
GAUSS
TM

User Guide

Aptech Systems, Inc. — Mathematical and Statistical System

Information in this document is subject to change without notice and does not represent
a commitment on the part of Aptech Systems, Inc. The software described in this
document is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.
The purchaser may make one copy of the software for backup purposes. No part of
this manual may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose other than the
purchaser’s personal use without the written permission of Aptech Systems, Inc.

c©Copyright Aptech Systems, Inc. Black Diamond WA 1984-2012
All Rights Reserved Worldwide.

SuperLU. c©Copyright 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required approvals
from U.S. Dept. of Energy). All Rights Reserved. See GAUSS Software Product
License for additional terms and conditions.

TAUCS Version 2.0, November 29, 2001. c©Copyright 2001, 2002, 2003 by Sivan
Toledo, Tel-Aviv University, stoledo@tau.ac.il. All Rights Reserved. See GAUSS
Software License for additional terms and conditions.

Econotron Software, Inc. beta, polygamma, zeta, gammacplx, lngammacplx, erfcplx,
erfccplx, psi, gradcp, hesscp Functions: c©Copyright 2009 by Econotron Software,
Inc. All Rights Reserved Worldwide.

GAUSS, GAUSS Engine and GAUSS Light are trademarks of Aptech Systems, Inc.
GEM is a trademark of Digital Research, Inc.
Lotus is a trademark of Lotus Development Corp.
HP LaserJet and HP-GL are trademarks of Hewlett-Packard Corp.
PostScript is a trademark of Adobe Systems Inc.
IBM is a trademark of International Business Machines Corporation
Hercules is a trademark of Hercules Computer Technology, Inc.
GraphiC is a trademark of Scientific Endeavors Corporation
Tektronix is a trademark of Tektronix, Inc.
Windows is a registered trademark of Microsoft Corporation.
Other trademarks are the property of their respective owners.
The Java API for the GAUSS Engine uses the JNA library. The JNA library is
covered under the LGPL license version 3.0 or later at the discretion of the

user. A full copy of this license and the JNA source code have been included
with the distribution.

Part Number: 008030
Version 12
Documentation Revision: 1074 March 1, 2012

Contents

Contents

1 Introduction

1.1 Product Overview . 1-1
1.2 Documentation Conventions . 1-2

2 Getting Started

2.1 Installation Under Linux and Solaris . 2-1
2.2 Installation Under Windows . 2-2

2.2.1 Machine Requirements . 2-2
2.2.2 Installation from Download . 2-2
2.2.3 Installation from CD . 2-2

3 Introduction to the GAUSS Graphical User Interface

3.1 Page Organization Concept . 3-1
3.2 Command Page . 3-2

3.2.1 Menus and Toolbars . 3-3
3.2.2 Command Page Toolbar . 3-4
3.2.3 Working Directory Toolbar . 3-4
3.2.4 Command History Toolbar . 3-5
3.2.5 The Action List Toolbar . 3-5

3.3 Layout . 3-6
3.3.1 Command History Window . 3-7

3.4 Command Line History and Command Line Editing 3-8
3.4.1 Error Output Window . 3-9

3.5 Source Page: Editing Programs . 3-9
3.5.1 Menus and Toolbars . 3-9
3.5.2 Layout and Usage . 3-10
3.5.3 Find and Replace . 3-14
3.5.4 Changing Editor Properties . 3-15

v

GAUSS User Guide

3.5.5 Error Output Window . 3-16
3.6 Data Page . 3-16

3.6.1 Menu Bar . 3-16
3.6.2 Layout . 3-18
3.6.3 Symbol Editor . 3-19

3.7 Debug Page . 3-20
3.7.1 Menus and Toolbars . 3-20
3.7.2 Using Breakpoints . 3-22
3.7.3 Setting and Clearing Breakpoints . 3-22
3.7.4 Stepping Through a Program . 3-22
3.7.5 Viewing and Editing Variables . 3-23

3.8 Help Page . 3-25
3.8.1 Hot Keys . 3-25

4 Navigating the GAUSS Graphical User Interface

4.1 Hot Keys and Shortcuts . 4-2
4.2 Navigating Between Pages . 4-2
4.3 Focus Program Output on I/O . 4-3
4.4 Viewing Program Output from Other Pages 4-3
4.5 F1 Help . 4-4
4.6 CTRL+F1 Source Browsing . 4-4

5 Using the GAUSS Debugger

5.1 Starting the Debugger . 5-1
5.2 Examining Variables . 5-3
5.3 The Call Stack Window . 5-4
5.4 Ending Your Debug Session . 5-5

6 GAUSS Graphics

6.1 Overview . 6-1
6.2 Basic Plotting . 6-2

vi

Contents

6.3 Plot Customization . 6-3

6.4 PlotControl Structures . 6-4

6.5 Adding Data to Existing Plots . 6-8

6.6 Creating Subplots . 6-9

6.6.1 Creating Mixed Layouts . 6-11

6.6.2 Creating Custom Regions . 6-11

6.7 Interacting with Plots in GAUSS . 6-13

6.7.1 2-D Plots . 6-13

6.7.2 3-D Plots . 6-14

6.7.3 File Export . 6-15

6.7.4 Saving Graphs . 6-16

7 Using the Command Line Interface

7.1 Viewing Graphics . 7-2

7.2 Command Line History and Command Line Editing 7-2

7.2.1 Movement . 7-3

7.2.2 Editing . 7-3

7.2.3 History Retrieval . 7-3

7.3 Interactive Commands . 7-4

7.3.1 quit . 7-4

7.3.2 ed . 7-5

7.3.3 browse . 7-5

7.3.4 config . 7-5

7.4 Debugging . 7-7

7.4.1 General Functions . 7-7

7.4.2 Listing Functions . 7-7

7.4.3 Execution Functions . 7-7

7.4.4 View Commands . 7-9

7.4.5 Breakpoint Commands . 7-9

7.5 Using the Source Browser in TGAUSS . 7-10

vii

GAUSS User Guide

8 Language Fundamentals

8.1 Expressions . 8-1
8.2 Statements . 8-2

8.2.1 Executable Statements . 8-3
8.2.2 Nonexecutable Statements . 8-3

8.3 Programs . 8-4
8.3.1 Main Section . 8-4
8.3.2 Secondary Sections . 8-5

8.4 Compiler Directives . 8-5
8.5 Procedures . 8-8
8.6 Data Types . 8-9

8.6.1 Constants . 8-9
8.6.2 Matrices . 8-11
8.6.3 Sparse Matrices . 8-18
8.6.4 N-dimensional Arrays . 8-19
8.6.5 Strings . 8-20
8.6.6 String Arrays . 8-24
8.6.7 Character Matrices . 8-26
8.6.8 Date and Time Formats . 8-27
8.6.9 Special Data Types . 8-28

8.7 Operator Precedence . 8-30
8.8 Flow Control . 8-31

8.8.1 Looping . 8-32
8.8.2 Conditional Branching . 8-34
8.8.3 Unconditional Branching . 8-35

8.9 Functions . 8-37
8.10 Rules of Syntax . 8-37

8.10.1 Statements . 8-37
8.10.2 Case . 8-38
8.10.3 Comments . 8-38
8.10.4 Extraneous Spaces . 8-38
8.10.5 Symbol Names . 8-39

viii

Contents

8.10.6 Labels . 8-39
8.10.7 Assignment Statements . 8-39
8.10.8 Function Arguments . 8-40
8.10.9 Indexing Matrices . 8-40
8.10.10 Arrays of Matrices and Strings . 8-41
8.10.11 Arrays of Procedures . 8-42

9 Operators

9.1 Element-by-Element Operators . 9-1
9.2 Matrix Operators . 9-4

9.2.1 Numeric Operators . 9-4
9.2.2 Other Matrix Operators . 9-8

9.3 Relational Operators . 9-9
9.4 Logical Operators . 9-13
9.5 Other Operators . 9-15
9.6 Using Dot Operators with Constants . 9-20
9.7 Operator Precedence . 9-22

10 Procedures and Keywords

10.1 Defining a Procedure . 10-2
10.1.1 Procedure Declaration . 10-3
10.1.2 Local Variable Declarations . 10-3
10.1.3 Body of Procedure . 10-4
10.1.4 Returning from the Procedure . 10-5
10.1.5 End of Procedure Definition . 10-5

10.2 Calling a Procedure . 10-6
10.3 Keywords . 10-7

10.3.1 Defining a Keyword . 10-7
10.3.2 Calling a Keyword . 10-8

10.4 Passing Procedures to Procedures . 10-9
10.5 Indexing Procedures . 10-10

ix

GAUSS User Guide

10.6 Multiple Returns from Procedures . 10-11
10.7 Saving Compiled Procedures . 10-13

11 Random Number Generation in GAUSS

11.1 Available Random Number Generators . 11-1
11.1.1 Choosing a random number generator 11-2

11.2 Threadsafe Random Number Generators . 11-3
11.3 Parallel Random Number Generation . 11-5

11.3.1 Multiple stream generators . 11-5
11.3.2 Block-skipping . 11-6

12 Sparse Matrices

12.1 Defining Sparse Matrices . 12-1
12.2 Creating and Using Sparse Matrices . 12-2
12.3 Sparse Support in Matrix Functions and Operators 12-3

12.3.1 Return Types for Dyadic Operators 12-4

13 N-Dimensional Arrays

13.1 Bracketed Indexing . 13-3
13.2 E×E Conformability . 13-5
13.3 Glossary of Terms . 13-5

14 Working with Arrays

14.1 Initializing Arrays . 14-1
14.1.1 areshape . 14-2
14.1.2 aconcat . 14-4
14.1.3 aeye . 14-6
14.1.4 arrayinit . 14-6
14.1.5 arrayalloc . 14-7

14.2 Assigning to Arrays . 14-8

x

Contents

14.2.1 index operator . 14-9
14.2.2 getArray . 14-12
14.2.3 getMatrix . 14-13
14.2.4 getMatrix4D . 14-13
14.2.5 getScalar3D, getScalar4D . 14-14
14.2.6 putArray . 14-15
14.2.7 setArray . 14-16

14.3 Looping with Arrays . 14-17
14.3.1 loopnextindex . 14-19

14.4 Miscellaneous Array Functions . 14-21
14.4.1 atranspose . 14-21
14.4.2 amult . 14-23
14.4.3 amean, amin, amax . 14-25
14.4.4 getDims . 14-27
14.4.5 getOrders . 14-27
14.4.6 arraytomat . 14-28
14.4.7 mattoarray . 14-28

14.5 Using Arrays with GAUSS functions . 14-28
14.6 A Panel Data Model . 14-32
14.7 Appendix . 14-35

15 Structures

15.1 Basic Structures . 15-1
15.1.1 Structure Definition . 15-1
15.1.2 Declaring an Instance . 15-2
15.1.3 Initializing an Instance . 15-3
15.1.4 Arrays of Structures . 15-4
15.1.5 Structure Indexing . 15-5
15.1.6 Saving an Instance to the Disk . 15-8
15.1.7 Loading an Instance from the Disk 15-9
15.1.8 Passing Structures to Procedures 15-9

15.2 Structure Pointers . 15-10

xi

GAUSS User Guide

15.2.1 Creating and Assigning Structure Pointers 15-10
15.2.2 Structure Pointer References . 15-11
15.2.3 Using Structure Pointers in Procedures 15-13

15.3 Special Structures . 15-15
15.3.1 The DS Structure . 15-15
15.3.2 The PV Structure . 15-16
15.3.3 Miscellaneous PV Procedures . 15-20
15.3.4 Control Structures . 15-22

15.4 sqpSolvemt . 15-23
15.4.1 Input Arguments . 15-24
15.4.2 Output Argument . 15-27
15.4.3 Example . 15-29
15.4.4 The Command File . 15-30

16 Run-Time Library Structures

16.1 The PV Parameter Structure . 16-1
16.2 Fast Pack Functions . 16-6
16.3 The DS Data Structure . 16-7

17 Multi-Threaded Programming in GAUSS

17.1 The Functions . 17-1
17.2 GAUSS Threading Concepts . 17-3
17.3 Coding With Threads . 17-4
17.4 Coding Restrictions . 17-6

18 Libraries

18.1 Autoloader . 18-1
18.1.1 Forward References . 18-2
18.1.2 The Autoloader Search Path . 18-3

18.2 Global Declaration Files . 18-9
18.3 Troubleshooting . 18-12

xii

Contents

18.3.1 Using .dec Files . 18-13

19 Compiler

19.1 Compiling Programs . 19-2
19.1.1 Compiling a File . 19-2

19.2 Saving the Current Workspace . 19-2
19.3 Debugging . 19-3

20 File I/O

20.1 ASCII Files . 20-3
20.1.1 Matrix Data . 20-3
20.1.2 General File I/O . 20-6

20.2 Data Sets . 20-7
20.2.1 Layout . 20-7
20.2.2 Creating Data Sets . 20-8
20.2.3 Reading and Writing . 20-8
20.2.4 Distinguishing Character and Numeric Data 20-9

20.3 GAUSS Data Archives . 20-11
20.3.1 Creating and Writing Variables to GDA’s 20-11
20.3.2 Reading Variables from GDA’s . 20-12
20.3.3 Updating Variables in GDA’s . 20-13

20.4 Matrix Files . 20-13
20.5 File Formats . 20-14

20.5.1 Small Matrix v89 (Obsolete) . 20-15
20.5.2 Extended Matrix v89 (Obsolete) . 20-16
20.5.3 Small String v89 (Obsolete) . 20-16
20.5.4 Extended String v89 (Obsolete) . 20-17
20.5.5 Small Data Set v89 (Obsolete) . 20-17
20.5.6 Extended Data Set v89 (Obsolete) 20-19
20.5.7 Matrix v92 (Obsolete) . 20-20
20.5.8 String v92 (Obsolete) . 20-20

xiii

GAUSS User Guide

20.5.9 Data Set v92 (Obsolete) . 20-21

20.5.10 Matrix v96 . 20-22

20.5.11 Data Set v96 . 20-23

20.5.12 GAUSS Data Archives . 20-24

21 Foreign Language Interface

21.1 Writing FLI Functions . 21-2

21.2 Creating Dynamic Libraries . 21-3

22 Data Transformations

22.1 Data Loop Statements . 22-2

22.2 Using Other Statements . 22-3

22.3 Debugging Data Loops . 22-3

22.3.1 Translation Phase . 22-3

22.3.2 Compilation Phase . 22-3

22.3.3 Execution Phase . 22-4

22.4 Reserved Variables . 22-4

23 The GAUSS Profiler

23.1 Using the GAUSS Profiler . 23-1

23.1.1 Collection . 23-1

23.1.2 Analysis . 23-2

24 Time and Date

24.1 Time and Date Formats . 24-2

24.2 Time and Date Functions . 24-4

24.2.1 Timed Iterations . 24-6

xiv

Contents

25 ATOG

25.1 Command Summary . 25-1
25.2 Commands . 25-3
25.3 Examples . 25-12
25.4 Error Messages . 25-15

26 Error Messages

27 Maximizing Performance

27.1 Library System . 27-1
27.2 Loops . 27-2
27.3 Memory Usage . 27-3

27.3.1 Hard Disk Maintenance . 27-4
27.3.2 CPU Cache . 27-4

A GAUSS Graphics Colors

B Reserved Words Appendix

C Singularity Tolerance Appendix

C.1 Reading and Setting the Tolerance . C-2
C.2 Determining Singularity . C-2

D Publication Quality Graphics

D.1 General Design . D-1
D.2 Using Publication Quality Graphics . D-2

D.2.1 Getting Started . D-2
D.2.2 Graphics Coordinate System . D-6

xv

GAUSS User Guide

D.3 Graphic Panels . D-7

D.3.1 Tiled Graphic Panels . D-7

D.3.2 Overlapping Graphic Panels . D-7

D.3.3 Nontransparent Graphic Panels . D-8

D.3.4 Transparent Graphic Panels . D-8

D.3.5 Using Graphic Panel Functions . D-8

D.3.6 Inch Units in Graphic Panels . D-10

D.3.7 Saving Graphic Panel Configurations D-10

D.4 Graphics Text Elements . D-10

D.4.1 Selecting Fonts . D-11

D.4.2 Greek and Mathematical Symbols D-12

D.5 Colors . D-14

D.6 Global Control Variables . D-14

E PQG Fonts

E.1 Simplex . E-2

E.2 Simgrma . E-3

E.3 Microb . E-4

E.4 Complex . E-5

F PQG Graphics Colors

28 Command Reference Introduction

28.1 Documentation Conventions . 28-2

28.2 Command Components . 28-3

28.3 Using This Manual . 28-4

28.4 Global Control Variables . 28-5

28.4.1 Changing the Default Values . 28-5

28.4.2 The Procedure gausset . 28-6

xvi

Contents

29 Commands by Category

29.1 Mathematical Functions . 29-1
29.2 Finance Functions . 29-23
29.3 Matrix Manipulation . 29-25
29.4 Sparse Matrix Handling . 29-30
29.5 N-Dimensional Array Handling . 29-31
29.6 Structures . 29-33
29.7 Data Handling (I/0) . 29-34
29.8 Compiler Control . 29-43
29.9 Multi-Threading . 29-44
29.10 Program Control . 29-45
29.11 OS Functions and File Management . 29-50
29.12 Workspace Management . 29-51
29.13 Error Handling and Debugging . 29-51
29.14 String Handling . 29-52
29.15 Time and Date Functions . 29-54
29.16 Console I/O . 29-56
29.17 Output Functions . 29-57
29.18 GAUSS Graphics . 29-58
29.19 PQG Graphics . 29-61

30 Command Reference

G Obsolete Commands

Index

xvii

List of Figures

List of Figures
3.1 Command Page . 3-2
3.2 Command Page Toolbar . 3-4
3.3 Working Directory Toolbar . 3-5
3.4 Command History Toolbar . 3-5
3.5 Action List Toolbar . 3-6
3.6 Command Page Widgets . 3-6
3.7 Command History Window . 3-7
3.8 Error Window . 3-9
3.9 Source Page . 3-10
3.10 Programming Editor . 3-11
3.11 Autocomplete . 3-12
3.12 Tooltips . 3-12
3.13 Find and Replace . 3-14
3.14 Find and Replace Regular Expression . 3-15
3.15 Data Page . 3-16
3.16 Data Page Toolbar . 3-17
3.17 The Struct Editor . 3-19
3.18 Debug Toolbar . 3-20
3.19 Debug Window . 3-21
3.20 Watch Window . 3-24
3.21 Help Page . 3-25
5.1 Debug Button . 5-1
5.2 Debug Window . 5-2
5.3 Debug Toolbar . 5-2
5.4 Local Variable Window . 5-3
5.5 Symbol Dump Window . 5-4
5.6 Call Stack Window . 5-5
6.1 One Curve Plot . 6-2
6.2 Two Curve Plot . 6-3
6.3 Default Settings . 6-4
6.4 Plot Using plotControl Structure . 6-5

xix

GAUSS User Guide

6.5 Example Bar Plot . 6-7
6.6 Example Adding Data to a Plot . 6-9
6.7 plotLayouts use row major ordering . 6-10
6.8 Example Subplot . 6-10
6.9 Example Mixed Layout . 6-11
6.10 Example Custom Layout . 6-13
6.11 Zoom/Pan Plot Toolbar . 6-14
6.12 Export Options . 6-15
6.13 Export Dialog . 6-16
15.1 Structure tree for e1 . 15-7

xx

Introduction 1

1.1 Product Overview

GAUSSTM is a complete analysis environment suitable for performing quick calculations, complex
analysis of millions of data points, or anything in between. Whether you are new to computerized
analysis or a seasoned programmer, the GAUSS family of products combine to offer you an easy
to learn environment that is powerful and versatile enough for virtually any numerical task.

Since its introduction in 1984, GAUSS has been the standard for serious number crunching and
complex modeling of large-scale data. Worldwide acceptance and use in government, industry,
and the academic community is a firm testament to its power and versatility.

The GAUSS System can be described several ways: It is an exceptionally efficient number
cruncher, a comprehensive programming language, and an interactive analysis environment.
GAUSS may be the only numerical tool you will ever need.

1-1

GAUSS User Guide

1.2 Documentation Conventions

The following table describes how text formatting is used to identify GAUSS programming
elements:

Text Style Use Example

regular text narrative “... text formatting is used ...”

bold text emphasis “...not supported under UNIX.”

italic text variables “... If vnames is a string or has
fewer elements than x has
columns, it will be ...”

monospace code example if scalerr(cm);

cm = inv(x);

endif;

monospace filename, path, etc. “...is located in the examples
subdirectory...”

monospace

bold

reference to a GAUSS
command or other
programming element
within a narrative
paragraph

“...as explained under create...”

S C reference to section of
the manual

“...see O P,
Section 9.7...”

1-2

G
etting

S
tarted

Getting Started 2
2.1 Installation Under Linux and Solaris

1. Make a directory to install GAUSS in.

2. cd to that directory.

3. Gunzip the .gz file if there is one.

4. Untar the .tar file.

5. Run the executable script ginstall.

6. Put the installation directory in the executable path.

7. Put the installation directory in the shared library search path.

8. Install the license. To receive a license and license installation instructions, email
license@aptech.com and include your serial number and hostid. The hostid information
of your machine is usually generated automatically during installation and stored in the
main GAUSS directory in a file called myhostid.txt.

For last-minute information, see README.term.

2-1

GAUSS User Guide

2.2 Installation Under Windows

Following are the minimum recommended machine requirements and information on how to
install GAUSS under Windows.

2.2.1 Machine Requirements

• A Pentium or AMD computer or equivalent.

• Operating System and Memory (RAM) requirements:

– Windows XP, 256 MB minimum, 512 MB recommended.

– Windows Vista 32-bit, 512 MB minimum, 1 GB recommended.

– Windows Vista 64-bit, 1 GB minimum, 2 GB or more recommended.

– Windows 7 32-bit, 1 GB minimum, 2 GB or more recommended.

– Windows 7 64-bit, 2 GB minimum, 3 GB or more recommended.

• Minimum of 100 MB free hard disk space, more may be needed depending on the size of
matrices and the complexity of the program.

• Monthly defragmenting is recommended.

2.2.2 Installation from Download

For download instructions, email info@aptech.com.

2.2.3 Installation from CD

Insert the GAUSS compact disc into the CD-ROM drive, and setup should start automatically. If
setup does not start automatically, browse to the CD-ROM drive, and double-click on the *.msi
file to launch the installer.

2-2

G
etting

S
tarted

Getting Started

You can use this procedure for the initial installation of GAUSS, and for additions or
modifications to GAUSS components.

To receive a license and license installation instructions, email license@aptech.com and include
your serial number and hostid. The hostid information of your machine is usually generated
automatically during installation and stored in the main GAUSS directory in a file called
myhostid.txt.

2-3

G
U

IIntro

Introduction to the GAUSS
Graphical User Interface 3

3.1 Page Organization Concept

The GAUSS graphical user interface is organized into separate “pages.” Pages are separate,
customizable, main windows with their own set of widgets. Each page is designed to facilitate the
performance of one of the common tasks performed in GAUSS: entering commands interactively,
editing a program, examining data, viewing graphs, debugging a program, and accessing the help
system. Each page is a tab on the main application, allowing you to instantly access a window
custom configured for the task you wish to perform. The GAUSS graphical user interface is
composed of six different pages.

Command Page For executing interactive commands.

Source Page For editing program files.

Data Page For examining and editing GAUSS matrices and other data.

Debug Page For interactively debugging your programs.

Help Page For accessing the GAUSS HTML help system.

3-1

GAUSS User Guide

Graphics Page For viewing and interacting with graphs.

Each page may be undocked and from the main application and redocked by toggling the Dock
button on the right side of the status bar. Navigation between an undocked page and the main
application may be accomplished with ALT+TAB and ALT+SHIFT+TAB. To navigate between
pages, use CTRL+TAB to cycle forward and CTRL+SHIFT+TAB to cycle backwards between
pages.

Each page has its own toolbars and menus. The menus and toolbars facilitate intuitive navigation
through the GUI as well as performing desired functions. For example, clicking the New toolbar
from any page in the GUI will bring the Source Page to the top of the window stack with a new file
opened ready for editing. More details on navigating the GUI are in Section 4, N 
GAUSS G U I.

3.2 Command Page

The Command Page is for entering interactive commands to GAUSS.

Figure 3.1: Command Page

3-2

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

3.2.1 Menus and Toolbars

Command Page

File Menu New Creates a new, untitled file in a programming editor on the
Source Page.

Open File Opens an existing file in a programming editor on the
Source Page.

Open Graph Opens a previously created GAUSS graph.

Print Prints selected text.

Recent Files Holds a selectable dropdown list of recently edited files.

Exit Exits a GAUSS session.

Edit Menu Undo Restores your last unsaved change.

Redo Re-inserts changes removed with undo.

Cut Removes selected text and copies it to the clipboard.

Copy Copies selected text to the clipboard.

Paste Copies the clipboard contents to the cursor position.

Tools Menu Preferences Allows you to configure the GAUSS user environment.

Change Font Allows you to specify a new font. Aptech recommends
using a monospaced font such as Courier.

Clear Action List Clears the recent files from the action list menus”

Change Working Allows you to browse for a new working directory.
Directory
Clear Working Deletes the contents of your working directory history.
Directory History
Recent Working Contains a dropdown list of your most recent working
Directories directories.

View Menu The View menu lets you toggle on or off the windows on the current page.

Help Menu Goto Help Takes you to the Help Page.

About GAUSS Provides information regarding your version of GAUSS.

3-3

GAUSS User Guide

Figure 3.2: Command Page Toolbar

3.2.2 Command Page Toolbar

New Opens a new, untitled document in a programming editor on the Source Page
and brings you to the Source Page.

Open Opens an existing file for editing.

Cut Removes selected text and places it on the clipboard.

Copy Copies selected text to the clipboard.

Paste Copies the clipboard contents to the cursor position.

Print Prints selected text.

Run Runs the file at the top of the Action List.

Debug Debugs the file at the top of the Action List.

Edit Opens the file at the top of the Action List.

Stop Program Stops a running GAUSS program.

3.2.3 Working Directory Toolbar

The Working Directory Toolbar contains a dropdown list that shows your current working
directory and a history of recent directories. The Change Working Directory button allows you to
browse for and select a new working directory.

3-4

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

Current Working Directory

Change Working Directory

Figure 3.3: Working Directory Toolbar

3.2.4 Command History Toolbar

Run Executes the highlighted command from the command history.

Paste Pastes the highlighted command to the Program Input/Output Window for
further editing.

Search Previous Searches the Command Output Window for previous executions of a
command and its output.

Search Next Searches the Command Output Window for the next execution of a
command and its output.

Run
Search

Previous

Paste Search
Next

Figure 3.4: Command History Toolbar

3.2.5 The Action List Toolbar

Immediately to the right of the Run, Debug, and Edit buttons is a downward pointing triangle.
Clicking on this triangle reveals the Action List. The Action List is a selectable drop down list of
your most recently acted upon files. The Run, Debug, and Edit buttons share the same Action List.
You may add a file to the Action List by running it from the command line or while editing a file,

3-5

GAUSS User Guide

click on the drop down menu from Run, Debug, or Edit, and select Current File. Clicking on the
Run button will run the file on the top of the Action List. Placing your mouse over the Run Button
produces a tooltip indicating which file will be run.

To run one of the other files in the list, access the Action List by clicking on the triangle next to the
Run button and select the name of the file you wish to run. The Debug and Edit buttons work in
the same manner.

Run Edit

Debug Stop

Figure 3.5: Action List Toolbar

3.3 Layout

The Command Page contains three main widgets: the Program Input/Output Window, the
Command History Window, and the Error Output Window, which appears when GAUSS
encounters an error.

Command
History

Window

Command Input/Output Window

Error Output Window

Figure 3.6: Command Page Widgets

3-6

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

The Program Input/Output Window allows the user to enter interactive commands as well as
displaying any output from a program run. It is also the location for user input requested by the
GAUSS functions keyw and cons.

3.3.1 Command History Window

The Command History Window contains a list of recently executed commands. Commands in the
command history can be executed by double clicking them or highlighting a command and
clicking the Run button from the Command History toolbar.

Commands can be sent to the Program Input/Output Window for further editing before executing
by highlighting a command and clicking the Paste button. The Search Next and Search Previous
buttons will search the window forward or backwards for previous executions of that command so
that you may inspect its output.

Run
Search

Previous

Paste Search
Next

Figure 3.7: Command History Window

Context Menu

Right-click in the Command History Window to bring up the context menu with the following
options:

Copy Copies the highlighted entry to the clipboard.

Delete Deletes the highlighted entry.

3-7

GAUSS User Guide

Clear Window Deletes all Command History entries.

Send to File Creates a new source file containing the highlighted commands.

Toggle View Mode Toggles between session mode and date mode.

3.4 Command Line History and Command Line Editing

When you run a command at the GAUSS prompt, it is added to your command line history. The
last 1,000 commands executed at the GAUSS command line are stored. The following keystrokes
are supported for movement and editing at the command line and for retrieving the command line
history:

Left Arrow or Moves cursor left one character.
CTRL+B

Right Arrow or Moves cursor right one character.
CTRL+F

HOME Moves cursor to beginning of line.

END or CTRL+E Moves cursor to end of line.

ALT+Left Arrow or Moves cursor left one word.
CTRL+Left Arrow

ALT+Right Arrow or Moves cursor right one word.
CTRL+Right Arrow

Up Arrow Search up through command history.

Down Arrow Search down through command history.

3-8

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

3.4.1 Error Output Window

The Error Output Window shows errors messages from program runs or interactive commands. It
may be viewed from any page by clicking the Error Output button on the right side of the status
bar. The Error Window will automatically open when an error occurs. It will close and empty its
contents on the next program run or interactive command.

Double-clicking on the first line of the error will bring you to the file and line on which the error
occurred.

Figure 3.8: Error Window

3.5 Source Page: Editing Programs

The Source Page is for creating and editing programs and procedures.

3.5.1 Menus and Toolbars

Section 3.2 provides details of the main menus and toolbars. The Source Page contains the
following additional menu options.

File Menu

Save Saves the active file.

Save As Saves the active file with a new or different file or path name.

Close Closes the selected file.

3-9

GAUSS User Guide

Close All Closes all open files.

Window Menu

Split Tiles any open programming editors horizontally.
Horizontally

Split Tiles any open programming editors vertically.
Vertically

Remove Split Removes any editor window tiling.

Close Closes the selected file.

Close All Closes all open files.

3.5.2 Layout and Usage

The Source Page contains four separate window components, Program Input/Output, Bookmarks,
Active Libraries, and Programming Editor.

Command Input/Output Window

Programming Editor

Bookmarks

Active
Libraries

Figure 3.9: Source Page

3-10

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

Programming Editor

Individual programming editors are opened in the editor docking area. The editor docking area
allows tabbing of multiple open files, with the option to tile editors with a horizontal or vertical
split. Select Window->Split Horizontally or Window->Split Vertically to tile open editor
windows.

Figure 3.10: Programming Editor

Individual editor windows can be pulled out of the Source Page by grabbing their banner and
dragging them to the desired location.

Programming editor features:

1. Syntax highlighting: The GAUSS programming editor will provide syntax highlighting for
GAUSS, C/C++, Java, Fortran, R and many other languages.

2. Autocompletion: Autocompletion is available in the GAUSS programming editor for
GAUSS functions.

Using autocomplete: if the characters you enter match items in the autocomplete list, a
dropdown box will appear containing those functions. To navigate the dropdown list, press
the down arrow or continue typing until only one selection remains. Once the desired
command is highlighted, press the ENTER key to insert the remainder of the word.

3-11

GAUSS User Guide

Figure 3.11: Autocomplete

3. Tooltips: After a GAUSS command and an opening parenthesis has been entered, a tooltip
will appear with the argument list for the function.

Figure 3.12: Tooltips

4. Code folding: At the start of code blocks (e.g., procedure definitions, do and for loops, and
if statements), the left margin of the programming editor will contain a +. Clicking the +
will hide the block of code from view and place a horizontal line across the editor indicating
folded code and changing the + to a -. Clicking on the - will reveal the hidden code.

5. Autoindenting: The GAUSS programming editor provides automatic code indenting and
deindenting. Autoindenting not only simplifies the process of writing code but also
encourages the creation of readable code.

6. Bookmarks: Bookmarks allow quick navigation to often visited lines of code. To insert a
bookmark, hold down the SHIFT key and left click in the left margin of the file on the line
where you would like to set the bookmark.

If a file contains more than one bookmark, you may use F2 to navigate to the next bookmark
in the file. To navigate between bookmarks in multiple files, use the bookmark window. The
bookmark window contains a list of all of your bookmarks.

Double-click on a listed bookmark and GAUSS will bring you to the file and line of your
bookmark regardless of whether the file is already open for editing or not.

3-12

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

7. Source code formatting: The GAUSS editor will correctly format a source file with
incorrect formatting. This is available from the context menu or with the hot key CTRL+I.

Programming Editor Hot Keys

CTRL+A Select All.

CTRL+C Copy.

CTRL+D Debug current file.

CTRL+F Find and replace.

CTRL+G Go to line.

CTRL+I Formats the current file.

CTRL+L Delete line.

CTRL+N Open new file.

CTRL+O Open existing file.

CTRL+P Print file.

CTRL+/ Used for block commenting.

CTRL+R Run current file.

CTRL+S Save current file.

CTRL+T Switches current line with the line above.

CTRL+V Paste.

CTRL+W Closes the current file.

3-13

GAUSS User Guide

CTRL+Z Undo.

CTRL+Y Redo.

CTRL+˜ Cycles through open editor windows.

3.5.3 Find and Replace

From the Edit Menu, selecting Find and Replace or pressing CTRL+F will bring up the find and
replace widget at the bottom of your open programming editor. If a word is highlighted when you
access find and replace, it will automatically be present in the find box when the find and replace
widget is opened. Press the ENTER key or > to search forward. Press the < button to search
backwards. To close the find and replace widget, press ESC or click the x button on the left.

Search/Replace
Forward

Search/Replace
Backward

Replace
Highlighted

Search
Forward

Search
BackwardExit

Figure 3.13: Find and Replace

The Replace Box has three buttons: > means replace the highlighted expression and search
forwards, < means replace the highlighted expression and search backwards and ∨ means replace
the highlighted text and do not change the cursor position.

Regular Expressions

Find and Replace in GAUSS supports regular expression searching. Regular expression searching
gives users tremendous power allowing quick and precise search and replace throughout an entire
file. For example, let us start with a file containing the following commands:

3-14

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

r = 100;

c = 50;

x = rndn(r,c);

y = rndu(r,c);

z = x.*rndn(r,c);

Regular expressions allow you to perform very specific find and replace commands. Suppose that
we want to find all usages o f rndu and rndn and replace them with rndKMu.

Figure 3.14: Find and Replace Regular Expression

To open Find and Replace, we enter CTRL+F in out open text editor. In the Find and Replace
widget, select the check box next to Regex to enable regular expression searching. One of the
most simple regular expression options is to add a ‘.’. The ‘.’ means any character. So, if we
search for “rnd.” that will find any string that contains rnd followed by any character, such as
rnda, rndb, rndc, rndn, rndu, etc. Now enter “rndKMu” in the replace box and click Replace
All. Now all instances of rndu and rndn should be replaced with rndKMu.

3.5.4 Changing Editor Properties

Programming editor preferences can be accessed by selecting: Tools->Preferences from the menu
bar. From the Preferences window, select Source from the tree on the left. Here you can
customize the programming editor’s behavior.

3-15

GAUSS User Guide

3.5.5 Error Output Window

The Error Output Window can be accessed by toggling the Error Output button on the right side of
the status bar. For details regarding the features and usage of the Error Output Window, see
Section 3.4.1.

3.6 Data Page

Section 3.2.1 provides details of the main menus and toolbars. The Data Page contains the
following changes to the toolbar and menu options.

Figure 3.15: Data Page

3.6.1 Menu Bar

Symbol Editor Menu

Edit Symbol Opens an active symbol from your current GAUSS workspace in a symbol
editor.

3-16

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

Save Symbol Saves changes to the symbol in the active symbol editor.

Reload Reloads a symbol that is out-of-sync with the GAUSS symbol table.
Symbol Note: This only applies if auto-reload mode is turned off.

Toggle Turns on/off autoreload for the active symbol editor.
Auto-reload

Preferences Brings up preference dialog for changing the settings of open symbol editors.

Window Menu

Split Tiles open symbol editors horizontally.
Horizontally

Split Tiles open symbol editors vertically.
Vertically

Toolbar

Figure 3.16: Data Page Toolbar

New Opens an active symbol from your current GAUSS workspace in a symbol
editor.

Save Saves changes to the symbol in the active symbol editor.

Reload Reloads an out-of-sync symbol editor. Note: This applies only if autoreload
is disabled.

3-17

GAUSS User Guide

3.6.2 Layout

The Data Page has two main widgets: the symbol tree and the source editor docking area. The
Program Input/Output and Error Windows are also accessible from the toggle buttons on the right
side of the status bar.

The Symbol Tree window lists all of your active symbols, organized by type. To view your active
symbols, click on the node expander or right click and select Symbol View from the context
menu. Hovering over a symbol in the Symbol Tree will produce a tooltip with a preview of the
symbol’s contents. To view the entire contents of a symbol, double-click the symbol or right-click
the symbol and select Edit. The symbol will now appear in a symbol editor (see Section 3.6.3,
Symbol Editor).

Double-clicking an already open symbol will bring that symbol to the top of the stack of open
symbol editors. If you would like to open a second copy of a symbol, right-click on the symbol in
the symbol tree and select Edit Another Copy. GAUSS allows you to open more than one copy
of each symbol so that you can examine different portions of a large matrix at the same time.

Special Case: Structures

To view a structure in the GAUSS Symbol Editor, click the + next to the Structures node on the
Symbol Tree. From here you will see a full list of all structures in your current GAUSS
workspace. Clicking the + next to an individual structure will reveal all members of a structure.

To view the contents of any member of a GAUSS structure, first open the structure in a Struct
Viewer, by either double-clicking or right-clicking and selecting Edit over the name of the
structure in the Symbol Tree. Once open in the Struct Viewer, individual members of the structure
can be accessed for viewing and editing from the Struct Tree.

The Struct Editor

When opened from the Symbol Tree, structures will be loaded into a special Struct Editor. The
Struct Editor is composed of a Struct Tree Widget and a Struct Member Editor. The Struct Tree
Widget displays the structure being edited and its members names, data types and dimensions.

3-18

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

The Struct Member editor displays the contents of individual struct members. The Struct Editor is
displayed in the Source Editor docking area like all other Source Editors.

Figure 3.17: The Struct Editor

Individual structure members can be opened for editing or viewing from the Struct Tree Widget in
the same manner as other data types, such as matrices, are opened from the Symbol Tree.
Structure members will be opened in a Symbol Editor to the right of the Struct Tree Widget.

3.6.3 Symbol Editor

Symbol editors are like spreadsheets that allow viewing and editing data in your workspace. Data
may be viewed in decimal, scientific, hexadecimal, or character representation. Double-clicking in
a cell allows you to change its contents. Navigation throughout the cells can be accomplished with
the arrow keys, tab, and the mouse.

To highlight multiple cells, click on the corresponding row or column header. To highlight the
entire contents of a symbol editory, click in the empty header box that connects the first row
header to the first column header.

Autoreload

By default, open symbol editors will automatically update when the symbol has been changed
programmatically. This behavior is referred to as autoreload. A symbol editor in autoreload mode
will show (auto) on its header. The header will also display (sync), indicating that the symbol
editor’s contents are synchronized with the current value of the symbol in the GAUSS symbol
table.

3-19

GAUSS User Guide

If you would like the contents of a particular symbol editor to stay the same even if the value of
the symbol is changed by running a program or an interactive command, you may disable
autoreload for that symbol. If the value of a symbol with autoreload disabled is changed in the
GAUSS symbol table, the symbol editor will display the message out-of-sync. This indicates
that the values in the symbol editor are not current.

3.7 Debug Page

3.7.1 Menus and Toolbars

Go

Toggle
Breakpoint

Set
Watch

Step
Over

Run to
Cursor

Step
Out

Step
Into

Clear
Breakpoint

Figure 3.18: Debug Toolbar

Go Runs the program to the next breakpoint.

Stop Terminates a debugging session.

Toggle Sets/Clears a breakpoint at the cursor.
Breakpoint

Clear Clears all breakpoints in a file.
Breakpoints

Set Watch Opens a watch variable in a symbol editor.

Step Into Runs the next executable line of code in the application and steps into
procedures.

Step Over Runs the next executable line of code, but does not step into procedures.

Step Out Runs the remainder of the current procedure and stops at the next line in the
calling procedure.

3-20

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

Run to Cursor Runs the program until it reaches the cursor position.

Components and Usage

The Debug Page is composed of five main widgets:

Breakpoint List An interactive list of all breakpoints.

Call Stack Window An interactive display of the chain of procedure calls.

Local Variable Window An interactive display of all variables that are in scope.

Variable Dump Window Displays the full contents of a variable.

Watch Window An interactive display of user specified variables.

The Debug Window indicates which line it is on by the >>> located in the left margin. This is also
the location where breakpoints are added. To add a breakpoint, click in the left margin of the
Debug Window on the line you wish to add the breakpoint. Clicking an active breakpoint will
remove it.

Figure 3.19: Debug Window

3-21

GAUSS User Guide

Starting and Stopping the Debugger

You can start debugging of a file you are in by pressing CTRL+D. Click the Debug button to
debug the file in the top of the Action List. Placing your mouse over the Debug button will reveal a
tooltip with the name of this file, or click the downward pointing triangle next to the debug button
and select a file from the list.

When the debugger is started, it will highlight the first line of code to be run. Any breakpoints are
shown in the left margin of the window. You can stop debugging at any time by clicking the Stop
button on the debug toolbar.

3.7.2 Using Breakpoints

Breakpoints stop code execution where you have inserted them. Breakpoints are normally set prior
to running the debugger, but can also be set or cleared during debugging by clicking the Set/Clear
Breakpoint command on the Debug menu.

3.7.3 Setting and Clearing Breakpoints

To set breakpoints in any part of the file not currently being executed, just click in the left margin
of the line on which you would like the breakpoint. Alternatively, you can highlight a line then
click Toggle Breakpoint.

To clear a breakpoint in the file, click on the breakpoint you would like to remove or click a line of
code that has a breakpoint set and then click Set/Clear Breakpoint. You can clear all breakpoints
from the active file by clicking Clear All Breakpoints.

3.7.4 Stepping Through a Program

GAUSS’s debugger includes the ability to step into, step out of, and step over code during
debugging.

Use Step Into to execute the line of code currently highlighted by the debugger.

3-22

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

Use Step Out to execute to the end of the current function without pause and return to the calling
function.

Use Step Over to execute the line of code currently highlighted by the debugger without entering
the functions that are called.

3.7.5 Viewing and Editing Variables

GAUSS allows you to view and edit the values of variables during debugging.

Viewing Variable Values During Debugging

Once the debugger is started, the editor window uses floatover variable windows for viewing
variable data. Floatover variable windows give a quick view of the value a variable currently holds
by simply moving your mouse over the variable name in the edit window.

The floatover variable window is only intended to give a quick view of the data, so it may not
show all data held by the variable. If you need to view more data, click on the variable name and
type CTRL+E or click the Set Watch Variable and enter the variable name. You may single-click
on a variable in the local variable window, or double-click it to view the variable in a floating
symbol editor. Entering CTRL+E will open the variable under your cursor in a floating symbol
editor window.

Editing Variable Values During Debugging

The debugger integrates the Matrix Editor to edit values of loaded variables, or to use as a watch
window to view the changing values of variables as you step through a program.

To edit a variable value, highlight the variable in the edit window, or the Program Input/Output
Window and then open the Matrix Editor. You can use the menu or toolbar to start the Matrix
Editor.

3-23

GAUSS User Guide

Making a Watch Window

You can make the Matrix Editor a Watch Window, allowing you to watch the changing value of a
variable as the lines of the program are executed. You can activate the Watch Window by clicking
Set Watch on the Debug toolbar or by highlighting a variable name in the Debugger Window and
pressing CTRL+E.

Figure 3.20: Watch Window

You use a Watch Window to see how variables change in value during debugging. Watch variables
can be specified prior to running the debugger or during a debugging session.

The debugger searches for a watch variable using the following order:

1. A local variable within a currently active procedure.

2. A global variable.

A watch variable can be the name of a matrix, a scalar, a string array, or a string. For a matrix or a
string array, the first element is displayed. If a matrix element is clicked, the Matrix Editor is
loaded with the matrix. The matrix elements can be changed during the debugging session.

3-24

G
U

IIntro

Introduction to the GAUSS Graphical User Interface

3.8 Help Page

The Help Page gives you access to the entire GAUSS help system in HTML format. The table of
contents tree is on the left. Click the + symbol to expand a particular section of the contents and
double-click on the title to view the page. As on the other pages, the Program Input/Output
Window and the Error Window are available via toggle buttons on the status bar. It can be helpful
to enter an interactive command and/or view error output while simultaneously viewing the
relevant documentation.

Figure 3.21: Help Page

3.8.1 Hot Keys

F1 Opens the Command Reference section for the highlighted
command.

CTRL+F1 Opens a programming editor with the function definition
of a highlighted procedure.

3-25

N
avigating

the
G

U
I

Navigating the GAUSS Graphical
User Interface 4

Navigation of the GAUSS Graphical User Interface is designed to naturally follow your actions.
For example, if the action you would like to perform is debugging the file that you are editing, you
can either enter CTRL+D to debug or select the file from the Debug Toolbar Button’s drop down
Action List. Both of these options will begin your debugging session and take you to the Debug
Page. Regardless of the method you choose to initiate the action, debugging in this case, the
navigation is done for you.

The same automatic and intuitive navigation is enabled for many common GAUSS actions, such
as opening a new or existing file for editing or using the F1 help.

Since GAUSS program output can be viewed in many ways such as symbol editors on the Data
Page or graphic files, running a program or executing a command does not automatically navigate
to the Command Page. However, if the Program Output Window from the Command Page is your
modality of choice, the option to automatically navigate to the Command Page can be selected as
an option under Tools->Preferences.

4-1

GAUSS User Guide

4.1 Hot Keys and Shortcuts

F2 Navigates to the next bookmark in the Active File.

F3 Find again.

F5 Run file at top of Action List.

F6 Debug file at top of Action List. Inside a debug session,
F6 will cause the debugger to run to the next breakpoint,
or the end of the file if no breakpoint is set.

F7 Edit file at top of Action List.

F8 Step in (During a debug session).

F9 Step over (During a debug session).

F10 Step out (During a debug session).

The Control Keys operate on a file that is being edited or is open in a Programming Editor and has
focus. This file is referred to as the Active File.

CTRL+R Run the Active File.

CTRL+D Debug the Active File.

4.2 Navigating Between Pages

CTRL+1 Brings up the Command Page.

CTRL+2 Brings up the Source Page.

CTRL+3 Brings up the Data Page.

4-2

N
avigating

the
G

U
I

Navigating the GAUSS Graphical User Interface

CTRL+4 Brings up the Debug Page.

CTRL+5 Brings up the Help Page.

CTRL+TAB Brings up the next page. For example, CTRL+TAB
from the Command Page will bring up the Source Page.
CTRL+TAB from the Help Page will wrap and bring up
the Command Page.

ALT+TAB Cycles between any pages that are undocked as well as
other open programs.

WINDOW+TAB Windows only: Cycles between any pages that are un-
docked as well as other open programs.

Mouse Scroll Wheel When floating over any set of tabs, the mouse scroll wheel
will cycle through the open tabs. This will work for pro-
gramming editor tabs, symbol editor tabs, and the main
page tabs on the left of the main application.

4.3 Focus Program Output on I/O

Under the Tools->Preferences->Command is a check box entitled Focus Program Output on
I/O. Selecting this option will open up a Program Output Window if any program output is printed
or if any input is requested by the GAUSS commands key, keyw, or cons.

4.4 Viewing Program Output from Other Pages

The Program Output Window may be pulled out of the Command Page by selecting the Program
Output banner and dragging it. The Program Output Window may then be placed and resized. The
Program Output Window will remain in place and on the top of the window stack, allowing you to
navigate freely between any other pages while continuing to observe the program output.

4-3

GAUSS User Guide

4.5 F1 Help

If your cursor is on the name of a GAUSS command in an editor, you can press F1 and it will take
you to the Command Reference listing for that command. Inside the Help system, highlight
command names by double-clicking them to enable F1 help navigation.

4.6 CTRL+F1 Source Browsing

For procedures that reside in a GAUSS Library (.lcg file), you can browse to the procedure
definition and to the initiation of any global variables with CTRL+F1. Like F1 help, set your
cursor on the procedure or global variable name and enter CTRL+F1. If it resides in an active
library, the source file will be immediately opened in a Programming Editor.

To learn more about creating a User Library for your procedures, see Chapter 18.

4-4

G
A

U
S

S
D

ebugger

Using the GAUSS Debugger 5
The GAUSS debugger is a powerful tool to speed up and simplify your program development.
Debugging takes place on the Debug Page, which is a full-featured dashboard providing you a
wealth of information about the status of your variables and your program every step of the way.

5.1 Starting the Debugger

Figure 5.1: Debug Button

You may start a debug session by selecting the Action List Debug button, by entering CTRL-D
from the file that you would like to debug, or by entering debug filename from the command
line. GAUSS will bring the Debug Page to the front, and the debug session will begin with the first
line of code highlighted, waiting to be run.

5-1

GAUSS User Guide

Figure 5.2: Debug Window

From here you can step through your program line-by-line, or run to a line of interest. To tell the
debugger to run to a particular line, you must first set a breakpoint. Setting a breakpoint on a line
in your program tells the debugger to pause when it gets to that line. You may set a breakpoint in
any source file by simply clicking in the margin to the left of the line numbers. You will see a red
dot appear in the margin, and a new entry will be added to the breakpoint window, which can be
viewed on both the Source and Debug Pages. New breakpoints can be added before or during a
debug session.

The Debug Page toolbar gives you the controls you need to navigate during debugging. Hover
over any of the buttons to get a tooltip with a description of the button’s function and its
corresponding hot key.

Go

Toggle
Breakpoint

Set
Watch

Step
Over

Run to
Cursor

Step
Out

Step
Into

Clear
Breakpoint

Figure 5.3: Debug Toolbar

Debug Run Runs to the next breakpoint.

Debug Stop Stops the debug session.

5-2

G
A

U
S

S
D

ebugger
Using the GAUSS Debugger

Toggle Breakpoint Toggles a breakpoint on the current line.

Clear Breakpoints Removes all breakpoints from all files.

Examine Variable Opens a user-specified variable in a floating Symbol Editor window.

Step in Steps to the next line. If the next line is a procedure, it will step inside
this procedure.

Step over Steps to the next line without stepping into other procedures.

Step out Runs through the end of the current procedure and stops in the calling
file.

Run to cursor Runs to the location of your cursor as if it were a breakpoint.

5.2 Examining Variables

When the debugger is paused at a line in your program, you may view any of the variables in your
GAUSS workspace. GAUSS offers several options for this. The first is through the Local Variable
window. This window contains an alphabetical list of every variable that is currently in scope. It
also lists the type of the variable (matrix, string, structure, etc.) and its first value. The contents of
this window are immediately updated each time you step to a new line of your program.

Figure 5.4: Local Variable Window

A single-click to one of these variables will display its full contents in the symbol dump window.
The symbol dump window is a GAUSS symbol editor, similar in appearance to a spreadsheet.

5-3

GAUSS User Guide

Double-clicking on a variable in the Local Variable window opens that variable in a floating
symbol editor.

Located just below the Local Variable window is the Watch window. The Watch window looks and
acts much the same as the Local Variable window, but it holds only variables that you specifically
add to it. This allows you to place variables of interest in a smaller list that is easier to scan.

Figure 5.5: Symbol Dump Window

You may see a tooltip preview of any variable in your file by floating your cursor over the variable
name. Placing your cursor on a variable and pressing CTRL-E will open that variable in a floating
symbol editor.

5.3 The Call Stack Window

The Call Stack window is like a map into your program. The top entry in the Call Stack window is
always your current location. It lists the name of the procedure you are in, the arguments that this
procedure takes, the name of the file it is in, and the line number you are on. The next item in the
list displays the same information for the location from which your current procedure was called.
The item after that displays the location from which that procedure was called and so on.

This list is interactive. Single-clicking on any of the items in the Call Stack window will bring you
to that particular line and file. For example, if you would like to examine the line from which your
current procedure was called, click on the second item in the call stack list. Not only will this open

5-4

G
A

U
S

S
D

ebugger
Using the GAUSS Debugger

Figure 5.6: Call Stack Window

that line and file in your Debug window, but it will also update the Local Variable window to
display all the variables that exist at that location, as well as their current values. To return to your
current location, click the top line in the Call Stack window.

5.4 Ending Your Debug Session

If you would like to terminate a debug session before the debugger has run through the entire
program, click the Debug Stop button, located at the top left of the Debug Page.

5-5

G
raphics

GAUSS Graphics 6
6.1 Overview

The plotting functionality available in GAUSS is designed to provide intuitive methods for
visualizing data using a variety of plot types. The main plot drawing functions are:

plotBar Creates a bar plot.

plotBox Creates a box plot using the box graph percentile method.

plotHist Calculates and creates a frequency histogram plot.

plotHistF Creates a histogram plot from a vector of frequencies.

plotHistP Calculates and creates a percentage frequency histogram plot.

plotLogX Creates a 2-dimensional line plot with logarithmic scaling of the x axis.

plotLogY Creates a 2-dimensional line plot with logarithmic scaling of the y axis.

plotLogLog Creates a 2-dimensional line plot with logarithmic scaling of the both the x and
y axes.

6-1

GAUSS User Guide

plotPolar Creates a polar plot.

plotScatter Creates a 2-dimensional scatter plot.

plotSurface Creates a 3-dimensional surface plot.

plotXY Creates a 2-dimensional line plot.

6.2 Basic Plotting

The simplest way to plot data in GAUSS is to use default values for the plot settings, such as line
color, line size, legend text, etc. These settings may be changed by the user from the main menu
bar: Tools->Preferences->Graphics. To create a plot using default plot settings, simply call one
of the plotting functions with your data as inputs:

// Create a sequential column vector from -5 to 5 with 101 steps

x = seqa(-5, 0.1, 101);

// Set y to the normal probability density function

y = pdfn(x);

// Plot the data

plotXY(x, y);

Figure 6.1: One Curve Plot

6-2

G
raphics

GAUSS Graphics

Each column of the input matrices is treated as a separate curve or line on the graph. Below is an
example that uses the variables created from the example above and adds an additional line:

// Create a sequential column vector from -5 to 5 with 101 steps

x = seqa(-5, 0.1, 101);

// Set y1 to the normal probability density function

y1 = pdfn(x);

// Set y2 to the Cauchy probability density function

y2 = pdfCauchy(x, 1, 1);

// Plot the data using the ˜ operator to horizontally concatenate

// y1 and y2

// Note that y1 and y2 will be plotted against the same x values

plotXY(x, y1˜y2);

Figure 6.2: Two Curve Plot

6.3 Plot Customization

GAUSS offers two ways to customize your graphs. The first is through the graphics preferences
dialogs. These may be accessed from the main application menu under
Tools->Preferences->Graphics. The second method for plot customization is using a
plotControl structure.

6-3

GAUSS User Guide

The default settings for graphics can be changed through the Tools->Preferences->Graphics
dialog box. The Graph Settings tab controls the settings that apply to the entire graph, such as
background color. The Group tabs specify the settings for each curve, or set of bars. Here you may
specify line color, thickness, symbol type, bar fill type and the corresponding legend description.
Note that you may specify different preferences for each plot type: xy, scatter, polar, etc.

Figure 6.3: Default Settings

6.4 PlotControl Structures

The GAUSS plotControl structure provides a powerful and flexible method for programmatic
control of your graphs in GAUSS. This structure is a convenient package that stores all of the
information about how you would like a specific graph to be displayed. These structures may be
saved to disk and reloaded during a future session or passed on to colleagues. Using a
plotControl structure requires just two easy steps:

1. Declare the structure.

2. Initialize the structure.

Once these steps are completed, you may change any of the plot settings in the structure. Once the
plotControl structure is set how you would like, you can pass it in as the first argument to any of

6-4

G
raphics

GAUSS Graphics

the GAUSS plot-creating functions. Below is an example that draws a graph using a
plotControl structure set to default values:

// Declare the structure

struct plotControl myPlot;

// Initialize the structure

myplot = plotGetDefaults("xy");

// Create data to plot

// Create a column vector from -3 to 3 with a step size of 0.1

x = seqa(-3, 0.1, 60);

y = sin(x);

// Plot the data using the plotControl structure

plotXY(myPlot, x, y);

Figure 6.4: Plot Using plotControl Structure

The available plotControl setting functions include:

plotGetDefaults Gets default settings for plotting graphs.

plotSetBar Sets the fill style and format of bars in a histogram or bar
graph.

plotSetBkdColor Sets background color of a graph.

6-5

GAUSS User Guide

plotSetGrid Controls the settings for the background grid of a plot.

plotSetLegend Adds a legend to a graph.

plotSetLineColor Sets line colors for a graph.

plotSetLineStyle Sets line styles for a graph.

plotSetLineSymbol Sets line symbols displayed on the plotted points of a graph.

plotSetLineThickness Sets line thickness for a graph.

plotSetNewWindow Sets whether or not new graph should be drawn in the same
window or a new window by default.

plotSetTitle Controls the settings for the title for a graph.

plotSetXLabel Controls the settings for the X-axis label on a graph.

plotSetYLabel Controls the settings for the Y-axis label on a graph.

plotSetZLabel Controls the settings for the Z-axis label on a graph.

You will notice that most of these functions begin with plotSet. This has two main advantages.
First, you may quickly and easily survey the plotSet options by typing plotSet in a GAUSS
editor and scrolling through the auto-complete list without needing to consult the documentation.
Second, this convention makes your GAUSS code easy to read and understand.

Example

// Declare plotControl structure

struct plotControl myPlot;

// Initialize the structure with the "bar" default values from

// the main application menu Tools->Preferences->Graphics

myPlot = plotGetDefaults("bar");

// Create data to plot

x = seqa(1, 1, 10);

y = abs(rndn(10, 1));

6-6

G
raphics

GAUSS Graphics

// Change plot settings

// Turn off the grid

plotSetGrid(&myPlot, "off");

// Make the background light-gray

plotSetBkdColor(&myPlot, "light gray");

// Set the title, title font and font size

plotSetTitle(&myPlot, "Example Bar Plot", "verdana", 16);

// Draw graph

plotBar(myPlot, x, y);

Figure 6.5: Example Bar Plot

Notice in the previous example that the input to the plotControlCreate function is &myPlot
and not just the variable name, myPlot. This is because all of the plotControl setting functions
take a structure pointer. The ampersand (&) in front of the variable name makes the input
argument a pointer to that structure. Passing structure pointers as arguments is much faster and
more efficient than passing an entire structure. The rule for remembering when to use a
plotControl structure pointer instead of plotControl structure is simple. If the function you
are calling sets a value in the structure, you need to use a structure pointer. In all other cases, use
the structure. Fortunately the function completion tooltip in the GAUSS editor will indicate which
is required, in case you forget this simple rule. For more information on structures and structure
pointers see Structures, Chapter 15.

6-7

GAUSS User Guide

6.5 Adding Data to Existing Plots

You may add additional data to 2-D plots. This functionality is accessed through the following:

plotAddBar Adds a set of bars to an existing 2-D graph.

plotAddBox Adds a box plot to an existing 2-D graph.

plotAddHist Adds a histogram to an existing 2-D graph.

plotAddHistF Adds a frequency histogram to an existing 2-D graph.

plotAddHistP Adds a percentage histogram to an existing 2-D graph.

plotAddPolar Adds a polar plot to an existing polar graph.

plotAddScatter Adds a scatter plot to an existing 2-D graph.

plotAddXY Adds an XY line to an existing 2-D graph.

Generally you may add any of the above plot types to any other 2-D plot type with the exception
of polar plots. You may add a polar plot to a previous polar plot, but not to any other type of graph.

