GAUSS

User Guide

Aptech Systems, Inc— Mathematical and Satistical System

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software
described in this document is furnished under alicense agreement or
nondisclosure agreement. The software may be used or copied only in
accordance with the terms of this agreement. The purchaser may make one
copy of the software for backup purposes. No part of this manua may be
reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying or recording, for any purpose other than
the purchaser’s personal use without the written permission of Aptech
Systems, Inc.

© 1984-2001 Aptech Systems, Inc. All rights reserved.

GAUSS and GAUSS Light are trademarks of Aptech Systems, Inc.
GEM isatrademark of Digital Research, Inc.

Lotusisatrademark of Lotus Development Corp.

HP Laser Jet and HP-GL are trademarks of Hewlett-Packard Corp.
PostScript is atrademark of Adobe Systems Inc.

IBM is atrademark of International Business Machines Corporation.
GraphicC is atrademark of Scientific Endeavors Corporation.
Tektronix is atrademark of Tektronix, Inc.

Windows is aregistered trademark of Microsoft Corporation.

Other trademarks are the property of their respective owners.

Part Number: 1296
Version 3.6
Revised April 4, 2001

Contents

Contents
Ta) (e Yo (W Lo} A To] o HE PP TP PR 1-1
L (o To 18 o3 @ A= V=PRSS 1-1
Documentation CONVENTIONScuiiiiiiiiiiiiiie ittt ee e e e e e e s e eeeeaaeeeeeananas 1-2
L€T=y] oo IS = 1T [PP PP PR 2-1
MaChing REQUIFEIMENTS ...ttt e e e e e e e e s bbb e e e e e e e e e e aannnes 2-1
Installation Under WINAOWSooiiiiiiiiiiiiirice et e e s en e e e e e e s e ennenneeeee s 2-2
Installation Under UNDX/LINUXooiiieeiie ettt e e e 2-2
Using the Command Line INterface. ... 3-1
VIEWING GraPRiCS....coi ittt e e e e e e eeeaaa e as 3-2
INtEractive COMMANGS.oooiiiiiiiie et e e e e e e e e ee e 3-2
(DT o 18 o o |1 s o [P T PP ORI 3-4
Using the WiNdows INTerface ..o 4-1
GAUSS WINAOWS ...ceiiiiieeeis ittt e e e s st e e e e e e e e e s e s st eeeaeeeaeesassannsnesananeaneeeees 4-1
CoMMAN WINGOW ...ttt ettt e e e e e e s e e bbb b e e e e e e e e e e e e aannnns 4-1
EQit WINAOW.....ccoeeeeeee ettt e e e et e et e e e e e e e e saneeeee e 4-2
OULPUL WINGOW ..ottt ettt e e e e e e s e s bbb e e e e e e e e e e e e e annees 4-2
DEDUQG WINGOW ...ttt e e e e e e e e e e e e e s e e snnabeeeee s 4-2
MatriX EAItOr WINAOW.........coiiiiiiiiiiiiiieie ettt re e e e e e e e e eannaees 4-2
HTML-Based Help WINAOWcc.uuiiiiiiiiiee et 4-2
ONIINE HEIP et ettt e e e e e e e e s bbb e e e e e e e e e e e e annees 4-2
RUNNING COMMANTScoeiiiiiiiiie i e et e et e e et e e e e e s e e e e eaeaaaaaaes 4-3
SUIMIMIATY .ttt ettt e et ettt e e e e e e s e s bbb e e e e e e e e e e e e s s nn e brereeeeeeeseenannnnns 4-3
Running Commands INteractiVely...........ccooiiiiiiiiiiii e 4-3
RUNNING Programs iN FIlESoouuiiiiiiie e 4-4
EIING KBYS ...t 4-5
CUISOr MOVEMENT KBYS ...ttt ettt s e e e e e aa e e e e e eraabneaaaaens 4-5
Bt KBY S ittt e e e e e e e e e et e e e e e —————— 4-5
TEXE SEIECHON KBYS ...ttt e a e e e e e e e e aeaaaes 4-5
SRNOMCUL KBYS ... ettt e e s bbbt e e et e e e e b 4-6
(070 29700 =T g (o I8 (=) 4-6
FUNCHION KBY S ..ttt e e s s e e e e e e e e e e e e e e eeeeaeeeeeeeereenneaes 4-7
MENU K Y S ...ttt e e e e e e e aa e r e et e e et r e e e e e etabeneaaaaees 4-8
Bt KBY S ittt e a e e e e e e e e e e e e e e e ——————— 4-8
TOOIDAY ..t e e a e e e 4-8
MEBINU B ... e e e e e e e e et et et et et e ae e ae e e e e e e e e e 4-9

GAUSSUser Guide

FIIE MEBNU ..ottt e e e e e e e e bbb e e e e e e e e e e e e e aannbeeee e 4-9
EQIt MBNU ...ttt e e e e e e bbb e e e e e e e e e e e s aaaeees 4-11
SEAICH IMEBNU .ot e e e e e e e e e e e e 4-14
MOAE IMBINU.... ettt ettt e e e e e e s e s abe e br e e e e e aaeeesaaannes 4-15
DEDUQG MEBNU ...ttt e e e e e e e e e e e e e e e aae 4-17
ACLION MEBNUL ...ttt e e e e e e e et e et e e e e e e e e e e nnnbeeeeeeas 4-19
CONFIGUIE IMEBINU ...ttt e e e e e e e bbb e e e e e e e e e e e e anaes 4-23
WINAOW MEBNU ...ttt e e e e e e e e aaeeeaaaaeeas 4-26
HEIP IMIBINU .ottt e e e e e e sttt e e e e e e e e e e e s e aaanes 4-28
TOOIDA ..ttt e e e e e e e e e e e e as 4-29
SEALUS BaI ... e e e e e e e e e ettt e et e s 4-36
[D1=T o 18 o IRYAAT 0 To [0 P T T PEPPPPR 4-38
GAUSS SOUICE BIrOWSET ..eeiiiieie e s e e e e e e e e e e e e ee e e e e e eeeeeeanennnnes 5-1
Language FUNAamMENTAlSoooi it 6-1
EXPIESSIONS ...ttt ittt ettt et e et e e e b e et e e r e e e e are e 6-1
S 21 (] 0 1T 01 ST P PP PP PPPPPPPRPTPRPRTN 6-2
EXeCUtable StatEMENTS.......cviei i 6-2
Nonexecutable StatEMENTS........cuvii i 6-2
g (0] [1= 1 01 PP 6-3
IMIBIN SECLION ...ttt e e e s s e s 6-3
Y= TeTo] gl Fo T VRS Y= Tox 1o o L 6-4
COMPIIET DIFECLIVES ...ceiiiieee ettt ettt e e e e e e e s e e e e e aaee e e s 6-4
PrOCEUUIES.....ceiieee ittt e e r e e nr e e e e nenee s 6-6
D F= = N Y/ 012 PP 6-7
LO70] 151 r= T | KRR 6-7
] Lo RS 6-8
SNGS AN SIHNG ATTAYS ..ttt et e b e e e snaneee s 6-14
(O g F= U= od (= Y/ = U1 o = EPRRRR 6-18
Date and TiMeE FOIMALScoeiiiiiiiieie e e e e e s er e e e e e e e e e e e annes 6-19
SPECIAI DALA TYPES . ettiiee ittt ettt et e e e e s 6-20
OPErator PrECEUEBNCE.eiiiiiiiiiie ettt ettt et e e s st e e s e nabeeeeeee 6-22
FIOW CONIIOL ... s 6-23
(oo 1] o o FR PP PP PPPP PPN 6-24
Conditional BraNCRINGc.ooiiiieiieiiiiiiee ettt 6-27
Unconditional BranChing...........ooueeei i 6-28
FUNCHIONS .ottt e s e e e nan e e s e ennns 6-29
RUIES Of SYNEAX ...eiiiieiiiie it sb e e s 6-29
SEAIEMENTS ...ciiiiiiiii e 6-29
GBS ittt 6-30

Contents

(070] 0970 01=T o | £SO PP P TP TTUTUTRR T 6-30
EXIFANEOUS SPACESo it eeeeeeraranes 6-30
SYMDBDOI NAIMES ...t e et e e e e e e e e bbb esaeeeaeaaeeaaaannnes 6-30
[T o1 PP UTPPPPPRPUPRT 6-30
ASSIGNMENT SEALEMENTS ... e e e e e 6-31
FUNCHON AFQUIMENES ...ttt ettt e e e e e ekt eeee e e e e e e e e e nnees 6-31
INAEXING MALICESeeieiiiieie ettt e e e e e e e e e e e eannbbeae s 6-31
Arrays Of Matrices and SIHNQS.ueeieiiiiiiiii i 6-32
AFTayS Of PrOCEAUIEScciiiiiieeee ettt e e e e eeae s 6-33
(O 01T = o £ TP P PP OPOTPPTPPPPPRN 7-1
Element-by-EIemMent OPEratorsccoiiiieiiiiiiiiiie sttt 7-1
Y U g @] oT=] = 1 (o] £ PP PUPRUTT PR 7-4
N U LT g o @ o T=T = 1o £ PRSP 7-4
Other MatriX OPEIALOIS........vuiieeiiiiiiee et ee sttt e ettt e e st e e e e sbe e e e s sbeeeeessebeeeeennes 7-7
RelatioNal OPEIALOISttt et e e e e s et ae e e e e e e e e e e annnaee 7-8
(oo [or= I @] o 1] =1 (o] £ T PP PR PPRR 7-11
OtNEI OPEIALOISeeeeeiiitiee ettt e e e e et e e e s s e e s e s re e e e e s s nre e e e s e nnneeeeenae 7-13
ASSIGNMENT OPEIALOT......eeieeiiiiiiie ittt e st e e s snbbbe e e s s ennees 7-13
(70} 011 - S 7-13
L= 1T T PR 7-14
6= To] TP PP PP PPPPRRPPPP 7-14
L] o] o T EPRERR 7-14
AIMPEISANG ..ottt e st e e s bbbt e e s e bt e e e et bbe e e e e nneas 7-14
(T To I @0 g ToF= 11=T g = L1 o o A 7-14
ST alo AN S = VA o] g Tot= 11=T g = L1 o] o P 7-15
String Variable SUDSHItULION..........uuuiiiiiiieieie e 7-16
Using Dot Operators With CONSEANTS..........ciieiiiiiiieiiiee e 7-17
OPErator PrECEUEBNCE.eiii ittt ettt e ettt e e s st e e s e sibeeeeeee 7-18
Procedures and KEYWOIUSuuuuuuiiiiiiiiie e s et s aenaaaaaaae s 8-1
DefiNiNg @ PrOCEAUIEccoiiiiiiii e 8-2
Procedure DeCIaration............cooiirieiiiiiiiiee it 8-3
Local Variable DeCIarationsccceiiriiiieiiiiiie et e e 8-3
L= To Lo 1Yo (0Tt =T (1] - 8-4
Returning from the ProCeaUIeeeviiiiiiiiiiicccie e 8-4
End of Procedure Definition............cooriiiiiiiie e 8-5
LOF> 1] g To =W d o To =T [V = PRSPPI 8-5
KBYWOITS .ttt e st e oo e bbbt e e s bt e e e e eab e e e e e nbe e e e e anbe e 8-6
Defining @ KEYWOITccoo i s e e e e e e e e e e e e e e e e e e eee e e aeanaeans 8-6
(O] 1 [o Jr= W =) Y4110 (o 8-7

GAUSSUser Guide

Passing Procedures t0 ProCeAUIEScuuuuiiiiiiiiaaie et 8-8
TaTo 3T T = o Yo =To [(- P 8-9
Multiple Returns from ProCedUIESuuiiiiiiiiiiiiiiiee e 8-10
Saving Compiled ProCEAUIESoiuiiiiiiiiiiee ettt baee e e 8-12
LIDTBITES ..ot 9-1
AULOIOATET ...ttt et e e et e e et e e e 9-1
FOrward REFEIEINCES ... 9-1
The Autoloader Search Path ... 9-2
Global DeClaration FIlEScuiiii i 9-8
TrOUDIESNOOLING ...t 9-11
USING GEC FIlES ..ottt e et e e e e sbne e e ans 9-12
1670] 1] 0TI =] SR T UT TP 10-1
COMPIlING PrOGIAMS ...ttt et e e st e e e sabe e e e e enees 10-1
CoMPIIING 8 FIlE et e e e e e e anees 10-2
Saving the CUrrent WOIKSPEACEeiiiiiiiiiiiiiiie et e e 10-2
DL o1 o o1 oo F P PP PR PPPPRP 10-2
= S 111
NS O | 1= SO 11-2
[E= 1) DT L = RO PUP PP PPRPRPRN 11-3
GENETAI FIlE 1/O .. 11-5
DALA SIS ..oeiiiiiiiiii it 11-6
LAY OUL . e 11-6
Creating Data SIScoiiiiiiiii et 11-7
Reading and WITINGcoouuiiiiiiiiiee e e e 11-7
Distinguishing Character and NUMErC Dataceeeeeiiiieieeiiiiiiiieiiiee e 11-9
IMAEITX FIES ..ttt st e e s bbb e e 11-11
FIlE FOIMALS ... e e 11-11
Small Matrix V89 (ODSOIELE)coiiiiiiiiiiiiiee e 11-12
Extended MatriX V89 (ODSOIELE)coiuuriiiiiiiiiie e 11-13
Small String V89 (ODSOIELE)coiuiiiiiiiiieie s 11-13
Extended String V89 (ODSOIELE).....cccoiiiiiiiiiiiiiee e 11-14
Small Data Set V89 (ODSOIELE)eviiiiiiiiie e 11-14
Extended Data Set V89 (ODSOIELE).........eeiiiiiiieiiiiiiiee e 11-16
MatriX VO2 (ODSOIELE) ...ooueiiiieii ittt 11-16
StrNG VO2 (ODSOIELE)eiiiiiiii i 11-17
Data Set VI2 (ODSOIELE)eiiiiiiiiie ettt 11-18

vi

Contents

IVIGEFIX VOB ...ttt ettt et e e ettt ettt e e e e e e e et e e e e e e e e aaeeaeeaan 11-19
DAt@ SET VOB ... e e e e e e e e e et e e eeaaeeaeaaaae 11-20
Foreign Language INterfaCeo 12-1
Creating DYNamic LIDIaries....... ... 12-1
WIItING FLI FUNCHONS ...eeiiiiie ettt 12-3
Data EXCRANGE ...ttt e e e e e e e e e 13-1
FOIMALS SUPPOIEAeveiieiiiiiie et et esa b e e e e enees 13-1
Data EXChanQge PrOCEUUIESooiiiiiiiiiiie ittt e e e e e e e e e eanes 13-2
L€ 10] o F= LIV 7= T - o] = SRR 13-3
Data TranSTOrMAatiONSuuuiiiiiiiii e e e e e e e s aer e e e e e e e e e e eennnes 14-1
Using Data LOOP SEAtEMENTScoiuuiiieiiiiiie ettt e e e 14-2
USING Other SEAEMIENTSueiiiiiiiee et e e e e e e eee e e e e e e e e e s aannes 14-2
Debugging DAta LOOPS ..cccoiiuiiiiieiiiiiie ettt e s 14-2
TranSlation PRASE........c.viiii it 14-3
ComPIlAtIoN PRASEcuiiiiiiiiii et e e e 14-3
EXECULION PRASE......ceiiiiiiiiiiie et e e 14-3
RESEINVEA ValiabIES ...t e e e e e e 14-3
Publication Quality GraphiCsoooiiiiii e 15-1
GENETAI DESIGNttteie ettt ettt e e e st e e s e rbb et e e e bbbt e e s e breeee e e 15-1
Using Publication Quality GraphiCs...........cocouiiiiiiiiiii e 15-2
GEtlING SLAMEA.eiiiiitiiiie et e e e e 15-2
Graphics Coordinate SYSIEM......ocuueiiiiiiiiiiie e 15-6
Graphics GraphiC PAnEISuuiiiiiiiiiiie e 15-6
Tiled Graphic Panelscccciiiiiiiiiiii 15-6
Overlapping GraphiC Pane@lS............uuuuiiiiiiiiiiee e 15-7
Nontransparent Graphic Panelsccccociiiiiiiiiii e, 15-7
Transparent GraphiC PanelS........ccccooiiiiiiiiii e 15-7
Using Graphic Panel FUNCLONSccoiiiiiiiiiiii e 15-8
Inch Units in Graphics GraphiC PanelS..............uuuvuiiiiiiiiiiiiiii e, 15-9
Saving Graphic Panel Configurations..............ccuvvieiimiiie i 15-9
Graphics TEXE EIBMENTScciiii i e e e e e e e e e e eeeaanaaes 15-9
SEIECHNG FONES ...eiiiiiitieiie e et e e 15-10
Greek and Mathematical SYmbOIS.............oooiiiiiiiiii e 15-11
(670] o] £ J PO PSP PPPPPR PRI 15-12

vii

GAUSSUser Guide

Global Control VariabIeseeeiiiiiiii e 15-13
L6 T O PP PP PP P P PPPPPPPO 16-1
ATOG ..ttt e e e e b e e e e 16-1
COMMANT SUMIMAIYeiiiiiiiiiiie ettt ettt e e e st b e e e e st b e e e e sbbeeeeesnnneeeas 16-1
COMMEANTS ...ttt e ettt e e e sab et e e e st b e e e e anbbe e e e e snnnneeeas 16-3
EXAMIPIES et 16-11
ErTOr MESSAQES ...ttt e et e e e et e e e e e s 16-13
(] =] S OO PP P P PPPPPPPPUPPPPP 16-15
REPOM FOIMAL ... e e e e e e e e e e e e e e e e e e nnnnnnnnnes 16-16
USING LIBLIST .eeieiiiiiiiite ettt ettt e ettt e et e e snae e e e e snnneeas 16-17
ETTOr IMESSAQES ... ittt e e e e e e e e e e e e e ettt ettt e e e et be et e bbbt e e as 17-1
Maximizing PerformManCe 18-1
(] o] 2= T) A1 (=] 0 TP PPUURTRTRN 18-1
[0 0] o 1 PSP 18-2
VIPTUBI IMBIMOTY ...ttt ettt ettt e e e e e e e s b et e e e e e e e e e e e annnaenees 18-2
DALA SIS ...eiiieieii ittt ea e e e a e e a e 18-2
Hard DiSK MaINTENANCEcooiiiiiiiei ittt ee e 18-3
CPU CACRNE.... ettt et e e 18-3
FONES APPENAIX oottt e e e e e e e e e A-1
S [101 0] 12 PP T P TP A-2
10T VP PP PPP R OTPPRRP A-3
ot o] « TP PP RP PR PPP RPN A-4
1070100101 => R PP PPP T OTPPRPP A-5
Reserved WOords APPENAIX ..ottt B-1
Singularity Tolerance APPENAIX ...coooiiiiiie i C-1
Reading and Setting the TOIEranCecueviiiiiiiiie e C-2
Determining SINQUIATLYu.e i e e e e e e e e e e e aaaaaeeeaees C-2
a0 = OO PO PRPUUPPPPPOTPRPPN Index-1

viii

Introduction

Product Overview

GAUSS™ is acomplete analysis environment suitable for performing quick
calculations, complex analysis of millions of data points, or anything in
between. Whether you are new to computerized analysis or a seasoned
programmer, the GAUSS family of products combine to offer you an easy to
learn environment that is powerful and versatile enough for virtually any
numerical task.

Since itsintroduction in 1984, GAUSS has been the standard for serious
number crunching and complex modeling of large-scale data. Worldwide
acceptance and use in government, industry, and the academic community isa
firm testament to its power and versatility.

The GAUSS System can be described several ways: It is an exceptionally
efficient number cruncher, a comprehensive programming language, and an
interactive analysis environment. GAUSS may be the only numerical tool you
will ever need.

1-1

GAUSSUser Guide

Documentation Conventions

The following table describes how text formatting is used to identify GAUSS
programming el ements.

Text Style Use Example
regular text narrative “...text formatting isused...”
bold text emphasis " ...not supported under
UNIX."
italic text variables “...If vnamesisastring or has

fewer elements than x has
columns, it will be...”

nonospace code example if scalerr(cn;
cm = inv(x);
endi f;
nonospace bold ReferstoaGAUSS “...asexplained under

programming element create..”
within anarrative

paragraph.

1-2

Getting Started

Installation Under UNIX/Linux

1. Make adirectory toinstall GAUSS in.

2. cd to that directory.

3. Unzip the. gz file.

4. Untar the . t ar file.

5. Put the installation directory in the executable path.

6. Put the installation directory in the shared library search path.
For last minute information, see README.term.

Installation Under Windows

Machine Requirements
» A 486 computer or higher.
* Windows 95, 98, NT 4.0, or 2000.
» Memory requirements (RAM)

241

GAUSSUser Guide

Windows 95/98: 16 MB minimum, 32 MB recommended.

Windows NT 4.0; 32 MB minimum, 64 M B recommended.

Windows 2000: 64 MB minimum, 128 M B recommended.
* Freehard disk space requirements:

Minimum of 100 MB free hard disk space, more may be needed depending on
the size of matrices and the complexity of the program.

Installation from Download

Downloading

The production releaseisin GAUSS_3. 6_W n_heavy. zi p.

The GUI has online documentation in HTML format. There are also PDF versions of
the Quick Start Guide and GAUSS manuals in this directory that you can download
separately if you want them.

GAUSS 3. 6_Manual . zi p

Installation

Download GAUSS_3. 6_W n_heavy. zi p, unzip it in atemp directory, and run
set up. exe.

If you are doing a command line ftp, once logged on you will be placed in the
GAUSS35 directory and will have accessto all files contained in that directory and no
others. Remember to set the transfer protocol to "bin" before downloading binary
files. Usethe "get" command to get the files you want off the ftp site.

To install the license, please refer to the Quick Start Guide.

Installation from CD

Insert the GAUSS 3.6 compact disc into the CD-ROM drive, and setup should start
automatically. If setup does not start automatically, click Start, then click Run. Type
D: \ set up. exe inthedialog box (where D isthe drive letter of the CD-ROM
drive).

You can use this procedure for the initial installation of GAUSS, and for additions or
modifications to GAUSS components.

Toinstall the license, please refer to the Quick Start Guide.

Using the Command Line

Interface

TGAUSS isthe command line version of GAUSS. The executable file, t gauss is
located in the GAUSS installation directory.

The format for using TGAUSS is:
t gauss flag(s) program program...

-b

-1 lodfile

- e expression

-0
-T
-t

Execute file in batch mode and then exit. You can execute
multiple files by separating file names with spaces.

Set the name of the batch mode log file when using the - b
argument. The default iswksp/ gauss. | og. ###, where
isthepid.

Executes a GAUSS expression. This command is not logged
when GAUSS isin batch mode.

Suppresses the sign-on banner (output only).
Turns the dataloop translator on.
Turns the datal oop translator off.

3-1

GAUSSUser Guide

Viewing Graphics

GAUSS generates . t kf filesfor graphical output. The default output for graphicsis
gr aphi c. t kf . Under Windows, you can use vwr to view the results of afile.
Under Windows and UNI X, two functions are available to convert . t kf filesto
PostScript for printing and viewing with external viewers. thet kf 2ps function will
convert . t kf filesto PostScript (. ps) files, and thet kf 2eps function will convert
. t kf filesto encapsulated PostScript (. eps) files. For example, to convert the file
gr aphi c. t kf toapostscript file named gr aphi c. ps use:

ret = tkf2ps("filename tkf", "filename. ps")

If the function is successful it returns 0.

Interactive Commands

quit
Thequi t command will exit TGAUSS.
Theformat for qui t is:
qui t
You can also use the syst emcommand to exit TGAUSS from either the command
line or aprogram (see syst emin the GAUSS Language Reference).
Theformat for syst emis:
system

ed

The ed command will open an input file in an external text editor, seeed inthe
GAUSS Language Reference.

Theformat for ed is;
ed filename

browse

The br owse command alows you to search for specific symbolsin afile and open
thefilein the default editor. You can use wildcards to extend search capabilities of the
browse command

The format for br owse is;
br owse symbol

Using the Command Line Interface

config

The config command gives you access to the configuration menu allowing you to
change the way GAUSS runs and compiles files.

Theformat for confi g is:
config

Run Menu

Trandlator Toggles on/off the tranglation of afile using
dat al oop. Thetrandator is not necessary for
GAUSS program files not using dat al oop.

Trandlator line Toggles on/off execution time line number
number tracking tracking of the original file before translation.
Line number Toggles on/off the execution time line number
tracking tracking. If the translator is on, the line numbers

refer to the trandated file.

Compile Menu
Autoload Toggles on/off the autoloader.
Autodelete Toggles on/off autodel ete.
GAUSSLibrary Toggles on/off the GAUSS library functions.

User Library Toggles on/off the user library functions.
Declare Toggles on/off thedecl ar e warning messages
War nings during compiling.
Compiler Trace Off Turns off the compiler trace
function.
File Traces program file openings and
closings.
Line Traces compilation by line.
Symbol Creates areport of procedures
and the local and global symbols
they reference.

3-3

GAUSSUser Guide

Debugging

Thedebug command runs a program under the source level debugger.

Theformat for debug is.
debug filename

General Functions

?

g/ Esc

+/ -

Listing Functions

| number

I c

Il fileline

[l file

Il line

N
I p

Displaysalist of available commands.

Exits the debugger and return to the GAUSS
command line.

Disables the last command repeat function.

Displays a specified number of lines of source codein
the current file.

Displays source code in the current file starting with
the current line.

Displays source code in the named file starting with
the specified line.

Displays source code in the named file starting with
thefirst line.

Displays source code starting with the specified line.
File does nat change.

Displays the next page of source code.

Displays the previous page of source code.

34

Using the Command Line Interface

Execution Functions

S number

i number

X number

g [args]

Executes the specified number of lines, stepping over
procedures.

Executes the specified number of lines, stepping into
procedures.

Executes code from the beginning of the program to
the specified line count, or until a breakpoint is hit.

Executes from the current line to the end of the
program, stopping at breakpoints. The optional
arguments specify other stopping points. The syntax
for each optional argumentsis:

filename line cycle The debugger will stop every
cycle timesit reaches the
specified line in the named
file.

filename line The debugger will stop when
it reachesthe specified linein
the named file.

filename ,, cycle The debugger will stop every
cycletimesit reachesany line
in the named file.

line cycle The debugger will stop every
cycletimesit reaches the
specified line in the current
file.

filename The debugger will stop at
every linein the named file.

line The debugger will stop when
it reaches the specified linein
the current file.

procedure cycle The debugger will stop every
cycletimesit reachesthe first
linein acalled procedure.

3-5

GAUSSUser Guide

j Targs]

J X number

View Commands

v [[vars]

v$ [[vars]

procedure The debugger will stop every
timeit reachesthefirst linein
acalled procedure.

Executes code to a specified line, procedure, or cycle
in the file without stopping at breakpoints. The
optional arguments are the same as g, listed above.

Executes code to the execution count specified
(number) without stopping at breakpoints.

Executes the remainder of the current procedure (or to
abreakpoint) and stops at the next line in the calling
procedure.

Searchesfor (aloca variable, then aglobal variable)
and displays the value of a specified variable.

Searches for (alocal variable, then aglobal variable)
and displays the specified character matrix.

The display properties of matrices can be set using the following commands.

r
c
number, number
w

Y
f

Specifies the number of rows to be shown.

Specifies the number of columns to be shown.
Specifies the number of rows and columns to be shown.
Specifies the width of the columns to be shown.
Specifies the precision shown.

Specifiesthe format of the numbers as decimal, scientific,
or auto format.

Quits the matrix viewer.

3-6

Using the Command Line Interface

Breakpoint Commands
b
b [args]

d [args]

Shows all the breakpoints currently defined.

Sets a breakpoint in the code. The syntax for each

optional argument is:

filename line cycle

filename line

filename ,, cycle

line cycle

filename

line

procedure cycle

procedure

The debugger will stop every
cycle timesit reachesthe
specified line in the named
file.

The debugger will stop when
it reaches the specified linein
the named file.

The debugger will stop every
cycletimesit reachesany line
in the named file.

The debugger will stop every
cycletimesit reaches the
specified line in the current
file.

The debugger will stop at
every linein the named file.

The debugger will stop when
it reachesthe specified linein
the current file.

The debugger will stop every
cycletimesit reachesthe first
linein acalled procedure.

The debugger will stop every
timeit reachesthefirst linein
acalled procedure.

Removes a previoudly specified breakpoint. The
optional arguments are the same argumentsasb, listed

above.

3-7

Using the Windows Interface

Welcome to GAUSS!

This new GAUSS Windows interface consists of a multiple document interface you
can customize. The interface supports Command and Edit windows for sending
queriesto GAUSS, and an Output window for receiving output from GAUSS. The
editor allows you to choose fonts, colors and keystrokes, and supports split screens,
bookmarks and macros. Graphics are also supported.

Included with this version of GAUSS is a full debugger with breakpoints and watch
variables, context sensitive help, and a source browser.

GAUSS Windows

GAUSS uses six types of windows: a Command window, an Edit window, an Output
window, a Debug window, a Matrix Editor window, and an HTML-based Help
window. GAUSS aso offers an integrated context sensitive help system.

Command Window

You enter interactive commands in the Command window. This window can be
selected from the Windows Menu or from the Status bar. Output in Cmnd 1/O mode
will be written to the Command window.

4-1

GAUSSUser Guide

Edit Window

An Edit window is created when you open afile. When you execute GAUSS from an
Edit window, the entire file is executed. Thisis the equivalent of the GAUSSr un
fil enanme statement.

If more than onefileisloaded, thelast file loaded or executed becomes the activefile
when you click the Edit status on the Status bar. Repeated clicking of the Edit status
cyclesthrough all loaded Edit windows.

Output Window

Output iswritten to the Output window in Split 1/0O Output mode. GAUSS commands
cannot be executed from this window.

Debug Window

The Debug window is displayed during a debugging session. The other windows are
still accessible, and you can toggle between the Output window and the Debug
Window by pressing CTRL +D. Thiswindow cannot be minimized nor closed once it
is opened.

NOTE: The Debug window runsinits own thread. If the Debug window will not open,
check that the Thread setting is Per Call in the Priority dialog box, accessed from the
Configure Menu.

Matrix Editor Window

You use the Matrix Editor window to create or edit a matrix.

HTML-Based Help Window

Thiswindow is used to display HTML HELP pages and to provide access to the Web.

You can select the various child windows from the windows shown on the Windows
Menu or by selecting the desired window by clicking on the status on the Status bar.
You can toggle between the Command or Edit window and the Output window by
pressing F5.

Online Help

GAUSS has an easy-to-use context sensitive online Help system.

In GAUSS for Windows, put the cursor on acommand or function name and press F1.
For all intrinsic commands and functions, the GAUSS Command Reference for the
command is displayed. For all other external procedruesin active libraries, an HTML
window is opened containing a source code file. You may then scroll through file to
find the desired symbol.

4-2

Using the Windows Interface

Running Commands

The GAUSS interface allows you to run programs that consist of single commands or
blocks of commands executed interactively, as well as large-scale programs that may
consist of commandsin one or more files.

Interactive commands can be entered at the “»” prompt in the Command window or
sel ected using the mouse and clicking the Run Marked Block button on the Toolbar.

GAUSS keeps track of two types of files: an activefileand amainfile. The activefile
isthefilethat is currently displayed. The main file isthe file that is executed to run
the current job or project.

Summary
Mode Keys
Interactive commands Enter, CTRL+F2
Activefile CTRL+F2
Marked text CTRL+F2
Main file F2

Running Commands Interactively

Description

When you run commands interactively, the actual code being processed is called the
“active block.” The active block is that code between the GAUSS prompt (») and the
end of the current line. Thus, the active block can be one or more lines of code.

You can run the code using one of the following:

* Sdlecting Run Commands from the Action Menu.
Pressing CTRL +F2.
® Clicking the Run Commands button on the Toolbar.
* Clicking the GAUSS Status on the Status bar.

® Pressing Enter.

A block of code can be executed by selecting the block with the mouse and then
running that block using any of the first four methods.

Note: The GAUSS prompt (») at the beginning of the selected text isignored.
The GAUSS output occurs on the subsequent line.

43

GAUSSUser Guide

Options

¢ An Output Mode option specifies whether the output is displayed in the
Command window (Cmnd 1/0) or the Output window (Split 1/0). You can
toggle this option by clicking the status on the Status bar.

* An Enter to Execute option is available that determines whether pressing
Enter will run the GAUSS command. You can togglethis option by clicking the
status on the Status bar.
Running Programs in Files

You can execute the currently displayed file (the active file) by using one of the
following:

* Sdecting Run Program on the Action menu.
® Pressing CTRL+F2.
* Clicking the Run Current File button on the Toolbar.

* Clicking the GAUSS Status on the Status bar.

Note: If a block of code is selected, then this block, and not the entirefile, will be
executed. The current line number is displayed on the Satus bar.

You can execute the file displayed on the Main filelist (the main file) by using one of
the following:

* Sdecting Run Main File on the Action Menu.
* Pressing F2.
* Clicking the Run Main file button on the Toolbar.

Options

* An Output Mode option specifies whether the output is displayed in the
Command window (Cmnd I/0O) or the Output window (Split 1/0). You can
toggle this option by clicking the status on the Status bar.

* An Enter to Execute option is available that determines whether typing Enter
will execute the GAUSS command. You can toggle this option by clicking the
status on the Status bar.

4-4

Using the Windows Interface

Editing Keys

Cursor Movement Keys

UP ARROW

DOWN ARROW
LEFT ARROW
RIGHT ARROW
CTRL+LEFT ARROW
CTRL+RIGHT ARROW
HOME

END

PAGE UP

PAGE DOWN
CTRL+PAGE UP
CTRL+PAGE DOWN
CTRL+HOME
CTRL+END

Edit Keys

BACKSPACE

DEL

CTRL+INSor CTRL+C
SHIFT+DEL or CTRL+X
SHIFT+INS or CTRL+V
CTRL+Z

Keypad Plus (+)

Keypad Minus (-)
Keypad Insert (Ins)

Keypad Asterisk (*)

Text Selection Keys

SHIFT+UP ARROW

Uponeline

Down oneline

L eft one character
Right one character
Left one word
Right one word
Beginning of line
End of line

Next screen up
Next screen down
Top of window
Bottom of window
Beginning of document
End of document

Delete character to left of cursor, or delete selected text
Delete character to right of cursor, or delete selected text
Copy selected text to Windows clipboard

Delete selected text and place it onto Windows clipboard
Paste text from Windows clipboard at the cursor position
Undo last editing action

Copy selected text or current line to Windows clipboard
(BRIEF keypad preference only)

Delete selected text or current line and place it onto
Windows clipboard (BRIEF keypad preference only)

Paste text from Windows clipboard at cursor position
(BRIEF keypad preference only)

Undo last editing action (BRIEF keypad preference only)

Select one line of text up

45

GAUSSUser Guide

SHIFT+DOWN ARROW Select one line of text down
SHIFT+LEFT ARROW Select one character to the left
SHIFT+RIGHT ARROW Sdlect one character to the right

SHIFT+CTRL+LEFT ARROW Select one word to the left
SHIFT+CTRL+RIGHT ARROW Select one word to the right

SHIFT+HOME Select to beginning of the line
SHIFT+END Select to end of theline
SHIFT+PAGE UP Select up one screen

SHIFT+PAGE DOWN Select down one screen
SHIFT+CTRL+HOME Select text to beginning of document
SHIFT+CTRL+END Select text to end of document

Shortcut Keys

Command Keys

CTRL+B Open Bookmark dialog box

CTRL+C Copy sdlected text to Windows clipboard

CTRL+D Toggle Debug/Output window

CTRL+F Find/Replace text

CTRL+G Go to specified line number

CTRL+N Open a new, untitled window

CTRL+O Open afile and start a new window

CTRL+P Print current window, or selected text

CTRL+Q Exit GAUSS

CTRL+R Run file

CTRL+S Save window to file

CTRL+V Paste text from Windows clipboard to cursor
position in active window

CTRL+X Cut selected text and place copy on the
Windows clipboard

CTRL+Z Undo last edit

4-6

Using the Windows Interface

Function Keys

F1

F2
F3
F4
F6
F7

F10

F11

F12
ALT+F4
CTRL+F1
CTRL+F2
CTRL+F4
CTRL+F5

CTRL+F6
CTRL+n

SHIFT+F2
ESC

Open GAUSS Help system or, if
you have selected a GAUSS
keyword or other supported object,
Context Sensitive Help

Run Main File

Find again

Replace again

Toggle operating mode

Clear dl text from cursor to end of
text

Select Menu bar

Toggle macro record on/off
Playback macro

Exit GAUSS

Source file browser

Run Commands

Close active window

Toggle between Input and Output
windows

Switch to next window

Jump to nth bookmark in
bookmark list

Insert GAUSS prompt
Unmark marked text

4-7

GAUSSUser Guide

Menu Keys

ALT+A
ALT+C
ALT+D
ALT+E
ALT+F
ALT+H
ALT+M
ALT+S
ALT+W

Edit Keys

Toolbar

Keypad Plus (+)
Keypad Minus (-)
Keypad Asterisk (*)

Keypad Insert (Ins)

Left click
Right click

Action Menu
Configure Menu
Debug Menu
Edit Menu

File Menu

Help Menu
Mode Menu
Search Menu
Window Menu

Copy selected text to Windows clipboard
(BRIEF keypad preference only)

Delete selected text to Windows clipboard
(BRIEF keypad preference only)

Undo last edit action (BRIEF keypad
preference only)

Paste text from Windows clipboard to cursor
position in active window (BRIEF keypad
preference only)

Select Toolbar item
Help for Toolbar item

4-8

Using the Windows Interface

Menu Bar

The Menu bar islocated below the Title bar along the top of the window. You can
view the commands on a menu by either clicking the menu name or pressing ALT+n,
where n isthe underlined letter in the menu name. For example, to display the File
Menu, you can either click on File or press ALT+F.

