<pre>call printfmt(x,0~1); call formatcv(oldfmt);</pre>		
	produces	:	
	А	1	
	В	2	
	С	3	
Source	gauss.	src	
Globals	fmtc	v	
See also	format	nv, printfm, printfmt	

w xyz

f

formatnv

formatnv

Purpose	Sets the numeric data format used by printfmt .		
Format	<pre>oldfmt = formatnv(newfmt);</pre>		
Input	<i>newfmt</i> 1x3 vector, the new format specification.		
Output	<i>oldfmt</i> 1x3 vector, the old format specification.		
Remarks	See printfm for details on the format vector.		
Example	This example saves the old format, sets the format desired for printing <i>x</i> prints <i>x</i> , then restores the old format. This code:		
	x = { A 1, B 2, C 3 };		
	<pre>oldfmt = formatnv("*.*lf" ~ 8 ~ 4);</pre>		
	<pre>call printfmt(x,0~1);</pre>		
	call formatnv(oldfmt);		
	produces:		
	A 1		
	B 2		
	C 3		
Source	gauss.src		
Globals	fmtnv		
See also	formatcv, printfm, printfmt		

fputs

fputs

Purpose	Writes strings to a file.	
Format	numl = fputs(f, sa);	
Input	<i>f</i> scalar, file handle of a file opened with fopen.<i>sa</i> string or string array.	
Output	<i>numl</i> scalar, the number of lines written to the file.	
Portability	UNIX Carriage return-linefeed conversion for files opened in text mode is unnecessary, because in UNIX a newline is simply a linefeed.	
Remarks	fputs writes the contents of each string in <i>sa</i> , minus the null terminating byte, to the file specified. If the file was opened in text mode (see fopen), any newlines present in the strings are converted to carriage return-linefeed sequences on output. If <i>numl</i> is not equal to the number of elements in <i>sa</i> , there may have been an I/O error while writing the file. You can use fcheckerr or fclearerr to check this. If there was an error, you can call fstrerror to find out what it was. If the file was opened for update (see fopen) and you are switching from reading to writing, don't forget to call fseek or fflush first, to flush the file's buffer. If you pass fputs the handle of a file opened with open (i.e., a data set or matrix file), your program will terminate with a fatal error.	

fputst

fputst

Purpose	Writes strings to a file.	
Format	numl = fputst (f, sa);	
Input	<i>f</i> scalar, file handle of a file opened with fopen.<i>sa</i> string or string array.	
Output	<i>numl</i> scalar, the number of lines written to the file.	
Portability	UNIX Carriage return-linefeed conversion for files opened in text mode is unnecessary, because in UNIX a newline is simply a linefeed.	
Remarks	fputst works identically to fputs , except that a newline is appended to each string that is written to the file. If the file was opened in text mode (see fopen), these newlines are also converted to carriage return-linefeed sequences on output.	
fseek

fseek

Purpose	Positions the file pointer in a file.		
Format	ret = fseek(f, offs, base);		
Input	f offs base	 scalar, file handle of a file opened with fopen. scalar, offset (in bytes). scalar, base position. 0 beginning of file. 1 current position of file pointer. 2 end of file. 	
Output	ret	scalar, 0 if successful, 1 if not.	
Portability	UNIX Carriage return-linefeed conversion for files opened in text mode is unnecessary, because in UNIX a newline is simply a linefeed.		
Remarks	fseek moves the file pointer <i>offs</i> bytes from the specified <i>base</i> position. <i>offs</i> can be positive or negative. The call may fail if the file buffer needs to be flushed (see fflush).		
	If fseek fails, you can call fstrerror to find out why.		
	For files opened for update (see fopen), the next operation can be a read or a write.		
	fseek is not reliable when used on files opened in text mode (see fopen). This has to do with the conversion of carriage return-linefeed sequences to newlines. In particular, an fseek that follows one of the fgets <i>xx</i> or fputs <i>xx</i> commands may not produce the expected result. For example:		
	<pre>p = ftell(f);</pre>		
	s = fgetsa(f,7);		
	<pre>call fseek(f,p,0);</pre>		
	is not r	aliable. The best results are obtained by feeels 'ing to the	

is not reliable. The best results are obtained by **fseek**'ing to the beginning of the file and then **fseek**'ing to the desired location, as in

fseek

p = ftell(f); s = fgetsa(f,7); call fseek(f,0,0); call fseek(f,p,0);

If you pass **fseek** the handle of a file opened with **open** (i.e., a data set or matrix file), your program will terminate with a fatal error.

fstrerror

fstrerror

- **Purpose** Returns an error message explaining the cause of the most recent file I/O error.
 - **Format** *s* = fstrerror;
 - **Output** *s* string, error message.

Remarks Any time an I/O error occurs on a file opened with **fopen**, an internal error flag is updated. (This flag, unlike those accessed by **fcheckerr** and **fclearerr**, is not specific to a given file; rather, it is system-wide.) **fstrerror** returns an error message based on the value of this flag, clearing it in the process. If no error has occurred, a null string is returned.

Since **fstrerror** clears the error flag, if you call it twice in a row, it will always return a null string the second time.

ftell

ftell

_			
Purpose	Gets the position of the file pointer in a file.		
Format	<pre>pos = ftell(f);</pre>		
Input	<i>f</i> scalar, file handle of a file opened with fopen .		
Output	<i>pos</i> scalar, current position of the file pointer in a file.		
Remarks	ftell returns the position of the file pointer in terms of bytes from the beginning of the file. The call may fail if the file buffer needs to be flushed (see fflush).		
	If an error occurs, ftell returns -1. You can call fstrerror to find out what the error was.		
	If you pass ftell the handle of a file opened with open (i.e., a data set or matrix file), your program will terminate with a fatal error.		
	or matrix me), your program will terminate with a fatal effor.		

ftocv

ftocv

Purpose	Converts a matrix containing floating point numbers into a matrix containing the decimal character representation of each element.		
Format	y = ftocv(x, field, prec);		
Input	 <i>x</i> NxK matrix containing numeric data to be converted. <i>field</i> scalar, minimum field width. <i>prec</i> scalar, the numbers created will have <i>prec</i> places after the decimal point. 		
Output	<i>y</i> NxK matrix containing the decimal character equivalent of the corresponding elements in <i>x</i> in the format defined by <i>field</i> and <i>prec</i> .		
Remarks	If a number is narrower than <i>field</i> , it will be padded on the left with zeros If $prec = 0$, the decimal point will be suppressed.		
Example	<pre>y = seqa(6,1,5); x = 0 \$+ "cat" \$+ ftocv(y,2,0); cat06</pre>		
	$x = \begin{array}{c} cat00\\ cat07\\ cat08\\ cat09\\ cat10 \end{array}$		

Notice that the (0 **\$+**) above was necessary to force the type of the result to matrix because the string constant **cat** would be of type string. The left operand in an expression containing a **\$+** operator controls the type of the result.

See also ftos

f

ftos

Purpose	Converts a scalar into a string containing the decimal character representation of that number.		
Format	y = ftos(x, fmat, field, prec);		
Input	<i>x</i> scalar, the number to be converted.		
	<i>fmat</i> string, the format string to control the conversion.		
	<i>field</i> scalar or $2x1$ vector, the minimum field width. If <i>field</i> is $2x1$, it specifies separate field widths for the real and imaginary parts of x .		
	<i>prec</i> scalar or $2x1$ vector, the number of places following the decimal point. If <i>prec</i> is $2x1$, it specifies separate precisions for the real and imaginary parts of x .		
Output	<i>y</i> string containing the decimal character equivalent of <i>x</i> in the format specified.		
Remarks	The format string corresponds to the format / <i>jnt</i> (justification, notation trailing character) slash parameter as follows:		
	/rdn "%*.*lf"		
	/ren "%*.*lE"		
	/ron ``%#*.*lG"		
	/rzn ``%*.*lG"		
	/ldn "%- *.*lf"		
	/len ``%- *.*lE"		
	/lon ``%-# *.*lG"		
	/lzn		
	If x is complex, you can specify separate formats for the real and imaginary parts by putting two format analignments in the format string		

If x is complex, you can specify separate formats for the real and imaginary parts by putting two format specifications in the format string. You can also specify separate fields and precisions. You can position the sign of the imaginary part by placing a "+" between the two format specifications. If you use two formats, no "i" is appended to the imaginary

part. This is so you can use an alternate format if you prefer, for example, prefacing the imaginary part with a "j".

The format string can be a maximum of 80 characters.

If you want special characters to be printed after *x*, include them as the last characters of the format string. For example:

"%*.*lf,″	right-justified decimal followed by a comma
"%-*.*S″	left-justified string followed by a space.
"%*.*lf″	right-justified decimal followed by nothing.

You can embed the format specification in the middle of other text.

"Time: %*.*lf seconds."

If you want the beginning of the field padded with zeros, then put a "0" before the first "*" in the format string:

"%0*.*lf" right-justified decimal.

If prec = 0, the decimal point will be suppressed.

Example You can create custom formats for complex numbers with **ftos**. For example,

let c = 24.56124 + 6.3224e - 2i;

field = 1;
prec = 3|5;
fmat = "%lf + j%le is a complex number.";
cc = ftos(c,fmat,field,prec);

results in

cc = "24.561 + j6.32240e-02 is a complex
number."

Some other things you can do with **ftos**:

let x = 929.857435324123; let y = 5.46; let z = 5;

field = 1;
prec = 0;
fmat = "%*.*lf";
<pre>zz = ftos(z,fmat,field,prec);</pre>
field = 1;
prec = 10;
fmat = "%*.*lE";
<pre>xx = ftos(x,fmat,field,prec);</pre>
field = 7;
prec = 2;
<pre>fmat = ``%*.*lf seconds";</pre>
<pre>s1 = ftos(x,fmat,field,prec);</pre>
<pre>s2 = ftos(y,fmat,field,prec);</pre>
field = 1;
prec = 2;
fmat = "The maximum resistance is %*.*lf
ohms.";
<pre>om = ftos(x,fmat,field,prec);</pre>
The results:
zz = "5"
xx = "9.2985743532E+02"
s1 = " 929.86 seconds"
s2 = " 5.46 seconds"

om = "The maximum resistance is 929.86 ohms."

See also ftocv, stof, format

ftostrC

ftostrC

Purpose	Converts a matrix to a string array using a C language format specification.		
Format	sa = ftostrC(x, fmt);		
Input	<i>x</i> NxK matrix, real or complex.<i>fmt</i> Kx1, 1xK or 1x1 string array containing format information.		
Output	sa NxK string array.		
Remarks	If <i>fint</i> has K elements, each column of <i>sa</i> can be formatted separately. If <i>x</i> is complex, there must be two format specifications in each element of <i>fint</i> .		
Example	<pre>declare string fmtr = { "%6.3lf", "%11.8lf" }; declare string fmtc = { "(%6.3lf, %6.3lf)", "(%11.8lf, %11.8lf)" };</pre>		
	<pre>xr = rndn(4, 2); xc = sqrt(xr')'; sar = ftostrC(xr, fmtr); sac = ftostrC(xc, fmtc);</pre>		

ftostrC

print sa	print sar;			
print sad	c;			
produces:				
-0.166	1.05565	441		
-1.590	-0.79283	296		
0.130	-1.84886	957		
0.789	0.86089	687		
(0.000,	-0.407)	(1.02745044,	0.0000000)
(0.000,	-1.261)	(0.00000000,	-0.89041168)
(0.361,	0.000)	(0.00000000,	-1.35973143)
(0.888,	0.000)	(0.92784529,	0.0000000)
at the f				

See also strtof, strtofcplx

p q r s t u v w

f

gamma

gamma

Purpose	Returns the value of the gamma function.				
Format	y = gamma(x);				
Input	<i>x</i> NxK matrix.				
Output	y NxK matrix.				
Remarks	For each element of x , this function returns the integral				
	$\int_{0}^{\infty} t^{(x-1)} e^{-t} dt$ All elements of <i>x</i> must be positive and less than or equal to 169. Values of <i>x</i> greater than 169 will cause an overflow.				
	The natural log of gamma is often what is required and it can be computed without the overflow problems of gamma . Infact can be used to compute log gamma.				
Example	y = gamma(2.5);				
	y = 1.32934				
See also	cdfchic, cdfbeta, cdffc, cdfn, cdfnc, cdftc, erf, erfc				

gammaii

gammaii

Purpose	Computes the inverse incomplete gamma function.		
Format	<pre>x = gammaii(a,p);</pre>		
Input	 <i>a</i> MxN matrix, exponents. <i>p</i> KxL matrix, ExE conformable with <i>a</i>, incomplete gamma values. 		
Output	$x = \max(M,K)$ by max(N,L) matrix, abscissae.		
Source	cdfchii.src		
Globals	_ginvinc,macheps		

gausset

gausset

Purpose Resets the global control variables declared in gauss.dec.

- Format gausset;
- Source gauss.src
- Globals __altnam, __con, __ff, __fmtcv, __fmtnv, __header, __miss, __output, __row, __rowfac, __sort, __title, __tol, __vpad, __vtype, __weight

getf

getf

Purpose	Loads an ASCII or binary file into a string.		
Format	y = getf(filename, mode);		
Input	filenamestring, any valid file name.modescalar 1 or 0 which determines if the file is to be loaded in ASCII mode (0) or binary mode (1).		
Output	<i>y</i> string containing the file.		
Remarks	If the file is loaded in ASCII mode, it will be tested to see if it contains any end of file characters. These are ^Z (ASCII 26). The file will be truncated before the first ^Z and there will be no ^Z's in the string. This is the correct way to load most text files because the ^Z's can cause problems when trying to print the string to a printer.		
	If the file is loaded in binary mode, it will be loaded just like it is with no changes.		
Example	Create a file examp. e containing the following program.		
	library pgraph;		
	graphset;		
	x = seqa(0, 0.1, 100);		
	y = sin(x);		
	xy(x,y);		
	Then execute the following.		
	<pre>y = getf("examp.e",0);</pre>		
	print y;		

getf

This produces:

library pgraph; graphset; x = seqa(0,0.1,100); y = sin(x); xy(x,y);

See also load, save, let, con

getname

getname

Purpose	Returns a column vector containing the names of the variables in a GAUSS data set.		
Format	<pre>y = getname(dset);</pre>		
Input	<i>dset</i> stri fur	ing specifying the name of the data set from which the action will obtain the variable names.	
Output	y Nx spe	1 vector containing the names of all of the variables in the scified data set.	
Remarks	The output, <i>y</i> , will have as many rows as there are variables in the data set.		
Example	<pre>xample y = getname("olsdat"); format 8,8; print \$y; produces: TIME DIST TEMP FRICT</pre>		
	The above <i>TIME</i> , <i>DIS</i>	example assumes the data set olsdat contained the variables <i>T</i> , <i>TEMP</i> , <i>FRICT</i> .	
	Note that th getname	ne extension is not included in the filename passed to the function.	

See also getnamef, indcv

getnamef

getnamef

- **Purpose** Returns a string array containing the names of the variables in a GAUSS data set.
 - Format y = getnamef(f);
 - **Input** f scalar, file handle of an open data set.
 - **Output** y Nx1 string array containing the names of all of the variables in the specified data set.
- **Remarks** The output, *y*, will have as many rows as there are variables in the data set.
- **Example** open f = olsdat for read;
 - y = getnamef(f);
 - t = vartypef(f);
 - print y;
 - produces:
 - time
 - dist
 - temp
 - frict
 - The above example assumes the data set **olsdat** contained the variables *time*, *dist*, *temp*, *frict*.
 - Note the use of **vartypef** to determine the types of these variables.

See also getname, indcv, vartypef

getNextTradingDay

getNextTradingDay

Purpose	Returns the next trading day.		
Format	<pre>n = getNextTradingDay(a)</pre>		
Input	<i>a</i> scalar, date in DT scalar format.		
Output	<i>n</i> next trading day in DT scalar format		
Remarks	A trading day is a weekday that is not a holiday as defined by the New York Stock Exchange from 1888 through 2004. Holidays are defined in holidays.asc. You may edit that file to modify or add holidays.		
Source	finutils.src		

getNextWeekDay

getNextWeekDay

Purpose	Returns the next day that is not on a weekend.		
Format	<pre>n = getNextWeekDay(a)</pre>		
Input	<i>a</i> scalar, date in DT scalar format.		
Output	<i>n</i> next week day in DT scalar format		
-			

Source finutils.src

getnr

getnr

Purpose	Computes number of rows to read per iteration for a program that reads data from a disk file in a loop.		
Format	<pre>nr = getnr(nsets,ncols);</pre>		
Input	<i>nsets</i> scalar, estimate of the maximum number of duplicate copies of the data matrix read by readr to be kept in memory during each iteration of the loop.		
	<i>ncols</i> scalar, columns in the data file.		
Output	<i>nr</i> scalar, number of rows readr should read per iteration of the read loop.		
Remarks	If row is greater than 0, <i>nr</i> will be set to row .		
	If an insufficient memory error is encountered, change rowfac to a number less than 1.0 (e.g., 0.75). The number of rows read will be reduced in size by this factor.		
Source	gauss.src		
Globals	row,rowfac		

getpath

getpath

Purpose	Returns an expanded filename including the drive and path.		
Format	fname =	<pre>getpath(pfname);</pre>	
Input	pfname	string, partial filename with only partial or missing path information.	
Output	fname	string, filename with full drive and path.	
Remarks	This func	ction handles relative path references.	
Example	<pre>y = getpath("temp.e");</pre>		
	print	у;	
	produces	:	
	/ga	uss/temp.e	
Source	getpath.src		

getPreviousTradingDay

getPreviousTradingDay

Purpose	Returns the previous trading day.		
Format	<pre>n = getPreviousTradingDay(a)</pre>		
Input	<i>a</i> scalar, date in DT scalar format.		
Output	<i>n</i> Previous trading day in DT scalar format		
Remarks	A trading day is a weekday that is not a holiday as defined by the New York Stock Exchange from 1888 through 2004. Holidays are defined in holidays.asc. You may edit that file to modify or add holidays.		
Source	finutils.src		

getPreviousWeekDay

getPreviousWeekDay

Purpose	Returns the previous day that is not on a weekend.		
Format	<pre>n = getPreviousWeekDay(a)</pre>		
Input	<i>a</i> scalar, date in DT scalar format.		
Output	<i>n</i> previous week day in DT scalar format		
Source	finutils.src		

getwind

getwind

Purpose	Retrieves the current graphic panel number.		
Library	pgraph		
Format	<pre>n = getwind;</pre>		
Output	<i>n</i> scalar, graphic panel number of current graphic panel.		
Remarks	The current graphic panel is the graphic panel in which the next graph will be drawn.		
Source	pwindow.src		
See also	endwind, begwind, window, setwind, nextwind		

gosub

gosub

Purpose Causes a branch to a subroutine.

Format gosub label;

label:

return;

Remarks

For multi-line recursive user-defined functions, see "Procedures and Keywords" in the *User's Guide*.

When a **gosub** statement is encountered, the program will branch to the label and begin executing from there. When a **return** statement is encountered, the program will resume executing at the statement following the **gosub** statement. Labels are 1-32 characters long and are followed by a colon. The characters can be A-Z or 0-9 and they must begin with an alphabetic character. Uppercase or lowercase is allowed.

It is possible to pass parameters to subroutines and receive parameters from them when they return. See the second example, following.

The only legal way to enter a subroutine is with a **gosub** statement.

If your subroutines are at the end of your program, you should have an **end** statement before the first one to prevent the program from running into a subroutine without using a **gosub**. This will result in a "return without gosub" error message.

gosub

The variables used in subroutines are not local to the subroutine and can be accessed from other places in your program. (See "Procedures and Keywords" in the *User's Guide*.)

Example In the program below, the name **mysub** is a label. When the **gosub** statement is executed, the program will jump to the label **mysub** and continue executing from there. When the **return** statement is executed, the program will resume executing at the statement following the **gosub**.

```
x = rndn(3,3); z = 0;
```

gosub mysub;

print z;

end;

/* ----- Subroutines Follow ----- */

mysub:

```
z = inv(x);
return;
```

Parameters can be passed to subroutines in the following way (line numbers are added for clarity):

```
1. gosub mysub(x,y);
2. pop j; /* b will be in j */
3. pop k; /* a will be in k */
4. t = j*k;
5. print t;
6. end;
7.
8. /* ---- Subroutines Follow ----- */
9.
10. mysub:
```

11. pop b; /* y will be in b */
12. pop a; /* x will be in a */
13.
14. a = inv(b)*b+a;
15. b = a'b;
16. return(a,b);

In the previous example, when the **gosub** statement is executed, the following sequence of events results:

- 1. **x** and **y** are pushed on the stack and the program branches to the label **mysub** in line 10.
- 11. the second argument that was pushed, y, is **pop**'ped into b.
- 12. the first argument that was pushed, **x**, is **pop**'ped into **a**.
- 14. **inv(b)*b+a** is assigned to **a**.
- 15. **a/b** is assigned to **b**.
- 16. **a** and **b** are pushed on the stack and the program branches to the statement following the **gosub**, which is line 2.
- 2. the second argument that was pushed, **b**, is **pop**'ped into **j**.
- 3. the first argument that was pushed, **a**, is **pop**'ped into **k**.
- 4. j*k is assigned to t.
- 5. **t** is printed.
- 6. the program is terminated with the **end** statement.

Matrices are pushed on a last-in/first-out stack in the **gosub()** and **return()** statements. They must be popped off in the reverse order. No intervening statements are allowed between the label and the **pop** or the **gosub** and the **pop**. Only one matrix may be popped per **pop** statement.

See also goto, proc, pop, return

goto

not a

goto

Purpose	Causes a branch to a label.
Format	goto label;
	label:
Remarks	Label names can be any legal GAUSS names up to 32 alphanumeric characters, beginning with an alphabetic character or an underscore, not a reserved word.
	Labels are always followed immediately by a colon.
	Labels do not have to be declared before they are used. GAUSS knows they are labels by the fact that they are followed immediately by a colon.
	When GAUSS encounters a goto statement, it jumps to the specified label and continues execution of the program from there.
	Parameters can be passed in a goto statement the same way as they can with a gosub .
Example	x = seqa(.1,.1,5);
	$n = \{ 1 2 3 \};$
	goto fip;
	print x;
	end;
	fip:
	print n;
	produces:
	1.0000000 2.0000000 3.0000000

goto

See also gosub, if

gradp

gradp

- **Purpose** Computes the gradient vector or matrix (Jacobian) of a vector-valued function that has been defined in a procedure. Single-sided (forward difference) gradients are computed.
 - **Format** $g = \operatorname{gradp}(\mathfrak{k}f, x0);$
 - **Input** a pointer to a vector-valued function (f:Kx1 > Nx1)defined as a procedure. It is acceptable for f(x) to have been defined in terms of global arguments in addition to x, and thus f can return an Nx1 vector:

```
proc f(x);
    retp( exp(x.*b) );
endp;
```

- x0 Kx1 vector of points at which to compute gradient.
- **Output** g NxK matrix containing the gradients of f with respect to the variable x at x0.
- **Remarks** gradp will return a row for every row that is returned by *f*. For instance, if *f* returns a scalar result, then gradp will return a 1xK row vector. This allows the same function to be used regardless of N, where N is the number of rows in the result returned by *f*. Thus, for instance, gradp can be used to compute the Jacobian matrix of a set of equations.
- **Example** proc myfunc(x);

retp(x.*2 .* exp(x.*x./3));

endp;

x0 = 2.5|3.0|3.5; y = gradp(&myfunc,x0);

 $y = \begin{array}{c} 82.98901842 & 0.0000000 & 0.0000000 \\ 0.00000000 & 281.19752975 & 0.00000000 \\ 0.00000000 & 0.0000000 & 1087.95414117 \end{array}$

gradp

It is a 3x3 matrix because we are passing it 3 arguments and **myfunc** returns 3 results when we do that; the off-diagonals are zeros because the cross-derivatives of 3 arguments are 0.

Source gradp.src

See also hessp

graphprt

g

graphprt

Purpose	Controls automatic printer hardcopy and conversion file output.		
Library	pgraph		
Format	graphprt(str);	
Input	str string, o	control	l string.
Portability	UNIX	** **	
	Not supported, i	ise Wi	nPrintPQG instead.
Remarks	graphprt is u intervention. Th separated by spa This is the defau	sed to e input ices. If ilt.	create hardcopy output automatically without user t string <i>str</i> can have any of the following items, <i>f str</i> is a null string, the interactive mode is entered.
	-P	prin	t graph.
	-PO= <i>c</i>	set p	print orientation.
		L	landscape.
		P	portrait.
	-C=n	convert to another file format.	
		1	Encapsulated PostScript file.
		3	HPGL Plotter file.
		5	BMP (Windows only)
		8	WMF (Windows only)
	-CF=name	set converted output file name.	
	-I	Minimize (iconize) the graphics window.	
	-Q	Clos	se window after processing.
	- W = <i>n</i>	disp	lay graph, wait <i>n</i> seconds, then continue.

If you are not using graphic panels, you can call **graphprt** anytime before the call to the graphics routine. If you are using graphic panels, call **graphprt** just before the **endwind** statement.

The print option default values are set from the viewer application. Any parameters passed through **graphprt** will override the default values. (See "Publication Quality Graphics" in the *User's Guide*.)

Under DOS, this uses a utility called **vwr.exe** by default.

graphprt

Example	Automatic print using a single graphics call.				
	library pgraph;				
	graphset;				
	load x,y;				
	graphprt("-p"); /* tell "xy" to print */				
	<pre>xy(x,y); /* create graph and print */</pre>				
	Automatic print using multiple graphics graphic panels. Note graphprt is called once just before the endwind call.				
	library pgraph;				
	graphset;				
	load x,y;				
	begwind;				
	<pre>window(1,2,0); /* create two windows */</pre>				
	<pre>setwind(1);</pre>				
	<pre>xy(x,y); /* first graphics call */</pre>				
	nextwind;				
	<pre>xy(x,y); /* second graphics call */</pre>				
	graphprt("-p");				
	endwind; /* print page containing all graphs */				
	The next example shows how to build a string to be used with graphprt.				
	library pgraph;				
	graphset;				
	load x,y;				

graphprt

Source pgraph.src

graphset

graphset

Purpose	Resets graphics globals to default values.
Library	pgraph
Format	graphset;
Remarks	This procedure is used to reset the defaults between graphs.
	graphset may be called between each graphic panel to be displayed.
	To change the default values of the global control variables, make the appropriate changes in the file pgraph.dec and to the procedure graphset .
	appropriate changes in the file pgraph.dec and to the procedure graphset .

Source pgraph.src
hasimag

hasimag

Purpose	Tests whether the imaginary part of a complex matrix is negligible.			
Format	y = hasimag(x);			
Input	<i>x</i> NxK matrix.			
Output	<i>y</i> scalar, 1 if the imaginary part of <i>x</i> has any nonzero elements, 0 if it consists entirely of 0's.			
	The function iscplx tests whether x is a complex matrix or not, but it does not test the contents of the imaginary part of x . hasimag tests the contents of the imaginary part of x to see if it is zero.			
	hasimag actually tests the imaginary part of x against a tolerance to determine if it is negligible. The tolerance used is the imaginary tolerance set with the sysstate command, case 21.			
	Some functions are not defined for complex matrices. iscplx can be used to determine whether a matrix has no imaginary part and so can pass through those functions. hasimag can be used to determine whether a complex matrix has a negligible imaginary part and could thus be converted to a real matrix to pass through those functions.			
	iscplx is useful as a preliminary check because for large matrices it is much faster than hasimag .			
Example	<pre>x = { 1 2 3i, 4-i 5 6i, 7 8i 9 }; y = hasimag(x); y = 1.0000000</pre>			
See also	iscplx			

header

header

Purpose	Prints a header for a report.				
Format	header(pr	<pre>header(prcnm,dataset,ver);</pre>			
Input	prcnm str dataset str ver 2x nu glo wh 0.	 string, name of procedure that calls header. string, name of data set. ver 2x1 numeric vector, the first element is the major version number of the program, the second element is the revision number. Normally this argument will be the version/revision global (??_ver) associated with the module within which header is called. This argument will be ignored if set to 0. 			
Global Input	header	string, containing the letters:ttitle is to be printedllines are to bracket the titleda date and time is to be printedvversion number of program is printedffile name being analyzed is printedstring, title for header.			
Source	gauss.sro	c			
Globals	header	,title			

hess

hess

Computes the Hessenberg form of a square matrix.					
$\{ h, z \} = hess(x);$					
<i>x</i> KxK matrix.					
 <i>h</i> KxK matrix, Hessenberg form. <i>z</i> KxK matrix, transformation matrix. 					
hess computes the Hessenberg form of a square matrix. The Hessenberg form is an intermediate step in computing eigenvalues. It also is useful for solving certain matrix equations that occur in control theory (see Van Loan, Charles F. "Using the Hessenberg Decomposition in Control Theory," <i>Algorithms and Theory in Filtering and Control</i> . Sorenson, D.C., and R.J. Wets, eds., Mathematical Programming Study No. 18, No. Holland Amsterdam 1982 102-11)					
z is an orthogonal matrix that transforms x into h and vice versa. Thus:					
h = z'x z					
and since z is orthogonal,					
x = z h z'					
<i>x</i> is reduced to upper Hessenberg form using orthogonal similarity transformations. This preserves the Frobenious norm of the matrix and the condition numbers of the eigenvalues.					
hess uses the ORTRAN and ORTHES functions from EISPACK.					
let x[3,3] = 1 2 3 $4 5 6$ $7 8 0$					
$\{ h, z \} = hess(x);$					
1.00000000 -3.59700730 -0.24806947					
h = -8.06225775 14.04615385 2.83076923					
0.00000000 0.83076923 -0.04615385					

hess

	1.00000000	0.00000000	0.00000000
z =	0.00000000	-0.49613894	-0.86824314
	0.00000000	-0.86824314	0.49613894

See also schur

h	

hessp

hessp

Purpose	Computes the matrix of second partial derivatives (Hessian matrix) of a function defined as a procedure.					
Format	h = hessp(&f, x0);					
Input	& <i>f</i> pointer to a single-valued function $f(x)$, defined as a procedure, taking a single Kx1 vector argument (f :Kx1 -> 1x1); $f(x)$ may be defined in terms of global arguments in addition to <i>x</i> .					
	x0 Kx1 vector specifying the point at which the Hessian of $f(x)$ is to be computed.					
Output	<i>h</i> KxK matrix of second derivatives of f with respect to x at $x0$; this matrix will be symmetric.					
Remarks	This procedure requires $K^{*}(K+1)/2$ function evaluations. Thus if K is large, it may take a long time to compute the Hessian matrix.					
No more than 3-4 digit accuracy should be expected from this fur though it is possible for greater accuracy to be achieved with som functions.						
	It is important that the function be properly scaled, in order to obtain greatest possible accuracy. Specifically, scale it so that the first derivatives are approximately the same size. If these derivatives differ by more than a factor of 100 or so, the results can be meaningless.					
Example	$x = \{ 1, 2, 3 \};$					
	proc g(b);					
	<pre>retp(exp(x'b));</pre>					
	endp;					
	$b0 = \{ 3, 2, 1 \};$					
	h = hessp(&g,b0);					

hessp

The resulting matrix of second partial derivatives of **g(b)** evaluated at **b=b0** is:

22027.12898372	44054.87238165	66083.36762901
44054.87238165	88111.11102645	132168.66742899
66083.36762901	132168.66742899	198256.04087836

Source hessp.src

See also gradp

hist

hist

Purpose	Computes and graphs a frequency histogram for a vector. The actual frequencies are plotted for each category.								
Library	pgrap	pgraph							
Format	{ b,n	ı "freq	} = h	ist(x,v);				
Input	x v	Mx1 v Nx1 v freques or scalar,	ector o ector, tl ncies, the nu	f data. he breakpo mber of ca	ints t tegor	to be us	sed to c	ompute the	
Output	b m freq	Px1 ve Px1 ve Px1 ve	ector, th ector, th ector of	ne breakpo ne midpoin computed	ints u ts of freq	used for each c uency	r each c ategory counts.	ategory.	
Remarks	If a vec maxim smaller If a nur evenly Each ti	ctor of b um valu r. mber of spaced me an e	reakpo le of x catego catego	ints is spec will be add ries is spec ries. falls into a	cified led if cified	, a fina the ma , the da	al break aximum ata will	point equal to breakpoint va be divided int	the alue is 0 v <i>b</i> the
	corresp are inte	onding porpreted	elemer as follo	nt of <i>freq</i> wows:	ill be	increr	nented	by one. The ca	tegories
	fre fre fre	eq[1] eq[2] eq[3]	= =	b[1] b[2]	< <	x x x	<	b[1] b[2] b[3]	
	fre	eq[P]	=	b[P-1]	<	x	\leq	b[P]	

hist

Example	library pgraph;
	<pre>x = rndn(5000,1);</pre>
	<pre>{ b,m,f } = hist(x,20);</pre>
Source	phist.src
See also	histp, histf, bar

histf

histf

Purpose	Graphs a histogram given a vector of frequency counts.				
Library	ograph				
Format	histf(f,c);				
Input	 f Nx1 vector, frequencies to be graphed. c Nx1 vector, numeric labels for categories. If this is a scalar 0, a sequence from 1 to rows (f) will be created. 				
Remarks	The axes are not automatically labeled. Use xlabel for the category axis and ylabel for the frequency axis.				
Source	phist.src				
See also	hist, bar, xlabel, ylabel				

histp

histp

Purpose	Computes and graphs a percent frequency histogram of a vector. The percentages in each category are plotted.							
Library	pgraph	pgraph						
Format	{	req } = 1	istp(x,	v);				
Input	x M v N: fre or sc	x1 vector o x1 vector, t equencies, alar, the nu	of data. he breakpo mber of ca	oints t ategor	o be u	sed to c	ompute the	
Output	b Po m Po freq Po cc	<1 vector, tl <1 vector, tl <1 vector of ounts, not p	ne breakpo ne midpoir computed ercentages	ints u its of l frequ	sed fo each c uency	r each c ategory counts.	ategory. This is the vec	ctor of
Remarks	If a vector of breakpoints is specified, a final breakpoint equal to the maximum value of x will be added if the maximum breakpoint value is smaller. If a number of categories is specified, the data will be divided into v evenly spaced categories							
	Each time an element falls into one of the categories specified in <i>b</i> , corresponding element of <i>freq</i> will be incremented by one. The cate are interpreted as follows:					b, the tegories		
	freq[1 freq[2 freq[3	1] = 2] = 3] =	b[1] b[2]	<	x x x	≤ ≤ ≤	b[1] b[2] b[3]	
	freq[1	P] =	b[P-1]	<	x	\leq	b[P]	
Source	phist.s	rc						
See also	hist, h	istf, b	ar					

hsec

hsec

Returns the number of hundredths of a second since midnight.
y = hsec;
The number of hundredths of a second since midnight can also be accessed as the $[4,1]$ element of the vector returned by the date function.
x = rndu(100,100);
ts = hsec;
$y = x^*x;$
et = hsec-ts;
In this example, hsec is used to time a 100x100 multiplication in GAUSS. A 100x100 matrix, \mathbf{x} , is created, and the current time, in hundredths of a second since midnight, is stored in the variable ts . Then the multiplication is carried out. Finally, ts is subtracted from hsec to give the time difference which is assigned to et .

See also date, time, timestr, ethsec, etstr

if

-	
Purpose	Controls program flow with conditional branching.
Format	if scalar_expression; list of statements;
	<pre>elseif scalar_expression; list of statements;</pre>
	<pre>elseif scalar_expression; list of statements;</pre>
	else; list of statements;
	endif;
Remarks	<i>scalar_expression</i> is any expression that returns a scalar. It is <i>TRUE</i> if it is not zero, and <i>FALSE</i> if it is zero.
	A list of statements is any set of GAUSS statements.
	GAUSS will test the expression after the if statement. If it is <i>TRUE</i> (nonzero), then the first list of statements is executed. If it is <i>FALSE</i> (zero), then GAUSS will move to the expression after the first elseif statement if there is one and test it. It will keep testing expressions and will execute the first list of statements that corresponds to a <i>TRUE</i> expression. If no expression is <i>TRUE</i> , then the list of statements following the else statement is executed. After the appropriate list of statements is executed, the program will go to the statement following the endif and continue on.
	if statements can be nested.
	One endif is required per if statement. If an else statement is used, there may be only one per if statement. There may be as many elseif's as are required. There need not be any elseif's or any else statement within an if statement.

Example if x < 0; y = -1; elseif x > 0; y = 1; else; y = 0; endif;

See also do

i

imag

imag

Purpose	Returns the imaginary part of a matrix.	
Format	zi = imag(x);	
Input	<i>x</i> NxK matrix.	
Output	zi NxK matrix, the imaginary part of x .	
Remarks	If x is real, zi will be an NxK matrix of zeros.	
Example	x = { 4i 9 3, 2 5-6i 7i }; y = imag(x);	
	$y = \begin{array}{c} 4.000000 & 0.000000 & 0.000000 \\ 0.0000000 & -6.0000000 & 7.0000000 \end{array}$	

See also complex, real

import

import

Purpose	Imports a spreadsheet, database, or ASCII file into a matrix.		
Format	<pre>{ x,namel } = import(fname,range,sheet);</pre>		
Input	fnamestring, file name with path.rangestring, range of cells (spreadsheet only), field descriptor (ASCII files), or 0.sheetscalar, sheet number of multi-sheet spreadsheet or 0.		
Output	xNxK matrix, imported data.namelKx1 vector, column headers.		
Portability	Windows only		
Remarks	If <i>sheet</i> is 0, import will import the first (possibly only) sheet of a spreadsheet.		
	For spreadsheets, <i>range</i> indicates the columns to be imported, and can be expressed in the form B7:K243 or B7K243. A <i>range</i> of 0 imports all data.		
	For packed ASCII files, <i>range</i> is a descriptor that defines field name, type, width, and optionally precision. It is a single string of the form		
	name [[type]] fldspec [[name [[type]] fldspec]]		
	where		
	name is the column name for the field.		
	<i>type</i> is $\$$ for a character field, blank for a numeric field.		
	<i>fldspec</i> is either a column range (e.g., 5-8), a start column and field width (e.g., 5,4 or 5,4.2), or a field width only (e.g., 4 or 4.2). If only a field width is given, the start column is input from the previous field. If the field width is specified with a decimal (e.g., 4.2), then a decimal point will be inserted that many places in from the right edge of the field.		
	A shorthand for a set of columns is available (e.g., $x01-x09$); the subsequent <i>type</i> and <i>fldspec</i> are applied to all columns in the set.		

import

Example	<pre>fname = "c:\\temp\\testdata.xls";</pre>		
	<pre>{mmx, names} = import(fname, "A3:D12", 3);</pre>		
	This will import the range of cells A3 to D12 of the third sheet of testdata.xls into the GAUSS matrix mmx with the column headings defined by names. Substituting a 0 or 1 for the 3 would have imported the first (possibly only) sheet.		
	<pre>fname = "c:\\temp\\tstdta.asc";</pre>		
	range = "var1 \$ 6,2 var2 8-15 var3 18,4.1 gnp 7		
	cons 6.2 xsl-xs20 2";		
	<pre>{x,names} = import(fname,range,0);</pre>		
	Here, a GAUSS matrix \mathbf{x} is created from a packed ASCII data set, using the descriptor shown.		
Globals	_dxaschdr, _dxftype, _dxmiss, _dxprcn, _dxprint,		
	_axtxdlim, _axtype, _axwidth, _axwkshdr		

See also export, exportf, importf

importf

importf

Purpose	Imports a spreadsheet, database, or ASCII file to a GAUSS data set.		
Format	<pre>ret = importf(fname,dset,range,sheet);</pre>		
Input	fnamestring, file name with optional path.dsetstring, name of data set with optional path.rangestring, range of cells (spreadsheet only), field descriptor (ASCII files), or 0.sheetscalar, sheet number of multi-sheet spreadsheet or 0.		
Output	retscalar, success flag, 1 if successful, 0 if not.dsetGAUSS data set.		
Portability	Windows only		
Remarks	See import for details on the <i>range</i> and <i>sheet</i> parameters.		
Example	<pre>fname = "c:\\temp\\testdata2.dbf"; dname = "c:\\gauss\\data\\mydata.dat"; call importf(dname, fname, 0, 0); This will create a GAUSS data set c:\gauss\data\mydata.dat from the data in the dBase III file c:\temp\testdata2.dbf.</pre>		
Globals	_dxaschdr, _dxftype, _dxmiss, _dxprcn, _dxprint, _dxtxdlim, _dxtype, _dxwidth, _dxwkshdr		
See also	export, exportf, import		

#include

#include

Purpose	Inserts code from another file into a GAU	USS program.		
Format	<pre>#include filename; #include ``filename";</pre>			
Remarks	filename can be any legitimate file name.			
	This command makes it possible to write a section of general-purpose code, and insert it into other programs.			
	The code from the #include 'd file is in merged into that place in the program wit	nserted literally as if it were h a text editor.		
	If a path is specified for the file, then no a attempted if the file is not found.	additional searching will be		
	If a path is not specified, the current direct each directory listed in src_path . src gauss.cfg.	tory will be searched first, then _path is defined in		
	<pre>#include /gauss/myprog.prc;</pre>	No additional search will be made if the file is not found.		
	<pre>#include myprog.prc;</pre>	The directories listed in src_path will be searched for myprog.prc if the file is not found in the current directory.		
	Compile time errors will return the line nu which they occur. For execution time error with #lineson , the line number and na occurred will be printed. For files that has reflects the actual line number within the #lineson for a more complete discussi	umber and the name of the file in ors, if a program is compiled me of the file where the error ve been #include 'd this #include 'd file. See on of the use of and the validity		

of line numbers when debugging.

#include

Example #include "/gauss/inc/cond.inc";

The command will cause the code in the file cond.inc to be merged into the current program at the point at which this statement appears.

See also run, #lineson

indcv

indcv

Purpose	Checks one character vector against another and returns the indices of the elements of the first vector in the second vector.		
Format	z = indcv(what, where);		
Input	what	Nx1 character vector which contains the elements to be found in vector <i>where</i> .	
	where	Mx1 character vector to be searched for matches to the elements of <i>what</i> .	
Output	Z	Nx1 vector of integers containing the indices of the corresponding element of <i>what</i> in <i>where</i> .	
Remarks	If no m corresp missing	atches are found for any of the elements in <i>what</i> , then the oonding elements in the returned vector are set to the GAUSS g value code.	
	Both ar	guments will be forced to uppercase before the comparison.	
	If there be return	are duplicate elements in <i>where</i> , the index of the first match will rned.	
Example	let w	what = AGE PAY SEX;	
	let w	here = AGE SEX JOB "date" PAY;	
	z = i	ndcv(what,where);	
		AGE	
	what	= PAY	
		SEX	
		AGE	
		SEX	
	where	b = OB	
		date	
		PAY	

indcv

1	
Z = 5	a
2	b
	с
	d
	е
	f
	g
	h
	i
	j
	k
	1
	m
	n
	Ο
	р
	q
	r
	S
	t
	u
	V
	W

indexcat

indexcat

Purpose	Returns the indices of the elements of a vector which fall into a specified category.	
Format	y = indexcat(x,v);	
Input	xNx1 vector.vscalar or 2x1 vector.If scalar, the function returns the indices of all elements of x equal to v.If 2x1, then the function returns the indices of all elements of x that fall into the range: $v[1] < x \le v[2].$ If v is scalar, it can contain a single missing to specify the missing value as the category.	
Output	<i>y</i> Lx1 vector, containing the indices of the elements of <i>x</i> which fall into the category defined by <i>v</i> . It will contain error code 13 if there are no elements in this category.	
Remarks	Use a loop to pull out indices of multiple categories.	
Example	let x = 1.0 4.0 3.3 4.2 6.0 5.7 8.1 5.5; let v = 4 6; y = indexcat(x,v); $ \begin{array}{r} 1.0 \\ 4.0 \\ 3.3 \\ x = \begin{array}{r} 4.2 \\ 6.0 \\ 5.7 \\ 8.1 \\ 5.5 \end{array} $	

indexcat

$$v = \begin{array}{c} 4\\ 6 \end{array}$$
$$y = \begin{array}{c} 5\\ 6\\ 8 \end{array}$$

q r s t v w yz

i

indices

indices

Purpose	Processes a set of variable names or indices and returns a vector of variable names and a vector of indices.	
Format	<pre>{ name,indx } = indices(dataset,vars);</pre>	
Input	datasetstring, the name of the data set.varsNx1 vector, a character vector of names or a numeric vector of column indices.If scalar 0, all variables in the data set will be selected.	
Output	<i>name</i> Nx1 character vector, the names associated with <i>vars</i>.<i>indx</i> Nx1 numeric vector, the column indices associated with <i>vars</i>.	
Remarks	If an error occurs, indices will either return a scalar error code or terminate the program with an error message, depending on the trap state. If the low order bit of the trap flag is 0, indices will terminate with an error message. If the low order bit of the trap flag is 1, indices will return an error code. The value of the trap flag can be tested with trapchk ; the return from indices can be tested with scalerr . You only need to check one argument; they will both be the same. The following error codes are possible:	
	 Can't open dataset. Index of variable out of range, or undefined data set variables. 	

Source indices.src

indices2

indices2

Purpose	Processes two sets of variable names or indices from a single file. The first is a single variable and the second is a set of variables. The first must not occur in the second set and all must be in the file.		
Format	<pre>{ name1,indx1,name2,indx2 } = indices2(dataset,var1,var2);</pre>		
Input	dataset	string, the name of the data set.	
	var1	string or scalar, variable name or index.	
		This can be either the name of the variable, or the column index of the variable.	
		If null or 0, the last variable in the data set will be used.	
	var2	Nx1 vector, a character vector of names or a numeric vector of column indices.	
		If scalar 0, all variables in the data set except the one associated with <i>var1</i> will be selected.	
Output	name1	scalar character matrix containing the name of the variable associated with <i>var1</i> .	
	indx1	scalar, the column index of var1.	
	name2	Nx1 character vector, the names associated with var2.	
	indx2	Nx1 numeric vector, the column indices of <i>var2</i> .	
Remarks	If an error occurs, indices2 will either return a scalar error code or terminate the program with an error message, depending on the trap state. If the low order bit of the trap flag is 0, indices2 will terminate with an error message. If the low order bit of the trap flag is 1, indices2 will return an error code. The value of the trap flag can be tested with trapchk ; the return from indices2 can be tested with scalerr . You only need to check one argument; they will all be the same. The following error codes are possible:		
	1	Can't open dataset.	
	2	2 Index of variable out of range, or undefined data set variables.	

- **3** First variable must be a single name or index.
- **4** First variable contained in second set.

indices2

Source indices2.src

indnv

indnv

Purpose	Checks one numeric vector against another and returns the indices of the elements of the first vector in the second vector.	
Format	z = indnv(what, where);	
Input	<i>what</i> Nx1 numeric vector which contains the values to be found in vector <i>where</i> .	
	<i>where</i> Mx1 numeric vector to be searched for matches to the values in <i>what</i> .	
Output	<i>z</i> Nx1 vector of integers, the indices of the corresponding elements of <i>what</i> in <i>where</i> .	
Remarks	If no matches are found for any of the elements in <i>what</i> , then those elements in the returned vector are set to the GAUSS missing value code. If there are duplicate elements in <i>where</i> , the index of the first match will be returned.	
Example	<pre>let what = 8 7 3; let where = 2 7 8 4 3; z = indnv(what,where); what = 7 3</pre>	
	$where = \begin{cases} 2 \\ 7 \\ 8 \\ 4 \\ 3 \end{cases}$	

i

3-383

indnv

intgrat2

Purpose	Integrates the following double integral, using user-defined functions f , g_1 and g_2 , and scalars a and b :		
	$\int_{a}^{b}\int_{g_{2^{(x)}}}^{g_{1^{(x)}}}f$	f(x, y)dydx	
Format	y = intgr	rat2(&f, xl, gl);	
Input	& f	scalar, pointer to the procedure containing the function to be integrated.	
	xl	2x1 or $2xN$ matrix, the limits of x. These must be scalar limits.	
	gl	2x1 or 2xN matrix of function pointers, the limits of y.	
	1	For xl and gl , the first row is the upper limit and the second row is the lower limit. N integrations are computed.	
Global Input	_intord	scalar, the order of the integration. The larger _intord , the more precise the final result will be. _intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.	
	_intrec	Default = 12. scalar. This variable is used to keep track of the level of recursion of intgrat2 and may start out with a different value if your program terminated inside of the integration function on a previous run. Always set _intrec explicitly to 0 before any call to intgrat2.	
Output	y Nx1 vector of the estimated integral(s) of $f(x,y)$ evaluated between the limits given by xl and gl .		
Remarks	The user-defined functions specified by f and gl must either		
	Retu Retu defir vecto /.	arn a scalar constant, OR arn a vector of function values. intgrat2 will pass to user- ned functions a vector or matrix for x and y and expect a for or matrix to be returned. Use .* and ./ instead of * and	

```
Example
             proc f(x,y);
                retp(cos(x) + 1).*(sin(y) + 1));
             endp;
             proc ql(x);
                retp(sqrt(1-x^2));
             endp;
             proc g2(x);
                retp(0);
             endp;
             xl = 1 | -1;
             g0 = \&g1 | \&g2;
             intord = 40;
             intrec = 0;
             y = intgrat2(&f,xl,q0);
             This will integrate the function f(x,y) = (cos(x)+1)(sin(y)+1) over the
             upper half of the unit circle. Note the use of the . * operator instead of just
             * in the definition of f(x,y). This allows f to return a vector or matrix of
             function values.
 Source
             intgrat.src
 Globals
             _intord, _intq12, _intq16, _intq2, _intq20,
             _intq24, _intq3, _intq32, _intq4, _intq40,
             _intq6, _intq8, _intrec
See also
             intgrat3, intquad1, intquad2, intquad3, intsimp
```

intgrat3

Purpose Integrates the following triple integral, using user-defined functions and scalars for bounds:

$$\int_{a}^{b} \int_{g_{2}(x)}^{g_{1}(x)} \int_{h_{2}(x,y)}^{h_{1}(x,y)} f(x, y, z) dz dy dx$$

- Format y = intgrat3(&f,xl,gl,hl);
 - **Input** & scalar, pointer to the procedure containing the function to be integrated. F is a function of (x,y,z).
 - xl 2x1 or 2xN matrix, the limits of x. These must be scalar limits.
 - gl 2x1 or 2xN matrix of function pointers. These procedures are functions of x.
 - *hl* 2x1 or 2xN matrix of function pointers. These procedures are functions of x and y.

For *xl*, *gl*, and *hl*, the first row is the upper limit and the second row is the lower limit. N integrations are computed.

Global Input	_intord	scalar, the order of the integration. The larger _intord , the more precise the final result will be. _intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40. Default = 12.
	_intrec	scalar. This variable is used to keep track of the level of recursion of intgrat3 and may start out with a different value if your program terminated inside of the integration function on a previous run. Always setintrec explicitly to 0 before any call to intgrat3.
Output	y Nx1 v betwee	vector of the estimated integral(s) of $f(x,y,z)$ evaluated sen the limits given by xl , gl , and hl .

intgrat3		
Remarks	User-defined functions <i>f</i> , and those used in <i>gl</i> and <i>hl</i> , must either:	
	Return a scalar constant, OR	
	Return a vector of function values. intgrat3 will pass to user- defined functions a vector or matrix for x and y and expect a vector or matrix to be returned. Use .* and . / operators instead of just * or /.	
Example	<pre>proc f(x,y,z);</pre>	
	retp(2);	
	endp;	
	proc gl(x);	
	$retp(sart(25-x^2));$	
	endp;	
	proc g2(x);	
	retp(-gl(x));	
	endp;	
	<pre>proc h1(x,y);</pre>	
	$retp(sqrt(25 - x^2 - y^2));$	
	endp;	
	proc $h2(x,y);$	
	retp(-h1(x,y));	
	endp;	
	-	

xl = 5|-5; g0 = &g1|&g2; h0 = &h1|&h2; _intrec = 0; _intord = 40; y = intgrat3(&f,xl,g1,hl);

This will integrate the function f(x,y,z) = 2 over the sphere of radius 5. The result will be approximately twice the volume of a sphere of radius 5.

Source	intgrat.src				
Globals	_intord, _intq12, _intq16, _intq2, _intq20,				
	_intq24, _intq3, _intq32, _intq4, _intq40,				
	_intq6, _intq8, _intrec				
See also	intgrat2, intquad1, intquad2, intquad3, intsimp				

intquad1

intquad1

- **Purpose** Integrates a specified function using Gauss-Legendre quadrature. A suite of upper and lower bounds may be calculated in one procedure call.
 - Format y = intquad1(&f,xl);
 - **Input** & f scalar, pointer to the procedure containing the function to be integrated. This must be a function of x.
 - xl2xN matrix, the limits of x.The first row is the upper limit and the second row is the
lower limit. N integrations are computed.
 - _intord scalar, the order of the integration. The larger _intord, the more precise the final result will be. _intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40. Default = 12.
- **Global Input** __intord scalar, the order of the integration. The larger __intord, the more precise the final result will be. __intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40. Default = 12.
 - **Output** y Nx1 vector of the estimated integral(s) of f(x) evaluated between the limits given by xl.
 - **Remarks** The user-defined function f must return a vector of function values. intquad1 will pass to the user-defined function a vector or matrix for x and expect a vector or matrix to be returned. Use the **.*** and **.**/ instead of ***** and /.
 - **Example** proc f(x);

```
retp(x.*sin(x));
```

endp;

xl = 1|0; y = intquad1(&f,xl);

intquad1

This will integrate the function f(x) = xsin(x) between 0 and 1. Note the use of the **.*** instead of *.

Source	integral.src
Globals	_intord, _intq12, _intq16, _intq2, _intq20,
	_intq24, _intq3, _intq32, _intq4, _intq40,
	_intq6, _intq8
See also	<pre>intsimp, intquad2, intquad3, intgrat2, intgrat3</pre>

intquad2

intquad2

Purpose Integrates a specified function using Gauss-Legendre quadrature. A suite of upper and lower bounds may be calculated in one procedure call.

- Format y = intquad2(&f,xl,yl);
 - Input& fscalar, pointer to the procedure containing the function to be
integrated.xl2x1 or 2xN matrix, the limits of x.
 - *yl* 2x1 or 2xN matrix, the limits of *y*.For *xl* and *yl*, the first row is the upper limit and the second row is the lower limit. N integrations are computed.

Global Input _intord global scalar, the order of the integration. The larger __intord, the more precise the final result will be. __intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.

Default = 12.

- _intrec global scalar. This variable is used to keep track of the level of recursion of intquad2 and may start out with a different value if your program terminated inside of the integration function on a previous run. Always set __intrec explicitly to 0 before any calls to intquad2.
- **Output** y Nx1 vector of the estimated integral(s) of f(x,y) evaluated between the limits given by xl and yl.

Remarks The user-defined function f must return a vector of function values. intquad2 will pass to user-defined functions a vector or matrix for x and y and expect a vector or matrix to be returned. Use **.*** and **.**/ instead of * and /.

intquad2 will expand scalars to the appropriate size. This means that functions can be defined to return a scalar constant. If users write their functions incorrectly (using * instead of .*, for example), **intquad2** may not compute the expected integral, but the integral of a constant function.

To integrate over a region which is bounded by functions, rather than just scalars, use **intgrat2** or **intgrat3**.
intquad2

```
Example
              proc f(x,y);
                  retp(x.*sin(x+y));
              endp;
              xl = 1 | 0;
              yl = 1|0;
              intrec = 0;
              y = intquad2(&f,xl,yl);
              This will integrate the function \mathbf{x} \cdot \mathbf{sin}(\mathbf{x}+\mathbf{y}) between \mathbf{x} = 0 and 1, and
              between \mathbf{y} = 0 and 1.
  Source
              integral.src
 Globals
              _intord, _intq12, _intq16, _intq2, _intq20,
              _intq24, _intq3, _intq32, _intq4, _intq40,
              _intq6, _intq8, _intrec
```

See also intquad1, intquad3, intsimp, intgrat2, intgrat3

intquad3

intquad3

Purpose Integrates a specified function using Gauss-Legendre quadrature. A suite of upper and lower bounds may be calculated in one procedure call.

- Format y = intquad3(&f,xl,yl,zl);
 - Input& fscalar, pointer to the procedure containing the function to be
integrated. f is a function of (x,y,z).xl2x1 or 2xN matrix, the limits of x.
 - yl2x1 or 2xN matrix, the limits of y.zl2x1 or 2xN matrix, the limits of z.
 - 2x1 or 2xN matrix, the limits of *z*. For *xl*, *yl*, and *zl*, the first row is the upper limit and the

second row is the lower limit. N integrations are computed.