Example

// Create multivariate random normal data and draw scatter plot

rndseed 19823434;

cov = { 1 0.9, 0.9 1 };

mu = { 2, 2 };

y = rndMVn(300, mu, cov);

plotScatter(y[.,1], y[.,2]);

// Create line coordinates and add to scatter plot

x = { -0.3, 4.8 };

y2 = { 0, 4.3 };

plotAddXY(x, y2);

6-8

G
raphics

GAUSS Graphics

Figure 6.6: Example Adding Data to a Plot

The plotAdd functions will not make any styling changes to the existing plot. They may,
however, increase the scale of the view if needed to accommodate the new curve.

Use the plotAdd functions only to add data to an existing graph. Do not attempt to use them to
create a new graph.

6.6 Creating Subplots

GAUSS allows you to create two types of graphs within graphs. The first is called a subplot. In
GAUSS a subplot divides the canvas up into tiles of equal size and shape.

This functionality is controlled with the plotLayout function. The plotLayout function splits
the canvas up into a specified number of rows and columns and also specifies into which cell to
draw the next graph.

// Divide the canvas into 3 rows and 2 columns and set the next

// drawn graph to be placed into the last position (which is the

// sixth cell); plotLayouts use row major ordering

plotLayout(3, 2, 6);

After calling plotLayout, all future graphs will be placed in the cell location specified by the
plotLayout call until plotLayout is called again with new parameters or a call to
plotClearLayout is made. A call to plotClearLayout will cause the next graph to be drawn to
take up the entire canvas.

6-9

GAUSS User Guide

Figure 6.7: plotLayouts use row major ordering

This next graph, after a call to plotClearLayout, will either draw over any existing graphs or be
drawn in a new window depending on your graphics preferences. This setting can be controlled
from the “On graph load” setting, located under Tools->Preferences->Graphics. It may also be
set with the plotSetNewWindow function.

Example

// Divide the canvas into 2 rows and 2 columns and place each

// successive graph in the next available cell

for i(1, 4, 1);

plotLayout(2, 2, i);

// Plot a percentage histogram with 10*i bins of random

// normal data

plotHistP(rndn(1e5, 1), 10*i);

endfor;

// Clear the layout so future graphs are not drawn in this layout

plotClearLayout();

Figure 6.8: Example Subplot

6-10

G
raphics

GAUSS Graphics

6.6.1 Creating Mixed Layouts

In GAUSS, plotLayouts may not overlap. For this functionality use the plotCustomLayout
function. However, you may divide the canvas into sections of different size as long as they do not
overlap.

Example

// Divide the canvas into a 2x2 grid and fill in the first row

plotLayout(2, 2, 1);

plotHistP(rndn(1e5,1), 20);

plotLayout(2, 2, 2);

plotHistP(rndn(1e5, 1), 40);

// Divide the canvas into a 2x1 grid and fill in the bottom half, leaving the

// top section alone

plotLayout(2, 1, 2);

plotHistP(rndu(1e5, 1), 80);

Figure 6.9: Example Mixed Layout

6.6.2 Creating Custom Regions

Custom regions in GAUSS are graphs inside of graphs. They may be placed in any location on the
canvas and may be any size. This functionality is controlled by the plotCustomLayout function.
It takes the location and size parameters for the custom region as a percentage of the entire canvas.
As with plotSetLayout, these settings will be applied to the next drawn graph.

6-11

GAUSS User Guide

// Draw a custom region that starts 25% of the distance from the left

// edge of the canvas, 10% from the bottom of the canvas with a width

// of 40% of the canvas and a height of 28% of the canvas

plotSetCustomRegion(0.25, 0.1, 0.4, 0.28);

Unlike with plotLayout, these custom regions will not delete any graphs below them and can
thus be used to place a small graph over a portion of a larger graph.

Example

// Draw a full size graph

rndseed 908734;

y = rndn(1e5, 1);

plotHistP(y, 30);

// Draw a custom region, close-up over the bottom left of the previously

// created graph

plotCustomLayout(0.1, 0.3, 0.2, 0.4);

// Set up plotControl struct with simple view

struct plotControl myPlot;

myPlot = plotGetDefaults("box");

plotSetLegend(&myPlot, "off");

plotSetGrid(&myPlot, "off");

plotSetXAxisShow(&myPlot, 0);

plotSetYAxisShow(&myPlot, 0);

// Create plot in custom region defined above

plotBox(myPlot, 0, y);

// Clear the layout, so future graphs will not be drawn in this

// custom region

plotClearLayout();

6-12

G
raphics

GAUSS Graphics

Figure 6.10: Example Custom Layout

6.7 Interacting with Plots in GAUSS

Once a graph has been created, GAUSS provides interactive zooming, panning, and the moving of
legends and subplots as well as the ability to hide and restore individual curves on the graph. Plot
rotation is also available for 3-dimensional plots.

6.7.1 2-D Plots

To interact with plots in GAUSS, first select the “Zoom/Pan Plot” button from the toolbar. With
this button selected, you will be able to perform actions on the view of a particular plot. Zooming
is controlled by the mouse scroll wheel. Scroll the mouse wheel forward to zoom in. Pan and
scroll is accomplished by drag-and-drop with the mouse. Note that upon zooming or panning, the
axes will be automatically updated to reflect the new view.

Hide/Restore Curves

Each legend item is also a button that hides and restores individual curves, bars, etc. Click on a
legend item to hide the corresponding curve. Notice that the axes will automatically scale to the
remaining curves. Click the legend item again to restore the curve to the graph.

6-13

GAUSS User Guide

Zoom/Pan
Plot

Revise
Layout

Figure 6.11: Zoom/Pan Plot Toolbar

Relocating Graphic Items

To relocate subplots or legends first select the “Revise Layout” button. You may then drag and
drop the item to its desired location. Initially, legends will be grouped with their respective graph.
This means that when you select and move a graph, its legend will also be selected and maintain
its position relative to the graph.

You may ungroup a legend from its parent graph by right-clicking the legend and selecting
“Ungroup.” This legend will no longer move along with its graph. You may regroup the legend to
the graph by right-clicking the legend and selecting “Regroup.”

If you would like to change the z-order of an item in a layout, you may select it, right-click to
bring up the context menu and then choose, either “Send to Front” or “Send to Back.” Individual
plots and their respective legends will both be affected.

6.7.2 3-D Plots

Zoom

Zooming in and out on a 3-dimensional graph may be accomplished by use of the mouse scroll
wheel.

6-14

G
raphics

GAUSS Graphics

Panning and Scrolling

To move a 3-D image without rotating it, hold down the CTRL key and drag the image to its
desired location with your mouse.

Rotate/Viewpoint Change

To rotate 3-dimensional plots and examine the graph from different viewpoints, click and drag
with the mouse.

6.7.3 File Export

GAUSS graphs may be exported to many popular file formats, including BMP, PNG, PS, SVG and
PDF. Graphics may be exported programmatically or using the graphical controls. To export a
graph programmatically, use the plotSave function, passing in the filename with extension and
the dimensions in centimeters for the second argument:

// Save the graph just created as mygraph.pdf with a width of

// 30 cm and a height of 18 cm

size = { 30, 18 };

plotSave("mygraph.pdf", size);

To export a graph using the graphical controls, select the graph you would like to export and then
select File->Export Graph from the main menu.

Figure 6.12: Export Options

6-15

GAUSS User Guide

Once you have selected a filename and clicked the save button, a window with export sizing
options will appear. This window has two sections. The first section sets the with and height of
your exported image.

The second section sets the font sizes. If “Auto size” is checked, GAUSS will automatically scale
the fonts so that they will be the same size relative to the size of the graph as they appear when
viewed in GAUSS. Otherwise you may specify individual font sizes to use for each text object.
For convenience, the font sizes specified for your graph will be automatically entered in the
respective field (title, axes and legend).

Figure 6.13: Export Dialog

6.7.4 Saving Graphs

Graphs may be saved and then reloaded later. To save a graph, select the graph you would like to
save and then select File, Save graph from the main menu. GAUSS graphs are saved in an XML
format with a .plot extension.

Graphs may also be saved programmatically with the plotSave function.

6-16

C
om

m
and

Line

Using the Command Line
Interface 7

TGAUSS is the command line version of GAUSS. The executable file, tgauss is located in the
GAUSS installation directory.

The format for using TGAUSS is:

tgauss flag(s) program program...

-b Execute file in batch mode and then exit. You can execute multiple files by
separating file names with spaces.

-l logfile Set the name of the batch mode log file when using the -b argument. The
default is tmp/gauss.log###, where ### is the process ID.

-e expression Execute a GAUSS expression. This command is not logged when GAUSS is in
batch mode.

-o Suppress the sign-on banner (output only).

-T Turn the dataloop translator on.

-t Turn the dataloop translator off.

7-1

GAUSS User Guide

7.1 Viewing Graphics

NOTE: Graphics using plot* functions are only available from the graphical user interface.

The deprecated Publication Quality Graphics graphics generated .tkf files for graphical output.
The default output for these graphics is graphic.tkf. On Windows, you can use vwr.exe to
view the graphics file; on UNIX/Linux/Mac, you can use vwrmp. Two functions are available to
convert .tkf files to PostScript for printing and viewing with external viewers: the tkf2ps
function will convert .tkf files to PostScript (.ps) files, and the tkf2eps function will convert
.tkf files to encapsulated PostScript (.eps) files. For example, to convert the file graphic.tkf
to a postscript file named graphic.ps use:

ret = tkf2ps(‘‘filename.tkf’’, ‘‘filename.ps’’)

If the function is successful it returns 0.

7.2 Command Line History and Command Line Editing

When you run a command at the TGAUSS prompt, it is added to your command line history,
which is stored in a file called .gauss_prompt_history in your $(HOME) directory on
UNIX/Linux or in your $(HOMEDRIVE)\$(HOMEPATH) directory on Windows. A separate history
for commands entered in the command line debugger is stored in a file called
.gauss_debug_prompt_history in the same directory. By default, the last 500 commands
executed at the TGAUSS and debugger command lines are stored in these files. You can change
this number by changing prompt_hist_num in your gauss.cfg file. The following keystrokes
are supported for movement and editing at the command line and for retrieving the command line
history:

7-2

C
om

m
and

Line
Using the Command Line Interface

7.2.1 Movement

HOME or CTRL+A Moves cursor to beginning of line

END or CTRL+E Moves cursor to end of line

7.2.2 Editing

DELETE OR CTRL+D Deletes character at cursor

BACKSPACE or CTRL+H Deletes character left of cursor

CTRL+U Cuts all characters left of cursor

CTRL+K Cuts all characters right of cursor, including cursor

CTRL+X Cuts whole line

ESC (Win only) Deletes whole line

CTRL+V Pastes text from buffer to left of cursor

CTRL+T Transposes character at cursor and character left of
cursor

7.2.3 History Retrieval

Up Arrow or CTRL+P Retrieves previous line in history

Down Arrow or CTRL+P Retrieves next line in history

7-3

GAUSS User Guide

PAGE UP or CTRL+W Retrieves previous line in history that matches text to left
of cursor

PAGE DOWN or
CTRL+S

Retrieves next line in history that matches text to left of
cursor

ALT+H or Prints prompt history to screen
OPTION+H (MAC only)

!! Runs last line in history

!num Runs the num line in history

!-num Runs the line num before current line in history;
!-1 is equivalent to !!

!text Runs last line in history beginning with text

ALT+/ or ALT+? or Prints help screen
OPTION+/ (MAC only)

Note that some of these keystrokes are mapped differently on different computers. For example,
on some computers, SHIFT+RIGHT ARROW behaves the same as RIGHT ARROW, while
ALT+RIGHT ARROW moves the cursor right one word. Therefore, multiple keystroke mappings
have been supported to maximize the availability of these commands on any given machine.

7.3 Interactive Commands

7.3.1 quit

The quit command will exit TGAUSS.

The format for quit is:

7-4

C
om

m
and

Line
Using the Command Line Interface

quit

You can also use the system command to exit TGAUSS from either the command line or a
program (see system in the GAUSS L R).

The format for system is:

system

7.3.2 ed

The ed command will open an input file in an external text editor (see ed in the GAUSS L
R).

The format for ed is:

ed filename

7.3.3 browse

The browse command allows you to search for specific symbols in a file and open the file in the
default editor. You can use wildcards to extend search capabilities of the browse command.

The format for browse is:

browse symbol

7.3.4 config

The config command gives you access to the configuration menu allowing you to change the way
GAUSS runs and compiles files.

7-5

GAUSS User Guide

The format for config is:

config

Run Menu

Translator Toggles on/off the translation of a file using dataloop. The translator
is not necessary for GAUSS program files not using dataloop.

Translator line Toggles on/off execution time line number tracking of the original
number tracking file before translation.

Line number Toggles on/off the execution time line number tracking. If the
tracking translator is on, the line numbers refer to the translated file.

Compile Menu

Autoload Toggles on/off the autoloader.

Autodelete Toggles on/off autodelete.

GAUSS Library Toggles on/off the GAUSS library functions.

User Library Toggles on/off the user library functions.

Declare Toggles on/off the declare warning messages during compiling.
Warnings

Compiler Trace Includes the following options:

Off Turns off the compiler trace function.

File Traces program file openings and closings.

Line Traces compilation by line.

Symbol Creates a report of procedures and the local and
global symbols they reference.

7-6

C
om

m
and

Line
Using the Command Line Interface

7.4 Debugging

The debug command runs a program under the source level debugger.

The format for debug is:

debug filename

7.4.1 General Functions

? Displays a list of available commands.

q/Esc Exits the debugger and returns to the GAUSS command line.

+/- Disables the last command repeat function.

7.4.2 Listing Functions

l number Displays a specified number of lines of source code in the current file.

lc Displays source code in the current file starting with the current line.

ll file line Displays source code in the named file starting with the specified line.

ll file Displays source code in the named file starting with the first line.

ll line Displays source code starting with the specified line. File does not change.

ll Displays the next page of source code.

lp Displays the previous page of source code.

7.4.3 Execution Functions

s number Executes the specified number of lines, stepping into procedures.

7-7

GAUSS User Guide

n number Executes the specified number of lines, stepping over procedures.

x number Executes code from the beginning of the program to the specified line count, or
until a breakpoint is hit.

g [[args]] Executes from the current line to the end of the program, stopping at
breakpoints. The optional arguments specify other stopping points. The syntax
for each optional argument is:

filename line period The debugger will stop every period times it reaches the
specified line in the named file.

filename line The debugger will stop when it reaches the specified line
in the named file.

filename ,, period The debugger will stop every period times it reaches any
line in the named file.

line period The debugger will stop every period times it reaches the
specified line in the current file.

filename The debugger will stop at every line in the named file.

line The debugger will stop when it reaches the specified line
in the current file.

procedure period The debugger will stop every period times it reaches the
first line in a called procedure.

procedure The debugger will stop every time it reaches the first line
in a called procedure.

j [[args]] Executes code to a specified line, procedure, or period in the file without
stopping at breakpoints. The optional arguments are the same as g, listed above.

jx number Executes code to the execution count specified (number) without stopping at
breakpoints.

o Executes the remainder of the current procedure (or to a breakpoint) and stops
at the next line in the calling procedure.

7-8

C
om

m
and

Line
Using the Command Line Interface

7.4.4 View Commands

v [[vars]] Searches for (a local variable, then a global variable) and displays the value of a
specified variable.

v$ [[vars]] Searches for (a local variable, then a global variable) and displays the specified
character matrix.

The display properties of matrices and string arrays can be set using the following commands.

r Specifies the number of rows to be shown.

c Specifies the number of columns to be shown.

num,num Specifies the indices of the upper left corner of the block to be shown.

w Specifies the width of the columns to be shown.

p Specifies the precision shown.

f Specifies the format of the numbers as decimal, scientific, or auto format.

q Quits the matrix viewer.

7.4.5 Breakpoint Commands

lb Shows all the breakpoints currently defined.

b [[args]] Sets a breakpoint in the code. The syntax for each optional argument is:

filename line period The debugger will stop every period times it reaches the
specified line in the named file.

filename line The debugger will stop when it reaches the specified line
in the named file.

filename ,, period The debugger will stop every period times it reaches any
line in the named file.

7-9

GAUSS User Guide

line period The debugger will stop every period times it reaches the
specified line in the current file.

filename The debugger will stop at every line in the named file.

line The debugger will stop when it reaches the specified line
in the current file.

procedure period The debugger will stop every period times it reaches the
first line in a called procedure.

procedure The debugger will stop every time it reaches the first line
in a called procedure.

d [[args]] Removes a previously specified breakpoint. The optional arguments are the
same arguments as b, listed above.

7.5 Using the Source Browser in TGAUSS

To start the Source Browser in TGAUSS, type BROWSE followed by a symbol name. When the
Source Browser is active, the prompt displays Browse:. GAUSS searches through all active
libraries for the file in which the symbol is defined. If found, the file containing the source code is
opened in the default editor.

Wildcard (*) searches can also be used. When using wildcard searches, each symbol that the string
matches will be displayed on-screen in a numbered list. To select a specific command to view in
the default editor, select the number from the list.

The Source Browser will remain active until you type CTRL-C to return to the GAUSS prompt.

7-10

Language
Fundam

entals

Language Fundamentals 8
GAUSS is a compiled language. GAUSS is also an interpreter. A compiled language, because
GAUSS scans the entire program once and translates it into a binary code before it starts to execute
the program. An interpreter, because the binary code is not the native code of the CPU. When
GAUSS executes the binary pseudocode it must “interpret” each instruction for the computer.

How can GAUSS be so fast if it is an interpreter? Two reasons. First, GAUSS has a fast
interpreter, and the binary compiled code is compact and efficient. Second, and most significantly,
GAUSS is a matrix language. It is designed to tackle problems that can be solved in terms of
matrix or vector equations. Much of the time lost in interpreting the pseudocode is made up in the
matrix or vector operations.

This chapter will enable you to understand the distinction between “compile time” and “execution
time”, two very different stages in the life of a GAUSS program.

8.1 Expressions

An expression is a matrix, string, constant, function reference, procedure reference, or any
combination of these joined by operators. An expression returns a result that can be assigned to a

8-1

GAUSS User Guide

variable with the assignment operator ‘=’.

8.2 Statements

A statement is a complete expression or command. Statements end with a semicolon.

y = x*3;

If an expression has no assignment operator (=), it will be assumed to be an implicit print
statement:

print x*3;

or

x*3;

Here is an example of a statement that is a command rather than an expression:

output on;

Commands cannot be used as a part of an expression.

There can be multiple statements on the same line as long as each statement is terminated with a
semicolon.

8-2

Language
Fundam

entals
Language Fundamentals

8.2.1 Executable Statements

Executable statements are statements that can be “executed” over and over during the execution
phase of a GAUSS program (execution time). As an executable statement is compiled, binary code
is added to the program being compiled at the current location of the instruction pointer. This
binary code will be executed whenever the interpreter passes through this section of the program.
If this code is in a loop, it will be executed each iteration of the loop.

Here are some examples of executable statements:

y = 34.25;

print y;

x = 1 3 7 2 9 4 0 3 ;

8.2.2 Nonexecutable Statements

Nonexecutable statements are statements that have an effect only when the program is compiled
(compile time). They generate no executable code at the current location of the instruction pointer.

Here are two examples:

declare matrix x = 1 2 3 4 ;

external matrix ybar;

Procedure definitions are nonexecutable. They do not generate executable code at the current
location of the instruction pointer.

Here is an example:

8-3

GAUSS User Guide

zed = rndn(3,3);

proc sqrtinv(x);

local y;

y = sqrt(x);

retp(y+inv(x));

endp;

zsi = sqrtinv(zed);

There are two executable statements in the example above: the first line and the last line. In the
binary code that is generated, the last line will follow immediately after the first line. The last line
is the call to the procedure. This generates executable code. The procedure definition generates
no code at the current location of the instruction pointer.

There is code generated in the procedure definition, but it is isolated from the rest of the program.
It is executable only within the scope of the procedure and can be reached only by calling the
procedure.

8.3 Programs

A program is any set of statements that are run together at one time. There are two sections within
a program.

8.3.1 Main Section

The main section of the program is all of the code that is compiled together WITHOUT relying on
the autoloader. This means code that is in the main file or is included in the compilation of the
main file with an #include statement. ALL executable code should be in the main section.

There must always be a main section even if it consists only of a call to the one and only procedure
called in the program.

8-4

Language
Fundam

entals
Language Fundamentals

8.3.2 Secondary Sections

Secondary sections of the program are files that are neither run directly nor included in the main
section with #include statements.

The secondary sections of the program can be left to the autoloader to locate and compile when
they are needed. Secondary sections must have only procedure definitions and other
nonexecutable statements.

#include statements are allowed in secondary sections as long as the file being included does not
violate the above criteria.

Here is an example of a secondary section:

declare matrix tol = 1.0e-15;

proc feq(a,b);

retp(abs(a-b) <= tol);

endp;

8.4 Compiler Directives

Compiler directives are commands that tell GAUSS how to process a program during compilation.
Directives determine what the final compiled form of a program will be. They can affect part or all
of the source code for a program. Directives are not executable statements and have no effect at
run-time. They do not take a semicolon at the end of the line.

The #include statement mentioned earlier is actually a compiler directive. It tells GAUSS to
compile code from a separate file as though it were actually part of the file being compiled. This
code is compiled in at the position of the #include statement.

Here are the compiler directives available in GAUSS:

#define Define a case-insensitive text-replacement or flag variable.

8-5

GAUSS User Guide

#definecs Define a case-sensitive text-replacement or flag variable.

#undef Undefine a text-replacement or flag variable.

#ifdef Compile code block if a variable has been #define’d.

#ifndef Compile code block if a variable has not been #define’d.

#iflight Compile code block if running GAUSS Light.

#ifdos Compile code block if running DOS.

#ifos2win Compile code block if running OS/2 or Windows.

#ifunix Compile code block if running UNIX.

#else Else clause for #if-#else-#endif code block.

#endif End of #if-#else-#endif code block.

#include Include code from another file in program.

#lineson Compile program with line number and file name records.

#linesoff Compile program without line number and file name records.

#srcfile Insert source file name record at this point (currently used when
doing data loop translation).

#srcline Insert source file line number record at this point (currently used
when doing data loop translation).

The #define statement can be used to define abstract constants. For example, you could define
the default graphics page size as:

#define hpage 9.0

#define vpage 6.855

8-6

Language
Fundam

entals
Language Fundamentals

and then write your program using hpage and vpage. GAUSS will replace them with 9.0 and
6.855 when it compiles the program. This makes a program much more readable.

The #ifdef–#else–#endif directives allow you to conditionally compile sections of a program,
depending on whether a particular flag variable has been #define’d. For example:

#ifdef log_10

y = log(x);

#else

y = ln(x);

#endif

This allows the same program to calculate answers using different base logarithms, depending on
whether or not the program has a #define log_10 statement at the top.

#undef allows you to undefine text-replacement or flag variables so they no longer affect a
program, or so you can #define them again with a different value for a different section of the
program. If you use #definecs to define a case-sensitive variable, you must use the right case
when #undef’ing it.

With #lineson, #linesoff, #srcline, and #srcfile you can include line number and file
name records in your compiled code, so that run-time errors will be easier to track down.
#srcline and #srcfile are currently used by GAUSS when doing data loop translation.

For more information on line number tracking, see D, Section 19.3 and see D
D L, Section 22.3. See also #lineson in the GAUSS L R.

The syntax for #srcfile and #srcline is different than for the other directives that take
arguments. Typically, directives do not take arguments in parentheses; that is, they look like
keywords:

#define red 4

#srcfile and #srcline, however, do take their arguments in parentheses (like procedures):

8-7

GAUSS User Guide

#srcline(12)

This allows you to place #srcline statements in the middle of GAUSS commands, so that line
numbers are reported precisely as you want them. For example:

#srcline(1) print "Here is a multi-line "

#srcline(2) "sentence--if it contains a run-time error, "

#srcline(3) "you will know exactly "

#srcline(4) "which part of the sentence has the problem.";

The argument supplied to #srcfile does not need quotes:

#srcfile(/gauss/test.e)

8.5 Procedures

A procedure allows you to define a new function which you can then use as if it were an intrinsic
function. It is called in the same way as an intrinsic function.

y = myproc(a,b,c);

Procedures are isolated from the rest of your program and cannot be entered except by calling
them. Some or all of the variables inside a procedure can be local variables . local variables
exist only when the procedure is actually executing and then disappear. Local variables cannot get
mixed up with other variables of the same name in your main program or in other procedures.

For details on defining and calling procedures, see P  K, chapter 10.

8-8

Language
Fundam

entals
Language Fundamentals

8.6 Data Types

There are four basic data types in GAUSS, matrices, N-dimensional arrays, strings and string
arrays. It is not necessary to declare the type of a variable, but it is good programming practice to
respect the types of variables whenever possible. The data type and size can change in the course
of a program.

The declare statement, used for compile-time initialization, enforces type checking.

Short strings of up to 8 bytes can be entered into elements of matrices, to form character matrices
(For details, see CM, Section 8.6.7).

8.6.1 Constants

The following constant types are supported:

Decimal

Decimal constants can be either integer or floating point values:

1.34e-10

1.34e123

-1.34e+10

-1.34d-10

1.34d10

8-9

GAUSS User Guide

1.34d+10

123.456789345

Up to 18 consecutive digits before and after the decimal point(depending on the platform) are
significant, but the final result will be rounded to double precision if necessary. The range is the
same as for matrices (For details, see M, Section 8.6.2.

String

String constants are enclosed in quotation marks:

“This is a string.”

Hexadecimal Integer

Hexadecimal integer constants are prefixed with 0x:

0x0ab53def2

Hexadecimal Floating Point

Hexadecimal floating point constants are prefixed with 0v. This allows you to input a double
precision value exactly as you want using 16 hexadecimal digits. The highest order byte is to the
left:

0vfff8000000000000

8-10

Language
Fundam

entals
Language Fundamentals

8.6.2 Matrices

Matrices are 2-dimensional arrays of double precision numbers. All matrices are implicitly
complex, although if it consists only of zeros, the imaginary part may take up no space. Matrices
are stored in row major order. A 2×3 real matrix will be stored in the following way from the
lowest addressed element to the highest addressed element:

[1, 1] [1, 2] [1, 3] [2, 1] [2, 2] [2, 3]

A 2×3 complex matrix will be stored in the following way from the lowest addressed element to
the highest addressed element:

(real part) [1, 1] [1, 2] [1, 3] [2, 1] [2, 2] [2, 3]
(imaginary part) [1, 1] [1, 2] [1, 3] [2, 1] [2, 2] [2, 3]

Conversion between complex and real matrices occurs automatically and is transparent to the user
in most cases. Functions are provided to provide explicit control when necessary.

All elements of a GAUSS matrix are stored in double precision floating point format, and each
takes up 8 bytes of memory. This is the IEEE 754 format:

Bytes Data Type Significant Range
Digits

8 floating point 15–16 4.19x10−307 ≤ |X| ≤ 1.67x10+308

Matrices with only one element (1×1 matrices) are referred to as scalars, and matrices with only
one row or column (1×N or N×1 matrices) are referred to as vectors.

Any matrix or vector can be indexed with two indices. Vectors can be indexed with one index.
Scalars can be indexed with one or two indices also, because scalars, vectors, and matrices are the
same data type to GAUSS.

The majority of functions and operators in GAUSS take matrices as arguments. The following
functions and operators are used for defining, saving, and loading matrices:

8-11

GAUSS User Guide

[] Indexing matrices.

= Assignment operator.

| Vertical concatenation.

∼ Horizontal concatenation.

con Numeric input from keyboard.

cons Character input from keyboard.

declare Compile-time matrix or string initialization.

let Matrix definition statement.

load Load matrix (same as loadm).

readr Read from a GAUSS matrix or data set file.

save Save matrices, procedures and strings to disk.

saved Convert a matrix to a GAUSS data set.

stof Convert string to matrix.

submat Extract a submatrix.

writer Write data to a GAUSS data set.

Following are some examples of matrix definition statements.

An assignment statement followed by data enclosed in braces is an implicit let statement. Only
constants are allowed in let statements; operators are illegal. When braces are used in let
statements, commas are used to separate rows. The statement

let x = 1 2 3, 4 5 6, 7 8 9 ;

or

8-12

Language
Fundam

entals
Language Fundamentals

x = 1 2 3, 4 5 6, 7 8 9 ;

will result in

x =
1 2 3
4 5 6
7 8 9

The statement

let x[3,3] = 1 2 3 4 5 6 7 8 9;

will result in

x =
1 2 3
4 5 6
7 8 9

The statement

let x[3,3] = 1;

will result in

x =
1 1 1
1 1 1
1 1 1

The statement

let x[3,3];

8-13

GAUSS User Guide

will result in

x =
0 0 0
0 0 0
0 0 0

The statement

let x = 1 2 3 4 5 6 7 8 9;

will result in

x =

1
2
3
4
5
6
7
8
9

Complex constants can be entered in a let statement. In the following example, the + or - is not a
mathematical operator, but connects the two parts of a complex number. There should be no
spaces between the + or - and the parts of the number. If a number has both real and imaginary
parts, the trailing ‘i’ is not necessary. If a number has no real part, you can indicate that it is
imaginary by appending the ‘i’. The statement

let x[2,2] = 1+2i 3-4 5 6i;

will result in

x =
1 + 2i 3 − 4i

5 0 + 6i

8-14

Language
Fundam

entals
Language Fundamentals

Complex constants can also be used with the declare, con and stof statements.

An “empty matrix” is a matrix that contains no data. Empty matrices are created with the let
statement and braces:

x = {};

Empty matrices are supported by several functions, including rows and cols and the
concatenation (∼,|) operators.

x = {};

hsec0 = hsec;

do until hsec-hsec0 > 6000;

x = x ˜ data_in(hsec-hsec0);

endo;

You can test whether a matrix is empty by entering rows(x), cols(x) and scalerr(x). If the
matrix is empty rows and cols will return a 0, and scalerr will return 65535.

The ∼ is the horizontal concatenation operator and the | is the vertical concatenation operator. The
statement

y = 1∼2|3∼4;

will be evaluated as

y = (1 ∼ 2) | (3 ∼ 4);

and will result in a 2×2 matrix because horizontal concatenation has precedence over vertical
concatenation:

1 2
3 4

8-15

GAUSS User Guide

The statement

y = 1+1∼2*2|3-2∼6/2;

will be evaluated as

y = ((1 + 1) ∼ (2 ∗ 2)) | ((3 − 2) ∼ (6/2));

and will result in a 2×2 matrix because the arithmetic operators have precedence over
concatenation:

2 4
1 3

For more information, see O P, Section 9.7.

The let command is used to initialize matrices with constant values:

let x[2,2] = 1 2 3 4;

Unlike the concatenation operators, it cannot be used to define matrices in terms of expressions
such as

y = x1-x2∼x2|x3*3∼x4;

The statement

y = x[1:3,5:8];

8-16

Language
Fundam

entals
Language Fundamentals

will put the intersection of the first three rows and the fifth through eighth columns of x into the
matrix y.

The statement

y = x[1 3 1,5 5 9];

will create a 3×3 matrix y with the intersection of the specified rows and columns pulled from x
(in the indicated order).

The following code

let r = 1 3 1; let c = 5 5 9; y = x[r,c];

will have the same effect as the previous example, but is more general.

The statement

y[2,4] = 3;

will set the 2,4 element of the existing matrix y to 3. This statement is illegal if y does not have at
least 2 rows and 4 columns.

The statement

x = con(3,2);

will cause the following prompt to be printed in the window:

- (1,1)

8-17

GAUSS User Guide

indicating that the user should enter the [1,1] element of the matrix. Entering a number and then
pressing ENTER will cause a prompt for the next element of the matrix to appear. Pressing ? will
display a help screen, and pressing x will exit.

The statement

load x[] = b:mydata.asc

will load data contained in an ASCII file into an N×1 vector x. (Use rows(x) to find out how
many numbers were loaded, and use reshape(x,N,K) to reshape it to an N×K matrix).

The statement

load x;

will load the matrix x.fmt from disk (using the current load path) into the matrix x in memory.

The statement

open d1 = dat1;

x = readr(d1,100);

will read the first 100 rows of the GAUSS data set dat1.dat.

8.6.3 Sparse Matrices

Many GAUSS operators and commands support the sparse matrix data type. You may use any of
the following commands to create a sparse matrix:

denseToSp Converts a dense matrix to a sparse matrix.

denseToSpRE Converts a dense matrix to a sparse matrix, using a relative epsilon.

8-18

Language
Fundam

entals
Language Fundamentals

packedToSp Creates a sparse matrix from a packed matrix of non-zero values and
row and column indices.

spCreate Creates a sparse matrix from vectors of non-zero values, row
indices, and column indices.

spEye Creates a sparse identity matrix.

spOnes Generates a sparse matrix containing only ones and zeros

spZeros Creates a sparse matrix containing no non-zero values.

See SM, Chapter 12, for more information.

8.6.4 N-dimensional Arrays

Many GAUSS commands support arrays of N dimensions. The following commands may be used
to create and manipulate an N-dimensional array:

aconcat Concatenate conformable matrices and arrays in a user-specified
dimension.

aeye Create an N-dimensional array in which the planes described by the
two trailing dimensions of the array are equal to the identity.

areshape Reshape a scalar, matrix, or array into an array of user-specified size.

arrayalloc Create an N-dimensional array with unspecified contents.

arrayinit Create an N-dimensional array with a specified fill value.

mattoarray Convert a matrix to a type array.

See N-D A, Chapter 13, for a more detailed explanation.

8-19

GAUSS User Guide

8.6.5 Strings

Strings can be used to store the names of files to be opened, messages to be printed, entire files, or
whatever else you might need. Any byte value is legal in a string from 0–255. The buffer where a
string is stored always contains a terminating byte of ASCII 0. This allows passing strings as
arguments to C functions through the Foreign Language Interface.

Here is a partial list of the functions for manipulating strings:

$+ Combine two strings into one long string.

ˆ Interpret following name as a variable, not a literal.

chrs Convert vector of ASCII codes to character string.

dttostr Convert a matrix containing dates in DT scalar format to a string
array.

ftocv Character representation of numbers in N×K matrix.

ftos Character representation of numbers in 1×1 matrix.

ftostrC Convert a matrix to a string array using a C language format
specification.

getf Load ASCII or binary file into string.

indcv Find index of element in character vector.

lower Convert to lowercase.

stof Convert string to floating point.

strindx Find index of a string within a second string.

strlen Length of a string.

strsect Extract substring of string.

strsplit Split an N×1 string vector into an N×K string array of the individual
tokens.

8-20

Language
Fundam

entals
Language Fundamentals

strsplitPad Split a string vector into a string array of the individual tokens. Pads
on the right with null strings.

strtodt Convert a string array of dates to a matrix in DT scalar format.

strtof Convert a string array to a numeric matrix.

strtofcplx Convert a string array to a complex numeric matrix.

upper Convert to uppercase.

vals Convert from string to numeric vector of ASCII codes.

Strings can be created like this:

x = "example string";

or

x = cons; /* keyboard input */

or

x = getf("myfile",0); /* read a file into a string */

They can be printed like this:

print x;

A character matrix must have a ‘$’ prefixed to it in a print statement:

print $x;

8-21

GAUSS User Guide

A string can be saved to disk with the save command in a file with a .fst extension and then
loaded with the load command:

save x;

loads x;

or

loads x=x.fst;

The backslash is used as the escape character inside double quotes to enter special characters:

"\b" backspace (ASCII 8)
"\e" escape (ASCII 27)
"\f" formfeed (ASCII 12)
"\g" beep (ASCII 7)
"\l" line feed (ASCII 10)
"\r" carriage return (ASCII 13)
"\t" tab (ASCII 9)
"\\" a backslash
"\###" the ASCII character whose decimal value is “###”.

When entering DOS pathnames in double quotes, two backslashes must be used to insert one
backslash:

st = "c:\\gauss\\myprog.prg";

An important use of strings and character elements of matrices is with the substitution operator (ˆ).

In the command

create f1 = olsdat with x,4,2;

8-22

Language
Fundam

entals
Language Fundamentals

by default, GAUSS will interpret the olsdat as a literal; that is, the literal name of the GAUSS
data file you want to create. It will also interpret the x as the literal prefix string for the variable
names: x1 x2 x3 x4.

If you want to get the data set name from a string variable, the substitution operator (ˆ) could be
used as:

dataset="olsdat";

create f1=ˆdataset with x,4,2;

If you want to get the data set name from a string variable and the variable names from a character
vector, use

dataset="olsdat";

let vnames=age pay sex;

create f1=ˆdataset with ˆvnames,0,2;

The substitution operator (ˆ) works with load and save also:

lpath="/gauss/procs";

name="mydata";

load path=ˆlpath x=ˆname;

command="dir *.fmt";

The general syntax is:

ˆvariable name

Expressions are not allowed. The following commands are supported with the substitution
operator (ˆ):

8-23

GAUSS User Guide

create f1=ˆdataset with ˆvnames,0,2;

create f1=ˆdataset using ˆcmdfile;

open f1=ˆdataset;

output file=ˆoutfile;

load x=ˆdatafile;

load path=ˆlpath x,y,z,t,w;

loadexe buf=ˆexefile;

save ˆname=x;

save path=ˆspath;

dos ˆcmdstr;

run ˆprog;

msym ˆmstring;

8.6.6 String Arrays

String arrays are N×K matrices of strings. Here is a partial list of the functions for manipulating
string arrays:

$| Vertical string array concatenation operator.

$∼ Horizontal string array concatenation operator.

[] Extract subarrays or individual strings from their corresponding
array,

or assign their values.

′ Transpose operator.

.′ Bookkeeping transpose operator.

declare Initialize variables at compile time.

delete Delete specified global symbols.

fgetsa Read multiple lines of text from a file.

fgetsat Reads multiple lines of text from a file, discarding newlines.

8-24

Language
Fundam

entals
Language Fundamentals

format Define output format for matrices, string arrays, and strings.

fputs Write strings to a file.

fputst Write strings to a file, appending newlines.

let Initialize matrices, strings, and string arrays.

loads Load a string or string array file (.fst file).

lprint Print expressions to the printer.

lshow Print global symbol table to the printer.

print Print expressions on window and/or auxiliary output.

reshape Reshape a matrix or string array to new dimensions.

save Save matrix, string array, string, procedure, function or keyword to

disk and gives the disk file either a .fmt, .fst or .fcg extension.

show Display global symbol table.

sortcc Quick-sort rows of matrix or string array based on character column.

type Indicate whether variable passed as argument is matrix, string, or

string array.

typecv Indicate whether variables named in argument are strings, string

arrays, matrices, procedures, functions or keywords.

varget Access the global variable named by a string array.

varput Assign the global variable named by a string array.

vec Stack columns of a matrix or string array to form a column vector.

vecr Stack rows of a matrix or string array to form a column vector.

String arrays are created through the use of the string array concatenation operators. Below is a
contrast of the horizontal string and horizontal string array concatenation operators.

8-25

GAUSS User Guide

x = "age";

y = "pay";

n = "sex";

s = x $+ y $+ n;

sa = x $∼ y $∼ n;

s = agepaysex

sa = age pay sex

8.6.7 Character Matrices

Matrices can have either numeric or character elements. For convenience, a matrix containing
character elements is referred to as a character matrix.

A character matrix is not a separate data type, but gives you the ability to store and manipulate
data elements that are composed of ASCII characters as well as floating point numbers. For
example, you may want to concatenate a column vector containing the names of the variables in an
analysis onto a matrix containing the coefficients, standard errors, t-statistic, and p-value. You can
then print out the entire matrix with a separate format for each column with one call to the
function printfm.

The logic of the programs will dictate the type of data assigned to a matrix, and the increased
flexibility allowed by being able to bundle both types of data together in a single matrix can be
very powerful. You could, for instance, create a moment matrix from your data, concatenate a new
row onto it containing the names of the variables and save it to disk with the save command.

Numeric matrices are double precision, which means that each element is stored in 8 bytes. A
character matrix can thus have elements of up to 8 characters.

GAUSS does not automatically keep track of whether a matrix contains character or numeric
information. The ASCII to GAUSS conversion program ATOG will record the types of variables
in a data set when it creates it. The create command will, also. The function vartypef gets a
vector of variable type information from a data set. This vector of ones and zeros can be used by
printfm when printing your data. Since GAUSS does not know whether a matrix has character or

8-26

Language
Fundam

entals
Language Fundamentals

numeric information, it is up to you to specify which type of data it contains when printing the
contents of the matrix. (For details, see print and printfm in the GAUSS L R.)

Most functions that take a string argument will take an element of a character matrix also,
interpreting it as a string of up to 8 characters.

8.6.8 Date and Time Formats

DT Scalar Format

The DT scalar format is a double precision representation of the date and time. In the DT scalar
format, the number

20010421183207

represents 18:32:07 or 6:32:07 PM on April 21, 2001.

DTV Vector Format

The DTV vector is a 1×8 vector. The format for the DTV vector is:

[1] Year
[2] Month, 1-12
[3] Day of month, 1-31
[4] Hour of day, 0-23
[5] Minute of hour, 0-59
[6] Second of minute, 0-59
[7] Day of week, 0-6 where 0 is Sunday
[8] Day since beginning of year, 0-365

UTC Scalar Format

The UTC scalar format is the number of seconds since January 1, 1970, Greenwich Mean Time.

8-27

GAUSS User Guide

8.6.9 Special Data Types

The IEEE floating point format has many encodings that have special meaning. The print
command will print them accurately so that you can tell if your calculation is producing
meaningful results.

NaN

There are many floating point encodings which do not correspond to a real number. These
encodings are referred to as NaN’s. NaN stands for Not A Number.

Certain numerical errors will cause the math coprocessor to create a NaN called an “indefinite”.
This will be printed as a -NaN when using the print command. These values are created by the
following operations:

• +∞ plus −∞

• +∞ minus +∞

• −∞ minus −∞

• 0 ∗ ∞

• ∞/∞

• 0 / 0

• Operations where one or both operands is a NaN

• Trigonometric functions involving∞

INF

When the math coprocessor overflows, the result will be a properly signed infinity. Subsequent
calculations will not deal well with an infinity; it usually signals an error in your program. The
result of an operation involving an infinity is most often a NaN.

8-28

Language
Fundam

entals
Language Fundamentals

DEN, UNN

When some math coprocessors underflow, they may do so gradually by shifting the significand of
the number as necessary to keep the exponent in range. The result of this is a denormal (DEN).
When denormals are used in calculations, they are usually handled automatically in an appropriate
way. The result will either be an unnormal (UNN), which like the denormal represents a number
very close to zero, or a normal, depending on how significant the effect of the denormal was in the
calculation. In some cases the result will be a NaN.

Following are some procedures for dealing with these values. These procedures are not defined in
the Run-Time Library. If you want to use them, you will need to define them yourself.

The procedure isindef will return 1 (true) if the matrix passed to it contains any NaN’s that are
the indefinite mentioned earlier. The GAUSS missing value code as well as GAUSS scalar error
codes are NaN’s, but this procedure tests only for indefinite:

proc isindef(x);

retp(not x $/= __INDEFn);

endp;

Be sure to call gausset before calling isindef. gausset will initialize the value of the global
__INDEFn to a platform-specific encoding.

The procedure normal will return a matrix with all denormals and unnormals set to zero.

proc normal(x);

retp(x .* (abs(x) .> 4.19e-307));

endp;

The procedure isinf, will return 1 (true) if the matrix passed to it contains any infinities:

proc isinf(x);

local plus,minus;

plus = __INFp;

8-29

GAUSS User Guide

minus = __INFn;

retp(not x /= plus or not x /= minus);

endp;

Be sure to call gausset before calling isinf. gausset will initialize the values of the globals
__INFn and __INFp to platform specific encodings.

8.7 Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the operators
involved and the order in which they are used. For example, the * and / operators have a higher
precedence than the + and - operators. In expressions that contain these operators, the operand
pairs associated with the * or / operator are evaluated first. Whether * or / is evaluated first
depends on which comes first in the particular expression. For a listing of the precedence of all
operators, see O P, Section 9.7.

The expression

-5+3/4+6*3

is evaluated as

(−5) + (3/4) + (6 ∗ 3)

Within a term, operators of equal precedence are evaluated from left to right.

The term

2ˆ3ˆ7

8-30

Language
Fundam

entals
Language Fundamentals

is evaluated

(23)7

In the expression

f1(x)*f2(y)

f1 is evaluated before f2.

Here are some examples:

Expression Evaluation

a+b*c+d (a + (b ∗ c)) + d

-2+4-6*inv(8)/9 ((−2) + 4) − ((6 ∗ inv(8))/9)

3.14ˆ5*6/(2+sqrt(3)/4) ((3.145) ∗ 6)/(2 + (sqrt(3)/4))

-a+b*cˆ2 (−a) + (b ∗ (c2))

a+b-c+d-e (((a + b) − c) + d) − e

aˆbˆc*d ((ab)c) ∗ d

a*b/d*c ((a ∗ b)/d) ∗ c

aˆb+c*d (ab) + (c ∗ d)

2ˆ4! 2(4!)

2*3! 2 ∗ (3!)

8.8 Flow Control

A computer language needs facilities for decision making and looping to control the order in
which computations are done. GAUSS has several kinds of flow control statements.

8-31

GAUSS User Guide

8.8.1 Looping

do loop

The do statement can be used in GAUSS to control looping.

do while scalar expression; /* loop if expression is true */
.
.
statements
.
.

endo;

also

do until scalar expression; /* loop if expression is false */
.
.
statements
.
.

endo;

The scalar expression is any expression that returns a scalar result. The expression will be
evaluated as TRUE if its real part is nonzero and FALSE if it is zero. There is no counter variable
that is automatically incremented in a do loop. If one is used, it must be set to its initial value
before the loop is entered and explicitly incremented or decremented inside the loop.

The following example illustrates nested do loops that use counter variables.

format /rdn 1,0;

space = " ";

comma = ",";

i = 1;

do while i <= 4;

j = 1;

8-32

Language
Fundam

entals
Language Fundamentals

do while j <= 3;

print space i comma j;;

j = j+1;

endo;

i = i+1;

print;

endo;

This will print:

1, 1 1, 2 1, 3
2, 1 2, 2 2, 3
3, 1 3, 2 3, 3
4, 1 4, 2 4, 3

Use the relational and logical operators without the dot ‘.’ in the expression that controls a do
loop. These operators always return a scalar result.

break and continue are used within do loops to control execution flow. When break is
encountered, the program will jump to the statement following the endo. This terminates the loop.
When continue is encountered, the program will jump up to the top of the loop and reevaluate
the while or until expression. This allows you to reiterate the loop without executing any more
of the statements inside the loop:

do until eof(fp); /* continue jumps here */

x = packr(readr(fp,100));

if scalmiss(x);

continue; /* iterate again */

endif;

s = s + sumc(x);

count = count + rows(x);

if count >= 10000;

break; /* break out of loop */

endif;

endo;

mean = s / count; /* break jumps here */

8-33

GAUSS User Guide

for loop

The fastest looping construct in GAUSS is the for loop:

for counter (start, stop, step);
.
.
statements
.
.

endfor;

counter is the literal name of the counter variable. start, stop and step are scalar expressions. start
is the initial value, stop is the final value and step is the increment.

break and continue are also supported by for loops. (For more information, see for in the
GAUSS L R.)

8.8.2 Conditional Branching

The if statement controls conditional branching:

if scalar expression;
.
.
statements
.
.

elseif scalar expression;
.
.
statements
.
.

8-34

Language
Fundam

entals
Language Fundamentals

else;

.

.
statements
.
.

endif;

The scalar expression is any expression that returns a scalar result. The expression will be
evaluated as TRUE if its real part is nonzero and FALSE if it is zero.

GAUSS will test the expression after the if statement. If it is TRUE, then the first list of
statements is executed. If it is FALSE, then GAUSS will move to the expression after the first
elseif statement, if there is one, and test it. It will keep testing expressions and will execute the
first list of statements that corresponds to a TRUE expression. If no expression is TRUE, then the
list of statements following the else statement is executed. After the appropriate list of statements
is executed, the program will go to the statement following the endif and continue on.

Use the relational and logical operators without the dot ‘.’ in the expression that controls an if or
elseif statement. These operators always return a scalar result.

if statements can be nested.

One endif is required per if clause. If an else statement is used, there may be only one per if
clause. There may be as many elseif’s as are required. There need not be any elseif’s or any
else statement within an if clause.

8.8.3 Unconditional Branching

The goto and gosub statements control unconditional branching. The target of both a goto and a
gosub is a label.

goto

A goto is an unconditional jump to a label with no return:

8-35

GAUSS User Guide

label:

.

.

goto label;

Parameters can be passed with a goto. The number of parameters is limited by available stack
space. This is helpful for common exit routines:

.

.

goto errout("Matrix singular");

.

.

goto errout("File not found");

.

.

errout:

pop errmsg;

errorlog errmsg;

end;

gosub

With a gosub, the address of the gosub statement is remembered and when a return statement is
encountered, the program will resume executing at the statement following the gosub.

Parameters can be passed with a gosub in the same way as a goto. With a gosub it is also
possible to return parameters with the return statement.

Subroutines are not isolated from the rest of your program and the variables referred to between
the label and the return statement can be accessed from other places in your program.

Since a subroutine is only an address marked by a label, there can be subroutines inside of
procedures. The variables used in these subroutines are the same variables that are known inside
the procedure. They will not be unique to the subroutine, but they may be locals that are unique to

8-36

Language
Fundam

entals
Language Fundamentals

the procedure that the subroutine is in. (For details, see gosub in the GAUSS L
R.)

8.9 Functions

Single line functions that return one item can be defined with the fn statement.

fn area(r) = pi * r * r;

These functions can be called in the same way as intrinsic functions. The above function could be
used in the following program sequence.

diameter = 3;

radius = 3 / 2;

a = area(radius);

8.10 Rules of Syntax

This section lists the general rules of syntax for GAUSS programs.

8.10.1 Statements

A GAUSS program consists of a series of statements. A statement is a complete expression or
command. Statements in GAUSS end with a semicolon with one exception: from the GAUSS
command line, the final semicolon in an interactive program is implicit if it is not explicitly given:

(gauss) x=5; z=rndn(3,3); y=x+z

8-37

GAUSS User Guide

Column position is not significant. Blank lines are allowed. Inside a statement and outside of
double quotes, the carriage return/line feed at the end of a physical line will be converted to a
space character as the program is compiled.

A statement containing a quoted string can be continued across several lines with a backslash as
follows.

s = "This is one really long string that would be "\

"difficult to assign in just a single line.";

8.10.2 Case

GAUSS does not distinguish between uppercase and lowercase except inside double quotes.

8.10.3 Comments

// This comments out all text between the ’//’ and the end of

// the line

/* This kind of comment can be nested */

@ We consider this kind of comment to be obsolete, but it is

supported for backwards compatibility @

8.10.4 Extraneous Spaces

Extraneous spaces are significant in print and lprint statements where the space is a delimiter
between expressions:

print x y z;

8-38

Language
Fundam

entals
Language Fundamentals

In print and lprint statements, spaces can be used in expressions that are in parentheses:

print (x * y) (x + y);

8.10.5 Symbol Names

The names of matrices, strings, procedures, and functions can be up to 32 characters long. The
characters must be alphanumeric or an underscore. The first character must be alphabetic or an
underscore.

8.10.6 Labels

A label is used as the target of a goto or a gosub. The rules for naming labels are the same as for
matrices, strings, procedures, and functions. A label is followed immediately by a colon:

here:

The reference to a label does not use a colon:

goto here;

8.10.7 Assignment Statements

The assignment operator is the equal sign ‘=’:

y = x + z;

Multiple assignments must be enclosed in braces ‘{ }’:

8-39

GAUSS User Guide

mant,pow = base10(x);

The comparison operator (equal to) is two equal signs ‘= =’:

if x == y;

print "x is equal to y";

endif;

8.10.8 Function Arguments

The arguments to functions are enclosed in parentheses ‘()’:

y = sqrt(x);

8.10.9 Indexing Matrices

Brackets ‘[]’ are used to index matrices:

x = { 1 2 3,

3 7 5,

3 7 4,

8 9 5,

6 1 8 };

y = x[3,3];

z = x[1 2:4,1 3];

Vectors can be indexed with either one or two indices:

v = 1 2 3 4 5 6 7 8 9 ;

k = v[3];

j = v[1,6:9];

8-40

Language
Fundam

entals
Language Fundamentals

x[2,3] returns the element in the second row and the third column of x.

x[1 3 5,4 7] returns the submatrix that is the intersection of rows 1, 3, and 5 and columns 4 and
7.

x[.,3] returns the third column of x.

x[3:5,.] returns the submatrix containing the third through the fifth rows of x.

The indexing operator will take vector arguments for submatrix extraction or submatrix
assignments:

y = x[rv,cv];

y[rv,cv] = x;

rv and cv can be any expressions returning vectors or matrices. The elements of rv will be used
as the row indices and the elements of cv will be used as the column indices. If rv is a scalar 0, all
rows will be used; if cv is a scalar 0, all columns will be used. If a vector is used in an index
expression, it is illegal to use the space operator or the colon operator on the same side of the
comma as the vector.

8.10.10 Arrays of Matrices and Strings

It is possible to index sets of matrices or strings using the varget function.

In this example, a set of matrix names is assigned to mvec. The name y is indexed from mvec and
passed to varget which will return the global matrix y. The returned matrix is inverted and
assigned to g:

mvec = { x y z a };

i = 2;

g = inv(varget(mvec[i]));

8-41

GAUSS User Guide

The following procedure can be used to index the matrices in mvec more directly:

proc imvec(i);

retp(varget(mvec[i]));

endp;

Then imvec(i) will equal the matrix whose name is in the ith element of mvec.

In the example above, the procedure imvec() was written so that it always operates on the vector
mvec. The following procedure makes it possible to pass in the vector of names being used:

proc get(array,i);

retp(varget(array[i]));

endp;

Then get(mvec,3) will return the 3rd matrix listed in mvec.

proc put(x,array,i);

retp(varput(x,array[i]));

endp;

And put(x,mvec,3) will assign x to the 3rd matrix listed in mvec and return a 1 if successful or a
0 if it fails.

8.10.11 Arrays of Procedures

It is also possible to index procedures. The ampersand operator (&) is used to return a pointer to a
procedure.

Assume that f1, f2, and f3 are procedures that take a single argument. The following code
defines a procedure fi that will return the value of the ith procedure, evaluated at x.

8-42

Language
Fundam

entals
Language Fundamentals

nms = &f1 | &f2 | &f3;

proc fi(x,i);

local f;

f = nms[i];

local f:proc;

retp(f(x));

endp;

fi(x,2) will return f2(x). The ampersand is used to return the pointers to the procedures. nms is
a numeric vector that contains a set of pointers. The local statement is used twice. The first tells
the compiler that f is a local matrix. The ith pointer, which is just a number, is assigned to f. Then
the second local statement tells the compiler to treat f as a procedure from this point on; thus the
subsequent statement f(x) is interpreted as a procedure call.

8-43

O
perators

Operators 9
9.1 Element-by-Element Operators

Element-by-element operators share common rules of conformability. Some functions that have
two arguments also operate according to the same rules.

Element-by-element operators handle those situations in which matrices are not conformable
according to standard rules of matrix algebra. When a matrix is said to be E×E conformable, it
refers to this element-by-element conformability . The following cases are supported:

matrix op matrix

matrix op scalar
scalar op matrix

matrix op vector
vector op matrix

vector op vector

9-1

GAUSS User Guide

In a typical expression involving an element-by-element operator

z = x + y;

conformability is defined as follows:

• If x and y are the same size, the operations are carried out corresponding element by
corresponding element:

x =
1 3 2
4 5 1
3 7 4

y =
2 4 3
3 1 4
6 1 2

z =
3 7 5
7 6 5
9 8 6

• If x is a matrix and y is a scalar, or vice versa, then the scalar is operated on with respect to
every element in the matrix. For example, x + 2 will add 2 to every element of x:

x =
1 3 2
4 5 1
3 7 4

y = 2

z =
3 5 4
6 7 3
5 9 6

9-2

O
perators

Operators

• If x is an N×1 column vector and y is an N×K matrix, or vice versa, the vector is swept
“across” the matrix:

vector matrix

1 −→ 2 4 3

4 −→ 3 1 4

3 −→ 6 1 2

result

3 5 4

7 5 8

9 4 5

• If x is an 1×K column vector and y is an N×K matrix, or vice versa, then the vector is swept
“down” the matrix:

vector 2 4 3

↓ ↓ ↓

2 4 3

matrix 3 1 4

6 1 2

4 8 6

result 5 5 7

8 5 5

• When one argument is a row vector and the other is a column vector, the result of an
element-by-element operation will be the “table” of the two:

9-3

GAUSS User Guide

row vector 2 4 3 1

3 5 7 6 4

column vector 2 4 6 5 3

5 7 9 8 6

If x and y are such that none of these conditions apply, the matrices are not conformable to these
operations and an error message will be generated.

9.2 Matrix Operators

The following operators work on matrices. Some assume numeric data and others will work on
either character or numeric data.

9.2.1 Numeric Operators

For details on how matrix conformability is defined for element-by-element operators, see
E--E O, Section 9.1.

+ Addition

y = x + z;

Performs element-by-element addition.

− Subtraction or negation

y = x - z;
y = -k;

9-4

O
perators

Operators

Performs element-by-element subtraction or the negation of all elements, depending on
context.

* Matrix multiplication or multiplication

y = x * z;

When z has the same number of rows as x has columns, this will perform matrix
multiplication (inner product). If x or z are scalar, this performs standard
element-by-element multiplication.

/ Division or linear equation solution

x = b / A;

If A and b are scalars, this performs standard division. If one of the operands is a matrix and
the other is scalar, the result is a matrix the same size with the results of the divisions
between the scalar and the corresponding elements of the matrix. Use ./ for
element-by-element division of matrices.

If b and A are conformable, this operator solves the linear matrix equation

Ax = b

Linear equation solution is performed in the following cases:

• If A is a square matrix and has the same number of rows as b, this statement will solve
the system of linear equations using an LU decomposition.

• If A is rectangular with the same number of rows as b, this statement will produce the
least squares solutions by forming the normal equations and using the Cholesky
decomposition to get the solution:

x =
A′b
A′A

If trap 2 is set, missing values will be handled with pairwise deletion.

% Modulo division

9-5

GAUSS User Guide

y = x %z;

For integers, this returns the integer value that is the remainder of the integer division of x
by z. If x or z is noninteger, it will first be rounded to the nearest integer. This is an
element-by-element operator.

! Factorial

y = x!;

Computes the factorial of every element in the matrix x. Nonintegers are rounded to the
nearest integer before the factorial operator is applied. This will not work with complex
matrices. If x is complex, a fatal error will be generated.

.* Element-by-element multiplication

y = x .* z;

If x is a column vector, and z is a row vector (or vice versa), the “outer product” or “table” of
the two will be computed. (For comformability rules, see E--E O,
Section 9.1.)

./ Element-by-element division

y = x ./ z;

ˆ Element-by-element exponentiation

y = xˆz;

If x is negative, z must be an integer.

.ˆ Same as ˆ

.*. Kronecker (tensor) product

9-6

O
perators

Operators

y = x .*. z;

This results in a matrix in which every element in x has been multiplied (scalar
multiplication) by the matrix z. For example:

x = { 1 2,

3 4 };

z = { 4 5 6,

7 8 9 };

y = x .*. z;

x =
1 2
3 4

z =
4 5 6
7 8 9

y =

4 5 6 8 10 12
7 8 9 14 16 18

12 15 18 16 20 24
21 24 27 28 32 36

∗∼ Horizontal direct product

z = x *∼ y;

x =
1 2
3 4

y =
5 6
7 8

z =
5 6 10 12

21 24 28 32

The input matrices x and y must have the same number of rows. The result will have
cols(x) * cols(y) columns.

9-7

GAUSS User Guide

9.2.2 Other Matrix Operators

′ Transpose operator

y = x′;

The columns of y will contain the same values as the rows of x and the rows of y will
contain the same values as the columns of x. For complex matrices this computes the
complex conjugate transpose.

If an operand immediately follows the transpose operator, the ′ will be interpreted as ′*.
Thus y = x′x is equivalent to y = x′*x.

.′ Bookkeeping transpose operator

y = x.′;

This is provided primarily as a matrix handling tool for complex matrices. For all matrices,
the columns of y will contain the same values as the rows of x and the rows of y will contain
the same values as the columns of x. The complex conjugate transpose is NOT computed
when you use .′.

