GAUSS

User Guide

Aptech Systems, Inc.— Mathematical and Satistical System

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software
described in this document is furnished under alicense agreement or
nondisclosure agreement. The software may be used or copied only in
accordance with the terms of this agreement. The purchaser may make one
copy of the software for backup purposes. No part of this manua may be
reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying or recording, for any purpose other than
the purchaser’s personal use without the written permission of Aptech
Systems, Inc.

© 1984, 2002 Aptech Systems, Inc. All rights reserved.

GAUSS and GAUSS Light are trademarks of Aptech Systems, Inc.
GEM isatrademark of Digital Research, Inc.

Lotusisatrademark of Lotus Development Corp.

HP Laser Jet and HP-GL are trademarks of Hewlett-Packard Corp.
PostScript is atrademark of Adobe Systems Inc.

IBM isatrademark of International Business Machines Corporation.
GraphicC is atrademark of Scientific Endeavors Corporation.
Tektronix is atrademark of Tektronix, Inc.

Windows is aregistered trademark of Microsoft Corporation.

Other trademarks are the property of their respective owners.

Part Number: 2369
Version 4.0
Revised January 25, 2002

Contents

Contents
LN A 0T o LU T3 1101 o NP 1-1
[(010 (0w M@Y= oV 1= YU 11
DocumeNntation CONVENTIONSiiiiii ettt e e e et e e e e e e s e e e e e e e saa e e s saeeesens 1-2
GELEING SEAMTEA .eeeeiiiiiieee ettt e e e e e e e e ab bbb eeeeaaeeas 2-1
Installation UNder UNIX/LINUXcueeiceeeiiieeciee e ereeeesreessseeesbeessresssssessssneesns 21
INStallation UNAEr WINOOWS...... ...t e e et e e e e e e e e e s e e e e s e s eaa e eeas 2-1
MaChine REQUITEMENTS.......cceiiiiiciiiiiiee e s s e e e e e s e s e e e e e e e s e s e nnenrneeeees 2-1
Installation from DOWNIOAiiiiiiiiiiei e e e s 2-2
[ty ez 1L E= Lo T T T 1 2-2
Using the Command Line INterface.......cccooiiiiiiiiiiiii e 3-1
VIEWING GraphiCS....coo ittt e e e e et eeeeaa e as 3-2
INTEraCtIVE COMIMEANTS.uuniiiite et e et e e e e e et e e et e e et e s st e s etb e sssba s sssanssssbnsenrnnnns 3-2
[D1=] o 18 oo 1 o [P PP TP TR PP 3-4
Introduction to the WIindOWS INtEIfaCE.........ccuv i 4-1
GAUSS IMBNUS . ..ttt et e et e e e ettt e et et e eb e e ea e et s e et e st s e b e et e saaeetaerans 4-2
LT ST = 1 4-2
o 11 1Y [T T 4-3
R LTV Y, =Y & 1 4-4
CONFIGUIE IMEBINU ...ttt e e e e e e e s bbb e e e e e e e e e e e aannns 4-5
[LAY =T 0 LU IR 4-5
DEDUQG MEBNU ...ttt e e e et e e e e e e e e e s s nnenbeeeee s 4-6
B Lo E3 1Y 1= 0 LU TR 4-7
ATV T g o (o) VALY (<Y o 10 T 4-7
[(][JN 1Y =T o 1 PR P TP 4-9
(7N IS S Lo o] | o T= T 4-9
1Y/ E= T I Yo | o T TR 4-9
Working DireCtory TOOIDATuuuiiiiiiiiiaei e 4-11
DEDUQG TOOIDAT ...ttt e e e e e e e e e e e e 4-11
] ez LU LS == | 4-12
(CF A U ST IS = 1 (R 4-12
Using the WINdows INTerface ..o 5-1
Using the GAUSS Edit WINAOWScooiiiiiiiiiiie ettt a e 5-1
[0 [To T d (0T [r= 0 ¢ 1SR 5-1
USING BOOKIMAIKSuvviiiiiiiiee et s e e e e e e e s s e e e e e e e e e e e e nnnnennee s 5-2

GAUSSUser Guide

Changing the Editor Propertiesccc.uuveiiiiiiiieeee ittt e e e 5-2
USIiNG KEYSITOKE MACIOS......ccoiiiiiiiiiiieee ettt 5-2
USING Margin FUNCLIONSoooiiiiiiiiiiie ettt e e e e e e e e naeees 5-3
Editing With SPHE VIEWScoiiiiiiiiii ettt e e e e 5-3
Finding and Replacing TEXLooouuuiiiiiiiiiee ettt e e e e eieeees 5-3
RUNNING SEIECTEA TEXL.eeeiiiiieieiiii ettt e e e e e e e e e e enaees 5-3
Using The Command Input - OUtPUt WINAOWcooiiiiiiiiiiiiiiiieeee e 5-3
RUNNING COMMANASeiiiiieieeei it e e e e e e e e e e e e e s s ee e e e e e e e e s s e nnnnnreeneees 5-4
RUNNING Programs iN FIlESoiiiiiee et e e e e 5-4
USING The DEDUGQETt e e e e e e 5-4
Starting and Stopping the DEDUGQET........uuiiiiiiieeee e 5-5
USING BreakPOiNTSvueeiiieieiieeieesiesciiitiieee e e e e e e s s e s sseantraeeeeesaeseesasssnsnnrnneneeeeeeseesannnns 5-5
Setting and Clearing BreakpointScccuiviiiiree e e e e e e 5-5
Stepping Through @ Programcoocciiiiiiiee e e e s sireee e e e e e e e s 5-6
Viewing and Editing Variables ... 5-6
CUSIOMIZING GAUSS ..ot e e e r e e e e e e e s e s arntae it rereeaeeeans 5-7
Preferences Dialog BOX.......coui ittt 5-7
=0 L1 (o] gl d o] o174 11T PR TP TP PPOT 5-9
Using GAUSS Keyboard ASSIGNMENTSuueiiiiiiiiaiiiiiiiiiieieee e e e e e e e e e 5-10
CUISOr MOVEMENE KEYSoiiiiiiiiiiiee ittt 5-10
It KBYS ettt 5-11
TEXE SEIECHON KBYS ...t e s ee e e e e e e s e s s e areeeeeeeeas 5-11
(070 1914 F= 1o o [1= V£ EPPERRR 5-12
[T Tod T TN) SRR 5-13
Lo U =Y SRR 5-13
= U D =l] (o] TR UOUPPPRRPRPR 6-1
UsiNg the MatriX EQITOrc.coveieiieiiese e 61
=0 [0 aTo Y = ol =T TPTPTR PR 6-1
VIEWING VANADIES ...cooiiiiiii et e e as 6-1
MatriX EAItOr MENU BaIcoiiiiiiiiiiiiieiet ettt e e e e e e e e e enneees 6-2
(] o] =1 V2 o Lo] DO P T U PPUPPUPTT 7-1
USING the Library TOO!coceiieiiisiesiee e 71
ManAagING LIDFAIIESuueiiiiiieii it 7-1
Managing the Library INAeX ... 7-1
Managing LIDrary FIlESooo i 7-1

Contents

GAUSS SOUICE BIOWS T ettt e e e et a et e e s b e b e eaes 8-1
L YO ST Tl o 1= 1 o T PSR 9-1
Context-SENSItIVE HEIP ...ccviceeeee e 91
CTRLAFL SUPPOM ...ttt e e ettt ettt ee bt bbb e bbb s e e e e e e e e e e e aaaaaaaeeeeeesnnnnnnes 9-2
1 T | I] PR 9-2
SHIFTHFL HEIP SUPPOIT .ttt ettt e e e e e e e eeaeaa e e as 9-2
[1= o T8 1Y 1= o 1 PR 9-2
(@1 [T o 1= o BT PUPPPRTT 9-2
Language FUNAamMENTAlSccooiiiiiiiee e e e e e e e e e e e e e e 10-1
EXPIESSIONS ...ttt iee ettt ettt e e e e e e e e s e e eaa bbbttt e e e e e e e e e e e e bbb b e aeeeeaeaeaeaaaanne 10-1
SEALEMEINTS ... e e e e e s e e e s e e e e s e e s e e 10-2
Executable StateMENTS ... 10-2
NONEXECULADIE SIAtEMENTSuiiiie it e e et e et e e e st esraa e e eeaaas 10-2
[(00| £= 11 4 S S TP TP PR 10-3
Y E= YIRS Y=o 1[0 o 10-3
SECONAAIY SECHONS......uuiiiiiiiiee e e e e e e e e s e s e s e arreeeeeeseanananne 10-4
COMPIIET DIFECLIVES ...ttt ettt e e e e e e e e et bbb eeaeeaaeaaeaaaas 10-4
[ad L0070 [T £ T 10-6
(D vz B Y 012 TP PP PPURPP PP 10-7
(070 g 15) 1= 1) £ 10-7
Y= L oY 10-8
StHNGS AN SEING AFTAYS ..eeeeeeeiieeee ettt e e e e e e e s s s abarbeaeeaeaaaeaaeaans 10-14
(01 g T = Toa LY g\ = £ 1oL T 10-19
Date and TiME FOIMMALScivueiiiei it e e e e e e e e s s s r e s s e e saasesaaaesees 10-19
SPECIAI DALA TYPES ... ettt ettt e e e e e e e e e e et eeaeaaaaa e s 10-20
OPEratOr PrECEUEBNCE. ... i ittt e e e e e e e e e e e e e e e s e e s e eeeeeeaees 10-22
[(o)YV o] a1 1 (0] IR 10-23
0T o 1T OSSR 10-24
(@] aTo [1iToTa =TI =7 - o Tl 1] s o [SR 10-27
Unconditional BranChiNg...........ooiiiiiiiiiiiiie s e e reer e e e e e 10-28
[0 Tox (o 1 10-29
RUIES Of SYNTAX ..cciiiiiiii it e e e e e bbb eeeaaaaaa s 10-29
] r= L= 0] 1 10-29
(7= 17 10-30
(070 110 41T) £ 10-30
o= =0 TU LSS o= Lo =SS 10-30
)Y] oo I NN =T o SPPRERR 10-30

GAUSSUser Guide

L= o1 PR PPPPPURRPT 10-30
ASSIGNMENT SEALEMENTS ...t e e e 10-31
FUNCHON AFQUIMENES ...eiiiiie ittt ettt e e e e e e st e e e e e e e e e s e e snnnnnes 10-31
INAEXING MALICES ...eeiiiiieeii ittt e et e e e e e e e e e e nabbnbaeeeeeas 10-31
Arrays Of Matrices and SIHNGS.ueeeiiiiiaiii e 10-32
AITayS Of PrOCEAUIEScoiiiieeeet ettt e e e e 10-33
L@ T =T =1 (o TSP PP 111
Element-by-Element OPeratorsSccoveeieienenieneeee e 111
e LD @] o T=T = (o =PRSS 11-4
NUMEIIC OPEIALOIS ...vetieeiieeieeee ettt ee e e e e e e e et ee e e e e e aaeesas s e nbesbeeeeeeeaaesaeaaannrenes 11-4
Other MatriX OPEIALOISuueeeiieie ettt ettt e e e e e ettt e e e e e e e e e e e s abanbbeeeeeeaaaaaeeaans 11-7
RelatioNal OPEIAOrScc.eeeiiiiie i e e s e e e e e s e e e e e e e e s e s s bt eeereeeeeeseanannree 11-8
(oo ot N @] o 1] =1 o] £ F NPT PPURRPRTT 11-11
OthEr OPEIALOISveeiiieie sttt e et e e r e s ne e s e e 11-13
ASSIGNMENT OPEIATON....cei i ittt ettt e e e e e e e e e e e e e e e e e e e annbaneees 11-13
1070] 1110 1 - W PP PP TP PTUTTTRR TR 11-13
=T 10T TP PU PP PRPRPPT 11-14
Y o= (ol T PP U PP T PP TR TP 11-14
(0] (o] o PR PPPRPURP 11-14
AMPEISANG ...ttt e e e e e e e e b et e e et e e e e e e e e b an b e e e aeeas 11-14
StHNG CONCAENALIONeeeiiiiieiie ettt e e e e e e e e e s bbb ee e e e e e e e e e aans 11-14
String Array CONCAtENALION.....cceiiiiiii ittt e e e e e 11-15
String Variable SUDSHItULION........ccviii i 11-16
Using Dot Operators With CONSIANTS............uuiiiiiiiiiaii e 11-17
OPEratOr PrECEUBNCE.coi ettt et e e e e e e e e sbb e beeeeaaaens 11-18
Procedures and KeYWOTTSooi ittt ee e e e e e e e e e 12-1
DefiNiNg @ PrOCEAUIEcoi ittt 12-2
Procedure DeCIArationcccocviiriie it 12-3
Local Variable DeClarationsccoviiieioriiieiie e 12-3
[2T0T0 Vo) il = o Yo =T [| (- PRSP 12-4
Returning from the ProCedUreuvuiiiiiiiiec e a e 12-4
End of Procedure DefiNitioN..........coccviiieioniii e 12-5
L0 11T oo Jr= T =d (o To]=To [1] = PSSR 12-5
KBYWOITS ...ttt e ettt ettt ettt e e e e e e e s s e be bttt et et e e e e e e s e e s aannbbbaeaeeeaaeaeaeanannne 12-6
DefiNiNg @ KEYWOIMuviiiiiieeii it e e e e e e s e s e eer e e e e e e e e enannne 12-6
Calling @ KEYWOId........uuuiiiiiiiiee e e e s e e r e e e e s e e e s aeaereeaeeeeeanennne 12-7
Passing Procedures t0 ProCeAUIEScc.uuiiiiiiiiiiiii e 12-8

vi

Contents

INAEXING PrOCEUUIES ...ttt e e et e e e e e e e e e e e ennrbeneeas 12-9
Multiple Returns from ProCeAUIEScccuviiiiieiieee e e e e eeaeae s 12-10
Saving Compiled PrOCEAUIESeuiiiiieiaiiiie ettt e aaea s 12-12
SETUCTUIES .ttt et e e e e s e e e bbb r e e et e e e e e e s e e bbb e e rreeaeeeeneas 13-1
Defining and Creating SIrUCLUIESoouiiierieeeiseseesiee e 131
INILIANIZING SITUCTUMES ...t e e e e e e s er e e e e e e e s e s nnnrrreeees 13-2
Passing Structures t0 ProCEAUIEScocuuiiiiiiiiiieee e 13-3
] o] = V= TP PRURTTT 14-1
F U (o] [0 = To [T PSS RTTPRPP 14-1
FOrWard REfEIENCESceiiiii i 14-1
The Autoloader Search Path ... 14-2
Global DecClaration FIleSc.uuiiiiiiiiiiee et e e e e 14-8
B I (o 18] o] 1] T To 1 11T 14-11
L LS o 0 L= o 1 =SSR 14-12
10701101 0T 1 =] ST TR OTPTRPPPRR 15-1
(070 101 o1 TTaTo T =d (0T [r= 12 s =SSR 15-1
CoMPIING 8 FlE . et e e e e e e e e e 15-2
Saving the CUurrent WOIKSPACEcoiiiiiiiiiiiiiiiieee ettt e e 15-2
[1= o 18 o o | o SRR 15-2
1= L PP PPPP 16-1
ASCH FIIES ettt s et e e st e e s e bt e e e bbb e e e e annaes 16-2
[= LDl D= - NPT UPPRPTTRPN 16-3
GENEIAl FIlE 1O .ttt e e 16-5
DALA SEUS ...eeieiitiie e 16-6
Y 11 | SRS 16-6
Creating Dat@ SELSuuiiiiiiiieei e s e e e e e e e e e e e e e 16-7
[RY=T= Lo T aTo Je= U o ARYAY. 111 Vo SRR 16-7
Distinguishing Character and Numeric Datacccvveeveieeeee v 16-9
MALIIX FIlES ..o 16-11
FIlE FOMMIALS ...ttt ettt e e e e e e e e e e st e e b e e e e e aaeeaeeannns 16-11
Small Matrix V89 (OBSOIEE) ...cvvvveeeiiiicieiiee et e e e e e e 16-12
Extended Matrix V89 (ODSOIELE)covuriiiiiiiiiiiie e 16-13
Small String V89 (OBSOIELE)ceeeiii i 16-13

vii

GAUSSUser Guide

Extended String V89 (ODSOIELE)........uuiiiiiiiieiiiii e 16-14
Small Data Set V89 (ODSOIELE)ccooiiiiiiiiieei e 16-14
Extended Data Set V89 (ODSOIELE)......ceuiiiiiiiiiiiieie e 16-16
MatriX VO2 (ODSOIELE)eeiiiiieii it e e e 16-16
StHNG VO2 (ODSOIETE) ... e e e e e 16-17
Data Set VI2 (ODSOIBLE) ...oceiiiii it 16-18
IMIGEFIX VOB ..ottt ettt ettt e e e e e ettt bttt e e e e e e e e e e annbb et e e e e e e aeeeaaaaan 16-19
DAt@ SET VOB ...ttt a e e e e e e e e e e e eeaaeaaaa 16-20
Foreign Language INtErfacCe.......coocciiiiiiiiiiice e e e e e e e e e 17-1
Creating DyNamiC LIDIari©sueeeiiiiiiii et 17-1
WItING FLI FUNCHONS ...ueieiiiiiie sttt e e e e e s e e et ee e e e e e e e s s nnnannneees 17-3
Data EXCRANGE ...ttt e e e e et e e e e e e e e e e aaae 18-1
FOrmMats SUPPOITEAceeiiiiiiiiiii e e e s r e e e e e s e s e s aereeaeeeeeeseennnes 18-1
Data EXChaNQe PrOCEUUIESoiiiiiiieiiiie ettt e e e e e e e e e eaaes 18-2
GlODAl VarTADIESeoiriei e 18-3
Data TranSfOrMAatiONSoiiee e 19-1
Using Data LOOP StAtEMENLSccveeeeiiiiciiiiiieei e e ee e e s s s e e e e e e e e e s s sre e e e e e e e e e s ennnnes 19-2
USING Other StAEMIENTSuiiiiiiiie ettt e e e e e e bbb ee e e e e e e e e e s aaanes 19-2
(D=1 o 10 e o 1o [7 1 v= B Ao o SRS 19-2
TranSIatioN PRaSe.......cooiiiiie e 19-3
ComPIlAtioN PRASE ...ttt a e 19-3
EXECULION PRASEttt e e e e e e e e e e 19-3
RESEIVE VariabIESt 19-3
Publication Quality GraphiCsooiiiiiiie e 20-1
1= aT=T = LI 1= o | o RS 20-1
Using Publication Quality GraphiCs..........ooooiiiiiiiiiiiiie e 20-2
LCT= 1 a0 TS = L (=0 P PRESSRR 20-2
Graphics Coordinate SYStEM.........ccocciiiiiiiie e e e e e e 20-6
Graphics GraphiC Pan€lSuuuviiiiiieiii e 20-6
Tiled GraphiC PANEIS ...t e s 20-6
Overlapping GraphiC Pan@lS.cooi i 20-7
Nontransparent GraphiC Panelsoooiiiiiiiiiiee e 20-7
Transparent GraphiCc PAn@IS.........coi i 20-7
Using Graphic Panel FUNCLIONSuiiiiiiiiiaii i e e 20-8
Inch Units in Graphics Graphic Panels............ccuuviiiiiiiiiiieeeeee 20-9
Saving Graphic Panel Configurations............cccoeiiiiiiiiiiiee e 20-9

viii

Contents

Graphics TEXt EIBMENTS ...ttt e e e e e e e e e 20-9
Y= 1= Tox 11 o o | SR 20-10
Greek and Mathematical SYMDOIS..........cccooiiiiiiie e 20-11

L0701 (o] = TP 20-12

Global Control Variables ... 20-13

L0 L A= TP PRPRTTPRTN 21-1

ATOG e ne s 211
COMMANT SUMMIATYetteieeiiie e ettt e e e e e e e s aeab b b be e et e e aaeasaaaannnbabeeereaaaeaeseaaaannne 21-1
1070] 1011 4 F= o [0 K3 TP PPPRPRTTPN 21-3
EXAIMPIES ...ttt e e e e e e e e e e e e e e e e e e ane 21-11
EITOr MESSAQES ...t e e e e e e e e e e e e e e aaaaeeeeeeeaeees 21-13

[T 1S TP UP RO UPRUPPROPPR 21-15
REPOI FOIMAL ...t 21-16
USING LIBLIST .ottt 21-17

ETTOr IMESSAQGES .. ittt e e e e e e e e e e et et et e ettt eeabeb et s ba bbb b e e e e e e e e e e e e e aaaeas 22-1

MaxXimizing PerfOrmManCe.o et e e e e e 23-1

[Tz VSV (o S 231

[oT0] o S TP PUP PP PP PPPPPI 23-2

VIMUAI MEIMOTY ...ttt nre e nnnes 23-2
(D £ B 1= OO P PP PPUUUPTPTPRPRRRRN 23-2
Hard DiSk MaINTENANCEccoii ittt e e e e 23-3
CPU CACNE...c ittt e e et e e e e e e e e e e e aaes 23-3

[0) (AN o 0 L=1 g Vo [SRR A-1

Y 1101 0] =) PP PTPPPRT A-2

Y 4o 12 - PR A-3

[Tod Ce] o RO PR PPPUPRPR A-4

(0] 101 0] = SRR A-5

Reserved WOrds APPENUIXoooiiiiiiiiieieiee ettt e e e e e e e s e aebb e eeeaaaaaeaeeaannnas B-1

Singularity Tolerance APPENTiXoooieiiiiiiiieeiie e e e e e C-1

Reading and Setting the TOIEranCecoccvciiiiiiiice e C-2

Determining SINQUIATTYueeiieieie et e e e e e e e e e e e e e e e aanas C-2

0 L= PP Index-1

Introduction

Product Overview

GAUSS™ is a complete analysis environment suitable for performing quick
calculations, complex analysis of millions of data points, or anything in
between. Whether you are new to computerized analysis or a seasoned
programmer, the GAUSS family of products combine to offer you an easy to
learn environment that is powerful and versatile enough for virtually any
numerical task.

Sinceitsintroduction in 1984, GAUSS has been the standard for serious
number crunching and complex modeling of large-scale data. Worldwide
acceptance and use in government, industry, and the academic community isa
firm testament to its power and versatility.

The GAUSS System can be described severa ways: It is an exceptionally
efficient number cruncher, a comprehensive programming language, and an
interactive analysis environment. GAUSS may be the only numerical tool you
will ever need.

1-1

GAUSSUser Guide

Documentation Conventions

The following table describes how text formatting is used to identify GAUSS
programming elements.

Text Style Use Example
regular text narrative “...text formatting isused...”
bold text emphasis " ...not supported under
UNIX."
italic text variables “...If vnamesisastring or has

fewer e ements than x has
columns, it will be...”

nonospace code example if scalerr(cn;
cm = inv(x);
endi f;
nonospace bold ReferstoaGAUSS “...as explained under

programming element create..”
within anarrative

paragraph.

1-2

Getting Started

Installation Under UNIX/Linux
1. 1.Makeadirectory to install GAUSSIn.
cd to that directory.

Unzip the. gz fileif thereisone.

Put the installation directory in the executable path.

2
3
4. Untar the. t ar file.
5
6. Put theinstallation directory in the shared library search path.
7

Install the license, please refer to Chapter 5: Licensing for instructions.

For last minute information, see README.term.

Installation Under Windows

Machine Requirements
e A 486 computer or higher.

2-1

GAUSSUser Guide

* Operating System and Memory (RAM) requirements
Windows NT4.0, SP6 |1E4.0, 32 MB minimum 256 M B recommended.
Windows 2000, 64 M B minimum, 256 M B recommended.
Windows XP, 128 MB minimum, 256 M B recommended.

* Freehard disk space requirements:

Minimum of 100 MB free hard disk space, more may be needed depending on
the size of matrices and the complexity of the program.

» Monthly defragmenting is recommended.

Installation from Download

Downloading

The production releaseisin GAUSS_4. 0_W n_heavy. zi p.

The GUI has online documentation in HTML format. There are a'so PDF versions of
the Quick Start Guide and GAUSS manuasin this directory that you can download
separately if you want them.

GAUSS 4.0 _Manual . zip

Installation

Download GAUSS 4. 0_W n_heavy. zi p, unzip it in atemp directory, and run
set up. exe.

If you are doing a command line ftp, once logged on you will be placed in the
GAUSS40 directory and will have accessto all files contained in that directory and no
others. Remember to set the transfer protocol to "bin" before downloading binary
files. Use the "get" command to get the files you want off the ftp site.

To install the license, please refer to the Quick Start Guide.

Installation from CD

Insert the GAUSS 4.0 compact disc into the CD-ROM drive, and setup should start
automatically. If setup does not start automatically, click Start, then click Run. Type
D: \ set up. exe inthedialog box (where D isthe drive letter of the CD-ROM
drive).

You can use this procedure for the initial installation of GAUSS, and for additions or
modifications to GAUSS components.

To install the license, please refer to the Quick Start Guide.

Using the Command Line

Interface

TGAUSS isthe command line version of GAUSS. The executablefile, t gauss is
located in the GAUSS installation directory.

The format for using TGAUSS is:
t gauss flag(s) program program...

-b

-1 logfile

- e expression

-0
-T
-t

Execute file in batch mode and then exit. You can execute
multiple files by separating file names with spaces.

Set the name of the batch mode log file when using the - b
argument. Thedefaultist np/ gauss###. | og, where ###
isthe proccess ID.

Executes a GAUSS expression. This command is not logged
when GAUSS is in batch mode.

Suppresses the sign-on banner (output only).
Turns the datal oop translator on.
Turns the datal oop translator off.

3-1

GAUSSUser Guide

Viewing Graphics

GAUSS generates . t kf filesfor graphical output. The default output for graphicsis
gr aphi c. t kf . Under Windows, you can use vwr to view the results of afile.
Under Windows and UNI X, two functions are available to convert . t kf filesto
PostScript for printing and viewing with external viewers: thet kf 2ps function will
convert . t kf filesto PostScript (. ps) files, and thet kf 2eps function will convert
. t kf filesto encapsulated PostScript (. eps) files. For example, to convert the file
gr aphi c. t kf to apostscript file named gr aphi c. ps use:

ret = tkf2ps("filename tkf", "filename. ps")

If the function is successful it returns 0.

Interactive Commands

quit
Thequi t command will exit TGAUSS.
Theformat for qui t is:
qui t
You can also use the syst emcommand to exit TGAUSS from either the command
line or a program (see syst emin the GAUSS Language Reference).
Theformat for syst emis:
system

ed

The ed command will open an input file in an external text editor, see ed inthe
GAUSS Language Reference.

Theformat for ed is;
ed filename

browse

The br owse command allows you to search for specific symbolsin afile and open
thefilein the default editor. You can use wildcards to extend search capabilities of the
browse command

Theformat for br owse is;
br owse symbol

Using the Command Line Interface

config

The config command gives you access to the configuration menu allowing you to
change the way GAUSS runs and compiles files.

Theformat for confi g is:
config

Translator Toggles on/off the translation of afile using
dat al oop. Thetrandator is not necessary for
GAUSS program files not using dat al oop.

Trandator line Toggles on/off execution time line number
number tracking tracking of the original file before translation.
Line number Toggles on/off the execution time line number
tracking tracking. If the tranglator is on, the line numbers

refer to the trand ated file.

Compile Menu
Autoload Toggles on/off the autoloader.
Autodelete Toggles on/off autodel ete.
GAUSSLibrary Toggles on/off the GAUSS library functions.

User Library Toggles on/off the user library functions.
Declare Toggles on/off thedec!| ar e warning messages
Warnings during compiling.
Compiler Trace Off Turns off the compiler trace
function.
File Tracesprogram file openings and
closings.
Line Traces compilation by line.
Symbol Creates areport of procedures
and the local and global symbols
they reference.

3-3

GAUSSUser Guide

Debugging

The debug command runs a program under the source level debugger.

Theformat for debug is.
debug filename

General Functions

?

g/ Esc

+/ -

Listing Functions

| number

| c

Il fileline

[l file

[l line

N
I'p

Displays alist of available commands.

Exits the debugger and return to the GAUSS
command line.

Disables the last command repeat function.

Displays a specified number of lines of source codein
the current file.

Displays source code in the current file starting with
the current line.

Displays source code in the named file starting with
the specified line.

Displays source code in the named file starting with
thefirst line.

Displays source code starting with the specified line.
File does nat change.

Displays the next page of source code.

Displays the previous page of source code.

3-4

Using the Command Line Interface

Execution Functions

S number

i number

X number

g [args]

Executes the specified number of lines, stepping over
procedures.

Executes the specified number of lines, stepping into
procedures.

Executes code from the beginning of the program to
the specified line count, or until a breakpoint is hit.

Executes from the current line to the end of the
program, stopping at breakpoints. The optional
arguments specify other stopping points. The syntax
for each optional argumentsis:

filename line cycle The debugger will stop every
cycle timesit reaches the
specified line in the named
file.

filename line The debugger will stop when
it reaches the specified linein
the named file.

filename ,, cycle The debugger will stop every
cycletimesit reachesany line
in the named file.

line cycle The debugger will stop every
cycletimesit reaches the
specified line in the current
file.

filename The debugger will stop at
every linein the named file.

line The debugger will stop when
it reachesthe specified linein
the current file.

procedure cycle The debugger will stop every
cycletimesit reachesthe first
linein acalled procedure.

3-5

GAUSSUser Guide

j [args]

j X number

View Commands

v [vars]

v$ [vars]

procedure The debugger will stop every
timeit reachesthefirst linein
acalled procedure.

Executes code to a specified line, procedure, or cycle
in the file without stopping at breakpoints. The
optional arguments are the same as g, listed above.

Executes code to the execution count specified
(number) without stopping at breakpoints.

Executes the remainder of the current procedure (or to
abreakpoint) and stops at the next linein the calling
procedure.

Searchesfor (alocal variable, then aglobal variable)
and displays the value of a specified variable.

Searches for (alocal variable, then aglobal variable)
and displays the specified character matrix.

The display properties of matrices and string arrays can be set using the following

commands.

r
C

number, number

Specifies the number of rows to be shown.
Specifies the number of columns to be shown.

Specifies the indices of the upper left corner of the block
to be shown.

Specifies the width of the columns to be shown.
Specifies the precision shown.

Specifies the format of the numbers as decimal, scientific,
or auto format.

Quits the matrix viewer.

3-6

Using the Command Line Interface

Breakpoint Commands
I'b
b [args]

d [args]

Shows all the breakpoints currently defined.

Sets a breakpoint in the code. The syntax for each

optional argument is:

filename line cycle

filename line

filename ,, cycle

line cycle

filename

line

procedure cycle

procedure

The debugger will stop every
cycle timesit reaches the
specified line in the named
file.

The debugger will stop when
it reaches the specified linein
the named file.

The debugger will stop every
cycletimesit reachesany line
in the named file.

The debugger will stop every
cycletimesit reaches the
specified line in the current
file.

The debugger will stop at
every linein the named file.

The debugger will stop when
it reaches the specified linein
the current file.

The debugger will stop every
cycletimesit reachesthe first
linein acalled procedure.

The debugger will stop every
timeit reachesthefirst linein
acalled procedure.

Removes a previoudy specified breakpoint. The
optional arguments are the same argumentsasb, listed

above.

3-7

Introduction to the Windows
Interface

The GAUSS graphical user interface is a multiple document interface. The interface
consists of the Menu Bar, the Toolbar, edit windows, the Command Input - Output
window, and the Status bar.

Menu Bar

Command Input - Output window

Toolbar Edit window

Status Bar

GAUSSUser Guide

GAUSS Menus

You can view the commands on a menu by either clicking the menu name or pressing
ALT+n, where nisthe underlined letter in the menu name. For example, to display the
File menu, you can either click File or press ALT+F.

File Menu

The File menu lets you access the file, printer setup, and exit commands. Some of
these actions can also be executed from the toolbar. The File menu contains the
following commands:

New

Open

Save

Save As

Close

Close All

Insert File

Print

Print Preview
Print Setup

Change
Working
Directory

Opens a new, untitled document in an Edit window.
Note: New, unsaved documents are not automatically backed up
until you save them, giving them a file name.

Opens an existing file for viewing or editing.

Saves your changes to the filein the active window. If thefileis
untitled, you are prompted for a path and filename.

Saves your changesto the file in the active window using a new
or different path or file name.

Closes the document in the active window. You are prompted to
savethefileif it has been modified since you last saved it.

Closes dl open files. You are prompted to save any file that has
been modified since you last saved it.

Opens an existing text file and copies the contents into the
active document. Thisis similar to pasting text from the
Windows clipboard.

Printsthe active file or selected text from the active window.
Shows a preview of your print job to view before printing.

Specifiesthe printer you want to use. Other printer options, such
as page orientation and paper tray, are also accessed with this
command.

Changes the directory where GAUSS looks for the filesit uses
for normal operation. Thiscommand does not affect the Open or
Save As paths.

Introduction to the Windows Interface

Clear Clears the working directory list.

Working

Directory List

Exit Closes al open files and exits GAUSS. You are prompted to

save any file that has been modified since it was last saved.

Recent Files GAUSS maintainsalist of the ten most recent files you opened,
a the end of the File menu. If the file you want to openison this
ligt, click it and GAUSS opens it in an Edit window.

Edit Menu

The Edit menu lets you access the set of editing commands. Some of these actions can
also be executed from the toolbar. The Edit menu contains the following commands:

Undo Restores your last changes in the active window.

Redo Restores changes in the active window that you removed using
the Undo Edit command.

Cut Removes selected text from the active window and placesit on
the Windows clipboard.

Copy Copies selected text from the active window to the Windows
clipboard.

Paste Copiestext from the Windows clipboard to the active window at
the cursor position.

Select All Selects all text in the active window.

Find Finds the specified text in the active window. The search starts

at the cursor position and continues to the end of the text in the
active window. The search can be case sensitive or case
insensitive. You may also limit the search to regular expressions

Find Again Resumes the search for the next occurrence of the text you
specified in the previous Find action. Subsequent searches for
the same text can also be performed by pressing F3.

4-3

GAUSSUser Guide

View Menu

Replace

Insert Time/
Date

GoTolLine

Go To Next
Bookmark

Toggle
Bookmark
Edit
Bookmarks

Record
Macro

L ocates the specified text in the active window and replacesiit
with the text you entered in the “Replace with” field in the
Search dialog box. The search starts at the cursor position and
continuesto the end of the text in the active window. The search
can be case senditive or case insengitive, and the replacement
can be unique or global.

Inserts the current time and date at the cursor position. GAUSS
uses the time and date that appears in the Microsoft Windows
Date/Time Properties window.

Moves the cursor to the specified line number.

Moves to the next bookmark in the program.

Sets or clears existing bookmarks from the program.

Opens the Edit Bookmarks window. From the Edit Bookmarks
window you can add, remove, or go to any set bookmark in a
program.

Places a series of keystrokes into memory so that they can be
called at alater date. For more information about recording
macros see “Using Keystroke Macros,” page 5-2.

The View menu lets you toggle the Main Tool bar, the Status Bar, the Working
Directory Toolbar, or the Debug Toolbar on or off.

Main Toolbar Togglesthe Main toolbar on or off. For more information about

SatusBar

Working
Directory
Toolbar

the Main toolbar, see “Main Toolbar,” page 4-9.

The Status Bar is located along the bottom of the GAUSS
window. For more information about the status bar, see “ Status
Bar,” page 4-12.

Toggles the Working Directory toolbar on or off. For more
information about the working directory toolbar, see “Working
Directory Toolbar,” page 4-11

4-4

Introduction to the Windows Interface

Debug
Toolbar

Configure Menu

Toggles the Debug toolbar on or off. For more information
about the Debug toolbar, see “Working Directory Toolbar,”
page 4-11.

The Configure menu lets you customize the GAUSS environment.

Preferences

Editor
Properties

Run Menu

Opens the General Preferences window. From the General
Preferences window you can define Run options, Compile
options, DOS window options, and Autosave options. For more
information on configuring GAUSS General Preferences, see
“Preferences Dialog Box,” page 5-7.

Opensthe Editor Properties window. From the Editor Properties
window you can define colors and fonts, the language syntax,
tabs, or genera editor properties. For more information on
configuring editor properties, see “ Editor Properties,” page 5-9.

The Run menu |ets you run the code you have entered, ablock of code you selected, or
the active file, depending on the operating mode.

Insert
GAUSS
Prompt

Insert Last
Cmd

Run Sdlected
Text

Run Active
File

Test Compile
ActiveFile

Manually adds the GAUSS prompt at the cursor position. The
GAUSS prompt (») is automatically displayed following the
execution of GAUSS code.