Global Input __intord global scalar, the order of the integration. The larger __intord, the more precise the final result will be. __intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40.

Default = 12.

- _intrec global scalar. This variable is used to keep track of the level of recursion of intquad3 and may start out with a different value if your program terminated inside of the integration function on a previous run. Always set __intrec explicitly to 0 before any calls to intquad3.
- **Output** y Nx1 vector of the estimated integral(s) of f(x,y,z) evaluated between the limits given by xl, yl, and zl.
- **Remarks** The user-defined function f must return a vector of function values. intquad3 will pass to the user-defined function a vector or matrix for x, y, and z and expect a vector or matrix to be returned. Use **.*** and **./** instead of ***** and **/**.

intquad3 will expand scalars to the appropriate size. This means that functions can be defined to return a scalar constant. If users write their functions incorrectly (using * instead of .*, for example), **intquad3** may not compute the expected integral, but the integral of a constant function.

intquad3

To integrate over a region which is bounded by functions, rather than just scalars, use intgrat2 or intgrat3.

Example proc f(x,y,z); retp(x.*y.*z); endp; xl = 1 | 0;yl = 1 | 0; $zl = \{ 1 2 3, 0 0 0 \};$ intrec = 0;y = intquad3(&f,xl,yl,zl); This will integrate the function $f(x) = x^*y^*z$ over 3 sets of limits, since z1 is defined to be a 2x3 matrix. Source integral.src Globals _intord, _intq12, _intq16, _intq2, _intq20, _intq24, _intq3, _intq32, _intq4, _intq40, _intq6, _intq8, _intrec

See also intquad1, intquad2, intsimp, intgrat2, intgrat3

intrleav

intrleav

Purpose	Interleaves the rows of two files that have been sorted on a common variable, to give a single file sorted on that variable.		
Format	<pre>intrleav(infile1, infile2, outfile, keyvar, keytyp);</pre>		
Input	 infile1 string, name of input file 1. infile2 string, name of input file 2. outfile string, name of output file. keyvar string, name of key variable, this is the column the files are sorted on. keytyp scalar, data type of key variable. 1 numeric key, ascending order 2 character key, ascending order -1 numeric key, descending order -2 character key, descending order 		
Remarks	The two files MUST have exactly the same variables, i.e., the same number of columns AND the same variable names. They must both already be sorted on the key column. This procedure will combine them into one large file, sorted by the key variable. If the inputs are null or 0, the procedure will ask for them.		
Example	<pre>intrleav("freq.dat","freqata.dat", "intfile","AGE",1);</pre>		
Source	sortd.src		

intrsect

intrsect

Purpose	Returns the intersection of two vectors, with duplicates removed.	
Format	y = intrsect(v1,v2,flag);	
Input	v1Nx1 vector.v2Mx1 vector.flagscalar; if 1, v1, and v2 are numeric, if 0, character.	
Output	<i>y</i> Lx1 vector containing all unique values that are in both <i>v1</i> and <i>v2</i> , sorted in ascending order.	
Remarks	Place smaller vector first for fastest operation. If there are a lot of duplicates within a vector, it is faster to remove them with unique before calling intrsect .	
Source	intrsect.src	
Example	<pre>let v1 = mary jane linda dawn; let v2 = mary sally lisa ruth linda; y = intrsect(v1,v2,0);</pre>	
	$y = \frac{LINDA}{MARY}$	

intsimp

intsimp

Purpose	Integrates a specified function using Simpson's method with end correction. A single integral is computed in one function call.		
Format	y = intsimp(&f, xl, tol);		
Input	 <i>&f</i> pointer to the procedure containing the function to be integrated. <i>xl</i> 2x1 vector, the limits of <i>x</i>. The first element is the upper limit and the second element is the lower limit. <i>tol</i> The tolerance to be used in testing for convergence. 		
Output	<i>y</i> The estimated integral of $f(x)$ between $xl[1]$ and $xl[2]$.		
Example	<pre>proc f(x); retp(sin(x)); endp; let xl = { 1,</pre>		
Source	intsimp.src		
See also	<pre>intquad1, intquad2, intquad3, intgrat2, intgrat3</pre>		

inv, invpd

inv, invpd

Purpose	inv returns the inverse of an invertible matrix.		
	invpd returns the inverse of a sym	netric, positive definite matrix.	
Format	y = inv(x); y = invpd(x);		
Input	<i>x</i> NXN matrix.		
Output	<i>y</i> NxN matrix containing the i	nverse of <i>x</i> .	
Remarks	<i>x</i> can be any legitimate matrix expression that returns a matrix that is legal for the function.		
	For inv , <i>x</i> must be square and invertible.		
	For invpd , <i>x</i> must be symmetric and positive definite.		
	If the input matrix is not invertible by these functions, they will either terminate the program with an error message or return an error code which can be tested for with the scalerr function. This depends on the trap state as follows:		
	trap 1, return error code		
	inv invpd		
	50	20	
	trap 0, terminate with error message		
	inv	invpd	
	Matrix singular	Matrix not positive definite	
	If the input to invpd is not symmetric, it is possible that the function will (erroneously) appear to operate successfully.		

Positive definite matrices can be inverted by **inv**. However, for symmetric, positive definite matrices (such as moment matrices), **invpd** is about twice as fast as **inv**.

inv, invpd Example n = 4000; x1 = rndn(n,1); x = ones(n,1)~x1; btrue = { 1, 0.5 }; y = x*btrue + rndn(n,1); bols = invpd(x'x)*x'y; bols = 1.017201 0.484244 This example simulates some data and computes the ols coefficient estimator using the invpd function. First, the number of observations is specified. Second, a vector x1 of standard Normal random variables is generated and is concatenated with a vector of 1's (to create a constant term). The true coefficient estimates are computed.

See also scalerr, trap, prcsn

Technical Notes

For complex matrices, **inv** uses the ZGECO, ZGEDI path in the LINPACK routines. For real matrices, it uses the **croutp** function.

The **inv** function uses the Crout decomposition. The advantage of this routine is that on some platforms it allows most of the intermediate results to be computed in extended precision.

The **invpd** function uses the Cholesky decomposition and is based upon the LINPACK routines for positive definite matrices. On OS/2 and DOS, if **prcsn** 80 is in effect, all intermediate calculations and intermediate results will be in the 80-bit extended precision of the 80x87 temporary real format. The final results will be rounded to 64-bit double precision.

The tolerance used to determine singularity is 1.0e-14. This can be changed. See "Singularity Tolerance" in the *User's Guide*.

invswp

invswp

Purpose	Computes a generalized sweep inverse.		
Format	y = invswp(x);		
Input	<i>x</i> NxN matrix.		
Output	y NxN matrix, the generalized inverse of <i>x</i> .		
Remarks	This will invert any general matrix. That is, even matrices which will not invert using inv because they are singular will invert using invswp .		
	x and y will satisfy the four Moore-Penrose conditions:		
	 xyx = x yxy = y xy is symmetric yx is symmetric The tolerance used to determine if a pivot element is zero is taken from		
	the crout singularity tolerance. The corresponding row and column are zeroed out. See "Appendix C" in the <i>User's Guide</i> .		
Example	<pre>let x[3,3] = 1 2 3 4 5 6 7 8 9; y = invswp(x);</pre>		
	$y = \begin{bmatrix} -1.6666667 & 0.66666667 & 0.0000000 \\ 1.3333333 & -0.3333333 & 0.0000000 \\ 0.0000000 & 0.0000000 & 0.0000000 \end{bmatrix}$		

iscplx

iscplx

Purpose	Returns whether a matrix is complex or real.	
Format	y = iscplx(x);	
Input	<i>x</i> NxK matrix.	
Output	y scalar, 1 if x is complex, 0 if it is real.	
Example	x = { 1, 2i, 3 };	
	<pre>y = iscplx(x);</pre>	
	v = 1	

See also hasimag, iscplxf

iscplxf

iscplxf

Purpose	Returns whether a data set is complex or real.	
Format	y = iscplxf(fh);	
Input	fh	scalar, file handle of an open file.
Output	у	scalar, 1 if the data set is complex, 0 if it is real.
See also	hasimag, iscplx	

isinfnanmiss

isinfnanmiss

Purpose	Returns true if the argument contains an infinity, NaN, or missing value	
Format	<pre>y = isinfnanmiss(x);</pre>	
Input	x	NxK matrix.
Output	у	scalar, 1 if <i>x</i> contains any infinities, NaNs, or missing values, else 0.
See Also	scalinfnanmiss, ismiss, scalmiss	

ismiss

ismiss

Purpose	Returns a 1 if its matrix argument contains any missing values, otherwise returns a 0.		
Format	y = ismiss(x);		
Input	<i>x</i> NxK matrix.		
Output	y scalar, 1 or 0.		
Remarks	y will be a scalar 1 if the matrix x contains any missing values, otherwise it will be a 0.		
	An element of x is considered to be a missing if and only if it contains a missing value in the real part. Thus, for $x = 1 + .i$, ismiss (x) will return a 0.		
Example	x = { 1 6 3 4 };		
	y = ismiss(x);		
	y = 0		
See also	scalmiss, miss, missrv		

isSparse

isSparse

Purpose	Tests whether a matrix is a sparse matrix.	
Format	<pre>r = isSparse(x);</pre>	
Input	<i>x</i> MXN sparse or dense matrix.	
Output	r scalar, 1 if x is sparse, 0 otherwise.	
Source	sparse.src	

keep (dataloop)

keep (dataloop)

- **Purpose** Specifies columns (variables) to be saved to the output data set in a data loop.
 - **Format** keep variable_list;
- **Remarks** Commas are optional in variable_list.

Retains only the specified variables in the output data set. Any variables referenced must already exist, either as elements of the source data set, or as the result of a previous **make**, **vector**, or **code** statement.

If neither **keep** nor **drop** is used, the output data set will contain all variables from the source data set, as well as any newly defined variables. The effects of multiple **keep** and **drop** statements are cumulative.

- **Example** keep age, pay, sex;
- See also drop

key

key

Purpose Returns the ASCII value of the next key available in the keyboard buffer.

Format y = key;

Remarks If you are working in terminal mode, **key** does not "see" any keystrokes until ENTER is pressed. The value returned will be zero if no key is available in the buffer or it will equal the ASCII value of the key if one is available. The key is taken from the buffer at this time and the next call to **key** will return the next key.

Here are the values returned if the key pressed is not a standard ASCII character in the range of 1-255.

1015	SHIFT+TAB
1016-1025	ALT+Q, W, E, R, T, Y, U, I, O, F
1030-1038	ALT+A, S, D, F, G, H, J, K, L
1044-1050	ALT+Z, X, C, V, B, N, M
1059-1068	F1-F10
1071	HOME
1072	CURSOR UP
1073	PAGE UP
1075	LEFT ARROW
1077	RIGHT ARROW
1079	END
1080	DOWN ARROW
1081	PAGE DOWN
1082	INSERT
1083	DELETE
1084-1093	SHIFT+F1-F10
1094-1103	CTRL+F1-F10
1104-1113	ALT+F1-F10
1114	CTRL+PRINT SCREEN
1115	CTRL+LEFT ARROW
1116	CTRL+RIGHT ARROW
1117	CTRL+END
1118	CTRL+PAGE DOWN

k

key

	1119	CTRL+HOME				
	1120-1131	ALT+1,2,3,4,5,6,7,8,9,0,HYPHEN, EQUAL SIGN				
	1132	CTRL+PAGE UP				
Example	format /rds 1	, 0 ;				
	kk = 0;					
	do until kk =:	= 27;				
	kk = key;	kk = key;				
	if kk == 0;	if kk == 0;				
	continue	;;				
	elseif kk =	== vals(" ");				
	print "s	pace \\" kk;				
	elseif kk == vals("\r");					
	print "c	arriage return $\backslash $ " kk;				
	elseif kk 2	<pre>vals("0") and kk \leq vals("9");</pre>				
	print "d	ligit $\backslash $ kk chrs(kk);				
	elseif vals	$s(upper(chrs(kk))) \ge vals("A") and$				
	val	$s(upper(chrs(kk))) \leq vals("Z");$				
	print "a	lpha $\backslash $ kk chrs(kk);				
	else;					
	print "\	\" kk;				
	endif;					
	endo;					
	This is an example of continue until the E	of a loop that processes keyboard input. This loop will SC key (ASCII 27) is pressed.				

See also vals, chrs, upper, lower, con, cons

k

keyav

keyav

Purpose	Check if keystroke is available.					
Format	x = keyav;					
Output	<i>x</i> scalar, value of key or 0 if no key is available.					
See also	keyw, key					

keyw

keyw

Purpose	Waits for and gets a key.
Format	k = keyw;
Output	<i>k</i> scalar, ASCII value of the key pressed.
Remarks	If you are working in terminal mode, GAUSS will not see any input until you press the ENTER key. keyw gets the next key from the keyboard buffer. If the keyboard buffer is empty, keyw waits for a keystroke. For normal keys, keyw returns the ASCII value of the key. See key for a table of return values for extended and function keys.

See also key

keyword

keyword

Purpose Begins the definition of a keyword procedure. Keywords are user-defined functions with local or global variables.

Format keyword name(str);

Input *name* literal, name of the keyword. This name will be a global symbol.

str string, a name to be used inside the keyword to refer to the argument that is passed to the keyword when the keyword is called. This will always be local to the keyword, and cannot be accessed from outside the keyword or from other keywords or procedures.

Remarks A keyword definition begins with the **keyword** statement and ends with the **endp** statement. See "Procedures and Keywords" in *User's Guide*.

Keywords always have 1 string argument and 0 returns. GAUSS will take everything past *name*, excluding leading spaces, and pass it as a string argument to the keyword. Inside the keyword, the argument is a local string. The user is responsible to manipulate or parse the string.

An example of a keyword definition is:

```
keyword add(str);
local tok,sum;
sum = 0;
do until str $== "";
    { tok, str } = token(str);
    sum = sum + stof(tok);
endo;
print "Sum is: " sum;
endp;
To use this keyword, type:
add 1 2 3 4 5;
```

This keyword will respond by printing:

keyword

Sum is: 15

See also proc, local, endp

lag (dataloop)

lag (dataloop)

deleted.

Purpose	Lags variables a specified number of periods.					
Format	<pre>lag nv1 = var1:p1 [[nv2 = var2:p2]];</pre>					
Input	<i>var</i> name of the variable to lag.<i>p</i> scalar constant, number of periods to lag.					
Output	<i>nv</i> name of the new lagged variable.					
Remarks	You can specify any number of variables to lag. Each variable can be lagged a different number of periods. Both positive and negative lags are allowed.					
	Lagging is executed before any other transformations. If the new variable name is different from that of the variable to lag, the new variable is first created and appended to a temporary data set. This temporary data set					

becomes the input data set for the data loop, and is then automatically

lag1

lag1

Purpose	Lags a matrix by one time period for time series analysis.				
Format	y = lagl(x);				
Input	<i>x</i> NxK matrix.				
Output	y NxK matrix, x lagged 1 period.				
Remarks	lag1 lags x by one time period, so the first observations of y are missing.				
Source	lag.src				
See also	lagn				

lagn

lagn

Purpose Lags a matrix a specified number of time periods for time series analysis.

Format	y = lagn(x,t);					
Input	<i>x</i> NxK matrix.<i>t</i> scalar, number of time periods.					
Output	y NxK matrix, x lagged t periods.					
Remarks	If t is positive, lagn lags x back t time periods, so the first t observations of y are missing. If t is negative, lagn lags x forward t time periods, so the last t observations of y are missing.					
Source	lag.src					

- See also lag1

lapeighb

lapeighb

Purpose	Computes eigenvalues only of a real symmetric or complex Hermitian matrix selected by bounds.						
Format	ve = lapeighb(x, vl, vu);						
Input	x vl	NXN matrix, real symmetric or complex Hermitian. scalar, lower bound of the interval to be searched for eigenvalues.					
	vu	scala: eigen	r, uppe values	er bound of the interval to be searched for s; <i>vu</i> must be greater than <i>vl</i> .			
	abstol	scalar appro- is det equal mach zero, the tr matri	r, the a ermine to AF ine pr then F idiago x to tr	absolute error tolerance for the eigenvalues. An e eigenvalue is accepted as converged when it ed to lie in an interva $[a,b]$ of width less than or BSTOL + EPS*max($ a , b $), where EPS is ecision. If ABSTOL is less than or equal to EPS* $ T $ will be used in its place, where <i>T</i> is nal matrix obtained by reducing the input idiagonal form.			
Output	ve	Mx1 eigen eigen	vector values values	c, eigenvalues, where M is the number of s on the half open interval $(vl,vu]$. If no s are found then s is a scalar missing value.			
Remarks	lapeighb computes eigenvalues only which are found on on the half open interval (<i>vl</i> , <i>vu</i>]. To find eigenvalues within a specified range of indices see lapeighi . For eigenvectors see lapeighvi , or lapeighvb lapeighb is based on the LAPACK drivers DYESVX and ZHEEVX. Further documentation of these functions may be found in the LAPACK User's Guide.						
Example	x = {	5	2	1,			
		2	6	2,			
		1	2	9 };			
	vl =	5;					
	vu =	10;					
	<pre>ve = lapeighi(x,il,iu,0);</pre>						

lapeighb

print ve;

6.0000

See also lapeighb, lapeighvi, lapeighvb

lapeighi

lapeighi

Purpose	Computes eigenvalues only of a real symmetric or complex Hermitian matrix selected by index.							
Format	<pre>ve = lapeighi(x,il,iu,abstol);</pre>							
Input	x il iu abstol	NxN matrix, real symmetric or complex Hermitian. scalar, index of the smallest desired eigenvalue ranking them from smallest to largest. scalar, index of the largest desired eigenvalue, <i>iu</i> must be greater than <i>il</i> . stol scalar, the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[a,b]$ of width less than or equal to ABSTOL + EPS*max($ a , b $), where EPS is machine precision. If ABSTOL is less than or equal to zero, then EPS* $ T $ will be used in its place, where <i>T</i> is the tridiagonal matrix obtained by reducing the input matrix to tridiagonal form.						
Output	ve	(iu-il-	⊦1) x 1	vector, eigenvalues.				
Remarks	lapeighi computes <i>iu-il</i> +1 eigenvalues only given a range of indices, i.e., the i-th to j-th eigenvalues, ranking them from smallest to largest. To find eigenvalues within a specified range see lapeighxb . For eigenvectors see LEIGHVX, lapeighvi , or lapeighvb . lapeighi is based on the LAPACK drivers DYESVX and ZHEEVX. Further documentation of these functions may be found in the LAPACK User's Guide.							
Example	x = { il = iu = ve = print	5 2 1 2; 3; lape.	2 6 2 ighi	1, 2, 9 }; (x,il,iu,0);				

lapeighi

6.0000 10.6056

See also lapeighb, lapeighvi, lapeighvb

lapeighvb

lapeighvb

Purpose	Computes eigenvalues and eigenvectors of a real symmetric or complex Hermitian matrix selected by bounds.							
Format	<pre>{ ve,va } = lapeighvb(x,vl,vu,abstol);</pre>							
Input	 <i>x</i> NXN matrix, real symmetric or complex Hermitian. <i>vl</i> scalar, lower bound of the interval to be searched for eigenvalues. <i>vu</i> scalar, upper bound of the interval to be searched for 							
	abstol	eigenvalues; <i>vu</i> must be greater than <i>vl</i> . scalar, the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[a,b]$ of width less than or equal to ABSTOL + EPS*max($ a , b $), where EPS is machine precision. If ABSTOL is less than or equal to zero, then EPS* $ T $ will be used in its place, where <i>T</i> is the tridiagonal matrix obtained by reducing the input matrix to tridiagonal form.						
Output	ve va	Mx1 vector, eigenvalues, where M is the number of eigenvalues on the half open interval $(vl,vu]$. If no eigenvalues are found then <i>s</i> is a scalar missing value.						
Remarks	lapeighvb computes eigenvalues and eigenvectors which are found on the half open interval (<i>vl</i> , <i>vu</i>]. lapeighvb is based on the LAPACK drivers DYESVX and ZHEEVX. Further documentation of these functions may be found in the LAPACK User's Guide.							
Example	x = { vl = vu =	5 2 1 5; 10;	2 6 2	1, 2, 9 };				
	<pre>{ ve,va } = lapeighvb(x,il,iu,0);</pre>							

lapeighvb

print ve;

See also	lapeighvb
	0.5774
	-0.5774 -0.5774
	print va;
	6.0000

lapeighvi

lapeighvi

Purpose	Computes selected eigenvalues and eigenvectors of a real symmetric or complex Hermitian matrix.									
Format	<pre>{ ve,va } = lapeighvi(x,il,iu,abstol);</pre>									
Input	NxN matrix, real symmetric or complex Hermitian. scalar, index of the smallest desired eigenvalue ranking them from smallest to largest. calar, index of the largest desired eigenvalue, <i>iu</i> must be greater than <i>il</i> . scalar, the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[a,b]$ of width less than or equal to ABSTOL + EPS*max($ a , b $), where EPS is machine precision. If ABSTOL is less than or equal to zero, then EPS* $ T $ will be used in its place, where <i>T</i> is the tridiagonal matrix obtained by reducing the input matrix to tridiagonal form.									
Output	$\begin{array}{ll} & (iu - il + 1) \times 1 \text{ vector, eigenvalues.} \\ & \text{Nx}(iu - il + 1) \text{ matrix, eigenvectors.} \end{array}$									
Remarks	lapeighvi computes <i>iu-il</i> +1 eigenvalues and eigenvectors given a range of indices, i.e., the i-th to j-th eigenvalues, ranking them from smallest to largest. To find eigenvalues and eigenvectors within a specified range see lapeighvb . lapeighvi is based on the LAPACK drivers DYESVX and ZHEEVX. Further documentation of these functions may be found in the LAPACK User's Guide.									
Example	$x = \{ 5 \ 2 \ 1, \\ 2 \ 6 \ 2, \\ 1 \ 2 \ 9 \};$ il = 2; iu = 3; $\{ x = x = \{ 5 \ 2 \ 1, \\ 2 \ 9 \};$									

lapeighvi

print ve; 6.0000 10.6056 print va; -0.5774 0.3197 -0.5774 0.4908 0.5774 0.8105

See also

• lapeighvb, lapeighb

lapgeig

lapgeig

Purpose	Computes generalized eigenvalues for a pair of real or complex general matrices.							
Format	<pre>{ val,va2 } = lapgeig(A,B);</pre>							
Input	<i>A</i> NxN matrix, real or complex general matrix.<i>B</i> NxN matrix, real or complex general matrix.							
Output	<i>va1</i> Nx1 vector, numerator of eigenvalues.<i>va2</i> Nx1 vector, denominator of eigenvalues.							
Remarks	<i>va1</i> and <i>va2</i> are the vectors of the numerators and denominators respectively of the eigenvalues of the solution of the generalized symmetric eigenproblem of the form $Aw = eBw$ where <i>A</i> and <i>B</i> are real or complex general matrices and $w = va1$./ <i>va2</i> . The generalized eigenvalues are not computed directly because some elements of <i>va2</i> may be zero, i.e., the eigenvalues may be infinite. This procedure calls the LAPACK routines DGEGV and ZGEGV.							

See also lapgeig, lapgeigh

lapgeigh

lapgeigh

- **Purpose** Computes generalized eigenvalues for a pair of real symmetric or Hermitian matrices.
 - Format ve = lapgeigh(A,B);
 - **Input** *A* NxN matrix, real or complex symmetric or Hermitian matrix.
 - *B* NxN matrix, real or complex positive definite symmetric or Hermitian matrix.
 - **Output** *ve* Nx1 vector, eigenvalues.
- **Remarks** *ve* is the vector of eigenvalues of the solution of the generalized symmetric eigenproblem of the form $Ax = \lambda Bx$.

Example	A = {	3	4	5,		
		2	5	2,		
		3	2	4 };		
	B = {	4	2	2,		
		2	6	1,		
		2	1	8 };		
	ve = .	lap	gei	gh(A,B);		
	print ve;					
	-0.18577146					
	0.50	880	165	1.1335370		

This procedure calls the LAPACK routines DSYGV and ZHEGV.

See also lapgeig, lapgeighv

lapgeighv

lapgeighv

Purpose	Computes generalized eigenvalues and eigenvectors for a pair of real symmetric or Hermitian matrices.		
Format	$\{ve, va\}$ = lapgeighv(A,B);		
Input	<i>A</i> NxN matrix, real or complex symmetric or Hermitian matrix.		
	<i>B</i> NxN matrix, real or complex positive definite symmetric or Hermitian matrix.		
Output	<i>ve</i> Nx1 vector, eigenvalues.		
	<i>va</i> NxN matrix, eigenvectors.		
Remarks	<i>ve</i> and <i>va</i> are the eigenvalues and eigenvectors of the solution of the generalized symmetric eigenproblem of the form $Ax = \lambda Bx$. Equivalently, <i>va</i> diagonalizes $U^{-1}A U^{-1}$ in the following way		
	$vaU'^{-1}AU^{-1}va' = e$		
	where $B = U'U$. This procedure calls the LAPACK routines DSYGV and ZHEGV.		
Example	$A = \{ 3 \ 4 \ 5 , \}$		
	2 5 2,		
	3 2 4 };		
	$B = \{ 4 \ 2 \ 2 ,$		
	2 6 1,		
	2 1 8 };		
	<pre>{ ve, va } = lapgeighv(A,B);</pre>		
	print ve;		
	-0.0425		
	0.5082		
	0.8694		

lapgeighv

print va;		
0.3575	-0.0996	0.9286
-0.2594	0.9446	0.2012
-0.8972	-0.3128	0.3118

See also lapgeig, lapgeigh
lapgeigv

lapgeigv

Purpose	Computes generalized eigenvalues, left eigenvectors, and right eigenvectors for a pair of real or complex general matrices.		
Format	{ va	<pre>l,va2,lve,rve } = lapgeigv(A,B);</pre>	
Input	A	NxN matrix, real or complex general matrix.	
	В	NxN matrix, real or complex general matrix.	
Output	va1	Nx1 vector, numerator of eigenvalues.	
	va2	Nx1 vector, denominator of eigenvalues.	
	lve	NxN left eigenvectors.	
	rve	NxN right eigenvectors.	
Remarks	<i>va1</i> and <i>va2</i> are the vectors of the numerators and denominators respectively of the eigenvalues of the solution of the generalized symmetric eigenproblem of the form $Aw = \lambda Bw$ where A and B are rea		

respectively of the eigenvalues of the solution of the generalized symmetric eigenproblem of the form $Aw = \lambda Bw$ where A and B are real or complex general matrices and w = va1./ va2. The generalized eigenvalues are not computed directly because some elements of va2 may be zero, i.e., the eigenvalues may be infinite.

The left and right eigenvectors diagonalize $U'^{-1}A U^{-1}$ where B = U'U, that is,

$$lve U'^{-1}AU lve' = w$$

and

$$rve'U'^{-1}AU^{-1}rve = w$$

This procedure calls the LAPACK routines DGEGV and ZGEGV.

See also lapgeig, lapgeigh

lapgsvds

lapgsvds

- **Purpose** Compute the generalized singular value decomposition of a pair of real or complex general matrices.
 - **Format** { C,S,R } = lapgsvds(A,B);
 - InputAMxN real or complex matrix.BPxN real or complex matrix.

Output C Lx1 vector, singular values for A.

- *S* Lx1 vector, singular values for *B*.
- R (K+L)x(K+L) upper triangular matrix.
- **Remarks** (1) The generalized singular value decomposition of *A* and *B* is

```
U'AQ = D_1Z
```

```
V'BQ = D_2Z
```

where *U*, *V*, and *Q* are orthogonal matrices (see **lapgsvdcst** and **lapgsvdst**). Letting K+L = the rank of *A*|*B* then *R* is a (K+L)**x**(K+L) upper triangular matrix, D1 and D2 are M**x**(K+L) and P**x**(K+L) matrices with entries on the diagonal, Z = [0 R], and if M-K-L >= 0

$$D_{1} = \begin{array}{c} K L \\ K \begin{bmatrix} I & O \\ O & C \\ M - K - L \end{bmatrix}$$

$$D_2 = \begin{array}{c} K L \\ D_2 = L \begin{bmatrix} O & S \\ O & O \end{bmatrix}$$

lapgsvds

$$[O R] = \begin{array}{c} N - K - L & K & L \\ O & R_{11} & R_{12} \\ L & O & O & R_{22} \end{array}$$

$$D_{1} = \begin{array}{c} K & M-K & K+L-M \\ M-K \begin{bmatrix} I & O & O \\ O & C & O \end{bmatrix}$$

$$M-K \begin{bmatrix} M-K & K+L-M \\ M-K \begin{bmatrix} O & S & O \\ O & O & I \\ P-L \end{bmatrix}$$

$$\begin{bmatrix} O & R \end{bmatrix} = \begin{array}{cccc} & K & M - K & K + L - M \\ & K \\ & M - K \\ & K + L - M \end{array} \begin{bmatrix} O & R_{11} & R_{12} & R_{13} \\ O & O & R_{22} & R_{23} \\ O & O & O & R_{33} \end{bmatrix}$$

(2) Form the matrix

$$X = Q \begin{bmatrix} I & O \\ O & R^{-1} \end{bmatrix}$$

then

$$A = U'^{-1}E_1X$$
$$B = V'^{-1}E_2X^{-1}$$

where $E_1 = \begin{bmatrix} O & D_2 \end{bmatrix}$. $E_2 = \begin{bmatrix} O & A_2 \end{bmatrix}$

1

lapgsvds

(3) The generalized singular value decomposition of *A* and *B* implicitly produces the singular value decomposition of AB^{-1} :

$$AB^{-1} = UD_1D_2^{-1}V'$$

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

Also see lapgsvdcst and lapgsvdst

lapgsvdcst

lapgsvdcst

Purpose	Compute the generalized singular value decomposition of a pair of real or complex general matrices.		
Format	$\{C,S,R,U,V,Q\} = lapgsvdcst(A,B);$		
Input	<i>A</i> MxN matrix.<i>B</i> PxN matrix.		
Output	 <i>C</i> Lx1 vector, singular values for <i>A</i>. <i>S</i> Lx1 vector, singular values for <i>B</i>. <i>R</i> (K+L)x(K+L) upper triangular matrix. <i>U</i> MxM matrix, orthogonal transformation matrix. <i>V</i> PxP matrix, orthogonal transformation matrix. <i>U</i> NxN matrix, orthogonal transformation matrix. 		
Remarks	(1) The generalized singular value decomposition of A and B is $U'AQ = D_1Z$ $V'BQ = D_2Z$		

where *U*, *V*, and *Q* are orthogonal matrices (see **lapgsvdcst** and **lapgsvdst**). Letting K+L = the rank of A|B then *R* is a (K+L)**x**(K+L) upper triangular matrix, D1 and D2 are M**x**(K+L) and P**x**(K+L) matrices with entries on the diagonal, Z = [0 *R*], and if M-K-L >= 0

$$D_{1} = \begin{array}{c} K L \\ K \begin{bmatrix} I & O \\ O & C \\ M - K - L \begin{bmatrix} O & O \end{bmatrix} \end{array}$$

$$D_2 = \begin{array}{c} & & & \\ L & \\ P - L & \\ O & O \end{array}$$

lapgsvdcst

$$\begin{bmatrix} O \ R \end{bmatrix} = \begin{matrix} N-K-L \ K \ L \\ O \ R_{11} \ R_{12} \\ O \ O \ R_{22} \end{bmatrix}$$
$$K \ M-K \ K+L-M \\ D_1 = \begin{matrix} K \\ M-K \\ M-K \\ O \ C \ O \end{matrix}$$
$$M-K \ K+L-M \\ D_2 = \begin{matrix} K+L-M \\ P-L \\ O \ O \ O \end{matrix}$$

$$\begin{bmatrix} O & R \end{bmatrix} = M - K \begin{bmatrix} O & R_{11} & R_{12} & R_{13} \\ M - K \\ K + L - M \begin{bmatrix} O & O & R_{22} & R_{23} \\ O & O & O & R_{33} \end{bmatrix}$$

(2) Form the matrix

$$X = Q \begin{bmatrix} I & O \\ O & R^{-1} \end{bmatrix}$$

then

$$A = U'^{-1}E_1X$$
$$B = V'^{-1}E_2X^{-1}$$

where
$$E_1 = \begin{bmatrix} O & D_2 \end{bmatrix}$$
. $E_2 = \begin{bmatrix} O & A_2 \end{bmatrix}$

lapgsvdcst

(3) The generalized singular value decomposition of *A* and *B* implicitly produces the singular value decomposition of AB^{-1} :

$$AB^{-1} = UD_1D_2^{-1}V'$$

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

See also lapgsvds and lapgsvdst

lapgsvdst

lapgsvdst

Purpose	Compute the generalized singular value decomposition of a pair of real or complex general matrices.		
Format	$\{ D1, D2, Z, U, V, Q \} = lapgsvdst(A, B);$		
Input	<i>A</i> MxN matrix.<i>B</i> PxN matrix.		
Output	 D1 Mx(K+L) matrix, with singular values for A on diagonal. D2 Px(K+L) matrix, with singular values for B on diagonal. Z (K+L)xN matrix, partitioned matrix composed of a zero matrix and upper triangular matrix. U MxM matrix, orthogonal transformation matrix. V PxP matrix, orthogonal transformation matrix. U NxN matrix, orthogonal transformation matrix. 		
Remarks	(1) The generalized singular value decomposition of <i>A</i> and <i>B</i> is $U'AQ = D_1Z$ $V'BQ = D_2Z$ where <i>U</i> , <i>V</i> , and <i>Q</i> are orthogonal matrices (see lapgsvdcst and lapgsvdst). Letting K+L = the rank of <i>A</i> <i>B</i> then <i>R</i> is a (K+L)x(K+L) upper triangular matrix, D1 and D2 are Mx(K+L) and Px(K+L) matrix with entries on the diagonal, Z = [0 <i>R</i>], and if M-K-L >= 0		
	$D_{1} = \begin{bmatrix} K & L \\ K & I & O \\ L & O & C \end{bmatrix}$		

$$D_{1} = \begin{bmatrix} U & U \\ M - K - L \end{bmatrix} \begin{bmatrix} U & U \\ O & O \end{bmatrix}$$
$$D_{2} = \begin{bmatrix} K & L \\ P - L \begin{bmatrix} O & S \\ O & O \end{bmatrix}$$

lapgsvdst

$$[O R] = \begin{array}{c} N - K - L & K & L \\ O & R_{11} & R_{12} \\ L & O & O & R_{22} \end{array}$$

$$D_{1} = \begin{array}{c} K & M-K & K+L-M \\ M-K \begin{bmatrix} I & O & O \\ O & C & O \end{bmatrix}$$

$$M-K \begin{bmatrix} M-K & K+L-M \\ M-K \begin{bmatrix} O & S & O \\ O & O & I \\ P-L \end{bmatrix}$$

$$\begin{bmatrix} O & R \end{bmatrix} = \begin{array}{cccc} N - K - L & K & M - K & K + L - M \\ K \\ M - K \\ K + L - M \end{array} \begin{bmatrix} O & R_{11} & R_{12} & R_{13} \\ O & O & R_{22} & R_{23} \\ O & O & O & R_{33} \end{bmatrix}$$

(2) Form the matrix

$$X = Q \begin{bmatrix} I & O \\ O & R^{-1} \end{bmatrix}$$

then

$$A = U'^{-1}E_1X$$
$$B = V'^{-1}E_2X^{-1}$$

where $E_1 = \begin{bmatrix} O & D_2 \end{bmatrix}$. $E_2 = \begin{bmatrix} O & A_2 \end{bmatrix}$

1

lapgsvdst

(3) The generalized singular value decomposition of *A* and *B* implicitly produces the singular value decomposition of AB^{-1} :

$$AB^{-1} = UD_1D_2^{-1}V'$$

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

See also lapgsvds and lapgsvdcst

lapschur

lapschur

Purpose	Compute the generalized Schur form of a pair of real or complex general matrices.		
Format	$\{ sa, sb, q, z \} = lapschur(A,B);$		
Input	 <i>A</i> NxN matrix, real or complex general matrix. <i>B</i> NxN matrix, real or complex general matrix. 		
Output	 sa NxN matrix, Schur form of A. sb NxN matrix, Schur form of B. q NxN matrix, left Schur vectors. z NxN matrix, right Schur vectors. 		
Remarks	The pair of matrices <i>A</i> and <i>B</i> are in generalized real Schur form when <i>B</i> is upper triangular with non-negative diagonal, and <i>A</i> is block upper triangular with 1x1 and 2x2 blocks. The 1x1 blocks correspond to real generalized eigenvalues and the 2x2 blocks to pairs of complex conjugate eigenvalues. The real generalized eigenvalues can be computed by dividing the diagonal element of sa by the corresponding diagonal element of <i>sb</i> . The complex generalized eigenvalues are computed by first constructing two complex conjugate numbers from 2x2 block where		

generalized eigenvalues and the 2x2 blocks to pairs of complex conjugate eigenvalues. The real generalized eigenvalues can be computed by dividing the diagonal element of sa by the corresponding diagonal element of *sb*. The complex generalized eigenvalues are computed by first constructing two complex conjugate numbers from 2x2 block where the real parts are on the diagonal of the block and the imaginary part on the off-diagonal. The eigenvalues are then computed by dividing the two complex conjugate values by their corresponding diagonal elements of *sb*. The generalized Schur vectors q and z are orthogonal matrices that reduce *A* and *B* to Schur form:

> sa = q' A zsb q' B z

This procedure calls the LAPACK routines DGEGS and ZGEGS.

lapsvdcusv

lapsvdcusv

Purpose	Computes the singular value decomposition a real or complex rectangular matrix, returns compact u and v.		
Format	$\{u, s, v\} = lapsvdcusv(x);$		
Input	<i>x</i> MxN matrix, real or complex rectangular matrix.		
Output	 <i>u</i> Mxmin(M,N) matrix, left singular vectors. <i>s</i> min(M,N)xN matrix, singular values. <i>v</i> NxN matrix, right singular values. 		
Remarks	 Lapsvdcusv computes the singular value decomposition of a real or complex rectangular matrix. The SVD is x = usv' where v is the matrix of right singular vectors. Lapsvdcusv is based on the LAPACK drivers DGESVD and ZGESVD. Further documentation of these functions may be found in the LAPACK User's Guide. 		
Example	<pre>x = { 2.143 4.345 6.124,</pre>		

lapsvdcusv

print s;

See also

13.8958680.00000000.00000000.00000002.18939390.00000000.00000000.00000001.4344261			
print v;			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
lapsvds, lapsvdusv			

1

lapsvds

lapsvds

Purpose	Computes the singular values of a real or complex rectangular matrix			
Format	s = lapsvds(x);			
Input	<i>x</i> MxN matrix, real or complex rectangular matrix.			
Output	<i>s</i> MiN(M,N)x1 vector, singular values.			
Remarks	lapsvd computes the singular values of a real or complex rectangular matrix. The svd is			
	x = usv'			
	where v is the matrix of right singular vectors. For the computation of the singular vectors, see lapsvdcusv and lapsvdusv .			
	lapsvd is based on the LAPACK drivers DGESVD and ZGESVD. Further documentation of these functions may be found in the LAPACK User's Guide.			
Example	x = { 2.143 4.345 6.124,			
	1.244 5.124 3.412,			
	0.235 5.657 8.214 };			
	<pre>va = lapsvd(x); print va;</pre>			
	13.895868 2.1893939 1.4344261			
	xi = { 4+1 3+1 2+2,			
	1+2 5+3 2+2,			
	1+1 2+1 6+2 };			
	<pre>ve = lapsvds(xi); print ve;</pre>			
	10.352877 4.0190557 2.3801546			
See also	lapsvdcusv, lapsvdusv			

lapsvdusv

lapsvdusv

Purpose	Computes the singular value decomposition a real or complex rectangular matrix.			
Format	$\{u, s, v\} = lapsvdusv(x);$			
Input	<i>x</i> MxN matrix, real or complex rectangular matrix.			
Output	 <i>u</i> MXM matrix, left singular vectors. <i>s</i> MXN matrix, singular values. <i>v</i> NXN matrix, right singular values. 			
Remarks	<pre>lapsvdusv computes the singular value decomposition of a real or complex rectangular matrix. The SVD is x = usv'</pre>			
	where v is the matrix of right singular vectors. lapsvdusv is based on the LAPACK drivers DGESVD and ZGESVD. Further documentation of these functions may be found in the LAPACK User's Guide.			
Example	$x = \{ 2.143 \ 4.345 \ 6.124,$			
	1.244 5.124 3.412,			
	0.235 5.657 8.214 };			
	$\{ u, s, v \} = lapsvdusv(x);$			
	print u;			
	-0.5553 0.0490 0.8302			
	-0.4309 0.8368 -0.3377			
	-0.7113 -0.5452 -0.4436			
	print s;			
	13.8959 0.0000 0.0000			
	0.0000 2.1894 0.0000			
	0.0000 0.0000 1.4344			

lapsvdusv

print v; -0.1362 0.4650 0.8748 0.6221 0.6470 -0.4408 -0.7710 -0.6043 0.2011

See also lapsvds, lapsvdcusv

let

let

Purpose	Creates a matrix from a list of numeric or character values. The result is
•	always of type matrix, string or string array.

Format let *x* = *constant_list*;

Remarks Expressions and matrix names are not allowed in the let command. Expressions such as this:

let x[2,1] = 3*a b

are illegal. To define matrices by combining matrices and expressions, use an expression containing the concatenation operators: \sim and |.

Numbers can be entered in scientific notation. The syntax is $dE\pm n$, where *d* is a number and *n* is an integer (denoting the power of 10).

let x = 1e+10 1.1e-4 4.019e+2;

Complex numbers can be entered by joining the real and imaginary parts with a sign (+ or -); there should be no spaces between the numbers and the sign. Numbers with no real part can be entered by appending an "i" to the number.

```
let x = 1.2+23 8.56i 3-2.1i -4.2e+6i
1.2e-4-4.5e+3i;
```

If curly braces are used, the **let** is optional. You will need the **let** for statements that you want to protect from the beautifier using the **-l** flag on the beautifier command line.

let x = { 1 2 3, 4 5 6, 7 8 9 }; x = { 1 2 3, 4 5 6, 7 8 9 };

If indices are given, a matrix of that size will be created:

let x[2,2] = 1 2 3 4;

```
x = \frac{1}{3} \frac{2}{4}
```

If indices are not given, a column vector will be created:

let x = 1 2 3 4; $x = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$

You can create matrices with no elements, i.e., "empty matrices". Just use a set of empty curly braces.

```
x = \{\};
```

Empty matrices are chiefly used as the starting point for building up a matrix, for example in a **do** loop. For more information on empty matrices, see "Language Fundamentals" in the *User's Guide*.

Character elements are allowed in a **let** statement:

```
let x = age pay sex;
AGE
x = PAY
SEX
```

Lowercase elements can be created if quotation marks are used. Note that each element must be quoted.

Example

let

1 2 3	
x = 456	а
789	
	b
let x[3,3] = 1 2 3 4 5 6 7 8 9;	С
	d
1 2 3	е
x = 456	f
7 8 9	g
	b b
let $x[3,3] = 1;$	n
1 1 1	i
x = 1 1 1	j
1 1 1	k
	1
let x[3,3];	1 m
let x[3,3];	l m
<pre>let x[3,3];</pre>	l m n
let $x[3,3];$ $x = \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	l m n o
let x[3,3]; $x = \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	l m n o p
let x[3,3]; $ x = \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} $	1 m 0 p q
let x[3,3]; $x = \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	l m o p q r
let x[3,3]; $x = \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	1 m n 0 p q r s
let x[3,3]; $x = \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	1 m n 0 P q r s t
<pre>let x[3,3]; $x = \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$</pre>	1 m n 0 p q r s t
<pre>let x[3,3]; $x = \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$</pre>	1 m n 0 P q r s t u
<pre>let x[3,3]; $x = \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$</pre>	1 m n 0 P q r s t t u v
<pre>let x[3,3]; $x = \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$</pre>	1 m 0 0 p q r s t t u v v
<pre>let x[3,3]; x = 000 000 000</pre>	l m n o p q r s t t u v v w x y z

let	
	let x = 1 2 3 4 5 6 7 8 9;
	1
	2
	3
	4
	x = 5
	6
	7
	8
	9
	let x = dog cat;
	DOG
	x = CAT
	let x = "dog" "cat";
i	$x = \frac{\log}{\operatorname{cat}}$
	let string x = { "Median I
	"Country";
	Madian Income
	$x = \frac{1}{Country}$
	Country
Geo else	een eene deelene leed
See also	con, cons, declare, load

1

lib

lib

Purpose	Builds and updates library files.			
Format	lib library [[file]] [[-flag -flag]];			
Input	library	literal, name of library.		
	file	optional literal, name	of source file to be updated or added.	
	flags	optional literal preced update. To control has filenames:	optional literal preceded by '-', controls operation of library update. To control handling of path information on source filenames:	
		-addpath	(default) add paths to entries without paths and expand relative paths.	
		-gausspath	reset all paths using a normal file search.	
		-leavepath	leave all path information untouched.	
		-nopath	drop all path information.	
		To specify a library update or a complete library build: -update (default) update the symbol information for the specified file only.		
		-build	update the symbol information for every library entry by compiling the actual source file.	
		-delete	delete a file from the library.	
		-list	list files in a library.	
		To control the symbol file:	type information placed in the library	
		-strong	(default) use strongly typed symbol entries.	
		-weak	save no type information. This should only be used to build a library compatible with a previous version of GAUSS.	

lib

To control location of temporary files for a complete library build:

-tmp	(default) use the directory pointed to by the tmp_path configuration variable. The directory will usually be on a RAM
	will look for a tmp environment variable.
-disk	use the same directory listed in the lib_path configuration variable.

Remarks The flags can be shortened to one or two letters, as long as they remain unique — for example, -b to -build a library, -li to list files in a library.

If the filenames include a full path, the compilation process is faster because no unnecessary directory searching is needed during the autoloading process. The default path handling adds a path to each file listed in the library and also expands any relative paths so the system will work from any drive or subdirectory.

When a path is added to a filename containing no path information, the file is searched for on the current directory and then on each subdirectory listed in **src_path**. The first path encountered that contains the file is added to the filename in the library entry.

See also library

library

library

Purpose	Sets up the list of active libraries.
Format	<pre>library [[-1]] lib1,lib2,lib3,lib4; library;</pre>
Remarks	If no arguments are given, the list of current libraries will be printed out. The -l option will write a file containing a listing of libraries, files, and symbols for all active libraries. This file will reside in the directory defined by the lib_path configuration variable. Under Windows and UNIX, the file will have a unique name beginning with liblst Under OS/2 and DOS, the file will be called gausslib.lst; if it already exists it will be overwritten.
	For more information about the library system, see "Libraries" in the <i>User's Guide</i> .
	The default extension for library files is .lcg.
	If a list of library names is given, they will be the new set of active libraries. The two default libraries are user.lcg and gauss.lcg. Unless otherwise specified, user.lcg will be searched first and gauss.lcg will be searched last. Any other user-specified libraries will be searched after user.lcg in the order they were entered in the library statement.
	If the statement:
	y = dog(x);
	is encountered in a program, dog will be searched for in the active libraries. If it is found, it will be compiled. If it cannot be found in a library, the deletion state determines how it is handled:
	autodelete on search for dog.g autodelete off return Undefined symbol error message
	If dog calls cat and cat calls bird and they are all in separate files, they will all be found by the autoloader.

The source browser and the help facility will search for **dog** in exactly the same sequence as the autoloader. The file containing **dog** will be displayed in the window and you can scroll up and down and look at the code and comments.

library

Library files are simple ASCII files that you can create with the editor. Here is an example:

```
/*
** This is a GAUSS library file.
*/
eig.src
     eig
                : proc
     eigsym
                : proc
     _eigerr
                : matrix
svd.src
     cond
                : proc
     pinv
                : proc
     rank
                : proc
      svd
                : proc
     _svdtol
                : matrix
```

The lines not indented are the file names. The lines that are indented are the symbols defined in that file. As you can see, a GAUSS library is a dictionary of files and the global symbols they contain.

Any line beginning with /*, ** or */ is considered a comment. Blank lines are okay.

Here is a debugging hint. If your program is acting strange and you suspect it is autoloading the wrong copy of a procedure, use the source browser or help facility to locate the suspected function. It will use the same search path that the autoloader uses.

See also declare, external, lib, proc

#lineson, #linesoff

- **Purpose** The **#lineson** command causes GAUSS to embed line number and file name records in a program for the purpose of reporting the location where an error occurs. The **#linesoff** command causes GAUSS to stop embedding line and file records in a program.
 - Format #lineson;
 #linesoff;
- **Remarks** In the "lines on" mode, GAUSS keeps track of line numbers and file names and reports the location of an error when an execution time error occurs. In the "lines off" mode, GAUSS does not keep track of lines and files at execution time. During the compile phase, line numbers and file names will always be given when errors occur in a program stored in a disk file.

It is easier to debug a program when the locations of errors are reported, but this slows down execution. In programs with several scalar operations, the time spent tracking line numbers and file names is most significant.

These commands have no effect on interactive programs (that is, those typed in the window and run from the command line), since there are no line numbers in such programs.

Line number tracking can be turned on and off through the user interface, but the **#lineson** and **#linesoff** commands will override that.

The line numbers and file names given at run-time will reflect the last record encountered in the code. If you have a mixture of procedures that were compiled without line and file records and procedures that were compiled with line and file records, use the **trace** command to locate exactly where the error occurs.

The **Currently active call** error message will always be correct. If it states that it was executing procedure xyz at line number nnn in file ABC and xyz has no line nnn or is not in file ABC, you know that it just did not encounter any line or file records in xyz before it crashed.

When using **#include**'d files, the line number and file name will be correct for the file the error was in, within the limits stated above.

1

listwise (dataloop)

listwise (dataloop)

Purpose Controls listwise deletion of missing values.

Format listwise [read] | [write];

Remarks If **read** is specified, the deletion of all rows containing missing values happens immediately after reading the input file and before any transformations. If **write** is specified, the deletion of missing values happens after any transformations and just before writing to the output file. If no **listwise** statement is present, rows with missing values are not deleted.

The default is **read**.

ln

ln

Purpose	Computes the natural log of all elements of a matrix.	
Format	$y = \ln(x);$	
Input	<i>x</i> NxK matrix.	
Output	<i>y</i> NxK matrix containing the natural log values of the elements of x .	
Remarks	In is defined for $x \neq 0$. If x is negative, complex results are returned. You can turn the generation of complex numbers for negative inputs on or off in the GAUSS configuration file, and with the sysstate function	
	case 8. If you turn it off, ln will generate an error for negative inputs. If x is already complex, the complex number state doesn't matter; ln will compute a complex result. x can be any expression that returns a matrix	
Example	y = ln(16); y = 2.7725887	

lncdfbvn

lncdfbvn

- **Purpose** Computes natural log of bivariate Normal cumulative distribution function.
 - Format y = lncdfbvn(x1,x2,r);
 - **Input** *x1* NxK matrix, abscissae.
 - *x2* LxM matrix, abscissae.
 - *r* PxQ matrix, correlations.
 - **Output** y $\max(N,L,P) \times \max(K,M,Q) \operatorname{matrix}, \ln \Pr(X < x1, X < x2 | r).$
- **Remarks** *x1*, *x2*, and *r* must be ExE conformable.
 - Source lncdfn.src
- See also cdfbvn, lncdfmvn

lncdfbvn2

lncdfbvn2

Purpose	Returns log of cdfbvn of a bounded rectangle.	
Format	y = lncdfbvn2(h,dh,k,dk,r);	
Input	 h Nx1 vector, upper limits of integration for variable 1. dh Nx1 vector, increments for variable 1. k Nx1 vector, upper limits of integration for variable 2. dk Nx1 vector, increments for variable 2. r Nx1 vector, correlation coefficients between the two variables. 	
Output	y Nx1 vector, the log of the integral from h,k to $h+dh,k+dk$ of the standardized bivariate Normal distribution.	
Remarks	Scalar input arguments are okay; they will be expanded to Nx1 vectors. Incdfbvn2 will abort if the computed integral is negative. Incdfbvn2 computes an error estimate for each set of inputsthe real integral is $exp(y)\pm err$. The size of the error depends on the input arguments. If trap 2 is set, a warning message is displayed when $err \ge exp(y)/100$. For an estimate of the actual error, see cdfbvn2e.	
Example	<pre>Example 1 Incdfbvn2(1,1,1,1,0.5); produces: -3.2180110258198771e+000 Example 2 trap 0,2; Incdfbvn2(1,1e-15,1,1e-15,0.5); produces:</pre>	
	-7.1171016046360151e+001	

1

lncdfbvn2

Example 3

trap 2,2;

lncdfbvn2(1,-1e-45,1,1e-45,0.5); WARNING: Dubious accuracy from lncdfbvn2: 0.000e+000 ± 2.8e-060

-INF

See also cdfbvn2, cdfbvn2e

lncdfmvn

lncdfmvn

Purpose	Computes natural log of multivariate Normal cumulative distribution function.	
Format	y = lncdfmvn(x,r);	
Input	<i>x</i> KxL matrix, abscissae.<i>r</i> KxK matrix, correlation matrix.	
Output	y Lx1 vector, $ln Pr(X < x r)$.	
Remarks	You can pass more than one set of abscissae at a time; each column of x is treated separately.	
Source	lncdfn.src	
See also	cdfmvn, lncdfbvn	

lncdfn

lncdfn

Purpose	Computes natural log of Normal cumulative distribution function.

Format	y = lncdfn(x);	
I4		

- **Input** *x* NxK matrix, abscissae.
- **Output** y NxK matrix, ln Pr(X < x).
- Source lncdfn.src

lncdfn2

lncdfn2

Purpose	Computes natural log of interval of Normal cumulative distribution function.	
Format	y = lncdfn2(x,r);	
Input	<i>x</i> MxN matrix, abscissae.<i>r</i> KxL matrix, ExE conformable with <i>x</i>, intervals.	
Output	<i>y</i> $\max(M,K) \times \max(N,L)$ matrix, the log of the integral from <i>x</i> to $x+dx$ of the Normal distribution, i.e., $ln Pr(x < X < x + dx)$.	
Remarks	The relative error is:	
	$ x \le 1$ and $dx \le 1$ $\pm 1e-14$ $1 < x < 37$ and $ dx < 1 x $ $\pm 1e-13$ $\min(x, x + dx) > -37$ and $y > -690$ $\pm 1e-11$ or betterA relative error of $\pm 1e-14$ implies that the answer is accurate to betterthen ± 1 in the 14th divit	
Example	<pre>man 11 m me 14m dign: print lncdfn2(-10,29); -7.6198530241605269e-24 print lncdfn2(0,1); -1.0748623268620716e+00 print lncdfn2(5,1); -1.5068446096529453e+01</pre>	
Source	lncdfn.src	
See also	cdfn2	

lncdfnc

lncdfnc

Purpose	Computes natural log of complement of Normal cumulative distribution function.	
Format	<pre>y = lncdfnc(x);</pre>	
Input	<i>x</i> NxK matrix, abscissae.	
Output	<i>y</i> NxK matrix, $ln (1 - Pr(X < x))$.	
Source	lncdfn.src	

lnfact

lnfact

Purpose	Computes the natural log of the factorial function and can be used to compute log gamma.	
Format	y = lnfact(x);	
Input	<i>x</i> NxK matrix, all elements must be positive.	
Output	<i>y</i> NxK matrix containing the natural log of the factorial of each of the elements of <i>x</i> .	
Remarks	For integer x , this is (approximately) $ln(x!)$. However, the computation is done using a formula, and the function is defined for noninteger x .	
	In most formulae in which the factorial operator appears, it is possible to avoid computing the factorial directly, and to use lnfact instead. The advantage of this is that lnfact does not have the overflow problems that the factorial (!) operator has.	
	For $x \ge 1$, this function has at least 6 digit accuracy, for $x > 4$ it has at least 9 digit accuracy, and for $x > 10$ it has at least 12 digit accuracy. For $0 < x < 1$, accuracy is not known completely but is probably at least 6 digits.	
	Sometimes log gamma is required instead of log factorial. These functions are related by:	
	lngamma(x) = lnfact(x-1);	
Example	let x = 100 500 1000;	
	<pre>y = lnfact(x);</pre>	
	363.739375560	
	y = 2611.33045846	
	5912.12817849	
Source	lnfact.src	
See also	gamma	

lnfact

Technical	For $x > 1$, Stirling's formula is used.
Notes	For $0 < x \le 1$, ln(gamma(x+1)) is used.
lnpdfn

lnpdfn

Purpose	Computes standard Normal log-probabilities.		
Format	z = lnpdfn(x);		
Input	<i>x</i> NxK matrix, data.		
Output	<i>z</i> NxK matrix, log-probabilities.		
Remarks	This computes the log of the scalar Normal density function for each element of x. z could be computed by the following GAUSS code: $y = -ln(sqrt(2*pi)) - x \cdot x/2;$		
	For multivariate log-probabilities, see lnpdfmvn .		
Example	<pre>x = { .2, -1, 0, 1, 2 }; z = lnpdfn(x);</pre>		
	-2.9189385 -1.4189385 z = -0.91893853 -1.4189385 -2.9189385		

lnpdfmvn

lnpdfmvn

Purpose	Computes multivariate Normal log-probabilities.	
Format	z = lnpdfmvn(x,s);	
Input	<i>x</i> NxK matrix, data.<i>s</i> KxK matrix, covariance matrix.	
Output	<i>z</i> Nx1 vector, log-probabilities.	
Remarks	This computes the multivariate Normal log-probability for each row of <i>x</i> .	

lnpdfmvt

lnpdfmvt

Purpose	Computes multivariate Student's t log-probabilities.		
Format	z = 1	z = lnpdfmvt(x, s, nu);	
Input	x s nu	NxK matrix, data. KxK matrix, covariance matrix. scalar, degrees of freedom.	
Output	Z.	Nx1 vector, log-probabilities.	

lnpdft

lnpdft

Purpose	Computes Student's t log-probabilities.	
Format	z = lnpdft(x, nu);	
Input	<i>x</i> NxK matrix, data.<i>nu</i> scalar, degrees of freedom.	
Output	<i>z</i> NxK matrix, log-probabilities.	
Remarks	This does not compute the log of the joint Student's t pdf. Instead, the scalar Normal density function is computed element by element.	
	For multivariate probabilities with covariance matrix see lnpdfmvt.	

load, loadf, loadk, loadm, loadp, loads

Purpose Loads from a disk file.