If an operand immediately follows the bookkeeping transpose operator, the .′ will be
interpreted as .′*. Thus y = x.′x is equivalent to y = x.′*x.

| Vertical concatenation

z = x|y;

x =
1 2 3
3 4 5

y = 7 8 9

z =
1 2 3
3 4 5
7 8 9

9-8

O
perators

Operators

∼ Horizontal concatenation

z = x∼y;

x =
1 2
3 4

y =
5 6
7 8

z =
1 2 5 6
3 4 7 8

9.3 Relational Operators

For details on how matrix conformability is defined for element-by-element operators, see
E--E O, Section 9.1

Each of these operators has two equivalent representations. Either can be used (for example, < or
lt), depending only upon preference. The alphabetic form should be surrounded by spaces.

A third form of these operators has a ‘$’ and is used for comparisons between character data and
for comparisons between strings or string arrays. The comparisons are done byte by byte starting
with the lowest addressed byte of the elements being compared.

The equality comparison operators (<=, = =, >=, /=) and their dot equivalents can be used to test
for missing values and the NaN that is created by floating point exceptions. Less than and greater
than comparisons are not meaningful with missings or NaN’s, but equal and not equal are valid.
These operators are sign-insensitive for missings, NaN’s, and zeros.

The string ‘$’ versions of these operators can also be used to test missings, NaN’s and zeros.
Because they do a strict byte-to-byte comparison, they are sensitive to the sign bit. Missings,
NaN’s, and zeros can all have the sign bit set to 0 or 1, depending on how they were generated and
have been used in a program.

9-9

GAUSS User Guide

If the relational operator is NOT preceded by a dot ‘.’, then the result is always a scalar 1 or 0,
based upon a comparison of all elements of x and y. All comparisons must be true for the
relational operator to return TRUE.

By this definition, then

if x /= y;

is interpreted as: “if every element of x is not equal to the corresponding element of y”. To check
if two matrices are not identical, use

if not x = = y;

For complex matrices, the = =, /=, .= = and ./= operators compare both the real and imaginary
parts of the matrices; all other relational operators compare only the real parts.

• Less than

z = x < y;

z = x lt y;

z = x $< y;

• Less than or equal to

z = x <= y;

z = x le y;

z = x $<= y;

• Equal to

z = x = = y;

9-10

O
perators

Operators

z = x eq y;

z = x $= = y;

• Not equal

z = x /= y;

z = x ne y;

z = x $/= y;

• Greater than or equal to

z = x >= y;

z = x ge y;

z = x $>= y;

• Greater than

z = x > y;

z = x gt y;

z = x $> y;

If the relational operator IS preceded by a dot ‘.’, then the result will be a matrix of 1’s and 0’s,
based upon an element-by-element comparison of x and y.

• Element-by-element less than

z = x .< y;

z = x .lt y;

z = x .$< y;

9-11

GAUSS User Guide

• Element-by-element less than or equal to

z = x .<= y;

z = x .le y;

z = x .$<= y;

• Element-by-element equal to

z = x .= = y;

z = x .eq y;

z = x .$= = y;

• Element-by-element not equal to

z = x ./= y;

z = x .ne y;

z = x .$/= y;

• Element-by-element greater than or equal to

z = x .>= y;

z = x .ge y;

z = x .$>= y;

• Element-by-element greater than

z = x .> y;

z = x .gt y;

z = x .$> y;

9-12

O
perators

Operators

9.4 Logical Operators

The logical operators perform logical or Boolean operations on numeric values. On input a
nonzero value is considered TRUE and a zero value is considered FALSE. The logical operators
return a 1 if TRUE and a 0 if FALSE. Decisions are based on the following truth tables:

Complement

X not X
T F
F T

Conjunction

X Y X and Y
T T T
T F F
F T F
F F F

Disjunction

X Y X or Y
T T T
T F T
F T T
F F F

9-13

GAUSS User Guide

Exclusive Or

X Y X xor Y
T T F
T F T
F T T
F F F

Equivalence

X Y X eqv Y
T T T
T F F
F T F
F F T

For complex matrices, the logical operators consider only the real part of the matrices.

The following operators require scalar arguments. These are the ones to use in if and do
statements:

• Complement

z = not x;

• Conjunction

z = x and y;

• Disjunction

z = x or y;

• Exclusive or

z = x xor y;

9-14

O
perators

Operators

• Equivalence

z = x eqv y;

If the logical operator is preceded by a dot ‘.’, the result will be a matrix of 1’s and 0’s based upon
an element-by-element logical comparison of x and y:

• Element-by-element logical complement

z = .not x;

• Element-by-element conjunction

z = x .and y;

• Element-by-element disjunction

z = x .or y;

• Element-by-element exclusive or

z = x .xor y;

• Element-by-element equivalence

z = x .eqv y;

9.5 Other Operators

Assignment Operator

Assignments are done with one equal sign:

y = 3;

9-15

GAUSS User Guide

Comma

Commas are used to delimit lists:

clear x,y,z;

to separate row indices from column indices within brackets:

y = x[3,5];

and to separate arguments of functions within parentheses:

y = momentd(x,d);

Period

Dots are used in brackets to signify “all rows” or “all columns”:

y = x[.,5];

Space

Spaces are used inside of index brackets to separate indices:

y = x[1 3 5,3 5 9];

No extraneous spaces are allowed immediately before or after the comma, or immediately after the
left bracket or before the right bracket.

Spaces are also used in print and lprint statements to separate the separate expressions to be
printed:

9-16

O
perators

Operators

print x/2 2*sqrt(x);

No extraneous spaces are allowed within expressions in print or lprint statements unless the
expression is enclosed in parentheses:

print (x / 2) (2 * sqrt(x));

Colon

A colon is used within brackets to create a continuous range of indices:

y = x[1:5,.];

Ampersand

The (&) ampersand operator will return a pointer to a procedure (proc), function (fn), or structure
(struct). It is used when passing procedures or functions to other functions, when indexing
procedures, and when initializing structure pointers. (For more information, see I
P, Section 10.5 or S P, Section 15.2.)

String Concatenation

x = "dog";

y = "cat";

z = x $+ y;

print z;

dogcat

If the first argument is of type string, the result will be of type string. If the first argument is of
type matrix, the result will be of type matrix. Here are some examples:

9-17

GAUSS User Guide

y = 0 $+ "caterpillar";

The result will be a 1×1 matrix containing ‘caterpil’.

y = zeros(3,1) $+ "cat";

The result will be a 3×1 matrix, each element containing ‘cat’.

If we use the y created above in the following:

k = y $+ "fish";

The result will be a 3×1 matrix with each element containing ‘catfish’.

If we then use k created above:

t = "" $+ k[1,1];

The result will be a string containing ‘catfish’.

If we used the same k to create z as follows:

z = "dog" $+ k[1,1];

The resulting z will be a string containing ‘dogcatfish’.

String Array Concatenation

$| Vertical string array concatenation

9-18

O
perators

Operators

x = "dog";

y = "fish";

k = x $| y;

print k;

dog

fish

$∼ Horizontal string array concatenation

x = "dog";

y = "fish";

k = x $˜ y;

print k;

dog fish

String Variable Substitution

In a command like the following:

create f1 = olsdat with x,4,2;

by default GAUSS will interpret olsdat as the literal name of the GAUSS data file you want to
create. It will also interpret x as the literal prefix string for the variable names x1 x2 x3 x4.

To get the data set name from a string variable, the substitution operator (ˆ) could be used as
follows:

dataset = "olsdat";

create f1 = ˆdataset with x,4,2;

To get the data set name from a string variable and the variable names from a character vector, use
the following:

9-19

GAUSS User Guide

dataset = "olsdat";

vnames = { age, pay, sex };

create f1 = ˆdataset with ˆvnames,0,2;

The general syntax is:

ˆvariable name

Expressions are not allowed.

The following commands are currently supported with the substitution operator (ˆ) in the current
version.

create f1 = ˆdataset with ˆvnames,0,2;

create f1 = ˆdataset using ˆcmdfile;

open f1 = ˆdataset;

output file = ˆoutfile;

load x = ˆdatafile;

load path = ˆlpath x,y,z,t,w;

loadexe buf = ˆexefile;

save ˆname = x;

save path = ˆspath;

dos ˆcmdstr;

run ˆprog;

msym ˆmstring;

9.6 Using Dot Operators with Constants

When you use those operators preceded by a ‘.’ (dot operators) with a scalar integer constant,
insert a space between the constant and any following dot operator. Otherwise, the dot will be
interpreted as part of the scalar; that is, the decimal point. For example:

9-20

O
perators

Operators

let y = 1 2 3;

x = 2.<y;

will return x as a scalar 0, not a vector of 0’s and 1’s, because

x = 2.<y;

is interpreted as

x = 2. < y;

and not as

x = 2 .< y;

Be careful when using the dot relational operators (.<, .<=, .= =, ./=, .>, .>=). The same
problem can occur with other dot operators, also. For example:

let x = 1 1 1;

y = x./2./x;

will return y as a scalar .5 rather than a vector of .5’s, because

y = x./2./x;

is interpreted as

y = (x ./ 2.) / x;

9-21

GAUSS User Guide

not

y = (x ./ 2) ./ x;

The second division, then, is handled as a matrix division rather than an element-by-element
division.

9.7 Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the operators
involved and the order in which they are used. For example, the * and / operators have a higher
precedence than the + and − operators. In expressions that contain the above operators, the
operand pairs associated with the * or / operator are evaluated first. Whether * or / is evaluated
first depends on which comes first in the particular expression.

The expression

-5+3/4+6*3

is evaluated as

(-5)+(3/4)+(6*3)

Within a term, operators of equal precedence are evaluated from left to right. The precedence of
all operators, from the highest to the lowest, is listed in the following table:

9-22

O
perators

Operators

Operator Precedence Operator Precedence Operator Precedence
.′ 90 .$>= 65 $>= 55
′ 90 ./= 65 /= 55
! 89 .< 65 < 55
.ˆ 85 .<= 65 <= 55
ˆ 85 .= = 65 = = 55

(unary -) 83 .> 65 > 55
* 80 .>= 65 >= 55
*∼ 80 .eq 65 eq 55
.* 80 .ge 65 ge 55
.*. 80 .gt 65 gt 55
./ 80 .le 65 le 55
/ 80 .lt 65 lt 55
% 75 .ne 65 ne 55
$+ 70 .not 64 not 49
+ 70 .and 63 and 48
- 70 .or 62 or 47
∼ 68 .xor 61 xor 46
| 67 .eqv 60 eqv 45
.$/= 65 $/= 55 (space) 35
.$< 65 $< 55 : 35
.$<= 65 $<= 55 = 10
.$= = 65 $= = 55
.$> 65 $> 55

9-23

P
rocedures

Procedures and Keywords 10

Procedures are multiple-line, recursive functions that can have either local or global variables.
Procedures allow a large computing task to be written as a collection of smaller tasks. These
smaller tasks are easier to work with and keep the details of their operation from the other parts of
the program that do not need to know them. This makes programs easier to understand and easier
to maintain.

A procedure in GAUSS is basically a user-defined function that can be used as if it were an
intrinsic part of the language. A procedure can be as small and simple or as large and complicated
as necessary to perform a particular task. Procedures allow you to build on your previous work
and on the work of others rather than starting over again and again to perform related tasks.

Any intrinsic command or function may be used in a procedure, as well as any user-defined
function or other procedure. Procedures can refer to any global variable; that is, any variable in the
global symbol table that can be shown with the show command. It is also possible to declare local
variables within a procedure. These variables are known only inside the procedure they are defined
in and cannot be accessed from other procedures or from the main level program code.

All labels and subroutines inside a procedure are local to that procedure and will not be confused
with labels of the same name in other procedures.

10-1

GAUSS User Guide

10.1 Defining a Procedure

A procedure definition consists of five parts, four of which are denoted by explicit GAUSS
commands:

1. Procedure declaration proc statement
2. Local variable declaration local statement
3. Body of procedure
4. Return from procedure retp statement
5. End of procedure definition endp statement

There is always one proc statement and one endp statement in a procedure definition. Any
statements that come between these two statements are part of the procedure. Procedure
definitions cannot be nested. local and retp statements are optional. There can be multiple
local and retp statements in a procedure definition. Here is an example:

proc (3) = regress(x, y);

local xxi,b,ymxb,sse,sd,t;

xxi = invpd(x’x);

b = xxi * (x’y);

ymxb = y-xb;

sse = ymxb’ymxb/(rows(x)-cols(x));

sd = sqrt(diag(sse*xxi));

t = b./sd;

retp(b,sd,t);

endp;

This could be used as a function that takes two matrix arguments and returns three matrices as a
result. For example: is:

{ b,sd,t } = regress(x,y);

Following is a discussion of the five parts of a procedure definition.

10-2

P
rocedures

Procedures and Keywords

10.1.1 Procedure Declaration

The proc statement is the procedure declaration statement. The format is:

proc [[(rets) =]] name([[arg1,arg2,...argN]]);

rets Optional constant, number of values returned by the procedure. Acceptable values here
are 0-1023; the default is 1.

name Name of the procedure, up to 32 alphanumeric characters or an underscore, beginning
with an alpha or an underscore.

arg# Names that will be used inside the procedure for the arguments that are passed to the
procedure when it is called. There can be 0-1023 arguments. These names will be
known only in the procedure being defined. Other procedures can use the same names,
but they will be separate entities.

10.1.2 Local Variable Declarations

The local statement is used to declare local variables. Local variables are variables known only
to the procedure being defined. The names used in the argument list of the proc statement are
always local. The format of the local statement is:

local x,y,f:proc,g:fn,z,h:keyword;

Local variables can be matrices or strings. If :proc, :fn, or :keyword follows the variable name
in the local statement, the compiler will treat the symbol as if it were a procedure, function, or
keyword respectively. This allows passing procedures, functions, and keywords to other
procedures. (For more information, see P P  P, Section 10.4.

Variables that are global to the system (that is, variables listed in the global symbol table that can
be shown with the show command) can be accessed by any procedure without any redundant
declaration inside the procedure. If you want to create variables known only to the procedure

10-3

GAUSS User Guide

being defined, the names of these local variables must be listed in a local statement. Once a
variable name is encountered in a local statement, further references to that name inside the
procedure will be to the local rather than to a global having the same name. (See clearg, varget,
and varput in the GAUSS L R for ways of accessing globals from within
procedures that have locals with the same name.)

The local statement does not initialize (set to a value) the local variables. If they are not passed
in as parameters, they must be assigned some value before they are accessed or the program will
terminate with a Variable not initialized error message.

All local and global variables are dynamically allocated and sized automatically during execution.
Local variables, including those that were passed as parameters, can change in size during the
execution of the procedure.

Local variables exist only when the procedure is executing and then disappear. Local variables
cannot be listed with the show command.

The maximum number of locals is limited by stack space and the size of workspace memory. The
limiting factor applies to the total number of active local symbols at any one time during
execution. If cat has 10 locals and it calls dog which has 20 locals, there are 30 active locals
whenever cat is called.

There can be multiple local statements in a procedure. They will affect only the code in the
procedure that follows. Therefore, for example, it is possible to refer to a global x in a procedure
and follow that with a local statement that declares a local x. All subsequent references to x
would be to the local x. (This is not good programming practice, but it demonstrates the principle
that the local statement affects only the code that is physically below it in the procedure
definition.) Another example is a symbol that is declared as a local and then declared as a local
procedure or function later in the same procedure definition. This allows doing arithmetic on local
function pointers before calling them. (For more information, see I P, Section
10.5.

10.1.3 Body of Procedure

The body of the procedure can have any GAUSS statements necessary to perform the task the
procedure is being written for. Other user-defined functions and other procedures can be
referenced as well as any global matrices and strings.

10-4

P
rocedures

Procedures and Keywords

GAUSS procedures are recursive, so the procedure can call itself as long as there is logic in the
procedure to prevent an infinite recursion. The process would otherwise terminate with either an
Insufficient workspace memory message or a Procedure calls too deep message,
depending on the space necessary to store the locals for each separate invocation of the procedure.

10.1.4 Returning from the Procedure

The return from the procedure is accomplished with the retp statement:

retp;

retp(expression1,expression2,. . .,expressionN);

The retp statement can have multiple arguments. The number of items returned must coincide
with the number of rets in the proc statement.

If the procedure was defined with no items returned, the retp statement is optional. The endp
statement that ends the procedure will generate an implicit retp with no objects returned. If the
procedure returns one or more objects, there must be an explicit retp statement.

There can be multiple retp statements in a procedure, and they can be anywhere inside the body
of the procedure.

10.1.5 End of Procedure Definition

The endp statement marks the end of the procedure definition:

endp;

An implicit retp statement that returns nothing is always generated here so it is impossible to run
off the end of a procedure without returning. If the procedure was defined to return one or more
objects, executing this implicit return will result in a Wrong number of returns error message
and the program will terminate.

10-5

GAUSS User Guide

10.2 Calling a Procedure

Procedures are called like this:

dog(i,j,k); /* no returns */

y = cat(i,j,k); /* one return */

{ x,y,z } = bat(i,j,k); /* multiple returns */

call bat(i,j,k); /* ignore any returns */

Procedures are called in the same way that intrinsic functions are called. The procedure name is
followed by a list of arguments in parentheses. The arguments must be separated by commas.

If there is to be no return value, use

proc (0) = dog(x,y,z);

when defining the procedure and use

dog(ak,4,3);

or

call dog(ak,4,3);

when calling it.

The arguments passed to procedures can be complicated expressions involving calls to other
functions and procedures. This calling mechanism is completely general. For example,

10-6

P
rocedures

Procedures and Keywords

y = dog(cat(3*x,bird(x,y))-2,2,1);

is legal.

10.3 Keywords

A keyword, like a procedure, is a subroutine that can be called interactively or from within a
GAUSS program. A keyword differs from a procedure in that a keyword accepts exactly one
string argument, and returns nothing. Keywords can perform many tasks not as easily
accomplished with procedures.

10.3.1 Defining a Keyword

A keyword definition is much like a procedure definition. Keywords always are defined with 0
returns and 1 argument. The beginning of a keyword definition is the keyword statement:

keyword name(strarg);

name Name of the keyword, up to 32 alphanumeric characters or an underscore, beginning
with an alpha or an underscore.

strarg Name that will be used inside of the keyword for the argument that is passed to the
keyword when it is called. There is always one argument. The name is known only in
the keyword being defined. Other keywords can use the same name, but they will be
separate entities. This will always be a string. If the keyword is called with no
characters following the name of the keyword, this will be a null string.

The rest of the keyword definition is the same as a procedure definition. (For more information,
see D  P, Section 10.1. Keywords always return nothing. Any retp statements,
if used, should be empty. For example:

10-7

GAUSS User Guide

keyword add(s);

local tok, sum;

if s $=\,= "";

print "The argument is a null string";

retp;

endif;

print "The argument is: ’" s "’";

sum = 0;

do until s $=\,= "";

{ tok, s } = token(s);

sum = sum + stof(tok);

endo;

format /rd 1,2;

print "The sum is: " sum;

endp;

The keyword defined above will print the string argument passed to it. The argument will be
printed enclosed in single quotes.

10.3.2 Calling a Keyword

When a keyword is called, every character up to the end of the statement, excluding the leading
spaces, is passed to the keyword as one string argument. For example, if you type

add 1 2 3 4 5;

the keyword will respond

The sum is: 15.00

10-8

P
rocedures

Procedures and Keywords

Here is another example:

add;

the keyword will respond

The argument is a null string

10.4 Passing Procedures to Procedures

Procedures and functions can be passed to procedures in the following way:

proc max(x,y); /* procedure to return maximum */

if x>y;

retp(x);

else;

retp(y);

endif;

endp;

proc min(x,y); /* procedure to return minimum */

if x<y;

retp(x);

else;

retp(y);

endif;

endp;

fn lgsqrt(x) = ln(sqrt(x)); /* function to return

:: log of square root

*/

10-9

GAUSS User Guide

proc myproc(&f1,&f2,x,y);

local f1:proc, f2:fn, z;

z = f1(x,y);

retp(f2(z));

endp;

The procedure myproc takes four arguments. The first is a procedure f1 that has two arguments.
The second is a function f2 that has one argument. It also has two other arguments that must be
matrices or scalars. In the local statement, f1 is declared to be a procedure and f2 is declared to
be a function. They can be used inside the procedure in the usual way. f1 will be interpreted as a
procedure inside myproc, and f2 will be interpreted as a function. The call to myproc is made as
follows:

k = myproc(&max,&lgsqrt,5,7); /* log of square root of 7 */

k = myproc(&min,&lgsqrt,5,7); /* log of square root of 5 */

The ampersand (&) in front of the function or procedure name in the call to myproc causes a
pointer to the function or procedure to be passed. No argument list should follow the name when it
is preceded by the ampersand.

Inside myproc, the symbol that is declared as a procedure in the local statement is assumed to
contain a pointer to a procedure. It can be called exactly like a procedure is called. It cannot be
save’d but it can be passed on to another procedure. If it is to be passed on to another procedure,
use the ampersand in the same way.

10.5 Indexing Procedures

This example assumes there are a set of procedures named f1-f5 that are already defined. A 1×5
vector procvec is defined by horizontally concatenating pointers to these procedures. A new
procedure, g(x,i) is then defined to return the value of the ith procedure evaluated at x:

procvec = &f1 ˜ &f2 ˜ &f3 ˜ &f4 ˜ &f5;

10-10

P
rocedures

Procedures and Keywords

proc g(x,i);

local f;

f = procvec[i];

local f:proc;

retp(f(x));

endp;

The local statement is used twice. The first time, f is declared to be a local matrix. After f has
been set equal to the ith pointer, f is declared to be a procedure and is called as a procedure in the
retp statement.

10.6 Multiple Returns from Procedures

Procedures can return multiple items, up to 1023. The procedure is defined like this example of a
complex inverse:

proc (2) = cminv(xr,xi); /* (2) specifies number of

:: return values

*/

local ixy, zr, zi;

ixy = inv(xr)*xi;

zr = inv(xr+xi*ixy); /* real part of inverse. */

zi = -ixy*zr; /* imaginary part of inverse. */

retp(zr,zi); /* return: real part, imaginary part */

endp;

It can then be called like this:

{ zr,zi } = cminv(xr,xi);

To make the assignment, the list of targets must be enclosed in braces.

10-11

GAUSS User Guide

Also, a procedure that returns more than one argument can be used as input to another procedure
or function that takes more than one argument:

proc (2) = cminv(xr,xi);

local ixy, zr, zi;

ixy = inv(xr)*xi;

zr = inv(xr+xi*ixy); /* real part of inverse. */

zi = -ixy*zr; /* imaginary part of inverse. */

retp(zr,zi);

endp;

proc (2) = cmmult(xr,xi,yr,yi);

local zr,zi;

zr = xr*yr-xi*yi;

zi = xr*yi+xi*yr;

retp(zr,zi);

endp;

{ zr,zi } = cminv(cmmult(xr,xi,yr,yi));

The two returned matrices from cmmult() are passed directly to cminv() in the statement above.
This is equivalent to the following statements:

{ tr,ti } = cmmult(xr,xi,yr,yi);

{ zr,zi } = cminv(tr,ti);

This is completely general so the following program is legal:

proc (2) = cmcplx(x);

local r,c;

r = rows(x);

c = cols(x);

retp(x,zeros(r,c));

endp;

10-12

P
rocedures

Procedures and Keywords

proc (2) = cminv(xr,xi);

local ixy, zr, zi;

ixy = inv(xr)*xi;

zr = inv(xr+xi*ixy); /* real part of inverse. */

zi = -ixy*zr; /* imaginary part of inverse. */

retp(zr,zi);

endp;

proc (2) = cmmult(xr,xi,yr,yi);

local zr,zi;

zr = xr*yr-xi*yi;

zi = xr*yi+xi*yr;

retp(zr,zi);

endp;

{ xr,xi } = cmcplx(rndn(3,3));

{ yr,yi } = cmcplx(rndn(3,3));

{ zr,zi } = cmmult(cminv(xr,xi),cminv(yr,yi));

{ qr,qi } = cmmult(yr,yi,cminv(yr,yi));

{ wr,wi } = cmmult(yr,yi,cminv(cmmult(cminv(xr,xi),yr,yi)));

10.7 Saving Compiled Procedures

When a file containing a procedure definition is run, the procedure is compiled and is then resident
in memory. The procedure can be called as if it were an intrinsic function. If the new command is
executed or you quit GAUSS and exit to the operating system, the compiled image of the
procedure disappears and the file containing the procedure definition will have to be compiled
again.

If a procedure contains no global references, that is, if it does not reference any global matrices or
strings and it does not call any user-defined functions or procedures, it can be saved to disk in
compiled form in a .fcg file with the save command, and loaded later with the loadp command

10-13

GAUSS User Guide

whenever it is needed. This will usually be faster than recompiling. For example:

save path = c:\gauss\cp proc1,proc2,proc3;

loadp path = c:\gauss\cp proc1,proc2,proc3;

The name of the file will be the same as the name of the procedure, with a .fcg extension. (For
details, see loadp and save in the GAUSS L R.)

All compiled procedures should be saved in the same subdirectory, so there is no question where
they are located when it is necessary to reload them. The loadp path can be set in your startup file
to reflect this. Then, to load in procedures, use

loadp proc1,proc2,proc3;

Procedures that are saved in .fcg files will NOT be automatically loaded. It is necessary to
explicitly load them with loadp. This feature should be used only when the time necessary for the
autoloader to compile the source is too great. Also, unless these procedures have been compiled
with #lineson, debugging will be more complicated.

10-14

R
andom

N
um

bers

Random Number Generation
in GAUSS 11

GAUSS provides a powerful suite of functionality for random number generation. The key
features include:

1. Availability of several modern random number generators

2. Sampling of many distributions

3. Threadsafe random number generators

4. Parallel random number generation

11.1 Available Random Number Generators

1. KISS-Monster

2. MRG32k3a

3. MT19937: Mersenne-Twister 19937

11-1

GAUSS User Guide

4. MT2203: Mersenne-Twister 2203

5. SFMT19937: Optimized Mersenne-Twister 19937

6. WH: Wichmann-Hill

11.1.1 Choosing a random number generator

Quality

What is a high quality random number generator? Pierre L’Ecuyer stated that “The difference
between the good and bad random number generators, in a nutshell, is that the bad ones fail very
simple tests whereas the good ones fail only very complicated tests that are hard to figure out or
impractical to run.” The most prominent testsuites for testing random number generators (RNGs)
are Marsaglia’s DIEHARD, DIEHARDER (an extended version of DIEHARD maintained by
Brown), and L’Ecuyer’s TestU01. These are all good testsuites, with BigCrush from TestU01
being the most expansive and stringent. Below is a summary of the performance of each of the
RNGs included in GAUSS on the BigCrush test.

Number of Period Test U01

RNG streams Length Diehard BigCrush

KISS-Monster 1 10ˆ8859 PASS PASS

MRG32k3a 1 2ˆ191 PASS* PASS

MT19937 1 2ˆ19937 PASS* 2

MT2203 6024 2ˆ2203 PASS* 4

Wichmann-Hill 273 2ˆ42.7 PASS* 22

*The column under Test U01 indicates the number of test failures.

As we can see from the table above, all of the available RNGs (with the possible exception of
Wichmann-Hill) provide very good to excellent performance. It is beyond the scope of this
document to discuss the implications of particular test failures.

11-2

R
andom

N
um

bers
Random Number Generation in GAUSS

Speed

All of the RNGs in GAUSS are very fast. However, some are faster than others. Below is a chart
of the relative speed of each random number generator in GAUSS.

1. SFMT19937

2. MT19937

3. MRG32K3A

4. Wichmann-Hill

5. Kiss-Monster

Beyond simply choosing the fastest available generators, two coding techniques can also cause
your programs to run faster. The first is creating larger numbers of random deviates at a time. For
example, creating one million random numbers in one call will be much faster than creating the
same one million numbers through 100,000 calls that each create 10 numbers. Creating too many
numbers at once can also slow down your program’s performance if the resulting matrix takes up
too much of your available RAM. The key point is to avoid creating large random matrices one or
two numbers at a time. The second coding technique is incorporate multi-threading into your
random number generation. This is covered in the next section of this chapter.

11.2 Threadsafe Random Number Generators

Each successive number in a pseudo-random sequence is computed based upon the generator’s
current state. The RNGs in GAUSS that take and return a state, such as rndKMu and rndGamma,
are inherently threadsafe. These functions can be used independently in separate threads as long as
the same state variable is not written to in more than one concurrent thread. Functions that do not
take or return a state should not be used inside concurrent thread sets. For example, the following
is not a legal program:

ThreadBegin;

11-3

GAUSS User Guide

x = rndn(500,1);

y = myFunction(x);

ThreadEnd;

ThreadBegin;

x2 = rndn(500,1);

y2 = myFunction(x2);

ThreadEnd;

ThreadJoin;

The problem with the above example is that implicit in each call to rndn is a write to the same
global state. Note that rndn, rndGam and rndu all share the same global state. So replacing one of
the above calls to rndn with a call to rndu would still result in an illegal program. To solve this
problem, either move the call to rndn above the first ThreadBegin, like this:

x = rndn(500,1);

x2 = rndn(500,1);

ThreadBegin;

y = myFunction(x);

ThreadEnd;

ThreadBegin;

y2 = myFunction(x2);

ThreadEnd;

ThreadJoin;

Or pass in and return the state vector:

seed1 = 723193;

seed2 = 94493;

ThreadBegin;

{ x1, state1 } = rndn(500,1,seed1);

y1 = myFunction(x1);

ThreadEnd;

ThreadBegin;

{ x2, state2 } = rndn(500,1,seed2);

11-4

R
andom

N
um

bers
Random Number Generation in GAUSS

y2 = myFunction(x2);

ThreadEnd;

ThreadJoin;

11.3 Parallel Random Number Generation

11.3.1 Multiple stream generators

Some of the RNGs in GAUSS are a collection of more than one independent stream of random
numbers. A stream is an independent series of numbers with a length that is the period length of
the generator. Each of these sequences or streams has the same statistical properties. However, not
all of the RNGs in GAUSS offer this ability. The MT2203 and the Wichman-Hill are examples of
RNGs with multiple streams. The MT2203 is a set of 6024 different streams; the Wichmann-Hill
contains 273 streams. You can initialize any of these streams with the rndCreateState function,
like this:

//Initialize two Wichmann-Hill streams

seed = 192938;

whState3 = rndCreateState("wh-3",seed);

whState117 = rndCreateState("wh-117",seed);

//Initialize two MT2203 streams

seed = 192938;

mt2203State9 = rndCreateState("mt2203-3",seed);

mt2203State21 = rndCreateState("mt2203-21",seed);

Once created, these states can be passed into any of the new random number functions to create
random numbers. To reiterate, from each of these newly created states you can create a full period
length of random numbers.

11-5

GAUSS User Guide

11.3.2 Block-skipping

Creating random numbers from multiple streams provides multiple sets of independent random
numbers with similar statistical properties that can be used in different threads. However, these
separate streams do not form a contiguous set of random numbers. If you would like to process a
contiguous stream of random numbers in multiple threads, you can use block-splitting.
Block-splitting involves splitting a large chunk of random numbers into smaller contiguous blocks
which can each be processed by different threads. This can be accomplished with the rndSkip
function.

Example

seed = 23423;

state1 = rndCreateState("mrg32k3a",seed);

state2 = rndSkip(2,state1); // advance state by 2

{ r, state1 } = rndn(4,1,state1);

{ r2, state2 } = rndn(2,1,state2); // same sequence as after skipping 2

0.19971499

r = 0.14053340

-0.53132702

0.48660530

r2 = -0.53132702

0.48660530

For example if your program required four hundred million random numbers, you could split it
into four blocks of one hundred million numbers each. This can be accomplished in GAUSS using
the function rndStateSkip.

Each successive thread in the above program will process a different chunk of the sequence of
random numbers.

seed = 2342343;

state1 = rndCreateState("mrg32k3a",seed);

11-6

R
andom

N
um

bers
Random Number Generation in GAUSS

state2 = rndStateSkip(1e8,state1);

state3 = rndStateSkip(1e8,state2);

state4 = rndStateSkip(1e8,state3);

ThreadBegin;

{ x ,state1 } = rndGamma(1e8,1,2,2,state1);

y = myfunc(x);

ThreadEnd;

ThreadBegin;

{ x2 ,state2 } = rndGamma(1e8,1,2,2,state2);

y2 = myfunc(x2);

ThreadEnd;

ThreadBegin;

{ x ,state3 } = rndGamma(1e8,1,2,2,state3);

y3 = myfunc(x3);

ThreadEnd;

ThreadBegin;

{ x ,state4 } = rndGamma(1e8,1,2,2,state4);

y4 = myfunc(x);

ThreadEnd;

ThreadJoin;

References

1. (MRG32k3a) L’Ecuyer, P. “Good Parameter Sets for Combined Multiple Recursive Random
Number Generators.” Operations Research, 47, 1, 159-164, 1999.

2. (TestU01) L’Ecuyer, P. and Simard, R. “TestU01: A C Library for Empirical Testing of
Random Number Generators.” ACM Trans. Math. Softw. 33, 4, Article 22 , 2007.

3. (Wichmann-Hill) MacLaren, N.M. “The Generation of Multiple Independent Sequences of
Pseudorandom Numbers.” Applied Statistics, 38, 351-359, 1989.

11-7

S
parse

M
atrices

Sparse Matrices 12

The sparse matrix data type stores only the non-zero values of a 2-dimensional sparse matrix,
which makes working with sparse matrices faster and more efficient.

12.1 Defining Sparse Matrices

The sparse matrix data type is strongly typed in GAUSS, which means that a variable must be
defined as a sparse matrix variable before it may be used as such. Once a variable has been defined
as a sparse matrix, it may not be used as another data type. Similarly, once a variable has been
used as a matrix, array, or other non-sparse data type, it may not be redefined as a sparse matrix.

To define a global sparse matrix, you may use either the declare or the let command:

declare sparse matrix sm1;

let sparse matrix sm1;

12-1

GAUSS User Guide

or the following implicit let statement:

sparse matrix sm1;

declare may be used to define multiple sparse matrices in a single statement:

declare sparse matrix sm1, sm2, sm3;

To define a local sparse matrix inside of a procedure, use an implicit let statement:

sparse matrix lsm1;

As neither let nor declare support the initialization of a sparse matrix at this time, you must
initialize a sparse matrix with an assignment after defining it.

12.2 Creating and Using Sparse Matrices

Several new functions have been added to allow you to create and manipulate sparse matrices.
These functions are:

denseToSp Converts a dense matrix to a sparse matrix.

denseToSpRE Converts a dense matrix to a sparse matrix, using a relative epsilon.

packedToSp Creates a sparse matrix from a packed matrix of non-zero values and
row and column indices.

spBiconjGradSol Solves the system of linear equations Ax=b using the biconjugate
gradient method.

spConjGradSol Solves the system of linear equations Ax=b for symmetric matrices
using the conjugate gradient method.

12-2

S
parse

M
atrices

Sparse Matrices

spCreate Creates a sparse matrix from vectors of non-zero values, row
indices, and column indices.

spDenseSubmat Returns a dense submatrix of sparse matrix.

spDiagRvMat Inserts submatrices along the diagonal of a sparse matrix.

spEigv Computes a specified number of eigenvalues and eigenvectors of a
square, sparse matrix.

spEye Creates a sparse identity matrix.

spGetNZE Returns the non-zero values in a sparse matrix, as well as their
corresponding row and column indices.

spLDL Computes the LDL decomposition of a symmetric sparse matrix.

spLU Computes the LU decomposition of a sparse matrix with partial
pivoting.

spNumNZE Returns the number of non-zero elements in a sparse matrix.

spOnes Generates a sparse matrix containing only ones and zeros

spSubmat Returns a sparse submatrix of sparse matrix.

spToDense Converts a sparse matrix to a dense matrix.

spTrTDense Multiplies a sparse matrix transposed by a dense matrix.

spTScalar Multiplies a sparse matrix by a scalar.

spZeros Creates a sparse matrix containing no non-zero values.

See C R for detailed information on each command.

12.3 Sparse Support in Matrix Functions and Operators

Support for the sparse matrix data type has also been added to many matrix functions and
operators. The following is a complete list of the matrix functions and operators that currently
support the new sparse matrix type:

12-3

GAUSS User Guide

′

./ .>= maxc

∼ /= < minc

| ./= .< print

* = = .< rows

.* .= = <= scalerr

+ > .<= show

- .> abs type

/ >= cols

Indexing is also supported for sparse matrices, using the same syntax as matrix indexing.

Note that printing a sparse matrix results in a table of the non-zero values contained in the sparse
matrix, followed by their corresponding row and column indices, respectively.

12.3.1 Return Types for Dyadic Operators

The types of the returns for the dyadic operators were decided on a case-by-case basis, using the
following general principles:

1. The return type for dyadic operations on two dense arguments is always dense.

2. The return type for dyadic operations on two sparse arguments is always sparse unless the
result is likely to be significantly less sparse than the sparse arguments.

3. The return type for dyadic operations on a dense argument and a sparse argument (regardless
of order) is dense unless the return is likely to be at least as sparse as the sparse argument.

These general principles have led to the following decisions regarding return types (note that only
the cases that are displayed in these tables have been implemented at this point):

12-4

S
parse

M
atrices

Sparse Matrices

Element-by-Element Numeric Operators

Element-by-Element Addition
Result = Left Operator Right
dense = sparse + dense
dense = dense + dense
sparse = sparse + sparse
dense = dense + sparse

Element-by-Element Subtraction
Result = Left Operator Right
dense = sparse - dense
dense = dense - dense
sparse = sparse - sparse
dense = dense - sparse

Element-by-Element Multiplication
Result = Left Operator Right
sparse = sparse .* dense
dense = dense .* dense
sparse = sparse .* sparse
sparse = dense .* sparse

Element-by-Element Division
Result = Left Operator Right
sparse = sparse ./ dense
dense = dense ./ dense
dense = sparse ./ sparse
dense = dense ./ sparse

12-5

GAUSS User Guide

Other Numeric Operators

Matrix Multiplication
Result = Left Operator Right
dense = sparse * dense
dense = dense * dense
sparse = sparse * sparse

Linear Solve
Result = Left Operator Right
dense = dense / dense
dense = dense / sparse

Note that at this time, the dense = dense / sparse case is defined only for real data.

When either of its arguments are sparse, the / operator uses a tolerance to determine the result,
which may be read or set using the sysstate function, case 39. The default tolerance is 1e-14.

Relational Operators

Since the results of element-by-element ’dot’ comparison operators depend largely on the kind of
data inputted, there are both both dense-returning and sparse-returning versions of the dot
comparison operators when one or both arguments is a sparse matrix. The regular dot comparison
operators and their alphabetic counterparts always return dense matrices, and there is a new set of
alphabetic dot comparison operators that all return sparse matrices:

Element-by-Element Dot Comparison Operators
Operation Dense-Returning Sparse-Returning
Equal to .== .eq .speq
Not equal to ./= .ne .spne
Less than .< .lt .splt
Less than or equal to .<= .le .sple
Greater than .> .gt .spgt
Greater than or equal to .>= .ge .spge

12-6

S
parse

M
atrices

Sparse Matrices

Since the element-by-element ’non-dot’ comparison operators (==, /=, <, <=, >, >=) and their
alphabetic counterparts (eq, ne, lt, le, gt, ge) all return scalars, there are no sparse-returning
versions of them.

Other Matrix Operators

Horizontal Concatenation
Result = Left Operator Right
dense = dense ∼ dense
sparse = sparse ∼ sparse

Vertical Concatenation
Result = Left Operator Right
dense = dense | dense
sparse = sparse | sparse

12-7

A
rrays

N-Dimensional Arrays 13
In GAUSS, internally, matrices and arrays are separate data types. Matrices, which are
2-dimensional objects, are stored in memory in row major order. Therefore, a 3×2 matrix is stored
as follows:

[1, 1] [1, 2] [2, 1] [2, 2] [3, 1] [3, 2]

The slowest moving dimension in memory is indexed on the right, and the fastest moving
dimension is indexed on the left. This is true of N-dimensional arrays as well. A 4×3×2 array is
stored in the following way:

[1, 1, 1] [1, 1, 2] [1, 2, 1] [1, 2, 2] [1, 3, 1] [1, 3, 2]
[2, 1, 1] [2, 1, 2] [2, 2, 1] [2, 2, 2] [2, 3, 1] [2, 3, 2]
[3, 1, 1] [3, 1, 2] [3, 2, 1] [3, 2, 2] [3, 3, 1] [3, 3, 2]
[4, 1, 1] [4, 1, 2] [4, 2, 1] [4, 2, 2] [4, 3, 1] [4, 3, 2]

A complex N-dimensional array is stored in memory in the same way. Like complex matrices,
complex arrays are stored with the entire real part first, followed by the entire imaginary part.

13-1

GAUSS User Guide

Every N-dimensional array has a corresponding N×1 vector of orders that contains the sizes of
each dimension of the array. This is stored with the array and can be accessed with getorders.
The first element of the vector of orders corresponds to the slowest moving dimension, and the last
element corresponds to the fastest moving dimension (refer to the sectionnameGlossary of Terms
at the end of the chapter for clear definitions of these terms). The vector of orders for a
6×5×4×3×2 array, which has 5 dimensions, is the following 5×1 vector:

6
5
4
3
2

Two terms that are important in working with N-dimensional arrays are “dimension index” and
“dimension number.” A dimension index specifies a dimension based on indexing the vector of
orders. It is a scalar, 1-to-N, where 1 corresponds to the dimension indicated by the first element
of the vector of orders of the array (the slowest moving dimension) and N corresponds to the
dimension indicated by the last element of the vector of orders (the fastest moving dimension).

A dimension number specifies dimensions by numbering them in the same order that one would
add dimensions to an array. In other words, the dimensions of an N-dimensional array are
numbered such that the fastest moving dimension has a dimension number of 1, and the slowest
moving dimension has a dimension number of N.

A 6×5×4×3×2 array has 5 dimensions, so the first element of the vector of orders (in this case, 6)
refers to the size of dimension number 5. Since the index of this element in the vector of orders is
1, the dimension index of the corresponding dimension (dimension number 5) is also 1.

You will find references to both dimension index and dimension number in the documentation for
the functions that manipulate arrays.

There are a number of functions that have been designed to manipulate arrays. These functions
allow you to manipulate a subarray within the array by passing in a locator vector to index any
subarray that comprises a contiguous block of memory within the larger block. A vector of indices
of an N-dimensional array is a [1-to-N]×1 vector of base 1 indices into the array, where the first
element corresponds to the first element in a vector of orders. An N×1 vector of indices locates the

13-2

A
rrays

N-Dimensional Arrays

scalar whose position is indicated by the indices. For a 4×3×2 array x, the 3×1 vector of indices:

3
2
1

indexes the [3,2,1] element of x. A 2×1 vector of indices for this 3-dimensional example,
references the 1-dimensional array whose starting location is given by the indices.

Because the elements of the vector of indices are always in the same order (the first element of the
vector of indices corresponds to the slowest moving dimension of the array, the second element to
the second slowest moving dimension, and so on), each unique vector of indices locates a unique
subarray.

In general, an [N-K]×1 vector of indices locates a K-dimensional subarray that begins at the
position indicated by the indices. The sizes of the dimensions of the K-dimensional subarray
correspond to the last K elements of the vector of orders of the N-dimensional array. For a
6×5×4×3×2 array y, the 2×1 vector of indices:

2
5

locates the 4×3×2 subarray in y that begins at [2,5,1,1,1] and ends at [2,5,4,3,2].

13.1 Bracketed Indexing

Brackets ‘[]’ can be used to index N-dimensional arrays in virtually the same way that they are
used to index matrices. Bracketed indexing is slower than the convenience array functions, such as
getarray and setarray; however, it can be used to index non-contiguous elements. In order to
index an N-dimensional array with brackets, there must be N indices located within the brackets,
where the first index corresponds to the slowest moving dimension of the array and the last index
corresponds to the fastest moving dimension.

13-3

GAUSS User Guide

For a 2×3×4 array x, such that

[1,1,1] through [1,3,4] =

1 2 3 4
5 6 7 8
9 10 11 12

[2,1,1] through [2,3,4] =

13 14 15 16
17 18 19 20
21 22 23 24

x[1,2,3] returns a 1×1×1 array containing the [1,2,3] element of x:

7

x[.,3,2] returns a 2×1×1 array containing

10

22

x[2,.,1 4] returns a 1×3×2 array containing

13 16
17 20
21 24

13-4

A
rrays

N-Dimensional Arrays

x[.,2,1:3] returns a 2×1×3 array containing

5 6 7

17 18 19

13.2 E×E Conformability

The following describes rules for E×E conformability of arrays for operators and functions with
two or more arguments.

• Any N-dimensional array is conformable to a scalar.

• An array is conformable to a matrix only if the array has fewer than 3 dimensions, and the
array and matrix follow the standard rules of E×E conformability.

• Two arrays are E×E conformable if they comply with one of the following requirements:

– The two arrays have the same number of dimensions, and each dimension has the same
size.

– The two arrays have the same number of dimensions, and each of the N-2 slowest
moving dimensions has the same size. In this case, the 2 fastest moving dimensions of
the arrays must follow the E×E comformability rules that apply to matrices.

– Both of the arrays have fewer than 3 dimensions, and they follow the E×E
conformability rules that apply to matrices.

13.3 Glossary of Terms

dimensions The number of dimensions of an object.

vector of orders N×1 vector of the sizes of the dimensions of an object, where N is the
number of dimensions, and the first element corresponds to the slowest moving
dimension.

13-5

GAUSS User Guide

vector of indices [1-to-N]×1 vector of indices into an array, where the first element
corresponds to the first element in a vector of orders.

dimension number Scalar [1-to-N], where 1 corresponds to the fastest moving dimension
and N to the slowest moving dimension.

dimension index Scalar [1-to-N], where 1 corresponds to the first element of the vector of
orders or vector of indices.

locator [1-to-N]×1 vector of indices into an array used by array functions to locate a
contiguous block of the array.

13-6

W
orking

w
ith

A
rrays

Working with Arrays 14
14.1 Initializing Arrays

The use of N-dimensional arrays in GAUSS is an additional tool for reducing development time
and increasing execution speed of programs. There are multiple ways of handling N-dimensional
arrays and using them to solve problems, and these ways sometimes have implications for a
trade-off between speed of execution and development time. We will try to make this clear in this
chapter.

The term “arrays” specifically refers to N-dimensional arrays and must not be confused with
matrices. Matrices and arrays are distinct types even if in fact they contain identical information.
Functions for conversion from one to the other are described below.

There are five basic ways of creating an array depending on how the contents are specified:

areshape Create array from specified matrix .

aconcat Create array from matrices and arrays.

aeye Create array of identity matrices.

14-1

GAUSS User Guide

arrayinit Allocate array filled with specified scalar value.

arrayalloc Allocate array with no specified contents.

14.1.1 areshape

areshape is a method for creating an array with specified contents. arrayinit creates an array
filled with a selected scalar value: areshape will do the same, but with a matrix. For example,
given a matrix, areshape will create an array containing multiple copies of that matrix:

x = reshape(seqa(1,1,4),2,2);

ord = 3 | 2 | 2;

a = areshape(x,ord);

print a;

Plane [1,.,.]

1.0000 2.0000

3.0000 4.0000

Plane [2,.,.]

1.0000 2.0000

3.0000 4.0000

Plane [3,.,.]

1.0000 2.0000

3.0000 4.0000

Reading Data from the Disk into an Array

areshape is a fast way to re-dimension a matrix or array already in memory. For example,
suppose we have a GAUSS data set containing panel data and that it’s small enough to be read in
all at once:

14-2

W
orking

w
ith

A
rrays

Working with Arrays

panel = areshape(loadd("panel"),5|100|10);

mn = amean(panel,2); /* 5x1x10 array of means */

/*of each panel */

mm = moment(panel,0); /* 5x10x10 array of moments */

/* of each panel */

/*

** vc is a 5x10x10 array of

** covariance matrices

*/

vc = mm / 100 - amult(atranspose(mn,1|3|2),mn);

panel is a 5×100×10 array, and in this context is 5 panels of 100 cases measured on 10 variables.

Inserting Random Numbers into Arrays

A random array of any dimension or size can be quickly created using areshape. Thus, for a
10×10×5×3 array:

ord = { 10, 10, 5, 3 };

y = areshape(rndu(prodc(ord),1),ord);

The quick and dirty method above uses the linear congruential generator, which is fast but doesn’t
have the properties required for serious Monte Carlo work. For series simulation you will need to
use the KM generator:

sd0 = 345678;

ord = { 10, 10, 5, 3 };

{ z,sd0 } = rndKMu(prodc(ord),1,sd0);

y = areshape(z,ord);

14-3

GAUSS User Guide

Expanding a Matrix into an Array Vector of Matrices

For computing the log-likelihood of a variance components model of panel data, it is necessary to
expand a T×T matrix into an NT×T array of these matrices. This is easily accomplished using
areshape. For example:

m = { 1.0 0.3 0.2,

0.3 1.0 0.1,

0.2 0.1 1.0 };

r = areshape(m,3|3|3);

print r;

Plane [1,.,.]

1.0000 0.3000 0.2000

0.3000 1.0000 0.1000

0.2000 0.1000 1.0000

Plane [2,.,.]

1.0000 0.3000 0.2000

0.3000 1.0000 0.1000

0.2000 0.1000 1.0000

Plane [3,.,.]

1.0000 0.3000 0.2000

0.3000 1.0000 0.1000

0.2000 0.1000 1.0000

14.1.2 aconcat

aconcat creates arrays from conformable sets of matrices or arrays. With this function, contents
are completely specified by the user. This example tries three concatenations, one along each

14-4

W
orking

w
ith

A
rrays

Working with Arrays

dimension:

rndseed 345678;

x1 = rndn(2,2);

x2 = arrayinit(2|2,1);

/*

** along the first dimension or rows

*/

a = aconcat(x1,x2,1);

print a;

-0.4300 -0.2878 1.0000 1.0000

-0.1327 -0.0573 1.0000 1.0000

/*

** along the second dimension or columns

*/

a = aconcat(x1,x2,2);

print a;

-0.4300 -0.2878

-0.1327 -0.0573

1.0000 1.0000

1.0000 1.0000

/*

** along the third dimension

*/

a = aconcat(x1,x2,3);

print a;

Plane [1,.,.]

14-5

GAUSS User Guide

-0.4300 -0.2878

-0.1327 -0.0573

Plane [2,.,.]

1.0000 1.0000

1.0000 1.0000

14.1.3 aeye

aeye creates an array in which the principal diagonal of the two trailing dimensions is set to one.
For example:

ord = 2 | 3 | 3;

a = aeye(ord);

print a;

Plane [1,.,.]

1.00000 0.00000 0.00000

0.00000 1.00000 0.00000

0.00000 0.00000 1.00000

Plane [2,.,.]

1.00000 0.00000 0.00000

0.00000 1.00000 0.00000

0.00000 0.00000 1.00000

14.1.4 arrayinit

arrayinit creates an array with all elements set to a specified value. For example:

ord = 3 | 2 | 3;

14-6

W
orking

w
ith

A
rrays

Working with Arrays

a = arrayinit(ord,1);

print a;

Plane [1,.,.]

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

Plane [2,.,.]

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

Plane [3,.,.]

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

14.1.5 arrayalloc

arrayalloc creates an array with specified number and size of dimensions without setting
elements to any values. This requires a vector specifying the order of the array. The length of the
vector determines the number of dimensions, and each element determines the size of the
corresponding dimensions. The array will then have to be filled using any of several methods
described later in this chapter.

For example, to allocate a 2×2×3 array:

rndseed 345678;

ord = 3 | 2 | 2;

a = arrayalloc(ord,0);

for i(1,ord[1],1);

a[i,.,.] = rndn(2,3);

endfor;

14-7

GAUSS User Guide

print a;

Plane [1,.,.]

-0.4300 -0.2878 -0.1327

-0.0573 -1.2900 0.2467

Plane [2,.,.]

-1.4249 -0.0796 1.2693

-0.7530 -1.7906 -0.6103

Plane [3,.,.]

1.2586 -0.4773 0.7044

-1.2544 0.5002 0.3559

The second argument in the call to arrayalloc specifies whether the created array is real or
complex. arrayinit creates only real arrays.

14.2 Assigning to Arrays

There are three methods used for assignment to an array:

index operator The same method as matrices, generalized to arrays.

putArray Put a subarray into an N-dimensional array and returns the result.

setArray Set a subarray of an N-dimensional array in place.

And there are several ways to extract parts of arrays:

index operator The same method as matrices, generalized to arrays.

14-8

W
orking

w
ith

A
rrays

Working with Arrays

getArray Get a subarray from an array.

getMatrix Get a matrix from an array.

getMatrix4D Get a matrix from a 4-dimensional array.

getScalar4D Get a scalar from a 4-dimensional array.

The index operator is the slowest way to extract parts of arrays. The specialized functions are the
fastest when the circumstances are appropriate for their use.

14.2.1 index operator

The index operator will put a subarray into an array in a manner analogous to the use of index
operators on matrices:

a = arrayinit(3|2|2,0);

b = arrayinit(3|1|2,1);

a[.,2,.] = b;

print a;

Plane [1,.,.]

0.00000 0.00000

1.0000 1.0000

Plane [2,.,.]

0.00000 0.00000

1.0000 1.0000

Plane [3,.,.]

0.00000 0.00000

1.0000 1.0000

14-9

GAUSS User Guide

As this example illustrates, the assignment doesn’t have to be contiguous. putMatrix and
setMatrix require a contiguous assignment, but for that reason they are faster.

The right hand side of the assignment can also be a matrix:

a[1,.,.] = rndn(2,2);

print a;

Plane [1,.,.]

-1.7906502 -0.61038103

1.2586160 -0.47736360

Plane [2,.,.]

0.00000 0.00000

1.00000 1.00000

Plane [3,.,.]

0.00000 0.00000

1.00000 1.00000

The index operator will extract an array from a subarray in a manner analogous to the use of index
operators on matrices:

a = areshape(seqa(1,1,12),3|2|2);

b = a[.,1,.];

print a;

Plane [1,.,.]

1.0000 2.0000

3.0000 4.0000

14-10

W
orking

w
ith

A
rrays

Working with Arrays

Plane [2,.,.]

5.0000 6.0000

7.0000 8.0000

Plane [3,.,.]

9.0000 10.000

11.000 12.000

print b;

Plane [1,.,.]

1.0000 2.0000

Plane [2,.,.]

5.0000 6.0000

Plane [3,.,.]

9.0000 10.000

It is important to note that the result is always an array even if it’s a scalar value:

c = a[1,1,1];

print c;

Plane [1,.,.]

1.0000

14-11

GAUSS User Guide

If you require a matrix result, and if the result has one or two dimensions, use arraytomat to
convert to a matrix, or use getMatrix, or getMatrix4D. Or, if the result is a scalar, use
getScalar3D or getScalar4D.

14.2.2 getArray

getArray is an additional method for extracting arrays:

a = areshape(seqa(1,1,12),3|2|2);

b = getarray(a,2|1);

print a;

Plane [1,.,.]

1.0000 2.0000

3.0000 4.0000

Plane [2,.,.]

5.0000 6.0000

7.0000 8.0000

Plane [3,.,.]

9.0000 10.000

11.000 12.000

print b;

5.0000 6.0000

getArray can only extract a contiguous part of an array. To get non-contiguous parts you must
use the index operator.

14-12

W
orking

w
ith

A
rrays

Working with Arrays

14.2.3 getMatrix

If the result is one or two dimensions, getMatrix returns a portion of an array converted to a
matrix. getMatrix is about 20 percent faster than the index operator:

a = areshape(seqa(1,1,12),3|2|2);

b = getMatrix(a,2);

print b;

5.0000 6.0000

7.0000 8.0000

14.2.4 getMatrix4D

This is a specialized version of getMatrix for 4-dimensional arrays. It behaves just like
getMatrix but is dramatically faster for that type of array. The following illustrates the difference
in timing:

a = arrayinit(100|100|10|10,1);

t0 = date;

for i(1,100,1);

for j(1,100,1);

b = a[i,j,.,.];

endfor;

endfor;

t1 = date;

e1 = ethsec(t0,t1);

print e1;

print;

t2=date;

for i(1,100,1);

14-13

GAUSS User Guide

for j(1,100,1);

b = getMatrix4d(a,i,j);

endfor;

endfor;

t3 = date;

e2 = ethsec(t2,t3);

print e2;

print;

print ftostrC(100*((e1-e2)/e1),

"percent difference - %6.2lf%%");

13.000000

5.0000000

percent difference - 61.54%

14.2.5 getScalar3D, getScalar4D

These are specialized versions of getMatrix for retrieving scalar elements of 3-dimensional and
4-dimensional arrays, respectively. They behave just like getMatrix, with scalar results, but are
much faster. For example:

a = arrayinit(100|10|10,1);

t0 = date;

for i(1,100,1);

for j(1,10,1);

for k(1,10,1);

b = a[i,j,k];

endfor;

endfor;

endfor;

14-14

W
orking

w
ith

A
rrays

Working with Arrays

t1 = date;

e1 = ethsec(t0,t1);

print e1;

print;

t2=date;

for i(1,100,1);

for j(1,10,1);

for k(1,10,1);

b = getscalar3d(a,i,j,k);

endfor;

endfor;

endfor;

t3 = date;

e2 = ethsec(t2,t3);

print e2;

print;

print ftostrC(100*((e1-e2)/e1),

"percent difference - %6.2lf%%");

7.0000000

2.0000000

percent difference - 71.43%

14.2.6 putArray

putArray enters a subarray, matrix, or scalar into an N-dimensional array and returns the result in
an array. This function is much faster than the index operator, but it requires the part of the array
being assigned to be contiguous:

a = arrayinit(3|2|2,3);

b = putarray(a,2,eye(2));

14-15

GAUSS User Guide

print b;

Plane [1,.,.]

3.0000 3.0000

3.0000 3.0000

Plane [2,.,.]

1.0000 0.00000

0.00000 1.0000

Plane [3,.,.]

3.0000 3.0000

3.0000 3.0000

14.2.7 setArray

setArray enters a subarray, matrix, or scalar into an N-dimensional array in place:

a = arrayinit(3|2|2,3);

setarray a,2,eye(2);

print b;

Plane [1,.,.]

3.0000 3.0000

3.0000 3.0000

Plane [2,.,.]

1.0000 0.0000

0.0000 1.0000

14-16

W
orking

w
ith

A
rrays

Working with Arrays

Plane [3,.,.]

3.0000 3.0000

3.0000 3.0000

14.3 Looping with Arrays

When working with arrays, for loops and do loops may be used in the usual way. In the
following, let Y be an N×1×L array of L time series, X an N×1×K array of K independent
variables, B a K×L matrix of regression coefficients, phi a P×L×L array of garch coefficients,
theta a Q×L×L array of arch coefficients, and omega a L×L symmetric matrix of constants. The
log-likelihood for a multivariate garch BEKK model can be computed using the index operator:

yord = getOrders(Y);

xord = getOrders(X);

gord = getOrders(phi);

aord = getOrders(theta);

N = yord[1]; /* No. of observations */

L = yord[3]; /* No. of time series */

K = xord[3]; /* No. of independent variables */

/* in mean equation */

P = gord[1]; /* order of garch parameters */

Q = aord[1]; /* order of arch parameters */

r = maxc(P|Q);

E = Y - amult(X,areshape(B,N|K|L));

sigma = areshape(omega,N|L|L);

for i(r+1,N,1);

for j(1,Q,1);

W = amult(theta[j,.,.],

atranspose(E[i-j,.,.],1|3|2));

sigma[i,.,.] = sigma[i,.,.] + amult(W,atranspose(W,1|3|2));

14-17

GAUSS User Guide

endfor;

for j(1,P,1);

sigma[i,.,.] = sigma[i,.,.] + amult(amult(phi[j,.,.],

sigma[i-j,.,.]),phi[j,.,.]);

endfor;

endfor;

sigmai = invpd(sigma);

lndet = ln(det(sigma));

lnl = -0.5*(L*(N-R)*asum(ln(det(sigmai)),1) +

asum(amult(amult(E,sigmai),atranspose(E,1|3|2)),3);

Instead of index operators, the above computation can be done using getArray and setArray:

yord = getOrders(Y);

xord = getOrders(X);

gord = getOrders(phi);

aord = getOrders(theta);

N = yord[1]; /* No. of observations */

L = yord[3]; /* No. of time series */

K = xord[3]; /* No. of independent variables */

/* in mean equation */

P = gord[1]; /* order of garch parameters */

Q = aord[1]; /* order of arch parameters */

r = maxc(P|Q);

E = Y - amult(X,areshape(B,N|K|L));

sigma = areshape(omega,N|L|L);

for i(r+1,N,1);

for j(1,Q,1);

W = amult(getArray(theta,j),

atranspose(getArray(E,i-j),2|1));

setarray sigma,i,getArray(sigma,i)+

14-18

W
orking

w
ith

A
rrays

Working with Arrays

amult(W,atranspose(W,2|1));

endfor;

for j(1,P,1);

setarray sigma,i,getArray(sigma,i)+

areshape(amult(amult(getArray(phi,j),

getArray(sigma,i-j)),getArray(phi,j)),3|3);

endfor;

endfor;

sigmai = invpd(sigma);

lndet = ln(det(sigma));

lnl = -0.5*(L*(N-R)*asum(ln(det(sigmai)),1)+

asum(amult(amult(E,sigmai),atranspose(E,1|3|2)),3)

Putting the two code fragments above into loops that called them a hundred times and measuring
the time, produced the following results:

index operator: 2.604 seconds

getArray, setArray: 1.092 seconds

Thus, the getArray and setArray methods are more than twice as fast.