Re-enters the last command written to the Input buffer.

Runs any text selected from the editor or the Command Input -
Output window.

Runs the active file. The file then becomes the main file.

Compiles the currently selected file. During compilation, any
errors are displayed in the Output window.

Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
asafile.

4-5

GAUSSUser Guide

Run Main
File

Compile
Main File

Edit Main
File

Stop Program

Build GCG
File

Set Main File

Clear Main
FileList

Translate
Dataloop
Cmds

Debug Menu

Runs the file specified in the Main Filelist.

Compiles the main file. During compilation, any errors are
displayed in the Output window.

Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
asafile.

Opens the specified main file in an edit window.

Stops the program currently running and returns control to the
editor.

Creates GAUSS pseudocode file that can be run over and over
with no compile time.

Makes the active file the main file.

Removes all entriesin the Main Filelist on the Main toolbar.

Toggles trand ate dataloop command on and off. For more
information see “ Data Transformations,” page 19-1.

The Debug menu lets you access the commands used to debug your active file or main

file.

The Debug menu contains the following Commands:

Debug Main
File

Debug Active
File
Set/Clear
Breakpoint
Edit
Breakpoints

Runs the main file in the debugger.

Runs the active file in the debugger.

Enables or disables a breakpoint at the cursor in the active file.

Opensalist of al breakpointsin your program. The breakpoints
are listed by line number. Any procedure breakpoints are also
listed.

4-6

Introduction to the Windows Interface

Clear All
Breakpoints

Go
Sop
Sep Into

Sep Over

Step Out

Set Watch

Tools Menu

Removes all line and procedure breakpoints from the active file.

Starts the debugger.
Stops the debugger.

Runs the next executable line of code in the application and
steps into procedures.

Runsthe next executable line of codein the application but does
not step into procedures.

Runs the remainder of the current procedure and stops at the
next line in the calling procedure. Step Out returnsif a
breakpoint is encountered.

Opens the Matrix Editor for watching changing variable data.
For more information about viewing variables see “Viewing
Variables,” page 6-1.

The Tools menu lets you open GAUSS tools windows. The following commands can

be used:

Matrix Editor Letsyou create or edit datain amatrix (or grid). A cell can be

Source
Browser

Library Tool

DOS

edited by typing in anew value and pressing Enter. For more
information see “Matrix Editor,” page 6-1.

Searches source files for string patterns. For more information
see “GAUSS Source Browser,” page 8-1.

L ets you manage the contents of libraries. For more information
see“Library Tool,” page 7-1.

Runs programs that expect an 80x25 window that understands

Compatibility ANSI escape characters.

Window

Window Menu

The Window menu commands let you manage your workspace. You can toggle the
focus between all open windows using Ctrl+Tab, or clicking in the window you want
active. All open windows are listed at the end of the Window menu. The following
commands can be used:

a-7

GAUSSUser Guide

Cmd Window Makesthe Command Input - Output window the active window.

Output
Window

Debug
Window

Dual
Horizontal

Dual Vertical
Cascade
Tile

Horizontal

Tile Vertical

Arrange
Icons

Split

Horizontally

Split
Vertically

Open
Window List

Splits the output from the Command Input - Output window.

Starts the debugger on the current file.

Horizontally tiles the program source and execution windows
within the main window, and minimizes all other windows.

Vertically tiles the program source and execution windows
within the main window, and minimizes all other windows.

Arranges all open windows on the screen, overlapping each,
with the active window on top.

Arranges all open windows horizontally on the screen without
any overlap.

Arranges all open windows vertically on the screen without any
overlap.

Arranges all minimized windows across the bottom of the main
GAUSS window.

Splits the active window into two horizontal panes. This allows
you to view two different areas of the same document to
facilitate split-window editing.

Note: You can move the splitter bar by dragging it with the
mouse. You can remove the splitter bar from the window by
dragging it to the end of the window.

Splits the active window into two vertical panes. Thisallows
you to view two different areas of the same document to
facilitate split-window editing.

Note: You can move the splitter bar by dragging it with the
mouse. You can remove the splitter bar from the window by
dragging it to the end of the window.

GAUSS maintains alist of al the windows you have opened at
the end of the Window menu. If the window you want to view is
onthislist, click it and it becomes the active window.

4-8

Introduction to the Windows Interface

Help Menu

The Help menu lets you access information in the GAUSS Help system. The GAUSS
Help menu contains the following Commands:

Help Topics Startsthe GAUSS Help system.
Contents Starts the GAUSS Help system.

Keyboard Accesses the list of keystrokes you can use for cursor
movement, editing, and text selection.

GAUSS Accesses the online GAUSS Language Reference guide. The

Reference Guide contains the syntax for each GAUSS command.

About Provides information about your version of GAUSS, your

GAUSS license type and 1D, as well as copyright information.

GAUSS Toolbars

Thetoolbar buttons let you have fast access to the most commonly used commands.
Place the mouse pointer over the button to display a description of the command.

Main Toolbar

New Print Main File List Run Main File
Open Stop Program
//Save /Help /
S LR S W ek vy = & A

7_/ o fo "~
Cut / Compile Main File /
Copy . -

Paste Edit Main File

Run Selected Texi Debug Main File

Run Active File
Test Compile Active File

New Opens a new, untitled document in an Edit window.
Note: New, unsaved documents are not automatically backed up
until you save them, giving them a file name.

Open Opens an existing file for viewing or editing.

4-9

GAUSSUser Guide

Save

Cut

Copy

Paste

Print

Help

Run Sdlected
Text

Run Active
File

Test Compile
Active File
Main FileList
Run Main
File

Stop Program
Test Compile
Main File
Edit Main
File

Debug Main
File

Saves your changes to the file in the active window. If thefileis
untitled, you are prompted for a path and filename.

Removes selected text from the active window and placesit on
the Windows clipboard.

Copies selected text from the active window to the Windows
clipboard.

Copiestext from the Windows clipboard to the active window at
the cursor position.

Prints the active file or selected text from the active window.
Accesses the GAUSS help system.

Runs any text selected from the editor or the Command Input -
Output window.

Runs the active file. The file then becomes the main file.

Compiles the currently selected file. During compilation, any
errors are displayed in the Output window.

Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
asafile.

Displays the name of the main file and |ets you quickly change
the main file to one of thefileslisted.

Runs the file specified in the Main Filelist.

Stops the program currently running and returns control to the
editor.

Compiles the main file. During compilation, any errors are
displayed in the Output window.

Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
asafile.

Opens the specified main file in an edit window.

Runs the main file in the debugger.

4-10

Introduction to the Windows Interface

Working Directory Toolbar
You can use the Working Directory toolbar to quickly change your working directory.

i 40

| C gau/ss - /l}

Current Working Directory Change Working Directory

Current Displays the name of the current working directory and lets you
Working quickly change the working directory to one of the directories
Directory List listed.

Change Browsesto a new directory.

Working

Directory

Debug Toolbar
You can use the Debug toolbar for quick access to commands while debugging afile.

bR RPHT O

| 2 <\
Go // \ Step Out
Stop Step Over
Toggle Breakpoint Step Into
Clear All Breakpoints Set Watch

Go Starts the debugger.

Sop Stops the debugger.

Toggle Enables or disables a breakpoint at the cursor in the active file.
Breakpoint

Clear All Removes all line and procedure breakpoints from the active file.
Breakpoints

Set Watch Opens the Matrix Editor for watching changing variable data.
For more information about viewing variables see “Viewing
Variables,” page 6-1.

Sep Into Runs the next executable line of code in the application and
steps into procedures.

GAUSSUser Guide

Sep Over

Step Out

Status Bar

Runsthe next executable line of codein the application but does
not step into procedures.

Runs the remainder of the current procedure and stops at the
next line in the calling procedure. Step Out returns if a
breakpoint is encountered.

The status bar is located along the bottom of the GAUSS window. The status of the
windows and processes are shown on the status bar.

GAUSS Status

The first section of the status bar shows the current GAUSS status. From time to time

you are aerted to the task GAUSS is performing by new messages appearing in the

status bar.

For Help, press F|

A, el DATELOOP CvA (CAP LM

/
GAUSS Status

Cursor
L ocation

DATALOOP

OVR

CAP

NUM

Cursor Location

The line number and column number where the cursor is
located appear on the status bar for the active window.
When ablock of text is selected, the valuesindicate the first
position of the selected text.

DATALOOP appears on the status bar to indicate the
Dataloop Tranlator is turned on.

OVR appears on the status bar when typing replaces the
existing text with text you enter. When OV R does not
appear on the status bar, typing inserts text without deleting
the existing text. Press the Insert key to toggle between the
two conditions.

CAP appears on the status bar to indicate the Caps Lock key
has been pressed and all text you enter will appear in upper
case.

NUM appears on the status bar to indicate the Num Lock
key has been pressed and the keypad numbers are active.

Using the Windows Interface

The GAUSS graphical user interface is a multiple document interface. The interface
consists of edit windows and the Command Input - Output window. Integrated into
GAUSS s afull debugger with breakpoints and watch variables. The GAUSS
graphical user interface also incorporates the Matrix Editor on page 6-1, The Library
Tool on page 7-1, and Source Browser on page 8-1, as well as a context-sensitive
HTML Help system on page 9-1.

Using the GAUSS Edit Windows

The GAUSS edit windows provide syntax color coding and auto-formatting aswell as
easy access to the Matrix Editor and Library Tool, and include an integrated context-
sensitive help system accessible through the F1 key.

The edit windows provide standard text editing features like drag and drop text
editing, and find and replace. The editor also lets you set bookmarks, define keystroke
macros, find and replace using regular expressions, and run selected text from the
editor.

Editing Programs

To begin editing, open an edit window by browsing to the source file, or by typing
edi t and thefilenamein the Command Input - Output window. If more than onefile
is open, the last file opened or run becomes the active window.

5-1

GAUSSUser Guide

Using Bookmarks

Bookmarks are efficient placeholders used to identify particular sections or lines of
code. To add or remove bookmarks, place the cursor in the line you want to bookmark
and then press CTRL+F2, or click Toggle Bookmark on the Edit menu. You can jump
to the next bookmark by pressing F2, or go to the previous bookmark by pressing
SHIFT+F2.

To edit alist of al currently defined bookmarks, click Edit Bookmarks on the Edit
menu. The Edit Bookmarks window allows you to add, remove, name or select the
bookmark to which you wish to jump.

Changing the Editor Properties

You can customize the formatting of your code and text by changing font colors, fonts,
adding line indentations, and adding line numbering to your programs. To accessthese
properties, on the Configure menu click Editor Properties, or right-click on an edit
window and click Properties on the context menu.For more information about the
Editor Properties see “Editor Properties,” page 5-9.

Using Keystroke Macros

GAUSS will save up to 10 separate keystroke macros.

To record a keystroke macro, press CTRL+SHIFT+R, or click Record Macro on the
Edit menu. When you start recording the macro, a stop button will appear in the
GAUSS window.

You create a macro by clicking Record Macro and pressing the keystrokes you want
recorded. Once you have completed recording the macro, you can stop recording with
the stop button. Once you have finished recording the macro, you can select one of ten
macro names for it.

Use the following guidelines when creating and using your macro:

* Only keystrokesin the active window are recorded, not keystrokes in adiaog
box.

* Only keystrokes are recorded, not mouse movements.
Macros are not saved when you close GAUSS.

If your macro islengthy, consider creating a separate file and copying the information
from the file into the active window, rather than using a macro to enter the
information.

Using the Windows I nterface

Using Margin Functions

The margin of the edit window can be used to show currently set bookmarks, currently
set breakpoints, and line numbers. You can also select an entire line of text with a
single click in the Selection Margin.

You can turn on or off the margin in the Misc tab of the Editor Properties dialog box.

Editing with Split Views

Using split views, you can edit two parts of the same program in the same buffer. To
open split views, click Split Horizontally or Split Vertically on the Window menu.

Finding and Replacing Text

Along with a standard find and replace function, you can use the edit window to find
and replace regular expressions. To find regular expressions, open the Find dialog box
and select the checkbox for regular expressions.

Running Selected Text

There are three ways you can run selected text. First, highlight the text you want to
run, then either press CTRL+R, drag and drop the selected text into the Command
Input - Output window, or click “Run Selected Text” on the Run menu.

Using The Command Input - Output Window

The Command Input - Output window lets you input interactive commands and view
the results. The Command Input - Output window can be split into two separate
windows, one for input and one for output, by clicking Output Window on the
Window menu.

Output will be written at the insertion point in the Command Input - Output window
or the Output window, when it is a separate window. GAUSS commands cannot be
executed from this window.

From the Command Input - Output window, you can run saved programs. You can
view or edit the data of any variable in the active workspace with the Matrix Editor.
You can also open files for editing or to debug.

The GAUSS Command Input - Output window has many of the same features that the
GAUSS text editor has. You can cut and paste text. You can search the buffer of the
Command Input - Output window. You can also save the contents of the Command
Input - Output window to atext file.

5-3

GAUSSUser Guide

Running Commands

The GAUSS interface allows you to run programs that consist of single commands or
blocks of commands executed interactively, aswell as large-scale programs that may
consist of commandsin one or more files. Thefile that isrun to execute the command
isthe main file (the file name displayed in the Main File list).

When you run commands interactively, the actual code being processed is called the
“active block.” The active block is all code between the GAUSS prompt (») and the
end of the current line. Thus, the active block can be one or more lines of code.

Interactive commands can be entered at the “»” prompt in the Command Input -
Output window or selected using the mouse and clicking the Run Selected Text button
on the Main toolbar.

A block of code can be executed by selecting the block with the mouse and then
running that block using the Run Selected Text function.

Note: The GAUSS prompt (») at the beginning of the selected text isignored.

You can enter multi-line commands into the Command Input - Output window by
pressing CTRL+Enter at the end of each line. At the end of the final linein amulti-
line command, press Enter. The Command Input - Output window will automatically
place a semicolon at the end of asingle-line command before it isinterpreted. For
multi-line commands, you must enter a semicolon at the end of each line.

You can also run multi-line commands by pasting the text of afile at the GAUSS
prompt, or selecting multiple lines of code from the Command Input - Output window
and pressing CTRL+R.

You can repeat any of the last 20 lines entered into the command buffer by pressing
CTRL+L to cycle through the last command buffer.

Running Programs in Files

You can execute the active file by clicking Run Active File on the Run menu, or by
clicking the Run Currently Active File button on the Main toolbar.

You can execute the file displayed in the Main Filelist (the main file) by clicking Run
Main file on the Run menu, or by clicking the Run Main File button on the Main
toolbar.

Using The Debugger

The debugger greatly simplifies program development. With all of the features of a
dedicated debugging system, the debugger can help you to quickly identify and solve
logic errors at run-time.

5-4

Using the Windows I nterface

The debugger isintegrated into the multiple document interface of GAUSS; it usesthe
interface tools, such asthe edit windows, the Matrix Editor, and the Command Input -
Output window for debugging. So while using the debugger, you still have al the
features of the edit windows and Matrix Editor, along with GAUSS's suite of
debugging tools.

You use the debugger to watch the program code as it runs. Prior to running the
debugger, breakpoints and watch variables can be set to stop the program at pointsyou
set and provide additional data as the codeisrun.

Starting and Stopping the Debugger
You can start the debugger by clicking Go on the Debug menu or the Debug toolbar.

When starting the debugger, you can choose to debug the active file or to debug the
main file of a program. If you are debugging asingle file and already have thefile
open, you can use the menu or toolbar to start the debugger on thefile, or smply type
debug and the filename in the Command Input - Output window.

When you start the debugger, the debugger automatically highlights the first line of
code to be run. Any breakpoints are shown in the left margin of the window.

You can stop the debugger at any time by clicking Stop on the Debug menu or the
Debug toolbar.

Using Breakpoints

Breakpoints stop code execution where you have inserted them. Breakpoints are
normally set prior to running the debugger, but can also be set or cleared during
debugging by clicking the Set/Clear Breakpoint command on the Debug menu.

The debugger supports two types of breakpoints: procedure breakpoints and line
number breakpoints. Procedure breakpoints pause execution when the specified
procedure or function is reached. Line number breakpoints pause execution when the
specified lineis reached. In either case, the break occurs before any of the GAUSS
code for the procedure or line is executed. The debugger also allows you to specify a
certain cycle of execution for aline number or procedure where you want the
execution to be paused. The cycle count is for the occurrence of the line number or
procedure, not the number of timesalineisto be skipped.

Setting and Clearing Breakpoints

You can set or clear aline breakpoint in the highlighted line of code by clicking Set/
Clear Breakpoint on the Debug menu or by pressing the F9 key.

To set breakpointsin any part of the file not currently being executed, just click the
line where you want the breakpoint to be, then click Toggle Breakpoint.

5-5

GAUSSUser Guide

To clear breakpointsin thefile, click aline of code that has a breakpoint set and then
click Set/Clear Breakpoint. You can also clear all breakpoints from the active file by
clicking Clear All Breakpoints.

Using the Breakpoint Editor to Set and Clear Breakpoints

The Breakpoint Editor allows you to set or clear both line and procedure breakpoints.
It also lets you specify cycles of execution for breakpoints. With the Breakpoint

Editor, you can set or clear breakpointsin any program currently in your working
directory.

Stepping Through a Program

GAUSS's debugger includes the ability to step into, step out of, and step over code
during debugging.

Use Step Into to execute the line of code currently highlighted by the debugger.

Use Step Out to execute to the end of the current function without pause and return to
the calling function.

Use Step Over to execute the line of code currently highlighted by the debugger
without entering the functions that are called.

Viewing and Editing Variables

GAUSS allows you to view and edit the values of variables during debugging.

Viewing Variable Values During Debugging

Once the debugger is started, the editor window uses floatover variable windows for
viewing variable data. Floatover variable windows give a quick view of thevalue a

variable currently holds by simply moving your mouse over the variable name in the
edit window.

The floatover variable window is only intended to give aquick view of the data, so it
may not show all data held by the variable. If the variable datais incomplete, the
floatover variable window will display an arrow to show that there ismore data. If you

need to view more data, open the Matrix Editor by highlighting the variable name and
pressing CTRL+E.

Editing Variable Values During Debugging

The debugger integrates the Matrix Editor to edit values of loaded variables, or to use
as awatch window to view the changing values of variables as you step through a
program.

5-6

Using the Windows I nterface

To edit avariable value, highlight the variable in the edit window, or the Command
Input - Output window and then open the Matrix Editor. You can use the menu or
toolbar to start the Matrix Editor, or smply type CTRL+E.

Making a Watch Window

You can make the Matrix Editor a Watch window, allowing you to watch the changing
value of avariable as the lines of the program are executed. You can activate the
Watch window by clicking Set Watch on the Debug menu, or by highlighting a
variable name in the debugger window and pressing CTRL+E.

You use a Watch window to see how variables change in value during debugging.
Watch variables can be specified prior to running the debugger or during a debugging
session.

The debugger searches for a watch variable using the following order:
1. A local variable within a currently active procedure.
2. A global variable.

A watch variable can be the name of amatrix, ascalar, astring array, or astring. For a
matrix or astring array, the first element is displayed. If a matrix element is clicked,
the Matrix Editor isloaded with the matrix. The matrix elements can be changed
during the debugging session.

Customizing GAUSS

Preferences Dialog Box

The Preferences dialog box lets you specify how GAUSS operates. To open the
Preferences dialog box, click Preferences... on the Configure menu. The changes you
make in the Preferences dialog box remain set between sessions.

Run Options

Dataloop Specifies whether GAUSS will trand ate data loops into
Translator procedures.

Translate Specifies whether GAUSS will preserve the line numbers of
Line Number dataloops after being trand ated to procedures.

Tracking

Line Number Specifieswhether GAUSS will preserve line numbers of afile
Tracking being compiled for the interpreter.

5-7

GAUSSUser Guide

Sound at End Determines whether or not asound is played at the end of the

of Job

Compile Options

execution of GAUSS code. The sound can be selected using the
Select button and played using the Test button.
The default is OFF.

The Compile tab contains options that let you control how GAUSS compiles a
program before it isrun.

Autoload

Autodelete
GAUSS
Library

User Library

Declare
Warnings

Compiler
Trace

Files

Specifies whether the autoloader will automatically resolve
referencesin your code. If Autoload is off, you must define all
symbols used in your program.

Use Autodelete in conjunction with Autoload to control the
handling of references to unknown symbols.

Specifies whether the autoloader will use the standard GAUSS
library in compiling your code.

Specifies whether the autoloader will use the User Librariesin
compiling your code.

Specifies whether the GAUSS compiler will display declare
warningsin the Command Input - Output window. For more
information on declare warnings see “Using dec Files,”
page 14-12.

Specifies whether you would like to trace the file compilation
by file opening and closing, specific lines, or whether you
would like to trace by local and global symbols.

The Files tab contains options that let you control how GAUSS auto-saves your work

Autosave on
Execute

Specifies whether open files will automatically be saved when a
fileisrun. If the file you are running is loaded, it will be saved
prior to execution, regardiess of how it is executed (Run file,
command line, main file, or active file). All open editor files,
including the active file, are saved before execution.

Note: New, unsaved documents are not automatically backed up
until you save them, giving them a file name. After you save the
new file, it will be automatically backed up with all other open
files.

5-8

Using the Windows I nterface

Autosave

DOS Window

Specifies whether you want GAUSS to automatically save your
filesat a set interval of time.

The DOS Window tab lets you control the fonts used in the DOS window.

Font Options Specifies what font the DOS window will use.

Editor Properties

You can customize the formatting of your code and text by changing font colors, fonts,
adding line indentations, and adding line numbering to your programs. To accessthese
properties, on the Configure menu click Editor Properties.

Color/Font

Color
Font

Language/Tabs

Auto
Indentation
Syle

Tabs

Language

Fixup Text
Case While

Typing
Language
Keywords

Misc

Smooth
Scrolling

Show L eft
Margin

Specifies the way syntax coloring works in the editor.

Specifies what font the edit window will use.

Specifies how the autoindenter will indent your code.

Specifies how many spaces atab has.

Specifies what syntax the GAUSS editor will recognize for
syntax coloring.

Specifies whether the editor will automatically change the case
of GAUSS keywords when they use the wrong case.

Enables or disables smooth scrolling when the window is
scrolled up/down by one line or left/right by one character.

Enables or disables the editor’s margin. The margin is used for
showing breakpoints, bookmarks, or line numbers.

5-9

GAUSSUser Guide

Line Tooltips
on Scroll

Allow Drag
and Drop

Allow
Column
Selection

Confine
Caret to Text

Color Syntax
Highlighting

Show
Horizontal
Scrollbar

Show Vertical
Scrollbar

Allow
Horizontal

Splitting

Allow
Vertical

Splitting
Line
Numbering

M ax
Undoable
Actions

Shows the first line number on screen as atooltip as you scroll
up and down thefile.
Enables or disables drag and drop functionality.

Lets you select and manipulate columns of text.

Tellsthe GAUSS editor to interpret carets as text only rather
than as substitution symbols or text.
Toggles on or off color syntax highlighting.

Toggles on or off the horizontal scrollbar.

Toggles on or off the vertical scrollbar.

Toggles on or off the ability to split editor panes horizontally.

Toggles on or off the ability to split editor panes vertically.

Specifies the style and starting digit for line numbering.

Sets the number of actions that you can undo.

Using GAUSS Keyboard Assignments

Cursor Movement Keys

UP ARROW

DOWN ARROW

Up oneline

Down oneline

5-10

Using the Windows I nterface

LEFT ARROW
RIGHT ARROW
CTRL+LEFT ARROW
CTRL+RIGHT ARROW
HOME

END

PAGE UP

PAGE DOWN
CTRL+PAGE UP
CTRL+PAGE DOWN
CTRL+HOME
CTRL+END

Edit Keys
BACKSPACE

DEL

CTRL+INSor CTRL+C
SHIFT+DEL or CTRL+X

SHIFT+INS or CTRL+V

CTRL+Z

Text Selection Keys

SHIFT+UP ARROW
SHIFT+DOWN ARROW
SHIFT+LEFT ARROW
SHIFT+RIGHT ARROW

L eft one character
Right one character
L eft one word

Right one word
Beginning of line
End of line

Next screen up
Next screen down
Scroll window right
Scroll window left
Beginning of document

End of document

Delete character to left of cursor, or delete selected
text

Delete character to right of cursor, or delete selected
text

Copy selected text to Windows clipboard

Delete selected text and place it onto Windows
clipboard

Paste text from Windows clipboard at the cursor
position
Undo last editing action

Select one line of text up
Select one line of text down
Select one character to the left

Select one character to the right

GAUSSUser Guide

SHIFT+CTRL+LEFT
ARROW

SHIFT+CTRL+RIGHT
ARROW

SHIFT+HOME
SHIFT+END
SHIFT+PAGE UP
SHIFT+PAGE DOWN
SHIFT+CTRL+HOME
SHIFT+CTRL+END

Command Keys

CTRL+A
CTRL+C
CTRL+D
CTRL+E
CTRL+F
CTRL+G
CTRL+I
CTRL+L
CTRL+N
CTRL+O
CTRL+P
CTRL+Q
CTRL+R
CTRL+S
CTRL+W
CTRL+V
CTRL+X

Select one word to the left

Sdlect one word to the right

Select to beginning of the line
Select to end of the line

Select up one screen

Select down one screen

Select text to beginning of document

Select text to end of document

Redo

Copy selection to Windows clipboard
Open Debug window

Open Matrix Editor

Find/Replace text

Go to specified line number

Insert GAUSS prompt

Insert last

Make next window active

Open Output window

Print current window, or selected text
Exit GAUSS

Run selected text

Save window to file

Open Command window

Paste contents of Windows clipboard

Cut selection to Windows clipboard

Using the Windows I nterface

CTRL+Z

Function Keys
F1

F2
F3

F4

F5

F6

F7

F8

F9

F10
ALT+F4
ALT+F5
CTRL+F1

CTRL+F2
CTRL+F4
CTRL+F5
CTRL+F6
CTRL+F10
ESC

Menu Keys
ALT+C
ALT+D
ALT+E

Undo

Open GAUSS Help system or context-sensitive
Help

Go to next bookmark
Find again

Go to next search item in Source Browser
Run Main File

Run ActiveFile

Edit Main File

Step Into

Set/Clear breakpoint
Step Over

Exit GAUSS

Debug Main File

Searches the active libraries for the source code of a
function.

Toggle bookmark
Close active window
Compile Main File
Compile Active File
Step Out

Unmark marked text

Configure menu
Debug menu

Edit menu

5-13

GAUSSUser Guide

ALT+F
ALT+H
ALT+R
ALT+T
ALT+W
ALT+V

File menu
Help menu
Run menu
Tools menu
Window menu

View menu

Matrix Editor

Using the Matrix Editor

The Matrix Editor letsyou view and edit matrix datain your current workspace. You
can open the Matrix Editor from either the Command Input - Output window or a

GAUSS edit window by highlighting a matrix variable name and typing Ctrl+E. You
can view multiple matrices at the same time by opening more than one Matrix Editor.

Editing Matrices

The Matrix Editor will allow you to format matrices in decimal, scientific,
Hexadecimal, or as text characters.

Just like a spreadsheet, when using the Matrix Editor, you can use your keyboard's
arrow keys to quickly move between matrix positions. To edit ascalar value, select a
cell and pressEnter. You can use the Home and End keys to move to the beginning or
end of a scalar. When finished editing, press Enter again.

Viewing Variables

All variables are treated as matrices in GAUSS. A scalar issimply a 1x1 matrix. A
vector isa (Nx1) or (1xN) matrix. So you can use the Matrix Editor to view and
monitor the value of any variable. You can update the value of avariable at any time
by using the Reload function. When using the Matrix Editor to view, edit or monitor

6-1

GAUSSUser Guide

smaller matrices, you can minimize space it occupies on the screen by selecting
Minimal View from the View menu.

By using the Auto-reload function, GAUSS will automatically update the values of
variablesin the Matrix Editor. Using Auto-reload you can create a watch window.

Setting Watch Variables

Watch Variables allow you to see how variables change in value while debugging a
program. A watch variable can be the name of a matrix, a scalar, a string array, or a
string.

The debugger searches for awatch variable in the following order:
e alocal variable within a currently active procedure
» aglobal variable

Matrix Editor Menu Bar

Matrix Menu

The Matrix menu lets you control the data of the Matrix in the Matrix Editor as an
entire set.

L oad Clears any existing grid and loads any named matrix from the
GAUSS workspace to the grid.

Reload Reloads the existing matrix with the name shown on the Title
bar.

Auto-Reload Automatically updates the data shown in the Matrix Editor,
creating a watch window.

Save Saves the grid as a matrix in the GAUSS workspace. If amatrix
of the same name already exists in the workspace, it is
overwritten.

Format Menu
The Format menu lets you control the way the data is presented in the Matrix Editor.
Edit Menu

The Edit menu gives you tools to control the data in the Matrix Editor.

Clear All Clearsthe grid of al values but keep the row and column order.

Matrix Editor

Preferences

View Menu

Sets several matrix options, including the number of digitsto the
right of the decimal point, cell height and width, and whether
pressing the Enter key moves the cursor down or over one cell.
These options, along with screen position and window state, are
saved between sessions.

The View menu lets you control the Matrix Editor window. The View menu also lets
you control your view of imaginary numbers.

Real Parts

Imaginary
Parts

Minimal
View

Stay on Top

Specifies that you want the real parts of imaginary
numbers to be displayed in the Matrix Editor.

Specifies that you want the imaginary parts of
numbersto be displayed in the Matrix Editor.

Minimizes the amount of screen space occupied by
the Matrix Editor. Thisis especialy useful for
creating watch windows for single variables.

Forces the Matrix Editor window to remain visible
on the screen even when the interface focus has
shifted to another window.

6-3

Library Tool

Using the Library Tool

The Library Tool lets you quickly manage your libraries. You can add and remove
libraries and you can add and remove files within the libraries.

Managing Libraries

Using the New Library button, you can create a new library for organizing your code.
You can remove alibrary by selecting the Delete Library button.

Managing the Library Index

To add absolute path names to the library index, use the Add Paths button. To only use
file names for searching libraries, use the Strip Paths button. Use Rebuild to recompile
al the files used in the library, and rebuild the library index file. Use the Revert to
Original button to revert to the configuration the library was in when the Library Tool
was opened.

Managing Library Files

You can add filesto alibrary with the Add button. You can remove filesfrom alibrary
with the Remove button. After changing source filesreferred to in alibrary, select the
filesinthefilelist and update the library index with the Update button. To remove

7-1

GAUSSUser Guide

multiple files from alibrary, select the filesin the file selection window, and use the
Clear Selection button.

For more information about libraries, see “Libraries,” page 14-1.

GAUSS Source Browser

The GAUSS Source Browser lets users quickly find, view, and if
necessary, modify the source code for external proceduresin active
libraries.

In GAUSS for Windows, put the cursor on a global symbol name and

press Ctrl-F1. The Source Browser will open an Edit window containing the source
file holding the symbol definition. The browser searchesthe activelibrary files(. | cg
files) for the symbol name.

If **> synbol namne isfound in thefile at the beginning of aline, that

line will be displayed at the top of the window. Users may make use of these features
in their own code.

In TGAUSS, type br ows e followed by acommand name or string containing
wildcards. The source code for the command will be opened in the default editor.
Wildcards may also be used. You select the desired command from the list by number.

81

GAUSS Help

Context-Sensitive Help

GAUSS integrates a context-sensitive Help system to help you use the GAUSS
environment and the GAUSS language. Context-sensitive means you can get help on
the GAUSS interface or the GAUSS language without having to go through the Help
menu. For example, to get Help on any keyword in the GAUSS language, place the
insertion point on that keyword in a GAUSS edit window or the Command Input -
Output window and press F1.

You can press F1 from any context-sensitive part of the GAUSS interface to display
Help information about that part. The context-sensitive parts are;

* GAUSSwindows

» Toolbar buttons

* GAUSS menus

* The GAUSS language

For al intrinsic commands and functions, the GAUSS Command Reference for the
command is displayed. For al other external proceduresin active libraries, an HTML
window is opened containing a source code file. You may then scroll through the file
to find the desired symbol.

9-1

GAUSSUser Guide

CTRL+F1 Support

You can search through all active libraries for any global symbol by placing the cursor
on the name of the symbol and pressing CTRL+F1.

GAUSS searches through all active libraries for the file that the symbol is defined in.
If found, the file containing the source code is opened in an edit window. If the file
contains * * > symbol _name at the beginning of aline of commented code, the cursor
will be placed at the beginning of that line. If not found, the cursor will be placed at
the beginning of thefile.

To properly implement this functionality in your own source code, place
**> gymbol _name

at the beginning of aline in acomment block.

ToolTips

A ToolTipisasmall label that is displayed when the mouse pointer is held over a
GAUSS button. The Tool Tip will give a brief description of the button’s function.

SHIFT+F1 Help Support

If you press SHIFT+F1 or click on the Help toolbar button, GAUSS goes into Help
mode and the pointer changes to a Help pointer (arrow + ?). The next thing you click
with the Help pointer opens in Windows Help.

Help Menu

From the Help menu, you can directly access either the online L anguage Reference
Manual or the online User Guide. The Help menu also gives quick accessto GAUSS
default keyboard mappings.

Other Help

GAUSS aso includes afull online version of the GAUSS L anguage Reference and
GAUSS User Guide in PDF format. These manuals are located on the GAUSS CD-
ROM.

The Gaussians mail list is an e-mail list providing users of GAUSS an easy way to
reach other GAUSS users. Gaussians provides aforum for information exchange, tips
and experiences using GAUSS. For more information about the Gaussians mail list,
see http: //imww.aptech.com/s2_gaussians.html. You can also e-mail
support@aptech.com.

Language Fundamentals 1 O

GAUSS isacompiled language. GAUSS is also an interpreter. A compiled language,
because GAUSS scans the entire program once and translates it into a binary code
before it starts to execute the program. An interpreter, because the binary code is not
the native code of the CPU. When GAUSS executes the binary pseudocode, it must
“interpret” each instruction for the computer.

How can GAUSS be so fast if it is an interpreter? Two reasons. First, GAUSS has a
fast interpreter, and the binary compiled code is compact and efficient. Second, and
most significantly, GAUSS isamatrix language. It is designed to tackle problems that
can be solved in terms of matrix or vector equations. Much of thetimelost in
interpreting the pseudocode is made up in the matrix or vector operations.

This chapter will enable you to understand the distinction between “compiletime” and
“execution time,” two very different stagesin the life of a GAUSS program.

Expressions

An expression isamatrix, string, constant, function reference, procedure reference, or
any combination of these joined by operators. An expression returns a result that can
be assigned to a variable with the assignment operator ‘=".

10-1

GAUSSUser Guide

Statements
A statement is a complete expression or acommand. Statements end with a
semicolon:
y = X*3;

If an expression has no assignment operator (=), it will be assumed to be an implicit
pri nt statement:

print x*3;
or
X*3;

Here is an example of a statement that is a command rather than an expression:

out put on;

Commands cannot be used as a part of an expression.

There can be multiple statements on the same line as long as each statement is
terminated with a semicolon.

Executable Statements

Executabl e statements are statements that can be “executed” over and over during the
execution phase of a GAUSS program (execution time). As an executable statement is
compiled, binary code is added to the program being compiled at the current location
of theinstruction pointer. This binary code will be executed whenever the interpreter

passes through this section of the program. If the codeisin aloop, it will be executed
each iteration of the loop.

Here are some examples of executable statements:
y = 34.25;
print vy;
x={1372940 3},

Nonexecutable Statements

Nonexecutabl e statements are statements that have an effect only when the program is
compiled (compile time). They generate no executable code at the current location of
the instruction pointer.

10-2

Language Fundamentals

Here are two examples:
declare matrix x = { 1 2 3 4 },;

external matrix ybar;

Procedure definitions are nonexecutable. They do not generate executable code at the
current location of the instruction pointer. Hereis an example:

zed = rndn(3, 3);

proc sqrtinv(x);
| ocal v;
y = sqgrt(x);
retp(y+inv(x));
endp;

zsi = sqrtinv(zed);

There are two executabl e statements in the example above: the first line and the last
line. Inthe binary code that is generated, the last line will follow immediately after the
firstline. Thelast lineisthecal | tothe procedure. This generates executable code.
The procedure definition generates no code at the current location of the instruction
pointer.

There is code generated in the procedure definition, but it isisolated from the rest of
the program. It is executable only within the scope of the procedure and can be
reached only by calling the procedure.

