
GAUSSGAUSSGAUSSGAUSS
TM
User Guide
Aptech Systems, Inc.— Mathematical and Statistical System

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software
described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in
accordance with the terms of this agreement. The purchaser may make one
copy of the software for backup purposes. No part of this manual may be
reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying or recording, for any purpose other than
the purchaser’s personal use without the written permission of Aptech
Systems, Inc.

© 1984, 2003 Aptech Systems, Inc. All rights reserved.

GAUSS and GAUSS Light are trademarks of Aptech Systems, Inc.
GEM is a trademark of Digital Research, Inc.
Lotus is a trademark of Lotus Development Corp.
HP Laser Jet and HP-GL are trademarks of Hewlett-Packard Corp.
PostScript is a trademark of Adobe Systems Inc.
IBM is a trademark of International Business Machines Corporation.
GraphicC is a trademark of Scientific Endeavors Corporation.
Tektronix is a trademark of Tektronix, Inc.
Windows is a registered trademark of Microsoft Corporation.
Other trademarks are the property of their respective owners.

Part Number: 0036873
Version 6.0
Revised December 15, 2003

Contents
Contents
Introduction ... 1-1

Product Overview.. 1 1

Documentation Conventions... 1-2

Getting Started .. 2-1

Installation Under UNIX/Linux... 2 1

Installation Under Windows .. 2-1

Machine Requirements... 2-1
Installation from Download ... 2-2
Installation from CD .. 2-2

Using the Command Line Interface... 3-1

Viewing Graphics .. 3-2

Interactive Commands .. 3-2

quit.. 3-2
ed.. 3-2
browse .. 3-2
config .. 3-3

Debugging... 3-4

General Functions .. 3-4
Listing Functions... 3-4
Execution Functions ... 3-4
View Commands .. 3-6
Breakpoint Commands ... 3-6

Introduction to the Windows Interface.. 4-1

GAUSS Menus.. 4-2

File Menu.. 4-2
Edit Menu ... 4-3
View Menu.. 4-4
Configure Menu .. 4-5
Run Menu ... 4-5
Debug Menu ... 4-6
Tools Menu ... 4-7
Window Menu... 4-7
Help Menu .. 4-9

GAUSS Toolbars... 4-9

Main Toolbar ... 4-9
iii

GAUSS User Guide
Working Directory Toolbar ...4-11
Debug Toolbar ...4-11

Status Bar ... 4-12

GAUSS Status.. 4-12

Using the Windows Interface ... 5-1

Using the GAUSS Edit Windows .. 5-1

Editing Programs .. 5-1
Using Bookmarks ... 5-2
Changing the Editor Properties .. 5-2
Using Keystroke Macros... 5-2
Using Margin Functions.. 5-3
Editing with Split Views... 5-3
Finding and Replacing Text .. 5-3
Running Selected Text.. 5-3

Using The Command Input - Output Window ... 5-3

Running Commands... 5-4
Running Programs in Files ... 5-4

Using Source View.. 5-4

Source Tab ... 5-5
Symbols Tab ... 5-5

Using the Error Output Window .. 5-5

Using The Debugger ... 5-5

Starting and Stopping the Debugger .. 5-6
Using Breakpoints .. 5-6
Setting and Clearing Breakpoints ... 5-6
Stepping Through a Program ... 5-7
Viewing and Editing Variables .. 5-7

Customizing GAUSS... 5-8

Preferences Dialog Box.. 5-8
Editor Properties... 5-10

Using GAUSS Keyboard Assignments ..5-11

Cursor Movement Keys ...5-11
Edit Keys .. 5-12
Text Selection Keys .. 5-12
Command Keys .. 5-13
Function Keys... 5-14
Menu Keys.. 5-14
iv

Contents
Matrix Editor .. 6-1

Using the Matrix Editor.. 6 1
Editing Matrices .. 6-1
Viewing Variables ... 6-1
Matrix Editor Menu Bar... 6-2

Library Tool.. 7-1

Using the Library Tool ... 7 1
Managing Libraries ... 7-1
Managing the Library Index .. 7-1
Managing Library Files ... 7-1

GAUSS Source Browser... 8-1

Using the Source Browser in TGAUSS... 8-1

Using the Source Browser in GAUSS... 8-2

Opening Files From the Source Browser ... 8-3
Source Browser Keyboard Controls ... 8-3

GAUSS Help .. 9-1

Help Menu... 9 1

Context-Sensitive Help ... 9-1

SHIFT+F1 Support.. 9-2

CTRL+F1 Support... 9-2

ToolTips... 9-2

Other Help... 9-2

Language Fundamentals.. 10-1

Expressions .. 10-1

Statements .. 10-2

Executable Statements... 10-2
Nonexecutable Statements .. 10-2

Programs .. 10-3

Main Section... 10-3
Secondary Sections.. 10-4

Compiler Directives... 10-4

Procedures.. 10-6

Data Types.. 10-7

Constants ... 10-7
Matrices .. 10-8
v

GAUSS User Guide
Strings and String Arrays.. 10-14
Character Matrices ... 10-19
Date and Time Formats .. 10-20
Special Data Types... 10-21

Operator Precedence.. 10-23

Flow Control .. 10-24

Looping... 10-25
Conditional Branching .. 10-28
Unconditional Branching... 10-29

Functions .. 10-30

Rules of Syntax... 10-30

Statements ... 10-30
Case ... 10-31
Comments .. 10-31
Extraneous Spaces .. 10-31
Symbol Names ... 10-31
Labels ... 10-31
Assignment Statements.. 10-32
Function Arguments ... 10-32
Indexing Matrices ... 10-32
Arrays of Matrices and Strings ... 10-33
Arrays of Procedures.. 10-34

Operators... 11-1

Element-by-Element Operators .. 11 1

Matrix Operators ..11-4

Numeric Operators ..11-4
Other Matrix Operators..11-7

Relational Operators ..11-8

Logical Operators...11-11

Other Operators ...11-13

Assignment Operator...11-13
Comma ... 11-13
Period ... 11-14
Space ... 11-14
Colon .. 11-14
Ampersand ... 11-14
String Concatenation ...11-14
String Array Concatenation ...11-15
String Variable Substitution ...11-16
vi

Contents
Using Dot Operators with Constants... 11-17

Operator Precedence...11-18

Procedures and Keywords... 12-1

Defining a Procedure .. 12-2
Procedure Declaration.. 12-3
Local Variable Declarations .. 12-3
Body of Procedure.. 12-4
Returning from the Procedure .. 12-4
End of Procedure Definition.. 12-5

Calling a Procedure .. 12-5

Keywords .. 12-6

Defining a Keyword .. 12-6
Calling a Keyword... 12-7

Passing Procedures to Procedures .. 12-8

Indexing Procedures ... 12-9

Multiple Returns from Procedures .. 12-10

Saving Compiled Procedures ... 12-12

Structures .. 13-1

Basic Structures.. 13 1
Structure Definition ... 13-1
Declaring an Instance... 13-2
Initializing an Instance .. 13-2
Arrays of Structures.. 13-3
Saving an Instance to the Disk ... 13-4
Loading an Instance from the Disk ... 13-4
Passing Structures to Procedures .. 13-5

Special Structures... 13-6
The DS Structure.. 13-6
The PV Structure .. 13-7

Miscellaneous PV Procedures .. 13-10

Control Structures... 13-12

sqpSolvemt ... 13-13

Input Arguments ... 13-14
Output Argument .. 13-17
Example.. 13-19
The Command File ... 13-19
vii

GAUSS User Guide
Run-Time Library Structures ... 14-1

The PV Parameter Structure... 14 1

Fast Pack Functions ... 14-6

The DS Data Structure.. 14-7

N-Dimensional Arrays .. 15-1

Bracketed Indexing ... 15-3

ExE Conformability ... 15-4

Glossary of Terms ... 15-5

Working with Arrays ... 16-1

Initializing Arrays... 16 1
areshape... 16-2
aconcat ... 16-4
aeye.. 16-5
arrayinit... 16-6
arrayalloc .. 16-6

Assigning Arrays ... 16-7

index operator... 16-8
getArray .. 16-10
getMatrix... 16-10
getMatrix4D ...16-11
getScalar3D, getScalar4D .. 16-12
putArray .. 16-13
setArray .. 16-14

Looping with Arrays .. 16-14

loopnextindex ... 16-17

Miscellaneous Array Functions ... 16-19

atranspose.. 16-19
amult... 16-20
amean, amin, amax .. 16-22
getDims .. 16-23
getOrders.. 16-23
arraytomat .. 16-24
mattoarray .. 16-24

Using Arrays with GAUSS functions ... 16-24

A Panel Data Model .. 16-28

Appendix ... 16-30
viii

Contents
Libraries... 17-1

Autoloader... 17-1

Forward References ... 17-1
The Autoloader Search Path .. 17-2

Global Declaration Files .. 17-8

Troubleshooting ...17-11

Using dec Files ... 17-12

Compiler .. 18-1

Compiling Programs ... 18-1

Compiling a File.. 18-2

Saving the Current Workspace ... 18-2

Debugging... 18-2

File I/O .. 19-1

ASCII Files .. 19-3

Matrix Data ... 19-3
General File I/O .. 19-5

Data Sets .. 19-6

Layout... 19-6
Creating Data Sets ... 19-7
Reading and Writing ... 19-7
Distinguishing Character and Numeric Data .. 19-9

Matrix Files...19-11

File Formats ...19-11

Small Matrix v89 (Obsolete) ... 19-12
Extended Matrix v89 (Obsolete) ... 19-13
Small String v89 (Obsolete).. 19-13
Extended String v89 (Obsolete) ... 19-14
Small Data Set v89 (Obsolete) ... 19-14
Extended Data Set v89 (Obsolete)... 19-16
Matrix v92 (Obsolete) ... 19-16
String v92 (Obsolete).. 19-17
Data Set v92 (Obsolete) ... 19-18
Matrix v96 ... 19-19
Data Set v96... 19-20

Foreign Language Interface... 20-1

Creating Dynamic Libraries... 20-1
ix

GAUSS User Guide
Writing FLI Functions .. 20-3

Data Transformations ... 21-1

Using Data Loop Statements .. 21-2

Using Other Statements.. 21-2

Debugging Data Loops ... 21-2

Translation Phase... 21-3
Compilation Phase ... 21-3
Execution Phase... 21-3

Reserved Variables ... 21-3

Publication Quality Graphics... 22-1

General Design ... 22-1

Using Publication Quality Graphics... 22-2

Getting Started ... 22-2
Graphics Coordinate System.. 22-6

Graphics Graphic Panels .. 22-6

Tiled Graphic Panels .. 22-6
Overlapping Graphic Panels... 22-7
Nontransparent Graphic Panels ... 22-7
Transparent Graphic Panels... 22-7
Using Graphic Panel Functions .. 22-8
Inch Units in Graphics Graphic Panels... 22-9
Saving Graphic Panel Configurations... 22-9

Graphics Text Elements .. 22-9

Selecting Fonts... 22-10
Greek and Mathematical Symbols...22-11

Colors.. 22-12

Global Control Variables ... 22-13

Utilities ... 23-1

ATOG.. 23 1
Command Summary... 23-1
Commands ... 23-3
Examples.. 23-10
Error Messages .. 23-13

LIBLIST ... 23-15

Report Format .. 23-16
Using LIBLIST .. 23-17
x

Contents
Error Messages ... 24-1

Maximizing Performance.. 25-1

Library System .. 25 1

Loops .. 25-2

Virtual Memory .. 25-2

Data Sets.. 25-2
Hard Disk Maintenance .. 25-3
CPU Cache... 25-3

Fonts Appendix...A-1

Simplex ...A-2

Simgrma..A-3

Microb ...A-4

Complex..A-5

Reserved Words Appendix ..B-1

Singularity Tolerance Appendix ..B-1

Reading and Setting the Tolerance...B-2

Determining Singularity ...B-2

Index .. Index-1
xi

Introduction 1

Product Overview

GAUSS™ is a complete analysis environment suitable for performing quick
calculations, complex analysis of millions of data points, or anything in
between. Whether you are new to computerized analysis or a seasoned
programmer, the GAUSS family of products combine to offer you an easy to
learn environment that is powerful and versatile enough for virtually any
numerical task.

Since its introduction in 1984, GAUSS has been the standard for serious
number crunching and complex modeling of large-scale data. Worldwide
acceptance and use in government, industry, and the academic community is a
firm testament to its power and versatility.

The GAUSS System can be described several ways: It is an exceptionally
efficient number cruncher, a comprehensive programming language, and an
interactive analysis environment. GAUSS may be the only numerical tool you
will ever need.
1-1

GAUSS User Guide
Documentation Conventions
The following table describes how text formatting is used to identify GAUSS
programming elements.

Text Style Use Example

regular text narrative “... text formatting is used...”

bold text emphasis "...not supported under
UNIX."

italic text variables “... If vnames is a string or has
fewer elements than x has
columns, it will be...”

monospace code example if scalerr(cm);

cm = inv(x);

endif;

monospace bold Refers to a GAUSS
programming element
within a narrative
paragraph.

“...as explained under
create ...”
1-2

Getting Started 2

Installation Under UNIX/Linux

1. 1.Make a directory to install GAUSS in.

2. cd to that directory.

3. Unzip the .gz file if there is one.

4. Untar the .tar file.

5. Put the installation directory in the executable path.

6. Put the installation directory in the shared library search path.

7. Install the license, please refer to Chapter 5: Licensing for instructions.

For last minute information, see README.term.

Installation Under Windows
Machine Requirements

• A 486 computer or higher.
2-1

GAUSS User Guide
• Operating System and Memory (RAM) requirements

Windows NT4.0, SP6 IE4.0, 32 MB minimum 256 MB recommended.

Windows 2000, 64 MB minimum, 256 MB recommended.

Windows XP, 128 MB minimum, 256 MB recommended.

• Free hard disk space requirements:

Minimum of 100 MB free hard disk space, more may be needed depending on
the size of matrices and the complexity of the program.

• Monthly defragmenting is recommended.

Installation from Download

Downloading

The production release is in GAUSS_4.0_Win_heavy.zip.

The GUI has online documentation in HTML format. There are also PDF versions of
the Quick Start Guide and GAUSS manuals in this directory that you can download
separately if you want them.

GAUSS_4.0_Manual.zip

Installation

Download GAUSS_4.0_Win_heavy.zip, unzip it in a temp directory, and run
setup.exe.

If you are doing a command line ftp, once logged on you will be placed in the
GAUSS40 directory and will have access to all files contained in that directory and no
others. Remember to set the transfer protocol to "bin" before downloading binary
files. Use the "get" command to get the files you want off the ftp site.

To install the license, please refer to the Quick Start Guide.

Installation from CD
Insert the GAUSS 4.0 compact disc into the CD-ROM drive, and setup should start
automatically. If setup does not start automatically, click Start, then click Run. Type
D:\setup.exe in the dialog box (where D is the drive letter of the CD-ROM
drive).

You can use this procedure for the initial installation of GAUSS, and for additions or
modifications to GAUSS components.

To install the license, please refer to the Quick Start Guide.
2-2

Using the Command Line
Interface 3
TGAUSS is the command line version of GAUSS. The executable file, tgauss is
located in the GAUSS installation directory.

The format for using TGAUSS is:

tgauss flag(s) program program...

-b Execute file in batch mode and then exit. You can execute
multiple files by separating file names with spaces.

-l logfile Set the name of the batch mode log file when using the -b
argument. The default is tmp/gauss###.log, where ###
is the proccess ID.

-e expression Executes a GAUSS expression. This command is not logged
when GAUSS is in batch mode.

-o Suppresses the sign-on banner (output only).

-T Turns the dataloop translator on.

-t Turns the dataloop translator off.
3-1

GAUSS User Guide
Viewing Graphics
GAUSS generates .tkf files for graphical output. The default output for graphics is
graphic.tkf. Under Windows, you can use vwr to view the results of a file.
Under Windows and UNIX, two functions are available to convert .tkf files to
PostScript for printing and viewing with external viewers: the tkf2ps function will
convert .tkf files to PostScript (.ps) files, and the tkf2eps function will convert
.tkf files to encapsulated PostScript (.eps) files. For example, to convert the file
graphic.tkf to a postscript file named graphic.ps use:

ret = tkf2ps("filename.tkf", "filename.ps")

If the function is successful it returns 0.

Interactive Commands
quit

The quit command will exit TGAUSS.

The format for quit is:

quit

You can also use the system command to exit TGAUSS from either the command
line or a program (see system in the GAUSS Language Reference).

The format for system is:

system

ed
The ed command will open an input file in an external text editor, see ed in the
GAUSS Language Reference.

The format for ed is:

ed filename

browse
The browse command allows you to search for specific symbols in a file and open
the file in the default editor. You can use wildcards to extend search capabilities of the
browse command

The format for browse is:

browse symbol
3-2

Using the Command Line Interface
config
The config command gives you access to the configuration menu allowing you to
change the way GAUSS runs and compiles files.

The format for config is:

config

Run Menu

Compile Menu

Translator Toggles on/off the translation of a file using
dataloop. The translator is not necessary for
GAUSS program files not using dataloop.

Translator line
number tracking

Toggles on/off execution time line number
tracking of the original file before translation.

Line number
tracking

Toggles on/off the execution time line number
tracking. If the translator is on, the line numbers
refer to the translated file.

Autoload Toggles on/off the autoloader.

Autodelete Toggles on/off autodelete.

GAUSS Library Toggles on/off the GAUSS library functions.

User Library Toggles on/off the user library functions.

Declare
Warnings

Toggles on/off the declare warning messages
during compiling.

Compiler Trace Off Turns off the compiler trace
function.

File Traces program file openings and
closings.

Line Traces compilation by line.

Symbol Creates a report of procedures
and the local and global symbols
they reference.
3-3

GAUSS User Guide
Debugging
The debug command runs a program under the source level debugger.

The format for debug is:

debug filename

General Functions

Listing Functions

Execution Functions

? Displays a list of available commands.

q/Esc Exits the debugger and return to the GAUSS
command line.

+/- Disables the last command repeat function.

l number Displays a specified number of lines of source code in
the current file.

lc Displays source code in the current file starting with
the current line.

ll file line Displays source code in the named file starting with
the specified line.

ll file Displays source code in the named file starting with
the first line.

ll line Displays source code starting with the specified line.
File does not change.

ll Displays the next page of source code.

lp Displays the previous page of source code.

s number Executes the specified number of lines, stepping over
procedures.

i number Executes the specified number of lines, stepping into
procedures.
3-4

Using the Command Line Interface
x number Executes code from the beginning of the program to
the specified line count, or until a breakpoint is hit.

g [[args]] Executes from the current line to the end of the
program, stopping at breakpoints. The optional
arguments specify other stopping points. The syntax
for each optional arguments is:

filename line cycle The debugger will stop every
cycle times it reaches the
specified line in the named
file.

filename line The debugger will stop when
it reaches the specified line in
the named file.

filename ,, cycle The debugger will stop every
cycle times it reaches any line
in the named file.

line cycle The debugger will stop every
cycle times it reaches the
specified line in the current
file.

filename The debugger will stop at
every line in the named file.

line The debugger will stop when
it reaches the specified line in
the current file.

procedure cycle The debugger will stop every
cycle times it reaches the first
line in a called procedure.

procedure The debugger will stop every
time it reaches the first line in
a called procedure.

j [[args]] Executes code to a specified line, procedure, or cycle
in the file without stopping at breakpoints. The
optional arguments are the same as g, listed above.
3-5

GAUSS User Guide
View Commands

The display properties of matrices and string arrays can be set using the following
commands.

Breakpoint Commands

jx number Executes code to the execution count specified
(number) without stopping at breakpoints.

o Executes the remainder of the current procedure (or to
a breakpoint) and stops at the next line in the calling
procedure.

v [[vars]] Searches for (a local variable, then a global variable)
and displays the value of a specified variable.

v$ [[vars]] Searches for (a local variable, then a global variable)
and displays the specified character matrix.

r Specifies the number of rows to be shown.

c Specifies the number of columns to be shown.

number,number Specifies the indices of the upper left corner of the block
to be shown.

w Specifies the width of the columns to be shown.

p Specifies the precision shown.

f Specifies the format of the numbers as decimal, scientific,
or auto format.

q Quits the matrix viewer.

lb Shows all the breakpoints currently defined.

b [[args]] Sets a breakpoint in the code. The syntax for each
optional argument is:

filename line cycle The debugger will stop every
cycle times it reaches the
specified line in the named
file.
3-6

Using the Command Line Interface
filename line The debugger will stop when
it reaches the specified line in
the named file.

filename ,, cycle The debugger will stop every
cycle times it reaches any line
in the named file.

line cycle The debugger will stop every
cycle times it reaches the
specified line in the current
file.

filename The debugger will stop at
every line in the named file.

line The debugger will stop when
it reaches the specified line in
the current file.

procedure cycle The debugger will stop every
cycle times it reaches the first
line in a called procedure.

procedure The debugger will stop every
time it reaches the first line in
a called procedure.

d [[args]] Removes a previously specified breakpoint. The
optional arguments are the same arguments as b, listed
above.
3-7

Introduction to the Windows
Interface 4
The GAUSS graphical user interface is a multiple document interface. The interface
consists of the Menu Bar, the Toolbar, edit windows, the Command Input - Output
window, and the Status bar.

Toolbar

Menu Bar

Status Bar

Command Input - Output window

Edit window
4-1

GAUSS User Guide
GAUSS Menus
You can view the commands on a menu by either clicking the menu name or pressing
ALT+n, where n is the underlined letter in the menu name. For example, to display the
File menu, you can either click File or press ALT+F.

File Menu
The File menu lets you access the file, printer setup, and exit commands. Some of
these actions can also be executed from the toolbar. The File menu contains the
following commands:

New Opens a new, untitled document in an Edit window.
Note: New, unsaved documents are not automatically backed up
until you save them, giving them a file name.

Open Opens an existing file for viewing or editing.

Save Saves your changes to the file in the active window. If the file is
untitled, you are prompted for a path and filename.

Save As Saves your changes to the file in the active window using a new
or different path or file name.

Close Closes the document in the active window. You are prompted to
save the file if it has been modified since you last saved it.

Close All Closes all open files. You are prompted to save any file that has
been modified since you last saved it.

Insert File Opens an existing text file and copies the contents into the
active document. This is similar to pasting text from the
Windows clipboard.

Print Prints the active file or selected text from the active window.

Print Preview Shows a preview of your print job to view before printing.

Print Setup Specifies the printer you want to use. Other printer options, such
as page orientation and paper tray, are also accessed with this
command.

Change
Working
Directory

Changes the directory where GAUSS looks for the files it uses
for normal operation. This command does not affect the Open or
Save As paths.
4-2

Introduction to the Windows Interface
Edit Menu
The Edit menu lets you access the set of editing commands. Some of these actions can
also be executed from the toolbar. The Edit menu contains the following commands:

Clear
Working
Directory List

Clears the working directory list.

Exit Closes all open files and exits GAUSS. You are prompted to
save any file that has been modified since it was last saved.

Recent Files GAUSS maintains a list of the ten most recent files you opened,
at the end of the File menu. If the file you want to open is on this
list, click it and GAUSS opens it in an Edit window.

Undo Restores your last changes in the active window.

Redo Restores changes in the active window that you removed using
the Undo Edit command.

Cut Removes selected text from the active window and places it on
the Windows clipboard.

Copy Copies selected text from the active window to the Windows
clipboard.

Paste Copies text from the Windows clipboard to the active window at
the cursor position.

Select All Selects all text in the active window.

Find Finds the specified text in the active window. The search starts
at the cursor position and continues to the end of the text in the
active window. The search can be case sensitive or case
insensitive. You may also limit the search to regular expressions

Find Again Resumes the search for the next occurrence of the text you
specified in the previous Find action. Subsequent searches for
the same text can also be performed by pressing F3.
4-3

GAUSS User Guide
View Menu
The View menu lets you toggle the Main Toolbar, the Status Bar, the Working
Directory Toolbar, or the Debug Toolbar on or off.

Replace Locates the specified text in the active window and replaces it
with the text you entered in the “Replace with” field in the
Search dialog box. The search starts at the cursor position and
continues to the end of the text in the active window. The search
can be case sensitive or case insensitive, and the replacement
can be unique or global.

Insert Time/
Date

Inserts the current time and date at the cursor position. GAUSS
uses the time and date that appears in the Microsoft Windows
Date/Time Properties window.

Go To Line Moves the cursor to the specified line number.

Go To Next
Bookmark

Moves to the next bookmark in the program.

Toggle
Bookmark

Sets or clears existing bookmarks from the program.

Edit
Bookmarks

Opens the Edit Bookmarks window. From the Edit Bookmarks
window you can add, remove, or go to any set bookmark in a
program.

Record
Macro

Places a series of keystrokes into memory so that they can be
called at a later date. For more information about recording
macros see “Using Keystroke Macros,” page 5-2.

Main Toolbar Toggles the Main toolbar on or off. For more information about
the Main toolbar, see “Main Toolbar,” page 4-9.

Status Bar The Status Bar is located along the bottom of the GAUSS
window. For more information about the status bar, see “Status
Bar,” page 4-12.

Working
Directory
Toolbar

Toggles the Working Directory toolbar on or off. For more
information about the working directory toolbar, see “Working
Directory Toolbar,” page 4-11
4-4

Introduction to the Windows Interface
Configure Menu
The Configure menu lets you customize the GAUSS environment.

Run Menu
The Run menu lets you run the code you have entered, a block of code you selected, or
the active file, depending on the operating mode.

Debug
Toolbar

Toggles the Debug toolbar on or off. For more information
about the Debug toolbar, see “Working Directory Toolbar,”
page 4-11.

Preferences Opens the General Preferences window. From the General
Preferences window you can define Run options, Compile
options, DOS window options, and Autosave options. For more
information on configuring GAUSS General Preferences, see
“Preferences Dialog Box,” page 5-8.

Editor
Properties

Opens the Editor Properties window. From the Editor Properties
window you can define colors and fonts, the language syntax,
tabs, or general editor properties. For more information on
configuring editor properties, see “Editor Properties,” page 5-
10.

Insert
GAUSS
Prompt

Manually adds the GAUSS prompt at the cursor position. The
GAUSS prompt (») is automatically displayed following the
execution of GAUSS code.

Insert Last
Cmd

Re-enters the last command written to the Input buffer.

Run Selected
Text

Runs any text selected from the editor or the Command Input -
Output window.

Run Active
File

Runs the active file. The file then becomes the main file.

Test Compile
Active File

Compiles the currently selected file. During compilation, any
errors are displayed in the Output window.
Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
as a file.
4-5

GAUSS User Guide
Debug Menu
The Debug menu lets you access the commands used to debug your active file or main
file.

The Debug menu contains the following Commands:

Run Main
File

Runs the file specified in the Main File list.

Compile
Main File

Compiles the main file. During compilation, any errors are
displayed in the Output window.
Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
as a file.

Edit Main
File

Opens the specified main file in an edit window.

Stop Program Stops the program currently running and returns control to the
editor.

Build GCG
File

Creates GAUSS pseudocode file that can be run over and over
with no compile time.

Set Main File Makes the active file the main file.

Clear Main
File List

Removes all entries in the Main File list on the Main toolbar.

Translate
Dataloop
Cmds

Toggles translate dataloop command on and off. For more
information see “Data Transformations,” page 21-1.

Debug Main
File

Runs the main file in the debugger.

Debug Active
File

Runs the active file in the debugger.

Set/Clear
Breakpoint

Enables or disables a breakpoint at the cursor in the active file.

Edit
Breakpoints

Opens a list of all breakpoints in your program. The breakpoints
are listed by line number. Any procedure breakpoints are also
listed.
4-6

Introduction to the Windows Interface
Tools Menu
The Tools menu lets you open GAUSS tools windows. The following commands can
be used:

Window Menu
The Window menu commands let you manage your workspace. You can toggle the
focus between all open windows using Ctrl+Tab, or clicking in the window you want
active. All open windows are listed at the end of the Window menu. The following
commands can be used:

Clear All
Breakpoints

Removes all line and procedure breakpoints from the active file.

Go Starts the debugger.

Stop Stops the debugger.

Step Into Runs the next executable line of code in the application and
steps into procedures.

Step Over Runs the next executable line of code in the application but does
not step into procedures.

Step Out Runs the remainder of the current procedure and stops at the
next line in the calling procedure. Step Out returns if a
breakpoint is encountered.

Set Watch Opens the Matrix Editor for watching changing variable data.
For more information about viewing variables see “Viewing
Variables,” page 6-1.

Matrix Editor Lets you create or edit data in a matrix (or grid). A cell can be
edited by typing in a new value and pressing Enter. For more
information see “Matrix Editor,” page 6-1.

Source
Browser

Searches source files for string patterns. For more information
see “GAUSS Source Browser,” page 8-1.

Library Tool Lets you manage the contents of libraries. For more information
see “Library Tool,” page 7-1.

DOS
Compatibility
Window

Runs programs that expect an 80x25 window that understands
ANSI escape characters.
4-7

GAUSS User Guide
Cmd Window Makes the Command Input - Output window the active window.

Output
Window

Splits the output from the Command Input - Output window.

Debug
Window

Starts the debugger on the current file.

Dual
Horizontal

Horizontally tiles the program source and execution windows
within the main window, and minimizes all other windows.

Dual Vertical Vertically tiles the program source and execution windows
within the main window, and minimizes all other windows.

Cascade Arranges all open windows on the screen, overlapping each,
with the active window on top.

Tile
Horizontal

Arranges all open windows horizontally on the screen without
any overlap.

Tile Vertical Arranges all open windows vertically on the screen without any
overlap.

Arrange
Icons

Arranges all minimized windows across the bottom of the main
GAUSS window.

Split
Horizontally

Splits the active window into two horizontal panes. This allows
you to view two different areas of the same document to
facilitate split-window editing.
Note: You can move the splitter bar by dragging it with the
mouse. You can remove the splitter bar from the window by
dragging it to the end of the window.

Split
Vertically

Splits the active window into two vertical panes. This allows
you to view two different areas of the same document to
facilitate split-window editing.
Note: You can move the splitter bar by dragging it with the
mouse. You can remove the splitter bar from the window by
dragging it to the end of the window.

Open
Window List

GAUSS maintains a list of all the windows you have opened at
the end of the Window menu. If the window you want to view is
on this list, click it and it becomes the active window.
4-8

Introduction to the Windows Interface
Help Menu
The Help menu lets you access information in the GAUSS Help system. The GAUSS
Help menu contains the following Commands:

GAUSS Toolbars
The toolbar buttons let you have fast access to the most commonly used commands.
Place the mouse pointer over the button to display a description of the command.

Main Toolbar

Help Topics Starts the GAUSS Help system.

Contents Starts the GAUSS Help system.

Keyboard Accesses the list of keystrokes you can use for cursor
movement, editing, and text selection.

GAUSS
Reference

Accesses the online GAUSS Language Reference guide. The
Guide contains the syntax for each GAUSS command.

About
GAUSS

Provides information about your version of GAUSS, your
license type and ID, as well as copyright information.

New Opens a new, untitled document in an Edit window.
Note: New, unsaved documents are not automatically backed up
until you save them, giving them a file name.

Open Opens an existing file for viewing or editing.

New
Open
Save

Cut

Paste

Print

Help

Run Selected Text

Test Compile Active File

Main File List Run Main File
Stop Program

Compile Main File
Copy

Run Active File

Debug Main File
Edit Main File
4-9

GAUSS User Guide
Save Saves your changes to the file in the active window. If the file is
untitled, you are prompted for a path and filename.

Cut Removes selected text from the active window and places it on
the Windows clipboard.

Copy Copies selected text from the active window to the Windows
clipboard.

Paste Copies text from the Windows clipboard to the active window at
the cursor position.

Print Prints the active file or selected text from the active window.

Help Accesses the GAUSS help system.

Run Selected
Text

Runs any text selected from the editor or the Command Input -
Output window.

Run Active
File

Runs the active file. The file then becomes the main file.

Test Compile
Active File

Compiles the currently selected file. During compilation, any
errors are displayed in the Output window.
Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
as a file.

Main File List Displays the name of the main file and lets you quickly change
the main file to one of the files listed.

Run Main
File

Runs the file specified in the Main File list.

Stop Program Stops the program currently running and returns control to the
editor.

Test Compile
Main File

Compiles the main file. During compilation, any errors are
displayed in the Output window.
Note: This command is different than the GAUSS Compile
command, which compiles a program and saves the pseudocode
as a file.

Edit Main
File

Opens the specified main file in an edit window.

Debug Main
File

Runs the main file in the debugger.
4-10

Introduction to the Windows Interface
Working Directory Toolbar
You can use the Working Directory toolbar to quickly change your working directory.