14.3.1 loopnextindex

Several keyword functions are available in GAUSS for looping with arrays. The problem in the
previous section, for example, can be written using these functions rather than with for loops:

sigind = r + 1;

sigloop:

14-19

GAUSS User Guide

sig0ind = sigind[1];

thetaind = 1;

thetaloop:

sig0ind = sig0ind - 1;

W = amult(getArray(theta,thetaind),

atranspose(getArray(E,sig0ind),2|1));

setarray sigma,sigind,getArray(sigma,sigind)+

amult(W,atranspose(W,2|1));

loopnextindex thetaloop,thetaind,aord;

sig0ind = sigind;

phiind = 1;

philoop:

sig0ind[1] = sig0ind[1] - 1;

setarray sigma,sigind,getArray(sigma,sigind)+

areshape(amult(amult(getArray(phi,phiind),

getArray(sigma,sig0ind)),

getArray(phi,phiind)),3|3);

loopnextindex philoop,phiind,gord;

loopnextindex sigloop,sigind,sigord;

The loopnextindex function in this example isn’t faster than the for loop used in the previous
section primarily because the code is looping only through the first dimension in each loop. The
advantages of loopnextindex, previousindex, nextindex, and walkindex are when the
code is looping through the higher dimensions of a highly dimensioned array. In this case, looping
through an array can be very complicated and difficult to manage using for loops.
loopnextindex can be faster and more useful.

The next example compares two ways of extracting a subarray from a 5-dimensional array:

ord = 3|3|3|3|3;

a = areshape(seqa(1,1,prodc(ord)),ord);

b = eye(3);

for i(1,3,1);

14-20

W
orking

w
ith

A
rrays

Working with Arrays

for j(1,3,1);

for k(1,3,1);

setarray a,i|j|k,b;

endfor;

endfor;

endfor;

ind = { 1,1,1 };

loopi:

setarray a,ind,b;

loopnextindex loopi,ind,ord;

Calling each loop 10,000 times and measuring the time each takes, we get

for loop: 1.171 seconds

loopnextindex: .321 seconds

In other words, loopnextindex is about four times faster, a very significant difference.

14.4 Miscellaneous Array Functions

14.4.1 atranspose

This function changes the order of the dimensions. For example:

a = areshape(seqa(1,1,12),2|3|2);

print a;

Plane [1,.,.]

14-21

GAUSS User Guide

1.0000 2.0000

3.0000 4.0000

5.0000 6.0000

Plane [2,.,.]

7.0000 8.0000

9.0000 10.000

11.000 12.000

/*

** swap 2nd and 3rd dimension

*/

print atranspose(a,1|3|2);

Plane [1,.,.]

1.0000 3.0000 5.0000

2.0000 4.0000 6.0000

Plane [2,.,.]

7.0000 9.0000 11.000

8.0000 10.000 12.000

/*

** swap 1st and 3rd dimension

*/

print atranspose(a,3|2|1);

Plane [1,.,.]

1.0000 7.0000

3.0000 9.0000

5.0000 11.000

14-22

W
orking

w
ith

A
rrays

Working with Arrays

Plane [2,.,.]

2.0000 8.0000

4.0000 10.000

6.0000 12.000

/*

** move 3rd into the front

*/

print atranspose(a,3|1|2);

Plane [1,.,.]

1.0000 3.0000 5.0000

7.0000 9.0000 11.000

Plane [2,.,.]

2.0000 4.0000 6.0000

8.0000 10.000 12.000

14.4.2 amult

This function performs a matrix multiplication on the last two trailing dimensions of an array. The
leading dimensions must be strictly conformable, and the last two trailing dimensions must be
conformable in the matrix product sense. For example:

a = areshape(seqa(1,1,12),2|3|2);

b = areshape(seqa(1,1,16),2|2|4);

c = amult(a,b);

print a;

Plane [1,.,.]

14-23

GAUSS User Guide

1.0000 2.0000

3.0000 4.0000

5.0000 6.0000

Plane [2,.,.]

7.0000 8.0000

9.0000 10.000

11.000 12.000

print b;

Plane [1,.,.]

1.0000 2.0000 3.0000 4.0000

5.0000 6.0000 7.0000 8.0000

Plane [2,.,.]

9.0000 10.000 11.000 12.000

13.000 14.000 15.000 16.000

print c;

Plane [1,.,.]

11.000 14.000 17.000 20.000

23.000 30.000 37.000 44.000

35.000 46.000 57.000 68.000

Plane [2,.,.]

167.00 182.00 197.00 212.00

211.00 230.00 249.00 268.00

255.00 278.00 301.00 324.00

14-24

W
orking

w
ith

A
rrays

Working with Arrays

Suppose we have a matrix of data sets, a 2×2 matrix of 100×5 data sets that we’ve stored in a
2×2×100×5 array called x. The moment matrices of these data sets can easily and quickly be
computed using atranspose and amult:

vc = amult(atranspose(x,1|2|4|3),x);

14.4.3 amean, amin, amax

These functions compute the means, minimums, and maximums, respectively, across a dimension
of an array. The size of the selected dimension of the resulting array is shrunk to one and contains
the means, minimums, or maximums depending on the function called. For example:

a = areshape(seqa(1,1,12),2|3|2);

print a;

Plane [1,.,.]

1.0000 2.0000

3.0000 4.0000

5.0000 6.0000

Plane [2,.,.]

7.0000 8.0000

9.0000 10.000

11.000 12.000

/*

** compute means along third dimension

*/

print amean(a,3);

Plane [1,.,.]

14-25

GAUSS User Guide

4.0000 5.0000

6.0000 7.0000

8.0000 9.0000

/*

** print means along the second dimension, i.e.,

** down the columns

*/

print amean(a,2);

Plane [1,.,.]

3.0000 4.0000

Plane [2,.,.]

9.0000 10.000

/*

** print the minimums down the columns

*/

print amin(a,2);

Plane [1,.,.]

1.0000 2.0000

Plane [2,.,.]

7.0000 8.0000

/*

** print the maximums along the third dimension

*/

14-26

W
orking

w
ith

A
rrays

Working with Arrays

print amax(a,3);

Plane [1,.,.]

7.0000 8.0000

9.0000 10.000

11.000 12.000

14.4.4 getDims

This function returns the number of dimensions of an array:

a = arrayinit(4|4|5|2,0);

print getdims(a);

4.00

14.4.5 getOrders

This function returns the sizes of each dimension of an array. The length of the vector returned by
getOrders is the dimension of the array:

a = arrayinit(4|4|5|2,0);

print getOrders(a);

4.00

4.00

5.00

2.00

14-27

GAUSS User Guide

14.4.6 arraytomat

This function converts an array with two or fewer dimensions to a matrix:

a = arrayinit(2|2,0);

b = arraytomat(a);

type(a);

21.000

type(b);

6.0000

14.4.7 mattoarray

This function converts a matrix to an array:

b = rndn(2,2);

a = mattoarray(b);

type(b);

6.0000

type(a);

21.000

14.5 Using Arrays with GAUSS functions

Many of the GAUSS functions have been re-designed to work with arrays. There are two general
approaches to this implementation. There are exceptions, however, and you are urged to refer to
the documention if you are not sure how a particular GAUSS function handles array input.

14-28

W
orking

w
ith

A
rrays

Working with Arrays

In the first approach, the function returns an element-by-element result that is strictly conformable
to the input. For example, cdfnc returns an array of identical size and shape to the input array:

a = areshape(seqa(-2,.5,12),2|3|2);

b = cdfnc(a);

print b;

Plane [1,.,.]

0.9772 0.9331

0.8413 0.6914

0.5000 0.3085

Plane [2,.,.]

0.1586 0.0668

0.0227 0.0062

0.0013 0.0002

In the second approach, which applies generally to GAUSS matrix functions, the function operates
on the matrix defined by the last two trailing dimensions of the array. Thus, given a 5×10×3 array,
moment returns a 5×3×3 array of five moment matrices computed from the five 10×3 matrices in
the input array.

Only the last two trailing dimensions matter; i.e., given a 2×3×4×5×10×6 array, moment returns a
2×3×4×5×6×6 array of moment matrices.

For example, in the following the result is a 2×3 array of 3×1 vectors of singular values of a 2×3
array of 6×3 matrices:

a = areshape(seqa(1,1,108),2|3|6|3);

b=svds(a);

print b;

14-29

GAUSS User Guide

Plane [1,1,.,.]

45.894532

1.6407053

1.2063156e-015

Plane [1,2,.,.]

118.72909

0.63421188

5.8652600e-015

Plane [1,3,.,.]

194.29063

0.38756064

1.7162751e-014

Plane [2,1,.,.]

270.30524

0.27857175

1.9012118e-014

Plane [2,2,.,.]

346.47504

0.21732995

1.4501098e-014

Plane [2,3,.,.]

422.71618

0.17813229

1.6612287e-014

It might be tempting to conclude from this example that, in general, a GAUSS function’s behavior

14-30

W
orking

w
ith

A
rrays

Working with Arrays

on the last two trailing dimensions of an array is strictly analogous to the GAUSS function’s
behavior on a matrix. This may be true with some of the functions, but not all. For example, the
GAUSS meanc function returns a column result for matrix input. However, the behavior for the
GAUSS amean function is not analogous. This function takes a second argument that specifies on
which dimension the mean is to be taken. That dimension is then collapsed to a size of 1. Thus:

a = areshape(seqa(1,1,24),2|3|4);

print a;

Plane [1,.,.]

1.000 2.000 3.000 4.000

5.000 6.000 7.000 8.000

9.000 10.000 11.000 12.000

Plane [2,.,.]

13.000 14.000 15.000 16.000

17.000 18.000 19.000 20.000

21.000 22.000 23.000 24.000

/*

** means computed across rows

*/

b = amean(a,1);

print b;

Plane [1,.,.]

2.500

6.500

10.500

Plane [2,.,.]

14.500

14-31

GAUSS User Guide

18.500

22.500

/*

** means computed down columns

*/

c = amean(a,2);

print c;

Plane [1,.,.]

5.000 6.000 7.000 8.000

Plane [2,.,.]

17.000 18.000 19.000 20.000

/*

** means computed along 3rd dimension

*/

d = amean(a,3);

print d;

Plane [1,.,.]

7.000 8.000 9.000 10.000

11.000 12.000 13.000 14.000

15.000 16.000 17.000 18.000

14.6 A Panel Data Model

Suppose we have N cases observed at T times. Let yit be an observation on a dependent variable
for the ith case at time t, Xit an observation of k independent variables for the ith case at time t, B, a

14-32

W
orking

w
ith

A
rrays

Working with Arrays

K×1 vector of coefficients. Then

yit = XitB + µi + εit

is a variance components model where µi is a random error term uncorrelated with εit, but which is
correlated within cases. This implies an NT×NT residual moment matrix that is block diagonal
with N T×T moment matrices with the following form:


σ2
µ + σ

2
ε σ2 . . . σ2

µ

σ2
µ σ2

µ + σ
2
ε . . . σ2

µ
...

...
...

...

σ2
µ σ2

µ . . . σ2
µ + σ

2
ε


The log-likelihood for this model is

lnL = −0.5(NTln(2π) − ln | Ω | + (Y − XB)′Ω−1(Y − XB))

where Ω is the block-diagonal moment matrix of the residuals.

Computing the Log-likelihood

Using GAUSS arrays, we can compute the log-likelihood of this model without resorting to do
loops. Let Y be a 100×3×1 array of observations on the dependent variable, and X a 100×3×5
array of observations on the independent variables. Further let B be a 5×1 vector of coefficients,
and sigu and sige be the residual variances of µ and ε respectively. Then, in explicit steps we
compute

N = 100;

T = 3;

K = 5;

14-33

GAUSS User Guide

sigma = sigu * ones(T,T) + sige * eye(T); /* TxT sigma */

sigmai = invpd(sigma); /* sigma inverse */

lndet = N*ln(detl);

E = Y - amult(X,areshape(B,N|K|1)); /* residuals */

Omegai = areshape(sigmai,N|T|T); /* diagonal blocks */

/* stacked in a vector array */

R1 = amult(atranspose(E,1|3|2),Omegai); /* E’Omegai */

R2 = amult(R1,E); /* R1*E */

lnL = -0.5*(N*T*ln(2*pi) - lndet + asum(R2,3)); /* log-likelhood */

All of this can be made more efficient by nesting statements, which eliminates copying of
temporary intervening arrays to local arrays. It is also useful to add a check for the positive
definiteness of sigma:

N = 100;

T = 3;

K = 5;

const = -0.5*N*T*ln(2*pi);

oldt = trapchk(1);

trap 1,1;

sigmai = invpd(sigu*ones(T,T)+sige*eye(T));

trap oldt,1;

if not scalmiss(sigmai);

E = Y - amult(X,areshape(B,N|K|1));

lnl = const + 0.5*N*ln(detl)-

0.5*asum(amult(amult(atranspose(E,1|3|2),

areshape(sigmai,N|T|T)),E),3);

else;

lnl = error(0);

endif;

14-34

W
orking

w
ith

A
rrays

Working with Arrays

14.7 Appendix

This is an incomplete list of special functions for working with arrays. Many GAUSS functions
have been modified to handle arrays and are not listed here. For example, cdfnc computes the
complement of the Normal cdf for each element of an array just as it would for a matrix. See the
documentation for these GAUSS functions for information about their behavior with arrays.

aconcat Concatenate conformable matrices and arrays in a user-specified
dimension.

aeye Create an array of identity matrices.

amax Compute the maximum elements across a dimension of an array.

amean Compute the mean along one dimension of an array.

amin Compute the minimum elements across a dimension of an array.

amult Perform a matrix multiplication on the last two trailing dimensions
of an array.

areshape Reshape a scalar, matrix, or array into an array of user-specified size.

arrayalloc Create an N-dimensional array with unspecified contents.

arrayinit Create an N-dimensional array with a specified fill value.

arraytomat Change an array to type matrix.

asum Compute the sum across one dimension of an array.

atranspose Transpose an N-dimensional array.

getarray Get a contiguous subarray from an N-dimensional array.

getdims Get the number of dimensions in an array.

getmatrix Get a contiguous matrix from an N-dimensional array.

getmatrix4D Get a contiguous matrix from a 4-dimensional array.

getorders Get the vector of orders corresponding to an array.

14-35

GAUSS User Guide

getscalar3D Get a scalar from a 3-dimensional array.

getscalar4D Get a scalar form a 4-dimensional array.

loopnextindex Increment an index vector to the next logical index and jump to the
specified label if the index did not wrap to the beginning.

mattoarray Change a matrix to a type array.

nextindex Return the index of the next element or subarray in an array.

previousindex Return the index of the previous element or subarray in an array.

putarray Put a contiguous subarray into an N-dimensional array and return
the resulting array.

setarray Set a contiguous subarray of an N-dimensional array.

walkindex Walk the index of an array forward or backward through a specified
dimension.

14-36

S
tructures

Structures 15
15.1 Basic Structures

15.1.1 Structure Definition

The syntax for a structure definition is

struct A { /* list of members */ };

The list of members can include scalars, arrays, matrices, strings, and string arrays, as well as
other structures. As a type, scalars are unique to structures and don’t otherwise exist.

For example, the following defines a structure containing the possible contents:

struct generic_example {

scalar x;

matrix y;

15-1

GAUSS User Guide

string s1;

string array s2

struct other_example t;

};

A useful convention is to put the structure definition into a file with a .sdf extension. Then, for
any command file or source code file that requires this definition, put

#include filename.sdf

For example:

#include example.sdf

These statements create structure definitions that persist until the workspace is cleared. They do
not create structures, only structure-type definitions. The next section describes how to create an
instance of a structure.

15.1.2 Declaring an Instance

To use a structure, it is necessary to declare an instance. The syntax for this is

struct structure type structure name;

For example:

#include example.sdf

struct generic_example p0;

15-2

S
tructures

Structures

15.1.3 Initializing an Instance

Members of structures are referenced using a “dot” syntax:

p0.x = rndn(20,3);

The same syntax applies when referred to on the right-hand side:

mn = meanc(p0.x);

Initialization of Global Structures

Global structures are initialized at compile time. Each member of the structure is initialized
according to the following schedule:

scalar 0, a scalar zero
matrix , an empty matrix with zero rows and zero columns
array 0, a 1-dimensional array set to zero
string ””, a null string
string array ””, a 1×1 string array set to null

If a global already exists in memory, it will not be reinitialized. It may be the case in your program
that when it is rerun, the global variables may need to be reset to default values. That is, your
program may depend on certain members of a structure being set to default values that are set to
some other value later in the program. When you rerun this program, you will want to reinitialize
the global structure. To do this, make an assignment to at least one of the members. This can be
made convenient by writing a procedure that declares a structure and initializes one of its members
to a default value, and then returns it. For example:

/* ds.src */

#include ds.sdf

proc dsCreate;

15-3

GAUSS User Guide

struct DS d0;

d0.dataMatrix = 0;

retp(d0);

endp;

Calling this function after declaring an instance of the structure will ensure initialization to default
values each time your program is run:

struct DS d0;

d0 = dsCreate;

Initializing Local Structures

Local structures, which are structures defined inside procedures, are initialized at the first
assignment. The procedure may have been written in such a way that a subset of structures are
used an any one call, and in that case time is saved by not initializing the unused structures. They
will be initialized to default values only when the first assignment is made to one of its members.

15.1.4 Arrays of Structures

To create a matrix of instances, use the reshape command:

#include ds.sdf

struct DS p0;

p0 = reshape(dsCreate,5,1);

This creates a 5×1 vector of instances of DS structures, with all of the members initialized to
default values.

When the instance members have been set to some other values, reshape will produce multiple
copies of that instance set to those values.

Matrices or vectors of instances can also be created by concatenation:

15-4

S
tructures

Structures

#include trade.sdf

struct option p0,p1,p2;

p0 = optionCreate;

p1 = optionCreate;

p2 = p1 | p0;

15.1.5 Structure Indexing

Structure indexing may be used to reference a particular element in a structure array. The syntax
follows that of matrix indexing. For example, given the following structure definition:

struct example1 {

matrix x;

matrix y;

string str;

};

you could create an array of example1 structures and index it as follows:

struct example1 e1a;

struct example1 e1b;

e1a = e1a | e1b;

e1a[2,1].y = rndn(25,10);

In this example, e1a and e1b are concatenated to create a 2×1 array of example1 structures that is
assigned back to e1a. Then the y member of the [2,1] element of e1a is set to a random matrix.

Indexing of structure arrays can occur on multiple levels. For example, let’s define the following
structures:

struct example3 {

15-5

GAUSS User Guide

matrix w;

string array sa;

};

struct example2 {

matrix z;

struct example3 e3;

};

and let’s redefine example1 to include an instance of an example2 structure:

struct example1 {

matrix x;

matrix y;

string str;

struct example2 e2;

};

Let’s assume that we have an example1 structure e1 like the one displayed in Figure 15.1. We
could then index the structure as follows:

r = e1.e2[3,1].e3[2,1].w

You can also use indexing to reference the structure itself, rather than a member of that structure:

struct example3 e3tmp;

e3tmp = e1.e2[3,1].e3[2,1];

Or you can use indexing to reference a subarray of structures:

e3tmp = e1.e2[3,1].e3[.,1];

15-6

S
tructures

Structures

e1

matrix x
matrix y
string str

struct example2 e2

e2 is a 3x1 array

matrix z
struct example3 e3

matrix z
struct example3 e3

matrix z
struct example3 e3

e3 is a 2x1 array e3 is a 3x1 arraye3 is a 1x1 array

matrix w
string aray sa

matrix w
string aray sa

matrix w
string aray sa

matrix w
string aray sa

matrix w
string aray sa

matrix w
string aray sa

Figure 15.1: Structure tree for e1

15-7

GAUSS User Guide

In this case, e3tmp would be an array of 3×1 example3 structures, since the [3,1] member of
e1.e2 contains a 3×1 array of example3 structures.

It is important to remember, however, that when indexing a structure array on multiple levels, only
the final index may resolve to an array of structures. For example:

e3tmp = e1.e2[.,1].e3[2,1];

would be invalid, since e1.e2[.,1] resolves to a 3×1 array of example2 structures.

15.1.6 Saving an Instance to the Disk

Instances and vectors or matrices of instances of structures can be saved in a file on the disk, and
later loaded from the file onto the disk. The syntax for saving an instance to the disk is

ret = savestruct(instance,filename);

The file on the disk will have an .fsr extension.

For example:

#include ds.sdf

struct DS p0;

p0 = reshape(dsCreate,2,1);

retc = saveStruct(p2,"p2");

This saves the vector of instances in a file called p2.fsr. retc will be zero if the save was
successful; otherwise, nonzero.

15-8

S
tructures

Structures

15.1.7 Loading an Instance from the Disk

The syntax for loading a file containing an instance or matrix of instances is

instance, retc = loadstruct(file name,structure name);

For example:

#include trade.sdf;

struct DS p3;

{ p3, retc } = loadstruct("p2","ds");

15.1.8 Passing Structures to Procedures

Structures or members of structures can be passed to procedures. When a structure is passed as an
argument to a procedure, it is passed by value. The structure becomes a local copy of the structure
that was passed. The data in the structure is not duplicated unless the local copy of the structure
has a new value assigned to one of its members. Structure arguments must be declared in the
procedure definition:

struct rectangle {

matrix ulx;

matrix uly;

matrix lrx;

matrix lry;

};

proc area(struct rectangle rect);

retp((rect.lrx - rect.ulx).*(rect.uly - rect.lry));

endp;

Local structures are defined using a struct statement inside the procedure definition:

15-9

GAUSS User Guide

proc center(struct rectangle rect);

struct rectangle cent;

cent.lrx = (rect.lrx - rect.ulx) / 2;

cent.ulx = -cent.lrx;

cent.uly = (rect.uly - rect.lry) / 2;

cent.lry = -cent.uly;

retp(cent);

endp;

15.2 Structure Pointers

A structure pointer is a separate data type that contains the address of a structure and is used to
reference that structure.

15.2.1 Creating and Assigning Structure Pointers

Given the following structure type definition:

struct example_struct {

matrix x;

matrix y;

};

a pointer to an example_struct structure can be created with the following syntax:

struct example_struct *esp;

However, at this point, esp is not yet pointing at anything. It has only been defined to be the kind
of pointer that points at example_struct structures. To set it to point at a particular structure
instance, we must first create the structure instance:

15-10

S
tructures

Structures

struct example_struct es;

and then we can set esp to point at es by setting esp to the address of es:

esp = &es;

The following code:

struct example_struct es2;

es2 = *esp;

copies the contents of the structure that esp is pointing at (i.e., the contents of es) to es2. It is the
same as

struct example_struct es2;

es2 = es;

15.2.2 Structure Pointer References

To reference a member of a structure, we use a “dot” syntax. For example, we might use the
following code to set the x member of es.

es.x = rndn(3,3);

To reference a member of a structure using a pointer to that structure, we use an “arrow” syntax.
For example, we might use the following code to set the x member of es using the pointer esp:

esp->x = rndn(10,5);

15-11

GAUSS User Guide

This code will modify es, since esp is merely a pointer to es.

Structure pointers cannot be members of a structure. The following is illegal:

struct example_struct_2 {

matrix z;

struct example_struct *ep;

};

Therefore, since a structure pointer will never be a member of a structure, neither

sp1->sp2->x;

nor

s.sp1->x;

will ever be valid (sp1 and sp2 are assumed to be structure pointers, s a structure instance, and x a
matrix). The “arrow” (->) will only be valid if it is used for the first (or furthest left) dereference,
as in:

sp1->st.x;

At this point we do not support indexing of structure pointers. Thus, a structure pointer should
point at a scalar structure instance, not a matrix of structures. However, you may index members
of that scalar structure instance. So, for example, let us suppose that you defined the following
structure types:

struct sb {

matrix y;

matrix z;

15-12

S
tructures

Structures

};

struct sa {

matrix x;

struct structb s;

};

and then created an instance of an sa structure, a0, setting a0.s to a 3×2 matrix of sb structures.
The following would be legal:

struct sa *sap

sap = &a0;

sap->s[3,1].y = rndn(3,3);

15.2.3 Using Structure Pointers in Procedures

Structure pointers are especially useful in cases where structures are passed into and out of
procedures. If a procedure takes a structure as an argument and modifies any members of that
structure, then it makes a local copy of the entire structure before modifying it. Thus if you want
to have the modified copy of the structure after running the procedure, you need to pass the
structure out of the procedure as one of its return arguments. For example:

struct example_struct {

matrix x;

matrix y;

matrix z;

};

proc product(struct example_struct es);

es.z = (es.x).*(es.y);

retp(es);

endp;

struct example_struct es1;

15-13

GAUSS User Guide

es1.x = rndn(1000,100);

es1.y = rndn(1000,1);

es1 = product(es1);

In this example, the structure es1 is passed into the procedure, copied and modified. The modified
structure is then passed out of the procedure and assigned back to es1.

Structure pointers allow you to avoid such excessive data copying and eliminate the need to pass a
structure back out of a procedure in cases like this. When you pass a structure pointer into a
procedure and then modify a member of the structure that it references, the actual structure is
modified rather than a local copy of it. Thus there is no need to pass the modifed structure back
out of the procedure. For example, the above example could be accomplished using structure
pointers as follows:

struct example_struct {

matrix x;

matrix y;

matrix z;

};

proc(0) = product(struct example_struct *esp);

esp->z = (esp->x).*(esp->y);

endp;

struct example_struct es1;

struct example_struct *es1p;

es1p = &es1;

es1.x = rndn(1000,100);

es1.y = rndn(1000,1);

product(es1p);

In this case, the procedure modifies the structure es1, which es1p is pointing at, instead of a local
copy of the structure.

15-14

S
tructures

Structures

15.3 Special Structures

There are three common types of structures that will be found in the GAUSS Run-Time Library
and applications.

The DS and PV structures are defined in the GAUSS Run-Time Library. Their definitions are
found in ds.sdf and pv.sdf, respectively, in the src source code subdirectory.

Before structures, many procedures in the Run-Time Library and all applications had global
variables serving a variety of purposes, such as setting and altering defaults. Currently, these
variables are being entered as members of “control” structures.

15.3.1 The DS Structure

The DS structure, or “data” structure, is a very simple structure. It contains a member for each
GAUSS data type. The following is found in ds.sdf:

struct DS {

scalar type;

matrix dataMatrix;

array dataArray;

string dname;

string array vnames;

};

This structure was designed for use by the various optimization functions in GAUSS, in particular,
sqpSolvemt, as well as a set of gradient procedures, gradmt, hessmt, et al.

These procedures all require that the user provide a procedure computing a function (to be
optimized or take the derivative of, etc.), which takes the DS structure as an argument. The
Run-Time Library procedures such as sqpSolvemt take the DS structure as an argument and
pass it on to the user-provided procedure without modification. Thus, the user can put into that
structure whatever might be needed as data in the procedure.

To initialize an instance of a DS structure, the procedure dsCreate is defined in ds.src:

15-15

GAUSS User Guide

#include ds.sdf

struct DS d0;

d0 = dsCreate;

15.3.2 The PV Structure

The PV structure, or parameter vector structure, is used by various optimization, modelling, and
gradient procedures, in particular sqpSolvemt, for handling the parameter vector. The GAUSS
Run-Time Library contains special functions that work with this structure. They are prefixed by
“pv” and defined in pv.src. These functions store matrices and arrays with parameters in the
structure, and retrieve various kinds of information about the parameters and parameter vector
from it.

“Packing” into a PV Structure

The various procedures in the Run-Time Library and applications for optimization, modelling,
derivatives, etc., all require a parameter vector. Parameters in complex models, however, often
come in matrices of various types, and it has been the responsibility of the programmer to generate
the parameter vector from the matrices and vice versa. The PV procedures make this problem
much more convenient to solve.

The typical situation involves two parts: first, “packing” the parameters into the PV structure,
which is then passed to the Run-Time Library procedure or application; and second,
“unpacking” the PV structure in the user-provided procedure for use in computing the objective
function. For example, to pack parameters into a PV structure:

#include sqpsolvemt.sdf

/* starting values */

b0 = 1; /* constant in mean equation */

garch = { .1, .1 }; /* garch parameters */

arch = { .1, .1 }; /* arch parameters */

omega = .1; /* constant in variance equation */

15-16

S
tructures

Structures

struct PV p0;

p0 = pvPack(pvCreate,b0,"b0");

p0 = pvPack(p0,garch,"garch");

p0 = pvPack(p0,arch,"arch");

p0 = pvPack(p0,omega,"omega");

/* data */

z = loadd("tseries");

struct DS d0;

d0.dataMatrix = z;

Next, in the user-provided procedure for computing the objective function, in this case minus the
log-likelihood, the parameter vector is unpacked:

proc ll(struct PV p0, struct DS d0);

local b0,garch,arch,omega,p,q,h,u,vc,w;

b0 = pvUnpack(p0,"b0");

garch = pvUnpack(p0,"garch");

arch = pvUnpack(p0,"arch");

omega = pvUnpack(p0,"omega");

p = rows(garch);

q = rows(arch);

u = d0.dataMatrix - b0;

vc = moment(u,0)/rows(u);

w = omega + (zeros(q,q) | shiftr((u.*ones(1,q))’,

seqa(q-1,-1,q))) * arch;

h = recserar(w,vc*ones(p,1),garch);

logl = -0.5 * ((u.*u)./h + ln(2*pi) + ln(h));

retp(logl);

15-17

GAUSS User Guide

endp;

Masked Matrices

The pvUnpack function unpacks parameters into matrices or arrays for use in computations. The
first argument is a PV structure containing the parameter vector. Sometimes the matrix or vector is
partly parameters to be estimated (that is, a parameter to be entered in the parameter vector) and
partly fixed parameters. To distinguish between estimated and fixed parameters, an additional
argument is used in the packing function called a “mask”, which is strictly conformable to the
input matrix. Its elements are set to 1 for an estimated parameter and 0 for a fixed parameter. For
example:

p0 = pvPackm(p0,.1*eye(3),"theta",eye(3));

Here just the diagonal of a 3×3 matrix is added to the parameter vector.

When this matrix is unpacked, the entire matrix is returned with current values of the parameters
on the diagonal:

print pvUnpack(p0,"theta");

0.1000 0.0000 0.0000
0.0000 0.1000 0.0000
0.0000 0.0000 0.1000

Symmetric Matrices

Symmetric matrices are a special case because even if the entire matrix is to be estimated, only the
nonredundant portion is to be put into the parameter vector. Thus, for them there are special
procedures. For example:

15-18

S
tructures

Structures

vc = { 1 .6 .4, .6 1 .2, .4 .2 1 };

p0 = pvPacks(p0,vc,"vc");

There is also a procedure for masking in case only a subset of the nonredundant elements are to be
included in the parameter vector:

vc = { 1 .6 .4, .6 1 .2, .4 .2 1 };

mask = { 1 1 0, 1 1 0, 0 0 1 };

p0 = pvPacksm(p0,vc,"vc",mask);

Fast Unpacking

When unpacking matrices using a matrix name, pvUnpack has to make a search through a list of
names, which is relatively time-consuming. This can be alleviated by using an index rather than a
name in unpacking. To do this, though, requires using a special pack procedure that establishes the
index:

p0 = pvPacki(p0,b0,"b0",1);

p0 = pvPacki(p0,garch,"garch",2);

p0 = pvPacki(p0,arch,"arch",3);

p0 = pvPacki(p0,omega,"omega",4);

Now they may be unpacked using the index number:

b0 = pvUnpack(p0,1);

garch = pvUnpack(p0,2);

arch = pvUnpack(p0,3);

omega = pvUnpack(p0,4);

When packed with an index number, they may be unpacked either by index or by name, but
unpacking by index is faster.

15-19

GAUSS User Guide

15.3.3 Miscellaneous PV Procedures

pvList

This procedure generates a list of the matrices or arrays packed into the structure:

p0 = pvPack(p0,b0,"b0");

p0 = pvPack(p0,garch,"garch");

p0 = pvPack(p0,arch,"arch");

p0 = pvPack(p0,omega,"omega");

print pvList(p0);

b0

garch

arch

omega

pvLength

This procedure returns the length of the parameter vector:

print pvLength(p0);

6.0000

pvGetParNames

This procedure generates a list of parameter names:

print pvGetParNames(p0);

15-20

S
tructures

Structures

b0[1,1]

garch[1,1]

garch[2,1]

arch[1,1]

arch[2,1]

omega[1,1]

pvGetParVector

This procedure returns the parameter vector itself:

print pvGetParVector(p0);

1.0000

0.1000

0.1000

0.1000

0.1000

1.0000

pvPutParVector

This procedure replaces the parameter vector with the one in the argument:

newp = { 1.5, .2, .2, .3, .3, .8 };

p0 = pvPutParVector(newp,p0);

print pvGetParVector(p0);

1.5000

0.2000

0.2000

0.3000

0.3000

0.8000

15-21

GAUSS User Guide

pvGetIndex

This procedure returns the indices in the parameter vector of the parameters in a matrix. These
indices are useful when setting linear constraints or bounds in sqpSolvemt. Bounds, for example,
are set by specifying a K×2 matrix where K is the length of the parameter vector and the first
column are the lower bounds and the second the upper bounds. To set the bounds for a particular
parameter, then, requires knowing where that parameter is in the parameter vector. This
information can be found using pvGetIndex. For example:

// get indices of lambda parameters in parameter vector

lind = pvGetIndex(par0,"lambda");

// set bounds constraint matrix to unconstrained default

c0.bounds = ones(pvLength(par0),1).*(-1e250˜1e250);

// set bounds for lambda parameters to be positive

c0.bounds[lind,1] = zeros(rows(lind),1);

15.3.4 Control Structures

Another important class of structures is the “control” structure. Applications developed before
structures were introduced into GAUSS typically handled some program specifications by the use
of global variables which had some disadvantages, in particular, preventing the nesting of calls to
procedures.

Currently, the purposes served by global variables are now served by the use of a control structure.
For example, for sqpSolvemt:

struct sqpSolvemtControl {

matrix A;

matrix B;

matrix C;

matrix D;

scalar eqProc;

scalar ineqProc;

15-22

S
tructures

Structures

matrix bounds;

scalar gradProc;

scalar hessProc;

scalar maxIters;

scalar dirTol;

scalar CovType;

scalar feasibleTest;

scalar maxTries;

scalar randRadius;

scalar trustRadius;

scalar seed;

scalar output;

scalar printIters;

matrix weights;

};

The members of this structure determine optional behaviors of sqpSolvemt.

15.4 sqpSolvemt

sqpSolvemt is a procedure in the GAUSS Run-Time Library that solves the general nonlinear
programming problem using a Sequential Quadratic Programming descent method, that is, it
solves

min f (θ)

subject to

Aθ = B linear equality
Cθ>=D linear inequality
H(θ) = 0 nonlinear equality
G(θ)>=0 nonlinear inequality
θlb<=θ<=θub bounds

15-23

GAUSS User Guide

The linear and bounds constraints are redundant with respect to the nonlinear constraints, but are
treated separately for computational convenience.

The call to sqpSolvemt has four input arguments and one output argument:

out = SQPsolveMT(&fct,P,D,C);

15.4.1 Input Arguments

The first input argument is a pointer to the objective function to be minimized. The procedure
computing this objective function has two arguments: a PV structure containing the start values,
and a DS structure containing data, if any. For example:

proc fct(struct PV p0, struct DS d0);

local y, x, b0, b, e, s;

y = d0[1].dataMatrix;

x = d0[2].dataMatrix;

b0 = pvUnpack(p0,"constant");

b = pvUnpack(p0,"coefficients");

e = y - b0 - x * b;

s = sqrt(e’e/rows(e));

retp(-pdfn(e/s);

endp;

Note that this procedure returns a vector rather than a scalar. When the objective function is a
properly defined log-likelihood, returning a vector of minus log-probabilities permits the
calculation of a QML covariance matrix of the parameters.

The remaining input arguments are structures:

P a PV structure containing starting values of the parameters

D a DS structure containing data, if any

15-24

S
tructures

Structures

C an sqpSolvemtControl structure

The DS structure is optional. sqpSolvemt passes this argument on to the user-provided procedure
that &fct is pointing to without modification. If there is no data, a default structure can be passed
to it.

sqpSolvemtControl Structure

A default sqpSolvemtControl structure can be passed in the fourth argument for an
unconstrained problem. The members of this structure are as follows:

A M×K matrix, linear equality constraint coefficients: Aθ = B, where p is a
vector of the parameters.

B M×1 vector, linear equality constraint constants: Aθ = B, where p is a
vector of the parameters.

C M×K matrix, linear inequality constraint coefficients: Cθ = D, where p is a
vector of the parameters.

D M×1 vector, linear inequality constraint constants: Cθ = D, where p is a
vector of the parameters.

eqProc scalar, pointer to a procedure that computes the nonlinear equality
constraints. When such a procedure has been provided, it has two input
arguments, instances of PV and DS structures, and one output argument, a
vector of computed inequality constraints.

Default = .; i.e., no inequality procedure.

IneqProc scalar, pointer to a procedure that computes the nonlinear inequality
constraints. When such a procedure has been provided, it has two input
arguments, instances of PV and DS structures, and one output argument, a
vector of computed inequality constraints.

Default = .; i.e., no inequality procedure.

15-25

GAUSS User Guide

Bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all parameters have same
bounds.

Default = -1e256 1e256 .

GradProc scalar, pointer to a procedure that computes the gradient of the function
with respect to the parameters. When such a procedure has been provided,
it has two input arguments, instances of PV and DS structures, and one
output argument, the derivatives. If the function procedure returns a scalar,
the gradient procedure returns a 1×K row vector of derivatives. If function
procedure turns an N×1 vector, the gradient procedure returns an N×K
matrix of derivatives.

This procedure may compute a subset of the derivatives. sqpSolvemt will
compute numerical derivatives for all those elements set to missing values
in the return vector or matrix.

Default = .; i.e., no gradient procedure has been provided.

HessProc scalar, pointer to a procedure that computes the Hessian; i.e., the matrix of
second order partial derivatives of the function with respect to the
parameters. When such a procedure has been provided, it has two input
arguments, instances of PV and DS structures, and one output argument, a
vector of computed inequality constraints.

Default = .; i.e., no Hessian procedure has been provided.

Whether the objective function procedure returns a scalar or vector, the
Hessian procedure must return a K×K matrix. Elements set to missing
values will be computed numerically by sqpSolvemt.

MaxIters scalar, maximum number of iterations. Default = 1e+5.

MaxTries scalar, maximum number of attemps in random search. Default = 100.

DirTol scalar, convergence tolerance for gradient of estimated coefficients. Default
= 1e-5. When this criterion has been satisifed, sqpSolvemt exits the
iterations.

CovType scalar, if 2, QML covariance matrix, else if 0, no covariance matrix is
computed, else ML covariance matrix is computed. For a QML covariance
matrix, the objective function procedure must return an N×1 vector of
minus log-probabilities.

15-26

S
tructures

Structures

FeasibleTest scalar, if nonzero, parameters are tested for feasibility before computing
function in line search. If function is defined outside inequality boundaries,
then this test can be turned off. Default = 1.

randRadius scalar, if zero, no random search is attempted. If nonzero, it is the radius of
the random search. Default = .001.

seed scalar, if nonzero, seeds random number generator for random search,
otherwise time in seconds from midnight is used.

trustRadius scalar, radius of the trust region. If scalar missing, trust region not applied.
The trust sets a maximum amount of the direction at each iteration. Default
= .001.

output scalar, if nonzero, results are printed. Default = 0.

PrintIters scalar, if nonzero, prints iteration information. Default = 0.

weights vector, weights for objective function returning a vector. Default = 1.

15.4.2 Output Argument

The single output argument is an sqpSolvemtOut structure. Its definition is:

struct SQPsolveMTOut {

struct PV par;

scalar fct;

struct SQPsolveMTLagrange lagr;

scalar retcode;

matrix moment;

matrix hessian;

matrix xproduct;

};

The members of this structure are:

15-27

GAUSS User Guide

par instance of a PV structure containing the parameter estimates are placed in
the matrix member par.

fct scalar, function evaluated at final parameter estimates.

lagr an instance of an SQPLagrange structure containing the Lagrangeans for
the constraints. For an instance named lagr, the members are:

lagr.lineq M×1 vector, Lagrangeans of linear equality
constraints

lagr.nlineq N×1 vector, Lagrangeans of nonlinear equality
constraints

lagr.linineq P×1 vector, Lagrangeans of linear inequality
constraints

lagr.nlinineq Q×1 vector, Lagrangeans of nonlinear inequality
constraints

lagr.bounds K×2 matrix, Lagrangeans of bounds

Whenever a constraint is active, its associated Lagrangean will be nonzero.
For any constraint that is inactive throughout the iterations as well as at
convergence, the corresponding Lagrangean matrix will be set to a scalar
missing value.

retcode return code:

0 normal convergence

1 forced exit

2 maximum number of iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 error with constraints

8 function complex

9 feasible direction couldn’t be found

15-28

S
tructures

Structures

15.4.3 Example

Define

Y = Λη + θ

where Λ is a K×L matrix of loadings, η an L×1 vector of unobserved “latent” variables, and θ a
K×1 vector of unobserved errors. Then

Σ = ΛΦΛ′Ψ

where Φ is the L×L covariance matrix of the latent variables, and Ψ is the K×K covariance matrix
of the errors.

The log-likelihood of the ith observation is

logP(i) = − 1
2 [Kln(2π) + ln | π | +Y(i)ΣY(i)′]

Not all elements of Λ, Φ, and Ψ can be estimated. At least one element of each column of Λ must
be fixed to 1, and Ψ is usually a diagonal matrix.

Constraints

To ensure a well-defined log-likelihood, constraints on the parameters are required to guarantee
positive definite covariance matrices. To do this, a procedure is written that returns the eigenvalues
of Σ and Φ minus a small number. sqpSolvemt then finds parameters such that these eigenvalues
are greater than or equal to that small number.

15-29

GAUSS User Guide

15.4.4 The Command File

This command file can be found in the file sqpfact.e in the examples subdirectory:

#include sqpsolvemt.sdf

lambda = { 1.0 0.0,

0.5 0.0,

0.0 1.0,

0.0 0.5 };

lmask = { 0 0,

1 0,

0 0,

0 1 };

phi = { 1.0 0.3,

0.3 1.0 };

psi = { 0.6 0.0 0.0 0.0,

0.0 0.6 0.0 0.0,

0.0 0.0 0.6 0.0,

0.0 0.0 0.0 0.6 };

tmask = { 1 0 0 0,

0 1 0 0,

0 0 1 0,

0 0 0 1 };

struct PV par0;

par0 = pvCreate;

par0 = pvPackm(par0,lambda,"lambda",lmask);

par0 = pvPacks(par0,phi,"phi");

par0 = pvPacksm(par0,psi,"psi",tmask);

struct SQPsolveMTControl c0;

15-30

S
tructures

Structures

c0 = sqpSolveMTcontrolCreate;

lind = pvGetIndex(par0,"lambda"); /* get indices of lambda */

/* parameters in parameter */

/* vector */

tind = pvGetIndex(par0,"psi"); /* get indices of psi */

/* parameters in parameter */

/* vector */

c0.bounds = ones(pvLength(par0),1).*(-1e250˜1e250);

c0.bounds[lind,1] = zeros(rows(lind),1);

c0.bounds[lind,2] = 10*ones(rows(lind),1);

c0.bounds[tind,1] = .001*ones(rows(tind),1);

c0.bounds[tind,2] = 100*ones(rows(tind),1);

c0.output = 1;

c0.printIters = 1;

c0.trustRadius = 1;

c0.ineqProc = &ineq;

c0.covType = 1;

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = loadd("maxfact");

output file = sqpfact.out reset;

struct SQPsolveMTOut out0;

out0 = SQPsolveMT(&lpr,par0,d0,c0);

lambdahat = pvUnpack(out0.par,"lambda");

phihat = pvUnpack(out0.par,"phi");

psihat = pvUnpack(out0.par,"psi");

print "estimates";

print;

print "lambda" lambdahat;

15-31

GAUSS User Guide

print;

print "phi" phihat;

print;

print "psi" psihat;

struct PV stderr;

stderr = out0.par;

if not scalmiss(out0.moment);

stderr = pvPutParVector(stderr,sqrt(diag(out0.moment)));

lambdase = pvUnpack(stderr,"lambda");

phise = pvUnpack(stderr,"phi");

psise = pvUnpack(stderr,"psi");

print "standard errors";

print;

print "lambda" lambdase;

print;

print "phi" phise;

print;

print "psi" psise;

endif;

output off;

proc lpr(struct PV par1, struct DS data1);

local lambda,phi,psi,sigma,logl;

lambda = pvUnpack(par1,"lambda");

phi = pvUnpack(par1,"phi");

psi = pvUnpack(par1,"psi");

sigma = lambda*phi*lambda’ + psi;

logl = -lnpdfmvn(data1.dataMatrix,sigma);

retp(logl);

endp;

proc ineq(struct PV par1, struct DS data1);

15-32

S
tructures

Structures

local lambda,phi,psi,sigma,e;

lambda = pvUnpack(par1,"lambda");

phi = pvUnpack(par1,"phi");

psi = pvUnpack(par1,"psi");

sigma = lambda*phi*lambda’ + psi;

e = eigh(sigma) - .001; /* eigenvalues of sigma */

e = e | eigh(phi) - .001; /* eigenvalues of phi */

retp(e);

endp;

15-33

R
TL

S
tructures

Run-Time Library Structures 16
Two structures are used by several GAUSS Run-Time Library functions for handling parameter
vectors and data: the PV parameter structure and the DS data structure.

16.1 The PV Parameter Structure

The members of an instance of structure of type PV are all “private,” that is, not accessible directly
to the user. It is designed to handle parameter vectors for threadsafe optimization functions.
Entering and receiving parameter vectors, and accessing properties of this vector, are
accomplished using special functions.

Suppose you are optimizing a function containing a K×L matrix of coefficients. The optimization
function requires a parameter vector but your function uses a K×L matrix. Your needs and the
needs of the optimization function can be both satisfied by an instance of the structure of type PV.
For example:

struct PV p1;

p1 = pvCreate;

16-1

GAUSS User Guide

x = zeros(4,3); /* on input contains start values, */

/* on exit contains estimates */

p1 = pvPack(p1,x,"coefficients");

The pvCreate function initializes p1 to default values. pvPack enters the 4×3 matrix stored
row-wise as a 12×1 parameter vector for the optimization function. The optimization program will
pass the instance of the structure of type PV to your objective function.

By calling pvUnpack your 4×3 coefficient matrix is retrieved from the parameter vector. For
example, in your procedure you have

x = pvUnpack(p1,"coefficients");

and now x is a 4×3 matrix of coefficients for your use in calculating the object function.

Suppose that your objective function has parameters to be estimated in a covariance matrix. The
covariance matrix is a symmetric matrix where only the lower left portion contains unique values
for estimation. To handle this, use pvPacks. For example:

struct PV p1;

p1 = pvCreate;

cov = { 1 .1 .1,

.1 1 .1,

.1 .1 1 };

p1 = pvPacks(p1,cov,"covariance");

Only the lower left portion of cov will be stored in the parameter vector. When the covariance
matrix is unpacked, the parameters in the parameter vector will be entered into both the lower and
upper portions of the matrix.

There may be cases where only a portion of a matrix being used to compute the objective function
are parameters to be estimated. In this case use pvPackm with a “mask” matrix that contains ones
where parameters are to be estimated and zeros otherwise. For example,

16-2

R
TL

S
tructures

Run-Time Library Structures

struct PV p1;

p1 = pvCreate;

cov = { 1 .5,

.5 1 };

mask = { 0 1,

1 0 };

p1 = pvPacksm(p1,cov,"correlation",mask);

Here only the one element in the lower left of cov is stored in the parameter vector. Suppose the
optimization program sends a trial value for that parameter of, say, .45. When the matrix is
unpacked in your procedure it will contain the fixed values associated with the zeros in the mask
as well as the trial value in that part of the matrix associated with the ones. Thus,

print unpack(p1,"correlation");

1.0000 .4500

.4500 1.0000

A mask may also be used with general matrices to store a portion of a matrix in the parameter
vector.

struct PV p1;

p1 = pvCreate;

m = { 0 .5 1,

.5 0 .3 };

mask = { 0 1 1,

1 0 0};

p1 = pvPackm(p1,m,"coefficients",mask);

16-3

GAUSS User Guide

A PV instance can, of course, hold parameters from all these types of matrices: symmetric, masked
symmetric, rectangular, and masked rectangular. For example:

lambda = { 1.0 0.0,

0.5 0.0,

0.0 1.0,

0.0 0.5 };

lmask = { 0 0,

1 0,

0 0,

0 1 };

phi = { 1.0 0.3,

0.3 1.0 };

theta = { 0.6 0.0 0.0 0.0,

0.0 0.6 0.0 0.0,

0.0 0.0 0.6 0.0,

0.0 0.0 0.0 0.6 };

tmask = { 1 0 0 0,

0 1 0 0,

0 0 1 0,

0 0 0 1 };

struct PV par0;

par0 = pvCreate;

par0 = pvPackm(par0,lambda,"lambda",lmask);

par0 = pvPacks(par0,phi,"phi");

par0 = pvPacksm(par0,theta,"theta",tmask);

It isn’t necessary to know where in the parameter vector the parameters are located in order to use
them in your procedure calculating the objective function. Thus:

lambda = pvUnpack(par1,"lambda");

16-4

R
TL

S
tructures

Run-Time Library Structures

phi = pvUnpack(par1,"phi");

theta = pvUnpack(par1,"theta");

sigma = lambda*phi*lambda’ + theta;

Additional functions are available to retrieve information on the properties of the parameter vector.
pvGetParVector and pvPutParVector get and put parameter vector from and into the PV
instance, pvGetParNames retrieves names for the elements of the parameter vector, pvList
returns the list of matrix names in the PV instance, pvLength the length of the parameter vector.

struct PV p1;

p1 = pvCreate;

cov = { 1 .5,

.5 1 };

mask = { 0 1,

1 0 };

p1 = pvPacksm(p1,cov,"correlation",mask);

print pvGetParVector(p1);

.5000

p1 = pvPutParVector(p1,.8);

print pvGetParVector(p1);

.8000

print pvUnpack(p1,"correlation");

1.0000 .8000

.8000 1.0000

print pvGetParNames(p1);

correlation[2,1]

16-5

GAUSS User Guide

print pvLength(p1);

1.0000

Also, pvTest tests an instance to make sure it is properly constructed. pvCreate generates an
initialized instance, and pvGetIndex returns the indices of the parameters of an input matrix in
the parameter vector. This last function is most useful when constructing linear constraint indices
for the optimization programs.

16.2 Fast Pack Functions

Unpacking matrices using matrix names is slow because it requires a string search through a string
array of names. A set of special packing functions are provided that avoid the search altogether.
These functions use a “table” of indices that you specify to find the matrix in the PV instance. For
example:

struct PV p1;

p1 = pvCreate;

y = rndn(4,1);

x = rndn(4,4);

p1 = pvPacki(p1,y,"Y",1);

p1 = pvPacki(p1,x,"X",2);

print pvUnpack(p1,1);

.3422

.0407

.5611

.0953

print pvUnpack(p1,"Y");

16-6

R
TL

S
tructures

Run-Time Library Structures

.3422

.0407

.5611

.0953

The call to pvPacki puts an entry in the table associating the matrix in its second argument with
the index 1. As indicated above the matrix can be unpacked either by index or by name.
Unpacking by index, however, is much faster than by name.

Note that the matrix can be unpacked using either the index or the matrix name.

There are index versions of all four of the packing functions, pvPacki, pvPackmi, pvPacksi, and
pvPacksmi.

16.3 The DS Data Structure

An instance of the DS data structure contains the following members:

struct DS d0;

d0.dataMatrix M×K matrix, data
d0.dataArray N-dimensional array, data
d0.type scalar
d0.dname string
d0.vnames string array

The definition and use of the elements of d0 are determined by the particular application and are
mostly up to the user. A typical use might use a vector of structures. For example, suppose the
objective function requires a vector of observations on a dependent variable as well as on K
independent variables. Then:

16-7

GAUSS User Guide

struct DS d0;

d0 = dsCreate;

y = rndn(20,1);

x = rndn(20,5);

d0 = reshape(d0,2,1);

d0[1].dataMatrix = y;

d0[2].dataMatrix = X;

The d0 instance would be passed to the optimization program which then passes it to your
procedure computing the objective function. For example:

proc lpr(struct PV p1, struct DS d1);

local u;

u = d0[1].dataMatrix - d0[2].dataMatrix * pvUnpack(p1,"beta");

retp(u’u);

endp;

A particular application may require setting other members of the DS instance for particular
purposes, but in general you may use them for your own purposes. For example, d0.dname could
be set to a GAUSS dataset name from which you read the data in the objective function procedure,
or d0.vnames could be set to the variable names of the columns of the data stored in
d0.dataMatrix, or d0.type could be an indicator variable for the elements of a vector of DS
instances.

The following are complete examples of the use of the PV and DS structures. The first example fits
a set of data to the Micherlitz model. It illustrates packing and unpacking by index.

#include sqpsolvemt.sdf

struct DS Y;

Y = dsCreate;

Y.dataMatrix = 3.183|

16-8

R
TL

S
tructures

Run-Time Library Structures

3.059|

2.871|

2.622|

2.541|

2.184|

2.110|

2.075|

2.018|

1.903|

1.770|

1.762|

1.550;

struct DS X;

X = dsCreate;

X.dataMatrix = seqa(1,1,13);

struct DS Z;

Z = reshape(Z,2,1);

Z[1] = Y;

Z[2] = X;

struct SQPsolveMTControl c1;

c1 = sqpSolveMTcontrolCreate; /* initializes */

/* default values */

c1.bounds = 0˜100; /* constrains parameters */

/* to be positive */

c1.CovType = 1;

c1.output = 1;

c1.printIters = 0;

c1.gradProc = &grad;

struct PV par1;

par1 = pvCreate;

16-9

GAUSS User Guide

start = { 2, 4, 2 };

par1 = pvPacki(par1,start,"Parameters",1);

struct SQPsolveMTout out1;

out1 = SQPsolveMT(&Micherlitz,par1,Z,c1);

estimates = pvGetParVector(out1.par);

print " parameter estimates ";

print estimates;

print;

print " standard errors ";

print sqrt(diag(out1.moment));

proc Micherlitz(struct PV par1,struct DS Z);

local p0,e,s2;

p0 = pvUnpack(par1,1);

e = Z[1].dataMatrix - p0[1] - p0[2]*exp(-p0[3]

*Z[2].dataMatrix);

s2 = moment(e,0)/(rows(e)-1);

retp((2/rows(e))*(e.*e/s2 + ln(2*pi*s2)));

endp;

proc grad(struct PV par1, struct DS Z);

local p0,e,e1,e2,e3,w,g,s2;

p0 = pvUnpack(par1,1);

w = exp(-p0[3]*Z[2].dataMatrix);

e = z[1].dataMatrix - p0[1] - p0[2] * w;

s2 = moment(e,0) / rows(e);

e1 = - ones(rows(e),1);

e2 = -w;

e3 = p0[2]*Z[2].dataMatrix.*w;

w = (1 - e.*e / s2) / rows(e);

g = e.*e1 + w*(e’e1);

g = g ˜ (e.*e2 + w*(e’e2));

g = g ˜ (e.*e3 + w*(e’e3));

16-10

R
TL

S
tructures

Run-Time Library Structures

retp(4*g/(rows(e)*s2));

endp;

This example estimates parameters of a “confirmatory factor analysis” model.

\#include sqpsolvemt.sdf

lambda = { 1.0 0.0,

0.5 0.0,

0.0 1.0,

0.0 0.5 };

lmask = { 0 0,

1 0,

0 0,

0 1 };

phi = { 1.0 0.3,

0.3 1.0 };

theta = { 0.6 0.0 0.0 0.0,

0.0 0.6 0.0 0.0,

0.0 0.0 0.6 0.0,

0.0 0.0 0.0 0.6 };

tmask = { 1 0 0 0,

0 1 0 0,

0 0 1 0,

0 0 0 1 };

struct PV par0;

par0 = pvCreate;

par0 = pvPackm(par0,lambda,"lambda",lmask);

par0 = pvPacks(par0,phi,"phi");

par0 = pvPacksm(par0,theta,"theta",tmask);

16-11

GAUSS User Guide

struct SQPsolveMTControl c0;

c0 = sqpSolveMTcontrolCreate;

lind = pvGetIndex(par0,"lambda"); /* get indices of */

/* lambda parameters */

/* in parameter vector */

tind = pvGetIndex(par0,"theta"); /* get indices of */

/* theta parameters */

/* in parameter vector */

c0.bounds = ones(pvLength(par0),1).*(-1e250˜1e250);

c0.bounds[lind,1] = zeros(rows(lind),1);

c0.bounds[lind,2] = 10*ones(rows(lind),1);

c0.bounds[tind,1] = .001*ones(rows(tind),1);

c0.bounds[tind,2] = 100*ones(rows(tind),1);

c0.ineqProc = &ineq;

c0.covType = 1;

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = loadd("maxfact");

struct SQPsolveMTOut out0;

out0 = SQPsolveMT(&lpr,par0,d0,c0);

lambdahat = pvUnpack(out0.par,"lambda");

phihat = pvUnpack(out0.par,"phi");

thetahat = pvUnpack(out0.par,"theta");

print "estimates";

print;

print "lambda" lambdahat;

print;

16-12

R
TL

S
tructures

Run-Time Library Structures

print "phi" phihat;

print;

print "theta" thetahat;

struct PV stderr;

stderr = out0.par;

if not scalmiss(out0.moment);

stderr =

pvPutParVector(stderr,sqrt(diag(out0.moment)));

lambdase = pvUnpack(stderr,"lambda");

phise = pvUnpack(stderr,"phi");

thetase = pvUnpack(stderr,"theta");

print "standard errors";

print;

print "lambda" lambdase;

print;

print "phi" phise;

print;

print "theta" thetase;

endif;

proc lpr(struct PV par1, struct DS data1);

local lambda,phi,theta,sigma,logl;

lambda = pvUnpack(par1,"lambda");

phi = pvUnpack(par1,"phi");

theta = pvUnpack(par1,"theta");

sigma = lambda*phi*lambda’ + theta;

logl = -lnpdfmvn(data1.dataMatrix,sigma);

retp(logl);

endp;

16-13

GAUSS User Guide

proc ineq(struct PV par1, struct DS data1);

local lambda,phi,theta,sigma,e;

lambda = pvUnpack(par1,"lambda");

phi = pvUnpack(par1,"phi");

theta = pvUnpack(par1,"theta");

sigma = lambda*phi*lambda’ + theta;

e = eigh(sigma) - .001; /* eigenvalues of sigma */

e = e | eigh(phi) - .001; /* eigenvalues of phi */

retp(e);

endp;

16-14

Threads

Multi-Threaded
Programming in GAUSS 17

The term thread comes from the phrase “thread of execution”—simply, it denotes a section of code
that you want to execute. A single-threaded program has only one thread of execution, i.e., the
program itself. A multi-threaded program is one that can have multiple threads—sections of
code—executing simultaneously. Since these threads are part of the same program, they share the
same workspace, and see and operate on the same symbols. Threads allow you to take full
advantage of the hardware processing resources available on hyper-threaded, multi-core, and
multi-processor systems, executing independent calculations simultaneously, combining and using
the results of their work when done.

