
UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
TM

GAUSS

User Guide
Aptech Systems, Inc.— Mathematical and Statistical System



UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software
described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in
accordance with the terms of this agreement. The purchaser may make one
copy of the software for backup purposes. No part of this manual may be
reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying or recording, for any purpose other than
the purchaser’s personal use without the written permission of Aptech
Systems, Inc.

© 1984–2001 Aptech Systems, Inc. All rights reserved.

GAUSS and GAUSS Light are trademarks of Aptech Systems, Inc.
GEM is a trademark of Digital Research, Inc.
Lotus is a trademark of Lotus Development Corp.
HP Laser Jet and HP-GL are trademarks of Hewlett-Packard Corp.
PostScript is a trademark of Adobe Systems Inc.
IBM is a trademark of International Business Machines Corporation.
GraphicC is a trademark of Scientific Endeavors Corporation.
Tektronix is a trademark of Tektronix, Inc.
Windows is a registered trademark of Microsoft Corporation.
Other trademarks are the property of their respective owners.

Part Number: 1296
Version 3.6
Revised April 4, 2001



Contents

UserGuid.book Page iii Monday, May 7, 2001 11:28 AM
Contents

Introduction ................................................................................................................... 1-1

Product Overview............................................................................................................ 1-1

Documentation Conventions ........................................................................................... 1-2

Getting Started .............................................................................................................. 2-1

Machine Requirements ................................................................................................... 2-1

Installation Under Windows ............................................................................................ 2-2

Installation Under UNIX/Linux ......................................................................................... 2-2

Using the Command Line Interface............................................................................. 3-1

Viewing Graphics...................................................................................................... 3-2
Interactive Commands.............................................................................................. 3-2
Debugging ................................................................................................................ 3-4

Using the Windows Interface ....................................................................................... 4-1

GAUSS Windows............................................................................................................ 4-1

Command Window ................................................................................................... 4-1
Edit Window.............................................................................................................. 4-2
Output Window ......................................................................................................... 4-2
Debug Window ......................................................................................................... 4-2
Matrix Editor Window................................................................................................ 4-2
HTML-Based Help Window ...................................................................................... 4-2
Online Help............................................................................................................... 4-2

Running Commands ....................................................................................................... 4-3

Summary .................................................................................................................. 4-3
Running Commands Interactively............................................................................. 4-3
Running Programs in Files ....................................................................................... 4-4

Editing Keys .................................................................................................................... 4-5

Cursor Movement Keys ............................................................................................ 4-5
Edit Keys .................................................................................................................. 4-5
Text Selection Keys .................................................................................................. 4-5

Shortcut Keys.................................................................................................................. 4-6

Command Keys ........................................................................................................ 4-6
Function Keys........................................................................................................... 4-7
Menu Keys................................................................................................................ 4-8
Edit Keys .................................................................................................................. 4-8
Toolbar...................................................................................................................... 4-8

Menu Bar ....................................................................................................................... 4-9
iii



GAUSS User Guide

UserGuid.book Page iv Monday, May 7, 2001 11:28 AM
File Menu.................................................................................................................. 4-9
Edit Menu ................................................................................................................4-11
Search Menu .......................................................................................................... 4-14
Mode Menu............................................................................................................. 4-15
Debug Menu ........................................................................................................... 4-17
Action Menu............................................................................................................ 4-19
Configure Menu ...................................................................................................... 4-23
Window Menu......................................................................................................... 4-26
Help Menu .............................................................................................................. 4-28
Toolbar.................................................................................................................... 4-29
Status Bar ............................................................................................................... 4-36
Debug Window ....................................................................................................... 4-38

GAUSS Source Browser............................................................................................... 5-1

Language Fundamentals.............................................................................................. 6-1

Expressions .................................................................................................................... 6-1

Statements ...................................................................................................................... 6-2

Executable Statements ............................................................................................. 6-2
Nonexecutable Statements....................................................................................... 6-2

Programs ........................................................................................................................ 6-3

Main Section............................................................................................................. 6-3
Secondary Sections.................................................................................................. 6-4

Compiler Directives......................................................................................................... 6-4

Procedures...................................................................................................................... 6-6

Data Types ...................................................................................................................... 6-7

Constants ................................................................................................................. 6-7
Matrices .................................................................................................................... 6-8
Strings and String Arrays ........................................................................................ 6-14
Character Matrices ................................................................................................. 6-18
Date and Time Formats .......................................................................................... 6-19
Special Data Types................................................................................................. 6-20

Operator Precedence.................................................................................................... 6-22

Flow Control .................................................................................................................. 6-23

Looping................................................................................................................... 6-24
Conditional Branching ............................................................................................ 6-27
Unconditional Branching......................................................................................... 6-28

Functions ...................................................................................................................... 6-29

Rules of Syntax ............................................................................................................. 6-29

Statements.............................................................................................................. 6-29
Case ....................................................................................................................... 6-30
iv



Contents

UserGuid.book Page v Monday, May 7, 2001 11:28 AM
Comments .............................................................................................................. 6-30
Extraneous Spaces................................................................................................. 6-30
Symbol Names ....................................................................................................... 6-30
Labels ..................................................................................................................... 6-30
Assignment Statements .......................................................................................... 6-31
Function Arguments ............................................................................................... 6-31
Indexing Matrices ................................................................................................... 6-31
Arrays of Matrices and Strings................................................................................ 6-32
Arrays of Procedures.............................................................................................. 6-33

Operators....................................................................................................................... 7-1

Element-by-Element Operators ...................................................................................... 7-1

Matrix Operators ............................................................................................................. 7-4

Numeric Operators ................................................................................................... 7-4
Other Matrix Operators............................................................................................. 7-7

Relational Operators ....................................................................................................... 7-8

Logical Operators...........................................................................................................7-11

Other Operators ............................................................................................................ 7-13

Assignment Operator.............................................................................................. 7-13
Comma ................................................................................................................... 7-13
Period ..................................................................................................................... 7-14
Space ..................................................................................................................... 7-14
Colon ...................................................................................................................... 7-14
Ampersand ............................................................................................................. 7-14
String Concatenation .............................................................................................. 7-14
String Array Concatenation..................................................................................... 7-15
String Variable Substitution..................................................................................... 7-16

Using Dot Operators with Constants............................................................................. 7-17

Operator Precedence.................................................................................................... 7-18

Procedures and Keywords........................................................................................... 8-1

Defining a Procedure ...................................................................................................... 8-2
Procedure Declaration.............................................................................................. 8-3
Local Variable Declarations ...................................................................................... 8-3
Body of Procedure.................................................................................................... 8-4
Returning from the Procedure .................................................................................. 8-4
End of Procedure Definition...................................................................................... 8-5

Calling a Procedure ........................................................................................................ 8-5

Keywords ........................................................................................................................ 8-6

Defining a Keyword .................................................................................................. 8-6
Calling a Keyword..................................................................................................... 8-7
v



GAUSS User Guide

UserGuid.book Page vi Monday, May 7, 2001 11:28 AM
Passing Procedures to Procedures ................................................................................ 8-8

Indexing Procedures ....................................................................................................... 8-9

Multiple Returns from Procedures ................................................................................ 8-10

Saving Compiled Procedures ....................................................................................... 8-12

Libraries......................................................................................................................... 9-1

Autoloader....................................................................................................................... 9-1

Forward References ................................................................................................. 9-1
The Autoloader Search Path .................................................................................... 9-2

Global Declaration Files .................................................................................................. 9-8

Troubleshooting .............................................................................................................9-11

Using dec Files ....................................................................................................... 9-12

Compiler ...................................................................................................................... 10-1

Compiling Programs ..................................................................................................... 10-1

Compiling a File...................................................................................................... 10-2

Saving the Current Workspace ..................................................................................... 10-2

Debugging..................................................................................................................... 10-2

File I/O .......................................................................................................................... 11-1

ASCII Files .....................................................................................................................11-2

Matrix Data ..............................................................................................................11-3
General File I/O .......................................................................................................11-5

Data Sets ...................................................................................................................... 11-6

Layout......................................................................................................................11-6
Creating Data Sets ..................................................................................................11-7
Reading and Writing ................................................................................................11-7
Distinguishing Character and Numeric Data ...........................................................11-9

Matrix Files...................................................................................................................11-11

File Formats .................................................................................................................11-11

Small Matrix v89 (Obsolete) ..................................................................................11-12
Extended Matrix v89 (Obsolete) ............................................................................11-13
Small String v89 (Obsolete)...................................................................................11-13
Extended String v89 (Obsolete).............................................................................11-14
Small Data Set v89 (Obsolete) ..............................................................................11-14
Extended Data Set v89 (Obsolete)....................................................................... 11-16
Matrix v92 (Obsolete) ............................................................................................11-16
String v92 (Obsolete).............................................................................................11-17
Data Set v92 (Obsolete) ........................................................................................11-18
vi



Contents

UserGuid.book Page vii Monday, May 7, 2001 11:28 AM
Matrix v96 ............................................................................................................. 11-19
Data Set v96..........................................................................................................11-20

Foreign Language Interface....................................................................................... 12-1

Creating Dynamic Libraries........................................................................................... 12-1

Writing FLI Functions .................................................................................................... 12-3

Data Exchange ............................................................................................................ 13-1

Formats Supported ....................................................................................................... 13-1

Data Exchange Procedures .......................................................................................... 13-2

Global Variables ............................................................................................................ 13-3

Data Transformations ................................................................................................. 14-1

Using Data Loop Statements ........................................................................................ 14-2

Using Other Statements ................................................................................................ 14-2

Debugging Data Loops ................................................................................................. 14-2

Translation Phase................................................................................................... 14-3
Compilation Phase ................................................................................................. 14-3
Execution Phase..................................................................................................... 14-3

Reserved Variables ....................................................................................................... 14-3

Publication Quality Graphics..................................................................................... 15-1

General Design ............................................................................................................. 15-1

Using Publication Quality Graphics............................................................................... 15-2

Getting Started........................................................................................................ 15-2
Graphics Coordinate System.................................................................................. 15-6

Graphics Graphic Panels .............................................................................................. 15-6

Tiled Graphic Panels .............................................................................................. 15-6
Overlapping Graphic Panels................................................................................... 15-7
Nontransparent Graphic Panels ............................................................................. 15-7
Transparent Graphic Panels................................................................................... 15-7
Using Graphic Panel Functions .............................................................................. 15-8
Inch Units in Graphics Graphic Panels................................................................... 15-9
Saving Graphic Panel Configurations..................................................................... 15-9

Graphics Text Elements ................................................................................................ 15-9

Selecting Fonts..................................................................................................... 15-10
Greek and Mathematical Symbols.........................................................................15-11

Colors.......................................................................................................................... 15-12
vii



GAUSS User Guide

UserGuid.book Page viii Monday, May 7, 2001 11:28 AM
Global Control Variables ............................................................................................. 15-13

Utilities ......................................................................................................................... 16-1

ATOG ............................................................................................................................ 16-1

Command Summary............................................................................................... 16-1
Commands ............................................................................................................. 16-3
Examples.............................................................................................................. 16-11
Error Messages .................................................................................................... 16-13

LIBLIST ....................................................................................................................... 16-15

Report Format ...................................................................................................... 16-16
Using LIBLIST ...................................................................................................... 16-17

Error Messages ........................................................................................................... 17-1

Maximizing Performance............................................................................................ 18-1

Library System .............................................................................................................. 18-1

Loops ............................................................................................................................ 18-2

Virtual Memory .............................................................................................................. 18-2

Data Sets................................................................................................................ 18-2
Hard Disk Maintenance .......................................................................................... 18-3
CPU Cache............................................................................................................. 18-3

Fonts Appendix .............................................................................................................A-1

Simplex ...........................................................................................................................A-2

Simgrma..........................................................................................................................A-3

Microb .............................................................................................................................A-4

Complex..........................................................................................................................A-5

Reserved Words Appendix ..........................................................................................B-1

Singularity Tolerance Appendix ..................................................................................C-1

Reading and Setting the Tolerance.................................................................................C-2

Determining Singularity ...................................................................................................C-2

Index........................................................................................................................ Index-1
viii



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Introduction1

Product Overview

GAUSS™ is a complete analysis environment suitable for performing quick
calculations, complex analysis of millions of data points, or anything in
between. Whether you are new to computerized analysis or a seasoned
programmer, the GAUSS family of products combine to offer you an easy to
learn environment that is powerful and versatile enough for virtually any
numerical task.

Since its introduction in 1984, GAUSS has been the standard for serious
number crunching and complex modeling of large-scale data. Worldwide
acceptance and use in government, industry, and the academic community is a
firm testament to its power and versatility.

The GAUSS System can be described several ways: It is an exceptionally
efficient number cruncher, a comprehensive programming language, and an
interactive analysis environment. GAUSS may be the only numerical tool you
will ever need.
1-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Documentation Conventions

The following table describes how text formatting is used to identify GAUSS
programming elements.

Text Style Use Example

regular text narrative “... text formatting is used...”

bold text emphasis "...not supported under
UNIX."

italic text variables “... If vnames is a string or has
fewer elements than x has
columns, it will be...”

monospace code example if scalerr(cm);

cm = inv(x);

endif;

monospace bold Refers to a GAUSS
programming element
within a narrative
paragraph.

“...as explained under
create ...”
1-2



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Getting Started2

Installation Under UNIX/Linux

1. Make a directory to install GAUSS in.

2. cd to that directory.

3. Unzip the .gz file.

4. Untar the .tar file.

5. Put the installation directory in the executable path.

6. Put the installation directory in the shared library search path.

For last minute information, see README.term.

Installation Under Windows

Machine Requirements

• A 486 computer or higher.

• Windows 95, 98, NT 4.0, or 2000.

• Memory requirements (RAM)
2-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Windows 95/98: 16 MB minimum, 32 MB recommended.

Windows NT 4.0: 32 MB minimum, 64 MB recommended.

Windows 2000: 64 MB minimum, 128 MB recommended.

• Free hard disk space requirements:

Minimum of 100 MB free hard disk space, more may be needed depending on
the size of matrices and the complexity of the program.

Installation from Download

Downloading

The production release is in GAUSS_3.6_Win_heavy.zip.

The GUI has online documentation in HTML format. There are also PDF versions of
the Quick Start Guide and GAUSS manuals in this directory that you can download
separately if you want them.

GAUSS_3.6_Manual.zip

Installation

Download GAUSS_3.6_Win_heavy.zip, unzip it in a temp directory, and run
setup.exe.

If you are doing a command line ftp, once logged on you will be placed in the
GAUSS35 directory and will have access to all files contained in that directory and no
others. Remember to set the transfer protocol to "bin" before downloading binary
files. Use the "get" command to get the files you want off the ftp site.

To install the license, please refer to the Quick Start Guide.

Installation from CD

Insert the GAUSS 3.6 compact disc into the CD-ROM drive, and setup should start
automatically. If setup does not start automatically, click Start, then click Run. Type
D:\setup.exe in the dialog box (where D is the drive letter of the CD-ROM
drive).

You can use this procedure for the initial installation of GAUSS, and for additions or
modifications to GAUSS components.

To install the license, please refer to the Quick Start Guide.
2-2



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Using the Command Line

Interface3

TGAUSS is the command line version of GAUSS. The executable file, tgauss is
located in the GAUSS installation directory.

The format for using TGAUSS is:

tgauss flag(s) program program...

-b Execute file in batch mode and then exit. You can execute
multiple files by separating file names with spaces.

-l logfile Set the name of the batch mode log file when using the -b
argument. The default is wksp/gauss.log.###, where
### is the pid.

-e expression Executes a GAUSS expression. This command is not logged
when GAUSS is in batch mode.

-o Suppresses the sign-on banner (output only).

-T Turns the dataloop translator on.

-t Turns the dataloop translator off.
3-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Viewing Graphics

GAUSS generates .tkf files for graphical output. The default output for graphics is
graphic.tkf. Under Windows, you can use vwr to view the results of a file.
Under Windows and UNIX, two functions are available to convert .tkf files to
PostScript for printing and viewing with external viewers: the tkf2ps function will
convert .tkf files to PostScript (.ps) files, and the tkf2eps function will convert
.tkf files to encapsulated PostScript (.eps) files. For example, to convert the file
graphic.tkf to a postscript file named graphic.ps use:

ret = tkf2ps("filename.tkf", "filename.ps")

If the function is successful it returns 0.

Interactive Commands

quit

The quit command will exit TGAUSS.

The format for quit is:

quit

You can also use the system command to exit TGAUSS from either the command
line or a program (see system in the GAUSS Language Reference).

The format for system is:

system

ed

The ed command will open an input file in an external text editor, see ed in the
GAUSS Language Reference.

The format for ed is:

ed filename

browse

The browse command allows you to search for specific symbols in a file and open
the file in the default editor. You can use wildcards to extend search capabilities of the
browse command

The format for browse is:

browse symbol
3-2



Using the Command Line Interface

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
config

The config command gives you access to the configuration menu allowing you to
change the way GAUSS runs and compiles files.

The format for config is:

config

Run Menu   

Compile Menu   

Translator Toggles on/off the translation of a file using
dataloop. The translator is not necessary for
GAUSS program files not using dataloop.

Translator line
number tracking

Toggles on/off execution time line number
tracking of the original file before translation.

Line number
tracking

Toggles on/off the execution time line number
tracking. If the translator is on, the line numbers
refer to the translated file.

Autoload Toggles on/off the autoloader.

Autodelete Toggles on/off autodelete.

GAUSS Library Toggles on/off the GAUSS library functions.

User Library Toggles on/off the user library functions.

Declare
Warnings

Toggles on/off the declare warning messages
during compiling.

Compiler Trace Off Turns off the compiler trace
function.

File Traces program file openings and
closings.

Line Traces compilation by line.

Symbol Creates a report of procedures
and the local and global symbols
they reference.
3-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
Debugging

The debug command runs a program under the source level debugger.

The format for debug is:

debug filename

General Functions   

Listing Functions   

? Displays a list of available commands.

q/Esc Exits the debugger and return to the GAUSS
command line.

+/- Disables the last command repeat function.

l number Displays a specified number of lines of source code in
the current file.

lc Displays source code in the current file starting with
the current line.

ll file line Displays source code in the named file starting with
the specified line.

ll file Displays source code in the named file starting with
the first line.

ll line Displays source code starting with the specified line.
File does not change.

ll Displays the next page of source code.

lp Displays the previous page of source code.
3-4



Using the Command Line Interface

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
Execution Functions

s number Executes the specified number of lines, stepping over
procedures.

i number Executes the specified number of lines, stepping into
procedures.

x number Executes code from the beginning of the program to
the specified line count, or until a breakpoint is hit.

g [[ args ]] Executes from the current line to the end of the
program, stopping at breakpoints. The optional
arguments specify other stopping points. The syntax
for each optional arguments is:

filename line cycle The debugger will stop every
cycle times it reaches the
specified line in the named
file.

filename line The debugger will stop when
it reaches the specified line in
the named file.

filename ,, cycle The debugger will stop every
cycle times it reaches any line
in the named file.

line cycle The debugger will stop every
cycle times it reaches the
specified line in the current
file.

filename The debugger will stop at
every line in the named file.

line The debugger will stop when
it reaches the specified line in
the current file.

procedure cycle The debugger will stop every
cycle times it reaches the first
line in a called procedure.
3-5



GAUSS User Guide

UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM
View Commands   

The display properties of matrices can be set using the following commands.

procedure The debugger will stop every
time it reaches the first line in
a called procedure.

j [[ args ]] Executes code to a specified line, procedure, or cycle
in the file without stopping at breakpoints. The
optional arguments are the same as g, listed above.

jx number Executes code to the execution count specified
(number) without stopping at breakpoints.

o Executes the remainder of the current procedure (or to
a breakpoint) and stops at the next line in the calling
procedure.

v [[ vars ]] Searches for (a local variable, then a global variable)
and displays the value of a specified variable.

v$ [[ vars ]] Searches for (a local variable, then a global variable)
and displays the specified character matrix.

r Specifies the number of rows to be shown.

c Specifies the number of columns to be shown.

number,number Specifies the number of rows and columns to be shown.

w Specifies the width of the columns to be shown.

p Specifies the precision shown.

f Specifies the format of the numbers as decimal, scientific,
or auto format.

q Quits the matrix viewer.
3-6



Using the Command Line Interface

UserGuid.book Page 7 Monday, May 7, 2001 11:28 AM
Breakpoint Commands   

lb Shows all the breakpoints currently defined.

b [[ args ]] Sets a breakpoint in the code. The syntax for each
optional argument is:

filename line cycle The debugger will stop every
cycle times it reaches the
specified line in the named
file.

filename line The debugger will stop when
it reaches the specified line in
the named file.

filename ,, cycle The debugger will stop every
cycle times it reaches any line
in the named file.

line cycle The debugger will stop every
cycle times it reaches the
specified line in the current
file.

filename The debugger will stop at
every line in the named file.

line The debugger will stop when
it reaches the specified line in
the current file.

procedure cycle The debugger will stop every
cycle times it reaches the first
line in a called procedure.

procedure The debugger will stop every
time it reaches the first line in
a called procedure.

d [[ args ]] Removes a previously specified breakpoint. The
optional arguments are the same arguments as b, listed
above.
3-7



UserGuid.book Page 8 Monday, May 7, 2001 11:28 AM



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Using the Windows Interface4

Welcome to GAUSS!

This new GAUSS Windows interface consists of a multiple document interface you
can customize. The interface supports Command and Edit windows for sending
queries to GAUSS, and an Output window for receiving output from GAUSS. The
editor allows you to choose fonts, colors and keystrokes, and supports split screens,
bookmarks and macros. Graphics are also supported.

Included with this version of GAUSS is a full debugger with breakpoints and watch
variables, context sensitive help, and a source browser.

GAUSS Windows
GAUSS uses six types of windows: a Command window, an Edit window, an Output
window, a Debug window, a Matrix Editor window, and an HTML-based Help
window. GAUSS also offers an integrated context sensitive help system.

Command Window

You enter interactive commands in the Command window. This window can be
selected from the Windows Menu or from the Status bar. Output in Cmnd I/O mode
will be written to the Command window.
4-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Edit Window

An Edit window is created when you open a file. When you execute GAUSS from an
Edit window, the entire file is executed. This is the equivalent of the GAUSS run
filename statement.

If more than one file is loaded, the last file loaded or executed becomes the active file
when you click the Edit status on the Status bar. Repeated clicking of the Edit status
cycles through all loaded Edit windows.

Output Window

Output is written to the Output window in Split I/O Output mode. GAUSS commands
cannot be executed from this window.

Debug Window

The Debug window is displayed during a debugging session. The other windows are
still accessible, and you can toggle between the Output window and the Debug
Window by pressing CTRL+D. This window cannot be minimized nor closed once it
is opened.

NOTE: The Debug window runs in its own thread. If the Debug window will not open,
check that the Thread setting is Per Call in the Priority dialog box, accessed from the
Configure Menu.

Matrix Editor Window

You use the Matrix Editor window to create or edit a matrix.

HTML-Based Help Window

This window is used to display HTML HELP pages and to provide access to the Web.

You can select the various child windows from the windows shown on the Windows
Menu or by selecting the desired window by clicking on the status on the Status bar.
You can toggle between the Command or Edit window and the Output window by
pressing F5.

Online Help

GAUSS has an easy-to-use context sensitive online Help system.

In GAUSS for Windows, put the cursor on a command or function name and press F1.
For all intrinsic commands and functions, the GAUSS Command Reference for the
command is displayed. For all other external procedrues in active libraries, an HTML
window is opened containing a source code file. You may then scroll through file to
find the desired symbol.
4-2



Using the Windows Interface

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
Running Commands
The GAUSS interface allows you to run programs that consist of single commands or
blocks of commands executed interactively, as well as large-scale programs that may
consist of commands in one or more files.

Interactive commands can be entered at the “»” prompt in the Command window or
selected using the mouse and clicking the Run Marked Block button on the Toolbar.

GAUSS keeps track of two types of files: an active file and a main file. The active file
is the file that is currently displayed. The main file is the file that is executed to run
the current job or project.

Summary

Running Commands Interactively

Description

When you run commands interactively, the actual code being processed is called the
“active block.” The active block is that code between the GAUSS prompt (») and the
end of the current line. Thus, the active block can be one or more lines of code.

You can run the code using one of the following:

• Selecting Run Commands from the Action Menu.

• Pressing CTRL+F2.

• Clicking the Run Commands button on the Toolbar.

• Clicking the GAUSS Status on the Status bar.

• Pressing Enter.

A block of code can be executed by selecting the block with the mouse and then
running that block using any of the first four methods.

Note: The GAUSS prompt (») at the beginning of the selected text is ignored.

The GAUSS output occurs on the subsequent line.

Mode Keys
Interactive commands Enter, CTRL+F2
Active file CTRL+F2
Marked text CTRL+F2
Main file F2
4-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
Options

• An Output Mode option specifies whether the output is displayed in the
Command window (Cmnd I/O) or the Output window (Split I/O). You can
toggle this option by clicking the status on the Status bar.

• An Enter to Execute option is available that determines whether pressing
Enter will run the GAUSS command. You can toggle this option by clicking the
status on the Status bar.

Running Programs in Files

You can execute the currently displayed file (the active file) by using one of the
following:

• Selecting Run Program on the Action menu.

• Pressing CTRL+F2.

• Clicking the Run Current File button on the Toolbar.

• Clicking the GAUSS Status on the Status bar.

Note: If a block of code is selected, then this block, and not the entire file, will be
executed. The current line number is displayed on the Status bar.

You can execute the file displayed on the Main file list (the main file) by using one of
the following:

• Selecting Run Main File on the Action Menu.

• Pressing F2.

• Clicking the Run Main file button on the Toolbar.

Options

• An Output Mode option specifies whether the output is displayed in the
Command window (Cmnd I/O) or the Output window (Split I/O). You can
toggle this option by clicking the status on the Status bar.

• An Enter to Execute option is available that determines whether typing Enter
will execute the GAUSS command. You can toggle this option by clicking the
status on the Status bar.
4-4



Using the Windows Interface

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
Editing Keys

Cursor Movement Keys

Edit Keys

Text Selection Keys

UP ARROW Up one line
DOWN ARROW Down one line
LEFT ARROW Left one character
RIGHT ARROW Right one character
CTRL+LEFT ARROW Left one word
CTRL+RIGHT ARROW Right one word
HOME Beginning of line
END End of line
PAGE UP Next screen up
PAGE DOWN Next screen down
CTRL+PAGE UP Top of window
CTRL+PAGE DOWN Bottom of window
CTRL+HOME Beginning of document
CTRL+END End of document

BACKSPACE Delete character to left of cursor, or delete selected text
DEL Delete character to right of cursor, or delete selected text
CTRL+INS or CTRL+C Copy selected text to Windows clipboard
SHIFT+DEL or CTRL+X Delete selected text and place it onto Windows clipboard
SHIFT+INS or CTRL+V Paste text from Windows clipboard at the cursor position
CTRL+Z Undo last editing action
Keypad Plus (+) Copy selected text or current line to Windows clipboard

(BRIEF keypad preference only)
Keypad Minus (–) Delete selected text or current line and place it onto

Windows clipboard (BRIEF keypad preference only)
Keypad Insert (Ins) Paste text from Windows clipboard at cursor position

(BRIEF keypad preference only)
Keypad Asterisk (*) Undo last editing action (BRIEF keypad preference only)

SHIFT+UP ARROW Select one line of text up
4-5



GAUSS User Guide

UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM
Shortcut Keys

Command Keys

SHIFT+DOWN ARROW Select one line of text down
SHIFT+LEFT ARROW Select one character to the left
SHIFT+RIGHT ARROW Select one character to the right
SHIFT+CTRL+LEFT ARROW Select one word to the left
SHIFT+CTRL+RIGHT ARROW Select one word to the right
SHIFT+HOME Select to beginning of the line
SHIFT+END Select to end of the line
SHIFT+PAGE UP Select up one screen
SHIFT+PAGE DOWN Select down one screen
SHIFT+CTRL+HOME Select text to beginning of document
SHIFT+CTRL+END Select text to end of document

CTRL+B Open Bookmark dialog box

CTRL+C Copy selected text to Windows clipboard

CTRL+D Toggle Debug/Output window

CTRL+F Find/Replace text

CTRL+G Go to specified line number

CTRL+N Open a new, untitled window

CTRL+O Open a file and start a new window

CTRL+P Print current window, or selected text

CTRL+Q Exit GAUSS

CTRL+R Run file

CTRL+S Save window to file

CTRL+V Paste text from Windows clipboard to cursor
position in active window

CTRL+X Cut selected text and place copy on the
Windows clipboard

CTRL+Z Undo last edit
4-6



Using the Windows Interface

UserGuid.book Page 7 Monday, May 7, 2001 11:28 AM
Function Keys

F1 Open GAUSS Help system or, if
you have selected a GAUSS
keyword or other supported object,
Context Sensitive Help

F2 Run Main File

F3 Find again

F4 Replace again

F6 Toggle operating mode

F7 Clear all text from cursor to end of
text

F10 Select Menu bar

F11 Toggle macro record on/off

F12 Playback macro

ALT+F4 Exit GAUSS

CTRL+F1 Source file browser

CTRL+F2 Run Commands

CTRL+F4 Close active window

CTRL+F5 Toggle between Input and Output
windows

CTRL+F6 Switch to next window

CTRL+n Jump to nth bookmark in
bookmark list

SHIFT+F2 Insert GAUSS prompt

ESC Unmark marked text
4-7



GAUSS User Guide

UserGuid.book Page 8 Monday, May 7, 2001 11:28 AM
Menu Keys

Edit Keys

Toolbar

ALT+A Action Menu

ALT+C Configure Menu

ALT+D Debug Menu

ALT+E Edit Menu

ALT+F File Menu

ALT+H Help Menu

ALT+M Mode Menu

ALT+S Search Menu

ALT+W Window Menu

Keypad Plus (+) Copy selected text to Windows clipboard
(BRIEF keypad preference only)

Keypad Minus (–) Delete selected text to Windows clipboard
(BRIEF keypad preference only)

Keypad Asterisk (*) Undo last edit action (BRIEF keypad
preference only)

Keypad Insert (Ins) Paste text from Windows clipboard to cursor
position in active window (BRIEF keypad
preference only)

Left click Select Toolbar item

Right click Help for Toolbar item
4-8



Using the Windows Interface

UserGuid.book Page 9 Monday, May 7, 2001 11:28 AM
 Menu Bar
The Menu bar is located below the Title bar along the top of the window. You can
view the commands on a menu by either clicking the menu name or pressing ALT+n,
where n is the underlined letter in the menu name. For example, to display the File
Menu, you can either click on File or press ALT+F.

The following menus are available:

• File Menu

• Edit Menu

• Search Menu

• Mode Menu

• Debug Menu

• Action Menu

• Configure Menu

• Window Menu

• Help Menu

File Menu

You use the File Menu to access the file, printer setup, and exit commands. Some of
these actions can also be executed from the Toolbar. The File Menu contains the
following entries:

New

You use the New command to open a new, untitled document in the Command or Edit
window, whichever is active.

Note: New, unsaved documents are not automatically backed up until you save them,
giving them a file name. After you save the new file, it will be automatically backed up
with all other open files according to the settings you have selected in the Configure
Menu, Preferences, Files tab.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+N
4-9



GAUSS User Guide

UserGuid.book Page 10 Monday, May 7, 2001 11:28 AM
Open

You use the Open command to open an existing file for viewing or editing. You can
enter or select the directory and filename in the Windows Open dialog box.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+O

Reload

You use the Reload command to reload the document in the active window, allowing
you to remove all your changes since the last time you saved the file. You are
prompted to save the file if it has been modified since last saved. If you want to revert
to the last saved version, click No.

Insert

You use the Insert command to open an existing text file and copy the contents into the
active document. This is similar to pasting text from the Windows clipboard.

Close

You use the Close command to close the document in the active window. You are
prompted to save the file if it has been modified since you last saved it.

Close All

You use the Close All command to close all open files. You are prompted to save any
file that has been modified since you last saved it.

Save

You use the Save command to save your changes to the file in the active window. If
the file is untitled, you are prompted for a path and filename.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+S

Save As

You use the Save As command to save your changes to the file in the active window
using a new or different path or file name. This can be a convenient method of
protecting your changes from later revisions and allows you to revert back one or
more generation of changes.
4-10



Using the Windows Interface

UserGuid.book Page 11 Monday, May 7, 2001 11:28 AM
Print

You use the Print command to print the active file or selected text from the active
window.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+P

Printer Setup

You use the Printer Setup command to specify the printer you want to use. Other
printer options, such as page orientation and paper tray, are also accessed with this
command.

Change Working Directory

You use the Change Working Directory command to change the directory where
GAUSS looks for the files it uses for normal operation. This command does not affect
the Open or Save As paths.

Run

You use the Run command to run a file you select. The file is not displayed in a
window. The file then becomes the active main file.

Exit

You use the Exit command to close all open files and exit GAUSS. You will be
prompted to save any file that has been modified since it was last saved.

Keyboard Shortcut: CTRL+Q or ALT+F4

Recent Files

GAUSS maintains a list of the four most recent files you opened, at the end of the File
Menu. If the file you want to open is on this list, click on it and GAUSS opens it in an
Edit window.

Edit Menu

You use the Edit Menu to access the set of editing commands. Some of these actions
can also be executed from the Toolbar. The Edit Menu contains the following entries:

Undo

You use the Undo command to remove your last changes in the active window. Up to
256 changes or the last time you saved the file, whichever comes first, can be undone.
4-11



GAUSS User Guide

UserGuid.book Page 12 Monday, May 7, 2001 11:28 AM
Keyboard Shortcut: CTRL+Z

BRIEF Keypad Shortcut: Asterisk (*)

Redo

You use the Redo command to restore changes in the active window that you removed
using the Undo Edit command.

Cut

You use the Cut command to delete selected text from the active window and place it
onto the Windows clipboard.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+X

BRIEF Keypad Shortcut: Minus (–)

Copy

You use the Copy command to copy selected text from the active window to the
Windows clipboard.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+C

BRIEF Keypad Shortcut: Plus (+)

Paste

You use the Paste command to copy text from the Windows clipboard to the active
window at the cursor position.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+V

BRIEF Keypad Shortcut: Ins (Insert)

Delete

You use the Delete command to delete selected text in the active window. The
keyboard Delete key also deletes selected text or, if no text is selected, characters to
the right of the cursor.
4-12



Using the Windows Interface

UserGuid.book Page 13 Monday, May 7, 2001 11:28 AM
Clear to End

You use the Clear to End command to delete all text from the cursor to the end of text.

Toolbar Shortcut:

Keyboard Shortcut: F7

Clear All

You use the Clear All command to delete all text in the active window.

Select All

You use the Select All command to select all text in the active window.

Insert Time/Date

You use the Insert Time/Date command to insert the current time and date at the cursor
position. GAUSS uses the time and date that appears in the Microsoft Windows Date/
Time Properties window.

Insert Symbol

You use the Insert Symbol command to paste ASCII and other special characters into
the active window at the cursor position.

Note: Generally, you can enter ASCII numerical codes by pressing ALT and entering
the digits using the keypad (not the number keys at the top of the keyboard). The
character is displayed when you release the ALT key.

Also, depending on how your system is set up, you may be required to enter one or
two leading zeros so all entries are three or four digits in length. For example, for
ASCII character “40”, you may have to enter “040” or “0040”.

Record Macro/Stop Record Macro

Macros permit you to automate a series of keystrokes to save time and reduce errors.
You create a macro by selecting Record Macro, pressing those keystrokes you want
recorded, and selecting Stop Record Macro to end the recording. Use the following
guidelines when creating and using your macro:

• Only keystrokes in the active window are recorded, not keystrokes in a dialog
box.

• Only keystrokes are recorded, not mouse movements.

• You can record only one macro and it is not saved when you close GAUSS.
4-13



GAUSS User Guide

UserGuid.book Page 14 Monday, May 7, 2001 11:28 AM
• When you create a new macro, the existing macro is deleted.

• If your macro is lengthy, consider creating a separate file and copying the
information from the file into the active window, rather than using a macro to
enter the information.

Keyboard Shortcut: F11 (Toggles between Record Macro and Stop
Recording Macro)

Playback Macro

You use the Playback Macro command to run a macro you recorded during the current
session of GAUSS. To run the macro, locate the cursor where you want the macro
sequence to begin and select Playback Macro. Playback Macro only appears on the
Edit Menu after you have recorded a macro.

Keyboard Shortcut: F12

Search Menu

You use the Search Menu to access commands for locating text in the active window.
Some of these actions can also be executed from the Toolbar. The Search Menu
contains the following entries:

Find/Replace

You use the Find/Replace command to find the specified text in the active window.
After locating the text string, you can edit the text manually or replace the text with
what you have entered in the Search Dialog box and selecting the “Replace with”
command.