The following menus are available:

* FileMenu

¢ Edit Menu

® Search Menu

* Mode Menu

* Debug Menu

* Action Menu

* Configure Menu

* Window Menu

* Help Menu

File Menu

You use the File Menu to access the file, printer setup, and exit commands. Some of
these actions can also be executed from the Toolbar. The File Menu contains the
following entries:

New

You use the New command to open a new, untitled document in the Command or Edit
window, whichever is active.

Note: New, unsaved documents are not automatically backed up until you save them,
giving them a file name. After you save the new file, it will be automatically backed up
with all other open files according to the settings you have selected in the Configure
Menu, Preferences, Filestab.

Toolbar Shortcut: D
Keyboard Shortcut: CTRL+N

49

GAUSSUser Guide

Open

You use the Open command to open an existing file for viewing or editing. You can
enter or select the directory and filename in the Windows Open dialog box.

X |

Toolbar Shortcut: E’
Keyboard Shortcut: CTRL+O

Reload

You use the Reload command to reload the document in the active window, allowing
you to remove al your changes since the last time you saved thefile. You are
prompted to save thefileif it has been modified since |last saved. If you want to revert
to the last saved version, click No.

Insert

You use the Insert command to open an existing text file and copy the contentsinto the
active document. Thisis similar to pasting text from the Windows clipboard.

Close

You use the Close command to close the document in the active window. You are
prompted to save thefileif it has been modified since you last saved it.

Close All

You use the Close All command to close all open files. You are prompted to save any
file that has been modified since you last saved it.

Save

You use the Save command to save your changes to the file in the active window. If
the fileisuntitled, you are prompted for a path and filename.

Toolbar Shortcut: E
Keyboard Shortcut: CTRL+S

Save As

You use the Save As command to save your changes to the file in the active window
using anew or different path or file name. This can be a convenient method of
protecting your changes from later revisions and allows you to revert back one or
more generation of changes.

4-10

Using the Windows Interface

Print

You use the Print command to print the active file or selected text from the active
window.

Toolbar Shortcut: %
Keyboard Shortcut: CTRL+P

Printer Setup

You use the Printer Setup command to specify the printer you want to use. Other
printer options, such as page orientation and paper tray, are also accessed with this
command.

Change Working Directory

You use the Change Working Directory command to change the directory where
GAUSS Iooks for thefilesit uses for normal operation. This command does not affect
the Open or Save As paths.

You use the Run command to run afile you select. The fileis not displayed in a
window. The file then becomes the active main file.

Exit

You use the Exit command to close all open files and exit GAUSS. You will be
prompted to save any file that has been modified since it was last saved.

Keyboard Shortcut: CTRL+Q or ALT+F4

Recent Files

GAUSS maintains alist of the four most recent files you opened, at the end of the File
Menu. If the file you want to open ison thislist, click onit and GAUSS opensitinan
Edit window.

Edit Menu

You use the Edit Menu to access the set of editing commands. Some of these actions
can a so be executed from the Toolbar. The Edit Menu contains the following entries:

Undo

You use the Undo command to remove your last changes in the active window. Up to
256 changes or the last time you saved the file, whichever comes first, can be undone.

411

GAUSSUser Guide

Keyboard Shortcut: CTRL+Z
BRIEF Keypad Shortcut: Asterisk (*)

Redo

You use the Redo command to restore changes in the active window that you removed
using the Undo Edit command.

Cut

You use the Cut command to delete selected text from the active window and place it
onto the Windows clipboard.

Toolbar Shortcut: Eli{‘
Keyboard Shortcut: CTRL+X
BRIEF Keypad Shortcut: Minus (-)

Copy

You use the Copy command to copy selected text from the active window to the
Windows clipboard.

Toolbar Shortcut:
Keyboard Shortcut: CTRL+C
BRIEF Keypad Shortcut: Plus (+)

Paste

You use the Paste command to copy text from the Windows clipboard to the active
window at the cursor position.

Toolbar Shortcut: ﬁl
Keyboard Shortcut: CTRL+V
BRIEF Keypad Shortcut: Ins (Insert)

Delete

You use the Delete command to delete selected text in the active window. The
keyboard Delete key also deletes selected text or, if no text is selected, charactersto
the right of the cursor.

4-12

Using the Windows Interface

Clear to End

You use the Clear to End command to delete all text from the cursor to the end of text.

Toolbar Shortcut: }{-‘.
Keyboard Shortcut: F7

Clear All

You use the Clear All command to delete all text in the active window.

Select All

You use the Select All command to select all text in the active window.

Insert Time/Date

You use the Insert Time/Date command to insert the current time and date at the cursor
position. GAUSS uses the time and date that appears in the Microsoft Windows Date/
Time Properties window.

Insert Symbol

You use the Insert Symbol command to paste ASCII and other specia charactersinto
the active window at the cursor position.

Note: Generally, you can enter ASCIl numerical codes by pressing ALT and entering
the digits using the keypad (not the number keys at the top of the keyboard). The
character is displayed when you release the ALT key.

Also, depending on how your system is set up, you may be required to enter one or
two leading zeros so all entries are three or four digitsin length. For example, for
ASCII character “40”, you may have to enter “040” or “0040".

Record Macro/Stop Record Macro

Macros permit you to automate a series of keystrokes to save time and reduce errors.
You create a macro by selecting Record Macro, pressing those keystrokes you want
recorded, and selecting Stop Record Macro to end the recording. Use the following
guidelines when creating and using your macro:

* Only keystrokes in the active window are recorded, not keystrokesin adialog
box.

® Only keystrokes are recorded, not mouse movements.

® You can record only one macro and it is not saved when you close GAUSS.

4-13

GAUSSUser Guide

* \When you create a new macro, the existing macro is deleted.

¢ |f your macro islengthy, consider creating a separate file and copying the
information from the file into the active window, rather than using a macro to
enter the information.

Keyboard Shortcut: F11 (Toggles between Record Macro and Stop
Recording Macro)

Playback Macro

You use the Playback Macro command to run a macro you recorded during the current
session of GAUSS. To run the macro, locate the cursor where you want the macro
sequence to begin and select Playback Macro. Playback Macro only appears on the
Edit Menu after you have recorded a macro.

Keyboard Shortcut: F12

Search Menu

You use the Search Menu to access commands for locating text in the active window.
Some of these actions can & so be executed from the Toolbar. The Search Menu
contains the following entries:

Find/Replace

You use the Find/Replace command to find the specified text in the active window.
After locating the text string, you can edit the text manually or replace the text with
what you have entered in the Search Dialog box and selecting the “ Replace with”
command.

The Find option locates the specified text in the active window from the cursor
position down. The search can be case sensitive or case insensitive. Subsequent
searches for the same text can be resumed by pressing F3.

The Replace option locates the specified text in the active window and replacesit with
the text you entered in the “ Replace with” field in the Search dialog box. The search
starts at the cursor position and continues to the end of the text in the active window.
The search can be case sensitive or case insensitive, and the replacement can be
unique or global.

Toolbar Shortcut: ﬁ
Keyboard Shortcut: CTRL+F

4-14

Using the Windows Interface

Find Again

You use the Find Again command to resume the search for the next occurrence of the
text you specified in the previous Find action.

Toolbar Shortcut: ﬁip
Keyboard Shortcut: F3

Replace Again

You use the Replace Again command to find the next occurrence of the text you
replaced in the previous Replace command.

Keyboard Shortcut: F4

Go To Line

You use the Go To Line command to move the cursor to the specified line number.
Keyboard Shortcut: CTRL+G

Bookmark

You use the Bookmark command to set, clear, and go to existing bookmarks from the
Bookmark Dialog box. Bookmarks are set using the Add command and removed
using the Remove command. You can go to a bookmark directly by selecting the
desired entry and clicking Go.

Keyboard Shortcut:

CTRL+B to open the Bookmark dialog box
CTRL-1 to go to the first Bookmark

CTRL-2 to go to the second Bookmark, and so on

Mode Menu

You use the Mode Menu to set the various editing and window options you use when
editing and running GAUSS code and files. The Mode Menu contains the following
entries:

Toggle Command/Output Window

You use the Toggle Input/Output Window command to toggle between the Edit
window or Command window and the Output window.

Keyboard Shortcut: F5

4-15

GAUSSUser Guide

Toggle Cmnd/Split /0 Mode

You use the Toggle Cmnd/Split 1/O Mode command to toggle between the Cmnd and
Split 1/0 modes.

In Cmnd mode, program output is displayed in the Command window after the
commands are executed.

In Split 1/0 mode, program output is displayed separately in the Output window after
the commands are executed.

Keyboard Shortcut: F6

Toggle Overstrike/lnsert Mode

You use the Toggle Overstrike/Insert M ode command to toggle between typing over
the existing text or inserting space for the new text as you type. The default is Insert
mode. When the Overstrike mode is active, OVR is displayed on the Status bar.

Keyboard Shortcut: pressthe Insert key

Select Text Blocking Mode

You use the Select Text Blocking M ode command to choose how you would like to
select the text when using the mouse or Shift key. The three types of blocking are:

* Character Blocks This selects al text from the first character to the last
character.

* LineBlocks This selects entire lines.

* Column Blocks This selects text that is located within the rectangle whose
opposite corners are defined by the first and last character you select. This
option is not enabled if a proportional font is used.

The mode selected applies to al open documents. However, since Column Block
mode is not supported for documents with proportional fonts, Line Block modeis
used when such a document has the focus. Column blocks usually work better when
the Expand Tabs option is enabled.

All blocks can be manipulated using the cut, copy, paste, and delete edit keys. Blocks
can a so be moved by dragging the selected block with the mouse, and can be copied
by pressing and holding down CTRL while dragging the selected block with the
MOouse.

Toolbar Shortcuts:

Character Blocking Mode =

4-16

Using the Windows Interface

Line Blocking Mode =

Column Blocking Mode

Debug Menu

You use the Debug Menu to access the commands used to debug your GAUSS active
file or main file program. A program run using the GAUSS debugger isrun in the
Debug window. The Debug Menu allows you to set breakpoints and watch variables.

NOTE: The Debug window runsinits own thread. If the Debug window will not open,
check that the Thread setting is Per Call in the Priority dialog box, accessed from the
Configure Menu.

The Debug Menu contains the following entries:

Debug Current File

You use the Debug Current File command to run the active file in the Debug window.
Prior to running the debugger, breakpoints can be set or cleared in the active window
at the cursor using the Breakpoint Set and Clear commands. Watch variables can aso
be set prior to running the debugger.

Debug Main File

You use the Debug Main File command to run the main file in the Debug window.
Prior to running the debugger, breakpoints can be set or cleared in the active window
at the cursor using the Breakpoint Set and Clear commands. Watch variables can aso
be set prior to running the debugger.

Toggle Debug/Output Window

You use the Toggle Debug/Output Window command to toggle between the Output
window and the Debug window.

Keyboard Shortcut: CTRL+D

Set/Clear Breakpoint

You use the Set/Clear Breakpoint commands to enable or disable aline breakpoint at
the cursor in the active file. Breakpoints usually remain valid when afileis changed
and lines are inserted or deleted, but are lost when afile is closed, whether it is saved
or not.

The debugger displays the lines where your program will stop executing and wait for
user input. Line breakpoints are displayed with ared highlight.

4-17

GAUSSUser Guide

Procedure breakpoints occur at the beginning of a procedure and are not highlighted.
Procedure breakpoints can only be added if the named procedure existsin the GAUSS
workspace.

ol

Toolbar Shortcut:

View Breakpoints

You use the View Breakpoints command to view alist of al breakpointsin your
program. The breakpoints are listed by line number. Any procedure breakpoints are
also listed. You can add, delete, and change breakpoints in the dialog box.

Breakpoints usually remain valid when afile is changed and lines are inserted or
deleted, but are lost when afileis closed, whether it is saved or not.

The debugger displays the source code of your program. Line breakpoints are
displayed with ared highlight.

Procedure breakpoints occur at the beginning of a procedure, and are not highlighted.
Procedure breakpoints can only be added if the named procedure existsin the GAUSS
workspace.

Line breakpoints can be toggled using the Toolbar button.

Clear All Breakpoints

You use the Clear All Breakpoints command to remove all line and procedure
breakpoints from all open files.

Breakpoints usually remain valid when afile is changed and lines are inserted or
deleted, but are lost when afileis closed, whether it is saved or not.

The debugger displays the lines where your program will stop executing and wait for
user input. Line breakpoints are displayed with ared highlight.

Procedure breakpoints occur at the beginning of a procedure, and are not highlighted.
Procedure breakpoints can only be added if the named procedure existsin the GAUSS
workspace.

Toolbar Shortcut: gl

Set Watch

You use the Set Watch command to see how variables change in value during
debugging. The values are displayed in the Debug window at the bottom of the screen
just above the Status bar. Watch variables can be specified prior to running the
debugger or during a debugging session.

The debugger searches for a watch variable using the following procedure:

4-18

Using the Windows Interface

1. A local variable within a currently executed procedure
2. A locd variable within a currently active procedure.
3. A global variable.

A watch variable can be the name of amatrix, a scalar, astring array, or astring. For a
matrix or astring array, the first element is displayed. If amatrix element is clicked,
the Matrix Editor isloaded with the matrix. The matrix elements can be changed
during the debugging session.

Action Menu
You use the Action Menu to access the various run commands and open the Matrix
Editor and DOS windows. The Action Menu contains the following entries:

Run Commands

You use Run Commands to run the code you have entered, a block of code you
selected, or the active file, depending on the operating mode. The following entries
appear on the Action menu of the respective windows:

Command window. Run Commands runsthe commandsyou enter in the Command
window. Run Marked Block runs the text you selected in the Command window.

Edit window. Run Current File runsthe activefile.
Run Marked Block runs the text you selected in the Edit window.

Output window. Run Programisgrayed and not available in thiswindow. You must
run the commands or file from either the Command or Edit window.

Output is shown below the code in Command mode. In Split 1/0 mode, the output
appearsin the Output window. To toggle between the current input and the Output
window, use the Toggle I nput/Output Window command.

Toolbar Shortcuts:

»
Run Command = *

Run Current File =¥
Run marked block = *
Keyboard Shortcut: CTRL+F2

Run Current File

You use the Run Current File command to run the active file. The file then becomes
the active main file.

4-19

GAUSSUser Guide

Run Marked Block
You use Run Marked Block to run the text you selected in the Edit window.

Pause Program

You use the Pause Program command to suspend a program while it isin the process
of running.

Output is shown below the code in Cmnd mode. In Split I/O mode, the output appears
in the Output window. To toggle between the current input and the Output window,
use the Toggle Input/Output Window command.

Resume Program

You use the Resume Program command to restart program execution after using the
Suspend Job command.

During execution, output is displayed beneath the current block of GAUSS code if the
output mode is set to Cmnd, or in the Output Window if the output mode is set to Split
1/0. To toggle between the current input and the Output window, use the Toggle
Command/Output Window command.

Toolbar Shortcuts:

»)
Run command

Runfile =F
Run marked block =}
Keyboard Shortcut: CTRL+F2

Stop Program

You use the Stop Program command to stop a program while it is in the process of
running.

Output is shown below the code in Cmnd mode. In Split I/O mode, the output appears
in the Output window. To toggle between the current input and the Output window,
use the Toggle Input/Output Window command.

Insert GAUSS Prompt

You use the Insert GAUSS Prompt command to manually add the GAUSS prompt at
the cursor position. The GAUSS prompt (») is automatically displayed following the
execution of GAUSS code.

4-20

Using the Windows Interface

Toolbar Shortcut: &

Keyboard Shortcut: SHIFT+F2

Run Main File
You use the Run Main File command to run the specified main file.

While running, output is displayed beneath the current block of GAUSS code if the
output modeis set to Cmnd, or in the Output window if the output modeis set to Split
1/0.

Toolbar Shortcut: « *
Keyboard Shortcut: F2

Edit Main Flle

You use the Edit Main File command to open an editor window for the specified main
file. Thefileisloaded, if needed, and the Edit window becomes the active window.

Toolbar Shortcut: ﬁ

Compile Main File

You use the Compile Main File command to compile the specified main file. During
compilation, any errors are displayed beneath the current block of GAUSS code if the
output modeis set to Cmnd, or in the Output Window if the output modeis set to Split
1/0.

Note: thiscommand is different than the GAUSS Compile command, which compilesa
program and saves the pseudocode as a file.

Toolbar Shortcut: @

Set Main File

You use the Set Main File command to make the active file the main file in the Edit
window.

Clear Main File List

You use the Clear Main File List command to remove al entriesin the Main Fileslist
on the Toolbar.

4-21

GAUSSUser Guide

Translate Dataloop Commands

You use the Trandate Datal oop commands to convert dataloop commands to
commands GAUSS can understand and manipulate. You only run this command when
dataloop commands are used in the source code. Using it when it is not needed does
not alter the source code, but the increased processing overhead can increase the time
to compile your program.

Matrix Editor

You use the Matrix Editor to create or edit datain a matrix (or grid). A cell can be
edited by typing in anew value and pressing Enter. Only numeric values can be
entered in agrid.

You use the New command to create a new blank grid of the size you specify. When
the matrix is saved to the GAUSS workspace, the name appearing on the Title bar will
be used.

You use the Load command to clear any existing grid and copy any named matrix
from the GAUSS workspace to the grid. Use Reload to rel oad the existing matrix with
the name shown on the Title bar.

You use the Clear command to clear the grid of all values but keep the row and
column order.

You use the Save command to save the grid as amatrix in the GAUSS workspace. If a
matrix of the same name already exists in the workspace, it is overwritten.

You use the Exit command to close and exit the Matrix Editor.

You use the Options command to set several matrix options, including the number of
digitsto the right of the decimal point, cell height and width, and whether pressing the
Enter key moves the cursor down or over one cell. These options, along with screen
position and window state, are saved between sessions.

DOS Compatibility Window

The DOS Compatibility Window was created for running programs that expect an
80X 25 window that understands ANSI escape characters. Thiswindow is hot a
substitute for the GAUSS command window.

4-22

Using the Windows Interface

Configure Menu

You use the Configure Menu to set how you want GAUSS to look and operate. The
Configure Menu contains the following entries:

Preferences

You use the Preferences command to specify how GAUSS operates.

You can choose to make the setting permanent by selecting All in the Document
section or Current to apply the changes only to the current document.

Display Tab. You usethe Font Type control to specify which font attributes the
editor uses. The default font is FixedSys. You can set the font name, font size, font
color, and the font styles.

You use the Back Color control to specify the background color used by the editor.
The default color is the system background color.

You use the Scrollbar s control to specify the type of scrollbar used — None,
Horizontal, Vertical, Both, or Auto. The default is Auto.

You use the View toolbar buttons as control to specify whether the toolbar buttons
are displayed with Icons or text. The default setting is Icons. Changing the setting
from text to Icons requires GAUSS be restarted to make the new settings effective.

You use the Output focus control to specify whether the focus follows the program
output. When set to Yes, the focus changes to the Output window for Split I/O mode
or to the Command window for Cmnd mode when the program generates text output.
When set to No, the focus does not change. The default setting is no output focus.

Files Tab. You can select Auto Backup to automatically create a backup copy of all
open documents that have afile name. The backup fileis created in the same directory
at the interval you specify, using a“BAK” file name extension. If the original
document has aBAK extension, the backup uses a BK 1 extension. The default is no
auto backup.

Note: New, unsaved documents are not automatically backed up until you save them,
giving them a file name. After you save the new file, it will be automatically backed up
with all other open files.

You can select Prompt to save untitled to have GAUSS warn you when exiting if
there are any files that have neither been loaded nor saved (“Untitled:” files). The
default is on.

The Auto-Save on Execute section allows you to specify when files are saved if they
are edited or executed.

¢ Executed file. If thefile you are running is loaded, it will be saved prior to
execution, regardless of how it is executed (Run file, command line, main file,
or activefile). This option is checked by default.

4-23

GAUSSUser Guide

* Activefile. The active edit file is saved whether it is executed or not.

¢ All edited files. All open editor files, including the activefile, are saved before
execution. The Executed file and Active file checkboxes are automatically
checked if you select this option.

Keypad Tab. You usethe Keypad tab to select whether standard or BRIEF™

commands are associated with the “+”, “—", “*” "and “Ins’ keys on the keyboard
keypad.
Keypad Functionality

Key Sandard BRIEF

+ + Copy line or block to scrap

- - Cut line or block to scrap

* * Undo last edit

Ins Toggle insert/overtype Paste scrap at cursor

Options Tab. The Sound at end of job option determines whether or not asound is
played at the end of the execution of GAUSS code. The sound can be selected using
the Select button and played using the Test button. The default is off.

The Sound at keystroke request option determines whether or not a sound is played
when a keystroke is required — for example, if the GAUSS command keyw was
issued. The sound can be selected using the Select button and played using the Test
button. The default is off.

The Add “;” to command option determines whether a semicolon will be inserted at
the end of aline after the Enter key has been pressed. The default is selected.

The Explicit Command option specifies whether the appropriate commands should
be added to the Command window when executing afile. For Files, the statement
“run<filename>" is added. For marked blocks, the actual commands are added. This
provides a complete history of all commands executed. The default is selected.

The Prompt on Exit option determines whether a prompt to verify exit is given on an
exit condition. The default is unsel ected.

The Enter behavior control defines the behavior of the Enter key when pressed in the
Command window. The following choices are available:

¢ Enter doesnot execute. When selected, pressing Enter startsanew line asin
most word processors. GAUSS execution occurs using CTRL+F2 or clicking
the Run Commands button on the Tool bar.

¢ Enter executesif no“;” If the current line ends with a semicolon, pressing
Enter starts anew line. If the current line does not end with a semicolon, the
code from the cursor back to the previous GAUSS prompt will be executed.

4-24

Using the Windows Interface

* Enter always executes. The current line will be executed whether or not the
line ends with a semicolon. Thisis the default. You can toggle between Enter
does not execute and Enter Executesif no “;” by clicking Enter Ex on the
Status bar.

The Active becomes main option specifies that when an active file is executed, it
becomes the main file after execution. You can also make an active file the main file
by using the Set Main File command on the Action Menu. The default is selected.

Tabs Tab. The Tab spacing character s option allows you to enter the number of
spaces between tab stops. The available values are 1 to 48, with 3 as the default. Tab
spacing is based on the fixed system font.

The Auto I ndent option determines where the next line starts after pressing the Enter
key. When checked, the next line starts under the first non-blank character of the
previous line. The default is unselected.

The Expand Tabs option inserts the specified number of spacesinstead of creating
tab stops. This option is useful when Column Block in the Select Text Blocking mode
is specified. This option is disabled in documents which use a proportional font. The
default is unselected.

Windows Tab. The Window Syle control specifies whether windows open in the
normal (the default), maximized, or dual screen (vertical or horizontal) state. In the
dual screen state, the current input file and Output windows are tiled in the main
window.

The Usethis style at control specifies whether the windows style should only be used
at startup (the default), or aways.

The Tiling vertically resultsin control defines whether the windows are stretched
verticaly or stacked.

Priority

You use the Priority command to set the threading and the priority level.

You normally implement a separate thread for every call to GAUSS, which allowsyou
to do other things while a block of code is executing. For this, you set the Thread to
Per Call and the priority to Normal. If you are not doing any foreground processing,
you can set the priority to High.

NOTE: The Debug window runsin its own thread in a separate window. If the Debug
window will not open, check that the Thread setting is Per Call in the Priority dialog
box, accessed from the Configure Menu. If the Thread setting is None, the Debug
window cannot open.

If you are running along job in the background and want higher foreground
performance, you can change the priority to L ow which will allocate more computing
resources foreground tasks.

4-25

GAUSSUser Guide

Non-threaded behavior is possible, although not recommended (Thread set to None).
The output from a GAUSS job will be displayed only after the complete block of code
has been executed. All user keystrokes and mouse actions are queued until the
program has finished running.

Run/Compile Options

Run/Compile options allow you to change the way that GAUSS runs and compiles
files. See“config,” (page 3-3) for adescription of the options available.

Window Menu

You use the Window Menu commands to split a window into two panes and arrange
the windows to fit your preferences when more than one window is open. The active
window is the window which has the focus. You can toggle the focus between all open
windows using CTRL+F6, or clicking in the window you want active. All open
windows are listed at the end of the Windows Menu. The following commands can be
used to arrange and configure windows.

Dual Vertical

You use the Dual Vertica command to vertically tile the program source and
execution windows within the main window, and minimize all other windows. The
program source window may be the Command or Edit window, and the execution
window may be the Command window (Cmnd I/O mode) or Output window
(Split 1/0 maode).

Dual Horizontal

You use the Dual Horizontal command to horizontally tile the program source and
execution windows within the main window, and minimize all other windows. The
program source window may be the Command or Edit window, and the execution
window may be the Command window (Cmnd I/O mode) or Output window
(Split 1/0O maode).

Tile Vertically

You use the Tile Vertically command to arrange all open windows vertically on the
screen without any overlap.

Tile Horizontally

You use the Tile Horizontally command to arrange al open windows horizontally on
the screen without any overlap.

4-26

Using the Windows Interface

Cascade

You use the Cascade command to arrange al open windows on the screen,
overlapping each, with the active window on top.

Arrange Icons

You use the Arrange Icons command to arrange all minimized windows across the
bottom of the main GAUSS window.
No Split

You use the No Split command to remove a split you made to the active window. You
use either the Split Vertically or Split Horizontally command to create a split window.

Toolbar Shortcut: D

Split Vertically

You use the Split Vertically command to split the active window into two vertical
panes. This alows you to view two different areas of the same document to facilitate
split-window editing.

When awindow is split, a splitter bar appears between the two sides of the window
and is used to define where the window split is positioned. You can move the splitter
bar by dragging it with the mouse.

Toolbar Shortcut: m

Split Horizontally

You use the Split Horizontally command to split the active window into two
horizontal panes. This alowsyou to view two different areas of the same document to
facilitate split-window editing.

When awindow is split, a splitter bar appears between the upper and lower half of the
window and is used to define where the window split is positioned. You can movethe
splitter bar by dragging it with the mouse.

Toolbar Shortcut: E

Open Window List

GAUSS maintainsalist of al the windows you have opened at the end of the Window
Menu. If the window you want to view ison thislist, click on it and GAUSS opens it
as the window with focus.

4-27

GAUSSUser Guide

Help Menu

You use the Help Menu to access the information in the GAUSS Help you are looking
for. The GAUSS Help Menu contains the following entries:

Contents

You use the Contents command to start the GAUSS Help system. Click on the
Contents tab to view alist of help topic categories. Use the Search tab to search the
Help system by key word. Click on the Index tab to view alist of all help topicsin
aphabetical order.

Keyboard

You use the Keyboard command to access the list of keystrokes you can use for cursor
movement, editing, and text selection. The keystrokes are listed in the Editing Keys
functions.

GAUSS Reference

You use the GAUSS Reference command to access the online GAUSS Language
Reference guide. The Guide contains the syntax for each GAUSS command.

Toolbar Shortcut: | =

Help on Help

You use the Help on Help command to get help on using the Windows and GAUSS
Help systems. The Help systems can be accessed using the following:

* Click Help on the Menu bar and select the type of help you need.

* Click the Gauss Reference button ? on the Toolbar for information on
GAUSS commands.

¢ Right click on any icon to get pop-up help for theicon.

* Click on any word to place the cursor in the word, and press F1. If theword isa
GAUSS command, pop-up help on that word is displayed. If the word is not a
GAUSS command, but isin an active library, the respective file will be
displayed.

* Press CTRL+F1 while the cursor isin aword to initiate the GAUSS source

browser. If the word is defined in an active library, the respective file will be
loaded into an edit window.

4-28

Using the Windows Interface

Toolbar

About GAUSS

You use the About GAUSS command to display the GAUSS copyright and version
information.

You use the Toolbar buttons for fast access to the most commonly used commands.
Place the mouse pointer over the button to pop up a description of the command. Click
on the button to run the command. Right click on the button for more comprehensive
help.

New

You use the New command to open a new, untitled document in the Edit window,
whichever is active.

Note: New, unsaved documents are not automatically backed up until you save them,
giving them a file name. After you save the new file, it will be automatically backed up
will all other open files according to the settings you have selected in the Configure
menu/Preferences/Files tab.

Toolbar Shortcut: D
Keyboard Shortcut: CTRL+N

Open

You use the Open command to open an existing file for viewing or editing. You can
enter or select the directory and filename in the Windows Open dialog box.

X |

Toolbar Shortcut: E’
Keyboard Shortcut: CTRL+O

Save

You use the Save command to save your changes to the file in the active window. If
thefileisuntitled, you are prompted for a path and filename.

Toolbar Shortcut: E
Keyboard Shortcut: CTRL+S

4-29

GAUSSUser Guide

Print

You use the Print command to print the active file or selected text from the active
window.

Toolbar Shortcut: %
Keyboard Shortcut: CTRL+P

Cut

You use the Cut command to delete selected text from the active window and place it
onto the Windows clipboard.

Toolbar Shortcut: r}ill
Keyboard Shortcut: CTRL+X
BRIEF Keypad Shortcut: Minus (-)

Copy

You use the Copy command to copy selected text from the active window to the
Windows clipboard.

Toolbar Shortcut:
Keyboard Shortcut: CTRL+C
BRIEF Keypad Shortcut: Plus (+)

Paste

You use the Paste command to copy text from the Windows clipboard to the active
window, at the cursor position.

Toolbar Shortcut: EI
Keyboard Shortcut: CTRL+V
BRIEF Keypad Shortcut: Ins (Insert)

4-30

Using the Windows Interface

Clear to End

You use the Clear to End command to delete all text from the GAUSS prompt to the
end of text.

Toolbar Shortcut: ?{:
Keyboard Shortcut: F7

Toggle Text Blocking Mode

You use the Text Blocking Mode commands to select the method used to select text
when using the mouse or Shift key. The three types of text selection are:

* Character Blocks. Thisisthe default, whereby you select all text from the first
character to the last character.

* LineBlocks. This selects entire lines of text.

* Column Blocks. This selectsthe text that islocated within the rectangle whose
opposite corners are defined by the first and last character you select. This
option is not enabled if a proportional font is used.

The mode selected applies to al open documents. However, since Column Block
mode is not supported for documents with proportional fonts, Line Block modeis
used when such a document has the focus. Column blocks usually work better when
the expand tabs option is enabled.

All blocks can be manipulated using the cut, copy, paste, and delete edit keys. Blocks
can a so be moved by dragging the selected block with the mouse, and can be copied
by pressing and holding down CTRL while dragging the selected block with the
MOuSe.

Toolbar Shortcuts:

Character Blocking Mode =
Line Blocking Mode =

Column Blocking Mode

Find/Replace

You use the Find/Replace command to find the specified text in the active window.
After locating the text string, you can edit the text manually or replace the text with
what you have entered in the Search dialog box and selecting the “Replace with”
command.

4-31

GAUSSUser Guide

The Find option locates the specified text in the active window from the cursor
position down. The search can be case sensitive or case insensitive. Subsequent
searches for the same text can be resumed by pressing F3.

The Replace option locates the specified text in the active window and replacesit with
the text you entered in the “ Replace with” field in the Search dialog box. The search
starts at the cursor position and continues to the end of the text in the active window.
The search can be case sensitive or case insensitive, and the replacement can be
unigue or global.

Toolbar Shortcut: ﬂ
Keyboard Shortcut: CTRL+F

Find Again

You use the Find Again command to resume the search for the next occurrence of the
text you specified in the previous Find action.

Toolbar Shortcut: ﬁi&
Keyboard Shortcut: F3

Toggle Split Screen Mode

You use the Toggle Split Screen Mode commands to change the configuration of the
active window from one pane to two panes, split either vertically or horizontaly.
Splitting awindow allows you to view two different areas of the same document to
facilitate split-window editing.

* You use the No Split command to remove a split you made to the active
window. You use either the Split Vertically or Split Horizontally command to
create a split window.

* You usethe Split Vertically command to split the active window into two
vertical panes. When awindow is split, a splitter bar appears between the two
sides of the window and is used to define where the window split is positioned.

® You use the Split Horizontally command to split the active window into two
horizontal panes. When awindow is split, a splitter bar appears between the
upper and lower half of the window and is used to define where the window
split is positioned.

You can move the splitter bar by dragging it with the mouse.
Toolbar Shortcuts:

4-32

Using the Windows Interface

No Split]
Split Vertically [T

Split Horizontally =

GAUSS Reference

You use the GAUSS Reference command to access the online GAUSS Language
Reference guide. The Guide contains the syntax for each GAUSS command.

Toolbar Shortcut; | =

Run Commands

You use the Run commands to run the code you have entered, a block of code you
selected, or the active file, depending on the active window. The following entries
appear on the Action menu of the respective windows:

Command window. Run Commands runs the commands you enter in the
Command window.
Run Marked Block runs the text you selected in the Command window.

Edit window. Run Current Filerunsthe activefile.
Run Marked Block runs the text you selected in the Edit window.

Output window. Run Programisgrayed and not available in thiswindow. You must
run the commands or file from either the Command or Edit window.

Output is shown below the code in Cmnd mode. In Split I/O mode, the output appears
in the Output window. To toggle between the current input and the Output window,
use the Toggle Input/Output Window command.

Toolbar Shortcuts:

»
Run Commands | *

Hy

Run Current File

Run marked block = *
Keyboard Shortcut: CTRL+F2

4-33

GAUSSUser Guide

Pause Program

You use the Pause Program command to suspend a program while it isin the process
of running.

Output is shown below the code in Cmnd mode. In Split I/O mode, the output appears
in the Output window. To toggle between the current input and the Output window,
use the Toggle Input/Output Window command.

Stop Program

You use the Stop Program command to stop the program currently running and return
control to the editor.

Toolbar Shortcut: ®

Insert GAUSS Prompt

You use the Insert GAUSS Prompt command to manually add the GAUSS prompt at
the cursor position. The GAUSS prompt (») is automatically displayed following the
execution of GAUSS code.

Toolbar Shortcut: ke

Keyboard Shortcut: Shift+F2

Set/Clear Breakpoint

You use the Set/Clear Breakpoint commands to enable or disable aline breakpoint at
the cursor in the active file. Breakpoints usually remain valid when afile is changed
and lines are inserted or deleted, but are lost when afileis closed, whether it is saved
or not.

Line breakpoints are displayed in the debugger with ared highlight.

Procedure breakpoints occur at the beginning of a procedure and can only be added if
the named procedure exists in the GAUSS workspace.

Toolbar Shortcut: 0

Main Files List

You can reopen afilerecently used by GAUSS by double clicking on the file name on
the Main Files List on the Toolbar. The list contains up to ten of the most recent main
filesused by GAUSS.

4-34

Using the Windows Interface

Run Main File

You use the Run Main File command to run the specified main file.

While running, output is displayed beneath the current block of GAUSS code if the
output modeis set to Cmnd or in the Output Window if the output modeis set to Split
1/0.

Toolbar Shortcut: = *
Keyboard Shortcut: F2

Edit Main File

You use the Edit Main File command to open an editor window for the specified main
file. Thefileisloaded, if needed, and the Edit window becomes the active window.

Toolbar Shortcut: ﬁ

Debug Main File

You use the Debug Main File command to run the main file in the Debug window.
Prior to running the debugger, breakpoints can be set or cleared in the active window
at the cursor, using the Breakpoint Set and Clear commands. Watch variables can also
be set prior to running the debugger.

Compile Main File

You use the Compile Main File command to compile the specified main file. During
compilation, any errors are displayed beneath the current block of GAUSS code if the
output modeis set to Cmnd, or in the Output Window if the output modeis set to Split
I/0.

Note: this command is different than the GAUSS Compile command, which compilesa
program and saves the pseudocode as a file.

Toolbar Shortcut: @

4-35

GAUSSUser Guide

Status Bar

The Status bar is located along the bottom of the GAUSS window. The status of the
following windows and processes are shown on the Status bar:

GAUSS Status

Thefirst section of the Status bar shows the current GAUSS status. The normal status
is Ready when not running code. From timeto time you are a erted to thetask GAUSS
is performing by new messages appearing in this section of the Status bar.

Clicking the GAUSS statusis equivalent to clicking the Run Commands button on the
Toolbar.

Command

Command, Edit, and Output always appear on the Status bar. When the background
color behind Command is alighter shade of gray, the Command window has focus
and is considered the “ active” window.

You enter interactive commands in the Command window. The Command window
can be selected from the Windows Menu or from the Status bar by clicking on
Command. When the output mode is Cmnd 1/0, output will be written to the
Command window.

Edit

Command, Edit, and Output always appear on the Status bar. When the background
color behind Edit is alighter shade of gray, the Edit window hasfocusandis
considered the “active” window.

An Edit window is created when you open a file. When you execute GAUSS from an
Edit window, the entire fileis executed. Thisisthe equivalent of the GAUSS “r un
fil enane” statement.

If more than onefileisloaded, the last file loaded or executed becomes the activefile
when you click the Edit status on the Status bar. Repeated clicking of the Edit status
cyclesthrough all loaded Edit windows.

Output

Command, Edit, and Output always appear on the Status bar. When the background
color behind Output is alighter shade of gray, the Output window hasfocus and is
considered the “active” window.

When the output mode is Split 1/0, output iswritten to the Output window. GAUSS
commands cannot be executed from this window.

4-36

Using the Windows Interface

Command 1/0 / Split 1/0

When your program is run, the output will appear in the Command window in Cmnd
1/0 mode or in the Output window in Split 1/0 mode. The output mode appears on the
Status bar.

You usually use the Cmnd I/O mode when you want to enter a series of GAUSS
commands and watch the output appear directly below the code you've entered.

You can use the Split 1/0 mode to display the results of the commands in the Output
window, without the input commands.