Debug Toolbar
You can use the Debug toolbar for quick access to commands while debugging a file.

Current
Working
Directory List

Displays the name of the current working directory and lets you
quickly change the working directory to one of the directories
listed.

Change
Working
Directory

Browses to a new directory.

Go Starts the debugger.

Stop Stops the debugger.

Toggle
Breakpoint

Enables or disables a breakpoint at the cursor in the active file.

Clear All
Breakpoints

Removes all line and procedure breakpoints from the active file.

Set Watch Opens the Matrix Editor for watching changing variable data.
For more information about viewing variables see “Viewing
Variables,” page 6-1.

Step Into Runs the next executable line of code in the application and
steps into procedures.

Change Working DirectoryCurrent Working Directory

Go

Toggle Breakpoint
Stop

Clear All Breakpoints Set Watch
Step Into

Step Over
Step Out
4-11

GAUSS User Guide
Status Bar
The status bar is located along the bottom of the GAUSS window. The status of the
windows and processes are shown on the status bar.

GAUSS Status
The first section of the status bar shows the current GAUSS status. From time to time
you are alerted to the task GAUSS is performing by new messages appearing in the
status bar.

Step Over Runs the next executable line of code in the application but does
not step into procedures.

Step Out Runs the remainder of the current procedure and stops at the
next line in the calling procedure. Step Out returns if a
breakpoint is encountered.

Cursor
Location

The line number and column number where the cursor is
located appear on the status bar for the active window.
When a block of text is selected, the values indicate the first
position of the selected text.

DATALOOP DATALOOP appears on the status bar to indicate the
Dataloop Tranlator is turned on.

OVR OVR appears on the status bar when typing replaces the
existing text with text you enter. When OVR does not
appear on the status bar, typing inserts text without deleting
the existing text. Press the Insert key to toggle between the
two conditions.

CAP CAP appears on the status bar to indicate the Caps Lock key
has been pressed and all text you enter will appear in upper
case.

NUM NUM appears on the status bar to indicate the Num Lock
key has been pressed and the keypad numbers are active.

Cursor LocationGAUSS Status
4-12

Using the Windows Interface 5

The GAUSS graphical user interface is a multiple document interface. The interface
consists of edit windows and the Command Input - Output window. Integrated into
GAUSS is a full debugger with breakpoints and watch variables. The GAUSS
graphical user interface also incorporates the Matrix Editor on page 6-1, The Library
Tool on page 7-1, and Source Browser on page 8-1, as well as a context-sensitive
HTML Help system on page 9-1.

Using the GAUSS Edit Windows
The GAUSS edit windows provide syntax color coding and auto-formatting as well as
easy access to the Matrix Editor and Library Tool, and include an integrated context-
sensitive help system accessible through the F1 key.

The edit windows provide standard text editing features like drag and drop text
editing, and find and replace. The editor also lets you set bookmarks, define keystroke
macros, find and replace using regular expressions, and run selected text from the
editor.

Editing Programs
To begin editing, open an edit window by browsing to the source file, or by typing
edit and the filename in the Command Input - Output window. If more than one file
is open, the last file opened or run becomes the active window.
5-1

GAUSS User Guide
Using Bookmarks
Bookmarks are efficient placeholders used to identify particular sections or lines of
code. To add or remove bookmarks, place the cursor in the line you want to bookmark
and then press CTRL+F2, or click Toggle Bookmark on the Edit menu. You can jump
to the next bookmark by pressing F2, or go to the previous bookmark by pressing
SHIFT+F2.

To edit a list of all currently defined bookmarks, click Edit Bookmarks on the Edit
menu. The Edit Bookmarks window allows you to add, remove, name or select the
bookmark to which you wish to jump.

Changing the Editor Properties
You can customize the formatting of your code and text by changing font colors, fonts,
adding line indentations, and adding line numbering to your programs. To access these
properties, on the Configure menu click Editor Properties, or right-click on an edit
window and click Properties on the context menu.For more information about the
Editor Properties see “Editor Properties,” page 5-10.

Using Keystroke Macros
GAUSS will save up to 10 separate keystroke macros.

To record a keystroke macro, press CTRL+SHIFT+R, or click Record Macro on the
Edit menu. When you start recording the macro, a stop button will appear in the
GAUSS window.

You create a macro by clicking Record Macro and pressing the keystrokes you want
recorded. Once you have completed recording the macro, you can stop recording with
the stop button. Once you have finished recording the macro, you can select one of ten
macro names for it.

Use the following guidelines when creating and using your macro:

• Only keystrokes in the active window are recorded, not keystrokes in a dialog
box.

• Only keystrokes are recorded, not mouse movements.

Macros are not saved when you close GAUSS.

If your macro is lengthy, consider creating a separate file and copying the information
from the file into the active window, rather than using a macro to enter the
information.
5-2

Using the Windows Interface
Using Margin Functions
The margin of the edit window can be used to show currently set bookmarks, currently
set breakpoints, and line numbers. You can also select an entire line of text with a
single click in the Selection Margin.

You can turn on or off the margin in the Misc tab of the Editor Properties dialog box.

Editing with Split Views
Using split views, you can edit two parts of the same program in the same buffer. To
open split views, click Split Horizontally or Split Vertically on the Window menu.

Finding and Replacing Text
Along with a standard find and replace function, you can use the edit window to find
and replace regular expressions. To find regular expressions, open the Find dialog box
and select the checkbox for regular expressions.

Running Selected Text
There are three ways you can run selected text. First, highlight the text you want to
run, then either press CTRL+R, drag and drop the selected text into the Command
Input - Output window, or click “Run Selected Text” on the Run menu.

Using The Command Input - Output Window
The Command Input - Output window lets you input interactive commands and view
the results. The Command Input - Output window can be split into two separate
windows, one for input and one for output, by clicking Output Window on the
Window menu.

Output will be written at the insertion point in the Command Input - Output window
or the Output window, when it is a separate window. GAUSS commands cannot be
executed from this window.

From the Command Input - Output window, you can run saved programs. You can
view or edit the data of any variable in the active workspace with the Matrix Editor.
You can also open files for editing or to debug.

The GAUSS Command Input - Output window has many of the same features that the
GAUSS text editor has. You can cut and paste text. You can search the buffer of the
Command Input - Output window. You can also save the contents of the Command
Input - Output window to a text file.
5-3

GAUSS User Guide
Running Commands
The GAUSS interface allows you to run programs that consist of single commands or
blocks of commands executed interactively, as well as large-scale programs that may
consist of commands in one or more files. The file that is run to execute the command
is the main file (the file name displayed in the Main File list).

When you run commands interactively, the actual code being processed is called the
“active block.” The active block is all code between the GAUSS prompt (») and the
end of the current line. Thus, the active block can be one or more lines of code.

Interactive commands can be entered at the “»” prompt in the Command Input -
Output window or selected using the mouse and clicking the Run Selected Text button
on the Main toolbar.

A block of code can be executed by selecting the block with the mouse and then
running that block using the Run Selected Text function.

Note: The GAUSS prompt (») at the beginning of the selected text is ignored.

You can enter multi-line commands into the Command Input - Output window by
pressing CTRL+Enter at the end of each line. At the end of the final line in a multi-
line command, press Enter. The Command Input - Output window will automatically
place a semicolon at the end of a single-line command before it is interpreted. For
multi-line commands, you must enter a semicolon at the end of each line.

You can also run multi-line commands by pasting the text of a file at the GAUSS
prompt, or selecting multiple lines of code from the Command Input - Output window
and pressing CTRL+R.

You can repeat any of the last 20 lines entered into the command buffer by pressing
CTRL+L to cycle through the last command buffer.

Running Programs in Files
You can execute the active file by clicking Run Active File on the Run menu, or by
clicking the Run Currently Active File button on the Main toolbar.

You can execute the file displayed in the Main File list (the main file) by clicking Run
Main file on the Run menu, or by clicking the Run Main File button on the Main
toolbar.

Using Source View
Source View is a dockable dialog bar with two tabs that provide easy access to source
files and symbols associated with your current GAUSS workspace.
5-4

Using the Windows Interface
Source Tab
The Source tab is a tree view that displays a list of active libraries and the source files
they contain. Under each source file is a list of the symbols and procedures which
they define. By using the right mouse button, you can search for symbols, open source
files or view source file properties.

Opening a Source File

To open a source file, double click the file name or right click the file and click Edit.

Finding Commands in Source Files

To search the source files right click any file name in the source tab and click Find. In
the Find dialog enter a keyword and click OK.

Symbols Tab
The Symbols tab contains a tree view of the GAUSS workspace global symbols
organized by symbol type: Matrics, Arrays, Strings, String Arrays, and Structures.

Editing or Viewing a Symbols

To edit or view a symbol, double-clicking on it or right-clicking and selecting Edit
from the menu.

Finding Symbols in Source Files

To search the source files right click any file name in the source tab and click Find. In
the Find dialog enter a keyword and click OK.

Using the Error Output Window
The Error Output window allows errors messages to be output to a separate window,
instead of the GAUSS Input - Output window. When an error occurrs, you can open to
program of source file directly from the Error Output window.

To open the program or source file, press F4 or double click the error message. The
file will open at the line the error occurred.

Using The Debugger
The debugger greatly simplifies program development. With all of the features of a
dedicated debugging system, the debugger can help you to quickly identify and solve
logic errors at run-time.
5-5

GAUSS User Guide
The debugger is integrated into the multiple document interface of GAUSS; it uses the
interface tools, such as the edit windows, the Matrix Editor, and the Command Input -
Output window for debugging. So while using the debugger, you still have all the
features of the edit windows and Matrix Editor, along with GAUSS’s suite of
debugging tools.

You use the debugger to watch the program code as it runs. Prior to running the
debugger, breakpoints and watch variables can be set to stop the program at points you
set and provide additional data as the code is run.

Starting and Stopping the Debugger
You can start the debugger by clicking Go on the Debug menu or the Debug toolbar.

When starting the debugger, you can choose to debug the active file or to debug the
main file of a program. If you are debugging a single file and already have the file
open, you can use the menu or toolbar to start the debugger on the file, or simply type
debug and the filename in the Command Input - Output window.

When you start the debugger, the debugger automatically highlights the first line of
code to be run. Any breakpoints are shown in the left margin of the window.

You can stop the debugger at any time by clicking Stop on the Debug menu or the
Debug toolbar.

Using Breakpoints
Breakpoints stop code execution where you have inserted them. Breakpoints are
normally set prior to running the debugger, but can also be set or cleared during
debugging by clicking the Set/Clear Breakpoint command on the Debug menu.

The debugger supports two types of breakpoints: procedure breakpoints and line
number breakpoints. Procedure breakpoints pause execution when the specified
procedure or function is reached. Line number breakpoints pause execution when the
specified line is reached. In either case, the break occurs before any of the GAUSS
code for the procedure or line is executed. The debugger also allows you to specify a
certain cycle of execution for a line number or procedure where you want the
execution to be paused. The cycle count is for the occurrence of the line number or
procedure, not the number of times a line is to be skipped.

Setting and Clearing Breakpoints
You can set or clear a line breakpoint in the highlighted line of code by clicking Set/
Clear Breakpoint on the Debug menu or by pressing the F9 key.

To set breakpoints in any part of the file not currently being executed, just click the
line where you want the breakpoint to be, then click Toggle Breakpoint.
5-6

Using the Windows Interface
To clear breakpoints in the file, click a line of code that has a breakpoint set and then
click Set/Clear Breakpoint. You can also clear all breakpoints from the active file by
clicking Clear All Breakpoints.

Using the Breakpoint Editor to Set and Clear Breakpoints

The Breakpoint Editor allows you to set or clear both line and procedure breakpoints.
It also lets you specify cycles of execution for breakpoints. With the Breakpoint
Editor, you can set or clear breakpoints in any program currently in your working
directory.

Stepping Through a Program
GAUSS’s debugger includes the ability to step into, step out of, and step over code
during debugging.

Use Step Into to execute the line of code currently highlighted by the debugger.

Use Step Out to execute to the end of the current function without pause and return to
the calling function.

Use Step Over to execute the line of code currently highlighted by the debugger
without entering the functions that are called.

Viewing and Editing Variables
GAUSS allows you to view and edit the values of variables during debugging.

Viewing Variable Values During Debugging

Once the debugger is started, the editor window uses floatover variable windows for
viewing variable data. Floatover variable windows give a quick view of the value a
variable currently holds by simply moving your mouse over the variable name in the
edit window.

The floatover variable window is only intended to give a quick view of the data, so it
may not show all data held by the variable. If the variable data is incomplete, the
floatover variable window will display an arrow to show that there is more data. If you
need to view more data, open the Matrix Editor by highlighting the variable name and
pressing CTRL+E.

Editing Variable Values During Debugging

The debugger integrates the Matrix Editor to edit values of loaded variables, or to use
as a watch window to view the changing values of variables as you step through a
program.
5-7

GAUSS User Guide
To edit a variable value, highlight the variable in the edit window, or the Command
Input - Output window and then open the Matrix Editor. You can use the menu or
toolbar to start the Matrix Editor, or simply type CTRL+E.

Making a Watch Window

You can make the Matrix Editor a Watch window, allowing you to watch the changing
value of a variable as the lines of the program are executed. You can activate the
Watch window by clicking Set Watch on the Debug menu, or by highlighting a
variable name in the debugger window and pressing CTRL+E.

You use a Watch window to see how variables change in value during debugging.
Watch variables can be specified prior to running the debugger or during a debugging
session.

The debugger searches for a watch variable using the following order:

1. A local variable within a currently active procedure.

2. A global variable.

A watch variable can be the name of a matrix, a scalar, a string array, or a string. For a
matrix or a string array, the first element is displayed. If a matrix element is clicked,
the Matrix Editor is loaded with the matrix. The matrix elements can be changed
during the debugging session.

Customizing GAUSS
Preferences Dialog Box

The Preferences dialog box lets you specify how GAUSS operates. To open the
Preferences dialog box, click Preferences... on the Configure menu. The changes you
make in the Preferences dialog box remain set between sessions.

Run Options

Dataloop
Translator

Specifies whether GAUSS will translate data loops into
procedures.

Translate
Line Number
Tracking

Specifies whether GAUSS will preserve the line numbers of
data loops after being translated to procedures.

Line Number
Tracking

Specifies whether GAUSS will preserve line numbers of a file
being compiled for the interpreter.
5-8

Using the Windows Interface
Compile Options

The Compile tab contains options that let you control how GAUSS compiles a
program before it is run.

Files

The Files tab contains options that let you control how GAUSS auto-saves your work

Sound at End
of Job

Determines whether or not a sound is played at the end of the
execution of GAUSS code. The sound can be selected using the
Select button and played using the Test button.
The default is OFF.

Autoload Specifies whether the autoloader will automatically resolve
references in your code. If Autoload is off, you must define all
symbols used in your program.

Autodelete Use Autodelete in conjunction with Autoload to control the
handling of references to unknown symbols.

GAUSS
Library

Specifies whether the autoloader will use the standard GAUSS
library in compiling your code.

User Library Specifies whether the autoloader will use the User Libraries in
compiling your code.

Declare
Warnings

Specifies whether the GAUSS compiler will display declare
warnings in the Command Input - Output window. For more
information on declare warnings see “Using dec Files,”
page 17-12.

Compiler
Trace

Specifies whether you would like to trace the file compilation
by file opening and closing, specific lines, or whether you
would like to trace by local and global symbols.

Autosave on
Execute

Specifies whether open files will automatically be saved when a
file is run. If the file you are running is loaded, it will be saved
prior to execution, regardless of how it is executed (Run file,
command line, main file, or active file). All open editor files,
including the active file, are saved before execution.
Note: New, unsaved documents are not automatically backed up
until you save them, giving them a file name. After you save the
new file, it will be automatically backed up with all other open
files.
5-9

GAUSS User Guide
DOS Window

The DOS Window tab lets you control the fonts used in the DOS window.

Editor Properties
You can customize the formatting of your code and text by changing font colors, fonts,
adding line indentations, and adding line numbering to your programs. To access these
properties, on the Configure menu click Editor Properties.

Color/Font

Language/Tabs

Misc

Autosave Specifies whether you want GAUSS to automatically save your
files at a set interval of time.

Font Options Specifies what font the DOS window will use.

Color Specifies the way syntax coloring works in the editor.

Font Specifies what font the edit window will use.

Auto
Indentation
Style

Specifies how the autoindenter will indent your code.

Tabs Specifies how many spaces a tab has.

Language Specifies what syntax the GAUSS editor will recognize for
syntax coloring.

Fixup Text
Case While
Typing
Language
Keywords

Specifies whether the editor will automatically change the case
of GAUSS keywords when they use the wrong case.

Smooth
Scrolling

Enables or disables smooth scrolling when the window is
scrolled up/down by one line or left/right by one character.

Show Left
Margin

Enables or disables the editor’s margin. The margin is used for
showing breakpoints, bookmarks, or line numbers.
5-10

Using the Windows Interface
Using GAUSS Keyboard Assignments
Cursor Movement Keys

Line Tooltips
on Scroll

Shows the first line number on screen as a tooltip as you scroll
up and down the file.

Allow Drag
and Drop

Enables or disables drag and drop functionality.

Allow
Column
Selection

Lets you select and manipulate columns of text.

Confine
Caret to Text

Tells the GAUSS editor to interpret carets as text only rather
than as substitution symbols or text.

Color Syntax
Highlighting

Toggles on or off color syntax highlighting.

Show
Horizontal
Scrollbar

Toggles on or off the horizontal scrollbar.

Show Vertical
Scrollbar

Toggles on or off the vertical scrollbar.

Allow
Horizontal
Splitting

Toggles on or off the ability to split editor panes horizontally.

Allow
Vertical
Splitting

Toggles on or off the ability to split editor panes vertically.

Line
Numbering

Specifies the style and starting digit for line numbering.

Max
Undoable
Actions

Sets the number of actions that you can undo.

UP ARROW Up one line

DOWN ARROW Down one line
5-11

GAUSS User Guide
Edit Keys

Text Selection Keys

LEFT ARROW Left one character

RIGHT ARROW Right one character

CTRL+LEFT ARROW Left one word

CTRL+RIGHT ARROW Right one word

HOME Beginning of line

END End of line

PAGE UP Next screen up

PAGE DOWN Next screen down

CTRL+PAGE UP Scroll window right

CTRL+PAGE DOWN Scroll window left

CTRL+HOME Beginning of document

CTRL+END End of document

BACKSPACE Delete character to left of cursor, or delete selected
text

DEL Delete character to right of cursor, or delete selected
text

CTRL+INS or CTRL+C Copy selected text to Windows clipboard

SHIFT+DEL or CTRL+X Delete selected text and place it onto Windows
clipboard

SHIFT+INS or CTRL+V Paste text from Windows clipboard at the cursor
position

CTRL+Z Undo last editing action

SHIFT+UP ARROW Select one line of text up

SHIFT+DOWN ARROW Select one line of text down

SHIFT+LEFT ARROW Select one character to the left

SHIFT+RIGHT ARROW Select one character to the right
5-12

Using the Windows Interface
Command Keys

SHIFT+CTRL+LEFT
ARROW

Select one word to the left

SHIFT+CTRL+RIGHT
ARROW

Select one word to the right

SHIFT+HOME Select to beginning of the line

SHIFT+END Select to end of the line

SHIFT+PAGE UP Select up one screen

SHIFT+PAGE DOWN Select down one screen

SHIFT+CTRL+HOME Select text to beginning of document

SHIFT+CTRL+END Select text to end of document

CTRL+A Redo

CTRL+C Copy selection to Windows clipboard

CTRL+D Open Debug window

CTRL+E Open Matrix Editor

CTRL+F Find/Replace text

CTRL+G Go to specified line number

CTRL+I Insert GAUSS prompt

CTRL+L Insert last

CTRL+N Make next window active

CTRL+O Open Output window

CTRL+P Print current window, or selected text

CTRL+Q Exit GAUSS

CTRL+R Run selected text

CTRL+S Save window to file

CTRL+W Open Command window

CTRL+V Paste contents of Windows clipboard

CTRL+X Cut selection to Windows clipboard
5-13

GAUSS User Guide
Function Keys

Menu Keys

CTRL+Z Undo

F1 Open GAUSS Help system or context-sensitive
Help

F2 Go to next bookmark

F3 Find again

F4 Go to next search item in Source Browser

F5 Run Main File

F6 Run Active File

F7 Edit Main File

F8 Step Into

F9 Set/Clear breakpoint

F10 Step Over

ALT+F4 Exit GAUSS

ALT+F5 Debug Main File

CTRL+F1 Searches the active libraries for the source code of a
function.

CTRL+F2 Toggle bookmark

CTRL+F4 Close active window

CTRL+F5 Compile Main File

CTRL+F6 Compile Active File

CTRL+F10 Step Out

ESC Unmark marked text

ALT+C Configure menu

ALT+D Debug menu

ALT+E Edit menu
5-14

Using the Windows Interface
ALT+F File menu

ALT+H Help menu

ALT+R Run menu

ALT+T Tools menu

ALT+W Window menu

ALT+V View menu
5-15

Matrix Editor 6

Using the Matrix Editor

The Matrix Editor lets you view and edit matrix data in your current workspace. You
can open the Matrix Editor from either the Command Input - Output window or a
GAUSS edit window by highlighting a matrix variable name and typing Ctrl+E. You
can view multiple matrices at the same time by opening more than one Matrix Editor.

Editing Matrices
The Matrix Editor will allow you to format matrices in decimal, scientific,
Hexadecimal, or as text characters.

Just like a spreadsheet, when using the Matrix Editor, you can use your keyboard's
arrow keys to quickly move between matrix positions. To edit a scalar value, select a
cell and press Enter. You can use the Home and End keys to move to the beginning or
end of a scalar. When finished editing, press Enter again.

Viewing Variables
All variables are treated as matrices in GAUSS. A scalar is simply a 1x1 matrix. A
vector is a (Nx1) or (1xN) matrix. So you can use the Matrix Editor to view and
monitor the value of any variable. You can update the value of a variable at any time
by using the Reload function. When using the Matrix Editor to view, edit or monitor
6-1

GAUSS User Guide
smaller matrices, you can minimize space it occupies on the screen by selecting
Minimal View from the View menu.

By using the Auto-reload function, GAUSS will automatically update the values of
variables in the Matrix Editor. Using Auto-reload you can create a watch window.

Setting Watch Variables

Watch Variables allow you to see how variables change in value while debugging a
program. A watch variable can be the name of a matrix, a scalar, a string array, or a
string.

The debugger searches for a watch variable in the following order:

• a local variable within a currently active procedure

• a global variable

Matrix Editor Menu Bar

Matrix Menu

The Matrix menu lets you control the data of the Matrix in the Matrix Editor as an
entire set.

Format Menu

The Format menu lets you control the way the data is presented in the Matrix Editor.

Edit Menu

The Edit menu gives you tools to control the data in the Matrix Editor.

Load Clears any existing grid and loads any named matrix from the
GAUSS workspace to the grid.

Reload Reloads the existing matrix with the name shown on the Title
bar.

Auto-Reload Automatically updates the data shown in the Matrix Editor,
creating a watch window.

Save Saves the grid as a matrix in the GAUSS workspace. If a matrix
of the same name already exists in the workspace, it is
overwritten.
6-2

Matrix Editor
View Menu

The View menu lets you control the Matrix Editor window. The View menu also lets
you control your view of imaginary numbers.

Clear All Clears the grid of all values but keep the row and column order.

Preferences Sets several matrix options, including the number of digits to the
right of the decimal point, cell height and width, and whether
pressing the Enter key moves the cursor down or over one cell.
These options, along with screen position and window state, are
saved between sessions.

Real Parts Specifies that you want the real parts of imaginary
numbers to be displayed in the Matrix Editor.

Imaginary
Parts

Specifies that you want the imaginary parts of
numbers to be displayed in the Matrix Editor.

Minimal
View

Minimizes the amount of screen space occupied by
the Matrix Editor. This is especially useful for
creating watch windows for single variables.

Stay on Top Forces the Matrix Editor window to remain visible
on the screen even when the interface focus has
shifted to another window.
6-3

Library Tool 7

Using the Library Tool

The Library Tool lets you quickly manage your libraries. You can add and remove
libraries and you can add and remove files within the libraries.

Managing Libraries
Using the New Library button, you can create a new library for organizing your code.
You can remove a library by selecting the Delete Library button.

Managing the Library Index
To add absolute path names to the library index, use the Add Paths button. To only use
file names for searching libraries, use the Strip Paths button. Use Rebuild to recompile
all the files used in the library, and rebuild the library index file. Use the Revert to
Original button to revert to the configuration the library was in when the Library Tool
was opened.

Managing Library Files
You can add files to a library with the Add button. You can remove files from a library
with the Remove button. After changing source files referred to in a library, select the
files in the file list and update the library index with the Update button. To remove
7-1

GAUSS User Guide
multiple files from a library, select the files in the file selection window, and use the
Clear Selection button.

For more information about libraries, see “Libraries,” page 17-1.
7-2

GAUSS Source Browser 8

The GAUSS Source Browser lets users quickly find, view, and if necessary, modify
source code. Both the TGAUSS and GAUSS Source Browsers can be used to search
for external symbols in active libraries. The GAUSS Source Browser can also be used
to search for symbols in any directory or source file.

Using the Source Browser in TGAUSS
To start the Source Browser in TGAUSS, type browse followed by a symbol name.
When the Source Browser is active, the prompt displays Browse:. GAUSS searches
through all active libraries for the file in which the symbol is defined. If found, the file
containing the source code is opened in the default editor.

Wildcard (*) searches can also be used. When using wildcard searches, each symbol
that the string matches will be displayed on-screen in a numbered list. To select a
specific command to view in the default editor, select the number from the list.

The Source Browser will remain active until you type CTRL-C to return to the
(gauss) prompt.
8-1

GAUSS User Guide
Using the Source Browser in GAUSS
To open the Source Browser in GAUSS, from the Tools menu select Source Browser.

Using the Source Browser you can search a file for a specified symbol or search
across all the source files in a directory. Using a comma separated list of files and
directories in the Look in: list, you can search multiple locations in a single search.
When searching for symbols, you can use wildcards (*) to further modify the scope of
the search.

Note: The Source Browser does not search recursively through sub-folders. To search
sub-folders during a search, add the sub-folder names to the Look in: list.

Once the search is complete, the Source Browser lists where the specified symbol was
found. The Filename column of the Results List shows the file in which the symbol
was found. The Line column shows the line number where symbol was found and the
Line Description column shows the text of the line where the symbol was found.

Search locations typed into the Look in: text box will persist between Source Browser
sessions.

Pattern: Defines search pattern.
Look in: Limits the scope of the search to specific files or directories.

Using a comma separated list, searches multiple files and
directories in a single search.

Match Case Makes search case-sensitive.
Match whole word Limits search to entire words.
8-2

GAUSS Source Browser
Opening Files From the Source Browser
Double-click the file name to open a file in its own editor window. When opened, the
cursor is placed at the beginning of the line selected in the Results List. By double-
clicking different files in the Source Browser, you can open each file in its own
separate editor window.

Use the F4 key to quickly view or edit the next file in the Results List using the active
editor window. Using the F4 key opens the file in the active editor window and places
the cursor at the beginning of the line in which the symbol was found. The F4 key uses
the active editor window to display the source file; it will not open an editor window
to display files. You can use the F4 key from either the Source Browser or from the
active editor window to move to the next occurrence of the symbol shown in the
Results List.

Use SHIFT+F4 to quickly view or edit the previous file in the Results List using the
active editor window. Using the F4 key opens the file in the active editor window and
places the cursor at the beginning of the line in which the symbol was found.

Source Browser Keyboard Controls

Stay on top Keeps the Source Browser on top even when another window is
active.

Browse Lets you limit the scope of the search to specific files or
directories.

Search Initiates search.
Results List Lists occurrences of selected symbol in specified files or

directories.
Status Lists how many occurrences there were, and how many files the

symbol occurred in.
Close Closes the Source Browser.

Up arrow Moves to the previous occurrence in the Results List.
Down arrow Moves to the next occurrence in the Results List.
Home Moves to the first occurrence in the Results List.
End Moves to the last occurrence in the Results List.
F4 Shows the next occurrence in the active editor window.
SHIFT+F4 Shows the previous occurrence in the active editor window.
Tab Moves to next field.
Enter Starts Search.
8-3

GAUSS Help 9

Help Menu

From the Help menu, you can directly access the online User Guide, Keyboard
Assignments list, and Language Reference Manual. Pressing F1 also accesses the
Help system, displaying either the User Guide Introduction or, if an object has focus
and help can be directly accessed, help for that object.

Context-Sensitive Help
GAUSS integrates a context-sensitive Help system to help you use the GAUSS
environment and the GAUSS language. Context-sensitive means that Help for the
object with focus is displayed without navigating through the Help system. For
example, to display Help on a keyword in the GAUSS language in a GAUSS edit
window or the Command Input - Output window, place the insertion point on the
keyword and press F1.

Several areas of the GAUSS interface are context-sensitive, including:

• GAUSS windows

• Toolbar buttons

• GAUSS menus

• The GAUSS language
9-1

GAUSS User Guide
For intrinsic commands and functions, the GAUSS Command Reference for the
command is displayed. For other external procedures in active libraries, a window
displays a source code file, allowing you to scroll to the desired symbol.

SHIFT+F1 Support
If you press SHIFT+F1 or click on the Help toolbar button (an arrow with a question
mark), the pointer changes to a Help pointer (arrow + ?). Click on an object to display
the Help system or, if available, context-sensitive Help for that object.

CTRL+F1 Support
You can search through all active libraries for any global symbol by placing the cursor
on the symbol name and pressing CTRL+F1.

GAUSS searches through all active libraries for the file that the symbol is defined in.
If found, the file containing the source code is opened in an edit window. If the file
contains the code string "**> symbol_name" (without quotes) at the beginning of a
line of commented code, the cursor will be placed at the beginning of that line. If the
string is not found in the file, the cursor will be placed at the beginning of the file.

To properly implement this functionality in your own source code, place

**> symbol_name

at the beginning of a line in a comment block.

ToolTips
A ToolTip is a small label that is displayed when the mouse pointer is held over a
GAUSS button. The ToolTip will give a brief description of the button’s function.

Other Help
GAUSS includes full online versions of the GAUSS Language Reference and GAUSS
User Guide in PDF format. These manuals are located on the GAUSS CD-ROM.

The Gaussians mail list is an e-mail list providing users of GAUSS an easy way to
reach other GAUSS users. Gaussians provides a forum for information exchange, tips
and experiences using GAUSS. For more information about the Gaussians mail list,
see http://www.aptech.com/s2_gaussians.html. You can also e-mail
support@aptech.com.
9-2

Language Fundamentals 10

GAUSS is a compiled language. GAUSS is also an interpreter. A compiled language,
because GAUSS scans the entire program once and translates it into a binary code
before it starts to execute the program. An interpreter, because the binary code is not
the native code of the CPU. When GAUSS executes the binary pseudocode, it must
“interpret” each instruction for the computer.

How can GAUSS be so fast if it is an interpreter? Two reasons. First, GAUSS has a
fast interpreter, and the binary compiled code is compact and efficient. Second, and
most significantly, GAUSS is a matrix language. It is designed to tackle problems that
can be solved in terms of matrix or vector equations. Much of the time lost in
interpreting the pseudocode is made up in the matrix or vector operations.

This chapter will enable you to understand the distinction between “compile time” and
“execution time,” two very different stages in the life of a GAUSS program.

Expressions
An expression is a matrix, string, constant, function reference, procedure reference, or
any combination of these joined by operators. An expression returns a result that can
be assigned to a variable with the assignment operator ‘=’.
10-1

GAUSS User Guide
Statements
A statement is a complete expression or a command. Statements end with a
semicolon:

y = x*3;

If an expression has no assignment operator (=), it will be assumed to be an implicit
print statement:

print x*3;

or

x*3;

Here is an example of a statement that is a command rather than an expression:

output on;

Commands cannot be used as a part of an expression.

There can be multiple statements on the same line as long as each statement is
terminated with a semicolon.

Executable Statements
Executable statements are statements that can be “executed” over and over during the
execution phase of a GAUSS program (execution time). As an executable statement is
compiled, binary code is added to the program being compiled at the current location
of the instruction pointer. This binary code will be executed whenever the interpreter
passes through this section of the program. If the code is in a loop, it will be executed
each iteration of the loop.