The Find option locates the specified text in the active window from the cursor
position down. The search can be case sensitive or case insensitive. Subsequent
searches for the same text can be resumed by pressing F3.

The Replace option locates the specified text in the active window and replaces it with
the text you entered in the “Replace with” field in the Search dialog box. The search
starts at the cursor position and continues to the end of the text in the active window.
The search can be case sensitive or case insensitive, and the replacement can be
unique or global.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+F
4-14



Using the Windows Interface

UserGuid.book Page 15 Monday, May 7, 2001 11:28 AM
Find Again

You use the Find Again command to resume the search for the next occurrence of the
text you specified in the previous Find action.

Toolbar Shortcut:

Keyboard Shortcut: F3

Replace Again

You use the Replace Again command to find the next occurrence of the text you
replaced in the previous Replace command.

Keyboard Shortcut: F4

Go To Line

You use the Go To Line command to move the cursor to the specified line number.

Keyboard Shortcut: CTRL+G

Bookmark

You use the Bookmark command to set, clear, and go to existing bookmarks from the
Bookmark Dialog box. Bookmarks are set using the Add command and removed
using the Remove command. You can go to a bookmark directly by selecting the
desired entry and clicking Go.

Keyboard Shortcut:

CTRL+B to open the Bookmark dialog box

CTRL-1 to go to the first Bookmark

CTRL-2 to go to the second Bookmark, and so on

Mode Menu

You use the Mode Menu to set the various editing and window options you use when
editing and running GAUSS code and files. The Mode Menu contains the following
entries:

Toggle Command/Output Window

You use the Toggle Input/Output Window command to toggle between the Edit
window or Command window and the Output window.

Keyboard Shortcut: F5
4-15



GAUSS User Guide

UserGuid.book Page 16 Monday, May 7, 2001 11:28 AM
Toggle Cmnd/Split I/O Mode

You use the Toggle Cmnd/Split I/O Mode command to toggle between the Cmnd and
Split I/O modes.

In Cmnd mode, program output is displayed in the Command window after the
commands are executed.

In Split I/O mode, program output is displayed separately in the Output window after
the commands are executed.

Keyboard Shortcut: F6

Toggle Overstrike/Insert Mode

You use the Toggle Overstrike/Insert Mode command to toggle between typing over
the existing text or inserting space for the new text as you type. The default is Insert
mode. When the Overstrike mode is active, OVR is displayed on the Status bar.

Keyboard Shortcut: press the Insert key

Select Text Blocking Mode

You use the Select Text Blocking Mode command to choose how you would like to
select the text when using the mouse or Shift key. The three types of blocking are:

• Character Blocks This selects all text from the first character to the last
character.

• Line Blocks This selects entire lines.

• Column Blocks This selects text that is located within the rectangle whose
opposite corners are defined by the first and last character you select. This
option is not enabled if a proportional font is used.

The mode selected applies to all open documents. However, since Column Block
mode is not supported for documents with proportional fonts, Line Block mode is
used when such a document has the focus. Column blocks usually work better when
the Expand Tabs option is enabled.

All blocks can be manipulated using the cut, copy, paste, and delete edit keys. Blocks
can also be moved by dragging the selected block with the mouse, and can be copied
by pressing and holding down CTRL while dragging the selected block with the
mouse.

Toolbar Shortcuts:

Character Blocking Mode
4-16



Using the Windows Interface

UserGuid.book Page 17 Monday, May 7, 2001 11:28 AM
Line Blocking Mode

Column Blocking Mode

Debug Menu

You use the Debug Menu to access the commands used to debug your GAUSS active
file or main file program. A program run using the GAUSS debugger is run in the
Debug window. The Debug Menu allows you to set breakpoints and watch variables.

NOTE: The Debug window runs in its own thread. If the Debug window will not open,
check that the Thread setting is Per Call in the Priority dialog box, accessed from the
Configure Menu.

The Debug Menu contains the following entries:

Debug Current File 

You use the Debug Current File command to run the active file in the Debug window.
Prior to running the debugger, breakpoints can be set or cleared in the active window
at the cursor using the Breakpoint Set and Clear commands. Watch variables can also
be set prior to running the debugger.

Debug Main File 

You use the Debug Main File command to run the main file in the Debug window.
Prior to running the debugger, breakpoints can be set or cleared in the active window
at the cursor using the Breakpoint Set and Clear commands. Watch variables can also
be set prior to running the debugger.

Toggle Debug/Output Window

You use the Toggle Debug/Output Window command to toggle between the Output
window and the Debug window.

Keyboard Shortcut: CTRL+D

Set/Clear Breakpoint 

You use the Set/Clear Breakpoint commands to enable or disable a line breakpoint at
the cursor in the active file. Breakpoints usually remain valid when a file is changed
and lines are inserted or deleted, but are lost when a file is closed, whether it is saved
or not.

The debugger displays the lines where your program will stop executing and wait for
user input. Line breakpoints are displayed with a red highlight.
4-17



GAUSS User Guide

UserGuid.book Page 18 Monday, May 7, 2001 11:28 AM
Procedure breakpoints occur at the beginning of a procedure and are not highlighted.
Procedure breakpoints can only be added if the named procedure exists in the GAUSS
workspace.

Toolbar Shortcut:

View Breakpoints

You use the View Breakpoints command to view a list of all breakpoints in your
program. The breakpoints are listed by line number. Any procedure breakpoints are
also listed. You can add, delete, and change breakpoints in the dialog box.

Breakpoints usually remain valid when a file is changed and lines are inserted or
deleted, but are lost when a file is closed, whether it is saved or not.

The debugger displays the source code of your program. Line breakpoints are
displayed with a red highlight.

Procedure breakpoints occur at the beginning of a procedure, and are not highlighted.
Procedure breakpoints can only be added if the named procedure exists in the GAUSS
workspace.

Line breakpoints can be toggled using the Toolbar button.

Clear All Breakpoints

You use the Clear All Breakpoints command to remove all line and procedure
breakpoints from all open files.

Breakpoints usually remain valid when a file is changed and lines are inserted or
deleted, but are lost when a file is closed, whether it is saved or not.

The debugger displays the lines where your program will stop executing and wait for
user input. Line breakpoints are displayed with a red highlight.

Procedure breakpoints occur at the beginning of a procedure, and are not highlighted.
Procedure breakpoints can only be added if the named procedure exists in the GAUSS
workspace.

Toolbar Shortcut:

Set Watch

You use the Set Watch command to see how variables change in value during
debugging. The values are displayed in the Debug window at the bottom of the screen
just above the Status bar. Watch variables can be specified prior to running the
debugger or during a debugging session.

The debugger searches for a watch variable using the following procedure:
4-18



Using the Windows Interface

UserGuid.book Page 19 Monday, May 7, 2001 11:28 AM
1. A local variable within a currently executed procedure

2. A local variable within a currently active procedure.

3. A global variable.

A watch variable can be the name of a matrix, a scalar, a string array, or a string. For a
matrix or a string array, the first element is displayed. If a matrix element is clicked,
the Matrix Editor is loaded with the matrix. The matrix elements can be changed
during the debugging session.

Action Menu

You use the Action Menu to access the various run commands and open the Matrix
Editor and DOS windows. The Action Menu contains the following entries:

Run Commands

You use Run Commands to run the code you have entered, a block of code you
selected, or the active file, depending on the operating mode. The following entries
appear on the Action menu of the respective windows:

Command window.   Run Commands runs the commands you enter in the Command
window. Run Marked Block runs the text you selected in the Command window.

Edit window.   Run Current File runs the active file.
Run Marked Block runs the text you selected in the Edit window.

Output window.   Run Program is grayed and not available in this window. You must
run the commands or file from either the Command or Edit window.

Output is shown below the code in Command mode. In Split I/O mode, the output
appears in the Output window. To toggle between the current input and the Output
window, use the Toggle Input/Output Window command.

Toolbar Shortcuts:

Run Command

Run Current File

Run marked block

Keyboard Shortcut: CTRL+F2

Run Current File

You use the Run Current File command to run the active file. The file then becomes
the active main file.
4-19



GAUSS User Guide

UserGuid.book Page 20 Monday, May 7, 2001 11:28 AM
Run Marked Block

You use Run Marked Block to run the text you selected in the Edit window.

Pause Program

You use the Pause Program command to suspend a program while it is in the process
of running.

Output is shown below the code in Cmnd mode. In Split I/O mode, the output appears
in the Output window. To toggle between the current input and the Output window,
use the Toggle Input/Output Window command.

Resume Program

You use the Resume Program command to restart program execution after using the
Suspend Job command.

During execution, output is displayed beneath the current block of GAUSS code if the
output mode is set to Cmnd, or in the Output Window if the output mode is set to Split
I/O. To toggle between the current input and the Output window, use the Toggle
Command/Output Window command.

Toolbar Shortcuts:

Run command

Run file

Run marked block

Keyboard Shortcut: CTRL+F2

Stop Program

You use the Stop Program command to stop a program while it is in the process of
running.

Output is shown below the code in Cmnd mode. In Split I/O mode, the output appears
in the Output window. To toggle between the current input and the Output window,
use the Toggle Input/Output Window command.

Insert GAUSS Prompt

You use the Insert GAUSS Prompt command to manually add the GAUSS prompt at
the cursor position. The GAUSS prompt (») is automatically displayed following the
execution of GAUSS code.
4-20



Using the Windows Interface

UserGuid.book Page 21 Monday, May 7, 2001 11:28 AM
Toolbar Shortcut:

Keyboard Shortcut: SHIFT+F2

Run Main File

You use the Run Main File command to run the specified main file.

While running, output is displayed beneath the current block of GAUSS code if the
output mode is set to Cmnd, or in the Output window if the output mode is set to Split
I/O.

Toolbar Shortcut:

Keyboard Shortcut: F2

Edit Main FIle

You use the Edit Main File command to open an editor window for the specified main
file. The file is loaded, if needed, and the Edit window becomes the active window.

Toolbar Shortcut:

Compile Main File

You use the Compile Main File command to compile the specified main file. During
compilation, any errors are displayed beneath the current block of GAUSS code if the
output mode is set to Cmnd, or in the Output Window if the output mode is set to Split
I/O.

Note: this command is different than the GAUSS Compile command, which compiles a
program and saves the pseudocode as a file.

Toolbar Shortcut:

Set Main File

You use the Set Main File command to make the active file the main file in the Edit
window.

Clear Main File List

You use the Clear Main File List command to remove all entries in the Main Files list
on the Toolbar.
4-21



GAUSS User Guide

UserGuid.book Page 22 Monday, May 7, 2001 11:28 AM
Translate Dataloop Commands

You use the Translate Dataloop commands to convert dataloop commands to
commands GAUSS can understand and manipulate. You only run this command when
dataloop commands are used in the source code. Using it when it is not needed does
not alter the source code, but the increased processing overhead can increase the time
to compile your program.

Matrix Editor

You use the Matrix Editor to create or edit data in a matrix (or grid). A cell can be
edited by typing in a new value and pressing Enter. Only numeric values can be
entered in a grid.

You use the New command to create a new blank grid of the size you specify. When
the matrix is saved to the GAUSS workspace, the name appearing on the Title bar will
be used.

You use the Load command to clear any existing grid and copy any named matrix
from the GAUSS workspace to the grid. Use Reload to reload the existing matrix with
the name shown on the Title bar.

You use the Clear command to clear the grid of all values but keep the row and
column order.

You use the Save command to save the grid as a matrix in the GAUSS workspace. If a
matrix of the same name already exists in the workspace, it is overwritten.

You use the Exit command to close and exit the Matrix Editor.

You use the Options command to set several matrix options, including the number of
digits to the right of the decimal point, cell height and width, and whether pressing the
Enter key moves the cursor down or over one cell. These options, along with screen
position and window state, are saved between sessions.

DOS Compatibility Window

The DOS Compatibility Window was created for running programs that expect an
80X25 window that understands ANSI escape characters. This window is not a
substitute for the GAUSS command window.
4-22



Using the Windows Interface

UserGuid.book Page 23 Monday, May 7, 2001 11:28 AM
Configure Menu

You use the Configure Menu to set how you want GAUSS to look and operate. The
Configure Menu contains the following entries:

Preferences

You use the Preferences command to specify how GAUSS operates.

You can choose to make the setting permanent by selecting All in the Document
section or Current to apply the changes only to the current document.

Display Tab.   You use the Font Type control to specify which font attributes the
editor uses. The default font is FixedSys. You can set the font name, font size, font
color, and the font styles.

You use the Back Color control to specify the background color used by the editor.
The default color is the system background color.

You use the Scrollbars control to specify the type of scrollbar used — None,
Horizontal, Vertical, Both, or Auto. The default is Auto.

You use the View toolbar buttons as control to specify whether the toolbar buttons
are displayed with Icons or text. The default setting is Icons. Changing the setting
from text to Icons requires GAUSS be restarted to make the new settings effective.

You use the Output focus control to specify whether the focus follows the program
output. When set to Yes, the focus changes to the Output window for Split I/O mode
or to the Command window for Cmnd mode when the program generates text output.
When set to No, the focus does not change. The default setting is no output focus.

Files Tab.   You can select Auto Backup to automatically create a backup copy of all
open documents that have a file name. The backup file is created in the same directory
at the interval you specify, using a “BAK” file name extension. If the original
document has a BAK extension, the backup uses a BK1 extension. The default is no
auto backup.

Note: New, unsaved documents are not automatically backed up until you save them,
giving them a file name. After you save the new file, it will be automatically backed up
with all other open files.

You can select Prompt to save untitled to have GAUSS warn you when exiting if
there are any files that have neither been loaded nor saved (“Untitled:” files). The
default is on.

The Auto-Save on Execute section allows you to specify when files are saved if they
are edited or executed.

• Executed file. If the file you are running is loaded, it will be saved prior to
execution, regardless of how it is executed (Run file, command line, main file,
or active file). This option is checked by default.
4-23



GAUSS User Guide

UserGuid.book Page 24 Monday, May 7, 2001 11:28 AM
• Active file. The active edit file is saved whether it is executed or not.

• All edited files. All open editor files, including the active file, are saved before
execution. The Executed file and Active file checkboxes are automatically
checked if you select this option.

Keypad Tab.   You use the Keypad tab to select whether standard or BRIEF™
commands are associated with the “+”, “–”, “*”, and “Ins” keys on the keyboard
keypad.

Keypad Functionality

Options Tab.   The Sound at end of job option determines whether or not a sound is
played at the end of the execution of GAUSS code. The sound can be selected using
the Select button and played using the Test button. The default is off.

The Sound at keystroke request option determines whether or not a sound is played
when a keystroke is required — for example, if the GAUSS command keyw was
issued. The sound can be selected using the Select button and played using the Test
button. The default is off.

The Add “;” to command option determines whether a semicolon will be inserted at
the end of a line after the Enter key has been pressed. The default is selected.

The Explicit Command option specifies whether the appropriate commands should
be added to the Command window when executing a file. For Files, the statement
“run<filename>” is added. For marked blocks, the actual commands are added. This
provides a complete history of all commands executed. The default is selected.

The Prompt on Exit option determines whether a prompt to verify exit is given on an
exit condition. The default is unselected.

The Enter behavior control defines the behavior of the Enter key when pressed in the
Command window. The following choices are available:

• Enter does not execute. When selected, pressing Enter starts a new line as in
most word processors. GAUSS execution occurs using CTRL+F2 or clicking
the Run Commands button on the Toolbar.

• Enter executes if no “;” If the current line ends with a semicolon, pressing
Enter starts a new line. If the current line does not end with a semicolon, the
code from the cursor back to the previous GAUSS prompt will be executed.

Key Standard BRIEF
+ + Copy line or block to scrap
– – Cut line or block to scrap
* * Undo last edit
Ins Toggle insert/overtype Paste scrap at cursor
4-24



Using the Windows Interface

UserGuid.book Page 25 Monday, May 7, 2001 11:28 AM
• Enter always executes. The current line will be executed whether or not the
line ends with a semicolon. This is the default. You can toggle between Enter
does not execute and Enter Executes if no “;” by clicking Enter Ex on the
Status bar.

The Active becomes main option specifies that when an active file is executed, it
becomes the main file after execution. You can also make an active file the main file
by using the Set Main File command on the Action Menu. The default is selected.

Tabs Tab.   The Tab spacing characters option allows you to enter the number of
spaces between tab stops. The available values are 1 to 48, with 3 as the default. Tab
spacing is based on the fixed system font.

The Auto Indent option determines where the next line starts after pressing the Enter
key. When checked, the next line starts under the first non-blank character of the
previous line. The default is unselected.

The Expand Tabs option inserts the specified number of spaces instead of creating
tab stops. This option is useful when Column Block in the Select Text Blocking mode
is specified. This option is disabled in documents which use a proportional font. The
default is unselected.

Windows Tab.   The Window Style control specifies whether windows open in the
normal (the default), maximized, or dual screen (vertical or horizontal) state. In the
dual screen state, the current input file and Output windows are tiled in the main
window.

The Use this style at control specifies whether the windows style should only be used
at startup (the default), or always.

The Tiling vertically results in control defines whether the windows are stretched
vertically or stacked.

Priority

You use the Priority command to set the threading and the priority level.

You normally implement a separate thread for every call to GAUSS, which allows you
to do other things while a block of code is executing. For this, you set the Thread to
Per Call and the priority to Normal. If you are not doing any foreground processing,
you can set the priority to High.

NOTE: The Debug window runs in its own thread in a separate window. If the Debug
window will not open, check that the Thread setting is Per Call in the Priority dialog
box, accessed from the Configure Menu. If the Thread setting is None, the Debug
window cannot open.

If you are running a long job in the background and want higher foreground
performance, you can change the priority to Low which will allocate more computing
resources foreground tasks.
4-25



GAUSS User Guide

UserGuid.book Page 26 Monday, May 7, 2001 11:28 AM
Non-threaded behavior is possible, although not recommended (Thread set to None).
The output from a GAUSS job will be displayed only after the complete block of code
has been executed. All user keystrokes and mouse actions are queued until the
program has finished running.

Run/Compile Options

Run/Compile options allow you to change the way that GAUSS runs and compiles
files. See “config,” (page 3-3) for a description of the options available.

Window Menu

You use the Window Menu commands to split a window into two panes and arrange
the windows to fit your preferences when more than one window is open. The active
window is the window which has the focus. You can toggle the focus between all open
windows using CTRL+F6, or clicking in the window you want active. All open
windows are listed at the end of the Windows Menu. The following commands can be
used to arrange and configure windows:

Dual Vertical

You use the Dual Vertical command to vertically tile the program source and
execution windows within the main window, and minimize all other windows. The
program source window may be the Command or Edit window, and the execution
window may be the Command window (Cmnd I/O mode) or Output window
(Split I/O mode).

Dual Horizontal

You use the Dual Horizontal command to horizontally tile the program source and
execution windows within the main window, and minimize all other windows. The
program source window may be the Command or Edit window, and the execution
window may be the Command window (Cmnd I/O mode) or Output window
(Split I/O mode).

Tile Vertically

You use the Tile Vertically command to arrange all open windows vertically on the
screen without any overlap.

Tile Horizontally

You use the Tile Horizontally command to arrange all open windows horizontally on
the screen without any overlap.
4-26



Using the Windows Interface

UserGuid.book Page 27 Monday, May 7, 2001 11:28 AM
Cascade

You use the Cascade command to arrange all open windows on the screen,
overlapping each, with the active window on top.

Arrange Icons

You use the Arrange Icons command to arrange all minimized windows across the
bottom of the main GAUSS window.

No Split

You use the No Split command to remove a split you made to the active window. You
use either the Split Vertically or Split Horizontally command to create a split window.

Toolbar Shortcut:

Split Vertically

You use the Split Vertically command to split the active window into two vertical
panes. This allows you to view two different areas of the same document to facilitate
split-window editing.

When a window is split, a splitter bar appears between the two sides of the window
and is used to define where the window split is positioned. You can move the splitter
bar by dragging it with the mouse.

Toolbar Shortcut:

Split Horizontally

You use the Split Horizontally command to split the active window into two
horizontal panes. This allows you to view two different areas of the same document to
facilitate split-window editing.

When a window is split, a splitter bar appears between the upper and lower half of the
window and is used to define where the window split is positioned. You can move the
splitter bar by dragging it with the mouse.

Toolbar Shortcut:

Open Window List

GAUSS maintains a list of all the windows you have opened at the end of the Window
Menu. If the window you want to view is on this list, click on it and GAUSS opens it
as the window with focus.
4-27



GAUSS User Guide

UserGuid.book Page 28 Monday, May 7, 2001 11:28 AM
Help Menu

You use the Help Menu to access the information in the GAUSS Help you are looking
for. The GAUSS Help Menu contains the following entries:

Contents

You use the Contents command to start the GAUSS Help system. Click on the
Contents tab to view a list of help topic categories. Use the Search tab to search the
Help system by key word. Click on the Index tab to view a list of all help topics in
alphabetical order.

Keyboard

You use the Keyboard command to access the list of keystrokes you can use for cursor
movement, editing, and text selection. The keystrokes are listed in the Editing Keys
functions.

GAUSS Reference

You use the GAUSS Reference command to access the online GAUSS Language
Reference guide. The Guide contains the syntax for each GAUSS command.

Toolbar Shortcut:

Help on Help

You use the Help on Help command to get help on using the Windows and GAUSS
Help systems. The Help systems can be accessed using the following:

• Click Help on the Menu bar and select the type of help you need.

• Click the Gauss Reference button on the Toolbar for information on
GAUSS commands.

• Right click on any icon to get pop-up help for the icon.

• Click on any word to place the cursor in the word, and press F1. If the word is a
GAUSS command, pop-up help on that word is displayed. If the word is not a
GAUSS command, but is in an active library, the respective file will be
displayed.

• Press CTRL+F1 while the cursor is in a word to initiate the GAUSS source
browser. If the word is defined in an active library, the respective file will be
loaded into an edit window.
4-28



Using the Windows Interface

UserGuid.book Page 29 Monday, May 7, 2001 11:28 AM
About GAUSS

You use the About GAUSS command to display the GAUSS copyright and version
information.

Toolbar

You use the Toolbar buttons for fast access to the most commonly used commands.
Place the mouse pointer over the button to pop up a description of the command. Click
on the button to run the command. Right click on the button for more comprehensive
help.

New

You use the New command to open a new, untitled document in the Edit window,
whichever is active.

Note: New, unsaved documents are not automatically backed up until you save them,
giving them a file name. After you save the new file, it will be automatically backed up
will all other open files according to the settings you have selected in the Configure
menu/Preferences/Files tab.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+N

Open

You use the Open command to open an existing file for viewing or editing. You can
enter or select the directory and filename in the Windows Open dialog box.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+O

Save

You use the Save command to save your changes to the file in the active window. If
the file is untitled, you are prompted for a path and filename.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+S
4-29



GAUSS User Guide

UserGuid.book Page 30 Monday, May 7, 2001 11:28 AM
Print

You use the Print command to print the active file or selected text from the active
window.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+P

Cut

You use the Cut command to delete selected text from the active window and place it
onto the Windows clipboard.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+X

BRIEF Keypad Shortcut: Minus (–)

Copy

You use the Copy command to copy selected text from the active window to the
Windows clipboard.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+C

BRIEF Keypad Shortcut: Plus (+)

Paste

You use the Paste command to copy text from the Windows clipboard to the active
window, at the cursor position.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+V

BRIEF Keypad Shortcut: Ins (Insert)
4-30



Using the Windows Interface

UserGuid.book Page 31 Monday, May 7, 2001 11:28 AM
Clear to End

You use the Clear to End command to delete all text from the GAUSS prompt to the
end of text.

Toolbar Shortcut:

Keyboard Shortcut: F7

Toggle Text Blocking Mode

You use the Text Blocking Mode commands to select the method used to select text
when using the mouse or Shift key. The three types of text selection are:

• Character Blocks. This is the default, whereby you select all text from the first
character to the last character.

• Line Blocks. This selects entire lines of text.

• Column Blocks. This selects the text that is located within the rectangle whose
opposite corners are defined by the first and last character you select. This
option is not enabled if a proportional font is used.

The mode selected applies to all open documents. However, since Column Block
mode is not supported for documents with proportional fonts, Line Block mode is
used when such a document has the focus. Column blocks usually work better when
the expand tabs option is enabled.

All blocks can be manipulated using the cut, copy, paste, and delete edit keys. Blocks
can also be moved by dragging the selected block with the mouse, and can be copied
by pressing and holding down CTRL while dragging the selected block with the
mouse.

Toolbar Shortcuts:

Character Blocking Mode

Line Blocking Mode

Column Blocking Mode

Find/Replace

You use the Find/Replace command to find the specified text in the active window.
After locating the text string, you can edit the text manually or replace the text with
what you have entered in the Search dialog box and selecting the “Replace with”
command.
4-31



GAUSS User Guide

UserGuid.book Page 32 Monday, May 7, 2001 11:28 AM
The Find option locates the specified text in the active window from the cursor
position down. The search can be case sensitive or case insensitive. Subsequent
searches for the same text can be resumed by pressing F3.

The Replace option locates the specified text in the active window and replaces it with
the text you entered in the “Replace with” field in the Search dialog box. The search
starts at the cursor position and continues to the end of the text in the active window.
The search can be case sensitive or case insensitive, and the replacement can be
unique or global.

Toolbar Shortcut:

Keyboard Shortcut: CTRL+F

Find Again

You use the Find Again command to resume the search for the next occurrence of the
text you specified in the previous Find action.

Toolbar Shortcut:

Keyboard Shortcut: F3

Toggle Split Screen Mode

You use the Toggle Split Screen Mode commands to change the configuration of the
active window from one pane to two panes, split either vertically or horizontally.
Splitting a window allows you to view two different areas of the same document to
facilitate split-window editing.

• You use the No Split command to remove a split you made to the active
window. You use either the Split Vertically or Split Horizontally command to
create a split window.

• You use the Split Vertically command to split the active window into two
vertical panes. When a window is split, a splitter bar appears between the two
sides of the window and is used to define where the window split is positioned.

• You use the Split Horizontally command to split the active window into two
horizontal panes. When a window is split, a splitter bar appears between the
upper and lower half of the window and is used to define where the window
split is positioned.

You can move the splitter bar by dragging it with the mouse.

Toolbar Shortcuts:
4-32



Using the Windows Interface

UserGuid.book Page 33 Monday, May 7, 2001 11:28 AM
No Split

Split Vertically

Split Horizontally

GAUSS Reference

You use the GAUSS Reference command to access the online GAUSS Language
Reference guide. The Guide contains the syntax for each GAUSS command.

Toolbar Shortcut:

Run Commands

You use the Run commands to run the code you have entered, a block of code you
selected, or the active file, depending on the active window. The following entries
appear on the Action menu of the respective windows:

Command window.   Run Commands runs the commands you enter in the
Command window.
Run Marked Block runs the text you selected in the Command window.

Edit window.   Run Current File runs the active file.
Run Marked Block runs the text you selected in the Edit window.

Output window.   Run Program is grayed and not available in this window. You must
run the commands or file from either the Command or Edit window.

Output is shown below the code in Cmnd mode. In Split I/O mode, the output appears
in the Output window. To toggle between the current input and the Output window,
use the Toggle Input/Output Window command.

Toolbar Shortcuts:

Run Commands

Run Current File

Run marked block

Keyboard Shortcut: CTRL+F2
4-33



GAUSS User Guide

UserGuid.book Page 34 Monday, May 7, 2001 11:28 AM
Pause Program

You use the Pause Program command to suspend a program while it is in the process
of running.

Output is shown below the code in Cmnd mode. In Split I/O mode, the output appears
in the Output window. To toggle between the current input and the Output window,
use the Toggle Input/Output Window command.

Stop Program

You use the Stop Program command to stop the program currently running and return
control to the editor.

Toolbar Shortcut:

Insert GAUSS Prompt

You use the Insert GAUSS Prompt command to manually add the GAUSS prompt at
the cursor position. The GAUSS prompt (») is automatically displayed following the
execution of GAUSS code.

Toolbar Shortcut:

Keyboard Shortcut: Shift+F2

Set/Clear Breakpoint

You use the Set/Clear Breakpoint commands to enable or disable a line breakpoint at
the cursor in the active file. Breakpoints usually remain valid when a file is changed
and lines are inserted or deleted, but are lost when a file is closed, whether it is saved
or not.

Line breakpoints are displayed in the debugger with a red highlight.

Procedure breakpoints occur at the beginning of a procedure and can only be added if
the named procedure exists in the GAUSS workspace.

Toolbar Shortcut:

Main Files List

You can reopen a file recently used by GAUSS by double clicking on the file name on
the Main Files List on the Toolbar. The list contains up to ten of the most recent main
files used by GAUSS.
4-34



Using the Windows Interface

UserGuid.book Page 35 Monday, May 7, 2001 11:28 AM
Run Main File

You use the Run Main File command to run the specified main file.

While running, output is displayed beneath the current block of GAUSS code if the
output mode is set to Cmnd or in the Output Window if the output mode is set to Split
I/O.

Toolbar Shortcut:

Keyboard Shortcut: F2

Edit Main File

You use the Edit Main File command to open an editor window for the specified main
file. The file is loaded, if needed, and the Edit window becomes the active window.

Toolbar Shortcut:

Debug Main File

You use the Debug Main File command to run the main file in the Debug window.
Prior to running the debugger, breakpoints can be set or cleared in the active window
at the cursor, using the Breakpoint Set and Clear commands. Watch variables can also
be set prior to running the debugger.

Compile Main File

You use the Compile Main File command to compile the specified main file. During
compilation, any errors are displayed beneath the current block of GAUSS code if the
output mode is set to Cmnd, or in the Output Window if the output mode is set to Split
I/O.

Note: this command is different than the GAUSS Compile command, which compiles a
program and saves the pseudocode as a file.

Toolbar Shortcut:
4-35



GAUSS User Guide

UserGuid.book Page 36 Monday, May 7, 2001 11:28 AM
Status Bar

The Status bar is located along the bottom of the GAUSS window. The status of the
following windows and processes are shown on the Status bar:

GAUSS Status

The first section of the Status bar shows the current GAUSS status. The normal status
is Ready when not running code. From time to time you are alerted to the task GAUSS
is performing by new messages appearing in this section of the Status bar.

Clicking the GAUSS status is equivalent to clicking the Run Commands button on the
Toolbar.

Command

Command, Edit, and Output always appear on the Status bar. When the background
color behind Command is a lighter shade of gray, the Command window has focus
and is considered the “active” window.

You enter interactive commands in the Command window. The Command window
can be selected from the Windows Menu or from the Status bar by clicking on
Command. When the output mode is Cmnd I/O, output will be written to the
Command window.

Edit

Command, Edit, and Output always appear on the Status bar. When the background
color behind Edit is a lighter shade of gray, the Edit window has focus and is
considered the “active” window.

An Edit window is created when you open a file. When you execute GAUSS from an
Edit window, the entire file is executed. This is the equivalent of the GAUSS “run
filename” statement.

If more than one file is loaded, the last file loaded or executed becomes the active file
when you click the Edit status on the Status bar. Repeated clicking of the Edit status
cycles through all loaded Edit windows.

Output

Command, Edit, and Output always appear on the Status bar. When the background
color behind Output is a lighter shade of gray, the Output window has focus and is
considered the “active” window.

When the output mode is Split I/O, output is written to the Output window. GAUSS
commands cannot be executed from this window.
4-36



Using the Windows Interface

UserGuid.book Page 37 Monday, May 7, 2001 11:28 AM
Command I/O / Split I/O

When your program is run, the output will appear in the Command window in Cmnd
I/O mode or in the Output window in Split I/O mode. The output mode appears on the
Status bar.

You usually use the Cmnd I/O mode when you want to enter a series of GAUSS
commands and watch the output appear directly below the code you've entered.

You can use the Split I/O mode to display the results of the commands in the Output
window, without the input commands.

Toolbar Shortcut:

Cmnd I/O mode

Split I/O mode

Keyboard Shortcut: F6

Enter Ex: On/Off

The Enter Ex: status appears on the Status bar when the Command window is active.
It indicates how pressing the Enter key is handled in the Command window. The two
choices are On and Off.

On.   Pressing Enter runs all code from the GAUSS prompt line to the line the cursor
is on if the final line ends with a “;”. If the final line does not end with a “;”, Enter
starts a new line.

OFF.   Pressing Enter starts a new line.

Click the Enter Ex: status on the Status bar to toggle the status between the two
options.

Cursor Location

The line number and column number where the cursor is located appear on the Status
bar for the active window. When a block of text is selected, the values indicate the first
position of the selected text.

OVR

OVR appears on the Status bar when typing replaces the existing text with text you
enter. When OVR does not appear on the Status bar, typing inserts text without
deleting the existing text. Press the Insert key to toggle between the two conditions.
4-37



GAUSS User Guide

UserGuid.book Page 38 Monday, May 7, 2001 11:28 AM
NUM

NUM appears on the Status bar to indicate the Num Lock key has been pressed and
the keypad numbers are active. Some keyoard shortcuts are only active when you use
the numbers on the keypad instead of the numbers across the top of the keyboard.

Press the Num Lock key to toggle between the two conditions.

CAPS

CAPS appears on the Status bar to indicate the Caps Lock key has been pressed and
all text you enter will appear in upper case. When CAPS does not appear on the Status
bar, the alphabetic keys you type will appear in lower case, or, if the Shift key is
pressed, in upper case.

Press the Caps Lock key to toggle between the two conditions.

Debug Window

You use the GAUSS debugger to watch the program code as it runs. Prior to running
the debugger, breakpoints and watch variables can be set to stop the program at points
you set and provide additional data as the code is run.

You can run any GAUSS program file by selecting Debug Current File or Debug Main
File from the Debug Menu. This automatically starts debugging the file in the GAUSS
Debug window.

The debugger uses the following color codes:

• yellow highlighting indicates the next line of code to be run

• red highlighting indicates a breakpoint

The current status of variables specified using the Watch option is shown above the
Status bar. The number of lines executed appears on the Status bar as well as the file
name, active line, and the procedure being run.

Note: The Debug window runs in its own thread. If the Debug window will not open,
check that the Thread setting is Per Call in the Priority dialog box, accessed from the
Configure Menu.

File Menu

Restart restarts the debugging run using the current settings.

Toolbar Shortcut:

Exit terminates the current GAUSS debug execution.

Keyboard Shortcut: x or Ctrl-X
4-38



Using the Windows Interface

UserGuid.book Page 39 Monday, May 7, 2001 11:28 AM
Mode Menu

Step Into runs the next executable line of code in the application and steps into
procedures.

Toolbar Shortcut:

Keyboard Shortcut: Ctrl-I or press Enter

Step Over runs the next executable line of code in the application but does not step
into procedures.

Toolbar Shortcut:

Keyboard Shortcut: Ctrl-V or press the Space bar

Step Out runs the remainder of the current procedure and stops at the next line in the
calling procedure. Step out returns if a breakpoint is encountered.

Toolbar Shortcut:

Keyboard Shortcut: Ctrl-O

Run to Breakpoint runs all the remaining program code but stops if a breakpoint is
encountered. Temporary breakpoints can be added or removed using the Toggle
Breakpoint command.

Toolbar Shortcut:

Keyboard Shortcut: b or Ctrl-B

Run to Cursor runs all program code between the current line and the cursor position,
ignoring any breakpoints.

Toolbar Shortcut:

Keyboard Shortcut: Ctrl-C

Run to Line runs all program code between the current line and the line number you
specify, ignoring any breakpoints.

Keyboard Shortcut: l or Ctrl-L

Run to Proc runs all program code between the current line and procedure you
specify in the Run to proc dialog box.
4-39



GAUSS User Guide

UserGuid.book Page 40 Monday, May 7, 2001 11:28 AM
Run to End runs all program between the current line and the end of the program.

Toolbar Shortcut:

Keyboard Shortcut: r or Ctrl-R

Execute n steps runs the number of lines of program code you specify. Specify the
number of lines (n) to be executed counting from the beginning of the program. This
command will then execute n lines of code, ignoring any breakpoints.

Keyboard Shortcut: s or Ctrl-S

Tools Menu

Breakpoints stop code execution where you have inserted them. Breakpoints are
normally set prior to running the debugger, but can also be set or cleared for the
current file by using the Toggle Breakpoint command. Breakpoints set with the Set/
Clear Breakpoint commands are temporary and are lost after the current debug run.

Toolbar Shortcut:

Keyboard Shortcut: Ctrl-T

Watch Variables allow you to see how variables change in value while a program is
running. The values appear in a Matrix Editor. Watch variables can be specified prior
to running the debugger or during a debugging session. A watch variable can be the
name of a matrix, a scalar, a string array, or a string. For a matrix or a string array, the
first element is displayed.