Toolbar Shortcut:

Cmnd /O mode D

Split /0 mode ED
Keyboard Shortcut: F6

Enter Ex: On/Off

The Enter Ex: status appears on the Status bar when the Command window is active.
It indicates how pressing the Enter key is handled in the Command window. The two
choices are On and Off.

on. Pressing Enter runs al code from the GAUSS prompt line to the line the cursor
ison if thefinal line endswith a“;”. If the fina line does not end with a*“;”, Enter
starts anew line.

OFF. Pressing Enter starts anew line.
Click the Enter Ex: status on the Status bar to toggle the status between the two
options.

Cursor Location

The line number and column number where the cursor is located appear on the Status
bar for the active window. When ablock of text is selected, the valuesindicate the first
position of the selected text.

OVR

OVR appears on the Status bar when typing replaces the existing text with text you
enter. When OV R does not appear on the Status bar, typing inserts text without
deleting the existing text. Press the Insert key to toggle between the two conditions.

4-37

GAUSSUser Guide

NUM

NUM appears on the Status bar to indicate the Num Lock key has been pressed and
the keypad numbers are active. Some keyoard shortcuts are only active when you use
the numbers on the keypad instead of the numbers across the top of the keyboard.

Press the Num Lock key to toggle between the two conditions.

CAPS

CAPS appears on the Status bar to indicate the Caps Lock key has been pressed and
al text you enter will appear in upper case. When CAPS does not appear on the Status
bar, the a phabetic keys you type will appear in lower case, or, if the Shift key is
pressed, in upper case.

Press the Caps Lock key to toggle between the two conditions.

Debug Window

You use the GAUSS debugger to watch the program code as it runs. Prior to running
the debugger, breakpoints and watch variables can be set to stop the program at points
you set and provide additional data as the codeisrun.

You can run any GAUSS program file by selecting Debug Current File or Debug Main
Filefrom the Debug Menu. Thisautomatically starts debugging the filein the GAUSS
Debug window.

The debugger uses the following color codes:
¢ yellow highlighting indicates the next line of codeto be run
¢ red highlighting indicates a breakpoint

The current status of variables specified using the Watch option is shown above the
Status bar. The number of lines executed appears on the Status bar as well asthe file
name, active line, and the procedure being run.

Note: The Debug window runsin its own thread. If the Debug window will not open,
check that the Thread setting is Per Call in the Priority dialog box, accessed from the
Configure Menu.

File Menu

Restart restarts the debugging run using the current settings.

Toolbar Shortcut:
Exit terminates the current GAUSS debug execution.
Keyboard Shortcut: x or Ctrl-X

4-38

Using the Windows Interface

Sep Into runsthe next executable line of code in the application and steps into
procedures.

||‘|ﬁI

Toolbar Shortcut:
Keyboard Shortcut: Ctrl-1 or press Enter

Sep Over runs the next executable line of code in the application but does not step
into procedures.

Toolbar Shortcut: L
Keyboard Shortcut: Ctrl-V or press the Space bar

Sep Out runsthe remainder of the current procedure and stops at the next line in the
calling procedure. Step out returns if a breakpoint is encountered.

Toolbar Shortcut: E
Keyboard Shortcut: Ctrl-O

Run to Breakpoint runsall the remaining program code but stops if a breakpoint is
encountered. Temporary breakpoints can be added or removed using the Toggle
Breakpoint command.

||~|"|II

Toolbar Shortcut:

Keyboard Shortcut: b or Ctrl-B
Run to Cursor runsall program code between the current line and the cursor position,
ignoring any breakpoints.

[y
Toolbar Shortcut:

Keyboard Shortcut: Ctrl-C

Run to Line runs all program code between the current line and the line number you
specify, ignoring any breakpoints.

Keyboard Shortcut: | or Ctrl-L

Run to Proc runs all program code between the current line and procedure you
specify in the Run to proc dialog box.

[l

4-39

GAUSSUser Guide

Run to End runs all program between the current line and the end of the program.

Toolbar Shortcut: ~ *
Keyboard Shortcut: r or Ctrl-R

Execute n steps runs the number of lines of program code you specify. Specify the
number of lines (n) to be executed counting from the beginning of the program. This
command will then execute n lines of code, ignoring any breakpoints.

Keyboard Shortcut: sor Ctrl-S

Tools Menu

Breakpoints stop code execution where you have inserted them. Breakpoints are
normally set prior to running the debugger, but can also be set or cleared for the
current file by using the Toggle Breakpoint command. Breakpoints set with the Set/
Clear Breakpoint commands are temporary and are lost after the current debug run.

Toolbar Shortcut: gl
Keyboard Shortcut: Ctrl-T

Watch Variables allow you to see how variables change in value while aprogram is
running. The values appear in a Matrix Editor. Watch variables can be specified prior
to running the debugger or during a debugging session. A watch variable can be the
name of amatrix, ascaar, astring array, or astring. For amatrix or astring array, the
first element is displayed.

The debugger searches for a watch variable using the following precedence:
* A local variable within a currently executed procedure.
* A local variable within a currently active procedure.
* A global variable.

Toolbar Shortcut: 69’
Keyboard Shortcut: Ctrl-W

Window Menu

Window Control. The Debug window is an MDI window like the other GAUSS
windows. You can toggle between the Debug and Output windows using CTRL-D.

4-40

GAUSS Source Browser

The GAUSS Source Browser lets users quickly find, view, and if
necessary, modify the source code for external proceduresin active
libraries.

In GAUSS for Windows, put the cursor on a globa symbol name and
press Ctrl-F1. The Source Browser will open an Edit window containing
the source file holding the symbol definition. The browser searches the
activelibrary files (. | cg files) for the symbol name.

If **> synbol name isfound in thefile at the beginning of aline, that
line will be displayed at the top of the window. Users may make use of
these featuresin their own code.

In TGAUSS, type br ows e followed by acommand name or string
conaining wildcards. The source code for the command will be opened in
the default editor. Wildcards may also be used. You select the desired
command from the list by number.

5-1

Language Fundamentals

GAUSS isacompiled language. GAUSS is also an interpreter. A compiled language,
because GAUSS scans the entire program once and translates it into a binary code
before it starts to execute the program. An interpreter, becauses the binary code is not
the native code of the CPU. When GAUSS executes the binary pseudocode, it must
“interpret” each instruction for the computer.

How can GAUSS be so fast if it is an interpreter? Two reasons. First, GAUSS has a
fast interpreter, and the binary compiled code is compact and efficient. Second, and
mogt significantly, GAUSSisamatrix language. It is designed to tackle problems that
can be solved in terms of matrix or vector equations. Much of the timelost in
interpreting the pseudocode is made up in the matrix or vector operations.

This chapter will enable you to understand the distinction between “ compile time” and
“execution time,” two very different stages in the life of a GAUSS program.

Expressions

An expression isamatrix, string, constant, function reference, procedure reference, or
any combination of these joined by operators. An expression returns aresult that can
be assigned to a variable with the assignment operator ‘=’.

6-1

GAUSSUser Guide

Statements
A statement is a complete expression or a command. Statements end with a
semicolon:
y = X*3;

If an expression has no assignment operator (=), it will be assumed to be an implicit
pri nt statement:

print x*3;
or
X*3;

Hereis an example of a statement that is a command rather than an expression:

out put on;

Commands cannot be used as a part of an expression.

There can be multiple statements on the same line as long as each statement is
terminated with a semicolon.

Executable Statements

Executable statements are statements that can be “ executed” over and over during the
execution phase of a GAUSS program (execution time). As an executable statement is
compiled, binary code is added to the program being compiled at the current location
of the instruction pointer. This binary code will be executed whenever the interpreter

passes through this section of the program. If the codeisin aloop, it will be executed
each iteration of the loop.

Here are some examples of executable statements:
y = 34.25;
print vy;
x={1372940 3},

Nonexecutable Statements

Nonexecutable statements are statements that have an effect only when the programis
compiled (compile time). They generate no executable code at the current location of
the instruction pointer.

Language Fundamentals

Here are two examples:
declare matrix x ={ 1 2 3 4 },;

external matrix ybar;

Procedure definitions are nonexecutable. They do not generate executabl e code at the
current location of the instruction pointer. Here is an example:

zed = rndn(3, 3);

proc sqrtinv(x);
| ocal v;
y = sqrt(x);
retp(y+inv(x));
endp;

zsi = sqgrtinv(zed);

There are two executabl e statements in the example above: the first line and the last
line. Inthe binary code that is generated, the last line will follow immediately after the
firstline. Thelast lineisthecal | tothe procedure. This generates executable code.
The procedure definition generates no code at the current location of the instruction
pointer.

Thereis code generated in the procedure definition, but it isisolated from the rest of
the program. It is executable only within the scope of the procedure and can be
reached only by calling the procedure.

Programs

A program is any set of statements that are run together at one time. There are two
sections within a program.

Main Section

The main section of the program isall of the code that is compiled together without
relying on the autoloader. This means code that isin the main file or isincluded in the
compilation of the main filewith an #i ncl ude statement. All executable code
should be in the main section.

6-3

GAUSSUser Guide

There must always be amain section even if it consists only of acall to the one and
only procedure called in the program. The main program code is stored in an area of
memory that can be adjusted in size with the new command.

Secondary Sections

Secondary sections of the program are files that are neither run directly nor included
in the main section with #i ncl ude statements.

The secondary sections of the program can be |eft to the autoloader to locate and
compile when they are needed. Secondary sections must have only procedure
definitions and other nonexecutabl e statements.

#i ncl ude statements are allowed in secondary sections as long as the file being
included does not violate the above criteria.

Here is an example of a secondary section:
declare matrix tol = 1.0e-15;

proc feq(a,b);
retp(abs(a-b) < tol);
endp;

Compiler Directives

Compiler directives are commands that tell GAUSS how to process a program during
compilation. Directives determine what the final compiled form of a program will be.
They can affect part or all of the source code for a program. Directives are not
executabl e statements and have no effect at run-time.

The#i ncl ude statement mentioned earlier is actually a compiler directive. It tells
GAUSS to compile code from a separate file as though it were actually part of thefile
being compiled. This codeis compiled in at the position of the#i ncl ude statement.

Here are the compiler directives available in GAUSS:

#defi ne Define a case-insensitive text-replacement or flag variable.
#defi necs Define acase-sensitive text-replacement or flag variable.
#undef Undefine a text-replacement or flag variable.

#i f def Compile code block if avariable has been #def i ne’d.

#i f ndef Compile code block if avariable has not been #def i ne’d.

#i flight Compile code block if running GAUSS Light.

6-4

Language Fundamentals

#el se Else clausefor #i f -#el se-#endi f code block.

#endi f End of #i f -#el se-#endi f code block.

#i ncl ude Include code from another file in program.

#1 i neson Compile program with line number and file name records.
#l i nesof f Compile program without line number and file name records.

#srcfile Insert source file name record at this point (currently used when
doing data loop trand ation).

#srcline Insert source file line number record at this point (currently used
when doing data loop translation).

The#def i ne statement can be used to define abstract constants. For example, you
could define the default graphics page size as

#define hpage 9.0

#defi ne vpage 6. 855

and then write your program using hpage and vpage. GAUSS will replace them
with 9. 0 and 6. 855 when it compiles the program. This makes a program much
more readable.

The#i f def -#el se-#endi f directivesallow you to conditionally compile sections
of aprogram, depending on whether a particular flag variable has been #def i ne’d.
For example:

#i fdef | og 10

y = log(x);
#el se

y = 1In(x);
#endi f

This alows the same program to calculate answers using different base logarithms,
depending on whether or not the program hasa#def i ne | og_10 statement at the
top.

#undef allows you to undefine text-replacement or flag variables so they no longer
affect a program, or so you can #def i ne them again with a different value for a
different section of the program. If you use #def i necs to define a case-sensitive
variable, you must use the right case when #undef 'ing it.

With #1 i neson, #l i nesof f,#srcl i ne,and#srcfil e youcanincludeline
number and file name records in your compiled code, so that run-time errors will be

6-5

GAUSSUser Guide

easier to track down. #sr cl i ne and#sr cfi | e are currently used by GAUSS
when doing data loop translation.

For more information on line number tracking, see “Debugging,” page 10-2 and see
“Debugging Data Loops,” page 14-2. Seedso #| i neson in the GAUSS Language
Reference.

Thesyntax for #srcfi | e and#sr cl i ne isdifferent than for the other directives
that take arguments. Typically, directives do not take argumentsin parentheses; that is,
they look like keywords:

#define red 4

#srcfil eand#srcli ne, however, dotake their argumentsin parentheses (like
procedures):

#srcline(12)

Thisalowsyou to place#sr cl i ne statements in the middle of GAUSS commands,
so that line numbers are reported precisely as you want them. For example:

#srcline(l) print “Here is a multi-Iline”

#srcline(2) “sentence--if it contains a run-tine
error,”

#srcline(3) “you will know exactly”

#srcline(4) “which part of the sentence has the

probl em”;

The argument supplied to #sr cf i | e does not need quotes:
#srcfile(c:\gauss\test. e)

Procedures

A procedure allows you to define a new function which you can then use asiif it were
anintrinsic function. It is called in the same way as an intrinsic function:

y = nyproc(a,b,c);
Procedures areisolated from the rest of your program and cannot be entered except by

calling them. Some or al of the variablesinside a procedure can bel ocal variables.
| ocal variablesexist only when the procedure is actually executing, and then

6-6

Language Fundamentals

disappear. Local variables cannot get mixed up with other variables of the same name
in your main program or in other procedures.

For details on defining and calling procedures, see “Procedures and Keywords,”
page 8-1.

Data Types

There are two basic data types in GAUSS:. matrices and strings. It is not necessary to
declare the type of avariable, but it is good programming practice to respect the types
of variables whenever possible. The data type and size can change in the course of a
program.

Thedecl ar e statement, used for compile-time initialization, enforces type
checking.

Short strings of up to 8 bytes can be entered into € ements of matrices, to form
character matrices. (For details, see “ Character Matrices,” page 6-19.)

Constants

The following constant types are supported:

Decimal
Decimal constants can be either integer or floating point values:
1. 34e-10
1. 34e123
-1. 34e+10
-1.34d-10
1. 34d10
1. 34d+10
123. 456789345

These will be stored as double precision (15-16 significant digits). The rangeisthe
same as for matrices. (For details, see “Matrices,” page 6-8.)

6-7

GAUSSUser Guide

String
String constants are enclosed in quotation marks:
“This is a string.”

Hexadecimal Integer
Hexadecimal integer constants are prefixed with Ox:
Ox0ab53def 2

Hexadecimal Floating Point

Hexadecimal floating point constants are prefixed with Ov. Thisalows you to input a
double precision value exactly as you want using 16 hexadecimal digits. The highest
order byteisto the l€ft:

Ovf f f 8000000000000

Matrices

Matrices are 2-dimensional arrays of double precision numbers. All matrices are
implicitly complex, although if it consists only of zeros, the imaginary part may take
up ho space. Matrices are stored in row major order. A 2x3 real matrix will be stored
in the following way, from the lowest addressed element to the highest addressed
element:

[1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

A 2x3 complex matrix will be stored in the following way, from the lowest addressed
element to the highest addressed element:

(‘real part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]
(imaginary part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

Conversion between complex and real matrices occurs automatically and is
transparent to the user in most cases. Functions are provided to provide explicit
control when necessary.

All numbersin GAUSS matrices are stored in double precision floating point format,
and each takes up 8 bytes of memory. Thisisthe IEEE 754 format:

6-8

Language Fundamentals

Significant
Bytes Data Type Digits Range
8 floating point 15-16 +308

4.19x10 < |X| < 1.67x10

Matrices with only one number (1x1 matrices) are referred to as scalars, and matrices
with only one row or column (1xN or Nx1 matrices) are referred to as vectors.

Any matrix or vector can be indexed with two indices. Vectors can be indexed with
one index. Scalars can be indexed with one or two indices also, because scalars,
vectors, and matrices are the same data type to GAUSS.

The majority of functions and operators in GAUSS take matrices as arguments. The
following functions and operators are used for defining, saving, and loading matrices:

[] Indexing matrices.

= Assignment operator.

| Vertical concatenation.

~ Horizontal concatenation.

con Numeric input from keyboard.

cons Character input from keyboard.

decl are Compile-time matrix or string initialization.
| et Matrix definition statement.

| oad Load matrix (sameas| oadn).

r eadr Read from a GAUSS matrix or data set file.
save Save matrices, procedures, and strings to disk.
saved Convert amatrix to a GAUSS data set.

st of Convert string to matrix.

submat Extract a submatrix.

writer Write datato a GAUSS data set.

Following are some examples of matrix definition statements.

An assignment statement followed by data enclosed in bracesisan implicit | et
statement. Only constants are allowed in | et statements; operators areillegal. When
bracesareusedin| et statements, commas are used to separate rows. The statement

let x ={ 123, 456, 789},

or

6-9

GAUSSUser Guide

x={ 123, 456, 7809 };

will result in

123
X= 456
789

The statement

let x[3,3] =12345678¢9;

will result in

123
X= 456
789
The statement
let x[3,3] = 1;
will result in
111
X= 111
111
The statement
let x[3,3];
will result in
000
X= 000
000

Language Fundamentals

The statement
let x =123 4567 8 9;

will result in

x
11
O© 00 NO Ol WDN P

Complex constants can beentered inal et statement. In the following example, the +
or - isnot amathematical operator, but connects the two parts of a complex number.
There should be no spaces between the + or - and the parts of the number. If a number
has both real and imaginary parts, thetrailing ‘i’ is not necessary. If a number has no
real part, you can indicate that it isimaginary by appending the ‘i’. The statement

let x[2,2] = 1+2i 3-4 5 6i;

will result in

1+2i 3—-4i
5 0+6i

X =

Complex constants can also be used with thedecl ar e, con, and st of statements.

An “empty matrix” isamatrix that contains no data. Empty matrices are created with
thel et statement and braces:

x = {};

GAUSSUser Guide

Empty matrices are currently supported only by ther ows and col s functionsand the
concatenation operators (~ and |):

x = {};
hsecO = hsec;
do until hsec-hsecO > 6000;
X = X ~ data_in(hsec-hsec0);

endo;

You can test whether a matrix is empty by entering r ows(x) , col s(x) , and
scal err (X).If thematrix isempty, r ows and col s will returna0, andscal err
will return 65535.

The ~ isthe horizontal concatenation operator and the | isthe vertical concatenation
operator. The statement

y = 1~2| 3~4;
will be evaluated as
y = (1~2)|(3~4);

and will result in a 2x2 matrix because horizontal concatenation has precedence over
vertical concatenation:

12
34

The statement
y = 1+1~2*2| 3- 2~6/ 2;
will be evaluated as
y = ((1+1)~(2*2))[((3-2)~(6/2));

and will result in a2x2 matrix because the arithmetic operators have precedence over
concatenation:

24
13

Language Fundamentals

For more information, see “Operator Precedence,” page 6-22.
Thel et command is used to initialize matrices with constant values.
let x[2,2] =1 2 3 4

Unlike the concatenation operators, it cannot be used to define matrices in terms of
expressions such as

y = x1-x2~x2| x3*3~x4;

The statement
y = x[1:3,5:8];

will put the intersection of the first three rows and the fifth through eighth columns of
X into the matrix y.

The statement
y =x[13 1,55 9];

will create a 3x3 matrix y with the intersection of the specified rows and columns
pulled from x (in the indicated order).

The statement

let r =1 3 1;

let ¢c =55 09;

y = x[r,c];
will have the same effect as the previous example, but is more general.
The statement

y[2,4] = 3;

will set the 2,4 element of the existing matrix y to 3. This statement isillegal if y does
not have at least 2 rows and 4 columns.

The statement
X = con(3,2);

will cause a ?to be printed in the window, and will prompt the user until six numbers
have been entered from the keyboard.

The statement
| oad x[] = b:nydata. asc

6-13

GAUSSUser Guide

will load data contained in an ASCI|I fileinto an Nx1 vector x. (User ows(X) to find
out how many numbers were loaded, and use r eshape(x,N,K) to reshape it to an
NXK matrix.)

The statement
| oad Xx;

will load the matrix x. f mt from disk (using the current load path) into the matrix x in
memory.

The statement
open dl1 = dat 1;
X = readr(di, 100);
will read the first 100 rows of the GAUSS data set dat 1. dat .

Strings and String Arrays

Strings

Strings can be used to store the names of files to be opened, messages to be printed,
entirefiles, or whatever else you might need. Any byte valueislegal in astring from
0-255. The buffer where a string is stored always contains a terminating byte of ASCII
0. Thisalows passing strings as arguments to C functions through the Foreign
Language Interface.

Hereisapartial list of the functions for manipulating strings:

$+ Combine two strings into one long string.

A Interpret following name as a variable, not aliteral.

chrs Convert vector of ASCII codes to character string.

dttostr Converts amatrix containing datesin DT scalar format to a string
array.

ftocv Character representation of numbersin NxK matrix.

ftos Character representation of numbersin 1x1 matrix.

ftostrC Converts amatrix to a string array using a C language format
specification.

get f Load ASCII or binary file into string.

i ndcv Find index of element in character vector.

| ower Convert to lowercase.

st of Convert string to floating point.

strindx Find index of astring within a second string.

Language Fundamentals

strlen Length of astring.

strsect Extract substring of string.

strsplit splits an Nx1 string vector to an NxK string array of the individual
tokens.

st rspl i t PadSplitsastring vector into astring array of theindividual tokens. Pads
on the right with the null strings.

strtodt Convertsastring array of datesto amatrix in DT scalar format.
strtof converts astring array to a numeric matrix.
strt of cpl x convertsastring array to complex numeric matrix.
upper Convert to uppercase.
val s Convert from string to numeric vector of ASCII codes.
Strings can be created like this:
X = “exanple string”;
or
X = cons; [/* keyboard input */

or

X
1

getf(“nyfile”,0); /* read a file into a string */

They can be printed like this:
print Xx;

A character matrix must havea‘$’ prefixedtoitinapri nt statement:
print $x;

A string can be saved to disk with the save command in afilewith a. f st
extension, and then loaded with the | oad command:

save X;
| oads x;

or
| oads x=x. fst;

The backslash is used as the escape character inside double quotesto enter special
characters:

GAUSSUser Guide

“\'b” backspace (ASCII 8)

“\e” escape (ASCII 27)

“\f” formfeed (ASCII 12)

“\g” beep (ASCII 7)

“\ 1 line feed (ASCII 10)

“\r” carriage return (ASCII 13)

“\t” tab (ASCII 9)

“A\7 abackslash

“\ #HH#" the ASCII character whose decimal value is “###’

When entering DOS pathnames in double quotes, two backslashes must be used to
insert one backslash:

st = “c:\\gauss\\nyprog. prg”;

An important use of strings and character elements of matricesiswith the substitution
operator (™) .

In the command
create f1 = olsdat with x, 4, 2;

by default, GAUSS will interpret the ol sdat asaliteral; that is, the literal name of
the GAUSS data file you want to create. It will also interpret the x asthe literal prefix
string for the variable names. x1 x2 x3 x4.

If you want to get the data set name from a string variable, the substitution operator
(™) could be used as

dat aset =" ol sdat " ;

create fl=dataset with x, 4, 2;

If you want to get the data set name from a string variable and the variable names from
acharacter vector, use

dat aset =" ol sdat ”;
| et vnanes=age pay sex;

create fl="dataset wi th “vnanes, 0, 2;

The substitution operator (*) works with | oad and save, aso:
| pat h="c:\ gauss\ procs”;

Language Fundamentals

name="nydat a”;
| oad pat h="| pat h x="nane;

conmand=“dir *.fnt";

The general syntax is

Avariable_name

Expressions are not allowed.

The following commands are supported with the substitution operator ():
create fl="dataset with “vnanes, 0, 2;

create fl="dataset using “cndfile;
open fl="dat aset;

output file="outfile;

| oad x="dat afil e;

| oad path=~lpath x,y,z,t,w

save “nane=x;

save pat h="spat h;

run ~prog;

msym ~nstring;

String Arrays

String arrays are NxK matrices of strings. Here is a partial list of the functions for
manipulating string arrays:

$| Vertical string array concatenation operator.
$~ Horizontal string array concatenation operator.
[] Extract subarrays or individual stringsfrom their corresponding array,
or assign their values.
' Transpose operator.
' Bookkeeping transpose operator.
decl are Initialize variables at compiletime.
del ete Delete specified global symbols.

GAUSSUser Guide

f get sa
f get sat

f or mat

fputs

f put st

| et

| oads

[print
| show

pri nt
r eshape
save

show
sortcc

type

t ypecv

var get
var put

vec
vecr

Read multiple lines of text from afile.

Read multiple lines of text from afile, discarding newlines.
Define output format for matrices, string arrays, and strings.
Write strings to afile.

Write strings to afile, appending newlines.

Initialize matrices, strings, and string arrays.

Load astring or string array file (. f st file).

Print expressions to the printer.

Print global symboal table to the printer.

Print expressions in window and/or auxiliary output.
Reshape amatrix or string array to new dimensions.

Save matrix, string array, string, procedure, function, or keyword to
disk and give the disk fileeithera. f nt , . f st, or. f cg extension.

Display global symbol table.

Quick-sort rows of matrix or string array based on character column.
Indicate whether variable passed as argument is matrix, string, or
string array.

Indicate whether variables named in argument are strings, string
arrays, matrices, procedures, functions, or keywords.

Access the globa variable named by a string array.

Assign the global variable named by a string array.

Stack columns of amatrix or string array to form a column vector.
Stack rows of amatrix or string array to form a column vector.

String arrays are created through the use of the string array concatenation operators.
Below is acontrast of the horizontal string and horizontal string array concatenation

operators:
X = “age”;
y = e
n = “sex”;
s = X $+ vy $+ n;
sa X $~y $~ n;
S = agepaysex

Language Fundamentals

sa=age pay Sex

Character Matrices

M atrices can have either numeric or character e ements. For convenience, a matrix
containing character elementsis referred to as a character matrix.

A character matrix is not a separate data type, but gives you the ability to store and
mani pul ate data elements that are composed of ASCII characters as well as floating
point numbers. For example, you may want to concatenate a column vector containing
the names of the variables in an analysis onto a matrix containing the coefficients,
standard errors, t-statistic, and p-value. You can then print out the entire matrix with a
separate format for each column with one call to the function pri nt f m

Thelogic of the programs will dictate the type of data assigned to a matrix, and the
increased flexibility allowed by being able to bundle both types of data together in a
single matrix can be very powerful. You could, for instance, create a moment matrix
from your data, concatenate a new row onto it containing the names of the variables,
and save it to disk with the save command.

Numeric matrices are double precision, which means that each element is stored in 8
bytes. A character matrix can thus have elements of up to 8 characters.

GAUSS does not automatically keep track of whether a matrix contains character or
numeric information. The ASCII to GAUSS conversion program ATOG will record
the types of variablesin a data set when it createsit. Thecr eat e command will,
also. Thefunction var t ypef getsavector of variable type information from a data
set. This vector of ones and zeros can be used by pr i nt f mwhen printing your data.
Since GAUSS does not know whether a matrix has character or numeric information,
it isup to you to specify which type of data it contains when printing the contents of
the matrix. (For details, seepri nt and pri nt f min the GAUSS Language
Reference.)

Most functions that take a string argument will take an element of a character matrix
also, interpreting it as a string of up to 8 characters.

Date and Time Formats

DT Scalar Format

The DT scaar format is adouble precision representation of the date and time. In the
DT scalar format, the number

20010421183207
represents 18:32:07 or 6:32:07 PM on April 21, 2001.

6-19

GAUSSUser Guide

DTV Vector Format
The DTV vector isa1x8 vector. Theformat for the DTV vector is:

[1] Year

[2] Month, 1-12

[3] Day of month, 1-31

[4] Hour of day, 0-23

[5] Minute of hour, 0-59

[6] Second of minute, 0-59

[7] Day of week, 0-6 where 0 is Sunday
[8] Day since beginning of year, 0-365

UTC Scalar Format

The UTC scalar format is the number of seconds since January 1, 1970, Greenwich
Mean Time.

Special Data Types

The |EEE floating point format has many encodings that have special meaning. The
pri nt command will print them accurately so that you cantell if your calculationis
producing meaningful results.

There are many floating point encodings that do not correspond to areal number.
These encodings are referred to as NaN’s. NaN stands for Not a Number.

Certain numerical errors will cause the math coprocessor to create aNaN called an
“indefinite.” Thiswill be printed as a-NaN when using the pr i nt command. These
values are created by the following operations:

+00 plus-o
+00 minus +o
-00 Minus -
Ox o0

o0 /oo

0/0

operations where one or both operandsisaNaN

6-20

Language Fundamentals

trigonometric functionsinvolving o

INF

When the math coprocessor overflows, the result will be a properly signed infinity.
Subsequent calculations will not deal well with aninfinity; it usually signals an error
in your program. The result of an operation involving an infinity is most often a NaN.

DEN, UNN

When some math coprocessors underflow, they may do so gradually by shifting the
significand of the number as necessary to keep the exponent in range. The result of
thisisadenormal (DEN). When denormals are used in calculations, they are usually
handled automatically in an appropriate way. The result will either be an unnormal
(UNN), which like the denormal represents a number very close to zero, or anormal,
depending on how significant the effect of the denormal was in the calculation. In
some cases the result will be aNaN.

Following are some procedures for dealing with these values.

The procedurei si ndef will return 1 (true) if the matrix passed to it contains any
NaN’s that are the indefinite mentioned earlier. The GAUSS missing value code as
well as GAUSS scalar error codes are NaN's, but this procedure tests only for
indefinite:

proc isindef(x);
retp(not x $/ = __| NDEFn);
endp;

Besureto call gausset beforecallingi si ndef . gausset will initializethe value
of theglobal __ | NDEFn to this platform-specific encoding.

The procedure nor nal will return a matrix with all denormals and unnormals set to
zero:

proc nornal (Xx);
retp(x .* (abs(x) .> 4.19e-307));
endp;

6-21

GAUSSUser Guide

The procedurei si nf will return 1 (true) if the matrix passed to it contains any
infinities:
proc isinf(x);
| ocal plus, m nus;
plus = __| NFp;
m nus = __| NFn;
retp(not x /= plus or not x /= mnus);

endp;

Besuretocall gausset beforecalingi si nf . gausset will initialize the value of
theglobals__ | NFn and __| NFp to platform-specific encodings.

Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the * and/
operators have a higher precedence than the + and - operators. In expressions that
contain these operators, the operand pairs associated with the* or / operator are
evaluated first. Whether * or / isevaluated first depends on which comesfirstinthe
particular expression. (For alisting of the precedence of all operators, see “ Operator
Precedence,” page 7-18.)

The expression
-5+3/ 4+6* 3
is evaluated as
(-5) + (3/4) + (6*3)

Within aterm, operators of equal precedence are evaluated from left to right.
Theterm

27317
isevaluated as

2%’

6-22

Language Fundamentals

In the expression
f1(x)*f2(y)

f 1 isevaluated beforef 2.

Here are some examples:

Expression

Evaluation

a+b*c+d
-2+4-6*inv(8)/9
3.1475*6/ (2+sqrt (3)/ 4)
-at+b*c”2

atb-c+d-e

a’b~c*d

a*b/ d*c

ab+c*d

2" 4!

2* 3!

Flow Control

(a+(bxc)) +d

((=2) +4) —((6+xinv(8))/9)
((3.14°)% 6)/(2 + (sqrt (3)/4))
(—a) + (bx(c?))
(((@+b)-c)+d)-e
((@)%)«d

((axb)/d)*c

(@) + (cxd)

()

2+(3!)

A computer language needs facilities for decision making and looping to control the
order in which computations are done. GAUSS has several kinds of flow control

statements.

6-23

GAUSSUser Guide

Looping

do loop

The do statement can be used in GAUSS to control looping:

do whi | e scalar_expression; /* loop if expression is true */

statements

endo;
aso
do until scalar_expression; /* |loop if expression is

fal se */

statements

endo;

The scalar_expression is any expression that returns a scalar result. The expression
will be evaluated as TRUE if itsreal part is nonzero and FALSE if it is zero.

Thereis no counter variable that is automatically incremented in ado loop. If oneis
used, it must be set to itsinitial value before the loop is entered, and explicitly
incremented or decremented inside the loop.

6-24

Language Fundamentals

The following example illustrates nested do loops that use counter variables:
format /rdn 1, 0;

space = ;
comma = “,";
i = 1;
do while i < 4;
=1
do while j < 3;

print space i coma j;;

=i+
endo;
i = i+1;
print;
endo;
Thiswill print:
11 12 13

21 22 23
31 32 33
41 42 43

Usetherelationa and logical operators without the dot ‘. ’ in the expression that
controlsado loop. These operators always return a scalar result.

br eak and cont i nue are used within do loops to control execution flow. When

br eak isencountered, the program will jump to the statement following the endo.
Thisterminates the loop. When cont i nue is encountered, the program will jump up
to the top of the loop and reevaluate thewhi | e or unt i | expression. Thisalows
you to reiterate the loop without executing any more of the statements inside the loop:

6-25

GAUSSUser Guide

do until eof (fp); /* continue junps here */
X = packr(readr(fp, 100));
i f scal mss(x);
conti nue; /* ‘iterate again */
endi f;
S = s + sunc(Xx);
count = count + rows(Xx);

i f count = 10000;

br eak; /* break out of loop */
endi f;
endo;
mean = s / count; /* break junps here */
for loop

The fastest looping construct in GAUSS isthef or loop:
for counter (start, stop, step);

statements

endf or;

counter isthe literal name of the counter variable. start, stop, and step are scalar
expressions. start isthe initial value, stop isthe final value, and step is the increment.

br eak and cont i nue areaso supported by f or loops. (For more information, see
f or inthe GAUSS Language Reference.)

6-26

Language Fundamentals

Conditional Branching
Thei f statement controls conditional branching:
i f scalar_expression;

statements

el sei f scalar_expression;

statements

el se;

statements

endi f;

The scalar_expression is any expression that returns a scalar result. The expression
will be evaluated as TRUE if itsrea part is nonzero and FALSE if it is zero.

GAUSS will test the expression after thei f statement. If it is TRUE, thefirst list of
statementsis executed. If it is FALSE, GAUSS will move to the expression after the
firstel sei f statement, if thereisone, and test it. It will keep testing expressions and
will execute the first list of statements that corresponds to a TRUE expression. If no
expression is TRUE, the list of statementsfollowing the el se statement is executed.
After the appropriate list of statementsis executed, the program will go to the
statement following the endi f and continue on.

6-27

GAUSSUser Guide

Usetherelationa and logical operators without the dot ‘. ’ in the expression that
controlsani f or el sei f statement. These operators aways return a scalar result.

i f statements can be nested.

Oneendi f isrequired peri f clause. If an el se statement is used, there may be
only oneperi f clause. Theremay beasmany el sei f 'sasarerequired. There need
not beany el sei f 'sor any el se statement withinani f clause.

Unconditional Branching

Thegot o and gosub statements control unconditional branching. The target of both
agot o and agosub isalabdl.

goto

A got o isan unconditional jump to alabel with no return:
| abel :
goto | abel;

Parameters can be passed with agot o. The number of parametersis limited by
available stack space. Thisis good for common exit routines:

goto errout (“Matrix singular”);

goto errout (“File not found”);

errout:
pop errmnsg;
errorlog errnsg;

end;

6-28

Language Fundamentals

gosub

With agosub, the address of the gosub statement is remembered and when a
r et ur n statement is encountered, the program will resume executing at the
statement following the gosub.

Parameters can be passed with agosub inthe sameway asagot 0. Withagosub, it
is also possible to return parameters with ther et ur n statement.

Subroutines are not isolated from the rest of your program, and the variables referred
to between the label and the r et ur n statement can be accessed from other placesin
your program.

Since a subroutine is only an address marked by alabel, there can be subroutines
inside procedures. The variables used in these subroutines are the same variables that
are known inside the procedure. They will not be unique to the subroutine, but they
may be locals that are unique to the procedure the subroutineisin. (For details, see
gosub in the GAUSS Language Reference.)

Functions

Single line functions that return one item can be defined with the f n statement:
fn area(r) =pi *r * r;

These functions can be called in the same way asintrinsic functions. The above
function could be used in the following program sequence:

di aneter = 3;
radius = 3/ 2;

a = area(radius);

Rules of Syntax
This section lists the general rules of syntax for GAUSS programs.

Statements

A GAUSS program consists of a series of statements. A statement is a complete
expression or command.

Statements in GAUSS end with a semicolon with one exception: from the GAUSS
command line, the final semicolon in an interactive program isimplicit if it is not
explicitly given:

(gauss) x=5; z=rndn(3,3); y=x+z

6-29

GAUSSUser Guide

Column position is not significant. Blank lines are allowed. Inside a statement and
outside of double quotes, the carriage return/line feed at the end of a physical line will
be converted to a space character as the program is compiled.

A statement containing a quoted string can be continued across several lineswith a
backdash:

s = “This is one really “long string that would be” \

“difficult to assign in just a single line.”;

Case
GAUSS does not distinguish between uppercase and lowercase except inside double
quotes.

Comments

/* this kind of coment can be nested */

@ this kind of comment cannot be nested @

Extraneous Spaces

Extraneous spaces are significant inpri nt and| pri nt statements where the space
isadelimiter between expressions:

print xy z;

Inprint andl pri nt statements, spaces can be used in expressionsthat arein
parentheses:

print (x *y) (x +vy);

Symbol Names

The names of matrices, strings, procedures, and functions can be up to 32 characters
long. The characters must be a phanumeric or an underscore. The first character must
be alphabetic or an underscore.