- **Format** load [[path=path]] x, y[]=filename, z=filename;
- **Remarks** All the load*xx* commands use the same syntax they only differ in the types of symbols you use them with.

load, lo	oadm	matrix
loads		string
loadf		function (fn)
loadk		keyword (keyword)
loadp		procedure (proc)

If no filename is given as with *x* above, then the symbol name the file is to be loaded into is used as the filename and the proper extension is added.

If more than one item is to be loaded in a single statement, the names should be separated by commas.

The filename can be either a literal or a string. If the filename is in a string variable, then the ^ (caret) operator must precede the name of the string, as in:

filestr = "mydata/char"; loadm x = ^filestr;

If no extension is supplied, the proper extension for each type of file will be used automatically as follows:

load	. fmt - matrix file or delimited ASCII file
loadm	.fmt - matrix file or delimited ASCII file
loads	.fst - string file
loadf	.fcg - user-defined function (fn) file
loadk	.fcg-user-defined keyword (keyword) file
loadp	.fcg - user-defined procedure (proc) file

These commands also signal to the compiler what type of object the symbol is so that later references to it will be compiled correctly.

A dummy definition must exist in the program for each symbol that is loaded in using **loadf**, **loadk**, or **loadp**. This resolves the need to

have the symbol initialized at compile time. When the load executes, the dummy definition will be replaced with the saved definition.

```
proc corrmat; endp;
loadp corrmat;
y = corrmat;
keyword regress(x); endp;
loadk regress;
regress x on y z t from data01;
fn sqrd=;
loadf sqrd;
y = sqrd(4.5);
```

To load GAUSS files created with the **save** command, no brackets are used with the symbol name.

```
If you use save to save a scalar error code 65535 (i.e., error(65535)), it will be interpreted as an empty matrix when you load it again.
```

ASCII data files

To load ASCII data files, square brackets follow the name of the symbol.

Numbers in ASCII files must be delimited with spaces, commas, tabs, or newlines. If the size of the matrix to be loaded is not explicitly given, as in:

load x[] = data.asc;

GAUSS will load as many elements as possible from the file and create an Nx1 matrix. This is the preferred method of loading ASCII data from a file, especially when you want to verify if the load was successful. Your program can then see how many elements were actually loaded by testing the matrix with the **rows** command, and if that is correct, the Nx1 matrix can be reshaped to the desired form. You could, for instance, put the number of rows and columns of the matrix right in the file as the first and second elements and reshape the remainder of the vector to the desired form using those values.

If the size of the matrix is explicitly given in the **load** command, then no checking will be done. If you use:

load x[500,6] = data.asc;

GAUSS will still load as many elements as possible from the file into an Nx1 matrix and then automatically reshape it using the dimensions given.

If your file contains nine numbers (1 2 3 4 5 6 7 8 9), then the matrix *x* that was created would be as follows:

```
load x[1,9] = data.asc;
  x = 123456789
  load x[3,3] = data.asc;
       1 2 3
  x = 456
       789
  load x[2,2] = data.asc;
       1 2
  x =
       3 4
  load x[2,9] = data.asc;
  x = 123456789
       1 2 3 4 5 6 7 8 9
  load x[3,5] = data.asc;
       1 2 3 4 5
  x = 67891
       23456
load accepts pathnames. The following is legal:
  loadm k = /gauss/x;
This will load /gauss/x.fmt into k.
```

1

If the **path=** subcommand is used with **load** and **save**, the path string will be remembered until changed in a subsequent command. This path will be used whenever none is specified. There are four separate paths for:

- 1. load, loadm
- 2. loadf, loadp
- 3. loads
- 4. **save**

Setting any of the four paths will not affect the others. The current path settings can be obtained (and changed) with the **sysstate** function, cases 4-7.

```
loadm path = /data;
```

This will change the **loadm** path without loading anything.

load path = /gauss x,y,z;

This will load x.fmt, 0y.fmt, and z.fmt using /gauss as a path. This path will be used for the next load if none is specified.

The load path or save path can be overridden in any particular load or save by putting an explicit path on the filename given to load from or save to as follows:

```
loadm path = /miscdata;
```

```
loadm x = /data/mydata1, y, z = hisdata;
```

In the above program:

/data/mydata1.fmt would be loaded into a matrix called x.

/miscdata/y.fmt would be loaded into a matrix called y.

/miscdata/hisdata.fmt would be loaded into a matrix called z.

```
oldmpath = sysstate(5, "/data");
load x, y;
call sysstate(5,oldmpath);
```

This will get the old **loadm** path, set it to /data, load x.fmt and y.fmt, and reset the **loadm** path to its original setting.

See also loadd, save, let, con, cons, sysstate

loadd

loadd

Purpose	Loads a data set.
Format	y = loadd(dataset);
Input	<i>dataset</i> string, name of data set.
Output	<i>y</i> NxK matrix of data.
Remarks	The data set must not be larger than a single GAUSS matrix. If <i>dataset</i> is a null string or 0, the data set temp.dat will be loaded. To load a matrix file, use an .fmt extension on <i>dataset</i> .
Source	saveload.src
Globals	maxvec

loadwind

loadwind

Purpose	Loads a previously saved graphic panel configuration.	
Library	pgraph	
Format	<pre>err = loadwind(namestr);</pre>	
Input	namestr string, name of file to be loaded.	
Output	<i>err</i> scalar, 0 if successful, 1 if graphic panel matrix is invalid. Note that the current graphic panel configuration will be overwritten in either case.	
Source	pwindow.src	
See also	savewind	

local

local

Purpose	Declares variables that are to exist only inside a procedure.	
Format	<pre>local x, y, f:proc;</pre>	
Remarks	The statement above would place the names x , y , and f in the local symbol table for the current procedure being compiled. This statement is legal only between the proc statement and the endp statement of a procedure definition.	
	These symbols cannot be accessed outside of the procedure.	
	The symbol f in the example above will be treated as a procedure whenever it is accessed in the procedure. What is actually passed in is a pointer to a procedure.	
	See "Procedures and Keywords" in the User's Guide.	

See also proc

locate

locate

Purpose	Positions the cursor in the window.
Format	locate <i>m</i> , <i>n</i> ;
Portability	Windows only Locates the cursor in the current output window.
Remarks	m and n denote the row and column, respectively, at which the cursor is to be located.
	The origin $(1,1)$ is the upper left corner.
	m and n may be any expressions that return scalars. Nonintegers will be truncated to an integer.
Example	r = csrlin;
	c = csrcol;
	cls;
	locate r,c;
	In this example the window is cleared without affecting the cursor position.
See also	csrlin, csrcol

loess

loess

Purpose	Computes coefficients of locally weighted regression.	
Format	<pre>{ yhat, ys, xs } = loess(depvar, indvars);</pre>	
Input	depvar Nx1 vector indvars NxK matrix	, dependent variable. x, independent variables.
Global Input	_loess_Span	scalar, degree of smoothing. Must be greater than $2 / N$. Default = .67777.
	_loess_NumEval _loess_Degree	scalar, number of points in <i>ys</i> and <i>xs</i> . Default = 50. scalar, if 2, quadratic fit, otherwise linear. Default = 1 .
	_loess_WgtType	scalar, type of weights. If 1, robust, symmetric weights, otherwise Gaussian. Default = 1.
	output	scalar, if 1, iteration information and results are printed, otherwise nothing is printed.
Output	t yhat Nx1 vector, predicted <i>depvar</i> given <i>indvars</i> . ys	
	xs _loess_nu	mEvalX1 vector, equally spaced abscissae values.
Remarks	Based on Cleveland, and Smoothing Scatte	William S. "Robust Locally Weighted Regression erplots." <i>JASA</i> . Vol. 74, 1979, 829-36.
Source	loess.src	

log

log			
Purpose	Computes the \log_{10} of all elements of a matrix.		
Format	$y = \log(x);$		
Input	<i>x</i> NxK matrix.		
Output	<i>y</i> NxK matrix containing the log 10 values of the elements of <i>x</i> .		
Remarks	log is defined for $x \neq 0$.		
	If x is negative, complex results are returned.		
	You can turn the generation of complex numbers for negative inputs on or off in the GAUSS configuration file, and with the sysstate function, case 8. If you turn it off, log will generate an error for negative inputs.		
	If <i>x</i> is already complex, the complex number state doesn't matter; log will compute a complex result.		
	x can be any expression that returns a matrix.		
Example	x = round(rndu(3,3)*10+1);		
	y = log(x);		
	$x = \begin{array}{c} 4.000000000 \ 2.000000000 \ 1.000000000 \\ 10.000000000 \ 4.000000000 \ 8.000000000 \\ 7.0000000000 \ 2.000000000 \ 6.000000000 \end{array}$		
	$y = \begin{array}{c} 0.60205999 & 0.30103 & 0.30103 \\ 1.000000000 & 0.60205999 & 0.90308999 \\ 0.8450980400 & 0.30103 & 0.77815125 \end{array}$		

loglog

loglog

Purpose	Graphs X vs. Y using log coordinates.		
Library	pgraph		
Format	loglog(x,y);		
Input	 <i>x</i> Nx1 or NxM matrix. Each column contains the X values for a particular line. <i>y</i> Nx1 or NxM matrix. Each column contains the Y values for a particular line. 		
Source	ploglog.src		
See also	xy, logy, logx		

logx

logx

Purpose	Graphs X vs. Y using log coordinates for the X axis.	
Library	pgraph	
Format	logx(x,y);	
Input	<i>x</i> Nx1 or NxM matrix. Each column contains the X values for a particular line.	
	<i>y</i> Nx1 or NxM matrix. Each column contains the Y values for a particular line.	
Source	plogx.src	

See also xy, logy, loglog

logy

logy

Purpose	Graphs X vs. Y using log coordinates for the Y axis.		
Library	pgraph		
Format	logy(x,y);		
Input	 <i>x</i> Nx1 or NxM matrix. Each column represents the X values for a particular line. <i>y</i> Nx1 or NxM matrix. Each column represents the X values for a 		
	particular line.		
Source	plogy.src		
See also	xy, logx, loglog		

lower

lower

Purpose	Converts a string or character matrix to lowercase.		
Format	y = lower(x);		
Input	<i>x</i> string or NxK matrix of character data to be converted to lowercase.		
Output	<i>y</i> string or N x K matrix which contains the lowercase equivalent of the data in <i>x</i> .		
Remarks	If x is a numeric matrix, y will contain garbage. No error message will be generated since GAUSS does not distinguish between numeric and character data in matrices.		
Example	x = "MATH 401";		
	<pre>y = lower(x);</pre>		
	print y;		
	produces:		
	math 401		
See also	upper		

lowmat, lowmat1

lowmat, lowmat1

- **Purpose** Returns the lower portion of a matrix. **lowmat** returns the main diagonal and every element below. **lowmat1** is the same except it replaces the main diagonal with ones.
 - Format L = lowmat(x); L = lowmat1(x);
 - **Input** *x* NxN matrix.
 - **Output** L NxN matrix containing the lower elements of the matrix. The upper elements are replaced with zeros. **lowmat** returns the main diagonal intact. **lowmat1** replaces the main diagonal with ones.
- Example x = { 1 2 -1, 2 3 -2, 1 -2 1 };
 - L = lowmat(x);
 L1 = lowmat1(x);

The resulting matrices are:

 $L = \begin{array}{c} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 1 & -2 & 1 \end{array}$

$$L1 = \begin{array}{c} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -2 & 1 \end{array}$$

Source diag.src

See also upmat, upmat1, diag, diagrv, crout, croutp

lpos

lpos

- **Purpose** Returns the current position of the print head within the printer buffer for the printer.
 - **Format** y = lpos;

Remarks This function is basically equivalent to function **csrcol** but this returns the current column position for the standard printer.

The value returned is the column position of the next character to be printed to the printer buffer. This does not necessarily reflect the actual physical position of the print head at the time of the call.

If this function returns a number greater than 1, there are characters in the buffer for the standard printer which have not yet been sent to the printer. This buffer can be flushed at any time by **lprint**'ing a carriage return/ line feed sequence, or a form feed character.

Example if lpos > 60;

lprint;

endif;

In this example, if the print buffer contains 60 characters or more, a carriage return/line feed sequence will be printed.

See also lprint, lpwidth

lprint

lprint

Purpose	Controls printing to the line printer.		
Format	<pre>lprint [[/typ]] [[/fmted]] [[/mf]] [[/jnt]] [[list of expressions separated by spaces]] [[;]];</pre>		
Remarks	This function was originally written for line printers. It is still supported for backwards compatibility purposes, but if you're using a page-oriented printer (such as a laser or inkjet printer), it may not give you the results you're expecting.		
	lprint statements work in essentially the same way that print statements work. The main difference is that lprint statements cannot be directed to the auxiliary output. Also, the locate statement has no meaning with lprint .		
Two semicolons following an lprint statement will suppress the finding feed.			
	See print for information on <i>/typ</i> , <i>/fmted</i> , <i>/mf</i> , and <i>/jnt</i> .		
A list of expressions is a list of GAUSS expressions, separated In lprint statements, because a space is the delimiter between expressions, no spaces are allowed inside expressions unless the within index brackets, they are in quotes, or the whole expression parentheses.			
	Printer width can be specified by the lpwidth statement:		
	lpwidth 132;		
	This statement remains in effect until cancelled. The default printer width is 80. That is, GAUSS automatically sends a line feed to the printer after printing 80 characters.		
lpos can be used to determine the (column) position of the next character that will be printed in the buffer.			
	An lprint statement by itself will cause a blank line to be printed:		
	lprint;		
	The printing of special characters is accomplished by the use of the backslash (\) within double quotes. The options are:		
	h by backspace (ASCII 8)		

"\b"	backspace (ASCII 8)
"\e″	escape (ASCII 27)

lprint

"\f"	form feed (ASCII 12)
"\l"	line feed (ASCII 10)
"\r"	carriage return (ASCII 13)
" t"	tab (ASCII 9)
``\### ″	the character whose ASCII value is "###" (decimal)

GAUSS also has an automatic line printer mode which causes the results of all global assignment statements to be printed out on the printer. This is controlled by the lprint on and lprint off commands. (See lprint on, lprint off.)

Example lprint 3*4 5+2;

See also print, lprint on, lpos, lpwidth, format

lpwidth

lpwidth

Purpose	Specifies the width of the printer.		
Format	lpwidth n;		
Remarks	<i>n</i> is a scalar which specifies the width of the printer in columns (characters). That is, after printing <i>n</i> characters on a line, GAUSS will send a carriage return and a line feed, so that the print head will move to the beginning of the next line.		
	If a matrix is being printed, the line feed sequence will always be inserted between separate elements of the matrix rather than being inserted between digits of a single element.		
	<i>n</i> may be any scalar-valued expression. Nonintegers will be truncated to an integer.		
	The default is 80 columns.		
	Note: This does not send control characters to the printer to automatically switch the mode of the printer to a different character pitch because each printer is different. This only controls the frequency of carriage return/line feed sequences.		
Example	lpwidth 132;		
	This statement will change the printer width to 132 columns.		
See also	lprint, lpos, outwidth		

ltrisol

ltrisol

Purpose	Computes the solution of $Lx = b$ where L is a lower triangular matrix.	
Format	x = ltrisol(b,L);	
Input	b	PxK matrix.
	L	PxP lower triangular matrix.
Output	x	PxK matrix.
	ltris than on ltris	ol applies a forward solve to $Lx = b$ to solve for x. If b has more e column, each column will be solved for separately, i.e., ol will apply a forward solve to L * $x[.,i] = b[.,i]$.

lu

lu

Purpose	Computes the LU decomposition of a square matrix with partial (row) pivoting, such that $X = LU$.		
Format	$\{ l, u \} = lu(x);$		
Input	<i>x</i> NXN square nonsingular matrix.		
Output	<i>l</i> NxN "scrambled" lower triangular matrix. This is a lower triangular matrix that has been reordered based on the row pivoting.		
	<i>u</i> NxN upper triangular matrix.		
Example rndseed 13;			
	format /rd 10,4;		
	x = complex(rndn(3,3),rndn(3,3));		
	{ l,u } = lu(x);		
	x2 = l*u;		
	0.1523 + 0.7685i - 0.8957 + 0.0342i 2.4353 + 2.7736i		
	x = -1.1953 + 1.2187i 1.2118 + 0.2571i - 0.0446 - 1.7768i		
	0.8038 + 1.3668i $1.2950 - 1.6929i$ $1.6267 + 0.2844i$		
	0.2589 - 0.3789i - 1.2417 + 0.5225i 1.0000		
	l = 1.0000 0.0000 0.0000		
	0.2419 - 0.8968i 1.0000 0.0000		
	$-1.1953 + 1.2187i \ 1.2118 + 0.2571i \ -0.0446 - 1.7768i$		
	$u = 0.0000 \ 0.7713 - 0.6683i 3.2309 + 0.6742i$		
	0.0000 0.0000 $6.7795 + 5.7420i$		

lu

$$x^{2} = -\frac{0.1523 + 0.7685i - 0.8957 + 0.0342i}{0.8038 + 1.3668i} \frac{-0.8957 + 0.0342i}{1.2950 - 1.6929i} \frac{-0.0446 - 1.7768i}{1.6267 + 0.2844i}$$

See also crout, croutp, chol

lusol

lusol

Purpose	Computes the solution of $LUx = b$ where L is a lower triangular matrix and U is an upper triangular matrix.	
Format	x = lusol(b, L, U);	
Input	 b PxK matrix. L PxP lower triangular matrix. U PxP upper triangular matrix. 	
Output	<i>x</i> PxK matrix.	
Remarks	If <i>b</i> has more than one column, each column is solved for separately, i.e., lusol solves $LUx[.,i] = b[.,i]$.	

make (dataloop)

make (dataloop)

Purpose Specifies the creation of a new variable within a data loop. Format make [[#]] numvar = numeric_expression; make \$ charvar = character_expression; Remarks A *numeric_expression* is any valid expression returning a numeric vector. A *character* expression is any valid expression returning a character vector. If neither '\$' nor '#' is specified, '#' is assumed. The expression may contain explicit variable names and/or GAUSS commands. Any variables referenced must already exist, either as elements of the source data set, as **externs**, or as the result of a previous make, vector, or code statement. The variable name must be unique. A variable cannot be made more than once, or an error is generated. Example make sqvpt = sqrt(velocity * pressure * temp); make \$ sex = lower(sex);

See also vector

makevars

makevars

Purpose	Creates separate global vectors from the columns of a matrix.		
Format	<pre>makevars(x, vnames, xnames);</pre>		
Input	x NxK matrix whose columns will be converted into individual vectors.		
	vnames	string or Mx1 character vector containing names of global vectors to create. If 0, all names in <i>xnames</i> will be used.	
	xnames	string or $Kx1$ character vector containing names to be associated with the columns of the matrix x .	
Remarks	If <i>xnames</i> = 0, the prefix X will be used to create names. Therefore, there are 9 columns in <i>x</i> , the names will be X1-X9, if there are 10, th will be X01-X10, and so on.		
	If <i>xname</i> by space	<i>s</i> or <i>vnames</i> is a string, the individual names must be separated s or commas.	
	vna	mes = "age pay sex";	
	Since the not know that you or otherw interactiv	ese new vectors are created at execution time, the compiler will v they exist until after makevars has executed once. This means cannot access them by name unless you previously clear them vise add them to the symbol table. (See setvars for a quick ve solution to this.)	
	This fund	ction is the opposite of mergevar .	
Example	let x[3,3] = 101 35 50000 102 29 13000 103 37 18000;	
	let xn	ames = id age pay;	
	let vn	ames = age pay;	
	makeva	rs(x,vnames,xnames);	
	Two gloł x .	bal vectors, called age and pay , are created from the columns of	

makevars

Source vars.src

Globals __vpad

See also mergevar, setvars

makewind

makewind

Purpose	Creates a graphic panel of specific size and position and add it to the list of graphic panels.
Library	pgraph
Format	<pre>makewind(xsize, ysize, xshft, yshft, typ);</pre>
Input	 xsize scalar, horizontal size of the graphic panel in inches. ysize scalar, vertical size of the graphic panel in inches. xshft scalar, horizontal distance from left edge of window in inches. yshft scalar, vertical distance from bottom edge of window in inches. typ scalar, graphic panel attribute type. If this value is 1, the graphic panels will be transparent. If 0, the graphic panels will be nontransparent.
Remarks	Note that if this procedure is used when rotating the page, the passed parameters are scaled appropriately to the newly oriented page. The size and shift values will not be true inches when printed, but the graphic panel size to page size ratio remains the same. The result of this implementation automates the rotation and eliminates the required graphic panel recalculations by the user.
	See the window command for creating tiled graphic panels. For more information on using graphic panels, see "Publication Quality Graphics" in the <i>User's Guide</i> .
Source	pwindow.src
See also	window, endwind, setwind, getwind, begwind, nextwind

margin

margin

Purpose	Sets the margins for the current graph graphic panel.
Library	pgraph
Format	<pre>margin(l,r,t,b);</pre>
Input	 <i>l</i> scalar, the left margin in inches. <i>r</i> scalar, the right margin in inches. <i>t</i> scalar, the top margin in inches. <i>b</i> scalar, the bottom margin in inches.
Remarks	By default, the dimensions of the graph are the same as the graphic panel dimensions. With this function the graph dimensions may be decreased. The result will be a smaller plot area surrounded by the specified margin. This procedure takes into consideration the axes labels and numbers for correct placement.
	All input inch values for this procedure are based on a full size window of 9 x 6.855 inches. If this procedure is used with a graphic panel, the values will be scaled to window inches automatically.
	If the axes must be placed an exact distance from the edge of the page, axmargin should be used.
Source	pgraph.src
See also	axmargin

matalloc

matalloc

Purpose	Allocates a matrix with unspecified contents.
Format	<pre>y = matalloc(r,c);</pre>
Input	r scalar, rows.c scalar, columns.
Output	y rxc matrix.
Remarks	The contents are unspecified. This function is used to allocate a matrix that will be written to in sections using indexing or used with the Foreign Language Interface as an output matrix for a function called with dllcall() .
See Also	matinit, ones, zeros, eye

matinit

matinit

Purpose	Allocates a matrix with unspecified contents.
Format	y = matinit(r,c,v);
Input	 r scalar, rows. c scalar, columns. v scalar, value to initialize.
Output	y <i>r</i> x <i>c</i> matrix with each element equal to the value of <i>v</i> .

See Also matalloc, ones, zeros, eye

maxc

maxc

Returns a column vector containing the largest element in each column of a matrix.	
$y = \max(x);$	
<i>x</i> NxK matrix.	
<i>y</i> Kx1 matrix containing the largest element in each column of <i>x</i> .	
If x is complex, maxc uses the complex modulus (abs(x)) to determine the largest elements.	
To find the maximum elements in each row of a matrix, transpose the matrix before applying the maxc function.	-
To find the maximum value in the whole matrix if the matrix has more than one column, nest two calls to maxc :	
y = maxc(maxc(x));	
x = rndn(4, 2);	
y = maxc(x);	
-2.124474 1.376765	_
r = 0.348110 1.172391	
-0.027064 0.796867	
1.421940 -0.351313	
y – 1.376765	
minc, maxindc, minindc	
	Returns a column vector containing the largest element in each column of a matrix. $y = \max(x);$ $x = \operatorname{NxK} \operatorname{matrix}.$ $y = \operatorname{Kx1} \operatorname{matrix} \operatorname{containing}$ the largest element in each column of x . If x is complex, maxc uses the complex modulus ($\operatorname{abs}(x)$) to determine the largest elements. To find the maximum elements in each row of a matrix, transpose the matrix before applying the maxc function. To find the maximum value in the whole matrix if the matrix has more than one column, nest two calls to maxc: $y = \max(\max(x));$ $x = \operatorname{rndn}(4, 2);$ $y = \max(x);$ $x = \operatorname{rndn}(4, 2);$ $y = \max(x);$ $x = \frac{-2.124474 1.376765}{-1.421940 -0.351313}$ $y = \frac{1.421940}{1.376765}$ minc, maxindc, minindc

m

maxindc

maxindc

- **Purpose** Returns a column vector containing the index (i.e., row number) of the maximum element in each column in a matrix.
 - Format y = maxindc(x);
 - **Input** *x* NxK matrix.
 - **Output** y Kx1 matrix containing the index of the maximum element in each column of x.
- **Remarks** If x is complex, maxc uses the complex modulus (abs(x)) to determine the largest elements.

To find the index of the maximum element in each row of a matrix, transpose the matrix before applying **maxindc**.

If there are two or more "largest" elements in a column (i.e., two or more elements equal to each other and greater than all other elements), then **maxindc** returns the index of the first one found, which will be the smallest index.

Example x = round(rndn(4,4)*5); y = maxc(x); z = maxindc(x); $x = \begin{array}{c} 1 & -11 & 0 & 5 \\ 0 & 0 & -2 & -6 \\ -8 & 0 & 3 & 2 \\ -11 & 5 & -4 & 5 \end{array}$ $y = \begin{array}{c} 1 \\ 5 \\ 3 \\ 5 \end{array}$
maxindc

	1	
	$z = \frac{4}{3}$	a
	1	b
See also	maxc, minindc, minc	C
		d
		e
		f
		g
		h
		1
		J

m

maxvec

maxvec

Purpose	Returns maximum vector length allowed.			
Format	y = maxvec;			
Global Input	maxvec scalar, maximum vector length allowed.			
Output	<i>y</i> scalar, maximum vector length.			
Remarks maxvec returns the value in the global scalarmaxvec, which a reset in the calling program. This must never be set to 8190.				
maxvec is called by Run-Time Library functions and applications determining how many rows can be read from a data set in one cal readr .				
	On systems without virtual memory you can use 536870910. Otherwise a smaller value like 20000-30000 is necessary to prevent excessive disk thrashing. The trick is to allow the algorithm making the disk reads to execute entirely in RAM.			
Example	y = maxvec;			
	print y;			
	produces:			
	20000.000			
Source	system.src			

mbesseli

mbesseli

Purpose	Computes modified and exponentially scaled modified Bessels of the first kind of the n^{th} order.		
Format	y = mbesseli(x, n, alpha);		
	y = mbesseli0(x);		
	y = mbesseli1(x);		
	y = mbesselei(x, n, alpha);		
	y = mbesselei0(x);		
	y = mbesseleil(x);		
Input	<i>x</i> Kx1 vector, abscissae.		
	<i>n</i> scalar, highest order.		
	alpha scalar, $0 \le alpha < 1$.		
Output	v KXN matrix evaluations of the modified Bessel or the		
Carpar	exponentially scaled modified Bessel of the first kind of the n^{th}		
	orders.		
Remarks	For the functions that permit you to specify the order, the returned matrix contains a sequence of modified or exponentially scaled modified Bessel		
	values of different orders. For the 1 th row of y:		
	$y[i,.] = I_{\alpha}(x[i]) I_{\alpha+1}(x[i]) \dots I_{\alpha+n-1}(x[i])$		
	The remaining functions generate modified Bessels of only the specified order.		
	The exponentially scaled modified Bessels are related to the unscaled modifed Bessels in the following way:		
	<pre>mbesselei0(x) = exp(-x) * mbesseli0(x)</pre>		
	The use of the scaled versions of the modified Bessel can improve the numerical properties of some calculations by keeping the intermediate numbers small in size.		
Example	This example produces estimates for the "circular" response regression model (Fisher, N.I. <i>Statistical Analysis of Circular Data</i> . NY: Cambridge		

mbesseli

University Press, 1993.), where the dependent variable varies between $-\pi$ and π in a circular manner. The model is

$$y = \mu + G(XB)$$

where *B* is a vector of regression coefficients, *X* a matrix of independent variables with a column of 1's included for a constant, and *y* a vector of "circular" dependent variables, and where *G*() is a function mapping *XB* onto the $[-\pi, \pi]$ interval.

The log-likelihood for this model is from Fisher, N.I. ... 1993, 159;

$$logL = -N x ln((I_0(\kappa)) + \kappa) \sum_{i}^{N} cos(y_i - \mu - G(X_iB))$$

To generate estimates it is necessary to maximize this function using an iterative method. **QNewton** is used here.

 κ is required to be nonnegative and therefore in the example below, the exponential of this parameter is estimated instead. Also, the exponentially scaled modified Bessel is used to improve numerical properties of the calculations.

The **arctan** function is used in G() to map XB to the $[-\pi, \pi]$ interval as suggested by Fisher, N.I. ... 1993, 158.

```
proc G(u);
```

```
retp(2*atan(u));
```

endp;

proc lpr(b);

local dev;

mbesseli

```
/*
             ** b[1] - kappa
             ** b[2] - mu
             ** b[3] - constant
             ** b[4:rows(b)] - coefficients
             */
               dev = y - b[2] - G(b[3] + x * b[4:rows(b)]);
               retp(rows(dev)*ln(mbesselei0(exp(b[1])) -
               sumc(exp(b[1])*(cos(dev)-1))));
            endp;
            loadm data;
            y0 = data[.,1];
            x0 = data[.,2:cols(data)];
            b0 = 2 \times ones(cols(x), 1);
                                                                 m
             { b,fct,grd,ret } = QNewton(&lpr,b0);
            cov = invpd(hessp(&lpr,b));
            print "estimates standard errors";
            print;
            print b~sqrt(diag(cov));
Source
         ribesl.src
```

meanc

meanc

Purpose	Computes the mean of every column of a matrix.		
Format	y = meanc(x);		
Input	<i>x</i> NxK matrix.		
Output	y Kx1 matrix containing the mean of every column of <i>x</i> .		
Example	<pre>x = meanc(rndu(2000,4));</pre>		
	$x = \begin{cases} 0.492446 \\ 0.503543 \\ 0.502905 \\ 0.509283 \end{cases}$		
	In this example, 4 columns of uniform random numbers are generated		

In this example, 4 columns of uniform random numbers are generated in a matrix, and the mean is computed for each column.

See also stdc

median

median

Purpose	Computes the medians of the columns of a matrix.		
Format	m = median(x);		
Input	<i>x</i> NxK matrix.		
Output	<i>m</i> Kx1 vector containing the medians of the respective columns of x .		
Example	<pre>x = { 8 4, 6 8, 3 7 }; y = median(x);</pre>		
	$y = \begin{array}{c} 6.0000000\\ 7.0000000 \end{array}$		
Source	median.src		

mergeby

mergeby

Purpose	Merges two sorted files by a common variable.		
Format	<pre>mergeby(infile1,infile2,outfile,keytyp);</pre>		
Input	 infile1 string, name of input file 1. infile2 string, name of input file 2. outfile string, name of output file. keytyp scalar, data type of key variable. 1 numeric 2 character 		
Remarks	 This will combine the variables in the two files to create a single large file. The following assumptions hold: Both files have the key variable in the first column. All of the values of the key variable within a file are unique. Each file is already sorted on that variable. The output file will contain the key variable in its first column. It is not necessary for the two files to have the same number of rows. For each row for which the key variables match, a row will be created in the output file. <i>outfile</i> will contain the columns from <i>infile1</i> followed by the columns of <i>infile2</i> minus the key column from the second file. 		
Example	<pre>mergeby("freq", "freqdata", "mergex",1);</pre>		
Source	sortd.src		

mergevar

mergevar

Purpose	Accepts a list of names of global matrices, and concatenates the corresponding matrices horizontally to form a single matrix.		
Format	<pre>x = mergevar(vnames);</pre>		
Input	<i>vnames</i> string or Kx1 column vector containing the names of K global matrices.		
Output	<i>x</i> NXM matrix that contains the concatenated matrices, where M is the sum of the columns in the K matrices specified in <i>vnames</i> .		
Remarks	The matrices specified in <i>vnames</i> must be globals and they must all have the same number of rows.		
	This function is the opposite of makevars .		
Example	let vnames = age pay sex;		
	x = mergevar(vnames);		
	The matrices age , pay , and sex will be concatenated horizontally to create x .		
Source	vars.src		
See also	makevars		

minc

minc

- **Purpose** Returns a column vector containing the smallest element in each column in a matrix.
 - **Format** y = minc(x);
 - **Input** *x* NxK matrix.
 - **Output** *y* Kx1 matrix containing the smallest element in each column of *x*.
- **Remarks** If x is complex, minc uses the complex modulus (abs(x)) to determine the smallest elements.

To find the minimum element in each row, transpose the matrix before applying the **minc** function.

To find the minimum value in the whole matrix, nest two calls to **minc**:

y = minc(minc(x));

Example x = rndn(4,2);

y = minc(x);

- $x = \begin{array}{r} -1.061321 & -0.729026 \\ -0.021965 & 0.184246 \\ 1.843242 & -1.847015 \\ 1.977621 & -0.532307 \end{array}$
- $y = -1.061321 \\ -1.847015$

See also maxc, minindc, maxindc

minindc

minindc

Purpose	Returns a column vector containing the index (i.e., row number) of the smallest element in each column in a matrix.		
Format	y = minindc(x);		
Input	<i>x</i> NxK matrix.		
Output	y Kx1 matrix containing the index of the smallest element in each column of x .		
Remarks	If x is complex, minindc uses the complex modulus (abs(x)) to determine the smallest elements.		
	To find the index of the smallest element in each row, transpose the matrix before applying minindc .		
	If there are two or more "smallest" elements in a column (i.e., two or more elements equal to each other and less than all other elements), then minindc returns the index of the first one found, which will be the smallest index.		
Example	x = round(rndn(5,4)*5);		
	y = minc(x);		
	z = minindc(x);		
	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	$y = \begin{array}{c} -6 \\ -4 \\ -7 \end{array}$		

minindc

		4
x	=	5
		1
		3

See also maxindc, minc, maxc

miss, missrv

miss, missrv

- **Purpose** miss converts specified elements in a matrix to GAUSS's missing value code. missrv is the reverse of this, and converts missing values into specified values.
 - Format y = miss(x,v);y = missrv(x,v);
 - *y* ======== (*x*(*x*), *y*)
 - **Input** *x* NxK matrix.
 - *v* LxM matrix, ExE conformable with *x*.
 - **Output** $y = \max(N,L)$ by $\max(K,M)$ matrix.

Remarks For **miss**, elements in *x* that are equal to the corresponding elements in *v* will be replaced with the GAUSS missing value code.

For **missrv**, elements in *x* that are equal to the GAUSS missing value code will be replaced with the corresponding element of *v*.

For complex matrices, the missing value code is defined as a missing value entry in the real part of the matrix. For complex x, then, **miss** replaces elements with a ". + 0i" value, and **missrv** examines only the real part of x for missing values. If, for example, an element of x = 1 + .i, **missrv** will not replace it.

These functions act like element-by-element operators. If v is a scalar, for instance -1, then all -1's in x are converted to missing. If v is a row (column) vector with the same number of columns (rows) as x, then each column (row) in x is transformed to missings according to the corresponding element in v. If v is a matrix of the same size as x, then the transformation is done corresponding element by corresponding element.

Missing values are given special treatment in the following functions and operators: b/a (matrix division when a is not square and neither a nor b is scalar), counts, ismiss, maxc, maxindc, minc, minindc, miss, missex, missex, moment, packr, scalmiss, sortc.

As long as you know a matrix contains no missings to begin with, **miss** and **missrv** can be used to convert one set of numbers into another. For example:

```
y=missrv(miss(x,0),1);
```

will convert 0's to 1's.

miss, missrv

Example v = -1 - 4 - 5;

y = miss(x,v);

If \mathbf{x} has 3 columns, all -1's in the first column will be changed to missings, along with all 4's in the second column and 5's in the third column.

See also counts, ismiss, maxc, maxindc, minc, minindc, missex, moment, packr, scalmiss, sortc

missex

missex

Purpose	Converts numeric values to the missing value code according to the values given in a logical expression.			
Format	y = missex(x,e);			
Input	 <i>x</i> NxK matrix. <i>e</i> NxK logical matrix (matrix of 0's and 1's) that serves as a "mask" for <i>x</i>; the 1's in <i>e</i> correspond to the values in <i>x</i> that are to be converted into missing values. 			
Output	<i>y</i> NxK matrix that equals <i>x</i> , but with those elements that correspond to the 1's in <i>e</i> converted to missing.			
Remarks	The matrix e will usually be created by a logical expression. For instance, to convert all numbers between 10 and 15 in x to missing, the following code could be used:			
	y = missex(x, (x .> 10) .and (x .< 15));			
	Note that "dot" operators MUST be used in constructing the logical expressions.			
	For complex matrices, the missing value code is defined as a missing value entry in the real part of the matrix. For complex x , then, missex replaces elements with a ". + 0i" value.			
	This function is like miss , but is more general in that a range of values can be converted into missings.			
Example	x = rndu(3,2);			
	/* logical expression */			
	e = (x .> .10) .and $(x .< .20);$			
	y = missex(x,e);			
	A $3x2$ matrix of uniform random numbers is created. All values in the interval (0.10, 0.20) are converted to missing.			
Source	datatran.src			
See also	miss, missrv			

moment

moment

Purpose	Computes a cross-product matrix. This is the same as $x'x$.		
Format	y = moment(x, d);		
Input	 x NxK matrix. d scalar, controls handling of missing values. 0 missing values will not be checked for. This is the fastest option. 1 "listwise deletion" is used. Any row that contains a missing value in any of its elements is excluded from the computation of the moment matrix. If every row in x contains missing values, then moment (x,1) will return a scalar zero. 2 "pairwise deletion" is used. Any element of x that is missing is excluded from the computation of the moment matrix. Note that this is seldom a satisfactory method of handling missing values, and special care must be taken in computing the relevant number of observations and degrees of freedom. 		
Output	y KxK matrix which equals $x'x$.		
Remarks	The fact that the moment matrix is symmetric is taken into account to cut execution time almost in half. If there is no missing data then $d = 0$ should be used because it will be faster. The / operator (matrix division) will automatically form a moment matrix (performing pairwise deletions if trap 2 is set) and will compute the ols coefficients of a regression. However, it can only be used for data sets that are small enough to fit into a single matrix. In addition, the moment matrix and its inverse cannot be recovered if the / operator is used.		

moment

Example xx = moment(x,2);

ixx = invpd(xx);

b = ixx*missrv(x,0)'y;

In this example, the regression of y on x is computed. The moment matrix **xx** is formed using the **moment** command (with pairwise deletion, since the second parameter is 2). Then **xx** is inverted using the **invpd** function. Finally, the **ols** coefficients are computed. **missrv** is used to emulate pairwise deletion by setting missing values to 0.

momentd

momentd

Purpose	Computes a moment (X'X) matrix from a GAUSS data set.		
Format	<pre>m = momentd(dataset,vars);</pre>		
Input	dataset vars	string, name of data set. Kx1 character vector, names of variables. or Kx1 numeric vector, indices of columns.	
	These can any order.	be any size subset of the variables in the data set, and can be in If a scalar 0 is passed, all columns of the data set will be used.	
	Defaults ar be ignored this proced	e provided for the following global input variables so they can unless you need control over the other options provided by ure.	
Global Input	con	 scalar, default 1. 1 a constant term will be added. 0 no constant term will be added. 	
	miss	 scalar, default 0. there are no missing values (fastest). do listwise deletion, drop an observation if any missings occur in it. do pairwise deletion. This is equivalent to setting missings to 0 when calculating missings may be a standard setting missings to 0 when calculating missings and 0 when calculating missings are a standard setting missings to 0 when calculating missings are a standard setting missings and 0 when calculating missings are a standard setting missings and 0 when calculating missings are a standard setting missi	
	row	scalar, default 0, the number of rows to read per iteration of the read loop. If 0, the number of rows will be calculated internally.	
		If you get an Insufficient memory error message, or you want the rounding to be exactly the same between runs, you can set the number of rows to read before calling momentd .	
Output	т	MXM matrix, where $M = K + _con$, the moment matrix constructed by calculating X'X where X is the data, with or without a constant vector of ones. Error handling is controlled by the low order bit of the trap flag.	

momentd

trap 0	termir	nate with error message
trap 1	return	scalar error code in m
	33	too many missings
	34	file not found
<pre>z = { age, pay, se m = momentd("freq'</pre>	ex }; ',z);	
momentd.src		
con,miss,1	ow	
	<pre>trap 0 trap 1 z = { age, pay, se m = momentd("freq" momentd.srccon,miss,r</pre>	<pre>trap 0 termin trap 1 return 33 34 z = { age, pay, sex }; m = momentd("freq",z); momentd.src con,miss,row</pre>

m

msym

msym

- **Purpose** Allows the user to set the symbol that GAUSS uses when missing values are converted to ASCII and vice versa.
 - Format msym str;
 - **Input** *str* literal or ^string (up to 8 letters) which, if not surrounded by quotes, is forced to uppercase. This is the string to be printed for missing values. The default is '.'.
- **Remarks** The entire string will be printed out when converting to ASCII in print, lprint, and printfm statements.

When converting ASCII to binary in **loadm** and **let** statements, only the first character is significant. In other words,

msym HAT;

will cause 'H' to be converted to missing on input.

This does not affect **writer** which outputs data in binary format.

See also print, lprint, printfm

nametype

nametype

Purpose	Provides support for programs following the upper/lowercase convention in GAUSS data sets. (See "File I/O" in the <i>User's Guide</i> .) Returns a vector of names of the correct case and a 1/0 vector of type information.			
Format	<pre>{ vname, vtype } = nametype(vname, vtype);</pre>			
Input	 <i>vname</i> Nx1 character vector of variable names. <i>vtype</i> scalar or Nx1 vector of 1's and 0's to determine the type and therefore the case of the output <i>vname</i>. If this is scalar 0 or 1 it will be expanded to Nx1. If -1, nametype will assume that <i>vname</i> follows the upper/lowercase convention. 			
Output	 <i>vname</i> Nx1 character vector of variable names of the correct case, uppercase if numeric, lowercase if character. <i>vtype</i> Nx1 vector of ones and zeros, 1 if variable is numeric, 0 if character. 			
Example	<pre>vn = { age, pay, sex }; vt = { 1, 1, 0 }; { vn, vt } = nametype(vn,vt); print \$vn; AGE vn = PAY sex</pre>			
Source	nametype.src			
Globals	vartype			

n

new

new

Purpose Erases everything in memory including the symbol table; closes all open files, the auxiliary output, and turns the window on if it was off; also allows the size of the new symbol table and the main program space to be specified.

- Format new [[nos [[, mps]]];
 - **Input** *nos* scalar, which indicates the maximum number of global symbols allowed. See your platform supplement for the maximum number of globals allowed in this implementation.
 - *mps* scalar, which indicates the number of bytes of main program space to be allocated. See your platform supplement for the maximum amount allowed in this implementation.

Remarks Procedures, user-defined functions, and global matrices strings and string arrays are all global symbols.

The main program space is the amount of memory available for nonprocedure, nonfunction program code.

This command can be used with arguments as the first statement in a program to clear the symbol table and to allocate only as much space for program code as your program actually needs. When used in this manner, the auxiliary output will not be closed. This will allow you to open the auxiliary output from command level and run a program without having to remove the **new** at the beginning of the program. If this command is not the first statement in your program, it will cause the program to terminate.

new

Example	new;	/*	clear global symbols. */
	new 300;	/* /* /*	clear global symbols, set */ maximum number of global */ symbols to 300, and leave */ program space unchanged. */
	new 200,100000;	/ * / * / * / *	clear global symbols, set */ maximum number of global */ symbols to 200, and allocate */ 100000 bytes for main */ program code. */
	new ,100000;	/ * / * / * / *	clear global symbols, */ allocate 100000 bytes for */ main program code, and leave */ maximum number of globals */ unchanged. */

See also clear, delete, output

n

nextn, nextnevn

nextn, nextnevn

n = 480

Purpose	Returns allowable matrix dimensions for computing FFT's.				
Format	n = nextn(n0); n = nextnevn(n0));			
Input	<i>n0</i> scalar, the ler a matrix.	ngth of a vector or	the number of ro	ws or columns in	
Output	<i>n</i> scalar, the ne computing an	xt allowable size 1 FFT or RFFT. n	for the given dim $a \ge n0$.	ension for	
Remarks	nextn and nextnevn determine allowable matrix dimensions for computing FFT's. The Temperton FFT routines (see table below) can handle any matrix whose dimensions can be expressed as:				
	$2^p \times 3^q \times 5^r \times 7^s,$	<i>p</i> , <i>q</i> , <i>r</i> nonneg	ative integers		
	s = 0 or 1				
	with one restriction: the vector length or matrix column size must be even (<i>p</i> must be positive) when computing RFFT's.				
	fftn , etc., automatically pad matrices (with zeros) to the next allowable dimensions; nextn and nextnevn are provided in case you want to check or fix matrix sizes yourself.				
	Use the following tab matrix:	le to determine w	hat to call for a g	iven function and	
	FFT	Vector	Matrix	Matrix	
	Function	Length	Rows	Columns	
	fftn	nextn	nextn	nextn	
	rfftn	nextnevn	nextn	nextnevn	
	rfftnp	nextnevn	nextn	nextnevn	
Example	n = nextn(456)	;			

nextn, nextnevn

Source	optim.src
--------	-----------

See also fftn, optn, optnevn, rfftn, rfftnp

n

nextwind

nextwind

Purpose Sets the current graphic panel to the next available graphic panel.

Library pgraph

Format nextwind;

Remarks This function selects the next available graphic panel to be the current graphic panel. This is the graphic panel in which the next graph will be drawn.

See the discussion on using graphic panels in "Publication Quality Graphics" in the *User's Guide*.

Source pwindow.src

See also endwind, begwind, setwind, getwind, makewind, window

null

null

Purpose	Computes an orthonormal basis for the (right) null space of a matrix.		
Format	$b = \operatorname{null}(x);$		
Input	x NxM matr	ix.	
Output	b MxK matr	ix, where K $x^*b = 0$	is the nullity of X, such that: (NxK matrix of zeros)
	and The error r	b'b = I returns are re	(MXM identity matrix) turned in <i>b</i> :
	error code	reason	
	1	there is no	null space
	2	b is too lar	ge to return in a single matrix
	Use scal	err to test f	or error returns.
Remarks	The orthogonal conthe QR decompositions of <i>x</i> .	mplement of tion. This pr	the column space of x' is computed using ovides an orthonormal basis for the null
Example	<pre>let x[2,4] = :</pre>	2 1 3 -1 3 5 1 2	;
	<pre>b = null(x);</pre>		
	z = x*b;		
	i = b'b;		
Source	null.src		
Globals	_qrdc, _qrsl		

3-527

null1

null1

Purpose	Computes an orthonormal basis for the (right) null space of a matrix.		
Format	nu = null1(x, dataset);		
Input	xNxM matrix.datasetstring, the name of a data set null1 will write.		
Output	<i>nu</i> scalar, the nullity of <i>x</i> .		
Remarks	null1 computes an MxK matrix <i>b</i> , where K is the nullity of <i>x</i> , such that:		
	$x^*b = 0$ (NxK matrix of zeros) and b'b = I (MxM identity matrix)		
	The transpose of b is written to the data set named by <i>dataset</i> , unless the nullity of x is zero. If nu is zero, the data set is not written.		
Source	null.src		
Globals	_qrdc, _qrsl		

ols

Purpose	Computes a	least squares regression.
Format	{ vnam,m, = ols(date	.b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat } aset,depvar,indvars);
Input	dataset s	string, name of data set or null string.
	:	actual data has been passed in the next two arguments.
	depvar	If <i>dataset</i> contains a string:
		string, name of dependent variable.
		scalar, index of dependent variable. If scalar 0, the last column of the data set will be used.
]	If <i>dataset</i> is a null string or 0:
		Nx1 vector, the dependent variable.
	<i>indvars</i>	If <i>dataset</i> contains a string:
		Kx1 character vector, names of independent variables.
		Kx1 numeric vector, indices of independent variables.
	; 1	These can be any size subset of the variables in the data set and can be in any order. If a scalar 0 is passed, all columns of the data set will be used except for the one used for the dependent variable.
]	If <i>dataset</i> is a null string or 0:
		NxK matrix, the independent variables.
Global Input	Defaults are be ignored u this procedu	provided for the following global input variables, so they can nless you need control over the other options provided by re.
	altnam	global vector, default 0.
		This can be a $(K+1)x1$ or $(K+2)x1$ character vector of alternate variable names for the output. If <u></u> con is 1, this must be $(K+2)x1$. The name of the dependent variable is the last element.
	con	global scalar, default 1.
		1 a constant term will be added, $D = K+1$.
		0 no constant term will be added, $D = K$.

			A cons momen	tant tern t matrix	n will always be u m.	sed in constructing the
	mis	s	global s	scalar, d	efault 0.	
			0	0	there are no miss	ing values (fastest).
				1	listwise deletion, missings occur.	drop any cases in which
				2	pairwise deletion setting missings The number of ca the total number	t, this is equivalent to to 0 when calculating <i>m</i> . ases computed is equal to of cases in the data set.
	out	put	global	scalar, d	efault 1.	
				1	print the statistic	S.
				0	do not print statis	stics.
	row	v	global s the read	scalar, tl d loop. I	ne number of rows Default 0.	s to read per iteration of
			If 0, the you get while e that wo	e numbe an Ins xecuting orks on y	er of rows will be of sufficient me g ols, you can su your system.	calculated internally. If emory error message pply a value for row
			The and different iteratio get exa	swers m nces who n. You c ctly the	ay vary slightly de en a different num can use row to same rounding eff	ue to rounding error ber of rows is read per control this if you want to fects between several runs.
	_olsr	ces	global	scalar, d	efault 0.	
				1	compute residual Watson statistic(a	ls (<i>resid</i>) and Durbin- dwstat).
				0	resid = 0, dwstat	= 0.
Output	vnam	(K+2 the re (K+2 name)X1 or (I egression)X1, and will be	X+1)x1 h. If a co the firs the nam	character vector, the character vector, the character is use t name will be "Cu the of the dependen	he variable names used in d, this vector will be ONSTANT". The last t variable.
	т	MxM by ca obser	I matrix, lculating vations	where g x'x wl and hav	M = K+2, the morner x is a matrix ing columns in the	nent matrix constructed containing all useable e order:
		1	1.0		indvars	depvar
		(cons	stant) (indeper	ident variables)	(dependent variable)
		A co	nstant te	rm is alv	ways used in com	puting <i>m</i> .
	b	Dx1	vector, tl	he least	squares estimates	of parameters.

Error handling is controlled by the low order bit of the trap flag.

	LIIUII	ianu	ing is	controlled by the low order bit of the hap hag.
	trap	0	term	inate with error message
	trap	1	retur	n scalar error code in b
			30	system singular
			31	system underdetermined
			32	same number of columns as rows
			33	too many missings
			34	file not found
			35	no variance in an independent variable
	The sy deletion skip so column	stem on an o mai ns in	d can b d have ny cas the d	become underdetermined if you use listwise e missing values. In that case, it is possible to es that there are fewer useable rows than ata set.
stb	Kx1 ve	ector	, the s	tandardized coefficients.
vc	DxD n	natri	x, the	variance-covariance matrix of estimates.
stderr	Dx1 vector, the standard errors of the estimated parameters.			
sigma	scalar, standard deviation of residual.			
cx	(K+1)x(K+1) matrix, correlation matrix of variables with the dependent variable as the last column.			
rsq	scalar,	R sc	luare,	coefficient of determination.
resid	residua	als, <i>r</i>	esid =	y - x * b.
	If _ol	sre	s = 1	, the residuals will be computed.
	If the c for the _olsr Nx1 co the nar	data i resi rna olum me o	is take duals, n. The n. The f the r	en from a data set, a new data set will be created using the name in the global string variable e residuals will be saved in this data set as an e <i>resid</i> return value will be a string containing new data set containing the residuals.
	If the c the Nx	data i 1 ve	is pass ctor o	sed in as a matrix, the <i>resid</i> return value will be f residuals.
dwstat	scalar,	Dur	bin-W	atson statistic.
No out	out file	is m	odifie	d, opened, or closed by this procedure. If you

Remarks No output file is modified, opened, or closed by this procedure. If you want output to be placed in a file, you need to open an output file before calling **ols**.

Example	y = { 2,
	3,
	1,
	7,
	5 };
	x = { 1 3 2,
	2 3 1,
	7 1 7,
	5 3 1,
	3 5 5 };
	<pre>output file = ols.out reset;</pre>
	<pre>call ols(0,y,x);</pre>
	output off;
	In this example, the output from ols was put as well as being printed in the window. This ex squares regression of y on x . The return value call statement.
	data = "olsdat";
	depvar = { score };

into a file called ols.out xample will compute a least s were discarded by using a

```
indvars = { region,age,marstat };
_olsres = 1;
output file = lpt1 on;
{ nam,m,b,stb,vc,std,sig,cx,rsq,resid,dbw } =
   ols(data,depvar,indvars);
output off;
```

In this example, the data set olsdat.dat was used to compute a regression. The dependent variable is **score**. The independent variables are region, age, and marstat. The residuals and Durbin-Watson statistic will be computed. The output will be sent to the printer as well as the window and the returned values are assigned to variables.

