GAUSS

User Guide

Aptech Systems, Inc— Mathematical and Satistical System

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software
described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in
accordance with the terms of this agreement. The purchaser may make one
copy of the software for backup purposes. No part of this manual may be
reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying or recording, for any purpose other than
the purchaser’s personal use without the written permission of Aptech
Systems, Inc.

© 1984, 2002 Aptech Systems, Inc. All rights reserved.

GAUSS and GAUSS Light are trademarks of Aptech Systems, Inc.
GEM isatrademark of Digital Research, Inc.

Lotusisatrademark of Lotus Development Corp.

HP Laser Jet and HP-GL are trademarks of Hewlett-Packard Corp.
PostScript is atrademark of Adobe Systems Inc.

IBM is atrademark of International Business Machines Corporation.
GraphicC is atrademark of Scientific Endeavors Corporation.
Tektronix is atrademark of Tektronix, Inc.

Windows is aregistered trademark of Microsoft Corporation.

Other trademarks are the property of their respective owners.

Part Number: 003080
Version 5.0
Revised October 31, 2002

Contents

Contents
[oo U1 o3 (o] o [T 1-1
g (o]0 (1o L@ V7T V7 = VTR 11
DocUMENLALION CONVENTIONSeeeiiiit ettt e e e et e e et e e et e s e e e e s e e e s aaeesaaaeesens 1-2
GOLEING STAMEA ...ttt ee e ee e e e s e aaeaeaee e s 2-1
Installation UNder UNDX/LINUXooounoee ettt e e et e e e e e e ee e e e eaa e e eeaanas 21
INStallation UNAEr WINGOWS........ue et ettt e e et e e e st e e st e e e e e e sanneeens 2-1
MaChiNg REQUINEIMENTS.iiiiiiiie ettt 2-1
Installation from DOWNIOAouiiiieieiie et e e e e e e e e s 2-2
INSTAIALION FTOM CD ..ottt e e e e e e et e e ee e et e eeaaaaees 2-2
Using the Command Line INterface ... 3-1
VIEWING GraphiCsS ..ottt e e e e 3-2
INTEraCtiVE COMIMEANTSe ittt ee et e et e e e e et e e e e e e et e eeaa e s seneessaansssanesens 3-2
o U PRSP PPRPSPPRURRS 3-2
[T DT 3-2
{01 €0 1V LTI 3-2
[o70] 110 PSP OPUPTPPPIN 3-3
(D I= o 10 o o] o o TSSO P PP PPPTPP 3-4
GENEIAI FUNCLIONSeeieet ettt e e e e e e e e e s e e e e e s ee e s snaneeesanneee 3-4
LIStING FUNCHIONS ...ttt et ettt et e e e r e e e e nnreeeeenn 3-4
EXECULION FUNCLONS ...t ettt ettt e e e e e e et e eee e e e s 3-4
AV (SN e 1111 4 T= Vg [0 [T 3-6
Breakpoint COMMANGScooiiiiie et 3-6
Introduction to the WindoWsS INtEITACE.ooiueeiii e 4-1
GAUSS MEBNUS ...t e e et e e et e et eee e et e e e e et e et st eeaaeeaa e e st e s raeeansens 4-2
[LY [T 0 LU PR 4-2
[0 L1\, =1 1 TP 4-3
A TSN Y L= 1O PP 4-4
CONFIGUIE MEBNU ..ttt ettt e e b e e et e e e e nnbbeee e e 4-5
8T 1Y/ = L 4-5
DEDUG MEBNU ...t e 4-6
0o ES3 1Y (= o LU TR 4-7
VA AT To (o) VY [T o LU PR 4-7
HEIPD MEBNU .. et e b e 4-9
GAUSS TOOIDAIS ... ettt e e e et et e e e e e e e e e e e e e e e eeeanas 4-9
[V E= T I [0 o] 1 o T= T TP 4-9

GAUSS User Guide

Working DireCtory TOOIDAoeiiiiiiiiie it 4-11
DEBUG TOOIDA ... et e e e ee e 4-11
STALUS BAI ...ttt ettt re e e e e e 4-12
GAUSS STALUS ...ttt ettt e e e e e s e e e e e e e s e 4-12
Using the WINdOWS INTEITACEuviiiiiiieiii e 5-1
Using the GAUSS Edit WINUOWScooiiiiiiiiiieiie e ee e e e e e eeeaeae e e 5-1
EdItiNg PrOGramSoiiiiiiie ettt ettt e e b e e e e nnbeeee e e 5-1
USING BOOKMAIKSoiiiiiiii et 5-2
Changing the Editor PrOPertiesccocuiiii ittt 5-2
USING KEYSIIOKE IMBCIOS ... eeiiiitiieie ittt ettt e e sae e e 5-2
USING Margin FUNCLIONSoiiiiiiii ettt e 5-3
Editing With SPIt VIEWSeiiiiiie e 5-3
Finding and RepPIacing TEXEueiiiiiiieie et 5-3
RUNNING SEIECIEA TEXL......eeiiiiiiiee et 5-3
Using The Command Input - OUtPUL WINAOWcooiiiiiiiiiiiiiie e 5-3
RUNNING COMMANTS ...ttt b e e b e e e e nr e e e e e 5-4
RUNNING Programs iN FileSuiiiiiiiii it 5-4
USING ThE DEDUGGETeeeieeiiie ettt e e 5-4
Starting and Stopping the DEDUGGET.........cooiiiiiiiiiiee e 5-5
USING Bre@KPOINTSoiiiiiiiiie ettt e e 5-5
Setting and Clearing BreakpOintscoouiiiiiiiiiiieeeiiieeie e 5-5
Stepping Through @ Program ... 5-6
Viewing and Editing Variablesccuuiiii e 5-6
CUSIOMIZING GAUSS ... e e e 5-7
Preferences Dialog BOXouui it ie et ee e e e e et ee e e e e e e e nenne e 5-7
EdItOr PrOPEITIES ...ttt ettt e e e nr e e e e e 5-9
Using GAUSS Keyboard ASSIGNMENTSccoiiuiiiieiiiiieie ettt 5-10
CUrSOr MOVEMENT KEYSiiiiiiiiie ittt ettt e e et ee e e e e 5-10
o[=) VT USSP 5-11
TEXE SEIECHON KBYS ...ttt 5-11
COMMEANT KBYS ..ttt ettt ettt ra et seenee s 5-12
FUNCHON KEYS ...ttt ettt e e et e e e en e e ee e 5-13
IMIENU KBY S ..ottt ettt ettt ettt ettt e e e e e e e e e e e e aeaeeeeeeeeeaeeenes 5-13
MALFIX EQITOT ..ttt ettt e et e e e e e b e e e e e s s 6-1
USING the MatrixX EAILOr......coouueiiiiiiiieice e 61
EdItiNG MAIIICES ...ttt e a b e e e nnbeeee e e 6-1
VIEWING VANADIES ..o e e et ee e e s 6-1
MatriX EQItOr MENU Bar........cooiiiiiiiiiiie et 6-2

Contents

[o] = 1Y/ o T) PSR 7-1
USING the LIDrary TOOIooiuiiiiiiiie e 71
MaNAGING LIDFAMIES ...ceeiiiiiiie e e e 7-1
Managing the Library INdeX ... 7-1
Managing LIDrary FilES ... 7-1
GAUSS SOUICE BIOWSEI ..ttt ettt et e e e ee e e e 8-1
Using the Source Browser in TGAUSSooiiiiiiiiet e 8-1
Using the Source Browser in GAUSSuiii i 8-2
Opening Files From the SOUrce BrOWSETccooiiiiiiiiriiiiiieeee e 8-3
Source Browser Keyboard CONtrolSoooiuiiiiiiiiiiieeiiec e 8-3
GAUSS HEIP oot 9-1
CoNteXt-SENSItIVE HEIP ...ooiiiiiie e 91
(O3 I LI R ST U] o] o PRI 9-2
1 Yo I T o 1RSSR 9-2
SHIFTHFL HEIP SUPPOIT ...ttt ettt e e e e e e e eeeeeaee e s 9-2
[1= 1o TN 1Y 1= o O USRS 9-2
(@1 =T = o PR SSTPSPPRPRRR 9-2
Language FUNAamMeENTalSooooi oot er e e e e 10-1
{1 {115 (o] o 1P UUPRUR 10-1
STAIEIMENTS ...ttt e e et e et e e e e e e e e ae e e e e e 10-2
Executable StatemMENTSc.oouiiiiiiiiii e 10-2
Nonexecutable StateMENTS..........cooiiiiiiiiii e 10-2
PIOQIAIMS ... e et e e e s 10-3
MAIN SECLIONeii it ea e e s eae e e e e e 10-3
SECONAAIY SECHONS.eiiiitit ettt ettt e et e e b beeee e sbebeeee s 10-4
COMPIIET DIFECHIVES ...ttt ettt e s ee e e e e 10-4
PrOCEAUIES ...t e bbbt e e eb et e e e bbb ee e e e nbbeee e e e nneee 10-6
DAl TYPES .. e s 10-7
(O] 0151 1= | £SO P P TP EPPPTRIN 10-7
IMBIETICES .ttt et e e eh e eeh e e n e ee e e e 10-8
StrNGS @Nd SENG ATAYSeveiie ittt b e e eas 10-14
CharaCter MALIICESeeiiiiie ettt et n e e e e 10-19
Date and TimMe FOIMIALScoiiiiiiiie ettt enae e e eas 10-20
SPECIAI DALA TYPES .. e eeeieeieieeeeee ettt ee e ee e e e e e e s sttt eeeeaaeeeea s e enenneaeeeeeeeeaaeenns 10-21
(O] o1 o1 (o] g o (=Tot=To =T o To PP PPTPPPPP PP PRPPPRPTR 10-23
FIOW CONTIOL ...ttt ee e ee e e eeaes 10-24

GAUSS User Guide

[oTo] o 1 o F R PP PPP PP 10-25
Conditional BranChingoooi i 10-28
Unconditional BranChing...........c.ueeeeiiiiiieiiiie et 10-29
FUNCHIONS .ottt ettt ettt e e e r e e e en b e e e e nneeeeennes 10-30
RUIES OF SYNEAX ..1etieiitie ettt e e et e e e r e e e e 10-30
STAIEIMENTS ...ttt et e a e 10-30
(O 1TSS P PP PPPRPPPRPPN 10-31
COMIMENTS .ttt e e et ee e e e e s e et reee e ee e s e s eanes 10-31
EXIrANEOUS SPACES.....eiiiiieiiiiiiett ettt ettt e e e e e e s e ee e e e s e e nenaes 10-31
SYMDBOI NAMES ...ttt e e e e e e e e e s e aeeeaeeeeeneennes 10-31
LADEIS ... e e eas 10-31
ASSIGNMENT SEALEIMENTS ...eeiiiiiiiiiie et n e e e 10-32
FUNCHON AFQUIMENES ..ttt ettt et re e e ean e e e e 10-32
INAEXING MALICESeeiieiiiie et 10-32
Arrays of Matrices and StHNQGS.ueuiiiiiiieeii et ee e e e e e 10-33
AITAYS OF PrOCEUUIES ...ttt ettt e e e 10-34
(O] 01=T 2= 1 o] & TSRO RPRPPRPT 11-1
Element-by-Element OPEratorsooueeiiiiiiiiii et 111
MALITX OPEIALOIS .ottt ettt e et e et e e e bbb e e et e e e e nneas 11-4
NUMEFIC OPEIALOIS ...eeieetiieee ettt ee ettt e ettt e e et e e et e e e e bbbt e e e b e e e s enreeeeannnes 11-4
Other MAtriX OPEIALOFS.uuiiiiieieeieei ittt ettt e ettt ee e st ee e e s bbb ee e s s abbeee e e s srbeeeeen e 11-7
RelatioNal OPEIatorsccooi ettt e et ee e e e e e e e e e s et eeeeeaeeeeeaennne 11-8
[WoTo|[or= LN @] o 1=] r= 1 (o] £ TP PP PPPPPPPP 11-11
(@1 1T @ 01T -1 o] £ U 11-13
ASSIGNMENT OPEIALONteteee ettt ettt e e et e e bbe e e e baeeeeenns 11-13
(O] 1 1] 1 1 I TP TPPPRPTPR 11-13
PEIIOM ..ot e e 11-14
SPACE .ttt e e e s e ae e 11-14
C0l0N e 11-14
AIMPETSANG ...ttt e e et ee e et e e e e e et e e e e e e e e neees 11-14
StrNG CONCALENATIONeeieeitiie ettt 11-14
String Array CONCAIENALION.......ciiuuriie ittt 11-15
String Variable SUDSHIULIONeviii i 11-16
Using Dot Operators With CONSTANTS..........eeiiiiiiiieii i 11-17
(O] 01=] = 10 g = Tod=To [T o To USRI 11-18
Procedures and KEYWOIUScuvviiiiiiiiee ettt 12-1
DefiNiNg @ PrOCEAUIEcoooiiiiiie e 12-2
Procedure DeCIarationc.ueeiiiiiiiiie e 12-3

vi

Contents

Local Variable DeCIarationsScooouuiiiiiiiieee et 12-3

BOAY Of PrOCEAUIE ...ttt 12-4

Returning from the ProCedureccueiiiiiiiiii e 12-4

End of Procedure Definition........... ..o 12-5
CalliNg @ PrOCEAUIE ...ttt e e e e e e e e s et te e e aeeeeeeenas 12-5
KBYWOITS .ttt e e e et e e e e b e e e e bbb e e en e e e e eanneee 12-6

DefiNiNg @ KEYWOITcoiiuiiiieeiiitiee ettt ettt e e ee e 12-6

Calling @ KEYWOIT........eeeiiiitieie ettt et e b 12-7
Passing Procedures t0 PrOCEAUIESuiiiiiiiiiiie ettt 12-8
INAEXING PTOCEUUIES ...ttt ettt e e e e e e e enneeeeennn 12-9
Multiple Returns from ProCEAUIEScuuiiiiiiiiiieie et 12-10
Saving Compiled ProCEAUIEScuiiiiiiiiiie et 12-12
SETUCTUTES <. e e e e e e e e e e e e e e e eeee e et eeete e ae e et e a e e e e e e e e eaeaeaeaeeeeeeens 13-1
Defining and Creating StrUCIUMEScovi ittt e e 131
INIIANIZING SEIUCTUIES ..t r e e e e e e e e e et ee e ae e e e e e e 13-2
Passing StrucCtures t0 PrOCEAUIESouiiiiiiiiiiie ettt 13-3
RUN-TIMe LiDrary SFUCTUIESuviiiiiiie et 14-1
The PV Parameter StUCIUIE........coi ittt 141
Fast PACK FUNCLIONSiiiiiiiie e 14-6
The DS DaAt@ SIFUCIUIEeeeeiiitieee ettt ettt e e e e e e b e e e ennaeee e 14-7
N-DIMENSTONAI ATTAYS ooiiiitiiiie ittt ettt e st e eneee 15-1
Bracketed INTEXINGooiiiiiieiie it 15-3
EXE CoNfOrmMabilitycoooiiiiiie ittt 15-4
GlOSSAIY OF TEIMNS ..ttt et r e e e e n e e e b b e e e e raeeeeennn 15-5
I o] = U SPEUUR 16-1
F U (o] [0 - To [RSP 16-1

FOrWard REFEIENCESoeiiieiiei e e e e e e 16-1

The Autoloader Search Path ... 16-2
Global DeClaration FilES.........uuiii i 16-8
QI o 10 o] [=1S] oo o) 1 o To [PPSR 16-11

USING TEC FIlES ...t et 16-12

vii

GAUSS User Guide

(00 11 o T 1= USSP POPUPRUSRR 17-1
COMPIIING PIOGIAIMS ..ottt e e e e e e e e e e einnaeee e 17-1
COMPIIING 8 FIlE i 17-2
Saving the CUrrent WOIKSPACEvueeieiiiiiiiie ettt ettt e e 17-2
D 1= oT0 o o] oo PP OO P PP PPPPPPRN 17-2
FIIE /O e e e b e et e e e e 18-1
ASCHI FIIES ettt ettt e e e h e e e e e 18-3
Y= L D B = - NSRS 18-3
GENETAI FIlE 1O oot 18-5
DAL SIS ...iieieiiiee ittt re e e s 18-6
[\ o 11 | PP U RO PPRPPURUPINt 18-6
Creating DAt SISociii ettt 18-7
Reading and WITLINGoeeiiiiiiiie et 18-7
Distinguishing Character and NUmeric Datacoeeveeiriiiiiiiiiiieiieee e 18-9
IMAIITX FIES ..ttt et e e e e e e r b e e e e e ae e e e ennnes 18-11
FIlE FOMMELS ...ttt e e e i e e e e e e eaee e 18-11
Small MatrixX V89 (ODSOIELE) ..o 18-12
Extended MatriX V89 (ODSOIEE)ccuuuiiiieiiiiie e 18-13
Small String V89 (ODSOIELE) ..o 18-13
Extended String V89 (ODSOIEe)........ouiiiiiiiiiiiee e 18-14
Small Data Set V89 (ODSOIEE)eueiiiiiieieeee e 18-14
Extended Data Set V89 (ODSOIEE)coeiiiiiiieeiiiiieie e 18-16
MatriX VO2 (ODSOIELE) ...t e 18-16
StrNG VO2 (ODSOIELE)eeiiiieiee et 18-17
Data Set V2 (ODSOIELE)eeiiiiiiiie ittt 18-18
IMBIETIX VOB ...ttt ettt e et e e et e et ee e e nnae e e ens 18-19
DAta SEE VOBttt 18-20
Foreign Language INTErfaCe ... 19-1
Creating Dynamic LIDraries. 19-1
WIItING FLI FUNCLIONS ...ttt ee e e e e e e e e e eeneeee 19-3
Data TranSTOrMAatiONSooiiiiiie e nee 20-1
Using Data LOOP STAEMENTSc.uviiiiiiiiiiee et 20-2
USING Other SEAtEMENTSeiiiie it 20-2
Debugging Data LOOPSccuvuiiieiiiie ettt ettt et et e nee e e e e 20-2
Translation Phase...........cccoiiiiiiiiiiiic 20-3
Compilation PRESEooiiiiiiie e 20-3

viii

Contents

EXECULION PRASE.......iiiiiiiiieie e 20-3
ReSErved Variables ... 20-3
Publication Quality GraphiCsouiiiiiiiiii e 21-1
GENETAI DESIGN ...ttt ettt e et e e e et e e e n b e e e e n e ee e 21-1
Using Publication Quality GraphiCsS.........cuuiiiiiiiiiiiiiiiee et 21-2

(€T ui] o TS 7= U 1= o S UPEURRR 21-2

Graphics Coordinate SYSIEMcc.uuuiiiiiiiiee e e 21-6
Graphics GraphiC Pan@ISuuiiiiiiiii e 21-6

Tiled GraphiC PAnEISccoo i 21-6

Overlapping GraphiC PanelS........cccuuuiiiiiiie e ee e e 21-7

Nontransparent Graphic Panelsccooiiiiiiiiiii e 21-7

Transparent Graphic PanelS..........cueeiiiiiiii e 21-7

Using Graphic Panel FUNCHONSc..uiiiiiiiiie et 21-8

Inch Units in Graphics Graphic PanelS.........c.cccoooiiiiiieiiiiiieciie e 21-9

Saving Graphic Panel Configurations............cueeeiiiiiieniiiieeee e 21-9
Graphics TEXE EIEMENEScoiuiiiiiiiie e e e e e 21-9

SEIECHING FONES ...ciiiitiii ettt e 21-10

Greek and Mathematical SYMDOIS. ... 21-11
(670] (o] £ J TR PP P PP PP PPPPPPPOPPPRPTN 21-12
Global Control Variablescoooiiiiii e 21-13
L] L =T PP PP UPPPPPRN 22-1
ATOG ettt h etttk ettt e et n s 221

COMMANT SUMMIATY ...ttt ee et e e e e e e e e es e seeee e eeaeeaeessessnsnneneaeeeeaeaaaesannas 22-1

COMMEANTUS ...ttt e et e e ettt e e e et e e e e et re e e e sannrneeeea 22-3

EXAMPIES .. e e 22-10

EITOr MESSAQGES ..o e 22-13
LB LIS ettt ettt E e E e bbb e e e e b 22-15

REPOM FOMMIAL ... 22-16

USING LIBLIST ottt ettt e e e en e e eeens 22-17
ErrOr MESSAQES e 23-1
Maximizing PerfOrmManCet ee e e e e e 24-1
LIDIAry SYSTEIM ...ttt e e e 241
(0T] o 1< SRR 24-2
RV (= V1Y =T 4 o] o PSR USR 24-2

DALA SOTS ...ttt e e 24-2

GAUSS User Guide

Hard DiSK MAINTENANCEcooouiiiiie ittt enae e e e 24-3

CPU CACNE ...ttt ettt e e san e e 24-3
FONES APPENAIX 1ottt e e e A-1
1107 0] L= PP PP UPPTPPP A-2
11010 [(10T DO P PP PPPPPPP A-3
1Y ToT o] o IO UPPPPRPP A-4
(O] 1410 USSP A-5
Reserved WOords APPENTIX ...t B-1
Singularity Tolerance APPENTIX ...eeeiii it B-1
Reading and Setting the TOIEraNCeueeiiiiiiie e B-2
Determining SINQUIAIITYueeie ettt e s B-2
INOEX e e e r e e e Index-1

Introduction

Product Overview

GAUSS™ is acomplete analysis environment suitable for performing quick
calculations, complex analysis of millions of data points, or anything in
between. Whether you are new to computerized analysis or a seasoned
programmer, the GAUSS family of products combine to offer you an easy to
learn environment that is powerful and versatile enough for virtually any
numerical task.

Sinceitsintroduction in 1984, GAUSS has been the standard for serious
number crunching and complex modeling of large-scale data. Worldwide
acceptance and use in government, industry, and the academic community isa
firm testament to its power and versatility.

The GAUSS System can be described several ways: It is an exceptionally
efficient number cruncher, a comprehensive programming language, and an
interactive analysis environment. GAUSS may be the only numerical tool you
will ever need.

11

GAUSS User Guide

Documentation Conventions

The following table describes how text formatting is used to identify GAUSS
programming elements.

Text Style Use Example
regular text narrative “...text formatting is used...”
bold text emphasis " ...not supported under
UNIX."
italic text variables “...If vnamesisastring or has

fewer elements than x has
columns, it will be...”

monospace code example if scalerr(cm;
cm = inv(x);
endi f;
nonospace bold ReferstoaGAUSS “...as explained under

programming element create..”
within a narrative

paragraph.

1-2

Getting Started

Installation Under UNIX/Linux

N o gk~ W DN

1.Make adirectory to install GAUSS in.

cd to that directory.

Unzip the. gz fileif thereis one.

Untar the . t ar file.

Put the installation directory in the executable path.

Put the installation directory in the shared library search path.

Install the license, please refer to Chapter 5: Licensing for instructions.

For last minute information, see README.term.

Installation Under Windows

Machine Requirements

A 486 computer or higher.

2-1

GAUSS User Guide

e Operating System and Memory (RAM) requirements
Windows NT4.0, SP6 1E4.0, 32 MB minimum 256 M B recommended.
Windows 2000, 64 MB minimum, 256 MB recommended.
Windows XP, 128 MB minimum, 256 M B recommended.

e Free hard disk space requirements:

Minimum of 100 MB free hard disk space, more may be needed depending on
the size of matrices and the complexity of the program.

» Monthly defragmenting is recommended.

Installation from Download

Downloading

The production releaseisin GAUSS 4. 0_W n_heavy. zi p.

The GUI has online documentation in HTML format. There are also PDF versions of
the Quick Start Guide and GAUSS manuals in this directory that you can download
separately if you want them.

GAUSS 4.0 Manual . zip

Installation

Download GAUSS_4. 0_W n_heavy. zi p, unzip it in atemp directory, and run
set up. exe.

If you are doing a command line ftp, once logged on you will be placed in the
GAUSS40 directory and will have accessto al files contained in that directory and no
others. Remember to set the transfer protocol to "bin" before downloading binary
files. Use the "get" command to get the files you want off the ftp site.

To install the license, please refer to the Quick Start Guide.

Installation from CD

Insert the GAUSS 4.0 compact disc into the CD-ROM drive, and setup should start
automatically. If setup does not start automatically, click Start, then click Run. Type
D: \ set up. exe inthediaog box (where D isthe drive letter of the CD-ROM
drive).

You can use this procedure for the initial installation of GAUSS, and for additions or
modificationsto GAUSS components.

To install the license, please refer to the Quick Start Guide.

2-2

Using the Command Line

Interface

TGAUSS isthe command line version of GAUSS. The executablefile, t gauss is
located in the GAUSS installation directory.

Theformat for using TGAUSS is.
t gauss flag(s) program program...

-b

-1 lodfile

- e expression

-0
-7
-t

Execute file in batch mode and then exit. You can execute
multiple files by separating file names with spaces.

Set the name of the batch mode log file when using the - b
argument. The defaultist np/ gauss###. | og, where ###
isthe proccess ID.

Executes a GAUSS expression. This command is not logged
when GAUSS isin batch mode.

Suppresses the sign-on banner (output only).
Turns the dataloop translator on.
Turns the dataloop translator off.

3-1

GAUSS User Guide

Viewing Graphics

GAUSS generates . t kf filesfor graphical output. The default output for graphicsis
gr aphi c. t kf . Under Windows, you can use vwr to view theresults of afile.
Under Windows and UNIX, two functions are available to convert . t kf filesto
PostScript for printing and viewing with external viewers: the t kf 2ps function will
convert . t kf filesto PostScript (. ps) files, and thet kf 2eps function will convert
. t kf filesto encapsulated PostScript (. eps) files. For example, to convert the file
gr aphi c. t kf toapostscript file named gr aphi c. ps use:

ret = tkf2ps("filename t kf", "filename. ps")

If the function is successful it returns 0.

Interactive Commands

quit

ed

browse

The qui t command will exit TGAUSS.
Theformat for qui t is:

qui t
You can also use the syst emcommand to exit TGAUSS from either the command
line or aprogram (see sy st emin the GAUSS Language Reference).
Theformat for syst emis:

system

The ed command will open an input file in an external text editor, see ed in the
GAUSS Language Reference.

Theformat for ed is;
ed filename

The br ows e command allows you to search for specific symbolsin afile and open
thefilein the default editor. You can use wildcardsto extend search capabilities of the
browse command

The format for br owse is;
br owse symbol

3-2

Using the Command Line Interface

config

The config command gives you access to the configuration menu allowing you to
change the way GAUSS runs and compilesfiles.

Theformat for confi g is.
config

Trandator

Trandator line
number tracking

Line number
tracking

Compile Menu
Autoload
Autodelete
GAUSS Library
User Library

Declare
Warnings

Compiler Trace

Toggles on/off the translation of afile using
dat al oop. Thetranglator is not necessary for
GAUSS program files not using dat al oop.

Toggles on/off execution time line number
tracking of the original file before trandation.

Toggles on/off the execution time line number
tracking. If the trandator is on, the line numbers
refer to the translated file.

Toggles on/off the autoloader.

Toggles on/off autodel ete.

Toggles on/off the GAUSS library functions.
Toggles on/off the user library functions.

Toggles on/off thedec! ar e warning messages
during compiling.

Off Turns off the compiler trace
function.

File Traces program file openings and
closings.

Line Traces compilation by line.

Symbol Creates areport of procedures

and the local and global symbols
they reference.

3-3

GAUSS User Guide

Debugging

The debug command runs a program under the source level debugger.

Theformat for debug is:
debug filename

General Functions

?

g/ Esc
+/ -

Listing Functions

| number

l c

[l fileline

Ll file

Il line

N
I p

Execution Functions

s number

i number

Displays aligt of available commands.

Exits the debugger and return to the GAUSS
command line.

Disables the last command repeat function.

Displays a specified number of lines of source codein
the current file.

Displays source code in the current file starting with
the current line.

Displays source code in the named file starting with
the specified line.

Displays source code in the named file starting with
thefirst line.

Displays source code starting with the specified line.
File does not change.

Displays the next page of source code.

Displays the previous page of source code.

Executes the specified number of lines, stepping over
procedures.

Executes the specified number of lines, stepping into
procedures.

3-4

Using the Command Line Interface

X number

g [args]

j Targs]

Executes code from the beginning of the program to
the specified line count, or until a breakpoint is hit.

Executes from the current line to the end of the
program, stopping at breakpoints. The optional
arguments specify other stopping points. The syntax
for each optional argumentsiis:

filename line cycle

filename line

filename ,, cycle

line cycle

filename

line

procedure cycle

procedure

The debugger will stop every
cycletimesit reaches the
specified line in the named
file.

The debugger will stop when
it reaches the specified linein
the named file.

The debugger will stop every
cycletimesit reachesany line
in the named file.

The debugger will stop every
cycletimesit reaches the
specified line in the current
file.

The debugger will stop at
every linein the named file.

The debugger will stop when
it reaches the specified linein
the current file.

The debugger will stop every
cycletimesit reachesthe first
linein acalled procedure.

The debugger will stop every
timeit reachesthefirst linein
acalled procedure.

Executes code to a specified line, procedure, or cycle
in the file without stopping at breakpoints. The
optional arguments are the same as g, listed above.

3-5

GAUSS User Guide

j X number

View Commands

v [[vars]

v$ [vars]

Executes code to the execution count specified
(number) without stopping at breakpoints.

Executes the remainder of the current procedure (or to
a breakpoint) and stops at the next linein the calling
procedure.

Searches for (alocal variable, then a global variable)
and displays the value of a specified variable.

Searches for (alocal variable, then a global variable)
and displays the specified character matrix.

The display properties of matrices and string arrays can be set using the following

commands.

r
c

number, number

q

Breakpoint Commands
I b

b [args]

Specifies the number of rows to be shown.
Specifies the number of columns to be shown.

Specifies the indices of the upper |eft corner of the block
to be shown.

Specifies the width of the columns to be shown.
Specifies the precision shown.

Specifiesthe format of the numbers as decimal, scientific,
or auto format.

Quits the matrix viewer.

Shows all the breakpoints currently defined.

Sets a breakpoint in the code. The syntax for each
optional argument is:

filename line cycle The debugger will stop every
cycletimesit reaches the
specified line in the named
file.

3-6

Using the Command Line Interface

d [args]

filename line

filename ,, cycle

line cycle

filename

line

procedure cycle

procedure

The debugger will stop when
it reaches the specified linein
the named file.

The debugger will stop every
cycletimesit reachesany line
in the named file.

The debugger will stop every
cycletimesit reaches the
specified line in the current
file.

The debugger will stop at
every linein the named file.

The debugger will stop when
it reaches the specified linein
the current file.

The debugger will stop every
cycletimesit reachesthe first
linein acalled procedure.

The debugger will stop every
timeit reachesthefirst linein
acalled procedure.

Removes a previously specified breakpoint. The
optional arguments are the same argumentsasb, listed

above.

3-7

Introduction to the Windows
Interface

The GAUSS graphical user interface is a multiple document interface. Theinterface
consists of the Menu Bar, the Toolbar, edit windows, the Command Input - Output
window, and the Status bar.

Menu Bar

Command Input - Output window

Toolbar Edit window

Status Bar

4-1

GAUSS User Guide

GAUSS Menus

You can view the commands on amenu by either clicking the menu name or pressing
ALT+n, where nisthe underlined letter in the menu name. For example, to display the
File menu, you can either click File or press ALT+F.

File Menu

The File menu lets you access the file, printer setup, and exit commands. Some of
these actions can also be executed from the toolbar. The File menu contains the
following commands:

New

Open

Save

Save As

Close

Close All

Insert File

Print

Print Preview
Print Setup

Change
Working
Directory

Opens a new, untitled document in an Edit window.
Note: New, unsaved documents are not automatically backed up
until you save them, giving them a file name.

Opens an existing file for viewing or editing.

Saves your changesto the file in the active window. If thefileis
untitled, you are prompted for a path and filename.

Saves your changes to the filein the active window using a new
or different path or file name.

Closesthe document in the active window. You are prompted to
save thefileif it has been modified since you last saved it.

Closes all open files. You are prompted to save any file that has
been modified since you last saved it.

Opens an existing text file and copies the contents into the
active document. Thisis similar to pasting text from the
Windows clipboard.

Prints the active file or selected text from the active window.
Shows a preview of your print job to view before printing.

Specifiesthe printer you want to use. Other printer options, such
as page orientation and paper tray, are also accessed with this
command.

Changes the directory where GAUSS looks for the files it uses
for normal operation. This command does not affect the Open or
Save As paths.

4-2

Introduction to the Windows Interface

Clear Clears the working directory list.

Working

Directory List

Exit Closes all open files and exits GAUSS. You are prompted to

save any file that has been modified since it was last saved.

Recent Files GAUSS maintainsalist of the ten most recent files you opened,
at the end of the File menu. If thefile you want to open ison this
list, click it and GAUSS opensit in an Edit window.

Edit Menu

The Edit menu letsyou access the set of editing commands. Some of these actions can
also be executed from the toolbar. The Edit menu contains the following commands:

Undo Restores your last changes in the active window.

Redo Restores changes in the active window that you removed using
the Undo Edit command.

Cut Removes selected text from the active window and placesit on
the Windows clipboard.

Copy Copies selected text from the active window to the Windows
clipboard.

Paste Copiestext from the Windows clipboard to the active window at
the cursor position.

Select All Selects all text in the active window.

Find Finds the specified text in the active window. The search starts

at the cursor position and continues to the end of thetext in the
active window. The search can be case sensitive or case
insensitive. You may also limit the search to regular expressions

Find Again Resumes the search for the next occurrence of the text you
specified in the previous Find action. Subsequent searches for
the same text can also be performed by pressing F3.

4-3

GAUSS User Guide

View Menu

Replace

Insert Time/
Date

GoTolLine

Go To Next
Bookmark

Toggle
Bookmark
Edit
Bookmarks

Record
Macro

L ocates the specified text in the active window and replacesiit
with the text you entered in the “ Replace with” field in the
Search dialog box. The search starts at the cursor position and
continuesto the end of the text in the active window. The search
can be case sensitive or case insensitive, and the replacement
can be unique or global.

I nserts the current time and date at the cursor position. GAUSS
uses the time and date that appears in the Microsoft Windows
Date/Time Properties window.

Moves the cursor to the specified line number.

Moves to the next bookmark in the program.

Sets or clears existing bookmarks from the program.

Opens the Edit Bookmarks window. From the Edit Bookmarks
window you can add, remove, or go to any set bookmark in a
program.

Places a series of keystrokes into memory so that they can be
called at alater date. For more information about recording
macros see “Using Keystroke Macros,” page 5-2.

The View menu lets you toggle the Main Toolbar, the Status Bar, the Working
Directory Toolbar, or the Debug Toolbar on or off.

Main Toolbar Togglesthe Main toolbar on or off. For more information about

Status Bar

Working
Directory
Toolbar

the Main toolbar, see “Main Toolbar,” page 4-9.

The Status Bar is located along the bottom of the GAUSS
window. For more information about the status bar, see “ Status
Bar,” page 4-12.

Toggles the Working Directory toolbar on or off. For more
information about the working directory toolbar, see “Working
Directory Toolbar,” page 4-11

4-4

Introduction to the Windows Interface

Debug
Toolbar

Configure Menu

Toggles the Debug toolbar on or off. For more information
about the Debug toolbar, see “Working Directory Toolbar,”
page 4-11.

The Configure menu lets you customize the GAUSS environment.

Preferences

Editor
Properties

Opens the General Preferences window. From the General
Preferences window you can define Run options, Compile
options, DOS window options, and Autosave options. For more
information on configuring GAUSS General Preferences, see
“Preferences Dialog Box,” page 5-7.

Opensthe Editor Properties window. From the Editor Properties
window you can define colors and fonts, the language syntax,
tabs, or general editor properties. For more information on
configuring editor properties, see“ Editor Properties,” page 5-9.

The Run menu lets you run the code you have entered, ablock of code you selected, or
the active file, depending on the operating mode.

Insert
GAUSS
Prompt

Insert Last
Cmd

Run Selected
Text

Run Active
File

Test Compile
ActiveFile

Manually adds the GAUSS prompt at the cursor position. The
GAUSS prompt (») isautomatically displayed following the
execution of GAUSS code.

Re-enters the last command written to the Input buffer.

Runs any text selected from the editor or the Command Input -
Output window.

Runsthe active file. The file then becomes the main file,

Compilesthe currently selected file. During compilation, any
errors are displayed in the Output window.

Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
asafile

4-5

GAUSS User Guide

Run Main
File

Compile
Main File

Edit Main
File

Stop Program

Build GCG
File

Set Main File

Clear Main
FileList

Translate
Dataloop
Cmds

Debug Menu

Runsthe file specified in the Main File list.

Compiles the main file. During compilation, any errors are
displayed in the Output window.

Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
asafile

Opens the specified main file in an edit window.

Stops the program currently running and returns control to the
editor.

Creates GAUSS pseudocode file that can be run over and over
with no compile time.

M akes the active file the main file.

Removes al entriesin the Main File list on the Main toolbar.

Toggles translate dataloop command on and off. For more
information see “Data Transformations,” page 20-1.

The Debug menu lets you access the commands used to debug your active file or main

file.

The Debug menu contains the following Commands:

Debug Main
File

Debug Active
File
Set/Clear
Breakpoint

Edit
Breakpoints

Runs the main file in the debugger.

Runs the active file in the debugger.

Enables or disables a breakpoint at the cursor in the active file.

Opens alist of al breakpointsin your program. The breakpoints
are listed by line number. Any procedure breakpoints are also
listed.

4-6

Introduction to the Windows Interface

Clear All
Breakpoints

Go
Stop
Step Into

Step Over

Step Out

Set Watch

Tools Menu

Removes al line and procedure breakpoints from the active file.

Starts the debugger.
Stops the debugger.

Runs the next executable line of code in the application and
stepsinto procedures.

Runsthe next executable line of code in the application but does
not step into procedures.

Runs the remainder of the current procedure and stops at the
next line in the calling procedure. Step Out returnsif a
breakpoint is encountered.

Opens the Matrix Editor for watching changing variable data.
For more information about viewing variables see “ Viewing
Variables,” page 6-1.

The Tools menu lets you open GAUSS tools windows. The following commands can

be used:

Matrix Editor Letsyou create or edit datain amatrix (or grid). A cell can be

Source
Browser

Library Tool

DOS

edited by typing in anew value and pressing Enter. For more
information see “Matrix Editor,” page 6-1.

Searches source files for string patterns. For more information
see “GAUSS Source Browser,” page 8-1.

L ets you manage the contents of libraries. For more information
see“Library Tool,” page 7-1.

Runs programs that expect an 80x25 window that understands

Compatibility ANSI escape characters.

Window

Window NMenu

The Window menu commands let you manage your workspace. You can toggle the
focus between all open windows using Ctrl+Tab, or clicking in the window you want
active. All open windows are listed at the end of the Window menu. The following
commands can be used:

4-7

GAUSS User Guide

Cmd Window Makesthe Command Input - Output window the active window.