17.1 The Functions

GAUSS includes four keywords for multi-threading your programs:

ThreadStat Marks a single statement to be executed as a thread.

ThreadBegin Marks the beginning of a block of code to be executed as a thread.

17-1

GAUSS User Guide

ThreadEnd Marks the end of a block of code to be executed as a thread.

ThreadJoin Completes the definition of a set of threads, waits until they are done.

ThreadStat defines a single statement to be executed as a thread:

ThreadStat n = m’m;

ThreadBegin and ThreadEnd define a multi-line block of code to be executed as a thread:

ThreadBegin;

y = x’x;

z = y’y;

ThreadEnd;

Together these define sets of threads to be executed concurrently:

ThreadStat n = m’m; // Thread 1

ThreadBegin; // Thread 2

y = x’x;

z = y’y;

ThreadEnd;

ThreadBegin; // Thread 3

q = r’r;

r = q’q;

ThreadEnd;

ThreadStat p = o’o; // Thread 4

Finally, ThreadJoin completes the definition of a set of threads. It waits for the threads in a set to
finish and rejoin the creating (the parent) thread, which can then continue, making use of their
individual calculations:

17-2

Threads

Multi-Threaded Programming in GAUSS

ThreadBegin; // Thread 1

y = x’x;

z = y’y;

ThreadEnd;

ThreadBegin; // Thread 2

q = r’r;

r = q’q;

ThreadEnd;

ThreadStat n = m’m; // Thread 3

ThreadStat p = o’o; // Thread 4

ThreadJoin; // waits for Threads 1-4 to finish

b = z + r + n’p; // Using the results

17.2 GAUSS Threading Concepts

This is really the one and only thing you need to know about threads: threads are separate sections
of the same program, executing simultaneously, operating on the same data. In fact, it’s so
fundamental it’s worth saying again: threads are separate sections of code in a program, running at
the same time, using the same workspace, referencing and operating on the same symbols.

This raises basic issues of workflow and data integrity. How do you manage the creation and
execution of threads, and make use of the work they do? And how do you maintain data integrity?
(You do not want two threads assigning to the same symbol at the same time.)

To handle thread workflow, GAUSS employs a split-and-join approach. At various points in your
program (as many as you like), you define a set of threads that will be created and run as a group.
When created, the threads in the set execute simultaneously, each doing useful work. The parent
thread waits for the created threads to complete, then continues, the results of their work now
available for further use.

To maintain data integrity, we introduce the writer-must-isolate (informally, the
any-thread-can-read-unless-some-thread-writes) programming rule. That is to say, symbols that
are read from but not assigned to can be referenced by as many threads in a set as you like.
Symbols that are assigned to, however, must be wholly owned by a single thread. No other thread
in the set can reference that symbol. They cannot assign to it, nor can they read from it. They
cannot refer to it at all.

17-3

GAUSS User Guide

Note: the writer-must-isolate rule only applies to the threads within a given set (including any
child thread sets they may create). It does not apply between thread sets that have no chance of
running simultaneously.

For threads defined in the main code, the writer-must-isolate rule applies to the global symbols.
For threads defined in procedures or keywords, it applies to the global symbols, local symbols, and
the procedure/keyword arguments.

17.3 Coding With Threads

There are two main points to coding with threads.

One—you can define threads anywhere. You can define them in the main code, you can define
them in proc’s and keyword’s, and yes, you can define them inside other threads.

Two—you can call proc’s and keyword’s from threads. This is what really ties everything
together. You can call a proc from a thread, and that proc can create threads, and any of those
threads can call proc’s, and any of those proc’s can create threads, and ... you get the picture.

So—you can do things like this:

q = chol(b);

ThreadBegin;

x = q + m;

ThreadBegin;

y = x’x;

z = q’m;

ThreadEnd;

ThreadBegin;

a = b + x;

c = a + m;

ThreadEnd;

ThreadJoin;

q = m’c;

ThreadEnd;

17-4

Threads

Multi-Threaded Programming in GAUSS

ThreadBegin;

ThreadStat r = m’m;

ThreadStat s = m + inv(b);

ThreadJoin;

t = r’s;

ThreadEnd;

ThreadJoin;

x = r+s+q+z-t;

More importantly, you can do things like this:

proc bef(x);

local y,t;

ThreadStat y = nof(x);

ThreadStat t = dof(x’x);

ThreadJoin;

t = t+y;

retp(t);

endp;

proc abr(m);

local x,y,z,a,b;

a = m’m;

ThreadStat x = inv(m);

ThreadStat y = bef(m);

ThreadStat z = dne(a);

ThreadJoin;

b = chut(x,y,z,a);

retp(inv(b));

endp;

s = rndn(500,500);

17-5

GAUSS User Guide

ThreadStat t = abr(s);

ThreadStat q = abr(sˆ2);

ThreadStat r = che(s);

ThreadJoin;

w = del(t,q,r);

print w[1:10,1:10];

This means you can multi-thread anything you want, and call it from anywhere. You can
multi-thread all the proc’s and keyword’s in your libraries, and call them freely anywhere in your
multi-threaded programs.

17.4 Coding Restrictions

A few points on coding restrictions. First, you can’t interlace thread definition statements and
regular statements. You can’t do this:

ThreadStat a = b’b;

n = q;

ThreadStat c = d’d;

ThreadJoin;

Or this:

if k == 1;

ThreadStat a = b’b;

elseif k == 2;

ThreadStat a = c’c;

endif;

if j == 1;

ThreadStat d = e’e;

elseif j == 2;

ThreadStat d = f’f;

endif;

ThreadJoin;

17-6

Threads

Multi-Threaded Programming in GAUSS

Each set of threads is defined as a group, and always completed by a ThreadJoin, like this:

n = q;

ThreadStat a = b’b;

ThreadStat c = d’d;

ThreadJoin;

And this:

ThreadBegin;

if k == 1;

a = b’b;

elseif k == 2;

a = c’c;

endif;

ThreadEnd;

ThreadBegin;

if j == 1;

d = e’e;

elseif j == 2;

d = f’f;

endif;

ThreadEnd;

ThreadJoin;

Second—as stated above, you can reference read-only symbols in as many threads within a set as
you like, but any symbols that are assigned to must be wholly owned by a single thread. A symbol
that is assigned to by a thread cannot be written or read by any other thread in that set. This is the
writer-must-isolate rule.

So, you can do this:

ThreadStat x = y’y;

ThreadStat z = y+y;

17-7

GAUSS User Guide

ThreadStat a = b-y;

ThreadJoin;

You cannot do this:

ThreadStat x = y’y;

Threadstat z = x’x;

ThreadStat a = b-y;

ThreadJoin;

This is because the threads within a set run simultaneously. Thus, there is no way of knowing
when an assignment to a symbol has taken place, no way of knowing in one thread the “state” of a
symbol in another.

Let’s revisit the nested thread example for a minute and see how the writer-must-isolate rule
applies to it:

q = chol(b); // main code, no threads yet

ThreadBegin; // Th1: isolates x,y,z,a,c,q from Th2

x = q + m;

ThreadBegin; // Th1.1: isolates y,z from 1.2

y = x’x;

z = q’m;

ThreadEnd;

ThreadBegin; // Th1.2: isolates a,c from 1.1

a = b + x;

c = a + m;

ThreadEnd;

ThreadJoin; // Joins 1.1, 1.2

q = m’c;

ThreadEnd;

ThreadBegin; // Th2: isolates r,s,t from Th1

ThreadStat r = m’m; // Th2.1: isolates r from 2.2

ThreadStat // Th2.2: isolates s from 2.1

s = m + inv(b);

17-8

Threads

Multi-Threaded Programming in GAUSS

ThreadJoin; // Joins 2.1, 2.1

t = r’s;

ThreadEnd;

ThreadJoin; // Joins Th1, Th2

x = r+s+q+z-t;

The main point here is that any symbols a thread or its children assign to must be isolated from all
the other threads (and their children) of the same nesting level in that set. On the other hand, the
children of a thread can freely read/write symbols that are read/written by their parent, because
there is no risk of simultaneity; they must only isolate written symbols from their siblings and
siblings’ offspring.

If you break the writer-must-isolate rule, your program (and probably GAUSS) will crash.
Worse, until it crashes, it will be happily producing indeterminate results.

Finally—the ThreadEnd command is what tells a thread to terminate, so you mustn’t write code
that keeps a thread from reaching it. For example, don’t retp from the middle of a thread:

ThreadStat m = imt(9);

ThreadBegin;

x = q[1];

if x = 1;

retp(z);

else;

r = z + 2;

endif;

ThreadEnd;

ThreadJoin;

And don’t use goto to jump into or out of the middle of a thread:

retry:

ThreadBegin;

{ err, x } = fna(q);

if err;

17-9

GAUSS User Guide

goto badidea;

endif;

x = fnb(x);

ThreadEnd;

ThreadStat y = fnb(y);

ThreadJoin;

z = fnc(x,y);

save z;

end;

badidea:

errorlog "Error computing fna(q)";

q = fnd(q);

goto retry;

Basically, don’t do anything that will keep a thread from reaching its ThreadEnd command.
That’s the only way it knows its work is done. end and stop are okay to call, though—they will
bring the program to an end as usual, and terminate all running threads in the process.

(You can use goto and labels to jump around within a thread—that is, within the confines of a
ThreadBegin/ThreadEnd pair.)

17-10

Libraries

Libraries 18

The GAUSS library system allows for the creation and maintenance of modular programs. The
user can create “libraries” of frequently used functions that the GAUSS system will automatically
find and compile whenever they are referenced in a program.

18.1 Autoloader

The autoloader resolves references to procedures, keywords, matrices, and strings that are not
defined in the program from which they are referenced. The autoloader automatically locates and
compiles the files containing the symbol definitions that are not resolved during the compilation of
the main file. The search path used by the autoloader is first the current directory, and then the
paths listed in the src_path configuration variable in the order they appear. src_path can be
defined in the GAUSS configuration file.

18-1

GAUSS User Guide

18.1.1 Forward References

When the compiler encounters a symbol that has not previously been defined, that is called a
“forward reference”. GAUSS handles forward references in two ways, depending on whether they
are “left-hand side” or “right-hand side” references.

Left-Hand Side

A left-hand side reference is usually a reference to a symbol on the left-hand side of the equal sign
in an expression.

x = 5;

Left-hand side references, since they are assignments, are assumed to be matrices. In the statement
above, x is assumed to be a matrix and the code is compiled accordingly. If, at execution time, the
expression actually returns a string, the assignment is made and the type of the symbol x is forced
to string.

Some commands are implicit left-hand side assignments. There is an implicit left-hand side
reference to x in each statement below:

clear x;

load x;

open x = myfile;

Right-Hand Side

A right-hand side reference is usually a reference to a symbol on the right-hand side of the equal
sign in an expression such as:

18-2

Libraries

Libraries

z = 6;

y = z + dog;

print y;

In the program above, since dog is not previously known to the compiler, the autoloader will
search for it in the active libraries. If it is found, the file containing it will be compiled. If it is not
found in a library, the autoload/autodelete state will determine how it is handled.

18.1.2 The Autoloader Search Path

If the autoloader is OFF, no forward references are allowed. Every procedure, matrix, and string
referenced by your program must be defined before it is referenced. An external statement can
be used above the first reference to a symbol, but the definition of the symbol must be in the main
file or in one of the files that are #include’d. No global symbols are deleted automatically.

If the autoloader is ON, GAUSS searches for unresolved symbol references during compilation
using a specific search path as outlined below. If the autoloader is OFF, an Undefined symbol
error message will result for right-hand side references to unknown symbols.

When autoload is ON, the autodelete state controls the handling of references to unknown
symbols.

The following search path will be followed to locate any symbols not previously defined:

Autodelete ON

1. user library

2. user-specified libraries.

3. gauss library

4. current directory, then src_path for files with a .g extension.

Forward references are allowed and .g files need not be in a library. If there are symbols that
cannot be found in any of the places listed above, an Undefined symbol error message will be

18-3

GAUSS User Guide

generated and all uninitialized variables and all procedures with global references will be deleted
from the global symbol table. This autodeletion process is transparent to the user, since the
symbols are automatically located by the autoloader the next time the program is run. This process
results in more compile time, which may or may not be significant, depending on the speed of the
computer and the size of the program.

Autodelete OFF

1. user library

2. user-specified libraries.

3. gauss library

All .g files must be listed in a library. Forward references to symbols that are not listed in an
active library are not allowed. For example:

x = rndn(10,10);

y = sym(x); /* Forward reference to sym */

proc sym(x);

retp(x+x’);

endp;

Use an external statement for anything referenced above its definition if autodelete is OFF:

external proc sym;

x = rndn(10,10);

y = sym(x);

proc sym(x);

retp(x+x’);

endp;

18-4

Libraries

Libraries

When autodelete is OFF, symbols not found in an active library will not be added to the symbol
table. This prevents the creation of uninitialized procedures in the global symbol table. No
deletion of symbols from the global symbol table will take place.

Libraries

The first place GAUSS looks for a symbol definition is in the “active” libraries. A GAUSS library
is a text file that serves as a dictionary to the source files that contain the symbol definitions. When
a library is active, GAUSS will look in it whenever it is looking for a symbol it is trying to resolve.
The library statement is used to make a library active. Library files should be located in the
subdirectory listed in the lib_path configuration variable. Library files have an .lcg extension.

Suppose you have several procedures that are all related and you want them all defined in the same
file. You can create such a file, and, with the help of a library, the autoloader will be able to find
the procedures defined in that file whenever they are called.

First, create the file that is to contain your desired procedure definitions. By convention, this file is
usually named with a .src extension, but you may use any name and any file extension. In this
file, put all the definitions of related procedures you wish to use. Here is an example of such a file.
It is called norm.src:

/*

** norm.src

**

** This is a file containing the definitions of three

** procedures which return the norm of a matrix x.

** The three norms calculated are the 1-norm, the

** inf-norm and the E-norm.

*/

proc onenorm(x);

retp(maxc(sumc(abs(x))));

endp;

proc infnorm(x);

18-5

GAUSS User Guide

retp(maxc(sumc(abs(x’))));

endp;

proc Enorm(x);

retp(sumc(sumc(x.*x)));

endp;

Next, create a library file that contains the name of the file you want access to, and the list of
symbols defined in it. This can be done with the lib command. (For details, see lib in the
GAUSS L R.)

A library file entry has a filename that is flush left. The drive and path can be included to speed up
the autoloader. Indented below the filename are the symbols included in the file. There can be
multiple symbols listed on a line, with spaces between. The symbol type follows the symbol
name, with a colon delimiting it from the symbol name. The valid symbol types are:

fn user-defined single line function.

keyword keyword.

proc procedure.

matrix matrix, numeric or character.

array N-dimensional array.

string string.

sparse matrix sparse matrix.

struct structure.

A structure is always denoted by struct followed by the structure type name.

If the symbol type is missing, the colon must not be present and the symbol type is assumed to be
proc. Both library files below are valid:

Example 1

18-6

Libraries

Libraries

/*

** math

**

** This library lists files and procedures for mathematical routines.

*/

norm.src

onenorm:proc infnorm:proc Enorm:proc

complex.src

cmmult:proc cmdiv:proc cmadd:proc cmsoln:proc

poly.src

polychar:proc polyroot:proc polymult:proc

Example 2

/*

** math

**

** This library lists files and procedures for mathematical routines.

*/

c:\gauss\src\norm.src

onenorm : proc

infnorm : proc

Enorm : proc

c:\gauss\src\complex.src

cmmult : proc

cmdiv : proc

cmadd : proc

cmsoln : proc

c:\gauss\src\fcomp.src

feq : proc

fne : proc

flt : proc

fgt : proc

fle : proc

18-7

GAUSS User Guide

fge : proc

c:\gauss\src\fcomp.dec

_fcmptol : matrix

Once the autoloader finds, via the library, the file containing your procedure definition, everything
in that file will be compiled. For this reason, you should combine related procedures in the same
file in order to minimize the compiling of procedures not needed by your program. In other words,
you should not combine unrelated functions in one .src file because if one function in a .src file
is needed, the whole file will be compiled.

user Library

This is a library for user-created procedures. If the autoloader is ON, the user library is the first
place GAUSS looks when trying to resolve symbol references.

You can update the user library with the lib command as follows:

lib user myfile.src

This will update the user library by adding a reference to myfile.src.

No user library is shipped with GAUSS. It will be created the first time you use the lib
command to update it.

For details on the parameters available with the lib command, see the GAUSS L
R.

.g Files

If autoload and autodelete are ON and a symbol is not found in a library, the autoloader will
assume it is a procedure and look for a file that has the same name as the symbol and a .g
extension. For example, if you have defined a procedure called square, you could put the
definition in a file called square.g in one of the subdirectories listed in your src_path. If
autodelete is OFF, the .g file must be listed in an active library; for example, in the user library.

18-8

Libraries

Libraries

18.2 Global Declaration Files

If your application makes use of several global variables, create a file containing declare
statements. Use files with the extension .dec to assign default values to global matrices and
strings with declare statements and to declare global N-dimensional arrays, sparse matrices,
and structures, which will be initialized as follows:

Variable Type Initializes To
N-dimensional array 1-dimensional array of 1 containing 0
sparse matrix empty sparse matrix
structure 1×1 structure containing empty and/or zeroed out members

In order to declare structures in a .dec file, you must #include the file(s) containing the
definitions of the types of structures that you wish to declare at the top of your .dec file. For
example, if you have the following structure type definition in a file called mystruct.sdf:

struct mystruct {

matrix m;

array a;

scalar scal;

string array sa;

};

You could declare an instance of that structure type, called ms, in a .dec file as follows:

#include mystruct.sdf

declare struct mystruct ms;

See declare in the C R, Chapter 30, for more information.

A file with a .ext extension containing the same symbols in external statements can also be
created and #include’d at the top of any file that references these global variables. An

18-9

GAUSS User Guide

appropriate library file should contain the name of the .dec files and the names of the globals they
declare. This allows you to reference global variables across source files in an application.

Here is an example that illustrates the way in which .dec, .ext, .lcg and .src files work
together. Always begin the names of global matrices or strings with ‘_’ to distinguish them from
procedures.

.src File:

/*

** fcomp.src

**

** These functions use _fcmptol to fuzz the comparison operations

** to allow for roundoff error.

**

** The statement: y = feq(a,b);

**

** is equivalent to: y = a eq b;

**

** Returns a scalar result, 1 (true) or 0 (false)

**

** y = feq(a,b);

** y = fne(a,b);

*/

#include fcomp.ext

proc feq(a,b);

retp(abs(a-b) <= _fcmptol);

endp;

proc fne(a,b);

retp(abs(a-b) > _fcmptol);

endp;

.dec File:

18-10

Libraries

Libraries

/*

** fcomp.dec - global declaration file for fuzzy comparisons.

*/

declare matrix _fcmptol != 1e-14;

.ext File:

/*

** fcomp.ext - external declaration file for fuzzy comparisons.

*/

external matrix _fcmptol;

.lcg File:

/*

** fcomp.lcg - fuzzy compare library

*/

fcomp.dec

_fcmptol:matrix

fcomp.src

feq:proc

fne:proc

With the exception of the library (.lcg) files, these files must be located along your src_path.
The library files must be on your lib_path. With these files in place, the autoloader will be able
to find everything needed to run the following programs:

library fcomp;

x = rndn(3,3);

xi = inv(x);

18-11

GAUSS User Guide

xix = xi*x;

if feq(xix,eye(3));

print "Inverse within tolerance.";

else;

print "Inverse not within tolerance.";

endif;

If the default tolerance of 1e-14 is too tight, the tolerance can be relaxed:

library fcomp;

x = rndn(3,3);

xi = inv(x);

xix = xi*x;

_fcmptol = 1e-12; /* reset tolerance */

if feq(xix,eye(3));

print "Inverse within tolerance.";

else;

print "Inverse not within tolerance.";

endif;

18.3 Troubleshooting

Below is a partial list of errors you may encounter in using the library system, followed by the
most probable cause.

(4) : error G0290 : ’/gauss/lib/prt.lcg’ : Library not found

The autoloader is looking for a library file called prt.lcg, because it has been activated
in a library statement. Check the subdirectory listed in your lib_path configuration
variable for a file called prt.lcg.

(0) : error G0292 : ’prt.dec’ : File listed in library not found

18-12

Libraries

Libraries

The autoloader cannot find a file called prt.dec. Check for this file. It should exist
somewhere along your src_path, if you have it listed in prt.lcg.

Undefined symbols:

PRTVEC /gauss/src/tstprt.g(2)

The symbol prtvec could not be found. Check if the file containing prtvec is in the
src_path. You may have not activated the library that contains your symbol definition.
Do so in a library statement.

/gauss/src/prt.dec(3) : Redefinition of ’__vnames’ (proc)__vnames being

declared external matrix

You are trying to illegally force a symbol to another type. You probably have a name
conflict that needs to be resolved by renaming one of the symbols.

/gauss/lib/prt.lcg(5) : error G0301 : ’prt.dec’ : Syntax error in

library

Undefined symbols:

__VNAMES /gauss/src/prt.src(6)

Check your library to see that all filenames are flush left and that all the symbols defined
in that file are indented by at least one space.

18.3.1 Using .dec Files

Below is some advice you are encouraged to follow when constructing your own library system:

• Whenever possible, declare variables in a file that contains only declare statements. When
your program is run again without clearing the workspace, the file containing the variable
declarations will not be compiled and declare warnings will be prevented.

• Provide a function containing regular assignment statements to reinitialize the global
variables in your program if they ever need to be reinitialized during or between runs. Put
this in a separate file from the declarations:

18-13

GAUSS User Guide

proc (0) = globset;

_vname = "X";

_con = 1;

_row = 0;

_title = "";

endp;

• Never declare any global in more than one file.

• To avoid meaningless redefinition errors and declare warnings, never declare a global
more than once in any one file. Redefinition error messages and declare warnings are
meant to help you prevent name conflicts, and will be useless to you if your code generates
them normally.

By following these guidelines, any declare warnings and redefinition errors you get will be
meaningful. By knowing that such warnings and errors are significant, you will be able to debug
your programs more efficiently.

18-14

C
om

piler

Compiler 19

GAUSS allows you to compile your large, frequently used programs to a file that can be run over
and over with no compile time. The compiled image is usually smaller than the uncompiled
source. GAUSS is not a native code compiler; rather, it compiles to a form of pseudocode. The file
will have a .gcg extension.

The compile command will compile an entire program to a compiled file. An attempt to edit a
compiled file will cause the source code to be loaded into the editor if it is available to the system.
The run command assumes a compiled file if no extension is given, and that a file with a .gcg
extension is in the src_path. A saveall command is available to save the current contents of
memory in a compiled file for instant recall later. The use command will instantly load a
compiled program or set of procedures at the beginning of an ASCII program before compiling the
rest of the ASCII program file.

Since the compiled files are encoded binary files, the compiler is useful for developers who do not
want to distribute their source code.

19-1

GAUSS User Guide

19.1 Compiling Programs

Programs are compiled with the compile command.

19.1.1 Compiling a File

Source code program files that can be run with the run command can be compiled to .gcg files
with the compile command:

compile qxy.e;

All procedures, global matrices, arrays, strings and string arrays, and the main program segment
will be saved in the compiled file. The compiled file can be run later using the run command. Any
libraries used in the program must be present and active during the compile, but not when the
program is run. If the program uses the dlibrary command, the .dll files must be present when
the program is run and the dlibrary path must be set to the correct subdirectory. This will be
handled automatically in your configuration file. If the program is run on a different computer than
it was compiled on, the .dll files must be present in the correct location. sysstate (case 24) can
be used to set the dlibrary path at run-time.

19.2 Saving the Current Workspace

The simplest way to create a compiled file containing a set of frequently used procedures is to use
saveall and an external statement:

library pgraph;

external proc xy,logx,logy,loglog,hist;

saveall pgraph;

Just list the procedures you will be using in an external statement and follow it with a saveall
statement. It is not necessary to list procedures that you do not explicitly call, but are called from

19-2

C
om

piler

Compiler

another procedure, because the autoloader will automatically find them before the saveall
command is executed. Nor is it necessary to list every procedure you will be calling, unless the
source will not be available when the compiled file is use’d.

Remember, the list of active libraries is NOT saved in the compiled file, so you may still need a
library statement in a program that is use’ing a compiled file.

19.3 Debugging

If you are using compiled code in a development situation in which debugging is important,
compile the file with line number records. After the development is over, you can recompile
without line number records if the maximum possible execution speed is important. If you want to
guarantee that all procedures contain line number records, put a new statement at the top of your
program and turn line number tracking on.

19-3

File
I/O

File I/O 20
The following is a partial list of the I/O commands in the GAUSS programming language:

close Close a file.

closeall Close all open files.

colsf Number of columns in a file.

create Create GAUSS data set.

eof Test for end of file.

fcheckerr Check error status of a file.

fclearerr Check error status of a file and clear error flag.

fflush Flush a file’s output buffer.

fgets Read a line of text from a file.

fgetsa Read multiple lines of text from a file.

20-1

GAUSS User Guide

fgetsat Read multiple lines of text from a file, discarding newlines.

fgetst Read a line of text from a file, discarding newline.

fileinfo Return names and information of files matching a specification.

files Return a directory listing as a character matrix.

filesa Return a list of files matching a specification.

fopen Open a file.

fputs Write strings to a file.

fputst Write strings to a file, appending newlines.

fseek Reposition file pointer.

fstrerror Get explanation of last file I/O error.

ftell Get position of file pointer.

getf Load a file into a string.

getname Get variable names from data set.

iscplxf Return whether a data set is real or complex.

load Load matrix file or small ASCII file (same as loadm).

loadd Load a small GAUSS data set into a matrix.

loadm Load matrix file or small ASCII file.

loads Load string file.

open Open a GAUSS data set.

output Control printing to an auxiliary output file or device.

readr Read a specified number of rows from a file.

rowsf Number of rows in file.

save Save matrices, strings, procedures.

20-2

File
I/O

File I/O

saved Save a matrix in a GAUSS data set.

seekr Reset read/write pointer in a data set.

sortd Sort a data set.

typef Return type of data set (bytes per element).

writer Write data to a data set.

20.1 ASCII Files

GAUSS has facilities for reading and writing ASCII files. Since most software can also read and
write ASCII files, this provides one method of sharing data between GAUSS and many other
kinds of programs.

20.1.1 Matrix Data

Reading

Files containing numeric data that are delimited with spaces or commas and are small enough to fit
into a single matrix or string can be read with load. Larger ASCII data files can be converted to
GAUSS data sets with the ATOG utility program (see ATOG, Chapter 25). ATOG can convert
packed ASCII files as well as delimited files.

For small delimited data files, the load statement can be used to load the data directly into a
GAUSS matrix. The resulting GAUSS matrix must be no larger than the limit for a single matrix.

For example,

load x[] = dat1.asc;

will load the data in the file dat1.asc into an N×1 matrix x. This method is preferred because
rows(x) can be used to determine how many elements were actually loaded, and the matrix can
be reshape’d to the desired form:

20-3

GAUSS User Guide

load x[] = dat1.asc;

if rows(x) eq 500;

x = reshape(x,100,5);

else;

errorlog "Read Error";

end;

endif;

For quick interactive loading without error checking, use

load x[100,5] = dat1.asc;

This will load the data into a 100×5 matrix. If there are more or fewer than 500 numbers in the
data set, the matrix will automatically be reshaped to 100×5.

Writing

To write data to an ASCII file the print or printfm command is used to print to the auxiliary
output. The resulting files are standard ASCII files and can be edited with GAUSS’s editor or
another text editor.

The output and outwidth commands are used to control the auxiliary output. The print or
printfm command is used to control what is sent to the output file.

The window can be turned on and off using screen. When printing a large amount of data to the
auxiliary output, the window can be turned off using the command

screen off;

This will make the process much faster, especially if the auxiliary output is a disk file.

It is easy to forget to turn the window on again. Use the end statement to terminate your
programs; end will automatically perform screen on and output off.

The following commands can be used to control printing to the auxiliary output:

20-4

File
I/O

File I/O

format Specify format for printing a matrix.

output Open, close, rename auxiliary output file or device.

outwidth Set auxiliary output width.

printfm Formatted matrix print.

print Print matrix or string.

screen Turn printing to the window on and off.

This example illustrates printing a matrix to a file:

format /rd 8,2;

outwidth 132;

output file = myfile.asc reset;

screen off;

print x;

output off;

screen on;

The numbers in the matrix x will be printed with a field width of 8 spaces per number, and with 2
places beyond the decimal point. The resulting file will be an ASCII data file. It will have 132
column lines maximum.

A more extended example follows. This program will write the contents of the GAUSS file
mydata.dat into an ASCII file called mydata.asc. If there is an existing file by the name of
mydata.asc, it will be overwritten:

output file = mydata.asc reset;

screen off;

format /rd 1,8;

open fp = mydata;

do until eof(fp);

print readr(fp,200);;

20-5

GAUSS User Guide

endo;

fp = close(fp);

end;

The output ... reset command will create an auxiliary output file called mydata.asc to
receive the output. The window is turned off to speed up the process. The GAUSS data file
mydata.dat is opened for reading and 200 rows are read per iteration until the end of the file is
reached. The data read are printed to the auxiliary output mydata.asc only, because the window
is off.

20.1.2 General File I/O

getf will read a file and return it in a string variable. Any kind of file can be read in this way as
long as it will fit into a single string variable.

To read files sequentially, use fopen to open the file and use fgets, fputs, and associated
functions to read and write the file. The current position in a file can be determined with ftell.
The following example uses these functions to copy an ASCII text file:

proc copy(src, dest);

local fin, fout, str;

fin = fopen(src, "rb");

if not fin;

retp(1);

endif;

fout = fopen(dest, "wb");

if not fin;

call close(fin);

retp(2);

endif;

do until eof(fin);

20-6

File
I/O

File I/O

str = fgets(fin, 1024);

if fputs(fout, str) /= 1;

call close(fin);

call close(fout);

retp(3);

endif;

endo;

call close(fin);

call close(fout);

retp(0);

endp;

20.2 Data Sets

GAUSS data sets are the preferred method of storing data contained in a single matrix for use
within GAUSS. Use of these data sets allows extremely fast reading and writing of data. Many
library functions are designed to read data from these data sets.

If you want to store multiple variables of various types in a single file, see GAUSS D A,
Section 20.3.

20.2.1 Layout

GAUSS data sets are arranged as matrices; that is, they are organized in terms of rows and
columns. The columns in a data file are assigned names, and these names are stored in the header,
or, in the case of the v89 format, in a separate header file.

The limit on the number of rows in a GAUSS data set is determined by disk size. The limit on the
number of columns is limited by RAM. Data can be stored in 2, 4, or 8 bytes per number, rather
than just 8 bytes as in the case of GAUSS matrix files.

The ranges of the different formats are:

20-7

GAUSS User Guide

Bytes Type Significant Digits Range

2 integer 4 -32768 <= X <= 32767
4 single 6-7 8.43E-37 <= |X| <= 3.37E+38
8 double 15-16 4.19E-307 <= |X| <= 1.67E+308

20.2.2 Creating Data Sets

Data sets can be created with the create or datacreate command. The names of the columns,
the type of data, etc., can be specified. (For details, see create in the GAUSS L
R.)

Data sets, unlike matrices, cannot change from real to complex, or vice-versa. Data sets are always
stored a row at a time. The rows of a complex data set, then, have the real and imaginary parts
interleaved, element by element. For this reason, you cannot write rows from a complex matrix to
a real data set—there is no way to interleave the data without rewriting the entire data set. If you
must, explicitly convert the rows of data first, using the real and imag functions (see the GAUSS
L R), and then write them to the data set. Rows from a real matrix CAN be
written to a complex data set; GAUSS simply supplies 0’s for the imaginary part.

To create a complex data set, include the complex flag in your create command.

20.2.3 Reading and Writing

The basic functions in GAUSS for reading data files are open and readr:

open f1 = dat1;

x = readr(f1,100);

The call to readr in this example will read in 100 rows from dat1.dat. The data will be assigned
to a matrix x.

loadd and saved can be used for loading and saving small data sets.

20-8

File
I/O

File I/O

The following example illustrates the creation of a GAUSS data file by merging (horizontally
concatenating) two existing data sets:

file1 = "dat1";

file2 = "dat2";

outfile = "daty";

open fin1 = ˆfile1 for read;

open fin2 = ˆfile2 for read;

varnames = getname(file1)|getname(file2);

otyp = maxc(typef(fin1)|typef(fin2));

create fout = ˆoutfile with ˆvarnames,0,otyp;

nr = 400;

do until eof(fin1) or eof(fin2);

y1 = readr(fin1,nr);

y2 = readr(fin2,nr);

r = maxc(rows(y1)|rows(y2));

y = y1[1:r,.] ˜ y2[1:r,.];

call writer(fout,y);

endo;

closeall fin1,fin2,fout;

In this example, data sets dat1.dat and dat2.dat are opened for reading. The variable names
from each data set are read using getname, and combined in a single vector called varnames. A
variable called otyp is created, which will be equal to the larger of the two data types of the input
files. This will insure that the output is not rounded to less precision than the input files. A new
data set daty.dat is created using the create ... with ... command. Then, on every
iteration of the loop, 400 rows are read in from each of the two input data sets, horizontally
concatenated, and written out to daty.dat. When the end of one of the input files is reached,
reading and writing will stop. The closeall command is used to close all files.

20.2.4 Distinguishing Character and Numeric Data

Although GAUSS itself does not distinguish between numeric and character columns in a matrix
or data set, some of the GAUSS Application programs do. When creating a data set, it is important
to indicate the type of data in the various columns. The following discusses two ways of doing this.

20-9

GAUSS User Guide

Using Type Vectors

The v89 data set format distinguished between character and numeric data in data sets by the case
of the variable names associated with the columns. The v96 data set format, however, stores this
type information separately, resulting in a much cleaner and more robust method of tracking
variable types, and greater freedom in the naming of data set variables.

When you create a data set, you can supply a vector indicating the type of data in each column of
the data set. For example:

data = { M 32 21500,

F 27 36000,

F 28 19500,

M 25 32000 };

vnames = { "Sex" "Age" "Pay" };

vtypes = { 0 1 1 };

create f = mydata with ˆvnames, 3, 8, vtypes;

call writer(f,data);

f = close(f);

To retrieve the type vector, use vartypef.

open f = mydata for read;

vn = getnamef(f);

vt = vartypef(f);

print vn’;

print vt’;

Sex Age Pay

0 1 1

The call to getnamef in this example returns a string array rather than a character vector, so you
can print it without the ‘$’ prefix.

20-10

File
I/O

File I/O

Using the Uppercase/Lowercase Convention (v89 Data Sets)

Historically, some GAUSS Application programs recognized an “uppercase/lowercase”
convention: if the variable name was uppercase, the variable was assumed to be numeric, and if it
was lowercase, the variable was assumed to be character.

However, this is now obsolete; use vartypef and v96 data sets to be compatible with future
versions.

20.3 GAUSS Data Archives

The GAUSS Data Archive (GDA) is extremely powerful and flexible, giving you much greater
control over how you store your data. There is no limitation on the number of variables that can be
stored in a GDA, and the only size limitation is the amount of available disk space. Moreover,
GDA’s are designed to hold whatever type of data you want to store in them. You may write
matrices, arrays, strings, string arrays, sparse matrices, and structures to a GDA, and the GDA will
keep track of the type, size and location of each of the variables contained in it. Since GAUSS
now supports reading and writing to GDA’s that were created on other platforms, GDA’s provide a
simple solution to the problem of sharing data across platforms.

See Section 20.5.12 for information on the layout of a GDA.

20.3.1 Creating and Writing Variables to GDA’s

To create a GAUSS Data Archive, call gdaCreate, which creates a GDA containing only header
information. It is recommended that file names passed into gdaCreate have a .gda extension;
however, gdaCreate will not force an extension.

To write variables to the GDA, you must call gdaWrite. A single call to gdaWrite writes only
one variable to the GDA. Writing multiple variables requires multiple calls to gdaWrite.

For example, the following code:

ret = gdaCreate("myfile.gda",1);

20-11

GAUSS User Guide

ret = gdaWrite("myfile.gda",rndn(100,50),"x1");

ret = gdaWrite("myfile.gda","This is a string","str1");

ret = gdaWrite("myfile.gda",394,"x2");

produces a GDA containing the following variables:

Index Name Type Size

1 x1 matrix 100 × 50
2 str1 string 16 chars
3 x2 matrix 1 × 1

20.3.2 Reading Variables from GDA’s

The following table details the commands that you may use to read various types of variables from
a GAUSS Data Archive:

Variable Type Read Command(s)
matrix
array
string
string array

gdaRead
gdaReadByIndex

sparse matrix gdaReadSparse
structure gdaReadStruct

gdaRead, gdaReadSparse, and gdaReadStruct take a variable name and return the variable
data. gdaReadByIndex returns the variable data for a specified variable index.

For example, to get the variable x1 out of myfile.gda, you could call:

y = gdaRead("myfile.gda","x1");

or

y = gdaReadByIndex("myfile.gda",1);

20-12

File
I/O

File I/O

If you want to read only a part of a matrix, array, string, or string array from a GDA, call
gdaReadSome. Sparse matrices and structures may not be read in parts.

20.3.3 Updating Variables in GDA’s

To overwrite an entire variable in a GDA, you may call gdaUpdate or gdaUpdateAndPack. If the
new variable is not the same size as the variable that it is replacing, gdaUpdate will leave empty
bytes in the file, while gdaUpdateAndPack will pack the file (from the location of the variable
that is being replaced to the end of the file) to remove those empty bytes.

gdaUpdate is usually faster, since it does not move data in the file unnecessarily. However, calling
gdaUpdate several times for one file may result in a file with a large number of empty bytes.

On the other hand, gdaUpdateAndPack uses disk space efficiently, but it may be slow for large
files (especially if the variable to be updated is one of the first variables in the file).

If speed and disk space are both concerns and you are going to update several variables, it will be
most efficient to use gdaUpdate to update the variables and then call gdaPack once at the end to
pack the file.

The syntax is the same for both gdaUpdate and gdaUpdateAndPack:

ret = gdaUpdate("myfile.gda",rndn(1000,100),"x1");

ret = gdaUpdateAndPack("myfile.gda",rndn(1000,100),"x1");

To overwrite part of a variable in a GDA, call gdaWriteSome.

20.4 Matrix Files

GAUSS matrix files are files created by the save command.

20-13

GAUSS User Guide

The save command takes a matrix in memory, adds a header that contains information on the
number of rows and columns in the matrix, and stores it on disk. Numbers are stored in double
precision just as they are in matrices in memory. These files have the extension .fmt.

Matrix files can be no larger than a single matrix. No variable names are associated with matrix
files.

GAUSS matrix files can be load’ed into memory using the load or loadm command or they can
be opened with the open command and read with the readr command. With the readr
command, a subset of the rows can be read. With the load command, the entire matrix is load’ed.

GAUSS matrix files can be open’ed for read, but not for append, or for update.

If a matrix file has been opened and assigned a file handle, rowsf and colsf can be used to
determine how many rows and columns it has without actually reading it into memory. seekr and
readr can be used to jump to particular rows and to read them into memory. This is useful when
only a subset of rows is needed at any time. This procedure will save memory and be much faster
than load’ing the entire matrix into memory.

20.5 File Formats

This section discusses the GAUSS binary file formats.

There are four currently supported matrix file formats:

Version Extension Support

Small Matrix v89 .fmt Obsolete, use v96.
Extended Matrix v89 .fmt Obsolete, use v96.
Matrix v92 .fmt Obsolete, use v96.
Universal Matrix v96 .fmt Supported for read/write.

There are four currently supported string file formats:

20-14

File
I/O

File I/O

Version Extension Support

Small String v89 .fst Obsolete, use v96.
Extended String v89 .fst Obsolete, use v96.
String v92 .fst Obsolete, use v96.
Universal String v96 .fst Supported for read/write.

There are four currently supported data set formats:

Version Extension Support

Small Data Set v89 .dat,
.dht

Obsolete, use v96.

Extended Data Set v89 .dat,
.dht

Obsolete, use v96.

Data Set v92 .dat Obsolete, use v96.
Universal Data Set v96 .dat Supported for read/write.

20.5.1 Small Matrix v89 (Obsolete)

Matrix files are binary files, and cannot be read with a text editor. They are created with save.
Matrix files with up to 8190 elements have a .fmt extension and a 16-byte header formatted as
follows:

Offset Description

0-1 DDDD hex, identification flag
2-3 rows, unsigned 2-byte integer
4-5 columns, unsigned 2-byte integer
6-7 size of file minus 16-byte header, unsigned 2-byte integer
8-9 type of file, 0086 hex for real matrices, 8086 hex for complex matrices
10-15 reserved, all 0’s

The body of the file starts at offset 16 and consists of IEEE format double precision floating point
numbers or character elements of up to 8 characters. Character elements take up 8 bytes and are
padded on the right with zeros. The size of the body of the file is 8*rows*cols rounded up to the
next 16-byte paragraph boundary. Numbers are stored row by row. A 2×3 real matrix will be

20-15

GAUSS User Guide

stored on disk in the following way, from the lowest addressed element to the highest addressed
element:

[1, 1] [1, 2] [1, 3] [2, 1] [2, 2] [2, 3]

For complex matrices, the size of the body of the file is 16*rows*cols. The entire real part of the
matrix is stored first, then the entire imaginary part. A 2×3 complex matrix will be stored on disk
in the following way, from the lowest addressed element to the highest addressed element:

(real part) [1, 1] [1, 2] [1, 3] [2, 1] [2, 2] [2, 3]
(imaginary part) [1, 1] [1, 2] [1, 3] [2, 1] [2, 2] [2, 3]

20.5.2 Extended Matrix v89 (Obsolete)

Matrices with more than 8190 elements are saved in an extended format. These files have a
16-byte header formatted as follows:

Offset Description

0-1 EEDD hex, identification flag
2-3 type of file, 0086 hex for real matrices, 8086 hex for complex matrices
4-7 rows, unsigned 4-byte integer
8-11 columns, unsigned 4-byte integer
12-15 size of file minus 16-byte header, unsigned 4-byte integer

The size of the body of an extended matrix file is 8*rows*cols (not rounded up to a paragraph
boundary). Aside from this, the body is the same as the small matrix v89 file.

20.5.3 Small String v89 (Obsolete)

String files are created with save. String files with up to 65519 characters have a 16-byte header
formatted as follows:

20-16

File
I/O

File I/O

Offset Description

0-1 DFDF hex, identification flag
2-3 1, unsigned 2-byte integer
4-5 length of string plus null byte, unsigned 2-byte integer
6-7 size of file minus 16-byte header, unsigned 2-byte integer
8-9 001D hex, type of file
10-15 reserved, all 0’s

The body of the file starts at offset 16. It consists of the string terminated with a null byte. The size
of the file is the 16-byte header plus the length of the string and null byte rounded up to the next
16-byte paragraph boundary.

20.5.4 Extended String v89 (Obsolete)

Strings with more than 65519 characters are saved in an extended format. These files have a
16-byte header formatted as follows:

Offset Description

0-1 EEDF hex, identification flag
2-3 001D hex, type of file
4-7 1, unsigned 4-byte integer
8-11 length of string plus null byte, unsigned 4-byte integer
12-15 size of file minus 16-byte header, unsigned 4-byte integer

The body of the file starts at offset 16. It consists of the string terminated with a null byte. The size
of the file is the 16-byte header plus the length of the string and null byte rounded up to the next
8-byte boundary.

20.5.5 Small Data Set v89 (Obsolete)

All data sets are created with create. v89 data sets consist of two files; one .dht contains the
header information; the second (.dat) contains the binary data. The data will be one of three types:

20-17

GAUSS User Guide

8-byte IEEE floating point
4-byte IEEE floating point
2-byte signed binary integer, twos complement

Numbers are stored row by row.

The .dht file is used in conjunction with the .dat file as a descriptor file and as a place to store
names for the columns in the .dat file. Data sets with up to 8175 columns have a .dht file
formatted as follows:

Offset Description

0-1 DADA hex, identification flag
2-5 reserved, all 0’s
6-7 columns, unsigned 2-byte integer
8-9 row size in bytes, unsigned 2-byte integer
10-11 header size in bytes, unsigned 2-byte integer
12-13 data type in .dat file (2 4 8), unsigned 2-byte integer
14-17 reserved, all 0’s
18-21 reserved, all 0’s
22-23 control flags, unsigned 2-byte integer
24-127 reserved, all 0’s

Column names begin at offset 128 and are stored 8 bytes each in ASCII format. Names with less
than 8 characters are padded on the right with bytes of 0.

The number of rows in the .dat file is calculated in GAUSS using the file size, columns, and data
type. This means that users can modify the .dat file by adding or deleting rows with other
software without updating the header information.

Names for the columns should be lowercase for character data, to be able to distinguish them from
numeric data with vartype.

GAUSS currently examines only the 4’s bit of the control flags. This bit is set to 0 for real data
sets, 1 for complex data sets. All other bits are 0.

Data sets are always stored a row at a time. A real data set with 2 rows and 3 columns will be
stored on disk in the following way, from the lowest addressed element to the highest addressed

20-18

File
I/O

File I/O

element:

[1, 1] [1, 2] [1, 3]
[2, 1] [2, 2] [2, 3]

The rows of a complex data set are stored with the real and imaginary parts interleaved, element
by element. A 2×3 complex data set, then, will be stored on disk in the following way, from the
lowest addressed element to the highest addressed element:

[1, 1]r [1, 1]i [1, 2]r [1, 2]i [1, 3]r [1, 3]i
[2, 1]r [2, 1]i [2, 2]r [2, 2]i [2, 3]r [2, 3]i

20.5.6 Extended Data Set v89 (Obsolete)

Data sets with more than 8175 columns are saved in an extended format that cannot be read by the
16-bit version. These files have a .dht descriptor file formatted as follows:

Offset Description

0-1 EEDA hex, identification flag
2-3 data type in .dat file (2 4 8), unsigned 2-byte integer
4-7 reserved, all 0’s
8-11 columns, unsigned 4-byte integer
12-15 row size in bytes, unsigned 4-byte integer
16-19 header size in bytes, unsigned 4-byte integer
20-23 reserved, all 0’s
24-27 reserved, all 0’s
28-29 control flags, unsigned 2-byte integer
30-127 reserved, all 0’s

Aside from the differences in the descriptor file and the number of columns allowed in the data
file, extended data sets conform to the v89 data set description specified above.

20-19

GAUSS User Guide

20.5.7 Matrix v92 (Obsolete)

Offset Description

0-3 always 0
4-7 always 0xEECDCDCD
8-11 reserved
12-15 reserved
16-19 reserved
20-23 0 - real matrix, 1 - complex matrix
24-27 number of dimensions

0 - scalar
1 - row vector
2 - column vector, matrix

28-31 header size, 128 + number of dimensions * 4, padded to 8-byte boundary
32-127 reserved

If the data is a scalar, the data will directly follow the header.

If the data is a row vector, an unsigned integer equaling the number of columns in the vector will
precede the data, along with 4 padding bytes.

If the data is a column vector or a matrix, there will be two unsigned integers preceding the data.
The first will represent the number of rows in the matrix and the second will represent the number
of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in double precision
(8 bytes per element, 16 if complex). For complex matrices, all of the real parts are stored first,
followed by all the imaginary parts.

20.5.8 String v92 (Obsolete)

Offset Description

0-3 always 0
4-7 always 0xEECFCFCF

20-20

File
I/O

File I/O

Offset Description

8-11 reserved
12-15 reserved
16-19 reserved
20-23 size of string in units of 8 bytes
24-27 length of string plus null terminator in bytes
28-127 reserved

The size of the data area is always divisible by 8, and is padded with nulls if the length of the string
is not evenly divisible by 8. If the length of the string is evenly divisible by 8, the data area will be
the length of the string plus 8. The data area follows immediately after the 128-byte header.

20.5.9 Data Set v92 (Obsolete)

Offset Description

0-3 always 0
4-7 always 0xEECACACA
8-11 reserved
12-15 reserved
16-19 reserved
20-23 rows in data set
24-27 columns in data set
28-31 0 - real data set, 1 - complex data set
32-35 type of data in data set, 2, 4, or 8
36-39 header size in bytes is 128 + columns * 9
40-127 reserved

The variable names begin at offset 128 and are stored 8 bytes each in ASCII format. Each name
corresponds to one column of data. Names less than 8 characters are padded on the right with
bytes of zero.

The variable type flags immediately follow the variable names. They are 1-byte binary integers,
one per column, padded to an even 8-byte boundary. A 1 indicates a numeric variable and a 0
indicates a character variable.

20-21

GAUSS User Guide

The contents of the data set follow the header and start on an 8-byte boundary. Data is either 2-byte
signed integer, 4-byte single precision floating point or 8-byte double precision floating point.

20.5.10 Matrix v96

Offset Description

0-3 always 0xFFFFFFFF
4-7 always 0
8-11 always 0xFFFFFFFF
12-15 always 0
16-19 always 0xFFFFFFFF
20-23 0xFFFFFFFF for forward byte order, 0 for backward byte order
24-27 0xFFFFFFFF for forward bit order, 0 for backward bit order
28-31 always 0xABCDEF01
32-35 currently 1
36-39 reserved
40-43 floating point type, 1 for IEEE 754
44-47 1008 (double precision data)
48-51 8, the size in bytes of a double matrix
52-55 0 - real matrix, 1 - complex matrix
56-59 1 - imaginary part of matrix follows real part (standard GAUSS style)

2 - imaginary part of each element immediately follows real part
(FORTRAN style)

60-63 number of dimensions
0 - scalar
1 - row vector
2 - column vector or matrix

64-67 1 - row major ordering of elements, 2 - column major
68-71 always 0
72-75 header size, 128 + dimensions * 4, padded to 8-byte boundary
76-127 reserved

If the data is a scalar, the data will directly follow the header.

If the data is a row vector, an unsigned integer equaling the number of columns in the vector will

20-22

File
I/O

File I/O

precede the data, along with 4 padding bytes.

If the data is a column vector or a matrix, there will be two unsigned integers preceding the data.
The first will represent the number of rows in the matrix and the second will represent the number
of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in double precision
(8 bytes per element, 16 if complex). For complex matrices, all of the real parts are stored first,
followed by all the imaginary parts.

20.5.11 Data Set v96

Offset Description

0-3 always 0xFFFFFFFF
4-7 always 0
8-11 always 0xFFFFFFFF
12-15 always 0
16-19 always 0xFFFFFFFF
20-23 0xFFFFFFFF for forward byte order, 0 for backward byte order
24-27 0xFFFFFFFF for forward bit order, 0 for backward bit order
28-31 0xABCDEF02
32-35 version, currently 1
36-39 reserved
40-43 floating point type, 1 for IEEE 754
44-47 12 - signed 2-byte integer

1004 - single precision floating point
1008 - double precision float

48-51 2, 4, or 8, the size of an element in bytes
52-55 0 - real matrix, 1 - complex matrix
56-59 1 - imaginary part of matrix follows real part (standard GAUSS style)

2 - imaginary part of each element immediately follows real part
(FORTRAN style)

60-63 always 2
64-67 1 for row major ordering of elements, 2 for column major

20-23

GAUSS User Guide

Offset Description

68-71 always 0
72-75 header size, 128 + columns * 33, padded to 8-byte boundary
76-79 reserved
80-83 rows in data set
84-87 columns in data set
88-127 reserved

The variable names begin at offset 128 and are stored 32 bytes each in ASCII format. Each name
corresponds to one column of data. Names less than 32 characters are padded on the right with
bytes of zero.

The variable type flags immediately follow the variable names. They are 1-byte binary integers,
one per column, padded to an even 8-byte boundary. A 1 indicates a numeric variable and a 0
indicates a character variable.

Contents of the data set follow the header and start on an 8-byte boundary. Data is either 2-byte
signed integer, 4-byte single precision floating point or 8-byte double precision floating point.

20.5.12 GAUSS Data Archives

A GAUSS Data Archive consists of a header, followed by the variable data and, finally, an array of
variable descriptors containing information about each variable.

Header

The header for a GAUSS Data Archive is laid out as follows:

Offset Type Description

0-3 32-bit unsigned integer always 0xFFFFFFFF
4-7 32-bit unsigned integer always 0
8-11 32-bit unsigned integer always 0xFFFFFFFF

20-24

File
I/O

File I/O

Offset Type Description

12-15 32-bit unsigned integer always 0
16-19 32-bit unsigned integer always 0xFFFFFFFF
20-23 32-bit unsigned integer 0xFFFFFFFF for forward byte order,

0 for backward byte order
24-27 32-bit unsigned integer always 0
28-31 32-bit unsigned integer always 0xABCDEF08
32-35 32-bit unsigned integer version, currently 1
36-39 32-bit unsigned integer reserved
40-43 32-bit unsigned integer floating point type, 1 for IEEE 754
44-55 32-bit unsigned integers reserved
56-63 64-bit unsigned integer number of variables
64-67 32-bit unsigned integer header size, 128
68-95 32-bit unsigned integers reserved
96-103 64-bit unsigned integer offset of variable descriptor table from end of

header
104-127 64-bit unsigned integers reserved

Variable Data

After the header comes the variable data. Matrices are laid out in row-major order, and strings are
written with a null-terminating byte.

For string arrays, an array of rows×columns struct satable’s is written out first, followed by the
string array data in row-major order with each element null terminated. A struct satable consists
of two members:

Member Type Description

off size_t offset of element data from beginning of string array data
len size_t length of element data, including null-terminating byte

On a 32-bit machine, a size_t is 4 bytes. On a 64-bit machine, it is 8 bytes.

Arrays are written with the orders (sizes) of each dimension followed by the array data. For
example, the following 2×3×4 array:

20-25

GAUSS User Guide

[1,1,1] through [1,3,4] =

1 2 3 4
5 6 7 8
9 10 11 12

[2,1,1] through [2,3,4] =

13 14 15 16
17 18 19 20
21 22 23 24

would be written out like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Variable Structures

The variable data is followed by an array of variable descriptors. For each variable in the GDA,
there is a corresponding variable descriptor in this array. A variable descriptor is laid out as
follows:

Offset Type Description

0-3 32-bit unsigned integer variable type
4-7 32-bit unsigned integer data type, 10 for 8 byte floating point
8-11 32-bit unsigned integer dimensions, used only for arrays
12-15 32-bit unsigned integer complex flag, 1 for real data, 0 for complex
16-19 32-bit unsigned integer size of pointer, indicates whether the variable was written

on a 32-bit or 64-bit platform

20-26

File
I/O

File I/O

Offset Type Description

20-23 32-bit unsigned integer huge flag, indicates whether the variable is larger than
INT MAX

24-31 64-bit unsigned integer rows for matrices and string arrays
32-39 64-bit unsigned integer columns for matrices and string arrays, length for strings,

including null-terminating byte
40-47 64-bit unsigned integer index of the variable in the GDA
48-55 64-bit unsigned integer offset of variable data from end of header
56-63 64-bit unsigned integer length of variable data in bytes
64-143 string name of variable, null-terminated

The variable type (bytes 0-3) may be any of the following:

20 array
30 matrix
40 string
50 string array

The size of pointer element (bytes 16-19) is the size of a pointer on the machine on which the
variable was written to the GDA. It will be set to 4 on 32-bit machines and 8 on 64-bit machines.
This element is used only for string array variables. If a GDA containing string arrays is created
on a 32-bit machine and then read on a 64-bit machine, or vice versa, then the size of pointer
element indicates how the members of the struct satable’s must be converted in order to be read
on the current machine.

The huge flag (bytes 20-23) is set to 1 if the variable size is greater than INT MAX, which is
defined as 2147483647. A variable for which the huge flag is set to 1 may not be read into GAUSS
on a 32-bit machine.

The variable index element (bytes 40-47) contains the index of the variable in the GDA. Although
the variable data is not necessarily ordered by index (see gdaUpdate), the variable descriptors are.
Therefore, the indices are always in ascending order.

20-27

FLI

Foreign Language Interface 21

The Foreign Language Interface (FLI) allows users to create functions written in C, FORTRAN, or
other languages, and call them from a GAUSS program. The functions are placed in dynamic
libraries (DLLs, also known as shared libraries or shared objects) and linked in at run-time as
needed. The FLI functions are:

dlibrary Link and unlink dynamic libraries at run-time.

dllcall Call functions located in dynamic libraries.

GAUSS recognizes a default dynamic library directory, a directory where it will look for your
dynamic-link libraries when you call dlibrary. You can specify the default directory in
gauss.cfg by setting dlib_path. As it is shipped, gauss.cfg specifies $(GAUSSDIR)/dlib as
the default directory.

21-1

GAUSS User Guide

21.1 Writing FLI Functions

Your FLI functions should be written to the following specifications:

1. Take 0 or more pointers to doubles as arguments.

This does not mean you cannot pass strings to an FLI function. Just recast the double
pointer to a char pointer inside the function.

2. Take those arguments either in a list or a vector.

3. Return an integer.

In C syntax, then, your functions would take one of the following forms:

1. int func(void);

2. int func(double *arg1 [[,double *arg2,. . .]]);

3. int func(double *arg[]);

Functions can be written to take a list of up to 100 arguments, or a vector (in C terms, a
1-dimensional array) of up to 1000 arguments. This does not affect how the function is called from
GAUSS; the dllcall statement will always appear to pass the arguments in a list. That is, the
dllcall statement will always look as follows:

dllcall func(a,b,c,d[[,e...]]);

For details on calling your function, passing arguments to it, getting data back, and what the return
value means, see dllcall in the GAUSS L R.

21-2

FLI

Foreign Language Interface

21.2 Creating Dynamic Libraries

The following describes how to build a dynamic library called hyp.dll (on Windows) or
libhyp.so (on UNIX/Linux) from the source file hyp.c.

As mentioned in the previous section, your FLI functions may take only pointers to doubles as
arguments. Therefore, you should define your FLI functions to be merely wrapper functions that
cast their arguments as necessary and then call the functions that actually do the work. This is
demonstrated in the source file hyp.c:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* This code is not meant to be efficient. It is meant

** to demonstrate the use of the FLI.

*/

/* this does all the work, not exported */

static int hypo(double *x, double *y, double *h, int r, int c)

{

double *wx;

double *wy;

double *dp;

double *sp1;

double *sp2;

int i, elems;

elems = r*c;

/* malloc work arrays */

if ((wx = (double *)malloc(elems*sizeof(double))) == NULL)

return 30; /* out of memory */

if ((wy = (double *)malloc(elems*sizeof(double))) == NULL)

{

21-3

GAUSS User Guide

free(wx);

return 30; /* out of memory */

}

dp = wx;

sp1 = x;

/* square x into work area wx */

for (i=0; i<elems; i++)

{

*dp = *sp1 * *sp1;

++sp1;

++dp;

}

dp = wy;

sp2 = y;

/* square y into work area wy */

for (i=0; i<elems; i++)

{

*dp = *sp2 * *sp2;

++sp2;

++dp;

}

dp = h;

sp1 = wx;

sp2 = wy;

/* compute hypotenuse into h which was allocated by GAUSS */

for (i=0; i<elems; i++)

{

*dp = sqrt(*sp1 + *sp2);

++sp1;

++sp2;

++dp;

21-4

FLI

Foreign Language Interface

}

/* free whatever you malloc */

free(wx);

free(wy);

return 0;

}

/* exported wrapper, all double * arguments, calls the real

** function with whatever data types it expects

*/

int hypotenuse(double *x, double *y, double *h,

double *r, double *c)

{

return hypo(x, y, h, (int)*r, (int)*c);

}

The following Makefiles contain the compile and link commands you would use to build the
dynamic library on various platforms. For explanations of the various flags used, see the
documentation for your compiler and linker.

Windows

hyp.dll: hyp.obj

link /dll /out:hyp.dll hyp.obj

hyp.obj: hyp.c

cl -c -MD -GX hyp.c

Solaris

$(CCOPTS) indicates any optional compilation flags you might add.

21-5

GAUSS User Guide

CCOPTIONS = -g -xsb -xarch=v9 -KPIC

CC = cc

libhyp.so: hyp.c

$(CC) -G $(CCOPTIONS) -o $@ hyp.c -lm

Linux

$(CCOPTS) indicates any optional compilation flags you might add.

CCOPTIONS = -g -O2 -lm -lc -shared

CC = gcc

libhyp.so: hyp.cpp

$(CC) $(CCOPTIONS) -o $@ hyp.c

For details on linking your dynamic library, see dlibrary in the GAUSS L R.