Here are some examples of executable statements:

y = 34.25;

print y;

x = { 1 3 7 2 9 4 0 3 };

Nonexecutable Statements
Nonexecutable statements are statements that have an effect only when the program is
compiled (compile time). They generate no executable code at the current location of
the instruction pointer.
10-2

Language Fundamentals
Here are two examples:

declare matrix x = { 1 2 3 4 };

external matrix ybar;

Procedure definitions are nonexecutable. They do not generate executable code at the
current location of the instruction pointer. Here is an example:

zed = rndn(3,3);

proc sqrtinv(x);

local y;

y = sqrt(x);

retp(y+inv(x));

endp;

zsi = sqrtinv(zed);

There are two executable statements in the example above: the first line and the last
line. In the binary code that is generated, the last line will follow immediately after the
first line. The last line is the call to the procedure. This generates executable code.
The procedure definition generates no code at the current location of the instruction
pointer.

There is code generated in the procedure definition, but it is isolated from the rest of
the program. It is executable only within the scope of the procedure and can be
reached only by calling the procedure.

Programs
A program is any set of statements that are run together at one time. There are two
sections within a program.

Main Section
The main section of the program is all of the code that is compiled together without
relying on the autoloader. This means code that is in the main file or is included in the
compilation of the main file with an #include statement. All executable code
should be in the main section.
10-3

GAUSS User Guide
There must always be a main section even if it consists only of a call to the one and
only procedure called in the program. The main program code is stored in an area of
memory that can be adjusted in size with the new command.

Secondary Sections
Secondary sections of the program are files that are neither run directly nor included
in the main section with #include statements.

The secondary sections of the program can be left to the autoloader to locate and
compile when they are needed. Secondary sections must have only procedure
definitions and other nonexecutable statements.

#include statements are allowed in secondary sections as long as the file being
included does not violate the above criteria.

Here is an example of a secondary section:

declare matrix tol = 1.0e-15;

proc feq(a,b);

retp(abs(a-b) <= tol);

endp;

Compiler Directives
Compiler directives are commands that tell GAUSS how to process a program during
compilation. Directives determine what the final compiled form of a program will be.
They can affect part or all of the source code for a program. Directives are not
executable statements and have no effect at run-time.

The #include statement mentioned earlier is actually a compiler directive. It tells
GAUSS to compile code from a separate file as though it were actually part of the file
being compiled. This code is compiled in at the position of the #include statement.

Here are the compiler directives available in GAUSS:

#define Define a case-insensitive text-replacement or flag variable.

#definecs Define a case-sensitive text-replacement or flag variable.

#undef Undefine a text-replacement or flag variable.

#ifdef Compile code block if a variable has been #define’d.

#ifndef Compile code block if a variable has not been #define’d.
10-4

Language Fundamentals
The #define statement can be used to define abstract constants. For example, you
could define the default graphics page size as

#define hpage 9.0

#define vpage 6.855

and then write your program using hpage and vpage. GAUSS will replace them
with 9.0 and 6.855 when it compiles the program. This makes a program much
more readable.

The #ifdef-#else-#endif directives allow you to conditionally compile sections
of a program, depending on whether a particular flag variable has been #define’d.
For example:

#ifdef log_10

y = log(x);

#else

y = ln(x);

#endif

This allows the same program to calculate answers using different base logarithms,
depending on whether or not the program has a #define log_10 statement at the
top.

#undef allows you to undefine text-replacement or flag variables so they no longer
affect a program, or so you can #define them again with a different value for a

#iflight Compile code block if running GAUSS Light.

#else Else clause for #if-#else-#endif code block.

#endif End of #if-#else-#endif code block.

#include Include code from another file in program.

#lineson Compile program with line number and file name records.

#linesoff Compile program without line number and file name
records.

#srcfile Insert source file name record at this point (currently used
when doing data loop translation).

#srcline Insert source file line number record at this point (currently
used when doing data loop translation).
10-5

GAUSS User Guide
different section of the program. If you use #definecs to define a case-sensitive
variable, you must use the right case when #undef’ing it.

With #lineson, #linesoff, #srcline, and #srcfile you can include line
number and file name records in your compiled code, so that run-time errors will be
easier to track down. #srcline and #srcfile are currently used by GAUSS
when doing data loop translation.

For more information on line number tracking, see “Debugging,” page 18-2 and see
“Debugging Data Loops,” page 21-2. See also #lineson in the GAUSS Language
Reference.

The syntax for #srcfile and #srcline is different than for the other directives
that take arguments. Typically, directives do not take arguments in parentheses; that is,
they look like keywords:

#define red 4

#srcfile and #srcline, however, do take their arguments in parentheses (like
procedures):

#srcline(12)

This allows you to place #srcline statements in the middle of GAUSS commands,
so that line numbers are reported precisely as you want them. For example:

#srcline(1) print “Here is a multi-line”

#srcline(2) “sentence--if it contains a run-time

error,”

#srcline(3) “you will know exactly”

#srcline(4) “which part of the sentence has the

problem.”;

The argument supplied to #srcfile does not need quotes:

#srcfile(c:\gauss\test.e)

Procedures
A procedure allows you to define a new function which you can then use as if it were
an intrinsic function. It is called in the same way as an intrinsic function:

y = myproc(a,b,c);
10-6

Language Fundamentals
Procedures are isolated from the rest of your program and cannot be entered except by
calling them. Some or all of the variables inside a procedure can be local variables.
local variables exist only when the procedure is actually executing, and then
disappear. Local variables cannot get mixed up with other variables of the same name
in your main program or in other procedures.

For details on defining and calling procedures, see “Procedures and Keywords,”
page 12-1.

Data Types
There are two basic data types in GAUSS: matrices and strings. It is not necessary to
declare the type of a variable, but it is good programming practice to respect the types
of variables whenever possible. The data type and size can change in the course of a
program.

The declare statement, used for compile-time initialization, enforces type
checking.

Short strings of up to 8 bytes can be entered into elements of matrices, to form
character matrices. (For details, see “Character Matrices,” page 10-19.)

Constants
The following constant types are supported:

Decimal

 Decimal constants can be either integer or floating point values:

1.34e-10

1.34e123

-1.34e+10

-1.34d-10

1.34d10

1.34d+10

123.456789345

These will be stored as double precision (15-16 significant digits). The range is the
same as for matrices. (For details, see “Matrices,” page 10-8.)
10-7

GAUSS User Guide
String

 String constants are enclosed in quotation marks:

“This is a string.”

Hexadecimal Integer

 Hexadecimal integer constants are prefixed with 0x:

0x0ab53def2

Hexadecimal Floating Point

Hexadecimal floating point constants are prefixed with 0v. This allows you to input a
double precision value exactly as you want using 16 hexadecimal digits. The highest
order byte is to the left:

0vfff8000000000000

Matrices
Matrices are 2-dimensional arrays of double precision numbers. All matrices are
implicitly complex, although if it consists only of zeros, the imaginary part may take
up no space. Matrices are stored in row major order. A 2x3 real matrix will be stored
in the following way, from the lowest addressed element to the highest addressed
element:

[1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

A 2x3 complex matrix will be stored in the following way, from the lowest addressed
element to the highest addressed element:

(real part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

(imaginary part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

Conversion between complex and real matrices occurs automatically and is
transparent to the user in most cases. Functions are provided to provide explicit
control when necessary.

All numbers in GAUSS matrices are stored in double precision floating point format,
and each takes up 8 bytes of memory. This is the IEEE 754 format:
10-8

Language Fundamentals
Matrices with only one number (1x1 matrices) are referred to as scalars, and matrices
with only one row or column (1xN or Nx1 matrices) are referred to as vectors.

Any matrix or vector can be indexed with two indices. Vectors can be indexed with
one index. Scalars can be indexed with one or two indices also, because scalars,
vectors, and matrices are the same data type to GAUSS.

The majority of functions and operators in GAUSS take matrices as arguments. The
following functions and operators are used for defining, saving, and loading matrices:

Following are some examples of matrix definition statements.

Bytes Data Type
Significant

Digits Range

8 floating point 15-16

[] Indexing matrices.

= Assignment operator.

| Vertical concatenation.

~ Horizontal concatenation.

con Numeric input from keyboard.

cons Character input from keyboard.

declare Compile-time matrix or string initialization.

let Matrix definition statement.

load Load matrix (same as loadm).

readr Read from a GAUSS matrix or data set file.

save Save matrices, procedures, and strings to disk.

saved Convert a matrix to a GAUSS data set.

stof Convert string to matrix.

submat Extract a submatrix.

writer Write data to a GAUSS data set.

4.19 307–×10 X 1.67 +308×10≤ ≤
10-9

GAUSS User Guide
An assignment statement followed by data enclosed in braces is an implicit let
statement. Only constants are allowed in let statements; operators are illegal. When
braces are used in let statements, commas are used to separate rows. The statement

let x = { 1 2 3, 4 5 6, 7 8 9 };

or

x = { 1 2 3, 4 5 6, 7 8 9 };

will result in

The statement

let x[3,3] = 1 2 3 4 5 6 7 8 9;

will result in

The statement

let x[3,3] = 1;

will result in

The statement

let x[3,3];

will result in

x
1 2 3
4 5 6
7 8 9

=

x
1 2 3
4 5 6
7 8 9

=

x
1 1 1
1 1 1
1 1 1

=

10-10

Language Fundamentals
The statement

let x = 1 2 3 4 5 6 7 8 9;

will result in

Complex constants can be entered in a let statement. In the following example, the +
or - is not a mathematical operator, but connects the two parts of a complex number.
There should be no spaces between the + or - and the parts of the number. If a number
has both real and imaginary parts, the trailing ‘i’ is not necessary. If a number has no
real part, you can indicate that it is imaginary by appending the ‘i’. The statement

let x[2,2] = 1+2i 3-4 5 6i;

will result in

Complex constants can also be used with the declare, con, and stof statements.

An “empty matrix” is a matrix that contains no data. Empty matrices are created with
the let statement and braces:

x = {};

x
0 0 0
0 0 0
0 0 0

=

x

1
2
3
4
5
6
7
8
9

=

x 1 2i+ 3 4i–

5 0 6i+
=

10-11

GAUSS User Guide
Empty matrices are currently supported only by the rows and cols functions and the
concatenation operators (~ and |):

x = {};

hsec0 = hsec;

do until hsec-hsec0 > 6000;

x = x ~ data_in(hsec-hsec0);

endo;

You can test whether a matrix is empty by entering rows(x), cols(x), and
scalerr(x). If the matrix is empty, rows and cols will return a 0, and scalerr
will return 65535.

The ~ is the horizontal concatenation operator and the | is the vertical concatenation
operator. The statement

y = 1~2|3~4;

 will be evaluated as

y = (1~2)|(3~4);

and will result in a 2x2 matrix because horizontal concatenation has precedence over
vertical concatenation:

The statement

y = 1+1~2*2|3-2~6/2;

will be evaluated as

y = ((1+1)~(2*2))|((3-2)~(6/2));

and will result in a 2x2 matrix because the arithmetic operators have precedence over
concatenation:

1 2
3 4

2 4
1 3
10-12

Language Fundamentals
For more information, see “Operator Precedence,” page 10-23.

The let command is used to initialize matrices with constant values:

let x[2,2] = 1 2 3 4;

Unlike the concatenation operators, it cannot be used to define matrices in terms of
expressions such as

y = x1-x2~x2|x3*3~x4;

The statement

y = x[1:3,5:8];

will put the intersection of the first three rows and the fifth through eighth columns of
x into the matrix y.

The statement

y = x[1 3 1,5 5 9];

will create a 3x3 matrix y with the intersection of the specified rows and columns
pulled from x (in the indicated order).

The statement

let r = 1 3 1;

let c = 5 5 9;

y = x[r,c];

will have the same effect as the previous example, but is more general.

The statement

y[2,4] = 3;

will set the 2,4 element of the existing matrix y to 3. This statement is illegal if y does
not have at least 2 rows and 4 columns.

The statement

x = con(3,2);

will cause a ? to be printed in the window, and will prompt the user until six numbers
have been entered from the keyboard.

The statement

load x[] = b:mydata.asc
10-13

GAUSS User Guide
will load data contained in an ASCII file into an Nx1 vector x. (Use rows(x) to find
out how many numbers were loaded, and use reshape(x,N,K) to reshape it to an
NxK matrix.)

The statement

load x;

will load the matrix x.fmt from disk (using the current load path) into the matrix x in
memory.

The statement

open d1 = dat1;

x = readr(d1,100);

will read the first 100 rows of the GAUSS data set dat1.dat.

Strings and String Arrays

Strings

Strings can be used to store the names of files to be opened, messages to be printed,
entire files, or whatever else you might need. Any byte value is legal in a string from
0-255. The buffer where a string is stored always contains a terminating byte of ASCII
0. This allows passing strings as arguments to C functions through the Foreign
Language Interface.

Here is a partial list of the functions for manipulating strings:

$+ Combine two strings into one long string.

^ Interpret following name as a variable, not a literal.

chrs Convert vector of ASCII codes to character string.

dttostr Converts a matrix containing dates in DT scalar format to a
string array.

ftocv Character representation of numbers in NxK matrix.

ftos Character representation of numbers in 1x1 matrix.

ftostrC Converts a matrix to a string array using a C language
format specification.

getf Load ASCII or binary file into string.

indcv Find index of element in character vector.
10-14

Language Fundamentals
Strings can be created like this:

x = “example string”;

or

x = cons; /* keyboard input */

or

x = getf(“myfile”,0); /* read a file into a string */

They can be printed like this:

print x;

A character matrix must have a ‘$’ prefixed to it in a print statement:

print $x;

A string can be saved to disk with the save command in a file with a .fst
extension, and then loaded with the load command:

lower Convert to lowercase.

stof Convert string to floating point.

strindx Find index of a string within a second string.

strlen Length of a string.

strsect Extract substring of string.

strsplit Splits an Nx1 string vector to an NxK string array of the
individual tokens.

strsplitPad Splits a string vector into a string array of the individual
tokens. Pads on the right with the null strings.

strtodt Converts a string array of dates to a matrix in DT scalar
format.

strtof Converts a string array to a numeric matrix.

strtofcplx Converts a string array to complex numeric matrix.

upper Convert to uppercase.

vals Convert from string to numeric vector of ASCII codes.
10-15

GAUSS User Guide
save x;

loads x;

or

loads x=x.fst;

The backslash is used as the escape character inside double quotes to enter special
characters:

When entering DOS pathnames in double quotes, two backslashes must be used to
insert one backslash:

st = “c:\\gauss\\myprog.prg”;

An important use of strings and character elements of matrices is with the substitution
operator (^) .

In the command

create f1 = olsdat with x,4,2;

by default, GAUSS will interpret the olsdat as a literal; that is, the literal name of
the GAUSS data file you want to create. It will also interpret the x as the literal prefix
string for the variable names: x1 x2 x3 x4.

If you want to get the data set name from a string variable, the substitution operator
(^) could be used as

dataset=“olsdat”;

“\b” backspace (ASCII 8)

“\e” escape (ASCII 27)

“\f” formfeed (ASCII 12)

“\g” beep (ASCII 7)

“\l” line feed (ASCII 10)

“\r” carriage return (ASCII 13)

“\t” tab (ASCII 9)

“\\” a backslash

“\###” the ASCII character whose decimal value is “###”
10-16

Language Fundamentals
create f1=^dataset with x,4,2;

If you want to get the data set name from a string variable and the variable names from
a character vector, use

dataset=“olsdat”;

let vnames=age pay sex;

create f1=^dataset with ^vnames,0,2;

The substitution operator (^) works with load and save, also:

lpath=“c:\gauss\procs”;

name=“mydata”;

load path=^lpath x=^name;

command=“dir *.fmt”;

The general syntax is

^variable_name

Expressions are not allowed.

The following commands are supported with the substitution operator (^):

create f1=^dataset with ^vnames,0,2;

create f1=^dataset using ^cmdfile;

open f1=^dataset;

output file=^outfile;

load x=^datafile;

load path=^lpath x,y,z,t,w;

save ^name=x;

save path=^spath;

run ^prog;

msym ^mstring;
10-17

GAUSS User Guide
String Arrays

String arrays are NxK matrices of strings. Here is a partial list of the functions for
manipulating string arrays:

$| Vertical string array concatenation operator.

$~ Horizontal string array concatenation operator.

[] Extract subarrays or individual strings from their corresponding
array, or assign their values.

Transpose operator.

. Bookkeeping transpose operator.

declare Initialize variables at compile time.

delete Delete specified global symbols.

fgetsa Read multiple lines of text from a file.

fgetsat Read multiple lines of text from a file, discarding newlines.

format Define output format for matrices, string arrays, and strings.

fputs Write strings to a file.

fputst Write strings to a file, appending newlines.

let Initialize matrices, strings, and string arrays.

loads Load a string or string array file (.fst file).

lprint Print expressions to the printer.

lshow Print global symbol table to the printer.

print Print expressions in window and/or auxiliary output.

reshape Reshape a matrix or string array to new dimensions.

save Save matrix, string array, string, procedure, function, or keyword
to disk and give the disk file either a .fmt, .fst, or .fcg
extension.

show Display global symbol table.

sortcc Quick-sort rows of matrix or string array based on character
column.

′

′

10-18

Language Fundamentals
String arrays are created through the use of the string array concatenation operators.
Below is a contrast of the horizontal string and horizontal string array concatenation
operators:

x = “age”;

y = “pay”;

n = “sex”;

s = x $+ y $+ n;

sa = x $~ y $~ n;

s = agepaysex

sa = age pay sex

Character Matrices
Matrices can have either numeric or character elements. For convenience, a matrix
containing character elements is referred to as a character matrix.

A character matrix is not a separate data type, but gives you the ability to store and
manipulate data elements that are composed of ASCII characters as well as floating
point numbers. For example, you may want to concatenate a column vector containing
the names of the variables in an analysis onto a matrix containing the coefficients,
standard errors, t-statistic, and p-value. You can then print out the entire matrix with a
separate format for each column with one call to the function printfm.

The logic of the programs will dictate the type of data assigned to a matrix, and the
increased flexibility allowed by being able to bundle both types of data together in a
single matrix can be very powerful. You could, for instance, create a moment matrix
from your data, concatenate a new row onto it containing the names of the variables,
and save it to disk with the save command.

type Indicate whether variable passed as argument is matrix, string, or
string array.

typecv Indicate whether variables named in argument are strings, string
arrays, matrices, procedures, functions, or keywords.

varget Access the global variable named by a string array.

varput Assign the global variable named by a string array.

vec Stack columns of a matrix or string array to form a column vector.

vecr Stack rows of a matrix or string array to form a column vector.
10-19

GAUSS User Guide
Numeric matrices are double precision, which means that each element is stored in 8
bytes. A character matrix can thus have elements of up to 8 characters.

GAUSS does not automatically keep track of whether a matrix contains character or
numeric information. The ASCII to GAUSS conversion program ATOG will record
the types of variables in a data set when it creates it. The create command will,
also. The function vartypef gets a vector of variable type information from a data
set. This vector of ones and zeros can be used by printfm when printing your data.
Since GAUSS does not know whether a matrix has character or numeric information,
it is up to you to specify which type of data it contains when printing the contents of
the matrix. (For details, see print and printfm in the GAUSS Language
Reference.)

Most functions that take a string argument will take an element of a character matrix
also, interpreting it as a string of up to 8 characters.

Date and Time Formats

DT Scalar Format

The DT scalar format is a double precision representation of the date and time. In the
DT scalar format, the number

20010421183207

represents 18:32:07 or 6:32:07 PM on April 21, 2001.

DTV Vector Format

The DTV vector is a 1x8 vector. The format for the DTV vector is:

[1] Year

[2] Month, 1-12

[3] Day of month, 1-31

[4] Hour of day, 0-23

[5] Minute of hour, 0-59

[6] Second of minute, 0-59

[7] Day of week, 0-6 where 0 is Sunday

[8] Day since beginning of year, 0-365
10-20

Language Fundamentals
UTC Scalar Format

The UTC scalar format is the number of seconds since January 1, 1970, Greenwich
Mean Time.

Special Data Types
The IEEE floating point format has many encodings that have special meaning. The
print command will print them accurately so that you can tell if your calculation is
producing meaningful results.

NaN

There are many floating point encodings that do not correspond to a real number.
These encodings are referred to as NaN’s. NaN stands for Not a Number.

Certain numerical errors will cause the math coprocessor to create a NaN called an
“indefinite.” This will be printed as a -NaN when using the print command. These
values are created by the following operations:

+ plus -

+ minus +

- minus -

0 x

/

0 / 0

operations where one or both operands is a NaN

trigonometric functions involving

INF

When the math coprocessor overflows, the result will be a properly signed infinity.
Subsequent calculations will not deal well with an infinity; it usually signals an error
in your program. The result of an operation involving an infinity is most often a NaN.

DEN, UNN

When some math coprocessors underflow, they may do so gradually by shifting the
significand of the number as necessary to keep the exponent in range. The result of
this is a denormal (DEN). When denormals are used in calculations, they are usually
handled automatically in an appropriate way. The result will either be an unnormal
(UNN), which like the denormal represents a number very close to zero, or a normal,

∞ ∞

∞ ∞

∞ ∞

∞

∞ ∞

∞

10-21

GAUSS User Guide
depending on how significant the effect of the denormal was in the calculation. In
some cases the result will be a NaN.

Following are some procedures for dealing with these values.

The procedure isindef will return 1 (true) if the matrix passed to it contains any
NaN’s that are the indefinite mentioned earlier. The GAUSS missing value code as
well as GAUSS scalar error codes are NaN’s, but this procedure tests only for
indefinite:

proc isindef(x);

retp(not x $/= __INDEFn);

endp;

Be sure to call gausset before calling isindef. gausset will initialize the value
of the global __INDEFn to this platform-specific encoding.

The procedure normal will return a matrix with all denormals and unnormals set to
zero:

proc normal(x);

retp(x .* (abs(x) .> 4.19e-307));

endp;
10-22

Language Fundamentals
The procedure isinf will return 1 (true) if the matrix passed to it contains any
infinities:

proc isinf(x);

local plus,minus;

plus = __INFp;

minus = __INFn;

retp(not x /= plus or not x /= minus);

endp;

Be sure to call gausset before calling isinf. gausset will initialize the value of
the globals __INFn and __INFp to platform-specific encodings.

Operator Precedence
The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the * and /
operators have a higher precedence than the + and - operators. In expressions that
contain these operators, the operand pairs associated with the * or / operator are
evaluated first. Whether * or / is evaluated first depends on which comes first in the
particular expression. (For a listing of the precedence of all operators, see “Operator
Precedence,” page 11-18.)

The expression

-5+3/4+6*3

is evaluated as

Within a term, operators of equal precedence are evaluated from left to right.

The term

2^3^7

is evaluated as

(-5) + (3/4) + (6*3)

23()7
10-23

GAUSS User Guide
In the expression

f1(x)*f2(y)

f1 is evaluated before f2.

Here are some examples:

Flow Control
A computer language needs facilities for decision making and looping to control the
order in which computations are done. GAUSS has several kinds of flow control
statements.

Expression Evaluation

a+b*c+d

-2+4-6*inv(8)/9

3.14^5*6/(2+sqrt(3)/4)

-a+b*c^2

a+b-c+d-e

a^b^c*d

a*b/d*c

a^b+c*d

2^4!

2*3!

a b*c()+() d+

2–() 4+() 6*inv 8())/9)((–

3.145)*6)/ 2 sqrt(3(+()/4))((

a)– b* c2())(+(

a b) c)– d) e–+ +(((

ab)c)*d((

a*b)/d)*c((

ab() c*d()+

2 4!()

2* 3!)(
10-24

Language Fundamentals
Looping

do loop

The do statement can be used in GAUSS to control looping:

do while scalar_expression; /* loop if expression is true */

.

.

statements

.

.

endo;

also

do until scalar_expression; /* loop if expression is

false */

.

.

statements

.

.

endo;

The scalar_expression is any expression that returns a scalar result. The expression
will be evaluated as TRUE if its real part is nonzero and FALSE if it is zero.

There is no counter variable that is automatically incremented in a do loop. If one is
used, it must be set to its initial value before the loop is entered, and explicitly
incremented or decremented inside the loop.
10-25

GAUSS User Guide
The following example illustrates nested do loops that use counter variables:

format /rdn 1,0;

space =“ ”;

comma = “,”;

i = 1;

do while i <= 4;

j = 1;

do while j <= 3;

print space i comma j;;

j = j+1;

endo;

i = i+1;

print;

endo;

 This will print:

1,1 1,2 ,3

2,1 ,2,2 ,2,3

3,1 ,3,2 ,3,3

4,1 ,4,2 ,4,3

Use the relational and logical operators without the dot ‘.’ in the expression that
controls a do loop. These operators always return a scalar result.

break and continue are used within do loops to control execution flow. When
break is encountered, the program will jump to the statement following the endo.
This terminates the loop. When continue is encountered, the program will jump up
to the top of the loop and reevaluate the while or until expression. This allows
you to reiterate the loop without executing any more of the statements inside the loop:
10-26

Language Fundamentals
do until eof(fp); /* continue jumps here */

x = packr(readr(fp,100));

if scalmiss(x);

continue; /* iterate again */

endif;

s = s + sumc(x);

count = count + rows(x);

if count >= 10000;

break; /* break out of loop */

endif;

endo;

mean = s / count; /* break jumps here */

for loop

The fastest looping construct in GAUSS is the for loop:

for counter (start, stop, step);

.

.

statements

.

.

endfor;

counter is the literal name of the counter variable. start, stop, and step are scalar
expressions. start is the initial value, stop is the final value, and step is the increment.

break and continue are also supported by for loops. (For more information, see
for in the GAUSS Language Reference.)
10-27

GAUSS User Guide
Conditional Branching
The if statement controls conditional branching:

if scalar_expression;

.

.

statements

.

.

elseif scalar_expression;

.

.

statements

.

.

else;

.

.

statements

.

.

endif;

The scalar_expression is any expression that returns a scalar result. The expression
will be evaluated as TRUE if its real part is nonzero and FALSE if it is zero.

GAUSS will test the expression after the if statement. If it is TRUE, the first list of
statements is executed. If it is FALSE, GAUSS will move to the expression after the
first elseif statement, if there is one, and test it. It will keep testing expressions and
will execute the first list of statements that corresponds to a TRUE expression. If no
expression is TRUE, the list of statements following the else statement is executed.
After the appropriate list of statements is executed, the program will go to the
statement following the endif and continue on.
10-28

Language Fundamentals
Use the relational and logical operators without the dot ‘.’ in the expression that
controls an if or elseif statement. These operators always return a scalar result.

if statements can be nested.

One endif is required per if clause. If an else statement is used, there may be
only one per if clause. There may be as many elseif’s as are required. There need
not be any elseif’s or any else statement within an if clause.

Unconditional Branching
The goto and gosub statements control unconditional branching. The target of both
a goto and a gosub is a label.

goto

A goto is an unconditional jump to a label with no return:

label:

.

.

goto label;

Parameters can be passed with a goto. The number of parameters is limited by
available stack space. This is good for common exit routines:

.

.

goto errout(“Matrix singular”);

.

.

goto errout(“File not found”);

.

.

errout:

pop errmsg;

errorlog errmsg;

end;
10-29

GAUSS User Guide
gosub

With a gosub, the address of the gosub statement is remembered and when a
return statement is encountered, the program will resume executing at the
statement following the gosub.

Parameters can be passed with a gosub in the same way as a goto. With a gosub, it
is also possible to return parameters with the return statement.

Subroutines are not isolated from the rest of your program, and the variables referred
to between the label and the return statement can be accessed from other places in
your program.

Since a subroutine is only an address marked by a label, there can be subroutines
inside procedures. The variables used in these subroutines are the same variables that
are known inside the procedure. They will not be unique to the subroutine, but they
may be locals that are unique to the procedure the subroutine is in. (For details, see
gosub in the GAUSS Language Reference.)

Functions
Single line functions that return one item can be defined with the fn statement:

fn area(r) = pi * r * r;

These functions can be called in the same way as intrinsic functions. The above
function could be used in the following program sequence:

diameter = 3;

radius = 3 / 2;

a = area(radius);

Rules of Syntax
This section lists the general rules of syntax for GAUSS programs.

Statements
A GAUSS program consists of a series of statements. A statement is a complete
expression or command.

Statements in GAUSS end with a semicolon with one exception: from the GAUSS
command line, the final semicolon in an interactive program is implicit if it is not
explicitly given:

(gauss) x=5; z=rndn(3,3); y=x+z
10-30

Language Fundamentals
Column position is not significant. Blank lines are allowed. Inside a statement and
outside of double quotes, the carriage return/line feed at the end of a physical line will
be converted to a space character as the program is compiled.

A statement containing a quoted string can be continued across several lines with a
backslash:

s = “This is one really `long string that would be” \

“difficult to assign in just a single line.”;

Case
GAUSS does not distinguish between uppercase and lowercase except inside double
quotes.

Comments
/* this kind of comment can be nested */

@ this kind of comment cannot be nested @

Extraneous Spaces
Extraneous spaces are significant in print and lprint statements where the space
is a delimiter between expressions:

print x y z;

In print and lprint statements, spaces can be used in expressions that are in
parentheses:

print (x * y) (x + y);

Symbol Names
The names of matrices, strings, procedures, and functions can be up to 32 characters
long. The characters must be alphanumeric or an underscore. The first character must
be alphabetic or an underscore.

Labels
A label is used as the target of a goto or a gosub. The rule for naming labels is the
same as for matrices, strings, procedures, and functions. A label is followed
immediately by a colon:

here:
10-31

GAUSS User Guide
The reference to a label does not use a colon:

goto here;

Assignment Statements
The assignment operator is the equal sign ‘=’ :

y = x + z;

Multiple assignments must be enclosed in braces ‘{ }’:

{ mant,pow } = base10(x);

The comparison operator (equal to) is two equal signs ‘==’:

if x == y;

print “x is equal to y”;

endif;

Function Arguments
The arguments to functions are enclosed in parentheses ‘()’:

y = sqrt(x);

Indexing Matrices
Brackets ‘[]’ are used to index matrices:

x = { 1 2 3,

3 7 5,

3 7 4,

8 9 5,

6 1 8 };

y = x[3,3];

z = x[1 2:4,1 3];

Vectors can be indexed with either one or two indices:

v = { 1 2 3 4 5 6 7 8 9 };
10-32

Language Fundamentals
k = v[3];

j = v[1,6:9];

x[2,3] returns the element in the second row and the third column of x.

x[1 3 5,4 7] returns the submatrix that is the intersection of rows 1, 3, and 5 and
columns 4 and 7.

x[.,3] returns the third column of x.

x[3:5,.] returns the submatrix containing the third through the fifth rows of x.

The indexing operator will take vector arguments for submatrix extraction or
submatrix assignments:

y = x[rv,cv];

y[rv,cv] = x;

rv and cv can be any expressions returning vectors or matrices. The elements of rv
will be used as the row indices and the elements of cv will be used as the column
indices. If rv is a scalar 0, all rows will be used; if cv is a scalar 0, all columns will be
used. If a vector is used in an index expression, it is illegal to use the space operator or
the colon operator on the same side of the comma as the vector.

Arrays of Matrices and Strings
It is possible to index sets of matrices or strings using the varget function.

In this example, a set of matrix names is assigned to mvec. The name y is indexed
from mvec and passed to varget, which will return the global matrix y. The
returned matrix is inverted and assigned to g:

mvec = { x y z a };

i = 2;

g = inv(varget(mvec[i]));

The following procedure can be used to index the matrices in mvec more directly:

proc imvec(i);

retp(varget(mvec[i]));

endp;

Then imvec(i) will equal the matrix whose name is in the ith element of mvec.
10-33

GAUSS User Guide
In the example above, the procedure imvec was written so that it always operates on
the vector mvec. The following procedure makes it possible to pass in the vector of
names being used:

proc get(array,i);

retp(varget(array[i]));

endp;

Then get(mvec,3) will return the 3rd matrix listed in mvec.

proc put(x,array,i);

retp(varput(x,array[i]));

endp;

And put(x,mvec,3) will assign x to the 3rd matrix listed in mvec and return a 1
if successful or a 0 if it fails.

Arrays of Procedures
It is also possible to index procedures. The ampersand operator (&) is used to return a
pointer to a procedure.

Assume that f1, f2, and f3 are procedures that take a single argument. The
following code defines a procedure fi that will return the value of the ith procedure,
evaluated at x:

nms = &f1 | &f2 | &f3;

proc fi(x,i);

local f;

f = nms[i];

local f:proc;

retp(f(x));

endp;

fi(x,2) will return f2(x). The ampersand is used to return the pointers to the
procedures. nms is a numeric vector that contains a set of pointers. The local
statement is used twice. The first tells the compiler that f is a local matrix. The ith
pointer, which is just a number, is assigned to f. The second local statement tells
the compiler to treat f as a procedure from this point on; thus the subsequent
statement f(x) is interpreted as a procedure call.
10-34

Operators 11

Element-by-Element Operators

Element-by-element operators share common rules of conformability. Some functions
that have two arguments also operate according to the same rules.