Output
Window

Debug
Window

Dual
Horizontal

Dual Vertical

Cascade

Tile
Horizontal

Tile Vertical

Arrange
Icons

Split
Horizontally

Split
Vertically

Open
Window List

Splits the output from the Command Input - Output window.

Starts the debugger on the current file.

Horizontally tiles the program source and execution windows
within the main window, and minimizes all other windows.

Vertically tiles the program source and execution windows
within the main window, and minimizes all other windows.

Arranges all open windows on the screen, overlapping each,
with the active window on top.

Arranges all open windows horizontally on the screen without
any overlap.

Arranges all open windows vertically on the screen without any
overlap.

Arranges all minimized windows across the bottom of the main
GAUSS window.

Splits the active window into two horizontal panes. This alows
you to view two different areas of the same document to
facilitate split-window editing.

Note: You can move the splitter bar by dragging it with the
mouse. You can remove the splitter bar from the window by
dragging it to the end of the window.

Splits the active window into two vertical panes. This allows
you to view two different areas of the same document to
facilitate split-window editing.

Note: You can move the splitter bar by dragging it with the
mouse. You can remove the splitter bar from the window by
dragging it to the end of the window.

GAUSS maintains alist of al the windows you have opened at
the end of the Window menu. If the window you want to view is
onthislig, click it and it becomes the active window.

4-8

Introduction to the Windows Interface

Help Menu

The Help menu lets you access information in the GAUSS Help system. The GAUSS
Help menu contains the following Commands:

Help Topics Startsthe GAUSS Help system.
Contents Starts the GAUSS Help system.

Keyboard Accesses the list of keystrokes you can use for cursor
movement, editing, and text selection.

GAUSS Accesses the online GAUSS Language Reference guide. The

Reference Guide contains the syntax for each GAUSS command.

About Provides information about your version of GAUSS, your

GAUSS license type and 1D, aswell as copyright information.

GAUSS Toolbars

Thetoolbar buttons let you have fast access to the most commonly used commands.
Place the mouse pointer over the button to display a description of the command.

Main Toolbar

New Print Main File List Run Main File

Open Stop Program
//Save /Help /
t/

G AR S W o & Ry -

/_/ [S). S) A
CCU / Compile Main File /
0
o Edit Main File
Debug Main File

Run Selected Tex1
Run Active File
Test Compile Active File

New Opens a new, untitled document in an Edit window.
Note: New, unsaved documents are not automatically backed up
until you save them, giving them a file name.

Open Opens an existing file for viewing or editing.

4-9

GAUSS User Guide

Save

Cut

Copy

Paste

Print
Help

Run Selected
Text

Run Active
File

Test Compile
ActiveFile

Main FileList

Run Main
File

Stop Program

Test Compile
Main File

Edit Main
File

Debug Main
File

Saves your changesto the file in the active window. If thefileis
untitled, you are prompted for a path and filename.

Removes selected text from the active window and placesit on
the Windows clipboard.

Copies selected text from the active window to the Windows
clipboard.

Copiestext from the Windows clipboard to the active window at
the cursor position.

Prints the active file or selected text from the active window.
Accesses the GAUSS help system.

Runs any text selected from the editor or the Command Input -
Output window.

Runsthe active file. The file then becomes the main file,

Compilesthe currently selected file. During compilation, any
errors are displayed in the Output window.

Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
asafile

Displays the name of the main file and lets you quickly change
the main file to one of the files listed.

Runs the file specified in the Main File list.

Stops the program currently running and returns control to the
editor.

Compiles the main file. During compilation, any errors are
displayed in the Output window.

Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
asafile.

Opens the specified main file in an edit window.

Runs the main file in the debugger.

Introduction to the Windows Interface

Working Directory Toolbar
You can use the Working Directory toolbar to quickly change your working directory.

! a0

In: gau/ss j/l}

Current Working Directory Change Working Directory

Current Displaysthe name of the current working directory and lets you
Working quickly change the working directory to one of the directories
Directory List listed.

Change Browsesto a new directory.

Working

Directory

Debug Toolbar
You can use the Debug toolbar for quick access to commands while debugging afile.

Pom SR DO

i
Go // \\ Step Out
Stop Step Over
Toggle Breakpoint Step Into
Clear All Breakpoints Set Watch
Go Starts the debugger.
Stop Stops the debugger.
Toggle Enables or disables a breakpoint at the cursor in the activefile.
Breakpoint
Clear All Removes al line and procedure breakpoints from the active file.

Breakpoints

Set Watch Opens the Matrix Editor for watching changing variable data.
For more information about viewing variables see “Viewing
Variables,” page 6-1.

Step Into Runs the next executable line of code in the application and
stepsinto procedures.

GAUSS User Guide

Step Over Runsthe next executable line of code in the application but does
not step into procedures.

Step Out Runs the remainder of the current procedure and stops at the
next line in the calling procedure. Step Out returnsif a
breakpoint is encountered.

Status Bar

The status bar is located along the bottom of the GAUSS window. The status of the
windows and processes are shown on the status bar.

GAUSS Status

The first section of the status bar shows the current GAUSS status. From time to time
you are alerted to the task GAUSS is performing by new messages appearing in the
status bar.

-

For Hel, press £) Wn1, ColS3 DATALOGP WA CAF hab
/
GAUSS Status Cursor Location
Cursor The line number and column number where the cursor is
L ocation located appear on the status bar for the active window.

When ablock of text is selected, the values indicate the first
position of the selected text.

DATALOOP DATALOOP appears on the status bar to indicate the
Dataloop Tranlator isturned on.

OVR OVR appears on the status bar when typing replaces the
existing text with text you enter. When OV R does not
appear on the status bar, typing inserts text without deleting
the existing text. Press the Insert key to toggle between the
two conditions.

CAP CAP appears on the status bar to indicate the Caps L ock key
has been pressed and all text you enter will appear in upper
case.

NUM NUM appears on the status bar to indicate the Num Lock

key has been pressed and the keypad numbers are active.

Using the Windows Interface

The GAUSS graphical user interface is a multiple document interface. The interface
consists of edit windows and the Command Input - Output window. Integrated into
GAUSS isafull debugger with breakpoints and watch variables. The GAUSS
graphical user interface also incorporates the Matrix Editor on page 6-1, The Library
Tool on page 7-1, and Source Browser on page 8-1, as well as a context-sensitive
HTML Help system on page 9-1.

Using the GAUSS Edit Windows

The GAUSS edit windows provide syntax color coding and auto-formatting aswell as
easy access to the Matrix Editor and Library Tool, and include an integrated context-
sensitive help system accessible through the F1 key.

The edit windows provide standard text editing features like drag and drop text
editing, and find and replace. The editor also lets you set bookmarks, define keystroke
macros, find and replace using regular expressions, and run selected text from the
editor.

Editing Programs

To begin editing, open an edit window by browsing to the source file, or by typing
edi t and the filename in the Command Input - Output window. If more than onefile
is open, the last file opened or run becomes the active window.

5-1

GAUSS User Guide

Using Bookmarks

Bookmarks are efficient placeholders used to identify particular sections or lines of
code. To add or remove bookmarks, place the cursor in the line you want to bookmark
and then press CTRL+F2, or click Toggle Bookmark on the Edit menu. You can jump
to the next bookmark by pressing F2, or go to the previous bookmark by pressing
SHIFT+F2.

To edit alist of al currently defined bookmarks, click Edit Bookmarks on the Edit
menu. The Edit Bookmarks window allows you to add, remove, name or select the
bookmark to which you wish to jump.

Changing the Editor Properties

You can customize the formatting of your code and text by changing font colors, fonts,
adding line indentations, and adding line numbering to your programs. To accessthese
properties, on the Configure menu click Editor Properties, or right-click on an edit
window and click Properties on the context menu.For more information about the
Editor Properties see “Editor Properties,” page 5-9.

Using Keystroke Macros

GAUSS will save up to 10 separate keystroke macros.

To record a keystroke macro, press CTRL+SHIFT+R, or click Record Macro on the
Edit menu. When you start recording the macro, a stop button will appear in the
GAUSS window.

You create a macro by clicking Record Macro and pressing the keystrokes you want
recorded. Once you have completed recording the macro, you can stop recording with
the stop button. Once you have finished recording the macro, you can select one of ten
macro names for it.

Use the following guidelines when creating and using your macro:

* Only keystrokesin the active window are recorded, not keystrokes in a dialog
box.

e Only keystrokes are recorded, not mouse movements.
Macros are not saved when you close GAUSS.

If your macro islengthy, consider creating a separate file and copying the information
from the file into the active window, rather than using a macro to enter the
information.

5-2

Using the Windows Interface

Using Margin Functions

The margin of the edit window can be used to show currently set bookmarks, currently
set breakpoints, and line numbers. You can also select an entire line of text with a
single click in the Selection Margin.

You can turn on or off the margin in the Misc tab of the Editor Properties dialog box.

Editing with Split Views

Using split views, you can edit two parts of the same program in the same buffer. To
open split views, click Split Horizontally or Split Vertically on the Window menu.

Finding and Replacing Text

Along with a standard find and replace function, you can use the edit window to find
and replace regular expressions. To find regular expressions, open the Find dialog box
and select the checkbox for regular expressions.

Running Selected Text

There are three ways you can run selected text. First, highlight the text you want to
run, then either press CTRL+R, drag and drop the selected text into the Command
Input - Output window, or click “Run Selected Text” on the Run menu.

Using The Command Input - Output Window

The Command Input - Output window |ets you input interactive commands and view
the results. The Command I nput - Output window can be split into two separate
windows, one for input and one for output, by clicking Output Window on the
Window menu.

Output will be written at the insertion point in the Command Input - Output window
or the Output window, when it is a separate window. GAUSS commands cannot be
executed from this window.

From the Command Input - Output window, you can run saved programs. You can
view or edit the data of any variable in the active workspace with the Matrix Editor.
You can also open files for editing or to debug.

The GAUSS Command Input - Output window has many of the same features that the
GAUSS text editor has. You can cut and paste text. You can search the buffer of the
Command Input - Output window. You can also save the contents of the Command
Input - Output window to atext file.

5-3

GAUSS User Guide

Running Commands

The GAUSS interface allows you to run programs that consist of single commands or
blocks of commands executed interactively, as well as large-scal e programs that may
consist of commands in one or morefiles. Thefile that is run to execute the command
isthe main file (the file name displayed in the Main File list).

When you run commands interactively, the actual code being processed is called the
“active block.” The active block isall code between the GAUSS prompt (») and the
end of the current line. Thus, the active block can be one or more lines of code.

Interactive commands can be entered at the “»” prompt in the Command |nput -
Output window or selected using the mouse and clicking the Run Selected Text button
on the Main toolbar.

A block of code can be executed by selecting the block with the mouse and then
running that block using the Run Selected Text function.

Note: The GAUSS prompt (») at the beginning of the selected text isignored.

You can enter multi-line commands into the Command Input - Output window by
pressing CTRL+Enter at the end of each line. At the end of the final line in a multi-
line command, press Enter. The Command Input - Output window will automatically
place a semicolon at the end of a single-line command before it isinterpreted. For
multi-line commands, you must enter a semicolon at the end of each line.

You can also run multi-line commands by pasting the text of afile at the GAUSS
prompt, or selecting multiple lines of code from the Command Input - Output window
and pressing CTRL+R.

You can repeat any of the last 20 lines entered into the command buffer by pressing
CTRL+L to cycle through the last command buffer.

Running Programs in Files

You can execute the active file by clicking Run Active File on the Run menu, or by
clicking the Run Currently Active File button on the Main toolbar.

You can execute the file displayed in the Main Filelist (the main file) by clicking Run
Main file on the Run menu, or by clicking the Run Main File button on the Main
toolbar.

Using The Debugger

The debugger greatly simplifies program development. With all of the features of a
dedicated debugging system, the debugger can help you to quickly identify and solve
logic errors at run-time.

5-4

Using the Windows Interface

The debugger isintegrated into the multiple document interface of GAUSS; it usesthe
interface tools, such as the edit windows, the Matrix Editor, and the Command I nput -
Output window for debugging. So while using the debugger, you still have all the
features of the edit windows and Matrix Editor, along with GAUSS's suite of
debugging tools.

You use the debugger to watch the program code as it runs. Prior to running the
debugger, breakpoints and watch variables can be set to stop the program at pointsyou
set and provide additional data as the code is run.

Starting and Stopping the Debugger
You can start the debugger by clicking Go on the Debug menu or the Debug toolbar.

When starting the debugger, you can choose to debug the active file or to debug the
main file of a program. If you are debugging asingle file and already have the file
open, you can use the menu or toolbar to start the debugger on thefile, or simply type
debug and the filename in the Command Input - Output window.

When you start the debugger, the debugger automatically highlights the first line of
code to be run. Any breakpoints are shown in the left margin of the window.

You can stop the debugger at any time by clicking Stop on the Debug menu or the
Debug toolbar.

Using Breakpoints

Breakpoints stop code execution where you have inserted them. Breakpoints are
normally set prior to running the debugger, but can also be set or cleared during
debugging by clicking the Set/Clear Breakpoint command on the Debug menu.

The debugger supports two types of breakpoints: procedure breakpoints and line
number breakpoints. Procedure breakpoints pause execution when the specified
procedure or function is reached. Line number breakpoints pause execution when the
specified line is reached. In either case, the break occurs before any of the GAUSS
code for the procedure or line is executed. The debugger also allows you to specify a
certain cycle of execution for aline number or procedure where you want the
execution to be paused. The cycle count is for the occurrence of the line number or
procedure, not the number of times alineisto be skipped.

Setting and Clearing Breakpoints

You can set or clear aline breakpoint in the highlighted line of code by clicking Set/
Clear Breakpoint on the Debug menu or by pressing the F9 key.

To set breakpointsin any part of the file not currently being executed, just click the
line where you want the breakpoint to be, then click Toggle Breakpoint.

5-5

GAUSS User Guide

To clear breakpointsin thefile, click aline of code that has a breakpoint set and then
click Set/Clear Breakpoint. You can aso clear all breakpoints from the active file by
clicking Clear All Breakpoints.

Using the Breakpoint Editor to Set and Clear Breakpoints

The Breakpoint Editor allows you to set or clear both line and procedure breakpoints.
It also lets you specify cycles of execution for breakpoints. With the Breakpoint

Editor, you can set or clear breakpoints in any program currently in your working
directory.

Stepping Through a Program

GAUSS's debugger includes the ability to step into, step out of, and step over code
during debugging.

Use Step Into to execute the line of code currently highlighted by the debugger.

Use Step Out to execute to the end of the current function without pause and return to
the calling function.

Use Step Over to execute the line of code currently highlighted by the debugger
without entering the functions that are called.

Viewing and Editing Variables

GAUSS allows you to view and edit the values of variables during debugging.

Viewing Variable Values During Debugging

Once the debugger is started, the editor window uses floatover variable windows for
viewing variable data. Floatover variable windows give aquick view of the value a

variable currently holds by simply moving your mouse over the variable name in the
edit window.

The floatover variable window is only intended to give a quick view of the data, so it
may not show all data held by the variable. If the variable data isincomplete, the
floatover variable window will display an arrow to show that thereis more data. If you

need to view more data, open the Matrix Editor by highlighting the variable name and
pressing CTRL+E.

Editing Variable Values During Debugging

The debugger integrates the Matrix Editor to edit values of loaded variables, or to use
as awatch window to view the changing values of variables as you step through a
program.

5-6

Using the Windows Interface

To edit avariable value, highlight the variable in the edit window, or the Command
Input - Output window and then open the Matrix Editor. You can use the menu or
toolbar to start the Matrix Editor, or simply type CTRL+E.

Making a Watch Window

You can make the Matrix Editor a Watch window, allowing you to watch the changing
value of avariable asthe lines of the program are executed. You can activate the
Watch window by clicking Set Watch on the Debug menu, or by highlighting a
variable name in the debugger window and pressing CTRL +E.

You use a Watch window to see how variables change in value during debugging.
Watch variables can be specified prior to running the debugger or during a debugging
session.

The debugger searches for awatch variable using the following order:

1. A local variable within a currently active procedure.

2. A global variable.

A watch variable can be the name of amatrix, ascalar, astring array, or astring. For a
matrix or astring array, the first element is displayed. If a matrix element is clicked,
the Matrix Editor isloaded with the matrix. The matrix elements can be changed
during the debugging session.

Customizing GAUSS

Preferences Dialog Box

The Preferences dialog box lets you specify how GAUSS operates. To open the
Preferences dialog box, click Preferences... on the Configure menu. The changes you
make in the Preferences dialog box remain set between sessions.

Run Options
Dataloop Specifies whether GAUSS will translate data loops into
Translator procedures.
Translate Specifies whether GAUSS will preserve the line numbers of
Line Number dataloops after being translated to procedures.
Tracking

Line Number Specifies whether GAUSS will preserve line numbers of afile
Tracking being compiled for the interpreter.

5-7

GAUSS User Guide

Sound at End Determines whether or not a sound is played at the end of the

of Job

Compile Options

execution of GAUSS code. The sound can be selected using the
Select button and played using the Test button.
The default is OFF.

The Compile tab contains options that let you control how GAUSS compiles a
program before it is run.

Autoload

Autodelete
GAUSS
Library
User Library

Declare
Warnings

Compiler
Trace

Files

Specifies whether the autoloader will automatically resolve
referencesin your code. If Autoload is off, you must define all
symbols used in your program.

Use Autodelete in conjunction with Autoload to control the
handling of references to unknown symbols.

Specifies whether the autoloader will use the standard GAUSS
library in compiling your code.

Specifies whether the autoloader will use the User Librariesin
compiling your code.

Specifies whether the GAUSS compiler will display declare
warnings in the Command Input - Output window. For more
information on declare warnings see “Using dec Files,”

page 16-12.

Specifies whether you would like to trace the file compilation
by file opening and closing, specific lines, or whether you
would like to trace by local and global symbols.

The Files tab contains options that let you control how GAUSS auto-saves your work

Autosave on
Execute

Specifies whether open fileswill automatically be saved when a
fileisrun. If the file you are running is loaded, it will be saved
prior to execution, regardless of how it is executed (Run file,
command line, main file, or active file). All open editor files,
including the active file, are saved before execution.

Note: New, unsaved documents are not automatically backed up
until you save them, giving them a file name. After you save the
new file, it will be automatically backed up with all other open
files.

5-8

Using the Windows Interface

Autosave

DOS Window

Specifies whether you want GAUSS to automatically save your
files at a set interval of time.

The DOS Window tab lets you control the fonts used in the DOS window.

Font Options Specifies what font the DOS window will use.

Editor Properties

You can customize the formatting of your code and text by changing font colors, fonts,
adding line indentations, and adding line numbering to your programs. To accessthese
properties, on the Configure menu click Editor Properties.

Color/Font

Color
Font

Language/Tabs

Auto
I ndentation
Syle

Tabs

L anguage

Fixup Text
Case While
Typing

L anguage
Keywords

Misc

Smooth
Scrolling

Show L eft
Margin

Specifies the way syntax coloring works in the editor.

Specifies what font the edit window will use.

Specifies how the autoindenter will indent your code.

Specifies how many spaces a tab has.

Specifies what syntax the GAUSS editor will recognize for
syntax coloring.

Specifies whether the editor will automatically change the case
of GAUSS keywords when they use the wrong case.

Enables or disables smooth scrolling when the window is
scrolled up/down by one line or left/right by one character.

Enables or disables the editor’s margin. The margin is used for
showing breakpoints, bookmarks, or line numbers.

5-9

GAUSS User Guide

Line Tooltips
on Scroll

Allow Drag
and Drop

Allow
Column
Selection

Confine
Caret to Text

Color Syntax
Highlighting

Show
Horizontal
Scrollbar

Show Vertical
Scrollbar

Allow
Horizontal
Splitting

Allow
Vertical
Splitting
Line
Numbering
M ax

Undoable
Actions

Shows the first line number on screen as atooltip as you scroll
up and down thefile.
Enables or disables drag and drop functionality.

Lets you select and manipul ate columns of text.

Tellsthe GAUSS editor to interpret carets as text only rather
than as substitution symbols or text.
Toggles on or off color syntax highlighting.

Toggles on or off the horizontal scrollbar.

Toggles on or off the vertical scrollbar.

Toggles on or off the ability to split editor panes horizontally.

Toggles on or off the ability to split editor panes vertically.

Specifies the style and starting digit for line numbering.

Sets the number of actions that you can undo.

Using GAUSS Keyboard Assignments

Cursor Movement Keys

UP ARROW

DOWN ARROW

Up oneline

Down one line

Using the Windows Interface

LEFT ARROW
RIGHT ARROW
CTRL+LEFT ARROW
CTRL+RIGHT ARROW
HOME

END

PAGE UP

PAGE DOWN
CTRL+PAGE UP
CTRL+PAGE DOWN
CTRL+HOME
CTRL+END

Edit Keys
BACKSPACE

DEL

CTRL+INSor CTRL+C
SHIFT+DEL or CTRL+X

SHIFT+INSor CTRL+V

CTRL+Z

Text Selection Keys

SHIFT+UP ARROW
SHIFT+DOWN ARROW
SHIFT+LEFT ARROW
SHIFT+RIGHT ARROW

L eft one character
Right one character
Left one word
Right one word
Beginning of line
End of line

Next screen up
Next screen down
Scroll window right
Scroll window left
Beginning of document

End of document

Delete character to left of cursor, or delete selected
text

Delete character to right of cursor, or delete selected
text

Copy selected text to Windows clipboard

Delete selected text and place it onto Windows
clipboard

Paste text from Windows clipboard at the cursor
position

Undo last editing action

Select one line of text up

Select one line of text down
Select one character to the | eft
Select one character to the right

GAUSS User Guide

SHIFT+CTRL+LEFT
ARROW

SHIFT+CTRL+RIGHT
ARROW

SHIFT+HOME
SHIFT+END
SHIFT+PAGE UP
SHIFT+PAGE DOWN
SHIFT+CTRL+HOME
SHIFT+CTRL+END

Command Keys

CTRL+A
CTRL+C
CTRL+D
CTRL+E
CTRL+F
CTRL+G
CTRL+I
CTRL+L
CTRL+N
CTRL+O
CTRL+P
CTRL+Q
CTRL+R
CTRL+S
CTRL+W
CTRL+V
CTRL+X

Select one word to the left

Select one word to the right

Select to beginning of the line
Select to end of the line

Select up one screen

Select down one screen

Select text to beginning of document

Select text to end of document

Redo

Copy selection to Windows clipboard
Open Debug window

Open Matrix Editor

Find/Replace text

Go to specified line number

Insert GAUSS prompt

Insert last

Make next window active

Open Output window

Print current window, or selected text
Exit GAUSS

Run selected text

Save window to file

Open Command window

Paste contents of Windows clipboard

Cut selection to Windows clipboard

Using the Windows Interface

CTRL+Z

Function Keys
F1

F2

F3

F4

F5

F6

F7

F8

F9

F10
ALT+F4
ALT+F5
CTRL+F1

CTRL+F2
CTRL+F4
CTRL+F5
CTRL+F6
CTRL+F10
ESC

Menu Keys
ALT+C
ALT+D
ALT+E

Undo

Open GAUSS Help system or context-sensitive
Help

Go to next bookmark
Find again

Go to next search item in Source Browser
Run Main File

Run Active File

Edit Main File

Step Into

Set/Clear breakpoint
Step Over

Exit GAUSS

Debug Main File

Searches the active libraries for the source code of a
function.

Toggle bookmark
Close active window
Compile Main File
CompileActive File
Step Out

Unmark marked text

Configure menu
Debug menu

Edit menu

GAUSS User Guide

ALT+F
ALT+H
ALT+R
ALT+T
ALT+W
ALT+V

File menu
Help menu
Run menu
Tools menu
Window menu

View menu

Matrix Editor

Using the Matrix Editor

The Matrix Editor lets you view and edit matrix datain your current workspace. You
can open the Matrix Editor from either the Command Input - Output window or a

GAUSS edit window by highlighting a matrix variable name and typing Ctrl+E. You
can view multiple matrices at the same time by opening more than one Matrix Editor.

Editing Matrices

The Matrix Editor will allow you to format matrices in decimal, scientific,
Hexadecimal, or astext characters.

Just like a spreadshest, when using the Matrix Editor, you can use your keyboard's
arrow keysto quickly move between matrix positions. To edit ascalar value, select a
cell and press Enter. You can use the Home and End keysto move to the beginning or
end of a scalar. When finished editing, press Enter again.

Viewing Variables

All variables are treated as matrices in GAUSS. A scalar is smply a 1x1 matrix. A
vector is a (Nx1) or (1xN) matrix. So you can use the Matrix Editor to view and
monitor the value of any variable. You can update the value of avariable at any time
by using the Reload function. When using the Matrix Editor to view, edit or monitor

6-1

GAUSS User Guide

smaller matrices, you can minimize space it occupies on the screen by selecting
Minimal View from the View menu.

By using the Auto-reload function, GAUSS will automatically update the values of
variablesin the Matrix Editor. Using Auto-reload you can create a watch window.

Setting Watch Variables

Watch Variables allow you to see how variables change in value while debugging a
program. A watch variable can be the name of a matrix, a scalar, a string array, or a
string.

The debugger searches for awatch variable in the following order:
» alocal variable within a currently active procedure
e aglobal variable

Matrix Editor Menu Bar

Matrix Menu

The Matrix menu lets you control the data of the Matrix in the Matrix Editor as an
entire set.

L oad Clears any existing grid and loads any named matrix from the
GAUSS workspace to the grid.

Reload Reloads the existing matrix with the name shown on the Title
bar.

Auto-Reload Automatically updates the data shown in the Matrix Editor,
creating a watch window.

Save Saves the grid as a matrix in the GAUSS workspace. If amatrix
of the same name already exists in the workspace, itis
overwritten.

Format Menu

The Format menu lets you control the way the data is presented in the Matrix Editor.

Edit Menu

The Edit menu gives you tools to control the datain the Matrix Editor.

6-2

Matrix Editor

Clear All

Preferences

View Menu

Clears the grid of all values but keep the row and column order.

Sets several matrix options, including the number of digitsto the
right of the decimal point, cell height and width, and whether
pressing the Enter key moves the cursor down or over one cell.
These options, along with screen position and window state, are
saved between sessions.

The View menu lets you control the Matrix Editor window. The View menu also lets
you control your view of imaginary numbers.

Real Parts

Imaginary
Parts
Minimal
View

Stay on Top

Specifies that you want the real parts of imaginary
numbersto be displayed in the Matrix Editor.

Specifies that you want the imaginary parts of
numbers to be displayed in the Matrix Editor.

Minimizes the amount of screen space occupied by
the Matrix Editor. Thisis especially useful for
creating watch windows for single variables.

Forces the Matrix Editor window to remain visible
on the screen even when the interface focus has
shifted to another window.

6-3

Library Tool

Using the Library Tool

The Library Tool letsyou quickly manage your libraries. You can add and remove
libraries and you can add and remove files within the libraries.

Managing Libraries

Using the New Library button, you can create anew library for organizing your code.
You can remove alibrary by selecting the Delete Library button.

Managing the Library Index

To add absolute path namesto the library index, use the Add Paths button. To only use
file names for searching libraries, use the Strip Paths button. Use Rebuild to recompile
all thefiles used in the library, and rebuild the library index file. Use the Revert to
Original button to revert to the configuration the library was in when the Library Tool
was opened.

Managing Library Files

You can add filesto alibrary with the Add button. You can remove filesfrom alibrary
with the Remove button. After changing source files referred to in alibrary, select the
filesin thefile list and update the library index with the Update button. To remove

71

GAUSS User Guide

multiple files from alibrary, select the filesin the file selection window, and use the
Clear Selection button.

For more information about libraries, see “Libraries,” page 16-1.

7-2

GAUSS Source Browser

The GAUSS Source Browser lets users quickly find, view, and if necessary, modify
source code. Both the TGAUSS and GAUSS Source Browsers can be used to search
for external symbolsin active libraries. The GAUSS Source Browser can also be used
to search for symbolsin any directory or source file.

Using the Source Browser in TGAUSS

To start the Source Browser in TGAUSS, type br owse followed by a symbol name.
When the Source Browser is active, the prompt displays Br owse: . GAUSS searches
through all active librariesfor the filein which the symbol is defined. If found, thefile
containing the source code is opened in the default editor.

Wildcard (*) searches can aso be used. When using wildcard searches, each symbol
that the string matches will be displayed on-screen in a numbered list. To select a
specific command to view in the default editor, select the number from the list.

The Source Browser will remain active until you type CTRL-C to return to the
(gauss) prompt.

8-1

GAUSS User Guide

Using the Source Browser in GAUSS

To open the Source Browser in GAUSS, from the Tools menu select Source Browser.

Using the Source Browser you can search afile for a specified symbol or search
across all the source filesin adirectory. Using a comma separated list of files and
directoriesin the Look in: list, you can search multiple locationsin a single search.
When searching for symbols, you can use wildcards (*) to further modify the scope of
the search.

Note: The Source Browser does not search recursively through sub-folders. To search
sub-folders during a search, add the sub-folder names to the Look in: list.

Once the search is complete, the Source Browser lists where the specified symbol was
found. The Filename column of the Results List shows the file in which the symbol
was found. The Line column shows the line number where symbol was found and the
Line Description column shows the text of the line where the symbol was found.

Search locations typed into the Look in: text box will persist between Source Browser
sessions.
Y Scamce Browser HE=EE

Fadari I ™ Mk s

= Bgrh whas reond
ok i [ULALES 4P

™ s ol kop

-
Filiv s | Lig | ILirws Dosiripleons n
[l LT R T BT] - —
I et 5 Bl s 1 r) bl " LT
RS S P T L 1 k| -] Coppughi 159881559 by & plach Syetemr, Ine
b S B, 4 = £ Faghts Fvirved.
I el 5 Fl P tony 1 b 5 =
N S S P b L e 5 T Sclfrvmnss Faoshuct o FROPFRIE AT SOUSCE COOE OF AFIELH
1 S B i L i 7 = EYSTEMS IMC. Thi File Hesde runt sccompany ol et umng
[= S ST T [R] = i a0y, o Rl 0 Rl o e Boaiaos Code v
[S A S S T I RE | mcSe, Hha nghd fa cosads nuck e 2 dic iy lended by
A S B] 1 1o i0 = Epcton 18 of e (58S B A ppiic st Liceraw f groseant
I "t 5 g s 1 1 = mnprepenye) e 5 oA e Pipdiot
(= Sl A RS T I RE 1a
A Y B e] 1 1o 13 = I you panh iz disinbae oy prdton of e propreteny Soaece
I "l 5 P s 1 1 e [= Conde, w0 Dl i Wbl B Dl il iy
= '_-'- l_.'JI_I'.:-"h-..l-Il_l'r' I‘: pETaian ho dpksch S prer -
| | LI_
TSR, st a1 657 Tl Clase:

Pattern: Defines search pattern.

Look in: Limits the scope of the search to specific files or directories.
Using a comma separated list, searches multiple files and
directoriesin asingle search.

Match Case Makes search case-sensitive.

Match whole Limits search to entire words.

word

82

GAUSS Source Browser

Stay on top K eeps the Source Browser on top even when another window is
active.

Browse Letsyou limit the scope of the search to specific files or
directories.

Search Initiates search.

Results List Lists occurrences of selected symbol in specified files or
directories.

Satus Lists how many occurrences there were, and how many filesthe
symbol occurred in.

Close Closes the Source Browser.

Opening Files From the Source Browser

Double-click the file name to open afilein its own editor window. When opened, the
cursor is placed at the beginning of the line selected in the Results List. By double-
clicking different files in the Source Browser, you can open each filein its own
separate editor window.

Usethe F4 key to quickly view or edit the next file in the Results List using the active
editor window. Using the F4 key opensthe file in the active editor window and places
the cursor at the beginning of the linein which the symbol was found. The F4 key uses
the active editor window to display the source file; it will not open an editor window
to display files. You can use the F4 key from either the Source Browser or from the
active editor window to move to the next occurrence of the symbol shown in the
Results List.

Use SHIFT+F4 to quickly view or edit the previous file in the Results List using the
active editor window. Using the F4 key opensthe file in the active editor window and
places the cursor at the beginning of the line in which the symbol was found.

Source Browser Keyhoard Controls

Up arrow Moves to the previous occurrence in the Results List.
Down arrow Moves to the next occurrence in the Results List.

Home Movesto the first occurrence in the Results List.

End Movesto the last occurrence in the Results List.

F4 Shows the next occurrence in the active editor window.
SHIFT+F4 Shows the previous occurrence in the active editor window.
Tab Movesto next field.

Enter Starts Search.

8-3

GAUSS Help

Context-Sensitive Help

GAUSS integrates a context-sensitive Help system to help you use the GAUSS
environment and the GAUSS language. Context-sensitive means you can get help on
the GAUSS interface or the GAUSS language without having to go through the Help
menu. For example, to get Help on any keyword in the GAUSS language, place the
insertion point on that keyword in a GAUSS edit window or the Command Input -
Output window and press F1.

You can press F1 from any context-sensitive part of the GAUSS interface to display
Help information about that part. The context-sensitive parts are:

* GAUSSwindows

» Toolbar buttons

* GAUSS menus

e TheGAUSS language

For al intrinsic commands and functions, the GAUSS Command Reference for the
command is displayed. For all other external proceduresin active libraries, an HTML
window is opened containing a source code file. You may then scroll through the file
to find the desired symbol.

9-1

GAUSS User Guide

CTRL+F1 Support

You can search through all activelibraries for any global symbol by placing the cursor
on the name of the symbol and pressing CTRL+F1.

GAUSS searchesthrough al active libraries for thefile that the symbol is defined in.
If found, the file containing the source code is opened in an edit window. If thefile
contains** > symbol_name at the beginning of aline of commented code, the cursor
will be placed at the beginning of that line. If not found, the cursor will be placed at
the beginning of thefile.

To properly implement this functionality in your own source code, place
** > gymbol_name

at the beginning of aline in acomment block.

ToolTips

A ToolTip isasmall label that is displayed when the mouse pointer is held over a
GAUSS button. The Tool Tip will give a brief description of the button’s function.

SHIFT+F1 Help Support

If you press SHIFT+F1 or click on the Help toolbar button, GAUSS goes into Help
mode and the pointer changes to a Help pointer (arrow + ?). The next thing you click
with the Help pointer opens in Windows Help.

Help Menu

From the Help menu, you can directly access either the online Language Reference
Manual or the online User Guide. The Help menu also gives quick accessto GAUSS
default keyboard mappings.

Other Help

GAUSS also includes afull online version of the GAUSS L anguage Reference and
GAUSS User Guidein PDF format. These manuals are located on the GAUSS CD-
ROM.

The Gaussians mail list is an e-mail list providing users of GAUSS an easy way to
reach other GAUSS users. Gaussians provides aforum for information exchange, tips
and experiences using GAUSS. For more information about the Gaussians mail list,
see http://mwww.aptech.com/s2_gaussians.html. You can also e-mail
support@aptech.com.

9-2

GAUSS isacompiled language. GAUSS is also an interpreter. A compiled language,
because GAUSS scans the entire program once and translates it into a binary code
before it starts to execute the program. An interpreter, because the binary code is not
the native code of the CPU. When GAUSS executes the binary pseudocode, it must
“interpret” each instruction for the computer.

How can GAUSS be so fast if it is an interpreter? Two reasons. First, GAUSS has a
fast interpreter, and the binary compiled code is compact and efficient. Second, and
most significantly, GAUSS is amatrix language. It is designed to tackle problems that
can be solved in terms of matrix or vector equations. Much of thetimelost in
interpreting the pseudocode is made up in the matrix or vector operations.

This chapter will enable you to understand the distinction between “compiletime” and
“execution time,” two very different stages in the life of a GAUSS program.

Expressions

An expression isamatrix, string, constant, function reference, procedure reference, or
any combination of these joined by operators. An expression returns a result that can
be assigned to a variable with the assignment operator ‘=".

10-1

GAUSS User Guide

Statements
A statement is a complete expression or a command. Statements end with a
semicolon:
y = X*3;

If an expression has no assignment operator (=), it will be assumed to be an implicit
print statement:

print x*3;
or

X*3;

Here is an example of a statement that is acommand rather than an expression:
out put on;

Commands cannot be used as a part of an expression.

There can be multiple statements on the same line as long as each statement is
terminated with a semicolon.

Executable Statements

Executable statements are statements that can be “executed” over and over during the
execution phase of a GAUSS program (execution time). As an executable statement is
compiled, binary codeis added to the program being compiled at the current location
of the instruction pointer. This binary code will be executed whenever the interpreter

passes through this section of the program. If the codeisin aloop, it will be executed
each iteration of the loop.

Here are some examples of executable statements:
y = 34.25;
print vy;
x={1372940 3},

Nonexecutable Statements

Nonexecutabl e statements are statements that have an effect only when the programis
compiled (compile time). They generate no executable code at the current location of
the instruction pointer.

10-2

Language Fundamentals

Here are two examples:
declare matrix x = { 1 2 3 4 },;

external matrix ybar;

Procedure definitions are nonexecutable. They do not generate executable code at the
current location of the instruction pointer. Here is an example:

zed = rndn(3, 3);

proc sqrtinv(x);
| ocal v;
y = sqrt(x);
retp(y+inv(x));
endp;

zsi = sqgrtinv(zed);

There are two executable statements in the example above: the first line and the last
line. In the binary code that is generated, the last line will follow immediately after the
first line. The last lineisthecal | tothe procedure. This generates executable code.
The procedure definition generates no code at the current location of the instruction
pointer.

There is code generated in the procedure definition, but it isisolated from the rest of
the program. It is executable only within the scope of the procedure and can be
reached only by calling the procedure.

Programs

A program is any set of statements that are run together at one time. There are two
sections within a program.

Main Section

The main section of the program is all of the code that is compiled together without
relying on the autoloader. This means code that isin the main file or isincluded in the
compilation of the main filewith an#i ncl ude statement. All executable code
should be in the main section.

10-3

GAUSS User Guide

There must always be amain section even if it consists only of acall to the one and
only procedure called in the program. The main program code is stored in an area of
memory that can be adjusted in size with the new command.

Secondary Sections

Secondary sections of the program are files that are neither run directly nor included
in the main section with #i ncl ude statements.

The secondary sections of the program can be left to the autol oader to locate and
compile when they are needed. Secondary sections must have only procedure
definitions and other nonexecutabl e statements.

#i ncl ude statements are allowed in secondary sections as long as the file being
included does not violate the above criteria.

Here is an example of a secondary section:
declare matrix tol = 1. 0e-15;

proc feq(a,b);
retp(abs(a-b) <= tol);
endp;

Compiler Directives

Compiler directives are commands that tell GAUSS how to process a program during
compilation. Directives determine what the final compiled form of a program will be.
They can affect part or all of the source code for a program. Directives are not
executabl e statements and have no effect at run-time.