21-6

D
ata

Loop

Data Transformations 22

GAUSS allows expressions that directly reference variables (columns) of a data set. This is done
within the context of a data loop:

dataloop infile outfile;

drop wagefac wqlec shordelt foobly;

csed = ln(sqrt(csed));

select csed > 0.35 and married $=\,= "y";

make chfac = hcfac + wcfac;

keep csed chfac stid recsum voom;

endata;

GAUSS translates the data loop into a procedure that performs the required operations, and then
calls the procedure automatically at the location (in your program) of the data loop. It does this by
translating your main program file into a temporary file and then executing the temporary file.

A data loop may be placed only in the main program file. Data loops in files that are #include’d
or autoloaded are not recognized.

22-1

GAUSS User Guide

22.1 Data Loop Statements

A data loop begins with a dataloop statement and ends with an endata statement. Inside a data
loop, the following statements are supported:

code Create variable based on a set of logical expressions.

delete Delete rows (observations) based on a logical expression.

drop Specify variables NOT to be written to data set.

extern Allow access to matrices and strings in memory.

keep Specify variables to be written to output data set.

lag Lag variables a number of periods.

listwise Control deletion of missing values.

make Create new variable.

outtyp Specify output file precision.

recode Change variable based on a set of logical expressions.

select Select rows (observations) based on a logical expression.

vector Create new variable from a scalar returning expression.

In any expression inside a data loop, all text symbols not immediately followed by a left
parenthesis ‘(’ are assumed to be data set variable (column) names. Text symbols followed by a
left parenthesis are assumed to be procedure names. Any symbol listed in an extern statement is
assumed to be a matrix or string already in memory.

22-2

D
ata

Loop

Data Transformations

22.2 Using Other Statements

All program statements in the main file and not inside a data loop are passed through to the
temporary file without modification. Program statements within a data loop that are preceded by a
‘#’ are passed through to the temporary file without modification. The user familiar with the code
generated in the temporary file can use this to do out-of-the-ordinary operations inside the data
loop.

22.3 Debugging Data Loops

The translator that processes data loops can be turned on and off. When the translator is on, there
are three distinct phases in running a program:

Translation Translation of main program file to temporary file.

Compilation Compilation of temporary file.

Execution Execution of compiled code.

22.3.1 Translation Phase

In the translation phase, the main program file is translated into a temporary file. Each data loop is
translated into a procedure and a call to this procedure is placed in the temporary file at the same
location as the original data loop. The data loop itself is commented out in the temporary file. All
the data loop procedures are placed at the end of the temporary file.

Depending upon the status of line number tracking, error messages encountered in this phase will
be printed with the file name and line numbers corresponding to the main file.

22.3.2 Compilation Phase

In the compilation phase, the temporary file is compiled. Depending upon the status of line
number tracking, error messages encountered in this phase will be printed with the file name and

22-3

GAUSS User Guide

line numbers corresponding to both the main file and the temporary file.

22.3.3 Execution Phase

In the execution phase, the compiled program is executed. Depending on the status of line number
tracking, error messages will include line number references from both the main file and the
temporary file.

22.4 Reserved Variables

The following local variables are created by the translator and used in the produced code:

x_cv x_iptr x_ncol x_plag

x_drop x_keep x_nlag x_ptrim

x_fpin x_lval x_nrow x_shft

x_fpout x_lvar x_ntrim x_tname

x_i x_n x_out x_vname

x_in x_name x_outtyp x_x

These variables are reserved, and should not be used within a dataloop... endata section.

22-4

P
rofiler

The GAUSS Profiler 23

GAUSS includes a profiler, which enables you to determine exactly how much time your
programs are spending on each line and in each called procedure, thereby providing you with the
information you need to increase the efficiency of your programs. The GAUSS Profiler and
tcollect are both run from a command prompt window, not at a GAUSS prompt.

23.1 Using the GAUSS Profiler

There are two steps to using the GAUSS Profiler: collection and analysis.

23.1.1 Collection

To collect profiling information, you must run your GAUSS program in tcollect, an executable
shipped with GAUSS that is identical to tgauss except that it generates a file containing profiling
information each time it is run:

23-1

GAUSS User Guide

tcollect -b myfile.e

The output displayed by tcollect includes the name of the output file containing the profiling
information. tcollect output files have a gaussprof prefix and a .gco extension.

Note that running tcollect on long programs may generate a very large .gco output file. Thus
you may want to delete the .gco files on your machine regularly.

23.1.2 Analysis

To analyze the information stored in the tcollect output file, you must run the gaussprof
executable, which is also shipped with GAUSS, on that file. gaussprof produces an organized
report, displaying the time usage by procedure and by line.

Assuming that running myfile.e in tcollect produced an output file called
gaussprof_001.gco, you could analyze the results in that file as follows:

gaussprof gaussprof_001.gco

The syntax for gaussprof is:

gaussprof [flags] profile data file ...

where [flags] may be any of the following:

-p profile procedure calls

-l profile line numbers

-h suppress headers

-sp order procedure call sort order where order contains one or more of the folllowing:

23-2

P
rofiler

The GAUSS Profiler

e exclusive time

t total time

c number of times called

p procedure name

a ascending order

d descending order (default)

Columns are sorted all ascending or all descending.

-sl order line number sort order where order contains one or more of the folllowing:

t time spent on line

c number of times line was executed

f file name

l line number

a ascending order

d descending order (default)

Columns are sorted all ascending or all descending.

The default, with no flags, is: -pl -sp dep -sl dtf.

23-3

Tim
e

and
D

ate

Time and Date 24

GAUSS offers a comprehensive set of time and date functions. These functions afford the user the
ability to return the current time and date, to carry out most related calculations and format the
results for output. GAUSS also allows the user to perform timed iterations.

In the year 1 AD the calendar in general use was the Julian calendar. The Gregorian calendar that
we use today was not invented until the late 1500’s. This new calendar changed the method of
calculating leap years on century marks. With the Julian system simply every fourth year was a
leap year. The Gregorian system made every fourth year a leap year with the exception of century
marks which are only leap years if divisible by 400. The British adoption of this calendar, which
the GAUSS date functions are based on, did not happen until the year 1752. In that year eleven
days were removed; September 2, 1752 was followed by September 14, 1752.

dtvnormal and utctodtv are accurate back to 1 AD. The rest of the GAUSS date functions
assume a normal Gregorian system regardless of year. Thus, they will not account for the days
taken out in September of 1752, nor will they account for all century marks being leap years
before the adoption of the Gregorian system in 1752.

The time is given by your operating system, daylight savings time is not automatically accounted
for by GAUSS in calculations.

24-1

GAUSS User Guide

24.1 Time and Date Formats

The Time and Date formats in GAUSS fall into one of two major categories, matrix/vector and
string. The matrix/vector formats can be used for either calculations or if desired for output. The
string formats are, however, mostly for use as ouput. Some manipulation of strings is possible
with the use of the stof function.

A 4×1 vector is returned by both the date and time functions.

d = date;

d;

1997.00 /* Year */

5.00000 /* Month */

29.0000 /* Day */

56.4700 /* Hundredths of a second since midnight */

t = time;

t;

10.00 /* Hours since midnight */

17.00 /* Minutes */

33.00 /* Seconds */

13.81 /* Hundredths of a second */

These vectors can be written to a string of the desired form by passing them through the
corresponding function.

d = { 1997, 5, 29, 56.47 };

datestr(d);

5/29/97

datestrymd(d);

24-2

Tim
e

and
D

ate

Time and Date

19970529

t = { 10, 17, 33, 13.81 };

timestr(t);

10:17:33

A list and brief description of these, and other related functions is provided in the table in section
24.2.

Another major matrix/vector format is the dtv, or date and time vector. The dtv vector is a 1×8
vector used with the dtvnormal and utctodtv functions. The format for the dtv vector is:

Year Month Day Hour Min S ec DoW DiY
1955 4 21 4 16 0 4 110

Where:

Year Year, four digit integer.
Month 1-12, Month in year.
Day 1-31, Day of month.
Hour 0-23, Hours since midnight.
Min 0-59, Minutes.
Sec 0-59, Seconds.
DoW 0-6, Day of week, 0=Sunday.
DiY 0-365, Days since Jan 1 of current year.

dtvnormal normalizes a date. The last two elements are ignored for input, as shown in the
following example. They are set to the correct values on output. The input can be 1×8 or N×8.

dtv = { 1954 3 17 4 16 0 0 0 };

dtv = dtvnormal(dtv);

24-3

GAUSS User Guide

1954 3 17 4 16 0 3 75

dtv[3] = dtv[3] + 400;

print dtv;

1954 3 417 4 16 0 3 75

dtv = dtvnormal(dtv);

print dtv;

1955 4 21 4 16 0 4 110

24.2 Time and Date Functions

Following is a partial listing of the time and date functions available in GAUSS.

datestr Formats a Date vector to a string (mo/dy/yr).

datestrymd Formats a Date vector to an eight character string of the type
yyyymmdd.

dayinyr Returns day number in the year of a given date.

_daypryr Returns the number of days in the years given as input.

dtvnormal Normalizes a 1×8 dtv vector.

etdays Computes the difference in days between two dates.

ethsec Computes the difference between two times in hundredths of a
second.

etstr Formats a time difference measured in hundreths of a second to a
string.

24-4

Tim
e

and
D

ate

Time and Date

_isleap Returns a vector of ones and zeros, 1 if leap year 0 if not.

timestr Formats a Time vector to a string hr:mn:sc.

timeutc Universal time coordinate, number of seconds since January 1, 1970
Greenwich Mean Time.

utctodtv Converts a scalar, number of seconds since, or before, Jan 1 1970
Greenwich mean time, to a dtv vector.

Below is an example of two ways to calculate a time difference.

d1 = { 1996, 12, 19, 82 };

d2 = { 1997, 4, 28, 4248879.3 };

dif = ethsec(d1,d2);

ds = etstr(dif);

di f = 1.1274488e + 09

ds = 130days 11hours 48minutes 7.97seconds

If only the number of days is needed use etdays.

d1 = { 1996, 12, 19, 82 };

d2 = { 1997, 4, 28, 4248879.3 };

dif = etdays(d1,d2);

di f = 130.00000

The last element of d1 is optional when used as an input for etdays.

_isleap returns a matrix of ones and zeros, ones when the corresponding year is a leap year.

24-5

GAUSS User Guide

x = seqa(1970,1,20);

y = _isleap(x);

delif(x,abs(y-1));

1972.0000 /* Vector containing all leap years

1976.0000 between 1970 - 1989 */

1980.0000

1984.0000

1988.0000

To calculate the days of a number of consecutive years:

x = seqa(1983,1,3);

y = _daypryr(x);

sumc(y);

1096.0000

To add a portion of the following year:

g = { 1986, 2, 23, 0 };

dy = dayinyr(g);

sumc(y)+dy;

1150.0000

For more information on any of these functions see their respective pages in the command
reference.

24.2.1 Timed Iterations

Iterations of a program can be timed with the use of the hsec function in the following manner.

24-6

Tim
e

and
D

ate

Time and Date

et = hsec; /* Start timer */

/* Segment of code to be timed */

et = (hsec-et)/100; /* Stop timer, convert to seconds */

In the case of a program running from one day into the next you would need to replace the hsec
function with the date function. The ethsec function should be used to compute the time
difference; a straight subtraction as in the previous example will not give the desired result.

dstart = date; /* Start timer */

/* Segment of code to be timed */

dend = date; /* Stop timer */

dif = ethsec(dstart,dend)/100; /* Convert time difference to seconds */

24-7

A
TO

G

ATOG 25
ATOG is a stand-alone conversion utility that converts ASCII files into GAUSS data sets. ATOG
can convert delimited and packed ASCII files into GAUSS data sets. ATOG can be run from a
batch file or the command line; it is not run from a GAUSS prompt but rather from a command
prompt window.

The syntax is:

atog cmdfile

where cmdfile is the name of the command file. If no extension is given, .cmd will be assumed. If
no command file is specified, a command summary will be displayed.

25.1 Command Summary

The following commands are supported in ATOG:

25-1

GAUSS User Guide

append Append data to an existing file.

complex Treat data as complex variables.

input The name of the ASCII input file.

invar Input file variables (column names).

msym Specify missing value character.

nocheck Don’t check data type or record length.

output The name of the GAUSS data set to be created.

outtyp Output data type.

outvar List of variables to be included in output file.

preservecase Preserve case of variable names in output file.

The principle commands for converting an ASCII file that is delimited with spaces or commas are
given in the following example:

input agex.asc;

output agex;

invar $ race # age pay $ sex region;

outvar region age sex pay;

outtyp d;

In this example, a delimited ASCII file agex.asc is converted to a double precision GAUSS data
file agex.dat. The input file has five variables. The file will be interpreted as having five columns:

column name data type
1 race character
2 AGE numeric
3 PAY numeric
4 sex character
5 region character

25-2

A
TO

G

ATOG

The output file will have four columns since the first column of the input file (race) is not included
in the output variables. The columns of the output file are:

column name data type
1 region character
2 AGE numeric
3 sex character
4 PAY numeric

The variable names are saved in the file header. Unless preservecase has been specified, the
names of character variables will be saved in lowercase, and the names of numeric variables will
be saved in uppercase. The $ in the invar statement specifies that the variables that follow are
character type. The # specifies numeric. If $ and # are not used in an invar statement, the default
is numeric.

Comments in command files must be enclosed between ‘@’ characters.

25.2 Commands

A detailed explanation of each command follows.

append

Instructs ATOG to append the converted data to an existing data set:

append;

No assumptions are made regarding the format of the existing file. Make certain that the number,
order, and type of data converted match the existing file. ATOG creates v96 format data files, so
will only append to v96 format data files.

25-3

GAUSS User Guide

complex

Instructs ATOG to convert the ASCII file into a complex GAUSS data set:

complex;

Complex GAUSS data sets are stored by rows, with the real and imaginary parts interleaved,
element by element. ATOG assumes the same structure for the ASCII input file, and will thus read
TWO numbers out for EACH variable specified.

complex cannot be used with packed ASCII files.

input

Specifies the file name of the ASCII file to be converted. The full path name can be used in the file
specification.

For example, the command:

input data.raw;

will expect an ASCII data file in the current working directory.

The command:

input /research/data/myfile.asc;

specifies a file to be located in the /research/data subdirectory.

25-4

A
TO

G

ATOG

invar

Soft Delimited ASCII Files Soft delimited files may have spaces, commas, or cr/lf as delimiters
between elements. Two or more consecutive delimiters with no data between them are treated as
one delimiter. For example:

invar age $ name sex # pay var[1:10] x[005];

The invar command above specifies the following variables:

column name data type
1 AGE numeric
2 name character
3 sex character
4 PAY numeric
5 VAR01 numeric
6 VAR02 numeric
7 VAR03 numeric
8 VAR04 numeric
9 VAR05 numeric

10 VAR06 numeric
11 VAR07 numeric
12 VAR08 numeric
13 VAR09 numeric
14 VAR10 numeric
15 X001 numeric
16 X002 numeric
17 X003 numeric
18 X004 numeric
19 X005 numeric

As the input file is translated, the first 19 elements will be interpreted as the first row (observation),
the next 19 will be interpreted as the second row, and so on. If the number of elements in the file is
not evenly divisible by 19, the final incomplete row will be dropped and a warning message will
be given.

25-5

GAUSS User Guide

Hard Delimited ASCII Files Hard delimited files have a printable character as a delimiter
between elements. Two delimiters without intervening data between them will be interpreted as a
missing. If \n is specified as a delimiter, the file should have one element per line and blank lines
will be considered missings. Otherwise, delimiters must be printable characters. The dot ‘.’ is
illegal and will always be interpreted as a missing value. To specify the backslash as a delimiter,
use \\. If \r is specified as a delimiter, the file will be assumed to contain one case or record per
line with commas between elements and no comma at the end of the line.

For hard delimited files the delimit subcommand is used with the invar command. The
delimit subcommand has two optional parameters. The first parameter is the delimiter. The
default is a comma. The second parameter is an ‘N’. If the second parameter is present, ATOG
will expect N delimiters. If it is not present, ATOG will expect N-1 delimiters.

This example:

invar delimit(, N) $ name # var[5];

will expect a file like this:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,

STEVE, 624.3, 340.3, , 624.3, 639.5,

TOM , 244.2, 834.3, 602.3, 333.4, 822.5,

while

invar delimit(,) $ name # var[5];

or

invar delimit $ name # var[5];

will expect a file like this:

25-6

A
TO

G

ATOG

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,

STEVE, 624.3, 340.3, , 624.3, 639.5,

TOM , 244.2, 834.3, 602.3, 333.4, 822.5

The difference between specifying N or N-1 delimiters can be seen here:

456.4, 345.2, 533.2,

, 624.3, 639.5,

602.3, 333.4,

If the invar statement specified three variables and N-1 delimiters, this file would be interpreted
as having three rows containing a missing in the [2,1] element and the [3,3] element like this:

456.4 345.2 533.2
. 624.3 639.5

602.3 333.4 .

If N delimiters had been specified, this file would be interpreted as having two rows, and a final
incomplete row that is dropped:

456.4 345.2 533.2
. 624.3 639.5

The spaces were shown only for clarity and are not significant in delimited files so:

BILL,222.3,123.2,456.4,345.2,533.2,

STEVE,624.3,340.3,,624.3,639.5,

TOM,244.2,834.3,602.3,333.4,822.5

would work just as well.

Linefeeds are significant only if \n is specified as the delimiter, or when using \r. This example:

25-7

GAUSS User Guide

invar delimit(\r) $ name # var[5];

will expect a file with no comma after the final element in each row:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2

STEVE, 624.3, 340.3, 245.3, 624.3, 639.5

TOM , 244.2, 834.3, 602.3, 333.4, 822.5

Packed ASCII Files Packed ASCII files must have fixed length records. The record
subcommand is used to specify the record length, and variables are specified by giving their type,
starting position, length, and the position of an implicit decimal point if necessary.

outvar is not used with packed ASCII files. Instead, invar is used to specify only those variables
to be included in the output file.

For packed ASCII files the syntax of the invar command is as follows:

invar record = reclen (format) variables (format) variables;

where,

reclen the total record length in bytes, including the final carriage return/line feed if
applicable. Records must be fixed length.

format (start,length.prec) where:

start starting position of the field in the record, 1 is the first position. The default
is 1.

length the length of the field in bytes. The default is 8.

prec optional; a decimal point will be inserted automatically prec places in from
the RIGHT edge of the field.

25-8

A
TO

G

ATOG

If several variables are listed after a format definition, each succeeding field will be assumed to
start immediately after the preceding field. If an asterisk is used to specify the starting position, the
current logical default will be assumed. An asterisk in the length position will select the current
default for both length and prec. This is illegal: (3,8.*).

The type change characters $ and # are used to toggle between character and numeric data type.

Any data in the record that is not defined in a format is ignored.

The examples below assume a 32-byte record with a carriage return/line feed occupying the last 2
bytes of each record. The data below can be interpreted in different ways using different invar
statements:

ABCDEFGHIJ12345678901234567890<CR><LF>

| | | | | |

position 1 10 20 30 31 32

This example:

invar record=32 $(1,3) group dept #(11,4.2) x[3] (*,5) y;

will result in:

variable value type
group ABC character
dept DEF character
X1 12.34 numeric
X2 56.78 numeric
X3 90.12 numeric
Y 34567 numeric

This example:

invar record=32 $ dept (*,2) id # (*,5) wage (*,2) area

25-9

GAUSS User Guide

will result in:

variable value type
dept ABCDEFGH character
id IJ character
WAGE 12345 numeric
AREA 67 numeric

msym

Specifies the character in the input file that is to be interpreted as a missing value. This example:

msym &;

defines the character ‘&’ as the missing value character. The default ‘.’ (dot) will always be
interpreted as a missing value unless it is part of a numeric value.

nocheck

Optional; suppresses automatic checking of packed ASCII record length and output data type. The
default is to increase the record length by 2 bytes if the second record in a packed file starts with
cr/lf, and any files that have explicitly defined character data will be output in double precision
regardless of the type specified.

output

The name of the GAUSS data set. A file will be created with the extension .dat. For example:

output /gauss/dat/test;

creates the file test.dat on the /gauss/dat directory.

25-10

A
TO

G

ATOG

outtyp

Selects the numerical accuracy of the output file. Use of this command should be dictated by the
accuracy of the input data and storage space limitations. The format is:

outtyp fmt;

where fmt is:

D or 8 double precision
F or 4 single precision (default)
I or 2 integer

The ranges of the different formats are:

bytes data type significant range
digits

2 integer 4 −32768<=X<=32767
4 single precision 6–7 8.43x10−37<=|X|<=3.37x10+38

8 double precision 15–16 4.19x10−307<=|X|<=1.67x10+308

If the output type is integer, the input numbers will be truncated to integers. If your data has more
than 6 or 7 significant digits, specify outtyp as double.

Character data require outtyp d. ATOG automatically selects double precision when character
data is specified in the invar statement, unless you have specified nocheck.

The precision of the storage selected does not affect the accuracy of GAUSS calculations using the
data. GAUSS converts all data to double precision when the file is read.

outvar

Selects the variables to be placed in the GAUSS data set. The outvar command needs only the
list of variables to be included in the output data set. They can be in any order. In this example:

25-11

GAUSS User Guide

invar $name #age pay $sex #var[1:10] x[005];

outvar sex age x001 x003 var[1:8];

the outvar statement selects the following variables:

column name data type
1 sex character
2 AGE numeric
3 X001 numeric
4 X003 numeric
5 VAR01 numeric
6 VAR02 numeric
7 VAR03 numeric
8 VAR04 numeric
9 VAR05 numeric

10 VAR06 numeric
11 VAR07 numeric
12 VAR08 numeric

outvar is not used with packed ASCII files.

preservecase

Optional; preserves the case of variable names. The default is nopreservcase, which will force
variable names for numeric variables to upper case and character variables to lower case.

25.3 Examples

Example 1 The first example is a soft delimited ASCII file called agex1.asc. The file contains
seven columns of ASCII data:

25-12

A
TO

G

ATOG

Jan 167.3 822.4 6.34E06 yes 84.3 100.4

Feb 165.8 987.3 5.63E06 no 22.4 65.6

Mar 165.3 842.3 7.34E06 yes 65.4 78.3

The ATOG command file is agex1.cmd:

input /gauss/agex1.asc;

output agex1;

invar $month #temp pres vol $true var[02];

outvar month true temp pres vol;

The output data set will contain the following information:

name month true TEMP PRES VOL
case 1 Jan yes 167.3 822.4 6.34e+6
case 2 Feb no 165.8 987.3 5.63e+6
case 3 Mar yes 165.3 842.3 7.34e+6
type char char numeric numeric numeric

The data set is double precision since character data is explicitly specified.

Example 2 The second example is a packed ASCII file xlod.asc The file contains 32-character
records:

AEGDRFCSTy02345678960631567890<CR><LF>

EDJTAJPSTn12395863998064839561<CR><LF>

GWDNADMSTy19827845659725234451<CR><LF>

| | | | | |

position 1 10 20 30 31 32

The ATOG command file is xlod.cmd:

25-13

GAUSS User Guide

input /gauss/dat/xlod.asc;

output xlod2;

invar record=32 $(1,3) client[2] zone (*,1) reg #(20,5) zip;

The output data set will contain the following information:

name client1 client2 zone reg ZIP
case 1 AEG DRF CST y 60631
case 2 EDJ TAJ PST n 98064
case 3 GWD NAD MST y 59725
type char char char char numeric

The data set is double precision since character data is explicitly specified.

Example 3 The third example is a hard delimited ASCII file called cplx.asc. The file contains
six columns of ASCII data:

456.4, 345.2, 533.2, -345.5, 524.5, 935.3,

-257.6, 624.3, 639.5, 826.5, 331.4, 376.4,

602.3, -333.4, 342.1, 816.7, -452.6, -690.8

The ATOG command file is cplx.cmd:

input /gauss/cplx.asc;

output cplx;

invar delimit #cvar[3];

complex;

The output data set will contain the following information:

name cvar1 cvar2 cvar3
case 1 456.4 + 345.2i 533.2 - 345.5i 524.5 + 935.3i

case 2 -257.6 + 624.3i 639.5 + 826.5i 331.4 + 376.4i

case 3 602.3 - 333.4i 342.1 + 816.7i -452.6 - 690.8i

type numeric numeric numeric

25-14

A
TO

G

ATOG

The data set defaults to single precision, since no character data is present, and no outtyp
command is specified.

25.4 Error Messages

atog - Can’t find input file

The ASCII input file could not be opened.

atog - Can’t open output file

The output file could not be opened.

atog - Can’t open temporary file

Notify Aptech Systems.

atog - Can’t read temporary file

Notify Aptech Systems.

atog - Character data in output file

Setting output file to double precision

The output file contains character data. The type was set to double precision
automatically.

atog - Character data longer than 8 bytes were truncated

The input file contained character elements longer than 8 bytes. The conversion
continued and the character elements were truncated to 8 bytes.

atog - Disk Full

The output disk is full. The output file is incomplete.

atog - Found character data in numeric field

25-15

GAUSS User Guide

This is a warning that character data was found in a variable that was specified as
numeric. The conversion will continue.

atog - Illegal command

An unrecognizable command was found in a command file.

atog - Internal error

Notify Aptech Systems.

atog - Invalid delimiter

The delimiter following the backslash is not supported.

atog - Invalid output type

Output type must be I, F, or D.

atog - Missing value symbol not found

No missing value was specified in an msym statement.

atog - No Input file

No ASCII input file was specified. The input command may be missing.

atog - No input variables

No input variable names were specified. The invar statement may be missing.

atog - No output file

No output file was specified. The output command may be missing.

atog - output type d required for character data

Character data in output file will be lost

Output file contains character data and is not double precision.

25-16

A
TO

G

ATOG

atog - Open comment

The command file has a comment that is not closed. Comments must be enclosed in @’s:

@ comment @

atog - Out of memory

Notify Aptech Systems.

atog - read error

A read error has occurred while converting a packed ASCII file.

atog - Record length must be 1-16384 bytes

The record subcommand has an out of range record length.

atog - Statement too long

Command file statements must be less than 16384 bytes.

atog - Syntax error at:

There is unrecognizable syntax in a command file.

atog - Too many input variables

More input variables were specified than available memory permitted.

atog - Too many output variables

More output variables were specified than available memory permitted.

atog - Too many variables

More variables were specified than available memory permitted.

atog - Undefined variable

25-17

GAUSS User Guide

A variable requested in an outvar statement was not listed in an invar statement.

atog WARNING: missing ‘)’ at:

The parentheses in the delimit subcommand were not closed.

atog WARNING: some records begin with cr/lf

A packed ASCII file has some records that begin with a carriage return/linefeed. The
record length may be wrong.

atog - complex illegal for packed ASCII file.

A complex command was encountered following an invar command with record
specified.

atog - Cannot read packed ASCII. (complex specified)

An invar command with record specified was encountered following a complex
command.

25-18

E
rror

M
essages

Error Messages 26
The following is a list of error messages intrinsic to the GAUSS programming language. Error
messages generated by library functions are not included here.

G0002 File too large

load Input file too large.

getf Input file too large.

G0003 Indexing a matrix as a vector

A single index can be used only on vectors. Vectors have only one row or only one
column.

G0004 Compiler stack overflow - too complex

An expression is too complex. Break it into smaller pieces. Notify Aptech Systems.

26-1

GAUSS User Guide

G0005 File is already compiled

G0006 Statement too long

Statement longer than 4000 characters.

G0007 End of file encountered

G0008 Syntax error

Compiler Unrecognizable or incorrect syntax. Semicolon missing on previous
statement.

create Unrecognizable statement in command file, or numvar or outvar
statement error.

G0009 Compiler pass out of memory

Compiler pass has run out of memory. Notify Aptech Systems.

G0010 Can’t open output file

G0011 Compiled file must have correct extension

GAUSS requires a .gcg extension.

G0012 Invalid drive specifier

G0013 Invalid filename

G0014 File not found

G0015 Directory full

G0016 Too many #include’s

#include’d files are nested too deep.

26-2

E
rror

M
essages

Error Messages

G0017 WARNING: local outside of procedure

A local statement has been found outside a procedure definition. The local statement
will be ignored.

G0018 Read error in program file

G0019 Can’t edit .gcg file

G0020 Not implemented yet

Command not supported in this implementation.

G0021 use must be at the beginning of a program

G0022 User keyword cannot be used in expression

G0023 Illegal attempt to redefine symbol to an index variable

G0024 Invalid use of ->, probably should be .

G0025 Undefined symbol

A symbol has been referenced that has not been given a definition.

G0026 Too many symbols

The global symbol table is full. (To set the limit, see new in the GAUSS L
R.)

G0027 Invalid directory

G0028 Can’t open configuration file

GAUSS cannot find the configuration file.

26-3

GAUSS User Guide

G0029 Missing left parenthesis

G0030 Insufficient workspace memory

The space used to store and manipulate matrices and strings is not large enough for the
operations attempted. (To make the main program space smaller and reclaim enough
space to continue, see new in the GAUSS L R.)

G0031 Execution stack too deep - expression too complex

An expression is too complex. Break it into smaller pieces. Notify Aptech Systems.

G0032 fn function too large

G0033 Missing right index bracket

G0034 Missing arguments

G0035 Argument too large

G0036 Matrices are not conformable

For a description of the function or operator being used and conformability rules, see
M O, Section 9.2, or the GAUSS L R.

G0037 Result too large

The size of the result of an expression is greater than the limit for a single matrix.

G0038 Not all the eigenvalues can be computed

G0039 Matrix must be square to invert

G0040 Not all the singular values can be computed

26-4

E
rror

M
essages

Error Messages

G0041 Argument must be scalar

A matrix argument was passed to a function that requires a scalar.

G0042 Matrix must be square to compute determinant

G0043 Not implemented for complex matrices

G0044 Matrix must be real

G0045 Attempt to write complex data to real data set

Data sets, unlike matrices, cannot change from real to complex after they are created.
Use create complex to create a complex data set.

G0046 Columns don’t match

The matrices must have the same number of columns.

G0047 Rows don’t match

The matrices must have the same number of rows.

G0048 Matrix singular

The matrix is singular using the current tolerance.

G0049 Target matrix not complex

G0050 Out of memory for program

The main program area is full. (To increase the main program space, see new in the
GAUSS L R.)

G0051 Program too large

The main program area is full. (To increase the main program space, see new in the
GAUSS L R.)

26-5

GAUSS User Guide

G0052 No square root - negative element

G0053 Illegal index

An illegal value has been passed in as a matrix index.

G0054 Index overflow

An illegal value has been passed in as a matrix index.

G0055 retp outside of procedure

A retp statement has been encountered outside a procedure definition.

G0056 Too many active locals

The execution stack is full. There are too many local variables active. Restructure your
program. Notify Aptech Systems.

G0057 Procedure stack overflow - expression too complex

The execution stack is full. There are too many nested levels of procedure calls.
Restructure your program. Notify Aptech Systems.

G0058 Index out of range

You have referenced a matrix element that is out of bounds for the matrix being
referenced.

G0059 exec command string too long

G0060 Nonscalar index

G0061 Cholesky downdate failed

G0062 Zero pivot encountered

crout The Crout algorithm has encountered a diagonal element equal to 0.
Use croutp instead.

26-6

E
rror

M
essages

Error Messages

G0063 Operator missing

An expression contains two consecutive operands with no intervening operator.

G0064 Operand missing

An expression contains two consecutive operators with no intervening operand.

G0065 Division by zero!

G0066 Must be recompiled under current version

You are attempting to use compiled code from a previous version of GAUSS. Recompile
the source code under the current version.

G0068 Program compiled under GAUSS-386 real version

G0069 Program compiled under GAUSS-386i complex version

G0070 Procedure calls too deep

You may have a runaway recursive procedure.

G0071 Type mismatch

You are using an argument of the wrong data type (e.g., inputting a matrix when a string
is called for).

G0072 Too many files open

The limit on simultaneously open files is 10.

G0073 Redefinition of

declare An attempt has been made to initialize a variable that is already
initialized. This is an error when declare := is used. declare !=
or declare ?= may be a better choice for your application.

26-7

GAUSS User Guide

declare An attempt has been made to redefine a string as a matrix or
procedure, or vice versa. delete the symbol and try again. If this
happens in the context of a single program, you have a programming
error. If this is a conflict between different programs, use a new
statement before running the second program.

let A string is being forced to type matrix. Use an external matrix
symbol; statement before the let statement.

G0074 Can’t run program compiled under GAUSS Light

G0075 gscroll input vector the wrong size

G0076 Call Aptech Systems Technical Support

G0077 New size cannot be zero

You cannot reshape a matrix to a size of zero.

G0078 vargetl outside of procedure

G0079 varputl outside of procedure

G0080 File handle must be an integer

G0081 Error renaming file

G0082 Error reading file

G0083 Error creating temporary file

G0084 Too many locals

A procedure has too many local variables.

26-8

E
rror

M
essages

Error Messages

G0085 Invalid file type

You cannot use this kind of file in this way.

G0086 Error deleting file

G0087 Couldn’t open

The auxiliary output file could not be opened. Check the file name and make sure there
is room on the disk.

G0088 Not enough memory to convert the whole string

G0089 WARNING: duplicate definition of local

G0090 Label undefined

Label referenced has no definition.

G0091 Symbol too long

Symbols can be no longer than 32 characters.

G0092 Open comment

A comment was never closed.

G0093 Locate off screen

G0094 Argument out of range

G0095 Seed out of range

G0096 Error parsing string

parse encountered a token that was too long.

26-9

GAUSS User Guide

G0097 String not closed

A string must have double quotes at both ends.

G0098 Invalid character for imaginary part of complex number

G0099 Illegal redefinition of user keyword

G0100 Internal E R R O R ###

Notify Aptech Systems.

G0101 Argument cannot be zero

The argument to ln or log cannot be zero.

G0102 Subroutine calls too deep

Too many levels of gosub. Restructure your program.

G0103 return without gosub

You have encountered a subroutine without executing a gosub.

G0104 Argument must be positive

G0105 Bad expression or missing arguments

Check the expression in question, or you forgot an argument.

G0106 Factorial overflow

G0107 Nesting too deep

Break the expression into smaller statements.

G0108 Missing left bracket [

26-10

E
rror

M
essages

Error Messages

G0109 Not enough data items

You omitted data in a let statement.

G0110 Found) expected] -

G0111 Found] expected) -

G0112 Matrix multiplication overflow

G0113 Unclosed (

G0114 Unclosed [

G0115 Illegal redefinition of function

You are attempting to turn a function into a matrix or string. If this is a name conflict,
delete the function.

G0116 sysstate: invalid case

G0117 Invalid argument

G0118 Argument must be integer

File handles must be integral.

G0120 Illegal type for save

G0121 Matrix not positive definite

The matrix is either not positive definite, or singular using the current tolerance.

G0122 Bad file handle

The file handle does not refer to an open file or is not in the valid range for file handles.

26-11

GAUSS User Guide

G0123 File handle not open

The file handle does not refer to an open file.

G0124 readr call too large

You are attempting to read too much in one call.

G0125 Read past end of file

You have already reached the end of the file.

G0126 Error closing file

G0127 File not open for write

G0128 File already open

G0129 File not open for read

G0130 No output variables specified

G0131 Can’t create file, too many variables

G0132 Can’t write, disk probably full

G0133 Function too long

G0134 Can’t seekr in this type of file

G0135 Can’t seek to negative row

G0136 Too many arguments or misplaced assignment operator

You have an assignment operator (=) where you want a comparison operator (= =), or
you have too many arguments.

26-12

E
rror

M
essages

Error Messages

G0137 Negative argument - erf or erfc

G0138 User keyword must have one argument

G0139 Negative parameter - Incomplete Beta

G0140 Invalid second parameter - Incomplete Beta

G0141 Invalid third parameter - Incomplete Beta

G0142 Nonpositive parameter - gamma

G0143 NaN or missing value - cdfchic

G0144 Negative parameter - cdfchic

G0145 Second parameter < 1.0 - cdfchic

G0146 Parameter too large - Incomplete Beta

G0147 Bad argument to trig function

G0148 Angle too large to trig function

G0149 Matrices not conformable

For a description of the function or operator being used and conformability rules, see
M O, Section 9.2, or the GAUSS L R.

G0150 Matrix not square

G0151 Sort failure

26-13

GAUSS User Guide

G0152 Variable not initialized

You have referenced a variable that has not been initialized to any value.

G0153 Unsuccessful close on auxiliary output

The disk may be full.

G0154 Illegal redefinition of string

G0155 Nested procedure definition

A proc statement was encountered inside a procedure definition.

G0156 Illegal redefinition of procedure

You are attempting to turn a procedure into a matrix or string. If this is a name conflict,
delete the procedure.

G0157 Illegal redefinition of matrix

G0158 endp without proc

You are attempting to end a procedure that you never started.

G0159 Wrong number of parameters

You called a procedure with the wrong number of arguments.

G0160 Expected string variable

G0161 User keywords return nothing

G0162 Can’t save proc/keyword/fn with global references

Remove the global references or leave this in source code form for the autoloader to
handle. (See library in the GAUSS L R.)

26-14

E
rror

M
essages

Error Messages

G0163 Wrong size format matrix

G0164 Bad mask matrix

G0165 Type mismatch or missing arguments

G0166 Character element too long

The maximum length for character elements is 8 characters.

G0167 Argument must be column vector

G0168 Wrong number of returns

The procedure was defined to return a different number of items.

G0169 Invalid pointer

You are attempting to call a local procedure using an invalid procedure pointer.

G0170 Invalid use of ampersand

G0171 Called symbol is wrong type

You are attempting to call a local procedure using a pointer to something else.

G0172 Can’t resize temporary file

G0173 varindx failed during open

The global symbol table is full.

G0174 ‘‘.’’ and ‘‘ ’’ operators must be inside [] brackets

These operators are for indexing matrices.

26-15

GAUSS User Guide

G0175 String too long to compare

G0176 Argument out of range

G0177 Invalid format string

G0178 Invalid mode for getf

G0179 Insufficient heap space

G0180 Trim too much

You are attempting to trim more rows than the matrix has.

G0181 Illegal assignment - type mismatch

G0182 2nd and 3rd arguments different order

G0274 Invalid parameter for conv

G0275 Parameter is NaN (Not A Number)

The argument is a NaN (see S D T, Section 8.6.9).

G0276 Illegal use of reserved word

G0277 Null string illegal here

G0278 proc without endp

You must terminate a procedure definition with an endp statement.

G0286 Multiple assign out of memory

G0287 Seed not updated

26-16

E
rror

M
essages

Error Messages

The seed argument to rndns and rndus must be a simple local or global variable
reference. It cannot be an expression or constant. These functions are obsolete, please
use rndlcn and rndlcu

G0288 Found break not in do loop

G0289 Found continue not in do loop

G0290 Library not found

The specified library cannot be found on the lib_path path. Make sure installation was
correct.

G0291 Compiler pass out of memory

Notify Aptech Systems.

G0292 File listed in library not found

A file listed in a library could not be opened.

G0293 Procedure has no definition

The procedure was not initialized. Define it.

G0294 Error opening temporary file

One of the temporary files could not be opened. The directory may be full.

G0295 Error writing temporary file

One of the temporary files could not be written to. The disk may be full.

G0296 Can’t raise negative number to nonintegral power

G0300 File handle must be a scalar

G0301 Syntax error in library

26-17

GAUSS User Guide

G0302 File has been truncated or corrupted

getname File header cannot be read.

load Cannot read input file, or file header cannot be read.

open File size does not match header specifications, or file header cannot
be read.

G0317 Can’t open temp file

G0336 Disk full

G0339 Can’t debug compiled program

G0341 File too big

G0347 Can’t allocate that many globals

G0351 Warning: Not reinitializing : declare ?=

The symbol is already initialized. It will be left as is.

G0352 Warning: Reinitializing : declare !=

The symbol is already initialized. It will be reset.

G0355 Wrong size line matrix

G0360 Write error

G0364 Paging error

G0365 Unsupported executable file type

26-18

E
rror

M
essages

Error Messages

G0368 Unable to allocate translation space

G0369 Unable to allocate buffer

G0370 Syntax Error in code statement

G0371 Syntax Error in recode statement

G0372 Token verify error

Notify Aptech Systems.

G0373 Procedure definition not allowed

A procedure name appears on the left side of an assignment operator.

G0374 Invalid make statement

G0375 make Variable is a Number

G0376 make Variable is Procedure

G0377 Cannot make Existing Variable

G0378 Cannot make External Variable

G0379 Cannot make String Constant

G0380 Invalid vector statement

G0381 vector Variable is a Number

G0382 vector Variable is Procedure

26-19

GAUSS User Guide

G0383 Cannot vector Existing Variable

G0384 Cannot vector External Variable

G0385 Cannot vector String Constant

G0386 Invalid extern statement

G0387 Cannot extern number

G0388 Procedures always external

A procedure name has been declared in an extern statement. This is a warning only.

G0389 extern variable already local

A variable declared in an extern statement has already been assigned local status.

G0390 String constant cannot be external

G0391 Invalid code statement

G0392 code Variable is a Number

G0393 code Variable is Procedure

G0394 Cannot code Existing Variable

G0395 Cannot code External Variable

G0396 Cannot code String Constant

G0397 Invalid recode statement

26-20

E
rror

M
essages

Error Messages

G0398 recode Variable is a Number

G0399 recode Variable is Procedure

G0400 Cannot recode External Variable

G0401 Cannot recode String Constant

G0402 Invalid keep statement

G0403 Invalid drop statement

G0404 Cannot define Number

G0405 Cannot define String

G0406 Invalid select statement

G0407 Invalid delete statement

G0408 Invalid outtyp statement

G0409 outtyp already defaulted to 8

Character data has been found in the output data set before an outtyp 2 or outtyp 4
statement. This is a warning only.

G0410 outtyp must equal 2, 4, or 8

G0411 outtyp override...precision set to 8

Character data has been found in the output data set after an outtyp 2 or outtyp 4
statement. This is a warning only.

26-21

GAUSS User Guide

G0412 default not allowed in recode statement

default allowed only in code statement.

G0413 Missing file name in dataloop statement

G0414 Invalid listwise statement

G0415 Invalid lag statement

G0416 lag variable is a number

G0417 lag variable is a procedure

G0418 Cannot lag External Variable

G0419 Cannot lag String Constant

G0421 Command not supported in Run-Time Module

G0428 Cannot use debug command inside program

G0429 Invalid number of subdiagonals

G0431 Error closing dynamic library

G0432 Error opening dynamic library

G0433 Cannot find DLL function

G0434 Error opening default dynamic library

G0435 Invalid mode

26-22

E
rror

M
essages

Error Messages

G0436 Matrix is empty

G0437 loadexe not supported; use dlibrary instead

G0438 callexe not supported; use dllcall instead

G0439 File has wrong bit order

G0440 File has wrong byte order

G0441 Type vector malloc failed

G0442 No type vector in gfblock

G0445 Illegal left-hand side reference in procedure

G0446 Argument is the wrong size

G0447 vfor called with illegal loop level

G0454 Failure opening printer for output

G0456 Failure buffering output for printer

G0457 Cannot take log of a negative number

G0458 Attempt to index proc/fn/keyword as a matrix

G0459 Missing right brace

G0460 Unexpected end of statement

26-23

GAUSS User Guide

G0461 Too many data items

G0462 Negative trim value

G0463 Failure generating graph

G0465 Redefinition of structure, number of elements

G0466 Redefinition of structure, type mismatch

G0467 Redefinition of structure, unrecognized member

G0468 Structure definition inside procedure definition

G0469 Cannot create translator temp file

G0470 Symbol not found

G0472 Invalid name

G0473 String not terminated with null byte

G0477 FOR loops nested too deep

G0486 Character argument too long

G0487 License expired

G0490 License manager initialization error

G0491 License manager error

26-24

E
rror

M
essages

Error Messages

G0492 Licensing failure

G0497 Missing right parenthesis

G0500 Cannot create temporary filename

G0503 Cannot assign matrix to scalar member

G0504 Invalid structure member

G0505 Invalid structure redefinition

G0506 Structure assignment mismatch

G0507 Undefined structure

G0508 Structure argument mismatch

G0509 Too many structure members

G0510 Duplicate name for structure member

G0514 Not supported for structures

G0515 Too many values in locator

G0516 Too many dimensions in result

G0517 Too many dimensions in argument

G0518 Not implemented for complex

26-25

GAUSS User Guide

G0519 Illegal dereference of structure array

G0520 Arguments not conformable

G0521 Argument must be real

G0522 Illegal indexing of dereferenced structure

G0523 Numeric argument must be integer

G0524 Found comma, expecting index

G0525 Argument contains NaNs

G0526 Argument must be compact format

G0529 Array orders must be >= 1

G0531 Two trailing dimensions of argument must be the same size

G0532 Both dimensions of argument must be the same size

G0533 1-dimensional argument must contain only 1 element

G0534 Cannot create file

G0538 Zero illegal in for loop increment

G0541 Illegal assignment to FOR loop counter

G0542 Object too large for 32-bit version

26-26

E
rror

M
essages

Error Messages

G0543 Array has too many dimensions for matrix assign

G0547 Array not conformable for indexing

G0548 Array not conformable for boolean operation

G0549 Global structure pointer cannot point to local structure

G0550 Invalid use of *

G0551 Feature not authorized

G0553 Path too long

G0554 Unable to create sparse matrix

G0555 Cannot index uninitialized structure

G0556 #IF nesting limit exceeded

G0557 #ELSE without #IF

G0558 #ENDIF without #IF

G0559 Symbol not #DEFINE’d

G0560 Too many #DEFINE’s

G0561 Duplicate #DEFINE

G0562 Open /* */ comment

26-27

GAUSS User Guide

G0563 Open @ @ comment

G0564 Illegal redefinition of sparse matrix

G0565 Initializer too large, increase maxdeclet in config (.cfg) file

G0566 Can’t create profiler data file

G0567 Sparse matrix uninitialized

G0568 Operation not defined for triangular, symmetric, or Hermitian sparse

matrix

G0569 Argument must be complex

G0570 Diagonal must be real

G0571 Diagonal must not contain zeros

G0572 Argument must be triangular

G0573 Argument must be symmetric

G0574 Sparse type mismatch

G0575 Unable to load variable

G0576 Threading error

G0577 Expected THREADSTAT, THREADBEGIN, or THREADJOIN

26-28

E
rror

M
essages

Error Messages

G0578 A THREADJOIN failed

G0579 Cannot call RUN from inside thread

G0580 Unable to converge in allowed number of iterations

G0581 Incorrect Argument: Number of eigenvalues must be positive

G0582 Incorrect Argument: Number of column vectors must be >= number of

eigenvalues +2 and < rows of input matrix

G0583 Could not apply shift during an Arnoldi iteration cycle. Try

increasing size of ncv

G0584 Invalid Input: ’which’ must be ’LM’ ’SM’ ’LR’ ’LI’ ’SR’ or ’SI’ and

type string

G0585 Error Return from LAPACK eigenvalue calculation

G0586 dneupd error 1: contact Aptech Systems

G0587 Input matrix must be sparse

G0588 Incorrect Input: Number of eigenvalues must be scalar

G0589 Incorrect Input: Tolerance must be scalar

G0590 No eigenvalues found to specified tolerance in allowed iterations

G0591 Incorrect Input: Max iterations must be scalar

G0592 Incorrect Input: Number of column vectors must be scalar

26-29

GAUSS User Guide

G0593 Incorrect Input: Third input, probability, must be > 0 and < 1

G0594 Incorrect Input: Number of successes (input 1) must be less than

number of trials (input 2)

G0595 Incorrect Input: State vector cannot have more than 1 column

G0596 Incorrect Input: Inputs 1 and 2 (cols and rows) must be scalar or

1x1 matrix

G0597 Incorrect Input: Input must be dense matrix

G0598 Incorrect Input: First input may have 1 column only

G0599 Incorrect Input: Input 2 may not have more columns that input 1 has

rows

G0600 Incorrect Input: Input 1 must be square

G0601 Incorrect Input: Input 2 must be square

G0602 Incorrect Input: 1 <= il < iu and iu <= rows of x

G0603 Failure to converge

26-30

P
erform

ance

Maximizing Performance 27
These hints will help you maximize the performance of your new GAUSS System.

27.1 Library System

Some temporary files are created during the autoloading process. If you have a tmp_path
configuration variable or a tmp environment string that defines a path on a RAM disk, the
temporary files will be placed on the RAM disk.

For example:

set tmp=f:\tmp

tmp_path takes precedence over the tmp environment variable.

A disk cache will also help, as well as having your frequently used files in the first path in the
src_path.

27-1

GAUSS User Guide

You can optimize your library .lcg files by putting the correct drive and path on each file name
listed in the library. The lib command will do this for you.

Use the compile command to precompile your large frequently used programs. This will
completely eliminate compile time when the programs are rerun.

27.2 Loops

The use of the built-in matrix operators and functions rather than do loops will ensure that you are
utilizing the potential of GAUSS.

Here is an example:

Given the vector x with 8000 normal random numbers,

x = rndn(8000,1);

you could get a count of the elements with an absolute value greater than 1 with a do loop, like
this:

c = 0;

i = 1;

do while i <= rows(x);

if abs(x[i]) > 1;

c = c+1;

endif;

i = i+1;

endo;

print c;

Or, you could use:

27-2

P
erform

ance

Maximizing Performance

c = sumc(abs(x) .> 1);

print c;

The do loop takes over 40 times longer.

27.3 Memory Usage

Computers today can have large amounts of RAM. This doesn’t mean that large data sets should
be read entirely into memory. Many GAUSS procedures and applications are written to allow for
data sets to be read in sections rather than all at once. Even if you have enough RAM to store the
data set completely, you should consider taking advantage of this feature. The speed-ups using this
feature can be significant. For example, ols is called using a data set stored in a matrix versus
stored on the disk in a GAUSS data set. The computer is a 2.8 Megahertz computer with Windows
XP.

y = rndn(250000,1);

x = rndn(250000,100);

xlbl = 0$+"X"+ftocv(seqa(1,1,100),1,0);

lbl = "Y" | xlbl;

call saved(y˜x,"test",lbl);

__output = 0;

t0 = date;

call ols("",y,x);

t1 = date;

t2 = date;

call ols("test","Y",xlbl);

t3 = date;

print ethsec(t2,t3)/100 " seconds;

print;

print ethsec(t0,t1)/100 " seconds";

25.750000 seconds

9.6720000 seconds

27-3

GAUSS User Guide

This represents more than a 50% speedup by leaving the data on the disk.

maxvec,maxbytes

maxvec is a GAUSS procedure that returns the value of the global variable __maxvec that
determines the amount of data to be read in at a time from a GAUSS data set. This value can be
modified for a particular run by setting __maxvec in your command file to some other value. The
value returned by a call to maxvec can be permanently modified by editing system.dec and
changing the value of __maxvec. The value returned when running GAUSS Light is always 8192.

maxbytes is a GAUSS procedure that returns the value of a scalar global __maxbytes that sets
the amount of available RAM. This value can be modified for a particular run by setting
__maxbytes in your command file to some other value. The value returned by a call to maxbytes
can be permanently modified by editing system.dec and changing the value of __maxbytes.

If you wish to force GAUSS procedures and applications to read a GAUSS data set in its entirety,
set __maxvec and __maxbytes to very large values.

27.3.1 Hard Disk Maintenance

The hard disk used for the swap file should be optimized occasionally with a disk optimizer. Use a
disk maintenance program to ensure that the disk media is in good shape.

27.3.2 CPU Cache

There is a line for cache size in the gauss.cfg file. Set it to the size of the CPU data cache for
your computer.

This affects the choice of algorithms used for matrix multiply functions.

This will not change the results you get, but it can radically affect performance for large matrices.

27-4

G
raphics

C
olors

GAUSS Graphics Colors A
The following pages provide a chart and list of colors available for use in GAUSS graphics with
both the name and RGB value listed.