Source	ols.src
Globals	_olsres, _olsrnam,altnam,con,miss,
	output,row,vpad
See also	olsqr

0

olsqr

olsqr

Purpose	Computes OLS coefficients using QR decomposition.
Format	b = olsqr(y,x);
Input	<i>y</i> Nx1 vector containing dependent variable.<i>x</i> NxP matrix containing independent variables.
Global Input	_olsqtol global scalar, the tolerance for testing if diagonal elements are approaching zero. The default value is 10 <i>e</i> -14.
Output	b Px1 vector of least squares estimates of regression of y on x . If x does not have full rank, then the coefficients that cannot be estimated will be zero.
Remarks	This provides an alternative to y/x for computing least squares coefficients.
	This procedure is slower than the / operator. However, for near singular matrices it may produce better results.
	olsqr handles matrices that do not have full rank by returning zeros for the coefficients that cannot be estimated.
Source	olsqr.src
Globals	_olsqtol
See also	ols, olsqr2, orth, qqr

olsqr2

olsqr2

Purpose	Computes OLS coefficients, residuals, and predicted values using the QR decomposition.
Format	$\{ b, r, p \} = olsqr2(y, x);$
Input	<i>y</i> Nx1 vector containing dependent variable.<i>x</i> NxP matrix containing independent variables.
Global Input	_olsqtol global scalar, the tolerance for testing if diagonal elements are approaching zero. The default value is 10 <i>e</i> -14.
Output	b Px1 vector of least squares estimates of regression of y on x. If x does not have full rank, then the coefficients that cannot be estimated will be zero.
	<i>r</i> Px1 vector of residuals. ($r = y - x^*b$)
	p Px1 vector of predicted values. ($p = x*b$)
Remarks	This provides an alternative to y/x for computing least squares coefficients.
	This procedure is slower than the / operator. However, for near singular matrices, it may produce better results.
	olsqr2 handles matrices that do not have full rank by returning zeros for the coefficients that cannot be estimated.
Source	olsqr.src
Globals	_olsqtol
See also	olsgr, orth, ggr

ones

ones

Purpose	Creates a matrix of ones.
Format	y = ones(r,c);
Input	<i>r</i> scalar, number of rows.<i>c</i> scalar, number of columns.
Output	y RxC matrix of ones.
Remarks	Noninteger arguments will be truncated to an integer.
Example	x = ones(3,2);
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
See also	zeros, eye
open

Purpose	Opens an existing GAUSS data file.		
Format	open <i>fh</i> =	=filename [[for mode]] [[varindxi [[offs]]]];
Input	filename	literal or <i>filename</i> include a directory. extension be overrid extension to be take must be p	^string. is the name of the file on the disk. The name can path if the directory to be used is not the current This filename will automatically be given the .dat. If an extension is specified, the .dat will dden. If the file is an .fmt matrix file, the must be explicitly given. If the name of the file is en from a string variable, the name of the string preceded by the ^ (caret) operator.
	mode	[[read]], The mode are: read	append, update es supported with the optional for subcommand This is the default file opening mode and will be the one used if none is specified. Files opened in this mode cannot be written to. The pointer is set to the beginning of the file and the writer function is disabled for files opened in this way. This is the only mode available for matrix files (.fmt), which are always written in one piece with the save command
		append	Files opened in this mode cannot be read. The pointer will be set to the end of the file so that a subsequent write to the file with the writer function will add data to the end of the file without overwriting any of the existing data in the file. The readr function is disabled for files opened in this way. This mode is used to add additional rows to the end of a file.
		update	Files opened in this mode can be read from and written to. The pointer will be set to the beginning of the file. This mode is used to make changes in a file.
	offs	scalar.	

The optional **varindxi** subcommand tells GAUSS to create a set of global scalars that contain the index (column position) of the variables in a GAUSS data file. These "index variables" will have the same names as the corresponding variables in the data file but with "i" added as a prefix. They can be used inside index brackets, and with functions like **submat** to access specific columns of a matrix without having to remember the column position.

The optional *offs* is an offset that will be added to the index variables. This is useful if data from multiple files are concatenated horizontally in one matrix. It can be any scalar expression. The default is 0.

The index variables are useful for creating submatrices of specific variables without requiring that the positions of the variables be known. For instance, if there are two variables, **xvar** and **yvar** in the data set, the index variables will have the names **ixvar**, **iyvar**. If **xvar** is the first column in the data file, and **yvar** is the second, and if no offset, *offs*, has been specified, then **ixvar** and **iyvar** will equal 1 and 2, respectively. If an offset of 3 had been specified, then these variables would be assigned the values 4 and 5, respectively.

The **varindxi** and **varindx** options cannot be used with .fmt matrix files because no column names are stored with them.

If varindxi is used, GAUSS will ignore the Undefined symbol error message for global symbols that start with "i". This makes it much more convenient to use index variables because they don't have to be cleared before they are accessed in the program. Clearing is otherwise necessary because the index variables do not exist until execution time when the data file is actually opened and the names are read in from the header of the file. At compile time a statement like: y=x[.,ixvar]; will be illegal if the compiler has never heard of ixvar. If varindxi is used, this error will be ignored for symbols beginning with "i". Any symbols that are accessed before they have been initialized with a real value will be trapped at execution time with a Variable not initialized error message.

Output	fh	scalar.	
		<i>fh</i> is the file handle which will be used by most commands to refer to the file within GAUSS. This file handle is	
		actually a scalar containing an integer value that uniquely	
		identifies each file. This value is assigned by GAUSS when the open command is executed. If the file was not	
		successfully opened, the file handle will be set to -1.	
Remarks	The file must create a new	exist before it can be opened with the open command. (To file, see create or save .)	
	A file can be second example	opened simultaneously under more than one handle. See the ple following.	
	If the value the execute matchest and a File you some properties as a currently access the firm	hat is in the file handle when the open command begins to hes that of an already open file, the process will be aborted already open error message will be given. This gives tection against opening a second file with the same handle open file. If this happens, you would no longer be able to st file.	
	It is importan create chea an open file b should be don	t to set unused file handles to zero because both open and ck the value that is in a file handle to see if it matches that of before they proceed with the process of opening a file. This he with close or closeall .	
Example	fname = "	/data/rawdat";	
	open dt =	<pre>^fname for append;</pre>	
	if dt ==	-1;	
	print	"File not found";	
	end;		
	endif;		
	y = write	r(dt,x);	
	if y /= r	ows(x);	
	print	"Disk Full";	
	end;		
	endif;		
	dt = clos	e(dt);	

In the example above, the existing data set /data/rawdat.dat is opened for appending new data. The name of the file was in the string variable **fname**. In this example the file handle is tested to see if the file was opened successfully. The matrix **x** is written to this data set. The number of columns in **x** must be the same as the number of columns in the existing data set. The first row in **x** will be placed after the last row in the existing data set. The **writer** function will return the number of rows actually written. If this does not equal the number of rows that were attempted, then the disk is probably full.

```
open fin = mydata for read;
open fout = mydata for update;
do until eof(fin);
    x = readr(fin,100);
    x[.,1 3] = ln(x[.,1 3]);
    call writer(fout,x);
endo;
closeall fin,fout;
```

In the above example, the same file, mydata.dat, is opened twice with two different file handles. It is opened for read with the handle **fin**, and it is opened for update with the handle **fout**. This will allow the file to be transformed in place without taking up the extra space necessary for a separate output file. Notice that **fin** is used as the input handle and **fout** is used as the output handle. The loop will terminate as soon as the input handle has reached the end of the file. Inside the loop the file is read into a matrix called **x** using the input handle, the data are transformed (columns 1 and 3 are replaced with their natural logs), and the transformed data is written back out using the output handle. This type of operation works well as long as the total number of rows and columns does not change.

The following example assumes a data file named dat1.dat that has the variables: **visc**, **temp**, **lub**, **rpm**.

```
open f1 = dat1 varindxi;
dtx = readr(f1,100);
x = dtx[.,irpm ilub ivisc];
y = dtx[.,itemp];
call seekr(f1,1);
```

In this example, the data set dat1.dat is opened for reading (the .dat and the **for read** are implicit). **varindxi** is specified with no constant. Thus, index variables are created that give the positions of the variables in the data set. The first 100 rows of the data set are read into the matrix **dtx**. Then, specified variables in a specified order are assigned to the matrices **x** and **y** using the index variables. The last line uses the **seekr** function to reset the pointer to the beginning of the file.

```
open q1 = dat1 varindx;
open q2 = dat2 varindx colsf(q1);
nr = 100;
y = readr(q1,nr)~readr(q2,nr);
closeall q1,q2;
```

In this example, two data sets are opened for reading and index variables are created for each. A constant is added to the indices for the second data set (q2), equal to the number of variables (columns) in the first data set (q1). Thus, if there are three variables x1, x2, x3 in q1, and three variables y1, y2, y3 in q2, the index variables that were created when the files were opened would be ix1, ix2, ix3, iy1, iy2, iy3. The values of these index variables would be 1, 2, 3, 4, 5, 6, respectively. The first 100 rows of the two data sets are read in and concatenated to give the matrix y. The index variables will thus give the correct positions of the variables in y.

```
open fx = x.fmt;
i = 1; rf = rowsf(fx);
sampsize = round(rf*0.1);
rndsmpx = zeros(sampsize,colsf(fx));
do until i > sampsize;
r = ceil(rndu(1,1)*rf);
call seekr(fx,r);
rndsmpx[i,.] = readr(fx,1);
i = i+1;
endo;
fx = close(fx);
```

In this example, a 10% random sample of rows is drawn from the matrix file x.fmt and put into the matrix **rndsmpx**. Note that the extension .fmt must be specified explicitly in the **open** statement. The **rowsf** command is used to obtain the number of rows in x.fmt. This number is multiplied by 0.10 and the result is rounded to the nearest integer; this yields desired sample size. Then random integers (**r**) in the range 1 to **rf** are generated. **seekr** is used to locate to the appropriate row in the matrix, and the row is read with **readr** and placed in the matrix **rndsmpx**. This is continued until the complete sample has been obtained.

See also create, close, closeall, readr, writer, seekr, eof

optn, optnevn

optn, optnevn

Purpose	Returns optimal matrix dimensions for computing FFT's.			
Format	<pre>n = optn(n0); n = optnevn(n0);</pre>			
Input	n0 scalar, the length of a vector or the number of rows or columns in a matrix.			
Output	<i>n</i> scalar, the next optimal size for the given dimension for computing an FFT or RFFT. $n \ge n0$.			
Remarks	optn and optnevn determine optimal matrix dimensions for computing FFT's. The Temperton FFT routines (see table following) can handle any matrix whose dimensions can be expressed as:			
	$2^{p} \times 3^{q} \times 5^{r} \times 7^{s}$, p, q, r nonnegative integers s = 0 or 1			
	with one restriction: the vector length or matrix column size must be even (<i>p</i> must be positive) when computing RFFT's.			
	fftn, etc., pad matrices to the next allowable dimensions; however, they			

fftn, etc., pad matrices to the next allowable dimensions; however, they generally run faster for matrices whose dimensions are highly composite numbers, that is, products of several factors (to various powers), rather than powers of a single factor. For example, even though it is bigger, a 33600x1 vector can compute as much as 20 percent faster than a 32768x1 vector, because 33600 is a highly composite number, $2^6 \times 3 \times 5^2 \times 7$, whereas 32768 is a simple power of 2, 2^{15} . **optn** and **optnevn** are provided so you can take advantage of this fact by hand-sizing matrices to optimal dimensions before computing the FFT.

optn, optnevn

Use the following table to determine what to call for a given function and matrix:

FFT	Vector	Matrix	Matrix
Function	Length	Rows	Columns
fftn	optn	optn	optn
rfftn	optnevn	optn	optnevn
rfftnp	optnevn	optn	optnevn

Example n = optn(231);

n = 240.00000

See also fftn, nextn, nextnevn, rfftn, rfftnp

orth

orth

Purpose	Computes an orthonormal basis for the column space of a matrix.		
Format	y = orth(x);		
Input	<i>x</i> NxK matrix.		
Global Input	_orthtol global scalar, the tolerance for testing if diagonal elements are approaching zero. The default is 1.0 <i>e</i> -14.		
Output	y NxL matrix such that $y'y = eye(L)$ and whose columns span the same space as the columns of x; L is the rank of x.		
Example	x = { 6 5 4, 2 7 5 }; y = orth(x);		
	$y = \begin{array}{c} -0.58123819 & -0.81373347 \\ -0.81373347 & 0.58123819 \end{array}$		
Source	qqr.src		
Globals	_orthtol		
See also	qqr, olsqr		

output

output

Purpose This command makes it possible to direct the output of **print** statements to two different places simultaneously. One output device is always the window or standard output. The other can be selected by the user to be any disk file or other suitable output device such as a printer.

Format output [[file=filename]] [[on|off|reset]];

Input filename literal or ^string. The **file**=*filename* subcommand selects the file or device to which output is to be sent. If the name of the file is to be taken from a string variable, the name of the string must be preceded by the ^ (caret) operator. The default file name is output.out. literal, mode flag on, off, reset opens the auxiliary output file or device and on causes the results of all **print** statements to be sent to that file or device. If the file already exists, it will be opened for appending. If the file does not already exist, it will be created. off closes the auxiliary output file and turns off the auxiliary output. **reset** similar to the **on** subcommand, except that it always creates a new file. If the file already exists, it will be destroyed and a new file by that name will be created. If it does not exist, it will be created. Remarks After you have written to an output file you have to close the file before you can print it or edit it with the GAUSS editor. Use **output** off. The selection of the auxiliary output file or device remains in effect until a new selection is made, or until you exit GAUSS. Thus, if a file is named as the output device in one program, it will remain the output device in subsequent programs until a new **file**=*filename* subcommand is encountered.

output

The command **output file**=*filename*; will select the file or device but will not open it. A subsequent **output on**; or **output reset**; will open it and turn on the auxiliary output.

The command **output** off will close the file and turn off the auxiliary output. The filename will remain the same. A subsequent **output** on will cause the file to be opened again for appending. A subsequent **output** reset will cause the existing file to be destroyed and then recreated and will turn on the auxiliary output.

The command **output** by itself will cause the name and status (i.e., open or closed) of the current auxiliary output file to be printed in the window.

The output to the console can be turned off and on using the **screen** off and **screen** on commands. Output to the auxiliary file or device can be turned off or on using the **output** off or **output** on command. The defaults are **screen** on and **output** off.

The auxiliary file or device can be closed by an explicit **output off** statement, by an **end** statement, or by an interactive **new** statement. However, a **new** statement at the beginning of a program will not close the file. This allows programs with **new** statements in them to be run without reopening the auxiliary output file.

If a program sends data to a disk file, it will execute much faster if the window is off.

The **outwidth** command will set the line width of the output file. The default is 80.

output

Example	output	file	=	out1.out	on;
	T				

This statement will open the file out1.out and will cause the results of all subsequent **print** statements to be sent to that file. If out1.out already exists, the new output will be appended.

```
output file = out2.out;
output on;
```

This is equivalent to the previous example.

output reset;

This statement will create a new output file using the current filename. If the file already exists, any data in it will be lost.

```
output file = mydata.asc reset;
screen off;
format /ml/rz 1,8;
open fp = mydata;
do until eof(fp);
    print readr(fp,200);;
endo;
fp = close(fp);
end;
```

The program above will write the contents of the GAUSS file mydata.dat into an ASCII file called mydata.asc. If there had been an existing file by the name of mydata.asc, it would have been overwritten.

The /ml parameter in the format statement in combination with the ;; at the end of the print statement will cause one carriage return/line feed pair to be written at the beginning of each row of the output file. There will not be an extra line feed added at the end of each 200 row block.

The **end** statement above will automatically perform **output** off and **screen** on.

See also outwidth, screen, end, new

outtyp (dataloop)

outtyp (dataloop)

Purpose	Specifies the precision of the output data set.
Format	<pre>outtyp num_constant;</pre>
Remarks	<i>num_constant</i> must be 2, 4, or 8, to specify integer, single precision, or double precision, respectively.
	If outtyp is not specified, the precison of the output data set will be that of the input data set. If character data is present in the data set, the precision will be forced to double.
Example	outtyp 8;

outwidth

outwidth

Purpose Specifies the width of the auxiliary output. Format outwidth n; Remarks *n* specifies the width of the auxiliary output in columns (characters). After printing *n* characters on a line, GAUSS will output a line feed. If a matrix is being printed, the line feed sequence will always be inserted between separate elements of the matrix rather than being inserted between digits of a single element. *n* may be any scalar-valued expression in the range of 2-256. Nonintegers will be truncated to an integer. If 256 is used, no additional lines will be inserted. The default is 80 columns. Example outwidth 132; This statement will change the auxiliary output width to 132 columns. See also lpwidth, output, print

pacf

pacf

Purpose	Comp	Computes sample partial autocorrelations.		
Format	rkk =	<pre>: pacf(y,k,d);</pre>		
Input	y k d	Nx1 vector, data. scalar, maximum number of partial autocorrelations to compute. scalar, order of differencing.		
Output	rkk	Kx1 vector, sample partial autocorrelations.		
Example	proc	<pre>pacf(y,k,d);</pre>		
	1	ocal a,l,j,r,t;		
	r	= acf(y,k,d);		
	a	= zeros(k,k);		
	a	[1,1] = r[1];		
	t	= 1;		
	1	= 2;		
	d	o while l le k;		
		a[l,l] = (r[l]-a[l-1,1:t]*rev(r[1:l-1]))/		
		(1-a[l-1,1:t]*r[1:t]);		
		j = 1;		
		do while j <= t;		
		a[l,j] = a[l-1,j] - a[l,l]*a[l-1,l-j];		
		j = j+1;		
		endo;		
		t = t+1;		
		l = l+1;		
	e	ndo;		

pacf

retp(diag(a));

endp;

Source tsutil.src

packr

packr

Purpose	Deletes the rows of a matrix that contain any missing values.		
Format	y = packr(x);		
Input	<i>x</i> NxK matrix.		
Output	<i>y</i> LxK submatrix of <i>x</i> containing only those rows that do not have missing values in any of their elements.		
Remarks	This function is useful for handling missing values by "listwise deletion," particularly prior to using the / operator to compute least squares coefficients.		
	If all rows of a matrix contain missing values, packr returns a scalar missing value. This can be tested for quickly with the scalmiss function.		
Example	<pre>x = miss(ceil(rndu(3,3)*10),1); y = packr(x);</pre>		
	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	y = 349		

In this example, the matrix \mathbf{x} is formed with random integers and missing values. **packr** is used to delete rows with missing values.

packr

```
open fp = mydata;
obs = 0;
sum = 0;
do until eof(fp);
x = packr(readr(fp,100));
if not scalmiss(x);
obs = obs+rows(x);
sum = sum+sumc(x);
endif;
endo;
mean = sum/obs;
```

In this example, the sums of each column in a data file are computed as well as a count of the rows that do not contain any missing values. **packr** is used to delete rows that contain missings and **scalmiss** is used to skip the two sum steps if all the rows are deleted for a particular iteration of the read loop. Then the sums are divided by the number of observations to obtain the means.

See also scalmiss, miss, missrv

parse

parse

Purpose	Parses a string, returning a character vector of tokens.		
Format	<pre>tok = parse(str,delim);</pre>		
Input	str delim	string consisting of a series of tokens and/or delimiters. NXK character matrix of delimiters that might be found in <i>str</i> .	
Output	tok	Mx1 character vector consisting of the tokens contained in <i>str</i> . All tokens are returned; any delimiters found in <i>str</i> are ignored.	
Remarks	The tokens in <i>str</i> must be 8 characters or less in size. If they are longer, the contents of <i>tok</i> is unpredictable.		
See also	toker	a	

pause

pause

Purpose	Pauses for a specified number of seconds.		
Format	<pre>pause(sec);</pre>		
Input	<i>sec</i> seconds to pause.		
Source	pause.src		
See also	wait		

pdfn

pdfn

Purpose	Computes the standard Normal (scalar) probability density function.		
Format	y = pdfn(x);		
Input	<i>x</i> NxK matrix.		
Output	<i>y</i> NXK matrix containing the standard Normal probability density function of <i>x</i> .		
Remarks	This does not compute the joint Normal density function. Instead, the scalar Normal density function is computed element-by-element. <i>y</i> could be computed by the following GAUSS code:		
	y = (1/sqrt(2*pi))*exp(-(x.*x)/2);		
Example	x = rndn(2,2);		
	y = pdfn(x);		
	-1.828915 0.514485		
	-0.550219 -0.275229		
	0.074915 0.349488		
	y – 0.342903 0.384115		

pi

pi	
Purpose	Returns the mathematical constant π .
Format	y = pi;
Example	format /rdn 16,14; print pi;
	produces: 3.14159265358979

pinv

pinv

Purpose	Computes the Moore-Penrose pseudo-inverse of a matrix, using the singular value decomposition.	
	This pseudo-inverse is one particular type of generalized inverse.	
Format	y = pinv(x);	
Input	x NXM matrix.	
Global Input	_svdtol global scalar, any singular values less than _svdtol are treated as zero in determining the rank of the input matrix. The default value for _svdtol is 1.0 <i>e</i> -13.	
Output	y MxN matrix that satisfies the 4 Moore-Penrose conditions: XYX = X YXY = Y XY is symmetric YX is symmetric	
Global Output	_svderr global scalar, if not all of the singular values can be computed _svderr will be nonzero.	
Example	$x = \{ 6 5 4, 2 7 5 \} ;$	
	y = pinv(x);	
	0.22017139 -0.16348055 y = -0.05207647 0.13447594 -0.0151615 0.07712591	
Source	svd.src	
Globals	_svdtol, _svderr	

polar

polar

Purpose	Graphs data using polar coordinates.	
Library	pgrapl	a
Format	polar	(radius, theta);
Input	radius	Nx1 or NxM matrix. Each column contains the magnitude for a particular line.
	theta	Nx1 or NxM matrix. Each column represents the angle values for a particular line.
Source	polar	.src
See also	xy, lo	ogx, logy, loglog, scale, xtics, ytics

polychar

polychar

Purpose	Computes the characteristic polynomial of a square matrix.	
Format	<pre>c = polychar(x);</pre>	
Input	x NXN matrix.	
Output	<i>c</i> (N+1)×1 vector of coefficients of the N th order characteristic polynomial of <i>x</i> : $p(z)=c[1]*z^{n}+c[2]*z^{(n-1)}++c[n]*z+c[n+1];$	
Remarks	The coefficient of z^n is set to unity ($c[1]=1$).	
Source	poly.src	
See also	polymake, polymult, polyroot, polyeval	

polyeval

polyeval

- **Purpose** Evaluates polynomials. Can either be 1 or more scalar polynomials or a single matrix polynomial.
 - **Format** y = polyeval(x,c);
 - **Input** x 1xK or NxN; that is, x can either represent K separate scalar values at which to evaluate the (scalar) polynomial(s), or it can represent a single NxN matrix.
 - *c* (P+1)xK or (P+1)x1 matrix of coefficients of polynomials to evaluate. If *x* is 1xK, then *c* must be (P+1)xK. If *x* is NxN, *c* must be (P+1)x1. That is, if *x* is a matrix, it can only be evaluated at a single set of coefficients.
 - **Output** y Kx1 vector (if c is (P+1)xK) or NxN matrix (if c is (P+1)x1 and x is NxN):

 $y = (c[1,.].*x^{p} + c[2,.].*x^{(p-1)} + ... + c[p+1,.])';$

- **Remarks** In both the scalar and the matrix case, Horner's rule is used to do the evaluation. In the scalar case, the function **recsercp** is called (this implements an elaboration of Horner's rule).
- **Example** x = 2;

let c = 1 1 0 1 1;

y = polyeval(x,c);

The result is 27. Note that this is the decimal value of the binary number 11011.

```
y = polyeval(x,1|zeros(n,1));
```

This will raise the matrix *x* to the n^{th} power (e.g: $x^*x^*x^*x^*...^*x$).

Source poly.src

See also polymake, polychar, polymult, polyroot

polyint

polyint

Purpose	Calculates an N th order polynomial interpolation.	
Format	y = poly	<pre>vint(xa,ya,x);</pre>
Input	xa ya x	Nx1 vector, X values. Nx1 vector, Y values. scalar, X value to solve for.
Global Input	_poldeg	global scalar, the degree of polynomial required, default 6.
Output	у	result of interpolation or extrapolation.
Global Output	_polerr	global scalar, interpolation error.
Remarks	Calculates an N^{th} order polynomial interpolation or extrapolation of X or Y given the vectors xa and ya and the scalar x . The procedure uses Neville's algorithm to determine an up to N^{th} order polynomial and an error estimate.	
	Polynomial most data. problem.	Is above degree 6 are not likely to increase the accuracy for Test _polerr to determine the required _poldeg for your
Source	polyint	.src
Technical Notes	Press, W.P. Recipes: Th	, B.P. Flannery, S.A. Tevkolsky, and W.T. Vettering. <i>Numerical he Art of Scientific Computing</i> . NY: Cambridge Press, 1986.

polymake

polymake

Purpose	Computes the coefficients of a polynomial given the roots.	
Format	<pre>c = polymake(r);</pre>	
Input	<i>r</i> Nx1 vector containing roots of the desired polynomial.	
Output	c $(N+1)x1$ vector containing the coefficients of the N^{th} order polynomial with roots r :	
	$p(z)=c[1]*z^{n}+c[2]*z^{(n-1)}++c[n]*z+c[n+1];$	
Remarks	The coefficient of z^n is set to unity ($c[1]=1$).	
Example	<pre>r = { 2, 1, 3 }; c = polymake(r);</pre>	
	$c = \begin{cases} -1.0000000 \\ -6.000000 \\ 11.00000 \\ -6.000000 \end{cases}$	
Source	poly.src	
See also	polychar, polymult, polyroot, polyeval	

polymat

polymat

Purpose	Returns a matrix containing the powers of the elements of x from 1 to p .	
Format	y = polymat(x,p);	
Input	x NxK matrix.p scalar, positive integer.	
Output	y $Nx(p*K)$ matrix containing powers of the elements of x from 1 to p. The first K columns will contain first powers, the second K columns contain the second powers, and so on.	
Remarks	<pre>To do polynomial regression use ols: { vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid, dwstat } = ols(0,y,polymat(x,p));</pre>	
Source	polymat.src	

polymroot

polymroot

Purpose	Computes the roots of the determinant of a matrix polynomial	
Format	<pre>r = polymroot(c);</pre>	
Input	<i>c</i> (N+1)*KxK matrix of coefficients of an Nth order polynomial of rank K.	
Output	<i>r</i> K*N vector containing the roots of the determinantal equation.	
Remarks	<i>c</i> is constructed of N+1 KxK coefficient matrices stacked vertically with the coefficient matrix of the t^n at the top, $t^{(n-1)}$ next, down to the t^0 matrix at the bottom.	
	Note that this procedure solves the scalar problem as well, that is, the one that POLYROOT solves.	
Example	Solve $det(A2*t^2 + A1*t + A0) = 0$ where:	
	A2 = [1 2]	
	[21]	
	Al = [5 8]	
	[10 7]	
	A0 = [3 4]	
	[6 5]	
	$a2 = \{ 1 2, 2 1 \};$	
	$a1 = \{ 5 8, 10 7 \};$	
	$a0 = \{ 3 4, 6 5 \};$	
	<pre>print polymroot(a2 a1 a0);</pre>	
	-4.3027756	
	69722436	
	-2.6180340	
	38196601	

polymult

polymult

Purpose	Multiplies polynomials.	
Format	c = polymult(cl,c2);	
Input	 c1 (D1+1)x1 vector containing the coefficients of the first polynomial. c2 (D2+1)x1 vector containing the coefficients of the second polynomial. 	
Output	<i>c</i> (D1+D2)x1 vector containing the coefficients of the product of the two polynomials.	
Example	c1 = { 2, 1 }; c2 = { 2, 0, 1 }; c = polymult(c1,c2); $c = \frac{4.0000000}{2.0000000}$ 1.0000000	
Source	poly.src	
See also	polymake, polychar, polyroot, polyeval	
Technical Notes	If the degree of $c1$ is $D1$ (e.g., if $D1=3$, then the polynomial corresponding to $c1$ is cubic), then there must be $D1+1$ elements in $c1$ (e.g., 4 elements for a cubic). Thus, for instance the coefficients for the polynomial $5*x^3 + 6*x + 3$ would be: $c1=5 0 6 3$. (Note that zeros must be explicitly given if there are powers of x missing.)	

polyroot

polyroot

Purpose	Computes the roots of a polynomial given the coefficients.	
Format	y = polyroot(c);	
Input	<i>c</i> (N+1)x1 vector of coefficients of an N^{th} order polynomial: $p(z)=c[1]*z^n + c[2]*z^{(n-1)} ++c[n]*z + c[n+1]$ Zero leading terms will be stripped from <i>c</i> . When that occurs the order of <i>y</i> will be the order of the polynomial after the leading zeros have been stripped. <i>c</i> [1] need not be normalized to unity.	
Output	y Nx1 vector, the roots of c .	
Source	poly.src	
See also	polymake, polychar, polymult, polyeval	

pop

pop

Purpose	Provides access to a last-in, first-out stack for matrices.
---------	---

Format pop b; pop a;

Remarks This is used with gosub, goto, and return statements with parameters. It permits passing parameters to subroutines or labels, and returning parameters from subroutines.

The **gosub** syntax allows an implicit **push** statement. This syntax is almost the same as that of a standard **gosub**, except that the matrices to be **push**'ed "into the subroutine" are in parentheses following the label name. The matrices to be **push**'ed back to the main body of the program are in parentheses following the **return** statement. The only limit on the number of matrices that can be passed to and from subroutines in this way is the amount of room on the stack.

No matrix expressions can be executed between the (implicit) **push** and the **pop**. Execution of such expressions will alter what is on the stack.

Matrices must be **pop**'ped in the reverse order that they are **push**'ed, therefore the statements:

Note that matrices are **pop**'ped in reverse order, and that there is a separate **pop** statement for each matrix popped.

See also gosub, goto, return

р

pqgwin

pqgwin

Purpose	Sets the graphics viewer mode.	
Library	pgraph	
Format	pqgwin arg;	
Input	<i>arg</i> string literal. "one" Use only one viewer. "many" Use a new viewer for each graph.	
Remarks	If "one" is set, the viewer executable will be vwr.exe. "manual" and "auto" are supported for backwards compatibility, manual=one, auto=many.	
Example:	pqgwin one; pqgwin many;	
Source	pgraph.src	

See also setvwrmode

prcsn

setvwrmode

prcsn

Purpose	Sets the computational precision of some of the matrix operators.
Format	prcsn n;
Input	<i>n</i> scalar, 64 or 80.
Portability	UNIX, Windows This function has no effect under UNIX or Windows. All computations are done in 64-bit precision.
Remarks	<i>n</i> is a scalar containing either 64 or 80. The operators affected by this command are chol , solpd , invpd , and b/a (when neither <i>a</i> nor <i>b</i> is scalar and <i>a</i> is not square).
	prcsn 80 is the default. Precision is set to 80 bits (10 bytes), which corresponds to about 19 digits of precision.
	prcsn 64 sets the precision to 64 bits (8 bytes), which is standard IEEE double precision. This corresponds to 15-16 digits of precision. 80-bit precision is still maintained within the 80x87 math coprocessor so that actual precision is better than double precision.
	When prcsn 80 is in effect, all temporary storage and all computations for the operators listed above are done in 80 bits. When the operator is finished, the final result is rounded to 64-bit double precision.
Coo oloo	

See also chol, solpd, invpd

princomp

princomp

Purpose	Computes principal components of a data matrix.
Format	$\{p, v, a\} = princomp(x, j);$
Input	xNxK data matrix, N > K, full rank.jscalar, number of principal components to be computed ($J \le K$).
Output	<i>p</i> NxJ matrix of the first <i>j</i> principal components of <i>x</i> in descending order of amount of variance explained.
	v Jx1 vector of fractions of variance explained.
	<i>a</i> JXK matrix of factor loadings, such that $x = p^*a$ +error.
Remarks	Adapted from a program written by Mico Loretan.
	The algorithm is based on Theil, Henri "Principles of Econometrics."

Wiley, NY, 1971, 46-56.
print

Purpose	Prints 1	matrices or strings to th	e window and/or auxiliary output.
Format	<pre>print [[/flush]] [[/typ]] [[/fmted]] [[/mf]] [[/jnt]] list_of_expressions[[;]];</pre>		
Input	/typ	literal, symbol type fl	ag.
		/mat, /sa, /str	Indicate which symbol types you are setting the output format for: matrices (/mat), string arrays (/sa), and/or strings (/str). You can specify more than one /typ flag; the format will be set for all types indicated. If no /typ flag is listed, print assumes /mat.
	/fmted	literal, enable formatt	ing flag.
		/on, /off	Enable/disable formatting. When formatting is disabled, the contents of a variable are dumped to the window in a "raw" format.
	/mf	literal, matrix format. separated from one ar	It controls the way rows of a matrix are nother. The possibilities are:
		/m0	no delimiters before or after rows when printing out matrices.
		/ml or /mbl	print 1 carriage return/line feed pair before each row of a matrix with more than 1 row.
		/m2 or /mb2	print 2 carriage return/line feed pairs before each row of a matrix with more than 1 row.
		/m3 or /mb3	print "Row 1", "Row 2" before each row of a matrix with more than one row.
		/mal	print 1 carriage return/line feed pair after each row of a matrix with more than 1 row.
		/ma2	print 2 carriage return/line feed pairs after each row of a matrix with more than 1 row.

	/a1	print 1 carriage return/line feed pair after each row of a matrix.
	/a2	print 2 carriage return/line feed pairs after each row of a matrix.
	/b1	print 1 carriage return/line feed pair before each row of a matrix.
	/b2	print 2 carriage return/line feed pairs before each row of a matrix.
	/b3	print "Row 1", "Row 2" before each row of a matrix.
/jnt	literal, controls justified	cation, notation, and the trailing character.
	Right-Justified	1
	/rd	Signed decimal number in the form []] ####.#### where #### is one or more decimal digits. The number of digits before the decimal point depends on the magnitude of the number, and the number of digits after the decimal point depends on the precision. If the precision is 0, no decimal point will be printed.
	/re	Signed number in the form []] #.##E±###, where # is one decimal digit, ## is one or more decimal digits depending on the precision, and ### is three decimal digits. If precision is 0, the form will be []] #E±### with no decimal point printed.
	/ro	This will give a format like /rd or /re depending on which is most compact for the number being printed. A format like /re will be used only if the exponent value is less than -4 or greater than the precision. If a /re format is used a decimal point will always appear. The precision signifies the number of significant digits displayed.

/rz	This will give a format like /rd or /re depending on which is most compact for the number being printed. A format like /re will be used only if the exponent value is less than -4 or greater than the precision. If a /re format is used, trailing zeros will be supressed and a decimal point will appear only if one or more digits follow it. The precision signifies the number of significant digits displayed.
Left-Justified	
/ld	Signed decimal number in the form [-] ####.####, where #### is one or more decimal digits. The number of digits before the decimal point depends on the magnitude of the number, and the number of digits after the decimal point depends on the precision. If the precision is 0, no decimal point will be printed. If the number is positive, a space character will replace the leading minus sign.
/le	Signed number in the form [[-]] #.##E±###, where # is one decimal digit, ## is one or more decimal digits depending on the precision, and ### is three decimal digits. If precision is 0, the form will be [[-]] #E±### with no decimal point printed. If the number is positive, a space character will replace the leading minus sign.
/lo	This will give a format like /ld or /le depending on which is most compact for the number being printed. A format like /le will be used only if the exponent value is less than -4 or greater than the precision. If a /le format is used a decimal point will always appear. If the number is positive, a space character will replace the leading minus sign. The precision specifies the number of significant digits displayed.

This will give a format like /ld or /le depending on which is most compact for the number being printed. A format like /le will be used only if the exponent value is less than -4 or greater than the precision. If a /le format is used, trailing zeros will be supressed and a decimal point will appear only if one or more digits follow it. If the number is positive, a space character will replace the leading minus sign. The precision specifies the number of significant digits displayed.

Trailing Character

;;

/lz

The following characters can be added to the */int* parameters above to control the trailing character if any:

f	ormat	/rdn	1,3;
S			The number will be followed immediately by a space character. This is the default.
С			The number will be followed immediately with a comma.
t			The number will be followed immediately with a tab character.
n			No trailing character.
The det	fault whe	en GAU	USS is first started is:

format /m1 /r0 16,8;

Double semicolons following a print statement will suppress the final carriage return/line feed.

Remarks The list of expressions MUST be separated by spaces. In **print** statements, because a space is the delimiter between expressions, NO SPACES are allowed inside expressions unless they are within index brackets, quotes, or parentheses.

The printing of special characters is accomplished by the use of the backslash $(\)$ within double quotes. The options are:

- **b** backspace (ASCII 8)
- \e escape (ASCII 27)
- \f form feed (ASCII 12)
- \g beep (ASCII 7)
- **\l** line feed (ASCII 10)
- **r** carriage return (ASCII 13)
- \t tab (ASCII 9)
- **\###** the character whose ASCII value is "###" (decimal).

Thus, \13\10 is a carriage return/line feed sequence. The first three digits will be picked up here. So if the character to follow a special character is a digit, be sure to use three digits in the escape sequence. For example: \0074 will be interpreted as 2 characters (ASCII 7 followed by the character "4").

An expression with no assignment operator is an implicit **print** statement.

If **output** on has been specified, then all subsequent **print** statements will be directed to the auxiliary output as well as the window. (See **output**.) The **locate** statement has no effect on what will be sent to the auxiliary output, so all formatting must be accomplished using tab characters or some other form of serial output.

If the name of the symbol to be printed is prefixed with a '\$', it is assumed that the symbol is a matrix of characters.

print \$x;

Note that GAUSS makes no distinction between matrices containing character data and those containing numeric data, so it is the responsibility of the user to use functions which operate on character matrices only on those matrices containing character data.

These matrices of character strings have a maximum of 8 characters per element. A precision of 8 or more should be set when printing out character matrices or the elements will be truncated.

Complex numbers are printed with the sign of the imaginary half separating them and an "i" appended to the imaginary half. Also, the current field width setting (see **format**) refers to the width of field for each half of the number, so a complex number printed with a field of 8 will actually take (at least) 20 spaces to print.

A **print** statement by itself will cause a blank line to be printed:

print;

GAUSS also has an *automatic print mode* which causes the results of all global assignment statements to be printed out. This is controlled by the **print on and print off** commands. (See **print on**.)

Example	x = rnd	n(3,3);				
	format	/rd 16,	8;			
	print x;					
	format /re 12,2;					
	prin	t x;				
	prin	t /rd/m	.3 x;			
	0.14	1357994	-1.392727	/62 –0.9	1942414	
	0.51	1061645	-0.023322	.07 –0.0	2511298	
	-1.54	4675893	-1.049885	640 0.0	7992059	
	1.44E	E-001 –1	1.39E+000	-9.19E-	001	
	5.11E	E-001 —	2.33E-002	-2.51E-	002	
	-1.55E-	+000 -2	1.05E+000	7.99E-	002	
	Row 1					
		0.14	-1.39	-0.92	2	
	Row 2	0 5 1	0 00	0.07		
	Row 3	0.51	-0.02	-0.03	5	
		-1.55	-1.05	0.08	3	

In this example, a 3x3 random matrix is printed using 3 different formats. Notice that in the last statement the format is overridden in the **print** statement itself but the field and precision remain the same.

let x = AGE PAY SEX; format /ml 8,8; print \$x; produces: AGE PAY SEX

See also lprint, print on, lprint on, printfm, printdos

printdos

printdos

Purpose	Prints a string to the standard output.			
Format	printdos s;			
Input	<i>s</i> string, containing the string to be printed to the standard output.			
Remarks	This function is useful for printing messages to the window when screen off is in effect. The output of this function will not go to the auxiliary output.			
	This function can also be used to send escape sequences to the ansi.sys device driver.			
Example	<pre>printdos "\27[7m"; /* set for reverse video */ printdos "\27[0m"; /* set for normal text */</pre>			
	See the DOS manuals for more complete information.			
See also	print, lprint, printfm, screen			

printfm

printfm

Purpose	Prints a matrix using a different format for each column of the matrix.			
Format	<pre>y = printfm(x,mask,fmt);</pre>			
Input	x	NxK ma characte	trix which is to r and numeric da	be printed and which may contain both ata.
	mask	LxM ma which is element	trix, ExE confor used to specify is to be printed a	mable with x , containing ones and zeros whether the particular row, column, or as a string (0) or numeric (1) value.
	fmt	Kx3 or 1 respectiv	1x 3 matrix where $x = 1$ where $x = 1$ and $x = 1$ and $x = 1$ and $x = 1$ and $x = 1$.	e each row specifies the format for the
Output	<i>y</i> scalar, 1 if the function is successful and 0 if it fails.			
Remarks	The mask is applied to the matrix x following the rules of standard element-by-element operations. If the corresponding element of mask is 0, then that element of x is printed as a character string of up to 8 characters. If mask contains a 1, then that element of x is assumed to be a double precision floating point number.			
	The contents of <i>fint</i> are as follows:			
	[] [] []	K,1] K,2] K,3]	format string, field width, precision,	a string 8 characters maximum. a number < 80. a number < 17.
	The format strings correspond to the format slash commands as follows:			
	/	rdn ren	"*.*lf" "*.*lE"	
	/	ron	"#*.*1G"	
	/	rzn ldn	"*.*lG" "-*.*lf"	

"-*.*lE"

"-*.*1G"

"-#*.*1G"

/len

/lon

/lzn

printfm

Complex numbers are printed with the sign of the imaginary half separating them and an "i" appended to the imaginary half. The field width refers to the width of field for each half of the number, so a complex number printed with a field of 8 will actually take (at least) 20 spaces to print.

If the precision = 0, the decimal point will be suppressed.

The format string can be a maximum of 8 characters and is appended to a % sign and passed directly to the **fprintf** function in the standard C language I/O library. The **lf**, etc., are case sensitive. If you know C, you will easily be able to use this.

If you want special characters to be printed after *x*, then include them as the last characters of the format string. For example:

"*.*lf,"	right-justified decimal followed by a comma.
"-*.*s"	left-justified string followed by a space.
"*.*lf"	right-justified decimal followed by nothing.

If you want the beginning of the field padded with zeros, then put a "**0**" before the first "*****" in the format string:

"0*.*lf" right-justified decimal

Example Here is an example of **printfm** being used to print a mixed numeric and character matrix:

let x[4,3] =
 "AGE" 5.12345564 2.23456788
 "PAY" 1.23456677 1.23456789
 "SEX" 1.14454345 3.44718234
 "JOB" 4.11429432 8.55649341;

```
let fmt[3,3] =
"-*.*s" 8 8 /* first column format */
"*.*lf," 10 3 /* second column format */
```

printfm

"*.*le" 12 4; /* third column format */

```
d = printfm(x,mask,fmt);
```

The output looks like this:

AGE	5.123,	2.2346E+000
PAY	1.235,	1.2346E+000
SEX	1.145,	3.4471E+000
JOB	4.114,	8.5564E+000

When the column of x to be printed contains all string elements, use a format string of "*.*s" if you want it right-justified, or "-*.*s" if you want it left-justified. If the column is mixed string and numeric elements, then use the correct numeric format and printfm will substitute a default format string for those elements in the column that are strings.

Remember, the mask value controls whether an element will be printed as a number or a string.

See also print, lprint, printdos

printfmt

printfmt

Purpose	Prints character, numeric, or mixed matrix using a default format controlled by the functions formatev and formatnv .		
Format	<pre>y = printfmt(x,mask);</pre>		
Input	xNxK matrix which is to be printed.maskscalar, 1 if x is numeric or 0 if x is character.or1xK vector of 1's and 0's.The corresponding column of x will be printed as numeric where $mask = 1$ and as character where $mask = 0$.		
Output	<i>y</i> scalar, 1 if the function is successful and 0 if it fails.		
Remarks	Default format for numeric data is: **.*lg″ 16 8 Default format for character data is: **.*s″ 8 8		
Example	<pre>x = rndn(5,4); call printfmt(x,1);</pre>		
Source	gauss.src		
Globals	fmtcv,fmtnv		
See also	formatcv, formatnv		

proc

proc

Purpose	Begins the definition of a multi-line recursive procedure. Procedures are user-defined functions with local or global variables.		
Format	<pre>proc [[(nrets) =]] name(arglist);</pre>		
Input	<i>nrets</i> constant, number of objects returned by the procedure. If <i>nrets</i> is not explicitly given, the default is 1. Legal values are 0 to 1023. The retp statement is used to return values from a procedure.		
	symbol.		
	<i>arglist</i> a list of names, separated by commas, to be used inside the procedure to refer to the arguments that are passed to the procedure when the procedure is called. These will always be local to the procedure, and cannot be accessed from outside the procedure or from other procedures.		
Remarks	A procedure definition begins with the proc statement and ends with the endp statement.		
	An example of a procedure definition is: proc dog(x,y,z); /* procedure declaration */		
	<pre>local a,b; /* local variable declarations */ a = x .* x; b = y .* y;</pre>		
	a = a ./ x;		
	b = b ./ y;		
	$z = z \cdot z;$		
	z = inv(z);		
	retp(a'b*z); /* return with value of */		
	/* a'b*z */		
	endp; /* end of procedure definition */		

proc

Procedures can be used just as if they were functions intrinsic to the language. Below are the possible variations depending on the number of items the procedure returns.

Returns 1 item:

y = dog(i,j,k);

Returns multiple items:

{ x,y,z } = cat(i,j,k);

Returns no items:

fish(i,j,k);

If the procedure does not return any items or you want to discard the returned items:

call dog(i,j,k);

Procedure definitions may not be nested.

For more details on writing procedures, see "Procedures and Keywords" in the *User's Guide*.

See also keyword, call, endp, local, retp

prodc

prodc

Purpose	Computes the products of all elements in each column of a matrix.		
Format	$y = \operatorname{prodc}(x);$		
Input	<i>x</i> NxK matrix.		
Output	<i>y</i> Kx1 matrix containing the products of all elements in each column of <i>x</i> .		
Remarks	To find the products of the elements in each row of a matrix, transpose before applying prode . If x is complex, use the bookkeeping transpose (.').		
	To find the products of all of the elements in a matrix, use the vecr function before applying prodc .		
Example	<pre>let x[3,3] = 1 2 3</pre>		
	$y = \begin{cases} 28\\ 80\\ 162 \end{cases}$		
See also	sumc, meanc, stdc		

putf

putf

Purpose	Writes the contents of a string to a file.
Format	<pre>ret = putf(filename, str, start, len, mode, append);</pre>
Input	filenamestring, name of output file.strstring to be written to filename. All or part of str may be written out.startscalar, beginning position in str of output string.lenscalar, length of output string.modescalar, output mode, (0) ASCII or (1) binary.appendscalar, file write mode, (0) overwrite or (1) append.
Output	<i>ret</i> scalar, return code.
Remarks	If <i>mode</i> is set to (1) binary, a string of length <i>len</i> will be written to <i>filename</i> . If <i>mode</i> is set to (0) ASCII, the string will be output up to length <i>len</i> or until putf encounters a ^Z (ASCII 26) in <i>str</i> . The ^Z will not be written to <i>filename</i> . If <i>append</i> is set to (0) overwrite, the current contents of <i>filename</i> will be destroyed. If append is set to (1) append filename will be append if it.
	does not already exist.
	If an error occurs, putf will either return an error code or terminate the program with an error message, depending on the trap state. If bit 2 (the 4's bit) of the trap flag is 0, putf will terminate with an error message. If bit 2 of the trap flag is 1, putf will return an error code. The value of the trap flag can be tested with trapchk .

putf

ret can have the following values:

	0	normal return	
	1	null file name	a
	2	file open error	b
	3	file write error	
	4	output string too long	C
	5	null output string, or illegal <i>mode</i> value	
	6	illegal append value	е
	16	append specified but file did not exist; file was created (warning only)	f
Source	putf.s	rc	g
ee also	getf		h
			i
			J
			k
			1
			m
			n
			р
			q
			r
			S
			t
			u
			N/
			v

See als

QNewton

QNewton

Purpose	Optimizes a function using the BFGS descent algorithm.				
Format	$\{x, f, g, ret\} = QNewto$	$\{x, f, g, ret\}$ = QNewton(&fct, start);			
Input	&fct pointer to a pro- minimized. Th vector of parar of the function	ocedure that computes the function to be is procedure must have one input argument, a neter values, and one output argument, the value evaluated at the input vector of parameter values.			
	start Kx1 vector, sta	art values.			
Global Input	_qn_RelGradTol	scalar, convergence tolerance for relative gradient of estimated coefficients. Default = 1e-5.			
	_qn_GradProc	scalar, pointer to a procedure that computes the gradient of the function with respect to the parameters. This procedure must have a single input argument, a Kx1 vector of parameter values, and a single output argument, a Kx1 vector of gradients of the function with respect to the parameters evaluated at the vector of parameter values. If _qn_GradProc is 0, QNewton uses gradp.			
	_qn_MaxIters	scalar, maximum number of iterations. Default = 1e+5. Termination can be forced by pressing C on the keyboard.			
	_qn_PrintIters	scalar, if 1, print iteration information. Default = 0. Can be toggled during iterations by pressing P on the keyboard.			
	_qn_ParNames	Kx1 vector, labels for parameters.			
	_qn_PrintResult	s scalar, if 1, results are printed.			
Output	xKx1 vector, cofscalar, value or	efficients at the minimum of the function. f function at minimum.			
	g Kx1 vector, gr	adient at the minimum of the function.			
	<i>ret</i> scalar, return c	ode.			
	0 norma	l convergence			

QNewton

	 forced termination max iterations exceeded 	
	3 function calculation failed	а
	4 gradient calculation failed	
	5 step length calculation failed	b
	6 function cannot be evaluated at initial parameter values	C
Remarks	If you are running in terminal mode, GAUSS will not see any input until you press ENTER. Pressing C on the keyboard will terminate iterations, and pressing P will toggle iteration output.	d e
	To reset global variables for this function to their default values, call	f
	qnewtonset.	g
Example	This example computes maximum likelihood coefficients and standard errors for a Tobit model:	h
	/*	i
	** qnewton.e - a Tobit model	j
	*/	k
	·	1
	z = loadd("tobit"); /* get data */	1
	$b0 = \{ 1, 1, 1, 1 \};$	m
	<pre>{b,f,g,retcode} = qnewton(&lpr,b0);</pre>	n
		0
	/*	р
	** covariance matrix of parameters	q
	* /	r
	,	
	h = hessp(&lpr,b);	S
		t
	output file = qnewton.out reset;	u
	<pre>print "Tobit Model";</pre>	V
	print;	W
	-	

QNewton	
	<pre>print "coefficients standard errors";</pre>
	<pre>print b~sqrt(diag(invpd(h)));</pre>
	output off;
	/*
	** log-likelihood proc
	* /
	<pre>proc lpr(b);</pre>
	local s,m,u;
	s = b[4];
	if $s \leq 1e-4;$
	retp(error(0));
	endif;
	m = z[.,2:4]*b[1:3,.];
	u = z[.,1] ./= 0;
	<pre>retp(-sumc(u.*lnpdfn2(z[.,1]-m,s) +</pre>
	<pre>(1-u).*(ln(cdfnc(m/sqrt(s))))); endn:</pre>
	CITCE /
	produces:
	Tobit Model
	coefficients standard errors
	0.010417884 0.080220019
	-0.20805753 0.094551107
	-0.099749592 0.080006676 0.65223067 0.099827309
Source	qnewton.src

QProg

QProg

Purpose	Solves the quadratic programming problem.			
Format	{ <i>x,u1</i> ,	u2,u3,u4	<pre>,ret } = QProg(start,q,r,a,b,c,d,bnds);</pre>	
Input	start	Kx1 ve	ctor, start values.	
	q	KxK m	atrix, symmetric model matrix.	
	r	Kx1 ve	ctor, model constant vector.	
	а	MxK m scalar (natrix, equality constraint coefficient matrix, or), no equality constraints.	
	b	Mx1 ve 0, will	ector, equality constraint constant vector, or scalar be expanded to Mx1 vector of zeros.	
	С	NxK m scalar (atrix, inequality constraint coefficient matrix, or), no inequality constraints.	
	d	Nx1 vector, inequality constraint constant vector, or scalar 0, will be expanded to Nx1 vector of zeros.		
	bnds	Kx2 ma lower b bounds to $\pm 1e^{2}$	atrix, bounds on <i>x</i> , the first column contains the bounds on <i>x</i> , and the second column the upper . If scalar 0, the bounds for all elements will default 200.	
Global Input	_qpro	og_max:	it scalar, maximum number of iterations. Default = 1000.	
Output	x	Kx1 ve	ctor, coefficients at the minimum of the function.	
	u1	Mx1 ve	ector, Lagrangian coefficients of equality constraints.	
	и2	Nx1 ve	ctor, Lagrangian coefficients of inequality constraints.	
	иЗ	Kx1 ve	ctor, Lagrangian coefficients of lower bounds.	
	и4	Kx1 ve	ctor, Lagrangian coefficients of upper bounds.	
	ret	scalar,	return code.	
		0	successful termination	
		1	max iterations exceeded	
		2	machine accuracy is insufficient to maintain decreasing function values	
		3	model matrices not conformable	
		<0	active constraints inconsistent	

q

QProg

qqr

qqr

Purpose	Computes the orthogonal-triangular (QR) decomposition of a matrix <i>X</i> , such that:		
	$X = Q_1 R$		
Format	$\{ ql, r \} = qqr(x);$		
Input	<i>x</i> NXP matrix.		
Output	q1NxK unitary matrix, K = min(N,P). r KxP upper triangular matrix.		

Remarks Given X, there is an orthogonal matrix Q such that Q'X is zero below its diagonal, i.e.,

$$Q'X = \begin{bmatrix} R \\ 0 \end{bmatrix}$$

where R is upper triangular. If we partition

$$Q = \left[Q_1 \ Q_2\right]$$

where Q_1 has P columns, then

$$X = Q_1 R$$

is the QR decomposition of X. If X has linearly independent columns, R is also the Cholesky factorization of the moment matrix of X, i.e., of XX.

If you want only the *R* matrix, see the function qr. Not computing Q_1 can produce significant improvements in computing time and memory usage.

An unpivoted *R* matrix can also be generated using **cholup**:

```
r = cholup(zeros(cols(x),cols(x)),x);
```

For linear equation or least squares problems, which require Q_2 for computing residuals and residual sums of squares, see **olsqr** and **qtyr**.

qqr

For most problems an explicit copy of Q_1 or Q_2 is not required. Instead one of the following, Q'Y, QY, Q'_1Y , Q_1Y , Q'_2Y , or Q_2Y , for some Y, is required. These cases are all handled by **qtyr** and **qyr**. These functions are available because Q and Q_1 are typically very large matrices while their products with Y are more manageable.

If N < P the factorization assumes the form:

$$Q'X = \begin{bmatrix} R_1 & R_2 \end{bmatrix}$$

where R_1 is a PxP upper triangular matrix and R_2 is Px(N – P). Thus Q is a PxP matrix and R is a PxN matrix containing R_1 and R_2 . This type of factorization is useful for the solution of underdetermined systems. However, unless the linearly independent columns happen to be the initial rows, such an analysis also requires pivoting (see **gre** and **grep**).

Source qqr.src

See also qre, qrep, qtyr, qtyre, qtyrep, qyr, qyre, qyrep, olsqr

qqre

qqre

Purpose	Computes the orthogonal-triangular (QR) decomposition of a matrix X , such that:		
	$X[.,E] = Q_1 R$		
Format	$\{ ql, r, e \} = qqre(x);$		
Input	<i>x</i> NxP matrix.		
Output	 q1 NxK unitary matrix, K = min(N,P). r KxP upper triangular matrix. e Px1 permutation vector. 		

Remarks Given X[.,E], where *E* is a permutation vector that permutes the columns of *X*, there is an orthogonal matrix *Q* such that Q'X[.,E] is zero below its diagonal, i.e.,

$$Q'X[.,E] = \begin{bmatrix} R\\ 0 \end{bmatrix}$$

where R is upper triangular. If we partition

$$Q = \left[Q_1 \ Q_2\right]$$

where Q_1 has P columns, then

$$X[., E] = Q_1 R$$

is the QR decomposition of X[.,E].

If you want only the *R* matrix, see **qre**. Not computing Q_1 can produce significant improvements in computing time and memory usage.

If *X* has rank P, then the columns of *X* will not be permuted. If *X* has rank M < P, then the M linearly independent columns are permuted to the front of *X* by *E*. Partition the permuted X in the following way:

$$X[., E] = \begin{bmatrix} X_1 & X_2 \end{bmatrix}$$

qqre

where X_1 is NXM and X_2 is NX(P – M). Further partition R in the following way:

$$R = \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix}$$

where R_{11} is MxM and R_{12} is Mx(P – M). Then

$$A = R_{11}^{-1} R_{12}$$

and

$$X_2 = X_1 A$$

that is, A is an Mx(P – N) matrix defining the linear combinations of X_2 with respect to X_1 .

If N < P the factorization assumes the form:

$$Q'X = \begin{bmatrix} R_1 & R_2 \end{bmatrix}$$

where R_1 is a PXP upper triangular matrix and R_2 is PX (N – P). Thus Q is a PXP matrix and R is a PXN matrix containing R_1 and R_2 . This type of factorization is useful for the solution of underdetermined systems. For the solution of

X[.,E]b = Y

it can be shown that

b = qrsol(Q'Y,R1) | zeros(N-P,1);

The explicit formation here of Q, which can be a very large matrix, can be avoided by using the function **qtyre**.

For further discussion of QR factorizations see the remarks under qqr.