The#i ncl ude statement mentioned earlier is actually a compiler directive. It tells
GAUSS to compile code from a separate file asthough it were actually part of thefile
being compiled. This code is compiled in at the position of the #i ncl ude statement.

Here are the compiler directives available in GAUSS:

#defi ne Define a case-insensitive text-replacement or flag variable.
#defi necs Define a case-sensitive text-replacement or flag variable.
#undef Undefine a text-replacement or flag variable.

#i f def Compile code block if avariable has been #def i ne’d.

#i f ndef Compile code block if avariable has not been #def i ne’d.

10-4

Language Fundamentals

#iflight Compile code block if running GAUSS Light.

#el se Else clausefor #i f -#el se-#endi f code block.

#endi f End of #i f -#el se-#endi f code block.

#i ncl ude Include code from another file in program.

#1 i neson Compile program with line number and file name records.

#1 i nesof f Compile program without line number and file name
records.

#isrcfile Insert source file name record at this point (currently used

when doing data loop translation).

#srcline Insert source file line number record at this point (currently
used when doing data loop translation).

The #def i ne statement can be used to define abstract constants. For example, you
could define the default graphics page size as

#defi ne hpage 9.0
#defi ne vpage 6. 855

and then write your program using hpage and vpage. GAUSS will replace them
with 9. 0 and 6. 855 when it compiles the program. This makes a program much
more readable.

The#i f def -#el se-#endi f directivesallow you to conditionally compile sections
of a program, depending on whether a particular flag variable has been #def i ne’d.
For example:

#i fdef | og 10

y = log(x);
#el se

y = In(x);
#endi f

This alows the same program to calculate answers using different base logarithms,
depending on whether or not the program hasa#def i ne | og_10 statement at the
top.

#undef allowsyou to undefine text-replacement or flag variables so they no longer
affect aprogram, or so you can #def i ne them again with a different value for a

10-5

GAUSS User Guide

different section of the program. If you use#def i necs to define a case-sensitive
variable, you must use the right case when #undef 'ingit.

With#l i neson, #l i nesof f ,#srcline,and#srcfil e youcanincludeline
number and file name records in your compiled code, so that run-time errors will be
easier to track down. #sr cl i ne and#sr cfi | e are currently used by GAUSS
when doing data loop translation.

For more information on line number tracking, see “ Debugging,” page 17-2 and see
“Debugging Data Loops,” page 20-2. See also #l i neson in the GAUSS Language
Reference.

Thesyntax for #sr cf i | e and#sr cl i ne isdifferent than for the other directives
that take arguments. Typically, directives do not take argumentsin parentheses; that is,
they look like keywords:

#define red 4

#srcfil e and#srcl i ne, however, do take their argumentsin parentheses (like
procedures):

#srcline(12)

Thisallowsyouto place#sr cl i ne statementsin the middle of GAUSS commands,
so that line numbers are reported precisely as you want them. For example:

#srcline(l) print “Here is a nulti-line”

#srcline(2) “sentence--if it contains a run-tine
error,”

#srcline(3) “you will know exactly”

#srcline(4) “which part of the sentence has the

problem”;

The argument supplied to #sr cf i | e does not need quotes:
#isrcfile(c:\gauss\test. e)

Procedures

A procedure allows you to define a new function which you can then use asif it were
anintrinsic function. It is called in the same way as an intrinsic function:

y = nyproc(a,b,c);

10-6

Language Fundamentals

Procedures are isolated from the rest of your program and cannot be entered except by
calling them. Some or al of the variables inside a procedure can bel ocal variables.
| ocal variablesexist only when the procedure is actually executing, and then
disappear. Local variables cannot get mixed up with other variables of the same name
in your main program or in other procedures.

For details on defining and calling procedures, see “ Procedures and Keywords,”
page 12-1.

Data Types

There aretwo basic data types in GAUSS: matrices and strings. It is not necessary to
declare the type of avariable, but it is good programming practice to respect the types
of variables whenever possible. The data type and size can change in the course of a
program.

Thedecl ar e statement, used for compile-time initialization, enforces type
checking.

Short strings of up to 8 bytes can be entered into elements of matrices, to form
character matrices. (For details, see “Character Matrices,” page 10-19.)

Constants
The following constant types are supported:

Decimal
Decimal constants can be either integer or floating point values.
1. 34e-10
1. 34e123
-1. 34e+10
-1.34d-10
1. 34d10
1. 34d+10
123. 456789345

These will be stored as double precision (15-16 significant digits). The range isthe
same as for matrices. (For details, see “Matrices,” page 10-8.)

10-7

GAUSS User Guide

String
String constants are enclosed in quotation marks:
“This is a string.”

Hexadecimal Integer

Hexadecimal integer constants are prefixed with Ox:
Ox0ab53def 2

Hexadecimal Floating Point

Hexadecimal floating point constants are prefixed with Ov. This allows you to input a
double precision value exactly as you want using 16 hexadecimal digits. The highest
order byteisto the left:

Ovf f f 8000000000000

Matrices

Matrices are 2-dimensional arrays of double precision numbers. All matrices are
implicitly complex, although if it consists only of zeros, the imaginary part may take
up no space. Matrices are stored in row major order. A 2x3 real matrix will be stored
in the following way, from the lowest addressed element to the highest addressed
element:

[1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

A 2x3 complex matrix will be stored in the following way, from the lowest addressed
element to the highest addressed element:

(real part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]
(imaginary part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

Conversion between complex and real matrices occurs automatically and is
transparent to the user in most cases. Functions are provided to provide explicit
control when necessary.

All numbersin GAUSS matrices are stored in double precision floating point format,
and each takes up 8 bytes of memory. Thisisthe IEEE 754 format:

10-8

Language Fundamentals

Significant
Bytes Data Type Digits Range
8 floating point 15-16 4.19><10_307 <|X| < 1.67><10+308

Matrices with only one number (1x1 matrices) are referred to as scalars, and matrices
with only one row or column (1xN or Nx1 matrices) are referred to as vectors.

Any matrix or vector can be indexed with two indices. Vectors can be indexed with
one index. Scalars can be indexed with one or two indices also, because scalars,
vectors, and matrices are the same data type to GAUSS.

The mgjority of functions and operators in GAUSS take matrices as arguments. The
following functions and operators are used for defining, saving, and loading matrices:

con
cons
decl are
| et

| oad

r eadr
save
saved
st of
subnmat

writer

Indexing matrices.

Assignment operator.

Vertical concatenation.

Horizontal concatenation.

Numeric input from keyboard.

Character input from keyboard.
Compile-time matrix or string initialization.
Matrix definition statement.

Load matrix (same as| oadm).

Read from a GAUSS matrix or data set file.
Save matrices, procedures, and strings to disk.
Convert amatrix to a GAUSS data set.
Convert string to matrix.

Extract a submatrix.

Write datato a GAUSS data set.

Following are some examples of matrix definition statements.

10-9

GAUSS User Guide

An assignment statement followed by data enclosed in bracesis animplicit | et
statement. Only constantsare allowed in | et statements; operators are illegal. When
bracesareused in| et statements, commas are used to separate rows. The statement

let x ={ 123, 456, 789 };

or
x={123, 456, 789},
will result in
123
X= 456
789
The statement
let x[3,3] =1234567829;
will result in
123
X= 456
789
The statement
let x[3,3] = 1;
will result in
111
X= 111
111
The statement
let x[3,3];
will result in

10-10

Language Fundamentals

000
X= 000
000

The statement

let x =1234567 809,

will result in

X
1
O© 00 NO O & WN P

Complex constants can be enteredinal et statement. In the following example, the +
or - is not a mathematical operator, but connects the two parts of a complex number.
There should be no spaces between the + or - and the parts of the number. If a number
has both real and imaginary parts, thetrailing ‘i’ is not necessary. If a number has no
real part, you can indicate that it isimaginary by appending the ‘i’. The statement

let x[2,2] = 1+2i 3-4 5 6i;

will result in

1+2i 3-4i
5 0+6i

X =

Complex constants can also be used with thedecl ar e, con, and st of statements.

An “empty matrix” is amatrix that contains no data. Empty matrices are created with
thel et statement and braces:

x = {};

10-11

GAUSS User Guide

Empty matrices are currently supported only by ther ows and col s functions and the
concatenation operators (~ and |):

x ={};
hsecO = hsec;
do until hsec-hsecO > 6000;
X = X ~ data_in(hsec-hsec0);

endo;

You can test whether amatrix is empty by entering r ows(x) , col s(x), and
scal err(X).If thematrix isempty, r ows andcol s will returna0, andscal err
will return 65535.

The ~ isthe horizontal concatenation operator and the | isthe vertical concatenation
operator. The statement

y = 1~2| 3~4;
will be evaluated as
y = (1~2)|(3~4);

and will result in a 2x2 matrix because horizontal concatenation has precedence over
vertical concatenation:

12
34

The statement
y = 1+1~2*2| 3-2~6/2;
will be evaluated as
y = ((1+1)~(2*2))|((3-2)~(6/2));

and will result in a 2x2 matrix because the arithmetic operators have precedence over
concatenation:

24
13

10-12

Language Fundamentals

For more information, see “ Operator Precedence,” page 10-23.
Thel et command is used to initialize matrices with constant values:
let x[2,2] =1 2 3 4

Unlike the concatenation operators, it cannot be used to define matrices in terms of
expressions such as

y = x1-x2~x2| x3*3~x4;

The statement
y = x[1:3,5:8];

will put the intersection of the first three rows and the fifth through eighth columns of
X into the matrix y.

The statement
y =x[131,55 9];

will create a 3x3 matrix y with the intersection of the specified rows and columns
pulled from x (in the indicated order).

The statement

let r =1 3 1;

let ¢ =55 09;

y = x[r,c];
will have the same effect as the previous example, but is more general.
The statement

y[2,4] = 3;

will set the 2,4 element of the existing matrix y to 3. This statement isillegal if y does
not have at least 2 rows and 4 columns.

The statement
x = con(3,2);

will cause a? to be printed in the window, and will prompt the user until six numbers
have been entered from the keyboard.

The statement
load x[] = b:nydata.asc

10-13

GAUSS User Guide

will load data contained in an ASCI| fileinto an Nx1 vector x. (User ows (X) to find
out how many numbers were loaded, and use r eshape(x,N,K) to reshapeit to an
NxK matrix.)

The statement
| oad Xx;

will load the matrix x. f nt from disk (using the current load path) into the matrix xin
memory.

The statement
open dl1 = dat 1;
X = readr(dl, 100);
will read the first 100 rows of the GAUSS data set dat 1. dat .

Strings and String Arrays

Strings

Strings can be used to store the names of files to be opened, messages to be printed,
entirefiles, or whatever else you might need. Any byte valueislegal in astring from
0-255. The buffer where astring i s stored always contains a terminating byte of ASCI|
0. This allows passing strings as arguments to C functions through the Foreign
Language Interface.

Hereisapartial list of the functions for manipulating strings:

$+ Combine two strings into one long string.

A Interpret following name as avariable, not aliteral.

chrs Convert vector of ASCII codesto character string.

dttostr Converts a matrix containing datesin DT scalar format to a
string array.

ftocv Character representation of numbersin NxK matrix.

ftos Character representation of numbersin 1x1 matrix.

ftostrC Converts a matrix to a string array using a C language
format specification.

get f Load ASCII or binary file into string.

i ndcv Find index of element in character vector.

10-14

Language Fundamentals

| ower
st of

st rindx
strlen
strsect

strsplit

strsplitPad

strtodt

strtof
strtofcpl x

upper
val s

Convert to lowercase.

Convert string to floating point.

Find index of a string within a second string.
Length of astring.

Extract substring of string.

Splits an Nx1 string vector to an NxK string array of the
individual tokens.

Splits a string vector into a string array of the individual
tokens. Pads on the right with the null strings.

Converts a string array of datesto amatrix in DT scalar
format.

Converts a string array to a numeric matrix.
Converts a string array to complex numeric matrix.
Convert to uppercase.

Convert from string to numeric vector of ASCII codes.

Strings can be created like this:

or

or

x = “exanple string”;

X
1

cons;

X
1

getf(“nyfile”, 0);

/* keyboard input */

They can be printed like this:

print x;

A character matrix must have a‘$’ prefixedtoitinapri nt statement:

print $x;

A string can be saved to disk with the save command in afilewith a. f st
extension, and then loaded with the | oad command:

10-15

/* read a file into a string */

GAUSS User Guide

save X;
| oads x;
or

| oads x=x.fst;

The backslash is used as the escape character inside double quotes to enter special
characters:

“\'b” backspace (ASCII 8)

“\e” escape (ASCII 27)

“Af formfeed (ASCII 12)

“\g” beep (ASCII 7)

“A L linefeed (ASCII 10)

“Nr” carriage return (ASCII 13)

“\t” tab (ASCII 9)

“A\7 abackslash

“\ HH#" the ASCII character whose decimal value is “###”

When entering DOS pathnames in doubl e quotes, two backslashes must be used to
insert one backslash:

st = “c:\\gauss\\nyprog.prg”;

An important use of strings and character elements of matrices iswith the substitution
operator (") .

In the command
create f1 = olsdat with x, 4, 2;

by default, GAUSS will interpret the ol sdat asaliteral; that is, the literal name of
the GAUSS datafile you want to create. It will also interpret the X asthe literal prefix
string for the variable names: x1 x2 x3 x4.

If you want to get the data set name from a string variable, the substitution operator
(™) could be used as

dat aset =“ol sdat ”;

10-16

Language Fundamentals

create fl="dataset with x, 4, 2;

If you want to get the data set name from astring variable and the variable names from
a character vector, use

dat aset =“ol sdat ”;
| et vnames=age pay Ssex;

create fl1l="dataset with ~vnanes, 0, 2;

The substitution operator () workswith| oad and save, also:
| pat h="c:\ gauss\ procs”;
nanme="nydat a”;
| oad pat h="l pat h x="nane;

command=“dir *.fm";

The general syntax is

Avariable_name

Expressions are not allowed.

The following commands are supported with the substitution operator (*):
create fl="Ndataset w th “~vnanes, 0, 2;
create fl="dataset using “cndfil e;
open fl="dat aset;
output file="outfile;
| oad x="dat afil e;
| oad path="lpath x,y,z,t,w,
save “nanme=x;
save pat h="spat h;
run ~prog;

nmsym ~nstring;

10-17

GAUSS User Guide

String Arrays

String arrays are NxK matrices of strings. Hereisa partial list of the functions for
manipulating string arrays:

$| Vertical string array concatenation operator.

$~ Horizontal string array concatenation operator.

[] Extract subarrays or individual strings from their corresponding
array, or assign their values.

’ Transpose operator.

7 Bookkeeping transpose operator.

decl are Initiaize variables at compile time.
del et e Delete specified globa symbols.
fgetsa Read multiple lines of text from afile.

f get sat Read multiple lines of text from afile, discarding newlines.

f or mat Define output format for matrices, string arrays, and strings.
fputs Write stringsto afile.

f put st Write strings to afile, appending newlines.

| et Initialize matrices, strings, and string arrays.

| oads Load astring or string array file (. f st file).

| print Print expressions to the printer.

| show Print global symbol table to the printer.

print Print expressions in window and/or auxiliary output.

reshape Reshapeamatrix or string array to new dimensions.

save Save matrix, string array, string, procedure, function, or keyword
to disk and givethe disk fileeithera. fnt,. fst,or. fcg
extension.

show Display global symbol table.

sortcc Quick-sort rows of matrix or string array based on character
column.

10-18

Language Fundamentals

type Indicate whether variable passed as argument is matrix, string, or
string array.
typecv Indicate whether variables named in argument are strings, string

arrays, matrices, procedures, functions, or keywords.
var get Access the global variable named by a string array.
var put Assign the global variable named by a string array.
vec Stack columns of amatrix or string array to form a column vector.
vecr Stack rows of amatrix or string array to form a column vector.

String arrays are created through the use of the string array concatenation operators.
Below is acontrast of the horizontal string and horizontal string array concatenation

operators:
X = “age”;
y = "pay’;
n = “sex”;

s = x $+ vy $+ n;

sa = X $~y $~ n;

s = agepaysex
sa=age pay Sex

Character Matrices

Matrices can have either numeric or character e ements. For convenience, a matrix
containing character elementsis referred to as a character matrix.

A character matrix is not a separate data type, but gives you the ability to store and
manipulate data elements that are composed of ASCII characters as well as floating
point numbers. For example, you may want to concatenate a column vector containing
the names of the variablesin an analysis onto a matrix containing the coefficients,
standard errors, t-statistic, and p-value. You can then print out the entire matrix with a
separate format for each column with one call to the function pri nt f m

Thelogic of the programs will dictate the type of data assigned to a matrix, and the
increased flexibility allowed by being able to bundle both types of datatogether in a
single matrix can be very powerful. You could, for instance, create a moment matrix
from your data, concatenate a new row onto it containing the names of the variables,
and save it to disk with the save command.

10-19

GAUSS User Guide

Numeric matrices are double precision, which means that each element is stored in 8
bytes. A character matrix can thus have elements of up to 8 characters.

GAUSS does not automatically keep track of whether amatrix contains character or
numeric information. The ASCII to GAUSS conversion program ATOG will record
the types of variables in a data set when it createsit. The cr eat e command will,
also. Thefunctionvart ypef getsavector of variable type information from a data
set. This vector of ones and zeros can be used by pr i nt f mwhen printing your data.
Since GAUSS does not know whether a matrix has character or numeric information,
it is up to you to specify which type of data it contains when printing the contents of
the matrix. (For details, seepri nt and pri nt f minthe GAUSS Language
Reference.)

Most functions that take a string argument will take an element of a character matrix
also, interpreting it as a string of up to 8 characters.

Date and Time Formats

DT Scalar Format

The DT scalar format is adouble precision representation of the date and time. Inthe
DT scalar format, the number

20010421183207
represents 18:32:07 or 6:32:07 PM on April 21, 2001.

DTV Vector Format
The DTV vector is a 1x8 vector. The format for the DTV vector is:

[1] Year

[2] Month, 1-12

[3] Day of month, 1-31

[4] Hour of day, 0-23

[5] Minute of hour, 0-59

[6] Second of minute, 0-59

[7] Day of week, 0-6 where 0 is Sunday
[8] Day since beginning of year, 0-365

10-20

Language Fundamentals

UTC Scalar Format
The UTC scalar format is the number of seconds since January 1, 1970, Greenwich
Mean Time.

Special Data Types

The | EEE floating point format has many encodings that have special meaning. The
pri nt command will print them accurately so that you can tell if your calculation is
producing meaningful results.

NaN

There are many floating point encodings that do not correspond to areal number.
These encodings are referred to as NaN's. NaN stands for Not a Number.

Certain numerical errors will cause the math coprocessor to create a NaN called an
“indefinite.” Thiswill be printed as a-NaN when using the pr i nt command. These
values are created by the following operations:

+oo plus-oo
+0c0 MiNUS +oo
-co MiNUS -0
0X oo

oo [oo

0/0

operations where one or both operands is a NaN

trigonometric functionsinvolving oo

INF

When the math coprocessor overflows, the result will be a properly signed infinity.
Subsequent calculations will not deal well with an infinity; it usually signals an error
in your program. The result of an operation involving an infinity is most often a NaN.

DEN, UNN

When some math coprocessors underflow, they may do so gradually by shifting the
significand of the number as necessary to keep the exponent in range. The result of
thisisadenormal (DEN). When denormals are used in calculations, they are usually
handled automatically in an appropriate way. The result will either be an unnormal
(UNN), which like the denormal represents a number very close to zero, or a normal,

10-21

GAUSS User Guide

depending on how significant the effect of the denormal wasin the calculation. In
some cases the result will be a NaN.

Following are some procedures for dealing with these values.

The procedurei si ndef will return 1 (true) if the matrix passed to it contains any
NaN’sthat are the indefinite mentioned earlier. The GAUSS missing value code as
well as GAUSS scalar error codes are NaN's, but this procedure tests only for
indefinite:

proc isindef(x);
retp(not x $/ = __ | NDEFn);
endp;

Besuretocall gausset beforecallingi si ndef .gausset will initialize the value
of the global __| NDEFn to this platform-specific encoding.

The procedure nor mal will return amatrix with al denormals and unnormals set to
zero:

proc nornal (x);
retp(x .* (abs(x) .> 4.19e-307));
endp;

10-22

Language Fundamentals

The procedurei si nf will return 1 (true) if the matrix passed to it contains any
infinities:
proc isinf(x);
| ocal plus, ninus;
plus = __ I NFp;
m nus = __I NFn;
retp(not x /= plus or not x /= minus);

endp;

Besuretocall gausset beforecallingi si nf.gausset will initialize the value of
theglobals__ | NFn and __| NFp to platform-specific encodings.

Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the * and/
operators have a higher precedence than the + and - operators. In expressions that
contain these operators, the operand pairs associated withthe* or / operator are
evaluated first. Whether * or / isevaluated first depends on which comesfirst in the
particular expression. (For alisting of the precedence of all operators, see “ Operator
Precedence,” page 11-18.)

The expression
-5+3/ 4+6*3
is evaluated as
(-5) + (3/4) + (6*3)

Within aterm, operators of equal precedence are evaluated from left to right.
Theterm

2"N3MT
is evaluated as

2%’

10-23

GAUSS User Guide

In the expression
f1(x)*f2(y)
f 1 isevaluated before f 2.

Here are some examples:

Expression

Evaluation

a+b*c+d
-2+4-6*inv(8)/9

3.1475%6/ (2+sqrt (3)/ 4)

(a+(bxc)) +d
((=2) +4) —((6xinv(8))/9)

((3.14°)%6)/(2 + (sqrt(3)/4))

-atb*cn2 (—a) + (bx(c?))
a+b-c+d-e (((a+b)-c)+d)-e
a’b~rc*d ((ab)c)*d

a*b/ d*c ((axb)/d)xc
a"b+c*d @)+ (cxd)

2141 2(4)

2% 31 2% (31)

Flow Control

A computer language needs facilities for decision making and looping to control the
order in which computations are done. GAUSS has several kinds of flow control
statements.

10-24

Language Fundamentals

Looping

do loop

The do statement can be used in GAUSS to control looping:
do whil e scalar_expression; /* loop if expression is true */

Statements

endo;
aso
do until scalar_expression; /* loop if expression is

false */

Statements

endo;

The scalar_expression is any expression that returns a scalar result. The expression
will be evaluated as TRUE if its real part is nonzero and FALSE if it is zero.

There is no counter variable that is automatically incremented in ado loop. If oneis
used, it must be set to itsinitial value before the loop is entered, and explicitly
incremented or decremented inside the loop.

10-25

GAUSS User Guide

The following exampleillustrates nested do loops that use counter variables:
format /rdn 1, 0;

space = ;
comma = “,";
i = 1;
do while i <= 4;
=1
do while j <= 3;

print space i comma j;;

=i+
endo;
i = i+1;
print;
endo;
Thiswill print:
11 1,2 3

21 22 23
31 32 33
41 42 43

Usetherelational and logical operators without the dot ‘. ’ in the expression that
controls ado loop. These operators always return a scalar result.

br eak and cont i nue are used within do loopsto control execution flow. When
br eak is encountered, the program will jump to the statement following the endo.
This terminatestheloop. When cont i nue isencountered, the program will jump up
to the top of the loop and reevaluate thewhi | e orunt i | expression. Thisallows
you to reiterate the loop without executing any more of the statements inside the loop:

10-26

Language Fundamentals

do until eof (fp); /*
X =
if scal mss(x);

conti nue; /*
endi f;
S = s + sunc(Xx);
count = count + rows(Xx);

i f count >= 10000;

br eak; /*
endi f;
endo;
mean = s / count; [*
for loop

packr (readr (fp, 100));

continue junps here */

iterate again */

break out of loop */

break jumps here */

The fastest looping construct in GAUSS isthef or loop:

for counter (start, stop, sep);

Statements

endf or;

counter isthe literal name of the counter variable. start, stop, and step are scalar
expressions. start is the initial value, stop isthefinal value, and step is the increment.

br eak and cont i nue are also supported by f or loops. (For more information, see

f or inthe GAUSS Language Reference.)

10-27

GAUSS User Guide

Conditional Branching
Thei f statement controls conditional branching:

i f scalar_expression;

Statements

el sei f scalar_expression;

Statements

el se;

Statements

endi f;

The scalar_expression is any expression that returns a scalar result. The expression
will be evaluated as TRUE if its real part is nonzero and FALSE if it is zero.

GAUSS will test the expression after thei f statement. If it is TRUE, thefirst list of
statements is executed. If it is FALSE, GAUSS will move to the expression after the
firstel sei f statement, if thereisone, and test it. It will keep testing expressions and
will execute the first list of statements that corresponds to a TRUE expression. If no
expression is TRUE, the list of statementsfollowing theel se statement is executed.
After the appropriate list of statements is executed, the program will go to the
statement following the endi f and continue on.

10-28

Language Fundamentals

Usetherelational and logical operators without the dot ‘. ’ in the expression that
controlsani f orel sei f statement. These operators always return a scalar result.

i f statements can be nested.

Oneendi f isrequired peri f clause. If an el se statement is used, there may be
only oneperi f clause. There may be asmany el sei f 'sasarerequired. There need
not beany el sei f 'sor any el se statement withinani f clause.

Unconditional Branching

Thegot o and gosub statements control unconditional branching. Thetarget of both
agot o andagosub isalabel.

goto

A got o is an unconditional jump to alabel with no return:
| abel :
goto | abel;

Parameters can be passed with agot 0. The number of parametersis limited by
available stack space. Thisisgood for common exit routines:

goto errout (“Matrix singular”);

goto errout(“File not found”);

errout:
pop errmnsg;
errorl og errnsg;

end;

10-29

GAUSS User Guide

gosub

With agosub, the address of the gosub statement is remembered and when a
r et ur n statement is encountered, the program will resume executing at the
statement following the gosub.

Parameters can be passed with agosub in the sameway asagot 0. Withagosub, it
is also possibleto return parameters with ther et ur n statement.

Subroutines are not isolated from the rest of your program, and the variables referred
to between the label and ther et ur n statement can be accessed from other placesin
your program.

Since a subroutine is only an address marked by alabel, there can be subroutines
inside procedures. The variables used in these subroutines are the same variables that
are known inside the procedure. They will not be unique to the subroutine, but they
may be localsthat are unique to the procedure the subroutineisin. (For details, see
gosub in the GAUSS Language Reference.)

Functions

Single line functions that return one item can be defined with the f n statement:

fn area(r) =pi *r * r;

These functions can be called in the same way as intrinsic functions. The above
function could be used in the following program sequence:

di aneter = 3;
radius = 3 / 2;

a = area(radius);

Rules of Syntax

This section lists the general rules of syntax for GAUSS programs.

Statements

A GAUSS program consists of a series of statements. A statement is a complete
expression or command.

Statementsin GAUSS end with a semicolon with one exception: from the GAUSS
command line, the final semicolon in an interactive program is implicit if it is not
explicitly given:

(gauss) x=5; z=rndn(3,3); y=x+z

10-30

Language Fundamentals

Column position is not significant. Blank lines are allowed. Inside a statement and
outside of double quotes, the carriage return/line feed at the end of aphysical line will
be converted to a space character asthe program is compiled.

A statement containing a quoted string can be continued across several lineswith a
backslash:

s = “This is one really “long string that would be” \

“difficult to assign in just a single line.”;

Case
GAUSS does not distinguish between uppercase and lowercase except inside double
quotes.

Comments

/* this kind of comment can be nested */

@ this kind of comment cannot be nested @

Extraneous Spaces

Extraneous spaces are significantinpri nt and | pri nt statements where the space
is a delimiter between expressions:

print x vy z;

Inprint andl pri nt statements, spaces can be used in expressionsthat are in
parentheses:

print (x *y) (x +y);

Symbol Names

The names of matrices, strings, procedures, and functions can be up to 32 characters
long. The characters must be a phanumeric or an underscore. The first character must
be alphabetic or an underscore.

Labels

A label is used as the target of agot 0 or agosub. The rule for naming labelsisthe
same as for matrices, strings, procedures, and functions. A label isfollowed
immediately by a colon:

here:

10-31

GAUSS User Guide

The reference to alabel does not use a colon:
goto here;

Assignment Statements
The assignment operator isthe equal sign ‘=" :
y = x + 1z

Multiple assignments must be enclosed in braces‘{ } ':
{ mant, pow } = baselO(x);

The comparison operator (equal to) istwo equal signs‘==":
if x ==vy;
print “x is equal to y”;

endi f;

Function Arguments
The arguments to functions are enclosed in parentheses ‘() ':
y = sqrt(x);
Indexing Matrices
Brackets‘[]’ areused toindex matrices:
x={ 123,
375,
37 4,
8 9 5,
6 18 };
y = x[3,3];
z =x[1 2:4,1 3];
Vectors can be indexed with either one or two indices:
v={12345672829},

10-32

Language Fundamentals

=~
1

v[3];
v[1,6:9];

—
1

X[2, 3] returns the element in the second row and the third column of x.

x[1 3 5,4 7] returnsthe submatrix that isthe intersection of rows 1, 3, and 5 and
columns 4 and 7.

X[., 3] returns the third column of x.
X[3: 5, .] returnsthe submatrix containing the third through the fifth rows of x.

Theindexing operator will take vector arguments for submatrix extraction or
submatrix assignments:

y = X[rv,cv];

y[rv,cv] = x;

rv and cv can be any expressions returning vectors or matrices. The elements of r v
will be used as the row indices and the elements of cv will be used as the column
indices. If r v isascalar 0, all rowswill be used; if cv isascalar 0, all columnswill be
used. If avector isused in an index expression, it isillegal to use the space operator or
the colon operator on the same side of the comma as the vector.

Arrays of Matrices and Strings
It is possible to index sets of matrices or strings using the var get function.

In this example, a set of matrix namesisassigned to mvec. Thenamey isindexed
from mvec and passed to var get , which will return the global matrix y. The
returned matrix is inverted and assigned to g:

mec = { xy z a};
i = 2;

g = inv(varget(nmvecl[i]));

Thefollowing procedure can be used to index the matricesin mvec moredirectly:
proc imvec(i);
retp(varget (nvecl[i]));
endp;

Theni mvec(i) will equal the matrix whose name isin the ith element of nvec.

10-33

GAUSS User Guide

In the example above, the procedurei mvec was written so that it always operates on
the vector mvec. The following procedure makes it possible to passin the vector of
names being used:

proc get(array,i);
retp(varget(array[i]));
endp;
Thenget (nmvec, 3) will return the 3rd matrix listed inmvec.
proc put(x,array,i);
retp(varput(x,arrayl[i]));
endp;
Andput (x, mvec, 3) will assign x to the 3rd matrix listed in nvec and returna 1l
if successful or aQif it fails.
Arrays of Procedures

It is also possible to index procedures. The ampersand operator (&) isused to return a
pointer to a procedure.

Assumethat f 1, f 2, and f 3 are procedures that take a single argument. The
following code defines a procedure f i that will return the value of the ith procedure,
evaluated at X :

nms = &1 | &2 | &f3;

proc fi(x,i);
| ocal f;
f = nns[i];
| ocal f:proc;
retp(f(x));
endp;

fi(x,2) will returnf 2(x) . The ampersand is used to return the pointersto the
procedures. nis is a numeric vector that contains a set of pointers. Thel ocal
statement is used twice. The first tells the compiler that f isalocal matrix. Theith
pointer, which isjust a number, isassignedtof . Thesecond | ocal statement tells
the compiler to treat f as a procedure from this point on; thus the subsequent
statement f (x) isinterpreted as a procedure call.

10-34

Operators

Element-by-Element Operators

Element-by-element operators share common rules of conformability. Some functions
that have two arguments also operate according to the samerules.

Element-by-element operators handle those situations in which matrices are not
conformable according to standard rules of matrix algebra. When amatrix issaid to be
EXE conformable, it refersto this element-by-element conformability. The following

cases are supported:
matrix op matrix
matrix op scalar
scalar op matrix
matrix op vector
vector op matrix

vector op vector

GAUSS User Guide

In atypical expression involving an element-by-element operator
Z =Xty
conformability is defined as follows:

« If xandy are the same size, the operations are carried out corresponding
element by corresponding element:

132
X= 451
374

243
y= 314
612

375
Z= 765
986

e If xisamatrix and y isascalar, or vice versa, the scalar is operated on with
respect to every element in the matrix. For example, x + 2 will add 2 to every

element of x:
132
X= 451
374

y= 2
354
Z= 673

596

Operators

If xisan Nx1 column vector and y isan NxK matrix, or vice versa, the vector
isswept “across’ the matrix:

vector matrix

1 > 2 4 3

4 > 3 1 4

3 > 6 1 2
result

3 5 4

7 5 8

9 4 5

If xisa1xK columnvector andyisan NxK matrix, or vice versa, the vector is
swept “down” the matrix:

vector 2 4 3

matrix

result

0 0O Ml O W N -
g ol ok r N -
g N o N b~ Wl -

GAUSS User Guide

e When oneargument is arow vector and the other isacolumn vector, the result
of an element-by-element operation will be the “table” of the two:

row vector 2 4 3 1

3 5 7 6 4
column vector 2 4
5

If xand y are such that none of these conditions apply, the matrices are not
conformabl e to these operations and an error message will be generated.

Matrix Operators

Thefollowing operators work on matrices. Some assume numeric data and others will
work on either character or numeric data.
Numeric Operators

For details on how matrix conformability is defined for el ement-by-element operators,
see “ Element-by-Element Operators,” page 11-1.

+ Addition
y=Xx+z

Performs element-by-element addition.

- Subtraction or negation
y=x-1z
y = -k
Performs element-by-element subtraction or the negation of all elements,
depending on context.
* Matrix multiplication or multiplication
y=x%*z

When z has the same number of rows as x has columns, this will perform matrix
multiplication (inner product). If x or zare scalar, this performs standard
element-by-element multiplication.

Operators

%

Division or linear equation solution

x=b/l A
If Aand b are scalars, it performs standard division. If one of the operandsisa
matrix and the other is scalar, the result is a matrix the same size with the results

of the divisions between the scalar and the corresponding el ements of the matrix.
Use. / for element-by-element division of matrices.

If b and A are conformable, this operator solves the linear matrix equations.
Linear equation solution is performed in the following cases:
Ax = b

» If Aisasqguare matrix and has the same number of rowsas b, this
statement will solve the system of linear equations using an LU
decomposition.

» If Aisrectangular with the same number of rows as b, this statement will
produce the least squares solutions by forming the normal equations and
using the Cholesky decomposition to get the solution.

_ Ab
Y= NA

If t rap 2isset, missing values will be handled with pairwise deletion.

Modulo division
y = X % z

For integers, this returns the integer value that is the remainder of the integer
division of x by z If x or zis noninteger, it will first be rounded to the nearest
integer. Thisis an el ement-by-element operator.

Factorial
y = x;

Computes the factorial of every element in the matrix x. Nonintegers are
rounded to the nearest integer before the factorial operator is applied. This will
not work with complex matrices. If x is complex, afatal error will be generated.

Element-by-element multiplication
y=X.%* z

If x isacolumn vector and zis arow vector (or vice versa), the “outer product”
or “table” of the two will be computed. (For conformability rules, see “Element-
by-Element Operators,” page 11-1.)

GAUSS User Guide

./ Element-by-element division

y=x./ z

n Element-by-element exponentiation
y = x*z
If X is negative, zmust be an integer.
. Sameas "
. *. Kronecker (tensor) product
y =X.%* 1z

This results in amatrix in which every element in x has been multiplied (scalar
multiplication) by the matrix z. For example:

x = {1 2,
341}

z = {4 5 6,
78 9 };

12
34

456
789

4 5 6 8 1012
7 8 9 141618
12 1518 16 20 24
21 24 27 28 32 36

Operators

*~ Horizontal direct product
zZ=X*~Yy,

_ 12

X =
34

y= 56
78

,- 5 61012
2124 28 32

Theinput matrices x and y must have the same number of rows. The result will
have col s(X) * col s(y) columns.

Other Matrix Operators

Transpose operator
y = X ;
The columns of y will contain the same values as the rows of x, and the rows of y

will contain the same values as the columns of x. For complex matrices, this
computes the complex conjugate transpose.

If an operand immediately followsthe transpose operator, the’ will beinterpreted
as’' *. Thusy = X' x isequivaenttoy = x’ *X.
Bookkeeping transpose operator

y = X
Thisis provided primarily as a matrix handling tool for complex matrices. For all
matrices, the columns of y will contain the same values as the rows of x, and the

rows of y will contain the same values as the columns of x. The complex
conjugate transpose is NOT computed when you use. ' .

If an operand immediately follows the bookkeeping transpose operator, the . '’
will beinterpretedas. ’ *. Thusy = X.'Xx isequivdenttoy = Xx.’' *X.

GAUSS User Guide

| Vertical concatenation

z=xXy

x = 123
345

y= 789
123

Z= 345
789

~ Horizonta concatenation

zZ = XY,

X = 12
34

y = 56
78

;= 1256
3478

Relational Operators

For details on how matrix conformability is defined for el ement-by-element operators,
see “ Element-by-Element Operators,” page 11-1.

Each of these operators has two equivalent representations. Either can be used (for
example, < or | t), depending only upon preference. The a phabetic form should be
surrounded by spaces.

A third form of these operators hasa‘$’ and is used for comparisons between
character data and for comparisons between strings or string arrays. The comparisons
are done byte by byte, starting with the lowest addressed byte of the elements being
compared.

Operators

The equality comparison operators (<=, ==, >=, / =) and their dot equivalents can be
used to test for missing values and the NaN that is created by floating point
exceptions. Less than and greater than comparisons are not meaningful with missings
or NaN'’s, but equal and not equal will be valid. These operators are sign-insensitive
for missings, NaN’s, and zeros.

Thestring ‘$’ versions of these operators can also be used to test missings, NaN'’s, and
zeros. Because they do a strict byte-to-byte comparison, they are sensitive to the sign
bit. Missings, NaN's, and zeros can all have the sign bit set to 0 or 1, depending on
how they were generated and have been used in a program.

If the relational operator isNOT preceded by adot ‘. ’, the result is always a scalar 1
or 0, based upon acomparison of all elementsof x and y. All comparisons must be true
for the relational operator to return TRUE.

By this definition, then
if x/=vy;
isinterpreted as. “if every element of x isnot equal to the corresponding element of y”

To check if two matrices are not identical, use
if not x == y;

For complex matrices, the==,/ =, . ==, and . / = operators compare both thereal and
imaginary parts of the matrices; all other relational operators compare only the real
parts.

e Lessthan
Z=X<Y,
z=x1t vy
z =X %<y

e Lessthan or equal to
Z=X<=Y,
z=xlevy;
Z=X $<=y;

e Equal to
Z=X==Y
Z=Xxeqy
z=x $==y,

GAUSS User Guide

e Not equal
z=Xx/=Yy;
Z = X ney,
z=x$/=vy

e Greater than or equal to

Z=X>=Y,
Z=Xgey,
Z =X %=,

» Greater than
zZ=X>Yy,
z=xgty
z=x$>y,

If the relational operator IS preceded by adot ‘. ', the result will be amatrix of 1'sand
0's, based upon an element-by-element comparison of x and y.