The debugger searches for a watch variable using the following precedence:

• A local variable within a currently executed procedure.

• A local variable within a currently active procedure.

• A global variable.

Toolbar Shortcut:

Keyboard Shortcut: Ctrl-W

Window Menu

Window Control.   The Debug window is an MDI window like the other GAUSS
windows. You can toggle between the Debug and Output windows using CTRL-D.
4-40



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
GAUSS Source Browser5

The GAUSS Source Browser lets users quickly find, view, and if
necessary, modify the source code for external procedures in active
libraries.

In GAUSS for Windows, put the cursor on a global symbol name and
press Ctrl-F1. The Source Browser will open an Edit window containing
the source file holding the symbol definition. The browser searches the
active library files (.lcg files) for the symbol name.

If **> symbolname is found in the file at the beginning of a line, that
line will be displayed at the top of the window. Users may make use of
these features in their own code.

In TGAUSS, type browse followed by a command name or string
conaining wildcards. The source code for the command will be opened in
the default editor. Wildcards may also be used. You select the desired
command from the list by number.
5-1



UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Language Fundamentals6

GAUSS is a compiled language. GAUSS is also an interpreter. A compiled language,
because GAUSS scans the entire program once and translates it into a binary code
before it starts to execute the program. An interpreter, becauses the binary code is not
the native code of the CPU. When GAUSS executes the binary pseudocode, it must
“interpret” each instruction for the computer.

How can GAUSS be so fast if it is an interpreter? Two reasons. First, GAUSS has a
fast interpreter, and the binary compiled code is compact and efficient. Second, and
most significantly, GAUSS is a matrix language. It is designed to tackle problems that
can be solved in terms of matrix or vector equations. Much of the time lost in
interpreting the pseudocode is made up in the matrix or vector operations.

This chapter will enable you to understand the distinction between “compile time” and
“execution time,” two very different stages in the life of a GAUSS program.

Expressions
An expression is a matrix, string, constant, function reference, procedure reference, or
any combination of these joined by operators. An expression returns a result that can
be assigned to a variable with the assignment operator ‘=’.
6-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Statements
A statement is a complete expression or a command. Statements end with a
semicolon:

y = x*3;

If an expression has no assignment operator (=), it will be assumed to be an implicit
print statement:

print x*3;

or

x*3;

Here is an example of a statement that is a command rather than an expression:

output on;

Commands cannot be used as a part of an expression.

There can be multiple statements on the same line as long as each statement is
terminated with a semicolon.

Executable Statements

Executable statements are statements that can be “executed” over and over during the
execution phase of a GAUSS program (execution time). As an executable statement is
compiled, binary code is added to the program being compiled at the current location
of the instruction pointer. This binary code will be executed whenever the interpreter
passes through this section of the program. If the code is in a loop, it will be executed
each iteration of the loop.

Here are some examples of executable statements:

y = 34.25;

print y;

x = { 1 3 7 2 9 4 0 3 };

Nonexecutable Statements

Nonexecutable statements are statements that have an effect only when the program is
compiled (compile time). They generate no executable code at the current location of
the instruction pointer.
6-2



Language Fundamentals

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
Here are two examples:

declare matrix x = { 1 2 3 4 };

external matrix ybar;

Procedure definitions are nonexecutable. They do not generate executable code at the
current location of the instruction pointer. Here is an example:

zed = rndn(3,3);

proc sqrtinv(x);

local y;

y = sqrt(x);

retp(y+inv(x));

endp;

zsi = sqrtinv(zed);

There are two executable statements in the example above: the first line and the last
line. In the binary code that is generated, the last line will follow immediately after the
first line. The last line is the call to the procedure. This generates executable code.
The procedure definition generates no code at the current location of the instruction
pointer.

There is code generated in the procedure definition, but it is isolated from the rest of
the program. It is executable only within the scope of the procedure and can be
reached only by calling the procedure.

Programs
A program is any set of statements that are run together at one time. There are two
sections within a program.

Main Section

The main section of the program is all of the code that is compiled together without
relying on the autoloader. This means code that is in the main file or is included in the
compilation of the main file with an #include statement. All executable code
should be in the main section.
6-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
There must always be a main section even if it consists only of a call to the one and
only procedure called in the program. The main program code is stored in an area of
memory that can be adjusted in size with the new command.

Secondary Sections

Secondary sections of the program are files that are neither run directly nor included
in the main section with #include statements.

The secondary sections of the program can be left to the autoloader to locate and
compile when they are needed. Secondary sections must have only procedure
definitions and other nonexecutable statements.

#include statements are allowed in secondary sections as long as the file being
included does not violate the above criteria.

Here is an example of a secondary section:

declare matrix tol = 1.0e-15;

proc feq(a,b);

retp(abs(a-b) ≤ tol);

endp;

Compiler Directives
Compiler directives are commands that tell GAUSS how to process a program during
compilation. Directives determine what the final compiled form of a program will be.
They can affect part or all of the source code for a program. Directives are not
executable statements and have no effect at run-time.

The #include statement mentioned earlier is actually a compiler directive. It tells
GAUSS to compile code from a separate file as though it were actually part of the file
being compiled. This code is compiled in at the position of the #include statement.

Here are the compiler directives available in GAUSS:

#define Define a case-insensitive text-replacement or flag variable.

#definecs Define a case-sensitive text-replacement or flag variable.

#undef Undefine a text-replacement or flag variable.

#ifdef Compile code block if a variable has been #define’d.

#ifndef Compile code block if a variable has not been #define’d.

#iflight Compile code block if running GAUSS Light.
6-4



Language Fundamentals

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
#else Else clause for #if-#else-#endif code block.

#endif End of #if-#else-#endif code block.

#include Include code from another file in program.

#lineson Compile program with line number and file name records.

#linesoff Compile program without line number and file name records.

#srcfile Insert source file name record at this point (currently used when
doing data loop translation).

#srcline Insert source file line number record at this point (currently used
when doing data loop translation).

The #define statement can be used to define abstract constants. For example, you
could define the default graphics page size as

#define hpage 9.0

#define vpage 6.855

and then write your program using hpage and vpage. GAUSS will replace them
with 9.0 and 6.855 when it compiles the program. This makes a program much
more readable.

The #ifdef-#else-#endif directives allow you to conditionally compile sections
of a program, depending on whether a particular flag variable has been #define’d.
For example:

#ifdef log_10

y = log(x);

#else

y = ln(x);

#endif

This allows the same program to calculate answers using different base logarithms,
depending on whether or not the program has a #define log_10 statement at the
top.

#undef allows you to undefine text-replacement or flag variables so they no longer
affect a program, or so you can #define them again with a different value for a
different section of the program. If you use #definecs to define a case-sensitive
variable, you must use the right case when #undef’ing it.

With #lineson, #linesoff, #srcline, and #srcfile you can include line
number and file name records in your compiled code, so that run-time errors will be
6-5



GAUSS User Guide

UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM
easier to track down. #srcline and #srcfile are currently used by GAUSS
when doing data loop translation.

For more information on line number tracking, see “Debugging,” page 10-2 and see
“Debugging Data Loops,” page 14-2. See also #lineson in the GAUSS Language
Reference.

The syntax for #srcfile and #srcline is different than for the other directives
that take arguments. Typically, directives do not take arguments in parentheses; that is,
they look like keywords:

#define red 4

#srcfile and #srcline, however, do take their arguments in parentheses (like
procedures):

#srcline(12)

This allows you to place #srcline statements in the middle of GAUSS commands,
so that line numbers are reported precisely as you want them. For example:

#srcline(1) print “Here is a multi-line”

#srcline(2) “sentence--if it contains a run-time

error,”

#srcline(3) “you will know exactly”

#srcline(4) “which part of the sentence has the

problem.”;

The argument supplied to #srcfile does not need quotes:

#srcfile(c:\gauss\test.e)

Procedures
A procedure allows you to define a new function which you can then use as if it were
an intrinsic function. It is called in the same way as an intrinsic function:

y = myproc(a,b,c);

Procedures are isolated from the rest of your program and cannot be entered except by
calling them. Some or all of the variables inside a procedure can be local variables.
local variables exist only when the procedure is actually executing, and then
6-6



Language Fundamentals

UserGuid.book Page 7 Monday, May 7, 2001 11:28 AM
disappear. Local variables cannot get mixed up with other variables of the same name
in your main program or in other procedures.

For details on defining and calling procedures, see “Procedures and Keywords,”
page 8-1.

Data Types
There are two basic data types in GAUSS: matrices and strings. It is not necessary to
declare the type of a variable, but it is good programming practice to respect the types
of variables whenever possible. The data type and size can change in the course of a
program.

The declare statement, used for compile-time initialization, enforces type
checking.

Short strings of up to 8 bytes can be entered into elements of matrices, to form
character matrices. (For details, see “Character Matrices,” page 6-19.)

Constants

The following constant types are supported:

Decimal

Decimal constants can be either integer or floating point values:

1.34e-10

1.34e123

-1.34e+10

-1.34d-10

1.34d10

1.34d+10

123.456789345

These will be stored as double precision (15-16 significant digits). The range is the
same as for matrices. (For details, see “Matrices,” page 6-8.)
6-7



GAUSS User Guide

UserGuid.book Page 8 Monday, May 7, 2001 11:28 AM
String

String constants are enclosed in quotation marks:

“This is a string.”

Hexadecimal Integer

Hexadecimal integer constants are prefixed with 0x:

0x0ab53def2

Hexadecimal Floating Point

Hexadecimal floating point constants are prefixed with 0v. This allows you to input a
double precision value exactly as you want using 16 hexadecimal digits. The highest
order byte is to the left:

0vfff8000000000000

Matrices

Matrices are 2-dimensional arrays of double precision numbers. All matrices are
implicitly complex, although if it consists only of zeros, the imaginary part may take
up no space. Matrices are stored in row major order. A 2x3 real matrix will be stored
in the following way, from the lowest addressed element to the highest addressed
element:

[1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

A 2x3 complex matrix will be stored in the following way, from the lowest addressed
element to the highest addressed element:

(real part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

(imaginary part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

Conversion between complex and real matrices occurs automatically and is
transparent to the user in most cases. Functions are provided to provide explicit
control when necessary.

All numbers in GAUSS matrices are stored in double precision floating point format,
and each takes up 8 bytes of memory. This is the IEEE 754 format:
6-8



Language Fundamentals

UserGuid.book Page 9 Monday, May 7, 2001 11:28 AM
Matrices with only one number (1x1 matrices) are referred to as scalars, and matrices
with only one row or column (1xN or Nx1 matrices) are referred to as vectors.

Any matrix or vector can be indexed with two indices. Vectors can be indexed with
one index. Scalars can be indexed with one or two indices also, because scalars,
vectors, and matrices are the same data type to GAUSS.

The majority of functions and operators in GAUSS take matrices as arguments. The
following functions and operators are used for defining, saving, and loading matrices:

[ ] Indexing matrices.

= Assignment operator.

| Vertical concatenation.

~ Horizontal concatenation.

con Numeric input from keyboard.

cons Character input from keyboard.

declare Compile-time matrix or string initialization.

let Matrix definition statement.

load Load matrix (same as loadm).

readr Read from a GAUSS matrix or data set file.

save Save matrices, procedures, and strings to disk.

saved Convert a matrix to a GAUSS data set.

stof Convert string to matrix.

submat Extract a submatrix.

writer Write data to a GAUSS data set.

Following are some examples of matrix definition statements.

An assignment statement followed by data enclosed in braces is an implicit let
statement. Only constants are allowed in let statements; operators are illegal. When
braces are used in let statements, commas are used to separate rows. The statement

let x = { 1 2 3, 4 5 6, 7 8 9 };

or

Bytes Data Type
Significant

Digits Range

8 floating point 15-16
4.19

307–×10 X 1.67
+308×10≤ ≤
6-9



GAUSS User Guide

UserGuid.book Page 10 Monday, May 7, 2001 11:28 AM
x = { 1 2 3, 4 5 6, 7 8 9 };

will result in

The statement

let x[3,3] = 1 2 3 4 5 6 7 8 9;

will result in

The statement

let x[3,3] = 1;

will result in

The statement

let x[3,3];

will result in

x
1 2 3

4 5 6

7 8 9

=

x
1 2 3

4 5 6

7 8 9

=

x
1 1 1

1 1 1

1 1 1

=

x
0 0 0

0 0 0

0 0 0

=

6-10



Language Fundamentals

UserGuid.book Page 11 Monday, May 7, 2001 11:28 AM
The statement

let x = 1 2 3 4 5 6 7 8 9;

will result in

Complex constants can be entered in a let statement. In the following example, the +
or - is not a mathematical operator, but connects the two parts of a complex number.
There should be no spaces between the + or - and the parts of the number. If a number
has both real and imaginary parts, the trailing ‘i’ is not necessary. If a number has no
real part, you can indicate that it is imaginary by appending the ‘i’. The statement

let x[2,2] = 1+2i 3-4 5 6i;

will result in

Complex constants can also be used with the declare, con, and stof statements.

An “empty matrix” is a matrix that contains no data. Empty matrices are created with
the let statement and braces:

x = {};

x

1

2

3

4

5

6

7

8

9

=

x 1 2i+ 3 4i–

5 0 6i+
=

6-11



GAUSS User Guide

UserGuid.book Page 12 Monday, May 7, 2001 11:28 AM
Empty matrices are currently supported only by the rows and cols functions and the
concatenation operators (~ and |):

x = {};

hsec0 = hsec;

do until hsec-hsec0 > 6000;

x = x ~ data_in(hsec-hsec0);

endo;

You can test whether a matrix is empty by entering rows(x), cols(x), and
scalerr(x). If the matrix is empty, rows and cols will return a 0, and scalerr
will return 65535.

The ~ is the horizontal concatenation operator and the | is the vertical concatenation
operator. The statement

y = 1~2|3~4;

will be evaluated as

y = (1~2)|(3~4);

and will result in a 2x2 matrix because horizontal concatenation has precedence over
vertical concatenation:

The statement

y = 1+1~2*2|3-2~6/2;

will be evaluated as

y = ((1+1)~(2*2))|((3-2)~(6/2));

and will result in a 2x2 matrix because the arithmetic operators have precedence over
concatenation:

1 2

3 4

2 4

1 3
6-12



Language Fundamentals

UserGuid.book Page 13 Monday, May 7, 2001 11:28 AM
For more information, see “Operator Precedence,” page 6-22.

The let command is used to initialize matrices with constant values:

let x[2,2] = 1 2 3 4;

Unlike the concatenation operators, it cannot be used to define matrices in terms of
expressions such as

y = x1-x2~x2|x3*3~x4;

The statement

y = x[1:3,5:8];

will put the intersection of the first three rows and the fifth through eighth columns of
x into the matrix y.

The statement

y = x[1 3 1,5 5 9];

will create a 3x3 matrix y with the intersection of the specified rows and columns
pulled from x (in the indicated order).

The statement

let r = 1 3 1;

let c = 5 5 9;

y = x[r,c];

will have the same effect as the previous example, but is more general.

The statement

y[2,4] = 3;

will set the 2,4 element of the existing matrix y to 3. This statement is illegal if y does
not have at least 2 rows and 4 columns.

The statement

x = con(3,2);

will cause a ? to be printed in the window, and will prompt the user until six numbers
have been entered from the keyboard.

The statement

load x[] = b:mydata.asc
6-13



GAUSS User Guide

UserGuid.book Page 14 Monday, May 7, 2001 11:28 AM
will load data contained in an ASCII file into an Nx1 vector x. (Use rows(x) to find
out how many numbers were loaded, and use reshape(x,N,K) to reshape it to an
NxK matrix.)

The statement

load x;

will load the matrix x.fmt from disk (using the current load path) into the matrix x in
memory.

The statement

open d1 = dat1;

x = readr(d1,100);

will read the first 100 rows of the GAUSS data set dat1.dat.

Strings and String Arrays

Strings

Strings can be used to store the names of files to be opened, messages to be printed,
entire files, or whatever else you might need. Any byte value is legal in a string from
0-255. The buffer where a string is stored always contains a terminating byte of ASCII
0. This allows passing strings as arguments to C functions through the Foreign
Language Interface.

Here is a partial list of the functions for manipulating strings:

$+ Combine two strings into one long string.

^ Interpret following name as a variable, not a literal.

chrs Convert vector of ASCII codes to character string.

dttostr Converts a matrix containing dates in DT scalar format to a string
array.

ftocv Character representation of numbers in NxK matrix.

ftos Character representation of numbers in 1x1 matrix.

ftostrC Converts a matrix to a string array using a C language format
specification.

getf Load ASCII or binary file into string.

indcv Find index of element in character vector.

lower Convert to lowercase.

stof Convert string to floating point.

strindx Find index of a string within a second string.
6-14



Language Fundamentals

UserGuid.book Page 15 Monday, May 7, 2001 11:28 AM
strlen Length of a string.

strsect Extract substring of string.

strsplit splits an Nx1 string vector to an NxK string array of the individual
tokens.

strsplitPadSplits a string vector into a string array of the individual tokens. Pads
on the right with the null strings.

strtodt Converts a string array of dates to a matrix in DT scalar format.

strtof converts a string array to a numeric matrix.

strtofcplx converts a string array to complex numeric matrix.

upper Convert to uppercase.

vals Convert from string to numeric vector of ASCII codes.

Strings can be created like this:

x = “example string”;

or

x = cons; /* keyboard input */

or

x = getf(“myfile”,0); /* read a file into a string */

They can be printed like this:

print x;

A character matrix must have a ‘$’ prefixed to it in a print statement:

print $x;

A string can be saved to disk with the save command in a file with a .fst
extension, and then loaded with the load command:

save x;

loads x;

or

loads x=x.fst;

The backslash is used as the escape character inside double quotes to enter special
characters:
6-15



GAUSS User Guide

UserGuid.book Page 16 Monday, May 7, 2001 11:28 AM
“\b” backspace (ASCII 8)

“\e” escape (ASCII 27)

“\f” formfeed (ASCII 12)

“\g” beep (ASCII 7)

“\l” line feed (ASCII 10)

“\r” carriage return (ASCII 13)

“\t” tab (ASCII 9)

“\\” a backslash

“\###” the ASCII character whose decimal value is “###”

When entering DOS pathnames in double quotes, two backslashes must be used to
insert one backslash:

st = “c:\\gauss\\myprog.prg”;

An important use of strings and character elements of matrices is with the substitution
operator (^) .

In the command

create f1 = olsdat with x,4,2;

by default, GAUSS will interpret the olsdat as a literal; that is, the literal name of
the GAUSS data file you want to create. It will also interpret the x as the literal prefix
string for the variable names: x1 x2 x3 x4.

If you want to get the data set name from a string variable, the substitution operator
(^) could be used as

dataset=“olsdat”;

create f1=^dataset with x,4,2;

If you want to get the data set name from a string variable and the variable names from
a character vector, use

dataset=“olsdat”;

let vnames=age pay sex;

create f1=^dataset with ^vnames,0,2;

The substitution operator (^) works with load and save, also:

lpath=“c:\gauss\procs”;
6-16



Language Fundamentals

UserGuid.book Page 17 Monday, May 7, 2001 11:28 AM
name=“mydata”;

load path=^lpath x=^name;

command=“dir *.fmt”;

The general syntax is

^variable_name

Expressions are not allowed.

The following commands are supported with the substitution operator (^):

create f1=^dataset with ^vnames,0,2;

create f1=^dataset using ^cmdfile;

open f1=^dataset;

output file=^outfile;

load x=^datafile;

load path=^lpath x,y,z,t,w;

save ^name=x;

save path=^spath;

run ^prog;

msym ^mstring;

String Arrays

String arrays are NxK matrices of strings. Here is a partial list of the functions for
manipulating string arrays:

$| Vertical string array concatenation operator.

$~ Horizontal string array concatenation operator.

[ ] Extract subarrays or individual strings from their corresponding array,
or assign their values.

Transpose operator.

. Bookkeeping transpose operator.

declare Initialize variables at compile time.

delete Delete specified global symbols.

′

′

6-17



GAUSS User Guide

UserGuid.book Page 18 Monday, May 7, 2001 11:28 AM
fgetsa Read multiple lines of text from a file.

fgetsat Read multiple lines of text from a file, discarding newlines.

format Define output format for matrices, string arrays, and strings.

fputs Write strings to a file.

fputst Write strings to a file, appending newlines.

let Initialize matrices, strings, and string arrays.

loads Load a string or string array file (.fst file).

lprint Print expressions to the printer.

lshow Print global symbol table to the printer.

print Print expressions in window and/or auxiliary output.

reshape Reshape a matrix or string array to new dimensions.

save Save matrix, string array, string, procedure, function, or keyword to
disk and give the disk file either a .fmt, .fst, or .fcg extension.

show Display global symbol table.

sortcc Quick-sort rows of matrix or string array based on character column.

type Indicate whether variable passed as argument is matrix, string, or
string array.

typecv Indicate whether variables named in argument are strings, string
arrays, matrices, procedures, functions, or keywords.

varget Access the global variable named by a string array.

varput Assign the global variable named by a string array.

vec Stack columns of a matrix or string array to form a column vector.

vecr Stack rows of a matrix or string array to form a column vector.

String arrays are created through the use of the string array concatenation operators.
Below is a contrast of the horizontal string and horizontal string array concatenation
operators:

x = “age”;

y = “pay”;

n = “sex”;

s = x $+ y $+ n;

sa = x $~ y $~ n;

s = agepaysex
6-18



Language Fundamentals

UserGuid.book Page 19 Monday, May 7, 2001 11:28 AM
sa = age pay sex

Character Matrices

Matrices can have either numeric or character elements. For convenience, a matrix
containing character elements is referred to as a character matrix.

A character matrix is not a separate data type, but gives you the ability to store and
manipulate data elements that are composed of ASCII characters as well as floating
point numbers. For example, you may want to concatenate a column vector containing
the names of the variables in an analysis onto a matrix containing the coefficients,
standard errors, t-statistic, and p-value. You can then print out the entire matrix with a
separate format for each column with one call to the function printfm.

The logic of the programs will dictate the type of data assigned to a matrix, and the
increased flexibility allowed by being able to bundle both types of data together in a
single matrix can be very powerful. You could, for instance, create a moment matrix
from your data, concatenate a new row onto it containing the names of the variables,
and save it to disk with the save command.

Numeric matrices are double precision, which means that each element is stored in 8
bytes. A character matrix can thus have elements of up to 8 characters.

GAUSS does not automatically keep track of whether a matrix contains character or
numeric information. The ASCII to GAUSS conversion program ATOG will record
the types of variables in a data set when it creates it. The create command will,
also. The function vartypef gets a vector of variable type information from a data
set. This vector of ones and zeros can be used by printfm when printing your data.
Since GAUSS does not know whether a matrix has character or numeric information,
it is up to you to specify which type of data it contains when printing the contents of
the matrix. (For details, see print and printfm in the GAUSS Language
Reference.)

Most functions that take a string argument will take an element of a character matrix
also, interpreting it as a string of up to 8 characters.

Date and Time Formats

DT Scalar Format

The DT scalar format is a double precision representation of the date and time. In the
DT scalar format, the number

20010421183207

represents 18:32:07 or 6:32:07 PM on April 21, 2001.
6-19



GAUSS User Guide

UserGuid.book Page 20 Monday, May 7, 2001 11:28 AM
DTV Vector Format

The DTV vector is a 1x8 vector. The format for the DTV vector is:

[1] Year

[2] Month, 1-12

[3] Day of month, 1-31

[4] Hour of day, 0-23

[5] Minute of hour, 0-59

[6] Second of minute, 0-59

[7] Day of week, 0-6 where 0 is Sunday

[8] Day since beginning of year, 0-365

UTC Scalar Format

The UTC scalar format is the number of seconds since January 1, 1970, Greenwich
Mean Time.

Special Data Types

The IEEE floating point format has many encodings that have special meaning. The
print command will print them accurately so that you can tell if your calculation is
producing meaningful results.

NaN

There are many floating point encodings that do not correspond to a real number.
These encodings are referred to as NaN’s. NaN stands for Not a Number.

Certain numerical errors will cause the math coprocessor to create a NaN called an
“indefinite.” This will be printed as a -NaN when using the print command. These
values are created by the following operations:

+ plus -

+ minus +

- minus -

0 x

/

0 / 0

operations where one or both operands is a NaN

∞ ∞

∞ ∞

∞ ∞

∞

∞ ∞
6-20



Language Fundamentals

UserGuid.book Page 21 Monday, May 7, 2001 11:28 AM
trigonometric functions involving

INF

When the math coprocessor overflows, the result will be a properly signed infinity.
Subsequent calculations will not deal well with an infinity; it usually signals an error
in your program. The result of an operation involving an infinity is most often a NaN.

DEN, UNN

When some math coprocessors underflow, they may do so gradually by shifting the
significand of the number as necessary to keep the exponent in range. The result of
this is a denormal (DEN). When denormals are used in calculations, they are usually
handled automatically in an appropriate way. The result will either be an unnormal
(UNN), which like the denormal represents a number very close to zero, or a normal,
depending on how significant the effect of the denormal was in the calculation. In
some cases the result will be a NaN.

Following are some procedures for dealing with these values.

The procedure isindef will return 1 (true) if the matrix passed to it contains any
NaN’s that are the indefinite mentioned earlier. The GAUSS missing value code as
well as GAUSS scalar error codes are NaN’s, but this procedure tests only for
indefinite:

proc isindef(x);

retp(not x $/= __INDEFn);

endp;

Be sure to call gausset before calling isindef. gausset will initialize the value
of the global __INDEFn to this platform-specific encoding.

The procedure normal will return a matrix with all denormals and unnormals set to
zero:

proc normal(x);

retp(x .* (abs(x) .> 4.19e-307));

endp;

∞

6-21



GAUSS User Guide

UserGuid.book Page 22 Monday, May 7, 2001 11:28 AM
The procedure isinf will return 1 (true) if the matrix passed to it contains any
infinities:

proc isinf(x);

local plus,minus;

plus = __INFp;

minus = __INFn;

retp(not x /= plus or not x /= minus);

endp;

Be sure to call gausset before calling isinf. gausset will initialize the value of
the globals __INFn and __INFp to platform-specific encodings.

Operator Precedence
The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the * and /
operators have a higher precedence than the + and - operators. In expressions that
contain these operators, the operand pairs associated with the * or / operator are
evaluated first. Whether * or / is evaluated first depends on which comes first in the
particular expression. (For a listing of the precedence of all operators, see “Operator
Precedence,” page 7-18.)

The expression

-5+3/4+6*3

is evaluated as

Within a term, operators of equal precedence are evaluated from left to right.

The term

2^3^7

is evaluated as

(-5) + (3/4) + (6*3)

2
3( )7
6-22



Language Fundamentals

UserGuid.book Page 23 Monday, May 7, 2001 11:28 AM
In the expression

f1(x)*f2(y)

f1 is evaluated before f2.

Here are some examples:

Flow Control
A computer language needs facilities for decision making and looping to control the
order in which computations are done. GAUSS has several kinds of flow control
statements.

Expression Evaluation

a+b*c+d

-2+4-6*inv(8)/9

3.14^5*6/(2+sqrt(3)/4)

-a+b*c^2

a+b-c+d-e

a^b^c*d

a*b/d*c

a^b+c*d

2^4!

2*3!

a b*c( )+( ) d+

2–( ) 4+( ) 6*inv 8( ) )/9 )((–

3.14
5 )*6 )/ 2 sqrt( 3(+( )/4 ) )((

a )– b* c2( ) )(+(

a b ) c )– d ) e–+ +(((

ab )c )*d((

a*b )/d )*c((

a
b( ) c*d( )+

2
4!( )

2* 3! )(
6-23



GAUSS User Guide

UserGuid.book Page 24 Monday, May 7, 2001 11:28 AM
Looping

do loop

The do statement can be used in GAUSS to control looping:

do while scalar_expression; /* loop if expression is true */

.

.

statements

.

.

endo;

also

do until scalar_expression; /* loop if expression is

false */

.

.

statements

.

.

endo;

The scalar_expression is any expression that returns a scalar result. The expression
will be evaluated as TRUE if its real part is nonzero and FALSE if it is zero.

There is no counter variable that is automatically incremented in a do loop. If one is
used, it must be set to its initial value before the loop is entered, and explicitly
incremented or decremented inside the loop.
6-24



Language Fundamentals

UserGuid.book Page 25 Monday, May 7, 2001 11:28 AM
The following example illustrates nested do loops that use counter variables:

format /rdn 1,0;

space =“ ”;

comma = “,”;

i = 1;

do while i ≤ 4;

j = 1;

do while j ≤ 3;

print space i comma j;;

j = j+1;

endo;

i = i+1;

print;

endo;

This will print:

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

4,1 4,2 4,3

Use the relational and logical operators without the dot ‘.’ in the expression that
controls a do loop. These operators always return a scalar result.

break and continue are used within do loops to control execution flow. When
break is encountered, the program will jump to the statement following the endo.
This terminates the loop. When continue is encountered, the program will jump up
to the top of the loop and reevaluate the while or until expression. This allows
you to reiterate the loop without executing any more of the statements inside the loop:
6-25



GAUSS User Guide

UserGuid.book Page 26 Monday, May 7, 2001 11:28 AM
do until eof(fp); /* continue jumps here */

x = packr(readr(fp,100));

if scalmiss(x);

continue; /* iterate again */

endif;

s = s + sumc(x);

count = count + rows(x);

if count ≥ 10000;

break; /* break out of loop */

endif;

endo;

mean = s / count; /* break jumps here */

for loop 

The fastest looping construct in GAUSS is the for loop:

for counter (start, stop, step);

.

.

statements

.

.

endfor;

counter is the literal name of the counter variable. start, stop, and step are scalar
expressions. start is the initial value, stop is the final value, and step is the increment.

break and continue are also supported by for loops. (For more information, see
for in the GAUSS Language Reference.)
6-26



Language Fundamentals

UserGuid.book Page 27 Monday, May 7, 2001 11:28 AM
Conditional Branching

The if statement controls conditional branching:

if scalar_expression;

.

.

statements

.

.

elseif scalar_expression;

.

.

statements

.

.

else;

.

.

statements

.

.

endif;

The scalar_expression is any expression that returns a scalar result. The expression
will be evaluated as TRUE if its real part is nonzero and FALSE if it is zero.

GAUSS will test the expression after the if statement. If it is TRUE, the first list of
statements is executed. If it is FALSE, GAUSS will move to the expression after the
first elseif statement, if there is one, and test it. It will keep testing expressions and
will execute the first list of statements that corresponds to a TRUE expression. If no
expression is TRUE, the list of statements following the else statement is executed.
After the appropriate list of statements is executed, the program will go to the
statement following the endif and continue on.
6-27



GAUSS User Guide

UserGuid.book Page 28 Monday, May 7, 2001 11:28 AM
Use the relational and logical operators without the dot ‘.’ in the expression that
controls an if or elseif statement. These operators always return a scalar result.

if statements can be nested.

One endif is required per if clause. If an else statement is used, there may be
only one per if clause. There may be as many elseif’s as are required. There need
not be any elseif’s or any else statement within an if clause.

Unconditional Branching

The goto and gosub statements control unconditional branching. The target of both
a goto and a gosub is a label.

goto

A goto is an unconditional jump to a label with no return:

label:

.

.

goto label;

Parameters can be passed with a goto. The number of parameters is limited by
available stack space. This is good for common exit routines:

.

.

goto errout(“Matrix singular”);

.

.

goto errout(“File not found”);

.

.

errout:

pop errmsg;

errorlog errmsg;

end;
6-28



Language Fundamentals

UserGuid.book Page 29 Monday, May 7, 2001 11:28 AM
gosub

With a gosub, the address of the gosub statement is remembered and when a
return statement is encountered, the program will resume executing at the
statement following the gosub.

Parameters can be passed with a gosub in the same way as a goto. With a gosub, it
is also possible to return parameters with the return statement.

Subroutines are not isolated from the rest of your program, and the variables referred
to between the label and the return statement can be accessed from other places in
your program.

Since a subroutine is only an address marked by a label, there can be subroutines
inside procedures. The variables used in these subroutines are the same variables that
are known inside the procedure. They will not be unique to the subroutine, but they
may be locals that are unique to the procedure the subroutine is in. (For details, see
gosub in the GAUSS Language Reference.)

Functions
Single line functions that return one item can be defined with the fn statement:

fn area(r) = pi * r * r;

These functions can be called in the same way as intrinsic functions. The above
function could be used in the following program sequence:

diameter = 3;

radius = 3 / 2;

a = area(radius);

Rules of Syntax
This section lists the general rules of syntax for GAUSS programs.

Statements

A GAUSS program consists of a series of statements. A statement is a complete
expression or command.

Statements in GAUSS end with a semicolon with one exception: from the GAUSS
command line, the final semicolon in an interactive program is implicit if it is not
explicitly given:

(gauss) x=5; z=rndn(3,3); y=x+z
6-29



GAUSS User Guide

UserGuid.book Page 30 Monday, May 7, 2001 11:28 AM
Column position is not significant. Blank lines are allowed. Inside a statement and
outside of double quotes, the carriage return/line feed at the end of a physical line will
be converted to a space character as the program is compiled.

A statement containing a quoted string can be continued across several lines with a
backslash:

s = “This is one really `long string that would be” \

“difficult to assign in just a single line.”;

Case

GAUSS does not distinguish between uppercase and lowercase except inside double
quotes.

Comments

/* this kind of comment can be nested */

@ this kind of comment cannot be nested @

Extraneous Spaces

Extraneous spaces are significant in print and lprint statements where the space
is a delimiter between expressions:

print x y z;

In print and lprint statements, spaces can be used in expressions that are in
parentheses:

print (x * y) (x + y);

Symbol Names

The names of matrices, strings, procedures, and functions can be up to 32 characters
long. The characters must be alphanumeric or an underscore. The first character must
be alphabetic or an underscore.

Labels

A label is used as the target of a goto or a gosub. The rule for naming labels is the
same as for matrices, strings, procedures, and functions. A label is followed
immediately by a colon:

here:
6-30



Language Fundamentals

UserGuid.book Page 31 Monday, May 7, 2001 11:28 AM
The reference to a label does not use a colon:

goto here;

Assignment Statements

The assignment operator is the equal sign ‘=’ :

y = x + z;

Multiple assignments must be enclosed in braces ‘{ }’:

{ mant,pow } = base10(x);

The comparison operator (equal to) is two equal signs ‘==’:

if x == y;

print “x is equal to y”;

endif;

Function Arguments

The arguments to functions are enclosed in parentheses ‘( )’:

y = sqrt(x);

Indexing Matrices

Brackets ‘[ ]’ are used to index matrices:

x = { 1 2 3,

3 7 5,

3 7 4,

8 9 5,

6 1 8 };

y = x[3,3];

z = x[1 2:4,1 3];

Vectors can be indexed with either one or two indices:

v = { 1 2 3 4 5 6 7 8 9 };
6-31



GAUSS User Guide

UserGuid.book Page 32 Monday, May 7, 2001 11:28 AM
k = v[3];

j = v[1,6:9];

x[2,3] returns the element in the second row and the third column of x.

x[1 3 5,4 7] returns the submatrix that is the intersection of rows 1, 3, and 5 and
columns 4 and 7.

x[.,3] returns the third column of x.

x[3:5,.] returns the submatrix containing the third through the fifth rows of x.

The indexing operator will take vector arguments for submatrix extraction or
submatrix assignments:

y = x[rv,cv];

y[rv,cv] = x;

rv and cv can be any expressions returning vectors or matrices. The elements of rv
will be used as the row indices and the elements of cv will be used as the column
indices. If rv is a scalar 0, all rows will be used; if cv is a scalar 0, all columns will be
used. If a vector is used in an index expression, it is illegal to use the space operator or
the colon operator on the same side of the comma as the vector.

Arrays of Matrices and Strings

It is possible to index sets of matrices or strings using the varget function.

In this example, a set of matrix names is assigned to mvec. The name y is indexed
from mvec and passed to varget, which will return the global matrix y. The
returned matrix is inverted and assigned to g:

mvec = { x y z a };

i = 2;

g = inv(varget(mvec[i]));

The following procedure can be used to index the matrices in mvec more directly:

proc imvec(i);

retp(varget(mvec[i]));

endp;

Then imvec(i) will equal the matrix whose name is in the ith element of mvec.
6-32



Language Fundamentals

UserGuid.book Page 33 Monday, May 7, 2001 11:28 AM
In the example above, the procedure imvec was written so that it always operates on
the vector mvec. The following procedure makes it possible to pass in the vector of
names being used:

proc get(array,i);

retp(varget(array[i]));

endp;

Then get(mvec,3) will return the 3rd matrix listed in mvec.

proc put(x,array,i);

retp(varput(x,array[i]));

endp;

And put(x,mvec,3) will assign x to the 3rd matrix listed in mvec and return a 1
if successful or a 0 if it fails.