Programs

A program is any set of statements that are run together at one time. There are two
sections within a program.

Main Section

The main section of the program is al of the code that is compiled together without
relying on the autol oader. This means code that isin the main file or isincluded in the
compilation of the main file with an #i ncl ude statement. All executable code
should be in the main section.

10-3

GAUSSUser Guide

There must always be amain section eveniif it consists only of acall to the one and
only procedure called in the program. The main program code is stored in an area of
memory that can be adjusted in size with the new command.

Secondary Sections

Secondary sections of the program are files that are neither run directly nor included
in the main section with #i ncl ude statements.

The secondary sections of the program can be left to the autoloader to locate and
compile when they are needed. Secondary sections must have only procedure
definitions and other nonexecutabl e statements.

#i ncl ude statements are allowed in secondary sections aslong as the file being
included does not violate the above criteria.

Here is an example of a secondary section:
declare matrix tol = 1.0e-15;

proc feq(a,b);
retp(abs(a-b) < tol);
endp;

Compiler Directives

Compiler directives are commands that tell GAUSS how to process a program during
compilation. Directives determine what the final compiled form of a program will be.
They can affect part or all of the source code for a program. Directives are not
executabl e statements and have no effect at run-time.

The#i ncl ude statement mentioned earlier is actually a compiler directive. It tells
GAUSS to compile code from a separate file as though it were actualy part of thefile
being compiled. This codeis compiled in at the position of the #i ncl ude statement.

Here are the compiler directives available in GAUSS:

#defi ne Define a case-insensitive text-replacement or flag variable.
#defi necs Define acase-sensitive text-replacement or flag variable.
#undef Undefine a text-replacement or flag variable.

#i f def Compile code block if avariable has been #def i ne’d.

#i f ndef Compile code block if avariable has not been #def i ne’d.

#i flight Compile code block if running GAUSS Light.

10-4

Language Fundamentals

#el se Else clausefor #i f -#el se-#endi f code block.

#endi f End of #i f -#el se-#endi f code block.

#i ncl ude Include code from another file in program.

#1 i neson Compile program with line number and file name records.

#l i nesof f Compile program without line number and file name records.

#srcfile Insert source file name record at this point (currently used when
doing data loop trandation).

#srcline Insert source file line number record at this point (currently used
when doing data loop translation).

The#def i ne statement can be used to define abstract constants. For example, you
could define the default graphics page size as
#define hpage 9.0

#defi ne vpage 6. 855

and then write your program using hpage and vpage. GAUSS will replace them
with 9. 0 and 6. 855 when it compiles the program. This makes a program much
more readable.

The#i f def -#el se-#endi f directivesallow you to conditionally compile sections
of aprogram, depending on whether a particular flag variable has been #def i ne’d.
For example:

#i fdef |og 10

y = log(x);
#el se

y = 1n(x);
#endi f

This allows the same program to calculate answers using different base logarithms,
depending on whether or not the program hasa#def i ne | og_10 statement at the
top.

#undef allowsyou to undefine text-replacement or flag variables so they no longer
affect a program, or so you can #def i ne them again with adifferent value for a
different section of the program. If you use#def i necs to define a case-sensitive
variable, you must use the right case when #undef ’ingit.

With#l i neson, #l i nesof f,#srcline,and#srcfil e youcanincludeline
number and file name records in your compiled code, so that run-time errors will be

10-5

GAUSSUser Guide

easier to track down. #sr cl i ne and#sr cfi | e are currently used by GAUSS
when doing data loop translation.

For more information on line number tracking, see “Debugging,” page 15-2 and see
“Debugging Data Loops,” page 19-2. Seealso #l i neson in the GAUSS Language
Reference.

Thesyntax for #srcfi | e and#sr cl i ne isdifferent than for the other directives
that take arguments. Typically, directives do not take argumentsin parentheses; that is,
they look like keywords:

#define red 4

#srcfil eand#srcline, however, do take their argumentsin parentheses (like
procedures):

#srcline(12)

Thisallowsyouto place#sr cl i ne statementsin the middie of GAUSS commands,
so that line numbers are reported precisely as you want them. For example:

#srcline(l) print “Here is a multi-Iline”

#srcline(2) “sentence--if it contains a run-tine
error,”

#srcline(3) “you will know exactly”

#srcline(4) “which part of the sentence has the

problem”;

The argument supplied to #sr cf i | e does not need quotes:
#srcfile(c:\gauss\test.e)

Procedures

A procedure alows you to define a new function which you can then use asiif it were
anintrinsic function. It is called in the same way as an intrinsic function:

y = nyproc(a,b,c);
Procedures areisolated from the rest of your program and cannot be entered except by

calling them. Some or al of the variables inside a procedure can bel ocal variables.
| ocal variables exist only when the procedure is actually executing, and then

10-6

Language Fundamentals

disappear. Local variables cannot get mixed up with other variables of the same name
in your main program or in other procedures.

For details on defining and calling procedures, see “ Procedures and Keywords,”
page 12-1.

Data Types

There are two basic data typesin GAUSS: matrices and strings. It is not necessary to
declare the type of avariable, but it is good programming practice to respect the types
of variables whenever possible. The data type and size can change in the course of a
program.

Thedecl ar e statement, used for compile-time initialization, enforces type
checking.

Short strings of up to 8 bytes can be entered into elements of matrices, to form
character matrices. (For details, see “ Character Matrices,” page 10-19.)

Constants

The following constant types are supported:

Decimal

Decimal constants can be either integer or floating point values:
1. 34e-10

1. 34e123

-1. 34e+10

-1. 34d- 10

1. 34d10

1. 34d+10

123. 456789345

These will be stored as double precision (15-16 significant digits). The rangeisthe
same as for matrices. (For details, see “Matrices,” page 10-8.)

10-7

GAUSSUser Guide

String
String constants are enclosed in quotation marks:
“This is a string.”

Hexadecimal Integer

Hexadecimal integer constants are prefixed with Ox:
Ox0ab53def 2

Hexadecimal Floating Point

Hexadecimal floating point constants are prefixed with Ov. Thisalows you to input a
double precision value exactly as you want using 16 hexadecimal digits. The highest
order byteisto the l€ft:

Ovf f f 8000000000000

Matrices

Matrices are 2-dimensional arrays of double precision numbers. All matrices are
implicitly complex, although if it consists only of zeros, the imaginary part may take
up no space. Matrices are stored in row major order. A 2x3 real matrix will be stored
in the following way, from the lowest addressed element to the highest addressed
element:

[1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

A 2x3 complex matrix will be stored in the following way, from the lowest addressed
element to the highest addressed element:

(‘real part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]
(imaginary part) [1,1] [1,2] [1,3] [2,1] [2,2] [2, 3]

Conversion between complex and real matrices occurs automatically and is
transparent to the user in most cases. Functions are provided to provide explicit
control when necessary.

All numbersin GAUSS matrices are stored in double precision floating point format,
and each takes up 8 bytes of memory. Thisisthe |IEEE 754 format:

10-8

Language Fundamentals

Significant
Bytes Data Type Digits Range
8 floating point 15-16 +308

4.19x10°% < |X| < 1.67x10

Matrices with only one number (1x1 matrices) are referred to as scalars, and matrices
with only one row or column (1xN or Nx1 matrices) are referred to as vectors.

Any matrix or vector can be indexed with two indices. Vectors can be indexed with
one index. Scaars can be indexed with one or two indices also, because scalars,
vectors, and matrices are the same data type to GAUSS.

The majority of functions and operators in GAUSS take matrices as arguments. The
following functions and operators are used for defining, saving, and loading matrices:

[] Indexing matrices.

= Assignment operator.

| Vertical concatenation.

~ Horizontal concatenation.

con Numeric input from keyboard.

cons Character input from keyboard.

decl are Compile-time matrix or string initialization.
| et Matrix definition statement.

| oad Load matrix (sameas| oadm.

r eadr Read from a GAUSS matrix or data set file.
save Save matrices, procedures, and strings to disk.
saved Convert amatrix to a GAUSS data set.

st of Convert string to matrix.

submat Extract a submatrix.

witer Write datato a GAUSS data set.

Following are some examples of matrix definition statements.

An assignment statement followed by data enclosed in bracesis animplicit | et
statement. Only constants are allowed in | et statements; operators areillegal. When
bracesareusedin| et statements, commas are used to separate rows. The statement

let x ={ 123, 456, 789},

or

10-9

GAUSSUser Guide

x={ 123, 456, 789};

will resultin
123
X= 456
789
The statement
let x[3,3] =123456 7809,
will resultin
123
X= 456
789
The statement
let x[3,3] = 1;
will resultin
111
X= 111
111
The statement
let x[3,3];
will resultin
000
X= 000
000

10-10

Language Fundamentals

The statement
let x =123 4567 8 9;

will resultin

X
1
© 0N Ol &~ WDN P

Complex constants can beentered inal et statement. In the following example, the +
or - is not a mathematical operator, but connects the two parts of a complex number.
There should be no spaces between the + or - and the parts of the number. If a number
has both real and imaginary parts, the trailing ‘i’ is not necessary. If a number has no
real part, you can indicate that it is imaginary by appending the ‘i’. The statement

let x[2,2] = 1+2i 3-4 5 6i;

will resultin

1+2i 3-4i
5 0+6i

X =

Complex constants can also be used with the decl ar e, con, and st of statements.

An “empty matrix” isamatrix that contains no data. Empty matrices are created with
thel et statement and braces:

x = {};

10-11

GAUSSUser Guide

Empty matrices are currently supported only by ther ows and col s functionsand the
concatenation operators (~ and |):

x = {};
hsecO = hsec;
do until hsec-hsecO > 6000;
X = X ~ data_in(hsec-hsec0);

endo;

You can test whether a matrix is empty by entering r ows(x) , col s(x) , and
scal err (x) . If thematrix isempty, r ows and col s will returna0, andscal err
will return 65535.

The ~ isthe horizontal concatenation operator and the | isthe vertical concatenation
operator. The statement

y = 1~2| 3~4;
will be evaluated as
y = (1~2)|(3~4);

and will result in a2x2 matrix because horizontal concatenation has precedence over
vertical concatenation:

12
34

The statement
y = 1+1~2*2| 3- 2~6/ 2;
will be evaluated as
y = ((1+1)~(2*2)|((3-2)~(6/2));

and will result in a2x2 matrix because the arithmetic operators have precedence over
concatenation:

24
13

10-12

Language Fundamentals

For more information, see " Operator Precedence,” page 10-22.
Thel et command is used to initialize matrices with constant values:
let x[2,2] =12 3 4

Unlike the concatenation operators, it cannot be used to define matrices in terms of
expressions such as

y = x1-x2~x2| x3*3~x4;

The statement
y = x[1:3,5:8];

will put the intersection of the first three rows and the fifth through eighth columns of
X into the matrix y.

The statement
y =x[131,55 9];

will create a 3x3 matrix y with the intersection of the specified rows and columns
pulled from x (in the indicated order).

The statement

let r =1 3 1;

let ¢c =55 9;

y = x[r,c];
will have the same effect as the previous example, but is more general.
The statement

y[2,4] = 3;

will set the 2,4 element of the existing matrix y to 3. This statement isillegal if y does
not have at least 2 rows and 4 columns.

The statement
X = con(3,2);

will cause a ?to be printed in the window, and will prompt the user until six numbers
have been entered from the keyboard.

The statement
| oad x[] = b:mydata. asc

10-13

GAUSSUser Guide

will load data contained in an ASCI| file into an Nx1 vector x. (User ows(x) to find
out how many numbers were loaded, and use r eshape(x,N,K) to reshapeit to an
NXK matrix.)

The statement
| oad Xx;

will load the matrix x. f mt from disk (using the current load path) into the matrix x in
memory.

The statement
open dl = dat1;
X = readr(d1, 100);
will read the first 100 rows of the GAUSS data set dat 1. dat .

Strings and String Arrays

Strings

Strings can be used to store the names of files to be opened, messages to be printed,
entirefiles, or whatever else you might need. Any byte valueislegal in astring from
0-255. The buffer where astring is stored always contains a terminating byte of ASCI|
0. Thisalows passing strings as arguments to C functions through the Foreign
Language Interface.

Hereisapartia list of the functions for manipulating strings:

$+ Combine two strings into one long string.

N Interpret following name as avariable, not aliteral.

chrs Convert vector of ASCII codesto character string.

dttostr Converts a matrix containing datesin DT scalar format to astring
array.

ftocv Character representation of numbersin NxK matrix.

ftos Character representation of numbersin 1x1 matrix.

ftostrC Converts amatrix to a string array using a C language format
specification.

getf Load ASCII or binary file into string.

i ndcv Find index of element in character vector.

| owner Convert to lowercase.

st of Convert string to floating point.

st rindx Find index of astring within a second string.

10-14

Language Fundamentals

strlen Length of astring.

strsect Extract substring of string.

strsplit splits an Nx1 string vector to an NxK string array of the individual
tokens.

st rspl i t PadSplitsastring vector into astring array of theindividual tokens. Pads
on the right with the null strings.

strtodt Convertsastring array of datesto amatrix in DT scalar format.
strtof converts a string array to a numeric matrix.
st rt of cpl x convertsastring array to complex numeric matrix.
upper Convert to uppercase.
val s Convert from string to numeric vector of ASCII codes.
Strings can be created like this:
X = “exanple string”;
or
X = cons; [/* keyboard input */

or

x
1

getf(“nyfile”,0); /* read a file into a string */

They can be printed like this:
print x;

A character matrix must havea‘$’ prefixedtoitinapri nt statement:
print $x;

A string can be saved to disk with the save command in afilewith a. f st
extension, and then loaded with the | oad command:

save X;
| oads x;
or

| oads x=x. fst;

The backslash is used as the escape character inside double quotes to enter special
characters:

10-15

GAUSSUser Guide

“\'b” backspace (ASCII 8)

“\e” escape (ASCII 27)

“\f” formfeed (ASCII 12)

“\g” beep (ASCII 7)

“A L7 line feed (ASCII 10)

“\r” carriage return (ASCII 13)

“\t” tab (ASCII 9)

“A\7 abackslash

“\ HEHT the ASCII character whose decimal value is “###”

When entering DOS pathnames in double quotes, two backslashes must be used to
insert one backslash:

st = “c:\\gauss\\nyprog. prg”;

An important use of strings and character elements of matricesis with the substitution
operator (") .

In the command
create f1 = olsdat with x, 4, 2;

by default, GAUSS will interpret the ol sdat asaliteral; that is, the literal name of
the GAUSS data file you want to create. It will also interpret the x asthe literal prefix
string for the variable names; x1 x2 x3 x4.

If you want to get the data set name from a string variabl e, the substitution operator
(™) could be used as

dat aset =" ol sdat " ;

create fl="dataset with x, 4, 2;

If you want to get the data set name from a string variable and the variable namesfrom
acharacter vector, use

dat aset =" ol sdat ”;
| et vnanmes=age pay sex;

create fl="dataset wi th “vnanes, 0, 2;

The substitution operator (*) works with | oad and save, aso:
| pat h="c:\ gauss\ procs”;

10-16

Language Fundamentals

name="nydat a”;

| oad pat h=~l pat h x="nane;

command=“dir *.fm";

The genera syntax is

Avariable_name

Expressions are not allowed.

The following commands are supported with the substitution operator (*):

create fl="dataset wi th ~vnanes, 0, 2;

create fl="dataset using “cndfile;

open fl="dat aset;

output file="outfile;

| oad x=~dat afil e;

| oad path=~lpath x,y,z,t,w

save “nanme=x;

save pat h="spath;

run ~prog;

nmsym ~nstring;

String Arrays

String arrays are NxK matrices of strings. Hereis a partial list of the functions for
manipulating string arrays:

$|

$.._

[]

decl are
del et e

Vertical string array concatenation operator.
Horizontal string array concatenation operator.

Extract subarrays or individual stringsfrom their corresponding array,
or assign their values.

Transpose operator.
Bookkeeping transpose operator.

Initialize variables at compiletime.
Delete specified global symbols.

10-17

GAUSSUser Guide

f get sa
f get sat
f or mat
fputs

f put st
| et

| oads

| print
| show
pri nt

r eshape
save

show
sortcc

type
t ypecv

var get
var put
vec
vecr

Read multiple lines of text from afile.

Read multiple lines of text from afile, discarding newlines.
Define output format for matrices, string arrays, and strings.
Write strings to afile.

Write strings to afile, appending newlines.

Initialize matrices, strings, and string arrays.

Load astring or string array file (. f st file).

Print expressions to the printer.

Print global symbol table to the printer.

Print expressions in window and/or auxiliary output.
Reshape a matrix or string array to new dimensions.

Save matrix, string array, string, procedure, function, or keyword to
disk and givethe disk fileeithera. fmt ,. f st , or. f cg extension.

Display global symboal table.
Quick-sort rows of matrix or string array based on character column.

Indicate whether variable passed as argument is matrix, string, or
string array.

Indicate whether variables named in argument are strings, string
arrays, matrices, procedures, functions, or keywords.

Access the global variable named by a string array.

Assign the global variable named by astring array.

Stack columns of amatrix or string array to form a column vector.
Stack rows of amatrix or string array to form a column vector.

String arrays are created through the use of the string array concatenation operators.
Below is acontrast of the horizontal string and horizontal string array concatenation

operators:
X =
y =
n =

S

I
x
1223
+
<
©$
+
=

10-18

Language Fundamentals

sa=age pay Sex

Character Matrices

M atrices can have either numeric or character el ements. For convenience, a matrix
containing character elements s referred to as a character matrix.

A character matrix is not a separate data type, but gives you the ability to store and
mani pul ate data elements that are composed of ASCI| characters as well as floating
point numbers. For example, you may want to concatenate a column vector containing
the names of the variablesin an analysis onto amatrix containing the coefficients,
standard errors, t-statistic, and p-value. You can then print out the entire matrix with a
separate format for each column with one call to the function pri nt f m

The logic of the programs will dictate the type of data assigned to a matrix, and the
increased flexibility allowed by being able to bundle both types of datatogether in a
single matrix can be very powerful. You could, for instance, create a moment matrix
from your data, concatenate a new row onto it containing the names of the variables,
and save it to disk with the save command.

Numeric matrices are double precision, which means that each element is stored in 8
bytes. A character matrix can thus have elements of up to 8 characters.

GAUSS does not automatically keep track of whether amatrix contains character or
numeric information. The ASCII to GAUSS conversion program ATOG will record
the types of variablesin a data set when it createsit. The cr eat e command will,
also. Thefunctionvar t ypef getsavector of variable type information from adata
set. This vector of ones and zeros can be used by pr i nt f mwhen printing your data.
Since GAUSS does not know whether a matrix has character or numeric information,
it is up to you to specify which type of data it contains when printing the contents of
the matrix. (For details, seepri nt and pri nt f min the GAUSS Language
Reference.)

Most functions that take a string argument will take an element of a character matrix
also, interpreting it as a string of up to 8 characters.

Date and Time Formats

DT Scalar Format

The DT scalar format is adouble precision representation of the date and time. In the
DT scalar format, the number

20010421183207
represents 18:32:07 or 6:32:07 PM on April 21, 2001.

10-19

GAUSSUser Guide

DTV Vector Format
The DTV vector isa1x8 vector. Theformat for the DTV vector is:

[1] Year

[2] Month, 1-12

[3] Day of month, 1-31

[4] Hour of day, 0-23

[5] Minute of hour, 0-59

[6] Second of minute, 0-59

[7] Day of week, 0-6 where 0 is Sunday
[8] Day since beginning of year, 0-365

UTC Scalar Format

The UTC scalar format is the number of seconds since January 1, 1970, Greenwich
Mean Time.

Special Data Types

The |EEE floating point format has many encodings that have special meaning. The
pri nt command will print them accurately so that you can tell if your calculation is
producing meaningful results.

There are many floating point encodings that do not correspond to areal number.
These encodings are referred to as NaN's. NaN stands for Not a Number.

Certain numerical errors will cause the math coprocessor to create aNaN called an
“indefinite.” Thiswill be printed as a-NaN when using the pri nt command. These
values are created by the following operations:

+oo plus-oco
+c0 MINUS +oco
-co MINUS -0
OX oo

oo [oo

0/0

operations where one or both operandsis a NaN

10-20

Language Fundamentals

trigonometric functionsinvolving co

INF

When the math coprocessor overflows, the result will be a properly signed infinity.
Subsequent calculations will not deal well with an infinity; it usually signals an error
in your program. The result of an operation involving an infinity is most often a NaN.

DEN, UNN

When some math coprocessors underflow, they may do so gradually by shifting the
significand of the number as necessary to keep the exponent in range. The result of
thisisadenormal (DEN). When denormals are used in calculations, they are usually
handled automatically in an appropriate way. The result will either be an unnormal
(UNN), which like the denormal represents a number very close to zero, or anormal,
depending on how significant the effect of the denormal wasin the calculation. In
some cases the result will be a NaN.

Following are some procedures for dealing with these values.

The procedurei si ndef will return 1 (true) if the matrix passed to it contains any
NaN’s that are the indefinite mentioned earlier. The GAUSS missing value code as
well as GAUSS scalar error codes are NaN's, but this procedure tests only for
indefinite:

proc isindef(x);
retp(not x $/ = __ | NDEFn);
endp;

Besureto call gausset beforecallingi si ndef . gausset will initializethe value
of theglobal __ | NDEFn to this platform-specific encoding.

The procedure nor mal will return a matrix with all denormals and unnormals set to
zero:

proc normal (x);
retp(x .* (abs(x) .> 4.19e-307));
endp;

10-21

GAUSSUser Guide

The procedurei si nf will return 1 (true) if the matrix passed to it contains any
infinities:
proc isinf(x);
| ocal plus, m nus;
plus = | NFp;
mnus = __ | NFn;
retp(not x /= plus or not x /= mnus);

endp;

Besuretocall gausset beforecalingi si nf.gausset will initialize the value of
theglobals | NFn and __| NFp to platform-specific encodings.

Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the * and/
operators have a higher precedence than the + and - operators. In expressions that
contain these operators, the operand pairs associated with the* or / operator are
evaluated first. Whether * or / isevaluated first depends on which comesfirst in the
particular expression. (For alisting of the precedence of all operators, see “ Operator
Precedence,” page 11-18.)

The expression
-5+3/ 4+6* 3
isevaluated as

(-5) + (3/4) + (6*3)

Within aterm, operators of equal precedence are evaluated from left to right.
The term

27307
is evaluated as

2%’

10-22

Language Fundamentals

In the expression
f1(x)*f2(y)
f 1 isevaluated beforef 2.

Here are some examples:

Expression Evaluation
a+b*c+d (a+(bxc)) +d

-2+4-6*inv(8)/9

3. 1475%6/ (2+sqrt (3)/ 4)
-atb*c”2

at+b-c+d-e

a“b”c*d

a*b/ d*c

a“b+c*d

2741

2* 3!

Flow Control

((=2) +4) —((6xinv(8))/9)
((3.14°)%6)/(2 + (sqrt(3)/4))
(—a) + (bx(c?))
(((a+b)-c)+d)—e
((@)%)+d
((axb)/d)xc

(@) + (cxd)

()

2:(31)

A computer language needs facilities for decision making and looping to control the
order in which computations are done. GAUSS has several kinds of flow control

statements.

10-23

GAUSSUser Guide

Looping

do loop

The do statement can be used in GAUSS to control |ooping:
do whi | e scalar_expression; /* loop if expression is true */

statements

endo;
aso
do until scalar_expression; /* |loop if expression is

fal se */

statements

endo;

The scalar_expression is any expression that returns a scalar result. The expression
will be evaluated as TRUE if itsreal part is nonzero and FALSE if it is zero.

There is no counter variable that is automatically incremented inado loop. If oneis
used, it must be set to itsinitial value before the loop is entered, and explicitly
incremented or decremented inside the loop.

10-24

Language Fundamentals

The following exampleillustrates nested do loops that use counter variables:
format /rdn 1, 0;

13 ”

space = ;
comma = “,";
i =1
do while i < 4;
i =1
do while j < 3;
print space i coma j;;
o=+
endo;
=0+l
print;

endo;

Thiswill print:
11 12 13
21 22 23
31 32 33
41 42 43

Use the relational and logical operators without thedot ‘. * in the expression that
controls ado loop. These operators always return a scalar resullt.

br eak and cont i nue are used within do loopsto control execution flow. When
br eak isencountered, the program will jump to the statement following the endo.
Thisterminates the loop. When cont i nue is encountered, the program will jump up
to the top of the loop and reevaluate thewhi | e or unt i | expression. This allows
you to reiterate the loop without executing any more of the statements inside the loop:

10-25

GAUSSUser Guide

do until eof (fp); [* continue junps here */
X = packr (readr(fp, 100));
i f scal mss(x);
conti nue; /[* ‘iterate again */
endi f;
S = s + sunc(Xx);
count = count + rows(Xx);
if count > 10000;

br eak; /* break out of loop */
endi f;
endo;
mean = s / count; /* break junps here */
for loop

The fastest looping construct in GAUSS isthef or loop:
for counter (start, stop, step);

statements

endf or;

counter istheliteral name of the counter variable. start, stop, and step are scalar
expressions. start isthe initial value, stop isthe final value, and step is the increment.

br eak and cont i nue are also supported by f or loops. (For more information, see
f or inthe GAUSS Language Reference.)

10-26

Language Fundamentals

Conditional Branching
Thei f statement controls conditional branching:
i f scalar_expression;

Sstatements

el sei f scalar_expression;

Sstatements

el se;

statements

endi f;

The scalar_expression is any expression that returns a scalar result. The expression
will be evaluated as TRUE if itsrea part is nonzero and FALSE if it is zero.

GAUSS will test the expression after thei f statement. If it is TRUE, thefirst list of
statementsis executed. If it is FALSE, GAUSS will move to the expression after the
firstel sei f statement, if thereisone, and test it. It will keep testing expressions and
will execute the first list of statements that corresponds to a TRUE expression. If no
expression is TRUE, the list of statements following the el se statement is executed.
After the appropriate list of statementsis executed, the program will go to the
statement following theendi f and continue on.

10-27

GAUSSUser Guide

Use the relational and logical operators without thedot ‘. * in the expression that
controlsani f orel sei f statement. These operators always return a scalar result.

i f statements can be nested.

Oneendi f isrequired peri f clause. If an el se statement is used, there may be
only oneperi f clause. There may beasmany el sei f 'sasare required. There need
not beany el sei f 'sor any el se statement withinani f clause.

Unconditional Branching

Thegot o and gosub statements control unconditional branching. The target of both
agot o and agosub isalabdl.

goto

A got o isan unconditional jump to alabel with no return:
| abel :
goto | abel;

Parameters can be passed with agot 0. The number of parametersis limited by
available stack space. Thisis good for common exit routines:

goto errout (“Matrix singular”);

goto errout (“File not found”);

errout:
pop errnsg;
errorlog errmsg;

end;

10-28

Language Fundamentals

With agosub, the address of the gosub statement is remembered and when a
r et ur n statement is encountered, the program will resume executing at the
statement following the gosub.

Parameters can be passed with agosub in the sameway asagot 0. Withagosub, it
is aso possibleto return parameters with ther et ur n statement.

Subroutines are not isolated from the rest of your program, and the variables referred
to between the label and ther et ur n statement can be accessed from other placesin
your program.

Since a subroutine is only an address marked by alabel, there can be subroutines
inside procedures. The variables used in these subroutines are the same variables that
are known inside the procedure. They will not be unique to the subroutine, but they
may be locals that are unigque to the procedure the subroutineisin. (For details, see
gosub in the GAUSS Language Reference.)

Functions

Single line functions that return one item can be defined with the f n statement:
fnarea(r) =pi *r * r;

These functions can be called in the same way asintrinsic functions. The above
function could be used in the following program sequence:

di aneter = 3;
radius = 3 / 2;

a = area(radius);

Rules of Syntax
This section lists the general rules of syntax for GAUSS programs.

Statements

A GAUSS program consists of a series of statements. A statement is a complete
expression or command.

Statements in GAUSS end with a semicolon with one exception: from the GAUSS
command line, the final semicolon in an interactive program isimplicit if it is not
explicitly given:

(gauss) x=5; z=rndn(3,3); y=x+z

10-29

GAUSSUser Guide

Column position is not significant. Blank lines are allowed. Inside a statement and
outside of double quotes, the carriage return/line feed at the end of a physical line will
be converted to a space character as the program is compiled.

A statement containing a quoted string can be continued across severa lineswith a
backdash:

s = “This is one really "long string that would be” \

“difficult to assign in just a single line.”;

Case
GAUSS does not distinguish between uppercase and |owercase except inside double
quotes.

Comments

/* this kind of corment can be nested */

@ this kind of comment cannot be nested @

Extraneous Spaces

Extraneous spaces are significant in pri nt and| pri nt statements where the space
isadelimiter between expressions:

print x vy z;

Inprint andl pri nt statements, spaces can be used in expressionsthat arein
parentheses:

print (x *y) (x +y),;

Symbol Names

Labels

The names of matrices, strings, procedures, and functions can be up to 32 characters
long. The characters must be a phanumeric or an underscore. The first character must
be alphabetic or an underscore.

A label isused asthe target of agot o or agosub. The rule for naming labelsis the
same as for matrices, strings, procedures, and functions. A label isfollowed
immediately by acolon:

her e:

10-30

Language Fundamentals

Thereferenceto alabel does not use a colon:
goto here;

Assignment Statements
The assignment operator isthe equal sign ‘=" :

y = X + z;

Multiple assignments must be enclosed in braces‘{ }':
{ mant, pow } = baselO(x);

The comparison operator (equal to) istwo equal signs‘==":
if x ==y,
print “x is equal to y”;

endi f;

Function Arguments
The arguments to functions are enclosed in parentheses ‘() ’:
y = sqrt(x);
Indexing Matrices
Brackets‘[]’ areused toindex matrices:
x ={ 123,
3 75,
3 7 4,
8 9 5,
6 18 };
X[3, 3];
x[1 2:4,1 3];
Vectors can be indexed with either one or two indices:
v={12345617 829},

<
I

10-31

GAUSSUser Guide

=~
I

v[3];
v[1,6:9];

—
I

X[2, 3] returnsthe element in the second row and the third column of Xx.

X[1 3 5,4 7] returnsthe submatrix that istheintersection of rows 1, 3, and 5 and
columns4 and 7.

X[., 3] returnsthe third column of x.
X[3: 5, .] returnsthe submatrix containing the third through the fifth rows of x.

The indexing operator will take vector arguments for submatrix extraction or
submatrix assignments:

y = X[rv,cv];

y[rv,cv] = x;

rv and cv can be any expressions returning vectors or matrices. The elements of r v
will be used as the row indices and the elements of cv will be used as the column
indices. If r visascaar 0, all rowswill beused; if cv isascalar O, al columnswill be
used. If avector isused in an index expression, it isillegal to use the space operator or
the colon operator on the same side of the comma as the vector.

Arrays of Matrices and Strings

It is possible to index sets of matrices or strings using the var get function.

In this example, a set of matrix namesis assigned to mvec. The namey isindexed
from mvec and passed to var get , which will return the global matrix y. The
returned matrix is inverted and assigned to g:

mec ={ xy z a},;
i = 2;
g

i nv(varget (nmvec[i]));

The following procedure can be used to index the matricesin mvec more directly:
proc invec(i);
retp(varget(mvecl[i]));
endp;

Theni nvec(i) will equal the matrix whose nameisin theith element of mvec.

10-32

Language Fundamentals

In the example above, the procedurei mvec was written so that it always operates on
the vector nvec. The following procedure makes it possible to passin the vector of
names being used:

proc get(array,i);
retp(varget(array[i]));
endp;
Thenget (mvec, 3) will return the 3rd matrix listed innvec.
proc put(x,array,i);
retp(varput(x,array[i]));
endp;
Andput (x, nvec, 3) will assign x to the 3rd matrix listedinmvec and returnal
if successful or aQif it fails.
Arrays of Procedures

It isalso possible to index procedures. The ampersand operator (&) isused toreturn a
pointer to a procedure.

Assumethat f 1, f 2, and f 3 are procedures that take a single argument. The
following code defines a proceduref i that will return the value of the ith procedure,
evaluated at x:

nme = &1 | &2 | &f 3;

proc fi(x,i);
| ocal f;
f = nnsl[i];
| ocal f: proc;
retp(f(x));
endp;

fi(x,2) will returnf 2(x) . The ampersand is used to return the pointersto the
procedures. N is anumeric vector that contains a set of pointers. Thel ocal
statement is used twice. The first tells the compiler that f isalocal matrix. Theith
pointer, which is just anumber, isassignedto f . The second | ocal statement tells
the compiler to treat f as a procedure from this point on; thus the subsequent
statement f (x) isinterpreted as a procedure call.

10-33

Operators

Element-by-Element Operators

Element-by-element operators share common rules of conformability. Some functions
that have two arguments also operate according to the samerules.

Element-by-element operators handle those situations in which matrices are not
conformable according to standard rules of matrix algebra. When amatrix issaid to be
ExE conformable, it refers to this element-by-element conformability. The following

cases are supported:
matrix op matrix
matrix op scalar
scalar op matrix
matrix op vector
vector op matrix

vector op vector

GAUSSUser Guide

In atypical expression involving an element-by-element operator
Z=X+Y
conformability is defined as follows:

* If xandy are the same size, the operations are carried out corresponding
element by corresponding element:

132
X= 451
374

243
Y= 314
612

375
Z= 765
986

* If xisamatrix and y isa scalar, or vice versa, the scalar is operated on with
respect to every element in the matrix. For example, x + 2 will add 2 to every

e ement of X
132
X= 451
374

y= 2
354
Z= 673

596

Operators

If xisan Nx1 column vector and y is an NxK matrix, or vice versa, the vector
is swept “across’ the matrix:

vector matrix

1 - 2 4 3

4 > 3 1 4

3 - 6 1 2
result

3 5 4

5 8

4 5

If xisa1xK column vector and y isan NxK matrix, or vice versa, the vector is
swept “down” the matrix:

vector 2 4 3

matrix

result

0 Ul Al O W N -
g g 0|k B N -
g N ol N M W -

GAUSSUser Guide

* When oneargument isarow vector and the other isacolumn vector, the result
of an element-by-element operation will be the “table” of the two:

row vector 2 4 3 1

3 5 7 6
column vector 2 4 6 5
5 7] 8

If x and y are such that none of these conditions apply, the matrices are not
conformabl e to these operations and an error message will be generated.

Matrix Operators

Thefollowing operators work on matrices. Some assume numeric dataand others will
work on either character or numeric data.
Numeric Operators

For details on how matrix conformability is defined for element-by-element operators,
see “ Element-by-Element Operators,” page 11-1.

+ Addition
y=x+z

Performs element-by-element addition.

- Subtraction or negation
y=Xx- g
y =-k
Performs element-by-element subtraction or the negation of all elements,
depending on context.
* Matrix multiplication or multiplication
y=x%*z

When z has the same number of rows as x has columns, this will perform matrix
multiplication (inner product). If x or z are scalar, this performs standard
element-by-element multiplication.

11-4

Operators

%

Division or linear equation solution
XxX=b/ A

If Aand b are scalars, it performs standard division. If one of the operandsisa
matrix and the other is scalar, the result is a matrix the same size with the results
of the divisions between the scalar and the corresponding el ements of the matrix.
Use./ for element-by-element division of matrices.

If b and A are conformable, this operator solves the linear matrix equations.
Linear equation solution is performed in the following cases:
AX = Db

* If Aisasqguare matrix and has the same number of rows as b, this
statement will solve the system of linear equations using an LU
decomposition.

» If Aisrectangular with the same number of rows as b, this statement will
produce the least squares solutions by forming the normal equations and
using the Cholesky decomposition to get the solution.

_ Ab
AA

If t rap 2isset, missing values will be handled with pairwise deletion.

Modulo division

y = X %z
For integers, this returns the integer value that is the remainder of the integer
division of x by z. If x or zis noninteger, it will first be rounded to the nearest
integer. Thisis an element-by-element operator.
Factorial

y = X

Computes the factorial of every element in the matrix x. Nonintegers are
rounded to the nearest integer before the factorial operator is applied. Thiswill
not work with complex matrices. If x is complex, afatal error will be generated.

Element-by-element multiplication
y=X.%* 1z
If x isacolumn vector and zis arow vector (or vice versa), the “outer product”

or “table” of the two will be computed. (For conformability rules, see “Element-
by-Element Operators,” page 11-1.)