» Element-by-element less than

zZ=X.<Y,

z=x.lt vy
zZ=Xx.%5<y

» Element-by-element less than or equal to
Z=X.<=Y
z=x.ley
Z=X.%<=y

* Element-by-element equal to
zZ=X.==Y,
z=x.eqYy
zZ=Xx.%==y,

» Element-by-element not equal to
z=Xx./l=Yy;
Z=X.ney,
z=x.%/=vy;

11-10

Operators

e Element-by-element greater than or equal to
Z=X .>=Y,
Z=X .gey

X . $>=y;

e Element-by-element greater than

z

Z=X.>Y

X .gty,
X .$> vy,

z

z

Logical Operators

Thelogical operators perform logica or Boolean operations on numeric values. On
input, a nonzero value is considered TRUE and a zero value is considered FAL SE.
Thelogical operatorsreturnalif TRUE and a0 if FALSE. Decisions are based on the
following truth tables:

Complement
X not X
T F
F T
Conjunction
X X and Y
T T T
T F F
F T F
F F F

11-11

GAUSS User Guide

Disjunction

X XorY

T T T

T F T

F T T

F F F
Exclusive Or

X Y |[Xxor'Y

T T F

T F T

F T T

F F F
Equivalence

X Y |[XeqvyY

T T

T F F

F T F

F F T

For complex matrices, the logical operators consider only the real part of the matrices.

The following operators require scalar arguments. These arethe onesto useini f and
do statements:

e Complement
Z = not x;
e Conjunction

z=x and vy;

11-12

Operators

» Digunction

Z = Xor vy,
* Exclusiveor

Z = X XOr vy,
* Equivaence

Z=Xeqvy,;

If thelogical operator is preceded by adot ‘. ', theresult will beamatrix of 1’'sand 0's

based upon an element-by-element logical comparison of x and y:

e Element-by-element logical complement
Z =.not x;

» Element-by-element conjunction
z=x .and vy,

» Element-by-element digunction
zZ=Xx.0ry;

» Element-by-element exclusive or
Z = X .Xxor vy,

» Element-by-element equivalence

zZ =X .eqv Vy,

Other Operators

Assignment Operator
Assignments are done with one equal sign:
y = 3;
Comma
Commas are used to delimit lists:
clear Xx,vy,z;
to separate row indices from column indices within brackets:
y = x[3,5];

and to separate arguments of functions within parentheses:

11-13

GAUSS User Guide

y = nonentd(x,d);

Period
Dots are used in bracketsto signify “all rows” or “all columns:”

y = x[.,5];

Space
Spaces are used inside of index brackets to separate indices:
y =x[1 35,35 9];

No extraneous spaces are allowed immediately before or after the comma, or
immediately after the left bracket or before the right bracket.

Spacesareasousedinpri nt and| pri nt statementsto separate the separate
expressions to be printed:

print x/2 2*sqgrt(x);

No extraneous spaces are allowed within expressionsinpri nt orl pri nt
statements unless the expression is enclosed in parentheses:

print (x / 2) (2 * sqrt(x));

Colon
A colon is used within brackets to create a continuous range of indices:
y=x15.];

Ampersand

The ampersand operator (&) will return a pointer to a procedure (pr oc) or function
(f n). It is used when passing procedures or functions to other functions and for
indexing procedures. (For more information, see “Indexing Procedures,” page 12-9.)

String Concatenation

x = “dog”;
y = “cat”;
z = x $+vy;

print z;

11-14

Operators

dogcat

If the first argument is of type string, the result will be of type string. If the first
argument is of type matrix, the result will be of type matrix. Here are some examples:

y =0 $+ “caterpillar”;
the result will be a 1x1 matrix containing cat er pi | .
y = zeros(3,1) $+ “cat”;
the result will be a 3x1 matrix, each element containing cat .
If we use they created above in the following:
k =y $+ “fish”;
the result will be a 3x1 matrix with each element containing cat f i sh.
If we then use k created above:
t =" $+ Kk[1,1];
the result will be astring containing cat f i sh.
If we use the same k to create z as follows:
z = “dog” $+ K[1,1];

the result will be astring containing dogcat fi sh.

String Array Concatenation

$| Vertical string array concatenation

x = “dog”;
y = “fish”;
k = x 3| vy;
print Kk;
dog

fish

11-15

GAUSS User Guide

$~ Horizonta string array concatenation
x = “dog”;
y “fish”;
Kk = x $~vy;

print Kk;

dog fish

String Variable Substitution

In acommand such as
create f1 = olsdat with x, 4, 2;

by default, GAUSS will interpret ol sdat astheliteral name of the GAUSS datafile
you want to create. It will also interpret x asthe literal prefix string for the variable
namesx1l x2 x3 x4.

To get the data set name from a string variable, the substitution operator (*) could be
used as follows:

dat aset = “ol sdat”;

create f1 = ~"dataset with x, 4, 2;

To get the data set name from a string variable and the variable names from a
character vector, use the following:

dat aset = “ol sdat”;
vnames = { age, pay, Sex };

create f1 = ~dataset with “vnanes, 0, 2;

The general syntax is

Avariable_name

Expressions are not allowed.

11-16

Operators

The following commands are currently supported with the substitution operator (*):
create f1 = ~"dataset with “~vnanes, 0, 2;
create f1 = ~dataset using “cndfil e;
open f1 = ~dataset;
output file = ~outfile;
|l oad x = ~datafile;
| oad path = *path x,y,z,t,w
save “hame = X;
save path = “spath;
run ~prog;

nmsym ~nstring;

Using Dot Operators with Constants

When you use those operators preceded by a“. ’ (dot operators) with a scalar integer
constant, insert a space between the constant and any following dot operator.
Otherwise, the dot will be interpreted as part of the scalar; that is, the decimal point.
For example,

let y =1 2 3;
X = 2.<y,
will return x as ascalar 0, not a vector of 0’'sand 1's, because
X = 2.<y,;
isinterpreted as
X=2. <y,
and not as
X=2 <Yy;

1117

GAUSS User Guide

Be careful when using the dot relational operators(. <, . <=,.==,./=,.>,.>=).
The same problem can occur with other dot operators, also. For example,

let x =11 1;

y = x./12./x;
will returny as ascalar .5 rather than a vector of .5's, because
y = x./12./x;
isinterpreted as
y=(x . 2)/x;
and not as
y=(x.2) /X

The second division, then, is handled as a matrix division rather than an element-by-
element division.

Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the* and/
operators have a higher precedence than the + and - operators. In expressions that
contain the above operators, the operand pairs associated with the* or/ operator are
evaluated first. Whether * or / is evaluated first depends on which comesfirst in the
particular expression.

The expression
-5+3/4+6*3

is evaluated as
(-5)+(3/4)+(6*3)

Within aterm, operators of equal precedence are evaluated from left to right.

11-18

Operators

The precedence of all operators, from the highest to the lowest, islisted in the
following table:

Operator Precedence || Operator Precedence || Operator ~ Precedence

7 90 C$>= 65 $>= 55
’ 90 = 65 /= 55
! 89 . < 65 < 55
LA 85 L <= 65 <= 55
n 85 . == 65 == 55
(unary -) 83 L > 65 > 55
* 80 L >= 65 >= 55
*~ 80 . eq 65 eq 55
L 80 . ge 65 ge 55
L 80 . gt 65 gt 55
A 80 le 65 le 55
/ 80 ot 65 It 55
% 75 . he 65 ne 55
$+ 70 . hot 64 not 49
+ 70 .and 63 and 48
- 70 . or 62 or 47
~ 68 . Xor 61 xor 46
| 67 .eqv 60 eqv 45
.8/ = 65 $/ = 55 (space) 35
. $< 65 $< 55 : 35
C$<= 65 $<= 55 = 10

== 65 == 55

. $> 65 $> 55

11-19

Procedures and Keywords

Procedures are multiple-line, recursive functions that can have either local or global
variables. Procedures allow alarge computing task to be written as a collection of
smaller tasks. These smaller tasks are easier to work with and keep the details of their
operation separate from the other parts of the program. This makes programs easier to
understand and easier to maintain.

A procedure in GAUSS is basically a user-defined function that can be used asif it
were an intrinsic part of the language. A procedure can be as small and simple or as
large and complicated as necessary to perform a particul ar task. Procedures allow you
to build on your previous work and on the work of others, rather than starting over
again and again to perform related tasks.

Any intrinsic command or function may be used in a procedure, as well as any user-
defined function or other procedure. Procedures can refer to any global variable; that
is, any variablein the global symbol table that can be shown with the show command.
It isalso possible to declare local variables within a procedure. These variables are
known only inside the procedure they are defined in and cannot be accessed from
other procedures or from the main level program code.

All labels and subroutines inside a procedure are local to that procedure and will not
be confused with |abel s of the same name in other procedures.

12-1

GAUSS User Guide

Defining a Procedure

A procedure definition consists of five parts, four of which are denoted by explicit

GAUSS commands:
1. Procedure declaration pr oc statement
2. Locad variable declaration | ocal statement
3. Body of procedure
4. Return from procedure r et p statement
5. End of procedure definition endp statement

Thereisawaysone pr oc statement and one endp statement in a procedure
definition. Any statements that come between these two statements are part of the
procedure. Procedure definitions cannot be nested. | ocal andr et p statements are
optional. There can be multiple| ocal andr et p statementsin a procedure
definition. Here is an example:

proc (3) = regress(x, Y);

| ocal xxi, b, ynxb, sse, sd, t;

xxi = invpd(x' x);

b = xxi * (xX'Yy);

ynmxb = y-xb;

sse = ynmxb' ymxb/ (rows(x)-col s(x));
sd = sqgrt(diag(sse*xxi));

t = b./sd;

retp(b,sd,t);

endp;

This could be used as a function that takes two matrix arguments and returns three
matrices as aresult. For example:

{ b,sd,t } = regress(x,Yy);

Following is adiscussion of the five parts of a procedure definition.

12-2

Procedures and Keywords

Procedure Declaration
The pr oc statement is the procedure declaration statement. The format is:
proc [[(rets) =] name([argl,arg2,...argN]) ;

rets Optional constant, number of values returned by the procedure.
Acceptable values here are 0-1023; the default is 1.

name Name of the procedure, up to 32 alphanumeric characters or an
underscore, beginning with an apha or an underscore.

arg# Namesthat will be used inside the procedure for the arguments that
are passed to the procedure when it is called. There can be 0-1023
arguments. These names will be known only in the procedure being
defined. Other procedures can use the same names, but they will be
separate entities.

Local Variable Declarations

Thel ocal statement isused to declare local variables. Local variables are variables
known only to the procedure being defined. The names used in the argument list of the
pr oc statement are alwayslocal. Theformat of thel ocal statement is

local x vy, f proc,g:fn, z h: keyword;

Local variables can be matricesor gtrings. If : proc,: fn, or: keywor d followsthe
variablenameinthel ocal statement, the compiler will treat the symbol asif it were
a procedure, function, or keyword, respectively. This allows passing procedures,
functions, and keywordsto other procedures. (For more information, see “Passing
Procedures to Procedures,” page 12-8.)

Variables that are global to the system (that is, variableslisted in the global symbol
table that can be shown with the show command) can be accessed by any procedure
without any redundant declaration insidethe procedure. If you want to create variables
known only to the procedure being defined, the names of these local variables must be
listedinal ocal statement. Once avariable name is encounteredinal ocal
statement, further references to that name inside the procedure will be to the local
rather than to a global having the same name. (Seecl ear g, var get , and var put
in the GAUSS Language Reference for ways of accessing globals from within
procedures that have locals with the same name.)

Thel ocal statement doesnot initialize (set to avalue) thelocal variables. If they are
not passed in as parameters, they must be assigned some value before they are
accessed or the program will terminate withaVari abl e not initialized

error message.

12-3

GAUSS User Guide

All local and global variables are dynamically allocated and sized automatically
during execution. Local variables, including those that were passed as parameters, can
change in size during the execution of the procedure.

Local variables exist only when the procedure is executing, and then disappear. L ocal
variables cannot be listed with the show command.

The maximum number of localsis limited by stack space and the size of workspace
memory. The limiting factor applies to the total number of active local symbols at any
one time during execution. If cat has 10 locals and it callsdog which has 20 locals,
there are 30 active locals whenever cat is called.

There can be multiple | ocal statementsin aprocedure. They will affect only the
code in the procedure that follows. Therefore, for example, it is possibleto refer to a
global x in aprocedure and follow that with al ocal statement that declaresalocal
X. All subsequent referencesto x would be to thelocal x. (Thisis not good
programming practice, but it demonstrates the principle that the | ocal statement
affects only the code that is physically below it in the procedure definition.) Another
exampleisasymbol that isdeclared as alocal and then declared as alocal procedure
or function later in the same procedure definition. This allows doing arithmetic on
local function pointers before calling them. (For more information, see “Indexing
Procedures,” page 12-9.)

Body of Procedure

The body of the procedure can have any GAUSS statements necessary to perform the
task the procedure is being written for. Other user-defined functions and other
procedures can be referenced, as well as any global matrices and strings.

GAUSS procedures are recursive, so the procedure can call itself aslong asthereis
logic in the procedure to prevent an infinite recursion. The process would otherwise
terminate with either an | nsuf fi ci ent wor kspace nmenory error message or
aProcedure calls too deep error message, depending on the space
necessary to store the locals for each separate invocation of the procedure.

Returning from the Procedure

The return from the procedure is accomplished with ther et p statement:
retp;

r et p(expressionl,expression2,...expressionN) ;

Ther et p statement can have multiple arguments. The number of items returned must
coincide with the number of retsinthepr oc statement.

If the procedure is being defined with no itemsreturned, the r et p statement is
optional. The endp statement that ends the procedure will generate an implicitr et p

12-4

Procedures and Keywords

with no objects returned. If the procedure returns one or more objects, there must be
anexplicitr et p statement.

There can be multiple r et p statements in a procedure, and they can be anywhere
inside the body of the procedure.
End of Procedure Definition
The endp statement marks the end of the procedure definition:
endp;

Animplicit r et p statement that returns nothing is always generated here, so it is
impossible to run off the end of a procedure without returning. If the procedure was
defined to return one or more objects, executing this implicit return will resultin a
W ong numnber of returns error message and the program will terminate.

Calling a Procedure
Procedures are called like this:

dog(i,j,k); /* no returns */

y = cat(i,j,k); /* one return */

{ x,y,z} =bat(i,j,k); /* multiple returns */
call bat(i,j,k); /* ignore any returns */

Procedures are called in the same way that intrinsic functions are called. The
procedure nameisfollowed by alist of argumentsin parentheses. The arguments must
be separated by commas.

If thereisto be no return value, use
proc (0) = dog(x,vy,2);

when defining the procedure, and use
dog(ak, 4, 3);

or
cal |l dog(ak, 4, 3);

when calling it.

12-5

GAUSS User Guide

The arguments passed to procedures can be complicated expressionsinvolving callsto
other functions and procedures. This calling mechanism is completely general. For
example,

y = dog(cat (3*x,bird(x,y))-2,1);
islegal.

Keywords

A keyword, like a procedure, is a subroutine that can be called interactively or from
within a GAUSS program. A keyword differs from a procedure in that a keyword
accepts exactly one string argument, and returns nothing. Keywords can perform
many tasks not as easily accomplished with procedures.

Defining a Keyword
A keyword definition is much like a procedure definition. Keywords always are

defined with O returns and 1 argument. The beginning of a keyword definition is the
keywor d statement:

keywor d name(strarg) ;

name Name of the keyword, up to 32 alphanumeric characters or an
underscore, beginning with an alphaor an underscore.

strarg Name that will be used inside the keyword for the argument that is
passed to the keyword when it is called. There is always one
argument. The name is known only in the keyword being defined.
Other keywords can use the same name, but they will be separate
entities. Thiswill always be a string. If the keyword is called with
no characters following the name of the keyword, thiswill be anull
string.

Therest of the keyword definition is the same as a procedure definition. (For more
information, see “Defining a Procedure,” page 12-2.) Keywords always return
nothing. Any r et p statements, if used, should be empty. For example:

keywor d add(s)

| ocal tok, sum

if s $=="";

print “The argunent is a null string”;

12-6

Procedures and Keywords

retp;
endi f;
print “The argunent is: '“s"'";
sum = 0;
do until s $== “";
{ tok, s } = token(s);
sum = sum + stof (tok);
endo;
format /rd 1, 2;
print “The sumis: " osum

endp;

The keyword defined above will print the string argument passed to it. The argument
will be printed enclosed in single quotes.
Calling a Keyword

When akeyword is called, every character up to the end of the statement, excluding
the leading spaces, is passed to the keyword as one string argument. For example, if

you type
add 1 2 3 4 5;

the keyword will respond
The sumis: 15.00

Here is another example:
add;
the keyword will respond
The argument is a null string

12-7

GAUSS User Guide

Passing Procedures to Procedures

Procedures and functions can be passed to procedures in the following way:
proc max(Xx,y); /* procedure to return nmaximm */
if x>y;
retp(x);
el se;
retp(y);
endi f;

endp;

proc min(x,y); /* procedure to return mninmum */
if x<y;
retp(x);
el se;
retp(y);
endi f;

endp;

fnlgsqgrt(x) = In(sqrt(x)); /* function to return
| og of square root
*/

proc nyproc(&f 1, & 2,x,y);

|l ocal fl:proc, f2:fn, z;

z = f1(x,y);
retp(f2(z));
endp;

12-8

Procedures and Keywords

The procedure my pr oc takesfour arguments. Thefirst isaproceduref 1 that hastwo
arguments. The second is afunction f 2 that has one argument. It also has two other
argumentsthat must be matricesor scalars. Inthel ocal statement, f 1 isdeclared to
be aprocedure and f 2 is declared to be afunction. They can be used inside the
procedure in the usual way. f 1 will beinterpreted asaprocedureinsidemypr oc, and
f 2 will beinterpreted as afunction. The call to mypr oc is made as follows:

k = nyproc(&ax, & gsqrt,5,7); /* log of square root
of 7
*/
k = nyproc(&nn, & gsqrt,5,7); /* log of square root
of 5
*/

The ampersand (&) in front of the function or procedure name in the call to nypr oc
causes a pointer to the function or procedure to be passed. No argument list should
follow the name when it is preceded by the ampersand.

Inside my pr oc, the symbol that is declared as a procedure inthel ocal statementis
assumed to contain a pointer to aprocedure. It can be called exactly like aprocedureis
called. It cannot be save’d, but it can be passed on to another procedure. If it isto be
passed on to another procedure, use the ampersand in the same way.

Indexing Procedures

This example assumes there are a set of proceduresnamed f 1- f 5 that are already
defined. A 1x5 vector pr ocvec isdefined by horizontally concatenating pointers to
these procedures. A new procedure, g(x,i) isthen defined that will return the value of
the ith procedure evaluated at x:

procvec = &1 ~ &2 ~ & 3 ~ & 4 ~ &f 5;

proc g(x,i);
| ocal f;
f = procvec[i];
| ocal f:proc;
retp(f(x));
endp;

12-9

GAUSS User Guide

Thel ocal statement isused twice. Thefirst time, f isdeclared to be alocal matrix.
After f has been set equal to the ith pointer, f isdeclared to be a procedure and is
caled asaprocedureinther et p statement.

Multiple Returns from Procedures

Procedures can return multipleitems, up to 1023. The procedure is defined like this
example of a complex inverse:

proc (2) = cminv(xr,xi); /* (2) specifies nunber of

return val ues

*/
| ocal ixy, zr, zi;
i Xy = inv(xr)*xi;
zr = inv(xr+xi*ixy); /* real part of inverse */
zi = -ixy*zr; /* imagi nary part of inverse */
retp(zr, zi); /* return: real part,

i magi nary part
*/
endp;

It can then be called like this:
{ zr,zi } = cmnv(xr,Xxi);

To make the assignment, the list of targets must be enclosed in braces.

Also, aprocedure that returns more than one argument can be used as input to another
procedure or function that takes more than one argument:

proc (2) = cminv(xr,Xi);

| ocal ixy, zr, zi;

i Xy = inv(xr)*xi;
zr = inv(xr+xi*ixy); /* real part of inverse */
zi = -ixy*zr; /* imaginary part of inverse */

12-10

Procedures and Keywords

retp(zr, zi);

endp;

proc (2) =
| ocal zr, zi;
zZr = Xr*yr-xi*yi;
Zi = Xr*yi+xi*yr;
retp(zr, zi);

endp;

{ zr, zi

} =

chmmmul t (xr, Xi,yr,yi);

cmnv(crmul t (xr,xi,yr,yi));

Thetwo returned matrices from cmul t () are passed directly tocm nv() inthe
statement above. Thisis equivalent to the following statements:

{ tr,ti}

{ zr,zi } cmnv(tr,ti);

cnmul t (xr, Xi,yr,yi);

Thisis completely general, so the following program is legal:

proc (2) = cncpl x(x);

| ocal r,c;

rows(Xx);

r

col s(x);

c

retp(x,zeros(r,c));

endp;
proc (2) = cmnv(xr,xi);
| ocal ixy, zr, zi
i Xy = inv(xr)*xi;
zr = inv(xr+xi*ixy);/* real
zZi = -ixy*zr;

/* imaginary part of

part of inverse */

i nverse */

12-11

GAUSS User Guide

retp(zr, zi);

endp;

proc (2) = cmult(xr, xi,yr,yi);
| ocal zr, zi;

Zr = Xr*yr-xi*yi;

Zi = Xr*yi+xi*yr;
retp(zr, zi);
endp;

{ xr,xi } = cnepl x(rndn(3, 3));
{ yr,yi } = cnepl x(rndn(3, 3));

{ zr,zi } = cmult(cminv(xr,xi),cmnv(yr,yi));

{ gr,qi } =cmult(yr,yi,cmnv(yr,vyi));

{ w,w }

cmul t (yr,yi,cmnv(cmult(cm nv(xr,Xi),yr,yi)));

Saving Compiled Procedures

When afile containing a procedure definition is run, the procedure is compiled and is
then resident in memory. The procedure can be called asiif it were an intrinsic
function. If the new command is executed or you quit GAUSS and exit to the
operating system, the compiled image of the procedure disappears and the file
containing the procedure definition will have to be compiled again.

If aprocedure contains no global references, that is, if it does not reference any global
matrices or strings and it does not call any user-defined functions or procedures, it can
be saved to disk in compiled formina. f cg filewith the save command, and loaded
later with the| oadp command whenever it isneeded. Thiswill usually be faster than
recompiling. For example:

save path = c:\gauss\cp procl, proc2, proc3;

| oadp path = c:\gauss\cp procl, proc2, proc3;

12-12

Procedures and Keywords

The name of the file will be the same as the name of the procedure, witha. f cg
extension. (For details, seel oadp and save inthe GAUSS Language Reference.)

All compiled procedures should be saved in the same subdirectory so there is no
guestion where they are located when it is necessary to reload them. The | oadp path
can be set in your startup file to reflect this. Then, to load in procedures, use

| oadp procl, proc2, proc3;

Procedures that are saved in . f cg fileswill NOT be automatically loaded. Itis
necessary to explicitly load them with | oadp. This feature should be used only when
the time necessary for the autoloader to compile the source is too great. Also, unless
these procedures have been compiled with #l i neson, debugging will be more
complicated.

12-13

Structures

A structure is a collection of one or more variables grouped under a single name. The
variables in astructure can be of different types or can themselves be structures.

Defining and Creating Structures

Structures are defined using the st r uct keyword.
struct dset {

string array sdata;
string array sdatadesc;
mat ri x ndat a;

string array ndatadesc;

b

struct conpany {
scal ar id;

string nang;

13-1

GAUSS User Guide

string contact;
string phone;
string fax;
struct dset data;

b

These statements create structure definitions that persist until the workspaceis
cleared. They do not create structures, only structure type definitions. To create a
variable that is a structure, use:

struct conpany c;

Thiswill create avariable ¢ which is a structure of type company.

Initializing Structures

Currently, no compile time structure initialization is supported. To initialize the
structure above, the following statements could be used:

c.id = 49;

c. nanme = "XYZ Corp.";
c.contact = "John Doe";

c. phone = "(206) 555-1212";
c.fax = "(206) 555-1313";
c. data.sdata = sa;

c. dat a. sdat adesc = sadesc;

c.data. ndata = x;
c. dat a. ndat adesc = xdesc;

The assumption isthat x isan existing matrix and sa, sadesc and xdesc are
existing string arrays.

13-2

Sructures

Passing Structures to Procedures

Structures or members of structures can be passed to procedures. When astructure is
passed as an argument to a procedure, it is passed by value. The structure becomes a
local copy of the structure that was passed. The data in the structureis not duplicated
unless the local copy of the structure has a new value assigned to one of its members.

Structure arguments must be declared in the procedure definition.
struct rectangle {

matri x ul x;
matrix uly;
matrix |rx;
matrix lry;
b
proc area(struct rectangle rect);
retp((rect.lrx - rect.ulx) .* (rect.uly -
rect.lry));
endp;

Local structures are defined using ast r uct statement inside the procedure
definition.

proc center(struct rectangle rect);

struct rectangle cent;

cent.lrx = (rect.lrx - rect.ulx) ./ 2;
cent.ulx = -cent.lrx;
cent.uly = (rect.uly - rect.lry) ./ 2;

cent.lry = -cent.uly;

retp(cent);

endp;

13-3

Run-Time Library 1 4
Structures

Two structures are used by several GAUSS Run-Time Library functions for handling
parameter vectors and data: the PV parameter structure and the DS data structure.

The PV Parameter Structure

The members of an instance of structure of type PV are all “private,” that is, not
accessible directly to the user. It is designed to handle parameter vectors for threadsafe
optimization functions. Entering and receiving parameter vectors, and accessing
properties of this vector, are accomplished using special functions.

Suppose you are optimizing afunction containing a KxL matrix of coefficients. The
optimization function requires a parameter vector but your function uses a KxL
matrix. Your needs and the needs of the optimization function can be both satisfied by
an instance of the structure of type PV. For example:

struct PV pl;
pl = pvCreate;

X = zeros(4,3); /* on input contains start values, */

/* on exit contains estinates */

14-1

GAUSS User Guide

pl = pvPack(pl, x, "coefficients");

The pvCr eat e function initializes pl to default values. pvPack entersthe 4x3
matrix stored row-wise as a 12x1 parameter vector for the optimization function. The
optimization program will pass the instance of the structure of type PV to your
objective function.

By calling pvUnpack your 4x3 coefficient matrix is retrieved from the parameter
vector. For example, in your procedure you have

x = pvUnpack(pl, "coefficients");

and now x isa4x3 matrix of coefficients for your use in calculating the object
function.

Suppose that your objective function has parametersto be estimated in a covariance
matrix. The covariance matrix is a symmetric matrix where only the lower |eft portion
contains unique values for estimation. To handle thisuse pvPacks. For example:

struct PV pl;
pl = pvCreate;

cov ={ 1.1 .1,
.11 .1,
1.1 1%,

pl = pvPacks(p1l, cov, "covariance");

Only the lower left portion of cov will be stored in the parameter vector. When the
covariance matrix is unpacked, the parameters in the parameter vector will be entered
into both the lower and upper portions of the matrix.

There may be cases where only a portion of a matrix being used to compute the
objective function are parameters to be estimated. In this case use pvPackmwith a
“mask” matrix that contains ones where parameters are to be estimated and zeros
otherwise. For example,

struct PV pl;
pl = pvCreate;

cov ={1 .5,
.5 11}

14-2

Run-Time Library Sructures

mask = { 0 1,
10 };

pl = pvPacksnm(pl, cov, "correl ation", mask);

Here only the one element in the lower left of covis stored in the parameter vector.
Suppose the optimization program sends a trial value for that parameter of, say, .45.
When the matrix is unpacked in your procedure it will contain the fixed values
associated with the zeros in the mask aswell asthetrial valuein that part of the matrix
associated with the ones. Thus,

print unpack(pl,"correlation");

1. 0000 .4500
. 4500 1. 0000

A mask may also be used with general matrices to store a portion of a matrix in the
parameter vector.

struct PV pl;
pl = pvCreate;

m= { 0.5 1,
.5 0.3 };

msk = { 0 1 1,
1 0 0}

pl = pvPackn(pl, m "coefficients", mask);

A PV instance can, of course, hold parameters from all these types of matrices,
symmetric, masked symmetric, rectangular, and masked rectangular. For example:

lanbda = { 1.0 0.0,

0.5 0.0,
0.0 1.0,
0.0 0.5 };

14-3

GAUSS User Guide

lmask ={ O 0,
1 0,
0 0,
0 1}
phi = { 1.0 0.3,
0.3 1.0 };
theta = { 0.6 0.0 0.0 0.0,
0.0 0.6 0.0 0.0,
0.0 0.0 0.6 0.0,
0.0 0.0 0.0 0.6 };
tmask = { 1 0 0 0,
0 1 0 0,
0 0 1 0,
0 0 0 11},

struct PV parO0;

par0 = pvCreate;

par0 = pvPackn{parO, | anbda, "| anbda", | mask) ;
par0 = pvPacks(parO, phi,"phi");

par0 = pvPacksm(parO,theta, "theta",tnmask);

It isn't necessary to know where in the parameter vector the parameters are located in
order to use them in your procedure calculating the objective function. Thus:

| anbda = pvUnpack(parl, "l anbda");
phi = pvUnpack(parl, "phi");

theta = pvUnpack(parl,"theta");
sigma = | anbda* phi *| anbda’ + theta;

14-4

Run-Time Library Sructures

Additional functions are available to retrieve information on the properties of the
parameter vector. pv Get Par Vect or and pvPut Par Vect or get and put
parameter vector from and into the PV instance, pv Get Par Nanes retrieves names
for the elements of the parameter vector, pvLi st returnsthe list of matrix namesin
the PV instance, pvLengt h the length of the parameter vector.

struct PV pl;
pl = pvCreate;

cov ={1 .5,

mask = { 0 1,

10};
pl = pvPacksnm(pl, cov, "correl ation", mask);
print pvGet ParVector(pl);

. 5000

pl = pvPut Par Vect or (p1l,.8);

print pvGet ParVector(pl);
. 8000
print pvUnpack(pl,"correlation");

1. 0000 . 8000
. 8000 1.0000

print pvGet Par Names(pl);
correlation[2,1]
print pvLength(pl);

1. 0000

14-5

GAUSS User Guide

Also, pvTest tests an instance to make sureit is properly constructed. pvCr eat e
generates an initialized instance, and pv Get | ndex returns the indices of the
parameters of an input matrix in the parameter vector. Thislast function is most useful
when constructing linear constraint indices for the optimization programs.

Fast Pack Functions

Unpacking matrices using matrix names is sow because it requires a string search
through astring array of names. A set of special packing functions are provided that
avoid the search altogether. These functions use a“table” of indicesthat you specify to
find the matrix in the PV instance. For example:

struct PV pl;
pl = pvCreate(2);

y = rndn(4,1);
X = rndn(4,4);
pl = pvPacki (pl,y,"Y", 1);
pl = pvPacki (pl,x,"X", 2);

print pvUnpack(pl,1);

. 3422
. 0407
. 5611
. 0953

print pvUnpack(pl,"Y");

. 3422
. 0407
. 5611
. 0953

14-6

Run-Time Library Sructures

Thecall to pvPacki putsan entry in the table associating the matrix in its second
argument with the index 1. Asindicated above the matrix can be unpacked either by
index or by name. Unpacking by index, however, is much faster than by name.

Note that the matrix can be unpacked using either the index or the matrix name.

There areindex versions of all four of the packing functions, pvPacki , pvPackni ,
pvPacksi ,and pvPacksni .

The DS Data Structure

Aninstance of the DS data structure contains the following members:

struct DS dO;
dO. dat aMatri x MxK matrix, data
dO. dat aArray N-dimensional array, data
do0. type scalar
d0. dnane string
d0. vnanes string array

The definition and use of the elements of dO are determined by the particul ar
application and are mostly up to the user. A typical use might use avector of
structures. For example, suppose the objective function requires a vector of
observations on a dependent variable as well as on K independent variables. Then:

struct DS dO;
dO0 = dsCreate;

rndn(20, 1);
rndn(20, 5);

y
X

d0 = reshape(doO, 2,1);
do[1] . dataMatri x = vy;
dO[2] .dataMvatri x = X;

The d0 instance would be passed to the optimization program which then passesit to
your procedure computing the objective function. For example:

14-7

GAUSS User Guide

proc | pr(struct PV pl, struct DS dl);

| ocal u;

u = do[1l].dataMatrix - dO[2].dataMatrix *
pvUnpack(pl, "beta");

retp(u’ u);

endp;

A particular application may require setting other members of the DS instance for
particular purposes, but in general you may use them for your own purposes. For
example, dO. dnane could be set to a GAUSS dataset name from which you read the
datain the objective function procedure, or d0. vhanes could be set to the variable
names of the columns of the datastoredin d0. dat aMat ri x,ord0. t ype could be
an indicator variable for the elements of avector of DS instances.

Thefollowing are complete examples of the use of the PV and DS structures. Thefirst
example fits a set of datato the Micherlitz model. It illustrates packing and unpacking
by index.

#i ncl ude sqgpsol vent . sdf

struct DS Y;
Y = dsCreate;

Y.dataMatrix = 3.183]|
3. 059]
2. 871]
2. 622
. 541
. 184|
. 110|
. 075]
. 018]
. 903|
. 770|

R P N N N NN

14-8

Run-Time Library Sructures

1.762]
1. 550;

struct DS X;
X = dsCreate;

X. datamatri x = seqga(l,1, 13);

struct DS Z;

Z = reshape(Z,2,1);
Z[1] = Y;

Z[2] = X

struct SQPsol veMIControl c1;
cl = sqgpSol veMrcontrol Create; /* initializes */
/* default values */
cl. bounds = 0~100; /* constrains paraneters */

/* to be positive */
cl. CovType = 1,

cl. output = 1;
cl.printlters = 0;

cl. gradProc = &grad;

struct PV parl,;
parl = pvCreate(1);

start ={ 2, 4, 2 };

parl = pvPacki (parl,start,"Paraneters", 1);

struct SQPsol veMlout out1;
outl = SQPsol veMI(&M cherlitz,parl, Z cl);

14-9

GAUSS User Guide

esti mates = pvGet Par Vect or (out 1. par);

print paramet er estimates ";

print estinmates;

print;

print standard errors ";

print sqgrt(diag(outl. nonment));

proc Mcherlitz(struct PV parl,struct DS Z);

| ocal poO, e, s2;

pO = pvUnpack(par1l, 1);

e = Z[1] .datamvatrix - pO[1l] - pO[2]*exp(-pO[3]

*Z[2] .dat aMatri x) ;

s2 = monment (e, 0)/(rows(e)-1);

retp((2/rows(e))*(e.*e/s2 + I n(2*pi*s2)));
endp;

proc grad(struct PV parl, struct DS 2);
| ocal p0,e,el,e2,e3,wqg,s2;
pO = pvUnpack(par1l, 1);
w = exp(-p0[3]*Z[2].dataMatrix);
e = z[1] .dataMatrix - pO[1] - pO[2] * w
s2 = monent (e, 0) / rows(e);
el = - ones(rows(e), 1);
e2 = -w

e3 = p0[2]*Z[2].dataMatrix. *w;

w=(1- e*e/ s2) / rows(e);
g = e.*el + w(e' el);
g =0~ (e.*e2 + w(e' e2));

14-10

Run-Time Library Sructures

g=9g ~ (e.*e3 + w(e'el));
retp(4*g/ (rows(e)*s2));
endp;

This example estimates parameters of a“confirmatory factor analysis’ model.
#i ncl ude sqgpsol vent . sdf

lanbda = { 1.0 0.0,

0.5 0.0,
0.0 1.0,
0.0 0.5 1};
lmask ={ 0 O,
1 0,
0 o,
0 1}
phi = { 1.0 0.3,
0 .0 };
theta ={ 0.6 0.0 0.0 0.0,
0.0 0.0,
0.0 0.0,
0.0 0.0 0.6 };
tmask = { 1 0 0 0,
0 1 0 0,
0 0 1 0,
0 0 0 1},

struct PV parO;
par0 = pvCreate;

14-11

GAUSS User Guide

par0 = pvPackn{parO, | anbda, "l anbda", | mask) ;
par0 = pvPacks(parO, phi,"phi");

par0 = pvPacksm(parO,theta, "theta",tnmsk);

struct SQPsol veMrControl cO;

c0 = sqgpSol veMrcont rol Creat e;

lind = pvGetl ndex(parO, "l anbda"); /* get indices of */
/* | ambda paraneters */
[* in paraneter vector */

tind = pvGetlndex(parO,"theta"); /* get indices of */

/* theta paraneters */

/* in paraneter vector */

c0. bounds = ones(pvLength(par0), 1).*(-1e250~1e250);

c0. bounds|[i nd, 1]
c0. bounds|[1 i nd, 2]
c0. bounds[tind, 1]
c0. bounds|[ti nd, 2]

zeros(rows(lind), 1);
10*ones(rows(lind), 1);
.001*ones(rows(tind), 1);
100*ones(rows(tind), 1);

c0.i negProc = &i neq;

c0.covType = 1,

struct DS doO;
d0 = dsCreate;
d0. dataMatri x = | oadd(" maxfact");

struct SQ@Psol veMrQut outO;
out0 = SQPsol veMr(&l pr, par 0, dO, c0);

| anbdahat = pvUnpack(out 0. par, "l anbda");

14-12

Run-Time Library Sructures

phi hat = pvUnpack(out 0. par, " phi ");
thetahat = pvUnpack(outO.par,"theta");

print "estinmates";

print;

print "lanbda" | anbdahat;
print;

print "phi" phihat;
print;

print "theta" thetahat;

struct PV stderr;

stderr = outO. par;

if not scal mi ss(outO. monent);
stderr =
pvPut Par Vect or (stderr, sqrt (di ag(out 0. nonent)));
| anbdase = pvUnpack(stderr, "l anbda");
phi se = pvUnpack(stderr,"phi");
thetase = pvUnpack(stderr,"theta");

print "standard errors";
print;
print "l anbda" | anbdase;
print;

print "phi" phise;
print;
print "theta" thetase;

endi f;

proc | pr(struct PV parl, struct DS datal);

14-13

GAUSS User Guide

| ocal | anbda, phi,theta, sigm,l ogl;

| anbda = pvUnpack(parl, "l anbda");
phi = pvUnpack(parl, "phi");

theta = pvUnpack(parl,"theta");

si gma = | anbda*phi *| anbda’ + theta;

logl = -1 npdf nvn(datal. dataMatri x, si gn);
retp(logl);

endp;

proc ineq(struct PV parl, struct DS datal);

| ocal | anbda, phi,theta, sigm,e;

| anbda = pvUnpack(parl, "l anbda");
phi = pvUnpack(parl, "phi");

theta = pvUnpack(parl,"theta");

sigma = | anbda* phi *| anbda’ + theta;

e = eigh(sigm) - .001; /* eigenvalues of signma */
e = e | eigh(phi) - .001; /* eigenvalues of phi */
retp(e);

endp;

14-14

N-Dimensional Arrays

In GAUSS, internally, matrices and arrays are separate data types. Matrices, which are
2-dimensional objects, are stored in memory in row major order. Therefore, a 3x2
matrix is stored as follows:

[1,1] [1,2] [2,1] [2,2] [3,1] [3,2]

The slowest moving dimension in memory isindexed on the right, and the fastest
moving dimension isindexed on the left. Thisistrue of N-dimensional arrays aswell.
A 4x3x2 array is stored in the following way:

[1,1,1] [1,1,2] [1,2,1] [1,2,2] [1,3,1] [1,3,2]
[2,1,1] [2,1,2] [2,2,1] [2,2,2] [2,3,1] [2, 3,2]
[3,1,1] [3,1,2] [3,2,1] [3,2,2] [3,3,1] [3,3,2]
[4,1,1] [4,1,2] [4,2,1] [4,2,2] [4,3,1] [43,2]

A complex N-dimensional array is stored in memory in the same way. Like complex
matrices, complex arrays are stored with the entire real part first, followed by the
entire imaginary part.