Element-by-element operators handle those situations in which matrices are not
conformable according to standard rules of matrix algebra. When a matrix is said to be
ExE conformable, it refers to this element-by-element conformability. The following
cases are supported:

matrix op matrix

matrix
scalar

op
op

scalar
matrix

matrix
vector

op
op

vector
matrix

vector op vector
11-1

GAUSS User Guide
In a typical expression involving an element-by-element operator

z = x + y;

conformability is defined as follows:

• If x and y are the same size, the operations are carried out corresponding
element by corresponding element:

• If x is a matrix and y is a scalar, or vice versa, the scalar is operated on with
respect to every element in the matrix. For example, x + 2 will add 2 to every
element of x:

x
1 3 2
4 5 1
3 7 4

=

y
2 4 3
3 1 4
6 1 2

=

z
3 7 5
7 6 5
9 8 6

=

x
1 3 2
4 5 1
3 7 4

=

y 2=

z
3 5 4
6 7 3
5 9 6

=

11-2

Operators
• If x is an Nx1 column vector and y is an NxK matrix, or vice versa, the vector
is swept “across” the matrix:

• If x is a 1xK column vector and y is an NxK matrix, or vice versa, the vector is
swept “down” the matrix:

vector matrix

1 2 4 3

4 3 1 4

3 6 1 2

result

3 5 4

7 5 8

9 4 5

vector 2 4 3

2 4 3

matrix 3 1 4

6 1 2

4 8 6

result 5 5 7

8 5 5
11-3

GAUSS User Guide
• When one argument is a row vector and the other is a column vector, the result
of an element-by-element operation will be the “table” of the two:

If x and y are such that none of these conditions apply, the matrices are not
conformable to these operations and an error message will be generated.

Matrix Operators
The following operators work on matrices. Some assume numeric data and others will
work on either character or numeric data.

Numeric Operators
For details on how matrix conformability is defined for element-by-element operators,
see “Element-by-Element Operators,” page 11-1.

+ Addition

y = x + z;

Performs element-by-element addition.

- Subtraction or negation

y = x - z;

y = -k;

Performs element-by-element subtraction or the negation of all elements,
depending on context.

* Matrix multiplication or multiplication

y = x * z;

When z has the same number of rows as x has columns, this will perform matrix
multiplication (inner product). If x or z are scalar, this performs standard
element-by-element multiplication.

row vector 2 4 3 1

3 5 7 6 4

column vector 2 4 6 5 3

5 7 9 8 6
11-4

Operators
/ Division or linear equation solution

x = b / A;

If A and b are scalars, it performs standard division. If one of the operands is a
matrix and the other is scalar, the result is a matrix the same size with the results
of the divisions between the scalar and the corresponding elements of the matrix.
Use ./ for element-by-element division of matrices.

If b and A are conformable, this operator solves the linear matrix equations.

Linear equation solution is performed in the following cases:

Ax = b

• If A is a square matrix and has the same number of rows as b, this
statement will solve the system of linear equations using an LU
decomposition.

• If A is rectangular with the same number of rows as b, this statement will
produce the least squares solutions by forming the normal equations and
using the Cholesky decomposition to get the solution.

If trap 2 is set, missing values will be handled with pairwise deletion.

% Modulo division

y = x % z;

For integers, this returns the integer value that is the remainder of the integer
division of x by z. If x or z is noninteger, it will first be rounded to the nearest
integer. This is an element-by-element operator.

! Factorial

y = x!;

Computes the factorial of every element in the matrix x. Nonintegers are
rounded to the nearest integer before the factorial operator is applied. This will
not work with complex matrices. If x is complex, a fatal error will be generated.

.* Element-by-element multiplication

y = x .* z;

If x is a column vector and z is a row vector (or vice versa), the “outer product”
or “table” of the two will be computed. (For conformability rules, see “Element-
by-Element Operators,” page 11-1.)

y A ′b
A ′A
---------=
11-5

GAUSS User Guide
./ Element-by-element division

y = x ./ z;

^ Element-by-element exponentiation

y = x^z;

If x is negative, z must be an integer.

.^ Same as ^

.*. Kronecker (tensor) product

y = x .*. z;

This results in a matrix in which every element in x has been multiplied (scalar
multiplication) by the matrix z. For example:

x = {1 2,

3 4 };

z = {4 5 6,

7 8 9 };

y = x .*. z;

x 1 2
3 4

=

z 4 5 6
7 8 9

=

y

4 5 6 8 10 12
7 8 9 14 16 18
12 15 18 16 20 24
21 24 27 28 32 36

=

11-6

Operators
*~ Horizontal direct product

z = x *~ y;

The input matrices x and y must have the same number of rows. The result will
have cols(x) * cols(y) columns.

Other Matrix Operators
’ Transpose operator

y = x’;

The columns of y will contain the same values as the rows of x, and the rows of y
will contain the same values as the columns of x. For complex matrices, this
computes the complex conjugate transpose.

If an operand immediately follows the transpose operator, the ’ will be interpreted
as ’*. Thus y = x’x is equivalent to y = x’*x.

.’ Bookkeeping transpose operator

y = x.’;

This is provided primarily as a matrix handling tool for complex matrices. For all
matrices, the columns of y will contain the same values as the rows of x, and the
rows of y will contain the same values as the columns of x. The complex
conjugate transpose is NOT computed when you use .’.

If an operand immediately follows the bookkeeping transpose operator, the .’
will be interpreted as .’*. Thus y = x.’x is equivalent to y = x.’*x.

x 1 2
3 4

=

y 5 6
7 8

=

z 5 6 10 12
21 24 28 32

=

11-7

GAUSS User Guide
| Vertical concatenation

z = x|y;

~ Horizontal concatenation

z = x~y;

Relational Operators
For details on how matrix conformability is defined for element-by-element operators,
see “Element-by-Element Operators,” page 11-1.

Each of these operators has two equivalent representations. Either can be used (for
example, < or lt), depending only upon preference. The alphabetic form should be
surrounded by spaces.

A third form of these operators has a ‘$’ and is used for comparisons between
character data and for comparisons between strings or string arrays. The comparisons
are done byte by byte, starting with the lowest addressed byte of the elements being
compared.

x 1 2 3
3 4 5

=

y 7 8 9=

z
1 2 3
3 4 5
7 8 9

=

x 1 2
3 4

=

y 5 6
7 8

=

z 1 2 5 6
3 4 7 8

=

11-8

Operators
The equality comparison operators (<=, ==, >=, /=) and their dot equivalents can be
used to test for missing values and the NaN that is created by floating point
exceptions. Less than and greater than comparisons are not meaningful with missings
or NaN’s, but equal and not equal will be valid. These operators are sign-insensitive
for missings, NaN’s, and zeros.

The string ‘$’ versions of these operators can also be used to test missings, NaN’s, and
zeros. Because they do a strict byte-to-byte comparison, they are sensitive to the sign
bit. Missings, NaN’s, and zeros can all have the sign bit set to 0 or 1, depending on
how they were generated and have been used in a program.

If the relational operator is NOT preceded by a dot ‘.’, the result is always a scalar 1
or 0, based upon a comparison of all elements of x and y. All comparisons must be true
for the relational operator to return TRUE.

By this definition, then

if x /= y;

is interpreted as: “if every element of x is not equal to the corresponding element of y”

 To check if two matrices are not identical, use

if not x == y;

For complex matrices, the ==, /=, .==, and ./= operators compare both the real and
imaginary parts of the matrices; all other relational operators compare only the real
parts.

• Less than

z = x < y;

z = x lt y;

z = x $< y;

• Less than or equal to

z = x <= y;

z = x le y;

z = x $<= y;

• Equal to

z = x == y;

z = x eq y;

z = x $== y;
11-9

GAUSS User Guide
• Not equal

z = x /= y;

z = x ne y;

z = x $/= y;

• Greater than or equal to

z = x >= y;

z = x ge y;

z = x $>= y;

• Greater than

z = x > y;

z = x gt y;

z = x $> y;

If the relational operator IS preceded by a dot ‘.’, the result will be a matrix of 1’s and
0’s, based upon an element-by-element comparison of x and y.

• Element-by-element less than

z = x .< y;

z = x .lt y;

z = x .$< y;

• Element-by-element less than or equal to

z = x .<= y;

z = x .le y;

z = x .$<= y;

• Element-by-element equal to

z = x .== y;

z = x .eq y;

z = x .$== y;

• Element-by-element not equal to

z = x ./= y;

z = x .ne y;

z = x .$/= y;
11-10

Operators
• Element-by-element greater than or equal to

z = x .>= y;

z = x .ge y;

z = x .$>= y;

• Element-by-element greater than

z = x .> y;

z = x .gt y;

z = x .$> y;

Logical Operators
The logical operators perform logical or Boolean operations on numeric values. On
input, a nonzero value is considered TRUE and a zero value is considered FALSE.
The logical operators return a 1 if TRUE and a 0 if FALSE. Decisions are based on the
following truth tables:

Complement

X not X

T F

F T

Conjunction

X Y X and Y

T T T

T F F

F T F

F F F
11-11

GAUSS User Guide
For complex matrices, the logical operators consider only the real part of the matrices.

The following operators require scalar arguments. These are the ones to use in if and
do statements:

• Complement

z = not x;

• Conjunction

z = x and y;

Disjunction

X Y X or Y

T T T

T F T

F T T

F F F

Exclusive Or

X Y X xor Y

T T F

T F T

F T T

F F F

Equivalence

X Y X eqv Y

T T T

T F F

F T F

F F T
11-12

Operators
• Disjunction

z = x or y;

• Exclusive or

z = x xor y;

• Equivalence

z = x eqv y;

If the logical operator is preceded by a dot ‘.’, the result will be a matrix of 1’s and 0’s
based upon an element-by-element logical comparison of x and y:

• Element-by-element logical complement

z = .not x;

• Element-by-element conjunction

z = x .and y;

• Element-by-element disjunction

z = x .or y;

• Element-by-element exclusive or

z = x .xor y;

• Element-by-element equivalence

z = x .eqv y;

Other Operators
Assignment Operator

Assignments are done with one equal sign:

y = 3;

Comma
Commas are used to delimit lists:

clear x,y,z;

to separate row indices from column indices within brackets:

y = x[3,5];

and to separate arguments of functions within parentheses:
11-13

GAUSS User Guide
y = momentd(x,d);

Period
Dots are used in brackets to signify “all rows” or “all columns:”

y = x[.,5];

Space
Spaces are used inside of index brackets to separate indices:

y = x[1 3 5,3 5 9];

No extraneous spaces are allowed immediately before or after the comma, or
immediately after the left bracket or before the right bracket.

Spaces are also used in print and lprint statements to separate the separate
expressions to be printed:

print x/2 2*sqrt(x);

No extraneous spaces are allowed within expressions in print or lprint
statements unless the expression is enclosed in parentheses:

print (x / 2) (2 * sqrt(x));

Colon
A colon is used within brackets to create a continuous range of indices:

y = x[1:5,.];

Ampersand
The ampersand operator (&) will return a pointer to a procedure (proc) or function
(fn). It is used when passing procedures or functions to other functions and for
indexing procedures. (For more information, see “Indexing Procedures,” page 12-9.)

String Concatenation
x = “dog”;

y = “cat”;

z = x $+ y;

print z;
11-14

Operators
dogcat

If the first argument is of type string, the result will be of type string. If the first
argument is of type matrix, the result will be of type matrix. Here are some examples:

y = 0 $+ “caterpillar”;

the result will be a 1x1 matrix containing caterpil.

y = zeros(3,1) $+ “cat”;

the result will be a 3x1 matrix, each element containing cat.

If we use the y created above in the following:

k = y $+ “fish”;

the result will be a 3x1 matrix with each element containing catfish.

If we then use k created above:

t = “” $+ k[1,1];

the result will be a string containing catfish.

If we use the same k to create z as follows:

z = “dog” $+ k[1,1];

the result will be a string containing dogcatfish.

String Array Concatenation
$| Vertical string array concatenation

x = “dog”;

y = “fish”;

k = x $| y;

print k;

dog

fish
11-15

GAUSS User Guide
$~ Horizontal string array concatenation

x = “dog”;

y = “fish”;

k = x $~ y;

print k;

dog fish

String Variable Substitution
In a command such as

create f1 = olsdat with x,4,2;

by default, GAUSS will interpret olsdat as the literal name of the GAUSS data file
you want to create. It will also interpret x as the literal prefix string for the variable
names x1 x2 x3 x4.

To get the data set name from a string variable, the substitution operator (^) could be
used as follows:

dataset = “olsdat”;

create f1 = ^dataset with x,4,2;

To get the data set name from a string variable and the variable names from a
character vector, use the following:

dataset = “olsdat”;

vnames = { age, pay, sex };

create f1 = ^dataset with ^vnames,0,2;

The general syntax is

^variable_name

Expressions are not allowed.
11-16

Operators
The following commands are currently supported with the substitution operator (^):

create f1 = ^dataset with ^vnames,0,2;

create f1 = ^dataset using ^cmdfile;

open f1 = ^dataset;

output file = ^outfile;

load x = ^datafile;

load path = ^lpath x,y,z,t,w;

save ^name = x;

save path = ^spath;

run ^prog;

msym ^mstring;

Using Dot Operators with Constants
When you use those operators preceded by a ‘.’ (dot operators) with a scalar integer
constant, insert a space between the constant and any following dot operator.
Otherwise, the dot will be interpreted as part of the scalar; that is, the decimal point.
For example,

let y = 1 2 3;

x = 2.<y;

will return x as a scalar 0, not a vector of 0’s and 1’s, because

x = 2.<y;

is interpreted as

x = 2. < y;

and not as

x = 2 .< y;
11-17

GAUSS User Guide
Be careful when using the dot relational operators (.<, .<=, .==, ./=, .>, .>=).
The same problem can occur with other dot operators, also. For example,

let x = 1 1 1;

y = x./2./x;

will return y as a scalar .5 rather than a vector of .5’s, because

y = x./2./x;

is interpreted as

y = (x ./ 2.) / x;

and not as

y = (x ./ 2) ./ x;

The second division, then, is handled as a matrix division rather than an element-by-
element division.

Operator Precedence
The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the * and /
operators have a higher precedence than the + and - operators. In expressions that
contain the above operators, the operand pairs associated with the * or / operator are
evaluated first. Whether * or / is evaluated first depends on which comes first in the
particular expression.

The expression

-5+3/4+6*3

is evaluated as

 (-5)+(3/4)+(6*3)

Within a term, operators of equal precedence are evaluated from left to right.
11-18

Operators
The precedence of all operators, from the highest to the lowest, is listed in the
following table:

Operator Precedence Operator Precedence Operator Precedence

 . 90 .$>= 65 $>= 55

90 ./= 65 /= 55

! 89 .< 65 < 55

.^ 85 .<= 65 <= 55

^ 85 .== 65 == 55

(unary -) 83 .> 65 > 55

* 80 .>= 65 >= 55

*~ 80 .eq 65 eq 55

.* 80 .ge 65 ge 55

.*. 80 .gt 65 gt 55

./ 80 .le 65 le 55

 / 80 .lt 65 lt 55

% 75 .ne 65 ne 55

$+ 70 .not 64 not 49

+ 70 .and 63 and 48

- 70 .or 62 or 47

~ 68 .xor 61 xor 46

| 67 .eqv 60 eqv 45

.$/= 65 $/= 55 (space) 35

.$< 65 $< 55 : 35

.$<= 65 $<= 55 = 10

.$== 65 $== 55

.$> 65 $> 55

′

′

11-19

Procedures and Keywords 12

Procedures are multiple-line, recursive functions that can have either local or global
variables. Procedures allow a large computing task to be written as a collection of
smaller tasks. These smaller tasks are easier to work with and keep the details of their
operation separate from the other parts of the program. This makes programs easier to
understand and easier to maintain.

A procedure in GAUSS is basically a user-defined function that can be used as if it
were an intrinsic part of the language. A procedure can be as small and simple or as
large and complicated as necessary to perform a particular task. Procedures allow you
to build on your previous work and on the work of others, rather than starting over
again and again to perform related tasks.

Any intrinsic command or function may be used in a procedure, as well as any user-
defined function or other procedure. Procedures can refer to any global variable; that
is, any variable in the global symbol table that can be shown with the show command.
It is also possible to declare local variables within a procedure. These variables are
known only inside the procedure they are defined in and cannot be accessed from
other procedures or from the main level program code.

All labels and subroutines inside a procedure are local to that procedure and will not
be confused with labels of the same name in other procedures.
12-1

GAUSS User Guide
Defining a Procedure
A procedure definition consists of five parts, four of which are denoted by explicit
GAUSS commands:

There is always one proc statement and one endp statement in a procedure
definition. Any statements that come between these two statements are part of the
procedure. Procedure definitions cannot be nested. local and retp statements are
optional. There can be multiple local and retp statements in a procedure
definition. Here is an example:

proc (3) = regress(x, y);

local xxi,b,ymxb,sse,sd,t;

xxi = invpd(x’x);

b = xxi * (x’y);

ymxb = y-xb;

sse = ymxb’ymxb/(rows(x)-cols(x));

sd = sqrt(diag(sse*xxi));

t = b./sd;

retp(b,sd,t);

endp;

This could be used as a function that takes two matrix arguments and returns three
matrices as a result. For example:

{ b,sd,t } = regress(x,y);

Following is a discussion of the five parts of a procedure definition.

1. Procedure declaration proc statement

2. Local variable declaration local statement

3. Body of procedure

4. Return from procedure retp statement

5. End of procedure definition endp statement
12-2

Procedures and Keywords
Procedure Declaration
The proc statement is the procedure declaration statement. The format is:

proc [[(rets)=]] name([[arg1,arg2,...argN]]);

Local Variable Declarations
The local statement is used to declare local variables. Local variables are variables
known only to the procedure being defined. The names used in the argument list of the
proc statement are always local. The format of the local statement is

local x,y,f:proc,g:fn,z,h:keyword;

Local variables can be matrices or strings. If :proc, :fn, or :keyword follows the
variable name in the local statement, the compiler will treat the symbol as if it were
a procedure, function, or keyword, respectively. This allows passing procedures,
functions, and keywords to other procedures. (For more information, see “Passing
Procedures to Procedures,” page 12-8.)

Variables that are global to the system (that is, variables listed in the global symbol
table that can be shown with the show command) can be accessed by any procedure
without any redundant declaration inside the procedure. If you want to create variables
known only to the procedure being defined, the names of these local variables must be
listed in a local statement. Once a variable name is encountered in a local
statement, further references to that name inside the procedure will be to the local
rather than to a global having the same name. (See clearg, varget, and varput
in the GAUSS Language Reference for ways of accessing globals from within
procedures that have locals with the same name.)

The local statement does not initialize (set to a value) the local variables. If they are
not passed in as parameters, they must be assigned some value before they are
accessed or the program will terminate with a Variable not initialized
error message.

rets Optional constant, number of values returned by the procedure.
Acceptable values here are 0-1023; the default is 1.

name Name of the procedure, up to 32 alphanumeric characters or an
underscore, beginning with an alpha or an underscore.

arg# Names that will be used inside the procedure for the arguments that
are passed to the procedure when it is called. There can be 0-1023
arguments. These names will be known only in the procedure being
defined. Other procedures can use the same names, but they will be
separate entities.
12-3

GAUSS User Guide
All local and global variables are dynamically allocated and sized automatically
during execution. Local variables, including those that were passed as parameters, can
change in size during the execution of the procedure.

Local variables exist only when the procedure is executing, and then disappear. Local
variables cannot be listed with the show command.

The maximum number of locals is limited by stack space and the size of workspace
memory. The limiting factor applies to the total number of active local symbols at any
one time during execution. If cat has 10 locals and it calls dog which has 20 locals,
there are 30 active locals whenever cat is called.

There can be multiple local statements in a procedure. They will affect only the
code in the procedure that follows. Therefore, for example, it is possible to refer to a
global x in a procedure and follow that with a local statement that declares a local
x. All subsequent references to x would be to the local x. (This is not good
programming practice, but it demonstrates the principle that the local statement
affects only the code that is physically below it in the procedure definition.) Another
example is a symbol that is declared as a local and then declared as a local procedure
or function later in the same procedure definition. This allows doing arithmetic on
local function pointers before calling them. (For more information, see “Indexing
Procedures,” page 12-9.)

Body of Procedure
The body of the procedure can have any GAUSS statements necessary to perform the
task the procedure is being written for. Other user-defined functions and other
procedures can be referenced, as well as any global matrices and strings.

GAUSS procedures are recursive, so the procedure can call itself as long as there is
logic in the procedure to prevent an infinite recursion. The process would otherwise
terminate with either an Insufficient workspace memory error message or
a Procedure calls too deep error message, depending on the space
necessary to store the locals for each separate invocation of the procedure.

Returning from the Procedure
The return from the procedure is accomplished with the retp statement:

retp;

retp(expression1,expression2,...expressionN);

The retp statement can have multiple arguments. The number of items returned must
coincide with the number of rets in the proc statement.

If the procedure is being defined with no items returned, the retp statement is
optional. The endp statement that ends the procedure will generate an implicit retp
12-4

Procedures and Keywords
with no objects returned. If the procedure returns one or more objects, there must be
an explicit retp statement.

There can be multiple retp statements in a procedure, and they can be anywhere
inside the body of the procedure.

End of Procedure Definition
The endp statement marks the end of the procedure definition:

endp;

An implicit retp statement that returns nothing is always generated here, so it is
impossible to run off the end of a procedure without returning. If the procedure was
defined to return one or more objects, executing this implicit return will result in a
Wrong number of returns error message and the program will terminate.

Calling a Procedure
Procedures are called like this:

dog(i,j,k); /* no returns */

y = cat(i,j,k); /* one return */

{ x,y,z } = bat(i,j,k); /* multiple returns */

call bat(i,j,k); /* ignore any returns */

Procedures are called in the same way that intrinsic functions are called. The
procedure name is followed by a list of arguments in parentheses. The arguments must
be separated by commas.

If there is to be no return value, use

proc (0) = dog(x,y,z);

when defining the procedure, and use

dog(ak,4,3);

or

call dog(ak,4,3);

when calling it.
12-5

GAUSS User Guide
The arguments passed to procedures can be complicated expressions involving calls to
other functions and procedures. This calling mechanism is completely general. For
example,

y = dog(cat(3*x,bird(x,y))-2,1);

is legal.

Keywords
A keyword, like a procedure, is a subroutine that can be called interactively or from
within a GAUSS program. A keyword differs from a procedure in that a keyword
accepts exactly one string argument, and returns nothing. Keywords can perform
many tasks not as easily accomplished with procedures.

Defining a Keyword
A keyword definition is much like a procedure definition. Keywords always are
defined with 0 returns and 1 argument. The beginning of a keyword definition is the
keyword statement:

keyword name(strarg);

The rest of the keyword definition is the same as a procedure definition. (For more
information, see “Defining a Procedure,” page 12-2.) Keywords always return
nothing. Any retp statements, if used, should be empty. For example:

keyword add(s)

local tok, sum;

if s $== “”;

print “The argument is a null string”;

name Name of the keyword, up to 32 alphanumeric characters or an
underscore, beginning with an alpha or an underscore.

strarg Name that will be used inside the keyword for the argument that is
passed to the keyword when it is called. There is always one
argument. The name is known only in the keyword being defined.
Other keywords can use the same name, but they will be separate
entities. This will always be a string. If the keyword is called with
no characters following the name of the keyword, this will be a null
string.
12-6

Procedures and Keywords
retp;

endif;

print “The argument is: ’“s”’”;

sum = 0;

do until s $== “”;

{ tok, s } = token(s);

sum = sum + stof(tok);

endo;

format /rd 1,2;

print “The sum is: ” sum;

endp;

The keyword defined above will print the string argument passed to it. The argument
will be printed enclosed in single quotes.

Calling a Keyword
When a keyword is called, every character up to the end of the statement, excluding
the leading spaces, is passed to the keyword as one string argument. For example, if
you type

add 1 2 3 4 5;

the keyword will respond

The sum is: 15.00

Here is another example:

add;

the keyword will respond

The argument is a null string
12-7

GAUSS User Guide
Passing Procedures to Procedures
Procedures and functions can be passed to procedures in the following way:

proc max(x,y); /* procedure to return maximum */

if x>y;

retp(x);

else;

retp(y);

endif;

endp;

proc min(x,y); /* procedure to return minimum */

if x<y;

retp(x);

else;

retp(y);

endif;

endp;

fn lgsqrt(x) = ln(sqrt(x)); /* function to return

:: log of square root

*/

proc myproc(&f1,&f2,x,y);

local f1:proc, f2:fn, z;

z = f1(x,y);

retp(f2(z));

endp;
12-8

Procedures and Keywords
The procedure myproc takes four arguments. The first is a procedure f1 that has two
arguments. The second is a function f2 that has one argument. It also has two other
arguments that must be matrices or scalars. In the local statement, f1 is declared to
be a procedure and f2 is declared to be a function. They can be used inside the
procedure in the usual way. f1 will be interpreted as a procedure inside myproc, and
f2 will be interpreted as a function. The call to myproc is made as follows:

k = myproc(&max,&lgsqrt,5,7); /* log of square root

:: of 7

*/

k = myproc(&min,&lgsqrt,5,7); /* log of square root

:: of 5

*/

The ampersand (&) in front of the function or procedure name in the call to myproc
causes a pointer to the function or procedure to be passed. No argument list should
follow the name when it is preceded by the ampersand.

Inside myproc, the symbol that is declared as a procedure in the local statement is
assumed to contain a pointer to a procedure. It can be called exactly like a procedure is
called. It cannot be save’d, but it can be passed on to another procedure. If it is to be
passed on to another procedure, use the ampersand in the same way.

Indexing Procedures
This example assumes there are a set of procedures named f1-f5 that are already
defined. A 1x5 vector procvec is defined by horizontally concatenating pointers to
these procedures. A new procedure, g(x,i) is then defined that will return the value of
the ith procedure evaluated at x:

procvec = &f1 ~ &f2 ~ &f3 ~ &f4 ~ &f5;

proc g(x,i);

local f;

f = procvec[i];

local f:proc;

retp(f(x));

endp;
12-9

GAUSS User Guide
The local statement is used twice. The first time, f is declared to be a local matrix.
After f has been set equal to the ith pointer, f is declared to be a procedure and is
called as a procedure in the retp statement.

Multiple Returns from Procedures
Procedures can return multiple items, up to 1023. The procedure is defined like this
example of a complex inverse:

proc (2) = cminv(xr,xi); /* (2) specifies number of

:: return values

*/

local ixy, zr, zi;

ixy = inv(xr)*xi;

zr = inv(xr+xi*ixy); /* real part of inverse */

zi = -ixy*zr; /* imaginary part of inverse */

retp(zr,zi); /* return: real part,

:: imaginary part

*/

endp;

It can then be called like this:

{ zr,zi } = cminv(xr,xi);

To make the assignment, the list of targets must be enclosed in braces.

Also, a procedure that returns more than one argument can be used as input to another
procedure or function that takes more than one argument:

proc (2) = cminv(xr,xi);

local ixy, zr, zi;

ixy = inv(xr)*xi;

zr = inv(xr+xi*ixy); /* real part of inverse */

zi = -ixy*zr; /* imaginary part of inverse */
12-10

Procedures and Keywords
retp(zr,zi);

endp;

proc (2) = cmmult(xr,xi,yr,yi);

local zr,zi;

zr = xr*yr-xi*yi;

zi = xr*yi+xi*yr;

retp(zr,zi);

endp;

{ zr,zi } = cminv(cmmult(xr,xi,yr,yi));

The two returned matrices from cmmult() are passed directly to cminv() in the
statement above. This is equivalent to the following statements:

{ tr,ti } = cmmult(xr,xi,yr,yi);

{ zr,zi } = cminv(tr,ti);

This is completely general, so the following program is legal:

proc (2) = cmcplx(x);

local r,c;

r = rows(x);

c = cols(x);

retp(x,zeros(r,c));

endp;

proc (2) = cminv(xr,xi);

local ixy, zr, zi;

ixy = inv(xr)*xi;

zr = inv(xr+xi*ixy);/* real part of inverse */

zi = -ixy*zr; /* imaginary part of inverse */
12-11

GAUSS User Guide
retp(zr,zi);

endp;

proc (2) = cmmult(xr,xi,yr,yi);

local zr,zi;

zr = xr*yr-xi*yi;

zi = xr*yi+xi*yr;

retp(zr,zi);

endp;

{ xr,xi } = cmcplx(rndn(3,3));

{ yr,yi } = cmcplx(rndn(3,3));

{ zr,zi } = cmmult(cminv(xr,xi),cminv(yr,yi));

{ qr,qi } = cmmult(yr,yi,cminv(yr,yi));

{ wr,wi } =

cmmult(yr,yi,cminv(cmmult(cminv(xr,xi),yr,yi)));

Saving Compiled Procedures
When a file containing a procedure definition is run, the procedure is compiled and is
then resident in memory. The procedure can be called as if it were an intrinsic
function. If the new command is executed or you quit GAUSS and exit to the
operating system, the compiled image of the procedure disappears and the file
containing the procedure definition will have to be compiled again.

If a procedure contains no global references, that is, if it does not reference any global
matrices or strings and it does not call any user-defined functions or procedures, it can
be saved to disk in compiled form in a .fcg file with the save command, and loaded
later with the loadp command whenever it is needed. This will usually be faster than
recompiling. For example:

save path = c:\gauss\cp proc1,proc2,proc3;

loadp path = c:\gauss\cp proc1,proc2,proc3;
12-12

Procedures and Keywords
The name of the file will be the same as the name of the procedure, with a .fcg
extension. (For details, see loadp and save in the GAUSS Language Reference.)

All compiled procedures should be saved in the same subdirectory so there is no
question where they are located when it is necessary to reload them. The loadp path
can be set in your startup file to reflect this. Then, to load in procedures, use

loadp proc1,proc2,proc3;

Procedures that are saved in .fcg files will NOT be automatically loaded. It is
necessary to explicitly load them with loadp. This feature should be used only when
the time necessary for the autoloader to compile the source is too great. Also, unless
these procedures have been compiled with #lineson, debugging will be more
complicated.
12-13

Structures 13

Basic Structures
Structure Definition

The syntax for a structure definition is

struct A { /* list of members */ };

The list of members can include scalars, arrays, matrices, strings, and string arrays, as
well as other structures. As a type, scalars are unique to structures and don't otherwise
exist.

For example, the following defines a structure containing the possible contents:

struct generic_example {

scalar x;

matrix y;

string s1;

string array s2

struct other_example t;

};
13-1

GAUSS User Guide
A useful convention is to put the structure definition into a file with an .sdf
extension. Then, for any command file or source code file that requires this definition,
put

#include filename.sdf

For example:

#include example.sdf

These statements create structure definitions that persist until the workspace is
cleared. They do not create structures, only structure-type definitions. The next
section describes how to create an instance of a structure.

Declaring an Instance
To use a structure, it is necessary to declare an instance. The syntax for this is

struct structure_type structure_name;

For example:

#include example.sdf

struct generic_example p0;

Initializing an Instance
Members of structures are referenced using a "dot" syntax:

p0.x = rndn(20,3);

The same syntax applies when referred to on the right-hand side:

mn = meanc(p0.x);

Initialization of Global Structures

Global structures are initialized at compile time. Each member of the structure is
initialized according to the following schedule:

scalar 0, a scalar zero

matrix {} , an empty matrix with zero rows and zero columns

array 0, a 1-dimensional array set to zero

string "", a null string

string array "", a 1 1 string array set to null
13-2

Structures
If a global already exists in memory, it will not be reinitialized. It may be the case in
your program that when it is rerun, the global variables may need to be reset to default
values. That is, your program may depend on certain members of a structure being set
to default values that are set to some other value later in the program. When you rerun
this program, you will want to reinitialize the global structure. To do this, make an
assignment to at least one of the members. This can be made convenient by writing a
procedure that declares a structure and initializes one of its members to a default
value, and then returns it. For example:

/* ds.src */

#include ds.sdf

proc dsCreate;

struct DS d0;

d0.dataMatrix = 0;

retp(d0);

endp;

Calling this function after declaring an instance of the structure will ensure
initialization to default values each time your program is run:

struct DS d0;

d0 = dsCreate;

Initializing Local Structures

Local structures, which are structures defined inside procedures, are initialized at the
first assignment. The procedure may have been written in such a way that a subset of
structures are used an any one call, and in that case time is saved by not initializing the
unused structures. They will be initialized to default values only when the first
assignment is made to one of its members.