Labels

A label isused asthetarget of agot o or agosub. The rule for naming labelsis the
same as for matrices, strings, procedures, and functions. A labd is followed
immediately by acolon:

her e:

6-30

Language Fundamentals

Thereference to alabel does not use a colon:
goto here;

Assignment Statements
The assignment operator isthe equal sign ‘=" :

y = X + z;

Multiple assignments must be enclosed in braces‘{ } ":
{ mant, pow } = baselO(Xx);

The comparison operator (equal to) istwo equal signs‘==":
if x ==vy;
print “x is equal to y”;

endi f;

Function Arguments
The arguments to functions are enclosed in parentheses ‘() ’:

y = sqrt(x);
Indexing Matrices
Brackets‘[]’ areusedtoindex matrices:
x ={ 12 3,
375,
37 4,
8 9 5,
6181},
X[3,3];
x[1 2:4,1 3];
Vectors can be indexed with either one or two indices:
v={1234567829};

<
1]

6-31

GAUSSUser Guide

=~
I

v[3];
v[1,6:9];

—
I

X[2, 3] returnsthe element in the second row and the third column of x.

x[1 3 5,4 7] returnsthe submatrix that is the intersection of rows 1, 3, and 5 and
columns4 and 7.

X[., 3] returnsthe third column of x.
X[3: 5, .] returnsthe submatrix containing the third through the fifth rows of x.

The indexing operator will take vector arguments for submatrix extraction or
submatrix assignments:

y = X[rv,cv];

y[rv,cv] = x;

rv and cv can be any expressions returning vectors or matrices. The elements of r v
will be used as the row indices and the elements of cv will be used as the column
indices. If r visascaar 0, all rowswill beused; if cv isascalar O, al columnswill be
used. If avector isused in an index expression, itisillegal to use the space operator or
the colon operator on the same side of the comma as the vector.

Arrays of Matrices and Strings

It is possible to index sets of matrices or strings using the var get function.

In this example, a set of matrix namesisassigned to nvec. The namey isindexed
from mvec and passed to var get , which will return the global matrix y. The
returned matrix is inverted and assigned to g:

mec ={ xy z a};
i = 2;
g

i nv(varget (nmvec[i]));

The following procedure can be used to index the matricesin mvec more directly:
proc inmvec(i);
retp(varget(nmvecl[i]));
endp;

Theni mvec(i) will equal the matrix whose nameisin theith element of nvec.

6-32

Language Fundamentals

In the example above, the procedurei mvec was written so that it always operates on
the vector nvec. The following procedure makes it possible to passin the vector of
names being used:

proc get(array,i);
retp(varget(array[i]));
endp;
Thenget (mvec, 3) will return the 3rd matrix listed in nmvec.
proc put(x,array,i);
retp(varput(x,array[i]));
endp;
And put (x, mvec, 3) will assign x to the 3rd matrix listed inmvec and return al
if successful or aQif it fails.
Arrays of Procedures

It isalso possible to index procedures. The ampersand operator (&) isused to return a
pointer to a procedure.

Assumethat f 1, f 2, andf 3 are procedures that take a single argument. The
following code defines aproceduref i that will return the value of the ith procedure,
evaluated at x:

nms = &1 | &2 | &f3;

proc fi(x,i);
| ocal f;
f = nns[i];
| ocal f:proc;
retp(f(x));
endp;

fi(x,2) will returnf 2(x) . The ampersand is used to return the pointers to the
procedures. nns is anumeric vector that contains a set of pointers. Thel ocal
statement is used twice. The first tells the compiler that f isalocal matrix. Theith
pointer, which isjust anumber, isassigned to f . The second | ocal statement tells
the compiler to treat f as a procedure from this point on; thus the subsequent
statement f (X) isinterpreted as a procedure call.

6-33

GAUSSUser Guide

6-34

Operators

Element-by-Element Operators

Element-by-element operators share common rules of conformability. Some functions
that have two arguments also operate according to the same rules.

Element-by-element operators handle those situations in which matrices are not
conformable according to standard rules of matrix algebra. When amatrix issaid to be
EXE conformable, it refers to this element-by-element conformability. The following

cases are supported:
matrix op matrix
matrix op scalar
scalar op matrix
matrix op vector
vector op matrix
vector op vector

7-1

GAUSSUser Guide

In atypical expression involving an element-by-element operator
Z=X+Yy
conformability is defined as follows:

« If xandy are the same size, the operations are carried out corresponding
element by corresponding element:

132
X= 451
374

243
y= 314
612

375
Z= 765
986

* If xisamatrix andy isascalar, or vice versa, the scalar is operated on with
respect to every element in the matrix. For example, x + 2 will add 2 to every

element of x;
132
X= 451
374

y= 2
354
Z= 673
596

Operators

If xisan Nx1 column vector and y is an NxK matrix, or vice versa, the vector
is swept “across’ the matrix:

vector matrix

1 > 2 4 3

4 > 3 1 4

3 - 6 1 2
result

3 5 4

7 5 8

9 4 5

If xisa1xK column vector and y isan NxK matrix, or vice versa, the vector is
swept “down” the matrix:

Vector 2 4 3

matrix

result

0 0o MNO W N -
g g 0|k B N -
O N ol N AN W -

7-3

GAUSSUser Guide

* When oneargument isarow vector and the other isacolumn vector, the result
of an element-by-element operation will be the “table”’ of the two:

row vector 2 4 3 1

3 5 7 6
column vector 2 4 6 5
5 7 9 8

If x and y are such that none of these conditions apply, the matrices are not
conformable to these operations and an error message will be generated.

Matrix Operators

The following operators work on matrices. Some assume numeric data and others will
work on either character or numeric data.
Numeric Operators

For details on how matrix conformability is defined for element-by-el ement operators,
see “Element-by-Element Operators,” page 7-1.

+ Addition
y=x+z

Performs element-by-element addition.

- Subtraction or negation
y=X- g
y=-Kk
Performs element-by-element subtraction or the negation of all elements,
depending on context.
* Matrix multiplication or multiplication
y=x%*1z

When z has the same number of rows as x has columns, this will perform matrix
multiplication (inner product). If x or z are scalar, this performs standard
€lement-by-element multiplication.

7-4

Operators

%

Division or linear equation solution

XxX=Db/ A
If Aand b are scalars, it performs standard division. If one of the operandsisa
matrix and the other is scalar, the result is amatrix the same size with the results

of the divisions between the scalar and the corresponding elements of the matrix.
Use. / for element-by-element division of matrices.

If b and A are conformable, this operator solves the linear matrix equations.
Linear equation solution is performed in the following cases:
Ax = b

* If Aisasguare matrix and has the same number of rows as b, this
statement will solve the system of linear equationsusing an LU
decomposition.

» If Aisrectangular with the same number of rows as b, this statement wil
produce the least squares solutions by forming the normal equations and
using the Cholesky decomposition to get the solution.

_ Ab
AA

If t rap 2isset, missing values will be handled with pairwise deletion.

Modulo division

y = X %z
For integers, this returns the integer value that is the remainder of the integer
division of x by z If x or zis noninteger, it will first be rounded to the nearest
integer. Thisis an element-by-element operator.
Factorial

y = X

Computes the factoria of every element in the matrix x. Nonintegers are
rounded to the nearest integer before the factorial operator is applied. Thiswill
not work with complex matrices. If x is complex, afatal error will be generated.

Element-by-element multiplication
y=X.%* z
If x isacolumn vector and zis arow vector (or vice versa), the “outer product”

or “table’ of the two will be computed. (For conformability rules, see “ Element-
by-Element Operators,” page 7-1.)

7-5

GAUSSUser Guide

Element-by-element division

y=x./l z

Element-by-element exponentiation
y = XMz
If X is negative, zmust be an integer.

Sameas "

Kronecker (tensor) product
y=X.%*. 1z

Thisresultsin amatrix in which every element in x has been multiplied (scalar
multiplication) by the matrix z. For example:

x={1 2,
341},

z ={4 56,
78 9 };

(= 12
34
L~ 456
789
456 81012
y= 789141618

12 15 18 16 20 24
21 24 27 28 32 36

7-6

Operators

*~ Horizontal direct product

Z=X*~Y,

(L= 12
34

y= 56
78

,- 5 61012
21 24 28 32

Theinput matrices x and y must have the same number of rows. The result will
have col s(x) * col s(y) columns.

Other Matrix Operators

Transpose operator
y =Xx;
The columns of y will contain the same values as the rows of x, and the rows of y

will contain the same values as the columns of x. For complex matrices, this
computes the complex conjugate transpose.

If an operand immediately follows the transpose operator, the’ will beinterpreted
as’ *.Thusy = x’ xisequivaenttoy = X’ *X.
Bookkeeping transpose operator

y = X
Thisis provided primarily as a matrix handling tool for complex matrices. For all
matrices, the columns of y will contain the same values as the rows of x, and the

rows of y will contain the same values as the columns of x. The complex
conjugate transpose isNOT computed when you use . ’ .

If an operand immediately follows the bookkeeping transpose operator, the . ’
will beinterpreted as. * *. Thusy = x.’' x isequivalenttoy = X.' *X.

7-7

GAUSSUser Guide

| Vertical concatenation

z=xXy

X = 123
345

y= 789
123

Z= 345
789

~ Horizontal concatenation

Z = XY,

X = 12
34

y = 56
78

;= 1256
3478

Relational Operators

For details on how matrix conformability is defined for element-by-element operators,
see “Element-by-Element Operators,” page 7-1.

Each of these operators has two equivalent representations. Either can be used (for
example, < or | t), depending only upon preference. The alphabetic form should be
surrounded by spaces.

A third form of these operatorshasa‘$’ and is used for comparisons between
character data and for comparisons between strings or string arrays. The comparisons
are done byte by byte, starting with the lowest addressed byte of the elements being
compared.

7-8

Operators

The equality comparison operators (<, ==, =,/ =) and their dot equivalents can be used
to test for missing values and the NaN that is created by floating point exceptions.
Lessthan and greater than comparisons are not meaningful with missings or NaN'’s,
but equal and not equal will be valid. These operators are sign-insensitive for
missings, NaN'’s, and zeros.

Thestring ‘$’ versions of these operators can a so be used to test missings, NaN'’s, and
zeros. Because they do a strict byte-to-byte comparison, they are sensitive to the sign
bit. Missings, NaN’s, and zeros can al have the sign bit set to 0 or 1, depending on
how they were generated and have been used in a program.

If the relational operator isNOT preceded by adot ‘. ', theresult isalways a scalar 1
or 0, based upon a comparison of all elements of x and y. All comparisons must be true
for the relational operator to return TRUE.

By this definition, then
if x/=vy,

isinterpreted as. “if every element of x isnot equal to the corresponding element of y”

To check if two matrices are not identical, use
if not x ==y,

For complex matrices, the==,/ =,. ==, and . / = operators compare both the real and
imaginary parts of the matrices; al other relational operators compare only the rea
parts.

* Lessthan
zZ=x<Yy,
z=x1lt vy,
Z=X3$<y,

e Lessthan or equa to
Z=X<Yy,
z=xleyvy
zZ=X 3%y,

 Equato
Z=X==Yy,
Z=Xeqy
z=Xx%$==Yy,

7-9

GAUSSUser Guide

* Not equal
z=Xx1/=vy,
Z=Xxney,
z=x $/=vy;

» Greater than or equal to
Z=X2Yy
Z=Xgey,
z=x $=2 vy

* Greater than
Z=X2>Y,
z=xgt vy
z=Xx %>y

If the relational operator |S preceded by adot ‘. ', the result will be amatrix of 1'sand
0's, based upon an element-by-element comparison of x and y.

« Element-by-element less than

Z=X.<Y

z=x.lt vy
z=Xx.%<y

« Element-by-element less than or equal to
Z=X .5,
z=X.levy,
z=x.%<y

* Element-by-element equal to
Z=X.==y,
Z=X.€eqYy,
Z=X.%==y

» Element-by-element not equal to
zZ=Xx.l=vy,
Z=X.ney,
z=x.%/=vy

Operators

» Element-by-element greater than or equal to
Z=X .2,
Z=X .geYy,
zZ=X .32y

» Element-by-element greater than

Z=X.>Y

z=x.gt vy
X .$>y

z

Logical Operators

Thelogical operators perform logical or Boolean operations on numeric values. On
input, anonzero value is considered TRUE and a zero value is considered FAL SE.
Thelogical operatorsreturnalif TRUE and a0 if FALSE. Decisions are based on the
following truth tables:

Complement
X not X
T F
F T
Conjunction
X Y X and Y
T T T
T F F
F T F
F F F

GAUSSUser Guide

Disunction

X Y XorY

T T T

T F T

F T T

F F F
Exclusive Or

X Y | Xxor Y

T T F

T F T

F T T

F F F
Equivalence

X Y [XeqvyY

T T T

T F F

F T F

F F T

For complex matrices, the logical operators consider only the real part of the matrices.

Thefollowing operators require scalar arguments. These arethe onestouseini f and
do statements:

» Complement
Z = not x;

« Conjunction
z=x and vy;

Operators

« Digjunction
Z = Xory;
e Exclusiveor
Z = X XOry;
» Equivaence
Z = Xeqvy,
If thelogical operator ispreceded by adot ‘. *, theresult will beamatrix of 1’'sand 0's
based upon an element-by-element logical comparison of x and y:
» Element-by-element logical complement
z =.not x;
» Element-by-element conjunction
z=x .and vy,
» Element-by-element disjunction
Z=Xx.0rYy;
» Element-by-element exclusive or
Z = X .Xor Yy,
» Element-by-element equivaence

zZ =X .eqVvy,

Other Operators

Assignment Operator
Assignments are done with one equal sign:
y =3
Comma
Commas are used to delimit lists:
clear x,vy,z;
to separate row indices from column indices within brackets:
y = x[3,5];
and to separate arguments of functions within parentheses:
y = nmomentd(x, d);

7-13

GAUSSUser Guide

Period
Dots are used in bracketsto signify “all rows’ or “all columns.”

y = x[.,5];

Space
Spaces are used inside of index brackets to separate indices:
y =x[1 35,35 9];

No extraneous spaces are allowed immediately before or after the comma, or
immediately after the left bracket or before the right bracket.

Spacesareasousedinpri nt and| pri nt statementsto separate the separate
expressions to be printed:

print x/2 2*sqgrt(x);

No extraneous spaces are alowed within expressionsinpri nt orl pri nt
statements unless the expression is enclosed in parentheses:

print (x / 2) (2 * sqrt(x));

Colon
A colon is used within brackets to create a continuous range of indices:
y = x[1:5,.];

Ampersand

The ampersand operator (&) will return a pointer to a procedure (pr oc) or function
(f n). It isused when passing procedures or functions to other functions and for
indexing procedures. (For more information, see “Indexing Procedures,” page 8-9.)

String Concatenation
X = “dog”;
y = “cat”;
z =X $+y,;

print z;

dogcat

Operators

If the first argument is of type string, the result will be of type string. If the first
argument is of type matrix, the result will be of type matrix. Here are some examples.

y = 0 $+ “caterpillar”;
the result will be a1x1 matrix containing cat er pi | .
y = zeros(3,1) $+ “cat”;
the result will be a3x1 matrix, each element containing cat .
If we use they created above in the following:
k =y $+ “fish”;
the result will be a 3x1 matrix with each element containing cat f i sh.
If we then use k created above:
t =" $+ k[1,1];
the result will be astring containing cat f i sh.
If we use the same k to create z as follows:
z = “dog” $+ k[1,1];

the result will be astring containing dogcat f i sh.

String Array Concatenation
$| Vertical string array concatenation

x = "dog”;
y = “fish”;
k =x 3| y;
print k;
dog

fish

GAUSSUser Guide

$~ Horizontal string array concatenation
X = “dog”;
y “fish”;
k = x $~ vy;

print k;

dog fish

String Variable Substitution

In acommand such as
create f1 = olsdat with x, 4, 2;

by default, GAUSS will interpret ol sdat astheliteral name of the GAUSS datafile
you want to create. It will also interpret x asthe literal prefix string for the variable
namesxl x2 x3 x4.

To get the data set name from astring variable, the substitution operator (*) could be
used as follows:

dat aset = “ol sdat”;

create f1 = ~dataset with x, 4, 2;

To get the data set name from a string variable and the variable names from a
character vector, use the following:

dat aset = “ol sdat”;
vnames = { age, pay, Sex };

create f1 = ~dataset with “vnanes, 0, 2;

The general syntax is

Avariable_name

Expressions are not alowed.

Operators

The following commands are currently supported with the substitution operator (*):

create f1 “dat aset wi th “vnanes, 0, 2;

create f1 Ndat aset using "“cndfile;
open f1 = ~dataset;

output file = "outfile;

| oad x = ~datafil e;

load path = ~l path x,y,z,t,w

save “nanme = X;

save path = “spath;

run "prog;

nmsym ~nmstring;

Using Dot Operators with Constants

When you use those operators preceded by a‘. * (dot operators) with a scalar integer
constant, insert a space between the constant and any following dot operator.
Otherwise, the dot will be interpreted as part of the scalar; that is, the decimal point.
For example,

let y =12 3;
X = 2.<y,;
will return x asa scalar 0, not a vector of 0'sand 1's, because
X = 2.<y,;
isinterpreted as
X=2. <y;
and not as
X=2 <y,

GAUSSUser Guide

Be careful when using the dot relational operators (. <, . <,.==,./=,.>,.2).The
same problem can occur with other dot operators, also. For example,

let x =11 1;

y = x./12.1x;
will returny asa scalar .5 rather than a vector of .5’s, because
y = x./12.1/x;
isinterpreted as
y=Kx . 2)1/x;
and not as
y=(x . 2 .Ix;

The second division, then, is handled as a matrix division rather than an element-by-
element division.

Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the* and /
operators have a higher precedence than the + and - operators. In expressions that
contain the above operators, the operand pairs associated with the* or / operator are
evaluated first. Whether * or/ is evaluated first depends on which comesfirst in the
particular expression.

The expression
-5+3/ 4+6* 3
isevaluated as
(-5)+(3/4)+(6*3)

Within aterm, operators of equal precedence are evaluated from left to right.

Operators

The precedence of all operators, from the highest to the lowest, islisted in the
following table:

Operator Precedence || Operator Precedence || Operator ~ Precedence
o 0 . $2 65 $= 55
' 0 = 65 /= 55
! 89 . < 65 < 55
A 85 . < 65 < 55
N 85 . == 65 == 55
(unary -) 83 L > 65 > 55
* 80 > 65 > 55
*~ 80 . eq 65 eq 55
¥ 80 . ge 65 ge 55
CE 80 . gt 65 gt 55
A 80 .le 65 l e 55
/ 80 St 65 It 55
% 75 . ne 65 ne 55
$+ 70 . not 64 not 49
+ 70 .and 63 and 48
- 70 . or 62 or 47
~ 68 . Xor 61 xor 46
| 67 . eqv 60 eqv 45
.8/ = 65 $/ = 55 (space) 35
. $< 65 $< 55 : 35
. $< 65 $< 55 = 10
== 65 == 55
. $> 65 $> 55

7-19

Procedures and Keywords

Procedures are multiple-line, recursive functions that can have either local or global
variables. Procedures allow alarge computing task to be written as a collection of
smaller tasks. These smaller tasks are easier to work with and keep the details of their
operation separate from the other parts of the program. This makes programs easier to
understand and easier to maintain.

A procedure in GAUSS is basically a user-defined function that can be used asiif it
were an intrinsic part of the language. A procedure can be as small and simple or as
large and complicated as necessary to perform a particular task. Procedures allow you
to build on your previous work and on the work of others, rather than starting over
again and again to perform related tasks.

Any intrinsic command or function may be used in a procedure, as well as any user-
defined function or other procedure. Procedures can refer to any global variable; that
is, any variablein the global symbol table that can be shown with the showcommand.
It is aso possible to declare local variables within a procedure. These variables are
known only inside the procedure they are defined in and cannot be accessed from
other procedures or from the main level program code.

All labels and subroutines inside a procedure are local to that procedure and will not
be confused with labels of the same name in other procedures.

8-1

GAUSSUser Guide

Defining a Procedure

A procedure definition consists of five parts, four of which are denoted by explicit

GAUSS commands:

1. Procedure declaration pr oc statement
2. Locd variable declaration | ocal statement
3. Body of procedure

4. Return from procedure r et p statement
5. End of procedure definition endp statement

Thereisalwaysone pr oc statement and one endp statement in a procedure
definition. Any statements that come between these two statements are part of the
procedure. Procedure definitions cannot be nested. | ocal andr et p statements are
optional. There can be multiplel ocal andr et p statementsin a procedure
definition. Here is an example:

proc (3) = regress(Xx, Y);

| ocal xxi, b, ynxb, sse, sd, t;

xxi = invpd(x' x);

b = xxi * (x'y);

ynmxkb = y-xb;

sse = ynmxb’ ymxb/ (rows(x)-col s(x));
sd = sqrt(diag(sse*xxi));

t = b./sd;

retp(b, sd, t);

endp;

This could be used as afunction that takes two matrix arguments and returns three
matrices as aresult. For example:

{ b,sd,t } = regress(x,y);

Following is adiscussion of the five parts of a procedure definition.

Procedures and Keywords

Procedure Declaration
The pr oc statement isthe procedure declaration statement. The format is:
proc [[(rets) =] name(] argl,arg2,...argN) ;

rets Optional constant, number of values returned by the procedure.
Acceptable values here are 0-1023; the default is 1.

name Name of the procedure, up to 32 alphanumeric characters or an
underscore, beginning with an alpha or an underscore.

argh Names that will be used inside the procedure for the arguments that

are passed to the procedure when it is called. There can be 0-1023
arguments. These names will be known only in the procedure being
defined. Other procedures can use the same names, but they will be
separate entities.

Local Variable Declarations

Thel ocal statement isused to declarelocal variables. Local variables are variables
known only to the procedure being defined. The names used in the argument list of the
pr oc statement are alwayslocal. The format of thel ocal statementis

| ocal xy,f.proc, g:fn, z h: keywor d;

Local variables can be matricesor strings. If : proc,: f n,or: keywor d followsthe
variablenameinthel ocal statement, the compiler will treat the symbol asif it were
aprocedure, function, or keyword, respectively. This allows passing procedures,
functions, and keywordsto other procedures. (For more information, see “Passing
Procedures to Procedures,” page 8-8.)

Variablesthat are global to the system (that is, variables listed in the global symbol
table that can be shown with the show command) can be accessed by any procedure
without any redundant declaration inside the procedure. If you want to create variables
known only to the procedure being defined, the names of these local variables must be
listedinal ocal statement. Once avariable nameis encounteredinal ocal
statement, further references to that name inside the procedure will be to the local
rather than to a global having the same name. (Seecl ear g, var get , and var put
in the GAUSS Language Reference for ways of accessing globals from within
procedures that have locals with the same name.)

Thel ocal statement doesnot initialize (set to avalue) thelocal variables. If they are
not passed in as parameters, they must be assigned some value before they are
accessed or the program will terminate withaVari abl e not initialized

error message.

8-3

GAUSSUser Guide

All local and global variables are dynamically allocated and sized automatically
during execution. Local variables, including those that were passed as parameters, can
change in size during the execution of the procedure.

Local variables exist only when the procedure is executing, and then disappear. Local
variables cannot be listed with the show command.

The maximum number of localsis limited by stack space and the size of workspace
memory. The limiting factor applies to the total number of active local symbols at any
one time during execution. If cat has 10 locals and it callsdog which has 20 locals,
there are 30 active locals whenever cat iscalled.

Therecan bemultiple | ocal statementsin aprocedure. They will affect only the
code in the procedure that follows. Therefore, for example, it is possible to refer to a
global x in aprocedure and follow that withal ocal statement that declares alocal
x. All subsequent references to x would beto thelocal x. (Thisis not good
programming practice, but it demonstrates the principle that thel ocal statement
affects only the code that is physically below it in the procedure definition.) Another
example isasymbol that is declared as aloca and then declared as alocal procedure
or function later in the same procedure definition. This allows doing arithmetic on
local function pointers before calling them. (For more information, see “Indexing
Procedures,” page 8-9.)

Body of Procedure

The body of the procedure can have any GAUSS statements necessary to perform the
task the procedure is being written for. Other user-defined functions and other
procedures can be referenced, as well as any global matrices and strings.

GAUSS procedures are recursive, so the procedure can call itself aslong asthereis
logic in the procedure to prevent an infinite recursion. The process would otherwise
terminate with either an | nsuf fi ci ent wor kspace nenory error message or
aProcedure calls too deep error message, depending on the space
necessary to store the locals for each separate invocation of the procedure.

Returning from the Procedure

The return from the procedure is accomplished with ther et p statement:
retp;

r et p(expressionl,expression2,...expressionN) ;

Ther et p statement can have multiple arguments. The number of items returned must
coincide with the number of retsin the pr oc statement.

If the procedure is being defined with no items returned, ther et p statement is
optiona. The endp statement that ends the procedure will generate an implicitr et p

8-4

Procedures and Keywords

with no objects returned. If the procedure returns one or more objects, there must be
an explicit r et p statement.

There can be multiple r et p statementsin a procedure, and they can be anywhere
inside the body of the procedure.
End of Procedure Definition
The endp statement marks the end of the procedure definition:
endp;

Animplicit r et p statement that returns nothing is always generated here, soitis
impossible to run off the end of a procedure without returning. If the procedure was
defined to return one or more objects, executing thisimplicit return will result in a
W ong number of returns error message and the program will terminate.

Calling a Procedure
Procedures are called like this:
dog(i,j, k); /* no returns */
y = cat(i,j,k); /* one return */
{ x,yv,z} =bat(i,j,k); /* multiple returns */

call bat(i,j,k); /* ignore any returns */

Procedures are called in the same way that intrinsic functions are called. The
procedure nameisfollowed by alist of argumentsin parentheses. The arguments must
be separated by commas.

If thereisto be no return value, use
proc (0) = dog(Xx,y,2z);

when defining the procedure, and use
dog(ak, 4, 3);

or
call dog(ak, 4, 3);

when caling it.

8-5

GAUSSUser Guide

The arguments passed to procedures can be complicated expressionsinvolving callsto
other functions and procedures. This calling mechanism is completely genera. For
example,

y = dog(cat (3*x, bird(x,y))-2,1);
islegal.

Keywords

A keyword, like a procedure, is a subroutine that can be called interactively or from
within a GAUSS program. A keyword differs from a procedure in that a keyword
accepts exactly one string argument, and returns nothing. Keywords can perform
many tasks not as easily accomplished with procedures.

Defining a Keyword

A keyword definition is much like a procedure definition. Keywords always are
defined with O returns and 1 argument. The beginning of a keyword definition is the
keywor d statement:

keywor d name(strarg) ;

name Name of the keyword, up to 32 a phanumeric characters or an
underscore, beginning with an alpha or an underscore.
strarg Name that will be used inside the keyword for the argument that is

passed to the keyword when it is called. There is aways one
argument. The nameis known only in the keyword being defined.
Other keywords can use the same name, but they will be separate
entities. Thiswill always be astring. If the keyword is called with no
characters following the name of the keyword, thiswill be a null
string.

The rest of the keyword definition is the same as a procedure definition. (For more
information, see“ Defining a Procedure,” page 8-2.) Keywords always return nothing.
Any r et p statements, if used, should be empty. For example:

keyword add(s)

| ocal tok, sum

i f S $:: H 1!;
print “The argunent is a null string”;
retp;

endi f;

8-6

Procedures and Keywords

print “The argunent is: '“s”"’";

sum = O;
do until s $== “";
{ tok, s } = token(s);
sum = sum + st of (tok);
endo;
format /rd 1, 2;

print “The sumis: sum

endp;

The keyword defined above will print the string argument passed to it. The argument
will be printed enclosed in single quotes.
Calling a Keyword

When akeyword is called, every character up to the end of the statement, excluding
the leading spaces, is passed to the keyword as one string argument. For example, if

you type
add 1 2 3 4 5;
the keyword will respond

The sumis: 15.00

Here is another example:
add;
the keyword will respond
The argunent is a null string

8-7

GAUSSUser Guide

Passing Procedures to Procedures

Procedures and functions can be passed to procedures in the following way:
proc max(x,y); [* procedure to return maxi mum */

if x>y;
retp(x);
el se;
retp(y);
endi f;

endp;

proc min(x,y); [/* procedure to return mninmm */
if x<y;
retp(x);
el se;
retp(y);
endi f;

endp;

fnlgsqgrt(x) = In(sqrt(x)); /* function to return
| og of square root
*/

proc nyproc(&f 1, & 2, x,y);

| ocal fl:proc, f2:fn, z;

z = f1(x,y);
retp(f2(z));
endp;

8-8

Procedures and Keywords

The procedure my pr oc takesfour arguments. Thefirstisaproceduref 1 that hastwo
arguments. The second is afunction f 2 that has one argument. It also has two other
arguments that must be matrices or scalars. Inthel ocal statement, f 1 isdeclared to
be a procedure and f 2 isdeclared to be afunction. They can be used inside the
procedure in the usual way. f 1 will be interpreted as a procedure inside nypr oc, and
f 2 will be interpreted as afunction. The call to mypr oc is made as follows:

k = nyproc(&ax, & gsqrt,5,7); /* log of square root
of 7
*/
k = nyproc(&mn, & gsqrt,5,7); /* log of square root
of 5
*/

The ampersand (&) in front of the function or procedure name in the call to mypr oc
causes a pointer to the function or procedure to be passed. No argument list should
follow the name when it is preceded by the ampersand.

Inside mypr oc, the symbol that is declared as a procedureinthel ocal statementis
assumed to contain a pointer to aprocedure. It can be called exactly like aprocedureis
called. It cannot be save’d, but it can be passed on to another procedure. If it isto be
passed on to another procedure, use the ampersand in the same way.

Indexing Procedures

This example assumes there are a set of procedures named f 1- f 5 that are already
defined. A 1x5 vector pr ocvec isdefined by horizontally concatenating pointersto
these procedures. A new procedure, g(x,i) isthen defined that will return the value of
the ith procedure evaluated at x:

procvec = &1 ~ &2 ~ & 3 ~ &4 ~ &f5;

proc g(x,i);
| ocal f;
f = procvec|[i];
| ocal f:proc;
retp(f(x));
endp;

8-9

GAUSSUser Guide

Thel ocal statement isused twice. Thefirst time, f isdeclared to be alocal matrix.
After f has been set equal to theith pointer, f is declared to be a procedure and is
called asaprocedureinther et p statement.

Multiple Returns from Procedures

Procedures can return multiple items, up to 1023. The procedure is defined like this
example of acomplex inverse:

proc (2) = cminv(xr,xi); /* (2) specifies nunber of

return val ues

*/
| ocal ixy, zr, zi
i Xy = inv(xr)*xi;
zr = inv(xr+xi*ixy);/* real part of inverse */
zi = -ixy*zr; /* imaginary part of inverse */
retp(zr,zi); /* return: real part,

i magi nary part
*
endp;
It can then be called like this:
{ zr,zi } = cminv(xr,xi);

To make the assignment, the list of targets must be enclosed in braces.

Also, aprocedure that returns more than one argument can be used asinput to another
procedure or function that takes more than one argument:

proc (2) = cminv(xr,xi);

| ocal ixy, zr, zi;

i Xy = inv(xr)*xi;
Zr = inv(xr+xi*ixy);/* real part of inverse */
Zi = -ixy*zr; /* imagi nary part of inverse */

Procedures and Keywords

retp(zr,zi);

endp;

proc (2) = cnmult(xr,xi,yr,yi);
| ocal zr, zi;

Zr = Xr*yr-xi*yi;

Zi = Xr*yi+xi*yr;
retp(zr,zi);
endp;

{ zr,zi } = cmnv(cnmul t(xr, xi,yr,yi));

The two returned matrices fromcmmrul t () are passed directly tocni nv() inthe
statement above. Thisis equivalent to the following statements:

{ tr,ti } = cmult(xr,xi,yr,yi);

{ zr,zi } = cminv(tr,ti);

Thisis completely general, so the following program islegal:
proc (2) = cntpl x(x);

| ocal r,c;
r = rows(x);
c = col s(x);

retp(x, zeros(r,c));

endp;

proc (2) = cminv(xr,xi);
| ocal ixy, zr, zi;

i Xy = inv(xr)*xi;

zr i nv(xr+xi*ixy);/* real part of inverse */

Zi -i xy*zr; /* imagi nary part of inverse */

GAUSSUser Guide

retp(zr,zi);

endp;

proc (2) = cnmult(xr,xi,yr,yi);
| ocal zr, zi;

Zr = Xr*yr-xi*yi;

Zi = Xr*yi+xi*yr;
retp(zr,zi);
endp;

{ xr,xi } = cneplx(rndn(3,3));
{ yr,yi } = cneplx(rndn(3,3));

{ zr,zi } = cmmult(cminv(xr,xi),cmnv(yr,yi));

{ gr,qi } = cmult(yr,yi,cminv(yr,yi));

{ w,w } =

crmul t (yr,yi,cmnv(cmul t(cm nv(xr, xi),yr,yi)));

Saving Compiled Procedures

When afile containing a procedure definition is run, the procedureis compiled and is
then resident in memory. The procedure can be called asif it were an intrinsic
function. If the new command is executed or you quit GAUSS and exit to the
operating system, the compiled image of the procedure disappears and the file
containing the procedure definition will have to be compiled again.

If aprocedure contains no global references, that is, if it does not reference any global
matrices or strings and it does not call any user-defined functions or procedures, it can
be saved to disk in compiled formina. f cg filewith the save command, and loaded
later with thel oadp command whenever it isneeded. Thiswill usually be faster than
recompiling. For example:

save path = c:\gauss\cp procl, proc2, proc3;

| oadp path = c:\gauss\cp procl, proc2, proc3;

Procedures and Keywords

The name of the file will be the same as the name of the procedure, witha. f cg
extension. (For details, seel oadp and save in the GAUSS Language Reference.)

All compiled procedures should be saved in the same subdirectory so thereisno
guestion where they are located when it is necessary to reload them. Thel oadp path
can be set in your startup file to reflect this. Then, to load in procedures, use

| oadp procl, proc2, procs3;

Proceduresthat aresaved in . f cg fileswill NOT be automatically loaded. It is
necessary to explicitly load them with | oadp. Thisfeature should be used only when
the time necessary for the autoloader to compile the source istoo great. Also, unless
these procedures have been compiled with #1 i neson, debugging will be more
complicated.

8-13

Libraries

The GAUSS library system allows for the creation and maintenance of modular
programs. The user can create“libraries’ of frequently used functionsthat the GAUSS
system will automatically find and compile whenever they are referenced in a
program.

Autoloader

The autoloader resolves references to procedures, keywords, matrices, and strings that
are not defined in the program from which they are referenced. The autol oader
automatically locates and compiles the files containing the symbol definitions that are
not resolved during the compilation of the main file. The search path used by the
autoloader isfirst the current directory, and then the pathslisted inthesr c_pat h

configuration variable in the order they appear. sr ¢_pat h can be defined in the
GAUSS configuration file.

Forward References

When the compiler encounters a symbol that has not previously been defined, it is
called a“forward reference.” GAUSS handles forward references in two ways,
depending on whether they are “left-hand side” or “right-hand side” references.

9-1

GAUSSUser Guide

Left-Hand Side

A left-hand side reference is usually areference to a symbol on the left-hand side of
the equal sign in an expression such as:

X = 5;

L eft-hand side references, since they are assignments, are assumed to be matrices. In
the previous statement, X is assumed to be amatrix and the code is compiled
accordingly. If, at execution time, the expression actually returns a string, the
assignment is made and the type of the symbol x isforced to string.

Some commands are implicit left-hand side assignments. Thereis an implicit left-
hand side reference to x in each of these statements:

clear x;
| oad x;

open x = nyfile;

Right-Hand Side

A right-hand side referenceis usually areference to asymbol on the right-hand side of
the equal sign in an expression such as:

zZ = 6;
y = z + dog;
print vy;

In the program above, since dog is not previously known to the compiler, the
autoloader will search for it in the active libraries. If it isfound, the file containing it
will be compiled. If it isnot found in alibrary, the autoload/autodel ete state will
determine how it is handled.

The Autoloader Search Path

If the autoloader is OFF, no forward references are allowed. Every procedure, matrix,
and string referenced by your program must be defined beforeit is referenced. An
ext er nal statement can be used above the first reference to a symbol, but the
definition of the symbol must be in the main file or in one of the filesthat are

#i ncl ude’d. No global symbols are deleted automatically.

Libraries

If the autoloader is ON, GAUSS searches for unresolved symbol references during
compilation using a specific search path. If the autoloader is OFF, an Undef i ned
synmbol error message will result for right-hand side references to unknown symbols.

When autoload is ON, the autodel ete state controls the handling of referencesto
unknown symbols.

The following search path will be followed to locate any symbols not previously
defined:

Autodelete ON

1. user library

2. user-specified libraries

3. gausslibrary

4. current directory, then sr ¢c_pat h for fileswith a. g extension

Forward references are adlowed and . g files need not bein alibrary. If there are
symbols that cannot be found in any of the places listed above, an Undef i ned
synbol error message will be generated and al uninitialized variables and all
procedures with global references will be deleted from the global symbol table. This
autodel etion process is transparent to the user, since the symbols are automatically
located by the autoloader the next time the program is run. This process resultsin
more compile time, which may or may not be significant depending on the speed of
the computer and the size of the program.

Autodelete OFF

1. user library
2. user-specified libraries
3. gausslibrary

All . g filesmust belisted in alibrary. Forward references to symbols not listed in an
active library are not allowed. For example:

X = rndn(10, 10);
y = sym(x); /* forward reference to symbol */

proc sym(x);
retp(x+x’);

endp;

9-3

GAUSSUser Guide

Usean ext er nal statement for anything referenced above its definition if
autodelete is OFF:

external proc sym

X

y

rndn(10, 10);
sym(x) ;

proc sym(x);
retp(x+x’);

endp;

When autodelete is OFF, symbols not found in an active library will not be added to
the symbol table. This prevents the creation of uninitialized procedures in the global
symbol table. No deletion of symbols from the global symbol table will take place.