A-1

GAUSS User Guide

Color Name RGB Value
aliceblue 240, 248, 255
antiquewhite 250, 235, 215
aqua 0, 255, 255
aquamarine 127, 255, 212
azure 240, 255, 255
beige 245, 245, 220
bisque 255, 228, 196
black 0, 0, 0
blanchedalmond 255, 235, 205
blue 0, 0, 255
blueviolet 138, 43, 226
brown 165, 42, 42
burlywood 222, 184, 135
cadetblue 95, 158, 160
chartreuse 127, 255, 0
chocolate 210, 105, 30
coral 255, 127, 80
cornflowerblue 100, 149, 237
cornsilk 255, 248, 220
crimson 220, 20, 60
cyan 0, 255, 255
darkblue 0, 0, 139
darkcyan 0, 139, 139
darkgoldenrod 184, 134, 11
darkgray 169, 169, 169
darkgreen 0, 100, 0
darkgrey 169, 169, 169
darkkhaki 189, 183, 107
darkmagenta 139, 0, 139
darkolivegreen 85, 107, 47
darkorange 255, 140, 0
darkorchid 153, 50, 204
darkred 139, 0, 0
darksalmon 233, 150, 122
darkseagreen 143, 188, 143
darkslateblue 72, 61, 139
darkslategray 47, 79, 79
darkslategrey 47, 79, 79
darkturquoise 0, 206, 209
darkviolet 148, 0, 211
deeppink 255, 20, 147
deepskyblue 0, 191, 255
dimgray 105, 105, 105

Color Name RGB Value
dimgrey 105, 105, 105
dodgerblue 30, 144, 255
firebrick 178, 34, 34
floralwhite 255, 250, 240
forestgreen 34, 139, 34
fuchsia 255, 0, 255
gainsboro 220, 220, 220
ghostwhite 248, 248, 255
gold 255, 215, 0
goldenrod 218, 165, 32
gray 128, 128, 128
grey 128, 128, 128
green 0, 128, 0
greenyellow 173, 255, 47
honeydew 240, 255, 240
hotpink 255, 105, 180
indianred 205, 92, 92
indigo 75, 0, 130
ivory 255, 255, 240
khaki 240, 230, 140
lavender 230, 230, 250
lavenderblush 255, 240, 245
lawngreen 124, 252, 0
lemonchiffon 255, 250, 205
lightblue 173, 216, 230
lightcoral 240, 128, 128
lightcyan 224, 255, 255
lightgoldenrodyellow 250, 250, 210
lightgray 211, 211, 211
lightgreen 144, 238, 144
lightgrey 211, 211, 211
lightpink 255, 182, 193
lightsalmon 255, 160, 122
lightseagreen 32, 178, 170
lightskyblue 135, 206, 250
lightslategray 119, 136, 153
lightslategrey 119, 136, 153
lightsteelblue 176, 196, 222
lightyellow 255, 255, 224
lime 0, 255, 0
limegreen 50, 205, 50
linen 250, 240, 230
magenta 255, 0, 255

A-2

G
raphics

C
olors

GAUSS Graphics Colors

Color Name RGB Value
maroon 128, 0, 0
mediumaquamarine 102, 205, 170
mediumblue 0, 0, 205
mediumorchid 186, 85, 211
mediumpurple 147, 112, 219
mediumseagreen 60, 179, 113
mediumslateblue 123, 104, 238
mediumspringgreen 0, 250, 154
mediumturquoise 72, 209, 204
mediumvioletred 199, 21, 133
midnightblue 25, 25, 112
mintcream 245, 255, 250
mistyrose 255, 228, 225
moccasin 255, 228, 181
navajowhite 255, 222, 173
navy 0, 0, 128
oldlace 253, 245, 230
olive 128, 128, 0
olivedrab 107, 142, 35
orange 255, 165, 0
orangered 255, 69, 0
orchid 218, 112, 214
palegoldenrod 238, 232, 170
palegreen 152, 251, 152
paleturquoise 175, 238, 238
palevioletred 219, 112, 147
papayawhip 255, 239, 213
peachpuff 255, 218, 185
peru 205, 133, 63
pink 255, 192, 203
plum 221, 160, 221
powderblue 176, 224, 230
purple 128, 0, 128
red 255, 0, 0
rosybrown 188, 143, 143
royalblue 65, 105, 225
saddlebrown 139, 69, 19
salmon 250, 128, 114
sandybrown 244, 164, 96
seagreen 46, 139, 87
seashell 255, 245, 238
sienna 160, 82, 45
silver 192, 192, 192

Color Name RGB Value
skyblue 135, 206, 235
slateblue 106, 90, 205
slategray 112, 128, 144
slategrey 112, 128, 144
snow 255, 250, 250
springgreen 0, 255, 127
steelblue 70, 130, 180
tan 210, 180, 140
teal 0, 128, 128
thistle 216, 191, 216
tomato 255, 99, 71
turquoise 64, 224, 208
violet 238, 130, 238
wheat 245, 222, 179
white 255, 255, 255
whitesmoke 245, 245, 245
yellow 255, 255, 0
yellowgreen 154, 205, 50

A-3

R
eserved

W
ords

Reserved Words Appendix B
The following words are used for GAUSS functions. You cannot use these names for variables or
procedures in your programs:

A

abs

acf

aconcat

acos

aeye

amax

amean

AmericanBinomCall

AmericanBinomCall_Greeks

AmericanBinomCall_ImpVol

AmericanBinomPut

AmericanBinomPut_Greeks

AmericanBinomPut_ImpVol

AmericanBSCall

AmericanBSCall_Greeks

AmericanBSCall_ImpVol

AmericanBSPut

AmericanBSPut_Greeks

AmericanBSPut_ImpVol

amin

amult

and

annualTradingDays

arccos

arcsin

arctan

B-1

GAUSS User Guide

arctan2

areshape

arrayalloc

arrayindex

arrayinit

arraytomat

asclabel

asin

asum

atan

atan2

atranspose

axmargin

B

balance

band

bandchol

bandcholsol

bandltsol

bandrv

bandsolpd

bar

base10

begwind

besselj

bessely

box

boxcox

break

C

calcbox

call

callexe

cdfbeta

cdfbvn

cdfbvn2

cdfbvn2e

cdfchic

cdfchii

cdfchinc

cdffc

cdffnc

cdfgam

cdfmvn

cdfn

cdfn2

cdfnc

cdfni

cdftc

cdftci

cdftnc

cdftvn

cdir

ceil

cfft

cffti

changedir

chdir

B-2

R
eserved

W
ords

Reserved Words Appendix

checkinterrupt

chol

choldn

cholsol

cholup

chrs

cint

clear

clearg

close

closeall

cls

cmsplit

cmsplit2

code

color

cols

colsf

combinate

combinated

comlog

commandeerm

commandeersa

compile

complex

con

cond

conformed

conj

cons

continue

contour

conv

convertsatostr

convertstrtosa

coreleft

corrm

corrms

corrvc

corrx

corrxs

cos

cosh

counts

countwts

create

crossprd

crout

croutp

csrcol

csrlin

csrtype

cumprodc

cumsumc

curve

cvtos

cvtosa

D

datacreate

datacreatecomplex

datalist

dataload

dataopen

datasave

date

datestr

B-3

GAUSS User Guide

datestring

datestrymd

dayinyr

dayOfWeek

debug

declare

delete

deletefile

delif

denseSubmat

design

det

detl

dfft

dffti

dfree

diag

diagrv

digamma

disable

dlibrary

dllcall

do

dos

doswincloseall

doswinopen

dotfeq

dotfeqmt

dotfge

dotfgemt

dotfgt

dotfgtmt

dotfle

dotflemt

dotflt

dotfltmt

dotfne

dotfnemt

draw

dsCreate

dstat

dstatmt

dstatmtControlCreate

dtdate

dtday

dttime

dttodtv

dttostr

dttoutc

dtvnormal

dtvtodt

dtvtoutc

dummy

dummybr

dummydn

E

ed

edit

editm

eig

eigcg

eigcg2

eigch

eigch2

eigh

eighv

B-4

R
eserved

W
ords

Reserved Words Appendix

eigrg

eigrg2

eigrs

eigrs2

eigv

elapsedTradingDays

else

elseif

enable

end

endfor

endif

endo

endp

endwind

envget

eof

eq

eqSolve

eqSolvemt

eqSolvemtControlCreate

eqSolvemtOutCreate

eqSolveSet

eqv

erf

erfc

error

errorlog

etdays

ethsec

etstr

EuropeanBinomCall

EuropeanBinomCall_Greeks

EuropeanBinomCall_ImpVol

EuropeanBinomPut

EuropeanBinomPut_Greeks

EuropeanBinomPut_ImpVol

EuropeanBSCall

EuropeanBSCall_Greeks

EuropeanBSCall_ImpVol

EuropeanBSPut

EuropeanBSPut_Greeks

EuropeanBSPut_ImpVol

exctsmpl

exec

execbg

exp

expr

external

eye

F

fcheckerr

fclearerr

feq

feqmt

fflush

fft

ffti

fftm

fftmi

fftn

fge

fgemt

fgets

fgetsa

fgetsat

fgetst

B-5

GAUSS User Guide

fgt

fgtmt

fileinfo

files

filesa

fix

fle

flemt

floor

flt

fltmt

fmod

fn

fne

fnemt

font

fontload

fonts

fontunload

fontunloadall

fopen

for

format

formatcv

formatnv

fputs

fputst

fseek

fstrerror

ftell

ftocv

ftos

ftostrc

G

gamma

gammaii

gausset

gdaappend

gdacreate

gdadstat

gdadstatmat

gdagetindex

gdagetname

gdagetnames

gdagetorders

gdagettype

gdagettypes

gdagetvarinfo

gdaiscplx

gdapack

gdaread

gdareadbyindex

gdareadsome

gdareportvarinfo

gdaupdate

gdaupdateandpack

gdawrite

gdawritesome

gdtfastcat

ge

getarray

getdims

getf

getmatrix

getmatrix4d

getname

B-6

R
eserved

W
ords

Reserved Words Appendix

getnamef

getNextTradingDay

getNextWeekDay

getnr

getnrmt

getorders

getpath

getPreviousTradingDay

getPreviousWeekDay

getscalar3d

getscalar4d

getwind

gosub

goto

gradMT

gradMTm

gradp

graph

graphgpg

graphinit

graphprt

graphset

graphsev3

gt

H

hardcopy

hasimag

header

headermt

hess

hessMT

hessMTg

hessMTgw

hessMTm

hessMTmw

hessMTw

hessp

hist

histf

histp

hsec

I

if

imag

indcv

indexcat

indices

indices2

indicesf

indicesfn

indnv

indsav

int

intgrat2

intgrat3

inthp

intHP1

intHP2

B-7

GAUSS User Guide

intHP3

intHP4

inthpControlCreate

intquad1

intquad2

intquad3

intrleav

intrleavsa

intrsect

intrsectsa

intsimp

inv

invpd

invswp

iscplx

iscplxf

isinfnanmiss

ismiss

isSparse

K

key

keyav

keymatchmc

keyw

keyword

L

lag

lag1

lagn

lapeighb

lapeighi

lapeighvb

lapeighvi

lapgeig

lapgeigh

lapgeighv

lapgeigv

lapgschur

lapgsvdcst

lapgsvds

lapgsvdst

lapsvdcusv

lapsvds

lapsvdusv

le

let

lib

library

license_id

line

linsolve

ln

lncdfbvn

lncdfbvn2

lncdfmvn

lncdfn

lncdfn2

lncdfnc

B-8

R
eserved

W
ords

Reserved Words Appendix

lnfact

lngamma

lnpdfmvn

lnpdfmvt

lnpdfn

lnpdft

load

loadarray

loadd

loadexe

loadf

loadk

loadm

loadp

loads

loadstruct

loadwind

local

locate

loess

loessmt

loessmtControlCreate

log

loglog

logx

logy

loopnextindex

lower

lowmat

lowmat1

lpos

lprint

lpwidth

lshow

lt

ltrisol

lu

lusol

M

machEpsilon

makevars

makewind

margin

matalloc

matinit

matrix

mattoarray

maxbytes

maxc

maxindc

maxvec

mbesselei

mbesselei0

mbesselei1

mbesseli

mbesseli0

mbesseli1

meanc

median

mergeby

mergebysa

mergevar

minc

minindc

miss

missex

missrv

B-9

GAUSS User Guide

moment

momentd

movingave

movingaveExpwgt

movingaveWgt

msym

N

nametype

ndpchk

ndpclex

ndpcntrl

ne

new

nextindex

nextn

nextnevn

nextwind

not

null

null1

numCombinations

O

oldfft

oldffti

ols

olsmt

olsmtControlCreate

olsqr

olsqr2

olsqrmt

ones

open

openpqg

optn

optnevn

or

orth

output

outwidth

P

pacf

packr

parse

pause

pdfn

pi

pinv

pinvmt

plot

plotControl

B-10

R
eserved

W
ords

Reserved Words Appendix

plotCtlAxis

plotCtlText

plotsym

polar

polychar

polyeval

polyint

polymake

polymat

polymroot

polymult

polyroot

pop

pqgwin

prcsn

previousindex

princomp

print

printdos

printfm

printfmt

proc

prodc

push

putarray

putf

pvCreate

pvgetindex

pvgetparnames

pvgetparvector

pvLength

pvList

pvnumoffsets

pvoffsets

pvPack

pvPacki

pvPackm

pvPackmi

pvPacks

pvPacksi

pvPacksm

pvPacksmi

pvputparvector

pvtest

pvunpack

Q

QNewton

QNewtonmt

QNewtonmtControlCreate

QNewtonmtOutCreate

qnewtonset

QProg

QProgmt

qprogMTInCreate

qqr

qqre

qqrep

qr

qre

qrep

qrsol

qrtsol

qtyr

qtyre

qtyrep

quantile

B-11

GAUSS User Guide

quantiled

quantilem

quantilemd

qyr

qyre

qyrep

R

rank

rankindx

readr

real

recode

recserar

recsercp

recserrc

register_off

register_on

register_reset

register_show

renamefile

replay

rerun

reshape

retp

return

rev

rfft

rffti

rfftip

rfftn

rfftnp

rfftp

rndbeta

rndcon

rndgam

rndi

rndKMbeta

rndKMgam

rndkmi

rndkmn

rndKMnb

rndKMp

rndkmu

rndKMvm

rndLCbeta

rndLCgam

rndlci

rndlcn

rndLCnb

rndLCp

rndlcu

rndLCvm

rndmod

rndmult

rndn

rndnb

rndns

rndp

rndseed

rndu

rndus

rndvm

rotater

round

rows

rowsf

rref

B-12

R
eserved

W
ords

Reserved Words Appendix

run

S

satocv

satostrC

save

saveall

saved

savestruct

savewind

scale

scale3d

scalerr

scalinfnanmiss

scalmiss

schtoc

schur

screen

scroll

searchsourcepath

seekr

selif

seqa

seqm

setarray

setcnvrt

setdif

setdifsa

setvars

setvmode

setvwrmode

setwind

shell

shiftr

show

showpqg

sin

singleindex

sinh

sleep

solpd

sortc

sortcc

sortd

sorthc

sorthcc

sortind

sortindc

sortindmc

sortmc

sortr

sortrc

sparseCols

sparseEye

sparseFD

sparseFP

sparseHConcat

sparseNZE

sparseOnes

sparseRows

sparseScale

sparseSet

sparseSolve

sparseSubmat

sparseTD

sparseTranspose

sparseTrTD

B-13

GAUSS User Guide

sparseTscalar

sparseVConcat

spline

spline1D

spline2D

sqpmt_feasible

sqpmt_meritFunct

sqpSolve

SQPsolveMT

sqpSolveMTcontrolCreate

sqpSolveMTlagrangeCreate

sqpSolveMToutCreate

sqpSolveset

sqrt

stdc

stocv

stof

stop

strcombine

strindx

string

strlen

strput

strrindx

strsect

strsplit

strsplitpad

strtodt

strtodtd

strtof

strtofcplx

strtriml

strtrimr

strtrunc

strtruncl

strtruncpad

strtruncr

struct

submat

subscat

substute

subvec

sumc

sumr

surface

svd

svd1

svd2

svdcusv

svds

svdusv

sysstate

system

T

tab

tan

tanh

tempname

ThreadBegin

ThreadEnd

ThreadJoin

ThreadStat

time

timedt

timestr

timeutc

B-14

R
eserved

W
ords

Reserved Words Appendix

title

tkf2eps

tkf2ps

tkf2ps_margin

tocart

todaydt

toeplitz

token

topolar

trace

trap

trapchk

trigamma

trim

trimr

trunc

type

typecv

typef

U

union

unionsa

uniqindmc

uniqindx

uniqindxsa

unique

uniquemc

uniquesa

until

upmat

upmat1

upper

use

utctodt

utctodtv

utrisol

V

vals

varget

vargetl

varmall

varmares

varput

varputl

vartype

vartypef

vcm

vcms

vcx

vcxs

vec

vech

vecr

vfor

vget

view

viewxyz

B-15

GAUSS User Guide

vlist

vnamecv

volume

vput

vread

vtypecv

W

wait

waitc

walkindex

while

winclear

wincleararea

winclearttylog

winclose

wincloseall

winconvertpqg

window

wingetactive

wingetattributes

wingetcolorcells

wingetcursor

winmove

winopenpqg

winopentext

winopentty

winpan

winprint

winprintpqg

winrefresh

winrefresharea

winresize

winsetactive

winsetbackground

winsetcolor

winsetcolorcells

winsetcolormap

winsetcursor

winsetforeground

winsetrefresh

winsettextwrap

winwrite

winzoompqg

writer

X

x_indcv

xlabel

xor

xpnd

xtics

xy

xyz

B-16

R
eserved

W
ords

Reserved Words Appendix

Y

ylabel ytics

Z

zeros

zlabel

ztics

B-17

S
ingularity

Singularity Tolerance Appendix C

The tolerance used to determine whether or not a matrix is singular can be changed. The default
value is 1.0e-14 for both the LU and the Cholesky decompositions. The tolerance for each
decomposition can be changed separately. The following operators are affected by a change in the
tolerance:

Crout LU Decomposition

crout(x)
croutp(x)
inv(x)
det(x)
y/x when neither x nor y is scalar and x is square.

Cholesky Decomposition

chol(x)
invpd(x)
solpd(y,x)
y/x when neither x nor y is scalar and x is not square.

C-1

GAUSS User Guide

C.1 Reading and Setting the Tolerance

The tolerance value may be read or set using the sysstate function, cases 13 and 14.

C.2 Determining Singularity

There is no perfect tolerance for determining singularity. The default is 1.0e-14. You can adjust
this as necessary.

A numerically better method of determining singularity is to use cond to determine the condition
number of the matrix. If the equation

1 / cond(x) + 1 eq 1

is true, then the matrix is usually considered singular to machine precision. (See LAPACK for a
detailed discussion on the relationship between the matrix condition and the number of significant
figures of accuracy to be expected in the result.)

C-2

P
Q

G

Publication Quality Graphics D
GAUSS Publication Quality Graphics (PQG) is a set of routines built on the graphics functions
in GraphiC by Scientific Endeavors Corporation. These routines are deprecated but included for
backward compatibility.

The main graphics routines include xy, xyz, surface, polar and log plots, as well as histograms,
bar, and box graphs. Users can enhance their graphs by adding legends, changing fonts, and
adding extra lines, arrows, symbols and messages.

The user can create a single full size graph, inset a smaller graph into a larger one, tile a window
with several equally sized graphs or place several overlapping graphs in the window. Graphic
panel size and location are all completely under the user’s control.

D.1 General Design

GAUSS PQG consists of a set of main graphing procedures and several additional procedures and
global variables for customizing the output.

All of the actual output to the window happens during the call to these main routines:

D-1

GAUSS User Guide

bar Bar graphs.

box Box plots.

contour Contour plots.

draw Draw graphs using only global variables.

hist Histogram.

histp Percentage histogram.

histf Histogram from a vector of frequencies.

loglog Log scaling on both axes.

logx Log scaling on X axis.

logy Log scaling on Y axis.

polar Polar plots.

surface 3-D surface with hidden line removal.

xy Cartesian graph.

xyz 3-D Cartesian graph.

D.2 Using Publication Quality Graphics

D.2.1 Getting Started

There are four basic parts to a graphics program. These elements should be in any program that
uses graphics routines. The four parts are the header, data setup, graphics format setup, and
graphics call.

D-2

P
Q

G

Publication Quality Graphics

Header

In order to use the graphics procedures, the pgraph library must be activated. This is done in the
library statement at the top of your program or command file. The next line in your program will
typically be a command to reset the graphics global variables to their default state. For example:

library mylib, pgraph;

graphset;

Data Setup

The data to be graphed must be in matrices. For example:

x = seqa(1,1,50);

y = sin(x);

Graphics Format Setup

Most of the graphics elements contain defaults that allow the user to generate a plot without
modification. These defaults, however, may be overridden by the user through the use of global
variables and graphics procedures. Some of the elements that may be configured by the user are
axes numbering, labeling, cropping, scaling, line and symbol sizes and types, legends, and colors.

Calling Graphics Routines

The graphics routines take as input the user data and global variables that have previously been
set. It is in these routines where the graphics file is created and displayed.

Following are three PQG examples. The first two programs are different versions of the same
graph. The variables that begin with _p are the global control variables used by the graphics

D-3

GAUSS User Guide

routines. (For a detailed description of these variables, see G C V, Section
D.6.

Example 1 The routine being called here is a simple XY plot. The entire window will be used.
Four sets of data will be plotted with the line and symbol attributes automatically selected. This
graph will include a legend, title, and a time/date stamp (time stamp is on by default):

library pgraph; /* activate PGRAPH library */

graphset; /* reset global variables */

x = seqa(.1,.1,100); /* generate data */

y = sin(x);

y = y ˜ y*.8 ˜ y*.6 ˜ y*.4; /* 4 curves plotted against x */

_plegctl = 1; /* legend on */

title("Example xy Graph"); /* Main title */

xy(x,y); /* Call to main routine */

Example 2 Here is the same graph with more of the graphics format controlled by the user. The
first two data sets will be plotted using symbols at data points only (observed data); the data points
in the second two sets will be connected with lines (predicted results):

library pgraph; /* activate PGRAPH library */

graphset; /* reset global variables */

x = seqa(.1,.1,100); /* generate data */

y = sin(x);

y = y ˜ y*.8 ˜ y*.6 ˜ y*.4; /* 4 curves plotted against x */

_pdate = ""; /* date is not printed */

_plctrl = { 1, 1, 0, 0 }; /* 2 curves w/symbols, 2 without */

_pltype = { 1, 2, 6, 6 }; /* dashed, dotted, solid lines */

_pstype = { 1, 2, 0, 0 }; /* symbol types circles, squares */

_plegctl= { 2, 3, 1.7, 4.5 }; /* legend size and locations */

_plegstr= "Sin wave 1.\0"\ /* 4 lines legend text */

"Sin wave .8\0"\

"Sin wave .6\0"\

"Sin wave .4";

ylabel("Amplitude"); /* Y axis label */

D-4

P
Q

G

Publication Quality Graphics

xlabel("X Axis"); /* X axis label */

title("Example xy Graph"); /* main title */

xy(x,y); /* call to main routine */

Example 3 In this example, two graphics panels are drawn. The first is a full-sized surface
representation, and the second is a half-sized inset containing a contour of the same data located in
the lower left corner of the window:

library pgraph; /* activate pgraph library */

/* Generate data for surface and contour plots */

x = seqa(-10,0.1,71)’; /* note x is a row vector */

y = seqa(-10,0.1,71); /* note y is a column vector */

z = cos(5*sin(x) - y); /* z is a 71x71 matrix */

begwind; /* initialize graphics windows */

makewind(9,6.855,0,0,0); /* first window full size */

makewind(9/2,6.855/2,1,1,0); /* second window inset to first */

setwind(1); /* activate first window */

graphset; /* reset global variables */

_pzclr = { 1, 2, 3, 4 }; /* set Z level colors */

title("cos(5*sin(x) - y)"); /* set main title */

xlabel("X Axis"); /* set X axis label */

ylabel("Y Axis"); /* set Y axis label */

scale3d(miss(0,0),miss(0,0),-5|5); /* scale Z axis */

surface(x,y,z); /* call surface routine */

nextwind; /* activate second window. */

graphset; /* reset global variables */

_pzclr = { 1, 2, 3, 4 }; /* set Z level colors */

_pbox = 15; /* white border */

contour(x,y,z); /* call contour routine */

endwind; /* Display windows */

D-5

GAUSS User Guide

While the structure has changed somewhat, the four basic elements of the graphics program are all
here. The additional routines begwind, endwind, makewind, nextwind, and setwind are all
used to control the graphic panels.

As Example 3 illustrates, the code between graphic panel functions (that is, setwind or
nextwind) may include assignments to global variables, a call to graphset, or may set up new
data to be passed to the main graphics routines.

You are encouraged to run the example programs supplied with GAUSS. Analyzing these
programs is perhaps the best way to learn how to use the PQG system. The example programs are
located on the examples subdirectory.

D.2.2 Graphics Coordinate System

PQG uses a 4190×3120 pixel resolution grid on a 9.0×6.855-inch printable area. There are three
units of measure supported with most of the graphics global elements:

Inch Coordinates

Inch coordinates are based on the dimensions of the full-size 9.0×6.855-inch output page. The
origin is (0,0) at the lower left corner of the page. If the picture is rotated, the origin is at the upper
left. (For more information, see I U  G P, Section D.3.5.)

Plot Coordinates

Plot coordinates refer to the coordinate system of the graph in the units of the user’s X, Y and Z
axes.

Pixel Coordinates

Pixel coordinates refer to the 4096×3120 pixel coordinates of the full-size output page. The origin
is (0,0) at the lower left corner of the page. If the picture is rotated, the origin is at the upper left.

D-6

P
Q

G

Publication Quality Graphics

D.3 Graphic Panels

Multiple graphic panels for graphics are supported. These graphic panels allow the user to display
multiple graphs on one window or page.

A graphic panel is any rectangular subsection of the window or page. Graphc panels may be any
size and position on the window and may be tiled or overlapping, transparent or nontransparent.

D.3.1 Tiled Graphic Panels

Tiled graphic panels do not overlap. The window can easily be divided into any number of tiled
graphic panels with the window command. window takes three parameters: number of rows,
number of columns, and graphic panel attribute (1=transparent, 0=nontransparent).

This example will divide the window into six equally sized graphic panels. There will be two rows
of three graphic panels–three graphic panels in the upper half of the window and three in the lower
half. The attribute value of 0 is arbitrary since there are no other graphic panels beneath them.

window(nrows,ncols,attr);

window(2,3,0);

D.3.2 Overlapping Graphic Panels

Overlapping graphic panels are laid on top of one another as they are created, much as if you were
using the cut and paste method to place several graphs together on one page. An overlapping
graphic panel is created with the makewind command.

In this example, makewind will create an overlapping graphic panel that is 4 inches wide by 2.5
inches tall, positioned 1 inch from the left edge of the page and 1.5 inches from the bottom of the
page. It will be nontransparent:

makewind(hsize,vsize,hpos,vpos,attr);

D-7

GAUSS User Guide

window(2,3,0);

makewind(4,2.5,1,1.5,0);

D.3.3 Nontransparent Graphic Panels

A nontransparent graphic panel is one that is blanked before graphics information is written to it.
Therefore, information in any previously drawn graphic panels that lie under it will not be visible.

D.3.4 Transparent Graphic Panels

A transparent graphic panel is one that is not blanked, allowing the graphic panel beneath it to
“show through”. Lines, symbols, arrows, error bars, and other graphics objects may extend from
one graphic panel to the next by using transparent graphic panels. First, create the desired graphic
panel configuration. Then create a full-window, transparent graphic panel using the makewind or
window command. Set the appropriate global variables to position the desired object on the
transparent graphic panel. Use the draw procedure to draw it. This graphic panel will act as a
transparent “overlay” on top of the other graphic panels. Transparent graphic panels can be used to
add text or to superimpose one graphic panel on top of another.

D.3.5 Using Graphic Panel Functions

The following is a summary of the graphic panel functions:

begwind Graphic panel initialization procedure.

endwind End graphic panel manipulations, display graphs.

window Partition window into tiled graphic panels.

makewind Create graphic panel with specified size and position.

setwind Set to specified graphic panel number.

D-8

P
Q

G

Publication Quality Graphics

nextwind Set to next available graphic panel number.

getwind Get current graphic panel number.

savewind Save graphic panel configuration to a file.

loadwind Load graphic panel configuration from a file.

This example creates four tiled graphic panels and one graphic panel that overlaps the other four:

library pgraph;

graphset;

begwind;

window(2,2,0); /* Create four tiled graphic panels

(2 rows, 2 columns) */

xsize = 9/2; /* Create graphic panel that overlaps the

tiled graphic panels */

ysize = 6.855/2;

makewind(xsize,ysize,xsize/2,ysize/2,0);

x = seqa(1,1,1000); /* Create X data */

y = (sin(x) + 1) * 10.; /* Create Y data */

setwind(1); /* Graph #1, upper left corner */

xy(x,y);

nextwind; /* Graph #2, upper right corner */

logx(x,y);

nextwind; /* Graph #3, lower left corner */

logy(x,y);

nextwind; /* Graph #4, lower right corner */

loglog(x,y);

nextwind; /* Graph #5, center, overlayed */

bar(x,y);

endwind; /* End graphic panel processing,

display graph */

D-9

GAUSS User Guide

D.3.6 Inch Units in Graphic Panels

Some global variables allow coordinates to be input in inches. If a coordinate value is in inches
and is being used in a graphic panel, that value will be scaled to “graphic panel inches” and
positioned relative to the lower left corner of the graphic panel. A “graphic panel inch” is a true
inch in size only if the graphic panel is scaled to the full window, otherwise X coordinates will be
scaled relative to the horizontal graphic panel size and Y coordinates will be scaled relative to the
vertical graphic panel size.

D.3.7 Saving Graphic Panel Configurations

The functions savewind and loadwind allow the user to save graphic panel configurations. Once
graphic panels are created (using makewind and window), savewind may be called. This will
save to disk the global variables containing information about the current graphic panel
configuration. To load this configuration again, call loadwind. (See loadwind in the GAUSS
L R.

D.4 Graphics Text Elements

Graphics text elements, such as titles, messages, axes labels, axes numbering, and legends, can be
modified and enhanced by changing fonts and by adding superscripting, subscripting, and special
mathematical symbols.

To make these modifications and enhancements, the user can embed “escape codes” in the text
strings that are passed to title, xlabel, ylabel and asclabel or assigned to _pmsgstr and
_plegstr.

The escape codes used for graphics text are:

\000 String termination character (null byte).
[Enter superscript mode, leave subscript mode.
] Enter subscript mode, leave superscript mode.
@ Interpret next character as literal.
\20n Select font number n. (see S F, following).

D-10

P
Q

G

Publication Quality Graphics

The escape code \L (or \l) can be embedded into title strings to create a multiple line title:

title("This is the first line\lthis is the second line");

A null byte \000 is used to separate strings in _plegstr and _pmsgstr:

_pmsgstr = "First string\000Second string\000Third string";

or

_plegstr = "Curve 1\000Curve 2";

Use [..] to create the expression M(t) = E(etx):

_pmsgstr = "M(t) = E(e[tx])";

Use @ to generate [and] in an X axis label:

xlabel("Data used for x is: data@[.,1 2 3@]");

D.4.1 Selecting Fonts

Four fonts are supplied with the Publication Quality Graphics system. They are Simplex,
Complex, Simgrma, and Microb. (For a list of the characters available in each font, see Appendix
E.)

Fonts are loaded by passing to the fonts procedure a string containing the names of all fonts to be
loaded. For example, this statement will load all four fonts:

D-11

GAUSS User Guide

fonts("simplex complex microb simgrma");

The fonts command must be called before any of the fonts can be used in text strings. A font can
then be selected by embedding an escape code of the form “\20n” in the string that is to be written
in the new font. The n will be 1, 2, 3 or 4, depending on the order in which the fonts were loaded
in fonts. If the fonts were loaded as in the previous example, the escape characters for each
would be:

\201 Simplex
\202 Complex
\203 Microb
\204 Simgrma

The following example demonstrates how to select a font for use in a string:

title("\201This is the title using Simplex font");

xlabel("\202This is the label for X using Complex font");

ylabel("\203This is the label for Y using Microb font");

Once a font is selected, all succeeding text will use that font until another font is selected. If no
fonts are selected by the user, a default font (Simplex) is loaded and selected automatically for all
text work.

D.4.2 Greek and Mathematical Symbols

The following examples illustrate the use of the Simgrma font; they assume that Simgrma was the
fourth font loaded. (For the available Simgrma characters and their numbers, see Appendix E.)
The Simgrma characters are specified by either:

1. The character number, preceeded by a “\”.

2. The regular text character with the same number.

D-12

P
Q

G

Publication Quality Graphics

For example, to get an integral sign “
∫

” in Simgrma, embed either a “\044” or a “,” in a string
that has been set to use the Simgrma font.

To produce the title f (x) = sin2(πx), the following title string should be used:

title("\201f(x) = sin[2](\204p\201x)");

The “p” (character 112) corresponds to “π” in Simgrma.

To number the major X axis tick marks with multiples of π/4, the following could be passed to
asclabel:

lab = "\2010 \204p\201/4 \204p\201/2 3\204p\201/4 \204p";

asclabel(lab,0);

xtics(0,pi,pi/4,1);

xtics is used to make sure that major tick marks are placed in the appropriate places.

This example will number the X axis tick marks with the labels µ−2, µ−1, 1, µ, and µ2:

lab = "\204m\201[-2] \204m\201[-1] 1 \204m m\201[2]";

asclabel(lab,0);

This example illustrates the use of several of the special Simgrma symbols:

_pmsgstr = "\2041\2011/2\204p ,\201e[-\204m[\2012]\201/2]d\204m";

This produces:

√
1/2π

∫
e−µ

2/2dµ

D-13

GAUSS User Guide

D.5 Colors

0 Black 8 Dark Grey
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 Grey 15 White

D.6 Global Control Variables

The following global variables are used to control various graphics elements. Default values are
provided. Any or all of these variables can be set before calling one of the main graphing routines.
The default values can be modified by changing the declarations in pgraph.dec and the
statements in the procedure graphset in pgraph.src. graphset can be called whenever the
user wants to reset these variables to their default values.

_pageshf 2×1 vector, the graph will be shifted to the right and up if this is not 0. If this is
0, the graph will be centered on the output page. Default is 0.

Note: Used internally. (For the same functionality, see makewind in the
GAUSS L R.) This is used by the graphic panel routines. The
user must not set this when using the graphic panel procedures.

_pagesiz 2×1 vector, size of the graph in inches on the printer output. Maximum size is
9.0×6.855 inches (unrotated) or 6.855×9.0 inches (rotated). If this is 0, the
maximum size will be used. Default is 0.

Note: Used internally. (For the same functionality, see makewind in the
GAUSS L R). This is used by the graphic panel routines. The
user must not set this when using the graphic panel procedures.

_parrow M×11 matrix, draws one arrow per row of the input matrix (for total of M
arrows). If scalar zero, no arrows will be drawn.

D-14

P
Q

G

Publication Quality Graphics

[M,1] x starting point.

[M,2] y starting point.

[M,3] x ending point.

[M,4] y ending point.

[M,5] ratio of the length of the arrow head to half its width.

[M,6] size of arrow head in inches.

[M,7] type and location of arrow heads. This integer number will be
interpreted as a decimal expansion mn, for example: if 10, then m = 1, n =
0.

m, type of arrow head:

0 solid
1 empty
2 open
3 closed

n, location of arrow head:

0 none
1 at the final end
2 at both ends

[M,8] color of arrow, see PQG C, Section F.

[M,9] coordinate units for location:

1 x,y starting and ending locations in plot coordinates
2 x,y starting and ending locations in inches
3 x,y starting and ending locations in pixels

[M,10] line type:

1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

D-15

GAUSS User Guide

[M,11] controls thickness of lines used to draw arrow. This value may be zero
or greater. A value of zero is normal line width.

To create two single-headed arrows, located using inches, use

_parrow = { 1 1 2 2 3 0.2 11 10 2 6 0,

3 4 2 2 3 0.2 11 10 2 6 0 };

_parrow3 M×12 matrix, draws one 3-D arrow per row of the input matrix (for a total of M
arrows). If scalar zero, no arrows will be drawn.

[M,1] x starting point in 3-D plot coordinates.

[M,2] y starting point in 3-D plot coordinates.

[M,3] z starting point in 3-D plot coordinates.

[M,4] x ending point in 3-D plot coordinates.

[M,5] y ending point in 3-D plot coordinates.

[M,6] z ending point in 3-D plot coordinates.

[M,7] ratio of the length of the arrow head to half its width.

[M,8] size of arrow head in inches.

[M,9] type and location of arrow heads. This integer number will be
interpreted as a decimal expansion mn. For example: if 10, then m = 1, n
= 0.

m, type of arrow head:

0 solid
1 empty
2 open
3 closed

n, location of arrow head:

0 none
1 at the final end
2 at both ends

[M,10] color of arrow, see PQG C, Section F.

D-16

P
Q

G

Publication Quality Graphics

[M,11] line type:

1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

[M,12] controls thickness of lines used to draw arrow. This value may be zero
or greater. A value of zero is normal line width.

To create two single-headed arrows, located using plot coordinates, use

_parrow3 = { 1 1 1 2 2 2 3 0.2 11 10 6 0,

3 4 5 2 2 2 3 0.2 11 10 6 0 };

_paxes scalar, 2×1, or 3×1 vector for independent control for each axis. The first
element controls the X axis, the second controls the Y axis, and the third (if set)
controls the Z axis. If 0 the axis will not be drawn. Default is 1.

If this is a scalar, it will be expanded to that value.

For example:

_paxes = { 1, 0 }; /* turn X axis on, Y axis off */

_paxes = 0; /* turn all axes off */

_paxes = 1; /* turn all axes on */

_paxht scalar, size of axes labels in inches. If 0, a default size will be computed.
Default is 0.

_pbartyp 1×2 or K×2 matrix. Controls bar shading and colors in bar graphs and
histograms.

The first column controls the bar shading:

0 no shading

1 dots

D-17

GAUSS User Guide

2 vertical cross-hatch

3 diagonal lines with positive slope

4 diagonal lines with negative slope

5 diagonal cross-hatch

6 solid

The second column controls the bar color, see PQG C, Section F.

_pbarwid scalar, width of bars in bar graphs and histograms. The valid range is 0-1. If 0,
the bars will be a single pixel wide. If 1, the bars will touch each other. Default
is 0.5, so the bars take up about half the space open to them.

_pbox scalar, draws a box (border) around the entire graph. Set to desired color of box
to be drawn. Use 0 if no box is desired. Default is 0.

_pboxctl 5×1 vector, controls box plot style, width, and color. Used by procedure box
only.

[1] box width between 0 and 1. If 0, the box plot is drawn as two vertical
lines representing the quartile ranges with a filled circle representing the
50th percentile.

[2] box color, see PQG C, Section F. If 0, the colors may be
individually controlled using global variable _pcolor.

[3] min/max style for the box symbol. One of the following:

1 minimum and maximum taken from the actual limits of the data.
Elements 4 and 5 are ignored.

2 statistical standard with the minimum and maximum calculated
according to interquartile range as follows:

intqrange = 75th − 25th

min = 25th − 1.5 intqrange
max = 75th + 1.5 intqrange

Elements 4 and 5 are ignored.
3 minimum and maximum percentiles taken from elements 4 and 5.

[4] minimum percentile value (0-100) if _pboxctl[3] = 3.

[5] maximum percentile value (0-100) if _pboxctl[3] = 3.

D-18

P
Q

G

Publication Quality Graphics

_pboxlim 5×M output matrix containing computed percentile results from procedure box.
M corresponds to each column of input y data.

[1,M] minimum whisker limit according to _pboxctl[3].

[2,M] 25th percentile (bottom of box).

[3,M] 50th percentile (median).

[4,M] 75th percentile (top of box).

[5,M] maximum whisker limit according to _pboxctl[3].

_pcolor scalar or K×1 vector, colors for main curves in xy, xyz and log graphs. To use
a single color set for all curves set this to a scalar color value. If 0, use default
colors. Default is 0.

The default colors come from a global vector called _pcsel. This vector can be
changed by editing pgraph.dec to change the default colors, see PQG C,
Section F (_pcsel is not documented elsewhere).

_pcrop scalar or 1×5 vector, allows plot cropping for different graphic elements to be
individually controlled. Valid values are 0 (disabled) or 1 (enabled). If cropping
is enabled, any graphical data sent outside the axes area will not be drawn. If
this is a scalar, it is expanded to a 1×5 vector using the given value for all
elements. All cropping is enabled by default.

[1] crop main curves/symbols.

[2] crop lines generated using _pline.

[3] crop arrows generated using _parrow.

[4] crop circles/arcs generated using _pline.

[5] crop symbols generated using _psym.

This example will crop main curves, and lines and circles drawn by _pline.

_pcrop = { 1 1 0 1 0 };

_pcross scalar. If 1, the axes will intersect at the (0,0) X-Y location if it is visible.
Default is 0, meaning the axes will be at the lowest end of the X-Y coordinates.

D-19

GAUSS User Guide

_pdate date string. If this contains characters, the date will be appended and printed.

The default is set as follows (the first character is a font selection escape code):

_pdate = "\201GAUSS ";

If this is set to a null string, no date will be printed. (For more information on
using fonts within strings, see G T E, Section D.4.

_perrbar M×9 matrix, draws one error bar per row of the input matrix. If scalar 0, no
error bars will be drawn. Location values are in plot coordinates.

[M,1] x location.

[M,2] left end of error bar.

[M,3] right end of error bar.

[M,4] y location.

[M,5] bottom of error bar.

[M,6] top of error bar.

[M,7] line type:

1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

[M,8] color, see PQG C, Section F.

[M,9] line thickness.. This value may be 0 or greater. A value of 0 is normal
line width.

To create one error bar using solid lines, use

_perrbar = { 1 0 2 2 1 3 6 2 0 };

_pframe 2×1 vector, controls frame around axes area. On 3-D plots this is a cube
surrounding the 3-D workspace.

D-20

P
Q

G

Publication Quality Graphics

[1] 1 frame on
0 frame off

[2] 1 tick marks on frame
0 no tick marks

The default is a frame with tick marks.

_pgrid 2×1 vector to control grid.

[1] grid through tick marks:

0 no grid
1 dotted grid
2 fine dotted grid
3 solid grid

[2] grid subdivisions between major tick marks:

0 no subdivisions
1 dotted lines at subdivisions
2 tick marks only at subdivisions

The default is no grid and tick marks at subdivisions.

_plctrl scalar or K×1 vector to control whether lines and/or symbols will be displayed
for the main curves. This also controls the frequency of symbols on main
curves. The number of rows (K) is equal to the number of individual curves to
be plotted in the graph. Default is 0.

0 draw line only.

>0 draw line and symbols every _plctrl points.

<0 draw symbols only every _plctrl points.

−1 all of the data points will be plotted with no connecting lines.

This example draws a line for the first curve, draws a line and plots a symbol
every 10 data points for the second curve, and plots symbols only every 5 data
points for the third curve:

_plctrl = { 0, 10, -5 };

D-21

GAUSS User Guide

_plegctl scalar or 1×4 vector, legend control variable.

If scalar 0, no legend is drawn (default). If nonzero scalar, create legend in the
default location in the lower right of the page.

If 1×4 vector, set as follows:

[1] legend position coordinate units:

1 coordinates are in plot coordinates
2 coordinates are in inches
3 coordinates are in pixel

[2] legend text font size, where 1 <= size <= 9. Default is 5.

[3] x coordinate of lower left corner of legend box.

[4] y coordinate of lower left corner of legend box.

This example puts a legend in the lower right corner:

_plegctl = 1;

This example creates a smaller legend and positions it 2.5 inches from the left
and 1 inch from the bottom.

_plegctl = { 2 3 2.5 1 };

_plegstr string, legend entry text. Text for multiple curves is separated by a null byte
(“\000”).

For example:

_plegstr = "Curve 1\000Curve 2\000Curve 3";

_plev M×1 vector, user-defined contour levels for contour. Default is 0. (See
contour in the GAUSS L R.)

_pline M×9 matrix, to draw lines, circles, or radii. Each row controls one item to be
drawn. If this is a scalar zero, nothing will be drawn. Default is 0.

[M,1] item type and coordinate system:

D-22

P
Q

G

Publication Quality Graphics

1 line in plot coordinates
2 line in inch coordinates
3 line in pixel coordinates
4 circle in plot coordinates
5 circle in inch coordinates
6 radius in plot coordinates
7 radius in inch coordinates

[M,2] line type:

1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

[M,3-7] coordinates and dimensions:
if item type is line (1<=_pline[M,1]<=3):

[M,3] x starting point.
[M,4] y starting point.
[M,5] x ending point.
[M,6] y ending point.
[M,7] 0 if this is a continuation of a curve, 1 if this begins a new curve.

if item type is circle (_pline[M,1] = 4 or _pline[M,1] = 5):

[M,3] x center of circle.
[M,4] y center of circle.
[M,5] radius.
[M,6] starting point of arc in radians.
[M,7] ending point of arc in radians.

if item type is radius (_pline[M,1] = 6 or _pline[M,1] = 7):

[M,3] x center of circle.
[M,4] y center of circle.
[M,5] beginning point of radius, 0 is the center of the circle.

D-23

GAUSS User Guide

[M,6] ending point of radius.
[M,7] angle in radians.

[M,8] color, see PQG C, Section F.

[M,9] controls line thickness. This value may be zero or greater. A value of
zero is normal line width.

_pline3d M×9 matrix. Allows extra lines to be added to an xyz or surface graph in 3-D
plot coordinates.

[M,1] x starting point.

[M,2] y starting point.

[M,3] z starting point.

[M,4] x ending point.

[M,5] y ending point.

[M,6] z ending point.

[M,7] color.

[M,8] line type:

1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

[M,9] line thickness, 0 = normal width.

[M,10] hidden line flag, 1 = obscured by surface, 0 = not obscured.

_plotshf 2×1 vector, distance of plot from lower left corner of output page in inches.

[1] x distance.

[2] y distance.

If scalar 0, there will be no shift. Default is 0.

Note: Used internally. (For the same functionality, see axmargin in the
GAUSS L R.) This is used by the graphic panel routines. The
user must not set this when using the graphic panel procedures.

D-24

P
Q

G

Publication Quality Graphics

_plotsiz 2×1 vector, size of the axes area in inches. If scalar 0, the maximum size will
be used.

Note: Used internally. (For the same functionality, see axmargin in the
GAUSS L R.) This is used by the graphic panel routines. The
user must not set this when using the graphic panel procedures.

_pltype scalar or K×1 vector, line type for the main curves. If this is a nonzero scalar, all
lines will be this type. If scalar 0, line types will be default styles. Default is 0.

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

The default line types come from a global vector called _plsel. This vector
can be changed by editing pgraph.dec to change the default line types
(_plsel is not documented elsewhere.)

_plwidth scalar or K×1 vector, line thickness for main curves. This value may be zero or
greater. A value of zero is normal (single pixel) line width. Default is 0.

_pmcolor 9×1 vector, color values to use for plot, see PQG C, Section F.

[1] axes.

[2] axes numbers.

[3] X axis label.

[4] Y axis label.

[5] Z axis label.

[6] title.

[7] box.

[8] date.

[9] background.

D-25

GAUSS User Guide

If this is scalar, it will be expanded to a 9×1 vector.

_pmsgctl L×7 matrix of control information for printing the strings contained in
_pmsgstr.

[L,1] horizontal location of lower left corner of string.

[L,2] vertical location of lower left corner of string.

[L,3] character height in inches.

[L,4] angle in degrees to print string. This may be -180 to 180 relative to the
positive X axis.

[L,5] location coordinate system.

1 location of string in plot coordinates
2 location of string in inches

[L,6] color.

[L,7] font thickness, may be 0 or greater. If 0 use normal line width.

_pmsgstr string, contains a set of messages to be printed on the plot. Each message is
separated from the next by a null byte (\000). The number of messages must
correspond to the number of rows in the _pmsgctl control matrix. This can be
created as follows:

_pmsgstr = "Message one.\000Message two.";

_pnotify scalar, controls window output during the creation of the graph. Default is 1.

0 no activity to the window while writing .tkf file

1 display progress as fonts are loaded, and .tkf file is being generated

_pnum scalar, 2×1 or 3×1 vector for independent control for axes numbering. The first
element controls the X axis numbers, the second controls the Y axis numbers,
and the third (if set) controls the Z axis numbers. Default is 1.

If this value is scalar, it will be expanded to a vector.

0 no axes numbers displayed

1 axes numbers displayed, vertically oriented on axis

D-26

P
Q

G

Publication Quality Graphics

2 axes numbers displayed, horizontally oriented on axis

For example:

_pnum = { 0, 2 }; /* no X axis numbers, */

/* horizontal on Y axis */

_pnumht scalar, size of axes numbers in inches. If 0, a size of .13 will be used. Default is
0.

_protate scalar. If 0, no rotation, if 1, plot will be rotated 90 degrees. Default is 0.

_pscreen scalar. If 1, display graph in window, if 0, do not display graph in window.
Default is 1.

_psilent scalar. If 0, a beep will sound when the graph is finished drawing to the
window. Default is 1 (no beep).

_pstype scalar or K×1 vector, controls symbol used at data points. To use a single
symbol type for all points, set this to one of the following scalar values:

1 circle 8 solid circle
2 square 9 solid square
3 triangle 10 solid triangle
4 plus 11 solid plus
5 diamond 12 solid diamond
6 inverted triangle 13 solid inverted triangle
7 star 14 solid star

If this is a vector, each line will have a different symbol. Symbols will repeat if
there are more lines than symbol types. Default is 0 (no symbols are shown).

_psurf 2×1 vector, controls 3-D surface characteristics.

[1] if 1, show hidden lines. Default is 0.

[2] color for base, see PQG C, Section F. The base is an outline of the
X-Y plane with a line connecting each corner to the surface. If 0, no base
is drawn. Default is 7.

D-27

GAUSS User Guide

_psym M×7 matrix, M extra symbols will be plotted.

[M,1] x location.

[M,2] y location.

[M,3] symbol type, see _pstype earlier.

[M,4] symbol height. If this is 0, a default height of 5.0 will be used.

[M,5] symbol color, see PQG C, Section F.

[M,6] type of coordinates:

1 plot coordinates
2 inch coordinates

[M,7] line thickness. A value of zero is normal line width.

_psym3d M×7 matrix for plotting extra symbols on a 3-D (surface or xyz) graph.

[M,1] x location in plot coordinates.

[M,2] y location in plot coordinates.

[M,3] z location in plot coordinates.

[M,4] symbol type, see _pstype earlier.

[M,5] symbol height. If this is 0, a default height of 5.0 will be used.

[M,6] symbol color, see PQG C, Section F.

[M,7] line thickness. A value of 0 is normal line width.

Use _psym for plotting extra symbols in inch coordinates.

_psymsiz scalar or K×1 vector, symbol size for the symbols on the main curves. This is
NOT related to _psym. If 0, a default size of 5.0 is used.

_ptek string, name of Tektronix format graphics file. This must have a .tkf
extension. If this is set to a null string, the graphics file will be suppressed. The
default is graphic.tkf.

_pticout scalar. If 1, tick marks point outward on graphs. Default is 0.

_ptitlht scalar, the height of the title characters in inches. If this is 0, a default height of
approx. 0.13 inch will be used.

D-28

P
Q

G

Publication Quality Graphics

_pversno string, the graphics version number.

_pxpmax scalar, the maximum number of places to the right of the decimal point for the
X axis numbers. Default is 12.

_pxsci scalar, the threshold in digits above which the data for the X axis will be scaled
and a power of 10 scaling factor displayed. Default is 4.

_pypmax scalar, the maximum number of places to the right of the decimal point for the
Y axis numbers. Default is 12.

_pysci scalar, the threshold in digits above which the data for the Y axis will be scaled
and a power of 10 scaling factor displayed. Default is 4.

_pzclr scalar, row vector, or K×2 matrix, Z level color control for procedures surface
and contour. (See surface in the GAUSS L R.)

_pzoom 1×3 row vector, magnifies the graphics display for zooming in on detailed areas
of the graph. If scalar 0, no magnification is performed. Default is 0.

[1] magnification value. 1 is normal size.

[2] horizontal center of zoomed plot (0-100).

[3] vertical center of zoomed plot (0-100).

To see the upper left quarter of the screen magnified 2 times use:

_pzoom = { 2 25 75 };

_pzpmax scalar, the maximum number of places to the right of the decimal point for the
Z axis numbers. Default is 3.

_pzsci scalar, the threshold in digits above which the data for the Z axis will be scaled
and a power of 10 scaling factor displayed. Default is 4.

D-29

P
Q

G
Fonts

PQG Fonts E

There are four fonts available in the Publication Quality Graphics System:

Simplex standard sans serif font
Simgrma Simplex greek, math
Microb bold and boxy
complex standard font with serif

The following tables show the characters available in each font and their ASCII values. (For
details on selecting fonts for your graph, see S F, Section D.4.1.

E-1

GAUSS User Guide

E.1 Simplex

E-2

P
Q

G
Fonts

PQG Fonts

E.2 Simgrma

E-3

GAUSS User Guide

E.3 Microb

E-4

P
Q

G
Fonts

PQG Fonts

E.4 Complex

E-5

P
Q

G
G

raphics
C

olors

PQG Graphics Colors F
0 Black 8 Dark Grey
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 Grey 15 White

F-1

Index

Index

Index

′ , 9-8
.′ , 9-8
∼ , 9-9
| , 9-8

! , 9-6
*∼ , 9-7
∗ , 9-5
.* , 9-6
.*. , 9-6
+ , 9-4
− , 9-4
/ , 9-5
./ , 9-6
% , 9-5
ˆ , 9-6, 9-19
.ˆ , 9-6

, (comma) , 9-16
. (dot) , 9-16
: (colon) , 9-17
; (semicolon) , 8-2

, 22-3, 30-136, 30-137, 30-545, 30-754,
30-1008

$, 30-136, 30-137, 30-545, 30-754,
30-1008

∼ , 9-19
$| , 9-18

$+ , 9-17
& , 9-17, 10-10

2-D plots, 6-13

3-D plots, 6-14

= , 8-2, 8-12, 8-39
= , 9-15

/ = , 9-11
./= , 9-12
== , 8-40, 9-10
.== , 9-12
> , 9-11
. > , 9-12
>= , 9-11
. >= , 9-12
< , 9-10
. < , 9-11
<= , 9-10
. <= , 9-12

__altnam, 30-258
__output, 30-258, 30-534, 30-898
__title, 30-258
__Tol, 30-258
_eqs_IterInfo, 30-258
_eqs_JacobianProc, 30-258
_eqs_MaxIters, 30-258

Index-1

Index

_eqs_StepTol, 30-258
_eqs_TypicalF, 30-258
_eqs_TypicalX, 30-258
_loess_Degree, 30-534
_loess_NumEval, 30-534
_loess_Span, 30-534
_loess_WgtType, 30-534
_sqp_A, 30-896
_sqp_B, 30-896
_sqp_Bounds, 30-897
_sqp_C, 30-896
_sqp_D, 30-896
_sqp_DirTol, 30-898
_sqp_EqProc, 30-896
_sqp_FeasibleTest, 30-898
_sqp_GradProc, 30-897
_sqp_HessProc, 30-898
_sqp_IneqProc, 30-897
_sqp_MaxIters, 30-898
_sqp_ParNames, 30-898
_sqp_PrintIters, 30-898
_sqp_RandRadius, 30-898

A

abs, 30-1
absolute value, 30-1
acf, 30-2
aconcat, 14-4, 30-3
action list, 3-5
additive sequence, 30-845
aeye, 14-6, 30-5
algebra, linear, 29-5
amax, 14-25, 30-6
amean, 14-25, 30-8
AmericanBinomCall, 30-10
AmericanBinomCall_Greeks, 30-11
AmericanBinomCall_ImpVol, 30-13

AmericanBinomPut, 30-14
AmericanBinomPut_Greeks, 30-15
AmericanBinomPut_ImpVol, 30-17
AmericanBSCall, 30-18
AmericanBSCall_Greeks, 30-19
AmericanBSCall_ImpVol, 30-20
AmericanBSPut, 30-21
AmericanBSPut_Greeks, 30-22
AmericanBSPut_ImpVol, 30-23
amin, 14-25, 30-24
ampersand, 9-17
amult, 14-23, 30-26
and, 9-13, 9-14
.and, 9-15
annualTradingDays, 30-28
append, ATOG command, 25-3
arccos, 30-29
arcsin, 30-30
areshape, 14-2, 30-31
arguments, 8-40, 10-3, 10-7
array indexing, 13-3
arrayalloc, 14-7, 30-32
arrayindex, 30-33
arrayinit, 14-6, 30-34
arrays, 13-1, 14-1, 29-31
arrays of structures, 15-4
arraytomat, 14-28, 30-35
arrows, 0-14, 0-16
ASCII files, 25-1
ASCII files, packed, 25-8
ASCII files, reading, 20-3
ASCII files, writing, 20-4
asciiload, 30-36
asclabel, 30-37
assigning to arrays, 14-8
assignment operator, 8-2, 8-39, 9-15
astd, 30-38

Index-2

Index

Index

astds, 30-40
asum, 30-42
atan, 30-44
atan2, 30-45
atog, 20-3
ATOG, 25-1
atranspose, 14-21, 30-46
autocompletion, 3-11
autoindenting, 3-12
autoloader, 8-4, 8-5, 18-1, 30-508
autoreload, 3-19
auxiliary output, 20-4, 30-604
auxiliary output, width, 30-607
axes, 0-17, 0-19
axes numbering, 0-26
axes, reversed, 30-1030, 30-1033
axmargin, 30-48

B

backslash, 8-22
balance, 30-50
band, 30-51
bandchol, 30-52
bandcholsol, 30-53
bandltsol, 30-55
bandrv, 30-56
bandsolpd, 30-58
bar shading, 0-17
bar width, 0-18
bar, 30-58
base10, 30-60
basic plotting, 6-2
batch mode, 7-1
begwind, 30-61
besselj, 30-61
bessely, 30-62
beta function, 30-68

beta, 30-63
binary file, loading, 30-380
binary files, 20-15
bivariate Normal, 30-72
blank lines, 8-38
bookmark, 3-12
Boolean operators, 9-13
box, 0-18
box, 30-64
boxcox, 30-65
branching, 29-45
break, 30-66
breakpoints, 3-22
browse, 7-5

C

call, 30-67
calling a procedure, 10-6
caret, 9-6, 9-19
Cartesian coordinates, 30-656, 30-1031
case, 8-38, 30-540, 30-991
Cauchy, 30-78, 30-613
cdBbeta, 30-68
cdfBetaInv, 30-70
commandnamecdfBinomial, 30-70
commandnamecdfBinomialInv, 30-71
cdfBvn, 30-72
cdfBvn2, 30-74
cdfBvn2e, 30-76
cdfCauchy, 30-78
cdfCauchyInv, 30-78
cdfChic, 30-79
cdfChii, 30-80
cdfChinc, 30-81
commandnamecdfChincInv, 30-83
cdfExp, 30-83
cdfExpInv, 30-84

Index-3

Index

cdfFc, 30-85
cdfFnc, 30-87
commandnamecdfFncInv, 30-88
cdfGam, 30-89
cdfGenPareto, 30-91
cdfLaplace, 30-91
cdfLaplaceInv, 30-92
cdfLogistic, 30-93
cdfLogisticInv, 30-94
cdfm.src, 30-96, 30-97, 30-98, 30-100,

30-102, 30-104
cdfMvn, 30-94
cdfMvn2e, 30-97
cdfMvnce, 30-95
cdfMvne, 30-96
cdfMvt2e, 30-103
cdfMvtce, 30-99
cdfMvte, 30-101
cdfN, 30-105
cdfN2, 30-108
cdfNc, 30-105
commandnamecdfNegBinomial, 30-107
commandnamecdfNegBinomialInv, 30-108
cdfNi, 30-110
commandnamecdfPoisson, 30-110
commandnamecdfPoissonInv, 30-111
cdfRayleigh, 30-112
cdfRayleighInv, 30-113
cdfTc, 30-113
cdfTci, 30-115
cdfTnc, 30-116
cdfTvn, 30-117
cdfWeibull, 30-118
cdfWeibullInv, 30-119
cdir, 30-120
ceil, 30-120
change font, 3-3

change working directory, 3-3
ChangeDir, 30-121
characteristic polynomial, 30-657
chdir, 30-122
chi-square, 30-79
chi-square, noncentral, 30-81
chiBarSquare, 30-122
chol, 30-124
choldn, 30-125
Cholesky decomposition, 0-1, 9-5, 30-124,

30-861
cholsol, 30-126
cholup, 30-127
chrs, 30-128
circles, 0-22
clear breakpoints, 3-20
clear working directory history, 3-3
clear, 30-129
clearg, 30-130
close, 3-9, 3-10
close all, 3-10
close, 30-130
closeall, 30-132
cls, 30-134
code (dataloop), 30-136
code folding, 3-12
code, 30-134
coefficient of determination, 30-583, 30-588
coefficients, 30-582, 30-588
coefficients, standardized, 30-582, 30-588
colon, 8-39
color, 0-19, 0-25
cols, 30-138
colsf, 30-138
columns in a matrix, 30-138
combinate, 30-139
combinated, 30-140

Index-4

Index

Index

comlog, 30-142
comma, 9-16
command, 8-2
command history toolbar, 3-5
command history window, 3-7
command line, 7-1
command line editing, 3-8, 7-2
command line history, 3-8, 7-2
command page, 3-2, 4-3
command page toolbar, 3-4
comments, 8-38
comparison functions, 30-298, 30-299
comparison operator, 8-40
compilation phase, 22-3
compile, 19-1
compile time, 8-1
compile, 30-143
compiled language, 8-1
compiler, 19-1
compiler directives, 29-43
compiling, 29-49
compiling files, 19-2
compiling programs, 19-2
complex constants, 8-14, 30-193, 30-502,

30-913
complex modulus, 30-1
complex, 25-4, 30-144
components and usage, 3-21
con, 30-145
concatenation, matrix, 9-8, 9-9
concatenation, string, 9-17
cond, 30-147
condition number, 30-147
conditional branching, 8-34
config, 7-5
conformability, 9-1
conj, 30-148

cons, 30-149
ConScore, 30-150
constants, complex, 8-14, 30-193, 30-502,

30-913
continue, 30-153
contour levels, 0-22
contour, 30-154
control flow, 8-31
control structures, 15-22
conv, 30-155
conversion, character to ASCII value, 30-996
conversion, float to ASCII, 30-335, 30-336
conversion, string to floating point, 30-913
convertsatostr, 30-156
convertstrtosa, 30-156
convolution, 30-155
coordinates, 0-6
copy, 3-3, 3-4
correlation matrix, 30-157, 30-158, 30-583,

30-588
corrm, 30-157
corrms, 30-158
corrvc, 30-157
corrx, 30-157
corrxs, 30-158
cos, 30-158
cosh, 30-159
cosine, inverse, 30-29
counts, 30-160
countwts, 30-162
create, 30-163
cropping, 0-19
cross-product, 30-169, 30-567
crossprd, 30-169
Crout decomposition, 30-170, 30-171
Crout LU decomposition, 0-1
crout, 30-170

Index-5

Index

croutp, 30-171
csrcol, 30-173
csrlin, 30-173
cumprodc, 30-174
cumsumc, 30-175
cumulative distribution function, 30-68
cumulative products, 30-174
cumulative sums, 30-175
cursor, 30-173, 30-533
curve, 30-176
custom regions, 6-11
cut, 3-3, 3-4
cvtos, 30-177

D

data coding, 29-39
data handling, 29-34
data loop, 22-1
data page, 3-16
data sets, 20-7, 29-37
data transformations, 22-1, 30-134, 30-200
data, writing, 30-1016
datacreate, 30-177
datacreatecomplex, 30-179
datalist, 30-182
dataload, 30-183
dataloop translator, 7-6
dataloop, 30-183
dataopen, 30-184
datasave, 30-186
date, 0-20, 30-187
date, 24-2, 30-187
datestr, 30-187
datestring, 30-188
datestrymd, 30-189
dayinyr, 30-189
dayofweek, 30-190

debug, 3-4
debug button, 3-5
debug page, 3-20
debug, 30-191
debugger, 3-22, 5-1
debugging, 7-7, 19-3, 29-51, 30-510
declare, 30-191
delete (dataloop), 30-198
delete, 30-197
DeleteFile, 30-199
deletion, 30-228, 30-229, 30-568, 30-611
delif, 30-200
delimited, 25-1
delimited files, 20-3
delimited, hard, 25-6
delimited, soft, 25-5
denseToSp, 30-201
denseToSpRE, 30-202
denToZero, 30-203
derivatives, 30-403
derivatives, second partial, 30-424
descriptive statistics, 30-227, 30-229
design matrix, 30-204
design, 30-204
det, 30-205
determinant, 30-205
detl, 30-206
dfft, 30-207
dffti, 30-208
diag, 30-208
diagonal, 30-208
diagrv, 30-209
differentiation, 29-3
digamma, 30-210
dimension index, 13-2
dimension number, 13-2
directory, 30-120

Index-6

Index

Index

division, 9-5
dlibrary, 21-1, 30-211
dllcall, 21-1, 30-212
do loop, 8-32
do until, 30-214
do while, 30-214
dos, 30-217
doswin, 30-219
DOSWinCloseall, 30-219
DOSWinOpen, 30-220
dot relational operator, 9-11, 9-21
dotmtfeq, 30-222
dotmtfeqmt, 30-223
dotfge, 30-222
dotfgemt, 30-223
dotfgt, 30-222
dotfgtmt, 30-223
dotfle, 30-222
dotflemt, 30-223
dotflt, 30-222
dotfltmt, 30-223
dotfne, 30-222
dotfnemt, 30-223
draw, 30-225
drop (dataloop), 30-226
DS structure, 15-15, 16-7
dsCreate, 30-227
dstat, 30-227
dstatmt, 30-229
dstatmtControlCreate, 30-231
dtdate, 30-232
dtday, 30-232
dttime, 30-233
dttodtv, 30-234
dttostr, 30-235
dttoutc, 30-237
dtv vector, 24-3

dtvnormal, 24-3, 30-237
dtvtodt, 30-238
dtvtoutc, 30-239
dummy variables, 30-241
dummy, 30-240
dummybr, 30-242
dummydn, 30-244
Durbin-Watson statistic, 30-582, 30-586
dynamic libraries, 21-3

E

E×E conformable, 9-1
ed, 30-245
edit, 3-4
edit button, 3-5
edit symbol, 3-16
edit, 30-246
editor, 30-246
editor properties, 3-15
editor, alternate, 30-245
eig, 30-248
eigenvalues, 29-9, 30-248
eigenvalues and eigenvectors, 30-251
eigh, 30-249
eighv, 30-250
eigv, 30-251
elapsedTradingDays, 30-253
element-by-element conformability, 9-1,

13-5
element-by-element operators, 9-1
else, 30-430
elseif, 30-430
empty matrix, 8-15, 30-138, 30-503, 30-524,

30-823, 30-836
end of file, 30-257
end, 30-253
endp, 10-2, 10-5, 30-254

Index-7

Index

endwind, 30-255
envget, 30-256
environment, search, 30-256
eof, 30-257
eq, 9-10
.eq, 9-12
eqSolve, 30-258
eqSolvemt, 30-262
eqSolvemtControlCreate, 30-266
eqSolvemtOutCreate, 30-267
eqSolveSet, 30-268
eqv, 9-14, 9-15
.eqv, 9-15
erf, 30-268
erfc, 30-268
erfccplx, 30-270
ervCInv, 30-247
erfcplx, 30-270
ervInv, 30-247
error bar, 0-20
error code, 30-270, 30-835
error function, 30-268
error handling, 29-51
error messages, 26-1, 30-272, 30-510
error output window, 3-9, 3-16
error trapping, 30-976
error, 30-270
errorlog, 30-271
errorlogat, 30-272
escape character, 8-22
etdays, 30-272
ethsec, 30-273
etstr, 24-5, 30-274
EuropeanBinomCall, 30-275
EuropeanBinomCall_Greeks, 30-276
EuropeanBinomCall_ImpVol, 30-278
EuropeanBinomPut, 30-279

EuropeanBinomPut_Greeks, 30-280
EuropeanBinomPut_ImpVol, 30-282
EuropeanBSCall, 30-283
EuropeanBSCall_Greeks, 30-284
EuropeanBSCall_ImpVol, 30-285
EuropeanBSPut, 30-286
EuropeanBSPut_Greeks, 30-287
EuropeanBSPut_ImpVol, 30-288
exctsmpl, 30-289
exec, 30-290
execbg, 30-291
executable code, 8-4
executable statement, 8-3
execution phase, 22-4
execution time, 8-1
exit, 3-3
exp, 30-292
exponential, 30-83, 30-84, 30-614
exponential function, 30-292
exponentiation, 9-6
expression, 8-1
expression, evaluation order, 8-30
expression, scalar, 8-32
extern (dataloop), 30-293
external, 30-294
extraneous spaces, 8-38
eye, 30-296