Arrays of Structures
To create a matrix of instances, use the reshape command:

#include ds.sdf

struct DS p0;

p0 = reshape(dsCreate,5,1);

This creates a 5 by 1 vector of instances of option, with all of the members initialized
to default values.
13-3

GAUSS User Guide
When the instance members have been set to some other values, reshape will produce
multiple copies of that instance set to those values.

Matrices or vectors of instances can also be created by concatenation:

#include trade.sdf

struct option p0,p1,p2;

p0 = optionCreate;

p1 = optionCreate;

p2 = p1 | p0;

Saving an Instance to the Disk
Instances and vectors or matrices of instances of structures can be saved in a file on
the disk, and later loaded from a file on the disk. The syntax for saving an instance to
the disk is

ret = savestruct(instance,filename);

The file on the disk will have an .fsr extension.

For example:

#include ds.sdf

struct DS p0;

p0 = reshape(dsCreate,2,1);

retc = saveStruct(p2,"p2");

This saves the vector of instances in a file called p2.fsr. retc will be zero if the save
was successful; otherwise, nonzero.

Loading an Instance from the Disk
The syntax for loading a file containing an instance or matrix of instances is

{ instance, retc } =

loadstruct(file_name,structure_name);

For example:

#include trade.sdf;

struct DS p3;

{ p3, retc } = loadstruct("p2","ds");
13-4

Structures
Passing Structures to Procedures
Structures or members of structures can be passed to procedures. When a structure is
passed as an argument to a procedure, it is passed by value. The structure becomes a
local copy of the structure that was passed. The data in the structure is not duplicated
unless the local copy of the structure has a new value assigned to one of its members.
Structure arguments must be declared in the procedure definition:

struct rectangle {

matrix ulx;

matrix uly;

matrix lrx;

matrix lry;

};

proc area(struct rectangle rect);

retp((rect.lrx - rect.ulx).*(rect.uly - rect.lry));

endp;

Local structures are defined using a struct statement inside the procedure
definition:

proc center(struct rectangle rect);

struct rectangle cent;

cent.lrx = (rect.lrx - rect.ulx) / 2;

cent.ulx = -cent.lrx;

cent.uly = (rect.uly - rect.lry) / 2;

cent.lry = -cent.uly;

retp(cent);

endp;
13-5

GAUSS User Guide
Special Structures
There are three common types of structures that will be found in the GAUSS Run-
Time Library and applications.

The DS and PV structures are defined in the GAUSS Run-Time Library. Their
definitions are found in ds.sdf and pv.sdf, respectively, in the src source code
subdirectory.

Before structures, many procedures in the Run-Time Library and all applications had
global variables serving a variety of purposes, such as setting and altering defaults.
Currently, these variables are being entered as members of \control" structures.

The DS Structure
The DS structure, or "data" structure, is a very simple structure. It contains a member
for each GAUSS data type. The following is found in ds.sdf:

struct DS {

scalar type;

matrix dataMatrix;

array dataArray;

string dname;

string array vnames;

};

This structure was designed for use by the various optimization functions in GAUSS,
in particular, sqpSolvemt, as well as a set of gradient procedures, gradmt,
hessmt, et al.

These procedures all require that the user provide a procedure computing a function
(to be optimized or take the derivative of, etc.), which takes the DS structure as an
argument. The Run-Time Library procedures such as sqpSolvemt take the DS
structure as an argument and pass it on to the user-provided procedure without
modification. Thus, the user can put into that structure whatever might be needed as
data in the procedure.

To initialize an instance of a DS structure, the procedure dsCreate is defined in
ds.src:

#include ds.sdf

struct DS d0;

d0 = dsCreate;
13-6

Structures
The PV Structure
The PV structure, or "parameter vector" structure, is used by various optimization,
modelling, and gradient procedures, in particular sqpSolvemt, for handling the
parameter vector. The GAUSS Run-Time Library contains special functions that work
with this structure. They are prefixed by "pv" and defined in pv.src. These
functions store matrices and arrays with parameters in the structure, and retrieve
various kinds of information about the parameters and parameter vector from it.

"Packing" into a PV Structure

The various procedures in the Run-Time Library and applications for optimization,
modelling, derivatives, etc., all require a parameter vector. Parameters in complex
models, however, often come in matrices of various types, and it has been the
responsibility of the programmer to generate the parameter vector from the matrices
and vice versa. The PV procedures make this problem much more convenient to solve.

The typical situation involves two parts: first, "packing" the parameters into the PV
structure, which is then passed to the Run-Time Library procedure or application; and
second, "unpacking" the PV structure in the user-provided procedure for use in
computing the objective function. For example, to pack parameters into PV structure:

#include sqpsolvemt.sdf

/* starting values */

b0 = 1; /* constant in mean equation */

garch = { .1, .1 }; /* garch parameters */

arch = { .1, .1 }; /* arch parameters */

omega = .1 /* constant in variance equation */

struct PV p0;

p0 = pvPack(pvCreate,b0,"b0");

p0 = pvPack(p0,garch,"garch");

p0 = pvPack(p0,arch,"arch");

p0 = pvPack(p0,omega,"omega");

/* data */

z = loadd("tseries");
13-7

GAUSS User Guide
struct DS d0;

d0.dataMatrix = z;

Next, in the user-provided procedure for computing the objective function, in this case
minus the log-likelihood, the parameter vector is unpacked:

proc ll(struct PV p0, struct DS d0);

local b0,garch,arch,omega,p,q,h,u,vc,w;

b0 = pvUnpack(p0,"b0");

garch = pvUnpack(p0,"garch");

arch = pvUnpack(p0,"arch");

omega = pvUnpack(p0,"omega");

p = rows(garch);

q = rows(arch);

u = d0.dataMatrix - b0;

vc = moment(u,0)/rows(u);

w = omega + (zeros(q,q) |

shiftr((u.*ones(1,q))',seqa(q-1,-1,q))) * arch;

h = recserar(w,vc*ones(p,1),garch);

logl = -0.5 * ((u.*u)./h + ln(2*pi) + ln(h));

retp(logl);

endp;

Masked Matrices

The pvUnpack function unpacks parameters into matrices or arrays for use in
computations. The first argument is a PV structure containing the parameter vector.
Sometimes the matrix or vector is partly parameters to be estimated (that is, a
parameter to be entered in the parameter vector) and partly fixed parameters. To
distinguish between estimated and fixed parameters, an additional argument is used in
13-8

Structures
the packing function called a "mask", which is strictly conformable to the input
matrix. Its elements are set to 1 for an estimated parameter and 0 for a fixed
parameter. For example:

p0 = pvPackm(p0,.1*eye(3),"theta",eye(3));

Here just the diagonal of a 3x3 matrix is added to the parameter vector.

When this matrix is unpacked the entire matrix is returned with current values of the
parameters on the diagonal:

print pvUnpack(p0,"theta");

Symmetric Matrices

Symmetric matrices are a special case because even if the entire matrix is to be
estimated, only the nonredundant portion is to be put into the parameter vector. Thus,
for them there are special procedures. For example:

vc = { 1 .6 .4, .6 1 .2, .4 .2 1 };

p0 = pvPacks(p0,vc,"vc");

There is also a procedure for masking in case only a subset of the nonredundant
elements are to be included in the parameter vector:

vc = { 1 .6 .4, .6 1 .2, .4 .2 1 };

mask = { 1 1 0, 1 1 0, 0 0 1 };

p0 = pvPacksm(p0,vc,"vc",mask);

Fast Unpacking

When unpacking matrices using a matrix name, pvUnpack has to make a search
through a list of names, which is relatively time-consuming. This can be alleviated by
using an index rather than a name in unpacking. To do this, though, requires using a
special pack procedure that establishes the index:

p0 = pvPacki(p0,b0,"b0",1);

p0 = pvPacki(p0,garch,"garch",2);

p0 = pvPacki(p0,arch,"arch",3);

0.1000 0.0000 0.0000
0.0000 0.1000 0.0000
0.0000 0.0000 0.1000
13-9

GAUSS User Guide
p0 = pvPacki(p0,omega,"omega",4);

Now they may be unpacked using the index number:

b0 = pvUnpack(p0,1);

garch = pvUnpack(p0,2);

arch = pvUnpack(p0,3);

omega = pvUnpack(p0,4);

When packed with an index number, they may be unpacked either by index or by
name, but unpacking by index is faster.

Miscellaneous PV Procedures
pvList

This procedure generates a list of the matrices or arrays packed into the structure:

p0 = pvPack(p0,b0,"b0");

p0 = pvPack(p0,garch,"garch");

p0 = pvPack(p0,arch,"arch");

p0 = pvPack(p0,omega,"omega");

print pvList(p0);

b0

garch

arch

omega

pvLength

This procedure returns the length of the parameter vector:

print pvLength(p0);

6.0000

pvGetParNames

This procedure generates a list of parameter names:
13-10

Structures
print pvGetParNames(p0);

b0[1,1]

garch[1,1]

garch[2,1]

arch[1,1]

arch[2,1]

omega[1,1]

pvGetParVector

This procedure returns the parameter vector itself:

print pvGetParVector(p0);

1.0000

0.1000

0.1000

0.1000

0.1000

1.0000

pvPutParVector

This procedure replaces the parameter vector with the one in the argument:

newp = { 1.5, .2, .2, .3, .3, .8 };

p0 = pvPutParVector(newp);

print pvGetParVector(p0);

1.5000

0.2000

0.2000

0.3000

0.3000

0.8000
13-11

GAUSS User Guide
pvGetIndex

This procedure returns the indices in the parameter vector of the parameters in a
matrix. These indices are useful when setting linear constraints or bounds in
sqpSolvemt. Bounds, for example, are set by specifying a K 2 matrix where K is
the length of the parameter vector and the first column are the lower bounds and the
second the upper bounds. To set the bounds for a particular parameter, then, requires
knowing where that parameter is in the parameter vector. This information can be
found using pvGetIndex. For example:

/*

** get indices of lambda parameters

** in parameter vector

*/

lind = pvGetIndex(par0,"lambda");

/*

** set bounds constraint matrix to unconstrained

default

*/

c0.bounds = ones(pvLength(par0),1).*(-1e250~1e250);

/*

** set bounds for lambda parameters to be positive

c0.bounds[lind,1] = zeros(rows(lind),1);

Control Structures
Another important class of structures is the "control" structure. Applications
developed before structures were introduced into GAUSS typically handled some
program specifications by the use of global variables which had some disadvantages,
in particular, preventing the nesting of calls to procedures.

Currently, the purposes served by global variables are now served by the use of a
control structure. For example, for sqpSolvemt:

struct sqpSolvemtControl {
13-12

Structures
matrix A;

matrix B;

matrix C;

matrix D;

scalar eqProc;

scalar ineqProc;

matrix bounds;

scalar gradProc;

scalar hessProc;

scalar maxIters;

scalar dirTol;

scalar CovType;

scalar feasibleTest;

scalar maxTries;

scalar randRadius;

scalar trustRadius;

scalar seed;

scalar output;

scalar printIters;

matrix weights;

};

The members of this structure determine optional behaviors of sqpSolvemt.

sqpSolvemt
sqpSolvemt is a procedure in the GAUSS Run-Time Library that solves the general
nonlinear programming problem using a Sequential Quadratic Programming descent
method, that is, it solves
13-13

GAUSS User Guide
min

The linear and bounds constraints are redundant with respect to the nonlinear
constraints, but are treated separately for computational convenience.

The call to sqpSolvemt has four input arguments and one output argument:

out = SQPsolveMT(&fct,P,D,C);

Input Arguments
The first input argument is a pointer to the objective function to be minimized. The
procedure computing this objective function has two arguments: a PV structure
containing the start values, and a DS structure containing data, if any. For example:

proc fct(struct PV p0, struct DS d0);

local y, x, b0, b, e, s;

y = d0[1].dataMatrix;

x = d0[2].dataMatrix;

b0 = pvUnpack(p0,"constant");

b = pvUnpack(p0,"coefficients");

e = y - b0 - x * b;

s = sqrt(e'e/rows(e));

retp(-pdfn(e/s);

endp;

Note that this procedure returns a vector rather than a scalar. When the objective
function is a properly defined log-likelihood, returning a vector of minus log-
probabilities permits the calculation of a QML covariance matrix of the parameters.

subject to

linear equality

linear inequality

nonlinear equality

nonlinear inequality

bounds

f θ()

Aθ B=

Cθ D≥

H θ() 0=

G θ() 0≥

θlb θ θub≤ ≤
13-14

Structures
The remaining input arguments are structures:

The DS structure is optional. sqpSolvemt passes this argument on to the user-
provided procedure that &fct is pointing to without modification. If there is no data,
a default structure can be passed to it.

sqpSolvemt Control Structure

A default sqpSolvemtControl structure can be passed in the fourth argument for an
unconstrained problem. The members of this structure are as follows:

P a PV structure containing starting values of the parameters

D a DS structure containing data, if any

C an sqpSolvemtControl structure

A MxK matrix, linear equality constraint coecients:
where p is a vector of the parameters.

B Mx1 vector, linear equality constraint constants:
where p is a vector of the parameters.

C MxK matrix, linear inequality constraint coecients:
where p is a vector of the parameters.

D Mx1 vector, linear inequality constraint constants:
where p is a vector of the parameters.

eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been
provided, it has two input arguments, instances of PV and DS
structures, and one output argument, a vector of computed
inequality constraints.

Default = {.}; i.e., no inequality procedure.

IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been
provided, it has two input arguments, instances of PV and DS
structures, and one output argument, a vector of computed
inequality constraints.

Default = {.}; i.e., no inequality procedure.

Aθ B=

Aθ B=

Cθ D=

Cθ D=
13-15

GAUSS User Guide
Bounds 1x2 or Kx2 matrix, bounds on parameters. If 1x2 all
parameters have same bounds.

Default = { -1e256 1e256 }.

GradProc scalar, pointer to a procedure that computes the gradient of
the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments,
instances of PV and DS structures, and one output argument,
the derivatives. If the function procedure returns a scalar, the
gradient procedure returns a 1xK row vector of derivatives. If
function procedure turns an Nx1 vector, the gradient
procedure returns an NxK matrix of derivatives.

This procedure may compute a subset of the derivatives.
sqpSolvemt will compute numerical derivatives for all those
elements set to missing values in the return vector or matrix.

Default = {.}; i.e., no gradient procedure has been provided.

HessProc scalar, pointer to a procedure that computes the Hessian; i.e.,
the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has
been provided, it has two input arguments, instances of PV
and DS structures, and one output argument, a vector of
computed inequality constraints. Default = {.}; i.e., Default =
{.}; i.e., no Hessian procedure has been provided.

Whether the objective function procedure returns a scalar or
vector, the Hessian procedure must return a KxK matrix.
Elements set to missing values will be computed numerically
by sqpSolvemt.

MaxIters scalar, maximum number of iterations. Default = 1e+5.

MaxTries scalar, maximum number of attemps in random search.
Default = 100.

DirTol scalar, convergence tolerance for gradient of estimated
coecients. Default = 1e-5. When this criterion has been
satisifed, sqpSolvemt exits the iterations.
13-16

Structures
Output Argument
The single output argument is an sqpSolvemtOut structure. Its definition is:

struct SQPsolveMTOut {

struct PV par;

scalar fct;

struct SQPsolveMTLagrange lagr;

scalar retcode;

matrix moment;

matrix hessian;

matrix xproduct;

};

CovType scalar, if 2, QML covariance matrix, else if 0, no covariance
matrix is computed, else ML covariance matrix is computed.
For a QML covariance matrix, the objective function
procedure must return an N 1 vector of minus log-
probabilities.

FeasibleTest scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned o.
Default = 1.

randRadius scalar, if zero, no random search is attempted. If nonzero, it is
the radius of the random search. Default = .001.

seed scalar, if nonzero, seeds random number generator for
random search, otherwise time in seconds from midnight is
used.

trustRadius scalar, radius of the trust region. If scalar missing, trust region
not applied. The trust sets a maximum amount of the direction
at each iteration. Default = .001.

output scalar, if nonzero, results are printed. Default = 0.

PrintIters scalar, if nonzero, prints iteration information. Default = 0.

weights vector, weights for objective function returning a vector.
Default = 1.
13-17

GAUSS User Guide
The members of this structure are:

par instance of a PV structure containing the parameter estimates are
placed in the member matrix par.

fct scalar, function evaluated at final parameter estimates

lagr an instance of a SQPLagrange structure containing the Lagrangeans
for the constraints. For an instance named lagr, the members are:

lagr.lineq Mx1 vector, Lagrangeans of linear equality
constraints

lagr.nlineq Nx1 vector, Lagrangeans of nonlinear equality
constraints

lagr.linineq Px1 vector, Lagrangeans of linear inequality
constraints

lagr.nlinineq Qx1 vector, Lagrangeans of nonlinear inequality
constraints

lagr.bounds K 2 matrix, Lagrangeans of bounds

Whenever a constraint is active, its associated Lagrangean will be
nonzero. For any constraint that is inactive throughout the iterations
as well as at convergence, the corresponding Lagrangean matrix will
be set to a scalar missing value.

retcode return code:

0 normal convergence

1 forced exit

2 maximum number of iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 error with constraints

8 function complex

9 feasible direction couldn't be found
13-18

Structures
Example
Define

where is a KxL matrix of "loadings", an Lx1 vector of unobserved "latent"

variables, and an Kx1 vector of unobserved errors. Then

where is the LxL covariance matrix of the latent variables, and is the KxK
covariance matrix of the errors.

The log-likelihood of the i-th observation is

Not all elements of , , and can be estimated. At least one element of each

column of must be fixed to 1, and is usually a diagonal matrix.

Constraints

To ensure a well-defined log-likelihood, constraints on the parameters are required to
guarantee positive definite covariance matrices. To do this, a procedure is written that
returns the eigenvalues of and minus a small number. sqpSolvemt then
finds parameters such that these eigenvalues are greater or equal to that small number.

The Command File
This command file can be found in the file sqpfact.e in the .examples
subdirectory:

#include sqpsolvemt.sdf

lambda = { 1.0 0.0,

0.5 0.0,

0.0 1.0,

0.0 0.5 };

lmask = { 0 0,

1 0,

Y Λη θ+=

Λ η

θ

Σ ΛΦΛ′ Ψ+=

Φ Ψ

P i()log 1
2
--- K 2π() πln Y i()ΣY i()′+ +ln[]–=

Λ Φ Ψ
Λ Ψ

Σ Φ
13-19

GAUSS User Guide
0 0,

0 1 };

phi = { 1.0 0.3,

0.3 1.0 };

psi = { 0.6 0.0 0.0 0.0,

0.0 0.6 0.0 0.0,

0.0 0.0 0.6 0.0,

0.0 0.0 0.0 0.6 };

tmask = { 1 0 0 0,

0 1 0 0,

0 0 1 0,

0 0 0 1 };

struct PV par0;

par0 = pvCreate;

par0 = pvPackm(par0,lambda,"lambda",lmask);

par0 = pvPacks(par0,phi,"phi");

par0 = pvPacksm(par0,psi,"psi",tmask);

struct SQPsolveMTControl c0;

c0 = sqpSolveMTcontrolCreate;

lind = pvGetIndex(par0,"lambda"); /* get indices of

lambda parameters */

/* in parameter vector */

tind = pvGetIndex(par0,"psi"); /* get indices of psi

parameters */

/* in parameter vector */
13-20

Structures
c0.bounds = ones(pvLength(par0),1).*(-1e250~1e250);

c0.bounds[lind,1] = zeros(rows(lind),1);

c0.bounds[lind,2] = 10*ones(rows(lind),1);

c0.bounds[tind,1] = .001*ones(rows(tind),1);

c0.bounds[tind,2] = 100*ones(rows(tind),1);

c0.output = 1;

c0.printIters = 1;

c0.trustRadius = 1;

c0.ineqProc = &ineq;

c0.covType = 1;

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = loadd("maxfact");

output file = sqpfact.out reset;

struct SQPsolveMTOut out0;

out0 = SQPsolveMT(&lpr,par0,d0,c0);

lambdahat = pvUnpack(out0.par,"lambda");

phihat = pvUnpack(out0.par,"phi");

psihat = pvUnpack(out0.par,"psi");

print "estimates";

print;

print "lambda" lambdahat;

print;

print "phi" phihat;
13-21

GAUSS User Guide
print;

print "psi" psihat;

struct PV stderr;

stderr = out0.par;

if not scalmiss(out0.moment);

stderr =

pvPutParVector(stderr,sqrt(diag(out0.moment)));

lambdase = pvUnpack(stderr,"lambda");

phise = pvUnpack(stderr,"phi");

psise = pvUnpack(stderr,"psi");

print "standard errors";

print;

print "lambda" lambdase;

print;

print "phi" phise;

print;

print "psi" psise;

endif;

output off;

proc lpr(struct PV par1, struct DS data1);

local lambda,phi,psi,sigma,logl;

lambda = pvUnpack(par1,"lambda");

phi = pvUnpack(par1,"phi");

psi = pvUnpack(par1,"psi");

sigma = lambda*phi*lambda' + psi;
13-22

Structures
logl = -lnpdfmvn(data1.dataMatrix,sigma);

retp(logl);

endp;

proc ineq(struct PV par1, struct DS data1);

local lambda,phi,psi,sigma,e;

lambda = pvUnpack(par1,"lambda");

phi = pvUnpack(par1,"phi");

psi = pvUnpack(par1,"psi");

sigma = lambda*phi*lambda' + psi;

e = eigh(sigma) - .001; /* eigenvalues of sigma */

e = e | eigh(phi) - .001; /* eigenvalues of phi */

retp(e);

endp;
13-23

Run-Time Library
Structures 14
Two structures are used by several GAUSS Run-Time Library functions for handling
parameter vectors and data: the PV parameter structure and the DS data structure.

The PV Parameter Structure
The members of an instance of structure of type PV are all “private,” that is, not
accessible directly to the user. It is designed to handle parameter vectors for threadsafe
optimization functions. Entering and receiving parameter vectors, and accessing
properties of this vector, are accomplished using special functions.

Suppose you are optimizing a function containing a KxL matrix of coefficients. The
optimization function requires a parameter vector but your function uses a KxL
matrix. Your needs and the needs of the optimization function can be both satisfied by
an instance of the structure of type PV. For example:

struct PV p1;

p1 = pvCreate;

x = zeros(4,3); /* on input contains start values, */

/* on exit contains estimates */
14-1

GAUSS User Guide
p1 = pvPack(p1,x,"coefficients");

The pvCreate function initializes p1 to default values. pvPack enters the 4x3
matrix stored row-wise as a 12x1 parameter vector for the optimization function. The
optimization program will pass the instance of the structure of type PV to your
objective function.

By calling pvUnpack your 4x3 coefficient matrix is retrieved from the parameter
vector. For example, in your procedure you have

x = pvUnpack(p1,"coefficients");

and now x is a 4x3 matrix of coefficients for your use in calculating the object
function.

Suppose that your objective function has parameters to be estimated in a covariance
matrix. The covariance matrix is a symmetric matrix where only the lower left portion
contains unique values for estimation. To handle this use pvPacks. For example:

struct PV p1;

p1 = pvCreate;

cov = { 1 .1 .1,

.1 1 .1,

.1 .1 1 };

p1 = pvPacks(p1,cov,"covariance");

Only the lower left portion of cov will be stored in the parameter vector. When the
covariance matrix is unpacked, the parameters in the parameter vector will be entered
into both the lower and upper portions of the matrix.

There may be cases where only a portion of a matrix being used to compute the
objective function are parameters to be estimated. In this case use pvPackm with a
“mask” matrix that contains ones where parameters are to be estimated and zeros
otherwise. For example,

struct PV p1;

p1 = pvCreate;

cov = { 1 .5,

.5 1 };
14-2

Run-Time Library Structures
mask = { 0 1,

1 0 };

p1 = pvPacksm(p1,cov,"correlation",mask);

Here only the one element in the lower left of cov is stored in the parameter vector.
Suppose the optimization program sends a trial value for that parameter of, say, .45.
When the matrix is unpacked in your procedure it will contain the fixed values
associated with the zeros in the mask as well as the trial value in that part of the matrix
associated with the ones. Thus,

print unpack(p1,"correlation");

1.0000 .4500

.4500 1.0000

A mask may also be used with general matrices to store a portion of a matrix in the
parameter vector.

struct PV p1;

p1 = pvCreate;

m = { 0 .5 1,

.5 0 .3 };

mask = { 0 1 1,

1 0 0};

p1 = pvPackm(p1,m,"coefficients",mask);

A PV instance can, of course, hold parameters from all these types of matrices,
symmetric, masked symmetric, rectangular, and masked rectangular. For example:

lambda = { 1.0 0.0,

0.5 0.0,

0.0 1.0,

0.0 0.5 };
14-3

GAUSS User Guide

lmask = { 0 0,

1 0,

0 0,

0 1 };

phi = { 1.0 0.3,

0.3 1.0 };

theta = { 0.6 0.0 0.0 0.0,

0.0 0.6 0.0 0.0,

0.0 0.0 0.6 0.0,

0.0 0.0 0.0 0.6 };

tmask = { 1 0 0 0,

0 1 0 0,

0 0 1 0,

0 0 0 1 };

struct PV par0;

par0 = pvCreate;

par0 = pvPackm(par0,lambda,"lambda",lmask);

par0 = pvPacks(par0,phi,"phi");

par0 = pvPacksm(par0,theta,"theta",tmask);

It isn't necessary to know where in the parameter vector the parameters are located in
order to use them in your procedure calculating the objective function. Thus:

lambda = pvUnpack(par1,"lambda");

phi = pvUnpack(par1,"phi");

theta = pvUnpack(par1,"theta");

sigma = lambda*phi*lambda' + theta;
14-4

Run-Time Library Structures
Additional functions are available to retrieve information on the properties of the
parameter vector. pvGetParVector and pvPutParVector get and put
parameter vector from and into the PV instance, pvGetParNames retrieves names
for the elements of the parameter vector, pvList returns the list of matrix names in
the PV instance, pvLength the length of the parameter vector.

struct PV p1;

p1 = pvCreate;

cov = { 1 .5,

.5 1 };

mask = { 0 1,

1 0 };

p1 = pvPacksm(p1,cov,"correlation",mask);

print pvGetParVector(p1);

.5000

p1 = pvPutParVector(p1,.8);

print pvGetParVector(p1);

.8000

print pvUnpack(p1,"correlation");

1.0000 .8000

 .8000 1.0000

print pvGetParNames(p1);

correlation[2,1]

print pvLength(p1);

1.0000
14-5

GAUSS User Guide
Also, pvTest tests an instance to make sure it is properly constructed. pvCreate
generates an initialized instance, and pvGetIndex returns the indices of the
parameters of an input matrix in the parameter vector. This last function is most useful
when constructing linear constraint indices for the optimization programs.

Fast Pack Functions
Unpacking matrices using matrix names is slow because it requires a string search
through a string array of names. A set of special packing functions are provided that
avoid the search altogether. These functions use a “table” of indices that you specify to
find the matrix in the PV instance. For example:

struct PV p1;

p1 = pvCreate(2);

y = rndn(4,1);

x = rndn(4,4);

p1 = pvPacki(p1,y,"Y",1);

p1 = pvPacki(p1,x,"X",2);

print pvUnpack(p1,1);

.3422

.0407

.5611

.0953

print pvUnpack(p1,"Y");

.3422

.0407

.5611

.0953
14-6

Run-Time Library Structures
The call to pvPacki puts an entry in the table associating the matrix in its second
argument with the index 1. As indicated above the matrix can be unpacked either by
index or by name. Unpacking by index, however, is much faster than by name.

Note that the matrix can be unpacked using either the index or the matrix name.

There are index versions of all four of the packing functions, pvPacki, pvPackmi,
pvPacksi, and pvPacksmi.

The DS Data Structure
An instance of the DS data structure contains the following members:

The definition and use of the elements of d0 are determined by the particular
application and are mostly up to the user. A typical use might use a vector of
structures. For example, suppose the objective function requires a vector of
observations on a dependent variable as well as on K independent variables. Then:

struct DS d0;

d0 = dsCreate;

y = rndn(20,1);

x = rndn(20,5);

d0 = reshape(d0,2,1);

d0[1].dataMatrix = y;

d0[2].dataMatrix = X;

The d0 instance would be passed to the optimization program which then passes it to
your procedure computing the objective function. For example:

struct DS d0;

d0.dataMatrix MxK matrix, data

d0.dataArray N-dimensional array, data

d0.type scalar

d0.dname string

d0.vnames string array
14-7

GAUSS User Guide
proc lpr(struct PV p1, struct DS d1);

local u;

u = d0[1].dataMatrix - d0[2].dataMatrix *

pvUnpack(p1,"beta");

retp(u'u);

endp;

A particular application may require setting other members of the DS instance for
particular purposes, but in general you may use them for your own purposes. For
example, d0.dname could be set to a GAUSS dataset name from which you read the
data in the objective function procedure, or d0.vnames could be set to the variable
names of the columns of the data stored in d0.dataMatrix, or d0.type could be
an indicator variable for the elements of a vector of DS instances.

The following are complete examples of the use of the PV and DS structures. The first
example fits a set of data to the Micherlitz model. It illustrates packing and unpacking
by index.

#include sqpsolvemt.sdf

struct DS Y;

Y = dsCreate;

Y.dataMatrix = 3.183|

3.059|

2.871|

2.622|

2.541|

2.184|

2.110|

2.075|

2.018|

1.903|

1.770|
14-8

Run-Time Library Structures
1.762|

1.550;

struct DS X;

X = dsCreate;

X.dataMatrix = seqa(1,1,13);

struct DS Z;

Z = reshape(Z,2,1);

Z[1] = Y;

Z[2] = X;

struct SQPsolveMTControl c1;

c1 = sqpSolveMTcontrolCreate; /* initializes */

/* default values */

c1.bounds = 0~100; /* constrains parameters */

/* to be positive */

c1.CovType = 1;

c1.output = 1;

c1.printIters = 0;

c1.gradProc = &grad;

struct PV par1;

par1 = pvCreate(1);

start = { 2, 4, 2 };

par1 = pvPacki(par1,start,"Parameters",1);

struct SQPsolveMTout out1;

out1 = SQPsolveMT(&Micherlitz,par1,Z,c1);
14-9

GAUSS User Guide
estimates = pvGetParVector(out1.par);

print " parameter estimates ";

print estimates;

print;

print " standard errors ";

print sqrt(diag(out1.moment));

proc Micherlitz(struct PV par1,struct DS Z);

local p0,e,s2;

p0 = pvUnpack(par1,1);

e = Z[1].dataMatrix - p0[1] - p0[2]*exp(-p0[3]

*Z[2].dataMatrix);

s2 = moment(e,0)/(rows(e)-1);

retp((2/rows(e))*(e.*e/s2 + ln(2*pi*s2)));

endp;

proc grad(struct PV par1, struct DS Z);

local p0,e,e1,e2,e3,w,g,s2;

p0 = pvUnpack(par1,1);

w = exp(-p0[3]*Z[2].dataMatrix);

e = z[1].dataMatrix - p0[1] - p0[2] * w;

s2 = moment(e,0) / rows(e);

e1 = - ones(rows(e),1);

e2 = -w;

e3 = p0[2]*Z[2].dataMatrix.*w;

w = (1 - e.*e / s2) / rows(e);

g = e.*e1 + w*(e'e1);

g = g ~ (e.*e2 + w*(e'e2));
14-10

Run-Time Library Structures
g = g ~ (e.*e3 + w*(e'e3));

retp(4*g/(rows(e)*s2));

endp;

This example estimates parameters of a “confirmatory factor analysis” model.