Libraries

Thefirst place GAUSS looks for a symbol definitionisin the “active’ libraries. A
GAUSS library is atext file that serves as a dictionary to the source files that contain
the symbol definitions. When alibrary is active, GAUSS will look in it whenever it is
looking for asymbol itistrying toresolve. Thel i br ar y statement isused to makea
library active. Library files should be located in the subdirectory listed in the

I i b_pat h configuration variable. Library fileshavea. | cg extension.

Suppose you have several procedures that are all related and you want them all
defined in the samefile. You can create such afile, and, with the help of alibrary, the
autoloader will be able to find the procedures defined in that file whenever they are
caled.

First, create the file to contain your desired procedure definitions. By convention, this
fileisusually named with a. sr c extension, but you can use any name and any file
extension. In thisfile, put al the definitions of related procedures you wish to use.
Hereis an example of such afile, called norm src:

/*

** normsrc

** This is a file containing the definitions of three
** procedures which return the normof a matrix x.

** The three nornms cal cul ated are the one-norm the

9-4

Libraries

** jnf-normand the E-norm
* |

proc onenor n x);
ret p(maxc(sunc(abs(x))));

endp;

proc infnormx);
ret p(maxc(sunc(abs(x’))));

endp;

proc Enorm(x);
ret p(sunc(sunmc(x. *x)));

endp;

Next, create alibrary file that contains the name of the file you want accessto, and the
list of symbols defined in it. This can be done with thel i b command. (For details,
seel i b inthe GAUSS Language Reference.)

A library file entry has afilename that is flush left. The drive and path can be included
to speed up the autol oader. Indented below the filename are the symbolsincluded in
the file. There can be multiple symbolslisted on aline, with spaces between. The
symbol type follows the symbol name, with a colon delimiting it from the symbol
name. The valid symbol types are:

fn user-defined single line function
keywor d keyword

proc procedure

mat ri x matrix, numeric or character
string string

9-5

GAUSSUser Guide

If the symbol type is missing, the colon must not be present and the symbol typeis
assumed to be pr oc. Both of the following library files are valid:

Example 1
/*
** math

** This library lists files and procedures for

** mat hemati cal routines.

norm src

onenorm proc i nfnorm proc Enorm proc
conpl ex. src

cmmul t: proc cndi v: proc cnmadd: proc cnsol n: proc
poly.src

pol ychar: proc pol yroot: proc pol ynmult: proc

Example 2
/*
** mat h

** This library lists files and procedures for

** mat hemati cal routines.

c:\gauss\src\normsrc
onenorm : proc
infnorm: proc

Enorm : proc

9-6

Libraries

c:\gauss\src\conpl ex.src

cmmult : proc

cmdiv : proc

cmadd : proc

cnsoln : proc
c:\gauss\src\fconp.src

feq : proc

fne : proc

flt . proc

fgt : proc

fle : proc

fge : proc
c:\gauss\src\fconp. dec

_fecnptol © matrix

Once the autoloader finds, viathe library, the file containing your procedure
definition, everything in that file will be compiled. For this reason, combine related
procedures in the samefilein order to minimize the compiling of procedures not
needed by your program. Do not combine unrelated functionsin one. sr c file,
becauseif onefunctionina. sr c fileis needed, the whole file will be compiled.

user Library

Thisisalibrary for user-created procedures. If the autoloader isON, theuser library is
the first place GAUSS looks when trying to resolve symbol references.

You can update the user library with the |l i b command:
lib user nmyfile.src;
Thiswill update the user library by adding areferencetonyfil e. src.

No user library is shipped with GAUSS. It will be created the first time you use the
I'i b command.

For details of the parameters available with thel i b command, see the GAUSS
Language Reference.

9-7

GAUSSUser Guide

.g Files

If autoload and autodel ete are ON and a symbol is not found in alibrary, the
autoloader will assume it is a procedure and look for afile that has the same name as
the symbol and a. g extension. For example, if you have defined a procedure called
squar e, you could put the definition in afile called squar e. g in one of the
subdirectorieslisted in your sr ¢c_pat h. If autodelete is OFF, the . g file must be
listed in an active library; for example, in the user library.

Global Declaration Files

If your application makes use of several global variables, create afile containing
decl ar e statements. Use fileswith the extension . dec to assign default valuesto
globa matrices and strings with decl ar e statements. A filewith a. ext extension
containing the same symbolsin ext er nal statements can also be created and

#i ncl ude’d at the top of any file that references these global variables. An
appropriate library file should contain the name of the. dec filesand the names of the
globals they declare.

Here is an example that illustrates the way in which . dec, . ext,.l cg,and. src
fileswork together. Always begin the names of global matrices or stringswith *_’ to
distinguish them from procedures:

.src File
/*

** fconp.src

** These functions use fcnptol to fuzz the conparison

** operations to allow for roundoff error.

** The statenent: y feq(a, b);

a eq b;

** js equivalent to: y

** Returns a scalar result, 1 (true) or 0 (false)

* % y = feq(a, b);

9-8

Libraries

* ok y = fne(a, b);
*/

#i ncl ude fconp. ext;
proc feq(a,b);

retp(abs(a-b) < _fcnptol);
endp;

proc fne(a,b);
retp(abs(a-b) > fcnptol);
endp;

. dec File

/*
** fconp.dec - global declaration file for fuzzy

** conpari sons.
*/

declare matrix _fcnptol != le-14;

. ext File

/*
** fconp.ext — external declaration file for fuzzy

** conpari sons.
*/

external matrix _fcnptol

9-9

GAUSSUser Guide

.1 cg File

/*
** fconp.lcg — fuzzy conpare library
*/

f conp. dec

_fcnptol :matri x
fconp. src

feq: proc

f ne: proc

With the exception of the library (. | cg) files, these files must be located along your
src_pat h. Thelibrary filesmust be on your | i b_pat h. With thesefilesin place,
the autoloader will be able to find everything needed to run the following programs:

l'ibrary fconp;
X = rndn(3, 3);
Xi = inv(x);

Xi X = Xi *X;
if feq(xix,eye(3));
print “lnverse within tol erance.”;
el se;
print “lnverse not within tol erance.”;

endi f;

If the default tolerance of 1e- 14 istoo tight, the tolerance can be relaxed:

library fconp;
X = rndn(3, 3);
Xi = inv(x);

Xi X = Xi *X;

_fecnptol = 1e-12; [* reset tolerance */

Libraries

if feq(xix,eye(3));

print “lnverse within tol erance.”;

el se;
print “lnverse not within tolerance.”;
endi f;
Troubleshooting

Below isapartial list of errors you may encounter in using the library system,
followed by the most probable cause.

(4) : error @G0290 : 'c:\gauss\lib\prt.lcg’ : Library not
f ound

The autoloader islooking for alibrary filecalled prt . | cg, becauseit has been
activatedinal i br ar y statement. Check the subdirectory listed inyour | i b_pat h
configuration variable for afilecalled prt. | cg.

(0) : error (0292 : "prt.dec’ : Filelisted in library not
f ound

The autoloader cannot find afilecalled prt . dec. Check for thisfile. It should exist
somewhere along your st ¢c_pat h, if you haveit listedinprt. | cg.

Undefi ned synbol s:
PRTVEC c:\gauss\src\tstprt.g(2)

The symbol prt vec could not be found. Check if the file containing prt vec isin
thesr c_pat h. You may not have activated the library that contains your symbol
definition. Dosoinal i br ary statement.

c:\gauss\src\prt.dec(3) : Redefinition of ‘__vnanes’
(proc) __vnanes being declared external matrix

You are trying to illegally force asymbol to another type. You probably have a name
conflict that needs to be resolved by renaming one of the symbols.

GAUSSUser Guide

c:\gauss\lib\prt.lcg(5 : error G301 : ‘prt.dec’
Syntax error in library
Undefi ned synbol s:
__VNAMES c:\gauss\src\prt.src(6)
Check your library to seethat all filenames are flush left and all symbols defined in
that file are indented by at least one space.
Using dec Files
When constructing your own library system:

* Whenever possible, declare variablesin afile that contains only decl ar e
statements. When your program is run again without clearing the workspace,
the file containing the variable declarations will not be compiled and
decl ar e warnings will be prevented.

» Provide afunction containing regular assignment statementsto reinitialize the
global variablesin your program if they ever need to bereinitialized during or
between runs. Put thisin a separate file from the declarations:

proc (0) = gl obset;
_vnanme = “X";

_con =

[EEY

_row =

e

_title = 7,
endp;
* Never declare aglobal in more than onefile.

» To avoid meaningless redefinition errorsand decl ar e warnings, never
declare aglobal more than once in any one file. Redefinition error messages
and decl ar e warnings are meant to help you prevent name conflicts, and
will be useless to you if your code generates them normally.

By following these guidelines, any decl ar e warnings and redefinition errors you
get will be meaningful. By knowing that such warnings and errors are significant, you
will be able to debug your programs more efficiently.

compier 1. 0

GAUSS dlows you to compile your large, frequently used programs to afile that can
be run over and over with no compile time. The compiled image is usually smaller
than the uncompiled source. GAUSS is not a native code compiler; rather, it compiles
to aform of pseudocode. Thefile will havea. gcg extension.

The conpi | e command will compile an entire program to a compiled file. An
attempt to edit a compiled file will cause the source code to be loaded into the editor if
it isavailable to the system. Ther un command assumes a compiled fileif no
extension isgiven, and that afilewitha. gcg extensionisinthesrc_pat h. A
saveal | commandisavailableto save the current contents of memory in acompiled
file for instant recall later. The use command will instantly load a compiled program
or set of procedures at the beginning of an ASCII program before compiling the rest of
the ASCII program file.

Sincethe compiled files are encoded binary files, the compiler is useful for devel opers
who do not want to distribute their source code.

Compiling Programs

Programs are compiled with the conpi | e command.

10-1

GAUSSUser Guide

Compiling a File

Source code program files that can be run with the r un command can be compiled to
. gcg fileswith theconpi | e command:

conpil e gxy. e;

All procedures, global matrices and strings, and the main program segment will be
saved in the compiled file. The compiled file can be run later using ther un command.
Any libraries used in the program must be present and active during the compile, but
not when the program isrun. If the program usesthedl i br ar y command, the. dl |
files must be present when the program is run and the dlibrary path must be set to the
correct subdirectory. Thiswill be handled automatically in your configuration file. If
the program is run on a different computer than it was compiled on, the. dl | files
must be present in the correct location. sysst at e (case 24) can be used to set the
dl i brary path at run-time.

Saving the Current Workspace

The simplest way to create a compiled file containing a set of frequently used
proceduresistousesaveal | and anext er nal statement:

library pgraph;
external proc xy,logx,|ogy,loglog,hist;

saveal | pgraph;

List the procedures you will beusing in an ext er nal statement and follow it with a
saveal | statement. It isnot necessary to list procedures you do not explicitly call,
but are called from another procedure, because the autoloader will automatically find
them beforethesaveal | command is executed. Nor isit necessary to list every
procedure you will be calling, unless the source will not be available when the
compiled fileisuse’d.

Remember, the list of active librariesis NOT saved in the compiled file so you may
gtill need al i br ar y statement in aprogram that isuse’ing acompiled file.

Debugging

If you are using compiled code in a development situation where debugging is
important, compile the file with line number records. After the development is over,

10-2

Compiler

you can recompile without line number records if the maximum possible execution
speed isimportant. If you want to guarantee that all procedures contain line number

records, put anew statement at the top of your program and turn line number tracking
on.

10-3

File 1/O

Thefollowing isapartia list of the /O commands in the GAUSS programming

language

cl ose

cl oseal |
col sf
create

df ree

eof

f checkerr
fclearerr
fflush
fgets
fget sa

f get sat

f get st
fileinfo
files

Close afile.

Close all open files.

Number of columnsin afile.

Create GAUSS data set.

Space remaining on disk.

Test for end of file.

Check error status of afile.

Check error status of afile and clear error flag.

Flush afile's output buffer.

Read aline of text from afile.

Read multiple lines of text from afile.

Read multiple lines of text from afile, discarding newlines.
Read aline of text from afile, discarding newline.

Returns names and information of files matching a specification.
Returns adirectory listing as a character matrix.

GAUSSUser Guide

fil esa
f open
fputs

f put st
f seek
fstrerror
ftell
getf
get name
i scpl xf
| oad

| oadd

| oadm

| oads
open
out put
r eadr

r owsf
save
saved
seekr
sortd

t ypef
witer

ASCII Files

Returns alist of files matching a specification.
Open afile.

Write strings to afile.

Write strings to afile, appending newlines.
Reposition file pointer.

Get explanation of last file 1/O error.

Get position of file pointer.

Load afileinto astring.

Get variable names from data set.

Returns whether a data set is real or complex.
Load matrix file or small ASCII file (same as| oadn).
Load asmall GAUSS data set into a matrix.
Load matrix file or small ASCII file.

Load string file.

Open a GAUSS data set.

Control printing to an auxiliary output file or device.
Read a specified number of rows from afile.
Number of rowsin file.

Save matrices, strings, procedures.

Save amatrix in a GAUSS data set.

Reset read/write pointer in a data set.
Sort a data set.

Returns type of data set (bytes per element).
Write data to a data set.

GAUSS has facilities for reading and writing ASCI| files. Since most software can
read and write ASCI| files, this provides away of sharing data between GAUSS and
many other kinds of programs.

Filel/O

Matrix Data

Reading

Files containing numeric data that are delimited with spaces or commas and are small
enough to fit into asingle matrix or string can be read with | oad. Larger ASCII data
files can be converted to GAUSS data sets with the ATOG utility program see

“ATOG” page 16-1. ATOG can convert packed ASCII filesaswell as delimited files.

For small delimited datafiles, thel oad statement can be used to load the data
directly into a GAUSS matrix. The resulting GAUSS matrix must be no larger than
the limit for a single matrix.

For example,
| oad x[] = datl.asc;

will load the datain the filedat 1. asc into an Nx1 matrix x. This method is
preferred because r ows (x) can be used to determine how many elements were
actually loaded, and the matrix can ber eshape’d to the desired form:

|l oad x[] = dat1l. asc;
if rows(x) eq 500;
X = reshape(x, 100, 5);
el se;
errorlog “Read Error”;
end;

endi f;

For quick interactive loading without error checking, use
| oad x[100,5] = datl.asc;

Thiswill load the data into a 100x5 matrix. If there are more or fewer than 500
numbers in the data set, the matrix will automatically be reshaped to 100x5.

Writing

To write datato an ASCII file, the pri nt or pri nt f mcommand is used to print to
the auxiliary output. The resulting files are standard ASCI|I files and can be edited
with GAUSS's editor or another text editor.

Theout put andout wi dt h commands are used to control the auxiliary output. The
print orpri ntf mcommand isused to control what is sent to the output file.

GAUSSUser Guide

The window can be turned on and off using scr een. When printing alarge amount
of datato the auxiliary output, the window can be turned off using the command

screen off;

Thiswill make the process much faster, especially if the auxiliary output isadisk file.

It is easy to forget to turn the window on again. Use the end statement to terminate
your programs, end will automatically performscr een on andout put of f.

The following commands can be used to control printing to the auxiliary output:

f or mat Specify format for printing a matrix.

out put Open, close, rename auxiliary output file or device.
outw dth Auxiliary output width.

printfm Formatted matrix print.

pri nt Print matrix or string.

screen Turn printing to the window on and off.

This example illustrates printing a matrix to afile:
format /rd 8, 2;
outwi dth 132;
output file = nyfile.asc reset;
screen off;
print x;
out put off;

screen on,

The numbersin the matrix x will be printed with afield width of 8 spaces per number,
and with 2 places beyond the decimal point. The resulting file will be an ASCII data
file. It will have 132 column lines maximum.

A more extended example follows. This program will write the contents of the
GAUSSfilemydat a. dat into an ASCII filecalled nydat a. asc. If thereisan
existing file by the name of nydat a. asc, it will be overwritten:

output file = nydata.asc reset;
screen off;

format /rd 1, 8;

11-4

Filel/O

open fp = nydata;
do until eof (fp);
print readr(fp, 200);;
endo;
fp = close(fp);

end;

Theout put ... reset commandwill create an auxiliary output file called

nydat a. asc to receive the output. The window is turned off to speed up the

process. The GAUSS datafile nydat a. dat isopened for reading, and 200 rows

will be read per iteration until the end of thefile is reached. The data read will be

printed to the auxiliary output mydat a. asc only, because the window is off.
General File 1/0

get f will read afile and return it in astring variable. Any kind of file can beread in
thisway aslong asit will fit into asingle string variable.

To read files sequentially, usef open to open thefileand usef get s, f put s, and
associated functions to read and write the file. The current position in afile can be
determined with f t el | . The following example uses these functionsto copy an
ASCII text file:

proc copy(src, dest);

|l ocal fin, fout, str;

fin = fopen(src, “rb");
if not fin;
retp(l);

endi f;

GAUSSUser Guide

fout = fopen(dest, “wbh");
if not fin;
call close(fin);
retp(2);

endi f;

do until eof(fin);
str = fgets(fin, 1024);
if fputs(fout, str) /= 1;
call close(fin);
call close(fout);
retp(3);
endi f;

endo;

call close(fin);
call close(fout);
retp(0);

endp;

Data Sets

Layout

GAUSS data sets are the preferred method of storing data for use within GAUSS. Use
of these data sets allows extremely fast reading and writing of data. Many library
functions are designed to read data from these data sets.

GAUSS data sets are arranged as matrices; that is, they are organized in terms of rows
and columns. The columnsin a datafile are assigned hames and these names are
stored in the header or, in the case of the v89 format, in a separate header file.

11-6

Filel/O

The limit on the number of rowsin a GAUSS data set is determined by disk size. The
[imit on the number of columnsislimited by RAM. Data can be stored in 2, 4, or 8
bytes per number, rather than just 8 bytes as in the case of GAUSS matrix files.

The ranges of the different formats are:

Data Significant

Bytes Type Digits Range
2 integer 4 -32768 < X < 32767
4 single 6-7 8.43E-37 < [X| < 3.37E+38
8 double 15-16 4.19E-307 < |[X]| < 1.67E+308

Creating Data Sets

Data sets can be created with the cr eat e command. The names of the columns, the
type of data, etc., can be specified. (For details, see cr eat e inthe GAUSS Language
Reference.)

Data sets, unlike matrices, cannot change from real to complex, or vice-versa. Data
sets are always stored arow at atime. The rows of acomplex data set, then, have the
real and imaginary parts interleaved, element by element. For this reason, you cannot
writerowsfrom acomplex matrix to areal data set — thereisno way to interleave the
datawithout rewriting the entire data set. If you must, explicitly convert the rows of
datafirst, using ther eal andi nag functions (see the GAUSS Language Reference),
and then write them to the data set. Rows from areal matrix CAN be written to a
complex data set; GAUSS simply supplies 0's for the imaginary part.

To create a complex data set, include the conpl ex flagin your cr eat e command.

Reading and Writing
The basic functions in GAUSS for reading datafiles are open and r eadr :
open f1 = dat1;
X = readr(f1,100);

Ther eadr function inthe examplewill read in 100 rowsfrom dat 1. dat . The data
will be assigned to amatrix x.

| oadd and saved can be used for loading and saving small data sets.

GAUSSUser Guide

The following exampleillustrates the creation of a GAUSS data file by merging
(horizontally concatenating) two existing data sets:

filel = “dat1”;
file2 = “dat2”;
outfile = “daty”;
open finl = ~filel for read;
open fin2 = ~file2 for read,
varnanes = getname(filel)]|getname(file2);
otyp = maxc(typef (finl)|typef(fin2));
create fout = "outfile with ~varnanes, 0, otyp;
nr = 400;
do until eof (finl) or eof (fin2);
yl = readr(finl, nr);
y2 = readr(fin2,nr);

r maxc(rows(yl) | rows(y2));

y yi[1:r,.] ~ y2[L:r,.];
call witer(fout,y);

endo;

closeall finl, fin2, fout;

In the previous example, datasetsdat 1. dat and dat 2. dat are opened for
reading. The variable names from each data set are read using get nane, and
combined in asingle vector called var nanes. A variable called ot yp iscreated that
will be equal to the larger of the two data types of the input files. Thiswill ensure the
output is not rounded to |ess precision than theinput files. A new dataset dat y. dat
iscreatedusingthecreate ... with ... command. Then, on every iteration
of the loop, 400 rows are read in from each of the two input data sets, horizontally
concatenated, and written out to dat y. dat . When the end of one of theinput filesis
reached, reading and writing will stop. Thecl oseal | command is used to close all
files.

11-8

Filel/O

Distinguishing Character and Numeric Data

Although GAUSS itself does not distinguish between numeric and character columns
in amatrix or data set, some of the GAUSS Applications programs do. When creating
adata set, it isimportant to indicate the type of datain the various columns. The
following discusses two ways of doing this.

Using Type Vectors

Thev89 dataset format distingui shes between character and numeric datain data sets
by the case of the variable names associated with the columns. The v96 data set
format, however, stores thistype of information separately, resulting in amuch cleaner
and more robust method of tracking variable types, and greater freedom in the naming
of data set variables.

When you create a data set, you can supply avector indicating the type of datain each
column of the data set. For example:

data = { M 32 21500,

F 27 36000,

F 28 19500,

M 25 32000 };
vnanes = { “Sex” “Age” “Pay” };
vtypes ={ 01 1 };

create f = nydata with “vnanes, 3, 8, vtypes;
call witer(f,data);

f = close(f);

To retrieve the type vector, usevar t ypef :
open f = nydata for read;

vn get nanef (f);

vt vartypef (f);
print vn’;
print vt’;

Sex Age Pay

0 1 1

GAUSSUser Guide

Thefunction get nanmef inthe previous example returns a string array rather than a
character vector, so you can print it without the ‘$’ prefix.

Using the Uppercase/Lowercase Convention (v89 Data Sets)

Thisisobsolete, usevart ypef and v96 data setsto be compatible with future
versions.

The following method for distinguishing character/numeric data will soon be
obsolete; use the Type Vectors method described earlier.

To distinguish numeric variables from character variables in GAUSS data sets, some
GAUSS application programs recognize an “uppercase/lowercase” convention: if the
variable name is uppercase, the variable is assumed to be numeric; if the variable
name islowercase, the variable is assumed to be character. The ATOG utility program
implements this convention when you use the # and $ operators to toggle between
character and numeric variable names listed inthei nvar statement, and you have
specified nopr eser vecase.

GAUSS does not make this distinction internally. It is up to the program to keep track
of and make use of the information recorded in the case of the variable namesin adata
Set.

When creating a data set using the saved command, this convention can be
established as follows:

data = { M 32 21500,
F 27 36000,
F 28 19500,
M 25 32000 };
dat aset = “nydata”;
vhanes = { “sex” AGE PAY };
call saved(data, dat aset, vhanes);

It is necessary to put “sex” in quotesin order to prevent it from being forced to
uppercase.

The procedure get nane can be used to retrieve the variable names:
print $getnanme(“nmydata”);

11-10

Filel/O

The names are:

sex
AGE
PAY

When writing or creating a data set, the case of the variable namesisimportant. This
is especidly trueif the GAUSS applications programs will be used on the data set.

Matrix Files

GAUSS matrix files are files created by the save command.

The save command takes a matrix in memory, adds a header that contains
information on the number of rows and columns in the matrix, and storesit on disk.
Numbers are stored in double precision just as they are in matrices in memory. These
files have the extension . f nt .

Matrix files can be no larger than a single matrix. No variable names are associated
with matrix files.

GAUSS matrix filescan bel oad’ed into memory using thel oad or | oadm
command, or they can be opened with the open command and read with ther eadr
command. With ther eadr command, a subset of the rows can be read. With the

| oad command, the entire matrix is| oad’ed.

GAUSS matrix filescanbeopen’edf or read, butnotf or append orf or
updat e.

If amatrix file has been opened and assigned afile handle, r owsf and col sf canbe
used to determine how many rows and columns it has without actually reading it into
memory. seekr andr eadr can be used to jJump to particular rows and to read them
into memory. Thisis useful when only a subset of rows is needed at any time. This
procedure will save memory and be much faster than | oad’ing the entire matrix into
memory.

File Formats

This section discusses the GAUSS binary file formats.
There are four currently supported matrix file formats.

Version Extension Support
Small Matrix v89 Cfnt Obsolete, use v96.
Extended Matrix v89 it Obsolete, use v96.

11-11

GAUSSUser Guide

Matrix v92 Cfmt Obsolete, use v96.
Universal Matrix v96 fm Supported for read/write.

There are four currently supported string file formats:

Version Extension Support

Small String v89 . fst Obsolete, use v96.
Extended String v89 . fst Obsolete, use v96.
String v92 . fst Obsolete, use v96.
Universal String vo6 . fst Supported for read/write.

There are four currently supported data set formats:

Version Extension Support
Small Data Set v89 . dat Obsolete, use v96.
. dht
Extended Data Set v89 . dat, Obsolete, use v96.
. dht
Data Set v92 . dat Obsolete, use v96.
Universal Data Set v96 . dat Supported for read/write.

Small Matrix v89 (Obsolete)

Matrix files are binary files, and cannot be read with atext editor. They are created
with save. Matrix fileswith up to 8190 elementshave a. f nt extension and a 16-
byte header formatted as follows:

Offset Description

0-1 DDDD hex, identification flag
2-3 rows, unsigned 2-byte integer
4-5 columns, unsigned 2-byte integer

6-7 size of file minus 16-byte header, unsigned 2-byte integer
8-9 type of file, 0086 hex for real matrices, 8086 hex for complex matrices
10-15 reserved, dl 0's

11-12

Filel/O

The body of the file starts at offset 16 and consists of |EEE format double-precision
floating point numbers or character el ements of up to 8 characters. Character elements
take up 8 bytes and are padded on the right with zeros. The size of the body of thefile
is 8*rows* cols rounded up to the next 16-byte paragraph boundary. Numbers are
stored row by row. A 2x3 real matrix will be stored on disk in the following way, from
the lowest addressed element to the highest addressed el ement:

[1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

For complex matrices, the size of the body of thefileis 16* rows* cols. The entire real
part of the matrix is stored first, then the entire imaginary part. A 2x3 complex matrix
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed el ement:

(real part) [1,1] [12] [1,3] [21] [22] [23]
(imaginary part) [1,1] [1,2] [1,3] [2.1] [22] [2.3]

Extended Matrix v89 (Obsolete)

M atrices with more than 8190 elements are saved in an extended format. These files
have a 16-byte header formatted as follows:

Offset Description

0-1 EEDD hex, identification flag
2-3 type of file, 0086 hex for real matrices, 8086 hex for complex matrices
4-7 rows, unsigned 4-byte integer

8-11 columns, unsigned 4-byte integer
12-15 size of file minus 16-byte header, unsigned 4-byte integer
The size of the body of an extended matrix file is 8* rows* cols (not rounded up to a

paragraph boundary). Aside from this, the body is the same as the small matrix v89
file.

Small String v89 (Obsolete)

String files are created with save. String files with up to 65519 characters have a 16-
byte header formatted as follows:

Offset Description
0-1 DFDF hex, identification flag

11-13

GAUSSUser Guide

2-3 1, unsigned 2-byte integer

Offset Description

4-5 length of string plus null byte, unsigned 2-byte integer
6-7 size of file minus 16-byte header, unsigned 2-byte integer
8-9 001D hex, type of file
10-15 reserved, dl O's
The body of the file starts at offset 16. It consists of the string terminated with a null

byte. The size of the file is the 16-byte header plus the length of the string and null
byte rounded up to the next 16-byte paragraph boundary.

Extended String v89 (Obsolete)
Strings with more than 65519 characters are saved in an extended format. These files
have a 16-byte header formatted as follows:
Offset Description
0-1 EEDF hex, identification flag
2-3 001D hex, type of file
4-7 1, unsigned 4-byte integer

8-11 length of string plus null byte, unsigned 4-byte integer
12-15 size of file minus 16-byte header, unsigned 4-byte integer

The body of the file starts at offset 16. It consists of the string terminated with a null
byte. The size of the file is the 16-byte header plus the length of the string and null
byte rounded up to the next 8-byte boundary.

Small Data Set v89 (Obsolete)

All data sets are created with cr eat e. v89 data sets consist of two files; one (. dht)
contains the header information; the second (. dat) containsthe binary data. The data
will be one of three types:

8-byte |EEE floating point
4-byte |IEEE floating point
2-byte signed binary integer, twos complement

11-14

Filel/O

Numbers are stored row by row.

11-15

GAUSSUser Guide

The. dht fileisused in conjunction withthe. dat file asadescriptor fileand asa
place to store names for the columnsinthe. dat file. Data sets with up to 8175
columns have a. dht file formatted as follows:

Offset Description

0-1 DADA hex, identification flag

2-5 reserved, dl 0's

6-7 columns, unsigned 2-byte integer

8-9 row sizein bytes, unsigned 2-byte integer
10-11 header sizein bytes, unsigned 2-byte integer
12-13 datatypein. dat file (2 4 8), unsigned 2-byte integer
14-17 reserved, dl 0's

18-21 reserved, dl 0's

22-23 control flags, unsigned 2-byte integer
24-127 reserved, dl O's

Column names begin at offset 128 and are stored 8 bytes each in ASCII format.
Names with less than 8 characters are padded on the right with bytes of 0.

The number of rowsinthe. dat fileiscaculated in GAUSS using thefile size,
columns, and data type. This means that users can modify the . dat file by adding or
deleting rows with other software without updating the header information.

Names for the columns should be lowercase for character data, to be able to
distinguish them from numeric data with var t ype.

GAUSS currently examines only the 4's bit of the control flags. This bit is set to O for
real datasets, 1 for complex data sets. All other bits are O.

Data sets are always stored arow at atime. A real data set with 2 rows and 3 columns
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed el ement:

[1,1] [1,2] [1,3]
[2,1] [2,2] [2,3]

11-16

Filel/O

The rows of acomplex data set are stored with the real and imaginary parts
interleaved, element by element. A 2x3 complex data set, then, will be stored on disk
in the following way, from the lowest addressed element to the highest addressed

e ement:

[1,2]r [1,1]i [1,2]r [2,2]i [2,3]r [1,3]i
[2,1]r [2,1]i [2,2]r [2,2]i [2 3]r [2 3]i

Extended Data Set v89 (Obsolete)

Data sets with more than 8175 columns are saved in an extended format. These files
havea. dht descriptor file formatted as follows:

Offset

Description

0-1
2-3
4-7
8-11
12-15
16-19
20-23
24-27
28-29
30-127

EEDA hex, identification flag

datatypein. dat file(2 4 8), unsigned 2-byte integer
reserved, al 0's

columns, unsigned 4-byte integer

row sizein bytes, unsigned 4-byte integer

header size in bytes, unsigned 4-byte integer

reserved, dl 0's

reserved, al 0's

control flags, unsigned 2-byte integer

reserved, dl 0's

Aside from the differencesin the descriptor file and the number of columns allowed in
the data file, extended data sets conform to the v89 data set description specified

above.

Matrix v92 (Obsolete)

Offset Description

0-3 aways0

4-7 aways OXEECDCDCD
8-11 reserved

1117

GAUSSUser Guide

Offset Description
12-15 reserved
16-19 reserved
20-23 0 - real matrix, 1 - complex matrix
24-27 number of dimensions
0 - scalar
1- row vector
2 - column vector, matrix
28-31 header size, 128 + dimensions * 4, padded to 8-byte boundary
32-127 reserved

If the datais ascalar, the datawill directly follow the header.

If the datais arow vector, an unsigned integer equaling the number of columnsin the
vector will precede the data, along with 4 padding bytes.

If the datais a column vector or amatrix, there will be two unsigned integers
preceding the data. The first will represent the number of rows in the matrix and the
second will represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in
double precision (8 bytes per element, 16 if complex). For complex matrices, all of the
real parts are stored first, followed by all the imaginary parts.

String v92 (Obsolete)

Offset Description

0-3 aways0

4-7 aways OXEECFCFCF

8-11 reserved

12-15 reserved

16-19 reserved

20-23 sizeof string in units of 8 bytes

24-27 length of string plus null terminator in bytes

28-127

reserved

11-18

Filel/O

Thesize of thedataareais alwaysdivisible by 8, and is padded with nullsif the length
of the string is not evenly divisible by 8. If the length of the string is evenly divisible
by 8, the data area will be the length of the string plus 8. The data area follows
immediately after the 128-byte header.

Data Set v92 (Obsolete)

Offset Description

0-3 aways0

4-7 always OXEECACACA

8-11 reserved

12-15 reserved

16-19 reserved

20-23 rowsin data set

24-27 columnsin data set

28-31 0 - real data set, 1 - complex data set
32-35 typeof datain data set, 2, 4, or 8
36-39 header sizein bytesis 128 + columns* 9
40-127 reserved

The variable names begin at offset 128 and are stored 8 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 8 characters are
padded on the right with bytes of zero.

Thevariabletype flagsimmediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates anumeric
variable and a O indicates a character variable.

The contents of the data set follow the header and start on an 8-byte boundary. Datais
either 2-byte signed integer, 4-byte single precision floating point, or 8-byte double
precision floating point.

11-19

GAUSSUser Guide

Matrix v96

Offset Description

0-3 aways OXFFFFFFFF

4-7 aways0

8-11 always OxFFFFFFFF

12-15 dwaysO0

16-19 aways OXFFFFFFFF

20-23 OxFFFFFFFF for forward byte order, O for backward byte order
24-27 OxFFFFFFFF for forward bit order, O for backward bit order
28-31 always OXABCDEFO01

32-35 currently 1

36-39 reserved

40-43 floating point type, 1 for IEEE 754

44-47 1008 (double precision data)

48-51 8, the size in bytes of a double matrix

52-55 0- real matrix, 1 - complex matrix

56-59 1-imaginary part of matrix followsreal part (standard GAUSS style)
1 - imaginary part of each element immediately follows real part
(FORTRAN style)

60-63 number of dimensions
0 - scalar
1 - row vector
2 - column vector or matrix

64-67 1-row magjor ordering of elements, 2 - column major

68-71 awaysO

72-75 header size, 128 + dimensions * 4, padded to 8-byte boundary
76-127 reserved

If the datais a scaar, the datawill directly follow the header.

11-20

Filel/O

If the datais arow vector, an unsigned integer equaling the number of columnsin the
vector will precede the data, along with 4 padding bytes.

If the datais a column vector or amatrix, there will be two unsigned integers
preceding the data. The first will represent the number of rows in the matrix and the
second will represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in
double precision (8 bytes per element, 16 if complex). For complex matrices, all of the
real parts are stored first, followed by al theimaginary parts.

Data Set v96

Offset Description

0-3 aways OXFFFFFFFF

4-7 aways0

8-11 always OxFFFFFFFF

12-15 dwaysO0

16-19 aways OXFFFFFFFF

20-23 OxFFFFFFFF for forward byte order, O for backward byte order

24-27 OxFFFFFFFF for forward bit order, O for backward bit order

28-31 OxABCDEF02

32-35 version, currently 1

36-39 reserved

40-43 floating point type, 1 for IEEE 754

44-47 12 - signed 2-byte integer
1004 - single precision floating point
1008 - double precision float

48-51 2,4, or 8, the size of an element in bytes

52-55 0- real matrix, 1 - complex matrix

56-59 1-imaginary part of matrix followsreal part (standard GAUSS style)
2 - imaginary part of each element immediately follows real part
(FORTRAN style)

60-63 always?2

11-21

Offset Description

64-67 1-row major ordering of elements, 2 - column major

68-71 awaysO

72-75 header size, 128 + columns * 33, padded to 8-byte boundary
76-79 reserved

80-83 rowsin data set

84-87 columnsin data set

88-127 reserved

The variable names begin at offset 128 and are stored 32 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 32 characters are
padded on the right with bytes of zero.

Thevariabletype flagsimmediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

Contents of the data set follow the header and start on an 8-byte boundary. Datais
either 2-byte signed integer, 4-byte single precision floating point, or 8-byte double
precision floating point.

Foreign Language 1 2
Interface

The Foreign Language Interface (FL1) allows users to create functions written in C,
FORTRAN, or other languages, and call them from a GAUSS program. The functions
are placed in dynamic libraries (DLLs, also known as shared libraries or shared
objects) and linked in at run-time as needed. The FLI functions are:

dlibrary Link and unlink dynamic libraries at run-time.

dlicall Call functions located in dynamic libraries.

GAUSS recognizes a default dynamic library directory, a directory where it will 1ook
for your dynamic-link libraries when you call dlibrary. You can specify the default
directory ingauss. cf g by setting dlib_path. Asitisshipped, gauss. cf g
specifies$(GAUSSDI R) / dl i b asthe default directory.

Creating Dynamic Libraries

Assume you want to build a dynamic library called myf uncs. dl | , containing the
functions found in two source files, nyf uncl. ¢ and myf unc2. c. Thefollowing
sections show the compile and link commands you would use. The compiler
command isfirst, followed by the linker command, followed by remarks regarding
that platform.

121

GAUSSUser Guide

For explanations of the various flags used, see the documentation for your compiler
and linker. One flag is common to both platforms. The —c compiler flag means
“compile only, don't link.” Virtualy all compilerswill perform the link phase
automatically unless you tell them not to. When building a dynamic library, we want
to compile the source code filesto object (. obj) files, then link the object filesin a
separate phase into a dynamic library.

$(CCOPTS) indicates any optional compilation flags you might add.
cl -c $(CCOPTS) -DWN32 -D WN32 -D M -¢c -WB -
Diry=_try \
- Dexcept=__except -D eave=__|eave -
Dfinally=_finally \
- DCRTAPI 1=_cdecl -DCRTAPI 2= cdecl -D X86_ =1 -DSTRI CT
-LD\
-Zpl nyfuncl.c myfunc2.c
link -DLL -def: ntgauss. def -out:nyfuncs.dl |l myfuncl. obj
\
myfunc2.obj fplO0.obj libcnt.lib oldnanes.lib
kernel 32.1ib \
advapi 32.1ib user32.1ib gdi32.1ib conmdl g32.1ib
wi nspool . lib
These commands are written for the Microsoft Visual C/C++ compiler, ver. 2.0.