F

F distribution, 30-85, 30-87
factorial, 9-6
FALSE, 8-32
fcheckerr, 30-296
fclearerr, 30-297
feq, 30-298
feqmt, 30-299
fflush, 30-301

Index-8

Index

Index

fft, 30-301
fft, 30-301
ffti, 30-302
fftm, 30-303
fftmi, 30-306
fftn, 30-308
fge, 30-298
fgemt, 30-299
fgets, 30-310
fgetsa, 30-311
fgetsat, 30-311
fgetst, 30-312
fgt, 30-298
fgtmt, 30-299
file export, graphics, 6-15
file formats, 20-14
file handle, 30-166, 30-597
fileinfo, 30-313
files, 20-3
files, binary, 20-15
files, matrix, 20-13
files, string, 20-16
filesa, 30-314
finance functions, 29-23
find and replace, 3-14
fle, 30-298
flemt, 30-299
floor, 30-315
flow control, 8-31
flt, 30-298
fltmt, 30-299
fmod, 30-316
fn, 30-317
fne, 30-298
fnemt, 30-299
fonts, 30-318
fonts, 30-317

fopen, 30-318
for, 30-320
Foreign Language Interface, 21-1
format, 30-322
formatcv, 30-329
formatnv, 30-330
forward reference, 18-2
Fourier transform, 30-301
Fourier transform, discrete, 30-207, 30-208
fourier transforms, 29-10
fputs, 30-331
fputst, 30-332
fseek, 30-332
fstrerror, 30-334
ftell, 30-335
ftocv, 30-335
ftos, 30-336
ftostrC, 30-340
function, 8-37, 30-476, 30-680
functions, 29-47
fuzzy conditional functions, 29-13

G

gamma function, 30-341
gamma, 30-341
gamma, incomplete, 30-89
gamma, log, 30-518
gammacplx, 30-342
gammaii, 30-343
gauss colors, 0-1
GAUSS Data Archives, 20-11, 20-24, 29-36
GAUSS Graphics Colors, 0-1
Gauss-Legendre quadrature, 30-457
gausset, 28-6, 30-343
gdaAppend, 30-344
gdaCreate, 30-345
gdaDStat, 30-346

Index-9

Index

gdaDStatMat, 30-348
gdaGetIndex, 30-351
gdaGetName, 30-352
gdaGetNames, 30-353
gdaGetOrders, 30-353
gdaGetType, 30-354
gdaGetTypes, 30-355
gdaGetVarInfo, 30-356
gdaIsCplx, 30-358
gdaLoad, 30-358
gdaPack, 30-361
gdaRead, 30-362
gdaReadByIndex, 30-363
gdaReadSome, 30-364
gdaReadSparse, 30-365
gdaReadStruct, 30-366
gdaReportVarInfo, 30-367
gdaSave, 30-369
gdaUpdate, 30-371
gdaUpdateAndPack, 30-372
gdaVars, 30-373
gdaWrite, 30-374
gdaWrite32, 30-375
gdaWriteSome, 30-376
ge, 9-11
.ge, 9-12
generalized inverse, 30-468, 30-620, 30-621
Generalized Pareto, 30-91, 30-615
getArray, 14-12
getarray, 30-379
getDims, 14-27
getdims, 30-379
getf, 30-380
getMatrix, 14-13
getmatrix, 30-381
getMatrix4D, 14-13
getmatrix4D, 30-382

getname, 30-383
getnamef, 30-384
getNextTradingDay, 30-385
getNextWeekDay, 30-386
getnr, 30-386
getnrmt, 30-387
getOrders, 14-27
getorders, 30-388
getpath, 30-389
getPreviousTradingDay, 30-389
getPreviousWeekDay, 30-390
getRow, 30-390
getScalar3D, 14-14
getscalar3D, 30-391
getScalar4D, 14-14
getscalar4D, 30-392
getTrRow, 30-393
getwind, 30-393
global control variables, 28-5
global variable, 10-3
go, 3-20
Goertzel algorithm, 30-207
gosub, 30-394
goto help, 3-3
goto, 30-397
gradcplx, 30-403
gradient, 30-403
gradMT, 30-398
gradMTm, 30-399
gradMTT, 30-400
gradMTTm, 30-402
gradp, 30-403
graphic panels, 0-7
graphic panels, nontransparent, 0-8
graphic panels, overlapping, 0-7
graphic panels, tiled, 0-7
graphic panels, transparent, 0-8

Index-10

Index

Index

Graphics, 6-1, 29-58
graphics overview, 6-1
graphics, publication quality, 0-1
graphprt, 30-404
graphs, saving, 6-16
graphset, 30-407
grid, 0-21
grid subdivisions, 0-21
gt, 9-11
.gt, 9-12

H

hard delimited, 25-6
hasimag, 30-407
hat operator, 9-6, 9-19
header, 30-409
headermt, 30-409
help facility, 30-510
help hot keys, 3-25
help page, 3-25
help, F1, 4-4
hermitian matrix, 30-250
hess, 30-410
hesscplx, 30-424
Hessian, 30-424
hessMT, 30-412
hessMTg, 30-413
hessMTgw, 30-414
hessMTm, 30-415
hessMTmw, 30-417
hessMTT, 30-418
hessMTTg, 30-419
hessMTTgw, 30-420
hessMTTm, 30-422
hessMTw, 30-423
hessp, 30-424
hidden lines, 0-27

hide curves, 6-13
hist, 30-426
histf, 30-427
histogram, 30-426, 30-427, 30-623, 30-624,

30-632
histp, 30-428
horizontal direct product, 9-7
hot keys, 4-2
hot keys, programming editor, 3-13
hsec, 30-429
html, 3-20
hyperbolic cosine, 30-159
hyperbolic sine, 30-859
hyperbolic tangent, 30-961

I

if, 30-430
imag, 30-431
imaginary matrix, 30-431
inch coordinates, 0-6
#include, 30-432
incomplete beta function, 30-68
incomplete gamma function, 30-89
indcv, 30-433
indefinite, 8-28
index variables, 30-596
indexcat, 30-434
indexing matrices, 8-40, 9-16
indexing procedures, 9-17
indexing, array, 13-3
indexing, structure, 15-5
indices, 30-436
indices2, 30-437
indicesf, 30-438
indicesfn, 30-439
indnv, 30-440
indsav, 30-441

Index-11

Index

infinity, 8-28
initialize, 10-4
initializing arrays, 14-1
inner product, 9-5
input, ATOG command, 25-4
input, console, 30-145
input, keyboard, 30-145
installation, 2-1
installation, Linux, 2-1
installation, Solaris, 2-1
installation, Windows, 2-2
instruction pointer, 8-3
integration, 29-3, 29-4, 30-446, 30-449,

30-451, 30-454, 30-457, 30-465
interactive commands, 7-4
interpreter, 8-1
intersection, 30-464
intgrat2, 30-442
intgrat3, 30-444
inthp1, 30-446
inthp2, 30-448
inthp3, 30-451
inthp4, 30-454
inthpControlCreate, 30-457
intquad1, 30-457
intquad2, 30-459
intquad3, 30-460
intrinsic function, 8-8
intrleav, 30-462
intrleavsa, 30-463
intrsect, 30-464
intrsectsa, 30-465
intsimp, 30-465
inv, 30-466
invar, ATOG command, 25-5
inverse cosine, 30-29
inverse sine, 30-30

inverse, generalized, 30-468, 30-620, 30-621
inverse, matrix, 30-466
inverse, sweep, 30-468
invpd, 30-466
invswp, 30-468
iscplx, 30-469
iscplxf, 30-470
isden, 30-470
isinfnanmiss, 30-471
ismiss, 30-471

J

Jacobian, 30-403

K

keep (dataloop), 30-472
key, 30-473
keyav, 30-475
keyboard input, 30-149
keyboard, reading, 30-473
keyw, 30-475
keyword, 10-1, 10-7
keyword procedure, 30-476
keyword, 30-476
keywords, 29-47
Kronecker, 9-6

L

label, 8-35, 8-39, 10-1, 30-394, 30-397
lag (dataloop), 30-477
lag1, 30-478
lagn, 30-478
lambda, 30-82
lapeighb, 30-479
lapeighi, 30-480
lapeigvb, 30-481

Index-12

Index

Index

lapeigvi, 30-483
lapgeig, 30-484
lapgeigh, 30-485
lapgeighv, 30-486
lapgeigv, 30-487
lapgschur, 30-496
lapgsvdcst, 30-488
lapgsvds, 30-491
lapgsvdst, 30-493
Laplace, 30-91, 30-92, 30-615
lapsvdcusv, 30-497
lapsvds, 30-499
lapsvdusv, 30-500
layout, 3-6, 3-18
layout and usage, 3-10
le, 9-10
.le, 9-12
least squares, 9-5
least squares regression, 30-579, 30-584
left-hand side, 18-2
legend, 0-22
let, 30-501
lib, 30-506
libraries, 18-1, 29-48
libraries, active, 30-508
library, 30-507
line numbers, 30-510
line thickness, 0-16, 0-20, 0-25
line type, 0-25
linear algebra, 29-5
linear equation, 30-861
linear equation solution, 9-5
lines, 0-21, 0-22, 0-24
#linesoff, 30-510
#lineson, 30-510
linsolve, 30-511
listwise (dataloop), 30-512

listwise deletion, 30-228, 30-229, 30-568,
30-611

literal, 8-23, 9-19
ln, 30-512
lncdfbvn, 30-513
lncdfbvn2, 30-514
lncdfmvn, 30-516
lncdfn, 30-516
lncdfn.src, 30-94, 30-109
lncdfn2, 30-517
lncdfnc, 30-518
lnfact, 30-518
lngammacplx, 30-519
lnpdfmvn, 30-520
lnpdfmvt, 30-521
lnpdfn, 30-521
lnpdft, 30-522
load, 30-523
loadarray, 30-528
loadd, 30-530
loadf, 30-523
loadk, 30-523
loadm, 30-523
loadp, 30-523
loads, 30-523
loadstruct, 30-531
loadwind, 30-531
local variable declaration, 10-3
local variables, 8-8, 10-3, 30-532
local, 10-2, 30-532
locate, 30-533
loess, 30-533
loessmt, 30-534
loessmtControlCreate, 30-535
log coordinates, 30-537, 30-635
log factorial, 30-518
log gamma, 30-518

Index-13

Index

log, 30-536
log, base 10, 30-536
log, natural, 30-512
logging commands, 30-142
logical operators, 9-13
logistic, 30-93, 30-94, 30-616
loglog, 30-537
PlotLogLog, 30-635
logx, 30-537
logy, 30-538
looping, 8-32, 29-46, 30-214
looping with arrays, 14-17
loopnextindex, 14-19, 30-539
lower triangular matrix, 30-541
lower, 30-540
lowmat, 30-541
lowmat1, 30-541
lt, 9-10
.lt, 9-11
ltrisol, 30-542
LU decomposition, 9-5, 30-543
lu, 30-543
lusol, 30-544

M

machEpsilon, 30-544
machine epsilon, 30-105, 30-954, 30-959
machine requirements, 2-2
magnification, 0-29
make (dataloop), 30-545
makevars, 30-545
makewind, 30-547
margin, 30-548
matalloc, 30-549
matinit, 30-550
matrices, indexing, 8-40
matrix conformability, 9-1

matrix files, 20-13
matrix manipulation, 29-25
matrix, creation, 30-501
matrix, empty, 8-15, 30-138, 30-503, 30-524,

30-823, 30-836
matrix, ones, 30-594
matrix, zeros, 30-1033
mattoarray, 14-28, 30-550
maxbytes, 30-555
maxc, 30-551
maximizing performance, 27-1
maximum element, 30-551
maximum element index, 30-552
maxindc, 30-552
maxv, 30-553
maxvec, 30-554
mbesseli, 30-555
mean, 30-558
meanc, 30-558
median, 30-559
memory, 30-198
memory, clear all, 30-573
menu bar, 3-16
menu, edit, 3-3
menu, file, 3-3, 3-9
menu, help, 3-3
menu, symbol editor, 3-16
menu, tools, 3-3
menu, view, 3-3
menu, window, 3-10, 3-17
menus, 3-3, 3-20
mergeby, 30-560
mergevar, 30-561
merging, 29-42
minc, 30-562
minimum element, 30-562
minimum element index, 30-563

Index-14

Index

Index

minindc, 30-563
minv, 30-564
miss, 30-565
missex, 30-566
missing character, 30-572
missing values, 9-5, 30-228, 30-229, 30-471,

30-565, 30-566, 30-572, 30-611,
30-838

missrv, 30-565
mixed layouts, 6-11
modulo division, 9-5
moment matrix, 30-568, 30-582, 30-587
moment, 30-567
momentd, 30-569
Moore-Penrose pseudo-inverse, 30-620,

30-621
movingave, 30-570
movingaveExpwgt, 30-571
movingaveWgt, 30-572
msym, 30-572
msym, ATOG command, 25-10
multi-threading, 17-1, 29-44
multiplication, 9-5
multiplicative sequence, 30-845

N

N-dimensional arrays, 13-1, 14-1, 29-31
NaN, 8-28
NaN, testing for, 8-29, 9-9
navigating, 4-2
ne, 9-11
.ne, 9-12
new, 3-3, 3-4, 3-17
new, 30-573
nextindex, 30-574
nextn, 30-575
nextnevn, 30-575

nextwind, 30-576
nocheck, 25-10
Normal distribution, 30-94, 30-95, 30-96,

30-97, 30-99, 30-101, 30-103,
30-105, 30-108, 30-513, 30-516,
30-517, 30-518

Normal distribution, bivariate, 30-72
not, 9-13, 9-14
.not, 9-15
null space, 30-577
null, 30-577
null1, 30-578
numCombinations, 30-579

O

obsolete commands, 0-1
ols, 30-579
olsmt, 30-584
olsmtControlCreate, 30-591
olsqr, 30-592
olsqr2, 30-593
olsqrmt, 30-594
ones, 30-594
open, 3-3, 3-4
open, 30-595
operators, 8-1, 9-4
operators, element-by-element, 9-1
optimization, 29-17
optn, 30-601
optnevn, 30-601
or, 9-13, 9-14
.or, 9-15
orth, 30-603
orthogonal complement, 30-577
orthonormal, 30-577, 30-603
outer product, 9-6
output, 20-4

Index-15

Index

output functions, 29-57
output, 30-603
output, ATOG command, 25-10
outtyp (dataloop), 30-607
outtyp, ATOG command, 25-11
outvar, ATOG command, 25-11
outwidth, 30-607

P

pacf, 30-608
packed ASCII, 25-1, 25-8
packedToSp, 30-609
packr, 30-611
page organization, 3-1
_pageshf, 0-14
_pagesiz, 0-14
pairwise deletion, 9-5, 30-228, 30-229,

30-568
panel data, 14-32
panning, 3-D plots, 6-15
_parrow, 0-14
_parrow3, 0-16
parse, 30-612
paste, 3-3, 3-4, 3-5
pause, 30-613
_paxes, 0-17
_paxht, 0-17
_pbartyp, 0-17
_pbarwid, 0-18
_pbox, 0-18
_pboxlim, 0-19
_pcolor, 0-19
_pcrop, 0-19
_pcross, 0-19
_pdate, 0-20
pdfCauchy, 30-613
pdfexp, 30-614

pdfGenPareto, 30-615
pdfLaplace, 30-615
pdflogistic, 30-616
pdfn, 30-617
pdfRayleigh, 30-618
pdfWeibull, 30-618
_perrbar, 0-20
_pframe, 0-20
_pgrid, 0-21
pi, 30-619
pinv, 30-620
pinvmt, 30-621
pixel coordinates, 0-6
_plctrl, 0-21
_plegctl, 0-22
_plegstr, 0-22
_plev, 0-22
_pline, 0-22
_pline3d, 0-24
plot coordinates, 0-6
plot customization, 6-3
plotAddBar, 30-622
plotAddBox, 30-622
plotAddHist, 30-623
plotAddHistF, 30-624
plotAddHistP, 30-624
plotAddPolar, 30-625
plotAddScatter, 30-626
plotAddXY, 30-626
plotBar, 30-627
plotBox, 30-628
plotClearLayout, 30-629
plotCustomLayout, 30-630
plotGetDefaults, 30-631
plotHist, 30-632
plotHistF, 30-632
plotHistP, 30-633

Index-16

Index

Index

plotLayout, 30-634
plotLogX, 30-635
plotLogY, 30-636
plotOpenWindow, 30-636
plotPolar, 30-637
plots, 6-13
plotSave, 30-638
plotScatter, 30-639
plotSetBar, 30-639
plotSetBkdColor, 30-641
plotSetGrid, 30-642
plotSetLegend, 30-643
plotSetLineColor, 30-645
plotSetLineStyle, 30-646
plotSetLineSymbol, 30-647
plotSetLineThickness, 30-649
plotSetNewWindow, 30-650
plotSetTitle, 30-651
plotSetXLabel, 30-652
plotSetYLabel, 30-653
plotSetZLabel, 30-654
_plotshf, 0-24
_plotsiz, 0-25
plotSurface, 30-656
plotXY, 30-656
_pltype, 0-25
_plwidth, 0-25
_pmcolor, 0-25
_pmsgctl, 0-26
_pmsgstr, 0-26
_pnotify, 0-26
_pnum, 0-26
_pnumht, 0-27
pointer, 9-17, 10-10, 10-11, 30-532
pointer, instruction, 8-3
pointers, structure, 15-10
polar, 30-657

polychar, 30-657
polyeval, 30-658
polygamma, 30-659
polyint, 30-660
polymake, 30-661
polymat, 30-662
polymroot, 30-662
polymult, 30-664
polynomial, 30-661
polynomial interpolation, 30-660
polynomial operations, 29-10
polynomial regression, 30-662
polynomial, characteristic, 30-657
polynomial, evaluation, 30-658
polynomial, roots, 30-665
polyroot, 30-665
pop, 30-665
PQG fonts, 0-1
PQG Graphics Colors, 0-1
pqgcolors, 0-1
pqgwin, 30-666
precedence, 8-30
precision control, 29-23
predicted values, 30-593
preferences, 3-3, 3-17
preservecase, 25-12
previousindex, 30-667
princomp, 30-668
print, 3-3, 3-4
print, 30-669
printdos, 30-675
printfm, 30-676
printfmt, 30-679
probability density function, Normal, 30-617
proc, 10-2, 30-680
procedure, 10-1, 30-532, 30-680
procedure, definitions, 8-3, 10-2

Index-17

Index

procedures, 29-47
procedures, indexing, 10-10
procedures, multiple returns, 10-11
procedures, passing to other procedures, 10-9
prodc, 30-681
products, 30-682
Profiler, 23-1
program, 8-4
program control, 29-45
program space, 30-855
program, run, 30-825
programming editor, 3-11
_protate, 0-27
_pscreen, 0-27
pseudo-inverse, 30-620, 30-621
psi, 30-682
_psilent, 0-27
_pstype, 0-27
_psurf, 0-27
_psym, 0-28
_psym3d, 0-28
_psymsiz, 0-28
_ptek, 0-28
_pticout, 0-28
_ptitlht, 0-28
Publication Quality Graphics, 0-1, 29-61
putArray, 14-15
putarray, 30-683
putf, 30-684
putvals, 30-685
PV structure, 15-16, 16-1
pvCreate, 30-687
_pversno, 0-29
pvGetIndex, 30-687
pvGetParNames, 30-688
pvGetParVector, 30-689
pvLength, 30-690

pvList, 30-690
pvPack, 30-691
pvPacki, 30-692
pvPackm, 30-693
pvPackmi, 30-694
pvPacks, 30-696
pvPacksi, 30-697
pvPacksm, 30-698
pvPacksmi, 30-700
pvPutParVector, 30-702
pvTest, 30-704
pvUnpack, 30-704
_pxpmax, 0-29
_pxsci, 0-29
_pypmax, 0-29
_pysci, 0-29
_pzclr, 0-29
_pzoom, 0-29
_pzpmax, 0-29
_pzsci, 0-29

Q

QNewton, 30-705
QNewtonmt, 30-708
QNewtonmtControlCreate, 30-712
QNewtonmtOutCreate, 30-713
QNewtonSet, 30-713
QProg, 30-714
QProgmt, 30-715
QProgmtInCreate, 30-718
qqr, 30-718
qqre, 30-720
qqrep, 30-723
QR decomposition, 30-592, 30-594
qr, 30-725
qre, 30-726
qrep, 30-729

Index-18

Index

Index

qrsol, 30-731
qrtsol, 30-732
qtyr, 30-732
qtyre, 30-735
qtyrep, 30-738
quadrature, 30-457
quantile, 30-740
quantiled, 30-741
qyr, 30-743
qyre, 30-744
qyrep, 30-746

R

radii, 0-22
random numbers, 11-1, 29-11
rank of a matrix, 30-748
rank, 30-748
rankindx, 30-749
Rayleigh, 30-112, 30-113, 30-618
readr, 30-750
real, 30-751
recent files, 3-3
recent working directories, 3-3
recode (dataloop), 30-754
recode, 30-752
recserar, 30-755
recsercp, 30-757
recserrc, 30-758
recursion, 10-5
redo, 3-3
reduced row echelon form, 30-824
regression, 30-579, 30-584
regular expressions, 3-14
relational operator, dot, 9-11, 9-21
relational operators, 9-9
relative error, 30-105, 30-114
reload, 3-17

reload symbol, 3-17
remove split, 3-10
rerun, 30-759
reserved words, 0-1
reshape, 30-760
residuals, 30-582, 30-586, 30-593
restore curves, 6-13
retp, 10-2, 10-5, 30-761
return, 30-762
rev, 30-762
rfft, 30-763
rffti, 30-764
rfftip, 30-765
rfftn, 30-766
rfftnp, 30-767
rfftp, 30-769
right-hand side, 18-2
rndBernoulli, 30-770
rndBeta, 30-771
rndCauchy, 30-772
rndcon, 30-773
rndCreateState, 30-775
rndExp, 30-776
rndgam, 30-777
rndGamma, 30-778
rndGeo, 30-779
rndGumbel, 30-780
rndi, 30-781
rndKMbeta, 30-782
rndKMgam, 30-783
rndKMi, 30-785
rndKMn, 30-786
rndKMnb, 30-788
rndKMp, 30-789
rndKMu, 30-790
rndKMvm, 30-792
rndLaplace, 30-793

Index-19

Index

rndLCbeta, 30-794
rndLCgam, 30-795
rndLCi, 30-797
rndLCn, 30-799
rndLCnb, 30-801
rndLCp, 30-803
rndLCu, 30-804
rndLCvm, 30-806
rndLogNorm, 30-808
rndmult, 30-773
rndMVn, 30-809
rndMVt, 30-810
rndn, 30-810
rndnb, 30-812
rndNegBinomial, 30-813
rndp, 30-814
rndPoisson, 30-815
rndseed, 30-773
rndStateSkip, 30-816
rndu, 30-817
rndvm, 30-819
rndWeibull, 30-820
rndWishart, 30-821
rotage, 3-D plots, 6-15
rotater, 30-819
round down, 30-315
round up, 30-121
round, 30-822
rows, 30-823
rowsf, 30-824
rref, 30-824
rules of syntax, 8-37
run, 3-4, 3-5
run button, 3-5
run to cursor, 3-21
run, 30-825
Run-Time Library structures, 16-1

S

satostrC, 30-827
save, 3-9, 3-17
save as, 3-9
save symbol, 3-17
save, 30-828
saveall, 30-830
saved, 30-831
savestruct, 30-832
savewind, 30-833
saving graphs, 6-16
saving the workspace, 19-2
scalar error code, 30-270, 30-835
scalar expression, 8-32
scale, 30-833
scale3d, 30-834
scalerr, 30-835
scalinfnanmiss, 30-837
scaling, 30-833, 30-834
scalmiss, 30-838
schtoc, 30-839
schur, 30-840
scientific functions, 29-1
screen, 30-841
scrolling, 3-D plots, 6-15
search next, 3-5
search previous, 3-5
searchsourcepath, 30-842
secondary section, 8-5
seekr, 30-843
select (dataloop), 30-844
selif, 30-844
semicolon, 8-2
seqa, 30-845
seqm, 30-845
sequence function, 30-845

Index-20

Index

Index

sequence functions, 29-23
series functions, 29-23
set difference function, 30-848
setArray, 14-16
setarray, 30-847
setdif, 30-848
setdifsa, 30-849
setvars, 30-850
setvwrmode, 30-850
setwind, 30-851
shell, 30-852
shiftr, 30-853
shortcuts, 4-2
show, 30-854
Simpson’s method, 30-465
sin, 30-857
sine, inverse, 30-30
singleindex, 30-858
singular value decomposition, 30-940,

30-941, 30-942, 30-944
singular values, 30-939, 30-943
singularity tolerance, 0-1
sinh, 30-859
sleep, 30-860
soft delimited, 25-5
solpd, 30-861
sort data file, 30-864
sort index, 30-866
sort, heap sort, 30-865
sort, multiple columns, 30-867
sort, quicksort, 30-863
sortc, 30-863
sortcc, 30-863
sortd, 30-864
sorthc, 30-865
sorthcc, 30-865
sortind, 30-866

sortindc, 30-866
sorting, 29-42
sortmc, 30-867
sortr, 30-868
sortrc, 30-868
Source Browser, 7-10
source browsing, 4-4
source page, 3-9
spaces, 9-16
spaces, extraneous, 8-38, 9-16, 9-17
sparse matrices, 29-30
spBiconjGradSol, 30-869
spChol, 30-871
spConjGradSol, 30-872
spCreate, 30-874
spDenseSubmat, 30-875
spDiagRvMat, 30-876
spEigv, 30-878
spEye, 30-880
spGetNZE, 30-881
spLDL, 30-883
spline, 30-882
split horizontally, 3-10, 3-17
split vertically, 3-10, 3-17
spLU, 30-884
spNumNZE, 30-886
spOnes, 30-887
SpreadsheetReadM, 30-888
SpreadsheetReadSA, 30-888
spreadsheets, 29-34
SpreadsheetWrite, 30-889
spScale, 30-890
spSubmat, 30-891
spToDense, 30-892
spTrTDense, 30-893
spTScalar, 30-893
spZeros, 30-894

Index-21

Index

sqpSolve, 30-895
sqpSolvemt, 15-23
sqpSolveMT, 30-900
sqpSolvemtControl structure, 15-25
sqpSolveMTControlCreate, 30-907
sqpSolveMTlagrangeCreate, 30-908
sqpSolveMToutCreate, 30-909
sqpSolveSet, 30-909
sqrt, 30-909
square root, 30-909
src_path, 18-1
standard deviation, 30-38, 30-40, 30-228,

30-230, 30-910, 30-911
standard deviation of residual, 30-582,

30-588
standard errors, 30-582, 30-588
statement, 8-2, 8-37
statement, executable, 8-3
statement, nonexecutable, 8-3
statistical distributions, 29-19
statistical functions, 29-14
statistics, descriptive, 30-227, 30-229
stdc, 30-910
stdsc, 30-911
step into, 3-20
step out, 3-20
step over, 3-20
stepping through, 3-22
Stirling’s formula, 30-519
stocv, 30-912
stof, 30-913
stop, 3-20
stop program, 3-4
stop, 30-913
strcombine, 30-914
strindx, 30-915
string array concatenation, 9-18

string arrays, 8-24, 8-25
string concatenation, 9-17
string files, 20-16
string handling, 29-52
string index, 30-915, 30-918
string length, 30-916
string, long, 8-38
string, substring, 30-919
strings, graphics, 0-26
strlen, 30-916
strput, 30-917
strrindx, 30-918
strsect, 30-919
strsplit, 30-920
strsplitPad, 30-921
strtodt, 30-922
strtof, 30-924
strtofcplx, 30-925
strtriml, 30-925
strtrimr, 30-926
strtrunc, 30-926
strtruncl, 30-927
strtruncpad, 30-927
strtruncr, 30-928
struct editor, 3-18
structure definition, 15-1
structure indexing, 15-5
structure instance, 15-2
structure pointers, 15-10
structure, DS, 15-15, 16-7
structure, PV, 15-16, 16-1
structures, 3-18, 15-1, 29-33
structures, arrays of, 15-4
structures, control, 15-22
submat, 30-928
submatrix, 30-928
subplots, 6-9

Index-22

Index

Index

subroutine, 8-36, 30-394
subroutines, 29-47
subsample, 30-289
subscat, 30-929
substitution, 9-19
substring, 30-919
substute, 30-931
subvec, 30-932
sum, 30-933
sumc, 30-933
sumr, 30-935
surface, 30-937
svd, 30-939
svd1, 30-940
svd2, 30-941
svdcusv, 30-942
svds, 30-943
svdusv, 30-944
sweep inverse, 30-468
symbol editor, 3-19
symbol names, 8-39
symbol table, 30-854
symbol table type, 30-981
symbols, allocate maximum number, 30-573
syntax, 8-37
syntax highlighting, 3-11
sysstate, 30-945
system, 30-959

T

t distribution, Student’s, 30-113
tab, 30-960
table, 9-6
tan, 30-961
tanh, 30-961
tempname, 30-962
tensor, 9-6

text files, 29-35
TGAUSS, 7-1
thickness, line, 0-16, 0-20, 0-25
ThreadBegin, 30-963
ThreadEnd, 30-964
ThreadJoin, 30-964
threads, 17-1, 29-44
ThreadStat, 30-965
tick marks, 0-28
tilde, 9-9
time and date functions, 29-54
time, 24-2, 30-966
time, elapsed, 30-273
timed iterations, 24-6
timedt, 30-966
timestr, 30-967
timeutc, 30-968
timing functions, 30-429
title, 30-968
tkf2eps, 30-969
tkf2ps, 30-970
tocart, 30-970
todaydt, 30-971
Toeplitz matrix, 30-971
toeplitz, 30-971
toggle auto-reload, 3-17
toggle breakpoint, 3-20
token, 30-972
toolbar, 3-17
toolbars, 3-3, 3-20
tooltips, 3-12
topolar, 30-973
trace program execution, 30-974
trace, 30-974
translation phase, 22-3
transpose, 9-8
transpose, bookkeeping, 9-8

Index-23

Index

trap flag, 30-976, 30-978
trap state, 30-836
trap, 30-975
trapchk, 30-978
triangular matrix, lower, 30-541
triangular matrix, upper, 30-990
trigamma, 30-979
trimr, 30-980
trivariate Normal, 30-117
troubleshooting, libraries, 18-12
TRUE, 8-32, 9-10
trunc, 30-981
truncating, 30-981
type, 30-981
typecv, 30-982
typef, 30-984

U

unconditional branching, 8-35
underdetermined, 30-582, 30-588
undo, 3-3
union, 30-985
unionsa, 30-985
uniqindx, 30-986
uniqindxsa, 30-987
unique, 30-988
uniquesa, 30-989
until, 30-214
upmat, 30-990
upmat1, 30-990
upper triangular matrix, 30-990
upper, 30-991
use, 30-992
user-defined function, 30-476, 30-680
utctodt, 30-993
utctodtv, 30-994
utrisol, 30-995

V

vals, 30-996
varget, 30-997
vargetl, 30-998
variable names, 30-383, 30-384
variables, debugging, 3-23
variables, editing, 3-23
variables, viewing, 3-23
variance, 30-228, 30-230
variance-covariance matrix, 30-582, 30-588,

30-1004, 30-1005
varindxi, 30-596
varmall, 30-999
varmares, 30-1000
varput, 30-1001
varputl, 30-1002
vartypef, 30-1004
vcm, 30-1004
vcms, 30-1005
vcx, 30-1004
vcxs, 30-1005
vec, 30-1005
vech, 30-1007
vecr, 30-1005
vector (dataloop), 30-1008
vectors, 8-40
vget, 30-1009
view, 30-1009
viewing graphics, 7-2
viewing program output, 4-3
viewpoint change, 3-D plots, 6-15
viewxyz, 30-1010
vlist, 30-1011
vnamecv, 30-1011
volume, 30-1012
vput, 30-1012

Index-24

Index

Index

vread, 30-1013
vtypecv, 30-1013

W

wait, 30-1014
waitc, 30-1014
walkindex, 30-1014
watch window, 3-24
Weibull, 30-118, 30-119, 30-618
weighted count, 30-162
while, 30-214
window, 20-4
window, 30-1016
window, clear, 30-134
workbox, 30-1010, 30-1012
working directory toolbar, 3-4
workspace, 30-198, 30-855
writer, 30-1016

X

xlabel, 30-1018
xlsGetSheetCount, 30-1019
xlsGetSheetSize, 30-1019
xlsGetSheetTypes, 30-1020
xlsMakeRange, 30-1021
xlsReadM, 30-1022
xlsReadSA, 30-1023
xlsWrite, 30-1025
xlsWriteM, 30-1026
xlsWriteSA, 30-1027
xor, 9-14
.xor, 9-15
xpnd, 30-1029
xtics, 30-1030
xy, 30-1031
xyz, 30-1031

Y

ylabel, 30-1032
ytics, 30-1032

Z

zeros, 30-1033
zeta, 30-1034
zlabel, 30-1034
zoom, 3-D plots, 6-14
zooming graphs, 0-29
ztics, 30-1035

Index-25

	1 Introduction
	1.1 Product Overview
	1.2 Documentation Conventions

	2 Getting Started
	2.1 Installation Under Linux and Solaris
	2.2 Installation Under Windows
	2.2.1 Machine Requirements
	2.2.2 Installation from Download
	2.2.3 Installation from CD

	3 Introduction to the GAUSS Graphical User Interface
	3.1 Page Organization Concept
	3.2 Command Page
	3.2.1 Menus and Toolbars
	3.2.2 Command Page Toolbar
	3.2.3 Working Directory Toolbar
	3.2.4 Command History Toolbar
	3.2.5 The Action List Toolbar

	3.3 Layout
	3.3.1 Command History Window

	3.4 Command Line History and Command Line Editing
	3.4.1 Error Output Window

	3.5 Source Page: Editing Programs
	3.5.1 Menus and Toolbars
	3.5.2 Layout and Usage
	3.5.3 Find and Replace
	3.5.4 Changing Editor Properties
	3.5.5 Error Output Window

	3.6 Data Page
	3.6.1 Menu Bar
	3.6.2 Layout
	3.6.3 Symbol Editor

	3.7 Debug Page
	3.7.1 Menus and Toolbars
	3.7.2 Using Breakpoints
	3.7.3 Setting and Clearing Breakpoints
	3.7.4 Stepping Through a Program
	3.7.5 Viewing and Editing Variables

	3.8 Help Page
	3.8.1 Hot Keys

	4 Navigating the GAUSS Graphical User Interface
	4.1 Hot Keys and Shortcuts
	4.2 Navigating Between Pages
	4.3 Focus Program Output on I/O
	4.4 Viewing Program Output from Other Pages
	4.5 F1 Help
	4.6 CTRL+F1 Source Browsing

	5 Using the GAUSS Debugger
	5.1 Starting the Debugger
	5.2 Examining Variables
	5.3 The Call Stack Window
	5.4 Ending Your Debug Session

	6 GAUSS Graphics
	6.1 Overview
	6.2 Basic Plotting
	6.3 Plot Customization
	6.4 PlotControl Structures
	6.5 Adding Data to Existing Plots
	6.6 Creating Subplots
	6.6.1 Creating Mixed Layouts
	6.6.2 Creating Custom Regions

	6.7 Interacting with Plots in GAUSS
	6.7.1 2-D Plots
	6.7.2 3-D Plots
	6.7.3 File Export
	6.7.4 Saving Graphs

	7 Using the Command Line Interface
	7.1 Viewing Graphics
	7.2 Command Line History and Command Line Editing
	7.2.1 Movement
	7.2.2 Editing
	7.2.3 History Retrieval

	7.3 Interactive Commands
	7.3.1 quit
	7.3.2 ed
	7.3.3 browse
	7.3.4 config

	7.4 Debugging
	7.4.1 General Functions
	7.4.2 Listing Functions
	7.4.3 Execution Functions
	7.4.4 View Commands
	7.4.5 Breakpoint Commands

	7.5 Using the Source Browser in TGAUSS

	8 Language Fundamentals
	8.1 Expressions
	8.2 Statements
	8.2.1 Executable Statements
	8.2.2 Nonexecutable Statements

	8.3 Programs
	8.3.1 Main Section
	8.3.2 Secondary Sections

	8.4 Compiler Directives
	8.5 Procedures
	8.6 Data Types
	8.6.1 Constants
	8.6.2 Matrices
	8.6.3 Sparse Matrices
	8.6.4 N-dimensional Arrays
	8.6.5 Strings
	8.6.6 String Arrays
	8.6.7 Character Matrices
	8.6.8 Date and Time Formats
	8.6.9 Special Data Types

	8.7 Operator Precedence
	8.8 Flow Control
	8.8.1 Looping
	8.8.2 Conditional Branching
	8.8.3 Unconditional Branching

	8.9 Functions
	8.10 Rules of Syntax
	8.10.1 Statements
	8.10.2 Case
	8.10.3 Comments
	8.10.4 Extraneous Spaces
	8.10.5 Symbol Names
	8.10.6 Labels
	8.10.7 Assignment Statements
	8.10.8 Function Arguments
	8.10.9 Indexing Matrices
	8.10.10 Arrays of Matrices and Strings
	8.10.11 Arrays of Procedures

	9 Operators
	9.1 Element-by-Element Operators
	9.2 Matrix Operators
	9.2.1 Numeric Operators
	9.2.2 Other Matrix Operators

	9.3 Relational Operators
	9.4 Logical Operators
	9.5 Other Operators
	9.6 Using Dot Operators with Constants
	9.7 Operator Precedence

	10 Procedures and Keywords
	10.1 Defining a Procedure
	10.1.1 Procedure Declaration
	10.1.2 Local Variable Declarations
	10.1.3 Body of Procedure
	10.1.4 Returning from the Procedure
	10.1.5 End of Procedure Definition

	10.2 Calling a Procedure
	10.3 Keywords
	10.3.1 Defining a Keyword
	10.3.2 Calling a Keyword

	10.4 Passing Procedures to Procedures
	10.5 Indexing Procedures
	10.6 Multiple Returns from Procedures
	10.7 Saving Compiled Procedures

	11 Random Number Generation in GAUSS
	11.1 Available Random Number Generators
	11.1.1 Choosing a random number generator

	11.2 Threadsafe Random Number Generators
	11.3 Parallel Random Number Generation
	11.3.1 Multiple stream generators
	11.3.2 Block-skipping

	12 Sparse Matrices
	12.1 Defining Sparse Matrices
	12.2 Creating and Using Sparse Matrices
	12.3 Sparse Support in Matrix Functions and Operators
	12.3.1 Return Types for Dyadic Operators

	13 N-Dimensional Arrays
	13.1 Bracketed Indexing
	13.2 EE Conformability
	13.3 Glossary of Terms

	14 Working with Arrays
	14.1 Initializing Arrays
	14.1.1 areshape
	14.1.2 aconcat
	14.1.3 aeye
	14.1.4 arrayinit
	14.1.5 arrayalloc

	14.2 Assigning to Arrays
	14.2.1 index operator
	14.2.2 getArray
	14.2.3 getMatrix
	14.2.4 getMatrix4D
	14.2.5 getScalar3D, getScalar4D
	14.2.6 putArray
	14.2.7 setArray

	14.3 Looping with Arrays
	14.3.1 loopnextindex

	14.4 Miscellaneous Array Functions
	14.4.1 atranspose
	14.4.2 amult
	14.4.3 amean, amin, amax
	14.4.4 getDims
	14.4.5 getOrders
	14.4.6 arraytomat
	14.4.7 mattoarray

	14.5 Using Arrays with GAUSS functions
	14.6 A Panel Data Model
	14.7 Appendix

	15 Structures
	15.1 Basic Structures
	15.1.1 Structure Definition
	15.1.2 Declaring an Instance
	15.1.3 Initializing an Instance
	15.1.4 Arrays of Structures
	15.1.5 Structure Indexing
	15.1.6 Saving an Instance to the Disk
	15.1.7 Loading an Instance from the Disk
	15.1.8 Passing Structures to Procedures

	15.2 Structure Pointers
	15.2.1 Creating and Assigning Structure Pointers
	15.2.2 Structure Pointer References
	15.2.3 Using Structure Pointers in Procedures

	15.3 Special Structures
	15.3.1 The DS Structure
	15.3.2 The PV Structure
	15.3.3 Miscellaneous PV Procedures
	15.3.4 Control Structures

	15.4 sqpSolvemt
	15.4.1 Input Arguments
	15.4.2 Output Argument
	15.4.3 Example
	15.4.4 The Command File

	16 Run-Time Library Structures
	16.1 The PV Parameter Structure
	16.2 Fast Pack Functions
	16.3 The DS Data Structure

	17 Multi-Threaded Programming in GAUSS
	17.1 The Functions
	17.2 GAUSS Threading Concepts
	17.3 Coding With Threads
	17.4 Coding Restrictions

	18 Libraries
	18.1 Autoloader
	18.1.1 Forward References
	18.1.2 The Autoloader Search Path

	18.2 Global Declaration Files
	18.3 Troubleshooting
	18.3.1 Using .dec Files

	19 Compiler
	19.1 Compiling Programs
	19.1.1 Compiling a File

	19.2 Saving the Current Workspace
	19.3 Debugging

	20 File I/O
	20.1 ASCII Files
	20.1.1 Matrix Data
	20.1.2 General File I/O

	20.2 Data Sets
	20.2.1 Layout
	20.2.2 Creating Data Sets
	20.2.3 Reading and Writing
	20.2.4 Distinguishing Character and Numeric Data

	20.3 GAUSS Data Archives
	20.3.1 Creating and Writing Variables to GDA's
	20.3.2 Reading Variables from GDA's
	20.3.3 Updating Variables in GDA's

	20.4 Matrix Files
	20.5 File Formats
	20.5.1 Small Matrix v89 (Obsolete)
	20.5.2 Extended Matrix v89 (Obsolete)
	20.5.3 Small String v89 (Obsolete)
	20.5.4 Extended String v89 (Obsolete)
	20.5.5 Small Data Set v89 (Obsolete)
	20.5.6 Extended Data Set v89 (Obsolete)
	20.5.7 Matrix v92 (Obsolete)
	20.5.8 String v92 (Obsolete)
	20.5.9 Data Set v92 (Obsolete)
	20.5.10 Matrix v96
	20.5.11 Data Set v96
	20.5.12 GAUSS Data Archives

	21 Foreign Language Interface
	21.1 Writing FLI Functions
	21.2 Creating Dynamic Libraries

	22 Data Transformations
	22.1 Data Loop Statements
	22.2 Using Other Statements
	22.3 Debugging Data Loops
	22.3.1 Translation Phase
	22.3.2 Compilation Phase
	22.3.3 Execution Phase

	22.4 Reserved Variables

	23 The GAUSS Profiler
	23.1 Using the GAUSS Profiler
	23.1.1 Collection
	23.1.2 Analysis

	24 Time and Date
	24.1 Time and Date Formats
	24.2 Time and Date Functions
	24.2.1 Timed Iterations

	25 ATOG
	25.1 Command Summary
	25.2 Commands
	25.3 Examples
	25.4 Error Messages

	26 Error Messages
	27 Maximizing Performance
	27.1 Library System
	27.2 Loops
	27.3 Memory Usage
	27.3.1 Hard Disk Maintenance
	27.3.2 CPU Cache

	A GAUSS Graphics Colors
	B Reserved Words Appendix
	C Singularity Tolerance Appendix
	C.1 Reading and Setting the Tolerance
	C.2 Determining Singularity

	D Publication Quality Graphics
	D.1 General Design
	D.2 Using Publication Quality Graphics
	D.2.1 Getting Started
	D.2.2 Graphics Coordinate System

	D.3 Graphic Panels
	D.3.1 Tiled Graphic Panels
	D.3.2 Overlapping Graphic Panels
	D.3.3 Nontransparent Graphic Panels
	D.3.4 Transparent Graphic Panels
	D.3.5 Using Graphic Panel Functions
	D.3.6 Inch Units in Graphic Panels
	D.3.7 Saving Graphic Panel Configurations

	D.4 Graphics Text Elements
	D.4.1 Selecting Fonts
	D.4.2 Greek and Mathematical Symbols

	D.5 Colors
	D.6 Global Control Variables

	E PQG Fonts
	E.1 Simplex
	E.2 Simgrma
	E.3 Microb
	E.4 Complex

	F PQG Graphics Colors
	28 Command Reference Introduction
	28.1 Documentation Conventions
	28.2 Command Components
	28.3 Using This Manual
	28.4 Global Control Variables
	28.4.1 Changing the Default Values
	28.4.2 The Procedure gausset

	29 Commands by Category
	29.1 Mathematical Functions
	29.2 Finance Functions
	29.3 Matrix Manipulation
	29.4 Sparse Matrix Handling
	29.5 N-Dimensional Array Handling
	29.6 Structures
	29.7 Data Handling (I/0)
	29.8 Compiler Control
	29.9 Multi-Threading
	29.10 Program Control
	29.11 OS Functions and File Management
	29.12 Workspace Management
	29.13 Error Handling and Debugging
	29.14 String Handling
	29.15 Time and Date Functions
	29.16 Console I/O
	29.17 Output Functions
	29.18 GAUSS Graphics
	29.19 PQG Graphics

	30 Command Reference
	a
	abs
	acf
	aconcat
	aeye
	amax
	amean
	AmericanBinomCall
	AmericanBinomCall_Greeks
	AmericanBinomCall_ImpVol
	AmericanBinomPut
	AmericanBinomPut_Greeks
	AmericanBinomPut_ImpVol
	AmericanBSCall
	AmericanBSCall_Greeks
	AmericanBSCall_ImpVol
	AmericanBSPut
	AmericanBSPut_Greeks
	AmericanBSPut_ImpVol
	amin
	amult
	annualTradingDays
	arccos
	arcsin
	areshape
	arrayalloc
	arrayindex
	arrayinit
	arraytomat
	asciiload
	asclabel
	astd
	astds
	asum
	atan
	atan2
	atranspose
	axmargin

	b
	balance
	band
	bandchol
	bandcholsol
	bandltsol
	bandrv
	bandsolpd
	bar
	base10
	begwind
	besselj
	bessely
	beta
	box
	boxcox
	break

	c
	call
	cdfBeta
	cdfBetaInv
	cdfBinomial
	cdfBinomialInv
	cdfBvn
	cdfBvn2
	cdfBvn2e
	cdfCauchy
	cdfCauchyInv
	cdfChic
	cdfChii
	cdfChinc
	cdfChincInv
	cdfExp
	cdfExpInv
	cdfFc
	cdfFnc
	cdfFncInv
	cdfGam
	cdfGenPareto
	cdfLaplace
	cdfLaplaceInv
	cdfLogistic
	cdfLogisticInv
	cdfMvn
	cdfMvnce
	cdfMvne
	cdfMvn2e
	cdfMvtce
	cdfMvte
	cdfMvt2e
	cdfN, cdfNc
	cdfNegBinomial
	cdfNegBinomialInv
	cdfN2
	cdfNi
	cdfPoisson
	cdfPoissonInv
	cdfRayleigh
	cdfRayleighInv
	cdfTc
	cdfTci
	cdfTnc
	cdfTvn
	cdfWeibull
	cdfWeibullInv
	cdir
	ceil
	ChangeDir
	chdir
	chiBarSquare
	chol
	choldn
	cholsol
	cholup
	chrs
	clear
	clearg
	close
	closeall
	cls
	code
	code (dataloop)
	cols
	colsf
	combinate
	combinated
	comlog
	compile
	complex
	con
	cond
	conj
	cons
	ConScore
	continue
	contour
	conv
	convertsatostr
	convertstrtosa
	corrm, corrvc, corrx
	corrms, corrxs
	cos
	cosh
	counts
	countwts
	create
	crossprd
	crout
	croutp
	csrcol, csrlin
	cumprodc
	cumsumc
	curve
	cvtos

	d
	datacreate
	datacreatecomplex
	datalist
	dataload
	dataloop (dataloop)
	dataopen
	datasave
	date
	datestr
	datestring
	datestrymd
	dayinyr
	dayofweek
	debug
	declare
	delete
	delete (dataloop)
	DeleteFile
	delif
	denseToSp
	denseToSpRE
	denToZero
	design
	det
	detl
	dfft
	dffti
	diag
	diagrv
	digamma
	dlibrary
	dllcall
	do while, do until
	dos
	doswin
	DOSWinCloseall
	DOSWinOpen
	dotfeq, dotfge, dotfgt, dotfle, dotflt, dotfne
	dotfeqmt, dotfgemt, dotfgtmt, dotflemt, dotfltmt, dotfnemt
	draw
	drop (dataloop)
	dsCreate
	dstat
	dstatmt
	dstatmtControlCreate
	dtdate
	dtday
	dttime
	dttodtv
	dttostr
	dttoutc
	dtvnormal
	dtvtodt
	dtvtoutc
	dummy
	dummybr
	dummydn

	e
	ed
	edit
	erfInv, erfCInv
	eig
	eigh
	eighv
	eigv
	elapsedTradingDays
	end
	endp
	endwind
	envget
	eof
	eqSolve
	eqSolvemt
	eqSolvemtControlCreate
	eqSolvemtOutCreate
	eqSolveSet
	erf, erfc
	erfcplx, erfccplx
	error
	errorlog
	errorlogat
	etdays
	ethsec
	etstr
	EuropeanBinomCall
	EuropeanBinomCall_Greeks
	EuropeanBinomCall_ImpVol
	EuropeanBinomPut
	EuropeanBinomPut_Greeks
	EuropeanBinomPut_ImpVol
	EuropeanBSCall
	EuropeanBSCall_Greeks
	EuropeanBSCall_ImpVol
	EuropeanBSPut
	EuropeanBSPut_Greeks
	EuropeanBSPut_ImpVol
	exctsmpl
	exec
	execbg
	exp
	extern (dataloop)
	external
	eye

	f
	fcheckerr
	fclearerr
	feq, fge, fgt, fle, flt, fne
	feqmt, fgemt, fgtmt, flemt, fltmt, fnemt
	fflush
	fft
	ffti
	fftm
	fftmi
	fftn
	fgets
	fgetsa
	fgetsat
	fgetst
	fileinfo
	filesa
	floor
	fmod
	fn
	fonts
	fopen
	for
	format
	formatcv
	formatnv
	fputs
	fputst
	fseek
	fstrerror
	ftell
	ftocv
	ftos
	ftostrC

	g
	gamma
	gammacplx
	gammaii
	gausset
	gdaAppend
	gdaCreate
	gdaDStat
	gdaDStatMat
	gdaGetIndex
	gdaGetName
	gdaGetNames
	gdaGetOrders
	gdaGetType
	gdaGetTypes
	gdaGetVarInfo
	gdaIsCplx
	gdaLoad
	gdaPack
	gdaRead
	gdaReadByIndex
	gdaReadSome
	gdaReadSparse
	gdaReadStruct
	gdaReportVarInfo
	gdaSave
	gdaUpdate
	gdaUpdateAndPack
	gdaVars
	gdaWrite
	gdaWrite32
	gdaWriteSome
	getarray
	getdims
	getf
	getmatrix
	getmatrix4D
	getname
	getnamef
	getNextTradingDay
	getNextWeekDay
	getnr
	getnrmt
	getorders
	getpath
	getPreviousTradingDay
	getPreviousWeekDay
	getRow
	getscalar3D
	getscalar4D
	getTrRow
	getwind
	gosub
	goto
	gradMT
	gradMTm
	gradMTT
	gradMTTm
	gradp, gradcplx
	graphprt
	graphset

	h
	hasimag
	header
	headermt
	hess
	hessMT
	hessMTg
	hessMTgw
	hessMTm
	hessMTmw
	hessMTT
	hessMTTg
	hessMTTgw
	hessMTTm
	hessMTw
	hessp, hesscplx
	hist
	histf
	histp
	hsec

	i
	if
	imag
	#include
	indcv
	indexcat
	indices
	indices2
	indicesf
	indicesfn
	indnv
	indsav
	intgrat2
	intgrat3
	inthp1
	inthp2
	inthp3
	inthp4
	inthpControlCreate
	intquad1
	intquad2
	intquad3
	intrleav
	intrleavsa
	intrsect
	intrsectsa
	intsimp
	inv, invpd
	invswp
	iscplx
	iscplxf
	isden
	isinfnanmiss
	ismiss

	k
	keep (dataloop)
	key
	keyav
	keyw
	keyword

	l
	lag (dataloop)
	lag1
	lagn
	lapeighb
	lapeighi
	lapeighvb
	lapeighvi
	lapgeig
	lapgeigh
	lapgeighv
	lapgeigv
	lapgsvdcst
	lapgsvds
	lapgsvdst
	lapgschur
	lapsvdcusv
	lapsvds
	lapsvdusv
	let
	lib
	library
	#lineson, #linesoff
	linsolve
	listwise (dataloop)
	ln
	lncdfbvn
	lncdfbvn2
	lncdfmvn
	lncdfn
	lncdfn2
	lncdfnc
	lnfact
	lngammacplx
	lnpdfmvn
	lnpdfmvt
	lnpdfn
	lnpdft
	load, loadf, loadk, loadm, loadp, loads
	loadarray
	loadd
	loadstruct
	loadwind
	local
	locate
	loess
	loessmt
	loessmtControlCreate
	log
	loglog
	logx
	logy
	loopnextindex
	lower
	lowmat, lowmat1
	ltrisol
	lu
	lusol

	m
	machEpsilon
	make (dataloop)
	makevars
	makewind
	margin
	matalloc
	matinit
	mattoarray
	maxc
	maxindc
	maxv
	maxvec
	maxbytes
	mbesseli
	meanc
	median
	mergeby
	mergevar
	minc
	minindc
	minv
	miss, missrv
	missex
	moment
	momentd
	movingave
	movingaveExpwgt
	movingaveWgt
	msym

	n
	new
	nextindex
	nextn, nextnevn
	nextwind
	null
	null1
	numCombinations

	o
	ols
	olsmt
	olsmtControlCreate
	olsqr
	olsqr2
	olsqrmt
	ones
	open
	optn, optnevn
	orth
	output
	outtyp (dataloop)
	outwidth

	p
	pacf
	packedToSp
	packr
	parse
	pause
	pdfCauchy
	pdfexp
	pdfGenPareto
	pdfLaplace
	pdflogistic
	pdfn
	pdfRayleigh
	pdfWeibull
	pi
	pinv
	pinvmt
	plotAddBar
	plotAddBox
	plotAddHist
	plotAddHistF
	plotAddHistP
	plotAddPolar
	plotAddScatter
	plotAddXY
	plotBar
	plotBox
	plotClearLayout
	plotCustomLayout
	plotGetDefaults
	plotHist
	plotHistF
	plotHistP
	plotLayout
	plotLogLog
	plotLogX
	plotLogY
	plotOpenWindow
	plotPolar
	plotSave
	plotScatter
	plotSetBar
	plotSetBkdColor
	plotSetGrid
	plotSetLegend
	plotSetLineColor
	plotSetLineStyle
	plotSetLineSymbol
	plotSetLineThickness
	plotSetNewWindow
	plotSetTitle
	plotSetXLabel
	plotSetYLabel
	plotSetZLabel
	plotSurface
	plotXY
	polar
	polychar
	polyeval
	polygamma
	polyint
	polymake
	polymat
	polymroot
	polymult
	polyroot
	pop
	pqgwin
	previousindex
	princomp
	print
	printdos
	printfm
	printfmt
	proc
	prodc
	psi
	putarray
	putf
	putvals
	pvCreate
	pvGetIndex
	pvGetParNames
	pvGetParVector
	pvLength
	pvList
	pvPack
	pvPacki
	pvPackm
	pvPackmi
	pvPacks
	pvPacksi
	pvPacksm
	pvPacksmi
	pvPutParVector
	pvTest
	pvUnpack

	q
	QNewton
	QNewtonmt
	QNewtonmtControlCreate
	QNewtonmtOutCreate
	QNewtonSet
	QProg
	QProgmt
	QProgmtInCreate
	qqr
	qqre
	qqrep
	qr
	qre
	qrep
	qrsol
	qrtsol
	qtyr
	qtyre
	qtyrep
	quantile
	quantiled
	qyr
	qyre
	qyrep

	r
	rank
	rankindx
	readr
	real
	recode
	recode (dataloop)
	recserar
	recsercp
	recserrc
	rerun
	reshape
	retp
	return
	rev
	rfft
	rffti
	rfftip
	rfftn
	rfftnp
	rfftp
	rndBernoulli
	rndBeta
	rndCauchy
	rndcon, rndmult, rndseed
	rndCreateState
	rndExp
	rndgam
	rndGamma
	rndGeo
	rndGumbel
	rndi
	rndKMbeta
	rndKMgam
	rndKMi
	rndKMn
	rndKMnb
	rndKMp
	rndKMu
	rndKMvm
	rndLaplace
	rndLCbeta
	rndLCgam
	rndLCi
	rndLCn
	rndLCnb
	rndLCp
	rndLCu
	rndLCvm
	rndLogNorm
	rndMVn
	rndMVt
	rndn
	rndnb
	rndNegBinomial
	rndp
	rndPoisson
	rndStateSkip
	rndu
	rndvm
	rotater
	rndWeibull
	rndWishart
	round
	rows
	rowsf
	rref
	run

	s
	satostrC
	save
	saveall
	saved
	savestruct
	savewind
	scale
	scale3d
	scalerr
	scalinfnanmiss
	scalmiss
	schtoc
	schur
	screen
	searchsourcepath
	seekr
	select (dataloop)
	selif
	seqa, seqm
	setarray
	setdif
	setdifsa
	setvars
	setvwrmode
	setwind
	shell
	shiftr
	show
	sin
	singleindex
	sinh
	sleep
	solpd
	sortc, sortcc
	sortd
	sorthc, sorthcc
	sortind, sortindc
	sortmc
	sortr, sortrc
	spBiconjGradSol
	spChol
	spConjGradSol
	spCreate
	spDenseSubmat
	spDiagRvMat
	spEigv
	spEye
	spGetNZE
	spline
	spLDL
	spLU
	spNumNZE
	spOnes
	SpreadsheetReadM
	SpreadsheetReadSA
	SpreadsheetWrite
	spScale
	spSubmat
	spToDense
	spTrTDense
	spTScalar
	spZeros
	sqpSolve
	sqpSolveMT
	sqpSolveMTControlCreate
	sqpSolveMTlagrangeCreate
	sqpSolveMToutCreate
	sqpSolveSet
	sqrt
	stdc
	stdsc
	stocv
	stof
	stop
	strcombine
	strindx
	strlen
	strput
	strrindx
	strsect
	strsplit
	strsplitPad
	strtodt
	strtof
	strtofcplx
	strtriml
	strtrimr
	strtrunc
	strtruncl
	strtruncpad
	strtruncr
	submat
	subscat
	substute
	subvec
	sumc
	sumr
	surface
	svd
	svd1
	svd2
	svdcusv
	svds
	svdusv
	sysstate
	system

	t
	tab
	tan
	tanh
	tempname
	ThreadBegin
	ThreadEnd
	ThreadJoin
	ThreadStat
	time
	timedt
	timestr
	timeutc
	title
	tkf2eps
	tkf2ps
	tocart
	todaydt
	toeplitz
	token
	topolar
	trace
	trap
	trapchk
	trigamma
	trimr
	trunc
	type
	typecv
	typef

	u
	union
	unionsa
	uniqindx
	uniqindxsa
	unique
	uniquesa
	upmat, upmat1
	upper
	use
	utctodt
	utctodtv
	utrisol

	v
	vals
	varget
	vargetl
	varmall
	varmares
	varput
	varputl
	vartypef
	vcm, vcx
	vcms, vcxs
	vec, vecr
	vech
	vector (dataloop)
	vget
	view
	viewxyz
	vlist
	vnamecv
	volume
	vput
	vread
	vtypecv

	w
	wait, waitc
	walkindex
	window
	writer

	x
	xlabel
	xlsGetSheetCount
	xlsGetSheetSize
	xlsGetSheetTypes
	xlsMakeRange
	xlsReadM
	xlsReadSA
	xlsWrite
	xlsWriteM
	xlsWriteSA
	xpnd
	xtics
	xy
	xyz

	y
	ylabel
	ytics

	z
	zeros
	zeta
	zlabel
	ztics

	G Obsolete Commands
	Index