Source qqr.src

See also qqr, qtyre, olsqr

qqrep

qqrep

Purpose	Computes the orthogonal-triangular (QR) decomposition of a matrix X , such that:		
	$X[., E] = Q_1 R$		
Format	$\{ ql, r, e \} = qqrep(x, pvt);$		
Input	<i>x</i> NxP matrix.		
	<i>pvt</i> Px1 vector, controls the selection of the pivot columns:		
	if $pvt[i] > 0$, $x[i]$ is an initial column		
	if $pvt[i] = 0$, $x[i]$ is a free column		
	if $pvt[i] < 0$, $x[i]$ is a final column		
	The initial columns are placed at the beginning of the matrix and the final columns are placed at the end. Only the free columns will be moved during the decomposition.		
Output	q1 NxK unitary matrix, K = min(N,P).		
	<i>r</i> KxP upper triangular matrix.		
	<i>e</i> Px1 permutation vector.		
Remarks	Given $X[.,E]$, where E is a permutation vector that permutes the columns of X, there is an orthogonal matrix Q such that $Q'X[.,E]$ is zero below its diagonal, i.e.,		
	$Q'X[.,E] = \begin{bmatrix} R \\ 0 \end{bmatrix}$		
	where R is upper triangular. If we partition		
	$Q = \left[Q_1 \ Q_2\right]$		

where Q_1 has P columns, then

$$X[., E] = \left[Q_1 R\right]$$

is the QR decomposition of *X*[.,*E*].

qqrep

qqrep allows you to control the pivoting. For example, suppose that X is a data set with a column of ones in the first column. If there are linear dependencies among the columns of X, the column of ones for the constant may get pivoted away. This column can be forced to be included among the linearly independent columns using pvt.

If you want only the *R* matrix, see **qrep**. Not computing Q_1 can produce significant improvements in computing time and memory usage.

Source qqr.src

See also qqr, qre, olsqr

qr

qr

Purpose	Computes the orthogonal-triangular (QR) decomposition of a matrix X , such that:		
	$X = Q_1 R$		
Format	r = qr(x);		
Input	<i>x</i> NxP matrix.		
Output	r KxP upper triangular matrix, K = min(N,P).		
Remarks	qr is the same as qqr but doesn't return the Q_1 matrix. If Q_1 is not wanted, qr will save a significant amount of time and memory usage, especially for large problems.		

Given X, there is an orthogonal matrix Q such that Q'X is zero below its diagonal, i.e.,

$$Q'X = \begin{bmatrix} R \\ 0 \end{bmatrix}$$

where R is upper triangular. If we partition

$$Q = \left[Q_1 \ Q_2 \right]$$

where Q_1 has P columns, then

$$X = Q_1 R$$

is the QR decomposition of X. If X has linearly independent columns, R is also the Cholesky factorization of the moment matrix of X, i.e., of X'X.

qr does not return the Q_1 matrix because in most cases it is not required and can be very large. If you need the Q_1 matrix see the function qqr. If you need the entire Q matrix call qyr with Y set to a conformable identity matrix.

For most problems Q'Y, Q'_IY , or QY, Q_1Y , for some *Y*, are required. For these cases see **qtyr** and **qyr**.

For linear equation or least squares problems, which require Q_2 for computing residuals and residual sums of squares, see **olsqr**.

If N < P the factorization assumes the form:

$$Q'X = \begin{bmatrix} R_1 & R_2 \end{bmatrix}$$

where R_1 is a PxP upper triangular matrix and R_2 is Px(N – P). Thus Q is a PxP matrix and R is a PxN matrix containing R_1 and R_2 . This type of factorization is useful for the solution of underdetermined systems. However, unless the linearly independent columns happen to be the initial rows, such an analysis also requires pivoting (see **qre** and **qrep**).

Source qr.src

See also qqr, qrep, qtyre

qre

qre

Purpose	Computes the orthogonal-triangular (QR) decomposition of a matrix X , such that:		
	$X[., E] = Q_1 R$		
Format	{ r,e } = qre(x);		
Input	<i>x</i> NxP matrix.		
Output	 <i>r</i> KxP upper triangular matrix, K = min(N,P). <i>e</i> Px1 permutation vector. 		
Remarks	qre is the same as qqre but doesn't return the Q_1 matrix. If Q_1 is not wanted, qre will save a significant amount of time and memory usage, especially for large problems.		
	Given $X[.,E]$, where E is a permutation vector that permutes the columns		

Given X[.,E], where E is a permutation vector that permutes the columns of X, there is an orthogonal matrix Q such that Q'X[.,E] is zero below its diagonal, i.e.,

$$Q'X[.,E] = \begin{bmatrix} R\\ 0 \end{bmatrix}$$

where R is upper triangular. If we partition

$$Q = \left[Q_1 \ Q_2 \right]$$

where Q_1 has P columns, then

$$X[., E] = Q_1 R$$

is the QR decomposition of X[.,E].

qre does not return the Q_1 matrix because in most cases it is not required and can be very large. If you need the Q_1 matrix see the function **qqre**. If you need the entire Q matrix call **qyre** with Y set to a conformable identity matrix. For most problems Q'Y, Q'_1Y , or QY, Q_1Y , for some Y, are required. For these cases see **qtyre** and **qyre**.

qre

If *X* has rank P, then the columns of *X* will not be permuted. If *X* has rank M < P, then the M linearly independent columns are permuted to the front of *X* by *E*. Partition the permuted *X* in the following way:

$$X[., E] = \left[X_1 X_2 \right]$$

where X_1 is NXM and X_2 is NX(P – M). Further partition *R* in the following way:

$$R = \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix}$$

where R_{11} is MxM and R_{12} is Mx(P – M). Then

 $A = R_{11}^{-1} R_{12}$

and

$$X_2 = X_1 A$$

that is, A is an Mx(P – N) matrix defining the linear combinations of X_2 with respect to X_1 .

If N < P the factorization assumes the form:

$$Q'X = \begin{bmatrix} R_1 & R_2 \end{bmatrix}$$

where R_1 is a PxP upper triangular matrix and R_2 is Px(N – P). Thus Q is a PxP matrix and R is a PxN matrix containing R_1 and R_2 . This type of factorization is useful for the solution of underdetermined systems. For the solution of

$$X[., E]b = Y$$

it can be shown that

$$b = qrsol(Q'Y,R1) | zeros(N-P,1);$$

The explicit formation here of Q, which can be a very large matrix, can be avoided by using the function **qtyre**.

For further discussion of QR factorizations see the remarks under qqr.

Source qr.src

See also qqr, olsqr

qrep

qrep

Purpose	Computes the orthogonal-triangular (QR) decomposition of a matrix <i>X</i> , such that:		
	$X[., E] = Q_1 R$		
Format	$\{ r, e \} = qrep(x, pvt);$		
Input	<i>x</i> NxP matrix.		
	<i>pvt</i> Px1 vector, controls the selection of the pivot columns:		
	if $pvt[i] > 0$, $x[i]$ is an initial column		
	if $pvt[i] = 0$, $x[i]$ is a free column		
	if $pvt[i] < 0$, $x[i]$ is a final column		
	The initial columns are placed at the beginning of the matrix and the final columns are placed at the end. Only the free columns will be moved during the decomposition.		
Output	r KxP upper triangular matrix, K = min(N,P).		
	<i>e</i> Px1 permutation vector.		
Remarks	qrep is the same as qqrep but doesn't return the Q_1 matrix. If Q_1 is not wanted, qrep will save a significant amount of time and memory usage, especially for large problems.		
	Given $X[.,E]$, where <i>E</i> is a permutation vector that permutes the columns of <i>X</i> , there is an orthogonal matrix <i>Q</i> such that $Q'X[.,E]$ is zero below its diagonal, i.e.,		
	$Q'X[.,E] = \begin{bmatrix} R \\ 0 \end{bmatrix}$		
	where R is upper triangular. If we partition		
	$Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}$		

where Q_1 has P columns, then

 $X[., E] = Q_1 R$

qrep

is the QR decomposition of X[.,E].

grep does not return the Q_1 matrix because in most cases it is not required and can be very large. If you need the Q_1 matrix see the function **gqrep**. If you need the entire Q matrix call **gyrep** with Y set to a conformable identity matrix. For most problems Q'Y, Q'_1Y , or QY, Q_1Y , for some Y, are required. For these cases see **gtyrep** and **gyrep**.

grep allows you to control the pivoting. For example, suppose that X is a data set with a column of ones in the first column. If there are linear dependencies among the columns of X, the column of ones for the constant may get pivoted away. This column can be forced to be included among the linearly independent columns using pvt.

Source gr.src

See also qr, qre, qqrep

qrsol

qrsol

Purpose	Computes the solution of $Rx = b$ where <i>R</i> is an upper triangular matrix.
Format	$x = \operatorname{qrsol}(b,R);$
Input	<i>b</i> PxL matrix.<i>R</i> PxP upper triangular matrix.
Output	<i>x</i> PxL matrix.
Remarks	grsol applies a backsolve to $Rx = b$ to solve for x . Generally R will be the R matrix from a QR factorization. grsol may be used, however, in any situation where R is upper triangular.
Source	qrsol.src
See also	qqr, qr, qtyr, qrtsol

qrtsol

qrtsol

Purpose	Computes the solution of $R'x = b$ where R is an upper triangular matrix.
Format	x = qrtsol(b,R);
Input	<i>b</i> PxL matrix.<i>R</i> PxP upper triangular matrix.
Output	<i>x</i> PxL matrix.
Remarks	qrtsol applies a forward solve to $R'x = b$ to solve for x . Generally R will be the R matrix from a QR factorization. qrtsol may be used, however, in any situation where R is upper triangular. If R is lower triangular, transpose before calling qrtsol .
	If <i>R</i> is not transposed, use grsol .
Source	qrsol.src
See also	qqr, qr, qtyr, qrsol
qtyr

qtyr

- **Purpose** Computes the orthogonal-triangular (QR) decomposition of a matrix X and returns Q'Y and R.
 - **Format** $\{qty,r\} = qtyr(y,x);$
 - **Input** *y* NxL matrix.
 - *x* NxP matrix.
 - **Output** *qty* NxL unitary matrix.
 - r KxP upper triangular matrix, K = min(N,P).
- **Remarks** Given X, there is an orthogonal matrix Q such that Q'X is zero below its diagonal, i.e.,

$$Q'X = \begin{bmatrix} R \\ 0 \end{bmatrix}$$

where R is upper triangular. If we partition

$$Q = \left[Q_1 \ Q_2\right]$$

where Q_1 has P columns, then

 $X = Q_1 R$

is the QR decomposition of X. If X has linearly independent columns, R is also the Cholesky factorization of the moment matrix of X, i.e., of X'X. For most problems Q or Q_1 is not what is required. Rather, we require Q'Y or Q'_1Y where Y is an NxL matrix (if either QY or Q_1Y are required, see **qyr**). Since Q can be a very large matrix, **qtyr** has been provided for the calculation of Q'Y which will be a much smaller matrix. Q'_1Y will be a submatrix of Q'Y. In particular,

$$G = Q'_1 Y = qty[1:P,.]$$

and $Q'_2 Y$ is the remaining submatrix:

qtyr

 $H = Q'_2 Y = qty[P+1:N,.]$

Suppose that X is an NxK data set of independent variables, and v is an Nx1 vector of dependent variables. Then it can be shown that

 $b = R^{-1}G$

and

$$s_j = \sum_{i=1}^{N-P} H_{i,j}, j = 1, 2, \dots L$$

where b is a PxL matrix of least squares coefficients and s is a 1xL vector of residual sums of squares. Rather than invert R directly, however, it is better to apply **qrsol** to

$$Rb = Q'_1 Y$$

For rank deficient least squares problems, see **qtyre** and **qtyrep**.

Example The QR algorithm is the superior numerical method for the solution of least squares problems:

loadm x, y;
{ qty, r } = qtyr(y,x);
qlty = qty[1:rows(r),.];
q2ty = qty[rows(r)+1:rows(qty),.];
b = qrsol(qlty,r); /* LS coefficients */
s2 = sumc(q2ty^2); /* residual sums of squares */

Source qtyr.src

See also qqr, qtyre, qtyrep, olsqr

qtyre

qtyre

- **Purpose** Computes the orthogonal-triangular (QR) decomposition of a matrix X and returns Q'Y and R.
 - **Format** $\{qty,r,e\} = qtyre(y,x);$
 - **Input** *y* NxL matrix.
 - *x* NxP matrix.
 - **Output** *qty* NxL unitary matrix.
 - r KxP upper triangular matrix, K = min(N,P).
 - *e* Px1 permutation vector.
- **Remarks** Given X[.,E], where E is a permutation vector that permutes the columns of X, there is an orthogonal matrix Q such that Q'X[.,E] is zero below its diagonal, i.e.,

$$Q'X[., E] = \begin{bmatrix} R\\ 0 \end{bmatrix}$$

where R is upper triangular. If we partition

$$Q = \left[Q_1 \ Q_2\right]$$

where Q_1 has P columns, then

$$X[., E] = Q_1 R$$

is the QR decomposition of *X*[.,*E*].

If *X* has rank P, then the columns of *X* will not be permuted. If *X* has rank M < P, then the M linearly independent columns are permuted to the front of *X* by *E*. Partition the permuted *X* in the following way:

$$X[., E] = \begin{bmatrix} X_1 & X_2 \end{bmatrix}$$

where X_1 is NxM and X_2 is Nx(P – M). Further partition *R* in the following way:

qtyre

where R_{11} is MxM and R_{12} is Mx(P – M). Then

$$A = R_{11}^{-1} R_{12}$$

and

$$X_2 = X_1 A$$

that is, A is an Mx(P - N) matrix defining the linear combinations of X_2 with respect to X_1 .

For most problems Q or Q_1 is not what is required. Rather, we require Q'Y or Q'_1Y where Y is an NxL matrix. Since Q can be a very large matrix, **qtyre** has been provided for the calculation of Q'Y which will be a much smaller matrix. Q'_1Y will be a submatrix of Q'Y. In particular,

$$Q'_1 Y = qty[1:P, .]$$

and $Q'_2 Y$ is the remaining submatrix:

$$Q'_2 Y = qty[P+1:N,.]$$

Suppose that X is an NxK data set of independent variables and Y is an Nx1 vector of dependent variables. Suppose further that X contains linearly dependent columns, i.e., X has rank M < P. Then define

$$C = Q'_{2}Y [1:M,.]$$

A = R[1:M,1:M]

and the vector (or matrix of L > 1) of least squares coefficients of the reduced, linearly independent problem is the solution of

$$Ab = C$$

To solve for *b* use **qrsol**:

b = qrsol(C,A);

qtyre

If N < P the factorization assumes the form:

$$Q'X[., E] = \begin{bmatrix} R_1 & R_2 \end{bmatrix}$$

where R_1 is a PxP upper triangular matrix and R_2 is Px(N – P). Thus Q is a PxP matrix and R is a PxN matrix containing R_1 and R_2 . This type of factorization is useful for the solution of underdetermined systems. For the solution of

$$X[.,E]b = Y$$

it can be shown that

$$b = qrsol(Q'Y,R1) | zeros(N-P,1);$$

Source qtyr.src

See also qqr, qre, qtyr

qtyrep

qtyrep

Purpose	Computes the orthogonal-triangular (QR) decomposition of a matrix X using a pivot vector and returns $Q'Y$ and R .
Format	{ <i>qty,r,e</i> } = qtyrep(<i>y,x,pvt</i>) ;
Input	yNxL matrix.xNxP matrix. pvt Px1 vector, controls the selection of the pivot columns:if $pvt[i] > 0, x[i]$ is an initial columnif $pvt[i] = 0, x[i]$ is a free columnif $pvt[i] < 0, x[i]$ is a final columnThe initial columns are placed at the beginning of the matrix and the final columns are placed at the end. Only the free columns will be moved during the decomposition.
Output	 qty NxL unitary matrix. r KxP upper triangular matrix, K = min(N,P). e Px1 permutation vector.
Remarks	Given $X[.,E]$, where <i>E</i> is a permutation vector that permutes the columns of <i>X</i> , there is an orthogonal matrix <i>Q</i> such that $Q'X[.,E]$ is zero below its diagonal, i.e., $Q'X[.,E] = \begin{bmatrix} R \\ 0 \end{bmatrix}$ where <i>R</i> is upper triangular. If we partition
	$Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}$
	where Q_1 has P columns, then $X[., E] = Q_1 R$
	is the QR decomposition of $X[.,E]$.

qtyrep

qtyrep allows you to control the pivoting. For example, suppose that *X* is a data set with a column of ones in the first column. If there are linear dependencies among the columns of *X*, the column of ones for the constant may get pivoted away. This column can be forced to be included among the linearly independent columns using *pvt*.

Example	y = { 4 7 2, 5 9 1, 6 3 3 }; x = { 12 9 5, 4 3 5, 4 2 7 }; pvt = { 11, 10, 3 };							
	<pre>{ qty, r, e } = qtyrep(y,x,pvt);</pre>							
	$qty = \begin{array}{c} -6.9347609 & -9.9498744 & -3.0151134 \\ 4.0998891 & 3.5527137e - 15 & 2.1929640 \\ 3.4785054 & 6.3245553 & 0.31622777 \end{array}$							
	$r = \begin{bmatrix} -13.266499 & -9.6483630 & -8.1408063 \\ 0.0000000 & -0.95346259 & 4.7673129 \\ 0.0000000 & 0.0000000 & 3.1622777 \end{bmatrix}$							
	$e = \begin{cases} 1.0000000 \\ 2.0000000 \\ 3.0000000 \end{cases}$							
Source	qtyr.src							
See also	qrep, qtyre							

quantile

quantile

Purpose	Computes quantiles from data in a matrix, given specified probabilities.							
Format	y = qu	y = quantile(x,e)						
Input	x e	NxK ma Lx1 vec	ttrix of data. tor, quantile lev	els or probabilities	5.			
Output	у	LxK ma	trix, quantiles.					
Remarks	quanti is greate .001, the	. le will r than N input m	not succeed if N - 1. In other we atrix must have	J*minc(e) is less ords, to produce a more than 1000 re	than 1, or N* maxc (<i>e</i>) quantile for a level of ows.			
Example	rndsee	ed 345	567;					
	x = rr	ıdn(10	00,4); /*	data */				
	e = {	e = { .025, .5, .975 }; /* quantile levels */						
	<pre>y = quantile(x,e);</pre>							
	print	<pre>print "medians";</pre>						
	print	<pre>print y[2,.];</pre>						
	print;							
	print	"95 pe	ercentiles"	;				
	print	y[1,.];					
	print	y[3,.];					
	produces	3:						
	mediar	IS						
	-0.002	20	-0.0408	-0.0380	-0.0247			
	95 per	centi	les					
	-1.867	7	-1.9894	-2.1474	-1.8747			

				Command Reference	
				quantile	
	1.9687	2.0899	1.8576	2.0545	
Source	quantile gro				9
Jource	quantite.sic				a h
					D
					d
					a
					£
					1
					5 h
					i
					J Iz
					m
					n
					D
					a
					r
					s
					t
					1
					v
					XV
				3-617	

quantiled

quantiled

Purpose	Computes quantiles from data in a data set, given specified probabilities.							
Format	<pre>y = quantiled(dataset,e,var);</pre>							
Input	datasetstring, data set name, or NxM matrix of data.eLx1 vector, quantile levels or probabilities.varKx1 vector or scalar zero. If Kx1, character vector of labels selected for analysis, or numeric vector of column numbers in data set of variables selected for analysis. If scalar zero, all columns are selected.If dataset is a matrix var cannot be a character vector.							
Output	у	LxK matri	x, quantil	es.				
Remarks	quanti is greater .001, the	quantiled will not succeed if $N*minc(e)$ is less than 1, or $N*maxc(e)$ is greater than N - 1. In other words, to produce a quantile for a level of .001, the input matrix must have more than 1000 rows.						
Example	y = qu	<pre>y = quantiled("tobit",e,0);</pre>						
	<pre>print "medians";</pre>							
	print	print y[2,.];						
	<pre>print;</pre>							
	print	"95 perc	entile	s";				
	print	y[1,.];						
	print	y[3,.];						
	produces	:						
	median	S						
	0.0000	1.0	000	-0.0021	-0.1228			
	95 per	centiles						
	-1.119	8 1.	0000	-1.8139	-2.3143			

				quantil	ed
	2.3066	1.0000	1.4590	1.6954	
Source	quantile.s	arc			а
					h
					C
					d
					e
					f
					g
					h
					i
					j
					k
					1
					m
					n
					Ο
					р
					q
					r
					S
					t
					u
					V
					W
					x y z
				3-6	19

Command Reference

qyr

qyr

- **Purpose** Computes the orthogonal-triangular (QR) decomposition of a matrix X and returns QY and R.
 - Format $\{qy,r\} = qyr(y,x);$

Input y NxL matrix.

- *x* NxP matrix.
- **Output** qy NxL unitary matrix.
 - r KxP upper triangular matrix, K = min(N,P).
- **Remarks** Given X, there is an orthogonal matrix Q such that Q'X is zero below its diagonal, i.e.,

$$Q'X = \begin{bmatrix} R \\ 0 \end{bmatrix}$$

where R is upper triangular. If we partition

$$Q = \left[Q_1 \ Q_2\right]$$

where Q_1 has P columns, then

 $X = Q_1 R$

is the QR decomposition of X. If X has linearly independent columns, R is also the Cholesky factorization of the moment matrix of X, i.e., of X'X.

For most problems Q or Q_1 is not what is required. Since Q can be a very large matrix, **qyr** has been provided for the calculation of QY, where Y is some NxL matrix, which will be a much smaller matrix.

If either Q'Y or $Q'_{1}Y$ are required, see **qtyr**.

Example x = { 1 11, 7 3, 2 1 };

 $y = \{ 2 6, 5 10, 4 3 \};$ $\{ qy, r \} = qyr(y,x);$

qyr

	4.6288991 9.0506281	
	qy = -3.6692823 - 7.8788202	a
	3.1795692 1.0051489	b
	r = -7.3484692 - 4.6268140	С
	0.0000000 10.468648	d
Source	dyr.src	е
See also	qqr, qyre, qyrep, olsqr	f
		g
		h
		i
		j
		k
		1
		m
		n
		Ο
		р
		q
		r
		S
		t
		u
		V
		X V 7.
	3_621	

qyre

qyre

- **Purpose** Computes the orthogonal-triangular (QR) decomposition of a matrix X and returns QY and R.
 - **Format** $\{qy,r,e\} = qyre(y,x);$

Input *y* NxL matrix.

- *x* NxP matrix.
- **Output** qy NxL unitary matrix.
 - *r* KxP upper triangular matrix, K = min(N,P).
 - *e* Px1 permutation vector.
- **Remarks** Given X[.,E], where E is a permutation vector that permutes the columns of X, there is an orthogonal matrix Q such that Q'X[.,E] is zero below its diagonal, i.e.,

$$Q'X[., E] = \begin{bmatrix} R \\ 0 \end{bmatrix}$$

where R is upper triangular. If we partition

$$Q = \left[Q_1 \ Q_2\right]$$

where Q_1 has P columns, then

$$X[., E] = Q_1 R$$

is the QR decomposition of *X*[.,*E*].

For most problems Q or Q_1 is not what is required. Since Q can be a very large matrix, **gyre** has been provided for the calculation of QY, where Y is some NxL matrix, which will be a much smaller matrix.

If either Q'Y or Q'_1Y are required, see **qtyre**.

If N < P the factorization assumes the form:

 $Q'X[.,E] = \begin{bmatrix} R_1 & R_2 \end{bmatrix}$

qyre

where R_1 is a PxP upper triangular matrix and R_2 is Px(N – P). Thus Q is a PxP matrix and R is a PxN matrix containing R_1 and R_2 .

Example	$x = \{ 1 \ 11, \ 7 \ 3, \ 2 \ 1 \};$	5
	y = { 2 6, 5 10, 4 3 };	b
	$\{ qy, r, e \} = qyre(y,x);$	С
		d
	-0.5942276 -3.0456088	е
	qy = -6.2442636 -11.647846	f
	2.3782485 - 0.22790230	C
	r = -11.445523 - 2.9705938	h
	0.0000000 - 6.7212776	i
	e = 2.0000000	j
	1.0000000	k
Source	qyr.src	1
See also	qqr, qre, qyr	n
		n

qyrep

qyrep

Purpose	Computes the orthogonal-triangular (QR) decomposition of a matrix X using a pivot vector and returns QY and R .
Format	{ qy,r,e } = qyrep(y,x,pvt);
Input	yNxL matrix.xNxP matrix. pvt Px1 vector, controls the selection of the pivot columns:if $pvt[i] > 0, x[i]$ is an initial columnif $pvt[i] = 0, x[i]$ is a free columnif $pvt[i] < 0, x[i]$ is a final columnif $pvt[i] < 0, x[i]$ is a final columnThe initial columns are placed at the beginning of the matrix and the final columns are placed at the end. Only the free columns will be moved during the decomposition.
Output	qyNxL unitary matrix. r KxP upper triangular matrix, K = min(N,P). e Px1 permutation vector.
Remarks	Given $X[.,E]$, where <i>E</i> is a permutation vector that permutes the columns of <i>X</i> , there is an orthogonal matrix <i>Q</i> such that $Q'X[.,E]$ is zero below its diagonal, i.e., $Q'X[., E] = \begin{bmatrix} R \\ 0 \end{bmatrix}$ where <i>R</i> is upper triangular. If we partition $Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}$ where Q_1 has P columns, then $X[., E] = Q_1 R$ is the OR decomposition of $X[-E]$

qyrep

gyrep allows you to control the pivoting. For example, suppose that X is a data set with a column of ones in the first column. If there are linear dependencies among the columns of X, the column of ones for the constant may get pivoted away. This column can be forced to be included among the linearly independent columns using *pvt*.

For most problems Q or Q_I is not what is required. Since Q can be a very large matrix, **gyrep** has been provided for the calculation of QY, where Y is some NxL matrix, which will be a much smaller matrix.

If either Q'Y or $Q'_{l}Y$ are required, see **qtyrep**.

If N < P the factorization assumes the form:

$$Q'X[., E] = \left[R_1 R_2\right]$$

where R_1 is a PxP upper triangular matrix and R_2 is Px(N – P). Thus Q is a PxP matrix and R is a PxN matrix containing R_1 and R_2 .

- Source gyr.src
- See also qr, qqrep, qrep, qtyrep

rank

rank

Purpose	Computes the rank of a matrix, using the singular value decomposition.			
Format	k = rank	:(x);		
Input	x	NxP matrix.		
Global Input	_svdtol	global scalar, the tolerance used in determining if any of the singular values are effectively 0. The default value is $10e-13$. This can be changed before calling the procedure.		
Output	k	an estimate of the rank of x . This equals the number of singular values of x that exceed a prespecified tolerance in absolute value.		
Global Output	_svderr	global scalar, if not all of the singular values can be computed _svderr will be nonzero.		
Course	-			

Source svd.src

rankindx

rankindx

Purpose	Returns the vector of ranks of a vector.			
Format	<pre>y = rankindx(x,flag);</pre>			
Input	<i>x</i> Nx1 vector.<i>flag</i> scalar, 1 for numeric data or 0 for character data.			
Output	<i>y</i> Nx1 vector containing the ranks of <i>x</i>. That is, the rank of the largest element is N and the rank of the smallest is 1. (To get ranks in descending order, subtract <i>y</i> from N+1).			
Remarks	rankindx assigns different ranks to elements that have equal values (ties). Missing values are assigned the lowest ranks.			
Example	<pre>let x = 12 4 15 7 8; r = rankindx(x,1);</pre>			
	$r = \begin{cases} 4 \\ 1 \\ 5 \\ 2 \\ 3 \end{cases}$			

readr

readr

- PurposeReads a specified number of rows of data from a GAUSS data set (.dat)
file or a GAUSS matrix (.fmt) file.
 - **Format** y = readr(fl,r);
 - **Input** fl scalar, file handle of an open file.
 - *r* scalar, number of rows to read.
 - **Output** *y* NxK matrix, the data read from the file.
- **Remarks** The first time a **readr** statement is encountered, the first *r* rows will be read. The next time it is encountered, the next *r* rows will be read in, and so on. If the end of the data set is reached before *r* rows can be read, then only those rows remaining will be read.

After the last row has been read, the pointer is placed immediately after the end of the file. An attempt to read the file in these circumstances will cause an error message.

To move the pointer to a specific place in the file use **seekr**.

```
Example open dt = dat1.dat;
m = 0;
do until eof(dt);
x = readr(dt,400);
m = m+moment(x,0);
endo;
dt = close(dt);
```

This code reads data from a data set 400 rows at a time. The moment matrix for each set of rows is computed and added to the sum of the previous moment matrices. The result is the moment matrix for the entire data set. **eof(dt)** returns 1 when the end of the data set is encountered.

See also open, create, writer, seekr, eof

real

real

Purpose	Returns the real part of a matrix.	
Format	zr = real(x);	
Input	<i>x</i> NxK matrix.	
Output	zr NXK matrix, the real part of x .	
Remarks	If x is not complex, zr will be equal to x .	_
Example	x = { 1 11,	
	7i 3,	
	2+i 1 };	
	zr = real(x);	
	$1.0000000 \ 11.0000000$ $zr = 0.0000000 \ 3.0000000$	
	2.0000000 1.0000000	
See also	complex, imag	

r

recode

recode

- **Purpose** Changes the values of an existing vector from a vector of new values. Used in data transformations.
 - **Format** y = recode(x,e,v);
 - **Input** *x* Nx1 vector to be recoded (changed).
 - *e* NxK matrix of 1's and 0's.
 - *v* Kx1 vector containing the new values to be assigned to the recoded variable.
 - **Output** *y* Nx1 vector containing the recoded values of *x*.
- **Remarks** There should be no more than a single 1 in any row of *e*.

For any given row N of x and e, if the K^{th} column of e is 1, the K^{th} element of v will replace the original element of x.

If every column of e contains a 0, the original value of x will be unchanged.

Example	x =	{ 20 45), 5,					
		52	<u> </u>					
		6.	3,					
		29);{					
	e1 =	(20	.lt	x)	.and	(x)	.le	30);
	e2 =	(30	.lt	x)	.and	(x)	.le	40);
	e3 =	(40	.lt	x)	.and	(x)	.le	50);
	e4 =	(50	.lt	x)	.and	(x)	.le	60);
	e = 0	el~e2	2~e3~	~e4;				

recode

	v = { 1,	
	2,	
	3,	
	4 };	
	y = recode(x, e, v);	
	20	
	x = 32	
	63	
	29	
	0 0 0 0	
	e = 0.010	
	1 0 0 0	
	1	
	$v = \frac{2}{2}$	
	3	
	4	
	20	
	$y = \frac{3}{2}$	r
	63	1
	1	
Source	datatran.src	
ee also	code, substute	

See

recode (dataloop)

recode (dataloop)

Purpose Changes the value of a variable with different values based on a set of logical expressions.

Format recode [[#]] [[\$]] var with val_1 for expression_1, val_2 for expression_2,

val_n for expression_n;

Inputvarliteral, the new variable name.valscalar, value to be used if corresponding expression is true.expressionlogical scalar-returning expression that returns nonzeroTRUE or zero FALSE.

Remarks

If '\$' is specified, the variable will be considered a character variable. If '#' is specified, the variable will be considered numeric. If neither is specified, the type of the variable will be left unchanged.

The logical expressions must be mutually exclusive, that is only one may return *TRUE* for a given row (observation).

If none of the expressions is *TRUE* for a given row (observation), its value will remain unchanged.

Any variables referenced must already exist, either as elements of the source data set, as **externs**, or as the result of a previous **make**, **vector**, or **code** statement.

recode (dataloop)

```
Example
           recode age with
                  1 for age < 21,
                  2 for age \geq 21 and age < 35,
                  3 for age \geq 35 and age < 50,
                  4 for age \geq 50 and age < 65,
                  5 for age \geq 65;
            recode $ sex with
                  "MALE" for sex == 1,
                  "FEMALE" for sex == 0;
            recode # sex with
                  1 for sex \$ = ``MALE'',
                  0 for sex \$ = "FEMALE";
See also
          code
                                                                      r
```

recserar

recserar

Purpose	Computes a vector of autoregressive recursive series.		
Format	y = recserar(x, y0, a);		
Input	xNxK matrixy0PxK matrix.aPxK matrix.		
Output	y NxK matrix containing the series.		
Remarks	recserar is particularly useful in dealing with time series. Typically, the result would be thought of as <i>K</i> vectors of length <i>N</i> . <i>y0</i> contains the first <i>P</i> values of each of these vectors (thus, these are prespecified). The remaining elements are constructed by computing a <i>P</i> th order "autoregressive" recursion, with weights given by a, and then by adding the result to the corresponding elements of <i>x</i> . That is, the <i>t</i> th row of <i>y</i> is given by: y[t, .] = x[t, .] + a[1, .] * y[t - 1, .] + + a[P, .] * y[t - P, .], t = P + 1,, N and y[t, .] = y0[t, .], t = 1,, P		
Example	<pre>Note that the first P rows of x are not used. n = 10; fn multnorm(n,sigma) = rndn(n,rows(sigma))*chol(sigma); let sig[2,2] = {13,3 1 }; rho = 0.5~0.3; y0 = 0~0; e = multnorm(n,sig); x = ones(n,1)~rndn(n,3); b = 1 2 3 4;</pre>		

recserar

y = recserar(x*b+e,y0,rho);

In this example, two autoregressive series are formed using simulated data. The general form of the series can be written:

y[1,t]	=	rho[1,1]*y[1,t-1]	+	x[t,.]*b	+	e[1,t]
y[2,t]	=	rho[2,1]*y[2,t-1]	+	x[t,.]*b	+	e[2,t]

The error terms (**e**[1,t] and **e**[2,t]) are not individually serially correlated, but they are contemporaneously correlated with each other. The variance-covariance matrix is **sig**.

See also recsercp, recserrc

recsercp

recsercp

Purpose Computes a recursive series involving products. Can be used to compute cumulative products, to evaluate polynomials using Horner's rule, and to convert from base *b* representations of numbers to decimal representations among other things.

- **Format** y = recsercp(x,z);
 - **Input** *x* NxK or 1xK matrix
 - *z* NxK or 1xK matrix.
- **Output** *y* NxK matrix in which each column is a series generated by a recursion of the form:

y(1) = x(1) + z(1) $y(t) = y(t-1) \times x(t) + z(t), t= 2, ...N$

Remarks The following GAUSS code could be used to emulate **recsercp** when the number of rows in *x* and *z* is the same:

Note that K series can be computed simultaneously, since x and z can have K columns (they must both have the same number of columns).

recsercp allows either *x* or *z* to have only 1 row.

recsercp

recsercp(x, θ) will produce the cumulative products of the elements in x.

Example c1 = c[1,.]; n = rows(c) - 1; y = recsercp(x,trim(c ./ c1,1,0)); p = c1 .* y[n,.];

If **x** is a scalar and **c** is an (N+1)x1 vector, the result **p** will contain the value of the polynomial whose coefficients are given in **c**. That is:

$$p = c[1, .]. \times x^{n} + c[2, .]. \times x^{(n-1)} + ... + c[n+1, .]$$

Note that both **x** and **c** could contain more than 1 column, and then this code would evaluate the entire set of polynomials at the same time. Note also that if $\mathbf{x} = 2$, and if **c** contains the digits of the binary representation of a number, then **p** will be the decimal representation of that number.

See also recserar, recserrc

recserrc

recserrc

Purpose	Computes a recursive series involving division.		
Format	y = recserrc(x,z);		
Input	x1xK or Kx1 vector. z NxK matrix.		
Output	y NxK matrix in which each column is a series generated by a recursion of the form: y[1] = x mod z[1], x = trunc(x / z[1]) y[2] = x mod z[2], x = trunc(x / z[2]) y[3] = x mod z[3], x = trunc(x / z[3]) y[n] = x mod z[n]		
Remarks	Can be used to convert from decimal to other number systems (radix conversion).		
Example	<pre>x = 2 8 10; b = 2; n = maxc(log(x)./log(b)) + 1; z = reshape(b, n, rows(x)); y = rev(recserrc(x, z))'; The result, y, will contain in its rows (note that it is transposed in the last step) the digits representing the decimal numbers 2, 8, and 10 in base 2: 0 0 1 0 1 0 0 0 1 0 1 0</pre>		
Source	recserrc.src		
See also	recserar, recsercp		

rerun

rerun

Purpose	Displays the most recently created graphics file.			
Library	pgraph			
Format	rerun;			
Portability	DOS only			
	rerun invokes the graphics utility pqgrun.exe.			
Remarks	rerun is used by the endwind function.			
Source	pcart.src			
Globals	_pcmdlin, _pnotify, _psilent, _ptek, _pzoom			

reshape

reshape

Purpose	Reshapes a matrix.
Format	y = reshape(x,r,c);
Input	 x NxK matrix. r scalar, new row dimension. c scalar, new column dimension.
Output	<i>y</i> RXC matrix created from the elements of <i>x</i> .
Remarks	Matrices are stored in row major order. The first <i>c</i> elements are put into the first row of <i>y</i> , the second in the second row, and so on. If there are more elements in <i>x</i> than in <i>y</i> , the remaining elements are discarded. If there are not enough elements in <i>x</i> to fill <i>y</i> , then when reshape runs out of elements, it goes back to the first element of <i>x</i> and starts getting additional elements from there.
Example	y = reshape(x,2,6); If $x = \begin{cases} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{cases}$ then $y = \begin{cases} 1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 12 \end{cases}$
	If $x = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ then $y = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 1 & 2 & 3 \end{bmatrix}$
	If $x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \end{bmatrix}$ then $y = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 2 & 13 & 14 & 15 \end{bmatrix}$ then $y = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 12 \end{bmatrix}$
	If $x = \begin{array}{ccc} 1 & 2 \\ 3 & 4 \end{array}$ then $y = \begin{array}{ccc} 1 & 2 & 3 & 4 & 1 & 2 \\ 3 & 4 & 1 & 2 & 3 & 4 \end{array}$
	If $x = 1$ then $y = \begin{array}{cccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$

reshape

See also submat, vec

q	
r	

retp

retp

Purpose	Returns from a procedure or keyword.
Format	retp; retp(<i>x,y</i> ,);
Remarks	For more details, see "Procedures and Keywords" in the <i>User's Guide</i> . In a retp statement 0-1023 items may be returned. The items may be expressions. Items are separated by commas.
	It is legal to return with no arguments, as long as the procedure is defined to return 0 arguments.

See also proc, keyword, endp

return

return

Purpose	Returns from a subroutine.
Format	return; return(<i>x</i> , <i>y</i> ,);
Remarks	The number of items that may be returned from a subroutine in a return statement is limited only by stack space. The items may be expressions. Items are separated by commas.
	It is legal to return with no arguments and therefore return nothing.
See also	gosub, pop

rev

rev

Reverses the order of the rows in a matrix.		
y = rev(x);		
<i>x</i> NxK matrix.		
<i>y</i> NxK matrix containing the reversed rows of <i>x</i> .		
The first row of y will be where the last row of x was and the last row will be where the first was and so on. This can be used to put a sorted matrix in descending order.		
x = round(rndn(5,3)*10); y = rev(x); 10 7 8 7 4 -9 x = -11 0 -3 3 18 0 9 -1 20 9 -1 20 9 -1 20 3 18 0 y = -11 0 -3 7 4 -9 10 7 8 Forta		
sortc		
rfft

rfft

Purpose	Computes a real 1- or 2-D Fast Fourier transform.		
Format	$y = \mathbf{rfft}(x);$		
Input	<i>x</i> NxK real matrix.		
Output	y LXM matrix, where L and M are the smallest powers of 2 greater than or equal to N and K, respectively.		
Remarks	Computes the RFFT of <i>x</i> , scaled by 1/(L*M). This uses a Temperton Fast Fourier algorithm. If N or K is not a power of 2, <i>x</i> will be padded out with zeros before computing the transform.		
Example	x = { 6 9, 8 1 }; y = rfft(x);		
	$y = \begin{array}{c} 6.0000000 & 1.0000000 \\ 1.5000000 & -2.5000000 \end{array}$		
See also	rffti, fft, ffti, fftm, fftmi		

rffti

rffti

Purpose	Computes inverse real 1- or 2-D Fast Fourier transform.			
Format	y = rffti(x);			
Input	<i>x</i> NxK matrix.			
Output	y LXM real matrix, where L and M are the smallest prime factor products greater than or equal to N and K.			
Remarks	It is up to the user to guarantee that the input will return a real result. If in doubt, use ffti .			
Example	<pre>x = { 6 1, 1.5 -2.5 }; y = rffti(x);</pre>			
	$y = \begin{array}{c} 6.0000000 \ 9.0000000 \\ 8.0000000 \ 1.0000000 \end{array}$			
See also	week een een een			

See also rfft, fft, ffti, fftm, fftmi

rfftip

rfftip

- **Purpose** Computes an inverse real 1- or 2-D FFT. Takes a packed format FFT as input.
 - Format y = rfftip(x);
 - **Input** *x* NxK matrix or K-length vector.
 - **Output** *y* LxM real matrix or M-length vector.
- **Remarks** rfftip assumes that its input is of the same form as that output by rfftp and rfftnp.

rfftip uses the Temperton prime factor FFT algorithm. This algorithm can compute the inverse FFT of any vector or matrix whose dimensions can be expressed as the product of selected prime number factors. GAUSS implements the Temperton algorithm for any integer power of 2, 3, and 5, and one factor of 7. Thus, **rfftip** can handle any matrix whose dimensions can be expressed as:

$$2^{p} \times 3^{q} \times 5^{r} \times 7^{s}, \qquad p, q, r \ge 0$$

$$s = 0 \text{ or } 1$$

If a dimension of x does not meet this requirement, it will be padded with zeros to the next allowable size before the inverse FFT is computed. Note that **rfftip** assumes the length (for vectors) or column dimension (for matrices) of x is K-1 rather than K, since the last element or column does not hold FFT information, but the Nyquist frequencies.

The sizes of x and y are related as follows: L will be the smallest prime factor product greater than or equal to N, and M will be twice the smallest prime factor product greater than or equal to K-1. This takes into account the fact that x contains both positive and negative frequencies in the row dimension (matrices only), but only positive frequencies, and those only in the first K-1 elements or columns, in the length or column dimension.

It is up to the user to guarantee that the input will return a real result. If in doubt, use **ffti**. Note, however, that **ffti** expects a full FFT, including negative frequency information, for input.

Do not pass **rfftip** the output from **rfft** or **rfftn**—it will return incorrect results. Use **rffti** with those routines.

rfftip

See also	fft,	ffti,	fftm,	fftmi,	fftn,	rfft,	rffti,	rfftn,
	rffti	np, rf:	ftp					

rfftn

rfftn

Purpose	Computes a real 1- or 2-D FFT.		
Format	y = rfftn(x);		
Input	<i>x</i> NxK real matrix.		
Output	y LxM matrix, where L and M are the smallest prime factor products greater than or equal to N and K, respectively.		
Remarks	rfftn uses the Temperton prime factor FFT algorithm. This algorithm can compute the FFT of any vector or matrix whose dimensions can be expressed as the product of selected prime number factors. GAUSS implements the Temperton algorithm for any power of 2, 3, and 5, and		

implements the Temperton algorithm for any power of 2, 3, and 5, and one factor of 7. Thus, **rfftn** can handle any matrix whose dimensions can be expressed as:

> $p, q, r \ge 0$ for rows of matrix $2^{p} \times 3^{q} \times 5^{r} \times 7^{s}$, $p > 0, q, r \ge 0$ for columns of matrix $p > 0, q, r \ge 0$ for length of vector s = 0 or 1 for all dimensions

If a dimension of x does not meet these requirements, it will be padded with zeros to the next allowable size before the FFT is computed.

rfftn pads matrices to the next allowable size; however, it generally runs faster for matrices whose dimensions are highly composite numbers, i.e., products of several factors (to various powers), rather than powers of a single factor. For example, even though it is bigger, a 33600x1 vector can compute as much as 20 percent faster than a 32768x1 vector, because 33600 is a highly composite number, $2^6 \times 3 \times 5^2 \times 7$, whereas 32768 is a simple power of 2, 2^{15} . For this reason, you may want to hand-pad matrices to optimum dimensions before passing them to **rfftn**. The Run-Time Library includes two routines, **optn** and **optnevn**, for determining optimum dimensions. Use **optn** to determine optimum rows for matrices, and **optnevn** to determine optimum columns for matrices and optimum lengths for vectors.

The Run-Time Library also includes the **nextn** and **nextnevn** routines, for determining allowable dimensions for matrices and vectors.

rfftn

(You can use these to see the dimensions to which **rfftn** would pad a matrix or vector.)

rfftn scales the computed FFT by 1/(L*M).

See also fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftip, rfftnp, rfftp

rfftnp

rfftnp

Purpose	Computes a real 1- or 2-D FFT. Returns the results in a packed format.			
Format	<pre>y = rfftnp(x);</pre>			
Input	x	NxK real matrix or K-length real vector.		
Output	у	Lx(M/2+1) matrix or $(M/2+1)$ -length vector, where L and M are the smallest prime factor products greater than or equal to N and K, respectively.		

Remarks For 1-D FFT's, **rfftnp** returns the positive frequencies in ascending order in the first M/2 elements, and the Nyquist frequency in the last element. For 2-D FFT's, **rfftnp** returns the positive and negative frequencies for the row dimension, and for the column dimension it returns the positive frequencies in ascending order in the first M/2 columns, and the Nyquist frequencies in the last column. Usually the FFT of a real function is calculated to find the power density spectrum or to perform filtering on the waveform. In both these cases only the positive frequencies are required. (See also **rfft** and **rfftn** for routines that return the negative frequencies as well.)

rfftnp uses the Temperton prime factor FFT algorithm. This algorithm can compute the FFT of any vector or matrix whose dimensions can be expressed as the product of selected prime number factors. GAUSS implements the Temperton algorithm for any power of 2, 3, and 5, and one factor of 7. Thus, **rfftnp** can handle any matrix whose dimensions can be expressed as:

 $2^{p} \times 3^{q} \times 5^{r} \times 7^{s}$, $p, q, r \ge 0$ for rows of matrix $p > 0, q, r \ge 0$ for columns of matrix $p > 0, q, r \ge 0$ for length of vector s = 0 or 1 for all dimensions

If a dimension of x does not meet these requirements, it will be padded with zeros to the next allowable size before the FFT is computed.

rfftnp pads matrices to the next allowable size; however, it generally runs faster for matrices whose dimensions are highly composite numbers, i.e., products of several factors (to various powers), rather than powers of

rfftnp

a single factor. For example, even though it is bigger, a 33600x1 vector can compute as much as 20 percent faster than a 32768x1 vector, because 33600 is a highly composite number, $2^6 \times 3 \times 5^2 \times 7$, whereas 32768 is a simple power of 2, 2^{15} . For this reason, you may want to hand-pad matrices to optimum dimensions before passing them to **rfftnp**. The Run-Time Library includes two routines, **optn** and **optnevn**, for determining optimum dimensions. Use **optn** to determine optimum rows for matrices, and **optnevn** to determine optimum columns for matrices and optimum lengths for vectors.

The Run-Time Library also includes the **nextn** and **nextnevn** routines, for determining allowable dimensions for matrices and vectors. (You can use these to see the dimensions to which **rfftnp** would pad a matrix or vector.)

rfftnp scales the computed FFT by 1/(L*M).

See also fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftip, rfftn, rfftp

rfftp

rfftp

Purpose	Computes a real 1- or 2-D FFT. Returns the results in a packed format.				
Format	y = rfftp(x);				
Input	<i>x</i> NxK real matrix or K-length real vector.				
Output	y Lx(M/2+1) matrix or (M/2+1)-length vector, where L and M are the smallest powers of 2 greater than or equal to N and K, respectively.				
Remarks	If a dimension of x is not a power of 2, it will be padded with zeros to the next allowable size before the FFT is computed.				
	For 1-D FFT's, rfftp returns the positive frequencies in ascending order in the first M/2 elements, and the Nyquist frequency in the last element. For 2-D FFT's, rfftp returns the positive and negative frequencies for the row dimension, and for the column dimension it returns the positive frequencies in ascending order in the first M/2 columns, and the Nyquist frequencies in the last column. Usually the FFT of a real function is calculated to find the power density spectrum or to perform filtering on the waveform. In both these cases only the positive frequencies are required. (See also rfft and rfftn for routines that return the negative frequencies as well.)				
	rfftp scales the computed FFT by $1/(L*M)$.				
	rfftp uses the Temperton FFT algorithm.				
See also	fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftip, rfftn, rfftnp				

rndbeta

rndbeta

Purpose	Computes pseudo-random numbers with beta distribution.			
Format	x = rndbeta (r,c,a,b);			
Input	 <i>r</i> scalar, number of rows of resulting matrix. <i>c</i> scalar, number of columns of resulting matrix. <i>a</i> MxN matrix, ExE conformable with RxC resulting matrix, shape parameters for beta distribution. <i>b</i> KxL matrix, ExE conformable with RxC resulting matrix, shape parameters for beta distribution. 			
Output	<i>x</i> RxC matrix, beta distributed pseudo-random numbers.			
Remarks	The properties of the pseudo-random numbers in x are: $E(x) = a / (a + b)$ $Var(x) = a \times b / (a + b + 1) \times (a + b)^{2}$ $x > 0$ $x < 1$ $a > 0$ $b > 0$			
Source	random.src			

rndcon, rndmult, rndseed

Purpose	Resets the parameters of the linear congruential random number generator that is the basis for rndu , rndi and rndn .			
Format	rndcon rndmul rndsee	c; t a; d seed;		
Portability	Windows, UNIX, OS/2 Parameter default values and ranges:			
	seed	time(0),	$0 < \text{seed} < 2^{32}$	
	а	1664525	$0 < a < 2^{32}$	
	С	1013904223	$0 \le c < 2^{32}$	
Remarks	KS A linear congruential uniform random number gen rndu , and is also called by rndn . These statement of this generator to be changed.		form random number generator is used by by rndn . These statements allow the parameters anged.	
	The proc follows.	edure used to ge First, the current	nerate the uniform random numbers is as "seed" is used to generate a new seed:	

new_seed = (((a * seed) % 2^{32})+c) % 2^{32}

(where % is the mod operator). Then a number between 0 and 1 is created by dividing the new seed by 2^{32} :

 $x = \text{new}_\text{seed} / 2^{32}$

rndcon resets c.

rndmult resets a.

rndseed resets *seed*. This is the initial seed for the generator. The default is that GAUSS uses the clock to generate an initial seed when GAUSS is invoked.

GAUSS goes to the clock to seed the generator only when it is first started up. Therefore, if GAUSS is allowed to run for a long time, and if large numbers of random numbers are generated, there is a possibility of recycling (that is, the sequence of "random numbers" will repeat itself). However, the generator used has an extremely long cycle, and so that should not usually be a problem.

rndcon, rndmult, rndseed

The parameters set by these commands remain in effect until new commands are encountered, or until GAUSS is restarted.