The Visual C/C++ linker alows you to specify amodule definition file, which isatext
file that describes the dynamic library to be created. In this example, the module
definition fileismyf uncs. def . It includes information on how the library isto be
initialized and terminated, how to handle its data segment, etc. It also needs to list the
symbols that will be exported, i.e., made callable by other processes, from the
dynamic library. Assume that myf uncl. ¢ and myf unc?2. ¢ contain the FLI
functionsf uncl(),func2(),andfunc3(), and astatic funcitonf unc4() that
is called by the others, but never directly from GAUSS. Then nyf uncs. def would
look like this:

12-2

Foreign Language Interface

LI BRARY nyfuncs
EXPORTS

funcl

func2

func3

Asyou can see, creating dynamic libraries from the command line can be quite an
arcane process. For thisreason, we recommend that you create dynamic libraries from
inside the Visua C/C++ workbench environment, rather than from the command line.

Writing FLI Functions
Your FLI functions should be written to the following specifications:
1. Take 0 or more pointers to doubles as arguments.

This does hot mean you cannot pass strings to an FLI function. Just recast
the double pointer to a char pointer inside the function.

2. Take those arguments either in alist or a vector.
3. Return an integer.
In C syntax, then, your functions would take one of the following forms:

1. int func(void);

2. int func (double*arg1[[,double *2, etc.]]) ;

3. int func(double *arg[]) ;

Functions can be written to take alist of up to 100 arguments, or a vector (in C terms,
al-dimensional array) of up to 1000 arguments. This does not affect how the function
iscaled from GAUSS; the dllcall statement will always appear to pass the arguments
inalist. That is, the dllcall statement will always look as follows:

dlicall func(ab,c,d[,e...]1]) ;

For details on calling your function, passing argumentsto it, getting data back, and
what the return value means, see dllcall in the GAUSS Language Reference.

12-3

Data Exchange

Data Exchange procedures are used to move data between GAUSS and other software
tools. Two procedures export GAUSS matrices and data sets to formats that can be
read by avariety of spreadsheets and databases. Two more procedures import data
files from these formats into GAUSS matrices and data sets.

Formats Supported

The table below lists the spreadsheet and database formats supported, and their usual
file extensions. The default file type is determined from the file extension. This
default can be overwritten so that other file extensions can be used. For more
information see “Globa Variables,” page 10-3.

File Extension

File Type

Export Import
Lotusv1l-v5 . WKs .Wks . wkl-. wk5
Excel v2.1-v7.0 .xl's .Xl's
Quatro v1-v6 .wqgl .wgl .wg2 . wbhl
Symphony v1.0-1.1 . wr k wrk

13-1

GAUSSUser Guide

File Extension

File Type
Export Import
dBasell .db2 . db2
dBase l11/1V . dbf . dbf
Paradox, FoxPro, Clipper .db .db
ASCII — character delimited . csv .txt .asc .CSV .txt .asc
ASCII —formatted . prn .prn
GAUSS data set . dat . dat

The newer releases of spreadsheets and databases can read their older formats.
Specifically, the procedures will read datain all versions listed and will write data out
in the most compatible, or earliest, format. For example, the Lotus driver will read all
versions up to version 5 and will write data out to a generic version 1.0 . wks file.

You can import and export ASCII files.

If you have a problem importing data, saveit in an earlier spreadsheet or database
format. The same suffix does not necessarily mean the same data format.

Importing sheet 0 or sheet 1 will import the first sheet of a spreadsheet. (Most multi-
sheet spreadsheets call this sheet 1.)

On export, elements that are missing values will be exported to spreadsheets as blank
cells, and to ASCII filesasthe value _dxm ss. Onimport, spreadsheet cells that are
#ERR or #N/A will be imported as GAUSS missing values. Elements from any format
that have the value _dxmi ss will beimported as GAUSS missing values.

Data Exchange Procedures

These four procedures are used for exchanging data with databases and spreadsheets:

export Exports a GAUSS matrix to a specified file format.
exportf Exports a GAUSS data set to a specified file format.
import Imports a spreadsheet or database file to a GAUSS matrix.
importf Imports a spreadsheet or database file to a GAUSS data set.

For details, see the GAUSS Language Reference.

13-2

Data Exchange

Global Variables

Thefollowing global variables can be used to modify the operation of the Data

Exchange procedures:

_dxftype Overidesthefile extension to define the type of file to import

(string) or export. For example, after setting _dxftype = "xl s",
files exported or imported will be Excel format, independent of
the actual file extension. Use _dxftype = “" (empty string)
to return to default operation (file extension defining file type).

_dxtype Scalar or Kx1 vector of 1's and 0's defining the data types of

(matrix) columns, 1's indicate numeric columns, O'sindicate character
columns. A scalar can be used if all columns are of the same
type. Default is scalar 1 (all numeric).

_dxwi dth Scalar or Kx1 vector of integers giving the width of spreadsheet

(matrix) columnsin characters. A scalar can be used if all columns have
the same width. Default is 12. (_dxwi dt h does not always
control the column width correctly when exporting to an Excel
(. xI s) datasheet or databook. Adjust this parameter within
Excel after loading thefile.)

_dxprcn Scalar or Kx1 vector defining the number of digits of precision

(matrix) in the columns of spreadsheets. A scalar can be used if al
columns are to have the same precision. Default is4. (_dxpr cn
does not always control the number of digits after the decimal
correctly when exporting to an Excel (. x| s) datasheet or
databook. Adjust this parameter within Excel after loading the
file.)

_dxtxdli m ASCIl vaue of character that delimitsfieldsin ASCII files

(scalar) (tab =9, comma = 44, space = 32). Default is space (32).

_dxaschdr Scalar (0 or 1) determining if column headers are written to/
from ASCII files. If _dxaschdr = 1, headersarewritten. If
_dxaschdr = 0, no headers are written. Default is 0.

_dxwkshdr Scalar (0 or 1) determining if column headers are written to/
from spreadsheet files. If _dxwkshdr = 1, headersare
written. If _dxwkshdr = 0, no headers are written. Default
isO.

_dxmi ss Scalar that defines the missing value representation. Default is

the normal GAUSS representation (the indefinite NaN).

13-3

GAUSSUser Guide

_dxprint Scalar (0 or 1) determining if progress messages are to be
printed to the window. _dxpri nt = 1 prints messages.
_dxprint = 0 suppressesthe print. Default is 1.

13-4

Data Transformations 1 4

GAUSS dlows expressions that directly reference variables (columns) of adata set.
Thisis done within the context of a data loop:

datal oop infile outfile;
drop wagefac wgl ec shordelt foobly;

csed = In(sqgrt(csed));

select csed > 0.35 and married $== “y”;

make chfac = hcfac + wcfac;
keep csed chfac stid recsum voom

endat a;

GAUSS translates the data loop into a procedure that performs the required
operations, and then calls the procedure automatically at the location (in your
program) of the data loop. It does this by trandating your main program fileinto a
temporary file and then executing the temporary file.

A dataloop may be placed only in the main program file. Dataloopsin files that are
#i ncl ude’d or autoloaded are not recognized.

14-1

GAUSSUser Guide

Using Data Loop Statements

A dataloop beginswith adat al oop statement and endswith an endat a statement.
Inside a dataloop, the following statements are supported:

code Create variable based on a set of logica expressions.

del ete Delete rows (observations) based on alogical expression.
dr op Specify variables NOT to be written to data set.
extern Allows access to matrices and strings in memory.

keep Specify variables to be written to output data set.

| ag Lag variables a number of periods.

listw se Controls deletion of missing values.

make Create new variable.

outtyp Specify output file precision.

recode Change variable based on a set of logical expressions.
sel ect Select rows (observations) based on alogical expression.
vect or Create new variable from a scalar returning expression.

In any expression inside a data loop, all text symbols not immediately followed by a
left parenthesis ‘(' are assumed to be data set variable (column) names. Text symbols
followed by aleft parenthesis are assumed to be procedure names. Any symbol listed
inan ext er n statement is assumed to be a matrix or string already in memory.

Using Other Statements

All program statements in the main file and not inside a data |oop are passed through
to the temporary file without modification. Program statements within a data loop that
are preceded by a‘#’ are passed through to the temporary file without modification.
The user familiar with the code generated in the temporary file can use thisto do out-
of-the-ordinary operations inside the data loop.

Debugging Data Loops

The tranglator that processes data loops can be turned on and off. When the trans ator
ison, there are three distinct phases in running a program:

Tranglation Translation of main program file to temporary file.
Compilation Compilation of temporary file.
Execution Execution of compiled code.

14-2

Data Transformations

Translation Phase

In the tranglation phase, the main program fileis translated into atemporary file. Each
dataloop istrandated into a procedure, and acall to this procedure is placed in the
temporary file at the same location as the original dataloop. The dataloop itself is
commented out in the temporary file. All dataloop procedures are placed at the end of
the temporary file.

Depending on the status of line number tracking, error messages encountered in this
phase will be printed with the file name and line numbers corresponding to the main
file.

Compilation Phase

In the compilation phase, the temporary file is compiled. Depending on the status of
line number tracking, error messages encountered in this phase will be printed with
the file name and line numbers corresponding to both the main file and the temporary
file.

Execution Phase

In the execution phase, the compiled program is executed. Depending on the status of
line number tracking, error messages will include line number references from both
the main file and the temporary file.

Reserved Variables
The following local variables are created by the translator and used in the produced

code:
X_CV X_iptr x_ncol x_pl ag
x_drop x_keep x_nlag X_ptrim
X _fpin x_lval x_nrow X_shft
x_fpout x_lvar x_ntrim X_tname
X X_n X_out X_vharme
X_in X_hane x_outtyp X_X

These variables are reserved, and should not be used withinadat al oop . . .
endat a section.

14-3

Publication Quality 1 5
Graphics

GAUSS Publication Quality Graphics (PQG) is aset of routines built on the graphics
functions in GraphiC by Scientific Endeavors Corporation.

The main graphics routines include xy, xyz, surface, polar, and log plots, aswell as
histograms, bar, and box graphs. Users can enhance their graphs by adding legends,
changing fonts, and adding extralines, arrows, symbols, and messages.

The user can create asingle full size graph, inset asmaller graph into alarger one, tile
awindow with several equally sized graphs, or place several overlapping graphsin the
window. Graphic panel size and location are all completely under the user’s control.

General Design

GAUSS PQG consists of a set of main graphing procedures and several additional
procedures and global variables for customizing the output.

All of the actual output to the window happens during the call to these main routines;

bar Bar graphs.

box Box plots.

cont our Contour plots.

draw Draws graphs using only global variables.
hi st Histogram.

15-1

GAUSSUser Guide

hi stp Percentage histogram.

hi st f Histogram from a vector of frequencies.
| ogl og L og scaling on both axes.

| ogx Log scaling on X axis.

| ogy Log scalingon Y axis.

pol ar Polar plots.

surface 3-D surface with hidden line removal.
Xy Cartesian graph.

Xyz 3-D Cartesian graph.

Using Publication Quality Graphics

Getting Started

There are four basic parts to a graphics program. These elements should be in any
program that uses graphics routines. The four parts are header, data setup, graphics
format setup, and graphics call.

Header

In order to use the graphics procedures, the pgr aph library must be active. Thisis
doneinthel i br ar y statement at the top of your program or command file. The next
line in your program will typically be acommand to reset the graphics global
variablesto the default state. For example:

library nylib, pgraph;
gr aphset ;

Data Setup

The data to be graphed must be in matrices. For example:
X = seqga(l,1,50);

y sin(x);

Graphics Format Setup

Most of the graphics elements contain defaults that allow the user to generate a plot
without modification. These defaults, however, may be overridden by the user through
the use of global variables and graphics procedures. Some of the elements custom
configurable by the user are axes numbering, labeling, cropping, scaling, line and
symbol sizes, and types, legends, and colors.

15-2

Publication Quality Graphics

Calling Graphics Routines

The graphics routines take as input the user data and global variables that have
previously been set. It isin these routines where the graphicsfileis created and
displayed.

Following are three PQG examples. The first two programs are different versions of
the same graph. The variablesthat begin with _p are the global control variables used
by the graphics routines. (For a detailed description of these variables, see “Global
Control Variables,” page 15-13.)

Example 1 Theroutine being caled hereisasimple XY plot. The entire window
will be used. Four sets of datawill be plotted with the line and symbol attributes
automatically selected. This graph will include alegend, title, and a time/date stamp
(time stamp is on by default):

l'ibrary pgraph; /* activate PGRAPH library */
gr aphset ; /* reset global variables */
X = seqga(.1,.1,100); /* generate data */

y
y

sin(x);

y ~y*.8 ~y*.6 ~y*.4; /* 4 curves plotted */
/* against x */
_plegctl = 1; /* legend on */
title(“Exanple xy Graph”); [/* Main title */
Xy(X,¥); /* Call to main routine */

Example 2 Hereisthe same graph with more of the graphics format controlled by
the user. Thefirst two data sets will be plotted using symbols at graph points only
(observed data); the datain the second two sets will be connected with lines (predicted
results):

library pgraph; /* activate PGRAPH library */
gr aphset ; /* reset global variables */

X = sega(.1,.1,100); /* generate data */

y = sin(x);
y =y ~y*8 ~y*.6 ~y*.4;, [* 4 curves plotted */
/* against x */
_pdate = “7"; /* date is not printed */

15-3

GAUSSUser Guide

Example 3

_pletrl ={ 1, 1, 0, 0 };
_pltype = { 1, 2, 6, 6 };
_pstype = { 1, 2, 0, 0 },;
_plegetl={ 2, 3, 1.7, 4.5 };

_plegstr= “Sine wave 1.\0"\
“Sine wave .8\0"\

“Sine wave .6\ 0"\

“Si ne wave .4";

yl abel (“ Anpl i tude”);
x|l abel (“X Axis”);

title(“Exanple xy Gaph”);
Xy(x,y);

library pgraph;

1+
1+
*
*

/* 2 curves w synbol s, */
/* 2 without */

/* dashed, dotted, */

/* solid lines */

/* synbol types */

/* circles,squares */

/* legend size and */

/* locations */

/* 4 lines | egend text */

Y axi s | abel */
X axi s | abel */
main title */

call to main routine */

In this example, two graphics graphic panels are drawn. Thefirstisa
full-sized surface representation, and the second is a half-sized inset containing a
contour of the same data located in the lower left corner of the window:

/* activate pgraph library */

/* Generate data for surface and contour plots */

X
sega(-10,0.1,71);

cos(5*sin(x) - vy);

<
1]

seqa(-10,0.1,71)’; [/*

note x is a row vector */
/[* note y is a colum vector */

/* z is a 71x71 matrix */

15-4

Publication Quality Graphics

begwi nd; /* initialize graphics */
/* graphic panels */

makewi nd(9, 6. 855, 0, 0, 0); /* first graphic panel */
[*full size */

makewi nd(9/2,6.855/2,1,1,0);/* second graphic panel */

/* inset to first */

setwi nd(1); /* activate first graphic */
/* panel */
gr aphset; /* reset global variables */
_pzclr = {1, 2, 3, 41};/* set Zlevel colors */

title(“cos(5*sin(x) - y)");/* set main title */

x|l abel (“X Axis”); /* set X axis |abel */

yl abel ("Y Axis"); /* set Y axis |abel */

scal e3d(niss(0,0),mss(0,0),-5|5);/* scale Z axis */

surface(x,y, z); /* call surface routine */
next wi nd; /* activate second graphic */

[* panel */
gr aphset ; /* reset global variables */

_pzclr = { 1, 2, 3, 4 };/* set Z level colors */

_pbox = 15; /* white border */
contour(X,Yy,z); /* call contour routine */
endwi nd; /* Display graphic panels */

While the structure has changed somewhat, the four basic el ements of the graphics
program are all here. The additional routinesbegwi nd, endwi nd, makew nd,
next wi nd, and set wi nd areall used to control the graphics graphic panels.

15-5

GAUSSUser Guide

As Example 3illustrates, the code between graphic panel functions (that is, set wi nd
or next wi nd) may include assignments to global variables, acall to gr aphset , or
may set up new data to be passed to the main graphics routines.

You are encouraged to run the example programs supplied with GAUSS. Analyzing
these programs is perhaps the best way to learn how to use the PQG system. The
example programs are located on the exanpl es subdirectory.

Graphics Coordinate System

PQG uses a 4190x3120 pixel grid on a9.0x6.855-inch printable area. There are three
units of measure supported with most of the graphics global elements:

Inch Coordinates

Inch coordinates are based on the dimensions of the full-size 9.0x6.855-inch output
page. Theoriginis (0,0) at the lower left corner of the page. If the picture is rotated,
the origin is at the upper left. (see“Inch Unitsin Graphics Graphic Panels,” page 15-
9)

Plot Coordinates

Plot coordinates refer to the coordinate system of the graph in the units of the user’s X,
Y, and Z axes.

Pixel Coordinates

Pixel coordinatesrefer to the 4096x3120 pixel coordinates of the full-size output page.
The origin is (0,0) at the lower left corner of the page. If the picture isrotated, the
originisat the upper left.

Graphics Graphic Panels

Multiple graphic panels for graphics are supported. These graphic panels allow the
user to display multiple graphs on one window or page.

A graphic panel is any rectangular subsection of the window or page. Graphic panels
may be any size and position on the window and may be tiled or overlapping,
transparent or nontransparent.

Tiled Graphic Panels

Tiled graphic panels do not overlap. The window can easily be divided into any
number of tiled graphic panels with thewi ndow command. wi hdow takes three
parameters. number of rows, number of columns, and graphic panel attribute
(1=transparent, O=nontransparent).

15-6

Publication Quality Graphics

This example will divide the window into six equally sized graphic panels. There will
be two rows of three graphic panels — three graphic panelsin the upper half of the
window and three in the lower half. The attribute value of 0 isarbitrary sincethere are
no other graphic panels beneath them:

wi ndow(nrows, ncol s, attr);
wi ndow(2, 3, 0);

Overlapping Graphic Panels

Overlapping graphic panels are laid on top of one another asthey are created, much as
if you were using the cut and paste method to place several graphs together on one
page. An overlapping graphic panel is created with the makewi nd command.

In this example, makewi nd will create an overlapping graphic panel 4 inches
horizontally by 2.5 inches vertically, positioned 1 inch from the left edge of the page
and 1.5 inches from the bottom of the page. It will be nontransparent:

makewi nd(hsi ze, vsi ze, hpos, vpos, attr);

wi ndow(2, 3, 0);
makewi nd(4,2.5,1,1.5,0);

Nontransparent Graphic Panels

A nontransparent graphic panel is one that is blanked before graphicsinformation is
written to it. Therefore, information in any previously drawn graphic panelsthat lie
under it will not be visible.

Transparent Graphic Panels

A transparent graphic panel is onethat is not blanked, allowing the graphic panel
beneath it to “show through.” Lines, symbols, arrows, error bars, and other graphics
objects may extend from one graphic panel to the next by using transparent graphic
panels. First, create the desired graphic panel configuration. Then create afull-
window, transparent graphic panel using the makewi nd or wi ndow command. Set
the appropriate global variables to position the desired object on the transparent
graphic panel. Use the dr aw procedure to draw it. This graphic panel will act asa
transparent “overlay” on top of the other graphic panels. Transparent graphic panels
can be used to add text or to superimpose one graphic panel on top of another.

15-7

GAUSSUser Guide

Using Graphic Panel Functions

Thefollowing is a summary of the graphic panel functions:

begwi nd
endwi nd
W ndow
makew nd
setwi nd
next wi nd
getwi nd
savew nd
| oadwi nd

Graphic pand initialization procedure.

End graphic panel manipulations, display graphs.
Partition window into tiled graphic panels.

Create graphic panel with specified size and position.
Set to specified graphic panel number.

Set to next available graphic panel number.

Get current graphic panel number.

Save graphic panel configuration to afile.

Load graphic panel configuration from afile.

This example creates four tiled graphic panels and one graphic panel that overlaps the

other four:

[ibrary pgraph;

gr aphset;

begwi nd;

wi ndow(2,2,0);/* Create four tiled graphic panels */

Xsi ze

ysi ze

mak ewi

X
1

<
1]

/* (2 rows, 2 colums) */

9/2; [* Create graphic panel that overlaps */
/*the tiled graphic panels */
= 6. 855/ 2;

nd(xsi ze, ysi ze, xsi zel 2, ysi zel 2, 0);

sega(1,1,1000); /* Create X data */
(sin(x) + 1) * 10.; /* Create Y data */

15-8

Publication Quality Graphics

setwind(1); /* Graph #1, upper left corner */

xy(Xx,y);

nextw nd; /* Graph #2, upper right corner */
l ogx(x,Y);

nextw nd; /* Graph #3, lower left corner */
logy(x,y);

next wi nd; /* Graph #4, |ower right corner */
l ogl 0g(x,Vy);

nextw nd; /* Graph #5, center, overlayed */
bar (x,y);

endwi nd; /* End graphi c panel processing, */

/* display graph */

Inch Units in Graphics Graphic Panels

Some global variables allow coordinatesto be input in inches. If a coordinate valueis
in inches and is being used in a graphic panel, that value will be scaled to wi ndow

i nches and positioned relative to the lower left corner of the graphic panel. A
graphic panel inch isatrueinch in size only if the graphic panel is scaled to the full
window; otherwise, X coordinateswill be scaled relativetothehor i zont al graphic
panel size and Y coordinates will be scaled relativeto theverti cal graphic panel
size.

Saving Graphic Panel Configurations

Thefunctionssavew nd and | oadwi nd alow the user to save graphic panel
configurations. Once graphic panels are created (using makewi nd and wi ndow),
savew nd may be called. Thiswill save to disk the global variables containing
information about the current graphic panel configuration. To load this configuration
again, cal | oadwi nd. (Seel oadw nd inthe GAUSS Language Reference.)

Graphics Text Elements

Graphics text elements, such as titles, messages, axes labels, axes numbering, and
legends, can be modified and enhanced by changing fonts and by adding
superscripting, subscripting, and special mathematical symbols.

15-9

GAUSSUser Guide

To make these modifications and enhancements, the user can embed “ escape codes’ in
the text stringsthat are passedtoti t | e, x| abel ,yl abel , andascl abel or
assignedto _pregstr and _pl egstr.

The escape codes used for graphics text are:

\ 000 String termination character (null byte).

[Enter superscript mode, leave subscript mode.

] Enter subscript mode, |eave superscript mode.

@ Interpret next character as literal.

\ 20n Select font number n (see “ Selecting Fonts,” following).

The escape code \ L can be embedded into title strings to create a multiple linetitle:
title(“This is the first line\lthis is the second

[ine”);

A null byte\ 000 isused to separate stringsin _pl egstr and_pnsgstr:
_pmegstr = “First string\000Second string\000Third
string”;
or

_plegstr = “Curve 1\000Curve 2";

Usethe[. .] to create the expression M(t) = E(etx):
_pmegstr = “Mt) = E(e[tx])"”;

Use the @to generate[and] inan X axislabel:
x|l abel (“Data used for x is: data@.,1 2 3@");

Selecting Fonts

Four fonts are supplied with the Publication Quality Graphics system. They are
Simplex, Complex, Simgrma, and Microb. (For the characters available in each font,
see Appendix A.)

Fonts are loaded by passing to the f ont s procedure a string containing the names of
al fontsto be loaded. For example, this statement will load al four fonts:

fonts(“sinplex conplex mcrob singrma”);

15-10

Publication Quality Graphics

Thef ont s command must be called before any of the fonts can be used in text
strings. A font can then be selected by embedding an escape code of the form “\ 20n”
in the string that is to be written in the new font. The nwill be 1, 2, 3, or 4, depending
on the order in which the fonts were loaded inf ont s.

If the fonts were loaded as in the previous example, the escape characters for each
would be:

\201 Sinpl ex
\202 Conpl ex
\203 Mcrob

\204 Sinmgrm

The example then for selecting afont for each string to be written would be:
title(“\201This is the title using Sinplex font”);
x|l abel (“\202This is the |label for X using Conpl ex

font”);
yl abel (“\203This is the label for Y using Mcrob
font”);

Once afont is selected, all succeeding text will use that font until another font is
selected. If no fonts are selected by the user, a default font (Simplex) isloaded and
selected automatically for all text work.

Greek and Mathematical Symbols

The following examplesillustrate the use of the Simgrma font; they assume that
Simgrmawas the fourth font loaded. (For the available Simgrma characters and their
numbers, see Appendix A.) The Simgrma characters are specified by either:

1. The character number, preceded by a“\”.
2. Theregular text character with the same number.

For example, to get an integral sign “0” in Simgrma, embed either a“\ 044" or a“,” in
the string that has been currently set to use Simgrma font.

To produce the title f(X) = sin2(TD<),usethefoIIowing title string:
title(“\201f(x) = sin[2](\204p\201x)");

The“p” (character 112) correspondsto TT in Simgrma.

15-11

GAUSSUser Guide

To number the magjor X axis tick marks with multiples of 11/4, the following could be
passed to ascl abel :

lab = “\2010 \204p\ 201/ 4 \204p\201/2 3\204p\201/4
\ 204p” ;
ascl abel (1 ab, 0);
xtics(0,pi,pi/4,1);
xti cs isused to make surethat major tick marks are placed in the appropriate places.

This example will number the X axis tick marks with the labels ™2, u 2, 1, p, and
2
lab = “\204m 201[-2] \204m 201[-1] 1 \204m m 201[2]";

ascl abel (1 ab, 0);

This exampleillustrates the use of severa of the special Simgrma symbols:
_pmegstr = “\ 2041\ 2011/ 2\ 204p
,\201e[-\ 204n{\2012]\ 201/ 2] d\ 204nf ;

This produces

Vi/om [fem#/ ?du

Colors

0 Black 8 Dark Grey

1 Blue 9 Light Blue

2 Green 10 Light Green
3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta
6 Brown 14 Yellow

7 Grey 15 White

15-12

Publication Quality Graphics

Global Control Variables

Thefollowing global variables are used to control various graphics elements. Default
values are provided. Any or al of these variables can be set before calling one of the
main graphing routines. The default values can be modified by changing the
declarationsin pgr aph. dec and the statements in the procedure gr aphset in
pgr aph. src. graphset can be called whenever the user wants to reset these
variables to their default values.

__pageshf

_pagesi z

_parrow

2x1 vector, the graph will be shifted to the right and up if thisisnot 0.
If thisis 0, the graph will be centered on the output page. Default isO.
Note: Used internally. (For the same functionality, see axmar gi nin
the GAUSS Language Reference.) Thisis used by the graphics
graphic panel routines. The user must not set this when using the
graphic panel procedures.

2x1 vector, size of the graph in inches on the printer output.
Maximum sizeis 9.0 x 6.855 inches (unrotated) or 6.855 x 9.0 inches
(rotated). If thisis 0, the maximum size will be used. Default is 0.
Note: Used internally. (For the same functionality, see axmar gi nin
the GAUSS Language Reference.) Thisis used by the graphics
graphic panel routines. The user must not set this when using the
graphic panel procedures.

Mx11 matrix, draws one arrow per row Mof the input matrix. If scalar
zero, no arrows will be drawn.

[M 1] X starting point.

[M 2] y starting point.

[M 3] X ending point.

[M 4] y ending point.

[M 5] ratio of the length of the arrow head to half its width.

[M 6] size of arrow head in inches.

[M 7] type and location of arrow heads. This integer

number will be interpreted as a decimal expansion mn.
For example: if 10,thenm=1,n=0.

m type of arrow head:
0 solid

1 empty

2 open

3 closed

15-13

GAUSSUser Guide

_parrow3

n location of arrow head:

0 none

1 atthefina end

2 a both ends

[M 8] color of arrow, see“Colors,” page 15-12.

[M 9] coordinate units for location:
1 X,y starting and ending locationsin plot coordinates
2 X,y starting and ending locationsin inches
3 X,y starting and ending locations in pixels

[M 10] linetype:

1 dashed

2 dotted

3 short dashes

4 closely spaced dots
5 dotsand dashes

6 solid

[M 11] controlsthickness of linesused to draw arrow. Thisvalue
may be zero or greater. A value of zerois
normal line width.

To create two single-headed arrows, located using inches, use

_parrow ={ 1122 30.211 10 2 6 O,
342230.211 1026 0},;

Mx12 matrix, draws one 3-D arrow per row of the input matrix. If

scalar zero, no arrows will be drawn.

[M 1] X starting point in 3-D plot coordinates.

[M 2] y starting point in 3-D plot coordinates.

[M 3] Z starting point in 3-D plot coordinates.

[M 4] x ending point in 3-D plot coordinates.

[M 5] y ending point in 3-D plot coordinates.

[M 6] Z ending point in 3-D plot coordinates.

[M 7] ratio of the length of the arrow head to half its width.

[M 8] size of arrow head in inches.

15-14

Publication Quality Graphics

_paxes

[M 9] type and location of arrow heads. This integer
number will be interpreted as a decimal expansion mn.
For example: if 10,thenm=1,n=0.

m type of arrow head:

0 solid

1 empty

2 open

3 closed

n location of arrow head:
0 none

1 atthefina end

2 at both ends

[M 10] color of arrow, see“Colors,” page 15-12.
[M11] linetype:

1

o Ok WDN

dashed

dotted

short dashes
closely spaced dots
dots and dashes
solid

[M 12] controlsthickness of linesused to draw arrow. Thisvalue
may be zero or greater. A value of zerois
normal line width.

To create two single-headed arrows, located using plot coordinates,

use

parrow3 ={ 11122230.211 10 6 0,

34522230.211106 0};

scalar, 2x1, or 3x1 vector for independent control for each axis. The
first element controlsthe X axis, the second controlsthe Y axis, and
the third (if set) will control the Z axis. If O, the axis will not be
drawn. Default is 1.

If thisisascalar, it will be expanded to that value.

15-15

GAUSSUser Guide

_paxht

_pbartyp

_pbarwi d

_pbox

_pboxct|

For example:
_paxes = { 1, 0}; [/* turn X axis on, */
/* Y axis off */
_paxes = 0; [* turn all axes off */
_paxes = 1; [* turn all axes on */

scalar, size of axes labelsin inches. If 0, a default size will be
computed. Default isO.

global 1x2 or Kx2 matrix. Controls bar shading and colorsin bar
graphs and histograms.

Thefirst column controls the bar shading:

no shading

dots

vertical cross-hatch

diagonal lines with positive slope

diagonal lines with negative slope

diagonal cross-hatch

solid

The second column controls the bar color, see “ Colors,” page 15-12.

global scalar, width of barsin bar graphs and histograms. The valid
rangeis O-1. If thisis O, the bars will be asingle pixel wide. If thisis
1, the barswill touch each other. The default is 0.5, so the barstake up
about half the space open to them.

scalar, draws a box (border) around the entire graph. Set to desired
color of box to be drawn. Use O if no box is desired. Default is 0.

5x1 vector, controls box plot style, width, and color. Used by
procedure box only.

[1] box width between 0 and 1. If zero, the box plot isdrawn
astwo vertical lines representing the quartile ranges with

afilled circle representing the 501" percentile.

[2] box color, see“Colors,” page 15-12. If thisisset to 0, the
colors may be individually controlled using
global variable pcol or.
[3] min/max style for the box symbol. One of the following:
1 minimum and maximum taken from the actual limits
of the data. Elements 4 and 5 are ignored.

o 01~ W NP O

15-16

Publication Quality Graphics

_pboxlim

_pcol or

_pcrop

2 datistica standard with the minimum and
maximum cal culated according to interquartile range

asfollows:

intgrange = 75" - 25t

min = 25M. 1 5intgrange
max = 75"+ 1 5intgrange

Elements 4 and 5 are ignored.

3 minimum and maximum percentiles taken from
elements 4 and 5.

[4] minimum percentile value (0-100) if _pboxct | [3] =
3.
[5] maximum percentile value (0-100) if

_pboxctl[3] =3.
5xM output matrix containing computed percentile results from
procedure box. M corresponds to each column of input y data.
[1, M minimum whisker limit accordingto _pboxct | [3] .
[2, M 25th percentile (bottom of box).
[3,M 50th percentile (median).
[4,M 75th percentile (top of box).
[5, M maximum whisker limit accordingto _pboxct| [3] .
scalar or Kx1 vector, colorsfor main curvesinxy, xyz, and | og
graphs. To use asingle color set for all curves, set thisto ascalar
color value. If O, use default colors. Default isO.
The default colors come from aglobal vector caled pcsel . This
vector can be changed by editing pgr aph. dec to change the default
colors, see“Colors,” page 15-12. (_pcsel isnot documented
elsewhere.)
scalar or 1x5 vector, alows plot cropping for different graphic
elementsto be individually controlled. Valid values are 0 (disabled)
or 1 (enabled). If cropping is enabled, any graphical data sent outside
the axes areawill not be drawn. If thisisscalar, _pcr op isexpanded

to a 1x5 vector using the given value for al elements. All cropping is
enabled by default.

[1] crop main curves/'symbols.
[2] crop linesgenerated using _pl i ne.
[3] crop arrows generated using _par r ow,

15-17

GAUSSUser Guide

_pcross

_pdate

_perrbar

[4] crop circlesarcs generated using _pl i ne.
[5] crop symbols generated using _psym

This example will crop main curves, and lines and circles drawn by
_pline:

_pcrop={ 11010},
scalar. If 1, the axes will intersect at the (0,0) X-Y locationiif itis

visible. Default is 0, meaning the axes will be at the lowest end of the
X-Y coordinates.

date string. If this contains characters, the date will be appended and
printed.

The default is set as follows (the first character is afont selection
escape code):

_pdate = “\201GAUSS ”;
If thisis set to anull string, no date will be printed. (For more

information on using fonts within strings, see “ Graphics Text
Elements,” page 15-9.)

Mx9 matrix, draws one error bar per row of the input matrix. If scalar
0, no error barswill be drawn. Location values arein plot coordinates.

[M 1] X location.
[M 2] left end of error bar.
[M 3] right end of error bar.
[M 4] y location.
[M 5] bottom of error bar.
[M 6] top of error bar.
[M 7] line type:

1 dashed
dotted
short dashes
closely spaced dots
dots and dashes
solid
[M 8] color, see “Colors,” page 15-12.

[M9] linethickness. Thisvalue may be zero or greater. A value
of zero isnormal line width.

O o1k WD

15-18

Publication Quality Graphics

_pframe

_porid

_plctrl

To create one error bar using solid lines, use
_perrbar ={ 102213620 };

2x1 vector, controls frame around axes area. On 3-D plots, thisisa
cube surrounding the 3-D workspace.

[1] 1 frameon.
0 frameoff.
[2] 1 tick markson frame.

0 notick marks.
The default is a frame with tick marks.
2x1 vector to control grid.

[1] grid through tick marks:
0 nogrid
1 dotted grid
2 finedotted grid
3 solidgrid
[2] grid subdivisions between major tick marks:

0 no subdivisions
1 dotted lines at subdivisions
2 tick marksonly at subdivisions
The default is no grid and tick marks at subdivisions.

scalar or Kx1 vector to control whether lines and/or symbols will be
displayed for the main curves. This also controls the frequency of
symbols on main curves. The rows (K) is equal to the number of
individual curvesto be plotted in the graph. Default is 0.

0 draw line only.
>0 draw line and symbolsevery _pl ct rl points.
<0 draw symbolsonly every pl ctrl points.
-1 all of the data points will be plotted with no

connecting lines.

This example draws aline for the first curve, draws aline and plots a
symbol every 10 data points for the second curve, and plots symbols
only every 5 data points for the third curve:

_plectrl ={ 0, 10, -5 };

15-19

GAUSSUser Guide

_plegctl

_plegstr

_plev

_pline

scalar or 1x4 vector, legend control variable.

If scalar O, no legend is drawn (default). If nonzero scalar, create
legend in the default location in the lower right of the page.

If 1x4 vector, set as follows:
[1] legend position coordinate units:
1 coordinates are in plot coordinates
2 coordinates arein inches
3 coordinates arein pixels
[2] legend text font size. 1 < size< 9. Default is 5.
[3] x coordinate of lower left corner of legend box.
[4] y coordinate of lower left corner of legend box.
This example puts alegend in the lower right corner:
_plegctl = 1;
Thisexample creates asmaller legend and positionsit 2.5 inchesfrom
the left and 1 inch from the bottom:
_plegetl ={ 23 2.51},;
string, legend entry text. Text for multiple curvesis separated by a
null byte (“\000").
For example:
_plegstr = “Curve 1\000Curve 2\000Curve 3";
Mx1 vector, user-defined contour levelsfor cont our . Default isO.
(Seecont our in the GAUSS Language Reference.)

Mx9 matrix, to draw lines, circles, or radii. Each row controls one
item to be drawn. If thisis ascalar zero, nothing will be drawn.
Default is 0.

[M1] item type and coordinate system:
1 linein plot coordinates
line in inch coordinates
line in pixel coordinates
circlein plot coordinates
circleininch coordinates
radius in plot coordinates
radius in inch coordinates

N o o N

15-20

Publication Quality Graphics

[M 2]

[M3-7]

line type:

1

o Ok~ WD

dashed

dotted

short dashes
closely spaced dots
dots and dashes
solid

coordinates and dimensions.
(1) lineinplotcoordinates:

[M 3] x starting point.
[M 4] vy starting point.
[M 5] xending point.
[M 6] Yy ending point.

[M 7] Oif thisisacontinuation of acurve, 1 if
this begins anew curve.

(2) lineininches:

[M 3] x starting point.
[M 4] vy starting point.
[M 5] xending point.
[M 6] Yy ending point.

[M 7] Oif thisisacontinuation of acurve, 1 if
this begins anew curve.