#include sqpsolvemt.sdf

lambda = { 1.0 0.0,

0.5 0.0,

0.0 1.0,

0.0 0.5 };

lmask = { 0 0,

1 0,

0 0,

0 1 };

phi = { 1.0 0.3,

0.3 1.0 };

theta = { 0.6 0.0 0.0 0.0,

0.0 0.6 0.0 0.0,

0.0 0.0 0.6 0.0,

0.0 0.0 0.0 0.6 };

tmask = { 1 0 0 0,

0 1 0 0,

0 0 1 0,

0 0 0 1 };

struct PV par0;

par0 = pvCreate;
14-11

GAUSS User Guide
par0 = pvPackm(par0,lambda,"lambda",lmask);

par0 = pvPacks(par0,phi,"phi");

par0 = pvPacksm(par0,theta,"theta",tmask);

struct SQPsolveMTControl c0;

c0 = sqpSolveMTcontrolCreate;

lind = pvGetIndex(par0,"lambda"); /* get indices of */

/* lambda parameters */

/* in parameter vector */

tind = pvGetIndex(par0,"theta"); /* get indices of */

/* theta parameters */

/* in parameter vector */

c0.bounds = ones(pvLength(par0),1).*(-1e250~1e250);

c0.bounds[lind,1] = zeros(rows(lind),1);

c0.bounds[lind,2] = 10*ones(rows(lind),1);

c0.bounds[tind,1] = .001*ones(rows(tind),1);

c0.bounds[tind,2] = 100*ones(rows(tind),1);

c0.ineqProc = &ineq;

c0.covType = 1;

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = loadd("maxfact");

struct SQPsolveMTOut out0;

out0 = SQPsolveMT(&lpr,par0,d0,c0);

lambdahat = pvUnpack(out0.par,"lambda");
14-12

Run-Time Library Structures
phihat = pvUnpack(out0.par,"phi");

thetahat = pvUnpack(out0.par,"theta");

print "estimates";

print;

print "lambda" lambdahat;

print;

print "phi" phihat;

print;

print "theta" thetahat;

struct PV stderr;

stderr = out0.par;

if not scalmiss(out0.moment);

stderr =

pvPutParVector(stderr,sqrt(diag(out0.moment)));

lambdase = pvUnpack(stderr,"lambda");

phise = pvUnpack(stderr,"phi");

thetase = pvUnpack(stderr,"theta");

print "standard errors";

print;

print "lambda" lambdase;

print;

print "phi" phise;

print;

print "theta" thetase;

endif;

proc lpr(struct PV par1, struct DS data1);
14-13

GAUSS User Guide
local lambda,phi,theta,sigma,logl;

lambda = pvUnpack(par1,"lambda");

phi = pvUnpack(par1,"phi");

theta = pvUnpack(par1,"theta");

sigma = lambda*phi*lambda' + theta;

logl = -lnpdfmvn(data1.dataMatrix,sigma);

retp(logl);

endp;

proc ineq(struct PV par1, struct DS data1);

local lambda,phi,theta,sigma,e;

lambda = pvUnpack(par1,"lambda");

phi = pvUnpack(par1,"phi");

theta = pvUnpack(par1,"theta");

sigma = lambda*phi*lambda' + theta;

e = eigh(sigma) - .001; /* eigenvalues of sigma */

e = e | eigh(phi) - .001; /* eigenvalues of phi */

retp(e);

endp;
14-14

N-Dimensional Arrays 15

In GAUSS, internally, matrices and arrays are separate data types. Matrices, which are
2-dimensional objects, are stored in memory in row major order. Therefore, a 3x2
matrix is stored as follows:

[1,1] [1,2] [2,1] [2,2] [3,1] [3,2]

The slowest moving dimension in memory is indexed on the right, and the fastest
moving dimension is indexed on the left. This is true of N-dimensional arrays as well.
A 4x3x2 array is stored in the following way:

[1,1,1] [1,1,2] [1,2,1] [1,2,2] [1,3,1] [1,3,2]

[2,1,1] [2,1,2] [2,2,1] [2,2,2] [2,3,1] [2,3,2]

[3,1,1] [3,1,2] [3,2,1] [3,2,2] [3,3,1] [3,3,2]

[4,1,1] [4,1,2] [4,2,1] [4,2,2] [4,3,1] [4,3,2]

A complex N-dimensional array is stored in memory in the same way. Like complex
matrices, complex arrays are stored with the entire real part first, followed by the
entire imaginary part.

Every N-dimensional array has a corresponding Nx1 vector of orders that contains the
sizes of each dimension of the array. This is stored with the array and can be accessed
with getorders. The first element of the vector of orders corresponds to the slowest
moving dimension, and the last element corresponds to the fastest moving dimension
15-1

GAUSS User Guide
(refer to the Glossary of Terms at the end of the chapter for clear definitions of these
terms). The vector of orders for a 6x5x4x3x2 array, which has 5 dimensions, is the
following 5x1 vector:

6

5

4

3

2

Two terms that are important in working with N-dimensional arrays are ‘dimension
index’ and ‘dimension number.’ A dimension index specifies a dimension based on
indexing the vector of orders. It is a scalar, 1-to-N, where 1 corresponds to the
dimension indicated by the first element of the vector of orders of the array (the
slowest moving dimension) and N corresponds to the dimension indicated by the last
element of the vector of orders (the fastest moving dimension).

A dimension number specifies dimensions by numbering them in the same order that
one would add dimensions to an array. In other words, the dimensions of an N-
dimensional array are numbered such that the fastest moving dimension has a
dimension number of 1, and the slowest moving dimension has a dimension number
of N.

A 6x5x4x3x2 array has 5 dimensions, so the first element of the vector of orders (in
this case, 6) refers to the size of dimension number 5. Since the index of this element
in the vector of orders is 1, the dimension index of the corresponding dimension
(dimension number 5) is also 1.

You will find references to both dimension index and dimension number in the
documentation for the functions that manipulate arrays.

There are a number of functions that have been designed to manipulate arrays. These
functions allow you to manipulate a subarray within the array by passing in a locator
vector to index any subarray that comprises a contiguous block of memory within the
larger block. A vector of indices of an N-dimensional array is a [1-to-N]x1 vector of
base 1 indices into the array, where the first element corresponds to the first element in
a vector of orders. An Nx1 vector of indices locates the scalar whose position is
indicated by the indices. For a 4x3x2 array x, the 3x1 vector of indices:

3

2

1

15-2

N-Dimensional Arrays
indexes the [3,2,1] element of x. A 2x1 vector of indices for this 3-dimensional
example, references the 1-dimensional array whose starting location is given by the
indices.

Because the elements of the vector of indices are always in the same order (the first
element of the vector of indices corresponds to the slowest moving dimension of the
array, the second element to the second slowest moving dimension, and so on), each
unique vector of indices locates a unique subarray.

In general, an [N-K]x1 vector of indices locates a K-dimensional subarray that begins
at the position indicated by the indices. The sizes of the dimensions of the K-
dimensional subarray correspond to the last K elements of the vector of orders of the
N-dimensional array. For a 6x5x4x3x2 array y, the 2x1 vector of indices:

2

5

locates the 4x3x2 subarray in y that begins at [2,5,1,1,1] and ends at [2,5,4,3,2].

Bracketed Indexing
Brackets ‘[]’ can be used to index N-dimensional arrays in virtually the same way that
they are used to index matrices. Bracketed indexing is slower than the convenience
array functions, such as getarray and setarray; however, it can be used to index
non-contiguous elements. In order to index an N-dimensional array with brackets,
there must be N indices located within the brackets, where the first index corresponds
to the slowest moving dimension of the array and the last index corresponds to the
fastest moving dimension.

For a 2x3x4 array x, such that

[1,1,1] through [1,3,4] =

1 2 3 4

5 6 7 8

9 10 11 12

[2,1,1] through [2,3,4] =

13 14 15 16

17 18 19 20

21 22 23 24
15-3

GAUSS User Guide
x[1,2,3] returns a 1x1x1 array containing the [1,2,3] element of x:

7

x[.,3,2] returns a 2x1x1 array containing

10

22

x[2,.,1 4] returns a 1x3x2 array containing

13 16

17 20

21 24

x[.,2,1:3] returns a 2x1x3 array containing

5 6 7

17 18 19

ExE Conformability
The following describes rules for ExE conformability of arrays for operators and
functions with two or more arguments.

Any N-dimensional array is conformable to a scalar.

An array is conformable to a matrix only if the array has fewer than 3 dimensions,
and the array and matrix follow the standard rules of ExE conformability.

Two arrays are ExE conformable if they comply with one of the following
requirements:

• The two arrays have the same number of dimensions, and each dimension has
the same size.

• The two arrays have the same number of dimensions, and each of the N-2
slowest moving dimensions has the same size. In this case, the 2 fastest
moving dimensions of the arrays must follow the ExE comformability rules
that apply to matrices.

• Both of the arrays have fewer than 3 dimensions, and they follow the ExE
conformability rules that apply to matrices.
15-4

N-Dimensional Arrays
Glossary of Terms
dimensions The number of dimensions of an object.

vector of orders Nx1 vector of the sizes of the dimensions of an object, where N is
the number of dimensions, and the first element corresponds to the slowest moving
dimension.

vector of indices [1-to-N]x1 vector of indices into an array, where the first element
corresponds to the first element in a vector of orders.

dimension number Scalar [1-to-N], where 1 corresponds to the fastest moving
dimension and N to the slowest moving dimension.

dimension index Scalar [1-to-N], where 1 corresponds to the first element of the
vector of orders or vector of indices.

locator [1-to-N]x1 vector of indices into an array used by array functions to locate a
contiguous block of the array.
15-5

Working with Arrays 16

Initializing Arrays

The use of N-dimensional arrays in GAUSS is an additional tool for reducing
development time and increasing execution speed of programs. There are multiple
ways of handling N-dimensional arrays and using them to solve problems, and these
ways sometimes have implications for a trade-off between speed of execution and
development time. We will try to make this clear in this chapter.

The term "arrays" specifically refers to N-dimensional arrays and must not be
confused with matrices. Matrices and arrays are distinct types even if in fact they
contain identical information. Functions for conversion from one to the other are
described below .

There are five basic ways of creating an array depending on how the contents are
specified:

areshape creates array from specified matrix

aconcat creates array from matrices and arrays

aeye creates array of identity matrices

arrayinit allocates array filled with specified scalar value

arrayalloc allocates array with no specified contents
16-1

GAUSS User Guide
areshape
areshape is a method for creating an array with specified contents. arrayinit
creates an array filled with a selected scalar value: areshape will do the same, but
with a matrix. For example, given a matrix, areshape will create an array
containing multiple versions of that matrix:

x = reshape(seqa(1,1,4),2,2);

ord = 3 | 2 | 2;

a = areshape(x,ord);

print a;

Plane [1,.,.]

Plane [2,.,.]

Plane [3,.,.]

Reading Data from the Disk into an Array

areshape is a fast way to re-dimension a matrix or array already in memory. For
example, suppose we have a GAUSS data set containing panel data and that it's small
enough to be read in all at once:

panel = areshape(loadd("panel"),5|100|10);

mn = amean(panel,2); /* 5x1x10 array of means */

/*of each panel */

mm = moment(panel,0); /* 5x10x10 array of moments */

/* of each panel */

1.0000 2.0000

3.0000 4.0000

1.0000 2.0000

3.0000 4.0000

1.0000 2.0000

3.0000 4.0000
16-2

Working with Arrays
/*

** vc is a 5x10x10 array of

** covariance matrices

*/

vc = mm / 100 - amult(atranspose(mn,1|3|2),mn);

x is a 5x100x10 array, and in this context is 5 panels of 100 cases measured on 10
variables.

Inserting Random Numbers into Arrays

A random array of any dimension or size can be quickly created using areshape.
Thus, for a 10x10x5x3 array:

ord = { 10, 10, 5, 3 };

y = areshape(rndu(prodc(ord),1),ord);

The quick and dirty method above uses the linear congruential generator, which is fast
but doesn't have the properties required for serious Monte Carlo work. For series
simulation you will need to use the KM generator:

sd0 = 345678;

ord = { 10, 10, 5, 3 };

{ z,sd0 } = rndKMu(prodc(ord),1,sd0);

y = areshape(z,ord);

Expanding a Matrix into an Array Vector of Matrices

For computing the log-likelihood of a variance components model of panel data, it is
necessary to expand a TxT matrix into an NTxT array of these matrices. This is easily
accomplished using areshape. For example:

m = { 1.0 0.3 0.2,

0.3 1.0 0.1,

0.2 0.1 1.0 };

r = areshape(m,3|3|3);

print r;

Plane [1,.,.]
16-3

GAUSS User Guide
Plane [2,.,.]

Plane [3,.,.]

aconcat
aconcat creates arrays from conformable sets of matrices or arrays. With this
function, contents are completely specified by the user. This example tries three
concatenations, one along each dimension:

rndseed 345678;

x1 = rndn(2,2);

x2 = arrayinit(2|2,1);

/*

** along the first dimension or rows

*/

a = aconcat(x1,x2,1);

print a;

-0.4300 -0.2878 1.0000 1.0000

-0.1327 -0.0573 1.0000 1.0000

/*

** along the second dimension or columns

1.0000 0.30000 0.20000

0.30000 1.0000 0.10000

0.20000 0.10000 1.0000

1.0000 0.30000 0.20000

0.30000 1.0000 0.10000

0.20000 0.10000 1.0000

1.0000 0.30000 0.20000

0.30000 1.0000 0.10000

0.20000 0.10000 1.0000
16-4

Working with Arrays
*/

a = aconcat(x1,x2,2);

print a;

-0.4300 -0.2878

-0.1327 -0.0573

1.0000 1.0000

1.0000 1.0000

/*

** along the third dimension

*/

a = aconcat(x1,x2,3);

print a;

Plane [1,.,.]

-0.4300 -0.2878

-0.1327 -0.0573

Plane [2,.,.]

1.0000 1.0000

1.0000 1.0000

aeye
aeye creates an array in which the principal diagonal of the two trailing dimensions
is set to one. For example:

ord = 2 | 3 | 3;

a = aeye(ord);

print a;

Plane [1,.,.]

1.00000 0.00000 0.00000

0.00000 1.00000 0.00000

0.00000 0.00000 1.00000
16-5

GAUSS User Guide
Plane [2,.,.]

1.00000 0.00000 0.00000

0.00000 1.00000 0.00000

0.00000 0.00000 1.00000

arrayinit
arrayinit creates an array with all elements set to a specified value. For example:

ord = 3 | 2 | 3;

a = arrayinit(ord,1);

print a;

plane [1,.,.]

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

Plane [2,.,.]

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

Plane [3,.,.]

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

arrayalloc
arrayalloc creates an array with specified number and size of dimensions without
setting elements to any values. This requires a vector specifying the order of the array.
The length of the vector determines the number of dimensions, and each element
determines the size of the corresponding dimensions. The array will then have to be
filled using any of several methods described later in this chapter.

For example, to allocate a 2x2x3 array:

rndseed 345678;

ord = 3 | 2 | 2;

a = arrayalloc(ord,0);
16-6

Working with Arrays
for i(1,ord[1],1);

a[i,.,.] = rndn(2,3);

endfor;

print a;

Plane [1,.,.]

-0.4300 -0.2878 -0.1327

-0.0573 -1.2900 0.2467

Plane [2,.,.]

-1.4249 -0.0796 1.2693

-0.7530 -1.7906 -0.6103

Plane [3,.,.]

1.2586 -0.4773 0.7044

-1.2544 0.5002 0.3559

The second argument in the call to arrayalloc specifies whether the created array
is real or complex. arrayinit creates only real arrays.

Assigning Arrays
There are three methods used for assignment to an array:

And there are several ways to extract parts of arrays:

index operator

putArray puts a subarray into an N-dimensional array and returns
the result

setArray sets a subarray of an N-dimensional array in place

index operator the same method as matrices, generalized to arrays

getArray gets a subarray from an array

getMatrix gets a matrix from an array
16-7

GAUSS User Guide
The index operator is the slowest way to extract parts of arrays. The specialized
functions are the fastest when the circumstances are appropriate for their use.

index operator
The index operator will put a subarray into an array in a manner analogous to the use
of index operators on matrices:

a = arrayinit(3|2|2,0);

b = arrayinit(3|1|2,1);

a[.,2,.] = b;

print a;

Plane [1,.,.]

0.00000 0.00000

1.0000 1.0000

Plane [2,.,.]

0.00000 0.00000

1.0000 1.0000

Plane [3,.,.]

0.00000 0.00000

1.0000 1.0000

As this example illustrates, the assignment doesn't have to be contiguous.
putMatrix and setMatrix require a contiguous assignment, but for that reason
they are faster.

The right hand side of the assignment can also be a matrix:

a[1,.,.] = rndn(2,2);

print a;

Plane [1,.,.]

-1.7906502 -0.61038103

getMatrix4D gets a matrix from a 4-dimensional array

getScalar3D gets a scalar from a 3-dimensional array

getScalar4D gets a scalar from a 4-dimensional array
16-8

Working with Arrays
1.2586160 -0.47736360

Plane [2,.,.]

0.00000 0.00000

1.0000 1.0000

Plane [3,.,.]

0.00000 0.00000

1.0000 1.0000

The index operator will extract an array from a subarray in a manner analogous to the
use of index operators on matrices:

a = areshape(seqa(1,1,12),3|2|2);

b = a[.,1,.];

print a;

Plane [1,.,.]

1.0000 2.0000

3.0000 4.0000

Plane [2,.,.]

5.0000 6.0000

7.0000 8.0000

Plane [3,.,.]

9.0000 10.000

11.000 12.000

print b;

Plane [1,.,.]

1.0000 2.0000

Plane [2,.,.]

5.0000 6.0000

Plane [3,.,.]

9.0000 10.000
16-9

GAUSS User Guide
It is important to note that the result is always an array even if it's a scalar value:

c = a[1,1,1];

print c;

Plane [1,.,.]

1.0000

If you require a matrix result, and if the result has one or two dimensions, use
arraytomat to convert to a matrix, or use getMatrix, getMatrix3D, or
getMatrix4D. Or, if the result is a scalar, use getScalar3D or getScalar4D.

getArray
getArray is an additional method for extracting arrays:

a = areshape(seqa(1,1,12),3|2|2);

b = getarray(a,2|1);

print a;

Plane [1,.,.]

1.0000 2.0000

3.0000 4.0000

Plane [2,.,.]

5.0000 6.0000

7.0000 8.0000

Plane [3,.,.]

9.0000 10.000

11.000 12.000

print b;

5.0000 6.0000

getArray can only extract a contiguous part of an array. To get non-contiguous
parts you must use the index operator.

getMatrix
If the result is one or two dimensions, getMatrix returns a portion of an array

converted to a matrix. getMatrix is about 20 percent faster than the index operator:
16-10

Working with Arrays
a = areshape(seqa(1,1,12),3|2|2);

b = getMatrix(a,2);

print b;

5.0000 6.0000

7.0000 8.0000

getMatrix4D
This is a specialized version of getMatrix for 4-dimensional arrays. It behaves just
like getMatrix but is dramatically faster for that type of array. The following
illustrates the difference in timing:

a = arrayinit(100|100|10|10,1);

t0 = date;

for i(1,100,1);

for j(1,100,1);

b = a[i,j,.,.];

endfor;

endfor;

t1 = date;

e1 = ethsec(t0,t1);

print e1;

print;

t2=date;

for i(1,100,1);

for j(1,100,1);

b = getMatrix4d(a,i,j);

endfor;

endfor;

t3 = date;

e2 = ethsec(t2,t3);
16-11

GAUSS User Guide
print e2;

print;

print ftostrC(100*((e1-e2)/e1),

"percent difference - %6.2lf%%");

13.000000

5.0000000

percent difference - 61.54%

getScalar3D, getScalar4D
These are specialized versions of getMatrix for retrieving scalar elements of 3-
dimensional and 4-dimensional arrays, respectively. They behave just like
getMatrix, with scalar results, but are much faster. For example:

a = arrayinit(100|10|10,1);

t0 = date;

for i(1,100,1);

for j(1,10,1);

for k(1,10,1);

b = a[i,j,k];

endfor;

endfor;

endfor;

t1 = date;

e1 = ethsec(t0,t1);

print e1;

print;

t2=date;

for i(1,100,1);

for j(1,10,1);

for k(1,10,1);
16-12

Working with Arrays
b = getscalar3d(a,i,j,k);

endfor;

endfor;

endfor;

t3 = date;

e2 = ethsec(t2,t3);

print e2;

print;

print ftostrC(100*((e1-e2)/e1),

"percent difference - %6.2lf%%");

7.0000000

2.0000000

percent difference - 71.43%

putArray
putArray enters a subarray, matrix, or scalar into an N-dimensional array and
returns the result in an array. This function is much faster than the index operator, but
it requires the part of the array being assigned to be contiguous:

a = arrayinit(3|2|2,3);

b = putarray(a,2,eye(2));

print b;

Plane [1,.,.]

3.0000 3.0000

3.0000 3.0000

Plane [2,.,.]

1.0000 0.00000

0.00000 1.0000

Plane [3,.,.]

3.0000 3.0000
16-13

GAUSS User Guide
3.0000 3.0000

setArray
setArray enters a subarray, matrix, or scalar into an N-dimensional array in place:

a = arrayinit(3|2|2,3);

setarray a,2,eye(2);

print b;

Plane [1,.,.]

3.0000 3.0000

3.0000 3.0000

Plane [2,.,.]

1.0000 0.00000

0.00000 1.0000

Plane [3,.,.]

3.0000 3.0000

3.0000 3.0000

Looping with Arrays
When working with arrays, for loops and do loops may be used in the usual way. In
the following, let Y be an Nx1xL array of L time series, X an Nx1xK array of K
independent variables, B a KxL matrix of regression coefficients, phi a PxLxL array of
garch coefficients, theta a QxLxL array of arch coefficients, and Omega a LxL
symmetric matrix of constants. The log-likelihood for a multivariate garch BEKK
model can be computed using the index operator:

yord = getOrders(Y);

xord = getOrders(X);

gord = getOrders(phi);

aord = getOrders(theta);

N = yord[1]; /* No. of observations */

L = yord[3]; /* No. of time series */
16-14

Working with Arrays
K = xord[3]; /* No. of independent variables */

/* in mean equation */

P = gord[1]; /* order of garch parameters */

Q = aord[1]; /* order of arch parameters */

r = maxc(P|Q);

E = Y - amult(X,areshape(B,N|K|L));

sigma = areshape(omega,N|L|L);

for i(r+1,N,1);

for j(1,Q,1);

W = amult(theta[j,.,.],

atranspose(E[i-j,.,.],1|3|2));

sigma[i,.,.] = sigma[i,.,.] +

amult(W,atranspose(W,1|3|2));

endfor;

for j(1,P,1);

sigma[i,.,.] = sigma[i,.,.] +

amult(amult(phi[j,.,.],

sigma[i-j,.,.]),phi[j,.,.]);

endfor;

endfor;

sigmai = invpd(sigma);

lndet = ln(det(sigma));

lnl = -0.5*(L*(N-R)*asum(ln(det(sigmai)),1) +

asum(amult(amult(E,sigmai),atranspose(E,1|3|2)),3);

Instead of index operators, the above computation can be done using getArray and
setArray:

yord = getOrders(Y);

xord = getOrders(X);
16-15

GAUSS User Guide
gord = getOrders(phi);

aord = getOrders(theta);

N = yord[1]; /* No. of observations */

L = yord[3]; /* No. of time series */

K = xord[3]; /* No. of independent variables */

/* in mean equation */

P = gord[1]; /* order of garch parameters */

Q = aord[1]; /* order of arch parameters */

r = maxc(P|Q);

E = Y - amult(X,areshape(B,N|K|L));

sigma = areshape(omega,N|L|L);

for i(r+1,N,1);

for j(1,Q,1);

W = amult(getArray(theta,j),

atranspose(getArray(E,i-j),2|1));

setarray sigma,i,getArray(sigma,i)+

amult(W,atranspose(W,2|1));

endfor;

for j(1,P,1);

setarray sigma,i,getArray(sigma,i)+

areshape(amult(amult(getArray(phi,j),

getArray(sigma,i-j)),getArray(phi,j)),3|3);

endfor;

endfor;

sigmai = invpd(sigma);

lndet = ln(det(sigma));

lnl = -0.5*(L*(N-R)*asum(ln(det(sigmai)),1) +

asum(amult(amult(E,sigmai),atranspose(E,1|3|2)),3)
16-16

Working with Arrays
Putting the two code fragments above into loops that called them a hundred times and
measuring the time, produced the following results:

index operator 2.604 seconds

getArray,setArray 1.092 seconds

Thus, the getArray and setArray methods are more than twice as fast.

loopnextindex
Several keyword functions are available in GAUSS for looping with arrays. The
problem in the previous section, for example, can be written using these functions
rather than with for loops:

sigind = r + 1;

sigloop:

sig0ind = sigind[1];

thetaind = 1;

thetaloop:

sig0ind = sig0ind - 1;

W = amult(getArray(theta,thetaind),

atranspose(getArray(E,sig0ind),2|1));

setarray sigma,sigind,getArray(sigma,sigind)+

amult(W,atranspose(W,2|1));

loopnextindex thetaloop,thetaind,aord;

sig0ind = sigind;

phiind = 1;

philoop:

sig0ind[1] = sig0ind[1] - 1;

setarray sigma,sigind,getArray(sigma,sigind)+

areshape(amult(amult(getArray(phi,phiind),

getArray(sigma,sig0ind)),

getArray(phi,phiind)),3|3);

loopnextindex philoop,phiind,gord;
16-17

GAUSS User Guide
loopnextindex sigloop,sigind,sigord;

The loopnextindex function in this example isn't faster than the for loop used in
the previous section primarily because the code is looping only through the first
dimension in each loop. The advantages of loopnextindex, previousindex,
nextindex, and walkindex are when the code is looping through the higher
dimensions of a highly dimensioned array. In this case, looping through an array can
be very complicated and difficult to manage using for loops. loopnextindex can
be faster and more useful.

The next example compares two ways of extracting a subarray from a 5-dimensional
array:

ord = 3|3|3|3|3;

a = areshape(seqa(1,1,prodc(ord)),ord);

b = eye(3);

for i(1,3,1);

for j(1,3,1);

for k(1,3,1);

setarray a,i|j|k,b;

endfor;

endfor;

endfor;

ind = { 1,1,1 };

loopi:

setarray a,ind,b;

loopnextindex loopi,ind,ord;

Calling each loop 10,000 times and measuring the time each takes, we get

for loop 1.171 seconds

loopnextindex .321 seconds

In other words, loopnextindex is about four times faster, a very signi¯ cant
difference.
16-18

Working with Arrays
Miscellaneous Array Functions
atranspose

This function changes the order of the dimensions. For example:

a = areshape(seqa(1,1,12),2|3|2);

print a;

Plane [1,.,.]

1.0000 2.0000

3.0000 4.0000

5.0000 6.0000

Plane [2,.,.]

7.0000 8.0000

9.0000 10.000

11.000 12.000

/*

** swap 2nd and 3rd dimension

*/

print atranspose(a,1|3|2);

Plane [1,.,.]

1.0000 3.0000 5.0000

2.0000 4.0000 6.0000

Plane [2,.,.]

7.0000 9.0000 11.000

8.0000 10.000 12.000

/*

** swap 1st and 3rd dimension

*/

print atranspose(a,3|2|1);
16-19

GAUSS User Guide
Plane [1,.,.]

1.0000 7.0000

3.0000 9.0000

5.0000 11.000

Plane [2,.,.]

2.0000 8.0000

4.0000 10.000

6.0000 12.000

/*

** move 3rd into the front

*/

print atranspose(a,3|1|2);

Plane [1,.,.]

1.0000 3.0000 5.0000

7.0000 9.0000 11.000

Plane [2,.,.]

2.0000 4.0000 6.0000

8.0000 10.000 12.000

amult
This function performs a matrix multiplication on the last two trailing dimensions of
an array. The leading dimensions must be strictly conformable, and the last two
trailing dimensions must be conformable in the matrix product sense. For example:

a = areshape(seqa(1,1,12),2|3|2);

b = areshape(seqa(1,1,16),2|2|4);

c = amult(a,b);

print a;

Plane [1,.,.]

1.0000 2.0000
16-20

Working with Arrays
3.0000 4.0000

5.0000 6.0000

Plane [2,.,.]

7.0000 8.0000

9.0000 10.000

11.000 12.000

print b;

Plane [1,.,.]

1.0000 2.0000 3.0000 4.0000

5.0000 6.0000 7.0000 8.0000

Plane [2,.,.]

9.0000 10.000 11.000 12.000

13.000 14.000 15.000 16.000

print c;

Plane [1,.,.]

11.000 14.000 17.000 20.000

23.000 30.000 37.000 44.000

35.000 46.000 57.000 68.000

Plane [2,.,.]

167.00 182.00 197.00 212.00

211.00 230.00 249.00 268.00

255.00 278.00 301.00 324.00

Suppose we have a matrix of data sets, a 2x2 matrix of 100x5 data sets that we've
stored in a 2x2x100x5 array called x. The moment matrices of these data sets can
easily and quickly be computed using atranspose and amult:

vc = amult(atranspose(x,1|2|4|3),x);
16-21

GAUSS User Guide
amean, amin, amax
These functions compute the means, minimums, and maximums, respectively, across
a dimension of an array. The size of the selected dimension of resulting array is shrunk
to one and contains the means, minimums, or maximums depending on the function
called. For example:

a = areshape(seqa(1,1,12),2|3|2);

print a;

Plane [1,.,.]

1.0000 2.0000

3.0000 4.0000

5.0000 6.0000

Plane [2,.,.]

7.0000 8.0000

9.0000 10.000

11.000 12.000

/*

** compute means along third dimension

*/

print amean(a,3);

Plane [1,.,.]

4.0000 5.0000

6.0000 7.0000

8.0000 9.0000

/*

** print means along the second dimension, i.e.,

** down the columns

*/

print amean(a,2);

Plane [1,.,.]
16-22

Working with Arrays
3.0000 4.0000

Plane [2,.,.]

9.0000 10.000

/*

** print the minimums down the columns

*/

print amin(a,2);

Plane [1,.,.]

1.0000 2.0000

Plane [2,.,.]

7.0000 8.0000

/*

** print the maximums along the third dimension

*/

print amax(a,3);

Plane [1,.,.]

7.0000 8.0000

9.0000 10.000

11.000 12.000

getDims
This function returns the number of dimensions of an array:

a = arrayinit(4|4|5|2,0);

print getdims(a);

4.00

getOrders
This function returns the sizes of each dimension of an array. The length of the vector
returned by getOrders is the dimension of the array:
16-23

GAUSS User Guide
a = arrayinit(4|4|5|2,0);

print getOrders(a);

4.00

4.00

5.00

2.00

arraytomat
This function converts an array with two or fewer dimensions to a matrix:

a = arrayinit(2|2,0);

b = arraytomat(a);

type(a);

21.000

type(b);

6.0000

mattoarray
This function converts a matrix to an array:

b = rndn(2,2);

a = mattoarray(b);

type(b);

6.0000

type(a);

21.000

Using Arrays with GAUSS functions
Many of the GAUSS functions have been re-designed to work with arrays. There are
two general approaches to this implementation. There are exceptions, however, and
you are urged to refer to the documention if you are not sure how a particular GAUSS
function handles array input.
16-24

Working with Arrays
In the first approach, the function returns an element-by-element result that is strictly
conformable to the input. For example, cdfnc returns an array of identical size and
shape to the input array:

a = areshape(seqa(-2,.5,12),2|3|2);

b = cdfnc(a);

print b;

Plane [1,.,.]

0.9772 0.9331

0.8413 0.6914

0.5000 0.3085

Plane [2,.,.]

0.1586 0.0668

0.0227 0.0062

0.0013 0.0002

In the second approach, which applies generally to GAUSS matrix functions, the
function operates on the matrix defined by the last two trailing dimensions of the
array. Thus, given a 5x10x3 array, moment returns a 5x3x3 array of five moment
matrices computed from the five 10x3 matrices in the input array.

Only the last two trailing dimensions matter; i.e., given a 2x3x4x5x10x6 array,
moment returns a 2x3x4x5x6x6 array of moment matrices.

For example, in the following the result is a 2x3 array of 3x1 vectors of singular
values of a 2x3 array of 6x3 matrices:

a = areshape(seqa(1,1,108),2|3|6|3);

b=svds(a);

print b;

Plane [1,1,.,.]

45.894532

1.6407053

1.2063156e-015

Plane [1,2,.,.]
16-25

GAUSS User Guide
118.72909

0.63421188

5.8652600e-015

Plane [1,3,.,.]

194.29063

0.38756064

1.7162751e-014

Plane [2,1,.,.]

270.30524

0.27857175

1.9012118e-014

Plane [2,2,.,.]

346.47504

0.21732995

1.4501098e-014

Plane [2,3,.,.]

422.71618

0.17813229

1.6612287e-014

It might be tempting to conclude from this example that, in general, GAUSS
function's behavior on the last two trailing dimensions of an array is strictly analogous
as the GAUSS function's behavior on a matrix. This may be true with some of the
functions, but not all. For example, the GAUSS meanc function returns a column
result for matrix input. However, the behavior for the GAUSS amean function is not
analogous. This function takes a second argument that specifies on which dimension
the mean is to be taken. That dimension is then collapsed to a size of 1. Thus:

a = areshape(seqa(1,1,24),2|3|4);

print a;

Plane [1,.,.]