Every N-dimensional array has a corresponding Nx1 vector of ordersthat contains the
sizes of each dimension of the array. Thisis stored with the array and can be accessed
with get or der s. Thefirst element of the vector of orders correspondsto the slowest
moving dimension, and the last lement corresponds to the fastest moving dimension

15-1

GAUSS User Guide

(refer to the Glossary of Terms at the end of the chapter for clear definitions of these
terms). The vector of orders for a 6x5x4x3x2 array, which has 5 dimensions, isthe
following 5x1 vector:

N W b~ 01O

Two terms that are important in working with N-dimensional arrays are ‘dimension
index’ and ‘dimension number.” A dimension index specifies a dimension based on
indexing the vector of orders. It isascalar, 1-to-N, where 1 corresponds to the
dimension indicated by the first element of the vector of orders of the array (the
slowest moving dimension) and N corresponds to the dimension indicated by the last
element of the vector of orders (the fastest moving dimension).

A dimension number specifies dimensions by numbering them in the same order that
one would add dimensions to an array. In other words, the dimensions of an N-
dimensional array are numbered such that the fastest moving dimension has a
dimension number of 1, and the dowest moving dimension has a dimension number
of N.

A 6x5x4x3x2 array has 5 dimensions, so the first element of the vector of orders (in
this case, 6) refersto the size of dimension number 5. Since the index of this element
in the vector of ordersis 1, the dimension index of the corresponding dimension
(dimension number 5) isalso 1.

You will find references to both dimension index and dimension number in the
documentation for the functions that manipulate arrays.

There are a number of functions that have been designed to manipulate arrays. These
functions allow you to manipulate a subarray within the array by passing in alocator
vector to index any subarray that comprises a contiguous block of memory within the
larger block. A vector of indices of an N-dimensiona array is a[1-to-N]x1 vector of
base 1 indicesinto the array, where the first element correspondsto the first element in
avector of orders. An Nx1 vector of indices |locates the scalar whose positionis
indicated by the indices. For a4x3x2 array X, the 3x1 vector of indices:

3
2

1

15-2

N-Dimensional Arrays

indexes the [3,2,1] element of x. A 2x1 vector of indicesfor this 3-dimensional
example, references the 1-dimensional array whose starting location is given by the
indices.

Because the elements of the vector of indices are always in the same order (the first
element of the vector of indices corresponds to the slowest moving dimension of the
array, the second element to the second slowest moving dimension, and so on), each
unique vector of indices locates a unique subarray.

In general, an [N-K]x1 vector of indices locates a K-dimensional subarray that begins
at the position indicated by the indices. The sizes of the dimensions of the K-
dimensional subarray correspond to the last K elements of the vector of orders of the
N-dimensional array. For a 6x5x4x3x2 array y, the 2x1 vector of indices:

2
5
locates the 4x3x2 subarray in y that begins at [2,5,1,1,1] and ends at [2,5,4,3,2].

Bracketed Indexing

Brackets ‘[]' can be used to index N-dimensional arraysin virtually the same way that
they are used to index matrices. Bracketed indexing is ower than the convenience
array functions, suchasget arr ay and set ar r ay; however, it can be used to index
non-contiguous elements. In order to index an N-dimensional array with brackets,
there must be N indices located within the brackets, where the first index corresponds
to the slowest moving dimension of the array and the last index corresponds to the
fastest moving dimension.

For a 2x3x4 array X, such that
[1,1,1] through [1,3,4] =

1 2 3 4

5 6 7 8

9 10 11 12

[2,1,1] through [2,3,4] =
13 14 15 16
17 18 19 20
21 22 23 24

15-3

GAUSS User Guide

x[1, 2, 3] returns a 1x1x1 array containing the [1,2,3] element of x:
7

X[., 3, 2] returnsa2x1x1 array containing
10

22

X[2,.,1 4] returnsa 1x3x2 array containing

13 16
17 20
21 24

X[., 2,1: 3] returnsa2x1x3 array containing
5 6 7

17 18 19

ExXE Conformability

The following describes rules for EXE conformability of arrays for operators and
functions with two or more arguments.

Any N-dimensional array is conformable to a scalar.

An array is conformableto amatrix only if the array has fewer than 3 dimensions,
and the array and matrix follow the standard rules of EXE conformability.

Two arrays are EXE conformable if they comply with one of the following
requirements:

» Thetwo arrays have the same number of dimensions, and each dimension has
the same size.

» Thetwo arrays have the same number of dimensions, and each of the N-2
slowest moving dimensions has the same size. In this case, the 2 fastest
moving dimensions of the arrays must follow the EXE comformability rules
that apply to matrices.

* Both of the arrays have fewer than 3 dimensions, and they follow the EXE
conformability rules that apply to matrices.

15-4

N-Dimensional Arrays

Glossary of Terms

dimensions The number of dimensions of an object.

vector of orders Nx1 vector of the sizes of the dimensions of an object, where N is
the number of dimensions, and the first element corresponds to the slowest moving
dimension.

vector of indices [1-t0-N]x1 vector of indicesinto an array, where the first element
corresponds to the first element in a vector of orders.

dimension number Scalar [1-to-N], where 1 corresponds to the fastest moving
dimension and N to the slowest moving dimension.

dimension index Scalar [1-to-N], where 1 corresponds to the first element of the
vector of orders or vector of indices.

locator [1-to-N]x1 vector of indicesinto an array used by array functionsto locate a
contiguous block of the array.

15-5

Libraries

The GAUSS library system alows for the creation and maintenance of modular
programs. The user can create “libraries’ of frequently used functionsthat the GAUSS
system will automatically find and compile whenever they arereferenced in a
program.

Autoloader

The autoloader resolves references to procedures, keywords, matrices, and strings that
are not defined in the program from which they are referenced. The autoloader
automatically locates and compiles the files containing the symbol definitions that are
not resolved during the compilation of the main file. The search path used by the
autoloader isfirst the current directory, and then the paths listed inthesr ¢_pat h

configuration variable in the order they appear. sr ¢c_pat h can be defined in the
GAUSS configuration file.

Forward References

When the compiler encounters a symbol that has not previously been defined, it is
called a“forward reference.” GAUSS handles forward references in two ways,
depending on whether they are “left-hand side” or “right-hand side” references.

16-1

GAUSS User Guide

Left-Hand Side

A left-hand side reference is usually areference to a symbol on the left-hand side of
the equal sign in an expression such as:

X = 5;

Left-hand side references, since they are assignments, are assumed to be matrices. In
the previous statement, X is assumed to be a matrix and the code is compiled
accordingly. If, at execution time, the expression actually returns a string, the
assignment is made and the type of the symbol x isforced to string.

Some commands are implicit left-hand side assignments. Thereis an implicit left-
hand side reference to x in each of these statements:

cl ear x;
| oad Xx;

open x = nyfile;

Right-Hand Side

A right-hand side reference is usually areferenceto asymbol on the right-hand side of
the equal sign in an expression such as:

Z = 6;
y = z + dog;
print vy;

In the program above, since dog is not previoudy known to the compiler, the
autoloader will search for it in the activelibraries. If it isfound, the file containing it
will be compiled. If it isnot found in alibrary, the autol cad/autodel ete state will
determine how it is handled.

The Autoloader Search Path

If the autoloader is OFF, no forward references are allowed. Every procedure, matrix,
and string referenced by your program must be defined before it isreferenced. An
ext er nal statement can be used above the first reference to a symbol, but the
definition of the symbol must be in the main file or in one of the filesthat are

#i ncl ude’d. No global symbols are deleted automatically.

16-2

Libraries

If the autoloader is ON, GAUSS searches for unresolved symbol references during
compilation using a specific search path. If the autoloader is OFF, an Undef i ned
synbol error message will result for right-hand side references to unknown symbols.

When autoload is ON, the autodel ete state controls the handling of referencesto
unknown symbols.

Thefollowing search path will be followed to locate any symbols not previously
defined:

Autodelete ON

1. user library

2. user-specified libraries

3. gausslibrary

4. current directory, then sr c_pat h for fileswith a. g extension

Forward references are allowed and . g files need not bein alibrary. If there are
symbols that cannot be found in any of the places listed above, an Undef i ned
synbol error message will be generated and all uninitialized variables and all
procedures with global references will be deleted from the global symbol table. This
autodeletion process is transparent to the user, since the symbols are automatically
located by the autol oader the next time the program is run. This process results in
more compile time, which may or may not be significant depending on the speed of
the computer and the size of the program.

Autodelete OFF

1. user library
2. user-specified libraries
3. gausslibrary

All . g filesmust be listed in alibrary. Forward references to symbols not listed in an
active library are not allowed. For example:

X = rndn(10, 10);

y = sym(x); [* forward reference to synbol */

proc sym(Xx);
retp(x+x');

endp;

16-3

GAUSS User Guide

Usean ext er nal statement for anything referenced above its definition if
autodelete is OFF:

external proc sym

X rndn(10, 10);

sym(Xx) ;

y

proc sym(x);
retp(x+x’);

endp;

When autodelete is OFF, symbols not found in an active library will not be added to
the symbol table. This prevents the creation of uninitialized proceduresin the global
symbol table. No deletion of symbols from the global symbol table will take place.

Libraries

Thefirst place GAUSS looks for asymbol definition isin the “active’ libraries. A
GAUSS ibrary is atext file that serves as adictionary to the source files that contain
the symbol definitions. When alibrary is active, GAUSS will ook in it whenever itis
looking for asymbol itistryingtoresolve. Thel i br ar y statement isused to make a
library active. Library files should be located in the subdirectory listed in the

I i b_pat h configuration variable. Library fileshavea. | cg extension.

Suppose you have several procedures that are all related and you want them all
defined in the samefile. You can create such afile, and, with the help of alibrary, the
autoloader will be able to find the procedures defined in that file whenever they are
caled.

First, create the file to contain your desired procedure definitions. By convention, this
fileisusually named witha. sr ¢ extension, but you can use any name and any file
extension. In thisfile, put all the definitions of related procedures you wish to use.
Here isan example of such afile, called nor m src:

/*

** normsrc

** This is a file containing the definitions of three
** procedures which return the normof a matrix Xx.

** The three norns cal cul ated are the one-norm the

16-4

Libraries

** jinf-normand the E-norm
*/

proc onenor m x);
ret p(maxc(sunc(abs(x))));

endp;

proc i nfnormx);
ret p(maxc(sunc(abs(x’))));

endp;

proc Enorn(x);
retp(sunc(sumc(x. *x)));

endp;

Next, create alibrary file that contains the name of the file you want access to, and the
list of symbols defined in it. This can be done with the |l i b command. (For details,
seel i b inthe GAUSS Language Reference.)

A library file entry has afilename that isflush left. The drive and path can be included
to speed up the autoloader. Indented below the filename are the symbols included in
the file. There can be multiple symbolslisted on aline, with spaces between. The
symbol type follows the symbol name, with a colon delimiting it from the symbol
name. The valid symbol types are:

fn user-defined single line function
keywor d keyword

proc procedure

mat ri x matrix, numeric or character
string string

16-5

GAUSS User Guide

If the symbol type is missing, the colon must not be present and the symbol typeis
assumed to be pr oc. Both of the following library files are valid:

Example 1
/*
** math

** This library lists files and procedures for

** mat hemati cal routines.

norm src

onenor m proc i nfnorm proc Enorm proc
compl ex. src

cnmmul t: proc cndi v: proc cnadd: proc cnsol n: proc
poly.src

pol ychar: proc pol yroot: proc polynult: proc

Example 2
/*
** math

** This library lists files and procedures for

** mat hemati cal routines.

c:\gauss\src\normsrc
onenorm : proc
infnorm: proc

Enorm : proc

16-6

Libraries

c:\gauss\src\conpl ex. src

cmmult : proc

cndiv : proc

cmadd : proc

cnsoln : proc
c:\gauss\src\fconmp. src

feq : proc

fne : proc

flt . proc

fgt : proc

fle : proc

fge : proc
c:\gauss\src\fconp. dec

_fcoptol : matrix

Once the autoloader finds, viathe library, the file containing your procedure
definition, everything in that file will be compiled. For this reason, combine related
procedures in the same file in order to minimize the compiling of procedures not
needed by your program. Do not combine unrelated functionsin one. sr c file,
because if one functionina. sr c fileis needed, the whole file will be compiled.

user Library

Thisisalibrary for user-created procedures. |f the autoloader is ON, the user library is
the first place GAUSS looks when trying to resolve symbol references.

You can update the user library with thel i b command:
lib user nyfile.src;
This will update the user library by adding areferencetonyfil e. src.

No user library is shipped with GAUSS. It will be created the first time you use the
I i b command.

For details of the parameters available with the |l i b command, see the GAUSS
Language Reference.

16-7

GAUSS User Guide

.g Files

If autoload and autodelete are ON and a symbol is not found in alibrary, the
autoloader will assumeit is a procedure and look for afile that has the same name as
the symbol and a. g extension. For example, if you have defined a procedure called
squar e, you could put the definition in afile called squar e. g in one of the
subdirectorieslisted in your sr ¢c_pat h. If autodelete is OFF, the . g file must be
listed in an active library; for example, in the user library.

Global Declaration Files

If your application makes use of several global variables, create afile containing
decl ar e statements. Use files with the extension . dec to assign default values to
global matrices and stringswith decl ar e statements. A filewith a. ext extension
containing the same symbolsin ext er nal statements can also be created and

#i ncl ude’d at the top of any file that references these global variables. An
appropriate library file should contain the name of the. dec filesand the names of the
globals they declare.

Hereisan examplethat illustrates the way in which . dec, . ext,.l cg,and. src
fileswork together. Always begin the names of global matrices or stringswith*_’ to
distinguish them from procedures:

. src File
/*

** fconmp.src

** These functions use fcnptol to fuzz the conparison

** operations to allow for roundoff error.

feq(a, b);

** The statenent: y

a eq b;

** js equivalent to: y

** Returns a scalar result, 1 (true) or 0 (false)

*x y = feq(a,b);

16-8

Libraries

** y = fne(a,b);
*/

#i ncl ude fconp. ext;
proc feq(a,b);

retp(abs(a-b) <= fcnptol);
endp;

proc fne(a,b);
retp(abs(a-b) > fcnptol);
endp;

. dec File

/-k

** fcomp.dec — global declaration file for fuzzy
** conpari sons.

*/

declare matrix _fcnptol != le-14;

. ext File

/*

** fconp.ext — external declaration file for fuzzy
** conpari sons.

*/

external matrix _fcnptol

16-9

GAUSS User Guide

.1 cg File

/*
** fcomp.lcg — fuzzy conpare library
*/

fconp. dec

_fcnptol :matrix
fconp. src

feq: proc

fne: proc

With the exception of the library (. | cg) files, these files must be located along your
sr c_pat h. Thelibrary filesmust be on your | i b_pat h. With these filesin place,
the autoloader will be able to find everything needed to run the following programs:

library fconp;
X = rndn(3, 3);
Xi = inv(x);
Xi X = Xi *X;

if feq(xix,eye(3));

print “lnverse within tol erance.”;
el se;

print “lnverse not within tolerance.”;
endi f;

If the default tolerance of 1e- 14 istoo tight, the tolerance can be relaxed:

library fconp;
X = rndn(3, 3);
Xi = inv(x);
Xi X = Xi *X;

_fcmptol = 1le-12; /* reset tolerance */

16-10

Libraries

if feq(xix,eye(3));

print “lnverse within tol erance.”;
el se;
print “lnverse not within tolerance.”;
endi f;
Troubleshooting

Below is apartial list of errors you may encounter in using the library system,
followed by the most probable cause.

(4) : error @290 : 'c:\gauss\lib\prt.lcg’ : Library not
found

The autoloader islooking for alibrary filecalled prt . | cg, because it has been
activatedinal i br ary statement. Check the subdirectory listed inyour | i b_pat h
configuration variable for afilecalled prt. | cg.

(0) : error (0292 : '"prt.dec’ : Filelisted in library not
found

The autoloader cannot find afile called prt . dec. Check for thisfile. It should exist
somewhere along your sr ¢_pat h, if you haveitlisedinprt. | cg.

Undef i ned synbol s:
PRTVEC c:\gauss\src\tstprt.g(2)

The symbol prt vec could not be found. Check if the file containing prt vec isin
thesr c_pat h. You may not have activated the library that contains your symbol
definition. Dosoinal i br ary statement.

c:\gauss\src\prt.dec(3) : Redefinition of ‘__vnanes’
(proc) __vnanmes being declared external natrix

You are trying to illegally force a symbol to another type. You probably have a name
conflict that needs to be resolved by renaming one of the symbols.

16-11

GAUSS User Guide

c:\gauss\lib\prt.lcg(5) : error G0301 : ‘prt.dec’
Syntax error in library
Undefi ned synbol s:
__VNAMES c:\gauss\src\prt.src(6)
Check your library to see that all filenames are flush left and all symbols defined in
that file are indented by at least one space.
Using dec Files
When constructing your own library system:

» Whenever possible, declare variablesin afile that containsonly decl ar e
statements. When your program is run again without clearing the workspace,
the file containing the variable declarations will not be compiled and
decl ar e warnings will be prevented.

» Provideafunction containing regular assignment statementsto reinitialize the
global variablesin your program if they ever need to be reinitialized during or
between runs. Put this in a separate file from the declarations:

proc (0) = gl obset;
_vhanme = “X";
_con = 1;
_row = 0;
_title = “7";
endp;
* Never declare aglobal in more than one file.

» Toavoid meaningless redefinition errors and decl ar e warnings, never
declare a global more than once in any one file. Redefinition error messages
and decl ar e warnings are meant to help you prevent name conflicts, and
will be uselessto you if your code generates them normally.

By following these guidelines, any decl ar e warnings and redefinition errors you
get will be meaningful. By knowing that such warnings and errors are significant, you
will be able to debug your programs more efficiently.

16-12

comper L {

GAUSS allows you to compile your large, frequently used programs to afile that can
be run over and over with no compile time. The compiled image is usually smaller
than the uncompiled source. GAUSS is not a native code compiler; rather, it compiles
to aform of pseudocode. The file will havea. gcg extension.

The conpi | e command will compile an entire program to a compiled file. An
attempt to edit a compiled file will cause the source code to be loaded into the editor if
it is availableto the system. The r un command assumes a compiled fileif no
extension is given, and that afilewitha. gcg extensionisinthesrc_pat h. A
saveal | command isavailableto savethe current contents of memory in acompiled
file for instant recall later. The use command will instantly load a compiled program
or set of procedures at the beginning of an ASCII program before compiling the rest of
the ASCII program file.

Since the compiled files are encoded binary files, the compiler isuseful for developers
who do not want to distribute their source code.

Compiling Programs

Programs are compiled with the conpi | e command.

17-1

GAUSS User Guide

Compiling a File

Source code program files that can be run with the r un command can be compiled to
. gcg fileswith the conpi | e command:

compil e gxy.e;

All procedures, global matrices and strings, and the main program segment will be
saved in the compiled file. The compiled file can be run later using ther un command.
Any libraries used in the program must be present and active during the compile, but
not when the programisrun. If the program usesthedl i br ar y command, the. dl |
files must be present when the program is run and the dlibrary path must be set to the
correct subdirectory. Thiswill be handled automatically in your configuration file. If
the program is run on a different computer than it was compiled on, the . dI | files
must be present in the correct location. sysst at e (case 24) can be used to set the
dl i br ary path at run-time.

Saving the Current Workspace

The simplest way to create a compiled file containing a set of frequently used
proceduresisto usesaveal | and an ext er nal statement:

library pgraph;
external proc xy,logx,|ogy,!| oglog, hist;

saveal | pgraph;

List the procedures you will be using in an ext er nal statement and follow it with a
saveal | statement. It isnot necessary to list procedures you do not explicitly call,
but are called from another procedure, because the autoloader will automatically find
them beforethe saveal | command is executed. Nor isit necessary to list every
procedure you will be calling, unless the source will not be available when the
compiled fileisuse’d.

Remember, the list of active librariesis NOT saved in the compiled file so you may
still need al i br ary statement in a program that isuse’ing a compiled file.

Debugging

If you are using compiled code in a development situation where debugging is
important, compile the file with line number records. After the development is over,

17-2

Compiler

you can recompile without line number records if the maximum possible execution
speed isimportant. If you want to guarantee that all procedures contain line number

records, put anewstatement at the top of your program and turn line number tracking
on.

17-3

cl ose

cl oseal |
col sf
create

df ree

eof
fcheckerr
fclearerr
fflush
fgets
fgetsa

f get sat

File 1/O

Thefollowing isa partia list of the /O commands in the GAUSS programming
language:

Close afile.

Close all open files.

Number of columnsin afile.

Create GAUSS data set.

Space remaining on disk.

Test for end of file.

Check error status of afile.

Check error status of afile and clear error flag.
Flush afile's output buffer.

Read aline of text from afile.

Read multiple lines of text from afile.

Read multiple lines of text from afile, discarding newlines.

18-1

GAUSS User Guide

f get st Read aline of text from afile, discarding newline.

fileinfo Returns names and information of files matching a
specification.

files Returns a directory listing as a character matrix.

fil esa Returns alist of files matching a specification.

f open Open afile.

fputs Write strings to afile.

f put st Write strings to afile, appending newlines.

f seek Reposition file pointer.

fstrerror Getexplanation of last file I/O error.

ftell Get position of file pointer.

get f Load afileinto astring.

get name Get variable names from data set.

i scpl xf Returns whether a data set isreal or complex.

| oad Load matrix file or small ASCII file (sameas| oadm).
| oadd Load asmall GAUSS data set into a matrix.

| oadm L oad matrix file or small ASCII file.

| oads Load string file.

open Open a GAUSS data set.

out put Control printing to an auxiliary output file or device.
r eadr Read a specified number of rows from afile.

r owsf Number of rowsin file.

save Save matrices, strings, procedures.

saved Save amatrix in a GAUSS data set.

seekr Reset read/write pointer in adata set.

sortd Sort a data set.

typef Returns type of data set (bytes per element).
writer Write data to a data set.

18-2

Filel/O

ASCII Files

GAUSS has facilities for reading and writing ASCI|I files. Since most software can
read and write ASCII files, this provides away of sharing data between GAUSS and
many other kinds of programs.

Matrix Data

Files containing numeric datathat are delimited with spaces or commas and are small
enough to fit into a single matrix or string can be read with | oad. Larger ASCII data
files can be converted to GAUSS data sets with the ATOG utility program see

“ATOG,” page 22-1. ATOG can convert packed ASCII files as well as delimited files.

For small delimited datafiles, thel oad statement can be used to load the data
directly into a GAUSS matrix. The resulting GAUSS matrix must be no larger than
the limit for a single matrix.

For example,
load x[] = datl.asc;

will load the datain thefiledat 1. asc into an Nx1 matrix x. This method is
preferred because r ows(x) can be used to determine how many elements were
actually loaded, and the matrix can ber eshape’d to the desired form:

load x[] = datl.asc;
if rows(x) eq 500;
X = reshape(x, 100, 5);
el se;
errorlog “Read Error”;
end;

endi f;

For quick interactive loading without error checking, use
| oad x[100,5] = datl.asc;

This will load the data into a 100x5 matrix. If there are more or fewer than 500
numbersin the data set, the matrix will automatically be reshaped to 100x5.

18-3

GAUSS User Guide

Writing

To writedatato an ASCII file, thepri nt or pri nt f mcommand is used to print to
the auxiliary output. The resulting files are standard ASCI| files and can be edited
with GAUSS's editor or another text editor.

Theout put and out wi dt h commands are used to control the auxiliary output. The
print orprintfmcommand isused to control what is sent to the output file.

The window can be turned on and off using scr een. When printing alarge amount
of datato the auxiliary output, the window can be turned off using the command

screen off;

This will make the process much faster, especialy if the auxiliary output isadisk file.

It is easy to forget to turn the window on again. Usethe end statement to terminate
your programs; end will automatically performscr een on and out put of f.

The following commands can be used to control printing to the auxiliary output:

f or mat Specify format for printing a matrix.

out put Open, close, rename auxiliary output file or device.
outwi dt h Auxiliary output width.

printfm Formatted matrix print.

pri nt Print matrix or string.

screen Turn printing to the window on and off.

This example illustrates printing a matrix to afile:
format /rd 8, 2;
outw dth 132;
output file = nyfile.asc reset;
screen off;
print x;
out put off;

screen on;

The numbersin the matrix x will be printed with afield width of 8 spaces per number,
and with 2 places beyond the decimal point. The resulting file will be an ASCII data
file. It will have 132 column lines maximum.

18-4

Filel/O

A more extended example follows. This program will write the contents of the
GAUSSfilemydat a. dat into an ASCII filecalled mydat a. asc. If thereisan
existing file by the name of mydat a. asc, it will be overwritten:

output file = nydata.asc reset;
screen off;
format /rd 1, 8;
open fp = nydat a;
do until eof (fp);
print readr(fp, 200);;
endo;
fp = close(fp);

end;

Theout put ... reset commandwill create an auxiliary output file called

nydat a. asc to receive the output. The window is turned off to speed up the

process. The GAUSS datafile mydat a. dat isopened for reading, and 200 rows

will be read per iteration until the end of the file is reached. The data read will be

printed to the auxiliary output nydat a. asc only, because the window is off.
General File 1/0

get f will read afile and return it in astring variable. Any kind of file can be read in
thisway aslong asit will fit into asingle string variable.

To read files sequentially, use f open to open thefileand usef get s, f put s, and
associated functions to read and write the file. The current position in afile can be
determined with f t el | . The following example uses these functions to copy an
ASCII text file:

proc copy(src, dest);

|ocal fin, fout, str;

fin = fopen(src, “rb");
if not fin;
retp(l);

endi f;

18-5

GAUSS User Guide

fout = fopen(dest, “wh");
if not fin;
call close(fin);
retp(2);

endi f;

do until eof (fin);
str = fgets(fin, 1024);
if fputs(fout, str) /= 1;
call close(fin);
call close(fout);
retp(3);
endi f;

endo;

call close(fin);
call close(fout);
retp(0);

endp;

Data Sets

Layout

GAUSS data sets are the preferred method of storing data for use within GAUSS. Use
of these data sets allows extremely fast reading and writing of data. Many library
functions are designed to read data from these data sets.

GAUSS data sets are arranged as matrices; that is, they are organized in terms of rows
and columns. The columns in adata file are assigned names and these names are
stored in the header or, in the case of the v89 format, in a separate header file.

The limit on the number of rowsin a GAUSS data set is determined by disk size. The
limit on the number of columnsislimited by RAM. Data can be storedin 2, 4, or 8
bytes per number, rather than just 8 bytes as in the case of GAUSS matrix files.

18-6

Filel/O

Theranges of the different formats are:

Data Significant

Bytes Type Digits Range
2 integer 4 -32768 <= X <= 32767
4 single 6-7 8.43E-37 <= |X| <= 3.37E+38
8 double 15-16 4.19E-307 <= [X| <= 1.67E+308

Creating Data Sets

Data sets can be created with the cr eat e command. The names of the columns, the
type of data, etc., can be specified. (For details, see cr eat e inthe GAUSS Language
Reference.)

Data sets, unlike matrices, cannot change from real to complex, or vice-versa. Data
sets are always stored a row at atime. The rows of acomplex data set, then, have the
real and imaginary parts interleaved, element by element. For this reason, you cannot
write rows from acomplex matrix to areal data set — there isno way to interleave the
data without rewriting the entire data set. If you must, explicitly convert the rows of
datafirst, using ther eal andi mag functions (see the GAUSS Language Reference),
and then write them to the data set. Rows from area matrix CAN be writtento a
complex data set; GAUSS simply supplies O's for the imaginary part.

To create acomplex data set, include the conpl ex flaginyour cr eat e command.

Reading and Writing
Thebasic functions in GAUSS for reading datafilesare open and r eadr :
open f1 = dat 1;
X = readr(f1, 100);

Ther eadr functioninthe examplewill read in 100 rowsfrom dat 1. dat . The data
will be assigned to amatrix X.

| oadd and saved can be used for loading and saving small data sets.

18-7

GAUSS User Guide

The following example illustrates the creation of a GAUSS data file by merging
(horizontally concatenating) two existing data sets:

filel = “datl”;
file2 = “dat2”;
outfile = “daty”;

open finl "filel for read;

open fin2 ile2 for read;

varnanes = getnane(filel)|getnane(file2);
otyp = maxc(typef (finl)|typef(fin2));

create fout = "outfile with ~varnanes, 0, otyp;
nr = 400;

do until eof(finl) or eof(fin2);

yl = readr(finl,nr);

y2 = readr(fin2,nr);

r = maxc(rows(yl)|rows(y2));
y =yl[l:r,.] ~y2[1l:r,.];

call witer(fout,y);
endo;

closeall finl,fin2,fout;

In the previous example, datasetsdat 1. dat and dat 2. dat are opened for
reading. The variable names from each data set are read using get nane, and
combined in asingle vector called var names. A variablecalled ot yp is created that
will be equal to the larger of the two datatypes of the input files. Thiswill ensure the
output is not rounded to less precision than the input files. A new dataset dat y. dat
iscreatedusingthecreate ... with ... command. Then, on every iteration
of the loop, 400 rows are read in from each of the two input data sets, horizontally
concatenated, and written out to dat y. dat . When the end of one of the input filesis
reached, reading and writing will stop. Thecl oseal | command is used to close all
files.

18-8

Filel/O

Distinguishing Character and Numeric Data

Although GAUSS itself does not distinguish between numeric and character columns
inamatrix or data set, some of the GAUSS Applications programs do. When creating
adata set, it isimportant to indicate the type of data in the various columns. The
following discusses two ways of doing this.

Using Type Vectors

Thev89 data set format distinguishes between character and numeric datain data sets
by the case of the variable names associated with the columns. The v96 data set
format, however, storesthistype of information separately, resulting in amuch cleaner
and more robust method of tracking variable types, and greater freedom in the naming
of data set variables.

When you create a data set, you can supply avector indicating the type of datain each
column of the data set. For example:

data = { M 32 21500,

F 27 36000,

F 28 19500,

M 25 32000 };
vnanmes = { “Sex” “Age” “Pay” };
vtypes = { 01 1 };

create f = nydata with “vnanmes, 3, 8, vtypes;

call writer(f,data);

f = close(f);

To retrieve the type vector, usevar t ypef :
open f = nydata for read;

get nanef (f);

vn

vartypef (f);

vt
print vn';
print vt’;
Sex Age Pay
0 1 1

18-9

GAUSS User Guide

Thefunction get nanef in the previous example returns a string array rather than a
character vector, so you can print it without the‘$’ prefix.

Using the Uppercase/Lowercase Convention (v89 Data Sets)

Thisis obsolete, usevar t ypef and v96 data sets to be compatible with future
versions.

The following method for distinguishing character/numeric data will soon be
obsolete; use the Type Vectors method described earlier.

To distinguish numeric variables from character variablesin GAUSS data sets, some
GAUSS application programs recognize an “uppercase/lowercase” convention: if the
variable name is uppercase, the variable is assumed to be numeric; if the variable
nameislowercase, the variable is assumed to be character. The ATOG utility program
implements this convention when you use the # and $ operators to toggle between
character and numeric variable names listed inthei nvar statement, and you have
specified nopr eser vecase.

GAUSS does not make thisdistinction internally. It is up to the program to keep track
of and make use of theinformation recorded in the case of the variable names in a data
Set.

When creating a data set using the saved command, this convention can be
established asfollows:

data = { M 32 21500,
F 27 36000,
F 28 19500,
M 25 32000 };
dataset = “nydata”;
vhanes = { “sex” AGE PAY };
cal |l saved(data, dat aset, vhanes);

It is necessary to put “sex” in quotes in order to prevent it from being forced to
uppercase.

The procedure get nane can be used to retrieve the variable names:
print $getnanme(“nydata”);

18-10

Filel/O

The names are:

sex
AGE
PAY

When writing or creating adata set, the case of the variable namesisimportant. This
is especially true if the GAUSS applications programs will be used on the data set.

Matrix Files

GAUSS matrix files are files created by the save command.

The save command takes a matrix in memory, adds a header that contains
information on the number of rows and columns in the matrix, and stores it on disk.
Numbers are stored in double precision just asthey are in matrices in memory. These
files have the extension . f nt .

Matrix files can be no larger than asingle matrix. No variable names are associated
with matrix files.

GAUSS matrix files can bel oad’ed into memory using thel oad or | oadm
command, or they can be opened with the open command and read with ther eadr
command. With ther eadr command, a subset of the rows can be read. With the

| oad command, the entire matrix is| oad’ed.

GAUSS matrix filescan beopen’edf or read, but notf or appendorf or
updat e.

If amatrix file has been opened and assigned afile handle, r owsf and col sf canbe
used to determine how many rows and columns it has without actually reading it into
memory. seekr andr eadr can be used to jump to particular rows and to read them
into memory. Thisis useful when only asubset of rowsis needed at any time. This
procedure will save memory and be much faster than | oad’ ing the entire matrix into
memory.

File Formats
This section discusses the GAUSS binary file formats.
There are four currently supported matrix file formats.

Version Extension Support
Small Matrix v89 Pt Obsolete, use v96.

18-11

GAUSS User Guide

Extended Matrix v89 fm Obsolete, use v96.
Matrix v92 fm Obsolete, use v96.
Universal Matrix v96 fm Supported for read/write.

There arefour currently supported string file formats:

Version Extension Support

Small String v89 . fst Obsolete, use v96.
Extended String v89 .fst Obsolete, use v96.

String v92 .fst Obsolete, use v96.
Universal String v96 . fst Supported for read/write.

There are four currently supported data set formats:

Version Extension Support
Small Data Set v89 . dat, Obsol ete, use v96.
. dht
Extended Data Set v89 . dat, Obsol ete, use v96.
. dht
Data Set v92 . dat Obsol ete, use v96.
Universal Data Set v96 . dat Supported for read/write.

Small Matrix v89 (Obsolete)

Matrix files are binary files, and cannot be read with a text editor. They are created
with save. Matrix files with up to 8190 elementshave a. f nt extension and a 16-
byte header formatted as follows:

Offset Description

01 DDDD hex, identification flag

2-3 rows, unsigned 2-byte integer

4-5 columns, unsigned 2-byte integer

6-7 size of file minus 16-byte header, unsigned 2-byte integer

8-9 type of file, 0086 hex for real matrices, 8086 hex for complex matrices

18-12

Filel/O

10-15 reserved, al 0's

The body of thefile starts at offset 16 and consists of |EEE format double-precision
floating point numbers or character elements of up to 8 characters. Character elements
take up 8 bytes and are padded on the right with zeros. The size of the body of thefile
is 8*rows* cols rounded up to the next 16-byte paragraph boundary. Numbers are
stored row by row. A 2x3 real matrix will be stored on disk in the following way, from
the lowest addressed €l ement to the highest addressed el ement:

[1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

For complex matrices, the size of the body of thefile is 16* rows* cols. The entire real
part of the matrix is stored first, then the entire imaginary part. A 2x3 complex matrix
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed element:

(real part) [1,1] [1,2] [1,3] [21] [2,2] [2,3]
(imaginary part) [1,1] [1,2] [1,3] [2.1] [2,2] [2,3]

Extended Matrix v89 (Obsolete)

Matrices with more than 8190 elements are saved in an extended format. These files
have a 16-byte header formatted as follows:

Offset Description

01 EEDD hex, identification flag
2-3 type of file, 0086 hex for real matrices, 8086 hex for complex matrices
4-7 rows, unsigned 4-byte integer

8-11 columns, unsigned 4-byte integer
12-15 sizeof file minus 16-byte header, unsigned 4-byte integer
The size of the body of an extended matrix fileis 8* rows* cols (not rounded up to a

paragraph boundary). Aside from this, the body is the same as the small matrix v89
file.

Small String v89 (Obsolete)

String files are created with save. String files with up to 65519 characters have a 16-
byte header formatted as follows:

Offset Description

18-13

GAUSS User Guide

01 DFDF hex, identification flag
2-3 1, unsigned 2-byte integer

Offset Description

4-5 length of string plus null byte, unsigned 2-byte integer
6-7 size of file minus 16-byte header, unsigned 2-byte integer
8-9 001D hex, type of file
10-15 reserved, al O's
The body of thefile starts at offset 16. It consists of the string terminated with anull

byte. The size of the file isthe 16-byte header plus the length of the string and null
byte rounded up to the next 16-byte paragraph boundary.

Extended String v89 (Obsolete)

Strings with more than 65519 characters are saved in an extended format. These files
have a 16-byte header formatted as follows:

Offset Description

0-1 EEDF hex, identification flag
2-3 001D hex, type of file
4-7 1, unsigned 4-byte integer

8-11 length of string plus null byte, unsigned 4-byte integer
12-15 sizeof file minus 16-byte header, unsigned 4-byte integer

The body of thefile starts at offset 16. It consists of the string terminated with anull
byte. The size of the file isthe 16-byte header plus the length of the string and null
byte rounded up to the next 8-byte boundary.

Small Data Set v89 (Obsolete)

All data sets are created with cr eat e. v89 data sets consist of two files; one (. dht)
containsthe header information; the second (. dat) containsthe binary data. The data
will be one of three types:

8-byte |EEE floating point
4-byte |EEE floating point

18-14

Filel/O

2-byte signed binary integer, twos complement
Numbers are stored row by row.