(3) lineinpixel coordinates:

[M 3] x starting point.
[M 4] vy starting point.
[M 5] xending point.
[M 6] Yy ending point.

[M 7] O0if thisisacontinuation of acurve, 1if
this begins anew curve.

(4) circlein plot coordinates:

[M 3] xcenterof circle.

[M 4] vy center of circle.

[M 5] radiusin x plot units.

[M 6] starting point of arc in radians.

15-21

GAUSSUser Guide

[M 7] ending point of arcin radians.
(5) circleininches:

[M 3] x center of circle.

[M 4] vy center of circle.

[M 5] radius.

[M 6] starting point of arc in radians.

[M 7] ending point of arcin radians.
(6) radiusin plot coordinates:

[M 3] x center of circle.

[M 4] vy center of circle.

[M 5] beginning point of radiusin x plot units,
0 isthe center of thecircle.

[M 6] ending point of radius.
[M 7] anglein radians.
(7) radiusininches:
[M 3] x center of circle.
[M 4] vy center of circle.

[M 5] beginning point of radius, O isthe center
of the circle

[M 6] ending point of radius.
[M 7] anglein radians.
[M 8] color, see “Colors,” page 15-12.

[M9] controlslinethickness. Thisvalue may be zero or greater.
A value of zero is normal line width.

_pline3d Mx9 matrix. Allows extralinesto be added to an xyz or sur f ace
graph in 3-D plot coordinates.

[M 1] X starting point.
[M 2] y starting point.
[M 3] z starting point.
[M 4] X ending point.
[M 5] y ending point.
[M 6] z ending point.
[M 7] color, see “Colors,” page 15-12.

15-22

Publication Quality Graphics

_pl ot shf

_plotsiz

_pltype

[M 8] line type:
1 dashed
dotted
short dashes
closely spaced dots
dots and dashes
solid
[M 9] line thickness, 0 = normal width.

[M 10] hiddenlineflag, 1 = obscured by surface, 0 = not
obscured.

2x1 vector, distance of plot from lower left corner of output pagein
inches.

[1] xdistance.
[2] vy distance.
If scalar O, there will be no shift. Default is 0.

Note: Used internally. (For the same functionality, see axmar gi nin
the GAUSS Language Reference.) Thisis used by the graphics panel
routines. The user must not set this when using the graphic panel
procedures.

2x1 vector, size of the axes areain inches. If scalar 0, the maximum
size will be used.

Note: Used internally. (For the same functionality, see axmar gi nin
the GAUSS Language Reference.) Thisis used by the graphics panel
routines. The user must not set this when using the graphic panel
procedures.

scalar or Kx1 vector, linetype for the main curves. If thisisanonzero
scalar, al lineswill be thistype. If scalar 0, line typeswill be default
styles. Default is 0.

dashed

dotted

short dashes
closely spaced dots
dots and dashes
solid

o Ok~ WD

o Ok WN P

15-23

GAUSSUser Guide

_plwidth

_prcol or

_pmsgct |

_pnsgstr

The default line types come from aglobal vector called pl sel .
This vector can be changed by editing pgr aph. dec to change the
default linetypes. (_pl sel isnot documented elsewhere.)

scalar or Kx1 vector, line thickness for main curves. This value may
be zero or greater. A value of zero isnormal (single pixel) line width.
Default isO.

9x1 vector, color values to use for plot, see “Colors,” page 15-12.

[1] axes.

[2] axes numbers.
[3] X axislabel.

[4] Y axislabel.

[5] Z axislabel.

[6] title.

[7] box.

[8] date.

[9] background.

If thisis scalar, it will be expanded to a 9x1 vector.

Lx7 matrix of control information for printing the strings contained in
_pnsgstr.

[L, 1] horizontal location of lower |eft corner of string.
[L, 2] vertical location of lower left corner of string.
[L, 3] character height in inches.

[L, 4] angle in degrees to print string. This may be -180 to 180
relative to the positive X axis.

[L, 5] location coordinate system:
1 location of string in plot coordinates
2 location of string ininches

[L, 6] color, see “Colors,” page 15-12.

[L, 7] font thickness, may be zero or greater. If O, use
normal line width.

string, contains a set of messages to be printed on the plot. Each
message is separated from the next with anull byte (\ 000). The
number of messages must correspond to the number of rowsin the
_pmsgct | control matrix. This can be created as:

_pnsegstr = “Message one.\000Message two.”;

15-24

Publication Quality Graphics

_pnotify

_pnum

__pnumht
_protate
_pscreen

_psilent

_pstype

scalar, controls window output during the creation of the graph.
Defaultis 1.

0 no activity to the window while writing . t kf file.
1 display progress asfonts are loaded and . t kf fileis
being generated.

scalar, 2x1 or 3x1 vector for independent control for axes numbering.
Thefirst element controlsthe X axis numbers, the second controlsthe
Y axis numbers, and the third (if set) controlsthe Z axis numbers.
Defaultis 1.

If thisvalueisscalar, it will be expanded to a vector.

0 no axes numbers displayed.

1 axes numbers displayed, vertically oriented on Y axis.

2 axes numbers displayed, horizontally oriented on Y axis.
For example:

_pnum={ 0, 2 };/* no X axis nunbers, */
/* horizontal on Y axis */
scalar, size of axes numbersin inches. If O (default), asize of 0.13

inch will be used.

scalar. If O, no rotation, if 1, plot will be rotated 90 degrees. Default is
0.

scalar. If 1, display graph in window, if O, do not display graphin
window. Default is 1.

scalar. If 0, abeep will sound when the graph is finished drawing to
the window. Default is 1 (no beep).

scalar or Kx1 vector, controls symbol used at graph points. To use a

single symbol type for all points, set thisto one of the following
scalar values:

1 circle 8 solidcircle

2 square 9 solid square

3 triangle 10 solid triangle

4 plus 11 solid plus

5 diamond 12 solid diamond

6 inverted triangle 13 solid inverted triangle
7 star (x) 14 solid star (x)

15-25

GAUSSUser Guide

_psurf

_psym

_psynBd

_psymsi z

_ptek

_pticout

If thisisavector, each line will have adifferent symbol. Symbolswill
repeat if there are more lines than symbol types.

2x1 vector, controls 3-D surface characteristics.
[1] if 1, show hidden lines. Default is 0.

[2] color for base (default 7), see “Colors,” page 15-12. The
base isan outline of the X-Y plane with aline connecting
each corner to the surface. If 0, no base is drawn.

MXx7 matrix, M extra symbols will be plotted.

[M 1] x location.

[M 2] y location.

[M 3] symbol type. (See _pst ype, earlier.)

[M 4] symbol height. If thisis 0, adefault height of 5.0 will be
used.

[M 5] symbol color, see “Colors,” page 15-12.
[M 6] type of coordinates:
1 plot coordinates
2 inch coordinates
[M 7] line thickness. A value of zero is normal line width.
Mx7 matrix for plotting extrasymbolson a 3-D (sur f ace or xyz)
graph.
[M 1] x location in plot coordinates.
[M 2] y location in plot coordinates.
[M 3] Z location in plot coordinates.
[M 4] symbol type. (See _pst ype, earlier.)
[M 5] symbol height. If thisis 0, adefault height of 5.0 will be

used.
[M 6] symbol color, see“Colors,” page 15-12.
[M 7] line thickness. A value of 0 isnormal line width.

Use _psymfor plotting extra symbolsin inch coordinates.

scalar or Kx1 vector, symbol size for the symbols on the main curves.
ThisisNOT relatedto _psym If 0, adefault size of 5.0 is used.

string, name of Tektronix format graphicsfile. This must have a
. t kf extension. If thisis set to a null string, the graphics file will be
suppressed. The default isgr aphi c. t kf .

scalar. If 1, tick marks point outward on graphs. Default isO.

15-26

Publication Quality Graphics

_ptitlht

_pversno
_pxpnmax

__pXsci
_Pypmax

__pysci

_pzclr

_pzoom

_pzpmax

_pzsci

scalar, the height of thetitle charactersin inches. If thisis 0, adefault
height of approx. 0.13 inch will be used.

string, the graphics version number.

scalar, the maximum number of places to the right of the decimal
point for the X axis numbers. Default is 12.

scalar, the threshold in digits above which the data for the X axiswill
be scaled and a power of 10 scaling factor displayed. Default is 4.
scalar, the maximum number of places to the right of the decimal
point for the Y axis numbers. Default is 12.

scalar, the threshold in digits above which the datafor the Y axiswill
be scaled and a power of 10 scaling factor displayed. Default is 4.

scalar, row vector, or Kx2 matrix, Z level color control for procedures
surface andcont our. (Seesur f ace inthe GAUSS Language
Reference.)

1x3 row vector, magnifies the graphics display for zooming in on
detailed areas of the graph. If scalar O (default), no magnification is
performed.

[1] magnification value. 1 isnormal size.
[2] horizontal center of zoomed plot (0-100).
[3] vertical center of zoomed plot (0-100).

To see the upper left quarter of the window magnified 2 times, use
_pzoom = { 2 25 75 };

scalar, the maximum number of places to the right of the decimal

point for the Z axis numbers. Default is 3.

scalar, the threshold in digits above which the data for the Z axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.

15-27

Utilities

ATOG

ATOG is a stand-alone conversion utility that converts ASCII filesinto GAUSS data
sets. ATOG can convert delimited and packed ASCII filesinto GAUSS data sets.
ATOG can be run from a batch file or the command line.

The syntax is:
at og cmdfile

cmdfileis the name of the command file. If no extension is given, . cnd will be
assumed. If no command fileis specified, a command summary will be displayed.

Command Summary

The following commands are supported in ATOG:

append Append datato an existing file.

conpl ex Treat data as complex variables.

i nput The name of the ASCII input file.

i nvar Input file variables (column names).
nmsym Specify missing value character.
nocheck Do not check data type or record length.

16-1

GAUSSUser Guide

out put The name of the GAUSS data set to be created.
outtyp Output data type.
out var List of variables to be included in output file.

pr eser vecase Preserves the case of variable namesin output file.

The principal commands for converting an ASCI| file that is delimited with spaces or
commas are given in the following example.

i nput agex. asc;

out put agex;

invar $ race # age pay $ sex region;
outvar regi on age sex pay;

outtyp d;

From this example, adelimited ASCII fileagex. asc isconverted to a double
precision GAUSS datafileagex. dat . Theinput file has five variables. The file will
be interpreted as having five columns:

colum name data type
1 race char act er
2 AGE nuneric
3 PAY nuneric
4 sex character
5 region character

The output file will have four columns since the first column of the input file (race) is
not included in the output variables. The columns of the output file will be:

colum nane data type
1 region character
2 AGE nuneri c
3 sex char act er
4 PAY nuneric

16-2

Utilities

The variable names are saved in the file header. Unless pr eser vecase has been
specified, the names of character variables will be saved in lower case, and the names
of numeric variables will be saved in upper case. The $ inthei nvar statement
specifiesthat the variables that follow are character type. The # specifiesnumeric. If $
or# arenotusedinani nvar statement, the default is numeric.

Comments in command files must be enclosed between ‘' @ characters.

Commands
A detailed explanation of each of the ATOG commands follows.

append

Instructs ATOG to append the converted data to an existing data set:
append;

No assumptions are made regarding the format of the existing file. Make certain the
number, order, and type of data converted match the existing file. ATOG creates v96
format datafiles, so will only append to v96 format data files.
complex
Instructs ATOG to convert the ASCII fileinto a complex GAUSS data set:

compl ex;

Complex GAUSS data sets are stored by rows, with the real and imaginary parts
interleaved, element by element. ATOG assumes the same structure for the ASCI|
input file, and will thus read TWO numbers out for EACH variable specified.
conpl ex cannot be used with packed ASCI|I files.

input

Specifies the file name of the ASCII file to be converted. The full path name can be
used in the file specification.

For example, the command

i nput data. raw,
will expect an ASCII datafile in the current working directory.
The command

i nput c:\research\data\nyfile.asc;

specifiesafileto belocated inthec: \ r esear ch\ dat a subdirectory.

16-3

GAUSSUser Guide

invar

Soft Delimited ASCII Files Soft delimited files may have spaces, commas, or cr/If
as delimiters between el ements. Two or more consecutive delimiters with no data
between them are treated as one delimiter. For example:

i nvar age $ nane sex # pay var[1:10] x[005];

Thei nvar command above specifies the following variables:

colum nane data type
1 AGE nuneri c
2 nane character
3 sex char act er
4 PAY nuneric
5 VARO1 nuneric
6 VARO2 nuneric
7 VARO3 nuneri c
8 VARO4 nuneri c
9 VAROS nuneri c
10 VARO6 nuneric
11 VARO7 nuneric
12 VAROS8 nuneric
13 VARO9 nuneri c
14 VARL0 nuneri c
15 X001 nuneri c
16 X002 nuneric
17 X003 nuneric
18 X004 nuneric
19 X005 nuneri c

Astheinput fileistrandated, the first 19 elements will be interpreted as the first row
(observation), the next 19 will be interpreted as the second row, and so on. If the

16-4

Utilities

number of dementsin thefileis not evenly divisible by 19, the final incomplete row
will be dropped and a warning message will be given.

Hard Delimited ASCII Files Hard delimited files have a printable character as a
delimiter between elements. Two delimiters without intervening data between them
will be interpreted asamissing. If \ n is specified as a delimiter, the file should have
one element per line and blank lines will be considered missings. Otherwise,
delimiters must be printable characters. Thedot ‘. * isillegal and will always be
interpreted as amissing value. To specify the backslash asa delimiter, use \\ . If\'r
is specified as adelimiter, the file will be assumed to contain one case or record per
line with commas between elements and no comma at the end of the line.

For hard delimited files, thedel i m t subcommand is used with thei nvar
command. Thedel i m t subcommand has two optional parameters. The first
parameter is the delimiter; the default isa comma. The second parameter isan ‘N'. If
the second parameter is present, ATOG will expect N delimiters. If it is not present,
ATOG will expect N-1 delimiters.

This example:
invar delimt(, N} $ name # var[5];
will expect afilelike this:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,

STEVE, 624.3, 340.3, , 624.3, 639.5,
TOM , 244.2, 834.3, 602.3, 333.4, 822.5,
This example:

invar delimt(,) $ name # var[5];

or
invar delimt $ name # var[5];

will expect afilelike this:
BILL , 222.3, 123.2, 456.4, 345.2, 533.2,
STEVE, 624.3, 340.3, , 624.3, 639.5,
TOM , 244.2, 834.3, 602.3, 333.4, 822.5

16-5

GAUSSUser Guide

The difference between specifying N or N-1 delimiters can be seen here:

456. 4, 345.2, 533.2,
, 624.3, 639.5,
602. 3, 338.4,

If thei nvar statement had specified 3 variables and N-1 delimiters, this file would
be interpreted as having three rows containing amissing in the 2,1 element and the 3,3
element like this:

456. 4 345.2 533.2
624.3 639.5
602. 3 333. 4

If N delimiters had been specified, this file would be interpreted as having two rows,
and afinal incomplete row that is dropped:

456. 4 345.2 533.2
624.3 639.5

The spaces were shown only for clarity and are not significant in delimited files, so

Bl LL, 222. 3, 123. 2, 456. 4, 345. 2, 533. 2,

STEVE, 624. 3, 340. 3, , 624. 3, 639. 5,

TOM 244. 2, 834. 3, 602. 3, 333. 4,822.5
would work just as well.

Linefeeds are significant only if \ n is specified as the delimiter, or when using\ r.
This example:

invar delimt(\r) $ name # var[5];

will expect afile with no comma after the final element in each row:
BILL , 222.3, 123.2, 456.4, 345.2, 533.2
STEVE, 624.3, 340.3, 245.3, 624.3, 639.5
TOM , 244.2, 834.3, 602.3, 333.4, 822.5

16-6

Utilities

Packed ASCII Files Packed ASCII files must have fixed length records. The

r ecor d subcommand is used to specify the record length, and variables are specified
by giving their type, starting position, length, and the position of an implicit decimal
point if necessary.

out var isnot used with packed ASCII files. Instead, i nvar isused to specify only
those variables to be included in the output file.

For packed ASCII files, the syntax of thei nvar command is
i nvar recor d=reclen (format) variables (format) variables;
where,

recl en thetota record length in bytes, including the final carriage return/line
feed if applicable. Records must be fixed length.

format (startlength,prec) where:
start starting position of the field in the record, 1 isthe first position. The

default is 1.
| engt h length of thefield in bytes. The default is 8.
prec optiona; adecimal point will be inserted automatically pr ec places

in from the RIGHT edge of the field.

If several variables are listed after aformat definition, each succeeding field will be
assumed to start immediately after the preceding field. If an asterisk is used to specify
the starting position, the current logical default will be assumed. An asterisk in the
length position will select the current default for both | engt h and pr ec. Thisis
illega: (3,8.%).

The type change characters $ and # are used to toggle between character and numeric
datatype.

Any datain the record that is not defined in aformat isignored.

The examples below assume a 32-byte record with a carriage return/line feed
occupying thelast 2 bytes of each record. The data can beinterpreted in different ways
using different i nvar statements:

ABCDEFGHIJ12345678901234567890<CR><LF>

I I I b
position 1 10 20 30 31 32

16-7

GAUSSUser Guide

This example:
i nvar record=32

$(1,3) group dept #(11,4.2) x[3] (*,5)

type

Yi
will result in:
vari abl e val ue
group ABC
dept DEF
X1 12. 34
X2 56. 78
X3 90. 12
Y 34567
This example:

char act er
char act er
nuneric
nuneric
nuneric

numeri c

invar record=32 $ dept (*,2) id # (*,5) wage (*,2) area

will result in;
vari abl e val ue type
dept ABCDEFGH character
id 1J char act er
WAGE 12345 numeri c
AREA 67 numeri c
msym

Specifies the character in the input file that isto be interpreted as amissing value.

This example:
nmsym &;

Defines the character & as the missing value character.

Thedefault *. * (dot) will always be interpreted as amissing value unlessit is part of a

numeric value.

16-8

Utilities

nocheck

Optional; suppresses automatic checking of packed ASCII record length and output
datatype. The default isto increase the record length by 2 bytesif the second record in
a packed file starts with cr/If, and any filesthat have explicitly defined character data
will be output in double precision regardless of the type specified.

output

The name of the GAUSS data set. A filewill be created with the extension . dat . For
example:

out put c:\gauss\dat\test;

createsthefilet est . dat onthec: \ gauss\ dat directory.

outtyp

Selects the numerical accuracy of the output file. Use of this command should be
dictated by the accuracy of the input data and storage space limitations. The format is:

outtyp fmt;
wherefmt is

D or 8 double precision
F or 4 singleprecision (default)
| or 2 integer

The ranges of the different formats are:

Significant
Bytes Data Type Digits Range
2 integer 4 —-32768 < X < 32767
4 single 6-7 —37 +38
precision 8.43x10 ' <|X| <3.37x10
8 double 15-16 —307 +308
precision 4.19x10 7 < |X|<1.67x10

If the output type is integer, the input numbers will be truncated to integers. If your
data has more than 6 or 7 significant digits, specify out t yp as double.

Character datarequireout t yp d. ATOG automatically selects double precision
when character datais specified inthei nvar statement, unless you have specified
nocheck.

16-9

GAUSSUser Guide

The precision of the storage selected does not affect the accuracy of GAUSS
calculations using the data. GAUSS converts all datato double precision when thefile
isread.

outvar

Selects the variables to be placed in the GAUSS data set. The out var command
needs only thelist of variablesto be included in the output data set. They can bein any
order. For example:

i nvar $nane #age pay $sex #var[1l:10] x[005];

outvar sex age x001 x003 var[1:8];

colum name data type

1 sex charact er
2 AGE nuneric
3 X001 nuneric
4 X003 nuneric
5 VARO1 nuneric
6 VARO2 nuneric
7 VARO3 nuneric
8 VARO4 nuneric
9 VARO5 nuneric
10 VARO6 nuneric
11 VARO7 nuneric
12 VARO8 nuneric

out var isnot used with packed ASCII files.

preservecase

Optional; preserves the case of variable names. The default isnopr eser vecase,
which will force variable names for numeric variables to upper case and character
variablesto lower case.

16-10

Utilities

Examples
Thefirst exampleis a soft delimited ASCI|I file called agex1. asc.
The file contains seven columns of ASCII data:
Jan 167.3 822.4 6.34E06 yes 84.3 100.4
Feb 165.8 987.3 5. 63E06 no 22.4 65.6
Mar 165.3 842.3 7. 34E06 yes 65.4 78.3
Theat og command fileisagex1. cnd:
i nput c:\gauss\agexl. asc;
out put agexl;
i nvar $nonth #tenp pres vol $true var[02];

outvar nonth true tenp pres vol;

The output data set will contain the following information:

name month true TEMP PRES VOL
casel |Jan yes 167.3 822.4 6.34et6
case?2 |Feb no 165.8 987.3 5.63e+6
case3 |Mar yes 165.3 842.3 7.34e+6

type char char numeric numeric numeric

The data set is double precision since character datais explicitly specified.
The second exampleis a packed ASCI| file called x| od. asc.
Thefile contains 32-character records:

AEGDRFCSTY02345678960631567890<CR><LF>
EDITAIPSTn12395863998064839561<CR><LF>
GADNADMSTY19827845659725234451<CR><LF>

I | I I
position 1 10 20 30 31 32

16-11

GAUSSUser Guide

Theat og command fileisx| od. cnd:
i nput c:\gauss\dat\xl od. asc;

out put xI od2;
i nvar record=32 $(1,3) client[2] zone (*,1) reg #(20,5)
zip;

The output data set will contain the following information:

name |clientl client2 zone reg ZIP
casel |AEG DRF CsT y 60631
case?2 |EDJ TAJ PST n 98064
case3 |GWD NAD MST y 59725
type char char char char numeric

The data set is double precision since character datais explicitly specified.
The third example is a hard delimited ASCI| file called cpl x. asc.
Thefile contains six columns of ASCII data:

456. 4, 345.2, 533.2, -345.5, 524.5, 935.3,
-257.6, 624.3, 639.5, 826.5, 331.4, 376.4,
602.3, -333.4, 342.1, 816.7, -452.6, -690.8

The ATOG command fileiscpl x. cnd:
i nput c:\gauss\cpl x. asc;

out put cpl x;
i nvar delimt #cvar[3];

conpl ex;

16-12

Utilities

The output data set will contain the following information:

name cvarl cvar2 cvar3
casel 456.4 + 345.2i 533.2 - 345.5i 524.5 + 935.3i
case 2 -257.6 + 624.3i 639.5 + 826.5i 331.4 + 376.4i
case 3 602.3 - 333.4i 342.1 + 816.7i -452.6 - 690.8i
type numeric numeric numeric

The data set defaults to single precision since no character datais present, and no
out t yp command is specified.

Error Messages
atog - Can't find input file
The ASCII input file could not be opened.
atog - Can’t open output file
The output file could not be opened.
atog - Can’t open tenporary file
Notify Aptech Systems.
atog - Can't read tenporary file
Notify Aptech Systems.
atog - Character data in output file
Setting output file to double precision

The output file contains character data. The type was set to double precision
automatically.

atog - Character data |onger than 8 bytes were truncated
The input file contained character elements longer than 8 bytes. The conversion
continued and the character elements were truncated to 8 bytes.

atog - Disk Full

The output disk isfull. The output file isincomplete.

atog - Found character data in nuneric field

Thisisawarning that character data was found in a variable that was specified as
numeric. The conversion will continue.

atog - Illegal command
An unrecognizable command was found in acommand file.

16-13

GAUSSUser Guide

atog - Internal error
Notify Aptech Systems.
atog - Invalid delinmter

The delimiter following the backslash is not supported.

atog - Invalid output type
Output type must be |, F, or D.

atog - M ssing val ue synbol not found
No missing value was specified in an msy mstatement.

atog - No Input file

No ASCII input file was specified. Thei nput command may be missing.
atog - No input variables

No input variable names were specified. Thei nvar statement may be missing.
atog - No output file

No output file was specified. The out put command may be missing.

atog - output type d required for character data
Character data in output file will be | ost

Output file contains character data and is not double precision.

atog - Open coment
The command file has a comment that is not closed. Comments must be enclosed in
@s.

@conment @

atog - Qut of nenory
Notify Aptech Systems.

atog - read error
A read error has occurred while converting a packed ASCI|I file.

atog - Record length nust be 1-16384 bytes
Ther ecor d subcommand has an out-of-range record length.

atog - Statement too |ong
Command file statements must be less than 16384 bytes.

atog - Syntax error at:
There is unrecognizable syntax in acommand file.

16-14

Utilities

atog - Too nany input variabl es

More input variables were specified than available memory permitted.

atog - Too nany output vari abl es

More output variables were specified than available memory permitted.

atog - Too many vari abl es

More variables were specified than available memory permitted.

atog - Undefined variable

A variable requested in an out var statement wasnot listed inani nvar statement.
atog WVARNING. missing ‘)’ at:

The parenthesesin thedel i m t subcommand were not closed.

atog WARNI NG sone records begin with cr/lf

A packed ASCII file has some records that begin with a carriage return/linefeed. The
record length may be wrong.

atog - conplex illegal for packed ASCII file

A conpl ex command was encountered following ani nvar command with
recor d specified.

atog - Cannot read packed ASCII. (conplex specified)

Ani nvar commandwithr ecor d specified was encountered following aconpl ex
command.

LIBLIST

LIBLIST isalibrary symbol listing utility. It is a stand-alone program that lists the
symbols available to the GAUSS autoloading system.

LIBLIST will aso perform . g file conversion and listing operations. . g filesare
specific files once used in older versions of GAUSS. Due to compiler efficiency and
other reasons, . g files are no longer recommended for use. The LIBLIST options
related to . g filesare supplied to aid the user in consolidating . g files and converting
them to the standard . sr c files.

Theformat for using LIBLIST is:
[iblist -flagslibllib2...libn

flags control flagsto specify the operation of | i bl i st .
G list al . g filesin the current directory and along the sr ¢_pat h.
D creategfil e. | st usingal . g filesin the current directory and along

thesrc_pat h.

16-15

GAUSSUser Guide

mZzr 0O

convert . g filesto. src filesand list thefilesinsrcfil e. | st.
list the contents of the specified libraries.

list library names.

use page breaks and form feed characters.

The search is performed in the following manner:

1.

List all symbolsavailableas. g filesin the current directory and then the

src_path.

List all symbolsdefinedin. | cg filesinthel i b_pat h subdirectory.

gauss. | cq, if it exists, will be listed last.

Report Format

Thelisting produced will go to the standard output. The order the symbols will be
listed in isthe same order they will be found by GAUSS, except that LIBLIST
processesthe. | cg filesin the order they appear inthel i b_pat h subdirectory,
whereas GAUSS processes libraries according to the order specified in your

I'i brary statement. LIBLIST assumesthat all of your libraries are active; that is,
you havelisted them al inal i br ar y statement. gauss. | cg will belisted last.

Hereis an exampe of alisting:

Synbol Type File Li brary Pat h
1. autoreg ------ aut oreg src auto.lcg c:\gauss\src
2. autoprt = ------ aut oreg src auto.lcg c:\gauss\src
3. autoset = ------ aut oreg src auto.lcg c:\gauss\src
4. _pticout mat ri x pgr aph dec pgraph.lcg c:\gauss\src
5. _pzl abel string pgr aph dec pgraph.lcg c:\gauss\src
6. _pzpmax mat ri x pgr aph dec pgraph.lcg c:\gauss\src
7. ascl abel proc pgr aph src pgraph.lcg c:\gauss\src
8. fonts proc pgr aph src pgraph.lcg c:\gauss\src
9. graphset proc pgr aph src pgraph.lcg c:\gauss\src
10. _svdtol matri x svd dec gauss.lcg c:\gauss\src
12. maxvec mat ri x system dec gauss.lcg c:\gauss\src
13. bessel]j proc bessel src gauss.lcg c:\gauss\src
14. bessely proc bessel src gauss.lcg c:\gauss\src

16-16

Utilities

Synbol isthe symbol name available to the autol oader.

Type isthe symbol type. If the library is not strongly typed, this will be aline of
dashes.

Fi | e isthefilethe symbol is supposed to be defined in.
Li br ary isthe name of thelibrary, if any, the symbol islistedin.

Pat h isthe path the file is located on. If the file cannot be found, the path will be
*** not found ***.

Using LIBLIST
LIBLIST isexecuted with
l'iblist -flagslibllib2...libn

To put thelisting in afilecaled | i b. | st , use
liblist -1 > lib.Ist

To convert al your . g filesand listtheminsrcfil e. | st,use
liblist -c

The numbers are there so that you can sort the listing and still tell which symbol
would be found first by the autoloader. You may have more than one symbol by the
same name in different files. LIBLIST can help you keep them organized so you do
not inadvertently use the wrong one.

16-17

Error Messages

Thefollowing isalist of error messages intrinsic to the GAUSS programming
language. Error messages generated by library functions are not included here.

0002 File too large
| oad Input file too large.
get f Input file too large.

(0003 Indexing a matrix as a vector

A singleindex can be used only on vectors. Vectors have only one row or only
one column.

@0004 Conpil er stack overflow - too conpl ex

An expression istoo complex. Break it into smaller pieces. Notify Aptech
Systems.

0005 File is already conpiled

0006 Staterment too |ong

Statement longer than 4000 characters.

171

GAUSSUser Guide

@007 End of file encountered

0008 Syntax error

Compiler Unrecognizable or incorrect syntax. Semicolon missing on
previous statement.

create Unrecognizable statement in command file, or numvar or
out var statement error.

0009 Conpil er pass out of nenory

Compiler pass has run out of memory. Notify Aptech Systems.

0010 Can't open output file

0011 Conpiled file must have correct extension

GAUSSrequiresa. gcg extension.

0012 Invalid drive specifier

@013 Invalid fil enane

@0014 File not found

0015 Directory full

0016 Too nany #i ncl udes
#i ncl uded files are nested too deep.

(0017 WARNI NG | ocal outside of procedure

Al ocal statement has been found outside a procedure definition. The
| ocal statement will be ignored.

(0018 Read error in programfile

0019 Can't edit .gcg file

17-2

Error Messages

30020 Not inplenmented yet

Command not supported in thisimplementation.

0021 use nust be at the beginning of a program

@0022 User keyword cannot be used in expression

0023 Illegal attenpt to redefine synbol to an index

vari abl e

30025 Undefi ned synbol

A symbol has been referenced that has not been given a definition.

0026 Too many synbol s

The global symbol tableisfull. (To set the limit, see newin the GAUSS
Language Reference.)

@0027 Invalid directory

0028 Can't open configuration file
GAUSS cannot find the configuration file.

@0029 M ssing |left parenthesis

0030 I nsufficient workspace menory

The space used to store and manipulate matrices and stringsis not large
enough for the operations attempted. (To make the main program space
smaller and reclaim enough space to continue, see newin the GAUSS
Language Reference.)

(0031 Execution stack too deep - expression too conpl ex

An expression istoo complex. Break it into smaller pieces. Notify Aptech
Systems.

@032 fn function too |arge

17-3

GAUSSUser Guide

(0033 M ssing right index bracket

0034 M ssing argunents

@0035 Argunent too |arge

G0036 Matrices are not conformabl e

For adescription of the function or operator being used and conformability
rules, see “Matrix Operators,” page 7-4, or the GAUSS Language Reference.

0037 Result too large

The size of the result of an expression is greater than the limit for asingle
matrix.

0038 Not all the eigenval ues can be conputed

(0039 Matrix nmust be square to invert

0040 Not all the singular values can be conputed

0041 Argument rnust be scal ar

A matrix argument was passed to a function that requires a scalar.

0042 Matrix nmust be square to conpute deterni nant

0043 Not inplemented for conplex matrices

0044 WMatrix must be real

0045 Attenpt to wite conplex data to real data set

Data sets, unlike matrices, cannot change from real to complex after they are
created. Usecr eat e conpl ex to create acomplex data set.

@046 Columms don't nmmtch

The matrices must have the same number of columns.

17-4

Error Messages

@0047 Rows don't nmmatch

The matrices must have the same number of rows.

0048 Matrix singular

The matrix is singular using the current tolerance.

G0049 Target matrix not conpl ex

0050 Qut of nmenory for program

The main program areaisfull. (To increase the main program space, see new
in the GAUSS Language Reference.)

0051 Programtoo | arge

Themain program areaisfull. (To increase the main program space, see new
in the GAUSS Language Reference.)

0052 No square root - negative el enent

@0053 11l egal index
Anillegal value has been passed in as a matrix index.

0054 | ndex overfl ow
Anillegal value has been passed in as a matrix index.

0055 retp outside of procedure

A r et p statement has been encountered outside a procedure definition.

0056 Too nmany active |locals

The execution stack is full. There are too many local variables active.
Restructure your program. Notify Aptech Systems.

0057 Procedure stack overflow - expression too conpl ex

The execution stack isfull. There are too many nested levels of procedure
calls. Restructure your program. Notify Aptech Systems.

17-5

GAUSSUser Guide

0058 I ndex out of range

You have referenced a matrix element that is out of bounds for the matrix
being referenced.

0059 exec command string too |ong

@060 Nonscal ar i ndex

30061 Chol esky downdate failed

0062 Zero pivot encountered

crout The Crout algorithm has encountered adiagonal element equal to
0. Usecr out p instead.

0063 Qperator m ssing

An expression contains two consecutive operands with no intervening
operator.

@064 Operand mi ssing

An expression contains two consecutive operators with no intervening
operand.

0065 Division by zero!

0066 Must be reconpil ed under current version

You are attempting to use compiled code from a previous version of GAUSS.
Recompile the source code under the current version.

0068 Program conpil ed under GAUSS- 386 real version

0069 Program conpi |l ed under GAUSS-386i conpl ex version

@070 Procedure calls too deep

You may have arunaway recursive procedure.

17-6

Error Messages

0071 Type ni snatch

You are using a string where amatrix is called for, or vice versa.

0072 Too many files open

The limit on simultaneously open filesis 10.

@0073 Redefinition of

decl are An attempt has been made to initialize avariable that is already
initialized. Thisisan error whendecl are : =isused.decl are ! =or
decl ar e ?=may be abetter choice for your application.

decl are An attempt has been made to redefine a string as a matrix or
procedure, or viceversa. del et e the symbol and try again. If thishappensin
the context of a single program, you have a programming error. If thisisa
conflict between different programs, use a new statement before running the
second program.

| et A string is being forced to type matrix. Use an ext er nal
mat ri x (symbol); statement beforethel et statement.

0074 Can't run program conpil ed under GAUSS Li ght

@075 gscroll input vector the wong size

0076 Call Aptech Systens Techni cal Support

@0077 New si ze cannot be zero

You cannot r eshape amatrix to asize of zero.

0078 varget!l outside of procedure

0079 varputl outside of procedure

@080 File handle nust be an integer

0081 Error renamng file

@0082 Error reading file

17-7

GAUSSUser Guide

(0083 Error creating tenporary file

0084 Too many | ocal s

A procedure has too many local variables.

0085 Invalid file type

You cannot use thiskind of filein thisway.

0086 Error deleting file

@0087 Coul dn't open

The auxiliary output file could not be opened. Check the file name and make
sure there is room on the disk.

30088 Not enough nmenory to convert the whole string
0089 WARNI NG duplicate definition of |ocal
0090 Label undefined

Label referenced has no definition.

30091 Synbol too |ong

Symbols can be no longer than 8 characters.

@092 Open comment

A comment was never closed.

G0093 Locate off screen

@094 Argunent out of range

0095 Seed out of range

@0096 Error parsing string

par se encountered atoken that was too long.

17-8

Error Messages

0097 String not cl osed
A string must have double quotes at both ends.

0098 Invalid character for imaginary part of conplex

numnmber

0099 Illegal redefinition of user keyword

@100 Internal E R R O R ###
Notify Aptech Systems.

(0101 Argument cannot be zero

Theargument tol n or | og cannot be zero.

0102 Subroutine calls too deep

Too many levels of gosub. Restructure your program.

0103 return w thout gosub

You have encountered a subroutine without executing agosub.
(0104 Argument rnust be positive
(0105 Bad expression or mssing argunents

Check the expression in question, or you forgot an argument.

@0106 Factorial overfl ow

0107 Nesting too deep

Break the expression into smaller statements.

0108 M ssing |left bracket [

(0109 Not enough data itens
You omitted datain al et statement.

17-9

GAUSSUser Guide

(0110 Found) expected] -

(0111 Found] expected) -

G0112 Matrix multiplication overflow

0113 Uncl osed (

0114 Uncl osed |

0115 Illegal redefinition of function

You are attempting to turn afunction into amatrix or string. If thisis aname
conflict, del et e the function.

(0116 sysstate: invalid case

0117 Invalid argunent

(0118 Argument rmrust be integer
File handles must be integral.

@120 Illegal type for save

(0121 Matrix not positive definite

The matrix is either not positive definite, or singular using the current
tolerance.

0122 Bad file handl e

Thefile handle does not refer to an open file or isnot in the valid range for file
handles.

0123 File handl e not open

The file handle does not refer to an open file.

17-10

Error Messages

0124 readr call too | arge

You are attempting to read too much in one call.

0125 Read past end of file
You have already reached the end of thefile.

@0126 Error closing file

0127 File not open for wite

0128 File al ready open

0129 File not open for read

(0130 No output variables specified

0131 Can't create file, too many vari abl es
0132 Can't wite, disk probably full

@0133 Function too |ong

0134 Can't seekr in this type of file
(0135 Can't seek to negative row

(0136 Too many argunents or ni splaced assi gnment op...

You have an assignment operator (=) where you want a comparison operator
(==), or you have too many arguments.