1.000 2.000 3.000 4.000
16-26

Working with Arrays
5.000 6.000 7.000 8.000

9.000 10.000 11.000 12.000

Plane [2,.,.]

13.000 14.000 15.000 16.000

17.000 18.000 19.000 20.000

21.000 22.000 23.000 24.000

/*

** means computed across rows

*/

b = amean(a,1);

print b;

Plane [1,.,.]

2.500

6.500

10.500

Plane [2,.,.]

14.500

18.500

22.500

/*

** means computed down columns

*/

c = amean(a,2);

print c;

Plane [1,.,.]

5.000 6.000 7.000 8.000

Plane [2,.,.]

17.000 18.000 19.000 20.000
16-27

GAUSS User Guide
/*

** means computed along 3rd dimension

*/

d = amean(a,3);

print d;

Plane [1,.,.]

7.000 8.000 9.000 10.000

11.000 12.000 13.000 14.000

15.000 16.000 17.000 18.000

A Panel Data Model
Suppose we have N cases observed at T times. Let yit be the an observation on a
dependent variable for the i-th case at time t, Xit an observation of k independent
variables for the i-th case at time t, B, a Kx1 vector of coefficients. Then

is a variance components model where is a random error term uncorrelated with

, but which is correlated within cases. This implies an NTxNT residual moment

matrix that is block diagonal with N TxT moment matrices with the following form:

The log-likelihood for this model is

yit XitB µi εit+ +=

µi
εit

σ2

µ
σ2

ε
+ σ2 … σ2

µ

σ2 σ2

µ
σ2

ε
+ … σ2

µ
. . . .
. . . .
. . . .

σ2

µ
σ2

µ
… σ2

µ
σ2

ε
+

Lln 0.5 NT 2π() Ω Y XB–()′Ω 1– Y XB–()+ln–ln()–=
16-28

Working with Arrays
where is the block-diagonal moment matrix of the residuals.

Computing the Log-likelihood

Using GAUSS arrays, we can compute the log-likelihood of this model without
resorting to do loops. Let Y be a 100x3x1 array of observations on the dependent
variable, and X a 100x3x5 array of observations on the independent variables. Further
let B be a 5x1 vector of coefficients, and sigu and sige be the residual variances of

and respectively. Then, in explicit steps we compute

N = 100;

T = 3;

K = 5;

sigma = sigu * ones(T,T) + sige * eye(T); /* TxT sigma

*/

sigmai = invpd(sigma); /* sigma inverse */

lndet = N*ln(detl);

E = Y - amult(X,areshape(B,N|K|1)); /* residuals */

Omegai = areshape(sigmai,N|T|T); /* diagonal blocks */

/* stacked in a vector array */

R1 = amult(atranspose(E,1|3|2),Omegai); /* E'Omegai */

R2 = amult(R1,E); /* R1*E */

lnL = -0.5*(N*T*ln(2*pi) - lndet + asum(R2,3)); /* log-

likelhood */

All of this can be made more efficient by nesting statements, which eliminates
copying of temporary intervening arrays to local arrays. It is also useful to add a check
for the positive definiteness of sigma:

N = 100;

T = 3;

K = 5;

const = -0.5*N*T*ln(2*pi);

oldt = trapchk(1);

Ω

µ
ε

16-29

GAUSS User Guide
trap 1,1;

sigmai = invpd(sigu*ones(T,T)+sige*eye(T));

trap oldt,1;

if not scalmiss(sigmai);

E = Y - amult(X,areshape(B,N|K|1));

lnl = const + 0.5*N*ln(detl) -

0.5*asum(amult(amult(atranspose(E,1|3|2),

areshape(sigmai,N|T|T)),E),3);

else;

lnl = error(0);

endif;

Appendix
This is an incomplete list of special functions for working with arrays. Many GAUSS
functions have been modi¯ ed to handle arrays and are not listed here. For example,
cdfnc computes the complement of the Normal cdf for each element of an array just
as it would for a matrix. See the documentation for these GAUSS functions for
information about their behavior with arrays.

aconcat Concatenates conformable matrices and arrays in a user-
specified dimension.

aeye Creates an array of identity matrices.

amax Computes the maximum elements across a dimension of an
array.

amean Computes the mean along one dimension of an array

amin Computes the minimum elements across a dimension of an
array.

amult performs a matrix multiplication on the last two trailing
dimensions of an array.

areshape Reshapes a scalar, matrix, or array into an array of user-
specified size.
16-30

Working with Arrays
arrayalloc Creates an N-dimensional array with unspecified contents.

arrayinit Creates an N-dimensional array with a specified fill value.

arraytomat Changes an array to type matrix.

asum Computes the sum across one dimension of an array.

atranspose Transposes an N-dimensional array.

getarray Gets a contiguous subarray from an N-dimensional array.

getdims Gets the number of dimensions in an array.

getmatrix Gets a contiguous matrix from an N-dimensional array.

getmatrix4D Gets a contiguous matrix from a 4-dimensional array.

getorders Gets the vector of orders corresponding to an array.

getscalar3D Gets a scalar from a 3-dimensional array.

getscalar4D Gets a scalar form a 4-dimensional array.

loopnextindex Increments an index vector to the next logical index and
jumps to the specified label if the index did not wrap to the
beginning.

mattoarray Changes a matrix to a type array.

nextindex Returns the index of the next element or subarray in an
array.

previousindex Returns the index of the previous element or subarray in an
array.

putarray Puts a contiguous subarray into an N-dimensional array and
returns the resulting array.

setarray Sets a contiguous subarray of an N-dimensional array.

walkindex Walks the index of an array forward or backward through a
specified dimension.
16-31

Libraries 17

The GAUSS library system allows for the creation and maintenance of modular
programs. The user can create “libraries” of frequently used functions that the GAUSS
system will automatically find and compile whenever they are referenced in a
program.

Autoloader
The autoloader resolves references to procedures, keywords, matrices, and strings that
are not defined in the program from which they are referenced. The autoloader
automatically locates and compiles the files containing the symbol definitions that are
not resolved during the compilation of the main file. The search path used by the
autoloader is first the current directory, and then the paths listed in the src_path
configuration variable in the order they appear. src_path can be defined in the
GAUSS configuration file.

Forward References
When the compiler encounters a symbol that has not previously been defined, it is
called a “forward reference.” GAUSS handles forward references in two ways,
depending on whether they are “left-hand side” or “right-hand side” references.
17-1

GAUSS User Guide
Left-Hand Side

A left-hand side reference is usually a reference to a symbol on the left-hand side of
the equal sign in an expression such as:

x = 5;

Left-hand side references, since they are assignments, are assumed to be matrices. In
the previous statement, x is assumed to be a matrix and the code is compiled
accordingly. If, at execution time, the expression actually returns a string, the
assignment is made and the type of the symbol x is forced to string.

Some commands are implicit left-hand side assignments. There is an implicit left-
hand side reference to x in each of these statements:

clear x;

load x;

open x = myfile;

Right-Hand Side

A right-hand side reference is usually a reference to a symbol on the right-hand side of
the equal sign in an expression such as:

z = 6;

y = z + dog;

print y;

In the program above, since dog is not previously known to the compiler, the
autoloader will search for it in the active libraries. If it is found, the file containing it
will be compiled. If it is not found in a library, the autoload/autodelete state will
determine how it is handled.

The Autoloader Search Path
If the autoloader is OFF, no forward references are allowed. Every procedure, matrix,
and string referenced by your program must be defined before it is referenced. An
external statement can be used above the first reference to a symbol, but the
definition of the symbol must be in the main file or in one of the files that are
#include’d. No global symbols are deleted automatically.
17-2

Libraries
If the autoloader is ON, GAUSS searches for unresolved symbol references during
compilation using a specific search path. If the autoloader is OFF, an Undefined
symbol error message will result for right-hand side references to unknown symbols.

When autoload is ON, the autodelete state controls the handling of references to
unknown symbols.

The following search path will be followed to locate any symbols not previously
defined:

Autodelete ON

1. user library

2. user-specified libraries

3. gauss library

4. current directory, then src_path for files with a .g extension

Forward references are allowed and .g files need not be in a library. If there are
symbols that cannot be found in any of the places listed above, an Undefined
symbol error message will be generated and all uninitialized variables and all
procedures with global references will be deleted from the global symbol table. This
autodeletion process is transparent to the user, since the symbols are automatically
located by the autoloader the next time the program is run. This process results in
more compile time, which may or may not be significant depending on the speed of
the computer and the size of the program.

Autodelete OFF

1. user library

2. user-specified libraries

3. gauss library

All .g files must be listed in a library. Forward references to symbols not listed in an
active library are not allowed. For example:

x = rndn(10,10);

y = sym(x); /* forward reference to symbol */

proc sym(x);

retp(x+x’);

endp;
17-3

GAUSS User Guide
Use an external statement for anything referenced above its definition if
autodelete is OFF:

external proc sym;

x = rndn(10,10);

y = sym(x);

proc sym(x);

retp(x+x’);

endp;

When autodelete is OFF, symbols not found in an active library will not be added to
the symbol table. This prevents the creation of uninitialized procedures in the global
symbol table. No deletion of symbols from the global symbol table will take place.

Libraries

The first place GAUSS looks for a symbol definition is in the “active” libraries. A
GAUSS library is a text file that serves as a dictionary to the source files that contain
the symbol definitions. When a library is active, GAUSS will look in it whenever it is
looking for a symbol it is trying to resolve. The library statement is used to make a
library active. Library files should be located in the subdirectory listed in the
lib_path configuration variable. Library files have a .lcg extension.

Suppose you have several procedures that are all related and you want them all
defined in the same file. You can create such a file, and, with the help of a library, the
autoloader will be able to find the procedures defined in that file whenever they are
called.

First, create the file to contain your desired procedure definitions. By convention, this
file is usually named with a .src extension, but you can use any name and any file
extension. In this file, put all the definitions of related procedures you wish to use.
Here is an example of such a file, called norm.src:

/*

** norm.src

**

** This is a file containing the definitions of three

** procedures which return the norm of a matrix x.

** The three norms calculated are the one-norm, the
17-4

Libraries
** inf-norm and the E-norm.

*/

proc onenorm(x);

retp(maxc(sumc(abs(x))));

endp;

proc infnorm(x);

retp(maxc(sumc(abs(x’))));

endp;

proc Enorm(x);

retp(sumc(sumc(x.*x)));

endp;

Next, create a library file that contains the name of the file you want access to, and the
list of symbols defined in it. This can be done with the lib command. (For details,
see lib in the GAUSS Language Reference.)

A library file entry has a filename that is flush left. The drive and path can be included
to speed up the autoloader. Indented below the filename are the symbols included in
the file. There can be multiple symbols listed on a line, with spaces between. The
symbol type follows the symbol name, with a colon delimiting it from the symbol
name. The valid symbol types are:

fn user-defined single line function

keyword keyword

proc procedure

matrix matrix, numeric or character

string string
17-5

GAUSS User Guide
If the symbol type is missing, the colon must not be present and the symbol type is
assumed to be proc. Both of the following library files are valid:

Example 1

/*

** math

**

** This library lists files and procedures for

** mathematical routines.

*/

norm.src

onenorm:proc infnorm:proc Enorm:proc

complex.src

cmmult:proc cmdiv:proc cmadd:proc cmsoln:proc

poly.src

polychar:proc polyroot:proc polymult:proc

Example 2

/*

** math

**

** This library lists files and procedures for

** mathematical routines.

*/

c:\gauss\src\norm.src

onenorm : proc

infnorm : proc

Enorm : proc
17-6

Libraries
c:\gauss\src\complex.src

cmmult : proc

cmdiv : proc

cmadd : proc

cmsoln : proc

c:\gauss\src\fcomp.src

feq : proc

fne : proc

flt : proc

fgt : proc

fle : proc

fge : proc

c:\gauss\src\fcomp.dec

_fcmptol : matrix

Once the autoloader finds, via the library, the file containing your procedure
definition, everything in that file will be compiled. For this reason, combine related
procedures in the same file in order to minimize the compiling of procedures not
needed by your program. Do not combine unrelated functions in one .src file,
because if one function in a .src file is needed, the whole file will be compiled.

user Library

This is a library for user-created procedures. If the autoloader is ON, the user library is
the first place GAUSS looks when trying to resolve symbol references.

You can update the user library with the lib command:

lib user myfile.src;

This will update the user library by adding a reference to myfile.src.

No user library is shipped with GAUSS. It will be created the first time you use the
lib command.

For details of the parameters available with the lib command, see the GAUSS
Language Reference.
17-7

GAUSS User Guide
.g Files

If autoload and autodelete are ON and a symbol is not found in a library, the
autoloader will assume it is a procedure and look for a file that has the same name as
the symbol and a .g extension. For example, if you have defined a procedure called
square, you could put the definition in a file called square.g in one of the
subdirectories listed in your src_path. If autodelete is OFF, the .g file must be
listed in an active library; for example, in the user library.

Global Declaration Files
If your application makes use of several global variables, create a file containing
declare statements. Use files with the extension .dec to assign default values to
global matrices and strings with declare statements. A file with a .ext extension
containing the same symbols in external statements can also be created and
#include’d at the top of any file that references these global variables. An
appropriate library file should contain the name of the .dec files and the names of the
globals they declare.

Here is an example that illustrates the way in which .dec, .ext, .lcg, and .src
files work together. Always begin the names of global matrices or strings with ‘_’ to
distinguish them from procedures:

.src File

/*

** fcomp.src

**

** These functions use _fcmptol to fuzz the comparison

** operations to allow for roundoff error.

**

** The statement: y = feq(a,b);

**

** is equivalent to: y = a eq b;

**

** Returns a scalar result, 1 (true) or 0 (false)

**

** y = feq(a,b);
17-8

Libraries
** y = fne(a,b);

*/

#include fcomp.ext;

proc feq(a,b);

retp(abs(a-b) <= _fcmptol);

endp;

proc fne(a,b);

retp(abs(a-b) > _fcmptol);

endp;

.dec File

/*

** fcomp.dec − global declaration file for fuzzy

** comparisons.

*/

declare matrix _fcmptol != 1e-14;

.ext File

/*

** fcomp.ext − external declaration file for fuzzy

** comparisons.

*/

external matrix _fcmptol;
17-9

GAUSS User Guide
.lcg File

/*

** fcomp.lcg − fuzzy compare library

*/

fcomp.dec

_fcmptol:matrix

fcomp.src

feq:proc

fne:proc

With the exception of the library (.lcg) files, these files must be located along your
src_path. The library files must be on your lib_path. With these files in place,
the autoloader will be able to find everything needed to run the following programs:

library fcomp;

x = rndn(3,3);

xi = inv(x);

xix = xi*x;

if feq(xix,eye(3));

print “Inverse within tolerance.”;

else;

print “Inverse not within tolerance.”;

endif;

If the default tolerance of 1e-14 is too tight, the tolerance can be relaxed:

library fcomp;

x = rndn(3,3);

xi = inv(x);

xix = xi*x;

_fcmptol = 1e-12; /* reset tolerance */
17-10

Libraries
if feq(xix,eye(3));

print “Inverse within tolerance.”;

else;

print “Inverse not within tolerance.”;

endif;

Troubleshooting
Below is a partial list of errors you may encounter in using the library system,
followed by the most probable cause.

(4) : error G0290 : ’c:\gauss\lib\prt.lcg’ : Library not

found

The autoloader is looking for a library file called prt.lcg, because it has been
activated in a library statement. Check the subdirectory listed in your lib_path
configuration variable for a file called prt.lcg.

(0) : error G0292 : ’prt.dec’ : File listed in library not

found

The autoloader cannot find a file called prt.dec. Check for this file. It should exist
somewhere along your src_path, if you have it listed in prt.lcg.

Undefined symbols:

PRTVEC c:\gauss\src\tstprt.g(2)

The symbol prtvec could not be found. Check if the file containing prtvec is in
the src_path. You may not have activated the library that contains your symbol
definition. Do so in a library statement.

c:\gauss\src\prt.dec(3) : Redefinition of ‘__vnames’

(proc)__vnames being declared external matrix

You are trying to illegally force a symbol to another type. You probably have a name
conflict that needs to be resolved by renaming one of the symbols.
17-11

GAUSS User Guide
c:\gauss\lib\prt.lcg(5) : error G0301 : ‘prt.dec’ :

Syntax error in library

Undefined symbols:

__VNAMES c:\gauss\src\prt.src(6)

Check your library to see that all filenames are flush left and all symbols defined in
that file are indented by at least one space.

Using dec Files
When constructing your own library system:

• Whenever possible, declare variables in a file that contains only declare
statements. When your program is run again without clearing the workspace,
the file containing the variable declarations will not be compiled and
declare warnings will be prevented.

• Provide a function containing regular assignment statements to reinitialize the
global variables in your program if they ever need to be reinitialized during or
between runs. Put this in a separate file from the declarations:

proc (0) = globset;

_vname = “X”;

_con = 1;

_row = 0;

_title = “”;

endp;

• Never declare a global in more than one file.

• To avoid meaningless redefinition errors and declare warnings, never
declare a global more than once in any one file. Redefinition error messages
and declare warnings are meant to help you prevent name conflicts, and
will be useless to you if your code generates them normally.

By following these guidelines, any declare warnings and redefinition errors you
get will be meaningful. By knowing that such warnings and errors are significant, you
will be able to debug your programs more efficiently.
17-12

Compiler 18

GAUSS allows you to compile your large, frequently used programs to a file that can
be run over and over with no compile time. The compiled image is usually smaller
than the uncompiled source. GAUSS is not a native code compiler; rather, it compiles
to a form of pseudocode. The file will have a .gcg extension.

The compile command will compile an entire program to a compiled file. An
attempt to edit a compiled file will cause the source code to be loaded into the editor if
it is available to the system. The run command assumes a compiled file if no
extension is given, and that a file with a .gcg extension is in the src_path. A
saveall command is available to save the current contents of memory in a compiled
file for instant recall later. The use command will instantly load a compiled program
or set of procedures at the beginning of an ASCII program before compiling the rest of
the ASCII program file.

Since the compiled files are encoded binary files, the compiler is useful for developers
who do not want to distribute their source code.

Compiling Programs
Programs are compiled with the compile command.
18-1

GAUSS User Guide
Compiling a File
Source code program files that can be run with the run command can be compiled to
.gcg files with the compile command:

compile qxy.e;

All procedures, global matrices and strings, and the main program segment will be
saved in the compiled file. The compiled file can be run later using the run command.
Any libraries used in the program must be present and active during the compile, but
not when the program is run. If the program uses the dlibrary command, the .dll
files must be present when the program is run and the dlibrary path must be set to the
correct subdirectory. This will be handled automatically in your configuration file. If
the program is run on a different computer than it was compiled on, the .dll files
must be present in the correct location. sysstate (case 24) can be used to set the
dlibrary path at run-time.

Saving the Current Workspace
The simplest way to create a compiled file containing a set of frequently used
procedures is to use saveall and an external statement:

library pgraph;

external proc xy,logx,logy,loglog,hist;

saveall pgraph;

List the procedures you will be using in an external statement and follow it with a
saveall statement. It is not necessary to list procedures you do not explicitly call,
but are called from another procedure, because the autoloader will automatically find
them before the saveall command is executed. Nor is it necessary to list every
procedure you will be calling, unless the source will not be available when the
compiled file is use’d.

Remember, the list of active libraries is NOT saved in the compiled file so you may
still need a library statement in a program that is use’ing a compiled file.

Debugging
If you are using compiled code in a development situation where debugging is
important, compile the file with line number records. After the development is over,
18-2

Compiler
you can recompile without line number records if the maximum possible execution
speed is important. If you want to guarantee that all procedures contain line number
records, put a new statement at the top of your program and turn line number tracking
on.
18-3

File I/O 19

The following is a partial list of the I/O commands in the GAUSS programming
language:

close Close a file.

closeall Close all open files.

colsf Number of columns in a file.

create Create GAUSS data set.

dfree Space remaining on disk.

eof Test for end of file.

fcheckerr Check error status of a file.

fclearerr Check error status of a file and clear error flag.

fflush Flush a file’s output buffer.

fgets Read a line of text from a file.

fgetsa Read multiple lines of text from a file.

fgetsat Read multiple lines of text from a file, discarding newlines.
19-1

GAUSS User Guide
fgetst Read a line of text from a file, discarding newline.

fileinfo Returns names and information of files matching a
specification.

files Returns a directory listing as a character matrix.

filesa Returns a list of files matching a specification.

fopen Open a file.

fputs Write strings to a file.

fputst Write strings to a file, appending newlines.

fseek Reposition file pointer.

fstrerror Get explanation of last file I/O error.

ftell Get position of file pointer.

getf Load a file into a string.

getname Get variable names from data set.

iscplxf Returns whether a data set is real or complex.

load Load matrix file or small ASCII file (same as loadm).

loadd Load a small GAUSS data set into a matrix.

loadm Load matrix file or small ASCII file.

loads Load string file.

open Open a GAUSS data set.

output Control printing to an auxiliary output file or device.

readr Read a specified number of rows from a file.

rowsf Number of rows in file.

save Save matrices, strings, procedures.

saved Save a matrix in a GAUSS data set.

seekr Reset read/write pointer in a data set.

sortd Sort a data set.

typef Returns type of data set (bytes per element).

writer Write data to a data set.
19-2

File I/O
ASCII Files
GAUSS has facilities for reading and writing ASCII files. Since most software can
read and write ASCII files, this provides a way of sharing data between GAUSS and
many other kinds of programs.

Matrix Data

Reading

Files containing numeric data that are delimited with spaces or commas and are small
enough to fit into a single matrix or string can be read with load. Larger ASCII data
files can be converted to GAUSS data sets with the ATOG utility program see
“ATOG,” page 23-1. ATOG can convert packed ASCII files as well as delimited files.

For small delimited data files, the load statement can be used to load the data
directly into a GAUSS matrix. The resulting GAUSS matrix must be no larger than
the limit for a single matrix.

For example,

load x[] = dat1.asc;

will load the data in the file dat1.asc into an Nx1 matrix x. This method is
preferred because rows(x) can be used to determine how many elements were
actually loaded, and the matrix can be reshape’d to the desired form:

load x[] = dat1.asc;

if rows(x) eq 500;

x = reshape(x,100,5);

else;

errorlog “Read Error”;

end;

endif;

For quick interactive loading without error checking, use

load x[100,5] = dat1.asc;

This will load the data into a 100x5 matrix. If there are more or fewer than 500
numbers in the data set, the matrix will automatically be reshaped to 100x5.
19-3

GAUSS User Guide
Writing

To write data to an ASCII file, the print or printfm command is used to print to
the auxiliary output. The resulting files are standard ASCII files and can be edited
with GAUSS’s editor or another text editor.

The output and outwidth commands are used to control the auxiliary output. The
print or printfm command is used to control what is sent to the output file.

The window can be turned on and off using screen. When printing a large amount
of data to the auxiliary output, the window can be turned off using the command

screen off;

This will make the process much faster, especially if the auxiliary output is a disk file.

It is easy to forget to turn the window on again. Use the end statement to terminate
your programs; end will automatically perform screen on and output off.

The following commands can be used to control printing to the auxiliary output:

format Specify format for printing a matrix.

output Open, close, rename auxiliary output file or device.

outwidth Auxiliary output width.

printfm Formatted matrix print.

print Print matrix or string.

screen Turn printing to the window on and off.

This example illustrates printing a matrix to a file:

format /rd 8,2;

outwidth 132;

output file = myfile.asc reset;

screen off;

print x;

output off;

screen on;

The numbers in the matrix x will be printed with a field width of 8 spaces per number,
and with 2 places beyond the decimal point. The resulting file will be an ASCII data
file. It will have 132 column lines maximum.
19-4

File I/O
A more extended example follows. This program will write the contents of the
GAUSS file mydata.dat into an ASCII file called mydata.asc. If there is an
existing file by the name of mydata.asc, it will be overwritten:

output file = mydata.asc reset;

screen off;

format /rd 1,8;

open fp = mydata;

do until eof(fp);

print readr(fp,200);;

endo;

fp = close(fp);

end;

The output ... reset command will create an auxiliary output file called
mydata.asc to receive the output. The window is turned off to speed up the
process. The GAUSS data file mydata.dat is opened for reading, and 200 rows
will be read per iteration until the end of the file is reached. The data read will be
printed to the auxiliary output mydata.asc only, because the window is off.

General File I/O
getf will read a file and return it in a string variable. Any kind of file can be read in
this way as long as it will fit into a single string variable.

To read files sequentially, use fopen to open the file and use fgets, fputs, and
associated functions to read and write the file. The current position in a file can be
determined with ftell. The following example uses these functions to copy an
ASCII text file:

proc copy(src, dest);

local fin, fout, str;

fin = fopen(src, “rb”);

if not fin;

retp(1);

endif;
19-5

GAUSS User Guide
fout = fopen(dest, “wb”);

if not fin;

call close(fin);

retp(2);

endif;

do until eof(fin);

str = fgets(fin, 1024);

if fputs(fout, str) /= 1;

call close(fin);

call close(fout);

retp(3);

endif;

endo;

call close(fin);

call close(fout);

retp(0);

endp;

Data Sets
GAUSS data sets are the preferred method of storing data for use within GAUSS. Use
of these data sets allows extremely fast reading and writing of data. Many library
functions are designed to read data from these data sets.

Layout
GAUSS data sets are arranged as matrices; that is, they are organized in terms of rows
and columns. The columns in a data file are assigned names and these names are
stored in the header or, in the case of the v89 format, in a separate header file.

The limit on the number of rows in a GAUSS data set is determined by disk size. The
limit on the number of columns is limited by RAM. Data can be stored in 2, 4, or 8
bytes per number, rather than just 8 bytes as in the case of GAUSS matrix files.
19-6

File I/O
The ranges of the different formats are:

Creating Data Sets
Data sets can be created with the create command. The names of the columns, the
type of data, etc., can be specified. (For details, see create in the GAUSS Language
Reference.)

Data sets, unlike matrices, cannot change from real to complex, or vice-versa. Data
sets are always stored a row at a time. The rows of a complex data set, then, have the
real and imaginary parts interleaved, element by element. For this reason, you cannot
write rows from a complex matrix to a real data set — there is no way to interleave the
data without rewriting the entire data set. If you must, explicitly convert the rows of
data first, using the real and imag functions (see the GAUSS Language Reference),
and then write them to the data set. Rows from a real matrix CAN be written to a
complex data set; GAUSS simply supplies 0’s for the imaginary part.

To create a complex data set, include the complex flag in your create command.

Reading and Writing
The basic functions in GAUSS for reading data files are open and readr:

open f1 = dat1;

x = readr(f1,100);

The readr function in the example will read in 100 rows from dat1.dat. The data
will be assigned to a matrix x.

loadd and saved can be used for loading and saving small data sets.

Bytes
Data
Type

Significant
Digits Range

2 integer 4 -32768 <= X <= 32767

4 single 6-7 8.43E-37 <= |X| <= 3.37E+38

8 double 15-16 4.19E-307 <= |X| <= 1.67E+308
19-7

GAUSS User Guide
The following example illustrates the creation of a GAUSS data file by merging
(horizontally concatenating) two existing data sets:

file1 = “dat1”;

file2 = “dat2”;

outfile = “daty”;

open fin1 = ^file1 for read;

open fin2 = ^file2 for read;

varnames = getname(file1)|getname(file2);

otyp = maxc(typef(fin1)|typef(fin2));

create fout = ^outfile with ^varnames,0,otyp;

nr = 400;

do until eof(fin1) or eof(fin2);

y1 = readr(fin1,nr);

y2 = readr(fin2,nr);

r = maxc(rows(y1)|rows(y2));

y = y1[1:r,.] ~ y2[1:r,.];

call writer(fout,y);

endo;

closeall fin1,fin2,fout;

In the previous example, data sets dat1.dat and dat2.dat are opened for
reading. The variable names from each data set are read using getname, and
combined in a single vector called varnames. A variable called otyp is created that
will be equal to the larger of the two data types of the input files. This will ensure the
output is not rounded to less precision than the input files. A new data set daty.dat
is created using the create ... with ... command. Then, on every iteration
of the loop, 400 rows are read in from each of the two input data sets, horizontally
concatenated, and written out to daty.dat. When the end of one of the input files is
reached, reading and writing will stop. The closeall command is used to close all
files.
19-8

File I/O
Distinguishing Character and Numeric Data
Although GAUSS itself does not distinguish between numeric and character columns
in a matrix or data set, some of the GAUSS Applications programs do. When creating
a data set, it is important to indicate the type of data in the various columns. The
following discusses two ways of doing this.

Using Type Vectors

The v89 data set format distinguishes between character and numeric data in data sets
by the case of the variable names associated with the columns. The v96 data set
format, however, stores this type of information separately, resulting in a much cleaner
and more robust method of tracking variable types, and greater freedom in the naming
of data set variables.

When you create a data set, you can supply a vector indicating the type of data in each
column of the data set. For example:

data = { M 32 21500,

F 27 36000,

F 28 19500,

M 25 32000 };

vnames = { “Sex” “Age” “Pay” };

vtypes = { 0 1 1 };

create f = mydata with ^vnames, 3, 8, vtypes;

call writer(f,data);

f = close(f);

To retrieve the type vector, use vartypef:

open f = mydata for read;

vn = getnamef(f);

vt = vartypef(f);

print vn’;

print vt’;

Sex Age Pay

0 1 1
19-9

GAUSS User Guide
The function getnamef in the previous example returns a string array rather than a
character vector, so you can print it without the ‘$’ prefix.

Using the Uppercase/Lowercase Convention (v89 Data Sets)

This is obsolete, use vartypef and v96 data sets to be compatible with future
versions.

The following method for distinguishing character/numeric data will soon be
obsolete; use the Type Vectors method described earlier.

To distinguish numeric variables from character variables in GAUSS data sets, some
GAUSS application programs recognize an “uppercase/lowercase” convention: if the
variable name is uppercase, the variable is assumed to be numeric; if the variable
name is lowercase, the variable is assumed to be character. The ATOG utility program
implements this convention when you use the # and $ operators to toggle between
character and numeric variable names listed in the invar statement, and you have
specified nopreservecase.

GAUSS does not make this distinction internally. It is up to the program to keep track
of and make use of the information recorded in the case of the variable names in a data
set.

When creating a data set using the saved command, this convention can be
established as follows:

data = { M 32 21500,

F 27 36000,

F 28 19500,

M 25 32000 };

dataset = “mydata”;

vnames = { “sex” AGE PAY };

call saved(data,dataset,vnames);

It is necessary to put “sex” in quotes in order to prevent it from being forced to
uppercase.

The procedure getname can be used to retrieve the variable names:

print $getname(“mydata”);
19-10

File I/O
The names are:

sex

AGE

PAY

When writing or creating a data set, the case of the variable names is important. This
is especially true if the GAUSS applications programs will be used on the data set.

Matrix Files
GAUSS matrix files are files created by the save command.

The save command takes a matrix in memory, adds a header that contains
information on the number of rows and columns in the matrix, and stores it on disk.
Numbers are stored in double precision just as they are in matrices in memory. These
files have the extension .fmt.

Matrix files can be no larger than a single matrix. No variable names are associated
with matrix files.

GAUSS matrix files can be load’ed into memory using the load or loadm
command, or they can be opened with the open command and read with the readr
command. With the readr command, a subset of the rows can be read. With the
load command, the entire matrix is load’ed.

GAUSS matrix files can be open’ed for read, but not for append or for
update.

If a matrix file has been opened and assigned a file handle, rowsf and colsf can be
used to determine how many rows and columns it has without actually reading it into
memory. seekr and readr can be used to jump to particular rows and to read them
into memory. This is useful when only a subset of rows is needed at any time. This
procedure will save memory and be much faster than load’ing the entire matrix into
memory.

File Formats
This section discusses the GAUSS binary file formats.

There are four currently supported matrix file formats.

Version Extension Support

Small Matrix v89 .fmt Obsolete, use v96.
19-11

GAUSS User Guide
There are four currently supported string file formats:

There are four currently supported data set formats:

Small Matrix v89 (Obsolete)
Matrix files are binary files, and cannot be read with a text editor. They are created
with save. Matrix files with up to 8190 elements have a .fmt extension and a 16-
byte header formatted as follows:

Extended Matrix v89 .fmt Obsolete, use v96.

Matrix v92 .fmt Obsolete, use v96.

Universal Matrix v96 .fmt Supported for read/write.

Version Extension Support

Small String v89 .fst Obsolete, use v96.

Extended String v89 .fst Obsolete, use v96.

String v92 .fst Obsolete, use v96.

Universal String v96 .fst Supported for read/write.

Version Extension Support

Small Data Set v89 .dat,
.dht

Obsolete, use v96.