Arrays of Procedures

It is also possible to index procedures. The ampersand operator (&) is used to return a
pointer to a procedure.

Assume that f1, f2, and f3 are procedures that take a single argument. The
following code defines a procedure fi that will return the value of the ith procedure,
evaluated at x:

nms = &f1 | &f2 | &f3;

proc fi(x,i);

local f;

f = nms[i];

local f:proc;

retp( f(x) );

endp;

fi(x,2) will return f2(x). The ampersand is used to return the pointers to the
procedures. nms is a numeric vector that contains a set of pointers. The local
statement is used twice. The first tells the compiler that f is a local matrix. The ith
pointer, which is just a number, is assigned to f. The second local statement tells
the compiler to treat f as a procedure from this point on; thus the subsequent
statement f(x) is interpreted as a procedure call.
6-33



GAUSS User Guide

UserGuid.book Page 34 Monday, May 7, 2001 11:28 AM
6-34



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Operators7

Element-by-Element Operators

Element-by-element operators share common rules of conformability. Some functions
that have two arguments also operate according to the same rules.

Element-by-element operators handle those situations in which matrices are not
conformable according to standard rules of matrix algebra. When a matrix is said to be
ExE conformable, it refers to this element-by-element conformability. The following
cases are supported:

matrix op matrix

matrix
scalar

op
op

scalar
matrix

matrix
vector

op
op

vector
matrix

vector op vector
7-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
In a typical expression involving an element-by-element operator

z = x + y;

conformability is defined as follows:

• If x and y are the same size, the operations are carried out corresponding
element by corresponding element:

• If x is a matrix and y is a scalar, or vice versa, the scalar is operated on with
respect to every element in the matrix. For example, x + 2 will add 2 to every
element of x:

x
1 3 2

4 5 1

3 7 4

=

y
2 4 3

3 1 4

6 1 2

=

z
3 7 5

7 6 5

9 8 6

=

x
1 3 2

4 5 1

3 7 4

=

y 2=

z
3 5 4

6 7 3

5 9 6

=

7-2



Operators

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
• If x is an Nx1 column vector and y is an NxK matrix, or vice versa, the vector
is swept “across” the matrix:

• If x is a 1xK column vector and y is an NxK matrix, or vice versa, the vector is
swept “down” the matrix:

vector matrix

1 2 4 3

4 3 1 4

3 6 1 2

result

3 5 4

7 5 8

9 4 5

vector 2 4 3

2 4 3

matrix 3 1 4

6 1 2

4 8 6

result 5 5 7

8 5 5
7-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
• When one argument is a row vector and the other is a column vector, the result
of an element-by-element operation will be the “table” of the two:

If x and y are such that none of these conditions apply, the matrices are not
conformable to these operations and an error message will be generated.

Matrix Operators
The following operators work on matrices. Some assume numeric data and others will
work on either character or numeric data.

Numeric Operators

For details on how matrix conformability is defined for element-by-element operators,
see “Element-by-Element Operators,” page 7-1.

+ Addition

y = x + z;

Performs element-by-element addition.

- Subtraction or negation

y = x - z;

y = -k;

Performs element-by-element subtraction or the negation of all elements,
depending on context.

* Matrix multiplication or multiplication

y = x * z;

When z has the same number of rows as x has columns, this will perform matrix
multiplication (inner product). If x or z are scalar, this performs standard
element-by-element multiplication.

row vector 2 4 3 1

3 5 7 6 4

column vector 2 4 6 5 3

5 7 9 8 6
7-4



Operators

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
/ Division or linear equation solution

x = b / A;

If A and b are scalars, it performs standard division. If one of the operands is a
matrix and the other is scalar, the result is a matrix the same size with the results
of the divisions between the scalar and the corresponding elements of the matrix.
Use ./ for element-by-element division of matrices.

If b and A are conformable, this operator solves the linear matrix equations.

Linear equation solution is performed in the following cases:

Ax = b

• If A is a square matrix and has the same number of rows as b, this
statement will solve the system of linear equations using an LU
decomposition.

• If A is rectangular with the same number of rows as b, this statement will
produce the least squares solutions by forming the normal equations and
using the Cholesky decomposition to get the solution.

If trap 2 is set, missing values will be handled with pairwise deletion.

% Modulo division

y = x % z;

For integers, this returns the integer value that is the remainder of the integer
division of x by z. If x or z is noninteger, it will first be rounded to the nearest
integer. This is an element-by-element operator.

! Factorial

y = x!;

Computes the factorial of every element in the matrix x. Nonintegers are
rounded to the nearest integer before the factorial operator is applied. This will
not work with complex matrices. If x is complex, a fatal error will be generated.

.* Element-by-element multiplication

y = x .* z;

If x is a column vector and z is a row vector (or vice versa), the “outer product”
or “table” of the two will be computed. (For conformability rules, see “Element-
by-Element Operators,” page 7-1.)

y
A ′b
A ′A
---------=
7-5



GAUSS User Guide

UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM
./ Element-by-element division

y = x ./ z;

^ Element-by-element exponentiation

y = x^z;

If x is negative, z must be an integer.

.^ Same as ^

.*. Kronecker (tensor) product

y = x .*. z;

This results in a matrix in which every element in x has been multiplied (scalar
multiplication) by the matrix z. For example:

x = { 1 2,

3 4 };

z = { 4 5 6,

7 8 9 };

y = x .*. z;

x 1 2

3 4
=

z 4 5 6

7 8 9
=

y

4 5 6 8 10 12

7 8 9 14 16 18

12 15 18 16 20 24

21 24 27 28 32 36

=

7-6



Operators

UserGuid.book Page 7 Monday, May 7, 2001 11:28 AM
*~ Horizontal direct product

z = x *~ y;

The input matrices x and y must have the same number of rows. The result will
have cols(x) * cols(y) columns.

Other Matrix Operators

’ Transpose operator

y = x’;

The columns of y will contain the same values as the rows of x, and the rows of y
will contain the same values as the columns of x. For complex matrices, this
computes the complex conjugate transpose.

If an operand immediately follows the transpose operator, the ’ will be interpreted
as ’*. Thus y = x’x is equivalent to y = x’*x.

.’ Bookkeeping transpose operator

y = x.’;

This is provided primarily as a matrix handling tool for complex matrices. For all
matrices, the columns of y will contain the same values as the rows of x, and the
rows of y will contain the same values as the columns of x. The complex
conjugate transpose is NOT computed when you use .’.

If an operand immediately follows the bookkeeping transpose operator, the .’
will be interpreted as .’*. Thus y = x.’x is equivalent to y = x.’*x.

x 1 2

3 4
=

y 5 6

7 8
=

z 5 6 10 12

21 24 28 32
=

7-7



GAUSS User Guide

UserGuid.book Page 8 Monday, May 7, 2001 11:28 AM
| Vertical concatenation

z = x|y;

~ Horizontal concatenation

z = x~y;

Relational Operators
For details on how matrix conformability is defined for element-by-element operators,
see “Element-by-Element Operators,” page 7-1.

Each of these operators has two equivalent representations. Either can be used (for
example, < or lt), depending only upon preference. The alphabetic form should be
surrounded by spaces.

A third form of these operators has a ‘$’ and is used for comparisons between
character data and for comparisons between strings or string arrays. The comparisons
are done byte by byte, starting with the lowest addressed byte of the elements being
compared.

x 1 2 3

3 4 5
=

y 7 8 9=

z
1 2 3

3 4 5

7 8 9

=

x 1 2

3 4
=

y 5 6

7 8
=

z 1 2 5 6

3 4 7 8
=

7-8



Operators

UserGuid.book Page 9 Monday, May 7, 2001 11:28 AM
The equality comparison operators (≤, ==, ≥, /=) and their dot equivalents can be used
to test for missing values and the NaN that is created by floating point exceptions.
Less than and greater than comparisons are not meaningful with missings or NaN’s,
but equal and not equal will be valid. These operators are sign-insensitive for
missings, NaN’s, and zeros.

The string ‘$’ versions of these operators can also be used to test missings, NaN’s, and
zeros. Because they do a strict byte-to-byte comparison, they are sensitive to the sign
bit. Missings, NaN’s, and zeros can all have the sign bit set to 0 or 1, depending on
how they were generated and have been used in a program.

If the relational operator is NOT preceded by a dot ‘.’, the result is always a scalar 1
or 0, based upon a comparison of all elements of x and y. All comparisons must be true
for the relational operator to return TRUE.

By this definition, then

if x /= y;

is interpreted as: “if every element of x is not equal to the corresponding element of y”

To check if two matrices are not identical, use

if not x == y;

For complex matrices, the ==, /=, .==, and ./= operators compare both the real and
imaginary parts of the matrices; all other relational operators compare only the real
parts.

• Less than

z = x < y;

z = x lt y;

z = x $< y;

• Less than or equal to

z = x ≤ y;

z = x le y;

z = x $≤ y;

• Equal to

z = x == y;

z = x eq y;

z = x $== y;
7-9



GAUSS User Guide

UserGuid.book Page 10 Monday, May 7, 2001 11:28 AM
• Not equal

z = x /= y;

z = x ne y;

z = x $/= y;

• Greater than or equal to

z = x ≥ y;

z = x ge y;

z = x $≥ y;

• Greater than

z = x > y;

z = x gt y;

z = x $> y;

If the relational operator IS preceded by a dot ‘.’, the result will be a matrix of 1’s and
0’s, based upon an element-by-element comparison of x and y.

• Element-by-element less than

z = x .< y;

z = x .lt y;

z = x .$< y;

• Element-by-element less than or equal to

z = x .≤ y;

z = x .le y;

z = x .$≤ y;

• Element-by-element equal to

z = x .== y;

z = x .eq y;

z = x .$== y;

• Element-by-element not equal to

z = x ./= y;

z = x .ne y;

z = x .$/= y;
7-10



Operators

UserGuid.book Page 11 Monday, May 7, 2001 11:28 AM
• Element-by-element greater than or equal to

z = x .≥ y;

z = x .ge y;

z = x .$≥ y;

• Element-by-element greater than

z = x .> y;

z = x .gt y;

z = x .$> y;

Logical Operators
The logical operators perform logical or Boolean operations on numeric values. On
input, a nonzero value is considered TRUE and a zero value is considered FALSE.
The logical operators return a 1 if TRUE and a 0 if FALSE. Decisions are based on the
following truth tables:

Complement

X not X

T F

F T

Conjunction

X Y X and Y

T T T

T F F

F T F

F F F
7-11



GAUSS User Guide

UserGuid.book Page 12 Monday, May 7, 2001 11:28 AM
For complex matrices, the logical operators consider only the real part of the matrices.

The following operators require scalar arguments. These are the ones to use in if and
do statements:

• Complement

z = not x;

• Conjunction

z = x and y;

Disjunction

X Y X or Y

T T T

T F T

F T T

F F F

Exclusive Or

X Y X xor Y

T T F

T F T

F T T

F F F

Equivalence

X Y X eqv Y

T T T

T F F

F T F

F F T
7-12



Operators

UserGuid.book Page 13 Monday, May 7, 2001 11:28 AM
• Disjunction

z = x or y;

• Exclusive or

z = x xor y;

• Equivalence

z = x eqv y;

If the logical operator is preceded by a dot ‘.’, the result will be a matrix of 1’s and 0’s
based upon an element-by-element logical comparison of x and y:

• Element-by-element logical complement

z = .not x;

• Element-by-element conjunction

z = x .and y;

• Element-by-element disjunction

z = x .or y;

• Element-by-element exclusive or

z = x .xor y;

• Element-by-element equivalence

z = x .eqv y;

Other Operators

Assignment Operator

Assignments are done with one equal sign:

y = 3;

Comma

Commas are used to delimit lists:

clear x,y,z;

to separate row indices from column indices within brackets:

y = x[3,5];

and to separate arguments of functions within parentheses:

y = momentd(x,d);
7-13



GAUSS User Guide

UserGuid.book Page 14 Monday, May 7, 2001 11:28 AM
Period

Dots are used in brackets to signify “all rows” or “all columns:”

y = x[.,5];

Space

Spaces are used inside of index brackets to separate indices:

y = x[1 3 5,3 5 9];

No extraneous spaces are allowed immediately before or after the comma, or
immediately after the left bracket or before the right bracket.

Spaces are also used in print and lprint statements to separate the separate
expressions to be printed:

print x/2 2*sqrt(x);

No extraneous spaces are allowed within expressions in print or lprint
statements unless the expression is enclosed in parentheses:

print (x / 2) (2 * sqrt(x));

Colon

A colon is used within brackets to create a continuous range of indices:

y = x[1:5,.];

Ampersand

The ampersand operator (&) will return a pointer to a procedure (proc) or function
(fn). It is used when passing procedures or functions to other functions and for
indexing procedures. (For more information, see “Indexing Procedures,” page 8-9.)

String Concatenation

x = “dog”;

y = “cat”;

z = x $+ y;

print z;

dogcat
7-14



Operators

UserGuid.book Page 15 Monday, May 7, 2001 11:28 AM
If the first argument is of type string, the result will be of type string. If the first
argument is of type matrix, the result will be of type matrix. Here are some examples:

y = 0 $+ “caterpillar”;

the result will be a 1x1 matrix containing caterpil.

y = zeros(3,1) $+ “cat”;

the result will be a 3x1 matrix, each element containing cat.

If we use the y created above in the following:

k = y $+ “fish”;

the result will be a 3x1 matrix with each element containing catfish.

If we then use k created above:

t = “” $+ k[1,1];

the result will be a string containing catfish.

If we use the same k to create z as follows:

z = “dog” $+ k[1,1];

the result will be a string containing dogcatfish.

String Array Concatenation

$| Vertical string array concatenation

x = “dog”;

y = “fish”;

k = x $| y;

print k;

dog

fish
7-15



GAUSS User Guide

UserGuid.book Page 16 Monday, May 7, 2001 11:28 AM
$~ Horizontal string array concatenation

x = “dog”;

y = “fish”;

k = x $~ y;

print k;

dog fish

String Variable Substitution

In a command such as

create f1 = olsdat with x,4,2;

by default, GAUSS will interpret olsdat as the literal name of the GAUSS data file
you want to create. It will also interpret x as the literal prefix string for the variable
names x1 x2 x3 x4.

To get the data set name from a string variable, the substitution operator (^) could be
used as follows:

dataset = “olsdat”;

create f1 = ^dataset with x,4,2;

To get the data set name from a string variable and the variable names from a
character vector, use the following:

dataset = “olsdat”;

vnames = { age, pay, sex };

create f1 = ^dataset with ^vnames,0,2;

The general syntax is

^variable_name

Expressions are not allowed.
7-16



Operators

UserGuid.book Page 17 Monday, May 7, 2001 11:28 AM
The following commands are currently supported with the substitution operator (^):

create f1 = ^dataset with ^vnames,0,2;

create f1 = ^dataset using ^cmdfile;

open f1 = ^dataset;

output file = ^outfile;

load x = ^datafile;

load path = ^lpath x,y,z,t,w;

save ^name = x;

save path = ^spath;

run ^prog;

msym ^mstring;

Using Dot Operators with Constants
When you use those operators preceded by a ‘.’ (dot operators) with a scalar integer
constant, insert a space between the constant and any following dot operator.
Otherwise, the dot will be interpreted as part of the scalar; that is, the decimal point.
For example,

let y = 1 2 3;

x = 2.<y;

will return x as a scalar 0, not a vector of 0’s and 1’s, because

x = 2.<y;

is interpreted as

x = 2. < y;

and not as

x = 2 .< y;
7-17



GAUSS User Guide

UserGuid.book Page 18 Monday, May 7, 2001 11:28 AM
Be careful when using the dot relational operators (.<, .≤, .==, ./=, .>, .≥). The
same problem can occur with other dot operators, also. For example,

let x = 1 1 1;

y = x./2./x;

will return y as a scalar .5 rather than a vector of .5’s, because

y = x./2./x;

is interpreted as

y = (x ./ 2.) / x;

and not as

y = (x ./ 2) ./ x;

The second division, then, is handled as a matrix division rather than an element-by-
element division.

Operator Precedence
The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the * and /
operators have a higher precedence than the + and - operators. In expressions that
contain the above operators, the operand pairs associated with the * or / operator are
evaluated first. Whether * or / is evaluated first depends on which comes first in the
particular expression.

The expression

-5+3/4+6*3

is evaluated as

(-5)+(3/4)+(6*3)

Within a term, operators of equal precedence are evaluated from left to right.
7-18



Operators

UserGuid.book Page 19 Monday, May 7, 2001 11:28 AM
The precedence of all operators, from the highest to the lowest, is listed in the
following table:

Operator Precedence Operator Precedence Operator Precedence

. 90 .$≥ 65 $≥ 55

90 ./= 65 /= 55

! 89 .< 65 < 55

.^ 85 .≤ 65 ≤ 55

^ 85 .== 65 == 55

(unary -) 83 .> 65 > 55

* 80 .≥ 65 ≥ 55

*~ 80 .eq 65 eq 55

.* 80 .ge 65 ge 55

.*. 80 .gt 65 gt 55

./ 80 .le 65 le 55

/ 80 .lt 65 lt 55

% 75 .ne 65 ne 55

$+ 70 .not 64 not 49

+ 70 .and 63 and 48

- 70 .or 62 or 47

~ 68 .xor 61 xor 46

| 67 .eqv 60 eqv 45

.$/= 65 $/= 55 (space) 35

.$< 65 $< 55 : 35

.$≤ 65 $≤ 55 = 10

.$== 65 $== 55

.$> 65 $> 55

′

′

7-19



UserGuid.book Page 20 Monday, May 7, 2001 11:28 AM



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Procedures and Keywords8

Procedures are multiple-line, recursive functions that can have either local or global
variables. Procedures allow a large computing task to be written as a collection of
smaller tasks. These smaller tasks are easier to work with and keep the details of their
operation separate from the other parts of the program. This makes programs easier to
understand and easier to maintain.

A procedure in GAUSS is basically a user-defined function that can be used as if it
were an intrinsic part of the language. A procedure can be as small and simple or as
large and complicated as necessary to perform a particular task. Procedures allow you
to build on your previous work and on the work of others, rather than starting over
again and again to perform related tasks.

Any intrinsic command or function may be used in a procedure, as well as any user-
defined function or other procedure. Procedures can refer to any global variable; that
is, any variable in the global symbol table that can be shown with the show command.
It is also possible to declare local variables within a procedure. These variables are
known only inside the procedure they are defined in and cannot be accessed from
other procedures or from the main level program code.

All labels and subroutines inside a procedure are local to that procedure and will not
be confused with labels of the same name in other procedures.
8-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Defining a Procedure

A procedure definition consists of five parts, four of which are denoted by explicit
GAUSS commands:

1. Procedure declaration proc statement

2. Local variable declaration local statement

3. Body of procedure

4. Return from procedure retp statement

5. End of procedure definition endp statement

There is always one proc statement and one endp statement in a procedure
definition. Any statements that come between these two statements are part of the
procedure. Procedure definitions cannot be nested. local and retp statements are
optional. There can be multiple local and retp statements in a procedure
definition. Here is an example:

proc (3) = regress(x, y);

local xxi,b,ymxb,sse,sd,t;

xxi = invpd(x’x);

b = xxi * (x’y);

ymxb = y-xb;

sse = ymxb’ymxb/(rows(x)-cols(x));

sd = sqrt(diag(sse*xxi));

t = b./sd;

retp(b,sd,t);

endp;

This could be used as a function that takes two matrix arguments and returns three
matrices as a result. For example:

{ b,sd,t } = regress(x,y);

Following is a discussion of the five parts of a procedure definition.
8-2



Procedures and Keywords

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
Procedure Declaration

The proc statement is the procedure declaration statement. The format is:

proc [[(rets)= ]] name([[ arg1,arg2,...argN ]]);

rets Optional constant, number of values returned by the procedure.
Acceptable values here are 0-1023; the default is 1.

name Name of the procedure, up to 32 alphanumeric characters or an
underscore, beginning with an alpha or an underscore.

arg# Names that will be used inside the procedure for the arguments that
are passed to the procedure when it is called. There can be 0-1023
arguments. These names will be known only in the procedure being
defined. Other procedures can use the same names, but they will be
separate entities.

Local Variable Declarations

The local statement is used to declare local variables. Local variables are variables
known only to the procedure being defined. The names used in the argument list of the
proc statement are always local. The format of the local statement is

local x,y,f:proc,g:fn,z,h:keyword;

Local variables can be matrices or strings. If :proc, :fn, or :keyword follows the
variable name in the local statement, the compiler will treat the symbol as if it were
a procedure, function, or keyword, respectively. This allows passing procedures,
functions, and keywords to other procedures. (For more information, see “Passing
Procedures to Procedures,” page 8-8.)

Variables that are global to the system (that is, variables listed in the global symbol
table that can be shown with the show command) can be accessed by any procedure
without any redundant declaration inside the procedure. If you want to create variables
known only to the procedure being defined, the names of these local variables must be
listed in a local statement. Once a variable name is encountered in a local
statement, further references to that name inside the procedure will be to the local
rather than to a global having the same name. (See clearg, varget, and varput
in the GAUSS Language Reference for ways of accessing globals from within
procedures that have locals with the same name.)

The local statement does not initialize (set to a value) the local variables. If they are
not passed in as parameters, they must be assigned some value before they are
accessed or the program will terminate with a Variable not initialized
error message.
8-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
All local and global variables are dynamically allocated and sized automatically
during execution. Local variables, including those that were passed as parameters, can
change in size during the execution of the procedure.

Local variables exist only when the procedure is executing, and then disappear. Local
variables cannot be listed with the show command.

The maximum number of locals is limited by stack space and the size of workspace
memory. The limiting factor applies to the total number of active local symbols at any
one time during execution. If cat has 10 locals and it calls dog which has 20 locals,
there are 30 active locals whenever cat is called.

There can be multiple local statements in a procedure. They will affect only the
code in the procedure that follows. Therefore, for example, it is possible to refer to a
global x in a procedure and follow that with a local statement that declares a local
x. All subsequent references to x would be to the local x. (This is not good
programming practice, but it demonstrates the principle that the local statement
affects only the code that is physically below it in the procedure definition.) Another
example is a symbol that is declared as a local and then declared as a local procedure
or function later in the same procedure definition. This allows doing arithmetic on
local function pointers before calling them. (For more information, see “Indexing
Procedures,” page 8-9.)

Body of Procedure

The body of the procedure can have any GAUSS statements necessary to perform the
task the procedure is being written for. Other user-defined functions and other
procedures can be referenced, as well as any global matrices and strings.

GAUSS procedures are recursive, so the procedure can call itself as long as there is
logic in the procedure to prevent an infinite recursion. The process would otherwise
terminate with either an Insufficient workspace memory error message or
a Procedure calls too deep error message, depending on the space
necessary to store the locals for each separate invocation of the procedure.

Returning from the Procedure

The return from the procedure is accomplished with the retp statement:

retp;

retp(expression1,expression2,...expressionN);

The retp statement can have multiple arguments. The number of items returned must
coincide with the number of rets in the proc statement.

If the procedure is being defined with no items returned, the retp statement is
optional. The endp statement that ends the procedure will generate an implicit retp
8-4



Procedures and Keywords

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
with no objects returned. If the procedure returns one or more objects, there must be
an explicit retp statement.

There can be multiple retp statements in a procedure, and they can be anywhere
inside the body of the procedure.

End of Procedure Definition

The endp statement marks the end of the procedure definition:

endp;

An implicit retp statement that returns nothing is always generated here, so it is
impossible to run off the end of a procedure without returning. If the procedure was
defined to return one or more objects, executing this implicit return will result in a
Wrong number of returns error message and the program will terminate.

Calling a Procedure
Procedures are called like this:

dog(i,j,k); /* no returns */

y = cat(i,j,k); /* one return */

{ x,y,z } = bat(i,j,k); /* multiple returns */

call bat(i,j,k); /* ignore any returns */

Procedures are called in the same way that intrinsic functions are called. The
procedure name is followed by a list of arguments in parentheses. The arguments must
be separated by commas.

If there is to be no return value, use

proc (0) = dog(x,y,z);

when defining the procedure, and use

dog(ak,4,3);

or

call dog(ak,4,3);

when calling it.
8-5



GAUSS User Guide

UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM
The arguments passed to procedures can be complicated expressions involving calls to
other functions and procedures. This calling mechanism is completely general. For
example,

y = dog(cat(3*x,bird(x,y))-2,1);

is legal.

Keywords
A keyword, like a procedure, is a subroutine that can be called interactively or from
within a GAUSS program. A keyword differs from a procedure in that a keyword
accepts exactly one string argument, and returns nothing. Keywords can perform
many tasks not as easily accomplished with procedures.

Defining a Keyword

A keyword definition is much like a procedure definition. Keywords always are
defined with 0 returns and 1 argument. The beginning of a keyword definition is the
keyword statement:

keyword name(strarg);

name Name of the keyword, up to 32 alphanumeric characters or an
underscore, beginning with an alpha or an underscore.

strarg Name that will be used inside the keyword for the argument that is
passed to the keyword when it is called. There is always one
argument. The name is known only in the keyword being defined.
Other keywords can use the same name, but they will be separate
entities. This will always be a string. If the keyword is called with no
characters following the name of the keyword, this will be a null
string.

The rest of the keyword definition is the same as a procedure definition. (For more
information, see “Defining a Procedure,” page 8-2.) Keywords always return nothing.
Any retp statements, if used, should be empty. For example:

keyword add(s)

local tok, sum;

if s $== “”;

print “The argument is a null string”;

retp;

endif;
8-6



Procedures and Keywords

UserGuid.book Page 7 Monday, May 7, 2001 11:28 AM
print “The argument is: ’“s”’”;

sum = 0;

do until s $== “”;

{ tok, s } = token(s);

sum = sum + stof(tok);

endo;

format /rd 1,2;

print “The sum is: ” sum;

endp;

The keyword defined above will print the string argument passed to it. The argument
will be printed enclosed in single quotes.

Calling a Keyword

When a keyword is called, every character up to the end of the statement, excluding
the leading spaces, is passed to the keyword as one string argument. For example, if
you type

add 1 2 3 4 5;

the keyword will respond

The sum is: 15.00

Here is another example:

add;

the keyword will respond

The argument is a null string
8-7



GAUSS User Guide

UserGuid.book Page 8 Monday, May 7, 2001 11:28 AM
Passing Procedures to Procedures

Procedures and functions can be passed to procedures in the following way:

proc max(x,y); /* procedure to return maximum */

if x>y;

retp(x);

else;

retp(y);

endif;

endp;

proc min(x,y); /* procedure to return minimum */

if x<y;

retp(x);

else;

retp(y);

endif;

endp;

fn lgsqrt(x) = ln(sqrt(x)); /* function to return

:: log of square root

*/

proc myproc(&f1,&f2,x,y);

local f1:proc, f2:fn, z;

z = f1(x,y);

retp(f2(z));

endp;
8-8



Procedures and Keywords

UserGuid.book Page 9 Monday, May 7, 2001 11:28 AM
The procedure myproc takes four arguments. The first is a procedure f1 that has two
arguments. The second is a function f2 that has one argument. It also has two other
arguments that must be matrices or scalars. In the local statement, f1 is declared to
be a procedure and f2 is declared to be a function. They can be used inside the
procedure in the usual way. f1 will be interpreted as a procedure inside myproc, and
f2 will be interpreted as a function. The call to myproc is made as follows:

k = myproc(&max,&lgsqrt,5,7); /* log of square root

:: of 7

*/

k = myproc(&min,&lgsqrt,5,7); /* log of square root

:: of 5

*/

The ampersand (&) in front of the function or procedure name in the call to myproc
causes a pointer to the function or procedure to be passed. No argument list should
follow the name when it is preceded by the ampersand.

Inside myproc, the symbol that is declared as a procedure in the local statement is
assumed to contain a pointer to a procedure. It can be called exactly like a procedure is
called. It cannot be save’d, but it can be passed on to another procedure. If it is to be
passed on to another procedure, use the ampersand in the same way.

Indexing Procedures
This example assumes there are a set of procedures named f1-f5 that are already
defined. A 1x5 vector procvec is defined by horizontally concatenating pointers to
these procedures. A new procedure, g(x,i) is then defined that will return the value of
the ith procedure evaluated at x:

procvec = &f1 ~ &f2 ~ &f3 ~ &f4 ~ &f5;

proc g(x,i);

local f;

f = procvec[i];

local f:proc;

retp( f(x) );

endp;
8-9



GAUSS User Guide

UserGuid.book Page 10 Monday, May 7, 2001 11:28 AM
The local statement is used twice. The first time, f is declared to be a local matrix.
After f has been set equal to the ith pointer, f is declared to be a procedure and is
called as a procedure in the retp statement.

Multiple Returns from Procedures
Procedures can return multiple items, up to 1023. The procedure is defined like this
example of a complex inverse:

proc (2) = cminv(xr,xi); /* (2) specifies number of

:: return values

*/

local ixy, zr, zi;

ixy = inv(xr)*xi;

zr = inv(xr+xi*ixy);/* real part of inverse */

zi = -ixy*zr; /* imaginary part of inverse */

retp(zr,zi); /* return: real part,

:: imaginary part

*/

endp;

It can then be called like this:

{ zr,zi } = cminv(xr,xi);

To make the assignment, the list of targets must be enclosed in braces.

Also, a procedure that returns more than one argument can be used as input to another
procedure or function that takes more than one argument:

proc (2) = cminv(xr,xi);

local ixy, zr, zi;

ixy = inv(xr)*xi;

zr = inv(xr+xi*ixy);/* real part of inverse */

zi = -ixy*zr; /* imaginary part of inverse */
8-10



Procedures and Keywords

UserGuid.book Page 11 Monday, May 7, 2001 11:28 AM
retp(zr,zi);

endp;

proc (2) = cmmult(xr,xi,yr,yi);

local zr,zi;

zr = xr*yr-xi*yi;

zi = xr*yi+xi*yr;

retp(zr,zi);

endp;

{ zr,zi } = cminv( cmmult(xr,xi,yr,yi) );

The two returned matrices from cmmult() are passed directly to cminv() in the
statement above. This is equivalent to the following statements:

{ tr,ti } = cmmult(xr,xi,yr,yi);

{ zr,zi } = cminv(tr,ti);

This is completely general, so the following program is legal:

proc (2) = cmcplx(x);

local r,c;

r = rows(x);

c = cols(x);

retp(x,zeros(r,c));

endp;

proc (2) = cminv(xr,xi);

local ixy, zr, zi;

ixy = inv(xr)*xi;

zr = inv(xr+xi*ixy);/* real part of inverse */

zi = -ixy*zr; /* imaginary part of inverse */
8-11



GAUSS User Guide

UserGuid.book Page 12 Monday, May 7, 2001 11:28 AM
retp(zr,zi);

endp;

proc (2) = cmmult(xr,xi,yr,yi);

local zr,zi;

zr = xr*yr-xi*yi;

zi = xr*yi+xi*yr;

retp(zr,zi);

endp;

{ xr,xi } = cmcplx(rndn(3,3));

{ yr,yi } = cmcplx(rndn(3,3));

{ zr,zi } = cmmult( cminv(xr,xi),cminv(yr,yi) );

{ qr,qi } = cmmult( yr,yi,cminv(yr,yi) );

{ wr,wi } =

cmmult(yr,yi,cminv(cmmult(cminv(xr,xi),yr,yi)));

Saving Compiled Procedures
When a file containing a procedure definition is run, the procedure is compiled and is
then resident in memory. The procedure can be called as if it were an intrinsic
function. If the new command is executed or you quit GAUSS and exit to the
operating system, the compiled image of the procedure disappears and the file
containing the procedure definition will have to be compiled again.

If a procedure contains no global references, that is, if it does not reference any global
matrices or strings and it does not call any user-defined functions or procedures, it can
be saved to disk in compiled form in a .fcg file with the save command, and loaded
later with the loadp command whenever it is needed. This will usually be faster than
recompiling. For example:

save path = c:\gauss\cp proc1,proc2,proc3;

loadp path = c:\gauss\cp proc1,proc2,proc3;
8-12



Procedures and Keywords

UserGuid.book Page 13 Monday, May 7, 2001 11:28 AM
The name of the file will be the same as the name of the procedure, with a .fcg
extension. (For details, see loadp and save in the GAUSS Language Reference.)

All compiled procedures should be saved in the same subdirectory so there is no
question where they are located when it is necessary to reload them. The loadp path
can be set in your startup file to reflect this. Then, to load in procedures, use

loadp proc1,proc2,proc3;

Procedures that are saved in .fcg files will NOT be automatically loaded. It is
necessary to explicitly load them with loadp. This feature should be used only when
the time necessary for the autoloader to compile the source is too great. Also, unless
these procedures have been compiled with #lineson, debugging will be more
complicated.
8-13



UserGuid.book Page 14 Monday, May 7, 2001 11:28 AM



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Libraries9

The GAUSS library system allows for the creation and maintenance of modular
programs. The user can create “libraries” of frequently used functions that the GAUSS
system will automatically find and compile whenever they are referenced in a
program.

Autoloader
The autoloader resolves references to procedures, keywords, matrices, and strings that
are not defined in the program from which they are referenced. The autoloader
automatically locates and compiles the files containing the symbol definitions that are
not resolved during the compilation of the main file. The search path used by the
autoloader is first the current directory, and then the paths listed in the src_path
configuration variable in the order they appear. src_path can be defined in the
GAUSS configuration file.

Forward References

When the compiler encounters a symbol that has not previously been defined, it is
called a “forward reference.” GAUSS handles forward references in two ways,
depending on whether they are “left-hand side” or “right-hand side” references.
9-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Left-Hand Side

A left-hand side reference is usually a reference to a symbol on the left-hand side of
the equal sign in an expression such as:

x = 5;

Left-hand side references, since they are assignments, are assumed to be matrices. In
the previous statement, x is assumed to be a matrix and the code is compiled
accordingly. If, at execution time, the expression actually returns a string, the
assignment is made and the type of the symbol x is forced to string.

Some commands are implicit left-hand side assignments. There is an implicit left-
hand side reference to x in each of these statements:

clear x;

load x;

open x = myfile;

Right-Hand Side

A right-hand side reference is usually a reference to a symbol on the right-hand side of
the equal sign in an expression such as:

z = 6;

y = z + dog;

print y;

In the program above, since dog is not previously known to the compiler, the
autoloader will search for it in the active libraries. If it is found, the file containing it
will be compiled. If it is not found in a library, the autoload/autodelete state will
determine how it is handled.

The Autoloader Search Path

If the autoloader is OFF, no forward references are allowed. Every procedure, matrix,
and string referenced by your program must be defined before it is referenced. An
external statement can be used above the first reference to a symbol, but the
definition of the symbol must be in the main file or in one of the files that are
#include’d. No global symbols are deleted automatically.
9-2



Libraries

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
If the autoloader is ON, GAUSS searches for unresolved symbol references during
compilation using a specific search path. If the autoloader is OFF, an Undefined
symbol error message will result for right-hand side references to unknown symbols.

When autoload is ON, the autodelete state controls the handling of references to
unknown symbols.

The following search path will be followed to locate any symbols not previously
defined:

Autodelete ON

1. user library

2. user-specified libraries

3. gauss library

4. current directory, then src_path for files with a .g extension

Forward references are allowed and .g files need not be in a library. If there are
symbols that cannot be found in any of the places listed above, an Undefined
symbol error message will be generated and all uninitialized variables and all
procedures with global references will be deleted from the global symbol table. This
autodeletion process is transparent to the user, since the symbols are automatically
located by the autoloader the next time the program is run. This process results in
more compile time, which may or may not be significant depending on the speed of
the computer and the size of the program.

Autodelete OFF

1. user library

2. user-specified libraries

3. gauss library

All .g files must be listed in a library. Forward references to symbols not listed in an
active library are not allowed. For example:

x = rndn(10,10);

y = sym(x); /* forward reference to symbol */

proc sym(x);

retp(x+x’);

endp;
9-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
Use an external statement for anything referenced above its definition if
autodelete is OFF:

external proc sym;

x = rndn(10,10);

y = sym(x);

proc sym(x);

retp(x+x’);

endp;

When autodelete is OFF, symbols not found in an active library will not be added to
the symbol table. This prevents the creation of uninitialized procedures in the global
symbol table. No deletion of symbols from the global symbol table will take place.

Libraries

The first place GAUSS looks for a symbol definition is in the “active” libraries. A
GAUSS library is a text file that serves as a dictionary to the source files that contain
the symbol definitions. When a library is active, GAUSS will look in it whenever it is
looking for a symbol it is trying to resolve. The library statement is used to make a
library active. Library files should be located in the subdirectory listed in the
lib_path configuration variable. Library files have a .lcg extension.