0137 Negative argunment - erf or erfc

(0138 User keyword nust have one argunent

17-11

GAUSSUser Guide

@139

@140

0141

0142

0143

0144

0145

0146

Q0147

0148

@149

@150

@151

@152

@0153

Negative paraneter - |Inconplete Beta
Invalid second paraneter - Inconplete Beta
Invalid third paraneter - Inconplete Beta
Nonpositive paranmeter - gamma

NaN or m ssing value - cdfchic
Negati ve paraneter - cdfchic

Second paraneter < 1.0 - cdfchic
Parameter too large - Inconplete Beta
Bad argunent to trig function

Angle too large to trig function
Matri ces not conformabl e

For adescription of the function or operator being used and conformability
rules, see “Matrix Operators,” page 7-4, or the GAUSS Language Reference.

Matri x not square

Sort failure

Variable not initialized

You have referenced a variable that has not been initialized to any value.

Unsuccessful close on auxiliary output
The disk may be full.

17-12

Error Messages

0154 Illegal redefinition of string

(0155 Nested procedure definition

A pr oc statement was encountered inside a procedure definition.

@0156 Il legal redefinition of procedure

You are attempting to turn a procedure into amatrix or string. If thisisaname
conflict, del et e the procedure.

0157 Illegal redefinition of matrix

0158 endp without proc

You are attempting to end something you never started.

0159 Wong nunber of paraneters

You called a procedure with the wrong number of arguments.

0160 Expected string variable
0161 User keywords return nothing
0162 Can't save proc/ keyword/fn with global references

Remove the global references or leave thisin source code form for the
autoloader to handle. (Seel i br ar y in the GAUSS Language Reference.)

0163 Wong size format matri x

30164 Bad nask matri x

@0165 Type mismatch or m ssing argunents

0166 Character elenent too | ong

The maximum length for character elementsis 8 characters.

&0167 Argunment nust be col utm vector

17-13

GAUSSUser Guide

0168 Wong nunber of returns

The procedure was defined to return a different number of items.

0169 Invalid pointer

You are attempting to call alocal procedure using an invalid procedure
pointer.

@170 Invalid use of anpersand
0171 Call ed synbol is wong type
You are attempting to call alocal procedure using a pointer to something else.
@0172 Can't resize tenmporary file
0173 varindx failed during open
The globa symbol tableisfull.

@174 ‘.’ and * ' operators nust be inside [] brackets

These operators are for indexing matrices.

0175 String too long to conpare

0176 Argunent out of range

&0177 Invalid format string

0178 Invalid node for getf

@179 Insufficient heap space

@0180 trimtoo nuch

You are attempting to trim more rows than the matrix has.

@0181 Il I egal assignment - type m smatch

17-14

Error Messages

0182 2nd and 3rd argunents different order

0274 Invalid parameter for conv

@275 Paraneter is NaN (Not A Nunber)
The argument isaNaN (see “ Special Data Types,” page 6-20).

0276 |11l egal use of reserved word

@0277 Null string illegal here

0278 proc without endp

You must terminate a procedure definition with an endp statement.

0286 Multiple assign out of nenory

0287 Seed not updated

The seed argument to r ndns and r ndus must be asimple local or global
variable reference. It cannot be an expression or constant. These functionsare
obsolete, pleaseuser ndl cn and rndl cu

(0288 Found break not in do | oop

30289 Found continue not in do | oop

0290 Library not found

The specified library cannot be found onthel i b_pat h path. Make sure
installation was correct.

@291 Conpil er pass out of nenory
Notify Aptech Systems.

0292 File listed in library not found
A filelisted in alibrary could not be opened.

17-15

GAUSSUser Guide

30293 Procedure has no definition

The procedure was not initialized. Defineit.

0294 Error opening tenporary file

One of the temporary files could not be opened. The directory may be full.

(0295 Error witing tenporary file

One of the temporary files could not be written to. The disk may be full.

0296 Can't raise negative nunber to nonintegral power

@300 File handl e nust be a scal ar

0301 Syntax error in library

@302 File has been truncated or corrupted

get nanme File header cannot be read.
| oad Cannot read input file, or file header cannot be read.

open File size does not match header specifications, or file header
cannot be read.

0317 Can't open tenp file

@336 Di sk full

@0339 Can't debug conpiled program

0341 File too big

0347 Can't allocate that many gl obal s

0351 Warning: Not reinitializing : declare ?=
The symbol is aready initialized. It will be left asis.

17-16

Error Messages

0352 Warning: Reinitializing : declare !=
The symbol is already initialized. It will be reset.

0355 Wong size line matrix

Q0360 Wite error

0364 Pagi ng error

@365 Unsupported executable file type

0368 Unable to allocate translation space

Q0369 Unable to allocate buffer

0370 Syntax Error in code statenent

0371 Syntax Error in recode statenent

Q0372 Token verify error
Notify Aptech Systems.

@373 Procedure definition not all owed

A procedure name appears on the left side of an assignment operator.

@374 Invalid nmake statenent

@0375 make Variable is a Nunber

@376 nmake Variable is Procedure

@0377 Cannot make Existing Variable

@0378 Cannot nake External Vari able

1717

GAUSSUser Guide

0379 Cannot make String Constant

30380 I nvalid vector statenent

@0381 vector Variable is a Nunmber

30382 vector Variable is Procedure

@0383 Cannot vector Existing Variable

30384 Cannot vector External Variable

@0385 Cannot vector String Constant

0386 I nvalid extern statenent

@0387 Cannot extern nunber

0388 Procedures al ways external

A procedure name has been declared in an ext er n statement. Thisisa
warning only.

(0389 extern variable already |ocal

A variable declared in an ext er n statement has already been assigned local
status.

@390 String constant cannot be external

(0391 Invalid code statenent

@392 code Variable is a Nunber

@393 code Variable is Procedure

17-18

Error Messages

0394

@395

0396

@397

0398

@399

@400

@401

@402

403

@404

@405

@406

@407

@408

@409

Cannot code Existing Variable

Cannot code External Variable

Cannot code String Constant

Invalid recode statenent

recode Variable is a Number

recode Variable is Procedure

Cannot recode External Variable

Cannot recode String Constant

Invalid keep statenent

Invalid drop statenent

Cannot defi ne Nunber

Cannot define String

Invalid sel ect statenent

I nval i d del ete statenment

Invalid outtyp statenent

outtyp already defaulted to 8

Character data has been found in the output data set beforeanoutt yp 2 or

outtyp 4 statement. Thisisawarning only.

17-19

GAUSSUser Guide

0410 outtyp must equal 2, 4, or 8
0411 outtyp override...precision set to 8

Character data has been found in the output data set after anout t yp 2 or
outtyp 4 statement. Thisisawarning only.

@412 default not allowed in recode statenent

def aul t allowed only in code statement.

0413 Mssing file nane in datal oop statenent

@414 Invalid |istw se statenent

0415 Invalid | ag statenent

(0416 | ag variable is a nunber

0417 lag variable is a procedure

0418 Cannot | ag External Vari able

(0419 Cannot |ag String Constant

0421 conpil e conmand not supported in Run-Ti ne Mdul e

30428 Cannot use debug command i nside program

0429 Invalid nunber of subdi agonal s

@0431 Error closing dynamic library

Q0432 Error opening dynamc library

30433 Cannot find DLL function

17-20

Error Messages

@435

@436

437

0438

0439

@441

0442

Q0445

Q447

0454

@456

457

0458

Q0459

@460

@461

Q0462

| nval i d node

Matrix is enmpty

| oadexe not supported; use dlibrary instead
cal |l exe not supported; use dllcall instead
File has wong bit nunber

Type vector nalloc failed

No type vector in gfblock

Il1legal left-hand side reference in procedure
vfor called with illegal |oop | eve
Fai l ure opening printer for output

Fail ure buffering output for printer

Can't take | og of a negative nunber

Attenpt to index proc/fn/keyword as a matrix

M ssing right brace }

Unexpected end of statenent

Too nany data itens

Negative trimval ue

17-21

GAUSSUser Guide

0463 Failure generating graph

17-22

Maximizing Performance 1 8

These hints will help you maximize the performance of your new GAUSS System.

Library System

Some temporary files are created during the autol oading process. If you have a
t mp__pat h configuration variable or at mp environment string that defines a path on
aRAM disk, the temporary files will be placed on the RAM disk.

For example:
set tmp=f:\tnmp

t mp__pat h takes precedence over thet nmp environment variable.

A disk cache will aso help, aswell as having your frequently used filesin the first
pathinthesrc_pat h.

You can optimize your library . | cg files by putting the correct drive and path on each
file namelisted in the library. Thel i b command will do this for you.

Usetheconpi | e command to precompile your large frequently used programs. This
will completely eliminate compile time when the programs are rerun.

18-1

GAUSSUser Guide

Loops

The use of the built-in matrix operators and functions rather than do loops will ensure
that you are utilizing the potential of GAUSS.

Hereis an example:
Given the vector x with 8000 normal random numbers,
X = rndn(8000, 1);

you could get a count of the elements with an absolute value greater than 1 withado

loop, like this:
c = 0;
i = 1;

do while i < rows(x);
if abs(x[i]) > 1;
c = c+l;
endi f;
i = i+1;
endo;

print c;

Or, you could use:
¢ = sunc(abs(x) .> 1);

print c;

The do loop takes over 40 times longer.

Virtual Memory
The following are hints for making the best use of virtual memory in GAUSS.

Data Sets

Large data sets can often be processed much faster by reading them in small sections
(about 20000-40000 elements) instead of reading the entire data set in one piece.
maxvec isused to control the size of asingle disk read. Hereisan example. Theol s

18-2

Maximizing Performance

command can take either amatrix in memory or adata set on disk. Here are the times
for aregression with 100 independent variables and 1500 observations on an IBM
model 80 with 4 MB RAM running at 16 MHz:

ol s(0,vy, x) matrices in memory 7 minutes 15.83 seconds
ol s(“ol sdat”, 0, 0) dataon disk (maxvec = 500000) 8 minutes 48.82 seconds
ol s(“ol sdat”, 0, 0) dataon disk (maxvec = 25000) 1 minute 42.77 seconds

Asyou can see, the fastest time occurred when the data was read from disk in small
enough sectionsto allow the ol s procedure to execute entirely in RAM. This ensured
that the only disk 1/0 was one linear pass through the data set.

The optimum size for maxvec depends on your available RAM and the algorithms
you are using. GAUSS is shipped with maxvec set to 20000. naxvec isaprocedure
definedinsyst em sr ¢ that returns the value of the global scalar __naxvec. The
value returned by acall to naxvec can be modified by editing syst em dec and
changing thevalueof __maxvec. Thevalue returned when running GAUSS Light is
aways 8192.

Complex numbers use twice the space of real numbers, so the optimum single disk
read size for complex data sets is half that for real data sets. You canset _maxvec
for real data sets, then use maxvec/ 2 when processing complex datasets. i scpl xf
will tell you if a data set is complex.

Hard Disk Maintenance

The hard disk used for the swap file should be optimized occasionally with a disk
optimizer. Use a disk maintenance program to ensure that the disk mediaisin good
shape.

CPU Cache

Thereisalinefor cachesizeinthegauss. cf g file. Set it to the size of the CPU data
cache for your computer.

This affects the choice of algorithms used for matrix multiply functions.

Thiswill not change the results you get, but it can radically affect performance for
large matrices.

18-3

Fonts Appendix

There are four fonts available in the Publication Quality Graphics System:

Simplex standard sans serif font
Simgrma Simplex greek, math
Microb bold and boxy
Complex standard font with serif

The following tables show the characters available in each font and their ASCII
values. (For details on selecting fonts for your graph, see “ Selecting Fonts,” page 15-
10.

GAUSSUser Guide

Simplex

33
34
35
36
57
38
59
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

T e N8 e

+%\//\

O 00~ O O~ NN = O

0

62
635
64
65
66
6/
68
69
/0
/1

/2
s
/4
/5
/6
/7
/8
/9
80
81

82
83
34
85
86
37/
83

X =< C 40V DO VO = XS T TO TTMUOOm>@ VY

89
90
91
92
93
94
95
96
97/
98
99
100
101
102
103
104
105
106
107
108
109
110
1117
112
113
114
115
116

y — N <

- —+~ o o O o o T

— = . —

ﬁ@bojg

()]

T N X = < C

¢

A-2

Fonts Appendix

Simgrma

33 e 61 = 89 W 17 v
34 62 = 30 % 118)
35 = 63 91 | 119 w
36~ 64 U 92 9 120 ¢
37 1 65 1 93 | 121 4
38V 66 1 94 N 122 ¢
39 67 H 95 4 123 |
40 C 68 A 96 ” 124 [
41 > 69 4 97 « 125 |
42 x 70 I8 B 126 o
43+ 71T 99 7

44 f 72 X 100 6

45 7T 73 % 101 e

46 - 74 L 102 o

47 = 75 3 103

48 v 76 A 104

49 77 3% 105 .

50 ¢ 78 % 106+

51 < 79 1 107 «

52 > 80 108 A

53/ 81 O 109w

54 3 82 P 110 v

55 | 83 % 11 o

56 o 84 < 12

57 © 85 T 13

58 - 86« 14 p

59 < 87 0 115 o

60 < 88 = 16 7T

GAUSSUser Guide

Microb
335 ! 61 = 89 Y 117
34 " 67 > 90 Z 118
35 # 635 ? 97 [119
56 $ 64 @ 92 \ 120
37 % 65 A 953] 127
38 & 66 B 94 - 122
39 ! 6/ C 95 _ 125
40 C 68 D 96) 124
4) 69 E 97/ a 125
42 x /0 F 98 b 126
43 + /1 G 99 c
44 , V% H 100 d
45 - /35 I 101 e
46 . 74 J 102 f
a7/ 75 K 103 g
48 0 /6 L 104 h
49 1 /7 M 105 i
50 2 /8 N 106
51 3 /9 0 107 k
52 4 80 P 108 |
53 5 81 Q 109 m
54 6 82 R 170 n
55 7 83 S 171 o
56 8 84 T 112 p
57 9 85 u 113 ¢
58 : 86 V 1174 r
59 : 87 W 115 s
60 < 88 X 1176 €

! T T T NK X s < C

A-4

Fonts Appendix

Complex

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Ny T

TR

1%_//\

© O 2O O W~ O

0
62
035
o4
02
606
o/
63
©9
/0
/1
/2
75
/4
s
/6
77
/8
/79
30
81
82
85
84
85
386
87/
88

=< oA nNIJTLO ' TOoOoOzZz=C """ T aaH@HOQT =@ vV

39
90
91
92
93
94
95
96
97/
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Y 117 u
Z 118 v
[119 w
\ 120 x
] 121 y
~ 122z
_ 123 4
* 124 |
a 125 3%
b 126~
C

d

e

f

g

h

i

]

k

1

I

I

O

p

q

r

S

t

Reserved Words Appendix

The following words are used for GAUSS intrinsic functions. You cannot use these
names for variables or proceduresin your programs:

a
abs and atan atan2
b
balance bandcholsol bandsolpd break
band bandltsol besselj
bandchol bandrv bessely
C
call cdfchic cdfnc cdftvn
callexe cdffc cdfni cdir
cdfbeta cdfgam cdftc ceil
cdfbvn cdfn cdftci cfft

B-1

GAUSSUser Guide

cffti
ChangeDir
chol
choldn
cholsol
cholup
chrs

cint

clear

date
dbcommit
dbconnect
dbdisconnect
dbopen
dbstrerror

edit
editm
eig
eigh
eighv

eigv

fcheckerr

clearg
close
closeal
cls
color
cols
colsf
comlog

compile

debug
declare
delete
det

detl

dfree

ese
elsaif
enable
end
endfor
endif

endo

foetsat

complex
con

conj
cons
continue
conv
corel eft
cos

counts

diag
diagrv
disable
dlibrary
dlicall
do

envget

eof

8

erfc

fn

countwts
create
crout
croutp
csreol
csrlin
csrtype

cvtos

dos
dtvnormal

dtvtoutc

error
errorlog
exec
exp
external

eye

fputs

Reserved Words Appendix

fclearerr
fflush
fft

ffti

fftn
fgets
fgetsa

gamma

ge
getf

hasimag

imag
indcv

key

foetst
fileinfo
files
filesa
fix
floor

fmod

getname
getnamef

gosub

hess

indexcat
indnv

int

keyw

font

fontload
fontunload
fontunloadall
fopen

for

format

goto

graph
graphsev3

hsec

inv
invpd

invswp

keyword

fputst
fseek
fstrerror
ftell
ftocv

ftos

gt

iscplx
iscplxf

ismiss

B-3

GAUSSUser Guide

matrix
maxc

maxindc

ndpchk

ndpclex

oldfft
ol dffti

packr
parse
pdfn
pi

loadexe
loadf
loadk
loadm
loadp
loads
local

meanc
minc

minindc

ndpcntrl

ne

ones

open

plot
plotsym
pop
pagwin

locate
log
lower
Ipos
[print
Ipwidth
[show

miss
mi ssrv

moment

new

not

openpag
or

prcsn
print
printdos

printfm

It
[trisol
lu

[usol

msym

output
outwidth

proc
prodc
push

B-4

Reserved Words Appendix

rankindx
rcondl
readr
real
recserar
recsercp
reshape
retp

save
savedl|
scalerr
scalmiss
schur
screen
scroll
seekr
sega
seqm
setvmode

tab
tan
tempname

time

return
rev
rfft
rffti
rfftip
rfftn
rfftnp
rfftp

shiftr
show
showpag
sin

sleep
solpd
sortc
sortcc
sorthc
sorthcc

sortind

timeutc
trace

trap
trapchk

rndcon
rndmod
rndmult
rndn
rndns
rndseed
rndu

rndus

sortindc
sort
stdc
stocv
stof
stop
strindx
string
strien
strrindx
strsect

trim
trimr

trunc

type

rotater
round
rows
rowsf

run

submat
subscat
sumc
svdcusv
svds
svdusv
sysstate
system

typecv
typef

B-5

GAUSSUser Guide

union

uniqindx

vals
varget
vargetl

while

winclear
wincleararea
winclearttylog
winclose
wincloseall
winconvertpgg
wingetactive
wingetattributes

Xxor

Zeros

unique

until

varput
varputl

vartypef

wingetcolorcells
wingetcursor
winmove
winopenpqg
winopentext
winopentty
winpan

winprint

winprintpag

xpnd

upper
use

vec
vech

vecr

winrefresh
winrefresharea
winresize
winsetactive
winsetbackground
winsetcol or
winsetcolorcells
winsetcolormap

winsetcursor

utctodtv

utrisol

vfor

winsetforeground
winsetrefresh
winsettextwrap
winwrite
winzoompqg

writer

B-6

Singularity Tolerance
Appendix

The tolerance used to determine whether or not amatrix is singular can be changed.
The default valueis 1.0e-14 for both the LU and the Cholesky decompositions. The
tolerance for each decomposition can be changed separately. The following operators
are affected by a change in the tolerance:

Crout LU Decomposition

crout (X)

crout p(x)

i nv(X)

det (X)

yl X when neither x nor y is scalar and x is square.

Cholesky Decomposition

chol (X

i nvpd(x)

sol pd(yX)

yl X when neither x nor y is scalar and x is not square.

C-1

GAUSSUser Guide

Reading and Setting the Tolerance

The tolerance value may be read or set using the sysst at e function, cases 13 and
14.

Determining Singularity

Thereis no perfect tolerance for determining singularity. The default is 1.0e-14. You
can adjust this as necessary.

A numerically better method of determining singularity isto use cond to determine
the condition number of the matrix. If the equation

1/ cond(x) + 1 eq 1

istrue, then the matrix is usually considered singular to machine precision. (See
LINPACK for adetailed discussion on the relationship between the matrix condition
and the number of significant figures of accuracy to be expected in the resuilt.)

C-2

Index

Index

Operators and Symbols

: (colon) 7-14
175

- 74

14-1, 14-2
$+ 7-14

$| 7-15

$~ 7-16

% 7-5

& (ampersand) 7-14
(semicolon) 6-2
* 7-4

*~ 77

+ 7-4

, (comma) 7-13
. 7-10, 7-10

. (dot) 7-9, 7-10, 7-14
* 75

*. 7-6

A 7-6

J= 7-10

== 7-10

> 7-11
>=7-11

N T7-6

.and 7-13

.eq 7-10

eqv 7-13
fcgfile 8-12
.ge 7-11

gt 7-11

le 7-10

It 7-10

.ne 7-10

.not 7-13

Xxor 7-13

! 7-5

/= 7-10

=6-1

_pageshf 15-13
_parrow 15-13
_parrow3 15-14
_paxes 15-15

_paxht 15-16

_pbartyp 15-16
_pbarwid 15-16

_pbox 15-16
_pboxctl 15-16
_pboxlim 15-17
_pcolor 15-17
_pcrop 15-17
_pcross 15-18
_pdate 15-18
_perrbar 15-18
_pframe 15-19
_porid 15-19
_pletrl 15-19
_plectrl 15-20
_plegstr 15-20
_plev 15-20
_pline 15-20
_pline3d 15-22
_plotshf 15-23
_plotsiz 15-23
_pltype 15-23
_plwidth 15-24
_pmcolor 15-24
_pmsgctl 15-24
_pmsgstr 15-24
_pnotify 15-25
_pnum 15-25
_pnumht 15-25
_protate 15-25
_pscreen 15-25
_psilent 15-25
_pstype 15-25
_psurf 15-26
_psym 15-26
_psym3d 15-26
_psymsiz 15-26
_ptek 15-26
_pticout 15-26
_ptitlht 15-27
_pversno 15-27
_pxpmax 15-27
_pxsci 15-27
_pypmax 15-27
_pysci 15-27
_pzclr 15-27
_pzoom 15-27
_pzpmax 15-27
_pzsci 15-27

| 7-8

~ 7-8

A

action menu 4-19
ampersand 7-14

Index-1

GAUSSUser Guide

and 7-11, 7-12
append 16-3
append, atog command 16-1
arguments 6-31, 8-2, 8-3
arrows 15-13
ASCII Files 11-2
ASCII files 16-1
reading 11-3
writing 11-3
asclabel 15-10

assignment operator 6-2, 6-31, 7-13

atog 16-1
autoloader 9-1, 16-17
axes 15-2
axes numbering 15-2

B

bar 15-1

bar shading 15-16

bar width 15-16
begwind 15-5, 15-8
blank lines 6-30
Boolean operations 7-11
box 15-1

browse 3-2

C

caling a procedure 8-5
caret 7-6, 7-16
case 6-30
Cholesky decomposition 7-5
circles 15-4, 15-18, 15-20
code 14-2
colon 6-30
color 15-5,15-18
arrow 15-14
bar 15-16
box 15-16
pbox 15-16
z-level 15-5
comma 7-13
command 6-2
command line
configuration 3-3
debugging 3-4
editing 3-2
command window 4-1
comments 6-30
comparison operator 6-31
compilation phase 14-3

compile 10-1
compiletime 6-1
compiled language 6-1
compiler 10-1

complex 16-3

complex constants 6-11
complex, atog command 16-1
concatenation, matrix 7-8
conditional branching 6-27
configure menu 4-23
conformability 7-1
constants, complex 6-11
contour 15-1

contour levels 15-20
control, flow 6-23
coordinates 15-6

cropping 15-2, 15-17

D

dataloop 14-1
datasets 11-6
dataloop 14-1
date 15-3
date formats 6-19
debug menu 4-17
debug window 4-2, 4-38
debugging 10-2
command line 3-4
delete 14-2
delimited
hard 16-5
soft 16-4
delimited files 11-3
division 7-5
doloop 6-24
dot relational operator 7-17, 7-18
draw 15-1
drop 14-2
DT Scalar Format 6-19
DTV vector format 6-20

E

edit menu 4-11
edit window 4-2
editing
command line 3-2
editing keys 4-5
element-by-element conformability 7-1
element-by-element operators 7-1
empty matrix 6-11

I ndex-2

Index

encapsulated PostScript Graphics 3-2
endp 8-2,8-5

endwind 15-8

eq 7-9

eqv 7-13

error bar 15-7, 15-18

EXE conformable 7-1

executable code 6-3

executable statement 6-2

execution phase 14-3

execution time 6-1

exponentiation 7-6

expression, evaluation order 6-22, 7-18
expression, scalar 6-26

expressions 6-1

extern 14-2

extraneous spaces 6-30

F

factorial 7-5
FALSE 6-24
fileformats 11-11
filemenu 4-9
files 11-1
binary 11-12
matrix 11-12
string 11-13
finding symbols 3-2
flow control 6-23
fonts A-1
forward reference 9-1
function 6-29

G

ge 7-10
global variable 8-1, 8-4
graphics

viewing 3-2
graphics text elements 15-9
graphics windows 15-4, 15-6
graphics, publication quaity 15-1
grid subdivisions 15-19
gt 7-10

H

hard delimited 16-5
hardware requirements 2-1
hat operator 7-6, 7-16

help menu 4-28

hidden lines 15-26

horizontal direct product 7-7
HTML-based Help window 4-2

indefinite 6-20

indexing matrices 6-31, 7-13
indexing procedures 7-14
infinity 6-21

initidlize 8-3

inner product 7-4

inpu, atog command 16-1
input 16-3

instruction pointer 6-2
interpreter 6-1

intrinsic function 6-6
invar 16-4

invar, atog command 16-1

K

keep 14-2

keys, editing 4-5
keys, shortcut 4-6
keyword 8-1, 8-6
Kronecker 7-6

L

label 6-28, 6-30, 8-1

lag 14-2

le 7-9

least squares 7-5

left-hand side 9-2

legend 15-2

lib_path 16-16

liblist 16-15

libraries, troubleshooting 9-11

library 9-1

library symbol listing utility 16-15

library, optimizing 18-1

linethickness 15-18, 15-22, 15-23, 15-24, 15-26
linetype 15-14, 15-15, 15-18, 15-21, 15-23
linear equation solution 7-5

lines 15-1

listwise 14-2

literal 6-16, 7-16

loadp 8-12

local 8-2

Index-3

GAUSSUser Guide

local variable declaration 8-3
local variables 6-6, 8-3
logical operators 7-11
looping 6-24

It 7-9

LU decomposition 7-5

M

magnification 15-27
main program code 6-4
main section 6-3
make 14-2
math coprocessor 2-1
matrices, indexing 6-31
matrix conformability 7-1
matrix editor window 4-2
matrix, empty 6-11
maxvec 18-2
menu

action 4-19

command line 3-3

configure 4-23

debug 4-17

edit 4-11

file 4-9

help 4-28

mode 4-15

search 4-14

window 4-26
menu bar 4-9
missing values 7-5, 7-9
mode menu 4-15
modulo division 7-5
msym 16-8
msym, atog command 16-1
multiplication 7-4

N

NaN 6-20

NaN, testing for 6-21, 7-9
ne 7-10

nocheck 16-9

nocheck, atog command 16-1
nonexecutable statement 6-2
nontransparent windows 15-7
not 7-9, 7-11, 7-12, 7-19

O

operators 6-1, 7-4

or 7-12,7-13

outer product 7-5

output 11-2, 11-4, 16-9
output window 4-2

output, atog command 16-2
outtyp 14-2, 16-9

outtyp, atog command 16-2
outvar 16-10

outvar, atog command 16-2
overlapping windows 15-7

P

packed ASCII files 16-7
pagesiz 15-13
pairwise deletion 7-5
passing to other procedures 8-8
performance hints 18-1
pointer 7-14, 8-4
pointer, instruction 6-2
PostScript graphics 3-2
precedence 6-22, 7-18
precedence, operator 7-18
preservecase 16-10
proc 8-2
procedure definition 6-3
procedure, saving 8-12
procedures

indexing 8-9

multiple returns 8-10
program 6-3

R

radii 15-20

recode 14-2

recursion 8-4

relational operator 7-8, 7-10
relational operator, dot 7-18
reserved words B-1

retp 8-2, 8-4

right-hand side 9-2

rules of syntax 6-29
running commands 4-3

running commands interactively 4-3

running programsin files 4-4

Index-4

Index

S

screen 11-4
search menu 4-14
secondary section 6-4
See “Passing Procedures to Procedures,” page 6-7 8-3
select 14-2
semicolon 6-2
shortcut keys 4-6
singularity tolerance C-1
soft delimited 16-4
spaces 7-14
spaces, extraneous 6-30, 7-14
src_path 9-1, 16-15, 18-1
startup file 8-13
statement 6-2, 6-29
statement, executable 6-2
statement, nonexecutable 6-2
status bar 4-36
string array concatenation 7-15
string arrays 6-17, 6-18
string concatenation 7-14
string files 11-13
strings, graphics 15-10
subroutine 6-29
substitution 7-16, 7-17
symbol names 6-30
symbols

finding 3-2
syntax 6-29

T

table 7-4

temporary files 18-1

tensor 7-6

thickness, line 15-18, 15-22, 15-23, 15-24
tick marks 15-12

tilde 7-8

tiled windows 15-6

time formats 6-19

tmp environment string 18-1
tolerance C-1

toolbar 4-29

trandation phase 14-3
transparent windows 15-7
transpose 7-7

transpose, bookkeeping 7-7
troubleshooting, libraries 9-11
TRUE 6-24, 7-9

U

unconditional branching 6-28
UTC scaar format 6-20

\%

vector 14-2

vectors 6-31
viewing graphics 3-2
virtual memory 18-2
vwr 3-2

W

window
command 4-1
debug 4-2, 4-38
edit 4-2
HTML-base Help 4-2
matrix editor 4-2
output 4-2

window menu 4-26

windows
GAUSS 4-1
graphics 15-4, 15-6
nontransparent 15-7
overlapping 15-7
tiled 15-6
transparent 15-7

X

xor 7-12, 7-13

Z

zooming 15-27

Index-5

	User Guide
	Maximizing Performance 18-1
	Introduction
	Product Overview
	Documentation Conventions

	Getting Started
	Installation Under UNIX/Linux
	Installation Under Windows
	Machine Requirements
	Installation from Download
	Downloading
	Installation

	Installation from CD

	Using the Command Line Interface
	Viewing Graphics
	Interactive Commands
	quit
	ed
	browse
	config
	Run Menu

	Debugging

	Using the Windows Interface
	GAUSS Windows
	Command Window
	Edit Window
	Output Window
	Debug Window
	Matrix Editor Window
	HTML-Based Help Window
	Online Help

	Running Commands
	Summary
	Running Commands Interactively
	Description
	Options

	Running Programs in Files
	Options

	Editing Keys
	Cursor Movement Keys
	Edit Keys
	Text Selection Keys

	Shortcut Keys
	Command Keys
	Function Keys
	Menu Keys
	Edit Keys
	Toolbar

	Menu Bar
	File Menu
	New
	Open
	Reload
	Insert
	Close
	Close All
	Save
	Save As
	Print
	Printer Setup
	Change Working Directory
	Run
	Exit
	Recent Files

	Edit Menu
	Undo
	Redo
	Cut
	Copy
	Paste
	Delete
	Clear to End
	Clear All
	Select All
	Insert Time/Date
	Insert Symbol
	Record Macro/Stop Record Macro
	Playback Macro

	Search Menu
	Find/Replace
	Find Again
	Replace Again
	Go To Line
	Bookmark

	Mode Menu
	Toggle Command/Output Window
	Toggle Cmnd/Split I/O Mode
	Toggle Overstrike/Insert Mode
	Select Text Blocking Mode

	Debug Menu
	Debug Current File
	Debug Main File
	Toggle Debug/Output Window
	Set/Clear Breakpoint
	View Breakpoints
	Clear All Breakpoints
	Set Watch

	Action Menu
	Run Commands
	Command window.
	Edit window.
	Output window.

	Run Current File
	Run Marked Block
	Pause Program
	Resume Program
	Stop Program
	Insert GAUSS Prompt
	Run Main File
	Edit Main FIle
	Compile Main File
	Set Main File
	Clear Main File List
	Translate Dataloop Commands
	Matrix Editor
	DOS Compatibility Window

	Configure Menu
	Preferences
	Display Tab.
	Files Tab.
	Keypad Tab.
	Options Tab.
	Tabs Tab.
	Windows Tab.

	Priority
	Run/Compile Options

	Window Menu
	Dual Vertical
	Dual Horizontal
	Tile Vertically
	Tile Horizontally
	Cascade
	Arrange Icons
	No Split
	Split Vertically
	Split Horizontally
	Open Window List

	Help Menu
	Contents
	Keyboard
	GAUSS Reference
	Help on Help
	About GAUSS

	Toolbar
	New
	Open
	Save
	Print
	Cut
	Copy
	Paste
	Clear to End
	Toggle Text Blocking Mode
	Find/Replace
	Find Again
	Toggle Split Screen Mode
	GAUSS Reference
	Run Commands
	Command window.
	Edit window.
	Output window.

	Pause Program
	Stop Program
	Insert GAUSS Prompt
	Set/Clear Breakpoint
	Main Files List
	Run Main File
	Edit Main File
	Debug Main File
	Compile Main File

	Status Bar
	GAUSS Status
	Command
	Edit
	Output
	Command I/O / Split I/O
	Enter Ex: On/Off
	On.
	OFF.

	Cursor Location
	OVR
	NUM
	CAPS

	Debug Window
	File Menu
	Mode Menu
	Tools Menu
	Window Menu
	Window Control.

	GAUSS Source Browser
	Language Fundamentals
	Expressions
	Statements
	Executable Statements
	Nonexecutable Statements

	Programs
	Main Section
	Secondary Sections

	Compiler Directives
	Procedures
	Data Types
	Constants
	Decimal
	String
	Hexadecimal Integer
	Hexadecimal Floating Point

	Matrices
	Strings and String Arrays
	Strings
	String Arrays

	Character Matrices
	Date and Time Formats
	DT Scalar Format
	DTV Vector Format
	UTC Scalar Format

	Special Data Types
	NaN
	INF
	DEN, UNN

	Operator Precedence
	Flow Control
	Looping
	do loop
	for loop

	Conditional Branching
	Unconditional Branching
	goto
	gosub

	Functions
	Rules of Syntax
	Statements
	Case
	Comments
	Extraneous Spaces
	Symbol Names
	Labels
	Assignment Statements
	Function Arguments
	Indexing Matrices
	Arrays of Matrices and Strings
	Arrays of Procedures

	Operators
	Element-by-Element Operators
	Matrix Operators
	Numeric Operators
	Other Matrix Operators

	Relational Operators
	Logical Operators
	Other Operators
	Assignment Operator
	Comma
	Period
	Space
	Colon
	Ampersand
	String Concatenation
	String Array Concatenation
	String Variable Substitution

	Using Dot Operators with Constants
	Operator Precedence

	Procedures and Keywords
	Defining a Procedure
	Procedure Declaration
	Local Variable Declarations
	Body of Procedure
	Returning from the Procedure
	End of Procedure Definition

	Calling a Procedure
	Keywords
	Defining a Keyword
	Calling a Keyword

	Passing Procedures to Procedures
	Indexing Procedures
	Multiple Returns from Procedures
	Saving Compiled Procedures

	Libraries
	Autoloader
	Forward References
	Left-Hand Side
	Right-Hand Side

	The Autoloader Search Path
	Autodelete ON
	Autodelete OFF
	Libraries
	user Library
	.g Files

	Global Declaration Files
	Troubleshooting
	Using dec Files

	Compiler
	Compiling Programs
	Compiling a File

	Saving the Current Workspace
	Debugging

	File I/O
	ASCII Files
	Matrix Data
	Reading
	Writing

	General File I/O

	Data Sets
	Layout
	Creating Data Sets
	Reading and Writing
	Distinguishing Character and Numeric Data
	Using Type Vectors
	Using the Uppercase/Lowercase Convention (v89 Data Sets)

	Matrix Files
	File Formats
	Small Matrix v89 (Obsolete)
	Extended Matrix v89 (Obsolete)
	Small String v89 (Obsolete)
	Extended String v89 (Obsolete)
	Small Data Set v89 (Obsolete)
	Extended Data Set v89 (Obsolete)
	Matrix v92 (Obsolete)
	String v92 (Obsolete)
	Data Set v92 (Obsolete)
	Matrix v96
	Data Set v96

	Foreign Language Interface
	Creating Dynamic Libraries
	Writing FLI Functions

	Data Exchange
	Formats Supported
	Data Exchange Procedures
	Global Variables

	Data Transformations
	Using Data Loop Statements
	Using Other Statements
	Debugging Data Loops
	Translation Phase
	Compilation Phase
	Execution Phase

	Reserved Variables

	Publication Quality Graphics
	General Design
	Using Publication Quality Graphics
	Getting Started
	Header
	Data Setup
	Graphics Format Setup
	Calling Graphics Routines
	Example 1
	Example 2
	Example 3

	Graphics Coordinate System
	Inch Coordinates
	Plot Coordinates
	Pixel Coordinates

	Graphics Graphic Panels
	Tiled Graphic Panels
	Overlapping Graphic Panels
	Nontransparent Graphic Panels
	Transparent Graphic Panels
	Using Graphic Panel Functions
	Inch Units in Graphics Graphic Panels
	Saving Graphic Panel Configurations

	Graphics Text Elements
	Selecting Fonts
	Greek and Mathematical Symbols

	Colors
	Global Control Variables

	Utilities
	ATOG
	Command Summary
	Commands
	append
	complex
	input
	invar
	Soft Delimited ASCII Files
	Hard Delimited ASCII Files
	Packed ASCII Files

	msym
	nocheck
	output
	outtyp
	outvar
	preservecase

	Examples
	Error Messages

	LIBLIST
	Report Format
	Using LIBLIST

	Error Messages
	Maximizing Performance
	Library System
	Loops
	Virtual Memory
	Data Sets
	Hard Disk Maintenance
	CPU Cache

	Simplex
	Simgrma
	Microb
	Complex
	a
	b
	c
	d
	e
	f
	g
	h
	i
	k
	l
	m
	n
	o
	p
	r
	s
	t
	u
	v
	w
	x
	z
	Crout LU Decomposition
	Cholesky Decomposition

	Reading and Setting the Tolerance
	Determining Singularity

	Index