See also rndu, rndn, rndi, rndLCi, rndKMi

rndgam

rndgam

Purpose	Computes pseudo-random numbers with gamma distribution.			
Format	x = rndgam(r,c,alpha);			
Input	 r scalar, number of rows of resulting matrix. c scalar, number of columns of resulting matrix. alpha MxN matrix, ExE conformable with RxC resulting matrix, shape parameters for gamma distribution. 			
Output	<i>x</i> RxC matrix, gamma distributed pseudo-random numbers.			
Remarks	The properties of the pseudo-random numbers in x are: E(x) = alpha $Var(x) = alpha$ $x > 0$ $alpha > 0$			
	To generate gamma (<i>alpha</i> , <i>theta</i>) pseudo-random numbers where <i>then</i> is a scale parameter, multiply the result of rndgam by <i>theta</i> . Thus:			
	z = theta * rndgam(1,1 , <i>alpha</i>) has the properties			
	$E(z) = alpha \times theta$ $Var(z) = alpha \times theta^{2}$ $z > 0$ $alpha > 0$ $theta > 0$			
Source	random.src			

rndi

rndi

Purpose	Returns a matrix of random integers, $0 \le y \le 2^32$.			
Format	y = rndi(r,c);			
Input	r scalar, row dimension.c scalar, column dimension.			
Output	<i>y r</i> x <i>c</i> matrix of random integers between 0 and 2^32 - 1, inclusive.			
Remarks	<i>r</i> and <i>c</i> will be truncated to integers if necessary. This generator is automatically seeded using the system clock when GAUSS first starts. However, that can be overridden using the rndseed statement or using rndus .			
	Each seed is generated from the preceding seed, using the formula			
	new_seed = ((($a * seed$) % 2^{32})+c) % 2^{32}			
	where % is the mod operator. The new seeds are the values returned. The muliplicative constant and the additive constant may be changed using rndmult and rndcon respectively.			
See also	rndu, rndus, rndn, rndcon, rndmult			

rndKMbeta

rndKMbeta

Purpose	Computes beta pseudo-random numbers.				
Format	<pre>{ x, newstate } = rndKMbeta(r,c,a,b,state);</pre>				
Input	 <i>r</i> scalar, number of rows of resulting matrix. <i>c</i> scalar, number of columns of resulting matrix. <i>a r</i>X<i>c</i> matrix, or <i>r</i>X1 vector, or 1X<i>c</i> vector, or scalar, first shape argument for beta distribution. <i>b r</i>X<i>c</i> matrix, or <i>r</i>X1 vector, or 1X<i>c</i> vector, or scalar, second shape argument for beta distribution. <i>state</i> scalar or 500x1 vector. Scalar case: <i>state</i> = starting seed value only. If -1, GAUSS computes the starting seed based on the system clock. 500x1 vector case: <i>state</i> = the state vector returned from a previous call to one of 				
Output	xrxc matrix, beta distributed random numbers.newstate500x1 vector, the updated state.				
Remarks	The properties of the pseudo-random numbers in <i>x</i> are: $E(x) = \frac{a}{a+b}, Var(x) = \frac{(a*b)}{(a+b+1)*(a+b)^2}$ $0 < x < 1, a > 0, b > 0$ <i>r</i> and <i>c</i> will be truncated to integers if necessary.				
Source	randkm.src				
Technical Notes	rndKMbeta uses the recur-with-carry KISS+Monster algorithm described in the rndKMi Technical Notes.				

rndKMgam

rndKMgam

Purpose	Computes Gamma pseudo-random numbers.			
Format	<pre>{ x, newstate } = rndKMgam(r,c,alpha,state);</pre>			
Input	r c alpha state	<pre>scalar, number of rows of resulting matrix. scalar, number of columns of resulting matrix. rxc matrix, or rx1 vector, or 1xc vector, or scalar, shape argument for gamma distribution. scalar or 500x1 vector. Scalar case: state = starting seed value only. If -1, GAUSS computes the starting seed based on the system clock. 500x1 vector case: state = the state vector returned from a previous call to one of the rndKM random number functions.</pre>		
Output	x newstate	r x c matrix, gamma distributed random numbers. 500x1 vector, the updated state.		
Remarks	The prop E(x) = x > 0, To genera a scale para Thus z = than has the pr $E(z) =z > 0$, r and c w	erties of the pseudo-random numbers in x are: = $alpha$, $Var(x) = alpha$ alpha > 0. Atte gamma($alpha$, $theta$) pseudo-random numbers where $theta$ is arameter, multiply the result of rndgam by $theta$. eta * rndgam (1,1, $alpha$); roperties = $alpha * theta$, $Var(z) = alpha * theta ^ 2$ alpha > 0, $theta > 0$. ill be truncated to integers if necessary.		
Source	randkm	.src		

rndKMgam

Technical rndKMgam uses the recur-with-carry KISS+Monster algorithm described in the **rndKMi** Technical Notes.

rndKMi

rndKMi

Returns a matrix of random integers, $0 \le y \le 2^32$, and the state of the random number generator.			
{ y, ne	<pre>wstate } = rndKMi(r,c,state);</pre>		
r c state	<pre>scalar, row dimension. scalar, column dimension. scalar or 500x1 vector. Scalar case: state = starting seed value. If -1, GAUSS computes the starting seed based on the system clock. 500x1 vector case: state = the state vector returned from a previous call to one of the rndKM random number generators.</pre>		
y newstate	<i>rxc</i> matrix of random integers between 0 and 2^32 - 1, inclusive.500x1 vector, the updated state.		
r and c w	ill be truncated to integers if necessary.		
This example generates two thousand vectors of random integers, each with one million elements. The state of the random number generator after each iteration is used as an input to the next generation of random numbers.			
state	= 13;		
n = 20	00;		
k = 10	00000;		
c = 0;			
min =	2^32+1;		
max =	-1;		
	Returns a random n { y, ne r c state y newstate r and c w This exar with one after each numbers. state n = 200 k = 100 c = 0; min = 100 max = 100		

rndKMi

```
do while c < n;
{ y,state } = rndKMi(k,1,state);
min = minc(min | minc(y));
max = maxc(max | maxc(y));
c = c + k;
endo;
print "min " min;
print "max " max;
See also rndKMn, rndKMu
Technical Notes
rndKMi generates random integers using a KISS+Monster algorithm
developed by George Marsaglia. KISS initializes the sequence used in the
recur-with-carry Monster random number generator. For more</pre>
```

information on this generator see http://www.Aptech.com/random.

rndKMn

rndKMn

Purpose	Returns a matrix of standard normal (pseudo) random variables and the state of the random number generator.				
Format	{ y, ne	<pre>ewstate } = rndKMn(r,c,state);</pre>			
Input	r c state	<pre>scalar, row dimension. scalar, column dimension. scalar or 500x1 vector. Scalar case: state = starting seed value. If -1, GAUSS computes the starting seed based on the system clock. 500x1 vector case: state = the state vector returned from a previous call to one of the rndKM random number generators.</pre>			
Output	y newstate	rxc matrix of standard normal random numbers. 500x1 vector, the updated state.			
Remarks	r and c w	ill be truncated to integers if necessary.			
Example	This example generates two thousand vectors of standard normal random numbers, each with one million elements. The state of the random number generator after each iteration is used as an input to the next generation of random numbers.				
	state	= 13;			
	n = 20	00;			
	k = 10	00000;			
	c = 0;				
	submea	$n = \{ \};$			

rndKMn

```
do while c < n;
    { y,state } = rndKMn(k,1,state);
    submean = submean | meanc(y);
    c = c + k;
endo;

mean = meanc(submean);
print mean;
See also rndKMu, rndKMi</pre>
```

Technical Notes rndKMn calls the uniform random number generator that is the basis for **rndKMu** multiple times for each normal random number generated. This is the recur-with-carry KISS+Monster algorithm described in the **rndKMi** Technical Notes. Potential normal random numbers are filtered using the fast acceptance-rejection algorithm proposed by Kinderman, A.J. and J.G. Ramage, "Computer Generation of Normal Random Numbers," Journal of the American Statistical Association, December 1976, Volume 71, Number 356, pp. 893-896.

rndKMnb

rndKMnb

Purpose	Computes negative binomial pseudo-random numbers.			
Format	$\{x, newstate\} = rndKMnb(r,c,k,p,state);$			
Input	 r scalar, number of rows of resulting matrix. c scalar, number of columns of resulting matrix. k rXc matrix, or rX1 vector, or 1Xc vector, or scalar, "event" argument for negative binomial distribution. p rXc matrix, or rX1 vector, or 1Xc vector, or scalar, "probability" argument for negative binomial distribution. state scalar or 500x1 vector. Scalar case: state = starting seed value only. If -1, GAUSS computes the starting seed based on the system clock. 500x1 vector case: state = the state vector returned from a previous call to one of the rndKM random number functions. 			
Output	<i>x r</i>x<i>c</i> matrix, negative binomial distributed random numbers.<i>newstate</i> 500x1 vector, the updated state.			
Remarks	The properties of the pseudo-random numbers in <i>x</i> are: $E(x) = \frac{k^*p}{(1-p)}, Var(x) = \frac{k^*p}{(1-p)^2}$ $x = 0, 1,, k > 0, 0 r and c will be truncated to integers if necessary.$			
Source	randkm.src			
Technical Notes	rndKMnb uses the recur-with-carry KISS+Monster algorithm described in the rndKMi Technical Notes.			

rndKMp

rndKMp

Purpose	Computes Poisson pseudo-random numbers.				
Format	<pre>{ x, newstate } = rndKMp(r,c,lambda,state);</pre>				
Input	rscalar, number of rows of resulting matrix.cscalar, number of columns of resulting matrix.lambdarxc matrix, or rX1 vector, or 1Xc vector, or scalar, shape argument for Poisson distribution.statescalar or 500x1 vector.Scalar case: state = starting seed value only. If -1, GAUSS computes the starting seed based on the system clock.500x1 vector case: state = the state vector returned from a previous call to one of the rndKM random number functions.				
Output	<i>x</i> rxc matrix, Poisson distributed random numbers.<i>newstate</i> 500x1 vector, the updated state.				
Remarks	The properties of the pseudo-random numbers in <i>x</i> are: E(x) = lambda, Var(x) = lambda x = 0, 1,, lambda > 0. r and c will be truncated to integers if necessary.				
Source	randkm.src				
Technical Notes	rndKMp uses the recur-with-carry KISS+Monster algorithm described in the rndKMi Technical Notes.				

rndKMu

rndKMu

Purpose	Returns a matrix of uniform (pseudo) random variables and the state of the random number generator.		
Format	$\{ y, newstate \} = rndKMu(r,c,state);$		
Input	rscalar, row dimension.cscalar, column dimension.statescalar, 2x1 vector, or 500x1 vector.Scalar case:state = starting seed value. If -1, GAUSS computes the starting seed based on the system clock.2x1 vector case:[1][1]the starting seed, uses the system clock if -1[2]0 for $0 \le y \le 1$ 1 for $0 \le y \le 1$ 500x1 vector case:state = the state vector returned from a previous call to one of the rndKM random number generators.		
Output	y $r xc$ matrix of uniform random numbers, $0 \le y < 1$. <i>newstate</i> 500x1 vector, the updated state.		
Remarks	r and c will be truncated to integers if necessary.		
Example	This example generates two thousand vectors of uniform random numbers, each with one million elements. The state of the random number generator after each iteration is used as an input to the next generation of random numbers. state = 13; n = 2000; k = 1000000; c = 0;		
	<pre>submean = {};</pre>		

rndKMu

```
do while c < n;
{ y,state } = rndKMu(k,1,state);
submean = submean | meanc(y);
c = c + k;
endo;
mean = meanc(submean);
print 0.5-mean;
See also rndKMn, rndKMi
Technical notes the recur-with-carry KISS-Monster algorithm described in
the rndKMi Technical Notes. Random integer seeds from 0 to 2^32-1 are
generated. Each integer is divided by 2^32 or 2^32-1.</pre>
```

rndKMvm

rndKMvm

Purpose	Computes von Mises pseudo-random numbers.			
Format	{ x, ne	<pre>wstate } = rndKMvm(r,c,m,k,state);</pre>		
Input	r c m k state	scalar, number of rows of resulting matrix. scalar, number of columns of resulting matrix. $r \times c$ matrix, or $r \times 1$ vector, or $1 \times c$ vector, or scalar, means for vm distribution. $r \times c$ matrix, or $r \times 1$ vector, or $1 \times c$ vector, or scalar, shape argument for vm distribution. scalar or 500×1 vector. Scalar case: state = starting seed value only. If -1, GAUSS computes the starting seed based on the system clock. SO0X1 vector case: state = the state vector returned from a previous call to one of the rndKM random number functions.		
Output	x newstate	<i>r</i> x <i>c</i> matrix, von Mises distributed random numbers. 500x1 vector, the updated state.		
Remarks	r and c will be truncated to integers if necessary.			
Source	randkm.src			
Technical Notes	rndKMvi in the rn	n uses the recur-with-carry KISS+Monster algorithm described dKMi Technical Notes.		

rndLCbeta

rndLCbeta

Purpose	Computes beta pseudo-random numbers.				
Format	<pre>{ x, newstate } = rndLCbeta(r,c,a,b,state);</pre>				
Input	r	scalar, number of rows of resulting matrix.			
	c a	<i>rXc</i> matri argumen	inder of columns of resulting matrix. ix, or $r \times 1$ vector, or $1 \times c$ vector, or scalar, first shape t for beta distribution.		
	b	<i>rXc</i> matri	ix, or $r \times 1$ vector, or $1 \times c$ vector, or scalar, second shape t for beta distribution.		
	state	scalar, 3x1 vector, or a 4x1 state vector from a previous call to the function.			
		Scalar ca	ase:		
		<i>state</i> = starting seed value only. System default values are used for the additive and multiplicative constants. The defaults are 1013904223, and 1664525, respectively. These may be changed with rndcon and rndmult .			
		 if <i>state</i> = -1, GAUSS computes the starting seed based on the system clock. 3x1 vector case: [1] the starting seed, uses the system clock if -1 			
		[2] the multiplicative constant			
		[3]	the additive constant		
Output	x	<i>r</i> x <i>c</i> matri	ix, beta distributed random numbers.		
	newstate	4x1 vector	or:		
		[1]	the updated seed		
		[2]	the multiplicative constant		
		[3]	the additive constant		
		[4]	the original initialization seed		
Remarks:	The prop	he properties of the pseudo-random numbers in x are:			

$$E(x) = \frac{a}{a+b}, Var(x) = \frac{(a*b)}{(a+b+1)*(a+b)^2}$$

rndLCbeta

0 < x < 1, a > 0, b > 0

r and c will be truncated to integers if necessary.

Source randlc.src

Technical Notes

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr., and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147. Each seed is generated from the preceding seed using the formula

```
new_seed = (((a * seed) % 2^{32})+c) % 2^{32}
```

where % is the mod operator and where a is the multiplicative constant and c is the additive constant.

${\tt rndLCgam}$

rndLCgam

Purpose	Computes Gamma pseudo-random numbers.					
Format	<pre>{ x, newstate } = rndLCgam(r,c,alpha,state);</pre>					
Input	r c	scalar, number of rows of resulting matrix.scalar, number of columns of resulting matrix.				
	alpha	<i>r</i> X <i>c</i> mat argume	rix, or $r \times 1$ vector, or $1 \times c$ vector, or scalar, shape nt for gamma distribution.			
	state	scalar, 3	3×1 vector, or a 4×1 state vector from a previous call to etion.			
		Scalar	case:			
		state = state for the a	starting seed value only. System default values are used additive and multiplicative constants.			
		The defaults are 1013904223, and 1664525, respectively. These may be changed with rndcon and rndmult .				
		if $state = -1$, GAUSS computes the starting seed based on the system clock.				
		3x1 vector case:				
		[1]	the starting seed, uses the system clock if -1			
		[2]	the multiplicative constant			
		[3]	the additive constant			
Output	x	<i>r</i> x <i>c</i> mat	rix, gamma distributed random numbers.			
	newstate	e 4x1 vector:				
		[1]	the updated seed			
		[2]	the multiplicative constant			
		[3]	the additive constant			
		[4]	the original initialization seed			
Remarks	The prop	erties of	the pseudo-random numbers in x are:			
	F(x) = alpha $Var(x) = alpha$					
	x > 0,	alpha >	0.			
	To generate gamma (<i>alpha</i> , <i>theta</i>) pseudo-random numbers where <i>theta</i> is a scale parameter, multiply the result of rndgam by <i>theta</i> .					

rndLCgam

Thus

z = theta * rndgam(1,1,alpha);

has the properties

 $E(z) = alpha * theta, Var(z) = alpha * theta ^ 2$

z > 0, *alpha* > 0, *theta* > 0.

r and c will be truncated to integers if necessary.

Source randlc.src

Technical Notes This function uses a linear congruential method, discussed in Kennedy, W.J. Jr., and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147. Each seed is generated from the preceding seed using the formula

```
new_seed = (((a * seed) % 2^{32})+c) % 2^{32}
```

where % is the mod operator and where a is the multiplicative constant and c is the additive constant.

rndLCi

rndLCi

Purpose	Returns a matrix of random integers, $0 \le y \le 2^32$, and the state of the random number generator.							
Format	{ y, ne	wstate }	<pre>> = rndLCi(r,c,state);</pre>					
Input	r	<i>r</i> scalar, row dimension.						
	С	scalar, co	olumn dimension.					
	state	scalar, 3x the funct	x1 vector, or a 4x1 state vector from a previous call to tion.					
		Scalar ca	case:					
		state = st for the ac	tarting seed value only. System default values are used additive and multiplicative constants.					
		The defat These ma	aults are 1013904223, and 1664525, respectively. aay be changed with rndcon and rndmult .					
		if $state = 0$, GAUSS computes the starting seed based on the system clock.						
		3x1 vector case:						
		[1] the starting seed, uses the system clock if 0						
		[2]	the multiplicative constant					
		[3]	the additive constant					
Output	у	<i>r</i> x <i>c</i> matrix of random integers between 0 and 2^32 - 1, inclusive.						
	newstate	4x1 vector:						
		[1]	the updated seed					
		[2]	the multiplicative constant					
		[3]	the additive constant					
		[4]	the original initialization seed					
Remarks	r and c w	ill be trun	ncated to integers if necessary.					
	Each see	d is genera	ated from the preceding seed, using the formula					
	new	_seed =	= (((a * seed) % 2^{32})+c) % 2^{32}					
	where % is the mod operator and where a is the multiplicative constant and c is the additive constant. The new seeds are the values returned.							

rndLCi

Example	state = 13;					
	n = 200000000; k = 1000000;					
	c = 0;					
	$min = 2^{32+1};$					
	max = -1;					
	do while c < n;					
	<pre>{ y,state } = rndLCi(k,1,state); min = minc(min minc(y)); max = maxc(max maxc(y));</pre>					
	c = c + k;					
	endo;					
	print "min " min;					
	print "max " max;					
See also	rndLCn, rndLCu, rndcon, rndmult					

rndLCn

rndLCn

Purpose	Returns a matrix of standard normal (pseudo) random variables and the state of the random number generator.			
Format	{ y, ne	ewstate	$\} = rndLCn(r,c,state);$	
Input	r C state	scalar, i scalar, i scalar, i the fund Scalar state = for the The def These r if state system 3x1 ver [1] [2]	row dimension. column dimension. 3x1 vector, or a 4x1 state vector from a previous call to ction. case: starting seed value only. System default values are used additive and multiplicative constants. faults are 1013904223, and 1664525, respectively. nay be changed with rndcon and rndmult . = 0, GAUSS computes the starting seed based on the clock. etor case: the starting seed, uses the system clock if 0 the multiplicative constant	
Output	y newstate	[3] rxc ma 4x1 vec [1] [2] [3] [4]	the additive constant trix of standard normal random numbers. ctor: the updated seed the multiplicative constant the additive constant the original initialization seed	
Remarks	r and c w	ill be tru	incated to integers if necessary.	
Example	state n = 20 k = 10 c = 0;	= 13; 000000 00000;	000;	2

See also

rndLCn

```
submean = {};
do while c < n;
    { y,state } = rndLCn(k,1,state);
    submean = submean | meanc(y);
    c = c + k;
endo;
mean = meanc(submean);
print mean;
rndLCu, rndLCi, rndcon, rndmult
The normal random number generator is based on the
```

Technical Notes The normal random number generator is based on the uniform random number generator, using the fast acceptance-rejection algorithm proposed by Kinderman, A.J. and J.G. Ramage, "Computer Generation of Normal Random Numbers," Journal of the American Statistical Association, December 1976, Volume 71, Number 356, pp. 893-896. This algorithm calls the linear congruential uniform random number generator multiple times for each normal random number generated. See **rndLCu** for a description of the uniform random number generator algorithm.

rndLCnb

rndLCnb

Purpose	Computes negative binomial pseudo-random numbers.					
Format	{ x, ne	wstate }	<pre>= rndLCnb(r,c,k,p,state);</pre>			
Input	r	scalar, nu	scalar, number of rows of resulting matrix.			
	С	scalar, nu	mber of columns of resulting matrix.			
	k	<i>r</i> X <i>c</i> matriargument	x, or <i>r</i> X1 vector, or 1X <i>c</i> vector, or scalar, "event" t for negative binomial distribution.			
	р	<i>r</i> X <i>c</i> matri argument	x, or <i>r</i> X1 vector, or 1X <i>c</i> vector, or scalar, "probability" t for negative binomial distribution.			
	state	scalar, 3x the funct	scalar, $3x1$ vector, or a $4x1$ state vector from a previous call to the function.			
		Scalar ca	ase:			
		state = st for the ac	arting seed value only. System default values are used ditive and multiplicative constants.			
		The defaults are 1013904223, and 1664525, respectively. These may be changed with rndcon and rndmult . if <i>state</i> = -1, GAUSS computes the starting seed based on the system clock. 3x1 vector case: [1] the starting seed, uses the system clock if -1				
		[2] the multiplicative constant				
		[3]	the additive constant			
Output	x	<i>rxc</i> matri	x, negative binomial distributed random numbers.			
	newstate	4x1 vecto	or:			
		[1]	the updated seed			
		[2]	the multiplicative constant			
		[3]	the additive constant			
		[4]	the original initialization seed			
Remarks	The prop	erties of th	ne pseudo-random numbers in x are:			

$$E(x) = \frac{k^*p}{(1-p)}, Var(x) = \frac{k^*p}{(1-p)^2}$$

rndLCnb

x = 0, 1, ..., k > 0, 0

r and c will be truncated to integers if necessary.

Source randlc.src

Technical Notes

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr., and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147. Each seed is generated from the preceding seed using the formula

```
new_seed = (((a * seed) % 2^{32})+c) % 2^{32}
```

where % is the mod operator and where a is the multiplicative constant and c is the additive constant.
rndLCp

rndLCp

Purpose	Computes Poisson pseudo-random numbers.			
Format	<pre>{ x, newstate } = rndLCp(r,c,lambda,state);</pre>			
Input	r c lambda state	scalar, number of rows of resulting matrix. scalar, number of columns of resulting matrix. $r \times c$ matrix, or $r \times 1$ vector, or $1 \times c$ vector, or scalar, shape argument for Poisson distribution. scalar, 3×1 vector, or a 4×1 state vector from a previous call to the function. Scalar case: <i>state</i> = starting seed value only. System default values are used for the additive and multiplicative constants. The defaults are 1013904223, and 1664525, respectively. These may be changed with rndcon and rndmult. if state = 1. GAUSS computes the starting seed based on the		
		<pre>system c 3x1 vect [1] [2] [3]</pre>	the starting seed, uses the system clock if -1 the multiplicative constant the additive constant	
Output	x newstate	<pre>rxc matr 4x1 vect [1] [2] [3] [4]</pre>	ix, Poisson distributed random numbers. or: the updated seed the multiplicative constant the additive constant the original initialization seed	
Remarks	The prope E(x) = x = 0, r and c we	erties of th <i>lambda</i> , 1,, <i>lan</i> ill be trun	the pseudo-random numbers in <i>x</i> are: Var(x) = lambda nbda > 0. Incated to integers if necessary.	

rndLCp

Source randlc.src

Technical Notes

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr., and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147. Each seed is generated from the preceding seed using the formula

```
new_seed = (((a * seed) % 2^{32})+c) % 2^{32}
```

where % is the mod operator and where a is the multiplicative constant and c is the additive constant.

rndLCu

rndLCu

Purpose	Returns a matrix of uniform (pseudo) random variables and the state of the random number generator.					
Format	{ y, ne	ewstate	}	=	<pre>rndLCu(r,c,state);</pre>	
Input	r	scalar,	rov	v d	imension.	
	с	scalar,	col	um	n dimension.	
	state	scalar, the fur	3x1 actic	l ve on.	ector, or a 4x1 state vector from a previous call to	
		Scalar	cas	se:		
		<i>state</i> = for the	sta ado	rtir Jiti	ng seed value only. System default values are used ve and multiplicative constants.	
		The de These	fau may	lts y b	are 1013904223, and 1664525, respectively. e changed with rndcon and rndmult .	
		if <i>state</i> system	e = 0 c = 0), ()ck	GAUSS computes the starting seed based on the	
		3x1 ve	cto	r c	ase:	
		[1]		th	e starting seed, uses the system clock if 0	
		[2]		th	e multiplicative constant	
		[3]		th	e additive constant	
Output	у	<i>rxc</i> ma	ıtrix	to a	f uniform random numbers, $0 \le y \le 1$.	
	newstate	4x1 ve	cto	r:		
		[1]		the	e updated seed	
		[2]		the	e multiplicative constant	
		[3]		the	e additive constant	
		[4]		the	e original initialization seed	
Remarks	r and c w	ill be tr	unc	ate	d to integers if necessary.	
	Each seed is generated from the preceding seed, using the formula					
	new_seed = ((($a * seed$) % 2^{32})+c) % 2^{32}					
	where % and c is t dividing	where % is the mod operator and where a is the multiplicative constant and c is the additive constant. A number between 0 and 1 is created by dividing new_seed by 2^{32} .				

rndLCu

```
Example state = 13;

n = 200000000;

k = 100000;

c = 0;

submean = {};

do while c < n;

{ y,state } = rndLCu(k,1,state);

submean = submean | meanc(y);

c = c + k;

endo;

mean = meanc(submean);

print 0.5-mean;

See also rndLCn, rndLCi, rndcon, rndmult
```

Technical Notes This function uses a linear congruential method, discussed in Kennedy, W. J. Jr., and J. E. Gentle, Statistical Computing, Marcel Dekker, Inc., 1980, pp. 136-147.

rndLCvm

rndLCvm

Purpose	Compute	s von Mis	es pseudo-random numbers.	
Format	$\{x, newstate\} = rndLCvm(r, c, m, k, state);$			
Input	<i>r</i> scalar, number of rows of resulting matrix.			
	С	scalar, nu	umber of columns of resulting matrix.	
	т	<i>r</i> x <i>c</i> matri vm distri	ix, or $r \times 1$ vector, or $1 \times c$ vector, or scalar, means for bution.	
	k	<i>r</i> X <i>c</i> matri argumen	ix, or <i>r</i> x1 vector, or 1x <i>c</i> vector, or scalar, shape t for vm distribution.	
	state	scalar, 3> the funct	(1 vector, or a $4x1$ state vector from a previous call to ion.	
		Scalar ca	ase:	
		<i>state</i> = st for the ac	arting seed value only. System default values are used ditive and multiplicative constants.	
		The defa These ma	ults are 1013904223, and 1664525, respectively. ay be changed with rndcon and rndmult .	
		 if <i>state</i> = -1, GAUSS computes the starting seed based on the system clock. 3x1 vector case: 		
		[1]	the starting seed, uses the system clock if -1	
		[2]	the multiplicative constant	
		[3]	the additive constant	
Output	x	<i>r</i> X <i>c</i> matr	rix, von Mises distributed random numbers.	
	newstate			
			the updated seed	
		[2]	the multiplicative constant	
		[3]		
		[4]	the original initialization seed	
Remarks	r and c w	vill be trun	cated to integers if necessary.	
Source	randlc	.src		

rndLCvm

Technical Notes

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr., and J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147. Each seed is generated from the preceding seed using the formula

```
new_seed = (((a * seed) % 2^{32})+c) % 2^{32}
```

where % is the mod operator and where a is the multiplicative constant and c is the additive constant.

${\tt rndn}$

rndn

Purpose	Creates a matrix of standard Normal (pseudo) random numbers.			
Format	y = rndn(r,c);			
Input	r scalar, row dimension.c scalar, column dimension.			
Output	<i>y</i> RxC matrix of Normal random numbers having a mean of 0 and standard deviation of 1.			
Remarks	r and c will be truncated to integers if necessary.			
	The Normal random number generator is based upon the uniform random number generator. To reseed them both, use the rndseed statement. The other parameters of the uniform generator can be changed using rndcon , rndmod , and rndmult .			
Example	x = rndn(8100,1);			
	<pre>m = meanc(x);</pre>			
	s = stdc(x);			
	m = 0.002810			
	s = 0.997087			
	In this example, a sample of 8100 Normal random numbers is drawn, and the mean and standard deviation are computed for the sample.			
See also	rndu, rndcon			
Technical Notes	This function uses the fast acceptance-rejection algorithm proposed by Kinderman, A. J., and J. G. Ramage. "Computer Generation of Normal Random Numbers." <i>Journal of the American Statistical Association</i> . Vol. 71 No. 356, Dec. 1976, 893-96.			

rndnb

rndnb

Purpose	Computes pseudo-random numbers with negative binomial distribution.			
Format	x = rndnb(r,c,k,p);			
Input	 r scalar, number of rows of resulting matrix. c scalar, number of columns of resulting matrix. k MxN matrix, ExE conformable with RxC resulting matrix, "event" parameters for negative binomial distribution. p KxL matrix, ExE conformable with RxC resulting matrix, probability parameters for negative binomial distribution. 			
Output	<i>x</i> RxC matrix, negative binomial distributed pseudo-random numbers.			
Remarks	The properties of the pseudo-random numbers in x are: $E(x) = k \times p / (1 - p)$ $Var(x) = k \times p / (1 - p)^{2}$ $x = 0, 1, 2,, k$ $k > 0$ $p > 0$ $p < 1$			
Source	random.src			

\mathtt{rndp}

rndp

Purpose	Computes pseudo-random numbers with Poisson distribution.		
Format	x = rndp(r,c,lambda);		
Input	r c lambda	scalar, number of rows of resulting matrix. scalar, number of columns of resulting matrix. MxN matrix, ExE conformable with RxC resulting matrix, shape parameters for Poisson distribution.	
Output	x	RxC matrix, Poisson distributed pseudo-random numbers.	
Remarks	The properties of the pseudo-random numbers in x are: Ex = lambda Var(x)= lambda x = 0, 1, 2, lambda > 0		
Source	random	.src	

rndu

rndu

Purpose	Creates a matrix of uniform (pseudo) random variables.			
Format	y = rndu(r,c);			
Input	<i>r</i> scalar, row dimension.<i>c</i> scalar, column dimension.			
Output	<i>y</i> RxC matrix of uniform random variables between 0 and 1.			
Remarks	r and c will be truncated to integers if necessary.			
	This generator is automatically seeded using the clock when GAUSS is first started. However, that can be overridden using the rndseed statement or by using rndus .			
	The seed is automatically updated as a random number is generated (see above under rndcon). Thus, if GAUSS is allowed to run for a long time, and if large numbers of random numbers are generated, there is a possibility of recycling. This is a 32-bit generator, though, so the range is sufficient for most applications.			
Example	x = rndu(8100,1);			
	<pre>y = meanc(x);</pre>			
	z = stdc(x);			
	<i>y</i> = 0.500205			
	z = 0.289197			
	In this example, a sample of 8100 uniform random numbers is generated, and the mean and standard deviation are computed for the sample.			
See also	rndn, rndcon, rndmod, rndmult, rndseed			
Technical Notes	This function uses a multiplicative-congruential method. This method is discussed in Kennedy, W.J., Jr., and J.E. Gentle. <i>Statistical Computing</i> . Marcel Dekker, Inc., NY, 1980, 136-147.			

${\tt rndvm}$

rndvm

Purpose	Computes von Mises pseudo-random numbers.			
Format	x = rndvm(r,c,m,k);			
Input	 r scalar, number of rows of resulting matrix. c scalar, number of columns of resulting matrix. m NxK matrix, ExE conformable with rxc, means for von Mises distribution. k LxM matrix, ExE conformable with rxc, shape arrgument for von Mises distribution. 			
Output	<i>x r</i> × <i>c</i> matrix, von Mises distributed random numbers.			
Source	random.src			

rotater

rotater

Purpose	Rotates the rows of a matrix.		
Format	y = rotater(x,r);		
Input	<i>x</i> NxK matrix to be rotated.<i>r</i> Nx1 or 1x1 matrix specifying the amount of rotation.		
Output	y NxK rotated matrix.		
Remarks	The rotation is performed horizontally within each row of the matrix. A positive rotation value will cause the elements to move to the right. A negative rotation value will cause the elements to move to the left. In either case, the elements that are pushed off the end of the row will wrap around to the opposite end of the same row.		
	If the rotation value is greater than or equal to the number of columns in x , then the rotation value will be calculated using $(r \% \text{ cols}(x))$.		
Example	y = rotater(x,r); If $x = \begin{array}{c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}$ and $r = \begin{array}{c} 1 \\ -1 \end{array}$ Then $y = \begin{array}{c} 3 & 1 & 2 \\ 5 & 6 & 4 \end{array}$		
	If $x = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 & 3 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$ Then $y = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 4 & 5 \\ 8 & 9 & 7 \\ 10 & 11 & 12 \end{bmatrix}$		
See also	shiftr		

round

round

Purpose	Rounds to the nearest integer.			
Format	y = round(x);			
Input	<i>x</i> NxK matrix.			
Output	<i>y</i> NXK matrix containing the rounded elements of <i>x</i> .			
Example	<pre>let x = { 77.68 -14.10,</pre>			
	$y = \frac{78 - 14}{5 - 159}$			
See also	trunc, floor, ceil			

rows

rows

Purpose	Returns the number of rows in a matrix.			
Format	y = rows(x);			
Input	<i>x</i> NxK matrix.			
Output	<i>y</i> scalar, number of rows in the specified matrix.			
Remarks	If x is an empty matrix, $rows(x)$ and $cols(x)$ return 0.			
Example	x = ones(3,5);			
	y = rows(x);			
	$x = \begin{array}{cccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$			
	<i>y</i> = 3			

See also cols, show

rowsf

rowsf

Purpose	Returns the number of rows in a GAUSS data set (.dat) file or GAUSS matrix (.fmt) file.		
Format	y = rowsf(f);		
Input	<i>f</i> file handle of an open file.		
Output	y scalar, number of rows in the specified file.		
Example	open fp = myfile;		
	r = rowsf(fp);		
	c = colsf(fp);		
See also	colsf, open, typef		

rref

rref

Purpose	Computes the reduced row echelon form of a matrix.
Format	y = rref(x);
Input	<i>x</i> MxN matrix.
Output	<i>y</i> MXN matrix containing reduced row echelon form of <i>x</i> .
Remarks	The tolerance used for zeroing elements is computed inside the procedure using:
	tol = $maxc(m n)$ * eps * $maxc(abs(sumc(x')));$
	where $eps = 2.24e - 16;$
	This procedure can be used to find the rank of a matrix. It is not as stable numerically as the singular value decomposition (which is used in the rank function), but it is faster for large matrices.
	There is some speed advantage in having the number of rows be greater than the number of columns, so you may want to transpose if all you care about is the rank.
	The following code can be used to compute the rank of a matrix:
	r = sumc(sumc(abs(y')) .> tol);
	where y is the output from rref , and tol is the tolerance used. This finds the number of rows with any nonzero elements, which gives the rank of the matrix, disregarding numeric problems.
Example	let x[3,3] = 1,2,3
	4 5 6
	789;
	y = rref(x);
	$y = \begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{array}$
Source	rref.src

run

run

Purpose	Runs a source code or compiled code program.		
Format	run filen	ame ;	
Input	filename	literal or ^string, name	e of file to run.
Remarks	The filename can be any legal file name. Filename extensions can be whatever you want, except for the compiled file extension, .gcg. Pathnames are okay. If the name is to be taken from a string variable, then the name of the string variable must be preceded by the ^ (caret) operator		
	The run s program. I through th	tatement can be used bo f used in a program, one e run statement there is	th from the command line and within a ce control is given to another program s no return to the original program.
	If you spec a compiled code progr	cify a filename without a l code program (i.e., a . ram by that name. For ex	an extension, GAUSS will first look for gcg file) by that name, then a source kample, if you enter
	run	dog;	
	GAUSS w if it finds i source cod	ill first look for the com t. If GAUSS cannot find le file dog with no exten	piled code file dog.gcg, and run that dog.gcg, it will then look for the sion.
	If a path is attempted	specified for the file, the file is not found.	en no additional searching will be
	If a path is each direc src_pat	not specified the currer tory listed in src_pat . h is defined in gauss.	nt directory will be searched first, then h. The first instance found is run. cfg.
	run /ga	auss/myprog.prc;	No additional search will be made if the file is not found.
	run myı	prog.prc;	The directories listed in src_path will be searched for myprog.prc if the file is not found in the current directory.
	Programs when start	can also be run by typing ing GAUSS.	g the filename on the OS command line

Example Example 1

run myprog.prg;

run

Example 2

name = "myprog.prg";

run ^name;

See also #include

save

save

Purpose	Saves matrices, strings, or procedures to a disk file.		
Format	<pre>save [[vflag]] [[path=path]] x, [[lpath=]]y;</pre>		
Input	vflag	 version flag. v89 supported on DOS, OS/2, Windows v92 supported on UNIX, Windows v96 supported on all platforms 	
		See also "File I/O" in the <i>User's Guide</i> for details on the various versions. The default format can be specified in gauss.cfg by setting the dat_fmt_version configuration variable. If dat_fmt_version is not set, the default is v96 .	
	path	literal or ^string, a default path to use for this and subsequent save s.	
	X	a symbol name, the name of the file the symbol will be saved in is the same as this with the proper extension added for the type of the symbol.	
	lpath	literal or ^string, a local path and filename to be used for a particular symbol. This path will override the path previously set and the filename will override the name of the symbol being saved. The extension cannot be overridden.	
	У	the symbol to be saved to <i>lpath</i> .	
Remarks	save can Procedure before the	the used to save matrices, strings, procedures, and functions. es and functions must be compiled and resident in memory ey can be save 'd.	
	The following extensions will be given to files that are saved:		
	matrix string procedure function	.fmt .fst .fcg .fcg	
	keyword	.109	

if the **path=** subcommand is used with **save**, the path string will be remembered until changed in a subsequent command. This path will be

save

used whenever none is specified. The save path can be overridden in any particular save by specifying an explicit path and filename.

```
Example
              spath = "/gauss";
              save path = ^{spath} x, y, z;
               Save x, y, and z using /gauss as a path. This path will be used for the
               next save if none is specified.
               svp = "/gauss/data";
               save path = ^svp n, k, /gauss/quad1=quad;
              n and k will be saved using /gauss/data as the save path, quad will
               be saved in /gauss with the name guad1.fmt. On platforms that use
               the backslash as the path separator, the double backslash is required inside
               double quotes to get a backslash, because it is the escape character in
               quoted strings. It is not required when specifying literals.
               save path=/procs;
              Changes save path to /procs.
               save path = /miscdata;
               save /data/mydata1 = x, y, hisdata = z;
               In the above program:
                  x would be saved in /data/mydata1.fmt
                  y would be saved in /miscdata/y.fmt
                  z would be saved in /miscdata/hisdata.fmt
```

See also load, saveall, saved

saveall

saveall

Purpose	Saves the current state of the machine to a compiled file. All procedures, global matrices and strings will be saved.		
Format	<pre>saveall fname;</pre>		
Input	<i>fname</i> literal or ^string, the path and filename of the compiled file to be created.		
Remarks	The file extension will be .gcg.		
	A file will be created containing all your matrices, strings, and procedures. No main code segment will be saved. This just means it will be a .gcg file with no main program code (see compile). The rest of the contents of memory will be saved including all global matrices, strings, functions and procedures. Local variables are not saved. This can be used inside a program to take a snapshot of the state of your global variables and procedures. To reload the compiled image use run or use .		
	library pgraph;		
	<pre>external proc xy,logx,logy,loglog,hist;</pre>		
	saveall pgraph;		
	This would create a file called pgraph.gcg containing all the procedures, strings and matrices needed to run Publication Quality Graphics programs. Other programs could be compiled very quickly with		

use pgraph;

the following statement at the top of each:

See also compile, run, use

saved

saved

Purpose	Writes a matrix in memory to a GAUSS data set on disk.			
Format	y = sa	ved(x,dataset,vnames);		
Input	x dataset vnames	NxK matrix to save in .dat file. string, name of data set. string or Kx1 character vector, names for the columns of the data set.		
Output	у	scalar, 1 if successful, 0 if fail.		
Remarks If <i>dataset</i> is null or 0, the data set name will be temp.da		t is null or 0, the data set name will be temp.dat.		
	if <i>vname</i> numbere	if <i>vnames</i> is a null or 0, the variable names will begin with "X" and be numbered 1-K.		
	If <i>vnames</i> is a string or has fewer elements than <i>x</i> has columns, it will be expanded as explained under create .			
	The outp	but data type is double precision.		
Example	x = rn	udn(100,3);		
	datase	t = "mydata";		
	vnames	= { height, weight, age };		
	if not	<pre>saved(x,dataset,vnames);</pre>		
	err	orlog "Write error";		
	end	;		
	endif;			
Source	savelc	pad.src		
See also	loadd,	writer, create		

savewind

savewind

Purpose	Saves the current graphic panel configuration to a file.		
Library	pgraph		
Format	err = sa	<pre>vewind(filename);</pre>	
Input	filename	Name of file.	
Output	err	scalar, 0 if successful, 1 if graphic panel matrix is invalid. Note that the file is written in either case.	
Remarks	See the discussion on using graphic panels in "Publication Quality Graphics" in the <i>User's Guide</i> .		
Source	pwindow.src		
See also	loadwind		

scale

scale

Purpose

	increments are computed as a best guess based on the data passed to it.
Library	pgraph
Format	<pre>scale(x,y);</pre>
Input	 <i>x</i> matrix, the X axis data. <i>y</i> matrix, the Y axis data.
Remarks	x and y must each have at least 2 elements. Only the minimum and maximum values are necessary.
	This routine fixes the scaling for all subsequent graphs until graphset is called. This also clears xtics and ytics whenever it is called.
	If either of the arguments is a scalar missing, the main graphics function will set the scaling for that axis using the actual data.
	If an argument has 2 elements, the first will be used for the minimum and the last will be used for the maximum.
	If an argument has 2 elements, and contains a missing value, that end of the axis will be scaled from the data by the main graphics function.
	If you want direct control over the axes endpoints and tick marks, use xtics or ytics . If xtics or ytics have been called after scale , they will override scale .
Source	pscale.src
See also	xtics, ytics, ztics, scale3d

Fixes the scaling for subsequent graphs. The axes endpoints and

scale3d

scale3d

Purpose	Fixes the scaling for subsequent graphs. The axes endpoints and increments are computed as a best guess based on the data passed to it.		
Library	pgraph		
Format	scale3d(x,y,z);		
Input	 <i>x</i> matrix, the X axis data. <i>y</i> matrix, the Y axis data. <i>z</i> matrix, the Z axis data. 		
Remarks	<i>x</i> , <i>y</i> and <i>z</i> must each have at least 2 elements. Only the minimum and maximum values are necessary.		
	This routine fixes the scaling for all subsequent graphs until graphset is called. This also clears xtics , ytics and ztics whenever it is called.		
	If any of the arguments is a scalar missing, the main graphics function will set the scaling for that axis using the actual data.		
	If an argument has 2 elements, the first will be used for the minimum and the last will be used for the maximum.		
	If an argument has 2 elements, and contains a missing value, that end of the axis will be scaled from the data by the main graphics function.		
	If you want direct control over the axes endpoints and tick marks, use xtics , ytics , or ztics . If one of these functions have been called, they will override scale3d .		
Source	pscale.src		
See also	scale, xtics, ytics, ztics		

scalerr

scalerr

T

c

Purpose	lests for a sca	lar error code.	
Format	y = scaler	r(c);	
Input	c NXK i procee	natrix, general lure call.	lly the return argument of a function or
Output	y scalar, scalar scaler	which is return error code. If r returns the va	rned as a 0 if its argument is not a the argument is an error code, then alue of the error code as an integer.
Remarks	Error codes in GAUSS are NaN's (Not A Number). These are not just scalar integer values. They are special floating point encodings that the math chip recognizes as not representing a valid number. See also error		
	scalerr can predefined in (error.	be used to tes GAUSS or an	st for either those error codes which are error code which the user has defined using
	If c is an empt	y matrix, sca	lerr will return 65535.
	Certain function with an error r is used to set t appear to most function can d return the value	ons will either nessage, depen he trap state. T t commands as istinguish betw e of the error	return an error code or terminate a program nding on the trap state. The trap command The error code that will be returned will s a missing value code, but the scalerr ween missing values and error codes and will code.
	Following are	some of the fu	unctions affected by the trap state:
	function	trap 1 error code	trap 0 error message
	chol	10	Matrix not positive definite
	invpd	20	Matrix not positive definite
	solpd	30	Matrix not positive definite
	/	40	Matrix not positive definite (second argument not square)
		41	Matrix singular

(second argument is square)

Matrix singular

scalerr

Example trap 1; cm = invpd(x); trap 0; if scalerr(cm); cm = inv(x); endif;

In this example **invpd** will return a scalar error code if the matrix **x** is not positive definite. If **scalerr** returns with a nonzero value, the program will use the **inv** function, which is slower, to compute the inverse. Since the trap state has been turned off, if **inv** fails the program will terminate with a **Matrix singular** error message.

See also error, trap, trapchk

scalinfnanmiss

scalinfnanmiss

Purpose	Returns true if the argument is a scalar infinity, NaN, or missing value.		
Format	<pre>y = scalinfnanmiss(x);</pre>		
Input	x	NxK matrix.	
Output	у	scalar, 1 if x is a scalar, infinity, NaN, or missing value, else 0.	
See Also	isin	Enanmiss, ismiss, scalmiss	

scalmiss

scalmiss

Purpose	Tests to see if its argument is a scalar missing value.		
Format	y = scalmiss(x);		
Input	<i>x</i> NxK matrix.		
Output	<i>y</i> scalar, 1 if argument is a scalar missing value, 0 if not.		
Remarks	scalmiss first tests to see if the argument is a scalar. If it is not scalar, scalmiss returns a 0 without testing any of the elements.		
	The ismiss function will test each element of the matrix and return 1 if it encounters any missing values. scalmiss will execute much faster if the argument is a large matrix since it will not test each element of the matrix but will simply return a 0.		
	An element of x is considered to be a missing if and only if it contains a missing value in the real part. Thus, scalmiss and ismiss would return a 1 for complex $x = . + 1i$, a 0 for $x = 1 + .i$.		
Example	clear s;		
	<pre>do until eof(fp);</pre>		
	<pre>y = readr(fp,nr);</pre>		
	y = packr(y);		
	if scalmiss(y);		
	continue;		
	endif;		
	s = s+sumc(y);		
	endo;		

In this example the **packr** function will return a scalar missing if every row of its argument contains missing values, otherwise it will return a matrix that contains no missing values. **scalmiss** is used here to test for a scalar missing returned from **packr**. If that is true, then the sum step will be skipped for that iteration of the read loop because there were no rows left after the rows containing missings were packed out.

schtoc

schtoc

Purpose	To reduce any 2x2 blocks on the diagional of the real Schur matrix returned from schur . The transformation matrix is also updated.		
Format	<pre>{ schc, transc } = schtoc(sch, trans);</pre>		
Input	sch real NxN matrix in Real Schur form, i.e., upper triangular except for possibly 2x2 blocks on the diagonal.trans real NxN matrix, the associated transformation matrix.		
Output	 schc NxN matrix, possibly complex, strictly upper triangular. The diagonal entries are the eigenvalues. transc NxN matrix, possibly complex, the associated transformation matrix. 		
Remarks	Other than checking that the inputs are strictly real matrices, no other checks are made. If the input matrix <i>sch</i> is already upper triangular it is not changed. Small off-diagional elements are considered to be zero. See the source code for the test used.		
Example	<pre>{ schc, transc } = schtoc(schur(a)); This example calculates the complex Schur form for a real matrix a.</pre>		
Source	schtoc.src		
See also	schur		

schur

schur

Purpose	Computes the Schur form of a square matrix.			
Format	$\{s,z\}$ = schur(x)			
Input	<i>x</i> KxK matrix.			
Output	 <i>s</i> KxK matrix, Schur form. <i>z</i> KxK matrix, transformation matrix. 			
Remarks	schur computes the real Schur form of a square matrix. The real Schur form is an upper quasi-triangular matrix, that is, it is block triangular where the blocks are $2x^2$ submatrices which correspond to complex eigenvalues of <i>x</i> . If <i>x</i> has no complex eigenvalues, <i>s</i> will be strictly upper triangular. To convert <i>s</i> to the complex Schur form, use the Run-Time Library function schtoc .			
	x is first reduced to upper Hessenberg form using orthogonal similarity transformations, then reduced to Schur form through a sequence of QR decompositions.			
	schur uses the ORTRAN, ORTHES and HQR2 functions from EISPACK.			
	z is an orthogonal matrix that transforms x into s and vice versa. Thus			
	s = z'xz			
	and since z is orthogonal,			
	x = zsz'			
Example	let $x[3,3] = 1$ 2 3 4 5 6 7 8 9:			
	$\{ s, z \} = schur(x);$			
	$s = \begin{bmatrix} 16.11684397 & 4.89897949 & 0.0000000 \\ -0.0000000 & -1.11684397 & -0.0000000 \\ 0.0000000 & 0.0000000 & 0.0000000 \end{bmatrix}$			

schur

	0.23197069	0.88290596	0.40824829
z =	0.52532209	0.23952042	-0.81649658
	0.81867350	-0.40386512	0.40824829

See also hess

screen

screen

Purpose	Controls output to the screen.		
Format	screen on;		
	screen off;		
	screen;		
Remarks	When this is on , the results of all print statements will be directed to the window. When this is off , print statements will not be sent to the window. This is independent of the statement output on , which will cause the results of all print statements to be routed to the current auxiliary output file.		
	If you are sending a lot of output to the auxiliary output file on a disk drive, turning the window off will speed things up.		
	The end statement will automatically do output off and screen on.		

screen with no arguments will print "Screen is on" or "Screen is off" on the console.

screen

Example	output file = mydata.asc reset;
	screen off;
	format /ml/rz 1,8;
	open fp = mydata;
	<pre>do until eof(fp);</pre>
	<pre>print readr(fp,200);;</pre>
	endo;
	<pre>fp = close(fp);</pre>
	end;
	The program above will write the contents of the GAUSS file mydata.dat into an ASCII file called mydata.asc. If mydata.asc already exists, it will be overwritten. Turning the window off will speed up execution. The end statement
	above will automatically perform output off and screen on.

See also output, end, new

s	

scroll

scroll

Purpose	Scrolls a section of the window.		
Format	scroll v;		
Input	v 6x1 vector		
Portability	Windows		
Remarks	This command is intended to be used in the DOS compatibility window to support legacy programs.The elements of v are defined as:[1] coordinate of upper left row.		
	[2]	coordinate of upper left column.	
	[3] coordinate of lower right row.		
	[4]	coordinate of lower right column.	
	[5]	number of lines to scroll.	
	[6]	value of attribute.	
	This assum command.	the origin at (1,1) in the upper left just like the locate The window will be scrolled the number of lines up or down	

command. The window will be scrolled the number of lines up or down (positive or negative 5^{th} element) and the value of the 6^{th} element will be used as the attribute as follows:

- 7 regular text
- **112** reverse video
 - 0 graphics black

If the number of lines (element 5) is 0, the entire window will be blanked.

scroll

Example let v = 1 1 12 80 5 7;

scroll v;

This call would scroll a graphic panel 80 columns wide covering the upper twelve rows of the window. The graphic panel would be scrolled up 5 lines and the new lines would be displayed in regular text mode.

See also locate, printdos
seekr

seekr

Purpose	Moves the pointer in a .dat or .fmt file to a particular row.				
Format	$y = \operatorname{seekr}(fh, r);$				
Input	<i>fh</i> scalar, file handle of an open file.<i>r</i> scalar, the row number to which the pointer is to be moved.				
Output	<i>y</i> scalar, the row number to which the pointer has been moved.				
Remarks	If $r = -1$, the current row number will be returned.				
	If $r = 0$, the pointer will be moved to the end of the file, just past the end of the last row.				
	rowsf returns the number of rows in a file.				
	<pre>seekr(fh,0) == rowsf(fh) + 1;</pre>				
	Do NOT try to seek beyond the end of a file.				
See also	onon roadr rough				

open, readr, rowsf See also

select (dataloop)

select (dataloop)

Purpose Selects specific rows (observations) in a data loop based on a logical expression.

Format select logical_expression;

Remarks Selects only those rows for which *logical_expression* is *TRUE*. Any variables referenced must already exist, either as elements of the source data set, as **externs**, or as the result of a previous **make**, **vector**, or **code** statement.

Example select age > 40 AND sex \$== `MALE';

See also delete

selif

selif

Purpose	Selects rows from a matrix. Those selected are the rows for which there is a 1 in the corresponding row of e .				
Format	y = selif(x,e);				
Input	 <i>x</i> NxK matrix. <i>e</i> Nx1 vector of 1's and 0's. 				
Output	y MxK matrix consisting of the rows of x for which there is a 1 in the corresponding row of e .				
Remarks	The argument <i>e</i> will usually be generated by a logical expression using "dot" operators.				
	y will be a scalar missing if no rows are selected.				
Example	y = selif(x,x[.,2] .gt 100);				
	selects all rows of x in which the second column is greater than 100.				
	let x[3,3] = 0 10 20				
	30 40 50 60 70 80:				
	a = (x[-1], at 0) and $(x[-2], 1t 100)$.				
	$e = (x_{[.,1]}, g_{U}, 0)$ and $(x_{[.,3]}, f_{U}, 0)$,				
	y = Sell(x, e),				
	The resulting matrix y is:				
	30 40 50				
	60 70 80				
	All rows for which the element in column 1 is greater than 0 and the element in column 3 is less than 100 are placed into the matrix y .				
Source	datatran.src				
See also	delif, scalmiss				

S

seqa, seqm

seqa, seqm

- **Purpose** seque creates an additive sequence. seqm creates a multiplicative sequence.
 - Format y = seqa(start,inc,n); y = seqm(start,inc,n);
 - **Input** *start* scalar specifying the first element.
 - *inc* scalar specifying increment.
 - *n* scalar specifying the number of elements in the sequence.
 - **Output** *y* Nx1 vector containing the specified sequence.

Remarks For seqa, y will contain a first element equal to *start*, the second equal to *start+inc*, and the last equal to *start+inc*(n-1)*.

For instance,

```
seqa(1,1,10)
```

will create a column vector containing the numbers 1, 2, ... 10.

For **seqm**, *y* will contain a first element equal to *start*, the second equal to *start*inc*, and the last equal to *start*inc*^(*n*-1).

For instance,

seqm(10,10,10)

will create a column vector containing the numbers 10, 100, \dots 10¹⁰.

Example a = seqa(2,2,10)';

m = seqm(2, 2, 10)';

a = 2 4 6 8 10 12 14 16 18 20

 $m = 2 \ 4 \ 8 \ 16 \ 32 \ 64 \ 128 \ 256 \ 512 \ 1024$

Note that the results have been transposed in this example. Both functions return Nx1 (column) vectors.

See also recserar, recsercp

setdif

setdif

Purpose	Returns the unique elements in one vector that are not present in a second vector.			
Format	y = setdif(v1, v2, flag);			
Input	v1Nx1 vector.v2Mx1 vector.flagscalar,if 0, case-sensitive character comparison.if 1, numeric comparison.if 2, case-insensitive character comparison.			
Output	y Lx1 sorted vector containing all unique values that are in $v1$ and are not in $v2$, or a scalar missing.			
Example	<pre>let v1 = mary jane linda john; let v2 = mary sally; flag = 0; y = setdif(v1,v2,flag); JANE y = JOHN LINDA</pre>			
Source	setdif.src			

setvars

setvars

Purpose	Reads the variable names from a data set header and creates global matrices with the same names.			
Format	nvec = s	<pre>nvec = setvars(dataset);</pre>		
Input	dataset	string, the name of the GAUSS data set. Do not use a file extension.		
Output	nvec	Nx1 character vector, containing the variable names defined in the data set.		
Remarks	setvars is designed to be used interactively.			
Example	<pre>nvec = setvars("freq");</pre>			
Source	vars.sr	vars.src		
See also	makevar	S		

setvwrmode

setvwrmode

Purpose	Sets the graphics viewer mode.			
Library	pgraph			
Format	<pre>oldmode = setvwrmode(mode);</pre>			
Input	modestring, new mode or null string."one"Use only one viewer."many"Use a new viewer for each graph.			
Output	oldmode string, previous mode.			
Remarks	If mode is a null string, the current mode will be returned with no changes made.			
	If "one" is set, the viewer executable will be vwr.exe.			
Example	<pre>oldmode = setvwrmode("one"); call setvwrmode(oldmode);</pre>			
Source	pgraph.src			
See also	pqgwin			

setwind

setwind

- **Purpose** Sets the current graphic panel to a previously created graphic panel number.
 - Library pgraph
 - Format setwind(n);
 - **Input** *n* scalar, graphic panel number.
- **Remarks** This function selects the specified graphic panel to be the current graphic panel. This is the graphic panel in which the next graph will be drawn.

See the discussion on using graphic panels in "Publication Quality Graphics in the *User's Guide*.

Source pwindow.src

See also begwind, endwind, getwind, nextwind, makewind, window

shell

shell

Purpose	ecutes an operating system command.					
Format	nell [[s]];					
Input	<i>s</i> literal or ^string, the command to be executed.					
Remarks	shell lets you run shell commands and programs from inside GAUSS. If a command is specified, it is executed; when it finishes, you automatically return to GAUSS. If no command is specified, the shell is executed and control passes to it, so you can issue commands interactively. You have to type exit to get back to GAUSS in that case.					
	If you specify a command in a string variable, precede it with the (caret) $^{\$.					
Example	<pre>comstr = "ls ./src"; shell ^comstr;</pre>					
	This lists the contents of the ./src subdirectory, then returns to GAUSS.					
	shell cmp n1.fmt n1.fmt.old;					
	This compares the matrix file n1.fmt to an older version of itself, n1.fmt.old, to see if it has changed. When cmp finishes, control is returned to GAUSS.					
	shell;					
	This executes an interactive shell. The OS prompt will appear and OS commands or other programs can be executed. To return to GAUSS, type exit .					
See also	exec					

shiftr

shiftr

Purpose	Shifts the rows of a matrix.				
Format	y = shiftr(x, s, f);				
Input	 x NxK matrix to be shifted. s scalar or Nx1 vector specifying the amount of shift. f scalar or Nx1 vector specifying the value to fill in. 				
Output	y NxK shifted matrix.				
Remarks	The shift is performed within each row of the matrix, horizontally. If the shift value is positive, the elements in the row will be moved to the right. A negative shift value causes the elements to be moved to the left. The elements that are pushed off the end of the row are lost, and the fill value will be used for the new elements on the other end.				
Example	y = shiftr(x,s,f); If $x = \begin{array}{c} 1 & 2 \\ 3 & 4 \end{array}$ and $s = \begin{array}{c} 1 \\ -1 \end{array}$ and $f = \begin{array}{c} 99 \\ 999 \end{array}$ Then $y = \begin{array}{c} 99 & 1 \\ 4 & 999 \end{array}$ If $x = \begin{array}{c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}$ and $s = \begin{array}{c} 0 \\ 1 \end{array}$ and $f = 0$ $7 & 8 & 9 \end{array}$				
	Then $y = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 7 \end{bmatrix}$				

See also rotater

s

show, lshow

show, lshow

Purpose	Displays printer.	the glo	obal symbo	ol table. Tl	he outp	ut fro	m lshow i	s sent to the
Format	<pre>show [[-flags]] [[symbol]]; lshow [[-flags]] [[symbol]];</pre>							
Input	flags symbol	flags k P f m s g 1 n the na asteri chara	to specify keyword procedur fn funct matrices strings show onl show onl no pause ame of the sk (*), all cters will b	the symbols s es ions ly symbols ly symbols symbol to symbols b be shown.	s with § s with a s with a be showeginnin	hat is global lll loc wn. If ng wit	references al references the last cha th the suppl	es tracter is an ied
Remarks	If there a show is Here is a 32 byte 32 byte 1144 byte 144 byte 352 byte 8 byte 32000 byte 4336375 by 53 global	re no a directe n exam sed A es at [es at [es at [es at [es at [es at [es at] es at [rguments, ed to the au address (00081b74] (00081a14] (0007f1b4] (0007f874] (0007f6ec] (0007f6ec] (0007f6ec] (0007f6ec, 432 ram space, (rkspace, 432 s, 1500 maxi	the entire xiliary ou with an e Name AREA dotfeq indices2 X _IXCAT _olsrnam 0% used 25655 bytes imum, 6 sho	symbo tput if i xplanat 1=1 1=2 4=3 3,3 44,1 7 char s free wn	l table t is op ion o Cplx C	e will be dis	splayed. ns: References local refs global refs local refs

show, 1show

The "Memory used" column is the amount of memory used by the item.

The "Address" column is the address where the item is stored (hexadecimal format). This will change as matrices and strings change in size.

The "Name" column is the name of the symbol.

The "Info" column depends on the type of the symbol. If the symbol is a procedure or a function, it gives the number of values that the function or procedure returns and the number of arguments that need to be passed to it when it is called. If the symbol is a matrix, then the Info column gives the number of rows and columns. If the symbol is a string, then the Info column gives the number of characters in the string. As follows:

Rets=Argsif procedure or functionRow,Colif matrixLengthif string

The "Cplx" column contains a "C" if the symbol is a complex matrix.

The "Type" column specifies the symbol table type of the symbol. It can be **function**, **keyword**, **matrix**, **procedure**, or **string**.

If the symbol is a procedure, keyword or function, the "References" column will show if it makes any global references. If it makes only local references, the procedure or function can be saved to disk in an .fcg file with the **save** command. If the function or procedure makes any global references, it cannot be saved in an .fcg file.