Suppose you have several procedures that are all related and you want them all
defined in the same file. You can create such a file, and, with the help of a library, the
autoloader will be able to find the procedures defined in that file whenever they are
called.

First, create the file to contain your desired procedure definitions. By convention, this
file is usually named with a .src extension, but you can use any name and any file
extension. In this file, put all the definitions of related procedures you wish to use.
Here is an example of such a file, called norm.src:

/*

** norm.src

**

** This is a file containing the definitions of three

** procedures which return the norm of a matrix x.

** The three norms calculated are the one-norm, the
9-4



Libraries

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
** inf-norm and the E-norm.

*/

proc onenorm(x);

retp(maxc(sumc(abs(x))));

endp;

proc infnorm(x);

retp(maxc(sumc(abs(x’))));

endp;

proc Enorm(x);

retp(sumc(sumc(x.*x)));

endp;

Next, create a library file that contains the name of the file you want access to, and the
list of symbols defined in it. This can be done with the lib command. (For details,
see lib in the GAUSS Language Reference.)

A library file entry has a filename that is flush left. The drive and path can be included
to speed up the autoloader. Indented below the filename are the symbols included in
the file. There can be multiple symbols listed on a line, with spaces between. The
symbol type follows the symbol name, with a colon delimiting it from the symbol
name. The valid symbol types are:

fn user-defined single line function

keyword keyword

proc procedure

matrix matrix, numeric or character

string string
9-5



GAUSS User Guide

UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM
If the symbol type is missing, the colon must not be present and the symbol type is
assumed to be proc. Both of the following library files are valid:

Example 1

/*

** math

**

** This library lists files and procedures for

** mathematical routines.

*/

norm.src

onenorm:proc infnorm:proc Enorm:proc

complex.src

cmmult:proc cmdiv:proc cmadd:proc cmsoln:proc

poly.src

polychar:proc polyroot:proc polymult:proc

Example 2

/*

** math

**

** This library lists files and procedures for

** mathematical routines.

*/

c:\gauss\src\norm.src

onenorm : proc

infnorm : proc

Enorm : proc
9-6



Libraries

UserGuid.book Page 7 Monday, May 7, 2001 11:28 AM
c:\gauss\src\complex.src

cmmult : proc

cmdiv : proc

cmadd : proc

cmsoln : proc

c:\gauss\src\fcomp.src

feq : proc

fne : proc

flt : proc

fgt : proc

fle : proc

fge : proc

c:\gauss\src\fcomp.dec

_fcmptol : matrix

Once the autoloader finds, via the library, the file containing your procedure
definition, everything in that file will be compiled. For this reason, combine related
procedures in the same file in order to minimize the compiling of procedures not
needed by your program. Do not combine unrelated functions in one .src file,
because if one function in a .src file is needed, the whole file will be compiled.

user Library

This is a library for user-created procedures. If the autoloader is ON, the user library is
the first place GAUSS looks when trying to resolve symbol references.

You can update the user library with the lib command:

lib user myfile.src;

This will update the user library by adding a reference to myfile.src.

No user library is shipped with GAUSS. It will be created the first time you use the
lib command.

For details of the parameters available with the lib command, see the GAUSS
Language Reference.
9-7



GAUSS User Guide

UserGuid.book Page 8 Monday, May 7, 2001 11:28 AM
.g Files

If autoload and autodelete are ON and a symbol is not found in a library, the
autoloader will assume it is a procedure and look for a file that has the same name as
the symbol and a .g extension. For example, if you have defined a procedure called
square, you could put the definition in a file called square.g in one of the
subdirectories listed in your src_path. If autodelete is OFF, the .g file must be
listed in an active library; for example, in the user library.

Global Declaration Files
If your application makes use of several global variables, create a file containing
declare statements. Use files with the extension .dec to assign default values to
global matrices and strings with declare statements. A file with a .ext extension
containing the same symbols in external statements can also be created and
#include’d at the top of any file that references these global variables. An
appropriate library file should contain the name of the .dec files and the names of the
globals they declare.

Here is an example that illustrates the way in which .dec, .ext, .lcg, and .src
files work together. Always begin the names of global matrices or strings with ‘_’ to
distinguish them from procedures:

.src File

/*

** fcomp.src

**

** These functions use _fcmptol to fuzz the comparison

** operations to allow for roundoff error.

**

** The statement: y = feq(a,b);

**

** is equivalent to: y = a eq b;

**

** Returns a scalar result, 1 (true) or 0 (false)

**

** y = feq(a,b);
9-8



Libraries

UserGuid.book Page 9 Monday, May 7, 2001 11:28 AM
** y = fne(a,b);

*/

#include fcomp.ext;

proc feq(a,b);

retp(abs(a-b) ≤ _fcmptol);

endp;

proc fne(a,b);

retp(abs(a-b) > _fcmptol);

endp;

.dec File

/*

** fcomp.dec − global declaration file for fuzzy

** comparisons.

*/

declare matrix _fcmptol != 1e-14;

.ext File

/*

** fcomp.ext − external declaration file for fuzzy

** comparisons.

*/

external matrix _fcmptol;
9-9



GAUSS User Guide

UserGuid.book Page 10 Monday, May 7, 2001 11:28 AM
.lcg File

/*

** fcomp.lcg − fuzzy compare library

*/

fcomp.dec

_fcmptol:matrix

fcomp.src

feq:proc

fne:proc

With the exception of the library (.lcg) files, these files must be located along your
src_path. The library files must be on your lib_path. With these files in place,
the autoloader will be able to find everything needed to run the following programs:

library fcomp;

x = rndn(3,3);

xi = inv(x);

xix = xi*x;

if feq(xix,eye(3));

print “Inverse within tolerance.”;

else;

print “Inverse not within tolerance.”;

endif;

If the default tolerance of 1e-14 is too tight, the tolerance can be relaxed:

library fcomp;

x = rndn(3,3);

xi = inv(x);

xix = xi*x;

_fcmptol = 1e-12; /* reset tolerance */
9-10



Libraries

UserGuid.book Page 11 Monday, May 7, 2001 11:28 AM
if feq(xix,eye(3));

print “Inverse within tolerance.”;

else;

print “Inverse not within tolerance.”;

endif;

Troubleshooting
Below is a partial list of errors you may encounter in using the library system,
followed by the most probable cause.

(4) : error G0290 : ’c:\gauss\lib\prt.lcg’ : Library not

found

The autoloader is looking for a library file called prt.lcg, because it has been
activated in a library statement. Check the subdirectory listed in your lib_path
configuration variable for a file called prt.lcg.

(0) : error G0292 : ’prt.dec’ : File listed in library not

found

The autoloader cannot find a file called prt.dec. Check for this file. It should exist
somewhere along your src_path, if you have it listed in prt.lcg.

Undefined symbols:

PRTVEC c:\gauss\src\tstprt.g(2)

The symbol prtvec could not be found. Check if the file containing prtvec is in
the src_path. You may not have activated the library that contains your symbol
definition. Do so in a library statement.

c:\gauss\src\prt.dec(3) : Redefinition of ‘__vnames’

(proc)__vnames being declared external matrix

You are trying to illegally force a symbol to another type. You probably have a name
conflict that needs to be resolved by renaming one of the symbols.
9-11



GAUSS User Guide

UserGuid.book Page 12 Monday, May 7, 2001 11:28 AM
c:\gauss\lib\prt.lcg(5) : error G0301 : ‘prt.dec’ :

Syntax error in library

Undefined symbols:

__VNAMES c:\gauss\src\prt.src(6)

Check your library to see that all filenames are flush left and all symbols defined in
that file are indented by at least one space.

Using dec Files

When constructing your own library system:

• Whenever possible, declare variables in a file that contains only declare
statements. When your program is run again without clearing the workspace,
the file containing the variable declarations will not be compiled and
declare warnings will be prevented.

• Provide a function containing regular assignment statements to reinitialize the
global variables in your program if they ever need to be reinitialized during or
between runs. Put this in a separate file from the declarations:

proc (0) = globset;

_vname = “X”;

_con = 1;

_row = 0;

_title = “”;

endp;

• Never declare a global in more than one file.

• To avoid meaningless redefinition errors and declare warnings, never
declare a global more than once in any one file. Redefinition error messages
and declare warnings are meant to help you prevent name conflicts, and
will be useless to you if your code generates them normally.

By following these guidelines, any declare warnings and redefinition errors you
get will be meaningful. By knowing that such warnings and errors are significant, you
will be able to debug your programs more efficiently.
9-12



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Compiler10

GAUSS allows you to compile your large, frequently used programs to a file that can
be run over and over with no compile time. The compiled image is usually smaller
than the uncompiled source. GAUSS is not a native code compiler; rather, it compiles
to a form of pseudocode. The file will have a .gcg extension.

The compile command will compile an entire program to a compiled file. An
attempt to edit a compiled file will cause the source code to be loaded into the editor if
it is available to the system. The run command assumes a compiled file if no
extension is given, and that a file with a .gcg extension is in the src_path. A
saveall command is available to save the current contents of memory in a compiled
file for instant recall later. The use command will instantly load a compiled program
or set of procedures at the beginning of an ASCII program before compiling the rest of
the ASCII program file.

Since the compiled files are encoded binary files, the compiler is useful for developers
who do not want to distribute their source code.

Compiling Programs
Programs are compiled with the compile command.
10-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Compiling a File

Source code program files that can be run with the run command can be compiled to
.gcg files with the compile command:

compile qxy.e;

All procedures, global matrices and strings, and the main program segment will be
saved in the compiled file. The compiled file can be run later using the run command.
Any libraries used in the program must be present and active during the compile, but
not when the program is run. If the program uses the dlibrary command, the .dll
files must be present when the program is run and the dlibrary path must be set to the
correct subdirectory. This will be handled automatically in your configuration file. If
the program is run on a different computer than it was compiled on, the .dll files
must be present in the correct location. sysstate (case 24) can be used to set the
dlibrary path at run-time.

Saving the Current Workspace
The simplest way to create a compiled file containing a set of frequently used
procedures is to use saveall and an external statement:

library pgraph;

external proc xy,logx,logy,loglog,hist;

saveall pgraph;

List the procedures you will be using in an external statement and follow it with a
saveall statement. It is not necessary to list procedures you do not explicitly call,
but are called from another procedure, because the autoloader will automatically find
them before the saveall command is executed. Nor is it necessary to list every
procedure you will be calling, unless the source will not be available when the
compiled file is use’d.

Remember, the list of active libraries is NOT saved in the compiled file so you may
still need a library statement in a program that is use’ing a compiled file.

Debugging
If you are using compiled code in a development situation where debugging is
important, compile the file with line number records. After the development is over,
10-2



Compiler

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
you can recompile without line number records if the maximum possible execution
speed is important. If you want to guarantee that all procedures contain line number
records, put a new statement at the top of your program and turn line number tracking
on.
10-3



UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
File I/O11

The following is a partial list of the I/O commands in the GAUSS programming
language:

close Close a file.

closeall Close all open files.

colsf Number of columns in a file.

create Create GAUSS data set.

dfree Space remaining on disk.

eof Test for end of file.

fcheckerr Check error status of a file.

fclearerr Check error status of a file and clear error flag.

fflush Flush a file’s output buffer.

fgets Read a line of text from a file.

fgetsa Read multiple lines of text from a file.

fgetsat Read multiple lines of text from a file, discarding newlines.

fgetst Read a line of text from a file, discarding newline.

fileinfo Returns names and information of files matching a specification.

files Returns a directory listing as a character matrix.
11-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
filesa Returns a list of files matching a specification.

fopen Open a file.

fputs Write strings to a file.

fputst Write strings to a file, appending newlines.

fseek Reposition file pointer.

fstrerror Get explanation of last file I/O error.

ftell Get position of file pointer.

getf Load a file into a string.

getname Get variable names from data set.

iscplxf Returns whether a data set is real or complex.

load Load matrix file or small ASCII file (same as loadm).

loadd Load a small GAUSS data set into a matrix.

loadm Load matrix file or small ASCII file.

loads Load string file.

open Open a GAUSS data set.

output Control printing to an auxiliary output file or device.

readr Read a specified number of rows from a file.

rowsf Number of rows in file.

save Save matrices, strings, procedures.

saved Save a matrix in a GAUSS data set.

seekr Reset read/write pointer in a data set.

sortd Sort a data set.

typef Returns type of data set (bytes per element).

writer Write data to a data set.

ASCII Files
GAUSS has facilities for reading and writing ASCII files. Since most software can
read and write ASCII files, this provides a way of sharing data between GAUSS and
many other kinds of programs.
11-2



File I/O

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
Matrix Data

Reading

Files containing numeric data that are delimited with spaces or commas and are small
enough to fit into a single matrix or string can be read with load. Larger ASCII data
files can be converted to GAUSS data sets with the ATOG utility program see
“ATOG,” page 16-1. ATOG can convert packed ASCII files as well as delimited files.

For small delimited data files, the load statement can be used to load the data
directly into a GAUSS matrix. The resulting GAUSS matrix must be no larger than
the limit for a single matrix.

For example,

load x[] = dat1.asc;

will load the data in the file dat1.asc into an Nx1 matrix x. This method is
preferred because rows(x) can be used to determine how many elements were
actually loaded, and the matrix can be reshape’d to the desired form:

load x[] = dat1.asc;

if rows(x) eq 500;

x = reshape(x,100,5);

else;

errorlog “Read Error”;

end;

endif;

For quick interactive loading without error checking, use

load x[100,5] = dat1.asc;

This will load the data into a 100x5 matrix. If there are more or fewer than 500
numbers in the data set, the matrix will automatically be reshaped to 100x5.

Writing

To write data to an ASCII file, the print or printfm command is used to print to
the auxiliary output. The resulting files are standard ASCII files and can be edited
with GAUSS’s editor or another text editor.

The output and outwidth commands are used to control the auxiliary output. The
print or printfm command is used to control what is sent to the output file.
11-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
The window can be turned on and off using screen. When printing a large amount
of data to the auxiliary output, the window can be turned off using the command

screen off;

This will make the process much faster, especially if the auxiliary output is a disk file.

It is easy to forget to turn the window on again. Use the end statement to terminate
your programs; end will automatically perform screen on and output off.

The following commands can be used to control printing to the auxiliary output:

format Specify format for printing a matrix.

output Open, close, rename auxiliary output file or device.

outwidth Auxiliary output width.

printfm Formatted matrix print.

print Print matrix or string.

screen Turn printing to the window on and off.

This example illustrates printing a matrix to a file:

format /rd 8,2;

outwidth 132;

output file = myfile.asc reset;

screen off;

print x;

output off;

screen on;

The numbers in the matrix x will be printed with a field width of 8 spaces per number,
and with 2 places beyond the decimal point. The resulting file will be an ASCII data
file. It will have 132 column lines maximum.

A more extended example follows. This program will write the contents of the
GAUSS file mydata.dat into an ASCII file called mydata.asc. If there is an
existing file by the name of mydata.asc, it will be overwritten:

output file = mydata.asc reset;

screen off;

format /rd 1,8;
11-4



File I/O

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
open fp = mydata;

do until eof(fp);

print readr(fp,200);;

endo;

fp = close(fp);

end;

The output ... reset command will create an auxiliary output file called
mydata.asc to receive the output. The window is turned off to speed up the
process. The GAUSS data file mydata.dat is opened for reading, and 200 rows
will be read per iteration until the end of the file is reached. The data read will be
printed to the auxiliary output mydata.asc only, because the window is off.

General File I/O

getf will read a file and return it in a string variable. Any kind of file can be read in
this way as long as it will fit into a single string variable.

To read files sequentially, use fopen to open the file and use fgets, fputs, and
associated functions to read and write the file. The current position in a file can be
determined with ftell. The following example uses these functions to copy an
ASCII text file:

proc copy(src, dest);

local fin, fout, str;

fin = fopen(src, “rb”);

if not fin;

retp(1);

endif;
11-5



GAUSS User Guide

UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM
fout = fopen(dest, “wb”);

if not fin;

call close(fin);

retp(2);

endif;

do until eof(fin);

str = fgets(fin, 1024);

if fputs(fout, str) /= 1;

call close(fin);

call close(fout);

retp(3);

endif;

endo;

call close(fin);

call close(fout);

retp(0);

endp;

Data Sets
GAUSS data sets are the preferred method of storing data for use within GAUSS. Use
of these data sets allows extremely fast reading and writing of data. Many library
functions are designed to read data from these data sets.

Layout

GAUSS data sets are arranged as matrices; that is, they are organized in terms of rows
and columns. The columns in a data file are assigned names and these names are
stored in the header or, in the case of the v89 format, in a separate header file.
11-6



File I/O

UserGuid.book Page 7 Monday, May 7, 2001 11:28 AM
The limit on the number of rows in a GAUSS data set is determined by disk size. The
limit on the number of columns is limited by RAM. Data can be stored in 2, 4, or 8
bytes per number, rather than just 8 bytes as in the case of GAUSS matrix files.

The ranges of the different formats are:

Creating Data Sets

Data sets can be created with the create command. The names of the columns, the
type of data, etc., can be specified. (For details, see create in the GAUSS Language
Reference.)

Data sets, unlike matrices, cannot change from real to complex, or vice-versa. Data
sets are always stored a row at a time. The rows of a complex data set, then, have the
real and imaginary parts interleaved, element by element. For this reason, you cannot
write rows from a complex matrix to a real data set — there is no way to interleave the
data without rewriting the entire data set. If you must, explicitly convert the rows of
data first, using the real and imag functions (see the GAUSS Language Reference),
and then write them to the data set. Rows from a real matrix CAN be written to a
complex data set; GAUSS simply supplies 0’s for the imaginary part.

To create a complex data set, include the complex flag in your create command.

Reading and Writing

The basic functions in GAUSS for reading data files are open and readr:

open f1 = dat1;

x = readr(f1,100);

The readr function in the example will read in 100 rows from dat1.dat. The data
will be assigned to a matrix x.

loadd and saved can be used for loading and saving small data sets.

Bytes
Data
Type

Significant
Digits Range

2 integer 4 -32768 ≤ X ≤ 32767

4 single 6-7 8.43E-37 ≤ |X| ≤ 3.37E+38

8 double 15-16 4.19E-307 ≤ |X| ≤ 1.67E+308
11-7



GAUSS User Guide

UserGuid.book Page 8 Monday, May 7, 2001 11:28 AM
The following example illustrates the creation of a GAUSS data file by merging
(horizontally concatenating) two existing data sets:

file1 = “dat1”;

file2 = “dat2”;

outfile = “daty”;

open fin1 = ^file1 for read;

open fin2 = ^file2 for read;

varnames = getname(file1)|getname(file2);

otyp = maxc(typef(fin1)|typef(fin2));

create fout = ^outfile with ^varnames,0,otyp;

nr = 400;

do until eof(fin1) or eof(fin2);

y1 = readr(fin1,nr);

y2 = readr(fin2,nr);

r = maxc(rows(y1)|rows(y2));

y = y1[1:r,.] ~ y2[1:r,.];

call writer(fout,y);

endo;

closeall fin1,fin2,fout;

In the previous example, data sets dat1.dat and dat2.dat are opened for
reading. The variable names from each data set are read using getname, and
combined in a single vector called varnames. A variable called otyp is created that
will be equal to the larger of the two data types of the input files. This will ensure the
output is not rounded to less precision than the input files. A new data set daty.dat
is created using the create ... with ... command. Then, on every iteration
of the loop, 400 rows are read in from each of the two input data sets, horizontally
concatenated, and written out to daty.dat. When the end of one of the input files is
reached, reading and writing will stop. The closeall command is used to close all
files.
11-8



File I/O

UserGuid.book Page 9 Monday, May 7, 2001 11:28 AM
Distinguishing Character and Numeric Data

Although GAUSS itself does not distinguish between numeric and character columns
in a matrix or data set, some of the GAUSS Applications programs do. When creating
a data set, it is important to indicate the type of data in the various columns. The
following discusses two ways of doing this.

Using Type Vectors

The v89 data set format distinguishes between character and numeric data in data sets
by the case of the variable names associated with the columns. The v96 data set
format, however, stores this type of information separately, resulting in a much cleaner
and more robust method of tracking variable types, and greater freedom in the naming
of data set variables.

When you create a data set, you can supply a vector indicating the type of data in each
column of the data set. For example:

data = { M 32 21500,

F 27 36000,

F 28 19500,

M 25 32000 };

vnames = { “Sex” “Age” “Pay” };

vtypes = { 0 1 1 };

create f = mydata with ^vnames, 3, 8, vtypes;

call writer(f,data);

f = close(f);

To retrieve the type vector, use vartypef:

open f = mydata for read;

vn = getnamef(f);

vt = vartypef(f);

print vn’;

print vt’;

Sex Age Pay

0 1 1
11-9



GAUSS User Guide

UserGuid.book Page 10 Monday, May 7, 2001 11:28 AM
The function getnamef in the previous example returns a string array rather than a
character vector, so you can print it without the ‘$’ prefix.

Using the Uppercase/Lowercase Convention (v89 Data Sets)

This is obsolete, use vartypef and v96 data sets to be compatible with future
versions.

The following method for distinguishing character/numeric data will soon be
obsolete; use the Type Vectors method described earlier.

To distinguish numeric variables from character variables in GAUSS data sets, some
GAUSS application programs recognize an “uppercase/lowercase” convention: if the
variable name is uppercase, the variable is assumed to be numeric; if the variable
name is lowercase, the variable is assumed to be character. The ATOG utility program
implements this convention when you use the # and $ operators to toggle between
character and numeric variable names listed in the invar statement, and you have
specified nopreservecase.

GAUSS does not make this distinction internally. It is up to the program to keep track
of and make use of the information recorded in the case of the variable names in a data
set.

When creating a data set using the saved command, this convention can be
established as follows:

data = { M 32 21500,

F 27 36000,

F 28 19500,

M 25 32000 };

dataset = “mydata”;

vnames = { “sex” AGE PAY };

call saved(data,dataset,vnames);

It is necessary to put “sex” in quotes in order to prevent it from being forced to
uppercase.

The procedure getname can be used to retrieve the variable names:

print $getname(“mydata”);
11-10



File I/O

UserGuid.book Page 11 Monday, May 7, 2001 11:28 AM
The names are:

sex

AGE

PAY

When writing or creating a data set, the case of the variable names is important. This
is especially true if the GAUSS applications programs will be used on the data set.

Matrix Files
GAUSS matrix files are files created by the save command.

The save command takes a matrix in memory, adds a header that contains
information on the number of rows and columns in the matrix, and stores it on disk.
Numbers are stored in double precision just as they are in matrices in memory. These
files have the extension .fmt.

Matrix files can be no larger than a single matrix. No variable names are associated
with matrix files.

GAUSS matrix files can be load’ed into memory using the load or loadm
command, or they can be opened with the open command and read with the readr
command. With the readr command, a subset of the rows can be read. With the
load command, the entire matrix is load’ed.

GAUSS matrix files can be open’ed for read, but not for append or for
update.

If a matrix file has been opened and assigned a file handle, rowsf and colsf can be
used to determine how many rows and columns it has without actually reading it into
memory. seekr and readr can be used to jump to particular rows and to read them
into memory. This is useful when only a subset of rows is needed at any time. This
procedure will save memory and be much faster than load’ing the entire matrix into
memory.

File Formats
This section discusses the GAUSS binary file formats.

There are four currently supported matrix file formats.

Version Extension Support

Small Matrix v89 .fmt Obsolete, use v96.

Extended Matrix v89 .fmt Obsolete, use v96.
11-11



GAUSS User Guide

UserGuid.book Page 12 Monday, May 7, 2001 11:28 AM
There are four currently supported string file formats:

There are four currently supported data set formats:

Small Matrix v89 (Obsolete)

Matrix files are binary files, and cannot be read with a text editor. They are created
with save. Matrix files with up to 8190 elements have a .fmt extension and a 16-
byte header formatted as follows:

Matrix v92 .fmt Obsolete, use v96.

Universal Matrix v96 .fmt Supported for read/write.

Version Extension Support

Small String v89 .fst Obsolete, use v96.

Extended String v89 .fst Obsolete, use v96.

String v92 .fst Obsolete, use v96.

Universal String v96 .fst Supported for read/write.

Version Extension Support

Small Data Set v89 .dat,
.dht

Obsolete, use v96.

Extended Data Set v89 .dat,
.dht

Obsolete, use v96.

Data Set v92 .dat Obsolete, use v96.

Universal Data Set v96 .dat Supported for read/write.

Offset Description

0-1 DDDD hex, identification flag

2-3 rows, unsigned 2-byte integer

4-5 columns, unsigned 2-byte integer

6-7 size of file minus 16-byte header, unsigned 2-byte integer

8-9 type of file, 0086 hex for real matrices, 8086 hex for complex matrices

10-15 reserved, all 0’s
11-12



File I/O

UserGuid.book Page 13 Monday, May 7, 2001 11:28 AM
The body of the file starts at offset 16 and consists of IEEE format double-precision
floating point numbers or character elements of up to 8 characters. Character elements
take up 8 bytes and are padded on the right with zeros. The size of the body of the file
is 8*rows*cols rounded up to the next 16-byte paragraph boundary. Numbers are
stored row by row. A 2x3 real matrix will be stored on disk in the following way, from
the lowest addressed element to the highest addressed element:

[1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

For complex matrices, the size of the body of the file is 16*rows*cols. The entire real
part of the matrix is stored first, then the entire imaginary part. A 2x3 complex matrix
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed element:

(real part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

(imaginary part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

Extended Matrix v89 (Obsolete)

Matrices with more than 8190 elements are saved in an extended format. These files
have a 16-byte header formatted as follows:

The size of the body of an extended matrix file is 8*rows*cols (not rounded up to a
paragraph boundary). Aside from this, the body is the same as the small matrix v89
file.

Small String v89 (Obsolete)

String files are created with save. String files with up to 65519 characters have a 16-
byte header formatted as follows:

Offset Description

0-1 EEDD hex, identification flag

2-3 type of file, 0086 hex for real matrices, 8086 hex for complex matrices

4-7 rows, unsigned 4-byte integer

8-11 columns, unsigned 4-byte integer

12-15 size of file minus 16-byte header, unsigned 4-byte integer

Offset Description

0-1 DFDF hex, identification flag
11-13



GAUSS User Guide

UserGuid.book Page 14 Monday, May 7, 2001 11:28 AM
The body of the file starts at offset 16. It consists of the string terminated with a null
byte. The size of the file is the 16-byte header plus the length of the string and null
byte rounded up to the next 16-byte paragraph boundary.

Extended String v89 (Obsolete)

Strings with more than 65519 characters are saved in an extended format. These files
have a 16-byte header formatted as follows:

The body of the file starts at offset 16. It consists of the string terminated with a null
byte. The size of the file is the 16-byte header plus the length of the string and null
byte rounded up to the next 8-byte boundary.

Small Data Set v89 (Obsolete)

All data sets are created with create. v89 data sets consist of two files; one (.dht)
contains the header information; the second (.dat) contains the binary data. The data
will be one of three types:

8-byte IEEE floating point

4-byte IEEE floating point

2-byte signed binary integer, twos complement

2-3 1, unsigned 2-byte integer

Offset Description

4-5 length of string plus null byte, unsigned 2-byte integer

6-7 size of file minus 16-byte header, unsigned 2-byte integer

8-9 001D hex, type of file

10-15 reserved, all 0’s

Offset Description

0-1 EEDF hex, identification flag

2-3 001D hex, type of file

4-7 1, unsigned 4-byte integer

8-11 length of string plus null byte, unsigned 4-byte integer

12-15 size of file minus 16-byte header, unsigned 4-byte integer
11-14



File I/O

UserGuid.book Page 15 Monday, May 7, 2001 11:28 AM
Numbers are stored row by row.
11-15



GAUSS User Guide

UserGuid.book Page 16 Monday, May 7, 2001 11:28 AM
The .dht file is used in conjunction with the .dat file as a descriptor file and as a
place to store names for the columns in the .dat file. Data sets with up to 8175
columns have a .dht file formatted as follows:

:

Column names begin at offset 128 and are stored 8 bytes each in ASCII format.
Names with less than 8 characters are padded on the right with bytes of 0.

The number of rows in the .dat file is calculated in GAUSS using the file size,
columns, and data type. This means that users can modify the .dat file by adding or
deleting rows with other software without updating the header information.

Names for the columns should be lowercase for character data, to be able to
distinguish them from numeric data with vartype.

GAUSS currently examines only the 4’s bit of the control flags. This bit is set to 0 for
real data sets, 1 for complex data sets. All other bits are 0.

Data sets are always stored a row at a time. A real data set with 2 rows and 3 columns
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed element:

[1,1] [1,2] [1,3]

[2,1] [2,2] [2,3]

Offset Description

0-1 DADA hex, identification flag

2-5 reserved, all 0’s

6-7 columns, unsigned 2-byte integer

8-9 row size in bytes, unsigned 2-byte integer

10-11 header size in bytes, unsigned 2-byte integer

12-13 data type in .dat file (2 4 8), unsigned 2-byte integer

14-17 reserved, all 0’s

18-21 reserved, all 0’s

22-23 control flags, unsigned 2-byte integer

24-127 reserved, all 0’s
11-16



File I/O

UserGuid.book Page 17 Monday, May 7, 2001 11:28 AM
The rows of a complex data set are stored with the real and imaginary parts
interleaved, element by element. A 2x3 complex data set, then, will be stored on disk
in the following way, from the lowest addressed element to the highest addressed
element:

[1,1]r [1,1]i [1,2]r [1,2]i [1,3]r [1,3]i

[2,1]r [2,1]i [2,2]r [2,2]i [2,3]r [2,3]i

Extended Data Set v89 (Obsolete)

Data sets with more than 8175 columns are saved in an extended format. These files
have a .dht descriptor file formatted as follows:

Aside from the differences in the descriptor file and the number of columns allowed in
the data file, extended data sets conform to the v89 data set description specified
above.

Matrix v92 (Obsolete)

Offset Description

0-1 EEDA hex, identification flag

2-3 data type in .dat file (2 4 8), unsigned 2-byte integer

4-7 reserved, all 0’s

8-11 columns, unsigned 4-byte integer

12-15 row size in bytes, unsigned 4-byte integer

16-19 header size in bytes, unsigned 4-byte integer

20-23 reserved, all 0’s

24-27 reserved, all 0’s

28-29 control flags, unsigned 2-byte integer

30-127 reserved, all 0’s

Offset Description

0-3 always 0

4-7 always 0xEECDCDCD

8-11 reserved
11-17



GAUSS User Guide

UserGuid.book Page 18 Monday, May 7, 2001 11:28 AM
If the data is a scalar, the data will directly follow the header.

If the data is a row vector, an unsigned integer equaling the number of columns in the
vector will precede the data, along with 4 padding bytes.

If the data is a column vector or a matrix, there will be two unsigned integers
preceding the data. The first will represent the number of rows in the matrix and the
second will represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in
double precision (8 bytes per element, 16 if complex). For complex matrices, all of the
real parts are stored first, followed by all the imaginary parts.

String v92 (Obsolete)

Offset Description

12-15 reserved

16-19 reserved

20-23 0 - real matrix, 1 - complex matrix

24-27 number of dimensions
0 - scalar
1- row vector
2 - column vector, matrix

28-31 header size, 128 + dimensions * 4, padded to 8-byte boundary

32-127 reserved

Offset Description

0-3 always 0

4-7 always 0xEECFCFCF

8-11 reserved

12-15 reserved

16-19 reserved

20-23 size of string in units of 8 bytes

24-27 length of string plus null terminator in bytes

28-127 reserved
11-18



File I/O

UserGuid.book Page 19 Monday, May 7, 2001 11:28 AM
The size of the data area is always divisible by 8, and is padded with nulls if the length
of the string is not evenly divisible by 8. If the length of the string is evenly divisible
by 8, the data area will be the length of the string plus 8. The data area follows
immediately after the 128-byte header.

Data Set v92 (Obsolete)

The variable names begin at offset 128 and are stored 8 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 8 characters are
padded on the right with bytes of zero.

The variable type flags immediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

The contents of the data set follow the header and start on an 8-byte boundary. Data is
either 2-byte signed integer, 4-byte single precision floating point, or 8-byte double
precision floating point.

Offset Description

0-3 always 0

4-7 always 0xEECACACA

8-11 reserved

12-15 reserved

16-19 reserved

20-23 rows in data set

24-27 columns in data set

28-31 0 - real data set, 1 - complex data set

32-35 type of data in data set, 2, 4, or 8

36-39 header size in bytes is 128 + columns * 9

40-127 reserved
11-19



GAUSS User Guide

UserGuid.book Page 20 Monday, May 7, 2001 11:28 AM
Matrix v96

If the data is a scalar, the data will directly follow the header.

Offset Description

0-3 always 0xFFFFFFFF

4-7 always 0

8-11 always 0xFFFFFFFF

12-15 always 0

16-19 always 0xFFFFFFFF

20-23 0xFFFFFFFF for forward byte order, 0 for backward byte order

24-27 0xFFFFFFFF for forward bit order, 0 for backward bit order

28-31 always 0xABCDEF01

32-35 currently 1

36-39 reserved

40-43 floating point type, 1 for IEEE 754

44-47 1008 (double precision data)

48-51 8, the size in bytes of a double matrix

52-55 0 - real matrix, 1 - complex matrix

56-59 1 - imaginary part of matrix follows real part (standard GAUSS style)
1 - imaginary part of each element immediately follows real part
(FORTRAN style)

60-63 number of dimensions
0 - scalar
1 - row vector
2 - column vector or matrix

64-67 1 - row major ordering of elements, 2 - column major

68-71 always 0

72-75 header size, 128 + dimensions * 4, padded to 8-byte boundary

76-127 reserved
11-20



File I/O

UserGuid.book Page 21 Monday, May 7, 2001 11:28 AM
If the data is a row vector, an unsigned integer equaling the number of columns in the
vector will precede the data, along with 4 padding bytes.

If the data is a column vector or a matrix, there will be two unsigned integers
preceding the data. The first will represent the number of rows in the matrix and the
second will represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in
double precision (8 bytes per element, 16 if complex). For complex matrices, all of the
real parts are stored first, followed by all the imaginary parts.

Data Set v96

Offset Description

0-3 always 0xFFFFFFFF

4-7 always 0

8-11 always 0xFFFFFFFF

12-15 always 0

16-19 always 0xFFFFFFFF

20-23 0xFFFFFFFF for forward byte order, 0 for backward byte order

24-27 0xFFFFFFFF for forward bit order, 0 for backward bit order

28-31 0xABCDEF02

32-35 version, currently 1

36-39 reserved

40-43 floating point type, 1 for IEEE 754

44-47 12 - signed 2-byte integer
1004 - single precision floating point
1008 - double precision float

48-51 2, 4, or 8, the size of an element in bytes

52-55 0 - real matrix, 1 - complex matrix

56-59 1 - imaginary part of matrix follows real part (standard GAUSS style)
2 - imaginary part of each element immediately follows real part
(FORTRAN style)

60-63 always 2
11-21



UserGuid.book Page 22 Monday, May 7, 2001 11:28 AM
The variable names begin at offset 128 and are stored 32 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 32 characters are
padded on the right with bytes of zero.

The variable type flags immediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

Contents of the data set follow the header and start on an 8-byte boundary. Data is
either 2-byte signed integer, 4-byte single precision floating point, or 8-byte double
precision floating point.

Offset Description

64-67 1 - row major ordering of elements, 2 - column major

68-71 always 0

72-75 header size, 128 + columns * 33, padded to 8-byte boundary

76-79 reserved

80-83 rows in data set

84-87 columns in data set

88-127 reserved



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Foreign Language

Interface12

The Foreign Language Interface (FLI) allows users to create functions written in C,
FORTRAN, or other languages, and call them from a GAUSS program. The functions
are placed in dynamic libraries (DLLs, also known as shared libraries or shared
objects) and linked in at run-time as needed. The FLI functions are:

GAUSS recognizes a default dynamic library directory, a directory where it will look
for your dynamic-link libraries when you call dlibrary. You can specify the default
directory in gauss.cfg by setting dlib_path. As it is shipped, gauss.cfg
specifies $(GAUSSDIR)/ dlib as the default directory.

Creating Dynamic Libraries
Assume you want to build a dynamic library called myfuncs.dll, containing the
functions found in two source files, myfunc1.c and myfunc2.c. The following
sections show the compile and link commands you would use. The compiler
command is first, followed by the linker command, followed by remarks regarding
that platform.

dlibrary Link and unlink dynamic libraries at run-time.

dllcall Call functions located in dynamic libraries.
12-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
For explanations of the various flags used, see the documentation for your compiler
and linker. One flag is common to both platforms. The –c compiler flag means
“compile only, don't link.” Virtually all compilers will perform the link phase
automatically unless you tell them not to. When building a dynamic library, we want
to compile the source code files to object (.obj) files, then link the object files in a
separate phase into a dynamic library.