GAUSSUser Guide

.| Element-by-element division

y=x./l z

A Element-by-element exponentiation
y = XMz
If X is negative, zmust be an integer.
. N Sameas M
. *. Kronecker (tensor) product
y =X.%* gz

Thisresultsin amatrix in which every element in x has been multiplied (scalar
multiplication) by the matrix z. For example:

x={12,
341}

z ={4 5 6,
789}

= 12

34
,- 456

789

4 56 81012
y= 789141618

121518 16 20 24
21 24 27 28 32 36

Operators

*~ Horizontal direct product

Z=X*~Y,

L= 12
34

y= 56
78

,- 561012
21 24 28 32

Theinput matrices x and y must have the same number of rows. The result will
have col s(x) * col s(y) columns.

Other Matrix Operators

Transpose operator
y = X

The columns of y will contain the same values as the rows of x, and the rows of y
will contain the same values as the columns of x. For complex matrices, this
computes the complex conjugate transpose.

If an operand immediately follows the transpose operator, the’ will beinterpreted
as’' *. Thusy = x' x isequivalenttoy = X’ *X.
Bookkeeping transpose operator

y = X',
Thisis provided primarily as a matrix handling tool for complex matrices. For all
matrices, the columns of y will contain the same values as the rows of x, and the

rows of y will contain the same values as the columns of x. The complex
conjugate transpose is NOT computed when you use . ’ .

If an operand immediately follows the bookkeeping transpose operator, the . ’
will beinterpretedas. ' *. Thusy = X.' x isequivalenttoy = X.’' *X.

GAUSSUser Guide

| Vertical concatenation

z=xXy

X = 123
345

y= 789
123

Z= 345
789

~ Horizontal concatenation

Z = XY,

X = 12
34

y = 56
78

;= 1256
3478

Relational Operators

For details on how matrix conformability is defined for element-by-element operators,
see “ Element-by-Element Operators,” page 11-1.

Each of these operators has two equivalent representations. Either can be used (for
example, < or | t), depending only upon preference. The alphabetic form should be
surrounded by spaces.

A third form of these operatorshasa‘$’ and is used for comparisons between
character data and for comparisons between strings or string arrays. The comparisons
are done byte by byte, starting with the lowest addressed byte of the elements being
compared.

Operators

The equality comparison operators (<, ==, >,/ =) and their dot equivalents can be used
to test for missing values and the NaN that is created by floating point exceptions.
Less than and greater than comparisons are not meaningful with missings or NaN'’s,
but equal and not equal will be valid. These operators are sign-insensitive for
missings, NaN'’s, and zeros.

Thestring ‘$’ versions of these operators can a so be used to test missings, NaN’s, and
zeros. Because they do a strict byte-to-byte comparison, they are sensitive to the sign
bit. Missings, NaN’s, and zeros can all have the sign bit set to 0 or 1, depending on
how they were generated and have been used in a program.

If the relational operator isNOT preceded by adot ‘. ', the result isalwaysascalar 1
or 0, based upon acomparison of al elements of x and y. All comparisons must be true
for the relational operator to return TRUE.

By this definition, then
if x/=vy,

isinterpreted as: “if every element of x is not equal to the corresponding element of y”

To check if two matrices are not identical, use
if not x ==y,

For complex matrices, the==,/ =,. ==, and . / = operators compare both the real and
imaginary parts of the matrices; all other relational operators compare only the rea
parts.

e Lessthan
zZ=Xx <Yy,
z=x1lt v
z=XxX %<y

e Lessthan or equal to
Z=XxX<Yy,
z=xley
zZ=XxX %y

 Equalto
Z= X ==Y,
z=xeqYy
z =X $==y,

GAUSSUser Guide

* Not equal
zZ=Xx/=vy,
zZ=Xxney,
z=Xx9%/=vy

» Greater than or equal to
zZ=X2Yy,
z=xgeYy
z=Xx %2y

e Greater than
Z=X2>Y,
z=xgt vy
z=Xx %>y

If the relational operator |S preceded by adot ‘. ', the result will be amatrix of 1'sand
0’s, based upon an element-by-element comparison of x and y.

e Element-by-element less than

Z=XxX.<Y

z=x.lt vy
z=Xx.%<y

e Element-by-element less than or equal to
z=Xx.<Y,
z=Xx.levy
zZ=x.%<y

* Element-by-element equal to
zZ=X.==y,
z=x.eqYy,
Z=Xx.%==y

» Element-by-element not equal to
zZ=Xx.l=vy,
Z=X.ney,
z=x.%/=y

11-10

Operators

» Element-by-element greater than or equal to
Z=X .2,
zZ=X .gey,
zZ=xX .%>y;

» Element-by-element greater than
zZ=X.>Y
z=x.qgt vy,
z=Xx.%> vy

Logical Operators

Thelogical operators perform logical or Boolean operations on numeric values. On
input, anonzero value is considered TRUE and a zero value is considered FAL SE.
Thelogical operatorsreturn alif TRUE and a0 if FALSE. Decisions are based on the
following truth tables:

Complement
X not X
T F

F T

Conjunction

X Y X and Y
T T T
T F F
F T F
F F F

11-11

GAUSSUser Guide

Digunction

X Y XorY

T T T

T F T

F T T

F F F
Exclusive Or

X Y |XxorY

T T F

T F T

F T T

F F F
Equivalence

X Y |[XeqvyY

T T

T F F

F T F

F F T

For complex matrices, the logical operators consider only the real part of the matrices.

Thefollowing operators require scalar arguments. These arethe onesto useini f and
do statements:

e Complement
zZ = not x;

» Conjunction
z=x and vy;

11-12

Operators

« Digjunction

Z = Xory;
* Exclusiveor

Z = X XOry;
* Equivalence

zZ=Xxeqvy,

If thelogical operator ispreceded by adot ‘. *, theresult will beamatrix of 1’'sand 0's
based upon an element-by-element logical comparison of x and y:

» Element-by-element logical complement
z =.not x;

» Element-by-element conjunction
z=x .and vy,

» Element-by-element disjunction
zZ=Xx.0rYy;

» Element-by-element exclusive or
Z = X .Xor Yy,

» Element-by-element equivaence

Z =X .equy,

Other Operators

Assignment Operator
Assignments are done with one equal sign:
y =3
Comma
Commas are used to delimit lists:
clear x,vy,z;
to separate row indices from column indices within brackets:
y = x[3,5];

and to separate arguments of functions within parentheses:

11-13

GAUSSUser Guide

y = nmonmentd(x, d);

Period
Dots are used in bracketsto signify “all rows’ or “al columns.”

y = Xx[.,5];

Space
Spaces are used inside of index brackets to separate indices:
y = x[1 35,35 9];

No extraneous spaces are allowed immediately before or after the comma, or
immediately after the left bracket or before the right bracket.

Spacesareasousedinpri nt and! pri nt statementsto separate the separate
expressions to be printed:

print x/2 2*sqrt(x);

No extraneous spaces are allowed within expressionsin pri nt or |l pri nt
statements unless the expression is enclosed in parentheses:

print (x / 2) (2 * sqgrt(x));

Colon
A colon is used within brackets to create a continuous range of indices:
y = x[1:5,.];

Ampersand

The ampersand operator (&) will return a pointer to a procedure (pr oc) or function
(f n). It is used when passing procedures or functions to other functions and for
indexing procedures. (For more information, see “Indexing Procedures,” page 12-9.)

String Concatenation

X = “dog”;
y = “cat”;
z = x $+ vy;

print z;

11-14

Operators

dogcat

If the first argument is of type string, the result will be of type string. If the first
argument is of type matrix, the result will be of type matrix. Here are some examples:

y = 0 $+ “caterpillar”;
the result will be a 1x1 matrix containing cat er pi | .
y = zeros(3,1) $+ “cat”;
the result will be a 3x1 matrix, each element containing cat .
If we use they created above in the following:
k =y $+ “fish”;
the result will be a 3x1 matrix with each element containing cat f i sh.
If we then use k created above:
t =" $+ k[1,1];
the result will be astring containing cat f i sh.
If we use the same k to create z as follows:
z = “dog” $+ k[1,1];

the result will be astring containing dogcat fi sh.

String Array Concatenation
$| Vertica string array concatenation

X = “dog”;
y = “fish”;
k =x $| v;
print k;
dog

fish

11-15

GAUSSUser Guide

$~ Horizontal string array concatenation
x = “dog”;
y “fish”;
kK =x $~vy;

print k;

dog fish

String Variable Substitution

In acommand such as
create f1 = olsdat with x, 4, 2;

by default, GAUSS will interpret ol sdat asthelitera name of the GAUSS datafile
you want to create. It will also interpret x asthe literal prefix string for the variable
namesxl x2 x3 x4.

To get the data set name from a string variable, the substitution operator (*) could be
used as follows:

dat aset = “ol sdat”;

create f1 = "dataset with x, 4, 2;

To get the data set name from a string variable and the variable names from a
character vector, use the following:

dat aset = “ol sdat”;
vnanes = { age, pay, sex };

create f1 = ~dataset wi th “vnanes, 0, 2;

The genera syntax is
Avariable_name

Expressions are not allowed.

11-16

Operators

The following commands are currently supported with the substitution operator (*):
create f1 = ~dataset wi th “vnanes, 0, 2;

create f1 = ~dataset using “cndfil e;
open f1l = ~dataset;

output file = "outfile;

| oad x = ~datafil e;

| oad path = A path x,y,z,t,w

save “name = X;

save path = “spath;

run ~prog;

nmsym ~nstring;

Using Dot Operators with Constants

When you use those operators preceded by a“. * (dot operators) with a scalar integer
constant, insert a space between the constant and any following dot operator.
Otherwise, the dot will be interpreted as part of the scalar; that is, the decimal point.
For example,

let y =12 3;

X = 2.<y,
will return x asa scalar 0, not a vector of 0'sand 1's, because
X = 2.<y,
isinterpreted as
X=2. <y;
and not as
X=2 <y,

1117

GAUSSUser Guide

Be careful when using the dot relational operators (. <, . <,.==,./=,.>,.2).The
same problem can occur with other dot operators, also. For example,

let x =11 1;

y = x./2.1x;
will returny as a scalar .5 rather than avector of .5's, because
y = x./12./x;
isinterpreted as
y=(x . 2)/x;
and not as
y=(x.2) /X

The second division, then, is handled as a matrix division rather than an element-by-
element division.

Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the* and /
operators have a higher precedence than the + and - operators. In expressions that
contain the above operators, the operand pairs associated with the* or / operator are
evaluated first. Whether * or/ isevaluated first depends on which comes first in the
particular expression.

The expression
-5+3/ 4+6* 3
isevaluated as
(-5)+(3/4)+(6*3)

Within aterm, operators of equal precedence are evaluated from left to right.

11-18

Operators

The precedence of all operators, from the highest to the lowest, islisted in the
following table:

Operator Precedence || Operator Precedence || Operator ~ Precedence

o 90 . $2 65 $> 55
’ 90 = 65 /= 55
! 89 . < 65 < 55
A 85 . < 65 < 55
N 85 . == 65 == 55
(unary -) 83 . > 65 > 55
* 80 o2 65 > 55
*~ 80 . eq 65 eq 55
CF 80 . ge 65 ge 55
Cx. 80 . gt 65 gt 55
| 80 le 65 l e 55
/ 80 St 65 It 55
% 75 . ne 65 ne 55
$+ 70 . not 64 not 49
+ 70 .and 63 and 48
- 70 .or 62 or 47
~ 68 . Xor 61 xor 46
| 67 . eqv 60 eqv 45
.8/ = 65 $/ = 55 (space) 35
. $< 65 $< 55 : 35
. $< 65 $< 55 = 10

== 65 == 55

. $> 65 $> 55

11-19

Procedures and Keywords

Procedures are multiple-ling, recursive functions that can have either local or global
variables. Procedures allow alarge computing task to be written as a collection of
smaller tasks. These smaller tasks are easier to work with and keep the details of their
operation separate from the other parts of the program. This makes programs easier to
understand and easier to maintain.

A procedure in GAUSS is basically a user-defined function that can be used as if it
were an intrinsic part of the language. A procedure can be as small and ssimple or as
large and complicated as necessary to perform a particular task. Procedures allow you
to build on your previous work and on the work of others, rather than starting over
again and again to perform related tasks.

Any intrinsic command or function may be used in a procedure, as well as any user-
defined function or other procedure. Procedures can refer to any global variable; that
is, any variable in the global symbol table that can be shown with the showcommand.
It is also possible to declare local variables within a procedure. These variables are
known only inside the procedure they are defined in and cannot be accessed from
other procedures or from the main level program code.

All labds and subroutines inside a procedure are local to that procedure and will not
be confused with labels of the same name in other procedures.

1241

GAUSSUser Guide

Defining a Procedure

A procedure definition consists of five parts, four of which are denoted by explicit

GAUSS commands:

1. Procedure declaration pr oc statement
2. Local variable declaration | ocal statement
3. Body of procedure

4. Return from procedure r et p statement
5. End of procedure definition endp statement

Thereisalways one pr oc statement and one endp statement in a procedure
definition. Any statements that come between these two statements are part of the
procedure. Procedure definitions cannot be nested. | ocal andr et p statements are
optional. There can be multiple| ocal andr et p statementsin a procedure
definition. Here is an example:

proc (3) = regress(Xx, Y);

| ocal xxi, b, ynxb, sse, sd, t;

xxi = invpd(x' x);

b = xxi * (x'y);

ynmkb = y-xb;

sse = ynmxb’ ymxb/ (rows(x)-col s(x));
sd = sqrt(diag(sse*xxi));

t = b./sd,

retp(b,sd, t);

endp;

This could be used as afunction that takes two matrix arguments and returns three
matrices as aresult. For example:

{ b,sd,t } = regress(x,yVy);

Following is adiscussion of the five parts of a procedure definition.

12-2

Procedures and Keywords

Procedure Declaration
The pr oc statement is the procedure declaration statement. The format is:
proc [[(rets) =] name(] argl,arg2,...argN) ;

rets Optional constant, number of values returned by the procedure.
Acceptable values here are 0-1023; the default is 1.

name Name of the procedure, up to 32 alphanumeric characters or an
underscore, beginning with an alpha or an underscore.

argh Names that will be used inside the procedure for the arguments that

are passed to the procedure when it is called. There can be 0-1023
arguments. These names will be known only in the procedure being
defined. Other procedures can use the same names, but they will be
separate entities.

Local Variable Declarations

Thel ocal statement isused to declarelocal variables. Local variables are variables
known only to the procedure being defined. The names used in the argument list of the
pr oc statement are alwayslocal. The format of thel ocal statementis

| ocal x vy, f proc,g:fn,z h: keyword,;

Local variables can be matrices or strings. If : pr oc,: f n, or : keywor d followsthe
variable nameinthel ocal statement, the compiler will treat the symbol asif it were
aprocedure, function, or keyword, respectively. This allows passing procedures,
functions, and keywords to other procedures. (For more information, see “Passing
Procedures to Procedures,” page 12-8.)

Variables that are global to the system (that is, variables listed in the global symbol
table that can be shown with the show command) can be accessed by any procedure
without any redundant declaration inside the procedure. If you want to create variables
known only to the procedure being defined, the names of these local variables must be
listedinal ocal statement. Once avariable nameis encounteredinal ocal
statement, further references to that name inside the procedure will be to the local
rather than to aglobal having the same name. (See cl ear g, var get , and var put
in the GAUSS Language Reference for ways of accessing globals from within
procedures that have locals with the same name.)

Thel ocal statement doesnot initialize (set to avalue) thelocal variables. If they are
not passed in as parameters, they must be assigned some value before they are
accessed or the program will terminate withaVari abl e not initialized

error message.

12-3

GAUSSUser Guide

All local and global variables are dynamically allocated and sized automatically
during execution. Local variables, including those that were passed as parameters, can
change in size during the execution of the procedure.

Local variables exist only when the procedure is executing, and then disappear. Local
variables cannot be listed with the show command.

The maximum number of localsis limited by stack space and the size of workspace
memory. The limiting factor appliesto the total number of active local symbols at any
one time during execution. If cat has 10 locals and it calls dog which has 20 locals,
there are 30 active locals whenever cat iscalled.

There can be multiple| ocal statementsin aprocedure. They will affect only the
code in the procedure that follows. Therefore, for example, it is possibleto refer to a
global x in aprocedure and follow that with al ocal statement that declaresalocal
x. All subsequent references to x would beto thelocal x. (Thisis not good
programming practice, but it demonstrates the principle that thel ocal statement
affects only the code that is physically below it in the procedure definition.) Another
example is asymbol that is declared as alocal and then declared asalocal procedure
or function later in the same procedure definition. This alows doing arithmetic on
local function pointers before calling them. (For more information, see “Indexing
Procedures,” page 12-9.)

Body of Procedure

The body of the procedure can have any GAUSS statements necessary to perform the
task the procedure is being written for. Other user-defined functions and other
procedures can be referenced, as well as any global matrices and strings.

GAUSS procedures are recursive, so the procedure can call itself aslong asthereis
logic in the procedure to prevent an infinite recursion. The process would otherwise
terminate with either an I nsuf fi ci ent wor kspace menory error message or
aProcedure calls too deep error message, depending on the space
necessary to store the locals for each separate invocation of the procedure.

Returning from the Procedure

The return from the procedure is accomplished with ther et p statement:
retp;

r et p(expressionl,expression2,...expressionN) ;

Ther et p statement can have multiple arguments. The number of items returned must
coincide with the number of retsin the pr oc statement.

If the procedure is being defined with no items returned, ther et p statement is
optional. The endp statement that ends the procedure will generate an implicitr et p

12-4

Procedures and Keywords

with no abjects returned. If the procedure returns one or more objects, there must be
an explicitr et p statement.

There can be multipler et p statements in a procedure, and they can be anywhere
inside the body of the procedure.
End of Procedure Definition
Theendp statement marks the end of the procedure definition:
endp;

Animplicit r et p statement that returns nothing is always generated here, soitis
impossible to run off the end of a procedure without returning. If the procedure was
defined to return one or more objects, executing thisimplicit return will result in a
W ong nunber of returns error message and the program will terminate.

Calling a Procedure
Procedures are called like this:
dog(i,j, k); /* no returns */
y = cat(i,j,k); /* one return */
{ x,¥,z} =bat(i,j,k); /* multiple returns */

call bat(i,j,k); /* ignore any returns */

Procedures are called in the same way that intrinsic functions are called. The
procedure nameisfollowed by alist of argumentsin parentheses. The arguments must
be separated by commas.

If there isto be no return value, use
proc (0) = dog(x,vVy, z);

when defining the procedure, and use
dog(ak, 4, 3);

or
call dog(ak, 4, 3);

when cdling it.

12-5

GAUSSUser Guide

The arguments passed to procedures can be complicated expressionsinvolving callsto
other functions and procedures. This calling mechanism is completely general. For
example,

y = dog(cat (3*x,bird(x,y))-2,1);
islegal.

Keywords

A keyword, like a procedure, is a subroutine that can be called interactively or from
within a GAUSS program. A keyword differs from a procedure in that a keyword
accepts exactly one string argument, and returns nothing. Keywords can perform
many tasks not as easily accomplished with procedures.

Defining a Keyword

A keyword definition is much like a procedure definition. Keywords aways are
defined with O returns and 1 argument. The beginning of a keyword definition is the
keywor d statement:

keywor d name(strarg) ;

name Name of the keyword, up to 32 aphanumeric characters or an
underscore, beginning with an alpha or an underscore.
strarg Name that will be used inside the keyword for the argument that is

passed to the keyword when it is called. There is always one
argument. The name is known only in the keyword being defined.
Other keywords can use the same name, but they will be separate
entities. Thiswill aways be astring. If the keyword is called with no
characters following the name of the keyword, thiswill be anull
string.

Therest of the keyword definition is the same as a procedure definition. (For more
information, see “ Defining a Procedure,” page 12-2.) Keywords always return
nothing. Any r et p statements, if used, should be empty. For example:

keyword add(s)

| ocal tok, sum

if s $==*"";
print “The argunent is a null string”;
retp;

endi f;

12-6

Procedures and Keywords

print “The argunent is: S :
sum = 0;
do until s $== “";
{ tok, s } = token(s);
sum = sum + st of (tok);
endo;
format /rd 1, 2;
print “The sumis: " osum

endp;

The keyword defined above will print the string argument passed to it. The argument
will be printed enclosed in single quotes.
Calling a Keyword

When akeyword is called, every character up to the end of the statement, excluding
the leading spaces, is passed to the keyword as one string argument. For example, if

you type
add 1 2 3 4 5;

the keyword will respond
The sumis: 15.00

Here is another example:
add;
the keyword will respond
The argument is a null string

12-7

GAUSSUser Guide

Passing Procedures to Procedures

Procedures and functions can be passed to procedures in the following way:
proc max(x,y); [/* procedure to return maxinmm */

if x>y;
retp(x);
el se;
retp(y);
endi f;

endp;

proc min(x,y); [/* procedure to return mninmm */
if x<y;
retp(x);
el se;
retp(y);
endi f;

endp;

fnlgsqrt(x) = In(sqrt(x)); /* function to return
| og of square root
*/

proc nyproc(&f 1, & 2, x,y);

local fl:proc, f2:fn, z;

z = f1(x,y);
retp(f2(z));
endp;

12-8

Procedures and Keywords

The procedure mypr oc takesfour arguments. Thefirstisaproceduref 1 that hastwo
arguments. The second is afunction f 2 that has one argument. It also has two other
arguments that must be matrices or scalars. Inthel ocal statement, f 1 isdeclared to
be aprocedure and f 2 is declared to be afunction. They can be used inside the
procedurein the usual way. f 1 will be interpreted as a procedure inside ny pr oc, and
f 2 will be interpreted as afunction. The call to mypr oc is made as follows:

k = nyproc(&max, & gsqrt,5,7); /* log of square root
of 7
*/
k = nyproc(&mn, & gsqrt,5,7); /* log of square root
of 5
*/

The ampersand (&) in front of the function or procedure name in the call to mypr oc
causes a pointer to the function or procedure to be passed. No argument list should
follow the name when it is preceded by the ampersand.

Inside nypr oc, the symbol that is declared asaprocedureinthel ocal statementis
assumed to contain a pointer to aprocedure. It can be called exactly like aprocedureis
called. It cannot be save’d, but it can be passed on to another procedure. If itisto be
passed on to another procedure, use the ampersand in the same way.

Indexing Procedures

This example assumes there are a set of proceduresnamed f 1- f 5 that are already
defined. A 1x5 vector pr ocvec isdefined by horizontally concatenating pointers to
these procedures. A new procedure, g(x,i) isthen defined that will return the val ue of
the ith procedure evaluated at x:

procvec = &1 ~ &2 ~ & 3 ~ &4 ~ &f 5;

proc g(x,i);
| ocal f;
f = procvec[i];
| ocal f: proc;
retp(f(x));
endp;

12-9

GAUSSUser Guide

Thel ocal statement isused twice. Thefirst time, f isdeclared to be aloca matrix.
After f has been set equal to theith pointer, f is declared to be a procedure and is
called asaprocedureinther et p statement.

Multiple Returns from Procedures

Procedures can return multiple items, up to 1023. The procedure is defined like this
example of acomplex inverse:

proc (2) = cminv(xr,xi); /* (2) specifies nunber of

return val ues

*/
| ocal ixy, zr, zi;
i Xy = inv(xr)*xi;
zZr = inv(xr+xi*ixy);/* real part of inverse */
Zi = -ixy*zr; /* imaginary part of inverse */
retp(zr, zi); /[* return: real part,
i magi nary part
*/
endp;

It can then be called like this:
{ zr,zi } = cminv(xr,xi);

To make the assignment, the list of targets must be enclosed in braces.

Also, aprocedure that returns more than one argument can be used as input to another
procedure or function that takes more than one argument:

proc (2) = cmnv(xr,xi);

| ocal ixy, zr, zi;

i Xy = inv(xr)*xi;
zr = inv(xr+xi*ixy);/* real part of inverse */
zi = -ixy*zr; /* imginary part of inverse */

12-10

Procedures and Keywords

retp(zr, zi);

endp;

proc (2) = cmmul t(xr,xi,yr,vyi);
| ocal zr, zi;
Zr = Xr*yr-xi*yi;
Zi = Xr*yi+xi*yr;
retp(zr, zi);

endp;

{ zr,zi } = cminv(crmul t(xr,xi,yr,yi));

The two returned matrices from cmul t () are passed directly to cni nv() inthe
statement above. Thisis equivalent to the following statements:

{ tr,ti } = cmult(xr,xi,yr,yi);

{ zr,zi } =cmnv(tr,ti);

Thisiscompletely general, so the following program is legal:
proc (2) = cnepl x(x);

| ocal r,c;

r rows(x);

o col s(x);
retp(x, zeros(r,c));

endp;

proc (2) = cmnv(xr,xi);
| ocal ixy, zr, zi;

i Xy = inv(xr)*xi;

zr i nv(xr+xi*ixy);/* real part of inverse */

zZi - xy*zr; /* imaginary part of inverse */

12-11

GAUSSUser Guide

retp(zr, zi);

endp;

proc (2) = cmmul t(xr,xi,yr,vyi);
| ocal zr, zi;
Zr = Xr*yr-xi*yi;
Zi = Xr*yi+xi*yr;
retp(zr, zi);

endp;

{ xr,xi } = cneplx(rndn(3,3));

{ yr,yi } = cneplx(rndn(3,3));

{ zr,zi } = cmult(cminv(xr,xi),cmnv(yr,yi));
{ gr,qi } =cmult(yr,yi,cmnv(yr,yi));

{ w,w } =

cmmul t (yr,yi, cminv(cmul t(cm nv(xr,xi),yr,yi)));

Saving Compiled Procedures

When afile containing a procedure definition is run, the procedure is compiled and is
then resident in memory. The procedure can be called asiif it were an intrinsic
function. If the new command is executed or you quit GAUSS and exit to the
operating system, the compiled image of the procedure disappears and the file
containing the procedure definition will have to be compiled again.

If aprocedure contains no global references, that is, if it does not reference any global
matrices or strings and it does not call any user-defined functions or procedures, it can
be saved to disk in compiled formina. f cg filewith the save command, and |oaded
later with thel oadp command whenever it isneeded. Thiswill usually be faster than
recompiling. For example:

save path = c:\gauss\cp procl, proc2, proc3;

| oadp path = c:\gauss\cp procl, proc2, proc3;

12-12

Procedures and Keywords

The name of the file will be the same as the name of the procedure, witha. f cg
extension. (For details, seel oadp and save in the GAUSS Language Reference.)

All compiled procedures should be saved in the same subdirectory so thereisno
guestion where they are located when it is necessary to reload them. Thel oadp path
can be set in your startup file to reflect this. Then, to load in procedures, use

| oadp procl, proc2, procs3;

Proceduresthat are saved in . f cg fileswill NOT be automatically loaded. It is
necessary to explicitly load them with | oadp. Thisfeature should be used only when
the time necessary for the autoloader to compile the source istoo great. Also, unless
these procedures have been compiled with #1 i neson, debugging will be more
complicated.

12-13

Structures

A structure is a collection of one or more variables grouped under a single name. The
variablesin a structure can be of different types or can themselves be structures.

Defining and Creating Structures

Structures are defined using the st r uct keyword.
struct dset {

string array sdata,;
string array sdatadesc;
matri x ndat a;

string array ndatadesc;

s

struct conpany {
scal ar id;

string nane;

13-1

GAUSSUser Guide

string contact;
string phone;
string fax;
struct dset data;

s

These statements create structure definitions that persist until the workspaceis
cleared. They do not create structures, only structure type definitions. To create a
variable that is a structure, use;

struct conpany c;

Thiswill create avariable ¢ which is a structure of type company.

Initializing Structures

Currently, no compile time structure initialization is supported. To initialize the
structure above, the following statements could be used:

c.id = 49;

c.name = "XYZ Corp.";
c.contact = "John Doe";

c. phone = "(206) 555-1212";
c.fax = "(206) 555-1313";
c. dat a. sdata = sa;

c. dat a. sdat adesc = sadesc;
c.data.ndata = x;

c. dat a. ndat adesc = xdesc;

The assumption isthat x isan existing matrix and sa, sadesc and xdesc are
existing string arrays.

13-2

Sructures

Passing Structures to Procedures

Structures or members of structures can be passed to procedures. When a structureis
passed as an argument to a procedure, it is passed by value. The structure becomes a
local copy of the structure that was passed. The data in the structure is not duplicated
unless the local copy of the structure has a new value assigned to one of its members.

Structure arguments must be declared in the procedure definition.
struct rectangle {

matri x ul x;
matrix uly;
matrix |rx;
matrix lry;
1
proc area(struct rectangle rect);
retp((rect.lrx - rect.ulx) .* (rect.uly -
rect.lry));
endp;

Local structures are defined using ast r uct statement inside the procedure
definition.

proc center(struct rectangle rect);

struct rect angl e cent;

cent.lrx = (rect.lrx - rect.ulx) ./ 2;

cent.ulx = -cent.lrx;
cent.uly = (rect.uly - rect.lry) ./ 2;
cent.lry = -cent.uly;

retp(cent);
endp;

13-3

Libraries

The GAUSS library system allows for the creation and maintenance of modular
programs. The user can create “libraries’ of frequently used functionsthat the GAUSS

system will automatically find and compile whenever they are referenced in a
program.

Autoloader

The autol oader resolves references to procedures, keywords, matrices, and strings that
are not defined in the program from which they are referenced. The autoloader
automatically locates and compiles the files containing the symbol definitions that are
not resolved during the compilation of the main file. The search path used by the
autoloader isfirst the current directory, and then the pathslisted inthesr c_pat h

configuration variable in the order they appear. sr ¢c_pat h can be defined in the
GAUSS configuration file.

Forward References

When the compiler encounters a symbol that has not previously been defined, itis
called a“forward reference.” GAUSS handles forward references in two ways,
depending on whether they are “left-hand side” or “right-hand side” references.

14-1

GAUSSUser Guide

Left-Hand Side

A left-hand side reference is usually areference to a symbol on the left-hand side of
the equal sign in an expression such as:

X = 5;

L eft-hand side references, since they are assignments, are assumed to be matrices. In
the previous statement, X is assumed to be a matrix and the code is compiled
accordingly. If, at execution time, the expression actually returns a string, the
assignment is made and the type of the symbol x isforced to string.

Some commands are implicit left-hand side assignments. There is an implicit left-
hand side reference to x in each of these statements:

clear x;
| oad x;

open x = nyfile;

Right-Hand Side

A right-hand side referenceis usually areference to asymbol on the right-hand side of
the equal sign in an expression such as:

Z = 6;
y = z + dog;
print vy;

In the program above, since dog is not previously known to the compiler, the
autoloader will search for it in the active libraries. If it isfound, the file containing it
will be compiled. If it is not found in alibrary, the autol oad/autodel ete state will
determine how it is handled.

The Autoloader Search Path

If the autoloader is OFF, no forward references are allowed. Every procedure, matrix,
and string referenced by your program must be defined before it is referenced. An
ext er nal statement can be used above the first reference to a symbol, but the
definition of the symbol must be in the main file or in one of the filesthat are

#i ncl ude’d. No global symbols are deleted automatically.

14-2

Libraries

If the autoloader is ON, GAUSS searches for unresolved symbol references during
compilation using a specific search path. If the autoloader is OFF, an Undef i ned
symbol error message will result for right-hand side references to unknown symbols.

When autoload is ON, the autodd ete state controls the handling of referencesto
unknown symboals.

The following search path will be followed to locate any symbols not previously
defined:

Autodelete ON

1. user library

2. user-specified libraries

3. gausslibrary

4. current directory, then sr ¢c_pat h for fileswith a. g extension

Forward references are allowed and . g files need not bein alibrary. If there are
symbols that cannot be found in any of the places listed above, an Undef i ned
synmbol error message will be generated and al uninitialized variables and all
procedures with global references will be deleted from the global symboal table. This
autodel etion process is transparent to the user, since the symbols are automatically
located by the autoloader the next time the program isrun. This process resultsin
more compile time, which may or may not be significant depending on the speed of
the computer and the size of the program.

Autodelete OFF

1. user library
2. user-specified libraries
3. gausslibrary

All . g filesmust be listed in alibrary. Forward references to symbols not listed in an
activelibrary are not allowed. For example:

X = rndn(10, 10);

y = sym(Xx); /* forward reference to synbol */

proc sym x);
retp(x+x’);

endp;

14-3

GAUSSUser Guide

Useanext er nal statement for anything referenced above its definition if
autodelete is OFF:

external proc sym

X

y

rndn(10, 10);
sym(x);

proc syn(x);
retp(x+x’);

endp;

When autodelete is OFF, symbols not found in an active library will not be added to
the symbol table. This prevents the creation of uninitialized procedures in the global
symbol table. No deletion of symbols from the global symbol table will take place.

Libraries

Thefirst place GAUSS looks for a symbol definition isin the “active” libraries. A
GAUSS library is atext file that serves as a dictionary to the source files that contain
the symbol definitions. When alibrary is active, GAUSS will look in it whenever it is
looking for asymboal it istrying toresolve. Thel i br ar y statement isused to makea
library active. Library files should be located in the subdirectory listed in the

I i b_pat h configuration variable. Library fileshavea. | cg extension.

Suppose you have several procedures that are all related and you want them all
defined in the same file. You can create such afile, and, with the help of alibrary, the
autoloader will be able to find the procedures defined in that file whenever they are
called.

First, create the file to contain your desired procedure definitions. By convention, this
fileisusually named with a. sr ¢ extension, but you can use any name and any file
extension. In thisfile, put al the definitions of related procedures you wish to use.
Here is an example of such afile, called nor m src:

/*

** normsrc

** This is a file containing the definitions of three
** procedures which return the normof a matrix Xx.

** The three nornms cal cul ated are the one-norm the

14-4

Libraries

** jnf-normand the E-norm
*/

proc onenor m(x) ;
ret p(maxc(sunc(abs(x))));

endp;

proc i nfnorm(x);
ret p(maxc(sunc(abs(x’))));

endp;

proc Enorm(x);
ret p(sunc(sunc(x.*x)));

endp;

Next, create alibrary file that contains the name of the file you want access to, and the
list of symbols defined in it. This can be done with the |l i b command. (For details,
seel i b inthe GAUSS Language Reference.)

A library file entry has afilename that isflush left. The drive and path can be included
to speed up the autol oader. Indented below the filename are the symbolsincluded in
the file. There can be multiple symbols listed on aline, with spaces between. The
symbol type follows the symbol name, with a colon delimiting it from the symbol
name. The valid symbol types are:

fn user-defined single line function
keywor d keyword

proc procedure

matri x matrix, numeric or character
string string

14-5

GAUSSUser Guide

If the symbol type is missing, the colon must not be present and the symbol typeis
assumed to be pr oc. Both of the following library files are valid:

Example 1
/*
** math

** This library lists files and procedures for

** mat hemati cal routines.

norm src

onenor m proc i nfnorm proc Enorm proc
compl ex. src

cmmul t: proc cndi v: proc cnmadd: proc cnsol n: proc
poly.src

pol ychar: proc pol yroot: proc pol ynult: proc

Example 2
/*
** math

** This library lists files and procedures for

** mat hemati cal routines.

c:\gauss\src\normsrc
onenorm : proc
infnorm: proc

Enorm : proc

14-6

Libraries

c:\gauss\src\conpl ex. src

cmmult @ proc

cndiv : proc

cmadd : proc

cnsoln : proc
c:\gauss\src\fconp.src

feq : proc

fne : proc

flt : proc

fgt : proc

fle : proc

fge : proc
c:\gauss\src\fconp. dec

_fcnptol : matrix

Once the autoloader finds, viathe library, the file containing your procedure
definition, everything in that file will be compiled. For this reason, combine related
procedures in the same file in order to minimize the compiling of procedures not
needed by your program. Do not combine unrelated functionsin one. sr ¢ file,
becauseif onefunctionina. sr c fileis needed, the whole file will be compiled.

user Library

Thisisalibrary for user-created procedures. If the autoloader isON, the user library is
the first place GAUSS looks when trying to resolve symbol references.

You can update the user library with the |l i b command:
lib user nmyfile.src;
Thiswill update the user library by adding areferencetonyfil e. src.

No user library is shipped with GAUSS. It will be created the first time you use the
['i b command.

For details of the parameters available with thel i b command, see the GAUSS
Language Reference.

14-7

GAUSSUser Guide

.g Files

If autoload and autodel ete are ON and a symbol is not found in alibrary, the
autoloader will assume it is a procedure and look for afile that has the same name as
the symbol and a. g extension. For example, if you have defined a procedure called
squar e, you could put the definition in afile called squar e. g in one of the
subdirectories listed in your sr ¢_pat h. If autodelete is OFF, the . g file must be
listed in an active library; for example, in the user library.