The program space is the area of space reserved for all nonprocedure, nonfunction program code. It can be changed in size with the **new** command. The workspace is the memory used to store matrices, strings, procedures, and functions.

Example show /fpg eig*;

This command will show all functions and procedures that have global references and begin with **eig**.

show /mn;

This command will show all matrices without pausing when the window is full.

See also new, delete

sin

sin

Purpose	Returns the sine of its argument.			
Format	y = sin(x);			
Input	<i>x</i> NXK matrix.			
Output	<i>y</i> NXK matrix containing sine of <i>x</i> .			
Remarks	For real matrices, x should contain angles measured in radians.			
	To convert degrees to radians, multiply the degrees by $\frac{\pi}{180}$.			
Example	<pre>let x = { 0, .5, 1, 1.5 }; y = sin(x);</pre>			
	$y = \begin{array}{l} 0.00000000\\ 0.47942554\\ 0.84147098\\ 0.99749499 \end{array}$			

See also atan, cos, sinh, pi

S

sinh

sinh

Purpose	Computes the hyperbolic sine.
Format	$y = \sinh(x);$
Input	<i>x</i> NxK matrix.
Output	<i>y</i> NxK matrix containing the hyperbolic sines of the elements of <i>x</i> .
Example	<pre>let x = { -0.5, -0.25, 0, 0.25, 0.5, 1 }; x = x * pi;</pre>
	$y = \sinh(x);$
	$x = \begin{bmatrix} -1.570796 \\ -0.785398 \\ 0.000000 \\ 0.785398 \\ 1.570796 \\ 3.141593 \end{bmatrix}$
	$y = \begin{bmatrix} -2.301299 \\ -0.868671 \\ 0.000000 \\ 0.868671 \\ 2.301299 \\ 11.548739 \end{bmatrix}$
Source	trig.src

sleep

sleep

Purpose	Sleeps for a specified number of seconds.		
Format	unslept = sleep(secs);		
Input	secs scalar, number of seconds to sleep.		
Output	unslept scalar, number of seconds not slept.		
Remarks	<i>secs</i> does not have to be an integer. If your system does not permit sleeping for a fractional number of seconds, <i>secs</i> will be rounded to the nearest integer, with a minimum value of 1.		
	If a program sleeps for the full number of secs specified, sleep returns 0; otherwise, if the program is awakened early (e.g., by a signal), sleep returns the amount of time not slept. The DOS version always sleeps the full number of seconds, so it always returns 0.		
	A program may sleep for longer than <i>secs</i> seconds, due to system scheduling.		

solpd

solpd

Purpose	Solves a set of positive definite linear equations.				
Format	x = solpd(b,A);				
Input	<i>b</i> NxK matrix.<i>A</i> NxN symmetric positive definite matrix.				
Output	x NxK matrix, the solutions for the system of equations, $Ax=b$.				
Remarks	<i>b</i> can have more than one column. If so, the system of equations is solved for each column, i.e., $A^*x[.,i] = b[.,i]$.				
	This function uses the Cholesky decomposition to solve the system directly. Therefore it is more efficient than using $inv(A) * b$.				
	solpd does not check to see that the matrix <i>A</i> is symmetric. solpd will look only at the upper half of the matrix including the principal diagonal.				
	If the A matrix is not positive definite:				
	trap 1 return scalar error code 30.trap 0 terminate with an error message.				
	One obvious use for this function is to solve for least squares coefficients. The effect of this function is thus similar to that of the / operator.				
	If <i>X</i> is a matrix of independent variables, and <i>Y</i> is a vector containing the dependent variable, then the following code will compute the least squares coefficients of the regression of <i>Y</i> on <i>X</i> :				
	b = solpd(X'Y,X'X);				

solpd

Example	n = 5; format 20,8;				
	A = rndn(n,n);				
	A = A'A;				
	x = rndn(n, 1);				
	$b = A^*x;$				
x2 = solpd(b,A);					
	print "X	solpd(b,A)	Difference";		
print x~x2~x-x2;					
	Produces:				
	Х	<pre>solpd(b,A)</pre>	Difference		
	-0.36334089	-0.36334089	0.0000000		
	0.19683330	0.19683330	8.32667268E-017		
	0.99361330	0.99361330	2.22044605E-016		
	-1.84167681	-1.84167681	0.0000000		
	-0.88455829	-0.88455829	1.11022302E-016		

JEC also Scateri, chor, invpu, cra	See also	scalerr,	chol,	invpd,	trap
------------------------------------	----------	----------	-------	--------	------

s

sortc, sortcc

sortc, sortcc

Purpose	Sorts a matrix of numeric or character data.		
Format	<pre>y = sortc(x,c); y = sortcc(x,c);</pre>		
Input	<i>x</i> NxK matrix.<i>c</i> scalar specifying one column of <i>x</i> to sort on.		
Output	<i>y</i> NxK matrix equal to <i>x</i> and sorted on the column <i>c</i> .		
Remarks	These functions will sort the rows of a matrix with respect to a specified column. That is, they will sort the elements of a column and will arrange all rows of the matrix in the same order as the sorted column.		
	sortc assumes the column to sort on is numeric. sortcc assumes that the column to sort on contains character data.		
	The matrix may contain both character and numeric data, but the sort column must be all of one type. Missing values will sort as if their value is below $-\infty$.		
	The sort will be in ascending order. This function uses the Quicksort algorithm.		
	If you need to obtain the matrix sorted in descending order, you can use:		
	rev(sortc(x,c))		
Example	let x[3,3]= 4 7 3		
	1 3 2		
	3 4 8;		
	y = sortc(x, 1);		
	$ \begin{array}{rcl} x &=& 4 & 7 & 3 \\ & 1 & 3 & 2 \\ & 3 & 4 & 8 \end{array} $		

sortc, sortcc

	$y = \begin{array}{c} 1 & 3 & 2 \\ 3 & 4 & 8 \end{array}$	
	473	a
See also	rev	b
		С
		d
		е
		f
		g
		h
		i
		j
		k
		1
		m
		n
		Ο
		р
		q
		r
		S
		t
		u
		V
		W
		X Y Z

sortd

sortd

Purpose	Sorts a data file on disk with respect to a specified variable.	
Format	<pre>sortd(infile,outfile,keyvar,keytyp);</pre>	
Input	infilestring, name of input file.outfilestring, name of output file, must be different.keyvarstring, name of key variable.keytypscalar, type of key variable.1numeric key, ascending order.2character key, ascending order1numeric key, descending order2character key, descending order.	
Remarks	The data set <i>infile</i> will be sorted on the variable <i>keyvar</i> , and will be placed in <i>outfile</i> . If the inputs are null or 0, the procedure will ask for them.	
Source	sortd are	

sorthc, sorthcc

sorthc, sorthcc

Purpose	Sorts a matrix of numeric or character data.		
Format	<pre>y = sorthc(x,c); y = sorthcc(x,c);</pre>		
Input	<i>x</i> NxK matrix.<i>c</i> scalar specifying one column of <i>x</i> to sort on.		
Output	<i>y</i> NxK matrix equal to <i>x</i> and sorted on the column <i>c</i> .		
Remarks	These functions will sort the rows of a matrix with respect to a specified column. That is, they will sort the elements of a column and will arrange all rows of the matrix in the same order as the sorted column.		
	sorthc assumes that the column to sort on is numeric. sorthcc assumes that the column to sort on contains character data.		
	The matrix may contain both character and numeric data, but the sort column must be all of one type. Missing values will sort as if their value is below $-\infty$.		
	The sort is in ascending order. This function uses the heap sort algorithm.		
	If you need to obtain the matrix sorted in descending order, you can use:		
	rev(sorthc(x,c))		
Example	let $x[3,3] = 4$ 7 3		
	1 3 2		
	3 4 8;		
	<pre>y = sorthc(x,1);</pre>		
	$x = \begin{array}{c} 4 & 7 & 3 \\ 1 & 3 & 2 \\ 3 & 4 & 8 \end{array}$		

S

sorthc, sorthcc

		1 3 2
у	=	3 4 8
		473

See also	sortc,	rev
----------	--------	-----

sortind, sortindc

Purpose	Returns the sorted index of <i>x</i> .		
Format	<pre>ind = sortind(x); ind = sortindc(x);</pre>		
Input	<i>x</i> Nx1 column vector.		
Output	<i>ind</i> Nx1 vector representing sorted index of <i>x</i> .		
Remarks	sortind assumes <i>x</i> contains numeric data. sortindc assumes <i>x</i> contains character data.		
	This function can be used to sort several matrices in the same way that some other reference matrix is sorted. To do this, create the index of the reference matrix, then use submat to rearrange the other matrices in the same way.		
Example	let $x = 5 4 4 3 3 2 1;$		
	y = x[ind];		

sortmc

sortmc

Purpose	Sorts a matrix on multiple columns.	
Format	y = sortmc(x, v);	
Input	 <i>x</i> NxK matrix to be sorted. <i>v</i> Lx1 vector containing integers specifying the columns, in order, that are to be sorted. If an element is negative, that column will be interpreted as character data. 	
Output	y NXK sorted matrix.	
Remarks	The function works recursively and the number of sort columns is limited by the available workspace.	

Source sortmc.src

sparseCols

sparseCols

Purpose	Returns the number of columns in a sparse matrix.	
Format	<pre>c = sparseCols(x);</pre>	
Input	x	MxN sparse matrix.
Output	с	scalar, number of columns.
Source	sparse.src	

n o p q r s t u v w y z

sparseEye

sparseEye

Purpose	Returns a sparse identity matrix.	
Format	<pre>y = sparseEye(n);</pre>	
Input	<i>n</i> scalar, order of identity matrix.	
Output	y NxN sparse identity matrix.	
Example	<pre>y = sparseEye(3);</pre>	
	<pre>d = denseSubmat(y,0,0);</pre>	
	$d = \begin{array}{c} 1.0000000 & 0.0000000 & 0.0000000 \\ 0.0000000 & 1.0000000 & 0.0000000 \\ 0.0000000 & 0.0000000 & 1.0000000 \end{array}$	

sparseFD

sparseFD

Purpose	Converts dense matrix gto sparse matrix.	
Format	y = sparseFD(x, eps);	
Input	x eps	MXN dense matrix. scalar, elements of x less than <i>eps</i> will be treated as zero.
Output	у	MxN sparse matrix.
Remarks	A dense matrix is just a normal format matrix.	
Source	sparse.src	

sparseFP

sparseFP

- **Purpose** Converts packed matrix to sparse matrix.
 - **Format** y = sparseFP(x,r,c);
 - **Input** *x* Mx3 packed matrix, see remarks for format.
 - *r* scalar, rows of output matrix.
 - *c* scalar, columns of output matrix.
 - **Output** *y* RxC sparse matrix.
- **Remarks** *x* contains the nonzero elements of the sparse matrix. The first column of *x* contains the element value, the second column the row number, and the third column the column number.

Source sparse.src

sparseHConcat

sparseHConcat

Purpose	Horizontally concatenates two sparse matrices.	
Format	<pre>z = sparseHConcat(y,x);</pre>	
Input	<i>y</i> MxN sparse matrix, left hand matrix.<i>x</i> MxL sparse matrix, right hand matrix.	
Output	z Mx(N+L) sparse matrix.	
Source	sparse.src	

sparseNZE

sparseNZE

Purpose	Returns the number of nonzero elements in a sparse matrix.	
Format	r = sparseNZE(x);	
Input	<i>x</i> MxN sparse matrix.	
Output	<i>r</i> scalar, number of nonzero elements in <i>x</i> .	
Source	sparse.src	

sparseOnes

sparseOnes

Purpose	Generates sparse matrix of ones and zeros	
Format	y = sparseOnes(x,r,c);	
Input	 <i>x</i> Mx2 matrix, first column contains row numbers of the ones, and the second column contains column numbers. <i>r</i> scalar, rows of full matrix. <i>c</i> scalar, columns of full matrix. 	
Output	y sparse matrix of ones.	
Source	sparse.src	

sparseRows

sparseRows

Purpose	Returns the number of rows in a sparse matrix.	
Format	r = sparseRows(x);	
Input	x MxN sparse matrix.	
Output	<i>r</i> scalar, number of rows.	
Source	sparse.src	

sparseSet

sparseSet

Purpose	Resets sparse library global matrices to default values.
Format	<pre>sparseSet;</pre>
Globals	_sparse_ARnorm, _sparse_Acond, _sparse_Anorm,
	_sparse_Atol, _sparse_Btol, _sparse_CondLimit,
	<pre>_sparse_Damping, _sparse_NumIters,</pre>
	_sparse_RetCode, _sparse_Rnorm, _sparse_Xnorm

Source sparse.src

sparseSolve

sparseSolve

Purpose	Solves $Ax = B$ for x when A	A is a sparse matrix.
Format	x = sparseSolve(A, B)	3);
Input	<i>A</i> MxN sparse matrix<i>B</i> Nx1 vector.	Χ.
Global Input	_sparse_Damping	scalar, if nonzero, damping coefficient for damped least squares solve, i.e.,
		$\begin{bmatrix} A \\ dI \end{bmatrix} = \begin{bmatrix} B \\ 0 \end{bmatrix}$
		is solved for <i>X</i> where d =_ sparse_Damping , <i>I</i> is a conformable identity matrix, and 0 a conformable matrix of zeros.
	_sparse_Atol	scalar, an estimate of the relative error in <i>A</i> . If zero, _sparse_Atol is assumed to be machine precision. Default = 0.
	_sparse_Btol	an estimate of the relative error in <i>B</i> . If zero, sparseBtol is assumed to be machine precision. Default = 0.
	_sparse_CondLimit	upper limit on condition of A. Iterations will be terminated if a computed estimate of the condition of A exceeds sparse_CondLimit . If zero, set to 1 / machine precision.
	_sparse_NumIters	maximum number of iterations.
Output	<i>x</i> Nx1 vector, solution	on of $Ax = B$.

sparseSolve

Global	sparse PetCode	scalar termination condition
Output	_sparse_ketcode	
		0 x is the exact solution, no iterations performed.
		1 solution is nearly exact with accuracy on the order of _sparse_Atol and_sparse_Btol.
		2 solution is not exact and a least squares solution has been found with accuracy on the order of _sparse_Atol .
		3 the estimate of the condition of A has exceeded _sparse_CondLimit . The system appears to be ill- conditioned.
		4 solution is nearly exact with reasonable accuracy.
		5 solution is not exact and a least squares solution has been found with reasonable accuracy.
		6 iterations halted due to poor condition given machine precision.
		7 sparse NumIters exceeded.
	_sparse_Anorm	scalar, estimate of Frobenius norm of
		$\begin{bmatrix} A \\ dI \end{bmatrix}$
	_sparse_Acond	estimate of condition of A.
		estimate of norm of
		$\begin{bmatrix} A \\ dI \end{bmatrix} x - \begin{bmatrix} B \\ 0 \end{bmatrix}$
	_sparse_ARnorm	estimate of norm of
		$\begin{bmatrix} A \\ dI \end{bmatrix}' \begin{bmatrix} A \\ dI \end{bmatrix}$
	_sparse_XAnorm	estimate of norm of <i>x</i> .
Source	sparse.src	

s

sparseSubmat

sparseSubmat

Purpose	Returns (sparse) submatrix of sparse matrix.	
Format	<pre>e = sparseSubmat(x,r,c);</pre>	
Input	<i>x</i> MxN sparse matrix.	
	<i>r</i> Kx1 vector, row indices.	
	<i>c</i> Lx1 vector, column indices.	
Output	<i>e</i> KxL sparse matrix.	
Remarks	If r or c are scalar zeros, all rows or columns will be returned.	
Source	sparse.src	
sparseTD

sparseTD

Purpose	Multiplies sparse matrix by dense matrix.		
Format	z = sparseTD(s,d);		
Input	<i>s</i> MxN sparse matrix.<i>d</i> NxL dense matrix.		
Output	Z.	MxL dense matrix, the result of $s \times d$.	
Source	sparse.src		

v w

S

sparseTrTD

sparseTrTD

Purpose	Multiplies sparse matrix transposed by dense matrix.	
Format	z = sparseTrTD(s,d);	
Input	s d	NxM sparse matrix. NxL dense matrix.
Output	Ζ.	MxL dense matrix, the result of s'd.
Source	sparse.s	rc

sparseVConcat

sparseVConcat

Purpose	Vertically concatenates two sparse matrices.		
Format	<pre>z = sparseVConcat(y,x);</pre>		
Input	<i>y</i> MxN sparse matrix, top matrix.<i>x</i> LxN sparse matrix, bottom matrix.		
Output	z (M+L)XN sparse matrix.		
Source	sparse.src		

spline

spline

Purpose	Computes a two-dimensional interpolatory spline.		
Format	$\{ u, v, w \} = spline(x, y, z, sigma, g);$		
Input	 x 1xK vector, x-abscissae (x-axis values). y Nx1 vector, y-abscissae (y-axis values). z KxN matrix, ordinates (z-axis values). sigma scalar, tension factor. g scalar, grid size factor. 		
Output Remarks	 <i>u</i> 1xK*G vector, x-abscissae, regularly spaced. <i>v</i> N*Gx1 vector, y-abscissae, regularly spaced. <i>w</i> K*G x N*G matrix, interpolated ordinates. <i>sigma</i> contains the tension factor. This value indicates the curviness desired. If <i>sigma</i> is nearly zero (e.g., .001), the resulting surface is approximately the tensor product of cubic splines. If <i>sigma</i> is large (e.g., 50.0), the resulting surface is approximately bi-linear. If <i>sigma</i> equals zero, tensor products of cubic splines result. A standard value for <i>sigma</i> is approximately 1. 		
	g is the grid size factor. It determines the fineness of the output grid. For $g = 1$, the output matrices are identical to the input matrices. For $g = 2$, the output grid is twice as fine as the input grid, i.e., u will have twice as many columns as x, v will have twice as many rows as y, and w will have twice as many rows and columns as z.		
Source	spline.src		

spline1D

spline1D

Purpose	Computes a smoothing spline for a curve.		
Format	{ <i>u</i> , <i>v</i>	= spline1D(x , y, d, s, sigma, g);	
Input	x y d s sigma	Kx1 vector, x-abscissae (x-axis values). Kx1 vector, y-ordinates (y-axis values). Kx1 vector or scalar, observation weights. scalar, smoothing parameter, if $s = 0$, curve performs an interpolation. If <i>d</i> contains standard deviation estimates, a reasonable value for <i>s</i> is K. scalar, tension factor.	
Output	G u	scalar, grid size factor. K*Gx1vector, x-abscissae, regularly spaced.	
Remarks	v N*GX1 vector, interpolated ordinates, regularly spaced. <i>sigma</i> contains the tension factor. This value indicates the curviness desired. If <i>sigma</i> is nearly zero (e.g. 0.001), the resulting curve is approximately the tensor product of cubic splines. If <i>sigma</i> is large (e.g. 50), the resulting curve is approximately bi-linear. If <i>sigma</i> equals zero, tensor products of cubic splines result. A standard value for <i>sigma</i> is approximately 1.		
	G is the $G = 1$, the outpoint many control of G	grid size factor. It determines the fineness of the output grid. For he output matrices are identical to the input matrices. For $G = 2$, but grid is twice as fine as the input grid, i.e., <i>u</i> will have twice as plumns as <i>x</i> , and <i>v</i> will have twice as many rows as <i>y</i> .	

spline2D

spline2D

Purpose	Computes a smoothing spline for a surface.		
Format	<pre>{ u,v,w } = spline2D(x,y,z,sigma,g);</pre>		
Input	 x Kx1 vector, x-abscissae (x-axis values). y Nx1 vector, y-abscissae (y-axis values). z KxN matrix, ordinates (z-axis values). sigma scalar, tension factor. G scalar, grid size factor. 		
Output	 <i>u</i> 1xK*G vector, x-abscissae, regularly spaced. <i>v</i> N*Gx1 vector, y-abscissae, regularly spaced. <i>w</i> K*GxN*G matrix, interpolated ordinates. 		
Remarks	<i>sigma</i> contains the tension factor. This value indicates the curviness desired. If <i>sigma</i> is nearly zero (e.g. 0.001), the resulting surface is approximately the tensor product of cubic splines. If <i>sigma</i> is large (e.g 50.), the resulting surface is approximately bi-linear. If <i>sigma</i> equals zero tensor products of cubic splines result. A standard value for <i>sigma</i> is approximately 1.		
	<i>G</i> is the grid size factor. It determines the fineness of the output grid. For $G = 1$, the output matrices are identical to the input matrices. For $G = 2$ the output grid is twice as fine as the input grid, i.e., <i>u</i> will have twice as many columns as <i>x</i> , and <i>v</i> will have twice as many rows as <i>y</i> .		

sqpSolve

sqpSolve

Purpose	Solves the programm	e nonlinear programming problem using a sequential quadratic ning method.
Format	{ <i>x,f,lag</i>	r,retcode } = sqpSolve(&fct,start);
Input	&fct start	pointer to a procedure that computes the function to be minimized. This procedure must have one input argument, a vector of parameter values, and one output argument, the value of the function evaluated at the input vector of parameter values. Kx1 vector of start values.
Global Input	_sqp_A _sqp_B	MxK matrix, linear equality constraint coefficients. Mx1 vector, linear equality constraint constants.
		These globals are used to specify linear equality constraints of the following type:

 $_sqp_A * X = _sqp_B$

where X is the Kx1 unknown parameter vector.

sqpSolve		
	_sqp_EqProc	scalar, pointer to a procedure that computes the nonlinear equality constraints. For example, the statement:
		_sqp_EqProc = eqproc;
		tells sqpSolve that nonlinear equality constraints are to be placed on the parameters and where the procedure computing them is to be found. The procedure must have one input argument, the Kx1 vector of parameters, and one output argument, the Rx1 vector of computed constraints that are to be equal to zero. For example, suppose that you wish to place the following constraint:
		P[1] * P[2] = P[3]
		The procedure for this is:
		<pre>proc eqproc(p);</pre>
		retp(p[1]*[2]-p[3]);
		endp;
	_sqp_C	MxK matrix, linear inequality constraint coefficients.
	_sqp_D	Mx1 vector, linear inequality constraint constants.
		These globals are used to specify linear inequality constraints of the following type:
		_sqp_C * X ≥ _sqp_D
		where X is the $Kx1$ unknown parameter

sqpSolve

__sqp_IneqProc scalar, pointer to a procedure that computes the nonlinear inequality constraints. For

example the statement:

_sqp_EqProc = &ineqproc;

tells **sqpSolve** that nonlinear equality constraints are to be placed on the parameters and where the procedure computing them is to be found. The procedure must have one input argument, the Kx1 vector of parameters, and one output argument, the Rx1 vector of computed constraints that are to be equal to zero. For example, suppose that you wish to place the following constraint:

 $P[1] * P[2] \ge P[3]$

The procedure for this is:

proc ineqproc(p);
 retp(p[1]*[2]-p[3]);

endp;

_sqp_Bounds

Kx2 matrix, bounds on parameters. The first column contains the lower bounds, and the second column the upper bounds. If the bounds for all the coefficients are the same, a 1x2 matrix may be used. Default is:

[1] -1e256

[2] 1e256

sqpSolve	
_sqp_GradProc	scalar, pointer to a procedure that computes the gradient of the function with respect to the parameters. For example, the statement:
	_sqp_GradProc = &gradproc
	tells sqpSolve that a gradient procedure exists and where to find it. The user-provided procedure has two input arguments, a K×1 vector of parameter values and an N×P matrix of data. The procedure returns a single output argument, an N×K matrix of gradients of the log-likelihood function with respect to the parameters evaluated at the vector of parameter values.
	Default = 0, i.e., no gradient procedure has been provided.
_sqp_HessProc	scalar, pointer to a procedure that computes the Hessian, i.e., the matrix of second order partial derivatives of the function with respect to the parameters. For example, the instruction:
	_sqp_HessProc = &hessproc
	will tell sqpSolve that a procedure has been provided for the computation of the Hessian and where to find it. The procedure that is provided by the user must have two input arguments, a Px1 vector of parameter values and an NxK data matrix. The procedure returns a single output argument, the PxP symmetric matrix of second order derivatives of the function evaluated at the parameter values.
_sqp_MaxIters	scalar, maximum number of iterations. Default = $1e+5$. Termination can be forced by pressing C on the keyboard.
_sqp_DirTol	scalar, convergence tolerance for gradient of estimated coefficients. Default = 1e-5. When this criterion has been satisifed sqpSolve will exit the iterations.
_sqp_ParNames	Kx1 character vector, parameter names.

s

sqpSolve

	_sqp_Pr	intIters	scalar, if nonzero, prints iteration information. Default = 0. Can be toggled during iterations
			by pressing P on the keyboard.
	_sqp_Fe	asibleTest	scalar, if nonzero, parameters are tested for feasibility before computing function in line search. If function is defined outside inequality boundaries, then this test can be turned off.
	_sqp_Ra	IndRadius	scalar, If zero, no random search is attempted. If nonzero it is the radius of random search which is invoked whenever the usual line search fails. Default $= .01$.
	outpu	ıt	scalar, if nonzero, results are printed. Default $= 0$.
Output	x	Kx1 vector of	f parameters at minimum.
-	f	scalar, functio	on evaluated at <i>x</i> .
	lagr	vector, create constraints. T command usi	d using vput . Contains the Lagrangean for the 'hey may be extracted with the vread ng the following strings:
		"lineq"	Lagrangeans of linear equality constraints
		"nlineq"	Lagrangeans of nonlinear equality constraints
		"linineq"	Lagrangeans of linear inequality constraints
		"nlinineq"	Lagrangeans of nonlinear inequality constraints
		"bounds"	Lagrangeans of bounds
		Whenever a c will be nonze	constraint is active, its associated Lagrangean ro.
	retcode	return code:	
		0	normal convergence
		1	forced exit
		2	maximum number of iterations exceeded
		3	function calculation failed
		4	gradient calculation failed
		5	Hessian calculation failed
		6	line search failed
		7	error with constraints

sqpSolve

```
Remarks
             Pressing C on the keyboard will terminate iterations, and pressing P will
             toggle iteration output.
             sqpSolve is recursive, that is, it can call itself with another function and
             set of global variables.
             To reset global variables for this function to their default values, call
             sqpSolveSet.
Example
             sqpSolveSet;
             proc fct(x);
                 retp( (x[1] + 3*x[2] + x[3])^2 + 4*(x[1] -
                 x[2])^2);
             endp;
             proc ineqp(x);
                 retp(6*x[2] + 4*x[3] - x[1]^3 - 3);
             endp;
             proc eqp(x);
                 retp(1-sumc(x));
             endp;
             _sqp_Bounds = { 0 1e256 };
             start = \{ .1, .7, .2 \};
             _sqp_IneqProc = &ineqp;
             _sqp_EqProc = &eqp;
             { x,f,lagr,ret } = sqpSolve( &fct,start );
  Source
             sqpsolve.src
```

sqrt

sqrt

Purpose	Computes the square root of every element in a matrix.			
Format	y = sqrt(x);			
Input	<i>x</i> NxK matrix.			
Output	<i>y</i> NxK matrix, the square roots of each element of <i>x</i> .			
Remarks	If <i>x</i> is negative, complex results are returned.			
	You can turn the generation of complex numbers for negative inputs on or off in the GAUSS configuration file, and with the systate function, case 8. If you turn it off, sqrt will generate an error for negative inputs.			
	If x is already complex, the complex number state doesn't matter; sqrt will compute a complex result.			
Example	let x[2,2] = 1 2 3 4;			
	y = sqrt(x);			
	$ x = \begin{array}{c} 1.0000000 \ 2.0000000 \\ 3.0000000 \ 4.0000000 \end{array} $			
	$y = \frac{1.00000000 \ 1.41421356}{1.73205081 \ 2.00000000}$			

stdc

stdc

- **Purpose** Computes the standard deviation of the elements in each column of a matrix.
 - **Format** y = stdc(x);
 - **Input** *x* NxK matrix.
 - **Output** *y* Kx1 vector, the standard deviation of each column of *x*.
- **Remarks** This function essentially computes:

 $sqrt(1/(N-1)*sumc((x-meanc(x)')^2))$

Thus, the divisor is N-1 rather than N, where N is the number of elements being summed. To convert to the alternate definition, multiply by

sqrt((N-1)/N)

Example y = rndn(8100,1);

std = stdc(y);

std = 1.008377

In this example, 8100 standard Normal random variables are generated, and their standard deviation is computed.

See also meanc

stocv

stocv

Purpose	Converts a string to a character vector.		
Format	$v = \operatorname{stocv}(s);$		
Input	<i>s</i> string, to be converted to character vector.		
Output	v Nx1 character vector, contains the contents of <i>s</i> .		
Remarks	stocv breaks <i>s</i> up into a vector of 8-character length matrix elements. Note that the character information in the vector is not guaranteed to be null-terminated.		
Example	<pre>s = "Now is the time for all good men"; v = stocv(s);</pre>		
	"Now is t" = "he time" "for all " "good men"		
See also	cvtos, vget, vlist, vput, vread		

stof

stof

Purpose	Converts a string to floating point.				
Format	y = stof(x);				
Input	<i>x</i> string, or NXK matrix containing character elements to be converted.				
Output	<i>y</i> matrix, the floating point equivalents of the ASCII numbers in <i>x</i> .				
Remarks	If x is a string containing "1 2 3", then stof will return a 3×1 matrix containing the numbers 1, 2, and 3.				
	If x is a null string, stof will return a 0.				
	This uses the same input conversion routine as loadm and let . It will convert character elements and missing values. stof also converts complex numbers in the same manner as let .				
See also	ftos, ftocv, chrs				

stop

stop

Purpose	Stops a program and returns to the command prompt. Does not close files.				
Format	stop;				
Remarks	This command has the same effect as end , except it does not close files or the auxiliary output.				
	It is not necessary to put a stop or an end statement at the end of a program. If neither is found, an implicit stop is executed.				
See also	end, new, system				

strindx

strindx

Purpose	Finds the index of one string within another string.				
Format	y = strindx(where,what,start);				
Input	 where string or scalar, the data to be searched. what string or scalar, the substring to be searched for in where. scalar, the starting point of the search in where for an occurrence of what. The index of the first character in a string is 1. 				
Output	<i>y</i> scalar containing the index of the first occurrence of <i>what</i> , within <i>where</i> , which is greater than or equal to <i>start</i> . If no occurrence is found, it will be 0.				
Remarks	An example of the use of this function is the location of a name within a string of names:				
	z = "Whatchmacallit";				
	x = "call";				
	y = strindx(z,x,1);				
	y = 9 This function is used with strsect for extracting substrings.				
See also	strrindx, strlen, strsect, strput				

strlen

strlen

Purpose	Returns the length of a string.				
Format	y = strlen(x);				
Input	<i>x</i> string or N x K matrix of character data.				
Output	y scalar containing the exact length of the string x or NxK matrix of the lengths of the elements in the matrix x .				
Remarks	e null character (ASCII 0) is a legal character within strings and so bedded nulls will be counted in the length of strings. The final minating null byte is not counted, though.				
	For character matrices, the length is computed by counting the characters (maximum of 8) up to the first null in each element of the matrix. The null character, therefore, is not a valid character in matrices containing character data and is not counted in the lengths of the elements of those matrices.				
Example	<pre>x = "How long?";</pre>				
	<pre>y = strlen(x);</pre>				
	y = 9				
See also	strsect, strindx, strrindx				

strput

strput

Purpose	Lays a substring over a string.			
Format	y = strput(substr,str;off);			
Input	 substr string, the substring to be laid over the other string. str string, the string to receive the substring. off scalar, the offset in str to place substr. The offset of the first byte is 1. 			
Output	y string, the new string.			
Example	<pre>str = "max"; sub = "imum"; f = 4; y = strput(sub,str,f); print y; Produces:</pre>			
Source	maximum strput.src			

strrindx

strrindx

Purpose	Finds the index of one string within another string. Searches from the end of the string to the beginning.				
Format	y = strrindx(where,what,start);				
Input	 where string or scalar, the data to be searched. what string or scalar, the substring to be searched for in where. start scalar, the starting point of the search in where for an occurrence of what. where will be searched from this point backward for what. 				
Output	y scalar containing the index of the last occurrence of <i>what</i> , within <i>where</i> , which is less than or equal to <i>start</i> . If no occurrence is found, it will be 0.				
Remarks	A negative value for <i>start</i> causes the search to begin at the end of the string. An example of the use of strrindx is extracting a file name from a complete path specification:				
	<pre>path = "/gauss/src/ols.src";</pre>				
	ps = "/";				
	<pre>pos = strrindx(path,ps,-1);</pre>				
	if pos;				
	<pre>name = strsect(path,pos+1,strlen(path));</pre>				
	else;				
	name = "";				
	endif;				
	pos = 11				
	name = "ols.src"				
	strrindx can be used with strsect for extracting substrings.				
See also	strindx, strlen, strsect, strput				
	,,, _,, _				

strsect

strsect

Extracts a substring of a string.					
y = strsect(str,start,len);					
 str string or scalar from which the segment is to be obtained. scalar, the index of the substring in <i>str</i>. The index of the first character is 1 					
len	scalar, the length of the substring.				
у	string, the extracted substring, or a null string if <i>start</i> is greater than the length of <i>str</i> .				
If there are not enough characters in a string for the defined substring to be extracted, then a short string or a null string will be returned. If <i>str</i> is a matrix containing character data, it must be scalar.					
<pre>strng = "This is an example string." y = strsect(strng,12,7); y = example</pre>					
	Extract y = s str start len y If there be extr If str is strngy y = s y = s				

See also strlen, strindx, strrindx

strsplit

strsplit

- **Purpose** Splits an Nx1 string vector into an NxK string array of the individual tokens.
 - Format sa = strsplit(sv);
 - **Input** *sv* Nx1 string array.
 - **Output** *sa* NxK string array.
- **Remarks** Each row of *sv* must contain the same number of tokens. The following characters are considered delimiters between tokens:

space	ASCII 32
tab	ASCII 9
comma	ASCII 44
newline	ASCII 10
carriage return	ASCII 13

Tokens containing delimiters must be enclosed in single or double quotes or parentheses. Tokens enclosed in single or double quotes will NOT retain the quotes upon translation. Tokens enclosed in parentheses WILL retain the parentheses after translation. Parentheses cannot be nested.

```
Example let string sv = {
   "dog 'cat fish' moose",
   "lion, zebra, elk",
   "seal owl whale"
   };
   sa = strsplit(sv);
```

strsplit

	'dog'	'cat fish'	'moose'
sa =	'lion'	'zebra'	'elk'
	'seal'	'owl'	'whale'

See also strsplitPad

strsplitPad

strsplitPad

Purpose	Splits a string vector into a string array of the individual tokens. Pads on the right with null strings.				
Format	<pre>sa = strsplitPad(sv, cols);</pre>				
Input	svNx1 string array.colsscalar, number of columns of output string array.				
Output	sa Nxcols string array.				
Remarks	Rows containing more than <i>cols</i> tokens are truncated and rows containing fewer than <i>cols</i> tokens are padded on the right with null strings. The following characters are considered delimiters between tokens:				

ASCII 32
ASCII 9
ASCII 44
ASCII 10
ASCII 13

Tokens containing delimiters must be enclosed in single or double quotes or parentheses. Tokens enclosed in single or double quotes will NOT retain the quotes upon translation. Tokens enclosed in parentheses WILL retain the parentheses after translation. Parentheses cannot be nested.

```
Example let string sv = {
```

```
"dog 'cat fish' moose",
"lion, zebra, elk, bird",
"seal owl whale"
};
sa = strsplitPad(sv, 4);
```

strsplitPad

	'dog'	'cat fish'	'moose'	, ,
sa =	'lion'	'zebra'	'elk'	'bird'
	'seal'	'owl'	'whale'	, ,

See also strsplit

strtodt

strtodt

Purpose	Converts a string array of dates to a matrix in DT scalar format.	
Format	x = s	<pre>trtodt(sa, fmt);</pre>
Input	sa fmt	NXK string array containing dates. string containing date/time format characters.
Output	x	NxK matrix of dates in DT scalar format.
Remarks	The D7 time. In 200104	T scalar format is a double precision representation of the date and in the DT scalar format, the number \$21183207
	represents 18:32:07 or 6:32:07 PM on April 21, 2001.	
	The following formats are supported:	
	YYYY	4 digit year
	YR	Last two digits of year
	MO	Number of month, 01-12
	DD	Day of month, 01-31
	HH	Hour of day, 00-23
	MI	Minute of hour, 00-59
	SS	Second of minute, 00-59
Example	x = s	strtodt("2001-03-25 14:58:49",
		"YYYY-MO-DD HH:MI:SS");
	print	x i
	produces:	
	20010	325145849.0

strtodt x = strtodt("2001-03-25 14:58:49", "YYYY-MO-DD"); print x; produces: 20010325000000.0 x = strtodt("14:58:49", "HH:MI:SS"); print x; produces: 145849.0 x = strtodt("04-15-00", "MO-DD-YR"); print x; produces: 20000415000000.0 dttostr, dttoutc, utctodt See also

strtof

strtof

Purpose	Converts a string array to a numeric matrix.
Format	x = strtof(sa);
Input	<i>sa</i> NxK string array containing numeric data.
Output	<i>x</i> NxK matrix.
Remarks	This function supports real matrices only. Use strtofcplx for complex data.
See also	strtofcplx, ftostrC

strtofcplx

strtofcplx

Purpose	Converts a string array to a complex numeric matrix.	
Format	x = strtofcplx(sa);	
Input	<i>sa</i> NxK string array containing numeric data.	
Output	<i>x</i> NxK complex matrix.	
Remarks	strtofcplx supports both real and complex data. It is slower than strtof for real matrices. strtofcplx requires the presence of the real part. The imaginary part can be absent.	

See also strtof, ftostrC

submat

submat

Purpose	Extracts a submatrix of a matrix, with the appropriate rows and columns given by the elements of vectors.	
Format	y = submat (x, r, c);	
Input	 <i>x</i> NxK matrix. <i>r</i> LxM matrix of row indices. <i>c</i> PxQ matrix of column indices. 	
Output	y $(L^*M)x(P^*Q)$ submatrix of x, y may be larger than x.	
Remarks	If $r = 0$, then all rows of x will be used. If $c = 0$, then all columns of x will be used.	
Example	let $x[3,4] = 1 2 3 4 5 6 7 8 9 10 11 12;$ let $v1 = 1 3;$ let $v2 = 2 4;$ y = submat(x,v1,v2); z = submat(x,0,v2); $x = \begin{cases} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{cases}$ $y = \begin{cases} 2 & 4 \\ 10 & 12 \end{cases}$ $z = \begin{cases} 2 & 4 \\ 6 & 8 \\ 10 & 12 \end{cases}$	
See also	diag, vec, reshape	

s

subscat

subscat

- **Purpose** Changes the values in a vector depending on the category a particular element falls in.
 - **Format** y = subscat(x,v,s);

Input x Nx1 vector.

Px1 numeric vector, containing breakpoints specifying the ranges within which substitution is to be made. This MUST be sorted in ascending order.

v can contain a missing value as a separate category if the missing value is the first element in v.

If v is a scalar, all matches must be exact for a substitution to be made.

- *s* Px1 vector, containing values to be substituted.
- **Output** y Nx1 vector, with the elements in *s* substituted for the original elements of *x* according to which of the regions the elements of *x* fall into:

. . .

 $v[p-1] < \begin{array}{c} x \le v[p] \rightarrow \\ x > v[p] \rightarrow \end{array}$ the original value of x

If missing is not a category specified in v, missings in x are passed through without change.

subscat

Example	let $x = 1 2 3 4 5 6 7 8 9 10;$	
	let v = 4 5 8;	
	let s = 10 5 0;	
	y = subscat(x, v, s);	
	10	
	10	
	10	
	10	
	v = 5	
	y = 0	
	0	
	0	
	0	
	10	
	10	

s

substute

substute

Substitutes new values for old values in a matrix, depending on the outcome of a logical expression.
y = substute(x,e,v);
 <i>x</i> NxK matrix containing the data to be changed. <i>e</i> LxM matrix, ExE conformable with <i>x</i> containing 1's and 0's.
 Elements of <i>x</i> will be changed if the corresponding element of <i>e</i> is 1. <i>v</i> PxQ matrix, ExE conformable with <i>x</i> and <i>e</i>, containing the values to be substituted for the original values of <i>x</i> when the corresponding element of <i>e</i> is 1.
y $\max(N,L,P)$ by $\max(K,M,Q)$ matrix.
The <i>e</i> matrix is usually the result of an expression or set of expressions using dot conditional and boolean operators.
<pre>x = { Y 55 30, N 57 18, Y 24 3, N 63 38, Y 55 32, N 37 11 }; e = x[.,1] .\$== "Y" .and x[.,2] .≥ 55 .and x[.,3] .≥ 30; x[.,1] = substute(x[.,1],e,0\$+"R");</pre>

substute

	1	
	0	а
	e = 0	b
	1	C
	0	d
	Here is what <i>x</i> looks like after substitution:	u
	R 55 30	f
	N 57 18	1
	y = Y 24 3	g
	N 63 38	h
	R 55 32	i
	N 37 11	j
Source	datatran.src	k
See also	code, recode	1
		m
		n
		0
		n
		P
		q
		r
		S

-

sumc

sumc

Purpose	Computes the sum of each column of a matrix.	
Format	y = sumc(x);	
Input	x NxK matrix.	
Output	y Kx1 vector, the sums of each column of x .	
Remarks	To find the sums of the elements in each row of a matrix, transpose before applying sumc . If x is complex, use the bookkeeping transpose (.'). To find the sums of all of the elements in a matrix, use the vecr function before applying sumc .	
Example	x = round(rndu(5,3)*5); y = sumc(x); 2 4 3 2 1 2 x = 5 1 3	
	$5 \ 1 \ 1 \\ 3 \ 3 \ 4$ $y = \begin{cases} 17 \\ 10 \\ 13 \end{cases}$	
See also	cumsumc, meanc, stdc	
surface

surface

Purpose	Graphs a 3-D surface.		
Library	pgraph		
Format	surface(x	c,y,z);	
Input	 x 1xK vector, the X axis data. y Nx1 vector, the Y axis data. z NxK matrix, the matrix of height data to be plotted. 		r, the X axis data. r, the Y axis data. x, the matrix of height data to be plotted.
Global Input	_psurf _pticout	2x1 x [1] [2] scala	vector, controls 3-D surface characteristics. if 1, show hidden lines. Default 0. color for base (default 7). The base is an outline of the X-Y plane with a line connecting each corner to the surface. If 0, no base is drawn. r, if 0 (default), tick marks point inward, if 1, tick
	pzclr Z level color graph.		s point outward. el color control.
			e are 3 ways to set colors for the Z levels of a surface n.
		1.	To specify a single color for the entire surface plot, set the color control variable to a scalar value $1-15$. Example:
		2.	_pzclr = 15; To specify multiple colors distributed evenly over the entire Z range, set the color control variable to a vector containing the desired colors only. GAUSS will automatically calculate the required corresponding Z values for you. The following example will produce a three color surface plot, the Z ranges being lowest=blue, middle=light blue, highest=white:
			_pzclr = { 1, 10, 15 };

S

surface

3. To specify multiple colors distributed over selected ranges, the Z ranges as well as the colors must be manually input by the user. The following example assumes -0.2 to be the minimum value in the z matrix:

Since a Z level is required for each selected color, the user must be responsible to compute the minimum value of the *z* matrix as the first Z range element. This may be most easily accomplished by setting the **_pzclr** matrix as shown above (the first element being an arbitrary value), then reset the first element to the minimum *z* value as follows:

_pzcl:	r = { -	0.0	1,
	1	0.0	10,
		0.2	15 };
_pzcli	r [1,1]	=	<pre>minc(minc(z));</pre>
0	Black	8	Dark Grey
0	DIACK	0	Dark Oley
1	Blue	9	Light Blue
2	Green	10	Light Green
3	Cyan	11	Light Cyan
4	Red	12	Light Red
5	Magenta	13	Light Magenta
6	Brown	14	Yellow
7	Grey	15	White

Source psurface.src

See also volume, view

svd

Purpose	Computes the singular values of a matrix.		
Format	s = svd(x);		
Input	<i>x</i> NXP matrix whose singular values are to be computed.		
Output	<i>s</i> Mx1 vector, where $M = min(N,P)$, containing the singular values of <i>x</i> arranged in descending order.		
Global Output	_svderr global scalar, if not all of the singular values can be computed _svderr will be nonzero. The singular values in <i>s</i> [_svderr +1], <i>s</i> [<i>M</i>] will be correct.		
Remarks	Error handling is controlled with the low bit of the trap flag.		
	trap 0set _svderr and terminate with messagetrap 1set _svderr and continue execution		
Example	x = { 4 3 6 7, 8 2 9 5 }, y = $svd(x);$		
	$y = \frac{16.521787}{3.3212254}$		
Source	svd.src		
See also	svd1, svd2, svds		

svd1

Purpose	Computes the singular value decomposition of a matrix so that: x = u * s * v'.		
Format	$\{ u, s, v \} = svdl(x);$		
Input	x	NxP matrix whose singular values are to be computed.	
Output	U S V	NxN matrix, the left singular vectors of x . NxP diagonal matrix, containing the singular values of x arranged in descending order on the principal diagonal. PxP matrix, the right singular vectors of x .	
Global Output	_svderr	global scalar, if all of the singular values are correct, _ svderr is 0. If not all of the singular values can be computed, _ svderr is set and the diagonal elements of <i>s</i> with indices greater than _ svderr are correct.	
Remarks	Error handling	g is controlled with the low bit of the trap flag.	
	trap 0 trap 1	set _svderr and terminate with message set _svderr and continue execution	
Example	<pre>x = rndu(3,3); { u, s, v } = svdl(x);</pre>		
	$x = \begin{array}{c} 0.9784 \\ 0.8547 \\ 0.3334 \end{array}$	70120.205386140.5990649742080.796735400.2248209506530.744437920.75698778	
	$u = \begin{array}{c} -0.579 \\ -0.610 \\ -0.540 \end{array}$	955818 0.65204491 1.48882486 905618 0.05056673 -0.79074298 931821 -0.75649219 0.36847767	

	<i>s</i> =	1.84994646 0.00000000	0.00000000 0.60370542	0.00000000 0.00000000
		0.00000000	0.00000000	0.47539239
	<i>v</i> =	-0.54451302 -0.48291165	-0.64427479 -0.28270348	-0.53704336 0.82877927
Source	svd.	src		

See also svd, svd2, svdusv

p q r s t u v v y z

svd2

Computes the singular value decomposition of a matrix so that: x = u * s * v' (compact <i>u</i>).		
omputed.		
of x . If $N > P$, singular		
ingular ne principal		
correct, s can be elements of <i>s</i> ct.		
g.		

svdcusv

svdcusv

Purpose	Computes the singular value decomposition of a matrix so that: x = u * s * v' (compact <i>u</i>).		
Format	$\{u,s,v\}$ = svdcusv(x);		
Input	<i>x</i> NxP matrix whose singular values are to be computed.		
Output	<i>u</i> NxN or NxP matrix, the left singular vectors of <i>x</i> . If $N > P$, <i>u</i> is NxP containing only the P left singular vectors of <i>x</i> .		
	<i>s</i> NxP or PxP diagonal matrix, the singular values of x arranged in descending order on the principal diagonal. If N > P, <i>s</i> is PxP.		
	v PXP matrix, the right singular vectors of x .		
Remarks	If not all the singular values can be computed, $s[1,1]$ is set to a scalar error code. Use scalerr to convert this to an integer. The diagonal elements of <i>s</i> with indices greater than scalerr ($s[1,1]$) are correct. I scalerr ($s[1,1]$) returns a 0, all the singular values have been computed.		
0			

See also svd2, svds, svdusv

svds

svds

Purpose	Computes the singular values of a matrix.		
Format	s = svds(x);		
Input	<i>x</i> NxP matrix whose singular values are to be computed.		
Output	s $\min(N,P)x1$ vector, the singular values of x arranged in descending order.		
Remarks	If not all the singular values can be computed, $s[1]$ is set to a scalar error code. Use scalerr to convert this to an integer. The elements of <i>s</i> with indices greater than scalerr ($s[1]$) are correct. If scalerr ($s[1]$) returns a 0, all the singular values have been computed.		
See also	svd, svdcusv, svdusv		

svdusv

svdusv

Purpose	Computes the singular value decomposition of a matrix so that: x = u * s * v'.
Format	$\{ u, s, v \} = svdusv(x);$
Input	<i>x</i> NxP matrix whose singular values are to be computed.
Output	<i>u</i> NxN matrix, the left singular vectors of <i>x</i> .
	<i>s</i> NxP diagonal matrix, the singular values of <i>x</i> arranged in descending order on the principal diagonal.
	v PxP matrix, the right singular vectors of x .
Remarks	If not all the singular values can be computed, $s[1,1]$ is set to a scalar error code. Use scalerr to convert this to an integer. The diagonal elements of <i>s</i> with indices greater than scalerr ($s[1,1]$) are correct. If scalerr ($s[1,1]$) returns a 0, all the singular values have been computed.
See also	svd1, svdcusv, svds

Purpose	Gets or sets general system parameters.		
Format	{ rets }	= sysstate(case,y);	
Input	Case 1	Version Information	
		Returns the current GAUSS version information in an 8-element numeric vector.	
	Cases 2 through 7	GAUSS System Paths	
		Get or set GAUSS system path.	
	Case 8	Complex Number Toggle	
		Controls automatic generation of complex numbers in sqrt , ln , and log for negative arguments.	
	Case 9	Complex Trailing Character	
		Get and set trailing character for the imaginary part of a complex number.	
	Case 10	Printer Width	
		Get and set lprint width.	
	Case 11	Auxiliary Output Width	
		Get and set the auxiliary output width.	
	Case 12	Precision	
		Get and set precision for positive definite matrix routines.	
	Case 13	LU Tolerance	
		Get and set singularity tolerance for LU decomposition.	
	Case 14	Cholesky Tolerance	
		Get and set singularity tolerance for Cholesky decomposition.	
	Case 15	Screen State	
		Get and set window state as controlled by screen command.	
	Case 16	Automatic print Mode	
		Get and set automatic print mode.	

syssi	tate
-------	------

	Case 17	Automatic lprint Mode
		Get and set automatic lprint mode.
	Case 18	Auxiliary Output
		Get auxiliary output parameters.
	Case 19	Get/Set Format
		Get and set format parameters.
	Case 21	Imaginary Tolerance
		Get and set the imaginary tolerance.
	Case 22	Source Path
		Get and set the path the compiler will search for source files.
	Case 24	Dynamic Library Directory
		Get and set the path for the default dynamic library directory.
	Case 25	Temporary File Path
	Case 26	Interface Mode
		Returns the current interface mode.
	Case 28	Random Number Generator Parameters
	Case 30	Base Year Toggle
		Specifies whether year value returned by date is to include base year (1900) or not.
Case 1:	Version I	nformation
	Returns th vector.	e current GAUSS version information in an 8-element numeric
Format	vi = sys	sstate(1,0);
Output	vi 8×	1 numeric vector containing version information:
	[1] Major version number.
	[2] Minor version number.
	[3] Revision.
	[4] Machine type.
	[5] Operating system.
	[6] Runtime module.
	[7] Light version.
	[8	J Always 0.

 \mathbf{S}

vi[4] indicates the type of machine on which GAUSS is running:

- 1 Intel x86
- 2 Sun SPARC
- 3 IBM RS/6000
- 4 HP 9000
- 5 SGI MIPS
- 6 DEC Alpha

vi[5] indicates the operating system on which GAUSS is running:

- 1 DOS
- 2 SunOS 4.1.x
- 3 Solaris 2.x
- 4 AIX
- 5 HP-UX
- 6 IRIX
- 7 OSF/1
- 8 OS/2
- 9 Windows
- Cases 2 through 7:
 - **GAUSS System Paths**

Get or set GAUSS system path.

- Format oldpath = sysstate(case,path);
 - **Input** case scalar 2-7, path to set.
 - 2 . exe file location.
 - 3 **loadexe** path.
 - 4 **save** path.
 - 5 load, loadm path.
 - 6 **loadf**, **loadp** path.
 - 7 **loads** path.

path scalar 0 to get path, or string containing the new path.

Output *oldpath* string, original path.

Remarks If *path* is of type matrix, the path will be returned but not modified.

Case 8:	Complex Number Toggle		
	Controls automatic generation of complex numbers in sqrt , ln and log for negative arguments.		
Format	<pre>oldstate = sysstate(8,state);</pre>		
Input	<i>state</i> scalar, 1, 0, or -1.		
Output	<i>oldstate</i> scalar, the original state.		
Remarks	If $state = 1$, log, ln, and sqrt will return complex numbers for negative arguments. If $state = 0$, the program will terminate with an error message when negative numbers are passed to log, ln, and sqrt. If state = -1, the current state is returned and left unchanged. The default state is 1.		
Case 9:	Complex Trailing Character		
	Get and set trailing character for the imaginary part of a complex number.		
Format	<pre>oldtrail = sysstate(9,trail);</pre>		
Input	<i>trail</i> scalar 0 to get character, or string containing the new trailing character.		
Output	<i>oldtrail</i> string, the original trailing character.		
Remarks	The default character is "i".		
Case 10:	Printer Width Get and set lprint width.		
Format	<pre>oldwidth = sysstate(10,width);</pre>		
Input	width scalar, new printer width.		
Output	<i>oldwidth</i> scalar, the current original width.		
Remarks	If <i>width</i> is 0, the printer width will not be changed. This may also be set with the lpwidth command.		
See also	lpwidth		

Case 11:	Auxiliary Output Width		
	Get and set the auxiliary output width.		
Format	<pre>oldwidth = sysstate(11,width);</pre>		
Input	width scalar, new output width.		
Output	oldwidth scalar, the original output width.		
Remarks	If width is 0 then the output width will not be changed.		
	This may also be set with the outwidth command.		
See also	outwidth		
Case 12:	Precision		
	Get and set precision for positive definite matrix routines.		
Format	<pre>oldprec = sysstate(12,prec);</pre>		
Input	prec scalar, 64 or 80.		
Output	<i>oldprec</i> scalar, the original value.		
Portability	Windows, UNIX		
	This function has no effect under Windows or UNIX. All computations are done in 64-bit precision (except for operations done entirely within the 80x87 on Intel machines).		
Remarks	The precision will be changed if <i>prec</i> is either 64 or 80. Any other number will leave the precision unchanged.		
See also	prcsn		
Case 13:	LU Tolerance		
	Get and set singularity tolerance for LU decomposition.		
Format	<pre>oldtol = sysstate(13,tol);</pre>		
Input	<i>tol</i> scalar, new tolerance.		
Output	<i>oldtol</i> scalar, the original tolerance.		