The. dht fileisused in conjunction with the . dat file asadescriptor fileand as a
place to store names for the columnsin the . dat file. Data sets with up to 8175
columns havea. dht file formatted as follows:

Offset Description

01 DADA hex, identification flag

2-5 reserved, al 0's

6-7 columns, unsigned 2-byte integer

8-9 row size in bytes, unsigned 2-byte integer

10-11 header size in bytes, unsigned 2-byte integer

12-13 datatypein. dat file (24 8), unsigned 2-byte integer
14-17 reserved, al O's

18-21 reserved, al O's

22-23 control flags, unsigned 2-byte integer

24-127 reserved, al O's

Column names begin at offset 128 and are stored 8 bytes each in ASCI| format.
Names with less than 8 characters are padded on the right with bytes of 0.

The number of rowsinthe. dat fileiscalculated in GAUSS using the file size,
columns, and data type. This means that users can modify the . dat file by adding or
deleting rows with other software without updating the header information.

Names for the columns should be lowercase for character data, to be able to
distinguish them from numeric datawith var t ype.

GAUSS currently examines only the 4's hit of the control flags. Thisbit is set to O for
real data sets, 1 for complex data sets. All other bits are 0.

Data sets are always stored arow at atime. A real data set with 2 rows and 3 columns
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed element:

[1,1] [1,2] [1,3]
[2,1] [2,2] [2, 3]

18-15

GAUSS User Guide

The rows of a complex data set are stored with the real and imaginary parts
interleaved, element by element. A 2x3 complex data set, then, will be stored on disk
in the following way, from the lowest addressed element to the highest addressed

element:

[1,1]r
[2,1]r

[1,1]i [2,2]r [1,2]0 [2,3]r [1,3]i
[2,1]i [2,2]r [2,2]i [2,3]r [2,3]i

Extended Data Set v89 (Obsolete)

Data sets with more than 8175 columns are saved in an extended format. These files
have a. dht descriptor file formatted as follows:

Offset Description

01 EEDA hex, identification flag

2-3 datatypein. dat file (24 8), unsigned 2-byte integer
4-7 reserved, al 0's

8-11 columns, unsigned 4-byte integer

12-15 row sizein bytes, unsigned 4-byte integer
16-19 header size in bytes, unsigned 4-byte integer
20-23 reserved, al O's

24-27 reserved, al O's

28-29 control flags, unsigned 2-byte integer
30-127 reserved, al O's

Aside from the differences in the descriptor file and the number of columnsallowed in
the data file, extended data sets conform to the v89 data set description specified

above.

Matrix v92 (Obsolete)

Offset Description

0-3 always 0

4-7 always OXEECDCDCD
8-11 reserved

18-16

Filel/O

Offset Description
12-15 reserved
16-19 reserved
20-23 0- real matrix, 1 - complex matrix
24-27 number of dimensions
0- scalar
1- row vector
2 - column vector, matrix
28-31 header size, 128 + dimensions * 4, padded to 8-byte boundary
32-127 reserved

If the data is a scalar, the datawill directly follow the header.

If the datais arow vector, an unsigned integer equaling the number of columnsin the
vector will precede the data, along with 4 padding bytes.

If the datais a column vector or a matrix, there will be two unsigned integers
preceding the data. The first will represent the number of rows in the matrix and the
second will represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in
double precision (8 bytes per element, 16 if complex). For complex matrices, all of the
real parts are stored first, followed by all the imaginary parts.

String v92 (Obsolete)

Offset Description

0-3 always 0

4-7 always OXEECFCFCF

8-11 reserved

12-15 reserved

16-19 reserved

20-23 sizeof string in units of 8 bytes

24-27 length of string plus null terminator in bytes
28-127 reserved

18-17

GAUSS User Guide

Thesize of the dataareaisalwaysdivisible by 8, and is padded with nullsif the length
of the string is not evenly divisible by 8. If the length of the string is evenly divisible
by 8, the data area will be the length of the string plus 8. The data areafollows
immediately after the 128-byte header.

Data Set v92 (Obsolete)

Offset Description

0-3 always 0

4-7 always OXEECACACA

8-11 reserved

12-15 reserved

16-19 reserved

20-23 rowsin data set

24-27 columnsin data set

28-31 0 - real data set, 1 - complex data set
32-35 typeof datain data set, 2, 4, or 8
36-39 header sizein bytesis 128 + columns* 9
40-127 reserved

The variable names begin at offset 128 and are stored 8 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 8 characters are
padded on the right with bytes of zero.

Thevariable type flagsimmediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

The contents of the data set follow the header and start on an 8-byte boundary. Data is
either 2-byte signed integer, 4-byte single precision floating point, or 8-byte double
precision floating point.

18-18

Filel/O

Matrix v96
Offset Description
0-3 always OXFFFFFFFF
4-7 always 0
8-11 always OXFFFFFFFF
12-15 alwaysO
16-19 always OXFFFFFFFF
20-23 OxFFFFFFFF for forward byte order, O for backward byte order
24-27 OXFFFFFFFF for forward bit order, O for backward bit order
28-31 aways OXABCDEF01
32-35 currently 1
36-39 reserved
40-43 floating point type, 1 for IEEE 754
44-47 1008 (double precision data)
48-51 8, the size in bytes of a double matrix
52-55 0- real matrix, 1 - complex matrix
56-59 1 -imaginary part of matrix follows real part (standard GAUSS style)
1 - imaginary part of each element immediately follows real part
(FORTRAN style)
60-63 number of dimensions
0 - scalar
1- row vector
2 - column vector or matrix
64-67 1 - row major ordering of elements, 2 - column major
68-71 awaysO
72-75 header size, 128 + dimensions * 4, padded to 8-byte boundary
76-127 reserved

If the data is a scalar, the datawill directly follow the header.

18-19

GAUSS User Guide

If the datais arow vector, an unsigned integer equaling the number of columnsin the
vector will precede the data, along with 4 padding bytes.

If the datais a column vector or a matrix, there will be two unsigned integers
preceding the data. The first will represent the number of rows in the matrix and the
second will represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in
double precision (8 bytes per element, 16 if complex). For complex matrices, all of the
real parts are stored first, followed by al the imaginary parts.

Data Set v96

Offset Description

0-3 always OXFFFFFFFF

4-7 always 0

8-11 always OXFFFFFFFF

12-15 alwaysO

16-19 always OXFFFFFFFF

20-23 OXFFFFFFFF for forward byte order, O for backward byte order
24-27 OXFFFFFFFF for forward bit order, O for backward bit order
28-31 OxABCDEF02

32-35 version, currently 1

36-39 reserved

40-43 floating point type, 1 for IEEE 754

44-47 12 - signed 2-byte integer
1004 - single precision floating point
1008 - double precision float

48-51 2, 4, or 8, the size of an element in bytes
52-55 0- real matrix, 1 - complex matrix

56-59 1 -imaginary part of matrix followsreal part (standard GAUSS style)
2 - imaginary part of each element immediately follows real part
(FORTRAN style)

60-63 aways?2

18-20

Filel/O

Offset Description

64-67 1 - row major ordering of elements, 2 - column major

68-71 awaysO

72-75 header size, 128 + columns* 33, padded to 8-byte boundary
76-79 reserved

80-83 rowsin data set

84-87 columnsin data set

88-127 reserved

The variable names begin at offset 128 and are stored 32 bytes each in ASCI| format.
Each name corresponds to one column of data. Names less than 32 characters are
padded on the right with bytes of zero.

Thevariable type flagsimmediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

Contents of the data set follow the header and start on an 8-byte boundary. Datais

either 2-byte signed integer, 4-byte single precision floating point, or 8-byte double
precision floating point.

18-21

Foreign Language 1 9
Interface

The Foreign Language Interface (FLI) allows usersto create functions writtenin C,
FORTRAN, or other languages, and call them from a GAUSS program. The functions
are placed in dynamic libraries (DLLs, also known as shared libraries or shared
objects) and linked in at run-time as needed. The FLI functions are:

dlibrary Link and unlink dynamic libraries at run-time.

dlicall Call functions located in dynamic libraries.

GAUSS recognizes a default dynamic library directory, adirectory whereit will look
for your dynamic-link libraries when you call dlibrary. You can specify the default
directory in gauss. cf g by setting dlib_path. Asit isshipped, gauss. cf g
specifies $(GAUSSDI R) / dI i b asthe default directory.

Creating Dynamic Libraries

Assume you want to build adynamic library called myf uncs. dl | , containing the
functions found in two source files, nyf uncl. ¢ and nyf unc2. c. The following
sections show the compile and link commands you would use. The compiler
command is first, followed by the linker command, followed by remarks regarding
that platform.

19-1

GAUSS User Guide

For explanations of the various flags used, see the documentation for your compiler
and linker. One flag is common to both platforms. The —c compiler flag means
“compile only, don't link.” Virtually all compilerswill perform the link phase
automatically unless you tell them not to. When building adynamic library, we want
to compile the source code filesto object (. obj) files, then link the object filesin a
separate phase into adynamic library.

$(CCOPTS) indicates any optional compilation flags you might add.
cl -c $(CCOPTS) -DWN32 -D WN32 -D MI -c -WB -
Diry=__try \
- Dexcept=__except -Dl eave=__| eave -
Dfinally=__finally \
- DCRTAPI 1=_cdecl - DCRTAPI 2=_cdecl -D_X86_=1 - DSTRI CT
-LD \
-Zpl nyfuncl.c nmyfunc2.c
link -DLL -def: ntgauss. def -out:nmyfuncs.dl | nyfuncl. obj
\
nyfunc2. obj fpl0.obj libcm.lib ol dnanes.lib
kernel 32.1ib \
advapi 32.1ib user32.1ib gdi32.1ib condlg32.1ib
wi nspool . lib
These commands are written for the Microsoft Visual C/C++ compiler, ver. 2.0.

The Visual C/C++ linker allowsyou to specify amodule definition file, whichisatext
file that describes the dynamic library to be created. In this example, the module
definition fileisnmyf uncs. def . It includes information on how the library isto be
initialized and terminated, how to handle its data segment, etc. It also needsto list the
symbolsthat will be exported, i.e., made callable by other processes, from the
dynamic library. Assume that myf uncl1. ¢ and nyf unc?2. ¢ contain the FLI
functionsf uncl1(),func2(),andfunc3(), and astatic funcitonf unc4() that
is called by the others, but never directly from GAUSS. Then nyf uncs. def would
look like this:

19-2

Foreign Language Interface

LI BRARY nyfuncs
EXPORTS

funcl

func2

func3

Asyou can see, creating dynamic libraries from the command line can be quite an
arcane process. For this reason, we recommend that you create dynamic libraries from
inside the Visual C/C++ workbench environment, rather than from the command line.

Writing FLI Functions
Your FLI functions should be written to the following specifications:
1. Take 0 or more pointers to doubles as arguments.

This does not mean you cannot pass strings to an FLI function. Just recast
the double pointer to a char pointer inside the function.

2. Take those arguments either in alist or a vector.
3. Return an integer.
In C syntax, then, your functions would take one of the following forms:;

1. int func(void);

2. int func (double*argl|[,double *2, etc.])) ;

3. int func (double *arg[]) ;

Functions can be written to take alist of up to 100 arguments, or avector (in C terms,
a l-dimensional array) of up to 1000 arguments. This does not affect how the function
is caled from GAUSS; the dllcall statement will always appear to pass the arguments
inalist. That is, the dllcall statement will always look as follows:

dlicall func(ab,cd[[,e..1]) ;

For details on calling your function, passing arguments to it, getting data back, and
what the return value means, see dllcall in the GAUSS Language Reference.

19-3

Data Transformations 2 O

GAUSS allows expressions that directly reference variables (columns) of a data set.
This is done within the context of adata loop:

datal oop infile outfile;
dr op wagefac wgl ec shordelt foobly;
csed = In(sqrt(csed));
select csed > 0.35 and married $== “y”;
make chfac = hcfac + wcfac;
keep csed chfac stid recsum voom

endat a;

GAUSS translates the data loop into a procedure that performs the required
operations, and then calls the procedure automatically at the location (in your
program) of the data loop. It does this by translating your main program file into a
temporary file and then executing the temporary file.

A dataloop may be placed only in the main program file. Dataloopsin files that are
#i ncl ude’d or autoloaded are not recognized.

20-1

GAUSS User Guide

Using Data Loop Statements

A dataloop beginswith adat al oop statement and endswith an endat a statement.
Inside a data loop, the following statements are supported:

code Create variable based on a set of logical expressions.

del et e Delete rows (observations) based on alogical expression.
drop Specify variables NOT to be written to data set.

extern Allows access to matrices and strings in memory.

keep Specify variables to be written to output data set.

I ag Lag variables a number of periods.

i stwi se Controlsdeletion of missing values.

make Create new variable.

outtyp Specify output file precision.

recode Change variable based on a set of logical expressions.
sel ect Select rows (observations) based on alogical expression.

vect or Create new variable from a scalar returning expression.

In any expression inside a dataloop, all text symbols not immediately followed by a
left parenthesis ‘(' are assumed to be data set variable (column) names. Text symbols
followed by aleft parenthesis are assumed to be procedure names. Any symbol listed
in an ext er n statement is assumed to be a matrix or string already in memory.

Using Other Statements

All program statements in the main file and not inside a data loop are passed through
to the temporary file without modification. Program statements within a data loop that
are preceded by a‘#’ are passed through to the temporary file without modification.
The user familiar with the code generated in the temporary file can use this to do out-
of-the-ordinary operations inside the data loop.

Debugging Data Loops

Thetrandator that processes data loops can be turned on and off. When the trand ator
is on, there are three distinct phases in running a program:

Trandation Trandation of main program file to temporary file.

20-2

Data Transformations

Compilation Compilation of temporary file.
Execution Execution of compiled code.

Translation Phase

In the translation phase, the main program fileis translated into atemporary file. Each
dataloop istranslated into a procedure, and acall to this procedure is placed in the
temporary file at the same location as the original dataloop. The dataloop itself is
commented out in the temporary file. All dataloop procedures are placed at the end of
the temporary file.

Depending on the status of line number tracking, error messages encountered in this
phase will be printed with the file name and line numbers corresponding to the main
file.

Compilation Phase

In the compilation phase, the temporary file is compiled. Depending on the status of
line number tracking, error messages encountered in this phase will be printed with
the file name and line numbers corresponding to both the main file and the temporary
file.

Execution Phase

In the execution phase, the compiled program is executed. Depending on the status of
line number tracking, error messages will include line number references from both
the main file and the temporary file.

Reserved Variables
Thefollowing local variables are created by the translator and used in the produced

code:
X_CcVv X_iptr X_ncol X_pl ag
x_drop x_keep x_nl ag X_ptrim
x_fpin x_lval X_Nnrow x_shft
x_fpout x_lvar x_ntrim X_tname
X_i X_n x_out X_vname
Xx_in X_name x_outtyp X_X

These variables are reserved, and should not be used within adat al oop . . .
endat a section.

20-3

Publication Quality 2 1
Graphics

GAUSS Publication Quality Graphics (PQG) is a set of routines built on the graphics
functions in GraphiC by Scientific Endeavors Corporation.

The main graphics routines include xy, xyz, surface, polar, and log plots, aswell as
histograms, bar, and box graphs. Users can enhance their graphs by adding legends,
changing fonts, and adding extra lines, arrows, symbols, and messages.

The user can create asingle full size graph, inset asmaller graph into alarger one, tile
awindow with several equally sized graphs, or place several overlapping graphsin the
window. Graphic panel size and location are all completely under the user’s control.

General Design

GAUSS PQG consists of a set of main graphing procedures and several additional
procedures and global variables for customizing the output.

All of the actua output to the window happens during the call to these main routines:

bar Bar graphs.
box Box plots.

cont our Contour plots.

GAUSS User Guide

draw Draws graphs using only global variables.
hi st Histogram.

hi stp Percentage histogram.

hi st f Histogram from a vector of frequencies.
| ogl og Log scaling on both axes.

| ogx Log scaling on X axis.

| ogy Logscalingon'Y axis.

pol ar Polar plots.

surface 3-D surface with hidden line removal.
Xy Cartesian graph.

Xyz 3-D Cartesian graph.

Using Publication Quality Graphics

Getting Started

There are four basic parts to a graphics program. These elements should be in any
program that uses graphics routines. The four parts are header, data setup, graphics
format setup, and graphics call.

Header

In order to use the graphics procedures, the pgr aph library must be active. Thisis
doneinthel i br ary statement at the top of your program or command file. The next
line in your program will typically be a command to reset the graphics global
variables to the default state. For example:

library nylib, pgraph;
gr aphset;

Data Setup

The data to be graphed must be in matrices. For example:
X = sega(l, 1, 50);

y = sin(x);

Publication Quality Graphics

Graphics Format Setup

Most of the graphics elements contain defaults that allow the user to generate a plot
without modification. These defaults, however, may be overridden by the user through
the use of global variables and graphics procedures. Some of the elements custom
configurable by the user are axes numbering, labeling, cropping, scaling, line and
symbol sizes, and types, legends, and colors.

Calling Graphics Routines

The graphics routines take as input the user data and global variables that have
previoudly been set. It is in these routines where the graphicsfileis created and

displayed.

Following are three PQG examples. The first two programs are different versions of
the same graph. The variables that begin with _p are the global control variables used
by the graphics routines. (For a detailed description of these variables, see “ Global
Control Variables,” page 21-13.)

Example 1 Theroutine being called hereisasimple XY plot. The entire window
will be used. Four sets of data will be plotted with the line and symbol attributes
automatically selected. This graph will include a legend, title, and atime/date stamp
(time stamp is on by default):

library pgraph; [* activate PGRAPH library */

gr aphset; /* reset global variables */

x = sega(.1,.1,100); /* generate data */

y = sin(x);

y =y ~y*8 ~y*.6 ~y*.4;, [* 4 curves plotted */
/* against x */

_plegctl = 1; /* legend on */

title(“Exanmpl e xy Graph”); [* Main title */

Xy(x,VY); /[* Call to main routine */
Example 2 Hereisthe same graph with more of the graphics format controlled by
the user. Thefirgt two data sets will be plotted using symbols at graph points only

(observed data); the datain the second two setswill be connected with lines (predicted
results):

library pgraph; /[* activate PGRAPH |ibrary */

gr aphset; /* reset global variables */

GAUSS User Guide

X =

= sin(x);
y =y ~y*.8 ~y*.6 ~y*. 4
_pdate = *";

_pletrl ={ 1, 1, 0, 0 };

_pltype = { 1, 2, 6, 6 };

_pstype = { 1, 2, 0, 0 };

_plegetl={ 2, 3, 1.7, 4.5 };

_plegstr= “Sine wave 1.\0"\
“Sine wave .8\0"\
“Sine wave .6\0"\
“Si ne wave .47,

yl abel (“Anplitude”);

x| abel (“X Axi s");

title(“Exampl e xy Graph”);

xy(x,y);

e
e
e
e

e
e
e
e
e
e
e
"
e
e
e

seqa(.1,.1,100); /* generate data */

4 curves plotted */
agai nst x */

date is not printed */
2 curves w synbol s, */
2 without */

dashed, dotted, */
solid lines */

synmbol types */
circl es, squares */

| egend size and */

| ocations */

/* 4 lines | egend text */

Y axi s | abel */

X axi s | abel */

main title */

call to main routine */

Example 3 |nthis example, two graphics graphic panels are drawn. Thefirstisa
full-sized surface representation, and the second is a half-sized inset containing a
contour of the same data located in the lower |eft corner of the window:

library pgraph; /* activate pgraph library */

/* Generate data for surface and contour plots */

X = sega(-10,0.1,71)"; /*

note x is a row vector */

Publication Quality Graphics

y = seqa(-10,0.1,71); /* note y is a colum vector */

z = cos(5*sin(x) - vy); [/* zis a 71x71 matrix */

begwi nd; [* initialize graphics */
/* graphic panels */

makew nd(9, 6. 855, 0, 0, 0); [* first graphic panel */

[*full size */
makewi nd(9/2,6.855/2,1,1,0); /* second graphic panel */

/* inset to first */

setwind(1); /* activate first graphic */
[* panel */
gr aphset; /* reset global variables */
_pzclr = { 1, 2, 3, 4}; |/* set Z level colors */

title(“cos(5*sin(x) - y)"); /* set main title */

xl abel (“X Axi s"); /* set X axis |abel */
yl abel (Y Axis”); /* set Y axis | abel */
scal e3d(m ss(0,0),m ss(0,0),-5|5);/* scale Z axis */
surface(x,y, z); /* call surface routine */
next wi nd; /* activate second graphic */

[* panel */
gr aphset; /* reset global variables */

_pzclr = { 1, 2, 3, 4}; |/* set Z level colors */

_pbox = 15; /* white border */
contour(Xx,Yy, z); /* call contour routine */
endwi nd; /* Display graphic panels */

GAUSS User Guide

While the structure has changed somewhat, the four basic elements of the graphics
program are all here. The additional routines begwi nd, endwi nd, makew nd,
next wi nd, and set wi nd are all used to control the graphics graphic panels.

As Example 3illustrates, the code between graphic panel functions (that is, set wi nd
or next wi nd) may include assignmentsto global variables, acall to gr aphset , or
may set up new data to be passed to the main graphics routines.

You are encouraged to run the example programs supplied with GAUSS. Analyzing
these programs is perhaps the best way to learn how to use the PQG system. The
example programs are located on the exanpl es subdirectory.

Graphics Coordinate System

PQG uses a 4190x3120 pixd grid on a9.0x6.855-inch printable area. There are three
units of measure supported with most of the graphics global elements:

Inch Coordinates

Inch coordinates are based on the dimensions of the full-size 9.0x6.855-inch output
page. The origin is (0,0) at the lower |eft corner of the page. If the picture isrotated,
the originis at the upper left. (see “Inch Unitsin Graphics Graphic Panels,” page 21-
9)

Plot Coordinates

Plot coordinates refer to the coordinate system of the graph in the units of the user’'s X,
Y, and Z axes.

Pixel Coordinates

Pixel coordinates refer to the 4096x3120 pixel coordinates of the full-size output page.
The originis (0,0) at the lower Ieft corner of the page. If the picture is rotated, the
origin is at the upper left.

Graphics Graphic Panels

Multiple graphic panels for graphics are supported. These graphic panels allow the
user to display multiple graphs on one window or page.

A graphic panel is any rectangular subsection of the window or page. Graphic panels
may be any size and position on the window and may betiled or overlapping,
transparent or nontransparent.

Tiled Graphic Panels

Tiled graphic panels do not overlap. The window can easily be divided into any
number of tiled graphic panels with the wi ndow command. wi ndow takes three

Publication Quality Graphics

parameters: number of rows, number of columns, and graphic pand attribute
(1=transparent, O=nontransparent).

This example will divide the window into six equally sized graphic panels. There will
be two rows of three graphic panels — three graphic panelsin the upper half of the
window and three in the lower half. The attribute value of O isarbitrary sincethere are
no other graphic panels beneath them:

wi ndow(nrows, ncol s, attr);
wi ndow(2, 3, 0);

Overlapping Graphic Panels

Overlapping graphic panels are laid on top of one another asthey are created, much as
if you were using the cut and paste method to place severa graphs together on one
page. An overlapping graphic panel is created with the mrakewi nd command.

In this example, nakew nd will create an overlapping graphic panel 4 inches
horizontally by 2.5 inches vertically, positioned 1 inch from the | eft edge of the page
and 1.5 inches from the bottom of the page. It will be nontransparent:

makew nd(hsi ze, vsi ze, hpos, vpos, attr);

wi ndow(2, 3, 0) ;
makew nd(4,2.5,1,1.5,0);

Nontransparent Graphic Panels

A nontransparent graphic panel is one that is blanked before graphicsinformation is
written to it. Therefore, information in any previously drawn graphic panels that lie
under it will not be visible.

Transparent Graphic Panels

A transparent graphic panel is one that is not blanked, allowing the graphic panel
beneath it to “show through.” Lines, symbols, arrows, error bars, and other graphics
objects may extend from one graphic panel to the next by using transparent graphic
panels. First, create the desired graphic panel configuration. Then create afull-
window, transparent graphic panel using the makewi nd or wi ndow command. Set
the appropriate global variables to position the desired object on the transparent
graphic panel. Use the dr aw procedure to draw it. This graphic panel will act asa
transparent “overlay” on top of the other graphic panels. Transparent graphic panels
can be used to add text or to superimpose one graphic panel on top of another.

GAUSS User Guide

Using Graphic Panel Functions
Thefollowing is a summary of the graphic panel functions:

begwi nd Graphic panel initialization procedure.

endwi nd End graphic panel manipulations, display graphs.

wi ndow Partition window into tiled graphic panels.

makewi nd Create graphic panel with specified size and position.
setw nd Set to specified graphic panel number.

nextw nd Set to next available graphic panel number.

getw nd Get current graphic panel number.

savew nd Save graphic panel configuration to afile.

| oadwi nd L oad graphic panel configuration from afile.

This example creates four tiled graphic panels and one graphic panel that overlaps the
other four:

library pgraph;
gr aphset;
begwi nd;

wi ndow(2,2,0); /* Create four tiled graphic panels */

/* (2 rows, 2 colums) */

9/ 2; /* Create graphic panel that overlaps */

Xsi ze
/[*the tiled graphic panels */
6. 855/ 2;

makew nd(xsi ze, ysi ze, xsi zel/ 2,ysi ze/ 2,0);

ysi ze

X = sega(1, 1, 1000); /* Create X data */

y = (sin(x) + 1) * 10.; /[* Create Y data */

setwi nd(1); /* Graph #1, upper left corner */
Xy(X,y);

Publication Quality Graphics

next wi nd; /* Graph #2, upper right corner */
logx(x,y);

next wi nd; /* Graph #3, lower |eft corner */
logy(x,Yy);

next wi nd; /* Graph #4, |ower right corner */
l'ogl og(x,y);

next wi nd; /* Graph #5, center, overlayed */
bar (X, y);

endwi nd; /* End graphic panel processing, */

/* display graph */

Inch Units in Graphics Graphic Panels

Some global variables allow coordinatesto be input in inches. If a coordinate valueis
ininches and is being used in a graphic panel, that value will be scaled towi ndow

i nches and positioned relative to the lower left corner of the graphic panel. A
graphic panel inch isatrue inch in size only if the graphic panel is scaled to the full
window; otherwise, X coordinates will be scaled relativetothehor i zont al graphic
panel size and Y coordinates will be scaled relativeto theverti cal graphic panel
size.

Saving Graphic Panel Configurations

Thefunctionssavewi nd and | oadwi nd allow the user to save graphic panel
configurations. Once graphic panels are created (using makewi nd and wi ndow),
savew nd may be called. Thiswill saveto disk the global variables containing
information about the current graphic panel configuration. To load this configuration
again, cal | oadwi nd. (Seel oadwi nd inthe GAUSS Language Reference.)

Graphics Text Elements

Graphics text elements, such astitles, messages, axes labels, axes numbering, and
legends, can be modified and enhanced by changing fonts and by adding
superscripting, subscripting, and special mathematical symbols.

To make these modifications and enhancements, the user can embed “ escape codes” in
the text stringsthat are passedtoti t | e, xI abel ,yl abel , andascl abel or
assignedto _pnsgstr and _pl egstr.

GAUSS User Guide

The escape codes used for graphics text are:

\ 000 String termination character (null byte).

[Enter superscript mode, leave subscript mode.

] Enter subscript mode, leave superscript mode.

@ Interpret next character as literal.

\ 20n Select font number n (see “Selecting Fonts,” following).

The escape code \ L can be embedded into title strings to create a multiple line title:
title(“This is the first line\lthis is the second

line”);

A null byte\ 000 is used to separate stringsin _pl egstr and _pnsgstr:
_pnegstr = “First string\000Second string\000Third
string”;
or

_plegstr = “Curve 1\ 000Curve 2";

Usethe[. .] tocreatethe expression M(t) = E(etX):
_pnsgstr = “Mt) = E(e[tx])";

Use the @to generate[and] inan X axislabel:
x|l abel (“Data used for x is: data@.,1 2 3@");

Selecting Fonts

Four fonts are supplied with the Publication Quality Graphics system. They are
Simplex, Complex, Simgrma, and Microb. (For the characters availablein each font,
see Appendix A.)

Fonts are loaded by passing to the f ont s procedure a string containing the names of
all fontsto be loaded. For example, this statement will load all four fonts:

fonts(“sinplex conplex mcrob singrm”);

21-10

Publication Quality Graphics

Thef ont s command must be called before any of the fonts can be used in text
strings. A font can then be selected by embedding an escape code of the form “\ 20n”
in the string that isto be written in the new font. The n will be 1, 2, 3, or 4, depending
on the order in which the fontswere loaded inf ont s.

If the fonts were loaded as in the previous example, the escape characters for each
would be:

\201 Sinpl ex
\202 Conpl ex
\203 Mcrob

\204 Singrm

The example then for selecting a font for each string to be written would be:
title(“\201This is the title using Sinplex font”);
x|l abel (“\202This is the label for X using Conpl ex

font”);
yl abel (“\203This is the label for Y using Mcrob
font”);

Once afont is selected, all succeeding text will use that font until another font is
selected. If no fonts are selected by the user, a default font (Simplex) is loaded and
selected automatically for all text work.

Greek and Mathematical Symbols

The following examplesillustrate the use of the Simgrma font; they assume that
Simgrma was the fourth font loaded. (For the available Simgrma characters and their
numbers, see Appendix A.) The Simgrma characters are specified by either:

1. The character number, preceded by a“\".
2. Theregular text character with the same number.

For example, to get an integral sign “0” in Simgrma, embed either a“\ 044" or a“,” in
the string that has been currently set to use Simgrma font.

To produce thettitle f(X) = sinz(nx),usethefollowing title string:
title(*“\201f(x) = sin[2](\204p\201x)");

The“p” (character 112) correspondsto 7t in Simgrma.

21-11

GAUSS User Guide

To number the major X axistick marks with multiples of 7 /4, the following could be
passedto ascl abel :

lab = “\ 2010 \204p\201/4 \204p\201/2 3\204p\201/4
\ 204p”;
ascl abel (1 ab, 0);
xtics(0,pi,pi/4,1);
Xt i cs isused to make sure that major tick marks are placed in the appropriate places.

This example will number the X axis tick marks with the labels “-2’ u'l, 1, u,and
uz
lab = “\204m 201[-2] \204m 201[-1] 1 \204m m 201[2]";

ascl abel (I ab, 0);

This example illustrates the use of severa of the special Simgrma symboals:
_pnsgstr = “\ 2041\ 2011/ 2\ 204p
,\201e[-\ 204n{\2012]\ 201/ 2] d\ 204nT;

This produces

AWz /e*“z/zdg

Colors

0 Black 8 Dark Grey

1 Blue 9 Light Blue

2 Green 10 Light Green
3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta
6 Brown 14 Yelow

7 Grey 15 White

21-12

Publication Quality Graphics

Global Control Variables

The following global variables are used to control various graphics elements. Default
values are provided. Any or all of these variables can be set before calling one of the
main graphing routines. The default values can be modified by changing the
declarationsin pgr aph. dec and the statements in the procedure gr aphset in
pgr aph. src.graphset canbe called whenever the user wants to reset these
variablesto their default values.

__pageshf

_pagesi z

_parrow

2x1 vector, the graph will be shifted to the right and up if thisis not 0.
If thisis O, the graph will be centered on the output page. Default is 0.

Note: Used internally. (For the same functionality, see axmar gi n in
the GAUSS Language Reference.) Thisis used by the graphics graphic
panel routines. The user must not set this when using the graphic panel
procedures.

2x1 vector, size of the graph in inches on the printer output. Maximum
sizeis 9.0 x 6.855 inches (unrotated) or 6.855 x 9.0 inches (rotated). If
thisis 0, the maximum size will be used. Default is 0.

Note: Used internally. (For the same functionality, see axmar gi n in
the GAUSS Language Reference.) Thisis used by the graphics graphic
panel routines. The user must not set this when using the graphic panel
procedures.

Mx11 matrix, draws one arrow per row Mof the input matrix. If scalar
zero, no arrows will be drawn.

[M1] X starting point.

[M 2] y starting point.

[M 3] x ending point.

[M 4] y ending point.

[M 5] ratio of the length of the arrow head to half its width.
[M 6] size of arrow head in inches.

[M 7] type and location of arrow heads. Thisinteger number will
be interpreted as a decimal expansion mn. For example: if
10,thenm=1,n=0.

m type of arrow head:
0 solid

21-13

GAUSS User Guide

1 empty
2 open
3 closed

n location of arrow head:
0 none
1 at the fina end
2 at both ends
[M 8] color of arrow, see“Colors,” page 21-12.
[M 9] coordinate units for location:
1 X,y starting and ending locations in plot coordinates
2 X,y starting and ending locations in inches
3 X,y starting and ending locations in pixels
[M10] linetype:
1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

[M 11] controls thickness of lines used to draw arrow. Thisvalue
may be zero or greater. A value of zeroisnormal line
width.

To create two single-headed arrows, located using inches, use

_parrow={ 1122 30.211 10 2 6 O,
342230.2111026 0},

_parrow3 Mx12 matrix, draws one 3-D arrow per row of the input matrix. If
scalar zero, no arrows will be drawn.

[M 1] X starting point in 3-D plot coordinates.
[M 2] y starting point in 3-D plot coordinates.

21-14

Publication Quality Graphics

[M 3]
[M 4]
[M 5]
[M 6]
[M 7]
[M 8]
[M 9]

[M 10]
[M11]

[M12]

z gtarting point in 3-D plot coordinates.

x ending point in 3-D plot coordinates.

y ending point in 3-D plot coordinates.

z ending point in 3-D plot coordinates.

ratio of the length of the arrow head to half its width.
size of arrow head in inches.

type and location of arrow heads. Thisinteger number will
be interpreted as a decimal expansion mn. For example: if
10,thenm=1,n=0.

m type of arrow head:

0 solid
1 empty
2 open
3 closed

n location of arrow head:

0 none

1 at the final end

2 at both ends
color of arrow, see “Colors,” page 21-12.
line type:
1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

controls thickness of lines used to draw arrow. Thisvalue
may be zero or greater. A value of zero isnormal line
width.

21-15

GAUSS User Guide

To create two single-headed arrows, located using plot coordinates, use

_parrowd = { 11122230.211 10 6 0,
34522230.211 10 6 0 };

_paxes scalar, 2x1, or 3x1 vector for independent control for each axis. The
first element controls the X axis, the second controlsthe Y axis, and
the third (if set) will control the Z axis. If O, the axis will not be drawn.
Default is 1.

If thisisascalar, it will be expanded to that val ue.

For example:
_paxes = { 1, 0}; [* turn X axis on, */
[* Y axis off */
_paxes = 0; /[* turn all axes off */
_paxes = 1; /[* turn all axes on */
__paxht scalar, size of axes labelsininches. If 0, adefault size will be

computed. Default is 0.

_pbartyp global 1x2 or Kx2 matrix. Controls bar shading and colorsin bar
graphs and histograms.

Thefirst column controls the bar shading:

no shading

dots

vertical cross-hatch

diagonal lines with positive slope
diagonal lines with negative slope
diagonal cross-hatch

o o0 A W N BB O

solid
The second column controls the bar color, see “ Colors,” page 21-12.
_pbarw d globa scalar, width of barsin bar graphs and histograms. The valid
rangeis0-1. If thisis 0, the barswill be asingle pixel wide. If thisis 1,

the bars will touch each other. The default is 0.5, so the bars take up
about half the space open to them.

21-16

Publication Quality Graphics

_pbox

_pboxct |

_pboxlim

scalar, draws a box (border) around the entire graph. Set to desired
color of box to be drawn. Use 0 if no box is desired. Default is 0.

5x1 vector, controls box plot style, width, and color. Used by procedure
box only.

[1] box width between 0 and 1. If zero, the box plot is drawn
astwo vertical lines representing the quartile ranges with a

filled circle representing the 50t percentile.

[2] box color, see “Colors,” page 21-12. If thisis set to O, the
colorsmay beindividually controlled using global variable
_pcol or.

[3] min/max style for the box symbol. One of the following:

1 minimum and maximum taken from the actua
limits of the data. Elements 4 and 5 are ignored.

2 statistical standard with the minimum and
maximum cal culated according to interquartile
range as follows:

intgrange = 75th _ osth

min 25t - 1 Sintgrange
max = 75"+ 1.5intgrange
Elements 4 and 5 are ignored.

3 minimum and maximum percentiles taken from
elements 4 and 5.

[4] minimum percentile value (0-100) if
_pboxctI[3] =3.
[5] maximum percentile value (0-100) if

_pboxctI[3] =3.

5xM output matrix containing computed percentile results from
procedure box. M corresponds to each column of input y data.

[1, M minimum whisker limit accordingto _pboxct | [3].
[2,M 25th percentile (bottom of box).
[3,M 50th percentile (median).

2117

GAUSS User Guide

_pcol or

_pcrop

_pcross

_pdate

[4.M 75th percentile (top of box).
[5.M maximum whisker limit according to _pboxct | [3] .

scalar or Kx1 vector, colors for main curvesin xy, xyz, and | og
graphs. To use asingle color set for al curves, set thisto a scalar color
value. If 0, use default colors. Default isO.

The default colors come from a global vector called _pcsel . This
vector can be changed by editing pgr aph. dec to change the default
colors, see“Colors,” page 21-12. (_pcsel isnot documented
elsewhere.)

scalar or 1x5 vector, alows plot cropping for different graphic
elementsto be individually controlled. Valid values are 0 (disabled) or
1 (enabled). If cropping is enabled, any graphical data sent outside the
axes areawill not be drawn. If thisisscalar, _pcr op isexpanded to a
1x5 vector using the given value for all elements. All cropping is
enabled by default.

[1] crop main curves/symbols.

[2] crop lines generated using _pl i ne.

[3] crop arrows generated using _par r ow.

[4] crop circleslarcs generated using _pl i ne.
[5] crop symbols generated using _psym

This example will crop main curves, and lines and circles drawn by
_pline:

_pcrop={ 11010 };

scalar. If 1, the axeswill intersect at the (0,0) X-Y location if itis
visible. Default is 0, meaning the axes will be at the lowest end of the
X-Y coordinates.

date string. If this contains characters, the date will be appended and
printed.

The default is set as follows (the first character is afont selection
escape code):

_pdate = “\201GAUSS ”;

21-18

Publication Quality Graphics

_perrbar

_pframe

If thisis set to anull string, no date will be printed. (For more
information on using fonts within strings, see “ Graphics Text
Elements,” page 21-9.)

Mx9 matrix, draws one error bar per row of the input matrix. If scalar
0, no error barswill be drawn. Location values are in plot coordinates.

[M 1]
[M 2]
[M 3]
[M 4]
[M 5]
[M 6]
[M 7]

[M 8]
[M 9]

X location.

|eft end of error bar.

right end of error bar.

y location.

bottom of error bar.

top of error bar.

line type:

o 00~ WDN P

dashed

dotted

short dashes
closely spaced dots
dots and dashes

solid

color, see “Colors,” page 21-12.

line thickness. This value may be zero or greater. A value
of zero is normal line width.

To create one error bar using solid lines, use
_perrbar = { 102213620 };

2x1 vector, controls frame around axes area. On 3-D plots, thisisa
cube surrounding the 3-D workspace.