Global Declaration Files

If your application makes use of several global variables, create afile containing
decl ar e statements. Use fileswith the extension . dec to assign default valuesto
global matrices and strings with decl ar e statements. A filewith a. ext extension
containing the same symbolsin ext er nal statements can also be created and

#i ncl ude’d at the top of any file that references these global variables. An
appropriatelibrary file should contain the name of the . dec files and the names of the
globalsthey declare.

Here is an example that illustrates the way in which . dec, . ext,.l cg,and. src
fileswork together. Always begin the names of globa matrices or stringswith*_’ to
distinguish them from procedures:

.src File
/*

** fconp.src

** These functions use _fcnptol to fuzz the conparison

** ogperations to allow for roundoff error.

** The statenent: y feq(a, b);

** js equivalent to: y a eq b;

** Returns a scalar result, 1 (true) or 0 (false)

* % y = feq(a, b);

14-8

Libraries

* ok y = fne(a, b);
*/

#i ncl ude fconp. ext;
proc feq(a,b);

retp(abs(a-b) < fcnptol);
endp;

proc fne(a,b);
retp(abs(a-b) > fcnptol);
endp;

. dec File

/*
** fconp.dec - global declaration file for fuzzy

** conpari sons.
*/

declare matrix _fcnptol !'= le-14;

. ext File

/*
** fconp.ext — external declaration file for fuzzy

** conpari sons.
*/

external matrix _fcnptol

14-9

GAUSSUser Guide

. 1 cg File

/*
** fconp.lcg — fuzzy conpare library
*/

f conp. dec

_fcnptol :matrix
fconp. src

feq: proc

fne: proc

With the exception of the library (. | cg) files, these files must be located along your
src_pat h. Thelibrary filesmust beonyour | i b_pat h. With these filesin place,
the autol oader will be able to find everything needed to run the following programs:

library fconp;
X = rndn(3, 3);
Xi = inv(x);

Xi X = Xi*Xx;
if feq(xix,eye(3));
print “lnverse within tol erance.”;
el se;
print “lInverse not within tolerance.”;

endi f;

If the default tolerance of 1e- 14 istoo tight, the tolerance can be relaxed:

library fconp;
X = rndn(3, 3);
Xi = inv(x);

Xi X = Xi *X;

_fcnptol = 1e-12; [* reset tolerance */

14-10

Libraries

if feq(xix,eye(3));
print “lInverse within tol erance.”;
el se;
print “Inverse not within tolerance.”;

endi f;

Troubleshooting

Below isapartial list of errors you may encounter in using the library system,
followed by the most probable cause.

(4) : error (0290 : 'c:\gauss\lib\prt.lcg” : Library not
f ound

The autoloader islooking for alibrary filecalled prt . | cg, becauseit has been
activatedinal i br ar y statement. Check the subdirectory listedinyour | i b_pat h
configuration variable for afilecaledprt .| cg.

(0) : error Q0292 : 'prt.dec’ : Filelisted in library not
f ound

The autoloader cannot find afilecalled prt . dec. Check for thisfile. It should exist
somewhere along your sr ¢_pat h, if you haveitlistedinprt. | cg.

Undefi ned synbol s:
PRTVEC c:\gauss\src\tstprt.g(2)

The symbol prt vec could not be found. Check if the file containing prt vec isin
thesr c_pat h. You may not have activated the library that contains your symbol
definition. Dosoinal i br ary statement.

c:\gauss\src\prt.dec(3) : Redefinition of ‘__vnanes’
(proc) __vnanes being declared external matrix

You are trying to illegally force a symbol to another type. You probably have a name
conflict that needs to be resolved by renaming one of the symbols.

14-11

GAUSSUser Guide

c:\gauss\lib\prt.lcg(5) : error (0301 : ‘prt.dec’
Syntax error in library
Undefi ned synbol s:
__VNAMES c:\gauss\src\prt.src(6)
Check your library to seethat all filenames are flush left and all symbols defined in
that file are indented by at least one space.
Using dec Files
When constructing your own library system:

* Whenever possible, declare variablesin afile that containsonly decl ar e
statements. When your program is run again without clearing the workspace,
the file containing the variable declarations will not be compiled and
decl ar e warnings will be prevented.

» Provide afunction containing regular assignment statementsto reinitialize the
global variablesin your program if they ever need to be reinitialized during or
between runs. Put thisin a separate file from the declarations:

proc (0) = gl obset;
_vnanme = “X’;
_con = 1;
_row = 0O;
_title = *7;
endp;
* Never declare aglobal in more than onefile.

» To avoid meaningless redefinition errorsand decl ar e warnings, never
declare aglobal more than once in any one file. Redefinition error messages
and decl ar e warnings are meant to help you prevent name conflicts, and
will be useless to you if your code generates them normally.

By following these guidelines, any decl ar e warnings and redefinition errors you
get will be meaningful. By knowing that such warnings and errors are significant, you
will be able to debug your programs more efficiently.

14-12

compter L. O

GAUSS allows you to compile your large, frequently used programs to afile that can
be run over and over with no compile time. The compiled image is usually smaller
than the uncompiled source. GAUSS is not a native code compiler; rather, it compiles
to aform of pseudocode. The file will have a. gcg extension.

Theconpi | e command will compile an entire program to a compiled file. An
attempt to edit a compiled file will cause the source code to be loaded into the editor if
it is available to the system. Ther un command assumes acompiled fileif no
extension is given, and that afilewitha. gcg extensionisinthesr c_pat h. A
saveal | command isavailableto savethe current contents of memory in acompiled
file for instant recall later. The use command will instantly load a compiled program
or set of procedures at the beginning of an ASCII program before compiling the rest of
the ASCII program file.

Sincethe compiled files are encoded binary files, the compiler is useful for devel opers
who do not want to distribute their source code.

Compiling Programs

Programs are compiled with the conpi | e command.

15-1

GAUSSUser Guide

Compiling a File

Source code program files that can be run with ther un command can be compiled to
. gcg fileswith theconpi | e command:

compi l e gxy. e;

All procedures, global matrices and strings, and the main program segment will be
saved in the compiled file. The compiled file can berun later using ther un command.
Any libraries used in the program must be present and active during the compile, but
not when the program isrun. If the program usesthedl| i br ar y command, the. dl |
files must be present when the program is run and the dlibrary path must be set to the
correct subdirectory. Thiswill be handled automatically in your configuration file. If
the program is run on a different computer than it was compiled on, the . dl | files
must be present in the correct location. sysst at e (case 24) can be used to set the
dl i brary path at run-time.

Saving the Current Workspace

The simplest way to create a compiled file containing a set of frequently used
proceduresistousesaveal | and anext er nal statement:

l'ibrary pgraph;
external proc xy, |l ogx,|ogy,!| oglog, hist;

saveal | pgraph;

List the procedures you will beusing in an ext er nal statement and follow it with a
saveal | statement. It is not necessary to list procedures you do not explicitly call,
but are called from another procedure, because the autoloader will automatically find
them beforethesaveal | command is executed. Nor isit necessary to list every
procedure you will be calling, unless the source will not be available when the
compiled fileisuse’d.

Remember, the list of active librariesis NOT saved in the compiled file so you may
gtill need al i br ary statement in aprogram that isuse’ing acompiled file.

Debugging

If you are using compiled code in a development situation where debugging is
important, compile the file with line number records. After the development is over,

15-2

Compiler

you can recompile without line number records if the maximum possible execution
speed isimportant. If you want to guarantee that all procedures contain line number

records, put anew statement at the top of your program and turn line number tracking
on.

15-3

File 1/O

Thefollowing is a partial list of the I/O commands in the GAUSS programming

language:
cl ose

cl oseal |
col sf
create

df ree

eof

f checkerr
fclearerr
fflush
fgets

f get sa

f get sat

f get st
fileinfo
files

Close afile.

Close al open files.

Number of columnsin afile.

Create GAUSS data set.

Space remaining on disk.

Test for end of file.

Check error status of afile.

Check error status of afile and clear error flag.

Flush afile's output buffer.

Read aline of text from afile.

Read multiple lines of text from afile.

Read multiple lines of text from afile, discarding newlines.
Read aline of text from afile, discarding newline.

Returns names and information of files matching a specification.
Returns adirectory listing as a character matrix.

16-1

GAUSSUser Guide

filesa
f open
fputs

f put st
f seek
fstrerror
ftell
getf
get nane
i scpl xf
| oad

| oadd

| oadm
| oads
open
out put
r eadr

r owsf
save
saved
seekr
sortd

typef
witer

ASCII Files

Returns alist of files matching a specification.
Open afile.

Write strings to afile.

Write strings to afile, appending newlines.
Reposition file pointer.

Get explanation of last file 1/O error.

Get position of file pointer.

Load afileinto astring.

Get variable names from data set.

Returns whether a data set is real or complex.
Load matrix file or small ASCII file (same as| oadn).
Load asmall GAUSS data set into a matrix.
Load matrix file or small ASCII file.

Load string file.

Open a GAUSS data set.

Control printing to an auxiliary output file or device.
Read a specified number of rows from afile.
Number of rowsin file.

Save matrices, strings, procedures.

Save amatrix in a GAUSS data set.

Reset read/write pointer in a data set.
Sort a data set.

Returns type of data set (bytes per element).
Write data to a data set.

GAUSS has facilities for reading and writing ASCI| files. Since most software can
read and write ASCI| files, this provides away of sharing data between GAUSS and
many other kinds of programs.

Filel/O

Matrix Data

Reading

Files containing numeric data that are delimited with spaces or commas and are small
enough to fit into a single matrix or string can be read with | oad. Larger ASCII data
files can be converted to GAUSS data sets with the ATOG utility program see

“ATOG" page 21-1. ATOG can convert packed ASCII files aswell as delimited files.

For small delimited datafiles, the | oad statement can be used to load the data
directly into a GAUSS matrix. The resulting GAUSS matrix must be no larger than
the limit for a single matrix.

For example,
| oad x[] = dat1l. asc;

will load the datain thefiledat 1. asc into an Nx1 matrix X. This method is
preferred because r ows (x) can be used to determine how many elements were
actually loaded, and the matrix can ber eshape’d to the desired form:

| oad x[] = datl.asc;
if rows(x) eq 500;
x = reshape(x, 100, 5);
el se;
errorlog “Read Error”;
end;

endi f;

For quick interactive loading without error checking, use
| oad x[100,5] = datl.asc;

Thiswill load the data into a 100x5 matrix. If there are more or fewer than 500
numbersin the data set, the matrix will automatically be reshaped to 100x5.

Writing

To write datato an ASCII file, thepri nt or pri nt f mcommand is used to print to
the auxiliary output. The resulting files are standard ASCI| files and can be edited
with GAUSS's editor or another text editor.

Theout put and out wi dt h commands are used to control the auxiliary output. The
print orprintfmcommand isused to control what is sent to the output file.

16-3

GAUSSUser Guide

The window can be turned on and off using scr een. When printing a large amount

of datato the auxiliary output, the window can be turned off using the command
screen off;

Thiswill make the process much faster, especially if the auxiliary output isa disk file.
It is easy to forget to turn the window on again. Use the end statement to terminate

your programs; end will automatically performscr een on and out put of f.
The following commands can be used to control printing to the auxiliary output:

f or mat Specify format for printing a matrix.

out put Open, close, rename auxiliary output file or device.
outwi dth Auxiliary output width.

printfm Formatted matrix print.

print Print matrix or string.

screen Turn printing to the window on and off.

This example illustrates printing a matrix to afile:
format /rd 8, 2;

outw dth 132;

output file = nyfile.asc reset;
screen off;

print x;

out put off;

screen on,

The numbersin the matrix x will be printed with afield width of 8 spaces per number,
and with 2 places beyond the decimal point. The resulting file will be an ASCII data

file. It will have 132 column lines maximum.

A more extended example follows. This program will write the contents of the
GAUSSfilenmydat a. dat into an ASCII file called mydat a. asc. If thereisan
existing file by the name of mydat a. asc, it will be overwritten:

output file = nydata. asc reset;
screen off;
format /rd 1, 8;

16-4

Filel/O

open fp = nydat a;
do until eof (fp);
print readr(fp, 200);;
endo;
fp = close(fp);

end;

Theout put ... reset command will create an auxiliary output file called

mydat a. asc to receive the output. The window is turned off to speed up the

process. The GAUSS datafile nydat a. dat isopened for reading, and 200 rows

will be read per iteration until the end of the file isreached. The dataread will be

printed to the auxiliary output mydat a. asc only, because the window is off.
General File 1/O0

get f will read afileand returnitin astring variable. Any kind of file can beread in
thisway aslong asit will fit into asingle string variable.

To read files sequentially, use f open to open thefileand usef get s, f put s, and
associated functions to read and write the file. The current position in afile can be
determined with f t el | . The following example uses these functions to copy an
ASCII text file:

proc copy(src, dest);

| ocal fin, fout, str;

fin = fopen(src, “rb”);
if not fin;
retp(l);

endi f;

16-5

GAUSSUser Guide

fout = fopen(dest, “wbh");
if not fin;
call close(fin);
retp(2);

endi f;

do until eof(fin);
str = fgets(fin, 1024);
if fputs(fout, str) /= 1,
call close(fin);
call close(fout);
retp(3);
endi f;

endo;

call close(fin);
call close(fout);
retp(0);

endp;

Data Sets

Layout

GAUSS data sets are the preferred method of storing data for use within GAUSS. Use
of these data sets allows extremely fast reading and writing of data. Many library
functions are designed to read data from these data sets.

GAUSS data sets are arranged as matrices; that is, they are organized in terms of rows
and columns. The columnsin a datafile are assigned names and these names are
stored in the header or, in the case of the v89 format, in a separate header file.

16-6

Filel/O

The limit on the number of rowsin a GAUSS data set is determined by disk size. The
limit on the number of columnsislimited by RAM. Data can be storedin 2, 4, or 8
bytes per number, rather than just 8 bytes as in the case of GAUSS matrix files.

The ranges of the different formats are:

Data Significant

Bytes Type Digits Range
2 integer 4 -32768 < X < 32767
4 single 6-7 8.43E-37 < |[X| < 3.37E+38
8 double 15-16 4.19E-307 < |X| < 1.67E+308

Creating Data Sets

Data sets can be created with the cr eat e command. The names of the columns, the
type of data, etc., can be specified. (For details, seecr eat e in the GAUSS Language
Reference.)

Data sets, unlike matrices, cannot change from real to complex, or vice-versa. Data
sets are aways stored arow at atime. The rows of acomplex data set, then, have the
real and imaginary parts interleaved, element by element. For this reason, you cannot
write rows from acomplex matrix to areal data set — thereisno way to interleave the
data without rewriting the entire data set. If you must, explicitly convert the rows of
datafirst, using ther eal andi nag functions (see the GAUSS Language Reference),
and then write them to the data set. Rows from areal matrix CAN be written to a
complex data set; GAUSS simply supplies O’'s for the imaginary part.

To create a complex data set, include the conpl ex flagin your cr eat e command.

Reading and Writing
The basic functions in GAUSS for reading datafiles are open and r eadr :
open f1 = dat1;
X = readr(f1,100);

Ther eadr functioninthe examplewill read in 100 rowsfrom dat 1. dat . The data
will be assigned to a matrix X.

| oadd and saved can be used for loading and saving small data sets.

16-7

GAUSSUser Guide

The following exampleillustrates the creation of a GAUSS data file by merging
(horizontally concatenating) two existing data sets.

filel = “dat1”;
file2 = “dat2”;
outfile = “daty”;
open finl = ~filel for read;
open fin2 = ~file2 for read;
varnanes = getname(filel)]|getnanme(file2);
otyp = maxc(typef (finl)|typef(fin2));
create fout = Moutfile with “~varnanes, 0, otyp;
nr = 400;
do until eof (finl) or eof (fin2);
yl = readr(finl, nr);
y2 = readr(fin2,nr);

r

y
call witer(fout,y);

maxc(rows(yl)|rows(y2));
yi[1:r,.] ~y2[L:r,.];

endo;

closeall finl, fin2, fout;

In the previous example, datasetsdat 1. dat and dat 2. dat are opened for
reading. The variable names from each data set are read using get nane, and
combined in asingle vector called var nanes. A variable called ot yp iscreated that
will be equal to the larger of the two data types of the input files. Thiswill ensure the
output is not rounded to less precision than theinput files. A new dataset dat y. dat
iscreated usingthecreate ... with ... command. Then, on every iteration
of the loop, 400 rows are read in from each of the two input data sets, horizontally
concatenated, and written out to dat y. dat . When the end of one of theinput filesis
reached, reading and writing will stop. Thecl oseal | command is used to close all
files.

16-8

Filel/O

Distinguishing Character and Numeric Data

Although GAUSS itself does not distinguish between numeric and character columns
in amatrix or data set, some of the GAUSS Applications programs do. When creating
adata set, it isimportant to indicate the type of datain the various columns. The
following discusses two ways of doing this.

Using Type Vectors

Thev89 data set format distingui shes between character and numeric datain data sets
by the case of the variable names associated with the columns. The v96 data set
format, however, stores thistype of information separately, resulting in amuch cleaner
and more robust method of tracking variable types, and greater freedom in the naming
of data set variables.

When you create a data set, you can supply avector indicating the type of datain each
column of the data set. For example:

data = { M 32 21500,

F 27 36000,

F 28 19500,

M 25 32000 };
vnanmes = { “Sex” “Age” “Pay” };
vtypes = { 011},

create f = nydata with “vnanes, 3, 8, vtypes;
call witer(f,data);

f = close(f);

To retrieve the type vector, usevar t ypef :
open f = nydata for read;

vn get nanmef (f);

vt vartypef (f);
print vn';
print vt’;

Sex Age Pay

0 1 1

16-9

GAUSSUser Guide

The function get nanef in the previous example returns a string array rather than a
character vector, so you can print it without the ‘$’ prefix.

Using the Uppercase/Lowercase Convention (v89 Data Sets)

Thisisobsolete, usevar t ypef and v96 data sets to be compatible with future
versions.

The following method for distinguishing character/numeric datawill soon be
obsolete; use the Type Vectors method described earlier.

To distinguish numeric variables from character variables in GAUSS data sets, some
GAUSS application programs recognize an “ uppercase/lowercase” convention: if the
variable name is uppercase, the variable is assumed to be numeric; if the variable
nameislowercase, the variable is assumed to be character. The ATOG utility program
implements this convention when you use the # and $ operators to toggle between
character and numeric variable names listed inthei nvar statement, and you have
specified nopr eser vecase.

GAUSS does not make this distinction internally. It is up to the program to keep track
of and make use of the information recorded in the case of the variable namesin adata
Set.

When creating a data set using the saved command, this convention can be
established as follows:

data = { M 32 21500,
F 27 36000,
F 28 19500,
M 25 32000 };
dataset = “nydata”;
vnames = { “sex” AGE PAY };
call saved(data, dat aset, vhanes);

It is necessary to put “sex” in quotes in order to prevent it from being forced to
uppercase.

The procedure get nane can be used to retrieve the variable names:
print $getnane(“nmydata”);

16-10

Filel/O

The names are:

sex
AGE
PAY

When writing or creating a data set, the case of the variable namesis important. This
is especialy true if the GAUSS applications programs will be used on the data set.

Matrix Files

GAUSS matrix files are files created by the save command.

The save command takes a matrix in memory, adds a header that contains
information on the number of rows and columns in the matrix, and storesit on disk.
Numbers are stored in double precision just as they are in matricesin memory. These
files have the extension . f nt .

Matrix files can be no larger than a single matrix. No variable names are associated
with matrix files.

GAUSS matrix filescan be | oad’ed into memory using thel oad or | oadm
command, or they can be opened with the open command and read with the r eadr
command. With ther eadr command, a subset of the rows can be read. With the

| oad command, the entire matrix is| oad’ed.

GAUSS matrix filescan beopen’ed f or read, butnotf or append orf or
updat e.

If amatrix file has been opened and assigned afile handle, r owsf and col sf canbe
used to determine how many rows and columns it has without actually reading it into
memory. seekr andr eadr can be used to jJump to particular rows and to read them
into memory. Thisis useful when only a subset of rowsis needed at any time. This
procedure will save memory and be much faster than | oad’ing the entire matrix into
memory.

File Formats

This section discusses the GAUSS hinary file formats.
There are four currently supported matrix file formats.

Version Extension Support
Small Matrix v89 ft Obsolete, use v96.

16-11

GAUSSUser Guide

Extended Matrix v89 Cfnt Obsolete, use v96.
Matrix v92 Lt Obsolete, use v96.
Universal Matrix v96 Cft Supported for read/write.

There are four currently supported string file formats:

Version Extension Support

Small String v89 . fst Obsolete, use vo6.
Extended String v89 . fst Obsolete, use v96.

String v92 st Obsolete, use v96.
Universal String vo6 st Supported for read/write.

There are four currently supported data set formats:

Version Extension Support
Small Data Set v89 . dat , Obsolete, use v96.
. dht
Extended Data Set v89 . dat , Obsolete, use v96.
. dht
Data Set v92 . dat Obsolete, use v96.
Universal Data Set v96 . dat Supported for read/write.

Small Matrix v89 (Obsolete)

Matrix files are binary files, and cannot be read with atext editor. They are created
with save. Matrix fileswith up to 8190 elementshave a. f nt extension and a 16-
byte header formatted as follows:

Offset Description

0-1 DDDD hex, identification flag

2-3 rows, unsigned 2-byte integer

4-5 columns, unsigned 2-byte integer

6-7 size of file minus 16-byte header, unsigned 2-byte integer

8-9 type of file, 0086 hex for real matrices, 8086 hex for complex matrices

16-12

Filel/O

10-15 reserved, dl 0's

The body of thefile starts at offset 16 and consists of |EEE format double-precision
floating point numbers or character elements of up to 8 characters. Character elements
take up 8 bytes and are padded on the right with zeros. The size of the body of thefile
is 8*rows* cols rounded up to the next 16-byte paragraph boundary. Numbers are
stored row by row. A 2x3 real matrix will be stored on disk in the following way, from
the lowest addressed element to the highest addressed element:

[1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

For complex matrices, the size of the body of the fileis 16*rows* cols. The entire real
part of the matrix is stored first, then the entire imaginary part. A 2x3 complex matrix
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed element:

(resl part) [1,1] [12] [1.3] [21] [22] [2.3]
(imaginary part) [1,1] [1,2] [13] [2.1] [2,2] [2.3]

Extended Matrix v89 (Obsolete)

M atrices with more than 8190 elements are saved in an extended format. These files
have a 16-byte header formatted as follows:

Offset Description

0-1 EEDD hex, identification flag
2-3 type of file, 0086 hex for real matrices, 8086 hex for complex matrices
4-7 rows, unsigned 4-byte integer

8-11 columns, unsigned 4-byte integer
12-15 size of file minus 16-byte header, unsigned 4-byte integer

The size of the body of an extended matrix file is 8*rows* cols (not rounded up to a
paragraph boundary). Aside from this, the body is the same as the small matrix v89
file.

Small String v89 (Obsolete)

String files are created with save. String files with up to 65519 characters have a 16-
byte header formatted as follows:

Offset Description

16-13

GAUSSUser Guide

0-1 DFDF hex, identification flag
2-3 1, unsigned 2-byte integer

Offset Description

4-5 length of string plus null byte, unsigned 2-byte integer

6-7 size of file minus 16-byte header, unsigned 2-byte integer

8-9 001D hex, type of file

10-15 reserved, dl 0's
The body of the file starts at offset 16. It consists of the string terminated with a null
byte. The size of thefile is the 16-byte header plus the length of the string and null
byte rounded up to the next 16-byte paragraph boundary.

Extended String v89 (Obsolete)

Strings with more than 65519 characters are saved in an extended format. These files
have a 16-byte header formatted as follows:

Offset Description

0-1 EEDF hex, identification flag

2-3 001D hex, type of file

4-7 1, unsigned 4-byte integer

8-11 length of string plus null byte, unsigned 4-byte integer
12-15 size of file minus 16-byte header, unsigned 4-byte integer

The body of thefile starts at offset 16. It consists of the string terminated with a null
byte. The size of thefile is the 16-byte header plus the length of the string and null
byte rounded up to the next 8-byte boundary.

Small Data Set v89 (Obsolete)

All data sets are created with cr eat e. v89 data sets consist of two files; one (. dht)
contains the header information; the second (. dat) containsthe binary data. The data
will be one of three types:

8-byte |EEE floating point
4-byte | EEE floating point

16-14

Filel/O

2-byte signed binary integer, twos complement
Numbers are stored row by row.

The. dht fileisused in conjunction with the . dat file asadescriptor fileand asa
place to store names for the columnsin the . dat file. Data sets with up to 8175
columnshave a. dht file formatted as follows:

Offset Description

0-1 DADA hex, identification flag

2-5 reserved, dl 0's

6-7 columns, unsigned 2-byte integer

8-9 row sizein bytes, unsigned 2-byte integer

10-11 header sizein bytes, unsigned 2-byte integer

12-13 datatypein. dat file (24 8), unsigned 2-byte integer
14-17 reserved, dl O's

18-21 reserved, dl O's

22-23 control flags, unsigned 2-byte integer

24-127 reserved, dl O's

Column names begin at offset 128 and are stored 8 bytes each in ASCI| format.
Names with less than 8 characters are padded on the right with bytes of 0.

The number of rowsinthe. dat fileiscalculated in GAUSS using the file size,
columns, and data type. This means that users can modify the . dat file by adding or
deleting rows with other software without updating the header information.

Names for the columns should be lowercase for character data, to be able to
distinguish them from numeric datawith var t ype.

GAUSS currently examines only the 4's bit of the control flags. This bit is set to O for
real data sets, 1 for complex data sets. All other bits are O.

Data sets are always stored arow at atime. A real data set with 2 rows and 3 columns
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed el ement:

[1,1] [1,2] [1,3]
[2,1] [2,2] [2,3]

16-15

GAUSSUser Guide

The rows of a complex data set are stored with the real and imaginary parts
interleaved, element by element. A 2x3 complex data set, then, will be stored on disk
in the following way, from the lowest addressed element to the highest addressed
element:

[1,1]r [1,1]0 [1,2]r [1,2]i [1,3]r [1,3]i
[2,1]r [2,1]i [2,2]r [2, 2]i [2 3]r [2, 3]i

Extended Data Set v89 (Obsolete)

Data sets with more than 8175 columns are saved in an extended format. These files
havea. dht descriptor file formatted as follows:

Offset Description

0-1 EEDA hex, identification flag
2-3 datatypein . dat file (2 4 8), unsigned 2-byte integer
4-7 reserved, al 0's

8-11 columns, unsigned 4-byte integer

12-15 row sizein bytes, unsigned 4-byte integer
16-19 header sizein bytes, unsigned 4-byte integer
20-23 reserved, dl 0's

24-27 reserved, dl O's

28-29 controal flags, unsigned 2-byte integer
30-127 reserved, dl O's

Aside from the differences in the descriptor file and the number of columns allowed in
the data file, extended data sets conform to the v89 data set description specified
above.

Matrix v92 (Obsolete)

Offset Description

0-3 aways0
4-7 aways OXEECDCDCD
811 reserved

16-16

Filel/O

Offset Description
12-15 reserved
16-19 reserved
20-23 0 - real matrix, 1 - complex matrix
24-27 number of dimensions
0 - scalar
1- row vector
2 - column vector, matrix
28-31 header size, 128 + dimensions * 4, padded to 8-byte boundary
32-127 reserved

If the datais a scaar, the datawill directly follow the header.

If the datais arow vector, an unsigned integer equaling the number of columnsin the
vector will precede the data, along with 4 padding bytes.

If the datais a column vector or amatrix, there will be two unsigned integers
preceding the data. The first will represent the number of rows in the matrix and the
second will represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in
double precision (8 bytes per element, 16 if complex). For complex matrices, all of the
real parts are stored first, followed by all theimaginary parts.

String v92 (Obsolete)

Offset Description

0-3 awaysO

4-7 aways OXxEECFCFCF

8-11 reserved

12-15 reserved

16-19 reserved

20-23 sizeof string in units of 8 bytes

24-27 length of string plus null terminator in bytes
28-127 reserved

16-17

GAUSSUser Guide

Thesize of the dataareais awaysdivisible by 8, and is padded with nullsif the length
of the string is not evenly divisible by 8. If the length of the string is evenly divisible
by 8, the data area will be the length of the string plus 8. The data area follows
immediately after the 128-byte header.

Data Set v92 (Obsolete)

Offset Description

0-3 aways0

4-7 aways OXEECACACA

8-11 reserved

12-15 reserved

16-19 reserved

20-23 rowsin data set

24-27 columnsin data set

28-31 0 - real data set, 1 - complex data set
32-35 typeof datain data set, 2, 4, or 8
36-39 header sizein bytesis 128 + columns* 9
40-127 reserved

The variable names begin at offset 128 and are stored 8 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 8 characters are
padded on the right with bytes of zero.

Thevariabletype flagsimmediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

The contents of the data set follow the header and start on an 8-byte boundary. Datais
either 2-byte signed integer, 4-byte single precision floating point, or 8-byte double
precision floating point.

16-18

Filel/O

Matrix v96
Offset Description
0-3 aways OxFFFFFFFF
4-7 aways0
8-11 aways OxXFFFFFFFF
12-15 adwaysO0
16-19 aways OxFFFFFFFF
20-23 OXFFFFFFFF for forward byte order, O for backward byte order
24-27 OxFFFFFFFF for forward bit order, O for backward bit order
28-31 always OXABCDEF01
32-35 currently 1
36-39 reserved
40-43 floating point type, 1 for IEEE 754
44-47 1008 (double precision data)
48-51 8, thesizein bytes of adouble matrix
52-55 0- real matrix, 1 - complex matrix
56-59 1-imaginary part of matrix followsreal part (standard GAUSS style)
1 - imaginary part of each element immediately follows real part
(FORTRAN style)
60-63 number of dimensions
0 - scalar
1 - row vector
2 - column vector or matrix
64-67 1-row major ordering of elements, 2 - column major
68-71 awaysO
72-75 header size, 128 + dimensions * 4, padded to 8-byte boundary
76-127 reserved

If the datais a scaar, the datawill directly follow the header.

16-19

GAUSSUser Guide

If the datais arow vector, an unsigned integer equaling the number of columnsin the

vector will precede the data, along with 4 padding bytes.

If the datais a column vector or amatrix, there will be two unsigned integers

preceding the data. The first will represent the number of rows in the matrix and the

second will represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in

double precision (8 bytes per element, 16 if complex). For complex matrices, all of the

real parts are stored first, followed by all theimaginary parts.

Data Set v96

Offset Description

0-3 aways OxFFFFFFFF

4-7 aways0

8-11 aways OxFFFFFFFF

12-15 dwaysO0

16-19 aways OxFFFFFFFF

20-23 OXFFFFFFFF for forward byte order, O for backward byte order

24-27 OxFFFFFFFF for forward bit order, O for backward bit order

28-31 OXABCDEF02

32-35 version, currently 1

36-39 reserved

40-43 floating point type, 1 for IEEE 754

44-47 12 - signed 2-byte integer
1004 - single precision floating point
1008 - double precision float

48-51 2,4, or 8, the size of an element in bytes

52-55 0- real matrix, 1 - complex matrix

56-59 1-imaginary part of matrix followsreal part (standard GAUSS style)
2 - imaginary part of each element immediately followsreal part
(FORTRAN style)

60-63 aways?2

16-20

Filel/O

Offset Description

64-67 1-row major ordering of elements, 2 - column major

68-71 awaysO

72-75 header size, 128 + columns * 33, padded to 8-byte boundary
76-79 reserved

80-83 rowsin data set

84-87 columnsin data set

88-127 reserved

The variable names begin at offset 128 and are stored 32 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 32 characters are
padded on the right with bytes of zero.

Thevariabletype flagsimmediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

Contents of the data set follow the header and start on an 8-byte boundary. Datais
either 2-byte signed integer, 4-byte single precision floating point, or 8-byte double
precision floating point.

16-21

Foreign Language 1 7
Interface

The Foreign Language Interface (FLI) allows users to create functions written in C,
FORTRAN, or other languages, and call them from a GAUSS program. The functions
are placed in dynamic libraries (DLLs, also known as shared libraries or shared
objects) and linked in at run-time as needed. The FLI functions are:

dlibrary Link and unlink dynamic libraries at run-time.

dlicall Call functions located in dynamic libraries.

GAUSS recognizes a default dynamic library directory, a directory where it will look
for your dynamic-link libraries when you call dlibrary. You can specify the default
directory ingauss. cf g by setting dlib_path. Asit is shipped, gauss. cf g
specifies$(GAUSSDI R) / dl i b asthe default directory.

Creating Dynamic Libraries

Assume you want to build adynamic library called myf uncs. dl | , containing the
functions found in two sourcefiles, nyf uncl. ¢ and nyf unc?2. c. Thefollowing
sections show the compile and link commands you would use. The compiler
command isfirst, followed by the linker command, followed by remarks regarding
that platform.

171

GAUSSUser Guide

For explanations of the various flags used, see the documentation for your compiler
and linker. One flag is common to both platforms. The —c compiler flag means
“compile only, don't link.” Virtualy al compilerswill perform the link phase
automatically unless you tell them not to. When building a dynamic library, we want
to compile the source codefilesto object (. obj) files, then link the object filesin a
separate phase into a dynamic library.

$(CCOPTS) indicates any optional compilation flags you might add.
cl -c $(CCOPTS) -DWN32 -D WN32 -D MM -¢c -WB -
Diry=__try \
- Dexcept=__except -D eave=__|eave -
Dfinally=_finally \
- DCRTAPI 1=_cdecl -DCRTAPI 2= cdecl -D X86_ =1 -DSTRI CT
-LD \
-Zpl myfuncl.c myfunc2.c
link -DLL -def: ntgauss. def -out:nyfuncs.dl | myfuncl. obj
\
myfunc2. obj fpl0.obj libcm.lib oldnanes.lib
kernel 32.1ib \
advapi 32.1ib user32.1ib gdi32.1ib condlg32.1ib
wi nspool . lib
These commands are written for the Microsoft Visual C/C++ compiler, ver. 2.0.

The Visual C/C++ linker alows you to specify amodule definition file, which isatext
file that describes the dynamic library to be created. In this example, the module
definition fileismyf uncs. def . It includes information on how the library isto be
initialized and terminated, how to handle its data segment, etc. It also needsto list the
symbols that will be exported, i.e., made callable by other processes, from the
dynamic library. Assume that myf uncl. ¢ and myf unc?2. ¢ contain the FLI
functionsf uncl1(),func2(),andfunc3(), and astatic funcitonf unc4() that
is called by the others, but never directly from GAUSS. Then nyf uncs. def would
look like this:

17-2

Foreign Language Interface

LI BRARY mnyfuncs
EXPORTS

funcl

func2

func3

Asyou can see, creating dynamic libraries from the command line can be quite an
arcane process. For thisreason, we recommend that you create dynamic libraries from
inside the Visual C/C++ workbench environment, rather than from the command line.

Writing FLI Functions
Your FLI functions should be written to the following specifications:
1. Take 0 or more pointers to doubles as arguments.

This does not mean you cannot pass stringsto an FLI function. Just recast
the double pointer to achar pointer inside the function.

2. Takethose arguments either in alist or avector.
3. Return an integer.
In C syntax, then, your functions would take one of the following forms:

1. int func(void);

2. int func(double*argl[[,double *2, etc.) ;

3. int func(double *arg[]) ;

Functions can be written to take alist of up to 100 arguments, or avector (in C terms,
al-dimensional array) of up to 1000 arguments. This does not affect how the function
iscalled from GAUSS,; the dlicall statement will always appear to pass the arguments
inalist. That is, the dllcall statement will always look as follows:

dlicall func(ab,c,d[,e...1]) ;

For details on calling your function, passing argumentsto it, getting data back, and
what the return value means, see dllcall in the GAUSS Language Reference.

17-3

Data Exchange

Data Exchange procedures are used to move data between GAUSS and other software
tools. Two procedures export GAUSS matrices and data sets to formats that can be
read by avariety of spreadsheets and databases. Two more procedures import data
files from these formats into GAUSS matrices and data sets.

Formats Supported

The table below lists the spreadsheet and database formats supported, and their usual
file extensions. The default file type is determined from the file extension. This
default can be overwritten so that other file extensions can be used. For more
information see “ Globa Variables,” page 18-3.