Remarks	The tolerance must be ≥ 0 . If <i>tol</i> is negative, the tolerance is returned and left unchanged.
See also	croutp, inv
Case 14:	Cholesky Tolerance Get and set singularity tolerance for Cholesky decomposition.
Format	<pre>oldtol = sysstate(14,tol);</pre>
Input	tol scalar, new tolerance.
Output	<i>oldtol</i> scalar, the original tolerance.
Remarks	The tolerance must be ≥ 0 . If <i>tol</i> is negative, the tolerance is returned and left unchanged.
See also	chol, invpd, solpd
Case 15:	Screen State Get and set window state as controlled by screen command.
Format	oldstate = sysstate(15,state);
Input	state scalar, new window state.
Output	<i>oldstate</i> scalar, the original window state.
Remarks	If $state = 1$, window output is turned on. If $state = 0$, window output is turned off. If $state = -1$, the state is returned unchanged.
See also	screen
Case 16:	Automatic print Mode Get and set automatic print mode.
Format	oldmode = sysstate(16,mode);
Input	<i>mode</i> scalar, mode.

s

Output	<i>oldmode</i> scalar, original mode.
Remarks	If $mode = 1$, automatic print mode is turned on. If $mode = 0$, it is turned off. If $mode = -1$, the mode is returned unchanged.
See also	print on/off
Case 17:	Automatic lprint Mode Get and set automatic lprint mode.
Format	<pre>oldmode = sysstate(17,mode);</pre>
ιπρυτ	<i>mode</i> scalar, mode.
Output	<i>oldmode</i> scalar, original mode.
Remarks	If $mode = 1$, automatic lprint mode is turned on. If $mode = 0$, it is turned off. If $mode = -1$, the mode is returned unchanged.
See also	lprint on/off
Case 18:	Auxiliary Output Get auxiliary output parameters.
Format	<pre>{ state,name } = sysstate(18,dummy);</pre>
Input	<i>dummy</i> scalar, a dummy argument.
Output	statescalar, auxiliary output state, 1 - on, 0 - off.namestring, auxiliary output filename.
See also	output
Case 19:	Get/Set Format Get and set format parameters.
Format	<pre>oldfmt = sysstate(19,fmt);</pre>

Input	fmt	scalar or 11x1 column vector containing the new format parameters. Usually this will have come from a previous			
		sysstat	e(19,0) call. See Output for description of matrix.		
Output	oldfmt	<i>oldfmt</i> 11x1 vector containing the current format parameter			
	-	[1]	format type.		
		[2]	justification.		
		[3]	sign.		
		[4]	leading zero.		
		[5]	trailing character.		
		[6]	row delimiter.		
		[7]	carriage line feed position.		
		[8]	automatic line feed for row vectors.		
		[9]	field.		
		[10]	precision.		
		[11]	formatted flag		
Remarks	If <i>fmt</i> is so	calar 0, th	nen the format parameters will be left unchanged.		
See also	format				
Case 21:	Imaginar	y Tolera	nce		
	Get and se	et the ima	aginary tolerance.		
Format	<pre>oldtol = sysstate(21,tol);</pre>				
Input	tol	scalar,	the new tolerance.		
Output	oldtol	scalar,	the original tolerance.		
Remarks	The imag complex r defined fo ignored. 7	The imaginary tolerance is used to test whether the imaginary part of a complex matrix can be treated as zero or not. Functions that are not defined for complex matrices check the imaginary part to see if it can be ignored. The default tolerance is 2.23e–16, or machine epsilon.			
	If $tol < 0$,	the curre	nt tolerance is returned.		
See also	hasimag	J			

Case 22:	Source Path		
	Get and set	the path the compiler will search for source files.	
Format	oldpath =	<pre>sysstate(22,path);</pre>	
Input	path	scalar 0 to get path, or string containing the new path.	
Output	oldpath	string, original path.	
Remarks	If <i>path</i> is a matrix, the current source path is returned.		
	This resets defined in t	the src_path configuration variable. src_path is initially he GAUSS configuration file, gauss.cfg.	
	path can lis	t a sequence of directories, separated by semicolons.	
	Resetting s compiles	rc_path affects the path used for subsequent run and statements.	
Case 24:	Dynamic Library Directory		
	Get and set	the path for the default dynamic library directory.	
Format	oldpath =	<pre>sysstate(24,path);</pre>	
Input	path	scalar 0 to get path, or string containing the new path.	
Output	oldpath	string, original path.	
Remarks	If <i>path</i> is a matrix, the current path is returned.		
	path should list a single directory, not a sequence of directories.		
	Changing the dynamic library path does not affect the state of any DLL's currently linked to GAUSS. Rather, it determines the directory that will be searched the next time dlibrary is called.		
	UNIX		
	Changing the Changing the Changing the Change of the Chang	ne path has no effect on GAUSS's default DLL, s.so.libgauss.so must always be located in the ME directory.	
	Windows		
	Changing tl gauss.dl	ne path has no effect on GAUSS' default DLL, gauss.dll. 1 must always be located in the GAUSSHOME directory.	
	OS/2		

Changing the path has no effect on GAUSS's default DLL, gauss.dll. gauss.dll must always be located in the same directory as the GAUSS executable, gauss.exe.

DOS

sysstate 24 has no effect, as **dlibrary** and **dllcall** are not supported.

- See also dlibrary, dllcall
- **Case 25:** Temporary File Path

Get or set the path GAUSS will use for temporary files..

- **Format** *oldpath* = **sysstate**(25, *path*);
 - **Input** path scalar 0 to get path, or string containing the new path.
- **Output** oldpath string, original path.
- **Remarks** If path is of type matrix, the path will be returned but not modified.
- **Case 26:** Interface Mode

Returns the current interface mode.

- Format mode = sysstate(26,0);
- **Output** *mode* scalar, interface mode flag
 - 0 non-X mode
 - 1 terminal (-v) mode
 - 2 X Windows mode
- **Remarks** A mode of 0 indicates that you're running a non-X version of GAUSS; i.e., a version that has no X Windows capabilities. A mode of 1 indicates that you're running an X Windows version of GAUSS, but in terminal mode; i.e., you started GAUSS with the **-v** flag. A mode of 2 indicates that you're running GAUSS in X Windows mode.
- Case 28: Random Number Generator Parameters Get and set the random number generator (RNG) parameters.

Format	oldprms =	sysstate(28 , p	prms);
Input	prms	scalar 0 to get par [1] seed, [2] multiplier, [3] constant,	ameters, or 3×1 matrix of new parameters. $0 < \text{seed} < 2^{32}$ $0 < \text{mult} < 2^{32}$ $0 \le \text{const} < 2^{32}$
Output	oldprms	3x1 matrix, curren	nt parameters.
Portability	Not suppor	ted for DOS.	
Remarks	If <i>prms</i> is a scalar 0, the current parameters will be returned without being changed. The modulus of the RNG cannot be changed; it is fixed at 2^32.		
See also	rndcon, r	rndmult, rndsee	d, rndns, rndus, rndn, rndu
Case 30:	Base Year Specifies w (1900) or n	Toggle whether year value restor.	eturned by date is to include base year
Format	oldstate =	sysstate(30,st	ate);
Input	state	scalar, 1, 0, or miss	sing value.
Output	oldstate	scalar, the original	state.
Portability	DOS sysstate	≥ 30 has no effect. If	always returns a 4-digit year.
Remarks	Internally, o specifies w <i>state</i> = 1, d If state missing val	date acquires the n hether date should late adds 1900, return = 0, date returns the lue, the current state	umber of years since 1900. sysstate 30 l add the base year to that value or not. If urning a fully-qualified 4-digit year. e number of years since 1900. If <i>state</i> is a is returned. The default state is 1.

system

system

Purpose	Quits GAUSS and returns to the operating system.		
Format	system; system c;		
Input	<i>c</i> scalar, an optional exit code that can be recovered by the program that invoked GAUSS. The default is 0. Valid arguments are 0-255.		
Remarks	The system command always returns an exit code to the operating system or invoking program. If you don't supply one, it returns 0. This is usually interpreted as indicating success.		
See also	exec		

tab

tab

Purpose Tabs the cursor to a specified text column. Format tab(col); print expr1 expr2 tab(coll) expr3 tab(col2) expr4 ...; Input col scalar, the column position to tab to. Remarks col specifies an absolute column position. If col is not an integer, it will be truncated. tab can be called alone or embedded in a print statement. You cannot embed it within a parenthesized expression in a print statement, though. For example: print (tab(20) c + d * e); will not give the results you expect. If you have to use parenthesized expressions, write it like this instead: print tab(20) (c + d * e);

tan

tan

Purpose	Returns the tangent of its argument.		
Format	$y = \tan(x);$		
Input	<i>x</i> NxK matrix.		
Output	y NxK matrix.		
Remarks	For real matrices, x should contain angles measured in radians.		
	To convert degrees to radians, multiply the degrees by $\frac{\pi}{180}$.		
Example	let x = 0 .5 1 1.5; y = tan(x); $y = \begin{array}{c} 0.00000000\\ 0.54630249\\ 1.55740772 \end{array}$		
	14.10141995		

See also atan, pi

t

tanh

tanh

Purpose	Computes the hyperbolic tangent.		
Format	y = tanh(x);		
Input	<i>x</i> NxK matrix.		
Output	<i>y</i> NxK matrix containing the hyperbolic tangents of the elements of x .		
Example	<pre>let x = -0.5 -0.25 0 0.25 0.5 1; x = x * pi; y = tanh(x);</pre>		
	$x = \begin{bmatrix} -1.570796 \\ -0.785398 \\ 0.000000 \\ 0.785398 \\ 1.570796 \\ 3.141593 \end{bmatrix}$		
	$y = \begin{bmatrix} -0.917152 \\ -0.655794 \\ 0.000000 \\ 0.655794 \\ 0.917152 \\ 0.996272 \end{bmatrix}$		
Source	trig.src		

tempname

tempname

Purpose	Creates a temporary file with a unique name.		
Format	<pre>tname = tempname(path,pre,suf);</pre>		
Input	pathstring, path where the file will reside.prestring, a prefix to begin the file name with.sufstring, a suffix to end the file name with.		
Output	<i>tname</i> string, unique temporary file name of the form <i>path/pre</i> XXXXnnnnn <i>suf</i> , where XXXX are 4 letters, and nnnnn is the process id of the calling process.		
Remarks	Any or all of the inputs may be a null string or 0. If <i>path</i> is not specified, the current working directory is used.		
	If unable to create a unique file name of the form requested, tempname returns a null string.		
	WARNING: GAUSS does not remove temporary files created by tempname . It is left to the user to remove them when they are no longer needed.		

time

time

Purpose	Returns the current system time.		
Format	y = time;		
Output	y 4x1 numeric vector, the current time in the order: hours, minutes, seconds, and hundredths of a second.		
Example	<pre>print time;</pre>		
	7.000000		
	31.000000		
	46.000000		
	33.000000		
See also	date, datestr, datestring, datestrymd, hsec, timestr		

timedt

timedt

Purpose	Returns system date and time in DT scalar format.
Format	<pre>dt = timedt;</pre>
Output	<i>dt</i> scalar, system date and time in DT scalar format.
Remarks	The DT scalar format is a double precision representation of the date and time. In the DT scalar format, the number
	20010421183207
	represents 18:32:07 or 6:32:07 PM on April 21, 2001.
Source	time.src
See also	todaydt, timeutc, dtdate

timestr

timestr

Purpose	Formats a time in a vector to a string.
Format	<pre>ts = timestr(t);</pre>
Input	t 4x1 vector from the time function, or a zero. If the input is 0, the time function will be called to return the current system time.
Output	<i>ts</i> 8 character string containing current time in the format hr:mn:sc
Example	<pre>t = { 7, 31, 46, 33 }; ts = timestr(t); print ts; Produces: 7:31:46</pre>
Source	time.src
See also	date, datestr, datestring, datestrymd, ethsec, etstr, time

timeutc

timeutc

Purpose	Returns the number of seconds since January 1, 1970 Greenwich Mean Time.
Format	<pre>tc = timeutc;</pre>
Output	<i>tc</i> scalar, number of seconds since January 1, 1970 Greenwich Mean Time.
Example	<pre>tc = timeutc; utv = utctodtv(tc); tc = 939235033 utv = 1999 10 6 11 37 13 3 278</pre>
See also	dtvnormal, utctodtv

title

title

Purpose	Sets the title for the graph.
Library	pgraph
Format	<pre>title(str);</pre>
Input	<i>str</i> string, the title to display above the graph.
Global Output	_ptitle
Remarks	Up to three lines of title may be produced by embedding a line feed character ("\L") in the title string.
Example	title("First title line\L Second title line\L Third title line");
	Fonts may be specified in the title string. For instructions on using fonts, see "Publication Quality Graphics" in the <i>User Guide</i> .
Source	pgraph.src

See also xlabel, ylabel, fonts

tkf2eps

tkf2eps

Purpose	Converts a .tkf file to an Encapsulated PostScript file.
Library	pgraph
Format	ret = tkf2eps(tekfile, epsfile);
Input	<i>tekfile</i> string, name of .tkf file <i>epsfile</i> string, name of Encapsulated PostScript file
Output	ret scalar, 0 if successful
Remarks	The conversion is done using the global parameters in peps.dec . You can modify these globally by editing the .dec file, or locally by setting them in your program before calling tkf2eps .
	See the header of the output Encapsulated PostScript file and a PostScript manual if you want to modify these parameters.

t

tkf2ps

tkf2ps

Purpose	Converts a .tkf file to a PostScript file.
Library	pgraph
Format	ret = tkf2ps(tekfile, psfile);
Input	<i>tekfile</i> string, name of .tkf file <i>epsfile</i> string, name of Encapsulated PostScript file
Output	ret scalar, 0 if successful
Remarks	The conversion is done using the global parameters in peps.dec . You can modify these globally by editing the .dec file, or locally by setting them in your program before calling tkf2ps .
	See the header of the output Encapsulated PostScript file and a PostScript manual if you want to modify these parameters.

tocart

tocart

Purpose	Converts from polar to cartesian coordinates.
Format	xy = tocart(r, theta);
Input	<i>r</i> NxK real matrix, radius.<i>theta</i> LxM real matrix, ExE conformable with <i>r</i>, angle in radians.
Output	xy max(N,L) by max(K,M) complex matrix containing the X coordinate in the real part and the Y coordinate in the imaginary part.
Source	coord.src

todaydt

todaydt

Purpose	Returns system date in DT scalar format. The time returned is always midnight (00:00:00), the beginning of the returned day.
Format	dt = todaydt;
Output	<i>dt</i> scalar, system date in DT scalar format.
Remarks	The DT scalar format is a double precision representation of the date and time. In the DT scalar format, the number
	20010421183207
	represents 18:32:07 or 6:32:07 PM on April 21, 2001.
Source	time.src

See also timedt, timeutc, dtdate

toeplitz

toeplitz

Burnoso	Creates a Toeplitz matrix from a column vector	a
i uipose	creates a roepinz matrix nom a column vector.	b
Format	t = toeplitz(x);	C
Input	x Kx1 vector.	d
Output	<i>t</i> KxK Toeplitz matrix.	e
Example	x = seqa(1,1,5);	f
-	y = toeplitz(x);	g
		h
	1	i
	$x = \frac{2}{3}$	j
	4	k
	5	1
	1 2 3 4 5	m
	2 1 2 3 4	20
	y = 32123	
	4 3 2 1 2	0
	5 4 3 2 1	р
Source	toeplitz.src	q
		r
		8

t

token

token

Purpose	Extracts the leading token from a string.
Format	<pre>{ token,str_left } = token(str);</pre>
Input	<i>str</i> string, the string to parse.
Output	tokenstring, the first token in str.str_leftstring, str minus token.
Remarks	<i>str</i> can be delimited with commas or spaces. The advantage of token over parse is that parse is limited to tokens of 8 characters or less; token can extract tokens of any length.
Example	<pre>Here is a keyword that uses token to parse its string parameter. keyword add(s); local tok,sum; sum = 0; do until s \$== ""; { tok, s } = token(s); sum = sum + stof(tok); endo; format /rd 1,2; print "Sum is; " sum;</pre>
	<pre>print "Sum is: " sum; endp; If you type: add 1 2 3 4 5 6; add will respond: Sum is: 21.00</pre>
Source	token.src
token

See also parse

3-825

t

topolar

topolar

Purpose	Converts from cartesian to polar coordinates.		
Format	$\{ r, theta \} = topolar(xy);$		
Input	<i>xy</i> NxK complex matrix containing the <i>X</i> coordinate in the real part and the <i>Y</i> coordinate in the imaginary part.		
Output	<i>r</i> NxK real matrix, radius.<i>theta</i> NxK real matrix, angle in radians.		
Source	coord.src		

trace

trace

Purpose	Allows the user to trace program execution for debugging purposes.			
Format	<pre>trace new; trace new, mask;</pre>			
Input	<i>new</i> scalar, new value for trace flag.<i>mask</i> scalar, optional mask to allow leaving some bits of the trace flag unchanged.			
Remarks	The trace command has no effect unless you are running your program under GAUSS's source level debugger. Setting the trace flag will not generate any debugging output during normal execution of a program. The argument is converted to a binary integer with the following meanings:			
	bit	decimal	meaning	
	ones	1	trace calls/returns	
	twos	2	trace line numbers	
	fours	4	verbose trace	
	eights	8	output to window	
	sixteens	16	output to print	
	thirty-twos	32	output to auxiliary output	
	sixty-fours	64	output to error log	
	You must set one or more of the output bits to get any output from trace . If you set trace to 4, you'll be doing a verbose trace of your program, but the output won't be displayed anywhere.			
	The trace output as a program executes will be as follows:			
	(+GRAD) (-GRAD) [47]	calling fund returning fr executing 1	ction or procedure GRAD rom GRAD ine 47	

Note that the line number trace will only produce output if the program was compiled with line number records.

trace				
	To set a single bit use two arguments:			
	trace 16,16; turn trace 0,16; turn	on output to printer off output to printer		
Example	trace 1+8;	trace fn/proc calls/returns to		
	trace 2+8;	standard output trace line numbers to standard		
	trace 1+2+8;	output trace line numbers and fn/proc		
		calls/returns to standard		
	trace 1+16;	output trace fn/proc calls/returns to		
	trace 2+16; trace 1+2+16;	printer trace line numbers to printer trace line numbers and fn/proc		
		calls/returns to printer		
	trace 4+8;	verbose trace to screen		

See also #lineson

trap

trap

Purpose	Sets the trap flag to enable or disable trapping of numerical errors.				
Format	<pre>trap new; trap new, mask;</pre>				
Input	new scalar, new trap value.mask scalar, optional mask to allow leaving some bits of the trap flag unchanged.				
Remarks	The trap flag is examined by some functions to control error handling. There are 16 bits in the trap flag, but most GAUSS functions will examine only the lowest order bit:				
	<pre>trap 1; turn trapping on trap 0; turn trapping off</pre>				
	If we extend the use of the trap flag, we will use the lower order bits of the trap flag. It would be wise for you to use the highest 8 bits of the trap flag if you create some sort of user-defined trap mechanism for use in your programs. (See the function trapchk for detailed instructions on testing the state of the trap flag; see error for generating user-defined error codes.)				
	To set only one bit and leave the others unchanged use two arguments:				
	<pre>trap 1,1; set the ones bit trap 0,1; clear the ones bit</pre>				
Example	x = eye(3);				
	<pre>oldval = trapchk(1);</pre>				
	trap 1,1;				
	y = inv(x);				
	trap oldval,1;				

trap	
	if scalerr(y);
	errorlog "WARNING: x is singular";
	else;
	print "y" y;
	endif;
	In this example the result of inv is trapped in case x is singular. The trap state is reset to the original value after the call to inv .
	Run the example
	x = eye(3);
	It is inverted.
	Now try
	ones(3,3);
	It isn't.
See also	scalerr, trapchk, error

trapchk

trapchk

Purpose	Tests the v	alue of the trap flag.		
Format	<pre>y = trapchk(m);</pre>			
Input	<i>m</i> scalar mask value.			
Output	<i>y</i> scalar which is the result of the bitwise logical AND of the trap flag and the mask.			
Remarks	To check the various bits in the trap flag, add the decimal values for the bits you wish to check according to the chart below and pass the sum in as the argument to the trapchk function:			
	bit	decimal value		
	0	1		
	1	2		
	2	4		
	3	8		

1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096
13	8192
14	16384
15	32768

If you want to test if either bit 0 or bit 8 is set, then pass an argument of 1+256 or 257 to **trapchk**. The following table demonstrates values that will be returned for:

y=trapchk(257);

trapchk

	0	1	value of bit 0 in trap flag
0	0	1	
1	256	257	
value of bit 8 in trap flag			

GAUSS functions that test the trap flag currently test only bits 0 and 1.

See also scalerr, trap, error

trimr

trimr

Purpose	Trims rows from the top and/or bottom of a matrix.			
Format	y = trimr(x,t,b);			
Input	 <i>x</i> NxK matrix from which rows are to be trimmed. <i>t</i> scalar containing the number of rows which are to be removed from the top of <i>x</i>. <i>b</i> scalar containing the number of rows which are to be removed from the bottom of <i>x</i>. 			
Output	<i>y</i> RxK matrix where $R=N-(t+b)$ containing the rows left after the trim.			
Remarks	If either t or b is zero, then no rows will be trimmed from that end of the matrix.			
Example	<pre>x = rndu(5,3); y = trimr(x,2,1);</pre>			
	$x = \begin{array}{l} 0.76042751 \ 0.33841579 \ 0.01844780 \\ 0.05334503 \ 0.38939785 \ 0.65029973 \\ 0.93077511 \ 0.06961078 \ 0.04207563 \\ 0.53640701 \ 0.06640062 \ 0.07222560 \\ 0.14084669 \ 0.06033813 \ 0.69449247 \end{array}$			
	$y = \begin{array}{c} 0.93077511 \ 0.06961078 \ 0.04207563 \\ 0.53640701 \ 0.06640062 \ 0.07222560 \end{array}$			
See also	submat, rotater, shiftr			

trunc

trunc

Purpose	Converts numbers to integers by truncating the fractional portion.			
Format	y = trunc(x);			
Input	<i>x</i> NxK matrix.			
Output	y NxK matrix containing the truncated elements of x .			
Example	x = 100*rndn(2,2);			
	$x = \begin{array}{r} 77.68 & -14.10 \\ 4.73 & -158.88 \end{array}$			
	y = trunc(x);			
	$y = \begin{array}{c} 77.00 & -14.00 \\ 4.00 & -158.00 \end{array}$			

See also ceil, floor, round

type

type

Purpose	Returns the symbol table type of the argument.			
Format	t = type(x);			
Input	<i>x</i> matrix or string, can be an expression.			
Output	t scalar. 6 matrix 13 string 15 string array			
Remarks	type returns the type of a single symbol. The related function typecv will take a character vector of symbol names and return a vector of either their types or the missing value code for any that are undefined. type works for matrices, strings, and string arrays; typecv works for user-defined procedures, keywords and functions as well. type works for global or local symbols; typecv works only for global symbols.			
Example	k = {"CHARS"};			
	print k;			
	if type(k) == 6;			
	k = ""\$+k;			
	endif;			
	print k;			
	produces			
	+DEN			
	CHARS			
See also	typecv, typef			

t

3-835

typecv

typecv

- **Purpose** Returns the symbol table type of objects whose names are given as a string or as elements of a character vector.
 - **Format** y = typecv(x);
 - **Input** x string or Nx1 character vector which contains the names of variables whose type is to be determined.
 - **Output** y scalar or Nx1 vector containing the types of the respective symbols in x.
- **Remarks** The values returned by typecv for the various variable types are as follows:
 - 6 Matrix (Numeric, Character, or Mixed)
 - 8 Procedure (proc)
 - 9 Function (fn)
 - 5 Keyword (keyword)
 - 13 String
 - 15 String Array

It will return the GAUSS missing value code if the symbol is not found, so **typecv** may be used to determine if a symbol is defined or not.

Example xvar = sqrt(5); yvar = "Montana"; fn area(r) = pi*r*r; let names = xvar yvar area; y = typecv(names); XVAR names = YVAR

AREA

typecv

	$y = \frac{6}{13}$	
	9	a
Saa alsa	type typef warput warget	b
See also	cype, cyper, varput, varget	С
		d
		e
		f
		g
		h
		i
		j
		k
		1
		m
		n
		0
		р
		q
		r
		S
		t
		u
		V
		W
		x y z

typef

typef

- **Purpose** Returns the type of data (the number of bytes per element) in a GAUSS data set.
 - **Format** y = typef(fp);
 - **Input** *fp* scalar, file handle of an open file.
 - **Output** *y* scalar, type of data in GAUSS data set.
- **Remarks** If *fp* is a valid GAUSS file handle, then *y* will be set to the type of the data in the file as follows:
 - 2 2-byte signed integer
 - 4 4-byte IEEE floating point
 - 8 8-byte IEEE floating point

Example infile = "dat1";

outfile = "dat2"; open fin = ^infile; names = getname(infile); create fout = ^outfile with ^names,0,typef(fin);

In this example a file dat2.dat is created which has the same variables and variable type as the input file, dat1.dat.**typef** is used to return the type of the input file for the **create** statement.

See also colsf, rowsf

union

union

Purpose	Returns the union of two vectors with duplicates removed.	
Format	y = union(v1, v2, flag);	
Input	v1Nx1 vector.v2Mx1 vector.flagscalar, 1 if numeric data, 0 if character.	
Output	<i>y</i> Lx1 vector containing all unique values that are in <i>v1</i> and <i>v2</i> , sorted in ascending order.	
Remarks	The combined elements of $v1$ and $v2$ must fit into a single vector.	
Example	<pre>let v1 = mary jane linda john; let v2 = mary sally; x = union(v1,v2,0); JANE JOHN x = LINDA</pre>	
	MARY SALLY	

uniqindx

uniqindx

Computes the sorted index of x , leaving out duplicate elements.		
<pre>index = uniqindx(x,flag);</pre>		
xNx1 or 1xN vector.flagscalar, 1 if numeric data, 0 if character.		
<i>index</i> Mx1 vector, indices corresponding to the elements of <i>x</i> sorted in ascending order with duplicates removed.		
Among sets of duplicates it is unpredictable which elements will be indexed.		
let $x = 5 4 4 3 3 2 1;$		
<pre>ind = uniqindx(x,1);</pre>		
y = x[ind];		
$ind = \begin{bmatrix} 7 \\ 6 \\ 5 \\ 2 \\ 1 \end{bmatrix}$		
$y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$		

unique

unique

Purpose	Sorts and removes duplicate elements from a vector.		
Format	y = unique(x,flag);		
Input	xNx1 or 1xN vector.flagscalar, 1 if numeric data, 0 if character.		
Output	y Mx1 vector, sorted x with the duplicates removed.		
Example	let $x = 5 4 4 3 3 2 1;$		
	<pre>y = unique(x,1);</pre>		
	$y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$		

upmat, upmat1

upmat, upmat1

Purpose Returns the upper portion of a matrix. **upmat** returns the main diagonal and every element above. **upmat1** is the same except it replaces the main diagonal with ones.

Format	и	=	upmat(x);
	и	=	upmat1(x);

Input *x* NxK matrix.

Output *u* NxK matrix containing the upper elements of the matrix. The lower elements are replaced with zeros. **upmat** returns the main diagonal intact. **upmat1** replaces the main diagonal with ones.

;

Example	x = { 2	L 2	-1,
	4	2 3	-2,
	-	L -2	1 }
	u = upr	nat(x);
	u1 = u	pmat1	(x);

The resulting matrices are

```
u = \begin{array}{c} 1 & 2 & -1 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{array}u1 = \begin{array}{c} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array}
```

Source diag.src

See also lowmat, lowmat1, diag, diagrv, crout

upper

upper

Purpose	Converts a string or matrix of character data to uppercase.	
Format	y = upper(x);	
Input	<i>x</i> string or N x K matrix containing the character data to be converted to uppercase.	
Output	<i>y</i> string or N x K matrix containing the uppercase equivalent of data in <i>x</i> .	
Remarks	If x is a numeric matrix, y will contain garbage. No error message will be generated since GAUSS does not distinguish between numeric and character data in matrices.	
Example	<pre>x = "uppercase"; y = upper(x);</pre>	
	y = UPPERCASE	
See also	lower	

use

use

- **Purpose** Loads a compiled file at the beginning of the compilation of a source program.
 - **Format** use *fname*;
 - **Input** *fname* literal or ^string, the name of a compiled file created using the **compile** or the **saveall** command.
- **Remarks** The use command can be used ONCE at the TOP of a program to load in a compiled file which the rest of the program will be added to. In other words, if xy. e had the following lines:

library pgraph;

external proc xy;

x = seqa(0.1,0.1,100);

It could be compiled to xy.gcg. Then the following program could be run:

```
use xy;
```

```
xy(x,sin(x));
```

Which would be equivalent to:

```
new;
x = seqa(0.1,0.1,100);
xy(x,sin(x));
```

The **use** command can be used at the top of files that are to be compiled with the **compile** command. This can greatly shorten compile time for a set of closely related programs. For example:

library pgraph; external proc xy,logx,logy,loglog,hist; saveall pgraph;

This would create a file called pgraph.gcg containing all the procedures, strings and matrices needed to run PQG programs. Other

use

programs could be compiled very quickly with the following statement at the top of each:

use pgraph;

or the same statement could be executed once, for instance from the command prompt, to instantly load all the procedures for PQG.

When the compiled file is loaded with **use**, all previous symbols and procedures are deleted before the program is loaded. It is therefore unnecessary to execute a **new** before **use**'ing a compiled file.

use can appear only ONCE at the TOP of a program.

See also compile, run, saveall

utctodt

utctodt

Purpose	Converts UTC scalar format to DT scalar format.		
Format	dt = utctodt(utc);		
Input	<i>utc</i> Nx1 vector, UTC scalar format.		
Output	<i>dt</i> Nx1 matrix, DT scalar format.		
Remarks	A UTC scalar gives the number of seconds since or before January 1, 1970 Greenwich Mean Time. In DT scalar format, 11:06:47 on March 15, 2001 is 20010315110647.		
Example	<pre>tc = 985633642; print "tc = " tc; dt = utctodt(tc); print "dt = " dt; produces: tc = 985633642 dt = 20010326110722</pre>		
Source	time.src		
See also	dtvnormal, timeutc, utctodtv, dttodtv, dtvtodt, dttoutc, dtvtodt, strtodt, dttostr		

utctodtv

utctodtv

Purpose	Converts UTC scalar format to DTV vector format.	
Format	<pre>dtv = utctodtv(utc);</pre>	C
Input	<i>utc</i> Nx1 vector, UTC scalar format.	d
Output	<i>dtv</i> Nx8 matrix, DTV vector format.	e
Remarks	A UTC scalar gives the number of seconds since or before January 1, 1970 Greenwich Mean Time.	f g
	Each row of <i>dtv</i> , in DTV vector format, contains:	h
	[N ,1] Year	i
	[N ,2] Month in Year, 1-12 [N ,2] Device month [1,2]	
	$[\mathbf{N}, \mathbf{S}]$ Day of month, 1-51 $[\mathbf{N}, \mathbf{A}]$ Hours since midnight 0-23	J
	[N.5] Minutes, 0-59	k
	[N ,6] Seconds, 0-59	1
	[N,7] Day of week, 0-6, 0 = Sunday	m
	[N,8] Days since Jan 1 of current year, 0-365	
Example	<pre>tc = timeutc;</pre>	n o
	print "tc = " tc;	D
	<pre>dtv = utctodtv(tc);</pre>	
	print "dtv = " dtv;	q
		r
	produces:	S
	tc = 985633642	4
	dtv = 2001 3 26 11 7 22 1 84	l
Source	time and	u
Source	CIME.SIC	v
See also	dtvnormal, timeutc, utctodt, dttodtv, dttoutc, dtvtodt, dtvtoutc, strtodt, dttostr	W

utrisol

utrisol

Purpose	Computes the solution of $Ux = b$ where U is an upper triangular matrix.		
Format	x = utrisol(b,U);		
Input	<i>b</i> PxK matrix.<i>U</i> PxP upper triangular matrix.		
Output	<i>x</i> PxK matrix.		
Remarks	utrisol applies a back solve to $Ux = b$ to solve for x. If b has more than and column is called for concretely i.e. utrianely		

arks utrisol applies a back solve to Ux = b to solve for x. If b has more than one column, each column is solved for separately, i.e., utrisol applies a back solve to Ux[.,i] = b[.,i].

vals

vals

Purpose	Converts a string into a matrix of its ASCII values.		
Format	y = vals(s);		
Input	s string of length N where $N > 0$.		
Output	<i>y</i> Nx1 matrix containing the ASCII values of the characters in the string <i>s</i> .		
Remarks	If the string is null, the function will fail and an error message will be given.		
Example	k0:		
	k = key;		
	if not k;		
	goto k0;		
	endif;		
	<pre>if k == vals("Y") or k == vals("y");</pre>		
	goto doit;		
	else;		
	end;		
	endif;		
	doit:		

In this example the **key** function is used to read the keyboard. When **key** returns a nonzero value, meaning a key has been pressed, the ASCII value it returns is tested to see if it is an uppercase or lowercase "Y". If it is, the program will jump to the label **doit**, otherwise the program will end.

See also chrs, ftos, stof

varget

varget

Purpose	Accesses a global variable whose name is given as a string argument.		
Format	<pre>y = varget(s);</pre>		
Input	<i>s</i> string containing the name of the global symbol you wish to access.		
Output	<i>y</i> contents of the matrix or string whose name is in <i>s</i> .		
Remarks	This function searches the global symbol table for the symbol whose name is in <i>s</i> and returns the contents of the variable if it exists. If the symbol does not exist, the function will terminate with an Undefined symbol error message. If you want to check to see if a variable exists before using this function, use typecv .		
Example	dog = rndn(2,2); y = varget("dog"); $dog = -0.83429985 \ 0.34782433$ 0.91032546 1.75446391 $y = -0.83429985 \ 0.34782433$ 0.91032546 1.75446391		
See also	typecv, varput		

vargetl

vargetl

Purpose	Accesses a local variable whose name is given as a string argument.		
Format	y = vargetl(s);		
Input	<i>s</i> string containing the name of the local symbol you wish to access.		
Output	<i>y</i> contents of the matrix or string whose name is in <i>s</i> .		
Remarks	This function searches the local symbol list for the symbol whose name is in <i>s</i> and returns the contents of the variable if it exists. If the symbol does not exist, the function will terminate with an Undefined symbol error message.		
Example	proc dog;		
	local x,y;		
	x = rndn(2,2);		
	<pre>y = vargetl("x");</pre>		
	print "x" x;		
	print "y" y;		
	<pre>retp(y);</pre>		
	endp;		
	z = dog;		
	print "z" z;		

vargetl

Produces:

х		
	-0.543851	-0.181701
	-0.108873	0.0648738
У		
	-0.543851	-0.181701
	-0.108873	0.0648738
z		
	-0.543851	-0.181701
	-0.108873	0.0648738

See also varputl

varmall

varmall

Purpose	Compu	utes log-likelihood o	of a Vector ARMA model.
Format	res =	varmall(w, phi,	theta, vc);
Input	w phi theta vc	NxK matrix, time K*PxK matrix, A K*QxK matrix, M KxK matrix, cova	e series. R coefficient matrices. IA coefficient matrices. rriance matrix.
Output	11	scalar, log-likelih missing value wit	ood. If the calculation fails <i>res</i> is set to h error code:
		Error Code	Reason for Failure
		1	M < 1
		2	N < 1
		3	P < 0
		4	Q < 0
		5	P = 0 and $Q = 0$
		7	floating point work space too small
		8	integer work space too small
		9	qq is not positive definite
		10	AR parameters too close to stationarity boundary
		11	model not stationary
		12	model not invertible
		13	I+M'H'HM not positive definite
Remarks	varma the Un AS311 Likelih 90:282	all is adapted from iversidad Complute in Applied Statistic bood Estimation of S 2-264.	n code developed by Jose Alberto Mauricio of ense de Madrid. It was published as Algorithm es. Also described in "Exact Maximum Stationary Vector ARMA Models," JASA,

varmares

varmares

Purpose	Comp	utes residuals of a	Vector ARMA model.
Format	res =	varmares(<i>w</i> ,	phi, theta) ;
Input	w phi theta	NxK matrix, tir K*PxK matrix, K*QxK matrix	ne series. AR coefficient matrices. , MA coefficient matrices.
Output	res	NxK matrix, re missing value v	siduals. If the calculation fails <i>res</i> is set to vith error code:
		Error Code	Reason for Failure
		1	M < 1
		2	N < 1
		3	P < 0
		4	Q < 0
		5	P = 0 and $Q = 0$
		7	floating point work space too small
		8	integer work space too small
		9	qq is not positive definite
		10	AR parameters too close to stationarity boundary
		11	model not stationary
		12	model not invertible
		13	I+M'H'HM not positive definite
Remarks	varm a the Un	ares is adapted iversidad Complu	from code developed by Jose Alberto Mauric utense de Madrid. It was published as Algori

n p p 4 4 x s t t k k v v

varmares is adapted from code developed by Jose Alberto Mauricio of the Universidad Complutense de Madrid. It was published as Algorithm AS311 in Applied Statistics. Also described in "Exact Maximum Likelihood Estimation of Stationary Vector ARMA Models," JASA, 90:282-264.

varput

varput

Purpose	Allows a matrix or string to be assigned to a global symbol whose name is given as a string argument.
Format	y = varput(x,n);
Input	<i>x</i> NXK matrix or string which is to be assigned to the target variable.
	<i>n</i> string containing the name of the global symbol which will be the target variable.
Output	<i>y</i> scalar, 1 if the operation is successful and 0 if the operation fails.
Remarks	x and n may be global or local. The variable, whose name is in n, that x is assigned to is always a global.
	If the function fails, it will be because the global symbol table is full.
	This function is useful for returning values generated in local variables within a procedure to the global symbol table.
Example	<pre>source = rndn(2,2);</pre>
	<pre>targname = "target";</pre>
	if not varput(source,targname);
	<pre>print "Symbol table full";</pre>
	end;
	endif;
	source = -0.93519984 0.40642598
	-0.36867581 2.57623519
	-0.93519984 0.40642598
	target = -0.36867581 + 2.57623519
	0.0001001 2.01020017
See also	varget, typecv

varputl

varputl

- **Purpose** Allows a matrix or string to be assigned to a local symbol whose name is given as a string argument.
 - Format y = varputl(x,n);
 - **Input** *x* NxK matrix or string which is to be assigned to the target variable.
 - *n* string containing the name of the local symbol which will be the target variable.
 - **Output** *y* scalar, 1 if the operation is successful and 0 if the operation fails.
- **Remarks** x and n may be global or local. The variable, whose name is in n, that x is assigned to is always a local.
- **Example** proc dog(x);

a=1;b=2;c=3;d=5;e=7; vars = { a b c d e }; putvar = 0; do while putvar \$/= vars; print "Assign x (" \$vars "): " ;;

local a,b,c,d,e,vars,putvar;

```
putvar = upper(cons);
```

```
print;
```

endo;

call varputl(x,putvar);

retp(a+b*c-d/e);

endp;

format /rds 2,1;

```
i = 0;
```

varputl

	do until i \geq 5;	
	z = dog(17);	
	print " z is " z;	a
	i = i + 1;	b
	endo;	С
		d
	Produces:	е
	Assign x (A B C D E): a	f
	z is 22.3	g
	Assign x (A B C D E): b	h
	z is 51.3	
	Assign x (A B C D E): c	
	z is 34.3	J
	Assign x (A B C D E): d	K
	z is 4.6	1
	Assign x (A B C D E): e	m
	z is 6.7	n
See also	vargetl	0
		р
		q
		r
		S
		t_
		- u
		V
		W

vartype

vartype

- **Purpose** Returns a vector of ones and zeros that indicate whether variables in a data set are character or numeric.
 - Format y = vartype(names);
 - **Input** *names* Nx1 character vector of variable names retrieved from a data set header file with the **getname** function.
 - **Output** *y* Nx1 vector of ones and zeros, 1 if variable is numeric, 0 if character.
- **Remarks** This function is being obsoleted. See **vartypef**.

If a variable name in *names* is lowercase, a 0 will be returned in the corresponding element of the returned vector.

Example names = getname("freq");

y = vartype(names);

print \$names;

print y;

AGE

PAY

sex

WT

1.0000000 1.0000000

0.0000000

1.0000000

Source vartype.src

vartypef

vartypef

Purpose	Returns a vector of ones and zeros that indicate whether variables in a data set are character or numeric.	
Format	<pre>y = vartypef(f);</pre>	
Input	<i>f</i> file handle of an open file.	
Output	y Nx1 vector of ones and zeros, 1 if variable is numeric, 0 if character.	
Remarks	This function should be used in place of older functions that are based on the case of the variable names. You should also use the $v96$ data set format.	

vcm, vcx

vcm, vcx

Purpose	Computes a variance-covariance matrix.	
Format	vc = vcm(m); vc = vcx(x);	
Input	 <i>m</i> KxK moment (x'x) matrix. A constant term MUST have been the first variable when the moment matrix was computed. <i>x</i> NxK matrix of data. 	
Output	<i>vc</i> KxK variance-covariance matrix.	
Source	corr.src	
See also	momentd	
vec, vecr

vec, vecr

Purpose	Creates a column vector by appending the columns/rows of a matrix to each other.
Format	$y_c = vec(x);$ $y_r = vecr(x);$
Input	<i>x</i> NxK matrix.
Output	yc $(N*K)x1$ vector, the columns of x appended to each other. yr $(N*K)x1$ vector, the rows of x appended to each other and the result transposed.
Remarks	vecr is much faster.
Example	x = { 1 2, 3 4 }; yc = vec(x); yr = vecr(x);
	$x = \begin{array}{c} 1.000000 & 2.000000 \\ 3.000000 & 4.000000 \end{array}$
	$yc = \begin{cases} 1.000000 \\ 3.000000 \\ 2.000000 \\ 4.000000 \end{cases}$
	$yr = \begin{cases} 1.000000 \\ 2.000000 \\ 3.000000 \\ 4.000000 \end{cases}$

v

vech

vech

- **Purpose** Vectorizes a symmetric matrix by retaining only the lower triangular portion of the matrix.
 - **Format** $v = \operatorname{vech}(x)$;
 - **Input** *x* NxN symmetric matrix.
 - **Output** v (N*(N+1)/2)x1 vector, the lower triangular portion of the matrix x.
- **Remarks** As you can see from the example below, **vech** will not check to see if *x* is symmetric. It just packs the lower triangular portion of the matrix into a column vector in row-wise order.

```
Example
             x = seqa(10, 10, 3) + seqa(1, 1, 3)';
             v = vech(x);
             sx = xpnd(v);
                  11 12 13
             x = 21 22 23
                  31 32 33
                  11
                  21
                  22
             v =
                  31
                  32
                  33
                   11 21 31
             sx =
                   21 22 32
                   31 32 33
See also
             xpnd
```

vector (dataloop)

vector (dataloop)

Purpose	Specifies the creation of a new variable within a data loop.
Format	<pre>vector [[#]] numvar = numeric_expression; vector \$ charvar = character_expression;</pre>
Remarks	A <i>numeric_expression</i> is any valid expression returning a numeric value. A <i>character_expression</i> is any valid expression returning a character value. If neither ' \$ ' nor ' # ' is specified, ' # ' is assumed.
	vector is used in place of make when the expression returns a scalar rather than a vector. vector forces the result of such an expression to a vector of the correct length. vector could actually be used anywhere that make is used, but would generate slower code for expressions that already return vectors.
	Any variables referenced must already exist, either as elements of the source data set, as externs , or as the result of a previous make , vector , or code statement.
Example	vector const = 1;
See also	make

vget

vget

Purpose	Extracts a matrix or string from a data buffer constructed with vput .	
Format	{ x,dbuf	new } = vget(dbuf,name);
Input	dbuf	Nx1 vector, a data buffer containing various strings and matrices.
	name	string, the name of the string or matrix to extract from <i>dbuf</i> .
Output	x dbufnew	LxM matrix or string, the item extracted from $dbuf$. Kx1 vector, the remainder of $dbuf$ after x has been extracted.
Source	vpack.	src
See also	vlist,	vput, vread

view

view

Purpose	Sets the position of the observer in workbox units for 3-D plots.		
Library	pgraph		
Format	view(<i>x</i> , <i>y</i> , <i>z</i>) ;		
Input	 x scalar, the X position in workbox units. y scalar, the Y position in workbox units. z scalar, the Z position in workbox units. 		
Remarks	The size of the workbox is set with volume . The viewer must be outside of the workbox. The closer the position of the observer, the more perspective distortion there will be. If $x = y = z$, the projection will be isometric.		
	If view is not called, a default position will be calculated.		
	Use viewxyz to locate the observer in plot coordinates.		
Source	pgraph.src		
See also	volume, viewxyz		

viewxyz

viewxyz

Purpose	Sets the position of the observer in plot coordinates for 3-D plots.		
Library	pgraph		
Format	viewxyz(<i>x</i> , <i>y</i> , <i>z</i>);		
Input	 x scalar, the X position in plot coordinates. y scalar, the Y position in plot coordinates. z scalar, the Z position in plot coordinates. 		
Remarks	 The viewer must be outside of the workbox. The closer the observer, the more perspective distortion there will be. If viewxyz is not called, a default position will be calculated. Use view to locate the observer in workbox units. 		
Source	pgraph.src		

See also volume, view

vlist

vlist

Purpose	Lists the contents of a data buffer constructed with vput .	
Format	<pre>vlist(dbuf);</pre>	
Input	<i>dbuf</i> Nx1 vector, a data buffer containing various strings and matrices.	
Remarks	vlist lists the names of all the strings and matrices stored in <i>dbuf</i> .	
Source	vpack.src	
See also	vget, vput, vread	

vnamecv

vnamecv

Purpose	Returns the names of the elements of a data buffer constructed with vput .	
Format	cv = vnamecv(dbuf);	
Input	dbuf	Nx1 vector, a data buffer containing various strings and matrices.
Output	CV	Kx1 character vector containing the names of the elements of <i>dbuf</i> .
See also	vget,	vput, vread, vtypecv

volume

volume

Purpose	Sets the length, width, and height ratios of the 3-D workbox.	
Library	pgraph	
Format	volume(<i>x</i> , <i>y</i> , <i>z</i>);	
Input	 x scalar, the X length of the 3-D workbox. y scalar, the Y length of the 3-D workbox. z scalar, the Z length of the 3-D workbox. 	
Remarks	The ratio between these values is what is important. If volume is not called, a default workbox will be calculated.	
Source	pgraph.src	
See also	view	

vput

vput

Purpose	Inserts a matrix or string into a data buffer.	
Format	dbufnew :	<pre>vput(dbuf,x,xname);</pre>
Input	dbuf	Nx1 vector, a data buffer containing various strings and matrices. If <i>dbuf</i> is a scalar 0, a new data buffer will be created.
	x	LxM matrix or string, item to be inserted into <i>dbuf</i> .
	xname	string, the name of <i>x</i> , will be inserted with <i>x</i> into <i>dbuf</i> .
Output	dbufnew	Kx1 vector, the data buffer after <i>x</i> and <i>xname</i> have been inserted.
Remarks	If <i>dbuf</i> already contains <i>x</i> , the new value of <i>x</i> will replace the old one	
Source	vpack.src	
See also	vget, vlist, vread	

vread

vread

Purpose	Reads a string or matrix from a data buffer constructed with vput .		
Format	$x = \mathbf{vr}$	<pre>x = vread(dbuf,xname);</pre>	
Input	dbuf	Nx1 vector, a data buffer containing various strings and matrices.	
	xname	string, the name of the matrix or string to read from <i>dbuf</i> .	
Output	x	LxM matrix or string, the item read from <i>dbuf</i> .	
Remarks	vread , unlike vget , does not change the contents of <i>dbuf</i> . Reading x from <i>dbuf</i> does not remove it from <i>dbuf</i> .		
Source	vpack.	src	
See also	vget,	vlist, vput	

vtypecv

vtypecv

Purpose	Returns the types of the elements of a data buffer constructed with vput .	
Format	<i>cv</i> =	vtypecv(dbuf);
Input	dbuf	Nx1 vector, a data buffer containing various strings and matrices.
Output	CV	Kx1 character vector containing the types of the elements of <i>dbuf</i> .
See also	vget	, vput, vread, vnamecv

wait, waitc

wait, waitc

- **Purpose** Waits until any key is pressed.
- Format wait; waitc;
- **Remarks** If you are working in terminal mode, they don't "see" any keystrokes until ENTER is pressed. **waitc** clears any pending keystrokes before waiting until another key is pressed.
 - Source wait.src, waitc.src
- See also pause

window

window

Purpose	Partitions the window into tiled regions of equal size.	
Library	pgraph	
Format	<pre>window(row,col,typ);</pre>	
Input	 scalar, number of rows of graphic panels. scalar, number of columns of graphic panels. scalar, graphic panel attribute type. If 1, the graphic panels will be transparent, if 0, the graphic panels will be nontransparent (blanked). 	
Remarks	The graphic panels will be numbered from 1 to (<i>row</i>)X(<i>col</i>) starting from the left topmost graphic panel and moving right. See makewind for creating graphic panels of a specific size and position. (For more information, see "Publication Quality Graphics" in the <i>User Guide</i> .	
Source	pwindow.src	
See also	endwind, begwind, setwind, nextwind, getwind, makewind	

writer

writer

Purpose	Writes a matrix to a GAUSS data set.			
Format	y = writer(fh,x);			
Input	fhhandle of the file that data is to be written to. x NxK matrix.			
Output	<i>y</i> scalar specifying the number of rows of data actually written to the data set.			
Remarks	The file must have been opened with create, open for append, or open for update.			
	The data in x will be written to the data set whose handle is fh starting at the current pointer position in the file. The pointer position in the file will be updated so the next call to writer will put the next block of data after the first block. (See open and create for the initial pointer positions in the file for reading and writing.)			
	<i>x</i> must have the same number of columns as the data set. colsf returns the number of columns in a data set.			
	writer returns the number of rows actually written to the data set. If y does not equal rows(x), the disk is probably full.			
	If the data set is not double precision, the data will be rounded to nearest as it is written out.			
	If the data contain character elements, the file must be double precision or the character information will be lost.			
	If the file being written to is the 2-byte integer data type, then missing values will be written out as -32768 . These will not automatically be converted to missings on input. They can be converted with the miss function:			
	x = miss(x, -32768);			
	Trying to write complex data to a data set that was originally created to store real data will cause a program to abort with an error message. (See create for details on creating a complex data set.)			

writer

```
Example
            create fp = data with x, 10, 8;
            if fp == -1;
               errorlog "Can't create output file";
               end;
            endif;
            c = 0;
            do until c \geq 10000;
               y = rndn(100, 10);
               k = writer(fp,y);
               if k /= rows(y);
                  errorlog "Disk Full";
                  fp = close(fp);
                  end;
               endif;
               c = c+k;
            endo;
            fp = close(fp);
```

In this example, a 10000x10 data set of Normal random numbers is written to a data set called data.dat. The variable names are X01-X10.

See also open, close, create, readr, saved, seekr

xlabel

xlabel

Purpose	Sets a label for the X axis.	a
Library	pgraph	c
Format	<pre>xlabel(str);</pre>	d
Input	<i>str</i> string, the label for the X axis.	е
Source	pgraph.src	f
See also	title, ylabel, zlabel	g
		h
		i
		j
		k
		1
		m

xpnd

$\mathbf{x}\mathbf{p}\mathbf{n}\mathbf{d}$

Purpose	Expands a column vector into a symmetric matrix.			
Format	$x = \operatorname{xpnd}(v);$			
Input	<i>v</i> Kx 1 vector, to be expanded into a symmetric matrix.			
Output	<i>x</i> MxM matrix, the results of taking <i>v</i> and filling in a symmetric matrix with its elements.			
	$M = ((-1 + sqrt(1 + 8^{*}K))/2)$			
Remarks	If v does not contain the right number of elements, (that is, if $sqrt(1 + 8*\kappa)$ is not integral), then an error message is generated.			
	This function is particularly useful for hard-coding symmetric matrices, because only about half of the matrix needs to be entered.			
Example	$ x = \{ 1, \\ 2, 3, \\ 4, 5, 6, \\ 7, 8, 9, 10 \}; $			
	$y = xpin(x),$ $x = \begin{cases} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{cases}$			
	10			

\mathbf{xpnd}

y		1	2	4	7
	=	2	3	5	8
		4	5	6	9
		7	8	9	10

See also vech

W

хуz

xtics

xtics

Purpose	Sets and fixes scaling, axes numbering and tick marks for the X axis.		
Library	pgraph		
Format	<pre>xtics(min,max,step,minordiv);</pre>		
Input	minscalar, the minimum value.maxscalar, the maximum value.stepscalar, the value between major tick marks.minordivscalar, the number of minor subdivisions.		
Remarks	This routine fixes the scaling for all subsequent graphs until graphset is called. This gives you direct control over the axes endpoints and tick marks. If xtics is called after a call to scale, it will override scale. X and Y axes numbering may be reversed for xy, logx, logy, and loglog graphs. This may be accomplished by using a negative step value in the xtics and ytics functions.		
Source	pscale.src		
See also	scale, ytics, ztics		

xy

xy

Purpose	Graphs X vs. Y using Cartesian coordinates.		
Library	pgraph		
Format	xy(<i>x</i> , <i>y</i>) ;		
Input	<i>x</i> Nx1 or NxM matrix. Each column contains the X values for a particular line.		
	<i>y</i> Nx1 or NxM matrix. Each column contains the Y values for a particular line.		
Remarks	Missing values are ignored when plotting symbols. If missing values are encountered while plotting a curve, the curve will end and a new curve will begin plotting at the next non-missing value.		
Source	pxy.src		
See also	xyz, logx, logy, loglog		

хуz

xyz

xyz

Purpose	Graphs X vs. Y vs. Z using Cartesian coordinates.		
Library	pgraph		
Format	xyz(<i>x</i> , <i>y</i> , <i>z</i>) ;		
Input	<i>x</i> Nx1 or NxK matrix. Each column contains the X values for a particular line.		
	<i>y</i> Nx1 or NxK matrix. Each column contains the Y values for a particular line.		
	<i>z</i> Nx1 or NxK matrix. Each column contains the Z values for a particular line.		
Remarks	Missing values are ignored when plotting symbols. If missing values are encountered while plotting a curve, the curve will end and a new curve will begin plotting at the next non-missing value.		
Source	pxyz.src		
See also	xy, surface, volume, view		

ylabel

ylabel

Purpose	Sets a label for the Y axis.	
Library	pgraph	
Format	<pre>ylabel(str);</pre>	
Input	<i>str</i> string, the label for the Y axis.	
Source	pgraph.src	
See also	title, xlabel, zlabel	

x y z

ytics

ytics

Purpose	Sets and fixes scaling, axes numbering and tick marks for the Y axis.		
Library	pgraph		
Format	<pre>ytics(min,max,step,minordiv);</pre>		
Input	minscalar, the minimum value.maxscalar, the maximum value.stepscalar, the value between major tick marks.minordivscalar, the number of minor subdivisions.		
Remarks	This routine fixes the scaling for all subsequent graphs until graphset is called. This gives you direct control over the axes endpoints and tick marks. If ytics is called after a call to scale, it will override scale. X and Y axes numbering may be reversed for xy, logx, logy and loglog graphs. This may be accomplished by using a negative step value in the xtics and ytics functions.		
Source	pscale.src		
See also	scale, xtics, ztics		

zeros

zeros

_		a
Purpose	Creates a matrix of zeros.	b
Format	y = zeros(r,c);	С
Input	<i>r</i> scalar, the number of rows.<i>c</i> scalar, the number of columns.	d e
Output	y RxC matrix of zeros.	f
Remarks	This is faster than ones .	g
	Noninteger arguments will be truncated to an integer.	h
Example	y = zeros(3, 2);	i
	$\begin{array}{c} 0.000000 \ 0.000000 \\ V = 0.000000 \ 0.000000 \end{array}$	j k
	0.000000 0.00000	1
See also	ones, eye	m
		n
		0
		р
		q
		r
		S
		t
		u

x y z

zlabel

zlabel

Purpose	Sets a label for the Z axis.		
Library	pgraph		
Format	<pre>zlabel(str);</pre>		
Input	<i>str</i> string, the label for the Z axis.		
Source	pgraph.src		
See also	title, xlabel, ylabel		

ztics

ztics

Purpose	Sets and fixes scaling, axes numbering and tick marks for the Z axis.		
Library	pgraph		
Format	<pre>ztics(min,max,step,minordiv);</pre>		
Input	min max step minordiv	scalar, the minimum value. scalar, the maximum value. scalar, the value between major tick marks. scalar, the number of minor subdivisions. If this function is used with contour , contour labels will be placed every <i>minordiv</i> levels. If 0, there will be no labels.	
Remarks	This routin is called. This gives ztics is a	ne fixes the scaling for all subsequent graphs until graphset you direct control over the axes endpoints and tick marks. If called after a call to scale3d, it will override scale3d.	
Source	pscale.	src	
See also	scale3d	, xtics, ytics, contour	

ztics

Obsolete Commands

The following commands will no longer be supported, therefore should not be used when creating new programs.

disable	setvmode
editm	WinClear
enable	WinClearArea
files	WinClearTTYlog
font	WinClose
FontLoad	WinCloseAll
FontUnload	WinGetActive
FontUnloadAll	WinGetAttributes
graph	WinGetColorCells
line	WinGetCursor
lprint on/off	WinMove
medit	WinOpenPQG
ndpchk	WinOpenText
ndpclex	WinOpenTTY
ndpentrl	WinPan
plot	WinPrint
plotsym	WinPrintPQG
print on/off	WinRefresh
rndmod	WinRefreshArea
rndns/rndus	WinResize

Obsolete Commands

WinSetActive

WinSetBackground

WinSetColorCells

WinSetColormap

WinSetCursor

WinSetForeground

WinSetRefresh

WinSetTextWrap

WinZoomPQG

Colors Appendix

- 0 Black 8 Dark Grey
- 1 Blue 9 Light Blue
- 2 Green 10 Light Green
- 3 Cyan 11 Light Cyan
- 4 Red 12 Light Red
- 5 Magenta 13 Light Magenta
- 6 Brown 14 Yellow
- 7 Grey 15 White