[1]

[2]

1
0
1
0

frame on.
frame off.
tick marks on frame.

no tick marks.

The default is a frame with tick marks.

21-19

GAUSS User Guide

_pgrid

_plctrl

_pl egct |

2x1 vector to control grid.

[1] grid through tick marks:
0 no grid
1 dotted grid
2 fine dotted grid
3 solid grid
[2] grid subdivisions between mgjor tick marks:

0 no subdivisions

1 dotted lines at subdivisions

2 tick marks only at subdivisions
The default is no grid and tick marks at subdivisions.

scalar or Kx1 vector to control whether lines and/or symbolswill be
displayed for the main curves. This aso controls the frequency of
symbols on main curves. The rows (K) is equal to the number of
individual curvesto be plotted in the graph. Default is 0.

0 draw line only.
>0 draw line and symbolsevery _pl ctrl| points.
<0 draw symbolsonly every _pl ctr| points.
-1 all of the data points will be plotted with no connecting
lines.

This example draws aline for the first curve, draws aline and plots a
symbol every 10 data points for the second curve, and plots symbols
only every 5 data points for the third curve:

_plectrl ={ 0, 10, -5 };
scalar or 1x4 vector, legend control variable.

If scalar 0, no legend is drawn (default). If nonzero scalar, create
legend in the default location in the lower right of the page.

If 1x4 vector, set asfollows:
[1] legend position coordinate units:

1 coordinates are in plot coordinates

21-20

Publication Quality Graphics

_plegstr

_plev

_pline

2 coordinates are in inches

3 coordinates are in pixels

[2] legend text font size. 1 <= size <= 9. Default is 5.
[3] x coordinate of lower left corner of legend box.
[4] y coordinate of lower |eft corner of legend box.

This example puts alegend in the lower right corner:
_plegctl = 1;

This example creates asmaller legend and positions it 2.5 inches from
the left and 1 inch from the bottom:

_plegetl = { 23 2.511};

string, legend entry text. Text for multiple curvesis separated by anull
byte (“\000").

For example:
_plegstr = “Curve 1\000Curve 2\ 000Curve 3";

Mx1 vector, user-defined contour levelsfor cont our . Default is 0.
(Seecont our inthe GAUSS Language Reference.)

Mx9 matrix, to draw lines, circles, or radii. Each row controls one item
to be drawn. If thisisa scalar zero, nothing will be drawn. Default is 0.

[M1] item type and coordinate system:
1 linein plot coordinates
line in inch coordinates

linein pixel coordinates

2

3

4 circlein plot coordinates

5 circleininch coordinates

6 radius in plot coordinates

7 radius in inch coordinates
[M 2] line type:

1 dashed

2 dotted

21-21

GAUSS User Guide

short dashes
closely spaced dots
dots and dashes

solid

o o0~ W

[M 3-7] coordinates and dimensions.
(1) linein plot coordinates:
[M 3] X starting point.
[M 4] y starting point.
[M 5] x ending point.
[M 6] y ending point.

[M 7] 0if thisisacontinuation of acurve, 1
if this begins a new curve.

(2) lineininches:
[M 3] X starting point.
[M 4] y starting point.
[M 5] x ending point.
[M 6] y ending point.

[M 7] 0if thisisacontinuation of acurve, 1
if this begins a new curve.

(3) linein pixel coordinates:
[M 3] X starting point.
[M 4] y starting point.
[M 5] x ending point.

[M 6] y ending point.

[M 7] 0if thisisacontinuation of acurve, 1
if this begins a new curve.

(4) circlein plot coordinates:

[M 3] x center of circle.

21-22

Publication Quality Graphics

[M 4] y center of circle.

[M 5] radiusin x plot units.

[M 6] starting point of arc in radians.

[M 7] ending point of arcin radians.
(5) circleininches:

[M 3] X center of circle.

[M 4] y center of circle.

[M 5] radius.

[M 6] starting point of arc in radians.

[M 7] ending point of arcin radians.
(6) radiusin plot coordinates:

[M 3] x center of circle.

[M 4] y center of circle.

[M 5] beginning point of radiusin x plot
units, 0 isthe center of the circle.

[M 6] ending point of radius.
[M 7] anglein radians.
(7) radiusininches:
[M 3] x center of circle.
[M 4] y center of circle.

[M 5] beginning point of radius, 0 is the
center of the circle.

[M 6] ending point of radius.
[M 7] anglein radians.
[M 8] color, see “Colors,” page 21-12.

[M 9] controls line thickness. This value may be zero or greater.
A value of zero is normal line width.

_pline3d Mx9 matrix. Allowsextralinesto beaddedtoanxyz or sur f ace
graph in 3-D plot coordinates.

21-23

GAUSS User Guide

[M 1]
[M 2]
[M 3]
[M 4]
[M 5]
[M 6]
[M 7]
[M 8]

[M 9]
[M 10]

X starting point.

y starting point.

z gtarting point.

x ending point.

y ending point.

z ending point.

color, see “Colors,” page 21-12.

line type:

1
2
3
4
5
6

dashed

dotted

short dashes
closely spaced dots
dots and dashes

solid

line thickness, 0 = normal width.

hidden line flag, 1 = obscured by surface, 0 = not
obscured.

_pl ot shf 2x1 vector, distance of plot from lower |eft corner of output pagein

inches.
[1]
[2]

x distance.

y distance.

If scalar 0, there will be no shift. Default is 0.

Note: Used internally. (For the same functionality, see axmar gi n in
the GAUSS Language Reference.) Thisis used by the graphics panel
routines. The user must not set this when using the graphic panel

procedures.

_plotsiz 2x1vector, size of the axes areain inches. If scalar 0, the maximum

sizewill be used.

21-24

Publication Quality Graphics

_pltype

_pl wi dt h

_pntol or

Note: Used internally. (For the same functionality, see axmar gi nin
the GAUSS Language Reference.) Thisis used by the graphics panel
routines. The user must not set this when using the graphic panel
procedures.

scalar or Kx1 vector, line type for the main curves. If thisis a nonzero
scalar, al lines will be thistype. If scalar 0, line types will be default
styles. Default is 0.

dashed

dotted

short dashes
closely spaced dots
dots and dashes

solid

D g B~ W N P

The default line types come from aglobal vector called _pl sel . This
vector can be changed by editing pgr aph. dec to change the default
linetypes. (_pl sel isnot documented elsewhere.)

scalar or Kx1 vector, line thickness for main curves. This value may be
zero or greater. A value of zero isnormal (single pixel) line width.
Default isO.

9x1 vector, color valuesto use for plot, see “Colors,” page 21-12.

[1] axes.

[2] axes numbers.
[3] X axislabel.

[4] Y axislabel.

[5] Z axislabel.

[6] title.

[7] box.

[8] date.

[9] background.

If thisis scalar, it will be expanded to a 9x1 vector.

21-25

GAUSS User Guide

_pnsgct |

_pmegstr

_pnotify

_pnum

Lx7 matrix of control information for printing the strings contained in
_pmsgstr.

[L,1] horizontal location of lower left corner of string.
[L, 2] vertical location of lower left corner of string.
[L, 3] character height in inches.

[L, 4] angle in degrees to print string. This may be -180 to 180
relative to the positive X axis.

[L, 5] location coordinate system:
1 location of string in plot coordinates
2 location of string in inches

[L, 6] color, see “Colors,” page 21-12.

[L, 7] font thickness, may be zero or greater. If 0, use normal line
width.

string, contains a set of messages to be printed on the plot. Each
message is separated from the next with anull byte (A 000). The
number of messages must correspond to the number of rowsin the
_pnsgct | control matrix. This can be created as:

_pnsgstr = “Message one.\000Message two.”;

scalar, controls window output during the creation of the graph.
Default is 1.

0 no activity to the window whilewriting . t kf file.
1 display progressasfontsareloaded and . t kf fileisbeing
generated.

scalar, 2x1 or 3x1 vector for independent control for axes numbering.
Thefirst element controls the X axis numbers, the second controls the
Y axis numbers, and the third (if set) controls the Z axis numbers.
Default is 1.

If thisvalueis scalar, it will be expanded to a vector.

0 no axes numbers displayed.
1 axes numbers displayed, vertically oriented on Y axis.
2 axes numbers displayed, horizontally oriented on Y axis.

21-26

Publication Quality Graphics

_pnumht

_protate

_pscreen

_psilent

_bstype

_psurf

_psym

For example:
_pnum={ 0, 2 }; [/* no X axis nunbers,*/
/* horizontal on */
/[* Y axis */

scalar, size of axes numbersininches. If O (default), asize of 0.13 inch
will be used.

scalar. If 0, no rotation, if 1, plot will be rotated 90 degrees. Default is
0.

scalar. If 1, display graph in window, if O, do not display graphin
window. Default is 1.

scalar. If 0, abeep will sound when the graph is finished drawing to the
window. Default is 1 (no beep).

scalar or Kx1 vector, controls symbol used at graph points. To use a
single symbol type for al points, set thisto one of the following scalar
values:

1 circle 8 solid circle

2 square 9 solid square

3 triangle 10 solid triangle

4 plus 11 solid plus

5 diamond 12 solid diamond

6 inverted triangle 13 solid inverted triangle
7 star (x) 14 solid star (x)

If thisisavector, each line will have a different symbol. Symbols will
repeat if there are more lines than symbol types.

2x1 vector, controls 3-D surface characteristics.
[1] if 1, show hidden lines. Default isO.

[2] color for base (default 7), see “Colors,” page 21-12. The
base is an outline of the X-Y plane with aline connecting
each corner to the surface. If 0, no base is drawn.

Mx7 matrix, M extra symbolswill be plotted.
[M 1] X location.

21-27

GAUSS User Guide

_psyn8Bd

_psynsi z

_ptek

_pticout

_ptitlht

_pversno

[M 2] y location.
[M 3] symbol type. (See _pst ype, earlier.)

[M 4] symbol height. If thisis 0, adefault height of 5.0 will be
used.

[M 5] symbol color, see “Colors,” page 21-12.
[M 6] type of coordinates:
1 plot coordinates
2 inch coordinates
[M 7] line thickness. A value of zero is normal line width.
Mx7 matrix for plotting extrasymbolson a3-D (sur f ace or xyz)
graph.
[M1] x location in plot coordinates.
[M 2] y location in plot coordinates.
[M 3] z location in plot coordinates.
[M 4] symbol type. (See _pst ype, earlier.)

[M 5] symbol height. If thisis 0, adefault height of 5.0 will be
used.

[M 6] symbol color, see “Colors,” page 21-12.
[M 7] line thickness. A value of 0 isnormal line width.
Use _psymfor plotting extra symbolsin inch coordinates.

scalar or Kx1 vector, symbol size for the symbols on the main curves.
Thisis NOT related to _psym If 0, adefault size of 5.0 is used.

string, name of Tektronix format graphicsfile. This must havea. t kf
extension. If thisis set to anull string, the graphics file will be
suppressed. The default isgr aphi c. t kf .

scalar. If 1, tick marks point outward on graphs. Default is 0.

scalar, the height of the title charactersin inches. If thisis 0, a default
height of approx. 0.13 inch will be used.

string, the graphics version number.

21-28

Publication Quality Graphics

_pPXpmax

_pxsci

_pypmax

__pysci

_pzclr

_pzoom

—pzpmax

_pzsci

scalar, the maximum number of placesto the right of the decimal point
for the X axis numbers. Default is 12.

scalar, the threshold in digits above which the data for the X axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.

scalar, the maximum number of placesto the right of the decimal point
for the Y axis numbers. Default is 12.

scalar, the threshold in digits above which the data for the Y axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.

scalar, row vector, or Kx2 matrix, Z level color control for procedures
surface andcont our. (Seesur f ace inthe GAUSS Language
Reference.)

1x3 row vector, magnifies the graphics display for zoomingin on
detailed areas of the graph. If scalar O (default), no magnification is
performed.

[1] magnification value. 1 isnormal size.
[2] horizontal center of zoomed plot (0-100).
[3] vertical center of zoomed plot (0-100).

To see the upper left quarter of the window magnified 2 times, use
_pzoom = { 2 25 75 };

scalar, the maximum number of placesto the right of the decimal point
for the Z axis numbers. Default is 3.

scalar, the threshold in digits above which the data for the Z axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.

21-29

Utilities

ATOG

ATOG is a stand-alone conversion utility that converts ASCII filesinto GAUSS data
sets. ATOG can convert delimited and packed ASCI| filesinto GAUSS data sets.
ATOG can be run from a batch file or the command line.

Thesyntax is:
at og cmdfile

cmdfileis the name of the command file. If no extension is given, . cnd will be
assumed. If no command file is specified, acommand summary will be displayed.

Command Summary

The following commands are supported in ATOG:

append Append datato an existing file.
conpl ex Treat data as complex variables.

i nput The name of the ASCII input file.

i nvar Input file variables (column names).
nsym Specify missing value character.

22-1

GAUSS User Guide

nocheck Do not check data type or record length.

out put The name of the GAUSS data set to be created.
outtyp Output data type.

out var List of variablesto be included in output file.

preservecase Preservesthe case of variable namesin output file.
The principal commands for converting an ASCI| file that is delimited with spaces or
commas are given in the following example.

i nput agex. asc;

out put agex;

invar $ race # age pay $ sex region;

outvar regi on age sex pay;

outtyp d;

From this example, adelimited ASCII fileagex. asc isconverted to a double
precision GAUSS datafileagex. dat . Theinput file has five variables. The file will
beinterpreted as having five columns:

colum name data type
1 race charact er
2 AGE nuneric
3 PAY nuneric
4 sex charact er
5 region character

The output file will have four columns since the first column of the input file (race) is
not included in the output variables. The columns of the output file will be:

colum nanme data type
1 region character
2 AGE nuneric
3 sex charact er
4 PAY nuneric

22-2

Utilities

The variable names are saved in the file header. Unless pr eser vecase has been
specified, the names of character variables will be saved in lower case, and the names
of numeric variables will be saved in upper case. The $ inthei nvar statement
specifiesthat the variablesthat follow are character type. The # specifiesnumeric. If $
or # arenot usedinani nvar statement, the default is numeric.

Comments in command files must be enclosed between ‘ @ characters.

Commands
A detailed explanation of each of the ATOG commands follows.

append

Instructs ATOG to append the converted data to an existing data set:
append;

No assumptions are made regarding the format of the existing file. Make certain the
number, order, and type of data converted match the existing file. ATOG creates v96
format data files, so will only append to v96 format datafiles.

complex

Instructs ATOG to convert the ASCII file into a complex GAUSS data set:
conpl ex;

Complex GAUSS data sets are stored by rows, with the real and imaginary parts
interleaved, element by element. ATOG assumes the same structure for the ASCI|
input file, and will thus read TWO numbers out for EACH variable specified.
conpl ex cannot be used with packed ASCII files.

input

Specifies the file name of the ASCI| file to be converted. The full path name can be
used in the file specification.

For example, the command

i nput data.raw;
will expect an ASCII datafile in the current working directory.
The command

i nput c:\research\data\nyfile. asc;

specifiesafileto belocated inthec: \ r esear ch\ dat a subdirectory.

22-3

GAUSS User Guide

invar

Soft Delimited ASCII Files Soft delimited files may have spaces, commas, or cr/If
as delimiters between elements. Two or more consecutive delimiters with no data
between them are treated as one delimiter. For example:

invar age $ nane sex # pay var[1:10] x[005];

Thei nvar command above specifies the following variables:

colum nanme data type
1 AGE nuneric
2 nanme charact er
3 sex charact er
4 PAY nuneric
5 VARO1 nuneric
6 VARO2 nuneric
7 VARO3 nuneric
8 VARO4 nuneric
9 VARO5 nuneric
10 VARO6 nuneric
11 VARO7 nuneric
12 VAR08 nuneric
13 VARO9 nuneric
14 VAR10 nuneric
15 X001 nuneric
16 X002 nuneric
17 X003 nuneric
18 X004 nuneric
19 X005 nuneric

Astheinput fileistrandated, the first 19 elements will be interpreted as the first row
(observation), the next 19 will be interpreted as the second row, and so on. If the

22-4

Utilities

number of elementsin thefileis not evenly divisible by 19, the final incomplete row
will be dropped and a warning message will be given.

Hard Delimited ASCII Files Hard delimited files have a printable character asa
delimiter between elements. Two delimiters without intervening data between them
will be interpreted as a missing. If \ n is specified as a delimiter, the file should have
one element per line and blank lines will be considered missings. Otherwise,
delimiters must be printable characters. Thedot . ’ isillegal and will always be
interpreted as a missing value. To specify the backslash asa delimiter, use \\ . If\r
is specified as a delimiter, the file will be assumed to contain one case or record per
line with commas between elements and no comma at the end of theline.

For hard delimited files, thedel i mi t subcommand is used with thei nvar
command. Thedel i mi t subcommand has two optional parameters. The first
parameter is the delimiter; the default is a comma. The second parameterisan ‘N'. If
the second parameter is present, ATOG will expect N delimiters. If it isnot present,
ATOG will expect N-1 delimiters.

This example:
invar delimt(, N) $ nane # var[5];
will expect afile like this:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,

STEVE, 624. 3, 340. 3, , 624. 3, 639. 5,
TOM 244, 2, 834. 3, 602. 3, 333. 4, 822.5,
This example:

invar delimt(,) $ nane # var[5];

or
invar delimt $ name # var[5];

will expect afile like this::
BILL , 222. 3, 123. 2, 456. 4, 345. 2, 533. 2,
STEVE, 624. 3, 340. 3, , 624. 3, 639. 5,
TOM 244 .2, 834. 3, 602. 3, 333. 4, 822.5

22-5

GAUSS User Guide

The difference between specifying N or N-1 delimiters can be seen here:
456.4, 345.2, 533.2,
, 624.3, 639.5,
602.3, 333.4,
If thei nvar statement had specified 3 variables and N-1 delimiters, thisfile would

beinterpreted as having three rows containing amissing in the 2,1 element and the 3,3
element like this:

456. 4 345.2 533.2
624.3 639.5
602. 3 333. 4

If N delimiters had been specified, this file would be interpreted as having two rows,
and afinal incomplete row that is dropped:

456. 4 345.2 533.2
624.3 639.5

The spaces were shown only for clarity and are not significant in delimited files, so

Bl LL, 222. 3, 123. 2, 456. 4, 345. 2, 533. 2,

STEVE, 624. 3, 340. 3, , 624. 3, 639. 5,

TOM 244. 2,834. 3, 602. 3, 333. 4, 822. 5
would work just as well.

Linefeeds are significant only if \ n is specified as the delimiter, or when using\ r .
This example:

invar delimt(\r) $ nanme # var[5];

will expect afile with no comma after the final element in each row:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2
STEVE, 624.3, 340.3, 245.3, 624.3, 639.5
TOM , 244.2, 834.3, 602.3, 333.4, 822.5

22-6

Utilities

Packed ASCII Files Packed ASCII files must have fixed length records. The
recor d subcommand is used to specify the record length, and variables are specified
by giving their type, starting position, length, and the position of an implicit decimal
point if necessary.

out var isnot used with packed ASCI|I files. Instead, i nvar isused to specify only
those variables to be included in the output file.

For packed ASCII files, the syntax of thei nvar command is
i nvar recor d=reclen (format) variables (format) variables;

where,

recl en thetotal record length in bytes, including the final carriage return/
linefeed if applicable. Records must be fixed length.

format (dtart,length,prec) where:

start starting position of the field in the record, 1 isthefirst
position. The default is 1.

| engt h length of the field in bytes. The default is 8.

prec optional; adecimal point will be inserted automatically
pr ec placesin from the RIGHT edge of thefield.

If several variables are listed after aformat definition, each succeeding field will be
assumed to start immediately after the preceding field. If an asterisk is used to specify
the starting position, the current logical default will be assumed. An asterisk in the
length position will select the current default for both | engt h and prec. Thisis
illegal: (3,8.*).

The type change characters $ and # are used to toggle between character and numeric
datatype.

Any datain the record that is not defined in aformat is ignored.

The exampl es below assume a 32-byte record with a carriage return/line feed
occupying thelast 2 bytes of each record. The data can be interpreted in different ways
using different i nvar statements:

ABCDEFGHIJ12345678901234567890<CR><L F>

| | | I
position 1 10 20 30 31 32

This example:

22-7

GAUSS User Guide

i nvar record=32

$(1,3) group dept #(11,4.2) x[3] (*,5)

type

y;
will result in:
vari abl e val ue
group ABC
dept DEF
X1 12. 34
X2 56.78
X3 90. 12
Y 34567
This example:

charact er
charact er
nuneric
nuneric
nuneric

numeric

invar record=32 $ dept (*,2) id # (*,5) wage (*,2) area

will result in;
vari abl e val ue type
dept ABCDEFGH character
id [J char acter
WAGE 12345 nuneri c
AREA 67 nuneri c
msym

Specifies the character in the input file that isto be interpreted as a missing value.

This example:
nmsym &;

Defines the character & as the missing value character.

Thedefault ‘. ' (dot) will always be interpreted asamissing value unlessit is part of a

numeric value.

22-8

Utilities

nocheck

Optional; suppresses automatic checking of packed ASCII record length and output
datatype. The default isto increase the record length by 2 bytesif the second recordin
a packed file starts with cr/If, and any files that have explicitly defined character data
will be output in double precision regardless of the type specified.

output

The name of the GAUSS data set. A file will be created with the extension . dat . For
example:

out put c:\gauss\dat\test;

createsthefilet est . dat onthec: \ gauss\ dat directory.

outtyp

Selects the numerical accuracy of the output file. Use of this command should be
dictated by the accuracy of the input data and storage space limitations. The format is:

outtyp fmt;
wherefnt is

D or 8 double precision
F or 4 single precision (default)
| or 2 integer

Theranges of the different formats are:

Significant
Bytes Data Type Digits Range
2 integer 4 —32768 < X < 32767
4 single 6-7 -37 +38
precision 8.43x10 ~' <|X| <£3.37x10
8 double 15-16 —307 +308
orecision 4.19x10 < |X] <£1.67x10

If the output type isinteger, the input numbers will be truncated to integers. If your
data has more than 6 or 7 significant digits, specify out t yp asdouble.

Character datarequireoutt yp d. ATOG automatically selects double precision
when character datais specified inthei nvar statement, unless you have specified
nocheck.

22-9

GAUSS User Guide

The precision of the storage selected does not affect the accuracy of GAUSS
calculations using the data. GAUSS converts all datato double precision when the file
is read.

outvar

Selects the variables to be placed in the GAUSS data set. The out var command
needs only thelist of variablesto be included in the output data set. They can bein any
order. For example:

i nvar $nane #age pay $sex #var[1l:10] x[005];

outvar sex age x001 x003 var|[1:8];

colum name data type

1 sex character
2 AGE nuneric
3 X001 nuneric
4 X003 nuneric
5 VARO1 nuneric
6 VARO2 nuneric
7 VARO3 nuneric
8 VARO4 nuneric
9 VARO5 nuneric
10 VARO6 nuneric
11 VARO7 nuneric
12 VAR08 nuneric

out var isnot used with packed ASCI|I files.

preservecase

Optional; preserves the case of variable names. The default isnopr eser vecase,
which will force variable names for numeric variables to upper case and character
variablesto lower case.

Examples

Thefirst example is a soft delimited ASCI| file called agex1. asc.

22-10

Utilities

Thefile contains seven columns of ASCI| data:
Jan 167.3 822.4 6.34E06 yes 84.3 100.4

Feb 165.8 987.3 5.63E06 no 22.4 65.6
Mar 165.3 842.3 7.34E06 yes 65.4 78.3
The at og command fileisagex1. cnd:
i nput c:\gauss\agexl. asc;
out put agexl,
i nvar $nonth #tenp pres vol $true var[02];

outvar nonth true tenp pres vol;

The output data set will contain the following information:

name month true TEMP PRES VOL
casel |Jan yes 167.3 822.4 6.34e+6
case2 |Feb no 165.8 987.3 5.63e+6
case3 |[Mar yes 165.3 842.3 7.34e+6

type char char numeric numeric numeric

The data set is double precision since character datais explicitly specified.
The second example is a packed ASCI| file called x| od. asc.
Thefile contains 32-character records:

AEGDRFCSTYy02345678960631567890<CR><LF>
EDJTAIPSTN12395863998064839561<CR><LF>
GADNADMSTY19827845659725234451<CR><LF>

| | | | |
position 1 10 20 30 31 32

22-11

GAUSS User Guide

The at og command fileis x| od. cnd:
i nput c:\gauss\dat\xl od. asc;
out put xl od2;
i nvar record=32 $(1,3) client[2] zone (*,1) reg #(20,5)
Z1l p;

The output data set will contain the following information:

name clientl client2 zone reg ZIP
casel |AEG DRF CSsT y 60631
case2 |EDJ TAJ PST n 98064
case3 |GWD NAD MST y 59725
type char char char char numeric

The data set is double precision since character datais explicitly specified.
Thethird exampleis ahard delimited ASCII file called cpl x. asc.
Thefile contains six columns of ASCII data:

456.4, 345.2, 533.2, -345.5, 524.5, 935.3,
-257.6, 624.3, 639.5, 826.5, 331.4, 376.4,
602.3, -333.4, 342.1, 816.7, -452.6, -690.8

The ATOGcommand fileiscpl x. cnd:
i nput c:\gauss\cpl x. asc;
out put cpl x;
invar delimt #cvar[3];

conpl ex;

22-12

Utilities

The output data set will contain the following information:

name cvarl cvar2 cvar3d
case 1 456.4 + 345.2i 533.2 - 345.5i 524.5 + 935.3i
case 2 -257.6 + 624.3i 639.5 + 826.5i 331.4 + 376.4i
case 3 602.3 - 333.4i 342.1 + 816.7i -452.6 - 690.8i
type numeric numeric numeric

The data set defaults to single precision since no character data is present, and no
out t yp command is specified.

Error Messages
atog - Can’t find input file
The ASCII input file could not be opened.
atog - Can’t open output file
The output file could not be opened.
atog - Can’t open tenporary file
Notify Aptech Systems.

atog - Can't read tenporary file
Notify Aptech Systems.

atog - Character data in output file

Setting output file to double precision

The output file contains character data. The type was set to double precision
automatically.

atog - Character data | onger than 8 bytes were truncated
Theinput file contained character elements longer than 8 bytes. The conversion
continued and the character elements were truncated to 8 bytes.

atog - Disk Full

The output disk is full. The output file is incomplete.

atog - Found character data in nunmeric field

Thisis awarning that character data was found in a variable that was specified as
numeric. The conversion will continue.

atog - Illegal conmand

An unrecognizable command was found in a command file.

22-13

GAUSS User Guide

atog - Internal error
Notify Aptech Systems.
atog - Invalid deliniter

The delimiter following the backslash is not supported.

atog - Invalid output type
Output type must be |, F, or D.

atog - Mssing value synbol not found
No missing value was specified in an nsy mstatement.

atog - No Input file
No ASCII input file was specified. Thei nput command may be missing.

atog - No input variables
No input variable names were specified. Thei nvar statement may be missing.

atog - No output file
No output file was specified. The out put command may be missing.

atog - output type d required for character data
Character data in output file will be |ost

Output file contains character data and is not double precision.

atog - Open coment
The command file has a comment that is not closed. Comments must be enclosed in
@s.

@coment @

atog - Qut of nenory

Notify Aptech Systems.

atog - read error

A read error has occurred while converting a packed ASCI| file.
atog - Record length nust be 1-16384 bytes
Ther ecor d subcommand has an out-of-range record length.
atog - Statenent too |ong

Command file statements must be less than 16384 bytes.

atog - Syntax error at:
There is unrecognizable syntax in a command file.

22-14

Utilities

atog - Too nmany input variabl es

More input variables were specified than available memory permitted.

atog - Too nmany out put variabl es

More output variables were specified than available memory permitted.

atog - Too nmany vari abl es

More variables were specified than available memory permitted.

atog - Undefined vari abl e

A variable requested in an out var statement was not listedinani nvar statement.
atog WARNING missing ')’ at:

The parenthesesinthedel i mi t subcommand were not closed.

atog WARNI NG somne records begin with cr/If

A packed ASCI|I file has some records that begin with a carriage return/linefeed. The
record length may be wrong.

atog - complex illegal for packed ASCII file

A conpl ex command was encountered following ani nvar command with
recor d specified.

atog - Cannot read packed ASCI 1. (conplex specified)

Ani nvar commandwithr ecor d specified was encountered followingaconpl ex
command.

LIBLIST

LIBLIST isalibrary symbol listing utility. It is a stand-alone program that lists the
symbols available to the GAUSS autoloading system.

LIBLIST will also perform . g file conversion and listing operations. . g filesare
specific files once used in older versions of GAUSS. Due to compiler efficiency and
other reasons, . g filesare no longer recommended for use. The LIBLIST options
related to . g filesare supplied to aid the user in consolidating . g filesand converting
them to the standard . sr ¢ files.

Theformat for using LIBLIST is:
[iblist -flagslibllib2...libn

flags control flagsto specify the operation of | i bl i st .
G listall . g filesin the current directory and along thesr ¢c_pat h.

22-15

GAUSS User Guide

D creategfil e. | st using al . g filesin the current directory and
alongthesrc_pat h.

convert . g filesto. src filesand list thefilesinsrcfil e. | st.
list the contents of the specified libraries.

list library names.

m z r O

use page breaks and form feed characters.

The search is performed in the following manner:

1. Listall symbolsavailableas. g filesin the current directory and then the
src_path.

2. Listall symbolsdefinedin. | cg filesinthel i b_pat h subdirectory.
gauss. | cg, if it exists, will belisted | ast.

Report Format

Thelisting produced will go to the standard output. The order the symbolswill be
listed in isthe same order they will be found by GAUSS, except that LIBLIST
processesthe. | cg filesin the order they appear inthe |l i b_pat h subdirectory,
whereas GAUSS processes libraries according to the order specified in your

I'i brary statement. LIBLIST assumesthat all of your libraries are active; that is,
you havelistedthem all inal i br ary statement. gauss. | cg will belisted last.

Here is an exampe of alisting:

Synbol Type File Li brary Pat h
1. autoreg ------ autoreg .src auto.lcg c:\gauss\src
2. autoprt = ------ autoreg .src auto.lcg c:\gauss\src
3. autoset ------ autoreg .src auto.lcg c:\gauss\src
4. _pticout mat ri x pgr aph .dec pgraph.lcg c:\gauss\src
5. _pzl abel string pgr aph .dec pgraph.lcg c:\gauss\src
6. _pzpmax matrix pgr aph .dec pgraph.lcg c:\gauss\src
7. ascl abel pr oc pgr aph .src pgraph.lcg c:\gauss\src
8. fonts pr oc pgr aph .src pgraph.lcg c:\gauss\src
9. graphset pr oc pgr aph .src pgraph.lcg c:\gauss\src

22-16

Utilities

10. _svdtol matrix svd .dec gauss.lcg c:\gauss\src
12. maxvec mat ri x system .dec gauss.lcg c:\gauss\src
13. bessel]j pr oc bessel .src gauss.lcg c:\gauss\src
14. bessely pr oc bessel .src gauss.lcg c:\gauss\src

Synbol isthe symbol name available to the autoloader.

Type isthe symbol type. If the library is not strongly typed, thiswill be aline of
dashes.

Fi | e isthefile the symbol is supposed to be defined in.
Li br ary isthe name of thelibrary, if any, the symbol islisted in.
Pat h isthe path the file is located on. If the file cannot be found, the path will be
*** not found ***.
Using LIBLIST
LIBLIST is executed with
[iblist -flagslibllib2...libn

Toput theliginginafilecaled! i b. | st, use
liblist -1 > 1lib.Ist

To convert all your . g filesand listtheminsrcfil e. | st, use
liblist -c

The numbers are there so that you can sort the listing and still tell which symbol
would be found first by the autoloader. You may have more than one symbol by the
same name in different files. LIBLIST can help you keep them organized so you do
not inadvertently use the wrong one.

22-17

Error Messages

Thefollowing isalist of error messages intrinsic to the GAUSS programming
language. Error messages generated by library functions are not included here.

@002 File too large
| oad Input filetoo large.
get f Input filetoo large.

(0003 Indexing a matrix as a vector

A singleindex can be used only on vectors. Vectors have only one row or only
one column.

@0004 Conpiler stack overflow - too conpl ex

An expression istoo complex. Break it into smaller pieces. Notify Aptech
Systems.

@005 File is already conpil ed

@0006 Statenment too |ong

Statement longer than 4000 characters.

23-1

GAUSS User Guide

@007 End of file encountered

0008 Syntax error

Compiler Unrecognizable or incorrect syntax. Semicolon missing on
previous statement.

create Unrecognizable statement in command file, or numvar or
out var statement error.

@009 Conpil er pass out of nenory

Compiler pass has run out of memory. Notify Aptech Systems.

@010 Can't open output file

@011 Conpiled file nmust have correct extension

GAUSS requiresa. gcg extension.

@012 Invalid drive specifier

@013 Invalid fil enanme

@014 File not found

@015 Directory full

@016 Too many #i ncl udes
#i ncl uded files are nested too deep.

@017 WARNI NG | ocal outside of procedure

Al ocal statement has been found outside a procedure definition. The
| ocal statement will be ignored.

0018 Read error in programfile

@019 Can't edit .gcg file

@0020 Not i npl emented yet

23-2

Error Messages

Command not supported in this implementation.

@0021 use nust be at the beginning of a program

@022 User keyword cannot be used in expression

@023 Illegal attenpt to redefine synmbol to an index

vari abl e

@025 Undefined synbol

A symbol has been referenced that has not been given a definition.

@026 Too many synbol s

The global symbol tableisfull. (To set the limit, see newin the GAUSS
Language Reference.)

@027 Invalid directory

@028 Can't open configuration file
GAUSS cannot find the configuration file.

@029 M ssing left parenthesis

@030 I nsufficient workspace nmenory

The space used to store and manipul ate matrices and stringsis not large
enough for the operations attempted. (To make the main program space
smaller and reclaim enough space to continue, see new in the GAUSS
Language Reference.)

(0031 Execution stack too deep - expression too conpl ex

An expression istoo complex. Break it into smaller pieces. Notify Aptech
Systems.

@032 fn function too |arge

033 M ssing right index bracket

23-3

GAUSS User Guide

(0034 M ssing argunents

@0035 Argunent too |arge

(0036 Matrices are not conformble

For a description of the function or operator being used and conformability
rules, see “Matrix Operators,” page 11-4, or the GAUSS Language Reference.

@037 Result too large

The size of the result of an expression is greater than the limit for asingle
matrix.

@0038 Not all the eigenval ues can be conputed

G0039 Matrix must be square to invert

@0040 Not all the singular values can be conputed

@041 Argunent nust be scal ar

A matrix argument was passed to a function that requires a scalar.

0042 Matrix nust be square to conpute deternmn nant

@043 Not inplenented for conplex matrices

@044 NMatri x nust be real

0045 Attenpt to wite conplex data to real data set

Data sets, unlike matrices, cannot change from real to complex after they are
created. Usecr eat e conpl ex to create acomplex data set.

@046 Colums don’'t match

The matrices must have the same number of columns.

@047 Rows don't match

The matrices must have the same number of rows.

23-4

Error Messages

@048 Matri x singul ar

The matrix is singular using the current tolerance.

@0049 Target matrix not conpl ex

&050 Qut of nenory for program

The main program areais full. (To increase the main program space, see new
in the GAUSS Language Reference.)

@051 Programtoo | arge

Themain program areaisfull. (To increase the main program space, see new
in the GAUSS Language Reference.)

@0052 No square root - negative el ement

@0053 11l egal index
Anillegal value has been passed in as a matrix index.

@0054 I ndex overflow
Anillegal value has been passed in as a matrix index.

(0055 retp outside of procedure

A r et p statement has been encountered outside a procedure definition.

0056 Too many active |locals

The execution stack isfull. There are too many local variables active.
Restructure your program. Notify Aptech Systems.

@0057 Procedure stack overflow - expression too conpl ex

The execution stack isfull. There are too many nested levels of procedure
cals. Restructure your program. Notify Aptech Systems.

23-5

GAUSS User Guide

@0058 I ndex out of range

You have referenced a matrix element that is out of bounds for the matrix
being referenced.

@0059 exec command string too |ong

@060 Nonscal ar i ndex

@061 Chol esky downdate fail ed

0062 Zero pivot encountered

crout The Crout algorithm has encountered a diagonal €lement equal to
0. Usecr out p instead.

@0063 Operator m ssing

An expression contains two consecutive operands with no intervening
operator.

@064 Operand m ssing

An expression contains two consecutive operators with no intervening
operand.

@0065 Di vision by zero!

@066 Must be reconpiled under current version

You are attempting to use compiled code from a previous version of GAUSS.
Recompile the source code under the current version.

@068 Program conpil ed under GAUSS-386 real version

@069 Program conpil ed under GAUSS-386i conpl ex version

@070 Procedure calls too deep

You may have arunaway recursive procedure.

23-6

Error Messages

@071 Type m smatch

You are using a string where amatrix is called for, or vice versa.

@072 Too many files open

Thelimit on simultaneously open filesis 10.

@073 Redefinition of

decl ar e An attempt has been made to initialize avariable that is already
initialized. Thisisan error whendecl are : =isused. declare ! =or
decl ar e ?= may be abetter choice for your application.

decl are An attempt has been made to redefine a string as a matrix or
procedure, or viceversa. del et e the symbol and try again. If this happensin
the context of a single program, you have a programming error. If thisisa
conflict between different programs, use a new statement before running the
second program.

| et A string is being forced to type matrix. Use an ext er nal
mat ri x (symbol); statement beforethel et statement.

@074 Can’'t run program conpil ed under GAUSS Li ght
@075 gscroll input vector the wong size
@076 Call Aptech Systens Techni cal Support

@077 New size cannot be zero

You cannot r eshape amatrix to a size of zero.

@078 varget!l outside of procedure
@079 varputl outside of procedure
@080 File handl e nust be an integer
@0081 Error renamng file

0082 Error reading file

23-7

GAUSS User Guide

(0083 Error creating tenporary file

@084 Too many | ocals

A procedure has too many local variables.

@085 Invalid file type

You cannot use this kind of file in this way.

@0086 Error deleting file

@0087 Coul dn’t open

The auxiliary output file could not be opened. Check the file name and make
sure there is room on the disk.

@088 Not enough nenory to convert the whole string

@089 WARNI NG. duplicate definition of |ocal

@090 Label undefined
Label referenced has no definition.

@091 Synbol too long

Symbols can be no longer than 8 characters.

@092 Open conmment

A comment was never closed.

093 Locate off screen

@094 Argunent out of range

@095 Seed out of range

@0096 Error parsing string

par se encountered atoken that was too long.

23-8

Error Messages

@097 String not cl osed
A string must have double quotes at both ends.

@098 Invalid character for imaginary part of conplex

nunber

@099 Illegal redefinition of user keyword

@100 Internal E R R O R ###
Notify Aptech Systems.