File Extension

File Type
Export Import
Lotusvl-v5 . wWks .WKs . wk1l-. wk5
Excel v2.1-v7.0 .xl's .xl's
Quatro v1-v6 .wgl .wgql .wg2 . wbl

Symphony v1.0-1.1 wr k wrk

18-1

GAUSSUser Guide

File Extension

File Type
Export Import
dBase || .db2 . db2
dBase I11/1V . dbf . dbf
Paradox, FoxPro, Clipper .db .db
ASCII — character delimited . csv . txt .asc .CSV .txt .asc
ASCII —formatted . prn .prn
GAUSS data set . dat . dat

The newer releases of spreadsheets and databases can read their older formats.
Specifically, the procedures will read datain all versions listed and will write data out
in the most compatible, or earliest, format. For example, the Lotus driver will read all
versions up to version 5 and will write data out to a generic version 1.0 . wks file.

You can import and export ASCI| files.

If you have a problem importing data, saveit in an earlier spreadsheet or database
format. The same suffix does not necessarily mean the same data format.

Importing sheet 0 or sheet 1 will import the first sheet of a spreadsheet. (Most multi-
sheet spreadsheets call this sheet 1.)

On export, elements that are missing values will be exported to spreadsheets as blank
cells, and to ASCII filesasthe value _dxm ss. On import, spreadsheet cells that are
#ERR or #N/A will be imported as GAUSS missing values. Elements from any format
that have the value _dxm ss will be imported as GAUSS missing values.

Data Exchange Procedures

These four procedures are used for exchanging data with databases and spreadshests:

export Exports a GAUSS matrix to a specified file format.
exportf Exports a GAUSS data set to a specified file format.
import Imports a spreadsheet or database file to a GAUSS matrix.
importf Imports a spreadsheet or database file to a GAUSS data set.

For details, see the GAUSS Language Reference.

18-2

Data Exchange

Global Variables

The following global variables can be used to modify the operation of the Data

Exchange procedures:

_dxftype Overrides the file extension to define the type of file to import

(string) or export. For example, after setting _dxftype = "xl s",
files exported or imported will be Excel format, independent of
the actual file extension. Use _dxftype = “" (empty string)
to return to default operation (file extension defining file type).

_dxtype Scalar or Kx1 vector of 1'sand 0's defining the data types of

(matrix) columns. 1's indicate numeric columns, 0's indicate character
columns. A scalar can be used if al columns are of the same
type. Default is scalar 1 (all numeric).

_dxwi dth Scalar or Kx1 vector of integers giving the width of spreadsheet

(matrix) columns in characters. A scalar can be used if all columns have
the same width. Default is12. (_dxwi dt h does not always
control the column width correctly when exporting to an Excel
(. xI s) datasheet or databook. Adjust this parameter within
Excel after loading thefile.)

_dxprcn Scalar or Kx1 vector defining the number of digits of precision

(matrix) in the columns of spreadsheets. A scalar can be used if all
columns areto havethe same precision. Defaultis4. (_dxpr cn
does not always control the number of digits after the decimal
correctly when exporting to an Excel (. x| s) datasheet or
databook. Adjust this parameter within Excel after loading the
file.)

_dxt xdl i m ASCII value of character that delimitsfieldsin ASCII files

(scalar) (tab = 9, comma = 44, space = 32). Default is space (32).

_dxaschdr Scaar (0 or 1) determining if column headers are written to/
from ASCII files. If _dxaschdr = 1, headersarewritten. If
_dxaschdr = 0, noheaders are written. Default is 0.

_dxwkshdr Scalar (0 or 1) determining if column headers are written to/
from spreadshest files. If _dxwkshdr = 1, headersare
written. If _dxwkshdr = 0, no headersare written. Default
isO.

_dxm ss Scalar that defines the missing value representation. Default is

the normal GAUSS representation (the indefinite NaN).

18-3

GAUSSUser Guide

_dxprint Scalar (0 or 1) determining if progress messages are to be
printed to the window. _dxpri nt = 1 prints messages.
_dxprint = 0 suppressesthe print. Default is 1.

18-4

Data Transformations 1 9

GAUSS allows expressions that directly reference variables (columns) of a data set.
Thisis done within the context of a dataloop:

datal oop infile outfile;
drop wagefac wgl ec shordelt foobly;
csed = In(sqgrt(csed));
select csed > 0.35 and married $== “y”;
make chfac = hcfac + wcf ac;
keep csed chfac stid recsum voom

endat a;

GAUSS translates the data loop into a procedure that performs the required
operations, and then calls the procedure automatically at the location (in your
program) of the data loop. It does this by translating your main program fileinto a
temporary file and then executing the temporary file.

A dataloop may be placed only in the main program file. Dataloopsin files that are
#i ncl ude’d or autoloaded are not recognized.

19-1

GAUSSUser Guide

Using Data Loop Statements

A dataloop beginswith adat al oop statement and endswith an endat a statement.
Inside a dataloop, the following statements are supported:

code Create variable based on a set of logical expressions.

del ete Delete rows (observations) based on alogical expression.
dr op Specify variables NOT to be written to data set.

extern Allows access to matrices and strings in memory.

keep Specify variables to be written to output data set.

| ag Lag variables a number of periods.

listw se Controls deletion of missing values.

make Create new variable.

outtyp Specify output file precision.

recode Change variable based on a set of logical expressions.
sel ect Select rows (observations) based on alogical expression.
vect or Create new variable from a scalar returning expression.

In any expression inside a data loop, al text symbols not immediately followed by a
left parenthesis ‘(' are assumed to be data set variable (column) names. Text symbols
followed by aleft parenthesis are assumed to be procedure names. Any symbol listed
inan ext er n statement is assumed to be a matrix or string already in memory.

Using Other Statements

All program statementsin the main file and not inside a data loop are passed through
to the temporary file without modification. Program statements within a dataloop that
are preceded by a‘#’ are passed through to the temporary file without modification.
The user familiar with the code generated in the temporary file can use this to do out-
of-the-ordinary operations inside the data loop.

Debugging Data Loops

The translator that processes data loops can be turned on and off. When the translator
is on, there are three distinct phases in running a program:

Tranglation Tranglation of main program file to temporary file.
Compilation Compilation of temporary file.
Execution Execution of compiled code.

19-2

Data Transformations

Translation Phase

In the tranglation phase, the main program fileistranslated into atemporary file. Each
dataloop is tranglated into a procedure, and acall to this procedure is placed in the
temporary file at the same location as the original dataloop. The dataloop itself is
commented out in the temporary file. All dataloop procedures are placed at the end of
the temporary file.

Depending on the status of line number tracking, error messages encountered in this
phase will be printed with the file name and line numbers corresponding to the main
file.

Compilation Phase

In the compilation phase, the temporary file is compiled. Depending on the status of
line number tracking, error messages encountered in this phase will be printed with
the file name and line numbers corresponding to both the main file and the temporary
file.

Execution Phase

In the execution phase, the compiled program is executed. Depending on the status of
line number tracking, error messages will include line number references from both
the main file and the temporary file.

Reserved Variables
The following local variables are created by the translator and used in the produced

code:
X_CV X_iptr x_ncol x_pl ag
x_drop x_keep x_nlag X_ptrim
x_fpin x_lval x_nrow X_shft

x_fpout x_lvar x_ntrim X_tnane
X_i X_n X_out X_vnane
X_in X_hame x_outtyp X_X

These variables are reserved, and should not be used within adat al oop . ..
endat a section.

19-3

Publication Quality 2 O
Graphics

GAUSS Publication Quality Graphics (PQG) is a set of routines built on the graphics
functions in GraphiC by Scientific Endeavors Corporation.

The main graphics routines include xy, xyz, surface, polar, and log plots, aswell as
histograms, bar, and box graphs. Users can enhance their graphs by adding legends,
changing fonts, and adding extra lines, arrows, symbols, and messages.

The user can create asingle full size graph, inset asmaller graph into alarger one, tile
awindow with several equally sized graphs, or place several overlapping graphsin the
window. Graphic panel size and location are all completely under the user’s control.

General Design

GAUSS PQG consists of a set of main graphing procedures and several additional
procedures and global variables for customizing the output.

All of the actual output to the window happens during the call to these main routines:

bar Bar graphs.

box Box plots.

cont our Contour plots.

draw Draws graphs using only global variables.
hi st Histogram.

20-1

GAUSSUser Guide

hi stp Percentage histogram.

hi st f Histogram from a vector of frequencies.
| ogl og L og scaling on both axes.

| ogx Log scaling on X axis.

| ogy LogscalingonY axis.

pol ar Polar plots.

surface 3-D surface with hidden line removal.
Xy Cartesian graph.

Xyz 3-D Cartesian graph.

Using Publication Quality Graphics

Getting Started

There are four basic partsto a graphics program. These elements should be in any
program that uses graphics routines. The four parts are header, data setup, graphics
format setup, and graphics call.

Header

In order to use the graphics procedures, the pgr aph library must be active. Thisis
doneinthel i br ar y statement at the top of your program or command file. The next
linein your program will typically be a command to reset the graphics global
variablesto the default state. For example:

l'ibrary nylib, pgraph;
gr aphset ;

Data Setup

The data to be graphed must be in matrices. For example:
X = sega(l,1,50);

y

sin(x);

Graphics Format Setup

Most of the graphics elements contain defaults that allow the user to generate a plot
without modification. These defaults, however, may be overridden by the user through
the use of global variables and graphics procedures. Some of the el ements custom
configurable by the user are axes numbering, labeling, cropping, scaling, line and
symbol sizes, and types, legends, and colors.

20-2

Publication Quality Graphics

Calling Graphics Routines

The graphics routines take as input the user data and global variables that have
previously been set. It isin these routines where the graphicsfileis created and
displayed.

Following are three PQG examples. Thefirst two programs are different versions of
the same graph. The variables that begin with _p are the global control variables used
by the graphics routines. (For a detailed description of these variables, see “ Global
Control Variables,” page 20-13.)

Example 1 Theroutine being called hereisasimple XY plot. The entire window
will be used. Four sets of datawill be plotted with the line and symbol attributes
automatically selected. This graph will include alegend, title, and a time/date stamp
(time stamp is on by default):

i brary pgraph; /* activate PGRAPH library */
gr aphset ; /* reset global variables */
X = sega(.1,.1,100); /* generate data */
y = sin(x);
y =y ~y*.8 ~y*.6 ~y*.4; /* 4 curves plotted */
/* against x */
_plegctl = 1; /* legend on */
title(“Exanple xy Graph”); [/* Main title */
Xy(X,y); /* Call to main routine */

Example 2 Hereisthe same graph with more of the graphics format controlled by
the user. Thefirst two data sets will be plotted using symbols at graph points only
(observed data); the datain the second two setswill be connected with lines (predicted
results):

l'ibrary pgraph; [* activate PGRAPH |ibrary */
gr aphset; /* reset global variables */
X = sega(.1,.1,100); /* generate data */
y = sin(x);
y =y ~y*8 ~y*.6 ~y*.4; [/* 4 curves plotted */
/* against x */
_pdate = “"; /* date is not printed */

20-3

GAUSSUser Guide

_pletrl ={ 1, 1, 0, 0 };
_pltype = { 1, 2, 6, 6 };
_pstype = { 1, 2, 0, 0 },;
_plegetl={ 2, 3, 1.7, 4.5 };

_plegstr= “Sine wave 1.\0"\
“Sine wave .8\0"\

“Sine wave .6\ 0"\

“Sine wave .4";

yl abel (“ Anpl i tude”);
x|l abel (“X Axis");

title(“Exanple xy Gaph”);
Xy(x,y);

l'ibrary pgraph;

e
e
*
'+

/* 2 curves w synbol s, */
/* 2 without */

/* dashed, dotted, */

/* solid lines */

/* synbol types */

[* circles,squares */

/* |l egend size and */

/* locations */

/* 4 lines | egend text */

Y axis | abel */
X axis | abel */
main title */

call to main routine */

Example 3 In thisexample, two graphics graphic panels are drawn. Thefirstisa
full-sized surface representation, and the second is a half-sized inset containing a
contour of the same data located in the lower |eft corner of the window:

/* activate pgraph library */

/* Generate data for surface and contour plots */

X

seqga(-10,0.1, 71);

<
I

cos(5*sin(x) - vy);

sega(-10,0.1,71)'; /*

note x is a row vector */
/* note y is a colum vector */

[* z is a 71x71 matrix */

20-4

Publication Quality Graphics

begw nd; /* initialize graphics */
/* graphic panels */

makewi nd(9, 6. 855, 0, 0, 0); /* first graphic panel */
[*full size */

makewi nd(9/2,6.855/2,1,1,0);/* second graphic panel */

/* inset to first */

setwind(1); /* activate first graphic */
[* panel */
gr aphset ; /* reset global variables */
_pzclr = { 1, 2, 3, 4}; /* set Z level colors */

title(“cos(5*sin(x) - y)");/* set main title */

x|l abel (“X Axis"); /* set X axis |abel */

yl abel (Y Axis"); /* set Y axis |abel */

scal e3d(m ss(0,0),ni ss(0,0),-5|5);/* scale Z axis */

surface(x,y, z); /* call surface routine */
next wi nd; /* activate second graphic */

[* panel */
gr aphset ; /* reset global variables */
_pzclr = { 1, 2, 3, 4 };/* set Z level colors */
_pbox = 15; /* white border */

contour(X,Yy, z); /* call contour routine */

endwi nd; /* Display graphic panels */

While the structure has changed somewhat, the four basic elements of the graphics
program are all here. The additional routinesbegwi nd, endwi nd, makew nd,
next wi nd, and set wi nd areall used to control the graphics graphic panels.

20-5

GAUSSUser Guide

AsExample 3illustrates, the code between graphic panel functions (that is, set wi nd
or next wi nd) may include assignmentsto global variables, acall to gr aphset , or
may set up new data to be passed to the main graphics routines.

You are encouraged to run the example programs supplied with GAUSS. Analyzing
these programs is perhaps the best way to learn how to use the PQG system. The
example programs are located on the exanpl es subdirectory.

Graphics Coordinate System

PQG uses a4190x3120 pixel grid on a 9.0x6.855-inch printable area. There are three
units of measure supported with most of the graphics global elements:

Inch Coordinates

Inch coordinates are based on the dimensions of the full-size 9.0x6.855-inch output
page. Theoriginis (0,0) at the lower left corner of the page. If the picture is rotated,
the origin is at the upper left. (see* Inch Units in Graphics Graphic Panels,” page 20-
9)

Plot Coordinates

Plot coordinates refer to the coordinate system of the graph in the units of the user’s X,
Y, and Z axes.

Pixel Coordinates

Pixel coordinatesrefer to the 4096x3120 pixel coordinates of the full-size output page.
Theoriginis (0,0) at the lower |eft corner of the page. If the pictureisrotated, the
originisat the upper left.

Graphics Graphic Panels

Multiple graphic panels for graphics are supported. These graphic panels allow the
user to display multiple graphs on one window or page.

A graphic panel isany rectangular subsection of the window or page. Graphic panels
may be any size and position on the window and may be tiled or overlapping,
transparent or nontransparent.

Tiled Graphic Panels

Tiled graphic panels do not overlap. The window can easily be divided into any
number of tiled graphic panels with the wi ndow command. wi ndow takes three
parameters. number of rows, number of columns, and graphic panel attribute
(1=transparent, O=nontransparent).

20-6

Publication Quality Graphics

This example will divide the window into six equally sized graphic panels. There will
be two rows of three graphic panels — three graphic panelsin the upper half of the
window and threein the lower half. The attribute value of 0 is arbitrary sincethere are
no other graphic panels beneath them:

wi ndow(nrows, ncol s, attr);
wi ndow(2, 3, 0);

Overlapping Graphic Panels

Overlapping graphic panels arelaid on top of one another asthey are created, much as
if you were using the cut and paste method to place severa graphs together on one
page. An overlapping graphic panel is created with the makewi nd command.

In this example, makewi nd will create an overlapping graphic panel 4 inches
horizontally by 2.5 inches vertically, positioned 1 inch from the left edge of the page
and 1.5 inches from the bottom of the page. It will be nontransparent:

makewi nd(hsi ze, vsi ze, hpos, vpos, attr);

wi ndow(2, 3, 0);
makewi nd(4,2.5,1,1.5,0);

Nontransparent Graphic Panels

A nontransparent graphic panel is one that is blanked before graphicsinformation is
written to it. Therefore, information in any previoudly drawn graphic panelsthat lie
under it will not be visible.

Transparent Graphic Panels

A transparent graphic panel is onethat is not blanked, allowing the graphic panel
beneath it to “ show through.” Lines, symbols, arrows, error bars, and other graphics
objects may extend from one graphic panel to the next by using transparent graphic
panels. First, create the desired graphic panel configuration. Then create a full-
window, transparent graphic panel using the makew nd or wi ndow command. Set
the appropriate global variables to position the desired object on the transparent
graphic panel. Use the dr aw procedure to draw it. This graphic panel will act asa
transparent “overlay” on top of the other graphic panels. Transparent graphic panels
can be used to add text or to superimpose one graphic panel on top of another.

20-7

GAUSSUser Guide

Using Graphic Panel Functions

The following is a summary of the graphic panel functions:

begwi nd
endwi nd
wi hdow
makew nd
setw nd
next wi nd
get wi nd
savew nd
| oadwi nd

Graphic panel initialization procedure.

End graphic panel manipulations, display graphs.
Partition window into tiled graphic panels.

Create graphic panel with specified size and position.
Set to specified graphic panel number.

Set to next available graphic panel number.

Get current graphic panel number.

Save graphic panel configuration to afile.

Load graphic panel configuration from afile.

This example creates four tiled graphic panels and one graphic panel that overlaps the

other four:

l'ibrary pgraph;

gr aphset;

begwi nd;

wi ndow(2,2,0);/* Create four tiled graphic panels */

Xsi ze

ysi ze

mak ewi

x
1

<
1

[* (2 rows, 2 colums) */

9/2; [* Create graphic panel that overlaps */
/*the tiled graphic panels */
= 6. 855/ 2;

nd(xsi ze, ysi ze, xsi zel 2, ysi zel 2, 0) ;

sega(l, 1, 1000); /* Create X data */
(sin(x) + 1) * 10.; /* Create Y data */

20-8

Publication Quality Graphics

setw nd(1); /* Graph #1, upper left corner */

xy(X,y);

next w nd; /* Graph #2, upper right corner */
l ogx(X,Y);

next w nd; /[* Graph #3, lower left corner */
logy(x,y);

next w nd; /* Graph #4, |ower right corner */
| ogl og(x,Yy);

next w nd; /* Graph #5, center, overlayed */
bar (x,y);

endwi nd; /* End graphi c panel processing, */

/* display graph */

Inch Units in Graphics Graphic Panels

Some global variables allow coordinates to be input in inches. If acoordinate valueis
ininches and is being used in a graphic panel, that value will be scaled to wi ndow

i nches and positioned relative to the lower left corner of the graphic panel. A
graphic panel inch isatrue inch in size only if the graphic panel is scaled to the full
window; otherwise, X coordinateswill be scaled relativetothehor i zont al graphic
panel size and Y coordinates will be scaled relativeto theverti cal graphic panel
size.

Saving Graphic Panel Configurations

Thefunctionssavewi nd and | oadwi nd allow the user to save graphic panel
configurations. Once graphic panels are created (using nakewi nd and wi ndow),
savew nd may be called. Thiswill saveto disk the global variables containing
information about the current graphic panel configuration. To load this configuration
again, cal | oadwi nd. (Seel oadwi nd inthe GAUSS Language Reference.)

Graphics Text Elements

Graphics text elements, such as titles, messages, axes labels, axes numbering, and
legends, can be modified and enhanced by changing fonts and by adding
superscripting, subscripting, and special mathematical symbols.

20-9

GAUSSUser Guide

To make these modifications and enhancements, the user can embed “escape codes’ in
the text stringsthat are passedtoti t | e, xI abel ,yl abel , andascl abel or
assignedto _pnsgstr and _pl egstr.

The escape codes used for graphics text are:

\ 000 String termination character (null byte).

[Enter superscript mode, leave subscript mode.

] Enter subscript mode, leave superscript mode.

@ Interpret next character asliteral.

\ 20n Select font number n (see“ Selecting Fonts,” following).

The escape code \ L can be embedded into title strings to create a multiple linetitle:
title(“This is the first line\lthis is the second

[ine”);

A null byte\ 000 is used to separate stringsin _pl egstr and _pnsgstr:
_pnegstr = “First string\000Second string\000Third
string”;
or
_plegstr = “Curve 1\000Curve 2”;

Usethe[. .] to create the expression M(t) = E(etx):
_pnegstr = “Mt) = E(e[tx])";

Use the @to generate[and] inan X axislabel:
x|l abel (“Data used for x is: data@.,1 2 3@");

Selecting Fonts

Four fonts are supplied with the Publication Quality Graphics system. They are
Simplex, Complex, Simgrma, and Microb. (For the characters available in each font,
see Appendix A.)

Fonts are loaded by passing to the f ont s procedure a string containing the names of
all fontsto be loaded. For example, this statement will load all four fonts:

fonts(“sinplex conplex nicrob sinmrm”);

20-10

Publication Quality Graphics

Thef ont s command must be called before any of the fonts can be used in text
strings. A font can then be selected by embedding an escape code of the form “\ 20n”
in the string that is to be written in the new font. The nwill be 1, 2, 3, or 4, depending
on the order in which the fontswereloaded inf ont s.

If the fonts were loaded as in the previous example, the escape characters for each
would be:

\201 Sinpl ex
\202 Conpl ex
\203 Mcrob

\204 Singrma

The exampl e then for selecting afont for each string to be written would be:
title(“\201This is the title using Sinplex font”);
x|l abel (“\202This is the |l abel for X using Conpl ex

font”);
yl abel (“\203This is the |l abel for Y using Mcrob
font”);

Once afont is selected, all succeeding text will use that font until another font is
selected. If no fonts are selected by the user, a default font (Simplex) isloaded and
selected automatically for al text work.

Greek and Mathematical Symbols

The following examples illustrate the use of the Simgrma font; they assume that
Simgrmawas the fourth font loaded. (For the available Simgrma characters and their
numbers, see Appendix A.) The Simgrma characters are specified by either:

1. The character number, preceded by a“\”.
2. Theregular text character with the same number.

For example, to get an integral sign “@” in Simgrma, embed either a“\ 044" or a“,” in
the string that has been currently set to use Simgrma font.

To produce thetitle f(X) = sinz(nx),usethefollowingtitIesIring:
title(“\201f(x) = sin[2](\204p\201x)");

The*“p” (character 112) correspondsto 7t in Simgrma.

20-11

GAUSSUser Guide

To number the major X axistick marks with multiples of /4, the following could be
passed to ascl abel :

lab = “\2010 \204p\ 201/ 4 \204p\201/2 3\204p\201/4
\ 204p”;
ascl abel (1 ab, 0);
xtics(0,pi,pi/4,1);
xt i cs isused to make sure that magjor tick marks are placed in the appropriate places.

This example will number the X axistick marks with the labels 2, %, 1, u, and
w2
lab = “\204m 201[-2] \204m 201[-1] 1 \204m m 201[2]":

ascl abel (I ab, 0);

This example illustrates the use of severa of the specia Simgrmasymbols:
_pnegstr = “\2041\ 2011/ 2\ 204p

,\ 201e[-\ 204n{\ 2012] \ 201/ 2] d\ 204ni ;

This produces

AL /e_*‘z/zdu

Colors

0 Black 8 Dark Grey

1 Blue 9 Light Blue

2 Green 10 Light Green
3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta
6 Brown 14 Yellow

20-12

Publication Quality Graphics

7 Grey 15 White

Global Control Variables

The following global variables are used to control various graphics elements. Default
values are provided. Any or all of these variables can be set before calling one of the
main graphing routines. The default values can be modified by changing the
declarationsin pgr aph. dec and the statementsin the procedure gr aphset in
pgr aph. src.graphset can be caled whenever the user wants to reset these
variablesto their default values.

_pageshf

_pagesi z

_parrow

2x1 vector, the graph will be shifted to the right and up if thisisnot O.
If thisis 0, the graph will be centered on the output page. Default isO.

Note: Used internally. (For the same functionality, see axmar gi nin
the GAUSS Language Reference.) Thisis used by the graphics
graphic panel routines. The user must not set this when using the
graphic panel procedures.

2x1 vector, size of the graph in inches on the printer output.
Maximum sizeis 9.0 x 6.855 inches (unrotated) or 6.855 x 9.0 inches
(rotated). If thisis 0, the maximum size will be used. Default isO.

Note: Used internally. (For the same functionality, seeaxmar gi nin
the GAUSS Language Reference.) Thisis used by the graphics
graphic panel routines. The user must not set this when using the
graphic panel procedures.

Mx11 matrix, draws one arrow per row Mof the input matrix. If scalar
zero, no arrows will be drawn.

[M1] X starting point.

[M 2] y starting point.

[M 3] x ending point.

[M 4] y ending point.

[M 5] ratio of the length of the arrow head to half its width.
[M 6] size of arrow head in inches.

[M 7] type and location of arrow heads. This integer

number will be interpreted as a decimal expansion mn.
For example: if 10, thenm=1,n=0.

m type of arrow head:
0 solid
1 empty

20-13

GAUSSUser Guide

_parrow3

2 open

3 closed

n location of arrow head:

0 none

1 atthefina end

2 a both ends
[M 8] color of arrow, see“Colors,” page 20-12.
[M 9] coordinate units for location:

1 x,y starting and ending locationsin plot coordinates
2 X,y starting and ending locations in inches
3 X,y starting and ending locationsin pixels

[M 10] linetype:

dashed

dotted

short dashes

closely spaced dots

dots and dashes

solid

[M 11] controlsthickness of lines used to draw arrow. Thisvalue

may be zero or greater. A value of zero is
normal line width.

To create two single-headed arrows, located using inches, use
_parrow={ 1122 30.2 11 10 2 6 O,

342230.211 1026 01},

Mx12 matrix, draws one 3-D arrow per row of the input matrix. If
scalar zero, no arrows will be drawn.

=

o o1~ WDN

[M 1] X starting point in 3-D plot coordinates.

[M 2] y starting point in 3-D plot coordinates.

[M 3] Z starting point in 3-D plot coordinates.

[M 4] x ending point in 3-D plot coordinates.

[M 5] y ending point in 3-D plot coordinates.

[M 6] Z ending point in 3-D plot coordinates.

[M 7] ratio of the length of the arrow head to half its width.
[M 8] size of arrow head in inches.

20-14

Publication Quality Graphics

_paxes

[M 9] type and location of arrow heads. This integer
number will be interpreted as a decimal expansion mn.
For example: if 10, thenm=1,n=0.

m type of arrow head:

0

S5 W N P

0
1
2

solid
empty
open
closed
location of arrow head:
none
at thefinal end
at both ends

[M 10] color of arrow, see“Colors,” page 20-12.
[M11] linetype:

=

o Ok WD

dashed

dotted

short dashes
closely spaced dots
dots and dashes
solid

[M 12] controlsthickness of linesused to draw arrow. Thisvalue
may be zero or greater. A value of zerois
normal line width.

To create two single-headed arrows, located using plot coordinates,

use

parrow3d ={ 11122230.211 10 6 0,

34522230.211106 0};

scalar, 2x1, or 3x1 vector for independent control for each axis. The
first element controls the X axis, the second controlsthe Y axis, and
the third (if set) will control the Z axis. If 0, the axis will not be
drawn. Default is 1.

If thisisascalar, it will be expanded to that value.

20-15

GAUSSUser Guide

_paxht

_pbartyp

_pbarwi d

__pbox

_pboxct|

For example:
_paxes = { 1, 0}; [/* turn X axis on, */
/* Y axis off */
_paxes = 0; /[* turn all axes off */
_paxes = 1; /* turn all axes on */

scalar, size of axeslabelsin inches. If 0, adefault size will be
computed. Default isO.

global 1x2 or Kx2 matrix. Controls bar shading and colorsin bar
graphs and histograms.

Thefirst column controls the bar shading:

no shading

dots

vertical cross-hatch

diagonal lines with positive slope

diagonal lines with negative slope

diagonal cross-hatch

solid

The second column controls the bar color, see “Colors,” page 20-12.

global scalar, width of barsin bar graphs and histograms. The valid
rangeis 0-1. If thisis 0, the bars will be asingle pixel wide. If thisis
1, the barswill touch each other. The default is 0.5, so the barstake up
about half the space open to them.

scalar, draws a box (border) around the entire graph. Set to desired
color of box to be drawn. Use 0 if no box is desired. Default isO.

5x1 vector, controls box plot style, width, and color. Used by
procedure box only.

[1] box width between 0 and 1. If zero, the box plot isdrawn
astwo vertical lines representing the quartile ranges with

afilled circle representing the 50t percentile.

[2] box color, see“Colors,” page 20-12. If thisisset to 0, the
colors may be individually controlled using
global variable pcol or.
[3] min/max style for the box symbol. One of the following:
1 minimum and maximum taken from the actual limits
of the data. Elements 4 and 5 are ignored.

o 0o~ W NP O

20-16

Publication Quality Graphics

_pboxlim

_pcol or

_pcrop

2 datistica standard with the minimum and
maximum cal culated according to interquartile range

asfollows:

intgrange = 75" - 251

min = 25" 1.5intgrange
max = 75"+ 1.5intgrange

Elements 4 and 5 are ignored.

3 minimum and maximum percentiles taken from
elements 4 and 5.

[4] minimum percentile value (0-100) if _pboxct | [3] =
3.
[5] maximum percentile value (0-100) if

_pboxctI[3] =3.
5xM output matrix containing computed percentile results from
procedure box. M corresponds to each column of input y data.
[1, M minimum whisker limit accordingto _pboxct | [3] .
[2, M 25th percentile (bottom of box).
[3, M 50th percentile (median).
[4, M 75th percentile (top of box).
[5, M maximum whisker limit accordingto _pboxct| [3] .
scalar or Kx1 vector, colorsfor main curvesinxy, xyz, and | og
graphs. To use asingle color set for all curves, set thisto a scalar
color value. If O, use default colors. Default isO.
The default colors come from aglobal vector caled _pcsel . This
vector can be changed by editing pgr aph. dec to change the default
colors, see“Colors,” page 20-12. (_pcsel isnot documented
elsewhere.)
scalar or 1x5 vector, allows plot cropping for different graphic
elementsto be individually controlled. Valid values are O (disabl ed)
or 1 (enabled). If cropping is enabled, any graphical data sent outside
the axes areawill not be drawn. If thisisscalar, _pcr op isexpanded

to a 1x5 vector using the given value for al elements. All croppingis
enabled by default.

[1] crop main curves/symbols.
[2] crop linesgenerated using _pl i ne.
[3] crop arrows generated using _par r ow,

20-17

GAUSSUser Guide

_pcross

_pdate

_perrbar

[4] crop circledarcs generated using _pl i ne.
[5] crop symbols generated using _psym
This example will crop main curves, and lines and circles drawn by
_pline:
_pcrop={ 11010},
scalar. If 1, the axes will intersect at the (0,0) X-Y locationiif it is

visible. Default is 0, meaning the axes will be at the lowest end of the
X-Y coordinates.

date string. If this contains characters, the date will be appended and
printed.
The default is set as follows (the first character is afont selection
escape code):

_pdate = “\201GAUSS ”;

If thisis set to anull string, no date will be printed. (For more
information on using fonts within strings, see “ Graphics Text
Elements,” page 20-9.)

Mx9 matrix, draws one error bar per row of the input matrix. If scalar
0, no error barswill be drawn. Location values are in plot coordinates.

[M 1] x location.

[M 2] left end of error bar.
[M 3] right end of error bar.
[M 4] y location.
[M 5] bottom of error bar.
[M 6] top of error bar.
[M 7] line type:
1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dotsand dashes
6 solid
[M 8] color, see “Coalors,” page 20-12.
[M 9] linethickness. Thisvalue may be zero or greater. A value

of zero isnormal line width.

20-18

Publication Quality Graphics

_pfranme

_porid

_pletrl

To create one error bar using solid lines, use
_perrbar = { 102213620 };

2x1 vector, controls frame around axes area. On 3-D plots, thisisa
cube surrounding the 3-D workspace.

[1] 1 frameon.
0 frameoff.
[2] 1 tick markson frame.

0 notick marks.
The default is a frame with tick marks.
2x1 vector to control grid.

[1] grid through tick marks:
0 nogrid
1 dotted grid
2 finedotted grid
3 solidgrid
[2] grid subdivisions between major tick marks:

0 nosubdivisions
1 dotted lines at subdivisions
2 tick marksonly at subdivisions
The default is no grid and tick marks at subdivisions.

scalar or Kx1 vector to control whether lines and/or symbols will be
displayed for the main curves. This aso controls the frequency of
symbols on main curves. The rows (K) is equal to the number of
individual curvesto be plotted in the graph. Default isO.

0 draw line only.
>0 draw line and symbolsevery pl ct rl points.
<0 draw symbolsonly every pl ctrl points.
-1 all of the data points will be plotted with no

connecting lines.

This example draws aline for the first curve, draws aline and plots a
symbol every 10 data points for the second curve, and plots symbols
only every 5 data points for the third curve:

_pletrl ={ 0, 10, -5 };

20-19

GAUSSUser Guide

_plegctl

_plegstr

_plev

_pline

scalar or 1x4 vector, legend control variable.

If scalar 0, no legend is drawn (default). If nonzero scalar, create
legend in the default location in the lower right of the page.

If 1x4 vector, set as follows:
[1] legend position coordinate units:
1 coordinates arein plot coordinates
2 coordinates are in inches
3 coordinates arein pixels
[2] legend text font size. 1 < size< 9. Default is 5.
[3] x coordinate of lower left corner of legend box.
[4] y coordinate of lower left corner of legend box.
This example puts alegend in the lower right corner:
_plegctl = 1;
Thisexample creates asmaller legend and positionsit 2.5 inchesfrom
the left and 1 inch from the bottom:
_plegetl ={ 23 2.511},;
string, legend entry text. Text for multiple curvesis separated by a
null byte (“\000").
For example:
_plegstr = “Curve 1\000Curve 2\000Curve 3";
Mx1 vector, user-defined contour levelsfor cont our . Default isO.
(Seecont our inthe GAUSS Language Reference.)

Mx9 matrix, to draw lines, circles, or radii. Each row controls one
item to be drawn. If thisis a scalar zero, nothing will be drawn.
Default isO.

[M 1] item type and coordinate system:
1 linein plot coordinates
line in inch coordinates
linein pixel coordinates
circlein plot coordinates
circle in inch coordinates
radiusin plot coordinates
radius in inch coordinates

N o o~ 0N

20-20

Publication Quality Graphics

[M 2]

[M3-7]

line type:

[EnN

dotted

o OB~ WD

solid

dashed

short dashes
closely spaced dots
dots and dashes

coordinates and dimensions.
(1) lineinplot coordinates:

[M 3]
[M 4]
[M 3]
[M 6]
[M7]

X starting point.

y starting point.

x ending point.

y ending point.

0if thisis acontinuation of acurve, 1 if
this begins anew curve.

(2) lineininches:

[M 3]
[M 4]
[M 3]
[M 6]
[M7]

X starting point.

y starting point.

x ending point.

y ending point.

0if thisisacontinuation of acurve, 1 if
this begins anew curve.

(3) lineinpixel coordinates:

[M 3]
[M 4]
[M 3]
[M 6]
[M7]

X starting point.

y starting point.

x ending point.

y ending point.

0 if thisisacontinuation of acurve, 1 if
this begins anew curve.

(4) circlein plot coordinates:

[M 3]
[M 4]
[M 3]
[M 6]

X center of circle.

y center of circle.

radiusin x plot units.

starting point of arc in radians.

20-21

GAUSSUser Guide

[M 7] ending point of arcin radians.
(5) circleininches:

[M 3] xcenter of circle.

[M 4] vy center of circle.

[M 5] radius.

[M 6] starting point of arc in radians.

[M 7] ending point of arcin radians.
(6) radiusin plot coordinates:
[M 3] xcenter of circle.
[M 4] vy center of circle.

]

[M 5] beginning point of radiusin x plot units,
0 isthe center of thecircle.

[M 6] ending point of radius.
[M 7] anglein radians.
(7) radiusininches:
[M 3] x center of circle.
[M 4] vy center of circle.

[M 5] beginning point of radius, O isthe center
of thecircle

[M 6] ending point of radius.
[M 7] anglein radians.
[M 8] color, see “Colors,” page 20-12.

[M 9] controlslinethickness. Thisva ue may be zero or greater.
A value of zero is normal line width.

_pline3d Mx9 matrix. Allows extralinesto be added to an xyz or sur f ace
graph in 3-D plot coordinates.