$(CCOPTS) indicates any optional compilation flags you might add.

cl -c $(CCOPTS) -DWIN32 -D_WIN32 -D_MT -c -W3 -

Dtry=__try \

-Dexcept=__except -Dleave=__leave -

Dfinally=__finally \

-DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -D_X86_=1 -DSTRICT

-LD \

-Zp1 myfunc1.c myfunc2.c

link -DLL -def:ntgauss.def -out:myfuncs.dll myfunc1.obj

\

myfunc2.obj fp10.obj libcmt.lib oldnames.lib

kernel32.lib \

advapi32.lib user32.lib gdi32.lib comdlg32.lib

winspool.lib

These commands are written for the Microsoft Visual C/C++ compiler, ver. 2.0.

The Visual C/C++ linker allows you to specify a module definition file, which is a text
file that describes the dynamic library to be created. In this example, the module
definition file is myfuncs.def. It includes information on how the library is to be
initialized and terminated, how to handle its data segment, etc. It also needs to list the
symbols that will be exported, i.e., made callable by other processes, from the
dynamic library. Assume that myfunc1.c and myfunc2.c contain the FLI
functions func1(), func2(), and func3(), and a static funciton func4() that
is called by the others, but never directly from GAUSS. Then myfuncs.def would
look like this:
12-2



Foreign Language Interface

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
LIBRARY myfuncs

EXPORTS

func1

func2

func3

As you can see, creating dynamic libraries from the command line can be quite an
arcane process. For this reason, we recommend that you create dynamic libraries from
inside the Visual C/C++ workbench environment, rather than from the command line.

Writing FLI Functions
Your FLI functions should be written to the following specifications:

1. Take 0 or more pointers to doubles as arguments.

This does not mean you cannot pass strings to an FLI function. Just recast
the double pointer to a char pointer inside the function.

2. Take those arguments either in a list or a vector.

3. Return an integer.

In C syntax, then, your functions would take one of the following forms:

1. int func(void);

2. int func ;

3. int func ;

Functions can be written to take a list of up to 100 arguments, or a vector (in C terms,
a 1-dimensional array) of up to 1000 arguments. This does not affect how the function
is called from GAUSS; the dllcall statement will always appear to pass the arguments
in a list. That is, the dllcall statement will always look as follows:

dllcall func ;

For details on calling your function, passing arguments to it, getting data back, and
what the return value means, see dllcall in the GAUSS Language Reference.

double * 1 [ , double *2, etc. ]])[arg(

double *arg[] )(

a,b,c,d [ ,e... ] ] )[(
12-3



UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Data Exchange13

Data Exchange procedures are used to move data between GAUSS and other software
tools. Two procedures export GAUSS matrices and data sets to formats that can be
read by a variety of spreadsheets and databases. Two more procedures import data
files from these formats into GAUSS matrices and data sets.

Formats Supported 
The table below lists the spreadsheet and database formats supported, and their usual
file extensions. The default file type is determined from the file extension. This
default can be overwritten so that other file extensions can be used. For more
information see “Global Variables,” page 10-3.

File Type File Extension

Export Import

Lotus v1–v5 .wks .wks .wk1–.wk5

Excel v2.1–v7.0 .xls .xls

Quatro v1–v6 .wq1 .wq1 .wq2 .wb1

Symphony v1.0–1.1 .wrk .wrk
13-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
The newer releases of spreadsheets and databases can read their older formats.
Specifically, the procedures will read data in all versions listed and will write data out
in the most compatible, or earliest, format. For example, the Lotus driver will read all
versions up to version 5 and will write data out to a generic version 1.0 .wks file.

You can import and export ASCII files.

If you have a problem importing data, save it in an earlier spreadsheet or database
format. The same suffix does not necessarily mean the same data format.

Importing sheet 0 or sheet 1 will import the first sheet of a spreadsheet. (Most multi-
sheet spreadsheets call this sheet 1.)

On export, elements that are missing values will be exported to spreadsheets as blank
cells, and to ASCII files as the value _dxmiss. On import, spreadsheet cells that are
#ERR or #N/A will be imported as GAUSS missing values. Elements from any format
that have the value _dxmiss will be imported as GAUSS missing values.

Data Exchange Procedures
These four procedures are used for exchanging data with databases and spreadsheets:

For details, see the GAUSS Language Reference.

Export Import

dBase II .db2 .db2

dBase III/IV .dbf .dbf

Paradox, FoxPro, Clipper .db .db

ASCII – character delimited .csv .txt .asc .csv .txt .asc

ASCII – formatted .prn .prn

GAUSS data set .dat .dat

export Exports a GAUSS matrix to a specified file format.

exportf Exports a GAUSS data set to a specified file format.

import Imports a spreadsheet or database file to a GAUSS matrix.

importf Imports a spreadsheet or database file to a GAUSS data set.

File Type
File Extension
13-2



Data Exchange

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
Global Variables
The following global variables can be used to modify the operation of the Data
Exchange procedures:

_dxftype
(string)

Overrides the file extension to define the type of file to import
or export. For example, after setting _dxftype = "xls",
files exported or imported will be Excel format, independent of
the actual file extension. Use _dxftype = “” (empty string)
to return to default operation (file extension defining file type).

_dxtype
(matrix)

Scalar or Kx1 vector of 1's and 0's defining the data types of
columns. 1's indicate numeric columns, 0's indicate character
columns. A scalar can be used if all columns are of the same
type. Default is scalar 1 (all numeric).

_dxwidth
(matrix)

Scalar or Kx1 vector of integers giving the width of spreadsheet
columns in characters. A scalar can be used if all columns have
the same width. Default is 12. (_dxwidth does not always
control the column width correctly when exporting to an Excel
(.xls) datasheet or databook. Adjust this parameter within
Excel after loading the file.)

_dxprcn
(matrix)

Scalar or Kx1 vector defining the number of digits of precision
in the columns of spreadsheets. A scalar can be used if all
columns are to have the same precision. Default is 4. (_dxprcn
does not always control the number of digits after the decimal
correctly when exporting to an Excel (.xls) datasheet or
databook. Adjust this parameter within Excel after loading the
file.)

_dxtxdlim
(scalar)

ASCII value of character that delimits fields in ASCII files
(tab = 9, comma = 44, space = 32). Default is space (32).

_dxaschdr Scalar (0 or 1) determining if column headers are written to/
from ASCII files. If _dxaschdr = 1, headers are written. If
_dxaschdr = 0, no headers are written. Default is 0.

_dxwkshdr Scalar (0 or 1) determining if column headers are written to/
from spreadsheet files. If _dxwkshdr = 1, headers are
written. If _dxwkshdr = 0, no headers are written. Default
is 0.

_dxmiss Scalar that defines the missing value representation. Default is
the normal GAUSS representation (the indefinite NaN).
13-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
_dxprint Scalar (0 or 1) determining if progress messages are to be
printed to the window. _dxprint = 1 prints messages.
_dxprint = 0 suppresses the print. Default is 1.
13-4



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Data Transformations14

GAUSS allows expressions that directly reference variables (columns) of a data set.
This is done within the context of a data loop:

dataloop infile outfile;

drop wagefac wqlec shordelt foobly;

csed = ln(sqrt(csed));

select csed > 0.35 and married $== “y”;

make chfac = hcfac + wcfac;

keep csed chfac stid recsum voom;

endata;

GAUSS translates the data loop into a procedure that performs the required
operations, and then calls the procedure automatically at the location (in your
program) of the data loop. It does this by translating your main program file into a
temporary file and then executing the temporary file.

A data loop may be placed only in the main program file. Data loops in files that are
#include’d or autoloaded are not recognized.
14-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Using Data Loop Statements
A data loop begins with a dataloop statement and ends with an endata statement.
Inside a data loop, the following statements are supported:

code Create variable based on a set of logical expressions.

delete Delete rows (observations) based on a logical expression.

drop Specify variables NOT to be written to data set.

extern Allows access to matrices and strings in memory.

keep Specify variables to be written to output data set.

lag Lag variables a number of periods.

listwise Controls deletion of missing values.

make Create new variable.

outtyp Specify output file precision.

recode Change variable based on a set of logical expressions.

select Select rows (observations) based on a logical expression.

vector Create new variable from a scalar returning expression.

In any expression inside a data loop, all text symbols not immediately followed by a
left parenthesis ‘(’ are assumed to be data set variable (column) names. Text symbols
followed by a left parenthesis are assumed to be procedure names. Any symbol listed
in an extern statement is assumed to be a matrix or string already in memory.

Using Other Statements
All program statements in the main file and not inside a data loop are passed through
to the temporary file without modification. Program statements within a data loop that
are preceded by a ‘#’ are passed through to the temporary file without modification.
The user familiar with the code generated in the temporary file can use this to do out-
of-the-ordinary operations inside the data loop.

Debugging Data Loops
The translator that processes data loops can be turned on and off. When the translator
is on, there are three distinct phases in running a program:

Translation Translation of main program file to temporary file.

Compilation Compilation of temporary file.

Execution Execution of compiled code.
14-2



Data Transformations

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
Translation Phase

In the translation phase, the main program file is translated into a temporary file. Each
data loop is translated into a procedure, and a call to this procedure is placed in the
temporary file at the same location as the original data loop. The data loop itself is
commented out in the temporary file. All data loop procedures are placed at the end of
the temporary file.

Depending on the status of line number tracking, error messages encountered in this
phase will be printed with the file name and line numbers corresponding to the main
file.

Compilation Phase

In the compilation phase, the temporary file is compiled. Depending on the status of
line number tracking, error messages encountered in this phase will be printed with
the file name and line numbers corresponding to both the main file and the temporary
file.

Execution Phase

In the execution phase, the compiled program is executed. Depending on the status of
line number tracking, error messages will include line number references from both
the main file and the temporary file.

Reserved Variables
The following local variables are created by the translator and used in the produced
code:

x_cv x_iptr x_ncol x_plag

x_drop x_keep x_nlag x_ptrim

x_fpin x_lval x_nrow x_shft

x_fpout x_lvar x_ntrim x_tname

x_i x_n x_out x_vname

x_in x_name x_outtyp x_x

These variables are reserved, and should not be used within a dataloop ...
endata section.
14-3



UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Publication Quality

Graphics15

GAUSS Publication Quality Graphics (PQG) is a set of routines built on the graphics
functions in GraphiC by Scientific Endeavors Corporation.

The main graphics routines include xy, xyz, surface, polar, and log plots, as well as
histograms, bar, and box graphs. Users can enhance their graphs by adding legends,
changing fonts, and adding extra lines, arrows, symbols, and messages.

The user can create a single full size graph, inset a smaller graph into a larger one, tile
a window with several equally sized graphs, or place several overlapping graphs in the
window. Graphic panel size and location are all completely under the user’s control.

General Design
GAUSS PQG consists of a set of main graphing procedures and several additional
procedures and global variables for customizing the output.

All of the actual output to the window happens during the call to these main routines:

bar Bar graphs.

box Box plots.

contour Contour plots.

draw Draws graphs using only global variables.

hist Histogram.
15-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
histp Percentage histogram.

histf Histogram from a vector of frequencies.

loglog Log scaling on both axes.

logx Log scaling on X axis.

logy Log scaling on Y axis.

polar Polar plots.

surface 3-D surface with hidden line removal.

xy Cartesian graph.

xyz 3-D Cartesian graph.

Using Publication Quality Graphics

Getting Started

There are four basic parts to a graphics program. These elements should be in any
program that uses graphics routines. The four parts are header, data setup, graphics
format setup, and graphics call.

Header

In order to use the graphics procedures, the pgraph library must be active. This is
done in the library statement at the top of your program or command file. The next
line in your program will typically be a command to reset the graphics global
variables to the default state. For example:

library mylib, pgraph;

graphset;

Data Setup

The data to be graphed must be in matrices. For example:

x = seqa(1,1,50);

y = sin(x);

Graphics Format Setup

Most of the graphics elements contain defaults that allow the user to generate a plot
without modification. These defaults, however, may be overridden by the user through
the use of global variables and graphics procedures. Some of the elements custom
configurable by the user are axes numbering, labeling, cropping, scaling, line and
symbol sizes, and types, legends, and colors.
15-2



Publication Quality Graphics

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
Calling Graphics Routines

The graphics routines take as input the user data and global variables that have
previously been set. It is in these routines where the graphics file is created and
displayed.

Following are three PQG examples. The first two programs are different versions of
the same graph. The variables that begin with _p are the global control variables used
by the graphics routines. (For a detailed description of these variables, see “Global
Control Variables,” page 15-13.)

Example 1   The routine being called here is a simple XY plot. The entire window
will be used. Four sets of data will be plotted with the line and symbol attributes
automatically selected. This graph will include a legend, title, and a time/date stamp
(time stamp is on by default):

library pgraph; /* activate PGRAPH library */

graphset; /* reset global variables */

x = seqa(.1,.1,100); /* generate data */

y = sin(x);

y = y ~ y*.8 ~ y*.6 ~ y*.4; /* 4 curves plotted */

/* against x */

_plegctl = 1; /* legend on */

title(“Example xy Graph”); /* Main title */

xy(x,y); /* Call to main routine */

Example 2   Here is the same graph with more of the graphics format controlled by
the user. The first two data sets will be plotted using symbols at graph points only
(observed data); the data in the second two sets will be connected with lines (predicted
results):

library pgraph; /* activate PGRAPH library */

graphset; /* reset global variables */

x = seqa(.1,.1,100); /* generate data */

y = sin(x);

y = y ~ y*.8 ~ y*.6 ~ y*.4; /* 4 curves plotted */

/* against x */

_pdate = “”; /* date is not printed */
15-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
_plctrl = { 1, 1, 0, 0 }; /* 2 curves w/symbols,*/

/* 2 without */

_pltype = { 1, 2, 6, 6 }; /* dashed, dotted, */

/* solid lines */

_pstype = { 1, 2, 0, 0 }; /* symbol types */

/* circles,squares */

_plegctl= { 2, 3, 1.7, 4.5 }; /* legend size and */

/* locations */

_plegstr= “Sine wave 1.\0”\ /* 4 lines legend text */

“Sine wave .8\0”\

“Sine wave .6\0”\

“Sine wave .4”;

ylabel(“Amplitude”); /* Y axis label */

xlabel(“X Axis”); /* X axis label */

title(“Example xy Graph”); /* main title */

xy(x,y); /* call to main routine */

Example 3   In this example, two graphics graphic panels are drawn. The first is a
full-sized surface representation, and the second is a half-sized inset containing a
contour of the same data located in the lower left corner of the window:

library pgraph; /* activate pgraph library */

/* Generate data for surface and contour plots */

x = seqa(-10,0.1,71)’; /* note x is a row vector */

y = seqa(-10,0.1,71); /* note y is a column vector */

z = cos(5*sin(x) - y); /* z is a 71x71 matrix */
15-4



Publication Quality Graphics

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
begwind; /* initialize graphics */

/* graphic panels */

makewind(9,6.855,0,0,0); /* first graphic panel */

/*full size */

makewind(9/2,6.855/2,1,1,0);/* second graphic panel */

/* inset to first */

setwind(1); /* activate first graphic */

/* panel */

graphset; /* reset global variables */

_pzclr = { 1, 2, 3, 4 }; /* set Z level colors */

title(“cos(5*sin(x) - y)”);/* set main title */

xlabel(“X Axis”); /* set X axis label */

ylabel(“Y Axis”); /* set Y axis label */

scale3d(miss(0,0),miss(0,0),-5|5);/* scale Z axis */

surface(x,y,z); /* call surface routine */

nextwind; /* activate second graphic */

/* panel */

graphset; /* reset global variables */

_pzclr = { 1, 2, 3, 4 };/* set Z level colors */

_pbox = 15; /* white border */

contour(x,y,z); /* call contour routine */

endwind; /* Display graphic panels */

While the structure has changed somewhat, the four basic elements of the graphics
program are all here. The additional routines begwind, endwind, makewind,
nextwind, and setwind are all used to control the graphics graphic panels.
15-5



GAUSS User Guide

UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM
As Example 3 illustrates, the code between graphic panel functions (that is, setwind
or nextwind) may include assignments to global variables, a call to graphset, or
may set up new data to be passed to the main graphics routines.

You are encouraged to run the example programs supplied with GAUSS. Analyzing
these programs is perhaps the best way to learn how to use the PQG system. The
example programs are located on the examples subdirectory.

Graphics Coordinate System

PQG uses a 4190x3120 pixel grid on a 9.0x6.855-inch printable area. There are three
units of measure supported with most of the graphics global elements:

Inch Coordinates

Inch coordinates are based on the dimensions of the full-size 9.0x6.855-inch output
page. The origin is (0,0) at the lower left corner of the page. If the picture is rotated,
the origin is at the upper left. (see “Inch Units in Graphics Graphic Panels,” page 15-
9.)

Plot Coordinates

Plot coordinates refer to the coordinate system of the graph in the units of the user’s X,
Y, and Z axes.

Pixel Coordinates 

Pixel coordinates refer to the 4096x3120 pixel coordinates of the full-size output page.
The origin is (0,0) at the lower left corner of the page. If the picture is rotated, the
origin is at the upper left.

Graphics Graphic Panels
Multiple graphic panels for graphics are supported. These graphic panels allow the
user to display multiple graphs on one window or page.

A graphic panel is any rectangular subsection of the window or page. Graphic panels
may be any size and position on the window and may be tiled or overlapping,
transparent or nontransparent.

Tiled Graphic Panels

Tiled graphic panels do not overlap. The window can easily be divided into any
number of tiled graphic panels with the window command. window takes three
parameters: number of rows, number of columns, and graphic panel attribute
(1=transparent, 0=nontransparent).
15-6



Publication Quality Graphics

UserGuid.book Page 7 Monday, May 7, 2001 11:28 AM
This example will divide the window into six equally sized graphic panels. There will
be two rows of three graphic panels — three graphic panels in the upper half of the
window and three in the lower half. The attribute value of 0 is arbitrary since there are
no other graphic panels beneath them:

window(nrows,ncols,attr);

window(2,3,0);

Overlapping Graphic Panels

Overlapping graphic panels are laid on top of one another as they are created, much as
if you were using the cut and paste method to place several graphs together on one
page. An overlapping graphic panel is created with the makewind command.

In this example, makewind will create an overlapping graphic panel 4 inches
horizontally by 2.5 inches vertically, positioned 1 inch from the left edge of the page
and 1.5 inches from the bottom of the page. It will be nontransparent:

makewind(hsize,vsize,hpos,vpos,attr);

window(2,3,0);

makewind(4,2.5,1,1.5,0);

Nontransparent Graphic Panels

A nontransparent graphic panel is one that is blanked before graphics information is
written to it. Therefore, information in any previously drawn graphic panels that lie
under it will not be visible.

Transparent Graphic Panels

A transparent graphic panel is one that is not blanked, allowing the graphic panel
beneath it to “show through.” Lines, symbols, arrows, error bars, and other graphics
objects may extend from one graphic panel to the next by using transparent graphic
panels. First, create the desired graphic panel configuration. Then create a full-
window, transparent graphic panel using the makewind or window command. Set
the appropriate global variables to position the desired object on the transparent
graphic panel. Use the draw procedure to draw it. This graphic panel will act as a
transparent “overlay” on top of the other graphic panels. Transparent graphic panels
can be used to add text or to superimpose one graphic panel on top of another.
15-7



GAUSS User Guide

UserGuid.book Page 8 Monday, May 7, 2001 11:28 AM
Using Graphic Panel Functions

The following is a summary of the graphic panel functions:

begwind Graphic panel initialization procedure.

endwind End graphic panel manipulations, display graphs.

window Partition window into tiled graphic panels.

makewind Create graphic panel with specified size and position.

setwind Set to specified graphic panel number.

nextwind Set to next available graphic panel number.

getwind Get current graphic panel number.

savewind Save graphic panel configuration to a file.

loadwind Load graphic panel configuration from a file.

This example creates four tiled graphic panels and one graphic panel that overlaps the
other four:

library pgraph;

graphset;

begwind;

window(2,2,0);/* Create four tiled graphic panels */

/* (2 rows, 2 columns) */

xsize = 9/2; /* Create graphic panel that overlaps */

/*the tiled graphic panels */

ysize = 6.855/2;

makewind(xsize,ysize,xsize/2,ysize/2,0);

x = seqa(1,1,1000); /* Create X data */

y = (sin(x) + 1) * 10.; /* Create Y data */
15-8



Publication Quality Graphics

UserGuid.book Page 9 Monday, May 7, 2001 11:28 AM
setwind(1); /* Graph #1, upper left corner */

xy(x,y);

nextwind; /* Graph #2, upper right corner */

logx(x,y);

nextwind; /* Graph #3, lower left corner */

logy(x,y);

nextwind; /* Graph #4, lower right corner */

loglog(x,y);

nextwind; /* Graph #5, center, overlayed */

bar(x,y);

endwind; /* End graphic panel processing, */

/* display graph */

Inch Units in Graphics Graphic Panels

Some global variables allow coordinates to be input in inches. If a coordinate value is
in inches and is being used in a graphic panel, that value will be scaled to window
inches and positioned relative to the lower left corner of the graphic panel. A
graphic panel inch is a true inch in size only if the graphic panel is scaled to the full
window; otherwise, X coordinates will be scaled relative to the horizontal graphic
panel size and Y coordinates will be scaled relative to the vertical graphic panel
size.

Saving Graphic Panel Configurations

The functions savewind and loadwind allow the user to save graphic panel
configurations. Once graphic panels are created (using makewind and window),
savewind may be called. This will save to disk the global variables containing
information about the current graphic panel configuration. To load this configuration
again, call loadwind. (See loadwind in the GAUSS Language Reference.)

Graphics Text Elements
Graphics text elements, such as titles, messages, axes labels, axes numbering, and
legends, can be modified and enhanced by changing fonts and by adding
superscripting, subscripting, and special mathematical symbols.
15-9



GAUSS User Guide

UserGuid.book Page 10 Monday, May 7, 2001 11:28 AM
To make these modifications and enhancements, the user can embed “escape codes” in
the text strings that are passed to title, xlabel, ylabel, and asclabel or
assigned to _pmsgstr and _plegstr.

The escape codes used for graphics text are:

\ 000 String termination character (null byte).

[ Enter superscript mode, leave subscript mode.

] Enter subscript mode, leave superscript mode.

@ Interpret next character as literal.

\ 20n Select font number n (see “Selecting Fonts,” following).

The escape code \L can be embedded into title strings to create a multiple line title:

title(“This is the first line\lthis is the second

line”);

A null byte \000 is used to separate strings in _plegstr and _pmsgstr:

_pmsgstr = “First string\000Second string\000Third

string”;

or

_plegstr = “Curve 1\000Curve 2”;

Use the [..] to create the expression :

_pmsgstr = “M(t) = E(e[tx])”;

Use the @ to generate [ and ] in an X axis label:

xlabel(“Data used for x is: data@[.,1 2 3@]”);

Selecting Fonts

Four fonts are supplied with the Publication Quality Graphics system. They are
Simplex, Complex, Simgrma, and Microb. (For the characters available in each font,
see Appendix A.)

Fonts are loaded by passing to the fonts procedure a string containing the names of
all fonts to be loaded. For example, this statement will load all four fonts:

fonts(“simplex complex microb simgrma”);

M t( ) E e
tx( )=
15-10



Publication Quality Graphics

UserGuid.book Page 11 Monday, May 7, 2001 11:28 AM
The fonts command must be called before any of the fonts can be used in text
strings. A font can then be selected by embedding an escape code of the form “\ 20n”
in the string that is to be written in the new font. The n will be 1, 2, 3, or 4, depending
on the order in which the fonts were loaded in fonts.

If the fonts were loaded as in the previous example, the escape characters for each
would be:

\201 Simplex

\202 Complex

\203 Microb

\204 Simgrma

The example then for selecting a font for each string to be written would be:

title(“\201This is the title using Simplex font”);

xlabel(“\202This is the label for X using Complex

font”);

ylabel(“\203This is the label for Y using Microb

font”);

Once a font is selected, all succeeding text will use that font until another font is
selected. If no fonts are selected by the user, a default font (Simplex) is loaded and
selected automatically for all text work.

Greek and Mathematical Symbols

The following examples illustrate the use of the Simgrma font; they assume that
Simgrma was the fourth font loaded. (For the available Simgrma characters and their
numbers, see Appendix A.) The Simgrma characters are specified by either:

1. The character number, preceded by a “\”.

2. The regular text character with the same number.

For example, to get an integral sign “ò” in Simgrma, embed either a “\ 044” or a “,” in
the string that has been currently set to use Simgrma font.

To produce the title , use the following title string:

title(“\201f(x) = sin[2](\204p\201x)”);

The “p” (character 112) corresponds to in Simgrma.

f x( ) 2 πx( )sin=

π

15-11



GAUSS User Guide

UserGuid.book Page 12 Monday, May 7, 2001 11:28 AM
To number the major X axis tick marks with multiples of /4, the following could be
passed to asclabel:

lab = “\2010 \204p\201/4 \204p\201/2 3\204p\201/4

\204p”;

asclabel(lab,0);

xtics(0,pi,pi/4,1);

xtics is used to make sure that major tick marks are placed in the appropriate places.

This example will number the X axis tick marks with the labels -2, -1, 1, , and
2:

lab = “\204m\201[-2] \204m\201[-1] 1 \204m m\201[2]”;

asclabel(lab,0);

This example illustrates the use of several of the special Simgrma symbols:

_pmsgstr = “\2041\2011/2\204p

,\201e[-\204m[\2012]\201/2]d\204m”;

This produces

Colors  

0 Black 8 Dark Grey

1 Blue 9 Light Blue

2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 Grey 15 White

π

µ µ µ
µ

15-12



Publication Quality Graphics

UserGuid.book Page 13 Monday, May 7, 2001 11:28 AM
Global Control Variables

The following global variables are used to control various graphics elements. Default
values are provided. Any or all of these variables can be set before calling one of the
main graphing routines. The default values can be modified by changing the
declarations in pgraph.dec and the statements in the procedure graphset in
pgraph.src. graphset can be called whenever the user wants to reset these
variables to their default values.

_pageshf 2x1 vector, the graph will be shifted to the right and up if this is not 0.
If this is 0, the graph will be centered on the output page. Default is 0.

Note: Used internally. (For the same functionality, see axmargin in
the GAUSS Language Reference.) This is used by the graphics
graphic panel routines. The user must not set this when using the
graphic panel procedures.

_pagesiz 2x1 vector, size of the graph in inches on the printer output.
Maximum size is 9.0 x 6.855 inches (unrotated) or 6.855 x 9.0 inches
(rotated). If this is 0, the maximum size will be used. Default is 0.

Note: Used internally. (For the same functionality, see axmargin in
the GAUSS Language Reference.) This is used by the graphics
graphic panel routines. The user must not set this when using the
graphic panel procedures.

_parrow Mx11 matrix, draws one arrow per row M of the input matrix. If scalar
zero, no arrows will be drawn.

[M,1] x starting point.

[M,2] y starting point.

[M,3] x ending point.

[M,4] y ending point.

[M,5] ratio of the length of the arrow head to half its width.

[M,6] size of arrow head in inches.

[M,7] type and location of arrow heads. This integer
number will be interpreted as a decimal expansion mn.
For example: if 10, then m = 1, n = 0.

m type of arrow head:

0 solid

1 empty

2 open

3 closed
15-13



GAUSS User Guide

UserGuid.book Page 14 Monday, May 7, 2001 11:28 AM
n location of arrow head:

0 none

1 at the final end

2 at both ends

[M,8] color of arrow, see “Colors,” page 15-12.

[M,9] coordinate units for location:

1 x,y starting and ending locations in plot coordinates

2 x,y starting and ending locations in inches

3 x,y starting and ending locations in pixels

[M,10] line type:

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

[M,11] controls thickness of lines used to draw arrow. This value
may be zero or greater. A value of zero is
normal line width.

To create two single-headed arrows, located using inches, use

_parrow = { 1 1 2 2 3 0.2 11 10 2 6 0,

3 4 2 2 3 0.2 11 10 2 6 0 };

_parrow3 Mx12 matrix, draws one 3-D arrow per row of the input matrix. If
scalar zero, no arrows will be drawn.

[M,1] x starting point in 3-D plot coordinates.

[M,2] y starting point in 3-D plot coordinates.

[M,3] z starting point in 3-D plot coordinates.

[M,4] x ending point in 3-D plot coordinates.

[M,5] y ending point in 3-D plot coordinates.

[M,6] z ending point in 3-D plot coordinates.

[M,7] ratio of the length of the arrow head to half its width.

[M,8] size of arrow head in inches.
15-14



Publication Quality Graphics

UserGuid.book Page 15 Monday, May 7, 2001 11:28 AM
[M,9] type and location of arrow heads. This integer
number will be interpreted as a decimal expansion mn.
For example: if 10, then m = 1, n = 0.

m type of arrow head:

0 solid

1 empty

2 open

3 closed

n location of arrow head:

0 none

1 at the final end

2 at both ends

[M,10] color of arrow, see “Colors,” page 15-12.

[M,11] line type:

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

[M,12] controls thickness of lines used to draw arrow. This value
may be zero or greater. A value of zero is
normal line width.

To create two single-headed arrows, located using plot coordinates,
use

_parrow3 = { 1 1 1 2 2 2 3 0.2 11 10 6 0,

3 4 5 2 2 2 3 0.2 11 10 6 0 };

_paxes scalar, 2x1, or 3x1 vector for independent control for each axis. The
first element controls the X axis, the second controls the Y axis, and
the third (if set) will control the Z axis. If 0, the axis will not be
drawn. Default is 1.

If this is a scalar, it will be expanded to that value.
15-15



GAUSS User Guide

UserGuid.book Page 16 Monday, May 7, 2001 11:28 AM
For example:

_paxes = { 1, 0 }; /* turn X axis on, */

/* Y axis off */

_paxes = 0; /* turn all axes off */

_paxes = 1; /* turn all axes on */

_paxht scalar, size of axes labels in inches. If 0, a default size will be
computed. Default is 0.

_pbartyp global 1x2 or Kx2 matrix. Controls bar shading and colors in bar
graphs and histograms.

The first column controls the bar shading:

0 no shading

1 dots

2 vertical cross-hatch

3 diagonal lines with positive slope

4 diagonal lines with negative slope

5 diagonal cross-hatch

6 solid

The second column controls the bar color, see “Colors,” page 15-12.

_pbarwid global scalar, width of bars in bar graphs and histograms. The valid
range is 0-1. If this is 0, the bars will be a single pixel wide. If this is
1, the bars will touch each other. The default is 0.5, so the bars take up
about half the space open to them.

_pbox scalar, draws a box (border) around the entire graph. Set to desired
color of box to be drawn. Use 0 if no box is desired. Default is 0.

_pboxctl 5x1 vector, controls box plot style, width, and color. Used by
procedure box only.

[1] box width between 0 and 1. If zero, the box plot is drawn
astwo vertical lines representing the quartile ranges with

a filled circle representing the 50th percentile.

[2] box color, see “Colors,” page 15-12. If this is set to 0, the
colors may be individually controlled using
global variable _pcolor.

[3] min/max style for the box symbol. One of the following:

1 minimum and maximum taken from the actual limits
of the data. Elements 4 and 5 are ignored.
15-16



Publication Quality Graphics

UserGuid.book Page 17 Monday, May 7, 2001 11:28 AM
2 statistical standard with the minimum and
maximum calculated according to interquartile range
as follows:

intqrange = 75th - 25th

min = 25th - 1.5intqrange

max = 75th + 1.5intqrange

Elements 4 and 5 are ignored.

3 minimum and maximum percentiles taken from
elements 4 and 5.

[4] minimum percentile value (0-100) if _pboxctl[3] =
3.

[5] maximum percentile value (0-100) if
_pboxctl[3] = 3.

_pboxlim 5xM output matrix containing computed percentile results from
procedure box. M corresponds to each column of input y data.

[1,M] minimum whisker limit according to _pboxctl[3].

[2,M] 25th percentile (bottom of box).

[3,M] 50th percentile (median).

[4,M] 75th percentile (top of box).

[5,M] maximum whisker limit according to _pboxctl[3].

_pcolor scalar or Kx1 vector, colors for main curves in xy, xyz, and log
graphs. To use a single color set for all curves, set this to a scalar
color value. If 0, use default colors. Default is 0.

The default colors come from a global vector called _pcsel. This
vector can be changed by editing pgraph.dec to change the default
colors, see “Colors,” page 15-12. (_pcsel is not documented
elsewhere.)

_pcrop scalar or 1x5 vector, allows plot cropping for different graphic
elements to be individually controlled. Valid values are 0 (disabled)
or 1 (enabled). If cropping is enabled, any graphical data sent outside
the axes area will not be drawn. If this is scalar, _pcrop is expanded
to a 1x5 vector using the given value for all elements. All cropping is
enabled by default.

[1] crop main curves/symbols.

[2] crop lines generated using _pline.

[3] crop arrows generated using _parrow.
15-17



GAUSS User Guide

UserGuid.book Page 18 Monday, May 7, 2001 11:28 AM
[4] crop circles/arcs generated using _pline.

[5] crop symbols generated using _psym.

This example will crop main curves, and lines and circles drawn by
_pline:

_pcrop = { 1 1 0 1 0 };

_pcross scalar. If 1, the axes will intersect at the (0,0) X-Y location if it is
visible. Default is 0, meaning the axes will be at the lowest end of the
X-Y coordinates.

_pdate date string. If this contains characters, the date will be appended and
printed.

The default is set as follows (the first character is a font selection
escape code):

_pdate = “\201GAUSS ”;

If this is set to a null string, no date will be printed. (For more
information on using fonts within strings, see “Graphics Text
Elements,” page 15-9.)

_perrbar Mx9 matrix, draws one error bar per row of the input matrix. If scalar
0, no error bars will be drawn. Location values are in plot coordinates.

[M,1] x location.

[M,2] left end of error bar.

[M,3] right end of error bar.

[M,4] y location.

[M,5] bottom of error bar.

[M,6] top of error bar.

[M,7] line type:

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

[M,8] color, see “Colors,” page 15-12.

[M,9] line thickness. This value may be zero or greater. A value
of zero is normal line width.
15-18



Publication Quality Graphics

UserGuid.book Page 19 Monday, May 7, 2001 11:28 AM
To create one error bar using solid lines, use

_perrbar = { 1 0 2 2 1 3 6 2 0 };

_pframe 2x1 vector, controls frame around axes area. On 3-D plots, this is a
cube surrounding the 3-D workspace.

[1] 1 frame on.

0 frame off.

[2] 1 tick marks on frame.

0 no tick marks.

The default is a frame with tick marks.

_pgrid 2x1 vector to control grid.

[1] grid through tick marks:

0 no grid

1 dotted grid

2 fine dotted grid

3 solid grid

[2] grid subdivisions between major tick marks:

0 no subdivisions

1 dotted lines at subdivisions

2 tick marks only at subdivisions

The default is no grid and tick marks at subdivisions.

_plctrl scalar or Kx1 vector to control whether lines and/or symbols will be
displayed for the main curves. This also controls the frequency of
symbols on main curves. The rows (K) is equal to the number of
individual curves to be plotted in the graph. Default is 0.

0 draw line only.

>0 draw line and symbols every _plctrl points.

<0 draw symbols only every _plctrl points.

-1 all of the data points will be plotted with no
connecting lines.

This example draws a line for the first curve, draws a line and plots a
symbol every 10 data points for the second curve, and plots symbols
only every 5 data points for the third curve:

_plctrl = { 0, 10, -5 };
15-19



GAUSS User Guide

UserGuid.book Page 20 Monday, May 7, 2001 11:28 AM
_plegctl scalar or 1x4 vector, legend control variable.

If scalar 0, no legend is drawn (default). If nonzero scalar, create
legend in the default location in the lower right of the page.

If 1x4 vector, set as follows:

[1] legend position coordinate units:

1 coordinates are in plot coordinates

2 coordinates are in inches

3 coordinates are in pixels

[2] legend text font size. 1 ≤ size ≤ 9. Default is 5.

[3] x coordinate of lower left corner of legend box.

[4] y coordinate of lower left corner of legend box.

This example puts a legend in the lower right corner:

_plegctl = 1;

This example creates a smaller legend and positions it 2.5 inches from
the left and 1 inch from the bottom:

_plegctl = { 2 3 2.5 1 };

_plegstr string, legend entry text. Text for multiple curves is separated by a
null byte (“\000”).

For example:

_plegstr = “Curve 1\000Curve 2\000Curve 3”;

_plev Mx1 vector, user-defined contour levels for contour. Default is 0.
(See contour in the GAUSS Language Reference.)

_pline Mx9 matrix, to draw lines, circles, or radii. Each row controls one
item to be drawn. If this is a scalar zero, nothing will be drawn.
Default is 0.