@0101 Argunment cannot be zero

Theargumenttol n or | og cannot be zero.

(0102 Subroutine calls too deep

Too many levels of gosub. Restructure your program.

(30103 return w thout gosub

You have encountered a subroutine without executing agosub.

@0104 Argunment mnust be positive

@0105 Bad expression or mssing argunents

Check the expression in guestion, or you forgot an argument.

@106 Factorial overflow

(@107 Nesting too deep

Break the expression into smaller statements.

@108 M ssing |left bracket |

@0109 Not enough data itens
You omitted datain al et statement.

(0110 Found) expected] -

23-9

GAUSS User Guide

(0111 Found] expected) -

@0112 Matrix multiplication overflow

@113 Uncl osed (

@114 Uncl osed |

@115 Il legal redefinition of function

You are attempting to turn afunction into a matrix or string. If thisis aname
conflict, del et e the function.

0116 sysstate: invalid case

@117 Invalid argunent

(@0118 Argunent mnust be integer
File handles must be integral.

@120 Illegal type for save

@0121 Matrix not positive definite

The matrix is either not positive definite, or singular using the current
tolerance.

@122 Bad file handle

Thefile handle does not refer to an open file or isnot in the valid rangefor file
handles.

@123 File handl e not open

Thefile handle does not refer to an open file.

23-10

Error Messages

124 readr call too |arge

You are attempting to read too much in one call.

0125 Read past end of file
You have already reached the end of thefile.

@126 Error closing file

@127 File not open for wite

@128 File al ready open

@129 File not open for read

@0130 No output variabl es specified

0131 Can't create file, too many vari abl es
@132 Can't wite, disk probably full

@0133 Function too |ong

@134 Can't seekr in this type of file
@135 Can't seek to negative row

136 Too many arguments or m splaced assi gnnent op...

You have an assignment operator (=) where you want a comparison operator
(==), or you have too many arguments.

@137 Negative argunent - erf or erfc

@0138 User keyword nust have one argunent

0139 Negative paranmeter - Inconplete Beta

23-11

GAUSS User Guide

@140 Invalid second paraneter - |Inconplete Beta
@141 Invalid third parameter - Inconplete Beta
(142 Nonpositive paraneter - gammma

@143 NaN or nissing value - cdfchic

(0144 Negative paraneter - cdfchic

145 Second paraneter < 1.0 - cdfchic

(0146 Paraneter too large - Inconplete Beta
@0147 Bad argunment to trig function

(30148 Angle too large to trig function

@0149 Matrices not conformable

For a description of the function or operator being used and conformability
rules, see “Matrix Operators,” page 11-4, or the GAUSS Language Reference.

(0150 Matri x not square

@151 Sort failure

@152 Variable not initialized

You have referenced a variable that has not been initialized to any value.

@0153 Unsuccessful close on auxiliary output
The disk may be full.

@154 Il legal redefinition of string

@155 Nested procedure definition

23-12

Error Messages

A pr oc statement was encountered inside a procedure definition.

@156 Il legal redefinition of procedure

You are attempting to turn aprocedure into amatrix or string. If thisisaname
conflict, del et e the procedure.

@157 Illegal redefinition of matrix

(0158 endp wi t hout proc

You are attempting to end something you never started.

@159 Wong nunber of paraneters

You called a procedure with the wrong number of arguments.

30160 Expected string variable

@161 User keywords return nothing

@162 Can't save proc/keyword/fn with gl obal references

Remove the global references or leave thisin source code form for the
autoloader to handle. (Seel i br ary inthe GAUSS Language Reference.)

@163 Wong size format matrix

@164 Bad mask matri x

@165 Type m smatch or nissing argunents

@166 Character elenent too |ong

The maximum length for character elementsis 8 characters.

@167 Argument nust be col umtm vect or

@168 Wong nunber of returns

The procedure was defined to return adifferent number of items.

23-13

GAUSS User Guide

@0169 Invalid pointer

You are attempting to call alocal procedure using an invalid procedure
pointer.

@170 Invalid use of anpersand

@171 Called synbol is wong type

You are attempting to call alocal procedure using a pointer to something else.

@172 Can't resize tenporary file

@173 varindx failed during open
The global symbol tableisfull.

@174 ‘.’ and ‘' ' operators nust be inside [] brackets

These operators are for indexing matrices.

@175 String too long to conpare

@176 Argunent out of range

@177 Invalid format string

@178 Invalid mde for getf

@179 Insufficient heap space

@180 trimtoo nuch

You are attempting to trim more rows than the matrix has.

@181 Il legal assignment - type nismatch

@182 2nd and 3rd argunents di fferent order

@274 Invalid paraneter for conv

23-14

Error Messages

@275 Paranmeter is NaN (Not A Nunber)
Theargument isaNaN (see “ Special Data Types,” page 10-21).

@276 Illegal use of reserved word

@277 Null string illegal here

@278 proc wi thout endp

You must terminate a procedure definition with an endp statement.

@286 Multiple assign out of nmenory

(0287 Seed not updated

The seed argument to r ndns and r ndus must be a simple local or global
variable reference. It cannot be an expression or constant. These functionsare
obsolete, pleaseuser ndl cn and rndl cu

(@288 Found break not in do |oop

(0289 Found continue not in do |oop

@290 Library not found

The specified library cannot be found onthel i b_pat h path. Make sure
installation was correct.

@291 Conpil er pass out of nenory
Notify Aptech Systems.

@292 File listed in library not found
A filelisted in alibrary could not be opened.

23-15

GAUSS User Guide

@0293 Procedure has no definition

The procedure was not initialized. Defineit.

@0294 Error opening tenporary file
One of the temporary files could not be opened. The directory may be full.

@295 Error witing tenporary file

One of the temporary files could not be written to. The disk may be full.

(296 Can't raise negative nunber to nonintegral power

0300 File handl e nust be a scal ar

@301 Syntax error in library

@302 File has been truncated or corrupted

get nanme File header cannot be read.
| oad Cannot read input file, or file header cannot be read.

open File size does not match header specifications, or file header
cannot be read.

@317 Can't open tenp file

0336 Di sk full

@0339 Can't debug conpiled program

@0341 File too big

@347 Can't allocate that many gl obals

@0351 Warning: Not reinitializing : declare ?=
The symbol is already initialized. It will beleft asis.

@0352 Warning: Reinitializing : declare !=

23-16

Error Messages

The symbol is already initialized. It will be reset.

@355 Wong size line matrix

@360 Wite error

(0364 Paging error

0365 Unsupported executable file type

(0368 Unable to allocate translati on space

@369 Unable to all ocate buffer

@370 Syntax Error in code statenent

@371 Syntax Error in recode statenent

@372 Token verify error
Notify Aptech Systems.

@373 Procedure definition not all owed

A procedure name appears on the |eft side of an assignment operator.

@374 Invalid make st at enent

@375 make Variable is a Nunmber

0376 make Variable is Procedure

@377 Cannot make Existing Variable

@378 Cannot nake External Variable

@379 Cannot make String Constant

23-17

GAUSS User Guide

@0380 Invalid vector statenent

(@0381 vector Variable is a Number
30382 vector Variable is Procedure
30383 Cannot vector Existing Variable
@0384 Cannot vector External Variable
30385 Cannot vector String Constant
30386 Invalid extern statenent

@0387 Cannot extern number

(0388 Procedures al ways external

A procedure name has been declared in an ext er n statement. Thisisa
warning only.

@0389 extern variable already |ocal

A variable declared in an ext er n statement has already been assigned local
status.

@390 String constant cannot be external

@391 Invalid code statenent

0392 code Variable is a Nunmber

(0393 code Variable is Procedure

@0394 Cannot code Existing Variable

@395 Cannot code External Variable

23-18

Error Messages

30396 Cannot code String Constant
@G0397 Invalid recode statenent
(0398 recode Variable is a Number
@0399 recode Variable is Procedure
G0400 Cannot recode External Variable
@401 Cannot recode String Constant
@402 Invalid keep statenent

@403 Invalid drop statenent

G0404 Cannot define Number

@405 Cannot define String

30406 Invalid sel ect statenent
0407 Invalid del ete statenent
@408 Invalid outtyp statenent
0409 outtyp already defaulted to 8

Character data has been found in the output data set beforeanout t yp 2 or
outtyp 4 statement. Thisisawarning only.

@410 outtyp nust equal 2, 4, or 8

@0411 outtyp override...precision set to 8

Character data has been found in the output data set after anout typ 2 or
outtyp 4 statement. Thisisawarning only.

23-19

GAUSS User Guide

@412

@413

@414

@415

@416

@417

@418

@419

@421

@428

@429

@431

@432

@433

@435

@436

@437

default not allowed in recode statenent

def aul t allowed only in code statement.

M ssing file nane in datal oop statenent

Invalid |istwi se statenent

Invalid | ag statenent

lag variable is a number

lag variable is a procedure

Cannot |ag External Variable

Cannot lag String Constant

conmpi l e command not supported in Run-Tinme Modul e

Cannot use debug command inside program

I nvalid number of subdi agonal s

Error closing dynamic library

Error opening dynamic library

Cannot find DLL function

| nval i d npde

Matrix is enpty

| oadexe not supported; use dlibrary instead

23-20

Error Messages

@438

@439

@441

@442

@445

@447

@454

@456

@457

@458

@459

@460

@461

@462

@463

cal l exe not supported; use dllcall instead

File has wong bit nunber

Type vector malloc failed

No type vector in gfblock

Il'legal left-hand side reference in procedure
vfor called with illegal |oop |evel
Failure opening printer for output

Failure buffering output for printer

Can't take | og of a negative nunber

Attenpt to index proc/fn/keyword as a matrix

M ssing right brace }

Unexpect ed end of st atenent

Too many data itens

Negative trimval ue

Fail ure generating graph

23-21

Maximizing Performance 2 4

These hints will help you maximize the performance of your new GAUSS System.

Library System

Some temporary files are created during the autol oading process. If you have a
t np_pat h configuration variable or at np environment string that defines a path on
aRAM disk, the temporary files will be placed on the RAM disk.

For example:
set tmp=f:\tnp

t mp__pat h takes precedence over thet np environment variable.

A disk cache will also help, aswell as having your frequently used filesin the first
pathinthesr c_pat h.

You can optimize your library . | cg filesby putting the correct drive and path on each
file namelisted in the library. Thel i b command will do thisfor you.

Usetheconpi | e command to precompile your large frequently used programs. This
will completely eliminate compile time when the programs are rerun.

24-1

GAUSS User Guide

Loops

The use of the built-in matrix operators and functions rather than do loops will ensure
that you are utilizing the potential of GAUSS.

Hereisan example:
Given the vector x with 8000 normal random numbers,
X = rndn(8000, 1);

you could get a count of the elements with an absolute value greater than 1 withado

loop, like this:
c =0
i = 1;

do while i <= rows(x);
if abs(x[i]) > 1;

C = Cc+1,
endi f;
i = i+1;
endo;
print c;

Or, you could use:
c = sunt(abs(x) .> 1);

print c;

The do loop takes over 40 times longer.

Virtual Memory
The following are hints for making the best use of virtual memory in GAUSS.

Data Sets

Large data sets can often be processed much faster by reading them in small sections
(about 20000-40000 elements) instead of reading the entire data set in one piece.
maxvec isused to control the size of asingle disk read. Hereisan example. Theol s

24-2

Maximizing Performance

command can take either amatrix in memory or a data set on disk. Here are the times
for aregression with 100 independent variables and 1500 observations on an IBM
model 80 with 4 MB RAM running at 16 MHz:

ol s(0, vy, x matrices in memory 7 minutes 15.83 seconds
ol s(“ol sdat”, 0, 0 dataon disk (maxvec = 500000) 8 minutes 48.82 seconds
ol s(“ol sdat”, 0, 0 dataon disk (maxvec =25000) 1 minute 42.77 seconds

Asyou can seg, the fastest time occurred when the datawas read from disk in small
enough sectionsto allow the ol s procedure to execute entirely in RAM. This ensured
that the only disk I/0O was one linear pass through the data set.

The optimum size for maxvec depends on your available RAM and the algorithms
you are using. GAUSS is shipped with maxvec set to 20000. naxvec isaprocedure
definedinsyst em sr c that returns the value of the global scalar __naxvec. The
valuereturned by acall to naxvec can be modified by editing syst em dec and
changing thevalueof __maxvec. Thevalue returned when running GAUSS Light is
always 8192.

Complex numbers use twice the space of real numbers, so the optimum single disk
read size for complex data setsis half that for real data sets. Youcanset __nmaxvec
for real data sets, then use maxvec/ 2 when processing complex data sets. i scpl xf
will tell you if adata set is complex.

Hard Disk Maintenance

The hard disk used for the swap file should be optimized occasionally with a disk
optimizer. Use a disk maintenance program to ensure that the disk mediais in good
shape.

CPU Cache

Thereisalinefor cachesizeinthegauss. cf g file. Set it to the size of the CPU data
cache for your computer.

This affects the choice of algorithms used for matrix multiply functions.

This will not change the results you get, but it can radically affect performance for
large matrices.

24-3

Fonts Appendix

There are four fonts available in the Publication Quality Graphics System:

Simplex standard sans serif font
Simgrma Simplex greek, math
Microb bold and boxy
Complex standard font with serif

The following tables show the characters available in each font and their ASCI|
values. (For details on selecting fonts for your graph, see “ Selecting Fonts,” page 21-
10.

GAUSS User Guide

Simplex

33 | 61 = 89 Y 117
34 " 62 > 90 Z 118
35 4 63 °? 91 I 119
36 ¢ 64 @ 92 \ 120
37 7 65 A 93 1] 121
38 & 66 B 94 ° 122
39 67 C 95 _ 123
40 (68 D 96 124
41) 69 E 97 «a 125
42« 70 F 98 b 126
43+ 71 G 99 ¢

44 72 H 100 d

45 - 73 | 101 e

46 . 74 102 f

47 / 75 K 103 g

48 0 76 L 104 h

49 1 77 M 105 i

50 2 78 N 106]

51 3 79 O 107 k

52 4 80 P 108 |

53 5 81 Q 109 m

54 6 82 R 710 n

55 7 83 S 11 o

56 8 84 T 112 p

57 9 85 U 113 q

58 86 V 114 r

59 87 W 115 s

60 < 88 X 116 t

T N X X = < C

2

A-2

Fonts Appendix

Simgrma

33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

m——"m

&

HH X U N < =

— N VAS A

i 1+ v © 8

61

02
05
o4
65
66
o/
68
©9
/0
/1

/2
/3
/4
/5
/6
/7
/3
/9
30
31

32
83
84
85
36
87
33

IV

0

e) $ =N M O g B N e > W W s T 5 o > T v N (o

89
90
91
92
93
94
95
96
97/
98
99
100
101
102
103
104
105
106
107
108
109
110
1117
112
113
114
115
116

DT €

N

S R e R R eV e

4 9 © & 3 0 ¥ g§ ¥ x5 <

117
118
119
120
121
122
123
124
125
126

g T ey 2 v © @

A-3

GAUSS User Guide

Microb
35 ! 61 = 39 Y 117
54 " 67 > 90 Z 118
35 # 03 ? 9 [119
560 $ 64 @ 92 \ 120
S/ % 65 A 95] 127
38 & 66 B 94 - 122
39 ! o/ C 95 _ 1253
40 (68 D 96 N 124
4] 69 E 97/ a 125
47 * /0 F 98 b 1726
43 + /] G 99 o}
44 , /7 H 100 d
45 - /5 I 107 e
46 } Vs J 102 f
47 / /5 K 105 ¢
48 0 /0 L 104 h
49 1 /7 M 105
50 2 /8 N 106
57 3 /9 0 10/ k
52 4 80 P 108 |
55 5 81 Q 109 m
54 B 82 R 110 n
55 7 83 S 117 o
56 8 84 T 112 p
57 S 85 u 113 q
58 : 86 V 14 r
59 : 8/ W 115 s
60 < 88 X 116 €

! T T T NK X s < C

A-4

Fonts Appendix

Complex

— v v~ v~ v~ v~ v~ v~ ~— s

39

33

90
91

62
635
o4
65
66
6/
68
69

54
55
56

92
95
94
95
96
97/
98

e &

57
58
39

40

41

/0

42

45

R e e e s S

— v v v v v v v v v v v~ v v~ v~ ~— sv—

/2

44
45

73

/4
75

46

47

/6

43

/7

49

/3

S0
o1

79

30

52
23

32

o4
29
S6

33

34
35

o7/
Sls!
o9

36

37/

33

o0

A-5

Reserved Words Appendix

The following words are used for GAUSS intrinsic functions. You cannot use these
names for variables or procedures in your programs:

a
abs and atan atan2
b
balance bandchol sol bandsol pd break
band bandltsol besselj
bandchol bandrv bessely
Cc
call cdfchic cdfnc cdftvn
callexe cdffc cdfni cdir
cdfbeta cdfgam cdftc ceil
cdfbvn cdfn cdftci cfft

B-1

GAUSS User Guide

cffti clearg complex countwts
ChangeDir close con create
chol closeall conj crout
choldn cls cons croutp
cholsol color continue csreol
cholup cols conv csrlin
chrs colsf corel eft csrtype
cint comlog cos cvtos
clear compile counts

d
date debug diag dos
dbcommit declare diagrv dtvnormal
dbconnect delete disable dtvtoutc
dbdisconnect det diibrary
dbopen detl dilcall
dbstrerror dfree do

e
ed else endp error
edit elseif envget errorlog
editm enable eof exec
eig end eq exp
eigh endfor eqv external
eighv endif erf eye
eigv endo erfc

B-2

Reserved Words Appendix

fcheckerr
fclearerr
fflush

fft

ffti

fftn

fgets
fgetsa

gamma

ge
getf

hasimag

imag
indcv

key

fgetsat
fgetst
fileinfo
files
filesa
fix
floor

fmod

getname
getnamef

gosub

hess

indexcat
indnv

int

keyw

|loadexe
| oadf
|oadk

fn

font
fontload
fontunload
fontunloadall
fopen

for

format

goto

graph
graphsev3

hsec

inv
invpd

invswp

keyword

locate

lower

fputs
fputst
fseek
fstrerror
ftell
ftocv

ftos

gt

iscplx
iscplxf

ismiss

It
[trisol

lu

B-3

GAUSS User Guide

library

line

load

matrix
maxc

maxindc

ndpchk

ndpclex

oldfft
ol dffti

packr
parse
pdfn
pi

rankindx
rcond|
readr
real

recserar

loadm
loadp

loads

local

meanc
minc

minindc

ndpcntrl

ne

ones

open

plot
plotsym
pop
pagwin

return
rev
rfft
rffti
rfftip

Ipos
Iprint
Ipwidth
Ishow

miss
missrv

moment

new

not

openpgg
or

prcsn
print
printdos

printfm

rndcon
rndmod
rndmult
rndn

rndns

[usol

msym

output
outwidth

proc
prodc
push

rotater
round
rows
rowsf

run

B-4

Reserved Words Appendix

recsercp
reshape
retp

save
saveall
scalerr
scalmiss
schur
screen
scroll
seekr
sega
segm
setvmode

tab
tan
tempname

time

union

unigindx

rfftn
rfftnp
rfftp

shiftr
show
showpqg
sin

sleep
solpd
sortc
sortcc
sorthc
sorthcc

sortind

timeutc
trace

trap
trapchk

unique

until

rndseed
rndu

rndus

sortindc
sort
stdc
stocv
stof
stop
strindx
string
strien
strrindx

strsect

trim
trimr

trunc

type

upper
use

submat
subscat
sumc
svdcusv
svds
svdusv
sysstate
system

typecv
typef

utctodtv

utrisol

B-5

GAUSS User Guide

\'4
vals varput vec vfor
varget varputl vech
vargetl vartypef vecr

w
while wingetcolorcells winrefresh winsetforeground
winclear wingetcursor winrefresharea winsetrefresh
wincleararea winmove winresize winsettextwrap
winclearttylog winopenpqg winsetactive winwrite
winclose winopentext winsetbackground winzoompag
wincloseall winopentty winsetcolor writer
winconvertpgg winpan winsetcolorcells
wingetactive winprint winsetcolormap
wingetattributes winprintpgg winsetcursor

X
xor xpnd

z
zeros

B-6

Singularity Tolerance
Appendix

The tolerance used to determine whether or not a matrix is singular can be changed.
The default value is 1.0e-14 for both the LU and the Cholesky decompositions. The
tolerance for each decomposition can be changed separately. The following operators
are affected by a change in the tolerance:

Crout LU Decomposition

crout (X

crout p(x)

i nv(Xx)

det (X)

yl X when neither x nor y is scalar and x is square.

Cholesky Decomposition

chol (X)

i nvpd(Xx)

sol pd(yX)

yl X when neither x nor y is scalar and x is not square.

B-1

GAUSS User Guide

Reading and Setting the Tolerance

Thetolerance value may be read or set using the sysst at e function, cases 13 and
14.

Determining Singularity

There is no perfect tolerance for determining singularity. The default is 1.0e-14. You
can adjust this as necessary.

A numerically better method of determining singularity isto use cond to determine
the condition number of the matrix. If the equation

1/ cond(x) + 1 eq 1

istrue, then the matrix is usually considered singular to machine precision. (See
LINPACK for adetailed discussion on the relationship between the matrix condition
and the number of significant figures of accuracy to be expected in the result.)

B-2

Index

Operators and Symbols

1 11-5

- 114

20-1, 20-2

$+ 11-14

$| 11-15

$~ 11-16

% 11-5

& (ampersand) 11-14
(colon) 11-14
(semicolon) 10-2
* 11-4

*~ 11-7

+ 11-4

, (comma) 11-13
. 11-10, 11-10

.(dot) 11-9, 11-10, 11-14

* 115

*. 11-6

[11-6

/= 11-10

== 11-10

> 11-11

>= 11-11

N 11-6

and 11-13
.eq 11-10
.eqv 11-13
fegfile 12-12
.ge 11-11

gt 11-11

Je 11-10

Jt 11-10

.ne 11-10

.not 11-13
xor 11-13

/ 11-5

/= 11-10

= 101

== 11-9

> 11-10

A 11-6
_pageshf 21-13
_parrow 21-13
_parrow3 21-14
_paxes 21-16

_paxht 21-16
_pbartyp 21-16
_pbarwid 21-16
_pbox 21-17
_pboxctl 21-17
_pboxlim 21-17
_pcolor 21-18
_pcrop 21-18
_pcross 21-18
_pdate 21-18
_perrbar 21-19
_pframe 21-19
_pgrid 21-20
_pletrl 21-20
_plectrl 21-20
_plegstr 21-21
_plev 21-21
_pline 21-21
_pline3d 21-23
_plotshf 21-24
_plotsiz 21-24
_pltype 21-25
_plwidth 21-25
_pmcolor 21-25
_pmsgctl 21-26
_pmsgstr 21-26
_pnotify 21-26
_pnum 21-26
_pnumht 21-27
_protate 21-27
_pscreen 21-27
_psilent 21-27
_pstype 21-27
_psurf 21-27
_psym 21-27
_psym3d 21-28
_psymsiz 21-28
_ptek 21-28
_pticout 21-28
_ptittht 21-28
_pversno 21-28
_pxpmax 21-29
_pxsci 21-29
_pypmax 21-29
_pysci 21-29
_pzclr 21-29
_pzoom 21-29
_pzpmax 21-29
_pzsci 21-29

| 11-8

~ 11-8

GAUSS User Guide

A

ampersand 11-14
and 11-11, 11-12
append 22-3
append, atog command 22-1
arguments 10-32, 12-2, 12-3
arrows 21-13
ASCII Files 18-3
ASCII files 22-1
reading 18-3
writing 18-4
asclabel 21-9
assignment operator 10-2, 10-32, 11-13
aog 22-1
autoloader 16-1, 22-17
axes 21-3
axes numbering 21-3

B

bar 21-1
bar shading 21-16
bar width 21-16
batch mode 3-1
begwind 21-5, 21-8
blank lines 10-31
Bookmarks 5-2
Boolean operations 11-11
box 21-1
Breakpoints
Setting and Clearing 5-5
using 5-5
browse 3-2

C

calling aprocedure 12-5
caret 11-6, 11-16
case 10-31
Cholesky decomposition 11-5
circles 21-4, 21-18, 21-21
code 20-2
colon 10-31
color 21-5,21-19

arrow 21-14

bar 21-16

box 21-17

pbox 21-17

z-level 21-5
comma 11-13

command 10-2

command line
configuration 3-3
debugging 3-4
editing 3-2

Commandl nput-OutputWindow 5-3

comments 10-31
comparison operator 10-32
compilation phase 20-3
compile 17-1

Compile Options 5-8
compiletime 10-1
compiled language 10-1
compiler 4-1,17-1
complex 22-3

complex constants 10-11
complex, atog command 22-1
concatenation, matrix 11-8
conditional branching 10-28
conformability 11-1
constants, complex 10-11
contour 21-1

contour levels 21-21
control, flow 10-24
coordinates 21-6

cropping 21-3, 21-18

D

dataloop 20-1
data sets 18-6
dataloop 20-1
date 21-3
date formats 10-20
Debugger

Using 5-4
debugging 17-2

command line 3-4
delete 20-2
delimited

hard 22-5

soft 22-4
delimited files 18-3
divison 11-5
doloop 10-25

dot relational operator 11-17, 11-18

draw 21-2
drop 20-2
DT Scalar Format 10-20
DTV vector format 10-20

Index-2

E

edit windows 5-1
editing
command line 3-2
editing keys 5-10
Editing Matrices 6-1
Editor Properties 5-9
element-by-element conformability 11-1
element-by-element operators 11-1
empty matrix 10-11
encapsulated PostScript Graphics 3-2
endp 12-2,12-5
endwind 21-8
eqg 11-9
egv 11-13
error bar 21-7, 21-19
ExE conformable 11-1
executable code 10-3
executable statement 10-2
execution phase 20-3
execution time 10-1
exponentiation 11-6
expression, evaluation order 10-23, 11-18
expression, scalar 10-27
expressions 10-1
extern 20-2
extraneous spaces 10-31

F

factorid 11-5
FALSE 10-25
fileformats 18-11
files 18-2
binary 18-12
matrix 18-12
string 18-13
finding symbols 3-2
flow control 10-24
fonts A-1
forward reference 16-1
function 10-30

G

GAUSSHelp 9-1

GAUSS Source Browser 8-1
ge 11-10

global variable 12-1, 12-4
graphics

viewing 3-2
graphics text elements 21-9
graphics windows 21-4, 21-6
graphics, publication quality 21-1
grid subdivisions 21-20
gt 11-10

H

hard delimited 22-5
hardware requirements 2-1
hat operator 11-6, 11-16
Help 9-1

hidden lines 21-27

horizontal direct product 11-7

indefinite 10-21

indexing matrices 10-32, 11-13

indexing procedures 11-14

infinity 10-21

initidize 12-3

inner product 11-4

inpu, atog command 22-1

input 22-3

instruction pointer 10-2

interactive commands
running 5-4

interpreter 10-1

intrinsic function 10-6

invar 22-4

invar, atog command 22-1

K

keep 20-2

keys, editing 5-10
Keystroke Macros 5-2
keyword 12-1, 12-6
Kronecker 11-6

L

label 10-29, 10-31, 12-1
lag 20-2

le 11-9

least squares 11-5
left-hand side 16-2
legend 21-3

Index-3

GAUSS User Guide

lib_path 22-16

liblist 22-15

libraries, troubleshooting 16-11
library 16-1

library symbol listing utility 22-15

Library Tool 7-1
library, optimizing 24-1

line thickness 21-19, 21-23, 21-24, 21-25, 21-28
linetype 21-14, 21-15, 21-19, 21-21, 21-24, 21-25

linear equation solution 11-5
lines 21-1

listwise 20-2

literal 10-16, 11-16

loadp 12-12

loca 12-2

local variable declaration 12-3
local variables 10-7, 12-3
logical operators 11-11
looping 10-25

It 11-9

LU decomposition 11-5

M

Macros 5-2
magnification 21-29
main program code 10-4
main section 10-3
make 20-2
Making a Watch Window 5-7
Managing Libraries 7-1
math coprocessor 2-1
matrices, indexing 10-32
matrix conformability 11-1
Matrix Editor 6-1
matrix, empty 10-11
maxvec 24-2
menu

command line 3-3
missing values 11-5, 11-9
modulo divison 11-5
msym 22-8
msym, atog command 22-1
multiplication 11-4

N

NaN 10-21

NaN, testing for 10-21, 11-9
ne 11-10

nocheck 22-9

nocheck, atog command 22-2

nonexecutable statement 10-2
nontransparent windows 21-7
not 11-9, 11-11, 11-12, 11-19

O

operators 10-1, 11-4
Options

Compile 5-8

Run 5-7
or 11-12, 11-13
outer product 11-5
output 18-2, 18-4, 22-9
output, atog command 22-2
outtyp 20-2, 22-9
outtyp, atog command 22-2
outvar 22-10
outvar, atog command 22-2
overlapping windows 21-7

P

packed ASCII files 22-7
pagesiz 21-13
pairwise deletion 11-5
passing to other procedures 12-8
performance hints 24-1
pointer 11-14, 12-4
pointer, instruction 10-2
PostScript graphics 3-2
precedence 10-23, 11-18
precedence, operator 11-18
preservecase 22-10
proc 12-2
procedure definition 10-3
procedure, saving 12-12
procedures

indexing 12-9

multiple returns 12-10
program 10-3
Properties

Editor 5-9

R

radii 21-21

recode 20-2

recursion 12-4

relational operator 11-8, 11-10
relational operator, dot 11-18
reserved words B-1

Index-4

retp 12-2,12-4
right-hand side 16-2
rules of syntax 10-30
run
commands interactively 5-4
Run Options 5-7

Run-Time Library Structures 14-1

S

screen 18-4
search
active libraries 9-2
Autoloader Search Path 16-2
Find specified text 4-3
GAUSS Source Browser 8-1
symbols 3-2
secondary section 10-4
select 20-2
semicolon 10-2
singularity tolerance B-1
soft delimited 22-4
spaces 11-14
spaces, extraneous 10-31, 11-14
src_path 16-1, 22-15, 24-1
startup file 12-13
statement 10-2, 10-30
statement, executable 10-2
statement, nonexecutable 10-2
string array concatenation 11-15
string arrays 10-18, 10-19
string concatenation 11-14
string files 18-13
strings, graphics 21-9
Structures 13-1
subroutine 10-30
substitution 11-16, 11-17
symbol names 10-31
symbols
finding 3-2
syntax 10-30

T

table 11-4
temporary files 24-1
tensor 11-6
TGAUSS 3-1

thickness, line 21-19, 21-23, 21-24, 21-25

tick marks 21-12
tilde 11-8
tiled windows 21-6

time formats 10-20

tmp environment string 24-1
tolerance B-1

trandation phase 20-3
transparent windows 21-7
transpose 11-7

transpose, bookkeeping 11-7
troubleshooting, libraries 16-11
TRUE 10-25, 11-9

U

unconditional branching 10-29
Using Breakpoints 5-5

Using The Debugger 5-4

UTC scalar format 10-21

\%

vector 20-2

vectors 10-32
viewing graphics 3-2
Viewing Variables 6-1
virtual memory 24-2
vwr 3-2

\W

watch window 6-2
Making a 5-7

windows
graphics 21-4, 21-6
nontransparent 21-7
overlapping 21-7
tiled 21-6
transparent 21-7

X

xor 11-12, 11-13

4

zooming 21-29

	Contents
	Language Fundamentals 10-1
	Operators 11-1
	Procedures and Keywords 12-1
	Structures 13-1
	Run-Time Library Structures 14-1
	N-Dimensional Arrays 15-1
	Libraries 16-1
	Compiler 17-1
	File I/O 18-1
	Foreign Language Interface 19-1
	Data Transformations 20-1
	Publication Quality Graphics 21-1
	Utilities 22-1
	Error Messages 23-1
	Maximizing Performance 24-1

	Introduction
	Documentation Conventions

	Getting Started
	Installation Under Windows
	Machine Requirements
	Installation from Download
	Downloading
	Installation

	Installation from CD

	Using the Command Line Interface
	Viewing Graphics
	Interactive Commands
	quit
	ed
	browse
	config
	Run Menu
	Compile Menu

	Debugging
	General Functions
	Listing Functions
	Execution Functions
	View Commands
	Breakpoint Commands

	Introduction to the Windows Interface
	GAUSS Menus
	File Menu
	Edit Menu
	View Menu
	Configure Menu
	Run Menu
	Debug Menu
	Tools Menu
	Window Menu
	Help Menu

	GAUSS Toolbars
	Main Toolbar
	Working Directory Toolbar
	Debug Toolbar

	Status Bar
	GAUSS Status

	Using the Windows Interface
	Using the GAUSS Edit Windows
	Editing Programs
	Using Bookmarks
	Changing the Editor Properties
	Using Keystroke Macros
	Using Margin Functions
	Editing with Split Views
	Finding and Replacing Text
	Running Selected Text

	Using The Command Input - Output Window
	Running Commands
	Running Programs in Files

	Using The Debugger
	Starting and Stopping the Debugger
	Using Breakpoints
	Setting and Clearing Breakpoints
	Using the Breakpoint Editor to Set and Clear Breakpoints

	Stepping Through a Program
	Viewing and Editing Variables
	Viewing Variable Values During Debugging
	Editing Variable Values During Debugging
	Making a Watch Window

	Customizing GAUSS
	Preferences Dialog Box
	Run Options
	Compile Options
	Files
	DOS Window

	Editor Properties
	Color/Font
	Language/Tabs
	Misc

	Using GAUSS Keyboard Assignments
	Cursor Movement Keys
	Edit Keys
	Text Selection Keys
	Command Keys
	Function Keys
	Menu Keys

	Matrix Editor
	Editing Matrices
	Viewing Variables
	Setting Watch Variables

	Matrix Editor Menu Bar
	Matrix Menu
	Format Menu
	Edit Menu
	View Menu

	Library Tool
	Managing Libraries
	Managing the Library Index
	Managing Library Files

	GAUSS Source Browser
	Using the Source Browser in TGAUSS
	Using the Source Browser in GAUSS
	Opening Files From the Source Browser
	Source Browser Keyboard Controls

	GAUSS Help
	CTRL+F1 Support
	ToolTips
	SHIFT+F1 Help Support
	Help Menu
	Other Help

	Language Fundamentals
	Expressions
	Statements
	Executable Statements
	Nonexecutable Statements

	Programs
	Main Section
	Secondary Sections

	Compiler Directives
	Procedures
	Data Types
	Constants
	Decimal
	String
	Hexadecimal Integer
	Hexadecimal Floating Point

	Matrices
	Strings and String Arrays
	Strings
	String Arrays

	Character Matrices
	Date and Time Formats
	DT Scalar Format
	DTV Vector Format
	UTC Scalar Format

	Special Data Types
	NaN
	INF
	DEN, UNN

	Operator Precedence
	Flow Control
	Looping
	do loop
	for loop

	Conditional Branching
	Unconditional Branching
	goto
	gosub

	Functions
	Rules of Syntax
	Statements
	Case
	Comments
	Extraneous Spaces
	Symbol Names
	Labels
	Assignment Statements
	Function Arguments
	Indexing Matrices
	Arrays of Matrices and Strings
	Arrays of Procedures

	Operators
	Matrix Operators
	Numeric Operators
	Other Matrix Operators

	Relational Operators
	Logical Operators
	Other Operators
	Assignment Operator
	Comma
	Period
	Space
	Colon
	Ampersand
	String Concatenation
	String Array Concatenation
	String Variable Substitution

	Using Dot Operators with Constants
	Operator Precedence

	Procedures and Keywords
	Defining a Procedure
	Procedure Declaration
	Local Variable Declarations
	Body of Procedure
	Returning from the Procedure
	End of Procedure Definition

	Calling a Procedure
	Keywords
	Defining a Keyword
	Calling a Keyword

	Passing Procedures to Procedures
	Indexing Procedures
	Multiple Returns from Procedures
	Saving Compiled Procedures

	Structures
	Initializing Structures
	Passing Structures to Procedures

	Run-Time Library Structures
	Fast Pack Functions
	The DS Data Structure

	N-Dimensional Arrays
	Bracketed Indexing
	ExE Conformability
	Glossary of Terms

	Libraries
	Autoloader
	Forward References
	Left-Hand Side
	Right-Hand Side

	The Autoloader Search Path
	Autodelete ON
	Autodelete OFF
	Libraries
	user Library
	.g Files

	Global Declaration Files
	Troubleshooting
	Using dec Files

	Compiler
	Compiling Programs
	Compiling a File

	Saving the Current Workspace
	Debugging

	File I/O
	ASCII Files
	Matrix Data
	Reading
	Writing

	General File I/O

	Data Sets
	Layout
	Creating Data Sets
	Reading and Writing
	Distinguishing Character and Numeric Data
	Using Type Vectors
	Using the Uppercase/Lowercase Convention (v89 Data Sets)

	Matrix Files
	File Formats
	Small Matrix v89 (Obsolete)
	Extended Matrix v89 (Obsolete)
	Small String v89 (Obsolete)
	Extended String v89 (Obsolete)
	Small Data Set v89 (Obsolete)
	Extended Data Set v89 (Obsolete)
	Matrix v92 (Obsolete)
	String v92 (Obsolete)
	Data Set v92 (Obsolete)
	Matrix v96
	Data Set v96

	Foreign Language Interface
	Creating Dynamic Libraries
	Writing FLI Functions

	Data Transformations
	Using Data Loop Statements
	Using Other Statements
	Debugging Data Loops
	Translation Phase
	Compilation Phase
	Execution Phase

	Reserved Variables

	Publication Quality Graphics
	General Design
	Using Publication Quality Graphics
	Getting Started
	Header
	Data Setup
	Graphics Format Setup
	Calling Graphics Routines

	Graphics Coordinate System
	Inch Coordinates
	Plot Coordinates
	Pixel Coordinates

	Graphics Graphic Panels
	Tiled Graphic Panels
	Overlapping Graphic Panels
	Nontransparent Graphic Panels
	Transparent Graphic Panels
	Using Graphic Panel Functions
	Inch Units in Graphics Graphic Panels
	Saving Graphic Panel Configurations

	Graphics Text Elements
	Selecting Fonts
	Greek and Mathematical Symbols

	Colors
	Global Control Variables

	Utilities
	Command Summary
	Commands
	append
	complex
	input
	invar
	msym
	nocheck
	output
	outtyp
	outvar
	preservecase

	Examples
	Error Messages
	LIBLIST
	Report Format
	Using LIBLIST

	Error Messages
	Maximizing Performance
	Loops
	Virtual Memory
	Data Sets
	Hard Disk Maintenance
	CPU Cache

	Fonts Appendix
	Simplex
	Simgrma
	Microb
	Complex

	Reserved Words Appendix
	Singularity Tolerance Appendix
	Crout LU Decomposition
	Cholesky Decomposition
	Reading and Setting the Tolerance
	Determining Singularity

	Index