[M 1] X starting point.

[M 2] y starting point.

[M 3] Z starting point.

[M 4] X ending point.

[M 5] y ending point.

[M 6] Z ending point.
]

color, see “Colors,” page 20-12.

20-22

Publication Quality Graphics

_pl ot shf

_plotsiz

_pltype

[M 8] line type:

dashed

dotted

short dashes

closely spaced dots

dots and dashes

solid

[M 9] line thickness, 0 = normal width.

[M 10] hiddenlineflag, 1 = obscured by surface, 0 = not
obscured.

2x1 vector, distance of plot from lower left corner of output pagein
inches.

[1] xdistance.
[2] vy distance.
If scalar 0, there will be no shift. Default is 0.

Note: Used internally. (For the same functionality, see axmar gi nin
the GAUSS Language Reference.) Thisis used by the graphics panel
routines. The user must not set this when using the graphic panel
procedures.

2x1 vector, size of the axes areain inches. If scalar 0, the maximum
size will be used.

Note: Used internaly. (For the same functionality, see axmar gi nin
the GAUSS Language Reference.) Thisis used by the graphics panel
routines. The user must not set this when using the graphic panel
procedures.

scalar or Kx1 vector, linetype for the main curves. If thisisanonzero
scalar, al lineswill bethistype. If scalar O, line types will be default
styles. Default is 0.

dashed

dotted

short dashes
closely spaced dots
dots and dashes
solid

[EnN

o 01 kA WDN

o Ok WN P

20-23

GAUSSUser Guide

_pl wi dth

_prnecol or

_pmsgct |

_pnegstr

The default line types come from a global vector called _pl sel .
This vector can be changed by editing pgr aph. dec to change the
default linetypes. (_pl sel isnot documented elsewhere.)

scalar or Kx1 vector, line thickness for main curves. This value may
be zero or greater. A value of zero isnormal (single pixel) line width.
Default isO.

9x1 vector, color values to use for plot, see “Colors,” page 20-12.

[1] axes.

[2] axes numbers.
[3] X axislabel.

[4] Y axislabel.

[5] Z axislabel.

[6] title.

[7] box.

[8] date.

[9] background.

If thisis scalar, it will be expanded to a 9x1 vector.

Lx7 matrix of control information for printing the strings contained in
_pnsgstr.

[L, 1] horizontal location of lower left corner of string.
[L, 2] vertical location of lower left corner of string.
[L, 3] character height in inches.

[L, 4] angle in degrees to print string. This may be -180 to 180
relative to the positive X axis.

[L, 5] location coordinate system:
1 location of string in plot coordinates
2 location of string in inches

[L, 6] color, see “Colors,” page 20-12.

[L, 7] font thickness, may be zero or greater. If 0, use
normal line width.

string, contains a set of messages to be printed on the plot. Each
message is separated from the next with anull byte (A 000). The
number of messages must correspond to the number of rowsin the
_pmsgct | control matrix. This can be created as:

_pnsgstr = “Message one.\000Message two.”;

20-24

Publication Quality Graphics

_pnotify

_pnum

__pnumrht
_protate
_pscreen

_psilent

_pstype

scalar, controls window output during the creation of the graph.
Default is 1.

0 no activity to the window while writing . t kf file.
1 display progress asfontsare loaded and . t kf fileis
being generated.

scalar, 2x1 or 3x1 vector for independent control for axes numbering.
Thefirst element controlsthe X axis numbers, the second controlsthe
Y axis numbers, and the third (if set) controls the Z axis numbers.
Defaultis 1.

If thisvalueisscalar, it will be expanded to a vector.

0 no axes numbers displayed.

1 axes numbers displayed, vertically oriented on Y axis.

2 axes numbers displayed, horizontally oriented on Y axis.
For example:

_pnum=4{ 0, 2 };/* no X axi s nunbers, */
/* horizontal on Y axis */
scalar, size of axes numbersin inches. If O (default), asize of 0.13

inch will be used.

scalar. If 0, norotation, if 1, plot will be rotated 90 degrees. Default is
0.

scalar. If 1, display graph in window, if 0, do not display graphin
window. Default is 1.

scalar. If 0, abeep will sound when the graph is finished drawing to
the window. Default is 1 (no beep).

scalar or Kx1 vector, controls symbol used at graph points. To use a
single symbol type for al points, set thisto one of the following
scalar values:

1 circle 8 solidcircle

2 square 9 solid square

3 triangle 10 solid triangle

4 plus 11 solid plus

5 diamond 12 solid diamond

6 inverted triangle 13 solid inverted triangle
7 star (x) 14 solid star (X)

20-25

GAUSSUser Guide

_psurf

_psym

_psyn8d

_psynmsi z

_ptek

_pticout

If thisisavector, each line will have adifferent symbol. Symbolswill
repeat if there are more lines than symbol types.

2x1 vector, controls 3-D surface characteristics.
[1] if 1, show hidden lines. Default is 0.

[2] color for base (default 7), see “Colors,” page 20-12. The
baseisan outline of the X-Y plane with aline connecting
each corner to the surface. If O, no baseis drawn.

Mx7 matrix, M extra symbols will be plotted.
[M1] x location.

[M 2] y location.

[M 3] symbol type. (See _pst ype, earlier.)

[M 4] symbol height. If thisis 0, adefault height of 5.0 will be
used.

[M 5] symbol color, see “Colors,” page 20-12.
[M 6] type of coordinates:
1 plot coordinates
2 inch coordinates
[M 7] line thickness. A value of zero is normal line width.

Mx7 matrix for plotting extrasymbolson a3-D (sur f ace or xyz)
graph.

[M1] x location in plot coordinates.

[M 2] y location in plot coordinates.

[M 3] Z location in plot coordinates.

[M 4] symbol type. (See _pst ype, earlier)

[M 5] symbol height. If thisis 0, adefault height of 5.0 will be
used.

[M 6] symbol color, see“Colors,” page 20-12.

[M 7] line thickness. A value of 0 is normal line width.

Use _psymfor plotting extra symbolsin inch coordinates.

scalar or Kx1 vector, symbol size for the symbols on the main curves.
ThisisNOT relatedto _psym If 0, adefault size of 5.0 is used.

string, name of Tektronix format graphicsfile. This must have a
. t kf extension. If thisis set to a null string, the graphics file will be
suppressed. The defaultisgr aphi c. t kf .

scalar. If 1, tick marks point outward on graphs. Default is 0.

20-26

Publication Quality Graphics

_ptitlht

_pversno
_pXpmax

_pxsci
_pypmax

_pysci

_pzclr

_pzoom

_Pzpnmax

_pzsci

scalar, the height of thetitle charactersin inches. If thisis 0, adefault
height of approx. 0.13 inch will be used.

string, the graphics version number.

scalar, the maximum number of places to the right of the decimal
point for the X axis numbers. Default is 12.

scalar, the threshold in digits above which the data for the X axiswill
be scaled and a power of 10 scaling factor displayed. Default is 4.
scalar, the maximum number of places to the right of the decimal
point for the Y axis numbers. Default is 12.

scalar, the threshold in digits above which the data for the Y axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.
scalar, row vector, or Kx2 matrix, Z level color control for procedures
surface andcont our. (Seesur f ace inthe GAUSS Language
Reference.)

1x3 row vector, magnifies the graphics display for zoomingin on

detailed areas of the graph. If scalar O (default), no magnification is
performed.

[1] magnification value. 1 isnormal size.
[2] horizontal center of zoomed plot (0-100).
[3] vertical center of zoomed plot (0-100).

To see the upper |eft quarter of the window magnified 2 times, use
_pzoom={ 2 25 75 };

scalar, the maximum number of places to the right of the decimal

point for the Z axis numbers. Default is 3.

scalar, the threshold in digits above which the data for the Z axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.

20-27

Utilities

ATOG

ATOG is astand-alone conversion utility that converts ASCI| filesinto GAUSS data
sets. ATOG can convert delimited and packed ASCII filesinto GAUSS data sets.
ATOG can be run from a batch file or the command line.

The syntax is:
at og cmdfile

cmdfile is the name of the command file. If no extension is given, . cnd will be
assumed. If no command file is specified, acommand summary will be displayed.

Command Summary

The following commands are supported in ATOG:

append Append data to an existing file.

compl ex Treat data as complex variables.

i nput The name of the ASCII input file.

i nvar Input file variables (column names).
nsym Specify missing value character.
nocheck Do not check data type or record length.

GAUSSUser Guide

out put The name of the GAUSS data set to be created.
outtyp Output data type.
out var List of variables to be included in output file.

pr eser vecase Preserves the case of variable names in output file.

The principal commands for converting an ASCI| file that is delimited with spaces or
commas are given in the following example.

i nput agex. asc;

out put agex;

invar $ race # age pay $ sex region;
outvar region age sex pay,;

outtyp d;

From this example, adelimited ASCII fileagex. asc isconverted to adouble
precision GAUSS datafileagex. dat . Theinput file has five variables. The file will
be interpreted as having five columns:

colum name data type
1 race char act er
2 AGE nuneric
3 PAY numeri c
4 sex character
5 region character

The output file will have four columns since the first column of theinput file (race) is
not included in the output variables. The columns of the output file will be:

colum nane data type
1 region character
2 AGE numeri c
3 sex char act er
4 PAY nuneri c

21-2

Utilities

The variable names are saved in the file header. Unless pr eser vecase has been
specified, the names of character variables will be saved in lower case, and the names
of numeric variables will be saved in upper case. The $ inthei nvar statement
specifiesthat the variables that follow are character type. The# specifiesnumeric. If $
or# arenotusedinani nvar statement, the default is numeric.

Comments in command files must be enclosed between ‘ @ characters.

Commands
A detailed explanation of each of the ATOG commands follows.

append

Instructs ATOG to append the converted data to an existing data set:
append;

No assumptions are made regarding the format of the existing file. Make certain the
number, order, and type of data converted match the existing file. ATOG creates v96
format datafiles, so will only append to v96 format data files.

complex

Instructs ATOG to convert the ASCII file into a complex GAUSS data set:
compl ex;

Complex GAUSS data sets are stored by rows, with the real and imaginary parts
interleaved, element by element. ATOG assumes the same structure for the ASCI|
input file, and will thus read TWO numbers out for EACH variable specified.
compl ex cannot be used with packed ASCI| files.

input

Specifies the file name of the ASCI| file to be converted. The full path name can be
used in the file specification.

For example, the command

i nput data.raw,
will expect an ASCII datafile in the current working directory.
The command

i nput c:\research\data\nyfile. asc;

specifiesafileto belocated inthec: \ r esear ch\ dat a subdirectory.

21-3

GAUSSUser Guide

invar

Soft Delimited ASCII Files Soft delimited files may have spaces, commas, or cr/If
as delimiters between elements. Two or more consecutive delimiters with no data
between them are treated as one delimiter. For example:

i nvar age $ nanme sex # pay var[1:10] x[005];

Thei nvar command above specifies the following variables:

colum name data type
1 AGE numeri c
2 name character
3 sex character
4 PAY nuneric
5 VARO1 nuneric
6 VARO2 nuneric
7 VARO3 numeri c
8 VARO4 numeri c
9 VARO5 numeri c
10 VARO6 nuneri c
11 VARO7 nuneri c
12 VAR08 nuneric
13 VARO9 numeri c
14 VAR10 numeri c
15 X001 numeri c
16 X002 numeri c
17 X003 numeri c
18 X004 numeri c
19 X005 numeri c

Astheinput fileistrandated, the first 19 elements will be interpreted as the first row
(observation), the next 19 will be interpreted as the second row, and so on. If the

21-4

Utilities

number of elementsin the fileis not evenly divisible by 19, the final incomplete row
will be dropped and a warning message will be given.

Hard Delimited ASCII Files Hard delimited files have a printable character as a
delimiter between elements. Two delimiters without intervening data between them
will be interpreted asamissing. If \ n is specified as adelimiter, the file should have
one element per line and blank lines will be considered missings. Otherwise,
delimiters must be printable characters. Thedot ‘. * isillegal and will aways be
interpreted as a missing value. To specify the backslash asa delimiter, use \\ . If\r
is specified as a delimiter, the file will be assumed to contain one case or record per
line with commas between elements and no comma at the end of the line.

For hard delimited files, thedel i mi t subcommand is used with thei nvar
command. Thedel i m t subcommand has two optional parameters. The first
parameter is the delimiter; the default is a comma. The second parameterisan ‘N'. If
the second parameter is present, ATOG will expect N delimiters. If it is not present,
ATOG will expect N-1 delimiters.

This example:
invar delimt(, N $ nane # var[5];
will expect afile like this:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,

STEVE, 624.3, 340.3, , 624.3, 639.5,
TOM , 244.2, 834.3, 602.3, 333.4, 822.5,
This example:

invar delimt(,) $ nane # var[5];

or
invar delimt $ name # var[5];

will expect afile like this::
BILL , 222.3, 123.2, 456.4, 345.2, 533.2,
STEVE, 624.3, 340.3, , 624.3, 639.5,
TOM , 244.2, 834.3, 602.3, 333.4, 822.5

GAUSSUser Guide

The difference between specifying N or N-1 delimiters can be seen here:

456. 4, 345.2, 533.2,
, 624.3, 639.5,
602. 3, 333.4,

If thei nvar statement had specified 3 variables and N-1 delimiters, thisfile would
beinterpreted as having three rows containing amissing in the 2,1 element and the 3,3
element like this:

456. 4 345.2 533.2
624.3 639.5
602. 3 333. 4

If N delimiters had been specified, thisfile would be interpreted as having two rows,
and afinal incomplete row that is dropped:

456. 4 345.2 5833.2
624.3 639.5

The spaces were shown only for clarity and are not significant in delimited files, so

Bl LL, 222. 3, 123. 2, 456. 4, 345. 2, 533. 2,

STEVE, 624. 3, 340. 3, , 624. 3, 639. 5,

TOM 244. 2, 834. 3, 602. 3, 333. 4, 822. 5
would work just as well.

Linefeeds are significant only if \ n is specified as the delimiter, or when using\ r.
This example:

invar delimt(\r) $ name # var[5];

will expect afile with no comma after the final element in each row:
BILL , 222.3, 123.2, 456.4, 345.2, 533.2
STEVE, 624.3, 340.3, 245.3, 624.3, 639.5
TOM , 244.2, 834.3, 602.3, 333.4, 822.5

21-6

Utilities

Packed ASCII Files Packed ASCII files must have fixed length records. The

r ecor d subcommand is used to specify the record length, and variables are specified
by giving their type, starting position, length, and the position of an implicit decimal
point if necessary.

out var isnot used with packed ASCII files. Instead, i nvar isused to specify only
those variables to be included in the output file.

For packed ASCII files, the syntax of thei nvar command is
i nvar recor d=reclen (format) variables (format) variables;
where,

recl en thetotal record length in bytes, including the final carriage return/line
feed if applicable. Records must be fixed length.

format (startlength,prec) where:
start starting position of the field in the record, 1 isthefirst position. The

default is 1.
| engt h length of thefield in bytes. The default is 8.
prec optional; adecimal point will be inserted automatically pr ec places

in from the RIGHT edge of the field.

If several variables are listed after aformat definition, each succeeding field will be
assumed to start immediately after the preceding field. If an asterisk is used to specify
the starting position, the current logical default will be assumed. An asterisk in the
length position will select the current default for both | engt h and pr ec. Thisis
illegal: (3,8.%).

The type change characters $ and # are used to toggle between character and numeric
datatype.

Any datain the record that is not defined in aformat isignored.

The examples below assume a 32-byte record with a carriage return/line feed
occupying thelast 2 bytes of each record. The data can beinterpreted in different ways
using different i nvar statements.

ABCDEFGHIJ1234567890123456 7890<CR><LF>

I I I I .
position 1 10 20 30 31 32

GAUSSUser Guide

This example:
i nvar record=32

$(1,3) group dept #(11,4.2) x[3] (*,5)

type

Y;
will result in:
vari abl e val ue
group ABC
dept DEF
X1 12. 34
X2 56. 78
X3 90. 12
Y 34567
This example:

i nvar record=32

char act er
char act er
nuneri c
nuneri c
nuneri c

nUumeri c

$ dept (*,2) id # (*,5) wage (*,2) area

will result in:
vari abl e val ue type
dept ABCDEFGH character
id 1J character
WAGE 12345 nuneric
AREA 67 nuneric
msym

Specifies the character in the input file that isto be interpreted as a missing value.

This example:
nmsym &;

Defines the character & as the missing value character.

Thedefault ‘. ’ (dot) will always be interpreted as a missing value unlessit is part of a

numeric value.

21-8

Utilities

nocheck

Optional; suppresses automatic checking of packed ASCII record length and output
datatype. The default isto increase the record length by 2 bytesif the second record in
apacked file starts with cr/If, and any files that have explicitly defined character data
will be output in double precision regardless of the type specified.

output

The name of the GAUSS data set. A filewill be created with the extension . dat . For
example:

out put c:\gauss\dat\test;

createsthefilet est . dat onthec: \ gauss\ dat directory.

outtyp

Selects the numerical accuracy of the output file. Use of this command should be
dictated by the accuracy of the input data and storage space limitations. The format is:

outtyp fmt;
where fmt is

D or 8 doubleprecision
F or 4 singleprecision (default)
| or 2 integer

The ranges of the different formats are:

Significant
Bytes Data Type Digits Range
2 integer 4 —-32768 < X < 32767
4 single 6-7 —37 +38
precision 8.43x10 ' <|X] <£3.37x10
8 double 15-16 —307 +308
precision 4.19x10 <|X| £1.67x10

If the output type is integer, the input numberswill be truncated to integers. If your
data has more than 6 or 7 significant digits, specify out t yp asdouble.

Character datarequireout t yp d. ATOG automatically selects double precision
when character datais specified inthei nvar statement, unless you have specified
nocheck.

21-9

GAUSSUser Guide

The precision of the storage selected does not affect the accuracy of GAUSS
calculations using the data. GAUSS converts all datato double precision when thefile
isread.

outvar

Selects the variables to be placed in the GAUSS data set. The out var command
needsonly thelist of variablesto be included in the output data set. They can bein any
order. For example:

i nvar $name #age pay $sex #var[1:10] x[005];

outvar sex age x001 x003 var[1:8];

colum name data type

1 sex charact er
2 AGE nuneric
3 X001 numeric
4 X003 numeric
5 VARO1 nuneric
6 VARO2 nuneric
7 VARO3 nuneric
8 VARO4 nuneric
9 VARO5 nuneric
10 VARO6 numeric
11 VARO7 numeric
12 VARO8 nuneric

out var isnot used with packed ASCI| files.

preservecase

Optional; preservesthe case of variable names. The default isnopr eser vecase,
which will force variable names for numeric variables to upper case and character
variables to lower case.

21-10

Utilities

Examples

Thefirst example is a soft delimited ASCI| file called agex 1. asc.
Thefile contains seven columns of ASCII data:
Jan 167.3 822.4 6. 34E06 yes 84.3 100.4

Feb 165.8 987.3 5.63E06 no 22.4 65.6

Mar

165.3 842.3 7. 34E06 yes 65.4 78.3

Theat og command fileisagex1. cnd:

i nput c:\gauss\agexl. asc;

out put

agexl;

invar $nonth #tenp pres vol $true var[02];

out var

nonth true tenp pres vol;

The output data set will contain the following information:

name

month true TEMP PRES VOL

casel
case2

case 3

Jan yes 167.3 822.4 6.34e+6
Feb no 165.8 987.3 5.63e+6
Mar yes 165.3 842.3 7.34e+6

type

char char numeric numeric numeric

The data set is doubl e precision since character datais explicitly specified.
The second exampleis apacked ASCII filecaled x| od. asc.

The file contains 32-character records:

AEGDRFCSTy02345678960631567890<CR><LF>
EDJTAIPSTN12395863998064839561<CR><LF>
GADNADMSTY 19827845659725234451<CR><LF>

position 1 10 20 30 31 32

21-11

GAUSSUser Guide

Theat og command fileisx| od. cnd:
i nput c:\gauss\dat\xl od. asc;
out put xI od2;
invar record=32 $(1,3) client[2] zone (*,1) reg #(20,5)
zi p;

The output data set will contain the following information:

name clientl client2 zone reg ZIP
casel |AEG DRF CsT y 60631
case?2 |EDJ TAJ PST n 98064
case3 |GWD NAD MST y 59725
type char char char char numeric

The data set is doubl e precision since character datais explicitly specified.
Thethird example is a hard delimited ASCII file called cpl x. asc.
Thefile contains six columns of ASCII data:

456.4, 345.2, 533.2, -345.5, 524.5, 935.3,
-257.6, 624.3, 639.5, 826.5, 331.4, 376.4,
602.3, -333.4, 342.1, 816.7, -452.6, -690.8

The ATOG command fileiscpl x. cnd:
i nput c:\gauss\cpl x. asc;
out put cpl x;

i nvar delimt #cvar[3];

compl ex;

21-12

Utilities

The output data set will contain the following information:

name cvarl cvar2 cvar3
case 1 456.4 + 345.2i 533.2 - 345.5i 524.5 + 935.3i
case 2 -257.6 + 624.3i 639.5 + 826.5i 331.4 + 376.4i
case 3 602.3 - 333.4i 342.1 + 816.7i -452.6 - 690.8i
type numeric numeric numeric

The data set defaults to single precision since no character datais present, and no
out t yp command is specified.

Error Messages
atog - Can’t find input file
The ASCII input file could not be opened.
atog - Can’t open output file
The output file could not be opened.
atog - Can’t open tenporary file
Notify Aptech Systems.
atog - Can't read tenporary file
Notify Aptech Systems.
atog - Character data in output file
Setting output file to double precision

The output file contains character data. The type was set to double precision
automatically.

atog - Character data |onger than 8 bytes were truncated
Theinput file contained character elements longer than 8 bytes. The conversion
continued and the character elements were truncated to 8 bytes.

atog - Disk Full

The output disk isfull. The output file isincomplete.

atog - Found character data in nuneric field
Thisisawarning that character data was found in avariable that was specified as
numeric. The conversion will continue.

atog - Illegal conmand

An unrecognizable command was found in a command file.

2113

GAUSSUser Guide

atog - Internal error
Notify Aptech Systems.
atog - Invalid delinmter

The delimiter following the backslash is not supported.

atog - Invalid output type
Output type must be |, F, or D.

atog - M ssing value synbol not found
No missing value was specified in an msy mstatement.

atog - No Input file
No ASCII input file was specified. Thei nput command may be missing.

atog - No input variables
No input variable names were specified. Thei nvar statement may be missing.

atog - No output file
No output file was specified. The out put command may be missing.

atog - output type d required for character data
Character data in output file will be | ost

Output file contains character data and is not double precision.

atog - Open coment
The command file has a comment that is not closed. Comments must be enclosed in

@s.
@conment @

atog - CQut of nenory
Notify Aptech Systems.

atog - read error
A read error has occurred while converting a packed ASCI| file.

atog - Record length nust be 1-16384 bytes
Ther ecor d subcommand has an out-of-range record |ength.

atog - Statenent too |ong
Command file statements must be less than 16384 bytes.

atog - Syntax error at:
There is unrecognizable syntax in acommand file.

21-14

Utilities

atog - Too many input variables

More input variables were specified than available memory permitted.
atog - Too many out put vari abl es

More output variables were specified than available memory permitted.
atog - Too many vari abl es

More variables were specified than available memory permitted.

atog - Undefined variable

A variable requested in an out var statement was not listed inani nvar statement.
atog WVARNING. missing ‘)’ at:

The parenthesesinthedel i m t subcommand were not closed.

atog WARNI NG sone records begin with cr/If

A packed ASCII file has some records that begin with a carriage return/linefeed. The
record length may be wrong.

atog - conplex illegal for packed ASCII file

A conpl ex command was encountered following ani nvar command with

r ecor d specified.

atog - Cannot read packed ASCII. (conplex specified)

Ani nvar commandwithr ecor d specified was encountered following aconpl ex
command.

LIBLIST

LIBLIST isalibrary symbol listing utility. It is a stand-alone program that lists the
symbols available to the GAUSS autoloading system.

LIBLIST will aso perform . g file conversion and listing operations. . g filesare
specific files once used in older versions of GAUSS. Due to compiler efficiency and
other reasons, . g files are no longer recommended for use. The LIBLIST options
related to . g filesare supplied to aid the user in consolidating . g files and converting
them to the standard . sr ¢ files.

The format for using LIBLIST is:
[iblist -flagslibllib2...libn

flags control flagsto specify the operationof | i bl i st .
G list al . g filesin the current directory and along the sr ¢_pat h.
D creategfil e. | st usingall . g filesin the current directory and along

thesrc_pat h.

21-15

GAUSSUser Guide

list the contents of the specified libraries.
list library names.
use page breaks and form feed characters.

m Zr O

The search is performed in the following manner:

convert . g filesto. src filesand list thefilesinsrcfil e. | st.

1. Listal symbolsavailable as. g filesin the current directory and then the

src_pat h.

2. Listall symbolsdefinedin. | cg filesinthel i b_pat h subdirectory.

gauss. | cq, if it exists, will be listed last.

Report Format

The listing produced will go to the standard output. The order the symbols will be
listed in is the same order they will be found by GAUSS, except that LIBLIST
processesthe. | cg filesin the order they appear inthel i b_pat h subdirectory,
whereas GAUSS processes libraries according to the order specified in your

I i brary statement. LIBLIST assumesthat all of your libraries are active; that is,
you havelisted them al inal i br ary statement. gauss. | cg will belisted last.

Here is an exampe of alisting:

Synbol Type File Li brary Pat h
1. autoreg ------ autoreg .src auto.lcg :\gauss\src
2. autoprt = ------ autoreg .src auto.lcg :\gauss\src
3. autoset = ------ autoreg .src auto.lcg :\gauss\src
4. _pticout matrix pgr aph .dec pgraph.lcg :\gauss\src
5. _pzl abel string pgr aph .dec pgraph.lcg :\gauss\src
6. _pzpmax mat ri x pgr aph .dec pgraph.lcg :\gauss\src
7. ascl abel proc pgr aph .src pgraph.lcg :\gauss\src
8. fonts proc pgr aph .src pgraph.lcg :\gauss\src
9. graphset proc pgr aph .src pgraph.lcg :\gauss\src
10. _svdtol matrix svd .dec gauss.lcg :\gauss\src
12. _maxvec mat ri x system .dec gauss.lcg s\ gauss\src
13. besselj proc bessel .src gauss.lcg :\gauss\src

21-16

Utilities

14. bessely proc bessel .src gauss.lcg c:\gauss\src

Synbol isthe symbol name available to the autoloader.

Type isthe symbol type. If thelibrary is not strongly typed, thiswill be aline of
dashes.

Fi | e isthefilethe symbol is supposed to be defined in.
Li br ary isthe name of the library, if any, the symbol islisted in.

Pat h isthe path thefileislocated on. If the file cannot be found, the path will be
*** not found ***,

Using LIBLIST
LIBLIST isexecuted with
liblist -flagslibllib2...libn

To put thelisting in afilecaled | i b. | st , use
liblist -1 > 1lib.Ist

To convert al your . g filesand listtheminsrcfil e. | st,use
liblist -c

The numbers are there so that you can sort the listing and till tell which symbol
would be found first by the autoloader. You may have more than one symbol by the
same name in different files. LIBLIST can help you keep them organized so you do
not inadvertently use the wrong one.

21-17

Error Messages

Thefollowing isalist of error messages intrinsic to the GAUSS programming
language. Error messages generated by library functions are not included here.

0002 File too large
| oad Input file too large.
get f Input file too large.

(0003 Indexing a matrix as a vector

A singleindex can be used only on vectors. Vectors have only onerow or only
one column.

@004 Conpiler stack overflow - too conpl ex

An expression istoo complex. Break it into smaller pieces. Notify Aptech
Systems.

0005 File is already conpil ed

0006 Statenment too |ong

Statement longer than 4000 characters.

22-1

GAUSSUser Guide

30007 End of file encountered

0008 Syntax error

Compiler Unrecognizable or incorrect syntax. Semicolon missing on
previous statement.

create Unrecognizable statement in command file, or numvar or
out var statement error.

0009 Conpil er pass out of nenory

Compiler pass has run out of memory. Notify Aptech Systems.

0010 Can't open output file

@011 Conpiled file must have correct extension

GAUSSrequiresa. gcg extension.

@012 Invalid drive specifier

@013 Invalid fil enane

@014 File not found

0015 Directory full

0016 Too many #i ncl udes
#i ncl uded files are nested too deep.

@017 WARNI NG | ocal outside of procedure

Al ocal statement has been found outside a procedure definition. The
| ocal statement will be ignored.

(0018 Read error in programfile

0019 Can't edit .gcg file

30020 Not inplenmented yet

22-2

Error Messages

Command not supported in thisimplementation.

@021 use nust be at the beginning of a program
@022 User keyword cannot be used in expression

@023 Illegal attenpt to redefine synbol to an index

vari abl e

30025 Undefined synbol

A symbol has been referenced that has not been given a definition.

0026 Too many synbol s

The global symbol tableisfull. (To set the limit, see newin the GAUSS
Language Reference.)

@027 Invalid directory

0028 Can't open configuration file
GAUSS cannot find the configuration file.

0029 Mssing |eft parenthesis

0030 I nsufficient workspace nmenory

The space used to store and manipulate matrices and stringsis not large
enough for the operations attempted. (To make the main program space
smaller and reclaim enough space to continue, see newin the GAUSS
Language Reference.)

(0031 Execution stack too deep - expression too conpl ex

An expression istoo complex. Break it into smaller pieces. Notify Aptech
Systems.

@032 fn function too |arge

0033 M ssing right index bracket

22-3

GAUSSUser Guide

0034 M ssing argunents

0035 Argunent too | arge

Q0036 Matrices are not conformabl e

For a description of the function or operator being used and conformability
rules, see “Matrix Operators,” page 11-4, or the GAUSS Language Reference.

0037 Result too large

The size of the result of an expression is greater than the limit for asingle
matrix.

0038 Not all the eigenval ues can be computed

0039 Matrix nmust be square to invert

@040 Not all the singular values can be conputed

0041 Argunent nust be scal ar

A matrix argument was passed to a function that requires a scalar.

0042 Matrix must be square to conpute determ nant

30043 Not inplenmented for conplex matrices

@044 Matri x must be real

0045 Attenpt to wite conplex data to real data set

Data sets, unlike matrices, cannot change from real to complex after they are
created. Usecr eat e conpl ex to create acomplex data set.

30046 Columms don't nmtch

The matrices must have the same number of columns.

30047 Rows don't nmmtch

The matrices must have the same number of rows.

22-4

Error Messages

30048 Matrix singul ar

The matrix is singular using the current tolerance.

@049 Target matrix not conpl ex

0050 Qut of menory for program

The main program areaisfull. (To increase the main program space, see new
in the GAUSS Language Reference.)

0051 Programtoo | arge

Themain program areaisfull. (To increase the main program space, seenew
in the GAUSS Language Reference.)

@052 No square root - negative el enent

@053 111 egal index
Anillegal value has been passed in as a matrix index.

G0054 | ndex overfl ow
Anillegal value has been passed in as a matrix index.

0055 retp outside of procedure

A r et p statement has been encountered outside a procedure definition.

0056 Too many active locals

The execution stack is full. There are too many local variables active.
Restructure your program. Notify Aptech Systems.

0057 Procedure stack overflow - expression too conpl ex

The execution stack isfull. There are too many nested levels of procedure
calls. Restructure your program. Notify Aptech Systems.

22-5

GAUSSUser Guide

0058 I ndex out of range

You have referenced amatrix e ement that is out of bounds for the matrix
being referenced.

0059 exec command string too | ong
G0060 Nonscal ar i ndex
0061 Chol esky downdate fail ed

@062 Zero pivot encountered

crout The Crout algorithm has encountered adiagonal element equal to
0. Usecr out p instead.

@063 QOperator m ssing

An expression contains two consecutive operands with no intervening
operator.

@064 Operand m ssing

An expression contains two consecutive operators with no intervening
operand.

@0065 Division by zero!

0066 Must be reconpil ed under current version

You are attempting to use compiled code from a previous version of GAUSS.
Recompile the source code under the current version.

30068 Program conpil ed under GAUSS-386 real version
@0069 Program conpil ed under GAUSS- 386i conpl ex version

0070 Procedure calls too deep

You may have arunaway recursive procedure.

22-6

Error Messages

@071 Type mi smatch

You are using a string where amatrix is caled for, or vice versa.

@072 Too many files open

The limit on simultaneously open filesis 10.

@0073 Redefinition of

decl are Anattempt has been madeto initialize a variable that is already
initialized. Thisisan error whendecl are : =isused. decl are ! =or
decl are ?=may be abetter choice for your application.

decl are Anattempt has been made to redefine a string as a matrix or
procedure, or vice versa. del et e the symbol and try again. If this happensin
the context of a single program, you have a programming error. If thisisa
conflict between different programs, use a new statement before running the
second program.

| et A string is being forced to type matrix. Use an ext er nal
mat ri x (symbol); statement beforethel et statement.

0074 Can't run program conpiled under GAUSS Li ght
@075 gscroll input vector the wong size
@076 Call Aptech Systens Technical Support

@077 New size cannot be zero

You cannot r eshape amatrix to asize of zero.

0078 vargetl outside of procedure
@079 varputl outside of procedure
@080 File handl e must be an integer
0081 Error renamng file

0082 Error reading file

22-7

GAUSSUser Guide

0083 Error creating tenporary file

0084 Too many | ocal s

A procedure has too many local variables.

@0085 Invalid file type

You cannot use this kind of filein thisway.

0086 Error deleting file

@087 Coul dn't open

The auxiliary output file could not be opened. Check the file name and make
sure there isroom on the disk.

(0088 Not enough nmenory to convert the whole string

0089 WARNI NG duplicate definition of |ocal

@0090 Label undefined
Label referenced has no definition.

0091 Synbol too |ong

Symbols can be no longer than 8 characters.

0092 Open conment

A comment was never closed.

(30093 Locate off screen

0094 Argunent out of range

0095 Seed out of range

0096 Error parsing string

par se encountered atoken that was too long.

22-8

Error Messages

@097 String not cl osed
A string must have double quotes at both ends.

@098 Invalid character for inmaginary part of conplex

nunber

@0099 Illegal redefinition of user keyword

30100 Internal E R R O R ###
Notify Aptech Systems.

(30101 Argunment cannot be zero

Theargumenttol n or | og cannot be zero.

(0102 Subroutine calls too deep

Too many levels of gosub. Restructure your program.

(0103 return w thout gosub

You have encountered a subroutine without executing agosub.

0104 Argument rnust be positive

(0105 Bad expression or mssing argunents

Check the expression in question, or you forgot an argument.

@106 Factorial overfl ow

0107 Nesting too deep

Break the expression into smaller statements.

0108 M ssing |eft bracket |

(30109 Not enough data itens

You omitted datain al et statement.

(0110 Found) expected] -

22-9

GAUSSUser Guide

111 Found] expected) -

@112 Matrix multiplication overflow
0113 Uncl osed (

0114 Uncl osed |

0115 Illegal redefinition of function

You are attempting to turn afunction into amatrix or string. If thisis aname
conflict, del et e the function.

0116 sysstate: invalid case
@117 Invalid argunent

(0118 Argunent nust be integer
File handles must be integral.

0120 Illegal type for save

0121 Matrix not positive definite

The matrix is either not positive definite, or singular using the current
tolerance.

@122 Bad file handle

Thefile handle does not refer to an open file or isnot in the valid range for file
handles.

@123 File handl e not open

Thefile handle does not refer to an open file.

22-10

Error Messages

0124 readr call too | arge

You are attempting to read too much in one call.

@125 Read past end of file
You have already reached the end of thefile.

0126 Error closing file

@127 File not open for wite

@128 File already open

@129 File not open for read

(0130 No output variables specified

(0131 Can't create file, too nany vari abl es
132 Can't wite, disk probably full

(0133 Function too |ong

0134 Can't seekr in this type of file
0135 Can't seek to negative row

(0136 Too many argunents or nisplaced assi gnment op...

You have an assignment operator (=) where you want a comparison operator
(==), or you have too many arguments.

(0137 Negative argunent - erf or erfc
0138 User keyword must have one argunent

0139 Negative paranmeter - Inconplete Beta

22-11

GAUSSUser Guide

@140 Invalid second paraneter - Inconplete Beta
0141 Invalid third paranmeter - Inconplete Beta
0142 Nonpositive paranmeter - gamma

0143 NaN or missing value - cdfchic

0144 Negative paranmeter - cdfchic

@145 Second parameter < 1.0 - cdfchic

0146 Paraneter too large - |Inconplete Beta
0147 Bad argunent to trig function

(0148 Angle too large to trig function

30149 Matrices not confornmable

For a description of the function or operator being used and conformability
rules, see “Matrix Operators,” page 11-4, or the GAUSS Language Reference.