[M,1] item type and coordinate system:

1 line in plot coordinates

2 line in inch coordinates

3 line in pixel coordinates

4 circle in plot coordinates

5 circle in inch coordinates

6 radius in plot coordinates

7 radius in inch coordinates
15-20



Publication Quality Graphics

UserGuid.book Page 21 Monday, May 7, 2001 11:28 AM
[M,2] line type:

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

[M,3-7] coordinates and dimensions.

( 1 ) line in plot coordinates:

[M,3] x starting point.

[M,4] y starting point.

[M,5] x ending point.

[M,6] y ending point.

[M,7] 0 if this is a continuation of a curve, 1 if
this begins a new curve.

( 2 ) line in inches:

[M,3] x starting point.

[M,4] y starting point.

[M,5] x ending point.

[M,6] y ending point.

[M,7] 0 if this is a continuation of a curve, 1 if
this begins a new curve.

( 3 ) line in pixel coordinates:

[M,3] x starting point.

[M,4] y starting point.

[M,5] x ending point.

[M,6] y ending point.

[M,7] 0 if this is a continuation of a curve, 1 if
this begins a new curve.

( 4 ) circle in plot coordinates:

[M,3] x center of circle.

[M,4] y center of circle.

[M,5] radius in x plot units.

[M,6] starting point of arc in radians.
15-21



GAUSS User Guide

UserGuid.book Page 22 Monday, May 7, 2001 11:28 AM
[M,7] ending point of arc in radians.

( 5 ) circle in inches:

[M,3] x center of circle.

[M,4] y center of circle.

[M,5] radius.

[M,6] starting point of arc in radians.

[M,7] ending point of arc in radians.

( 6 ) radius in plot coordinates:

[M,3] x center of circle.

[M,4] y center of circle.

[M,5] beginning point of radius in x plot units,
0 is the center of the circle.

[M,6] ending point of radius.

[M,7] angle in radians.

( 7 ) radius in inches:

[M,3] x center of circle.

[M,4] y center of circle.

[M,5] beginning point of radius, 0 is the center
of the circle

[M,6] ending point of radius.

[M,7] angle in radians.

[M,8] color, see “Colors,” page 15-12.

[M,9] controls line thickness. This value may be zero or greater.
A value of zero is normal line width.

_pline3d Mx9 matrix. Allows extra lines to be added to an xyz or surface
graph in 3-D plot coordinates.

[M,1] x starting point.

[M,2] y starting point.

[M,3] z starting point.

[M,4] x ending point.

[M,5] y ending point.

[M,6] z ending point.

[M,7] color, see “Colors,” page 15-12.
15-22



Publication Quality Graphics

UserGuid.book Page 23 Monday, May 7, 2001 11:28 AM
[M,8] line type:

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

[M,9] line thickness, 0 = normal width.

[M,10] hidden line flag, 1 = obscured by surface, 0 = not
obscured.

_plotshf 2x1 vector, distance of plot from lower left corner of output page in
inches.

[1] x distance.

[2] y distance.

If scalar 0, there will be no shift. Default is 0.

Note: Used internally. (For the same functionality, see axmargin in
the GAUSS Language Reference.) This is used by the graphics panel
routines. The user must not set this when using the graphic panel
procedures.

_plotsiz 2x1 vector, size of the axes area in inches. If scalar 0, the maximum
size will be used.

Note: Used internally. (For the same functionality, see axmargin in
the GAUSS Language Reference.) This is used by the graphics panel
routines. The user must not set this when using the graphic panel
procedures.

_pltype scalar or Kx1 vector, line type for the main curves. If this is a nonzero
scalar, all lines will be this type. If scalar 0, line types will be default
styles. Default is 0.

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid
15-23



GAUSS User Guide

UserGuid.book Page 24 Monday, May 7, 2001 11:28 AM
The default line types come from a global vector called _plsel.
This vector can be changed by editing pgraph.dec to change the
default line types. (_plsel is not documented elsewhere.)

_plwidth scalar or Kx1 vector, line thickness for main curves. This value may
be zero or greater. A value of zero is normal (single pixel) line width.
Default is 0.

_pmcolor 9x1 vector, color values to use for plot, see “Colors,” page 15-12.

[1] axes.

[2] axes numbers.

[3] X axis label.

[4] Y axis label.

[5] Z axis label.

[6] title.

[7] box.

[8] date.

[9] background.

If this is scalar, it will be expanded to a 9x1 vector.

_pmsgctl Lx7 matrix of control information for printing the strings contained in
_pmsgstr.

[L,1] horizontal location of lower left corner of string.

[L,2] vertical location of lower left corner of string.

[L,3] character height in inches.

[L,4] angle in degrees to print string. This may be -180 to 180
relative to the positive X axis.

[L,5] location coordinate system:

1 location of string in plot coordinates

2 location of string in inches

[L,6] color, see “Colors,” page 15-12.

[L,7] font thickness, may be zero or greater. If 0, use
normal line width.

_pmsgstr string, contains a set of messages to be printed on the plot. Each
message is separated from the next with a null byte ( \ 000 ). The
number of messages must correspond to the number of rows in the
_pmsgctl control matrix. This can be created as:

_pmsgstr = “Message one.\000Message two.”;
15-24



Publication Quality Graphics

UserGuid.book Page 25 Monday, May 7, 2001 11:28 AM
_pnotify scalar, controls window output during the creation of the graph.
Default is 1.

0 no activity to the window while writing .tkf file.

1 display progress as fonts are loaded and .tkf file is
being generated.

_pnum scalar, 2x1 or 3x1 vector for independent control for axes numbering.
The first element controls the X axis numbers, the second controls the
Y axis numbers, and the third (if set) controls the Z axis numbers.
Default is 1.

If this value is scalar, it will be expanded to a vector.

0 no axes numbers displayed.

1 axes numbers displayed, vertically oriented on Y axis.

2 axes numbers displayed, horizontally oriented on Y axis.

For example:

_pnum = { 0, 2 };/* no X axis numbers, */

/* horizontal on Y axis */

_pnumht scalar, size of axes numbers in inches. If 0 (default), a size of 0.13
inch will be used.

_protate scalar. If 0, no rotation, if 1, plot will be rotated 90 degrees. Default is
0.

_pscreen scalar. If 1, display graph in window, if 0, do not display graph in
window. Default is 1.

_psilent scalar. If 0, a beep will sound when the graph is finished drawing to
the window. Default is 1 (no beep).

_pstype scalar or Kx1 vector, controls symbol used at graph points. To use a
single symbol type for all points, set this to one of the following
scalar values:

1 circle 8 solid circle

2 square 9 solid square

3 triangle 10 solid triangle

4 plus 11 solid plus

5 diamond 12 solid diamond

6 inverted triangle 13 solid inverted triangle

7 star (x) 14 solid star (x)
15-25



GAUSS User Guide

UserGuid.book Page 26 Monday, May 7, 2001 11:28 AM
If this is a vector, each line will have a different symbol. Symbols will
repeat if there are more lines than symbol types.

_psurf 2x1 vector, controls 3-D surface characteristics.

[1] if 1, show hidden lines. Default is 0.

[2] color for base (default 7), see “Colors,” page 15-12. The
base is an outline of the X-Y plane with a line connecting
each corner to the surface. If 0, no base is drawn.

_psym Mx7 matrix, M extra symbols will be plotted.

[M,1] x location.

[M,2] y location.

[M,3] symbol type. (See _pstype, earlier.)

[M,4] symbol height. If this is 0, a default height of 5.0 will be
used.

[M,5] symbol color, see “Colors,” page 15-12.

[M,6] type of coordinates:

1 plot coordinates

2 inch coordinates

[M,7] line thickness. A value of zero is normal line width.

_psym3d Mx7 matrix for plotting extra symbols on a 3-D (surface or xyz)
graph.

[M,1] x location in plot coordinates.

[M,2] y location in plot coordinates.

[M,3] z location in plot coordinates.

[M,4] symbol type. (See _pstype, earlier.)

[M,5] symbol height. If this is 0, a default height of 5.0 will be
used.

[M,6] symbol color, see “Colors,” page 15-12.

[M,7] line thickness. A value of 0 is normal line width.

Use _psym for plotting extra symbols in inch coordinates.

_psymsiz scalar or Kx1 vector, symbol size for the symbols on the main curves.
This is NOT related to _psym. If 0, a default size of 5.0 is used.

_ptek string, name of Tektronix format graphics file. This must have a
.tkf extension. If this is set to a null string, the graphics file will be
suppressed. The default is graphic.tkf.

_pticout scalar. If 1, tick marks point outward on graphs. Default is 0.
15-26



Publication Quality Graphics

UserGuid.book Page 27 Monday, May 7, 2001 11:28 AM
_ptitlht scalar, the height of the title characters in inches. If this is 0, a default
height of approx. 0.13 inch will be used.

_pversno string, the graphics version number.

_pxpmax scalar, the maximum number of places to the right of the decimal
point for the X axis numbers. Default is 12.

_pxsci scalar, the threshold in digits above which the data for the X axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.

_pypmax scalar, the maximum number of places to the right of the decimal
point for the Y axis numbers. Default is 12.

_pysci scalar, the threshold in digits above which the data for the Y axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.

_pzclr scalar, row vector, or Kx2 matrix, Z level color control for procedures
surface and contour. (See surface in the GAUSS Language
Reference.)

_pzoom 1x3 row vector, magnifies the graphics display for zooming in on
detailed areas of the graph. If scalar 0 (default), no magnification is
performed.

[1] magnification value. 1 is normal size.

[2] horizontal center of zoomed plot (0-100).

[3] vertical center of zoomed plot (0-100).

To see the upper left quarter of the window magnified 2 times, use

_pzoom = { 2 25 75 };

_pzpmax scalar, the maximum number of places to the right of the decimal
point for the Z axis numbers. Default is 3.

_pzsci scalar, the threshold in digits above which the data for the Z axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.
15-27



UserGuid.book Page 28 Monday, May 7, 2001 11:28 AM



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Utilities16

ATOG

ATOG is a stand-alone conversion utility that converts ASCII files into GAUSS data
sets. ATOG can convert delimited and packed ASCII files into GAUSS data sets.
ATOG can be run from a batch file or the command line.

The syntax is:

atog cmdfile

cmdfile is the name of the command file. If no extension is given, .cmd will be
assumed. If no command file is specified, a command summary will be displayed.

Command Summary

The following commands are supported in ATOG:

append Append data to an existing file.

complex Treat data as complex variables.

input The name of the ASCII input file.

invar Input file variables (column names).

msym Specify missing value character.

nocheck Do not check data type or record length.
16-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
output The name of the GAUSS data set to be created.

outtyp Output data type.

outvar List of variables to be included in output file.

preservecase Preserves the case of variable names in output file.

The principal commands for converting an ASCII file that is delimited with spaces or
commas are given in the following example.

input agex.asc;

output agex;

invar $ race # age pay $ sex region;

outvar region age sex pay;

outtyp d;

From this example, a delimited ASCII file agex.asc is converted to a double
precision GAUSS data file agex.dat. The input file has five variables. The file will
be interpreted as having five columns:

The output file will have four columns since the first column of the input file (race) is
not included in the output variables. The columns of the output file will be:

column name data type

1 race character

2 AGE numeric

3 PAY numeric

4 sex character

5 region character

column name data type

1 region character

2 AGE numeric

3 sex character

4 PAY numeric
16-2



Utilities

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
The variable names are saved in the file header. Unless preservecase has been
specified, the names of character variables will be saved in lower case, and the names
of numeric variables will be saved in upper case. The $ in the invar statement
specifies that the variables that follow are character type. The # specifies numeric. If $
or # are not used in an invar statement, the default is numeric.

Comments in command files must be enclosed between ‘@’ characters.

Commands

A detailed explanation of each of the ATOG commands follows.

append

Instructs ATOG to append the converted data to an existing data set:

append;

No assumptions are made regarding the format of the existing file. Make certain the
number, order, and type of data converted match the existing file. ATOG creates v96
format data files, so will only append to v96 format data files.

complex

Instructs ATOG to convert the ASCII file into a complex GAUSS data set:

complex;

Complex GAUSS data sets are stored by rows, with the real and imaginary parts
interleaved, element by element. ATOG assumes the same structure for the ASCII
input file, and will thus read TWO numbers out for EACH variable specified.

complex cannot be used with packed ASCII files.

input

Specifies the file name of the ASCII file to be converted. The full path name can be
used in the file specification.

For example, the command

input data.raw;

will expect an ASCII data file in the current working directory.

The command

input c:\research\data\myfile.asc;

specifies a file to be located in the c:\research\data subdirectory.
16-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
invar

Soft Delimited ASCII Files   Soft delimited files may have spaces, commas, or cr/lf
as delimiters between elements. Two or more consecutive delimiters with no data
between them are treated as one delimiter. For example:

invar age $ name sex # pay var[1:10] x[005];

The invar command above specifies the following variables:

As the input file is translated, the first 19 elements will be interpreted as the first row
(observation), the next 19 will be interpreted as the second row, and so on. If the

column name data type

1 AGE numeric

2 name character

3 sex character

4 PAY numeric

5 VAR01 numeric

6 VAR02 numeric

7 VAR03 numeric

8 VAR04 numeric

9 VAR05 numeric

10 VAR06 numeric

11 VAR07 numeric

12 VAR08 numeric

13 VAR09 numeric

14 VAR10 numeric

15 X001 numeric

16 X002 numeric

17 X003 numeric

18 X004 numeric

19 X005 numeric
16-4



Utilities

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
number of elements in the file is not evenly divisible by 19, the final incomplete row
will be dropped and a warning message will be given.

Hard Delimited ASCII Files   Hard delimited files have a printable character as a
delimiter between elements. Two delimiters without intervening data between them
will be interpreted as a missing. If \n is specified as a delimiter, the file should have
one element per line and blank lines will be considered missings. Otherwise,
delimiters must be printable characters. The dot ‘.’ is illegal and will always be
interpreted as a missing value. To specify the backslash as a delimiter, use \\. If \r
is specified as a delimiter, the file will be assumed to contain one case or record per
line with commas between elements and no comma at the end of the line.

For hard delimited files, the delimit subcommand is used with the invar
command. The delimit subcommand has two optional parameters. The first
parameter is the delimiter; the default is a comma. The second parameter is an ‘N’. If
the second parameter is present, ATOG will expect N delimiters. If it is not present,
ATOG will expect N-1 delimiters.

This example:

invar delimit(, N) $ name # var[5];

will expect a file like this:

This example:

invar delimit(,) $ name # var[5];

or

invar delimit $ name # var[5];

will expect a file like this::

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,

STEVE, 624.3, 340.3, , 624.3, 639.5,

TOM , 244.2, 834.3, 602.3, 333.4, 822.5,

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,

STEVE, 624.3, 340.3, , 624.3, 639.5,

TOM , 244.2, 834.3, 602.3, 333.4, 822.5
16-5



GAUSS User Guide

UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM
The difference between specifying N or N-1 delimiters can be seen here:

If the invar statement had specified 3 variables and N-1 delimiters, this file would
be interpreted as having three rows containing a missing in the 2,1 element and the 3,3
element like this:

If N delimiters had been specified, this file would be interpreted as having two rows,
and a final incomplete row that is dropped:

The spaces were shown only for clarity and are not significant in delimited files, so

BILL,222.3,123.2,456.4,345.2,533.2,

STEVE,624.3,340.3,,624.3,639.5,

TOM,244.2,834.3,602.3,333.4,822.5

would work just as well.

Linefeeds are significant only if \n is specified as the delimiter, or when using \r.
This example:

invar delimit(\r) $ name # var[5];

will expect a file with no comma after the final element in each row:

456.4, 345.2, 533.2,

, 624.3, 639.5,

602.3, 333.4,

456.4 345.2 533.2

. 624.3 639.5

602.3 333.4 .

456.4 345.2 533.2

. 624.3 639.5

BILL , 222.3, 123.2, 456.4, 345.2, 533.2

STEVE, 624.3, 340.3, 245.3, 624.3, 639.5

TOM , 244.2, 834.3, 602.3, 333.4, 822.5
16-6



Utilities

UserGuid.book Page 7 Monday, May 7, 2001 11:28 AM
Packed ASCII Files   Packed ASCII files must have fixed length records. The
record subcommand is used to specify the record length, and variables are specified
by giving their type, starting position, length, and the position of an implicit decimal
point if necessary.

outvar is not used with packed ASCII files. Instead, invar is used to specify only
those variables to be included in the output file.

For packed ASCII files, the syntax of the invar command is

invar record=reclen (format) variables (format) variables;

where,

reclen the total record length in bytes, including the final carriage return/line
feed if applicable. Records must be fixed length.

format (start,length,prec) where:

start starting position of the field in the record, 1 is the first position. The
default is 1.

length length of the field in bytes. The default is 8.

prec optional; a decimal point will be inserted automatically prec places
in from the RIGHT edge of the field.

If several variables are listed after a format definition, each succeeding field will be
assumed to start immediately after the preceding field. If an asterisk is used to specify
the starting position, the current logical default will be assumed. An asterisk in the
length position will select the current default for both length and prec. This is
illegal: (3,8.*).

The type change characters $ and # are used to toggle between character and numeric
data type.

Any data in the record that is not defined in a format is ignored.

The examples below assume a 32-byte record with a carriage return/line feed
occupying the last 2 bytes of each record. The data can be interpreted in different ways
using different invar statements:

ABCDEFGHIJ12345678901234567890<CR><LF>

| | | | | |

position 1 10 20 30 31 32
16-7



GAUSS User Guide

UserGuid.book Page 8 Monday, May 7, 2001 11:28 AM
This example:

invar record=32 $(1,3) group dept #(11,4.2) x[3] (*,5)

y;

will result in:

This example:

invar record=32 $ dept (*,2) id # (*,5) wage (*,2) area

will result in:

msym

Specifies the character in the input file that is to be interpreted as a missing value.

This example:

msym &;

Defines the character & as the missing value character.

The default ‘.’ (dot) will always be interpreted as a missing value unless it is part of a
numeric value.

variable value type

group ABC character

dept DEF character

X1 12.34 numeric

X2 56.78 numeric

X3 90.12 numeric

Y 34567 numeric

variable value type

dept ABCDEFGH character

id IJ character

WAGE 12345 numeric

AREA 67 numeric
16-8



Utilities

UserGuid.book Page 9 Monday, May 7, 2001 11:28 AM
nocheck

Optional; suppresses automatic checking of packed ASCII record length and output
data type. The default is to increase the record length by 2 bytes if the second record in
a packed file starts with cr/lf, and any files that have explicitly defined character data
will be output in double precision regardless of the type specified.

output

The name of the GAUSS data set. A file will be created with the extension .dat. For
example:

output c:\gauss\dat\test;

creates the file test.dat on the c:\gauss\dat directory.

outtyp

Selects the numerical accuracy of the output file. Use of this command should be
dictated by the accuracy of the input data and storage space limitations. The format is:

outtyp fmt;

where fmt is

D or 8 double precision

F or 4 single precision (default)

I or 2 integer

The ranges of the different formats are:

If the output type is integer, the input numbers will be truncated to integers. If your
data has more than 6 or 7 significant digits, specify outtyp as double.

Character data require outtyp d. ATOG automatically selects double precision
when character data is specified in the invar statement, unless you have specified
nocheck.

Bytes Data Type
Significant

Digits Range

2 integer 4

4 single
precision

6-7

8 double
precision

15-16

32768– X 32767≤ ≤

8.43x10
37–

X 3.37x10
+38≤ ≤

4.19
307–×10 X 1.67

+308×10≤ ≤
16-9



GAUSS User Guide

UserGuid.book Page 10 Monday, May 7, 2001 11:28 AM
The precision of the storage selected does not affect the accuracy of GAUSS
calculations using the data. GAUSS converts all data to double precision when the file
is read.

outvar

Selects the variables to be placed in the GAUSS data set. The outvar command
needs only the list of variables to be included in the output data set. They can be in any
order. For example:

invar $name #age pay $sex #var[1:10] x[005];

outvar sex age x001 x003 var[1:8];

outvar is not used with packed ASCII files.

preservecase

Optional; preserves the case of variable names. The default is nopreservecase,
which will force variable names for numeric variables to upper case and character
variables to lower case.

column name data type

1 sex character

2 AGE numeric

3 X001 numeric

4 X003 numeric

5 VAR01 numeric

6 VAR02 numeric

7 VAR03 numeric

8 VAR04 numeric

9 VAR05 numeric

10 VAR06 numeric

11 VAR07 numeric

12 VAR08 numeric
16-10



Utilities

UserGuid.book Page 11 Monday, May 7, 2001 11:28 AM
Examples

The first example is a soft delimited ASCII file called agex1.asc.

The file contains seven columns of ASCII data:

Jan 167.3 822.4 6.34E06 yes 84.3 100.4

Feb 165.8 987.3 5.63E06 no 22.4 65.6

Mar 165.3 842.3 7.34E06 yes 65.4 78.3

The atog command file is agex1.cmd:

input c:\gauss\agex1.asc;

output agex1;

invar $month #temp pres vol $true var[02];

outvar month true temp pres vol;

The output data set will contain the following information:

The data set is double precision since character data is explicitly specified.

The second example is a packed ASCII file called xlod.asc.

The file contains 32-character records:

name month true TEMP PRES VOL

case 1 Jan yes 167.3 822.4 6.34e+6

case 2 Feb no 165.8 987.3 5.63e+6

case 3 Mar yes 165.3 842.3 7.34e+6

type char char numeric numeric numeric

AEGDRFCSTy02345678960631567890<CR><LF>

EDJTAJPSTn12395863998064839561<CR><LF>

GWDNADMSTy19827845659725234451<CR><LF>

| | | | | |

position 1 10 20 30 31 32
16-11



GAUSS User Guide

UserGuid.book Page 12 Monday, May 7, 2001 11:28 AM
The atog command file is xlod.cmd:

input c:\gauss\dat\xlod.asc;

output xlod2;

invar record=32 $(1,3) client[2] zone (*,1) reg #(20,5)

zip;

The output data set will contain the following information:

The data set is double precision since character data is explicitly specified.

The third example is a hard delimited ASCII file called cplx.asc.

The file contains six columns of ASCII data:

The ATOG command file is cplx.cmd:

input c:\gauss\cplx.asc;

output cplx;

invar delimit #cvar[3];

complex;

name client1 client2 zone reg ZIP

case 1 AEG DRF CST y 60631

case 2 EDJ TAJ PST n 98064

case 3 GWD NAD MST y 59725

type char char char char numeric

456.4, 345.2, 533.2, -345.5, 524.5, 935.3,

-257.6, 624.3, 639.5, 826.5, 331.4, 376.4,

602.3, -333.4, 342.1, 816.7, -452.6, -690.8
16-12



Utilities

UserGuid.book Page 13 Monday, May 7, 2001 11:28 AM
The output data set will contain the following information:

The data set defaults to single precision since no character data is present, and no
outtyp command is specified.

Error Messages

atog - Can’t find input file

The ASCII input file could not be opened.

atog - Can’t open output file

The output file could not be opened.

atog - Can’t open temporary file

Notify Aptech Systems.

atog - Can’t read temporary file

Notify Aptech Systems.

atog - Character data in output file

Setting output file to double precision

The output file contains character data. The type was set to double precision
automatically.

atog - Character data longer than 8 bytes were truncated

The input file contained character elements longer than 8 bytes. The conversion
continued and the character elements were truncated to 8 bytes.

atog - Disk Full

The output disk is full. The output file is incomplete.

atog - Found character data in numeric field

This is a warning that character data was found in a variable that was specified as
numeric. The conversion will continue.

atog - Illegal command

An unrecognizable command was found in a command file.

name cvar1 cvar2 cvar3

case 1 456.4 + 345.2i 533.2 - 345.5i 524.5 + 935.3i

case 2 -257.6 + 624.3i 639.5 + 826.5i 331.4 + 376.4i

case 3 602.3 - 333.4i 342.1 + 816.7i -452.6 - 690.8i

type numeric numeric numeric
16-13



GAUSS User Guide

UserGuid.book Page 14 Monday, May 7, 2001 11:28 AM
atog - Internal error

Notify Aptech Systems.

atog - Invalid delimiter

The delimiter following the backslash is not supported.

atog - Invalid output type

Output type must be I, F, or D.

atog - Missing value symbol not found

No missing value was specified in an msym statement.

atog - No Input file

No ASCII input file was specified. The input command may be missing.

atog - No input variables

No input variable names were specified. The invar statement may be missing.

atog - No output file

No output file was specified. The output command may be missing.

atog - output type d required for character data

Character data in output file will be lost

Output file contains character data and is not double precision.

atog - Open comment

The command file has a comment that is not closed. Comments must be enclosed in
@’s.

@ comment @

atog - Out of memory

Notify Aptech Systems.

atog - read error

A read error has occurred while converting a packed ASCII file.

atog - Record length must be 1-16384 bytes

The record subcommand has an out-of-range record length.

atog - Statement too long

Command file statements must be less than 16384 bytes.

atog - Syntax error at:

There is unrecognizable syntax in a command file.
16-14



Utilities

UserGuid.book Page 15 Monday, May 7, 2001 11:28 AM
atog - Too many input variables

More input variables were specified than available memory permitted.

atog - Too many output variables

More output variables were specified than available memory permitted.

atog - Too many variables

More variables were specified than available memory permitted.

atog - Undefined variable

A variable requested in an outvar statement was not listed in an invar statement.

atog WARNING: missing ‘)’ at:

The parentheses in the delimit subcommand were not closed.

atog WARNING: some records begin with cr/lf

A packed ASCII file has some records that begin with a carriage return/linefeed. The
record length may be wrong.

atog - complex illegal for packed ASCII file

A complex command was encountered following an invar command with
record specified.

atog - Cannot read packed ASCII. (complex specified)

An invar command with record specified was encountered following a complex
command.

LIBLIST

LIBLIST is a library symbol listing utility. It is a stand-alone program that lists the
symbols available to the GAUSS autoloading system.

LIBLIST will also perform .g file conversion and listing operations. .g files are
specific files once used in older versions of GAUSS. Due to compiler efficiency and
other reasons, .g files are no longer recommended for use. The LIBLIST options
related to .g files are supplied to aid the user in consolidating .g files and converting
them to the standard .src files.

The format for using LIBLIST is:

liblist -flags lib1 lib2 ... libn

flags control flags to specify the operation of liblist.

G list all .g files in the current directory and along the src_path.

D create gfile.lst using all .g files in the current directory and along
the src_path.
16-15



GAUSS User Guide

UserGuid.book Page 16 Monday, May 7, 2001 11:28 AM
16-16

C convert .g files to .src files and list the files in srcfile.lst.

L list the contents of the specified libraries.

N list library names.

F use page breaks and form feed characters.

The search is performed in the following manner:

1. List all symbols available as .g files in the current directory and then the
src_path.

2. List all symbols defined in .lcg files in the lib_path subdirectory.
gauss.lcg, if it exists, will be listed last.

Report Format

The listing produced will go to the standard output. The order the symbols will be
listed in is the same order they will be found by GAUSS, except that LIBLIST
processes the .lcg files in the order they appear in the lib_path subdirectory,
whereas GAUSS processes libraries according to the order specified in your
library statement. LIBLIST assumes that all of your libraries are active; that is,
you have listed them all in a library statement. gauss.lcg will be listed last.

Here is an exampe of a listing:

Symbol Type File Library Path

====================================================================

1. autoreg ------ autoreg .src auto.lcg c:\gauss\src

2. autoprt ------ autoreg .src auto.lcg c:\gauss\src

3. autoset ------ autoreg .src auto.lcg c:\gauss\src

4. _pticout matrix pgraph .dec pgraph.lcg c:\gauss\src

5. _pzlabel string pgraph .dec pgraph.lcg c:\gauss\src

6. _pzpmax matrix pgraph .dec pgraph.lcg c:\gauss\src

7. asclabel proc pgraph .src pgraph.lcg c:\gauss\src

8. fonts proc pgraph .src pgraph.lcg c:\gauss\src

9. graphset proc pgraph .src pgraph.lcg c:\gauss\src

10. _svdtol matrix svd .dec gauss.lcg c:\gauss\src

12. _maxvec matrix system .dec gauss.lcg c:\gauss\src

13. besselj proc bessel .src gauss.lcg c:\gauss\src

14. bessely proc bessel .src gauss.lcg c:\gauss\src



Utilities

UserGuid.book Page 17 Monday, May 7, 2001 11:28 AM
Symbol is the symbol name available to the autoloader.

Type is the symbol type. If the library is not strongly typed, this will be a line of
dashes.

File is the file the symbol is supposed to be defined in.

Library is the name of the library, if any, the symbol is listed in.

Path is the path the file is located on. If the file cannot be found, the path will be
*** not found ***.

Using LIBLIST  

LIBLIST is executed with

liblist -flags lib1 lib2 ... libn

To put the listing in a file called lib.lst, use

liblist -l > lib.lst

To convert all your .g files and list them in srcfile.lst, use

liblist -c

The numbers are there so that you can sort the listing and still tell which symbol
would be found first by the autoloader. You may have more than one symbol by the
same name in different files. LIBLIST can help you keep them organized so you do
not inadvertently use the wrong one.
16-17



UserGuid.book Page 18 Monday, May 7, 2001 11:28 AM



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Error Messages17

The following is a list of error messages intrinsic to the GAUSS programming
language. Error messages generated by library functions are not included here.

G0002 File too large

load Input file too large.

getf Input file too large.

G0003 Indexing a matrix as a vector

A single index can be used only on vectors. Vectors have only one row or only
one column.

G0004 Compiler stack overflow - too complex

An expression is too complex. Break it into smaller pieces. Notify Aptech
Systems.

G0005 File is already compiled

G0006 Statement too long

Statement longer than 4000 characters.
17-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
G0007 End of file encountered

G0008 Syntax error

Compiler Unrecognizable or incorrect syntax. Semicolon missing on
previous statement.

create Unrecognizable statement in command file, or numvar or
outvar statement error.

G0009 Compiler pass out of memory

Compiler pass has run out of memory. Notify Aptech Systems.

G0010 Can't open output file

G0011 Compiled file must have correct extension

GAUSS requires a .gcg extension.

G0012 Invalid drive specifier

G0013 Invalid filename

G0014 File not found

G0015 Directory full

G0016 Too many #includes

#included files are nested too deep.

G0017 WARNING: local outside of procedure

A local statement has been found outside a procedure definition. The
local statement will be ignored.

G0018 Read error in program file

G0019 Can't edit .gcg file
17-2



Error Messages

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
G0020 Not implemented yet

Command not supported in this implementation.

G0021 use must be at the beginning of a program

G0022 User keyword cannot be used in expression

G0023 Illegal attempt to redefine symbol to an index

variable

G0025 Undefined symbol

A symbol has been referenced that has not been given a definition.

G0026 Too many symbols

The global symbol table is full. (To set the limit, see new in the GAUSS
Language Reference.)

G0027 Invalid directory

G0028 Can't open configuration file

GAUSS cannot find the configuration file.

G0029 Missing left parenthesis

G0030 Insufficient workspace memory

The space used to store and manipulate matrices and strings is not large
enough for the operations attempted. (To make the main program space
smaller and reclaim enough space to continue, see new in the GAUSS
Language Reference.)

G0031 Execution stack too deep - expression too complex

An expression is too complex. Break it into smaller pieces. Notify Aptech
Systems.

G0032 fn function too large
17-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
G0033 Missing right index bracket

G0034 Missing arguments

G0035 Argument too large

G0036 Matrices are not conformable

For a description of the function or operator being used and conformability
rules, see “Matrix Operators,” page 7-4, or the GAUSS Language Reference.

G0037 Result too large

The size of the result of an expression is greater than the limit for a single
matrix.

G0038 Not all the eigenvalues can be computed

G0039 Matrix must be square to invert

G0040 Not all the singular values can be computed

G0041 Argument must be scalar

A matrix argument was passed to a function that requires a scalar.

G0042 Matrix must be square to compute determinant

G0043 Not implemented for complex matrices

G0044 Matrix must be real

G0045 Attempt to write complex data to real data set

Data sets, unlike matrices, cannot change from real to complex after they are
created. Use create complex to create a complex data set.

G0046 Columns don't match

The matrices must have the same number of columns.
17-4



Error Messages

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
G0047 Rows don't match

The matrices must have the same number of rows.

G0048 Matrix singular

The matrix is singular using the current tolerance.

G0049 Target matrix not complex

G0050 Out of memory for program

The main program area is full. (To increase the main program space, see new
in the GAUSS Language Reference.)

G0051 Program too large

The main program area is full. (To increase the main program space, see new
in the GAUSS Language Reference.)

G0052 No square root - negative element

G0053 Illegal index

An illegal value has been passed in as a matrix index.

G0054 Index overflow

An illegal value has been passed in as a matrix index.

G0055 retp outside of procedure

A retp statement has been encountered outside a procedure definition.

G0056 Too many active locals

The execution stack is full. There are too many local variables active.
Restructure your program. Notify Aptech Systems.

G0057 Procedure stack overflow - expression too complex

The execution stack is full. There are too many nested levels of procedure
calls. Restructure your program. Notify Aptech Systems.
17-5



GAUSS User Guide

UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM
G0058 Index out of range

You have referenced a matrix element that is out of bounds for the matrix
being referenced.

G0059 exec command string too long

G0060 Nonscalar index

G0061 Cholesky downdate failed

G0062 Zero pivot encountered

crout The Crout algorithm has encountered a diagonal element equal to
0. Use croutp instead.

G0063 Operator missing

An expression contains two consecutive operands with no intervening
operator.

G0064 Operand missing

An expression contains two consecutive operators with no intervening
operand.

G0065 Division by zero!

G0066 Must be recompiled under current version

You are attempting to use compiled code from a previous version of GAUSS.
Recompile the source code under the current version.

G0068 Program compiled under GAUSS-386 real version

G0069 Program compiled under GAUSS-386i complex version

G0070 Procedure calls too deep

You may have a runaway recursive procedure.
17-6



Error Messages

UserGuid.book Page 7 Monday, May 7, 2001 11:28 AM
G0071 Type mismatch

You are using a string where a matrix is called for, or vice versa.

G0072 Too many files open

The limit on simultaneously open files is 10.

G0073 Redefinition of

declare An attempt has been made to initialize a variable that is already
initialized. This is an error when declare := is used. declare != or
declare ?= may be a better choice for your application.

declare An attempt has been made to redefine a string as a matrix or
procedure, or vice versa. delete the symbol and try again. If this happens in
the context of a single program, you have a programming error. If this is a
conflict between different programs, use a new statement before running the
second program.

let A string is being forced to type matrix. Use an external
matrix (symbol); statement before the let statement.

G0074 Can't run program compiled under GAUSS Light

G0075 gscroll input vector the wrong size

G0076 Call Aptech Systems Technical Support

G0077 New size cannot be zero

You cannot reshape a matrix to a size of zero.

G0078 vargetl outside of procedure

G0079 varputl outside of procedure

G0080 File handle must be an integer

G0081 Error renaming file

G0082 Error reading file
17-7



GAUSS User Guide

UserGuid.book Page 8 Monday, May 7, 2001 11:28 AM
G0083 Error creating temporary file

G0084 Too many locals

A procedure has too many local variables.

G0085 Invalid file type

You cannot use this kind of file in this way.

G0086 Error deleting file

G0087 Couldn't open

The auxiliary output file could not be opened. Check the file name and make
sure there is room on the disk.

G0088 Not enough memory to convert the whole string

G0089 WARNING: duplicate definition of local

G0090 Label undefined

Label referenced has no definition.

G0091 Symbol too long

Symbols can be no longer than 8 characters.

G0092 Open comment

A comment was never closed.

G0093 Locate off screen

G0094 Argument out of range

G0095 Seed out of range

G0096 Error parsing string

parse encountered a token that was too long.
17-8



Error Messages

UserGuid.book Page 9 Monday, May 7, 2001 11:28 AM
G0097 String not closed

A string must have double quotes at both ends.

G0098 Invalid character for imaginary part of complex

number

G0099 Illegal redefinition of user keyword

G0100 Internal E R R O R ###

Notify Aptech Systems.

G0101 Argument cannot be zero

The argument to ln or log cannot be zero.

G0102 Subroutine calls too deep

Too many levels of gosub. Restructure your program.

G0103 return without gosub

You have encountered a subroutine without executing a gosub.

G0104 Argument must be positive

G0105 Bad expression or missing arguments

Check the expression in question, or you forgot an argument.

G0106 Factorial overflow

G0107 Nesting too deep

Break the expression into smaller statements.