(0150 Matrix not square

@151 Sort failure

@0152 Variable not initialized

You have referenced a variable that has not been initialized to any value.

0153 Unsuccessful close on auxiliary output
The disk may befull.

@154 Illegal redefinition of string

0155 Nested procedure definition

22-12

Error Messages

A pr oc statement was encountered inside a procedure definition.

0156 Illegal redefinition of procedure

You are attempting to turn a procedure into amatrix or string. If thisisaname
conflict, del et e the procedure.

0157 Illegal redefinition of matrix

0158 endp without proc

You are attempting to end something you never started.

0159 Wong nunber of paraneters

You called a procedure with the wrong number of arguments.

0160 Expected string variable
0161 User keywords return nothing
@162 Can't save proc/keyword/fn with global references

Remove the global references or leave thisin source code form for the
autoloader to handle. (Seel i br ary inthe GAUSS Language Reference.)

0163 Wong size format matri x
@164 Bad nask matri x
165 Type nismatch or nissing argunents

0166 Character element too |ong

The maximum length for character elementsis 8 characters.

@167 Argunent nust be col um vector

0168 Wong nunber of returns

The procedure was defined to return a different number of items.

22-13

GAUSSUser Guide

@169 Invalid pointer

You are attempting to call alocal procedure using an invalid procedure
pointer.

@170 Invalid use of anpersand

0171 Called synbol is wong type

You are attempting to call alocal procedure using a pointer to something else.

0172 Can't resize tenporary file

@173 varindx failed during open
The global symbol tableisfull.

@174 ‘.’ and * ' operators nust be inside [] brackets

These operators are for indexing matrices.

0175 String too long to conpare
0176 Argunent out of range
0177 Invalid format string
0178 Invalid node for getf
@179 I nsufficient heap space

@0180 trimtoo nuch

You are attempting to trim more rows than the matrix has.

0181 Illegal assignnment - type msnmatch
0182 2nd and 3rd argunents different order

@274 Invalid paraneter for conv

22-14

Error Messages

0275 Paranmeter is NaN (Not A Number)
The argument isaNaN (see “ Special Data Types,” page 10-20).

0276 Illegal use of reserved word

@277 Null string illegal here

0278 proc without endp

You must terminate a procedure definition with an endp statement.

@286 Multiple assign out of nenory

@287 Seed not updated

The seed argument to r ndns and r ndus must be asimple loca or global
variablereference. It cannot be an expression or constant. Thesefunctionsare
obsolete, pleaseuser ndl cn and rndl cu

30288 Found break not in do |oop

30289 Found continue not in do | oop

0290 Library not found

The specified library cannot be found onthel i b_pat h path. Make sure
installation was correct.

0291 Conpil er pass out of menory
Notify Aptech Systems.

@292 File listed in library not found
A filelisted in alibrary could not be opened.

22-15

GAUSSUser Guide

30293 Procedure has no definition

The procedure was not initialized. Defineiit.

@294 Error opening tenporary file

One of the temporary files could not be opened. The directory may be full.

(0295 Error writing tenporary file

One of the temporary files could not be written to. The disk may be full.

0296 Can't raise negative nunber to nonintegral power
@300 File handle nust be a scal ar
0301 Syntax error in library

@302 File has been truncated or corrupted

get nanme File header cannot be read.
| oad Cannot read input file, or file header cannot be read.

open File size does not match header specifications, or file header
cannot be read.

@317 Can't open tenp file

@336 Di sk full

@339 Can't debug conpiled program
0341 File too big

@347 Can't allocate that many gl obal s

0351 Warning: Not reinitializing : declare ?=
The symbol is aready initialized. It will be left asis.

0352 Warning: Reinitializing : declare !=

22-16

Error Messages

The symbol is already initialized. It will be reset.

0355 Wong size line matrix

Q0360 Wite error

0364 Pagi ng error

@365 Unsupported executable file type
@368 Unable to allocate translation space
@0369 Unable to allocate buffer

0370 Syntax Error in code statenent

@371 Syntax Error in recode statenent

0372 Token verify error
Notify Aptech Systems.

0373 Procedure definition not all owed

A procedure name appears on the left side of an assignment operator.

@0374 Invalid make statemnment

@G0375 nmeke Variable is a Nunber
@0376 make Variable is Procedure
0377 Cannot meke Existing Variable
@0378 Cannot make External Variable

@379 Cannot make String Constant

GAUSSUser Guide

@0380 Invalid vector statenent

@0381 vector Variable is a Nunber
@G0382 vector Variable is Procedure
(0383 Cannot vector Existing Variable
30384 Cannot vector External Variable
0385 Cannot vector String Constant
G0386 Invalid extern statenent

@0387 Cannot extern nunber

(0388 Procedures al ways ext ernal

A procedure name has been declared in an ext er n statement. Thisisa
warning only.

0389 extern variable already |ocal

A variable declared in an ext er n statement has already been assigned local
status.

(0390 String constant cannot be external
@0391 Invalid code statenent

@0392 code Variable is a Nunber

@0393 code Variable is Procedure

(0394 Cannot code Existing Variable

@0395 Cannot code External Variable

22-18

Error Messages

0396 Cannot code String Constant
@0397 Invalid recode statenent
G0398 recode Variable is a Nunber
G0399 recode Variable is Procedure
@0400 Cannot recode External Variable
0401 Cannot recode String Constant
@402 Invalid keep statenent

@403 Invalid drop statenent

30404 Cannot define Number

0405 Cannot define String

G0406 Invalid sel ect statenent
@0407 Invalid del ete statenent
0408 Invalid outtyp statenent
0409 outtyp already defaulted to 8

Character data has been found in the output data set beforeanout t yp 2 or
outtyp 4 statement. Thisisawarning only.

(0410 outtyp nmust equal 2, 4, or 8

0411 outtyp override...precision set to 8

Character data has been found in the output data set after anouttyp 2 or
outtyp 4 statement. Thisisawarning only.

22-19

GAUSSUser Guide

@412 default not allowed in recode statenent

def aul t allowed only in code statement.

@413 Mssing file nanme in datal oop statenent

@414 Invalid |istw se statenent

@415 Invalid | ag statenent

0416 | ag variable is a nunber

@417 lag variable is a procedure

0418 Cannot |ag External Variable

0419 Cannot lag String Constant

0421 conpil e conmand not supported in Run-Ti ne Mdul e

0428 Cannot use debug conmmand inside program

@429 Invalid nunber of subdi agonal s

0431 Error closing dynamc library

0432 Error opening dynamc library

@433 Cannot find DLL function

@435 | nvalid node

(0436 Matrix is enpty

0437 | oadexe not supported; use dlibrary instead

22-20

Error Messages

@438

@439

@441

@442

@445

Q447

@454

@456

@457

@458

@459

@460

@461

@462

463

cal l exe not supported; use dllcall instead

File has wong bit nunber

Type vector malloc failed

No type vector in gfblock

II'legal left-hand side reference in procedure
vfor called with illegal 1oop |evel
Fai l ure opening printer for output

Failure buffering output for printer

Can't take log of a negative nunber

Attenpt to index proc/fn/keywrd as a matrix

M ssing right brace }

Unexpect ed end of statenent

Too many data itens

Negative trimval ue

Fai l ure generating graph

22-21

Maximizing Performance 2 3

These hints will help you maximize the performance of your new GAUSS System.

Library System

Some temporary files are created during the autol oading process. If you have a
t np_pat h configuration variable or at np environment string that defines a path on
aRAM disk, the temporary files will be placed on the RAM disk.

For example:
set tnp=f:\tnp

t np_pat h takes precedence over thet np environment variable.

A disk cache will also help, aswell as having your frequently used filesin the first
pathinthesr c_pat h.

You can optimizeyour library . | cg files by putting the correct drive and path on each
filenamelisted in the library. Thel i b command will do thisfor you.

Usetheconpi | e command to precompile your large frequently used programs. This
will completely eliminate compile time when the programs are rerun.

23-1

GAUSSUser Guide

Loops

The use of the built-in matrix operators and functions rather than do loops will ensure
that you are utilizing the potential of GAUSS.

Here is an example:
Given the vector x with 8000 normal random numbers,
X = rndn(8000, 1);

you could get acount of the elements with an absolute value greater than 1 withado

loop, like this:
c = 0;
i = 1;

do while i < rows(x);
if abs(x[i]) > 1;
cC = c+1;
endi f;
=0+l
endo;

print c;

Or, you could use:
¢ = sunct(abs(x) .> 1);

print c;

The do loop takes over 40 times longer.

Virtual Memory
Thefollowing are hints for making the best use of virtual memory in GAUSS.

Data Sets

Large data sets can often be processed much faster by reading them in small sections
(about 20000-40000 e ements) instead of reading the entire data set in one piece.
maxvec isused to control the size of asingle disk read. Hereisan example. Theol s

23-2

Maximizing Performance

command can take either amatrix in memory or adata set on disk. Here are the times
for aregression with 100 independent variables and 1500 observations on an IBM
model 80 with 4 MB RAM running at 16 MHz:

ol s(0,vy, x) matrices in memory 7 minutes 15.83 seconds
ol s(“ol sdat”, 0, 0) dataon disk (maxvec = 500000) 8 minutes 48.82 seconds
ol s(“ol sdat”, 0, 0) dataon disk (maxvec = 25000) 1 minute 42.77 seconds

Asyou can see, the fastest time occurred when the datawas read from disk in small
enough sectionsto allow the ol s procedure to execute entirely in RAM. This ensured
that the only disk I/O was one linear pass through the data set.

The optimum size for maxvec depends on your available RAM and the algorithms
you are using. GAUSS is shipped with maxvec set to 20000. maxvec isaprocedure
definedinsyst em sr ¢ that returns the value of the global scalar __naxvec. The
value returned by acall to naxvec can be modified by editing syst em dec and
changing thevalue of __maxvec. The value returned when running GAUSS Light is
aways 8192.

Complex numbers use twice the space of real numbers, so the optimum single disk
read size for complex data setsis half that for real data sets. Youcanset __maxvec
for real data sets, then use maxvec/ 2 when processing complex datasets. i scpl xf
will tell you if adata set is complex.

Hard Disk Maintenance

The hard disk used for the swap file should be optimized occasionally with a disk
optimizer. Use a disk maintenance program to ensure that the disk mediaisin good
shape.

CPU Cache

Thereisalinefor cachesizeinthegauss. cf g file. Set it to the size of the CPU data
cache for your computer.

This affects the choice of algorithms used for matrix multiply functions.

Thiswill not change the results you get, but it can radically affect performance for
large matrices.

23-3

Fonts Appendix

There are four fonts available in the Publication Quality Graphics System:

Simplex standard sans serif font
Simgrma Simplex greek, math
Microb bold and boxy
Complex standard font with serif

The following tables show the characters available in each font and their ASCI|
values. (For details on selecting fonts for your graph, see “ Selecting Fonts,” page 20-
10.

GAUSSUser Guide

Simplex

33
34
35
36
37
38
59
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

T o N5 e

+ ¥ N /N

O 00~ O 0O &~ NN — OO

01

62
65
o4
05
60
o/
683
69
/0
/1

/2
/3
/4
/3
/6
/7
/8
/9
30
&1

32
83
34
35
36
3/
33

X =< C 1V VOH VO =Z2 I XS T T O Mmoo w>g oYY

89
90
91
92
93
94
95
96
97/
983
99
100
101
102
103
104
105
106
107
108
109
110
1117
112
113
114
115
116

y — N <

0 o o O oo o T

— = —

ﬁ@bojg

()]

T N X = < C

2

A-2

Fonts Appendix

Simgrma

33 e 61 # 89 v 117
34 62 =z 30 2 118
35 = 63 91 | 19 w
36~ 64 U 92 8 120 ¢
37 1 65 % 93 | 121y
38V 66 4 94 n 122 ¢
39 67 H 95 | 123
40 C 68 A 96 124 f
41 > 69 % 97 « 125 |
42 x 70 ¢ 98 B 126 o
43+ 71T 39 7

44 f 72 X 100 6

45 F 73 % 101 ¢

46 - 741 102 ¢

47 = 75 % 103 v

48 Vv 76 A 104

49 77 3 105 &

50 ¢ 78 % 106 ¢

51 < 79 1 107 «

52 > 80 108 A

53/ 81 0O 109

54 3 82 P 110 v

55 | 83 % 11 o

56 84 s 112

57 © 85 T 13 9

58 - 86 © 114 p

59 « 87 0 115 @

60 = 88 = 116 7

GAUSSUser Guide

Microb
35 ! o1 = 89 Y 117
34 " 67 > 90 Z 118
35 # 635 ? 97 [119
56 $ 64 @ 92 \ 120
57 % 65 A 953] 127
38 & 66 B 94 - 122
39 ! o/ C 95 _ 125
40 C 08 D 96) 124
4) 09 E 97/ a 125
472 x /0 F 98 b 126
43 + /1 G 99 c
44 , V% H 100 d
45 - /35 I 101 e
46 . 74 J 102 f
a7/ 75 K 103 g
48 0 /6 L 104 h
49 1 /7 M 105 i
50 2 /8 N 106
51 3 /9 0 107 k
52 4 80 P 108 |
53 5 81 Q 109 m
54 6 82 R 170 n
55 7 83 S 171 o
56 8 84 T 12 p
57 9 85 u 113 g
58 : 86 V 1174 r
59 : 87 W 115 s
60 < 88 X 1176 €

! T T T NK X s < C

A-4

Fonts Appendix

Complex

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

RS

B

ﬂ%_//\

© O 2O O W~ O

0
62
035
o4
©5
606
o/
03
09
/0
/1
/2
73
/4
/3
/6
/7
/3
/9
30
31
32
83
34
85
36
87
33

K =< o N vozZzzsr0 " " D HEOQmeEg YV

39
90
91
92
93
94
95
96
97
938
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Y 117 u
Z 118 v
[119 w
\ 120 x
] 121 y
~ 122z
_ 123 4
* 124 |
a 125 %
b 126~
C

d

e

f

g

h

i

]

k

1

Im

n

O

P

q

r

S

t

Reserved Words Appendix

The following words are used for GAUSS intrinsic functions. You cannot use these
names for variables or proceduresin your programs:

a
abs and atan atan2
b
balance bandchol sol bandsol pd break
band bandltsol besselj
bandchol bandrv bessely
C
call cdfchic cdfnc cdftvn
callexe cdffc cdfni cdir
cdfbeta cdfgam cdftc ceil
cdfbvn cdfn cdftci cfft

B-1

GAUSSUser Guide

cffti clearg complex countwts
ChangeDir close con create
chol closeall conj crout
choldn cls cons croutp
cholsol color continue csreol
cholup cols conv csrlin
chrs colsf corel eft csrtype
cint comlog cos cvtos
clear compile counts

d
date debug diag dos
dbcommit declare diagrv dtvnormal
dbconnect delete disable dtvtoutc
dbdisconnect det dlibrary
dbopen detl dilcall
dbstrerror dfree do

e
ed ese endp error
edit elsaif envget errorlog
editm enable eof exec
eg end eq exp
eigh endfor eqv external
eighv endif erf eye
eigv endo erfc

Reserved Words Appendix

fcheckerr
fclearerr
fflush

fft

ffti

fftn

fgets
fgetsa

gamma

ge
getf

hasimag

imag
indcv

key

fgetsat
foetst
fileinfo
files
filesa
fix
floor

fmod

getname
getnamef
gosub

hess

indexcat
indnv

int

keyw

loadexe
|oadf
loadk

fn

font

fontload
fontunload
fontunloadall
fopen

for

format

goto

graph
graphsev3

hsec

inv
invpd

invswp

keyword

locate

lower

fputs
fputst
fseek
fstrerror
ftell
ftocv

ftos

gt

iscplx
iscplxf

ismiss

It
[trisol

lu

B-3

GAUSSUser Guide

library

line

load

matrix
maxc

maxindc

ndpchk

ndpclex

ol dfft
ol dffti

packr
parse
pdfn
pi

rankindx
rcond|
readr
real

recserar

loadm
loadp
loads
local

meanc
minc

minindc

ndpcntrl

ne

ones

open

plot
plotsym
pop
pagwin

return
rev
rfft
rffti
rfftip

Ipos
[print
Ipwidth
Ishow

miss
missrv

moment

new

not

openpag
or

prcsn
print
printdos

printfm

rndcon
rndmod
rndmult
rndn

rndns

[usol

msym

output
outwidth

proc
prodc
push

rotater
round
rows
rowsf

run

B-4

Reserved Words Appendix

recsercp
reshape
retp

save
saveall
scalerr
scalmiss
schur
screen
scroll
seekr
sega
seqgm
setvmode

tab
tan
tempname

time

union

unigindx

rfftn
rfftnp
rfftp

shiftr
show
showpqg
sin

seep
solpd
sortc
sortcc
sorthc
sorthcc

sortind

timeutc
trace

trap
trapchk

unique

until

rndseed
rndu

rndus

sortindc
sort
stdc
stocv
stof
stop
strindx
string
strien
strrindx

strsect

trim
trimr

trunc

type

upper
use

submat
subscat
sumc
svdcusv
svds
svdusv
sysstate
system

typecv
typef

utctodtv

utrisol

B-5

GAUSSUser Guide

v
vals varput Vec vfor
varget varputl vech
varget! vartypef Vecr

w
while wingetcolorcells winrefresh winsetforeground
winclear wingetcursor winrefresharea winsetrefresh
wincleararea winmove winresize winsettextwrap
winclearttylog winopenpgg winsetactive winwrite
winclose winopentext winsetbackground winzoompqg
wincloseall winopentty winsetcolor writer
winconvertpgg winpan winsetcolorcells
wingetactive winprint winsetcolormap
wingetattributes winprintpgg winsetcursor

X
xor xpnd

z
zeros

B-6

Singularity Tolerance
Appendix

The tolerance used to determine whether or not a matrix is singular can be changed.
The default value is 1.0e-14 for both the LU and the Cholesky decompositions. The
tolerance for each decomposition can be changed separately. The following operators
are affected by a change in the tolerance:

Crout LU Decomposition

crout (X)

crout p(x)

i nv(X)

det (X)

yl X when neither x nor y is scalar and x is square.

Cholesky Decomposition

chol (X

i nvpd(Xx)

sol pd(yX)

yl X when neither x nor y is scalar and x is not square.

C-1

GAUSSUser Guide

Reading and Setting the Tolerance

The tolerance value may be read or set using the sysst at e function, cases 13 and
14.

Determining Singularity

There is no perfect tolerance for determining singularity. The default is 1.0e-14. You
can adjust this as necessary.

A numerically better method of determining singularity isto use cond to determine
the condition number of the matrix. If the equation

1/ cond(x) + 1 eql

istrue, then the matrix is usually considered singular to machine precision. (See
LINPACK for adetailed discussion on the relationship between the matrix condition
and the number of significant figures of accuracy to be expected in the result.)

Cc-2

Index

Operators and Symbols

1 11-5

- 114

19-1,19-2
$+ 11-14

$| 11-15

$~ 11-16

% 11-5

& (ampersand) 11-14
(colon) 11-14
(semicolon) 10-2
* 11-4

*~ 117

+ 114

, (comma) 11-13
. 11-10, 11-10

. (dot) 11-9, 11-10, 11-14
x 115
*.11-6

[11-6

/= 11-10

== 11-10

> 11-11

>= 11-11

N 11-6

.and 11-13

.eq 11-10

.eqv 11-13
fegfile 12-12
.ge 11-11

ot 11-11

Jle 11-10

At 11-10

.ne 11-10

.not 11-13

xor 11-13

/ 11-5

/= 11-10

= 101

== 11-9

> 11-10

N 11-6
_pageshf 20-13
_parrow 20-13
_parrow3 20-14
_paxes 20-15

_paxht 20-16
_pbartyp 20-16
_pbarwid 20-16
_pbox 20-16
_pboxctl 20-16
_pboxlim 20-17
_pcolor 20-17
_pcrop 20-17
_pcross 20-18
_pdate 20-18
_perrbar 20-18
_pframe 20-19
_porid 20-19
_plctrl 20-19
_plectrl 20-20
_plegstr 20-20
_plev 20-20
_pline 20-20
_pline3d 20-22
_plotshf 20-23
_plotsiz 20-23
_pltype 20-23
_plwidth 20-24
_pmcolor 20-24
_pmsgctl 20-24
_pmsgstr 20-24
_pnotify 20-25
_pnum 20-25
_pnumht 20-25
_protate 20-25
_pscreen 20-25
_psilent 20-25
_pstype 20-25
_psurf 20-26
_psym 20-26
_psym3d 20-26
_psymsiz 20-26
_ptek 20-26
_pticout 20-26
_ptitlht 20-27
_pversno 20-27
_pxpmax 20-27
_pxsci 20-27
_pypmax 20-27
_pysci 20-27
_pzclr 20-27
_pzoom 20-27
_pzpmax 20-27
_pzsci 20-27

| 11-8

~ 11-8

Index-1

GAUSSUser Guide

A

ampersand 11-14
and 11-11, 11-12
append 21-3
append, atog command 21-1
arguments 10-31, 12-2, 12-3
arrows 20-13
ASCII Files 16-2
ASCII files 21-1
reading 16-3
writing 16-3
asclabel 20-10
assignment operator 10-2, 10-31, 11-13
atog 21-1
autoloader 14-1, 21-17
axes 20-2
axes numbering 20-2

B

bar 20-1
bar shading 20-16
bar width 20-16
batch mode 3-1
begwind 20-5, 20-8
blank lines 10-30
Bookmarks 5-2
Boolean operations 11-11
box 20-1
Breakpoints
Setting and Clearing 5-5
using 5-5
browse 3-2

C

calling a procedure 12-5
caret 11-6, 11-16
case 10-30
Cholesky decomposition 11-5
circles 20-4, 20-18, 20-20
code 19-2
colon 10-30
color 20-5, 20-18

arrow 20-14

bar 20-16

box 20-16

pbox 20-16

z-level 20-5
comma 11-13

command 10-2
Command Input - Output Window 5-3
command line

configuration 3-3

debugging 3-4

editing 3-2
comments 10-30
comparison operator 10-31
compilation phase 19-3
compile 15-1
Compile Options 5-8
compiletime 10-1
compiled language 10-1
compiler 4-1, 15-1
complex 21-3
complex constants 10-11
complex, atog command 21-1
concatenation, matrix 11-8
conditional branching 10-27
conformability 11-1
constants, complex 10-11
contour 20-1
contour levels 20-20
control, flow 10-23
coordinates 20-6
cropping 20-2, 20-17

D

dataloop 19-1
data sets 16-6
dataloop 19-1
date 20-3
date formats 10-19
Debugger
Using 5-4
debugging 15-2
command line 3-4
delete 19-2
delimited
hard 21-5
soft 21-4
delimited files 16-3
division 11-5
doloop 10-24
dot relational operator 11-17, 11-18
draw 20-1
drop 19-2
DT Scalar Format 10-19
DTV vector format 10-20

Index-2

E

edit windows 5-1
editing
command line 3-2
editing keys 5-10
Editing Matrices 6-1
Editor Properties 5-9
element-by-element conformability 11-1
element-by-element operators 11-1
empty matrix 10-11
encapsulated PostScript Graphics 3-2
endp 12-2,12-5
endwind 20-8
eq 11-9
eqv 11-13
error bar 20-7, 20-18
EXE conformable 11-1
executable code 10-3
executable statement 10-2
execution phase 19-3
execution time 10-1
exponentiation 11-6
expression, evaluation order 10-22, 11-18
expression, scalar 10-26
expressions 10-1
extern 19-2
extraneous spaces 10-30

F

factorial 11-5
FALSE 10-24
fileformats 16-11
files 16-1
binary 16-12
matrix 16-12
string 16-13
finding symbols 3-2
flow control 10-23
fonts A-1
forward reference 14-1
function 10-29

G

GAUSSHep 9-1

GAUSS Source Browser 8-1
ge 11-10

global variable 12-1, 12-4
graphics

viewing 3-2
graphics text elements 20-9
graphics windows 20-4, 20-6
graphics, publication quality 20-1
grid subdivisions 20-19
gt 11-10

H

hard delimited 21-5
hardware requirements 2-1
hat operator 11-6, 11-16
Help 9-1

hidden lines 20-26

horizontal direct product 11-7

indefinite 10-20

indexing matrices 10-31, 11-13

indexing procedures 11-14

infinity 10-21

initiaize 12-3

inner product 11-4

inpu, atog command 21-1

input 21-3

instruction pointer 10-2

interactive commands
running 5-4

interpreter 10-1

intrinsic function 10-6

invar 21-4

invar, atog command 21-1

K

keep 19-2

keys, editing 5-10
Keystroke Macros 5-2
keyword 12-1, 12-6
Kronecker 11-6

L

label 10-28, 10-30, 12-1
lag 19-2

le 11-9

least squares 11-5
left-hand side 14-2
legend 20-2

Index-3

GAUSSUser Guide

lib_path 21-16

liblist 21-15

libraries, troubleshooting 14-11
library 14-1

library symbol listing utility 21-15

Library Tool 7-1
library, optimizing 23-1

line thickness 20-18, 20-22, 20-23, 20-24, 20-26
linetype 20-14, 20-15, 20-18, 20-21, 20-23

linear equation solution 11-5
lines 20-1

listwise 19-2

literal 10-16, 11-16

loadp 12-12

local 12-2

local variable declaration 12-3
local variables 10-6, 12-3
logical operators 11-11
looping 10-24

It 11-9

LU decomposition 11-5

M

Macros 5-2
magnification 20-27
main program code 10-4
main section 10-3
make 19-2
Making a Watch Window 5-7
Managing Libraries 7-1
math coprocessor 2-1
matrices, indexing 10-31
matrix conformability 11-1
Matrix Editor 6-1
matrix, empty 10-11
maxvec 23-2
menu

command line 3-3
missing values 11-5, 11-9
modulo division 11-5
msym 21-8
msym, atog command 21-1
multiplication 11-4

N

NaN 10-20

NaN, testing for 10-21, 11-9
ne 11-10

nocheck 21-9

nocheck, atog command 21-1

nonexecutable statement 10-2
nontransparent windows 20-7
not 11-9, 11-11, 11-12, 11-19

O

operators 10-1, 11-4
Options

Compile 5-8

Run 5-7
or 11-12,11-13
outer product 11-5
output 16-2, 16-4, 21-9
output, atog command 21-2
outtyp 19-2, 21-9
outtyp, atog command 21-2
outvar 21-10
outvar, atog command 21-2
overlapping windows 20-7

P

packed ASCII files 21-7
pagesiz 20-13
pairwise deletion 11-5
passing to other procedures 12-8
performance hints 23-1
pointer 11-14, 12-4
pointer, instruction 10-2
PostScript graphics 3-2
precedence 10-22, 11-18
precedence, operator 11-18
preservecase 21-10
proc 12-2
procedure definition 10-3
procedure, saving 12-12
procedures

indexing 12-9

multiple returns 12-10
program 10-3
Properties

Editor 5-9

R

radii 20-20

recode 19-2

recursion 12-4

relational operator 11-8, 11-10
relational operator, dot 11-18
reserved words B-1

Index-4

retp 12-2, 12-4
right-hand side 14-2
rules of syntax 10-29
run
commands interactively 5-4
Run Options 5-7

S

screen 16-4
search
activelibraries 9-2
Autoloader Search Path 14-2
Find specified text 4-3
GAUSS Source Browser 8-1
symbols 3-2
secondary section 10-4
select 19-2
semicolon 10-2
singularity tolerance C-1
soft delimited 21-4
spaces 11-14
spaces, extraneous 10-30, 11-14
src_path 14-1, 21-15, 23-1
startup file 12-13
statement 10-2, 10-29
statement, executable 10-2
statement, nonexecutable 10-2
string array concatenation 11-15
string arrays 10-17, 10-18
string concatenation 11-14
string files 16-13
strings, graphics 20-10
Structures 13-1
subroutine 10-29
substitution 11-16, 11-17
symbol hames 10-30
symbols
finding 3-2
syntax 10-29

T

table 11-4
temporary files 23-1
tensor 11-6
TGAUSS 3-1

thickness, line 20-18, 20-22, 20-23, 20-24

tick marks 20-12
tilde 11-8

tiled windows 20-6
timeformats 10-19

tmp environment string 23-1
tolerance C-1

trandlation phase 19-3
transparent windows 20-7
transpose 11-7

transpose, bookkeeping 11-7
troubleshooting, libraries 14-11
TRUE 10-24, 11-9

U

unconditional branching 10-28
Using Breakpoints 5-5

Using The Debugger 5-4

UTC scalar format 10-20

Vv

vector 19-2

vectors 10-31
viewing graphics 3-2
Viewing Variables 6-1
virtual memory 23-2
vwr 3-2

wW

watch window 6-2
Making a 5-7

windows
graphics 20-4, 20-6
nontransparent 20-7
overlapping 20-7
tiled 20-6
transparent 20-7

X

xor 11-12, 11-13

V4

zooming 20-27

	Contents
	Language Fundamentals 10-1
	Operators 11-1
	Procedures and Keywords 12-1
	Structures 13-1
	Libraries 14-1
	Compiler 15-1
	File I/O 16-1
	Foreign Language Interface 17-1
	Data Exchange 18-1
	Data Transformations 19-1
	Publication Quality Graphics 20-1
	Utilities 21-1
	Error Messages 22-1
	Maximizing Performance 23-1

	Introduction
	Product Overview
	Documentation Conventions

	Getting Started
	Installation Under UNIX/Linux
	Installation Under Windows
	Machine Requirements
	Installation from Download
	Downloading
	Installation

	Installation from CD

	Using the Command Line Interface
	Viewing Graphics
	Interactive Commands
	quit
	ed
	browse
	config

	Debugging

	Introduction to the Windows Interface
	GAUSS Menus
	File Menu
	Edit Menu
	View Menu
	Configure Menu
	Run Menu
	Debug Menu
	Tools Menu
	Window Menu
	Help Menu

	GAUSS Toolbars
	Main Toolbar
	Working Directory Toolbar
	Debug Toolbar

	Status Bar
	GAUSS Status

	Using the Windows Interface
	Using the GAUSS Edit Windows
	Editing Programs
	Using Bookmarks
	Changing the Editor Properties
	Using Keystroke Macros
	Using Margin Functions
	Editing with Split Views
	Finding and Replacing Text
	Running Selected Text

	Using The Command Input - Output Window
	Running Commands
	Running Programs in Files

	Using The Debugger
	Starting and Stopping the Debugger
	Using Breakpoints
	Setting and Clearing Breakpoints
	Using the Breakpoint Editor to Set and Clear Breakpoints

	Stepping Through a Program
	Viewing and Editing Variables
	Viewing Variable Values During Debugging
	Editing Variable Values During Debugging
	Making a Watch Window

	Customizing GAUSS
	Preferences Dialog Box
	Run Options
	Compile Options
	Files
	DOS Window

	Editor Properties
	Color/Font
	Language/Tabs
	Misc

	Using GAUSS Keyboard Assignments
	Cursor Movement Keys
	Edit Keys
	Text Selection Keys
	Command Keys
	Function Keys
	Menu Keys

	Matrix Editor
	Using the Matrix Editor
	Editing Matrices
	Viewing Variables
	Setting Watch Variables

	Matrix Editor Menu Bar
	Matrix Menu
	Format Menu
	Edit Menu
	View Menu

	Library Tool
	Using the Library Tool
	Managing Libraries
	Managing the Library Index
	Managing Library Files

	GAUSS Source Browser
	GAUSS Help
	Context-Sensitive Help
	CTRL+F1 Support
	ToolTips
	SHIFT+F1 Help Support
	Help Menu
	Other Help

	Language Fundamentals
	Expressions
	Statements
	Executable Statements
	Nonexecutable Statements

	Programs
	Main Section
	Secondary Sections

	Compiler Directives
	Procedures
	Data Types
	Constants
	Decimal
	String
	Hexadecimal Integer
	Hexadecimal Floating Point

	Matrices
	Strings and String Arrays
	Strings
	String Arrays

	Character Matrices
	Date and Time Formats
	DT Scalar Format
	DTV Vector Format
	UTC Scalar Format

	Special Data Types
	NaN
	INF
	DEN, UNN

	Operator Precedence
	Flow Control
	Looping
	do loop
	for loop

	Conditional Branching
	Unconditional Branching
	goto
	gosub

	Functions
	Rules of Syntax
	Statements
	Case
	Comments
	Extraneous Spaces
	Symbol Names
	Labels
	Assignment Statements
	Function Arguments
	Indexing Matrices
	Arrays of Matrices and Strings
	Arrays of Procedures

	Operators
	Element-by-Element Operators
	Matrix Operators
	Numeric Operators
	Other Matrix Operators

	Relational Operators
	Logical Operators
	Other Operators
	Assignment Operator
	Comma
	Period
	Space
	Colon
	Ampersand
	String Concatenation
	String Array Concatenation
	String Variable Substitution

	Using Dot Operators with Constants
	Operator Precedence

	Procedures and Keywords
	Defining a Procedure
	Procedure Declaration
	Local Variable Declarations
	Body of Procedure
	Returning from the Procedure
	End of Procedure Definition

	Calling a Procedure
	Keywords
	Defining a Keyword
	Calling a Keyword

	Passing Procedures to Procedures
	Indexing Procedures
	Multiple Returns from Procedures
	Saving Compiled Procedures

	Structures
	Defining and Creating Structures
	Initializing Structures
	Passing Structures to Procedures

	Libraries
	Autoloader
	Forward References
	Left-Hand Side
	Right-Hand Side

	The Autoloader Search Path
	Autodelete ON
	Autodelete OFF
	Libraries
	user Library
	.g Files

	Global Declaration Files
	Troubleshooting
	Using dec Files

	Compiler
	Compiling Programs
	Compiling a File

	Saving the Current Workspace
	Debugging

	File I/O
	ASCII Files
	Matrix Data
	Reading
	Writing

	General File I/O

	Data Sets
	Layout
	Creating Data Sets
	Reading and Writing
	Distinguishing Character and Numeric Data
	Using Type Vectors
	Using the Uppercase/Lowercase Convention (v89 Data Sets)

	Matrix Files
	File Formats
	Small Matrix v89 (Obsolete)
	Extended Matrix v89 (Obsolete)
	Small String v89 (Obsolete)
	Extended String v89 (Obsolete)
	Small Data Set v89 (Obsolete)
	Extended Data Set v89 (Obsolete)
	Matrix v92 (Obsolete)
	String v92 (Obsolete)
	Data Set v92 (Obsolete)
	Matrix v96
	Data Set v96

	Foreign Language Interface
	Creating Dynamic Libraries
	Writing FLI Functions

	Data Exchange
	Formats Supported
	Data Exchange Procedures
	Global Variables

	Data Transformations
	Using Data Loop Statements
	Using Other Statements
	Debugging Data Loops
	Translation Phase
	Compilation Phase
	Execution Phase

	Reserved Variables

	Publication Quality Graphics
	General Design
	Using Publication Quality Graphics
	Getting Started
	Header
	Data Setup
	Graphics Format Setup
	Calling Graphics Routines

	Graphics Coordinate System
	Inch Coordinates
	Plot Coordinates
	Pixel Coordinates

	Graphics Graphic Panels
	Tiled Graphic Panels
	Overlapping Graphic Panels
	Nontransparent Graphic Panels
	Transparent Graphic Panels
	Using Graphic Panel Functions
	Inch Units in Graphics Graphic Panels
	Saving Graphic Panel Configurations

	Graphics Text Elements
	Selecting Fonts
	Greek and Mathematical Symbols

	Colors
	Global Control Variables

	Utilities
	ATOG
	Command Summary
	Commands
	append
	complex
	input
	invar
	msym
	nocheck
	output
	outtyp
	outvar
	preservecase

	Examples
	Error Messages

	LIBLIST
	Report Format
	Using LIBLIST

	Error Messages
	Maximizing Performance
	Library System
	Loops
	Virtual Memory
	Data Sets
	Hard Disk Maintenance
	CPU Cache

	Fonts Appendix
	Simplex
	Simgrma
	Microb
	Complex

	Reserved Words Appendix
	Singularity Tolerance Appendix
	Crout LU Decomposition
	Cholesky Decomposition
	Reading and Setting the Tolerance
	Determining Singularity

	Index