G0108 Missing left bracket [

G0109 Not enough data items

You omitted data in a let statement.
17-9



GAUSS User Guide

UserGuid.book Page 10 Monday, May 7, 2001 11:28 AM
G0110 Found ) expected ] -

G0111 Found ] expected ) -

G0112 Matrix multiplication overflow

G0113 Unclosed (

G0114 Unclosed [

G0115 Illegal redefinition of function

You are attempting to turn a function into a matrix or string. If this is a name
conflict, delete the function.

G0116 sysstate: invalid case

G0117 Invalid argument

G0118 Argument must be integer

File handles must be integral.

G0120 Illegal type for save

G0121 Matrix not positive definite

The matrix is either not positive definite, or singular using the current
tolerance.

G0122 Bad file handle

The file handle does not refer to an open file or is not in the valid range for file
handles.

G0123 File handle not open

The file handle does not refer to an open file.
17-10



Error Messages

UserGuid.book Page 11 Monday, May 7, 2001 11:28 AM
G0124 readr call too large

You are attempting to read too much in one call.

G0125 Read past end of file

You have already reached the end of the file.

G0126 Error closing file

G0127 File not open for write

G0128 File already open

G0129 File not open for read

G0130 No output variables specified

G0131 Can't create file, too many variables

G0132 Can't write, disk probably full

G0133 Function too long

G0134 Can't seekr in this type of file

G0135 Can't seek to negative row

G0136 Too many arguments or misplaced assignment op...

You have an assignment operator (=) where you want a comparison operator
(==), or you have too many arguments.

G0137 Negative argument - erf or erfc

G0138 User keyword must have one argument
17-11



GAUSS User Guide

UserGuid.book Page 12 Monday, May 7, 2001 11:28 AM
G0139 Negative parameter - Incomplete Beta

G0140 Invalid second parameter - Incomplete Beta

G0141 Invalid third parameter - Incomplete Beta

G0142 Nonpositive parameter - gamma

G0143 NaN or missing value - cdfchic

G0144 Negative parameter - cdfchic

G0145 Second parameter < 1.0 - cdfchic

G0146 Parameter too large - Incomplete Beta

G0147 Bad argument to trig function

G0148 Angle too large to trig function

G0149 Matrices not conformable

For a description of the function or operator being used and conformability
rules, see “Matrix Operators,” page 7-4, or the GAUSS Language Reference.

G0150 Matrix not square

G0151 Sort failure

G0152 Variable not initialized

You have referenced a variable that has not been initialized to any value.

G0153 Unsuccessful close on auxiliary output

The disk may be full.
17-12



Error Messages

UserGuid.book Page 13 Monday, May 7, 2001 11:28 AM
G0154 Illegal redefinition of string

G0155 Nested procedure definition

A proc statement was encountered inside a procedure definition.

G0156 Illegal redefinition of procedure

You are attempting to turn a procedure into a matrix or string. If this is a name
conflict, delete the procedure.

G0157 Illegal redefinition of matrix

G0158 endp without proc

You are attempting to end something you never started.

G0159 Wrong number of parameters

You called a procedure with the wrong number of arguments.

G0160 Expected string variable

G0161 User keywords return nothing

G0162 Can't save proc/keyword/fn with global references

Remove the global references or leave this in source code form for the
autoloader to handle. (See library in the GAUSS Language Reference.)

G0163 Wrong size format matrix

G0164 Bad mask matrix

G0165 Type mismatch or missing arguments

G0166 Character element too long

The maximum length for character elements is 8 characters.

G0167 Argument must be column vector
17-13



GAUSS User Guide

UserGuid.book Page 14 Monday, May 7, 2001 11:28 AM
G0168 Wrong number of returns

The procedure was defined to return a different number of items.

G0169 Invalid pointer

You are attempting to call a local procedure using an invalid procedure
pointer.

G0170 Invalid use of ampersand

G0171 Called symbol is wrong type

You are attempting to call a local procedure using a pointer to something else.

G0172 Can't resize temporary file

G0173 varindx failed during open

The global symbol table is full.

G0174 ‘.’ and ‘ ’ operators must be inside [] brackets

These operators are for indexing matrices.

G0175 String too long to compare

G0176 Argument out of range

G0177 Invalid format string

G0178 Invalid mode for getf

G0179 Insufficient heap space

G0180 trim too much

You are attempting to trim more rows than the matrix has.

G0181 Illegal assignment - type mismatch
17-14



Error Messages

UserGuid.book Page 15 Monday, May 7, 2001 11:28 AM
G0182 2nd and 3rd arguments different order

G0274 Invalid parameter for conv

G0275 Parameter is NaN (Not A Number)

The argument is a NaN (see “Special Data Types,” page 6-20).

G0276 Illegal use of reserved word

G0277 Null string illegal here

G0278 proc without endp

You must terminate a procedure definition with an endp statement.

G0286 Multiple assign out of memory

G0287 Seed not updated

The seed argument to rndns and rndus must be a simple local or global
variable reference. It cannot be an expression or constant. These functions are
obsolete, please use rndlcn and rndlcu

G0288 Found break not in do loop

G0289 Found continue not in do loop

G0290 Library not found

The specified library cannot be found on the lib_path path. Make sure
installation was correct.

G0291 Compiler pass out of memory

Notify Aptech Systems.

G0292 File listed in library not found

A file listed in a library could not be opened.
17-15



GAUSS User Guide

UserGuid.book Page 16 Monday, May 7, 2001 11:28 AM
G0293 Procedure has no definition

The procedure was not initialized. Define it.

G0294 Error opening temporary file

One of the temporary files could not be opened. The directory may be full.

G0295 Error writing temporary file

One of the temporary files could not be written to. The disk may be full.

G0296 Can't raise negative number to nonintegral power

G0300 File handle must be a scalar

G0301 Syntax error in library

G0302 File has been truncated or corrupted

getname File header cannot be read.

load Cannot read input file, or file header cannot be read.

open File size does not match header specifications, or file header
cannot be read.

G0317 Can't open temp file

G0336 Disk full

G0339 Can't debug compiled program

G0341 File too big

G0347 Can't allocate that many globals

G0351 Warning: Not reinitializing : declare ?=

The symbol is already initialized. It will be left as is.
17-16



Error Messages

UserGuid.book Page 17 Monday, May 7, 2001 11:28 AM
G0352 Warning: Reinitializing : declare !=

The symbol is already initialized. It will be reset.

G0355 Wrong size line matrix

G0360 Write error

G0364 Paging error

G0365 Unsupported executable file type

G0368 Unable to allocate translation space

G0369 Unable to allocate buffer

G0370 Syntax Error in code statement

G0371 Syntax Error in recode statement

G0372 Token verify error

Notify Aptech Systems.

G0373 Procedure definition not allowed

A procedure name appears on the left side of an assignment operator.

G0374 Invalid make statement

G0375 make Variable is a Number

G0376 make Variable is Procedure

G0377 Cannot make Existing Variable

G0378 Cannot make External Variable
17-17



GAUSS User Guide

UserGuid.book Page 18 Monday, May 7, 2001 11:28 AM
G0379 Cannot make String Constant

G0380 Invalid vector statement

G0381 vector Variable is a Number

G0382 vector Variable is Procedure

G0383 Cannot vector Existing Variable

G0384 Cannot vector External Variable

G0385 Cannot vector String Constant

G0386 Invalid extern statement

G0387 Cannot extern number

G0388 Procedures always external

A procedure name has been declared in an extern statement. This is a
warning only.

G0389 extern variable already local

A variable declared in an extern statement has already been assigned local
status.

G0390 String constant cannot be external

G0391 Invalid code statement

G0392 code Variable is a Number

G0393 code Variable is Procedure
17-18



Error Messages

UserGuid.book Page 19 Monday, May 7, 2001 11:28 AM
G0394 Cannot code Existing Variable

G0395 Cannot code External Variable

G0396 Cannot code String Constant

G0397 Invalid recode statement

G0398 recode Variable is a Number

G0399 recode Variable is Procedure

G0400 Cannot recode External Variable

G0401 Cannot recode String Constant

G0402 Invalid keep statement

G0403 Invalid drop statement

G0404 Cannot define Number

G0405 Cannot define String

G0406 Invalid select statement

G0407 Invalid delete statement

G0408 Invalid outtyp statement

G0409 outtyp already defaulted to 8

Character data has been found in the output data set before an outtyp 2 or
outtyp 4 statement. This is a warning only.
17-19



GAUSS User Guide

UserGuid.book Page 20 Monday, May 7, 2001 11:28 AM
G0410 outtyp must equal 2, 4, or 8

G0411 outtyp override...precision set to 8

Character data has been found in the output data set after an outtyp 2 or
outtyp 4 statement. This is a warning only.

G0412 default not allowed in recode statement

default allowed only in code statement.

G0413 Missing file name in dataloop statement

G0414 Invalid listwise statement

G0415 Invalid lag statement

G0416 lag variable is a number

G0417 lag variable is a procedure

G0418 Cannot lag External Variable

G0419 Cannot lag String Constant

G0421 compile command not supported in Run-Time Module

G0428 Cannot use debug command inside program

G0429 Invalid number of subdiagonals

G0431 Error closing dynamic library

G0432 Error opening dynamic library

G0433 Cannot find DLL function
17-20



Error Messages

UserGuid.book Page 21 Monday, May 7, 2001 11:28 AM
G0435 Invalid mode

G0436 Matrix is empty

G0437 loadexe not supported; use dlibrary instead

G0438 callexe not supported; use dllcall instead

G0439 File has wrong bit number

G0441 Type vector malloc failed

G0442 No type vector in gfblock

G0445 Illegal left-hand side reference in procedure

G0447 vfor called with illegal loop level

G0454 Failure opening printer for output

G0456 Failure buffering output for printer

G0457 Can't take log of a negative number

G0458 Attempt to index proc/fn/keyword as a matrix

G0459 Missing right brace }

G0460 Unexpected end of statement

G0461 Too many data items

G0462 Negative trim value
17-21



GAUSS User Guide

UserGuid.book Page 22 Monday, May 7, 2001 11:28 AM
G0463 Failure generating graph
17-22



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Maximizing Performance18

These hints will help you maximize the performance of your new GAUSS System.

Library System
Some temporary files are created during the autoloading process. If you have a
tmp_path configuration variable or a tmp environment string that defines a path on
a RAM disk, the temporary files will be placed on the RAM disk.

For example:

set tmp=f:\tmp

tmp_path takes precedence over the tmp environment variable.

A disk cache will also help, as well as having your frequently used files in the first
path in the src_path.

You can optimize your library .lcg files by putting the correct drive and path on each
file name listed in the library. The lib command will do this for you.

Use the compile command to precompile your large frequently used programs. This
will completely eliminate compile time when the programs are rerun.
18-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Loops
The use of the built-in matrix operators and functions rather than do loops will ensure
that you are utilizing the potential of GAUSS.

Here is an example:

Given the vector x with 8000 normal random numbers,

x = rndn(8000,1);

you could get a count of the elements with an absolute value greater than 1 with a do
loop, like this:

c = 0;

i = 1;

do while i ≤ rows(x);

if abs(x[i]) > 1;

c = c+1;

endif;

i = i+1;

endo;

print c;

Or, you could use:

c = sumc(abs(x) .> 1);

print c;

The do loop takes over 40 times longer.

Virtual Memory
The following are hints for making the best use of virtual memory in GAUSS.

Data Sets

Large data sets can often be processed much faster by reading them in small sections
(about 20000-40000 elements) instead of reading the entire data set in one piece.
maxvec is used to control the size of a single disk read. Here is an example. The ols
18-2



Maximizing Performance

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
command can take either a matrix in memory or a data set on disk. Here are the times
for a regression with 100 independent variables and 1500 observations on an IBM
model 80 with 4 MB RAM running at 16 MHz:

ols(0,y,x) matrices in memory 7 minutes 15.83 seconds

ols(“olsdat”,0,0)data on disk (maxvec = 500000) 8 minutes 48.82 seconds

ols(“olsdat”,0,0)data on disk (maxvec = 25000) 1 minute 42.77 seconds

As you can see, the fastest time occurred when the data was read from disk in small
enough sections to allow the ols procedure to execute entirely in RAM. This ensured
that the only disk I/O was one linear pass through the data set.

The optimum size for maxvec depends on your available RAM and the algorithms
you are using. GAUSS is shipped with maxvec set to 20000. maxvec is a procedure
defined in system.src that returns the value of the global scalar __maxvec. The
value returned by a call to maxvec can be modified by editing system.dec and
changing the value of __maxvec. The value returned when running GAUSS Light is
always 8192.

Complex numbers use twice the space of real numbers, so the optimum single disk
read size for complex data sets is half that for real data sets. You can set __maxvec
for real data sets, then use maxvec/2 when processing complex data sets. iscplxf
will tell you if a data set is complex.

Hard Disk Maintenance

The hard disk used for the swap file should be optimized occasionally with a disk
optimizer. Use a disk maintenance program to ensure that the disk media is in good
shape.

CPU Cache

There is a line for cache size in the gauss.cfg file. Set it to the size of the CPU data
cache for your computer.

This affects the choice of algorithms used for matrix multiply functions.

This will not change the results you get, but it can radically affect performance for
large matrices.
18-3



UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Fonts Appendix A

There are four fonts available in the Publication Quality Graphics System:

Simplex standard sans serif font

Simgrma Simplex greek, math

Microb bold and boxy

Complex standard font with serif

The following tables show the characters available in each font and their ASCII
values. (For details on selecting fonts for your graph, see “Selecting Fonts,” page 15-
10.
A-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Simplex
A-2



Fonts Appendix

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
Simgrma
A-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
Microb
A-4



Fonts Appendix

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
Complex
A-5



UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Reserved Words Appendix B

The following words are used for GAUSS intrinsic functions. You cannot use these
names for variables or procedures in your programs:

a   

b   

c   

abs and atan atan2

balance bandcholsol bandsolpd break

band bandltsol besselj

bandchol bandrv bessely

call cdfchic cdfnc cdftvn

callexe cdffc cdfni cdir

cdfbeta cdfgam cdftc ceil

cdfbvn cdfn cdftci cfft
B-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
d   

e   

f   

cffti clearg complex countwts

ChangeDir close con create

chol closeall conj crout

choldn cls cons croutp

cholsol color continue csrcol

cholup cols conv csrlin

chrs colsf coreleft csrtype

cint comlog cos cvtos

clear compile counts

date debug diag dos

dbcommit declare diagrv dtvnormal

dbconnect delete disable dtvtoutc

dbdisconnect det dlibrary

dbopen detl dllcall

dbstrerror dfree do

ed else endp error

edit elseif envget errorlog

editm enable eof exec

eig end eq exp

eigh endfor eqv external

eighv endif erf eye

eigv endo erfc

fcheckerr fgetsat fn fputs
B-2



Reserved Words Appendix

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
g   

h   

i   

k   

fclearerr fgetst font fputst

fflush fileinfo fontload fseek

fft files fontunload fstrerror

ffti filesa fontunloadall ftell

fftn fix fopen ftocv

fgets floor for ftos

fgetsa fmod format

gamma getname goto gt

ge getnamef graph

getf gosub graphsev3

hasimag hess hsec

if indexcat inv iscplx

imag indnv invpd iscplxf

indcv int invswp ismiss

key keyw keyword
B-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
l

m   

n   

o   

p   

le loadexe locate lt

let loadf log ltrisol

lib loadk lower lu

library loadm lpos lusol

line loadp lprint

ln loads lpwidth

load local lshow

matrix meanc miss msym

maxc minc missrv

maxindc minindc moment

ndpchk ndpcntrl new

ndpclex ne not

oldfft ones openpqg output

oldffti open or outwidth

packr plot prcsn proc

parse plotsym print prodc

pdfn pop printdos push

pi pqgwin printfm
B-4



Reserved Words Appendix

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
r

s   

t   

rankindx return rndcon rotater

rcondl rev rndmod round

readr rfft rndmult rows

real rffti rndn rowsf

recserar rfftip rndns run

recsercp rfftn rndseed

reshape rfftnp rndu

retp rfftp rndus

save shiftr sortindc submat

saveall show sqrt subscat

scalerr showpqg stdc sumc

scalmiss sin stocv svdcusv

schur sleep stof svds

screen solpd stop svdusv

scroll sortc strindx sysstate

seekr sortcc string system

seqa sorthc strlen

seqm sorthcc strrindx

setvmode sortind strsect

tab timeutc trim typecv

tan trace trimr typef

tempname trap trunc

time trapchk type
B-5



GAUSS User Guide

UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM
u   

v   

w   

x   

z   

union unique upper utctodtv

uniqindx until use utrisol

vals varput vec vfor

varget varputl vech

vargetl vartypef vecr

while wingetcolorcells winrefresh winsetforeground

winclear wingetcursor winrefresharea winsetrefresh

wincleararea winmove winresize winsettextwrap

winclearttylog winopenpqg winsetactive winwrite

winclose winopentext winsetbackground winzoompqg

wincloseall winopentty winsetcolor writer

winconvertpqg winpan winsetcolorcells

wingetactive winprint winsetcolormap

wingetattributes winprintpqg winsetcursor

xor xpnd

zeros
B-6



UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Singularity Tolerance

Appendix C

The tolerance used to determine whether or not a matrix is singular can be changed.
The default value is 1.0e-14 for both the LU and the Cholesky decompositions. The
tolerance for each decomposition can be changed separately. The following operators
are affected by a change in the tolerance:

Crout LU Decomposition

crout(x)
croutp(x)
inv(x)
det(x)
y/x when neither x nor y is scalar and x is square.

Cholesky Decomposition

chol(x)
invpd(x)
solpd(y,x)
y/x when neither x nor y is scalar and x is not square.
C-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
Reading and Setting the Tolerance
The tolerance value may be read or set using the sysstate function, cases 13 and
14.

Determining Singularity
There is no perfect tolerance for determining singularity. The default is 1.0e-14. You
can adjust this as necessary.

A numerically better method of determining singularity is to use cond to determine
the condition number of the matrix. If the equation

1 / cond(x) + 1 eq 1

is true, then the matrix is usually considered singular to machine precision. (See
LINPACK for a detailed discussion on the relationship between the matrix condition
and the number of significant figures of accuracy to be expected in the result.)
C-2



Index

UserGuid.book Page 1 Monday, May 7, 2001 11:28 AM
Index

Operators and Symbols

: (colon) 7-14
! 7-5
– 7-4
# 14-1, 14-2
$+ 7-14
$| 7-15
$~ 7-16
% 7-5
& (ampersand) 7-14
(semicolon) 6-2
* 7-4
*~ 7-7
+ 7-4
, (comma) 7-13
. 7-10, 7-10
. (dot) 7-9, 7-10, 7-14
.* 7-5
.*. 7-6
./ 7-6
./= 7-10
.== 7-10
.> 7-11
.>= 7-11
.^ 7-6
.and 7-13
.eq 7-10
.eqv 7-13
.fcg file 8-12
.ge 7-11
.gt 7-11
.le 7-10
.lt 7-10
.ne 7-10
.not 7-13
.xor 7-13
/ 7-5
/= 7-10
= 6-1
== 7-9
> 7-10
^ 7-6
_pageshf 15-13
_parrow 15-13
_parrow3 15-14
_paxes 15-15
_paxht 15-16
_pbartyp 15-16
_pbarwid 15-16

_pbox 15-16
_pboxctl 15-16
_pboxlim 15-17
_pcolor 15-17
_pcrop 15-17
_pcross 15-18
_pdate 15-18
_perrbar 15-18
_pframe 15-19
_pgrid 15-19
_plctrl 15-19
_plectrl 15-20
_plegstr 15-20
_plev 15-20
_pline 15-20
_pline3d 15-22
_plotshf 15-23
_plotsiz 15-23
_pltype 15-23
_plwidth 15-24
_pmcolor 15-24
_pmsgctl 15-24
_pmsgstr 15-24
_pnotify 15-25
_pnum 15-25
_pnumht 15-25
_protate 15-25
_pscreen 15-25
_psilent 15-25
_pstype 15-25
_psurf 15-26
_psym 15-26
_psym3d 15-26
_psymsiz 15-26
_ptek 15-26
_pticout 15-26
_ptitlht 15-27
_pversno 15-27
_pxpmax 15-27
_pxsci 15-27
_pypmax 15-27
_pysci 15-27
_pzclr 15-27
_pzoom 15-27
_pzpmax 15-27
_pzsci 15-27
| 7-8
~ 7-8

A

action menu 4-19
ampersand 7-14
Index-1



GAUSS User Guide

UserGuid.book Page 2 Monday, May 7, 2001 11:28 AM
and 7-11, 7-12
append 16-3
append, atog command 16-1
arguments 6-31, 8-2, 8-3
arrows 15-13
ASCII Files 11-2
ASCII files 16-1

reading 11-3
writing 11-3

asclabel 15-10
assignment operator 6-2, 6-31, 7-13
atog 16-1
autoloader 9-1, 16-17
axes 15-2
axes numbering 15-2

B

bar 15-1
bar shading 15-16
bar width 15-16
begwind 15-5, 15-8
blank lines 6-30
Boolean operations 7-11
box 15-1
browse 3-2

C

calling a procedure 8-5
caret 7-6, 7-16
case 6-30
Cholesky decomposition 7-5
circles 15-4, 15-18, 15-20
code 14-2
colon 6-30
color 15-5, 15-18

arrow 15-14
bar 15-16
box 15-16
pbox 15-16
z-level 15-5

comma 7-13
command 6-2
command line

configuration 3-3
debugging 3-4
editing 3-2

command window 4-1
comments 6-30
comparison operator 6-31
compilation phase 14-3

compile 10-1
compile time 6-1
compiled language 6-1
compiler 10-1
complex 16-3
complex constants 6-11
complex, atog command 16-1
concatenation, matrix 7-8
conditional branching 6-27
configure menu 4-23
conformability 7-1
constants, complex 6-11
contour 15-1
contour levels 15-20
control, flow 6-23
coordinates 15-6
cropping 15-2, 15-17

D

data loop 14-1
data sets 11-6
dataloop 14-1
date 15-3
date formats 6-19
debug menu 4-17
debug window 4-2, 4-38
debugging 10-2

command line 3-4
delete 14-2
delimited

hard 16-5
soft 16-4

delimited files 11-3
division 7-5
do loop 6-24
dot relational operator 7-17, 7-18
draw 15-1
drop 14-2
DT Scalar Format 6-19
DTV vector format 6-20

E

edit menu 4-11
edit window 4-2
editing

command line 3-2
editing keys 4-5
element-by-element conformability 7-1
element-by-element operators 7-1
empty matrix 6-11
Index-2



Index

UserGuid.book Page 3 Monday, May 7, 2001 11:28 AM
encapsulated PostScript Graphics 3-2
endp 8-2, 8-5
endwind 15-8
eq 7-9
eqv 7-13
error bar 15-7, 15-18
ExE conformable 7-1
executable code 6-3
executable statement 6-2
execution phase 14-3
execution time 6-1
exponentiation 7-6
expression, evaluation order 6-22, 7-18
expression, scalar 6-26
expressions 6-1
extern 14-2
extraneous spaces 6-30

F

factorial 7-5
FALSE 6-24
file formats 11-11
file menu 4-9
files 11-1

binary 11-12
matrix 11-12
string 11-13

finding symbols 3-2
flow control 6-23
fonts A-1
forward reference 9-1
function 6-29

G

ge 7-10
global variable 8-1, 8-4
graphics

viewing 3-2
graphics text elements 15-9
graphics windows 15-4, 15-6
graphics, publication quality 15-1
grid subdivisions 15-19
gt 7-10

H

hard delimited 16-5
hardware requirements 2-1
hat operator 7-6, 7-16

help menu 4-28
hidden lines 15-26
horizontal direct product 7-7
HTML-based Help window 4-2

I

indefinite 6-20
indexing matrices 6-31, 7-13
indexing procedures 7-14
infinity 6-21
initialize 8-3
inner product 7-4
inpu, atog command 16-1
input 16-3
instruction pointer 6-2
interpreter 6-1
intrinsic function 6-6
invar 16-4
invar, atog command 16-1

K

keep 14-2
keys, editing 4-5
keys, shortcut 4-6
keyword 8-1, 8-6
Kronecker 7-6

L

label 6-28, 6-30, 8-1
lag 14-2
le 7-9
least squares 7-5
left-hand side 9-2
legend 15-2
lib_path 16-16
liblist 16-15
libraries, troubleshooting 9-11
library 9-1
library symbol listing utility 16-15
library, optimizing 18-1
line thickness 15-18, 15-22, 15-23, 15-24, 15-26
line type 15-14, 15-15, 15-18, 15-21, 15-23
linear equation solution 7-5
lines 15-1
listwise 14-2
literal 6-16, 7-16
loadp 8-12
local 8-2
Index-3



GAUSS User Guide

UserGuid.book Page 4 Monday, May 7, 2001 11:28 AM
local variable declaration 8-3
local variables 6-6, 8-3
logical operators 7-11
looping 6-24
lt 7-9
LU decomposition 7-5

M

magnification 15-27
main program code 6-4
main section 6-3
make 14-2
math coprocessor 2-1
matrices, indexing 6-31
matrix conformability 7-1
matrix editor window 4-2
matrix, empty 6-11
maxvec 18-2
menu

action 4-19
command line 3-3
configure 4-23
debug 4-17
edit 4-11
file 4-9
help 4-28
mode 4-15
search 4-14
window 4-26

menu bar 4-9
missing values 7-5, 7-9
mode menu 4-15
modulo division 7-5
msym 16-8
msym, atog command 16-1
multiplication 7-4

N

NaN 6-20
NaN, testing for 6-21, 7-9
ne 7-10
nocheck 16-9
nocheck, atog command 16-1
nonexecutable statement 6-2
nontransparent windows 15-7
not 7-9, 7-11, 7-12, 7-19

O

operators 6-1, 7-4
or 7-12, 7-13
outer product 7-5
output 11-2, 11-4, 16-9
output window 4-2
output, atog command 16-2
outtyp 14-2, 16-9
outtyp, atog command 16-2
outvar 16-10
outvar, atog command 16-2
overlapping windows 15-7

P

packed ASCII files 16-7
pagesiz 15-13
pairwise deletion 7-5
passing to other procedures 8-8
performance hints 18-1
pointer 7-14, 8-4
pointer, instruction 6-2
PostScript graphics 3-2
precedence 6-22, 7-18
precedence, operator 7-18
preservecase 16-10
proc 8-2
procedure definition 6-3
procedure, saving 8-12
procedures

indexing 8-9
multiple returns 8-10

program 6-3

R

radii 15-20
recode 14-2
recursion 8-4
relational operator 7-8, 7-10
relational operator, dot 7-18
reserved words B-1
retp 8-2, 8-4
right-hand side 9-2
rules of syntax 6-29
running commands 4-3
running commands interactively 4-3
running programs in files 4-4
Index-4



Index

UserGuid.book Page 5 Monday, May 7, 2001 11:28 AM
S

screen 11-4
search menu 4-14
secondary section 6-4
See “Passing Procedures to Procedures,” page 6-7 8-3
select 14-2
semicolon 6-2
shortcut keys 4-6
singularity tolerance C-1
soft delimited 16-4
spaces 7-14
spaces, extraneous 6-30, 7-14
src_path 9-1, 16-15, 18-1
startup file 8-13
statement 6-2, 6-29
statement, executable 6-2
statement, nonexecutable 6-2
status bar 4-36
string array concatenation 7-15
string arrays 6-17, 6-18
string concatenation 7-14
string files 11-13
strings, graphics 15-10
subroutine 6-29
substitution 7-16, 7-17
symbol names 6-30
symbols

finding 3-2
syntax 6-29

T

table 7-4
temporary files 18-1
tensor 7-6
thickness, line 15-18, 15-22, 15-23, 15-24
tick marks 15-12
tilde 7-8
tiled windows 15-6
time formats 6-19
tmp environment string 18-1
tolerance C-1
toolbar 4-29
translation phase 14-3
transparent windows 15-7
transpose 7-7
transpose, bookkeeping 7-7
troubleshooting, libraries 9-11
TRUE 6-24, 7-9

U

unconditional branching 6-28
UTC scalar format 6-20

V

vector 14-2
vectors 6-31
viewing graphics 3-2
virtual memory 18-2
vwr 3-2

W

window
command 4-1
debug 4-2, 4-38
edit 4-2
HTML-base Help 4-2
matrix editor 4-2
output 4-2

window menu 4-26
windows

GAUSS 4-1
graphics 15-4, 15-6
nontransparent 15-7
overlapping 15-7
tiled 15-6
transparent 15-7

X

xor 7-12, 7-13

Z

zooming 15-27
Index-5



UserGuid.book Page 6 Monday, May 7, 2001 11:28 AM


	User Guide
	Maximizing Performance 18-1
	Introduction
	Product Overview
	Documentation Conventions

	Getting Started
	Installation Under UNIX/Linux
	Installation Under Windows
	Machine Requirements
	Installation from Download
	Downloading
	Installation

	Installation from CD


	Using the Command Line Interface
	Viewing Graphics
	Interactive Commands
	quit
	ed
	browse
	config
	Run Menu


	Debugging

	Using the Windows Interface
	GAUSS Windows
	Command Window
	Edit Window
	Output Window
	Debug Window
	Matrix Editor Window
	HTML-Based Help Window
	Online Help

	Running Commands
	Summary
	Running Commands Interactively
	Description
	Options

	Running Programs in Files
	Options


	Editing Keys
	Cursor Movement Keys
	Edit Keys
	Text Selection Keys

	Shortcut Keys
	Command Keys
	Function Keys
	Menu Keys
	Edit Keys
	Toolbar

	Menu Bar
	File Menu
	New
	Open
	Reload
	Insert
	Close
	Close All
	Save
	Save As
	Print
	Printer Setup
	Change Working Directory
	Run
	Exit
	Recent Files

	Edit Menu
	Undo
	Redo
	Cut
	Copy
	Paste
	Delete
	Clear to End
	Clear All
	Select All
	Insert Time/Date
	Insert Symbol
	Record Macro/Stop Record Macro
	Playback Macro

	Search Menu
	Find/Replace
	Find Again
	Replace Again
	Go To Line
	Bookmark

	Mode Menu
	Toggle Command/Output Window
	Toggle Cmnd/Split I/O Mode
	Toggle Overstrike/Insert Mode
	Select Text Blocking Mode

	Debug Menu
	Debug Current File
	Debug Main File
	Toggle Debug/Output Window
	Set/Clear Breakpoint
	View Breakpoints
	Clear All Breakpoints
	Set Watch

	Action Menu
	Run Commands
	Command window.
	Edit window.
	Output window.

	Run Current File
	Run Marked Block
	Pause Program
	Resume Program
	Stop Program
	Insert GAUSS Prompt
	Run Main File
	Edit Main FIle
	Compile Main File
	Set Main File
	Clear Main File List
	Translate Dataloop Commands
	Matrix Editor
	DOS Compatibility Window

	Configure Menu
	Preferences
	Display Tab.
	Files Tab.
	Keypad Tab.
	Options Tab.
	Tabs Tab.
	Windows Tab.

	Priority
	Run/Compile Options

	Window Menu
	Dual Vertical
	Dual Horizontal
	Tile Vertically
	Tile Horizontally
	Cascade
	Arrange Icons
	No Split
	Split Vertically
	Split Horizontally
	Open Window List

	Help Menu
	Contents
	Keyboard
	GAUSS Reference
	Help on Help
	About GAUSS

	Toolbar
	New
	Open
	Save
	Print
	Cut
	Copy
	Paste
	Clear to End
	Toggle Text Blocking Mode
	Find/Replace
	Find Again
	Toggle Split Screen Mode
	GAUSS Reference
	Run Commands
	Command window.
	Edit window.
	Output window.

	Pause Program
	Stop Program
	Insert GAUSS Prompt
	Set/Clear Breakpoint
	Main Files List
	Run Main File
	Edit Main File
	Debug Main File
	Compile Main File

	Status Bar
	GAUSS Status
	Command
	Edit
	Output
	Command I/O / Split I/O
	Enter Ex: On/Off
	On.
	OFF.

	Cursor Location
	OVR
	NUM
	CAPS

	Debug Window
	File Menu
	Mode Menu
	Tools Menu
	Window Menu
	Window Control.




	GAUSS Source Browser
	Language Fundamentals
	Expressions
	Statements
	Executable Statements
	Nonexecutable Statements

	Programs
	Main Section
	Secondary Sections

	Compiler Directives
	Procedures
	Data Types
	Constants
	Decimal
	String
	Hexadecimal Integer
	Hexadecimal Floating Point

	Matrices
	Strings and String Arrays
	Strings
	String Arrays

	Character Matrices
	Date and Time Formats
	DT Scalar Format
	DTV Vector Format
	UTC Scalar Format

	Special Data Types
	NaN
	INF
	DEN, UNN


	Operator Precedence
	Flow Control
	Looping
	do loop
	for loop

	Conditional Branching
	Unconditional Branching
	goto
	gosub


	Functions
	Rules of Syntax
	Statements
	Case
	Comments
	Extraneous Spaces
	Symbol Names
	Labels
	Assignment Statements
	Function Arguments
	Indexing Matrices
	Arrays of Matrices and Strings
	Arrays of Procedures


	Operators
	Element-by-Element Operators
	Matrix Operators
	Numeric Operators
	Other Matrix Operators

	Relational Operators
	Logical Operators
	Other Operators
	Assignment Operator
	Comma
	Period
	Space
	Colon
	Ampersand
	String Concatenation
	String Array Concatenation
	String Variable Substitution

	Using Dot Operators with Constants
	Operator Precedence

	Procedures and Keywords
	Defining a Procedure
	Procedure Declaration
	Local Variable Declarations
	Body of Procedure
	Returning from the Procedure
	End of Procedure Definition

	Calling a Procedure
	Keywords
	Defining a Keyword
	Calling a Keyword

	Passing Procedures to Procedures
	Indexing Procedures
	Multiple Returns from Procedures
	Saving Compiled Procedures

	Libraries
	Autoloader
	Forward References
	Left-Hand Side
	Right-Hand Side

	The Autoloader Search Path
	Autodelete ON
	Autodelete OFF
	Libraries
	user Library
	.g Files


	Global Declaration Files
	Troubleshooting
	Using dec Files


	Compiler
	Compiling Programs
	Compiling a File

	Saving the Current Workspace
	Debugging

	File I/O
	ASCII Files
	Matrix Data
	Reading
	Writing

	General File I/O

	Data Sets
	Layout
	Creating Data Sets
	Reading and Writing
	Distinguishing Character and Numeric Data
	Using Type Vectors
	Using the Uppercase/Lowercase Convention (v89 Data Sets)


	Matrix Files
	File Formats
	Small Matrix v89 (Obsolete)
	Extended Matrix v89 (Obsolete)
	Small String v89 (Obsolete)
	Extended String v89 (Obsolete)
	Small Data Set v89 (Obsolete)
	Extended Data Set v89 (Obsolete)
	Matrix v92 (Obsolete)
	String v92 (Obsolete)
	Data Set v92 (Obsolete)
	Matrix v96
	Data Set v96


	Foreign Language Interface
	Creating Dynamic Libraries
	Writing FLI Functions

	Data Exchange
	Formats Supported
	Data Exchange Procedures
	Global Variables

	Data Transformations
	Using Data Loop Statements
	Using Other Statements
	Debugging Data Loops
	Translation Phase
	Compilation Phase
	Execution Phase

	Reserved Variables

	Publication Quality Graphics
	General Design
	Using Publication Quality Graphics
	Getting Started
	Header
	Data Setup
	Graphics Format Setup
	Calling Graphics Routines
	Example 1
	Example 2
	Example 3


	Graphics Coordinate System
	Inch Coordinates
	Plot Coordinates
	Pixel Coordinates


	Graphics Graphic Panels
	Tiled Graphic Panels
	Overlapping Graphic Panels
	Nontransparent Graphic Panels
	Transparent Graphic Panels
	Using Graphic Panel Functions
	Inch Units in Graphics Graphic Panels
	Saving Graphic Panel Configurations

	Graphics Text Elements
	Selecting Fonts
	Greek and Mathematical Symbols

	Colors
	Global Control Variables

	Utilities
	ATOG
	Command Summary
	Commands
	append
	complex
	input
	invar
	Soft Delimited ASCII Files
	Hard Delimited ASCII Files
	Packed ASCII Files

	msym
	nocheck
	output
	outtyp
	outvar
	preservecase

	Examples
	Error Messages

	LIBLIST
	Report Format
	Using LIBLIST


	Error Messages
	Maximizing Performance
	Library System
	Loops
	Virtual Memory
	Data Sets
	Hard Disk Maintenance
	CPU Cache

	Simplex
	Simgrma
	Microb
	Complex
	a
	b
	c
	d
	e
	f
	g
	h
	i
	k
	l
	m
	n
	o
	p
	r
	s
	t
	u
	v
	w
	x
	z
	Crout LU Decomposition
	Cholesky Decomposition

	Reading and Setting the Tolerance
	Determining Singularity

	Index