Extended Data Set v89 .dat,
.dht

Obsolete, use v96.

Data Set v92 .dat Obsolete, use v96.

Universal Data Set v96 .dat Supported for read/write.

Offset Description

0-1 DDDD hex, identification flag

2-3 rows, unsigned 2-byte integer

4-5 columns, unsigned 2-byte integer

6-7 size of file minus 16-byte header, unsigned 2-byte integer

8-9 type of file, 0086 hex for real matrices, 8086 hex for complex matrices
19-12

File I/O
The body of the file starts at offset 16 and consists of IEEE format double-precision
floating point numbers or character elements of up to 8 characters. Character elements
take up 8 bytes and are padded on the right with zeros. The size of the body of the file
is 8*rows*cols rounded up to the next 16-byte paragraph boundary. Numbers are
stored row by row. A 2x3 real matrix will be stored on disk in the following way, from
the lowest addressed element to the highest addressed element:

 [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

For complex matrices, the size of the body of the file is 16*rows*cols. The entire real
part of the matrix is stored first, then the entire imaginary part. A 2x3 complex matrix
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed element:

(real part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

(imaginary part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

Extended Matrix v89 (Obsolete)
Matrices with more than 8190 elements are saved in an extended format. These files
have a 16-byte header formatted as follows:

The size of the body of an extended matrix file is 8*rows*cols (not rounded up to a
paragraph boundary). Aside from this, the body is the same as the small matrix v89
file.

Small String v89 (Obsolete)
String files are created with save. String files with up to 65519 characters have a 16-
byte header formatted as follows:

10-15 reserved, all 0’s

Offset Description

0-1 EEDD hex, identification flag

2-3 type of file, 0086 hex for real matrices, 8086 hex for complex matrices

4-7 rows, unsigned 4-byte integer

8-11 columns, unsigned 4-byte integer

12-15 size of file minus 16-byte header, unsigned 4-byte integer

Offset Description
19-13

GAUSS User Guide
The body of the file starts at offset 16. It consists of the string terminated with a null
byte. The size of the file is the 16-byte header plus the length of the string and null
byte rounded up to the next 16-byte paragraph boundary.

Extended String v89 (Obsolete)
Strings with more than 65519 characters are saved in an extended format. These files
have a 16-byte header formatted as follows:

The body of the file starts at offset 16. It consists of the string terminated with a null
byte. The size of the file is the 16-byte header plus the length of the string and null
byte rounded up to the next 8-byte boundary.

Small Data Set v89 (Obsolete)
All data sets are created with create. v89 data sets consist of two files; one (.dht)
contains the header information; the second (.dat) contains the binary data. The data
will be one of three types:

8-byte IEEE floating point

4-byte IEEE floating point

0-1 DFDF hex, identification flag

2-3 1, unsigned 2-byte integer

Offset Description

4-5 length of string plus null byte, unsigned 2-byte integer

6-7 size of file minus 16-byte header, unsigned 2-byte integer

8-9 001D hex, type of file

10-15 reserved, all 0’s

Offset Description

0-1 EEDF hex, identification flag

2-3 001D hex, type of file

4-7 1, unsigned 4-byte integer

8-11 length of string plus null byte, unsigned 4-byte integer

12-15 size of file minus 16-byte header, unsigned 4-byte integer
19-14

File I/O
2-byte signed binary integer, twos complement

Numbers are stored row by row.

The .dht file is used in conjunction with the .dat file as a descriptor file and as a
place to store names for the columns in the .dat file. Data sets with up to 8175
columns have a .dht file formatted as follows:

:

Column names begin at offset 128 and are stored 8 bytes each in ASCII format.
Names with less than 8 characters are padded on the right with bytes of 0.

The number of rows in the .dat file is calculated in GAUSS using the file size,
columns, and data type. This means that users can modify the .dat file by adding or
deleting rows with other software without updating the header information.

Names for the columns should be lowercase for character data, to be able to
distinguish them from numeric data with vartype.

GAUSS currently examines only the 4’s bit of the control flags. This bit is set to 0 for
real data sets, 1 for complex data sets. All other bits are 0.

Data sets are always stored a row at a time. A real data set with 2 rows and 3 columns
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed element:

[1,1] [1,2] [1,3]

[2,1] [2,2] [2,3]

Offset Description

0-1 DADA hex, identification flag

2-5 reserved, all 0’s

6-7 columns, unsigned 2-byte integer

8-9 row size in bytes, unsigned 2-byte integer

10-11 header size in bytes, unsigned 2-byte integer

12-13 data type in .dat file (2 4 8), unsigned 2-byte integer

14-17 reserved, all 0’s

18-21 reserved, all 0’s

22-23 control flags, unsigned 2-byte integer

24-127 reserved, all 0’s
19-15

GAUSS User Guide
The rows of a complex data set are stored with the real and imaginary parts
interleaved, element by element. A 2x3 complex data set, then, will be stored on disk
in the following way, from the lowest addressed element to the highest addressed
element:

[1,1]r [1,1]i [1,2]r [1,2]i [1,3]r [1,3]i

[2,1]r [2,1]i [2,2]r [2,2]i [2,3]r [2,3]i

Extended Data Set v89 (Obsolete)
Data sets with more than 8175 columns are saved in an extended format. These files
have a .dht descriptor file formatted as follows:

Aside from the differences in the descriptor file and the number of columns allowed in
the data file, extended data sets conform to the v89 data set description specified
above.

Matrix v92 (Obsolete)

Offset Description

0-1 EEDA hex, identification flag

2-3 data type in .dat file (2 4 8), unsigned 2-byte integer

4-7 reserved, all 0’s

8-11 columns, unsigned 4-byte integer

12-15 row size in bytes, unsigned 4-byte integer

16-19 header size in bytes, unsigned 4-byte integer

20-23 reserved, all 0’s

24-27 reserved, all 0’s

28-29 control flags, unsigned 2-byte integer

30-127 reserved, all 0’s

Offset Description

0-3 always 0

4-7 always 0xEECDCDCD

8-11 reserved
19-16

File I/O
If the data is a scalar, the data will directly follow the header.

If the data is a row vector, an unsigned integer equaling the number of columns in the
vector will precede the data, along with 4 padding bytes.

If the data is a column vector or a matrix, there will be two unsigned integers
preceding the data. The first will represent the number of rows in the matrix and the
second will represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in
double precision (8 bytes per element, 16 if complex). For complex matrices, all of the
real parts are stored first, followed by all the imaginary parts.

String v92 (Obsolete)

Offset Description

12-15 reserved

16-19 reserved

20-23 0 - real matrix, 1 - complex matrix

24-27 number of dimensions
0 - scalar
1- row vector
2 - column vector, matrix

28-31 header size, 128 + dimensions * 4, padded to 8-byte boundary

32-127 reserved

Offset Description

0-3 always 0

4-7 always 0xEECFCFCF

8-11 reserved

12-15 reserved

16-19 reserved

20-23 size of string in units of 8 bytes

24-27 length of string plus null terminator in bytes

28-127 reserved
19-17

GAUSS User Guide
The size of the data area is always divisible by 8, and is padded with nulls if the length
of the string is not evenly divisible by 8. If the length of the string is evenly divisible
by 8, the data area will be the length of the string plus 8. The data area follows
immediately after the 128-byte header.

Data Set v92 (Obsolete)

The variable names begin at offset 128 and are stored 8 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 8 characters are
padded on the right with bytes of zero.

The variable type flags immediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

The contents of the data set follow the header and start on an 8-byte boundary. Data is
either 2-byte signed integer, 4-byte single precision floating point, or 8-byte double
precision floating point.

Offset Description

0-3 always 0

4-7 always 0xEECACACA

8-11 reserved

12-15 reserved

16-19 reserved

20-23 rows in data set

24-27 columns in data set

28-31 0 - real data set, 1 - complex data set

32-35 type of data in data set, 2, 4, or 8

36-39 header size in bytes is 128 + columns * 9

40-127 reserved
19-18

File I/O
Matrix v96

If the data is a scalar, the data will directly follow the header.

Offset Description

0-3 always 0xFFFFFFFF

4-7 always 0

8-11 always 0xFFFFFFFF

12-15 always 0

16-19 always 0xFFFFFFFF

20-23 0xFFFFFFFF for forward byte order, 0 for backward byte order

24-27 0xFFFFFFFF for forward bit order, 0 for backward bit order

28-31 always 0xABCDEF01

32-35 currently 1

36-39 reserved

40-43 floating point type, 1 for IEEE 754

44-47 1008 (double precision data)

48-51 8, the size in bytes of a double matrix

52-55 0 - real matrix, 1 - complex matrix

56-59 1 - imaginary part of matrix follows real part (standard GAUSS style)
1 - imaginary part of each element immediately follows real part
(FORTRAN style)

60-63 number of dimensions
0 - scalar
1 - row vector
2 - column vector or matrix

64-67 1 - row major ordering of elements, 2 - column major

68-71 always 0

72-75 header size, 128 + dimensions * 4, padded to 8-byte boundary

76-127 reserved
19-19

GAUSS User Guide
If the data is a row vector, an unsigned integer equaling the number of columns in the
vector will precede the data, along with 4 padding bytes.

If the data is a column vector or a matrix, there will be two unsigned integers
preceding the data. The first will represent the number of rows in the matrix and the
second will represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in
double precision (8 bytes per element, 16 if complex). For complex matrices, all of the
real parts are stored first, followed by all the imaginary parts.

Data Set v96

Offset Description

0-3 always 0xFFFFFFFF

4-7 always 0

8-11 always 0xFFFFFFFF

12-15 always 0

16-19 always 0xFFFFFFFF

20-23 0xFFFFFFFF for forward byte order, 0 for backward byte order

24-27 0xFFFFFFFF for forward bit order, 0 for backward bit order

28-31 0xABCDEF02

32-35 version, currently 1

36-39 reserved

40-43 floating point type, 1 for IEEE 754

44-47 12 - signed 2-byte integer
1004 - single precision floating point
1008 - double precision float

48-51 2, 4, or 8, the size of an element in bytes

52-55 0 - real matrix, 1 - complex matrix

56-59 1 - imaginary part of matrix follows real part (standard GAUSS style)
2 - imaginary part of each element immediately follows real part
(FORTRAN style)

60-63 always 2
19-20

File I/O
The variable names begin at offset 128 and are stored 32 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 32 characters are
padded on the right with bytes of zero.

The variable type flags immediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

Contents of the data set follow the header and start on an 8-byte boundary. Data is
either 2-byte signed integer, 4-byte single precision floating point, or 8-byte double
precision floating point.

Offset Description

64-67 1 - row major ordering of elements, 2 - column major

68-71 always 0

72-75 header size, 128 + columns * 33, padded to 8-byte boundary

76-79 reserved

80-83 rows in data set

84-87 columns in data set

88-127 reserved
19-21

Foreign Language
Interface 20
The Foreign Language Interface (FLI) allows users to create functions written in C,
FORTRAN, or other languages, and call them from a GAUSS program. The functions
are placed in dynamic libraries (DLLs, also known as shared libraries or shared
objects) and linked in at run-time as needed. The FLI functions are:

GAUSS recognizes a default dynamic library directory, a directory where it will look
for your dynamic-link libraries when you call dlibrary. You can specify the default
directory in gauss.cfg by setting dlib_path. As it is shipped, gauss.cfg
specifies $(GAUSSDIR)/ dlib as the default directory.

Creating Dynamic Libraries
Assume you want to build a dynamic library called myfuncs.dll, containing the
functions found in two source files, myfunc1.c and myfunc2.c. The following
sections show the compile and link commands you would use. The compiler
command is first, followed by the linker command, followed by remarks regarding
that platform.

dlibrary Link and unlink dynamic libraries at run-time.

dllcall Call functions located in dynamic libraries.
20-1

GAUSS User Guide
For explanations of the various flags used, see the documentation for your compiler
and linker. One flag is common to both platforms. The –c compiler flag means
“compile only, don't link.” Virtually all compilers will perform the link phase
automatically unless you tell them not to. When building a dynamic library, we want
to compile the source code files to object (.obj) files, then link the object files in a
separate phase into a dynamic library.

$(CCOPTS) indicates any optional compilation flags you might add.

cl -c $(CCOPTS) -DWIN32 -D_WIN32 -D_MT -c -W3 -

Dtry=__try \

-Dexcept=__except -Dleave=__leave -

Dfinally=__finally \

-DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -D_X86_=1 -DSTRICT

-LD \

-Zp1 myfunc1.c myfunc2.c

link -DLL -def:ntgauss.def -out:myfuncs.dll myfunc1.obj

\

myfunc2.obj fp10.obj libcmt.lib oldnames.lib

kernel32.lib \

advapi32.lib user32.lib gdi32.lib comdlg32.lib

winspool.lib

These commands are written for the Microsoft Visual C/C++ compiler, ver. 2.0.

The Visual C/C++ linker allows you to specify a module definition file, which is a text
file that describes the dynamic library to be created. In this example, the module
definition file is myfuncs.def. It includes information on how the library is to be
initialized and terminated, how to handle its data segment, etc. It also needs to list the
symbols that will be exported, i.e., made callable by other processes, from the
dynamic library. Assume that myfunc1.c and myfunc2.c contain the FLI
functions func1(), func2(), and func3(), and a static funciton func4() that
is called by the others, but never directly from GAUSS. Then myfuncs.def would
look like this:
20-2

Foreign Language Interface
LIBRARY myfuncs

EXPORTS

func1

func2

func3

As you can see, creating dynamic libraries from the command line can be quite an
arcane process. For this reason, we recommend that you create dynamic libraries from
inside the Visual C/C++ workbench environment, rather than from the command line.

Writing FLI Functions
Your FLI functions should be written to the following specifications:

1. Take 0 or more pointers to doubles as arguments.

This does not mean you cannot pass strings to an FLI function. Just recast
 the double pointer to a char pointer inside the function.

2. Take those arguments either in a list or a vector.

3. Return an integer.

In C syntax, then, your functions would take one of the following forms:

1. int func(void);

2. int func ;

3. int func ;

Functions can be written to take a list of up to 100 arguments, or a vector (in C terms,
a 1-dimensional array) of up to 1000 arguments. This does not affect how the function
is called from GAUSS; the dllcall statement will always appear to pass the arguments
in a list. That is, the dllcall statement will always look as follows:

dllcall func ;

For details on calling your function, passing arguments to it, getting data back, and
what the return value means, see dllcall in the GAUSS Language Reference.

double * 1 [, double *2, etc.]])[arg(

double *arg[])(

a,b,c,d [,e...]])[(
20-3

Data Transformations 21

GAUSS allows expressions that directly reference variables (columns) of a data set.
This is done within the context of a data loop:

dataloop infile outfile;

drop wagefac wqlec shordelt foobly;

csed = ln(sqrt(csed));

select csed > 0.35 and married $== “y”;

make chfac = hcfac + wcfac;

keep csed chfac stid recsum voom;

endata;

GAUSS translates the data loop into a procedure that performs the required
operations, and then calls the procedure automatically at the location (in your
program) of the data loop. It does this by translating your main program file into a
temporary file and then executing the temporary file.

A data loop may be placed only in the main program file. Data loops in files that are
#include’d or autoloaded are not recognized.
21-1

GAUSS User Guide
Using Data Loop Statements
A data loop begins with a dataloop statement and ends with an endata statement.
Inside a data loop, the following statements are supported:

In any expression inside a data loop, all text symbols not immediately followed by a
left parenthesis ‘(’ are assumed to be data set variable (column) names. Text symbols
followed by a left parenthesis are assumed to be procedure names. Any symbol listed
in an extern statement is assumed to be a matrix or string already in memory.

Using Other Statements
All program statements in the main file and not inside a data loop are passed through
to the temporary file without modification. Program statements within a data loop that
are preceded by a ‘#’ are passed through to the temporary file without modification.
The user familiar with the code generated in the temporary file can use this to do out-
of-the-ordinary operations inside the data loop.

Debugging Data Loops
The translator that processes data loops can be turned on and off. When the translator
is on, there are three distinct phases in running a program:

Translation Translation of main program file to temporary file.

code Create variable based on a set of logical expressions.

delete Delete rows (observations) based on a logical expression.

drop Specify variables NOT to be written to data set.

extern Allows access to matrices and strings in memory.

keep Specify variables to be written to output data set.

lag Lag variables a number of periods.

listwise Controls deletion of missing values.

make Create new variable.

outtyp Specify output file precision.

recode Change variable based on a set of logical expressions.

select Select rows (observations) based on a logical expression.

vector Create new variable from a scalar returning expression.
21-2

Data Transformations
Compilation Compilation of temporary file.

Execution Execution of compiled code.

Translation Phase
In the translation phase, the main program file is translated into a temporary file. Each
data loop is translated into a procedure, and a call to this procedure is placed in the
temporary file at the same location as the original data loop. The data loop itself is
commented out in the temporary file. All data loop procedures are placed at the end of
the temporary file.

Depending on the status of line number tracking, error messages encountered in this
phase will be printed with the file name and line numbers corresponding to the main
file.

Compilation Phase
In the compilation phase, the temporary file is compiled. Depending on the status of
line number tracking, error messages encountered in this phase will be printed with
the file name and line numbers corresponding to both the main file and the temporary
file.

Execution Phase
In the execution phase, the compiled program is executed. Depending on the status of
line number tracking, error messages will include line number references from both
the main file and the temporary file.

Reserved Variables
The following local variables are created by the translator and used in the produced
code:

x_cv x_iptr x_ncol x_plag

x_drop x_keep x_nlag x_ptrim

x_fpin x_lval x_nrow x_shft

x_fpout x_lvar x_ntrim x_tname

x_i x_n x_out x_vname

x_in x_name x_outtyp x_x

These variables are reserved, and should not be used within a dataloop ...
endata section.
21-3

Publication Quality
Graphics 22
GAUSS Publication Quality Graphics (PQG) is a set of routines built on the graphics
functions in GraphiC by Scientific Endeavors Corporation.

The main graphics routines include xy, xyz, surface, polar, and log plots, as well as
histograms, bar, and box graphs. Users can enhance their graphs by adding legends,
changing fonts, and adding extra lines, arrows, symbols, and messages.

The user can create a single full size graph, inset a smaller graph into a larger one, tile
a window with several equally sized graphs, or place several overlapping graphs in the
window. Graphic panel size and location are all completely under the user’s control.

General Design
GAUSS PQG consists of a set of main graphing procedures and several additional
procedures and global variables for customizing the output.

All of the actual output to the window happens during the call to these main routines:

bar Bar graphs.

box Box plots.

contour Contour plots.
22-1

GAUSS User Guide
Using Publication Quality Graphics
Getting Started

There are four basic parts to a graphics program. These elements should be in any
program that uses graphics routines. The four parts are header, data setup, graphics
format setup, and graphics call.

Header

In order to use the graphics procedures, the pgraph library must be active. This is
done in the library statement at the top of your program or command file. The next
line in your program will typically be a command to reset the graphics global
variables to the default state. For example:

library mylib, pgraph;

graphset;

Data Setup

The data to be graphed must be in matrices. For example:

x = seqa(1,1,50);

y = sin(x);

draw Draws graphs using only global variables.

hist Histogram.

histp Percentage histogram.

histf Histogram from a vector of frequencies.

loglog Log scaling on both axes.

logx Log scaling on X axis.

logy Log scaling on Y axis.

polar Polar plots.

surface 3-D surface with hidden line removal.

xy Cartesian graph.

xyz 3-D Cartesian graph.
22-2

Publication Quality Graphics
Graphics Format Setup

Most of the graphics elements contain defaults that allow the user to generate a plot
without modification. These defaults, however, may be overridden by the user through
the use of global variables and graphics procedures. Some of the elements custom
configurable by the user are axes numbering, labeling, cropping, scaling, line and
symbol sizes, and types, legends, and colors.

Calling Graphics Routines

The graphics routines take as input the user data and global variables that have
previously been set. It is in these routines where the graphics file is created and
displayed.

Following are three PQG examples. The first two programs are different versions of
the same graph. The variables that begin with _p are the global control variables used
by the graphics routines. (For a detailed description of these variables, see “Global
Control Variables,” page 22-13.)

Example 1 The routine being called here is a simple XY plot. The entire window
will be used. Four sets of data will be plotted with the line and symbol attributes
automatically selected. This graph will include a legend, title, and a time/date stamp
(time stamp is on by default):

library pgraph; /* activate PGRAPH library */

graphset; /* reset global variables */

x = seqa(.1,.1,100); /* generate data */

y = sin(x);

y = y ~ y*.8 ~ y*.6 ~ y*.4; /* 4 curves plotted */

/* against x */

_plegctl = 1; /* legend on */

title(“Example xy Graph”); /* Main title */

xy(x,y); /* Call to main routine */

Example 2 Here is the same graph with more of the graphics format controlled by
the user. The first two data sets will be plotted using symbols at graph points only
(observed data); the data in the second two sets will be connected with lines (predicted
results):

library pgraph; /* activate PGRAPH library */

graphset; /* reset global variables */
22-3

GAUSS User Guide
x = seqa(.1,.1,100); /* generate data */

y = sin(x);

y = y ~ y*.8 ~ y*.6 ~ y*.4; /* 4 curves plotted */

/* against x */

_pdate = “”; /* date is not printed */

_plctrl = { 1, 1, 0, 0 }; /* 2 curves w/symbols,*/

/* 2 without */

_pltype = { 1, 2, 6, 6 }; /* dashed, dotted, */

/* solid lines */

_pstype = { 1, 2, 0, 0 }; /* symbol types */

/* circles,squares */

_plegctl= { 2, 3, 1.7, 4.5 }; /* legend size and */

/* locations */

_plegstr= “Sine wave 1.\0”\ /* 4 lines legend text */

“Sine wave .8\0”\

“Sine wave .6\0”\

“Sine wave .4”;

ylabel(“Amplitude”); /* Y axis label */

xlabel(“X Axis”); /* X axis label */

title(“Example xy Graph”); /* main title */

xy(x,y); /* call to main routine */

Example 3 In this example, two graphics graphic panels are drawn. The first is a
full-sized surface representation, and the second is a half-sized inset containing a
contour of the same data located in the lower left corner of the window:

library pgraph; /* activate pgraph library */

/* Generate data for surface and contour plots */

x = seqa(-10,0.1,71)’; /* note x is a row vector */
22-4

Publication Quality Graphics
y = seqa(-10,0.1,71); /* note y is a column vector */

z = cos(5*sin(x) - y); /* z is a 71x71 matrix */

begwind; /* initialize graphics */

/* graphic panels */

makewind(9,6.855,0,0,0); /* first graphic panel */

/*full size */

makewind(9/2,6.855/2,1,1,0); /* second graphic panel */

/* inset to first */

setwind(1); /* activate first graphic */

/* panel */

graphset; /* reset global variables */

_pzclr = { 1, 2, 3, 4 }; /* set Z level colors */

title(“cos(5*sin(x) - y)”); /* set main title */

xlabel(“X Axis”); /* set X axis label */

ylabel(“Y Axis”); /* set Y axis label */

scale3d(miss(0,0),miss(0,0),-5|5);/* scale Z axis */

surface(x,y,z); /* call surface routine */

nextwind; /* activate second graphic */

/* panel */

graphset; /* reset global variables */

_pzclr = { 1, 2, 3, 4 }; /* set Z level colors */

_pbox = 15; /* white border */

contour(x,y,z); /* call contour routine */

endwind; /* Display graphic panels */
22-5

GAUSS User Guide
While the structure has changed somewhat, the four basic elements of the graphics
program are all here. The additional routines begwind, endwind, makewind,
nextwind, and setwind are all used to control the graphics graphic panels.

As Example 3 illustrates, the code between graphic panel functions (that is, setwind
or nextwind) may include assignments to global variables, a call to graphset, or
may set up new data to be passed to the main graphics routines.

You are encouraged to run the example programs supplied with GAUSS. Analyzing
these programs is perhaps the best way to learn how to use the PQG system. The
example programs are located on the examples subdirectory.

Graphics Coordinate System
PQG uses a 4190x3120 pixel grid on a 9.0x6.855-inch printable area. There are three
units of measure supported with most of the graphics global elements:

Inch Coordinates

Inch coordinates are based on the dimensions of the full-size 9.0x6.855-inch output
page. The origin is (0,0) at the lower left corner of the page. If the picture is rotated,
the origin is at the upper left. (see “Inch Units in Graphics Graphic Panels,” page 22-
9.)

Plot Coordinates

Plot coordinates refer to the coordinate system of the graph in the units of the user’s X,
Y, and Z axes.

Pixel Coordinates

Pixel coordinates refer to the 4096x3120 pixel coordinates of the full-size output page.
The origin is (0,0) at the lower left corner of the page. If the picture is rotated, the
origin is at the upper left.

Graphics Graphic Panels
Multiple graphic panels for graphics are supported. These graphic panels allow the
user to display multiple graphs on one window or page.

A graphic panel is any rectangular subsection of the window or page. Graphic panels
may be any size and position on the window and may be tiled or overlapping,
transparent or nontransparent.

Tiled Graphic Panels
Tiled graphic panels do not overlap. The window can easily be divided into any
number of tiled graphic panels with the window command. window takes three
22-6

Publication Quality Graphics
parameters: number of rows, number of columns, and graphic panel attribute
(1=transparent, 0=nontransparent).

This example will divide the window into six equally sized graphic panels. There will
be two rows of three graphic panels — three graphic panels in the upper half of the
window and three in the lower half. The attribute value of 0 is arbitrary since there are
no other graphic panels beneath them:

window(nrows,ncols,attr);

window(2,3,0);

Overlapping Graphic Panels
Overlapping graphic panels are laid on top of one another as they are created, much as
if you were using the cut and paste method to place several graphs together on one
page. An overlapping graphic panel is created with the makewind command.

In this example, makewind will create an overlapping graphic panel 4 inches
horizontally by 2.5 inches vertically, positioned 1 inch from the left edge of the page
and 1.5 inches from the bottom of the page. It will be nontransparent:

makewind(hsize,vsize,hpos,vpos,attr);

window(2,3,0);

makewind(4,2.5,1,1.5,0);

Nontransparent Graphic Panels
A nontransparent graphic panel is one that is blanked before graphics information is
written to it. Therefore, information in any previously drawn graphic panels that lie
under it will not be visible.

Transparent Graphic Panels
A transparent graphic panel is one that is not blanked, allowing the graphic panel
beneath it to “show through.” Lines, symbols, arrows, error bars, and other graphics
objects may extend from one graphic panel to the next by using transparent graphic
panels. First, create the desired graphic panel configuration. Then create a full-
window, transparent graphic panel using the makewind or window command. Set
the appropriate global variables to position the desired object on the transparent
graphic panel. Use the draw procedure to draw it. This graphic panel will act as a
transparent “overlay” on top of the other graphic panels. Transparent graphic panels
can be used to add text or to superimpose one graphic panel on top of another.
22-7

GAUSS User Guide
Using Graphic Panel Functions
The following is a summary of the graphic panel functions:

This example creates four tiled graphic panels and one graphic panel that overlaps the
other four:

library pgraph;

graphset;

begwind;

window(2,2,0); /* Create four tiled graphic panels */

/* (2 rows, 2 columns) */

xsize = 9/2; /* Create graphic panel that overlaps */

/*the tiled graphic panels */

ysize = 6.855/2;

makewind(xsize,ysize,xsize/2,ysize/2,0);

x = seqa(1,1,1000); /* Create X data */

y = (sin(x) + 1) * 10.; /* Create Y data */

setwind(1); /* Graph #1, upper left corner */

xy(x,y);

begwind Graphic panel initialization procedure.

endwind End graphic panel manipulations, display graphs.

window Partition window into tiled graphic panels.

makewind Create graphic panel with specified size and position.

setwind Set to specified graphic panel number.

nextwind Set to next available graphic panel number.

getwind Get current graphic panel number.

savewind Save graphic panel configuration to a file.

loadwind Load graphic panel configuration from a file.
22-8

Publication Quality Graphics
nextwind; /* Graph #2, upper right corner */

logx(x,y);

nextwind; /* Graph #3, lower left corner */

logy(x,y);

nextwind; /* Graph #4, lower right corner */

loglog(x,y);

nextwind; /* Graph #5, center, overlayed */

bar(x,y);

endwind; /* End graphic panel processing, */

/* display graph */

Inch Units in Graphics Graphic Panels
Some global variables allow coordinates to be input in inches. If a coordinate value is
in inches and is being used in a graphic panel, that value will be scaled to window
inches and positioned relative to the lower left corner of the graphic panel. A
graphic panel inch is a true inch in size only if the graphic panel is scaled to the full
window; otherwise, X coordinates will be scaled relative to the horizontal graphic
panel size and Y coordinates will be scaled relative to the vertical graphic panel
size.

Saving Graphic Panel Configurations
The functions savewind and loadwind allow the user to save graphic panel
configurations. Once graphic panels are created (using makewind and window),
savewind may be called. This will save to disk the global variables containing
information about the current graphic panel configuration. To load this configuration
again, call loadwind. (See loadwind in the GAUSS Language Reference.)

Graphics Text Elements
Graphics text elements, such as titles, messages, axes labels, axes numbering, and
legends, can be modified and enhanced by changing fonts and by adding
superscripting, subscripting, and special mathematical symbols.

To make these modifications and enhancements, the user can embed “escape codes” in
the text strings that are passed to title, xlabel, ylabel, and asclabel or
assigned to _pmsgstr and _plegstr.
22-9

GAUSS User Guide
The escape codes used for graphics text are:

The escape code \L can be embedded into title strings to create a multiple line title:

title(“This is the first line\lthis is the second

line”);

A null byte \000 is used to separate strings in _plegstr and _pmsgstr:

_pmsgstr = “First string\000Second string\000Third

string”;

or

_plegstr = “Curve 1\000Curve 2”;

Use the [..] to create the expression :

_pmsgstr = “M(t) = E(e[tx])”;

 Use the @ to generate [and] in an X axis label:

xlabel(“Data used for x is: data@[.,1 2 3@]”);

Selecting Fonts
Four fonts are supplied with the Publication Quality Graphics system. They are
Simplex, Complex, Simgrma, and Microb. (For the characters available in each font,
see Appendix A.)

Fonts are loaded by passing to the fonts procedure a string containing the names of
all fonts to be loaded. For example, this statement will load all four fonts:

fonts(“simplex complex microb simgrma”);

\ 000 String termination character (null byte).

[Enter superscript mode, leave subscript mode.

] Enter subscript mode, leave superscript mode.

@ Interpret next character as literal.

\ 20n Select font number n (see “Selecting Fonts,” following).

M t() E e
tx()=
22-10

Publication Quality Graphics
The fonts command must be called before any of the fonts can be used in text
strings. A font can then be selected by embedding an escape code of the form “\ 20n”
in the string that is to be written in the new font. The n will be 1, 2, 3, or 4, depending
on the order in which the fonts were loaded in fonts.

If the fonts were loaded as in the previous example, the escape characters for each
would be:

\201 Simplex

\202 Complex

\203 Microb

\204 Simgrma

The example then for selecting a font for each string to be written would be:

title(“\201This is the title using Simplex font”);

xlabel(“\202This is the label for X using Complex

font”);

ylabel(“\203This is the label for Y using Microb

font”);

Once a font is selected, all succeeding text will use that font until another font is
selected. If no fonts are selected by the user, a default font (Simplex) is loaded and
selected automatically for all text work.

Greek and Mathematical Symbols
The following examples illustrate the use of the Simgrma font; they assume that
Simgrma was the fourth font loaded. (For the available Simgrma characters and their
numbers, see Appendix A.) The Simgrma characters are specified by either:

1. The character number, preceded by a “\”.

2. The regular text character with the same number.

For example, to get an integral sign “ò” in Simgrma, embed either a “\ 044” or a “,” in
the string that has been currently set to use Simgrma font.

To produce the title , use the following title string:

title(“\201f(x) = sin[2](\204p\201x)”);

 The “p” (character 112) corresponds to in Simgrma.

f x() 2 πx()sin=

π

22-11

GAUSS User Guide
To number the major X axis tick marks with multiples of /4, the following could be
passed to asclabel:

lab = “\2010 \204p\201/4 \204p\201/2 3\204p\201/4

\204p”;

asclabel(lab,0);

xtics(0,pi,pi/4,1);

xtics is used to make sure that major tick marks are placed in the appropriate places.

This example will number the X axis tick marks with the labels -2, -1, 1, , and
2:

lab = “\204m\201[-2] \204m\201[-1] 1 \204m m\201[2]”;

asclabel(lab,0);

This example illustrates the use of several of the special Simgrma symbols:

_pmsgstr = “\2041\2011/2\204p

,\201e[-\204m[\2012]\201/2]d\204m”;

This produces

Colors

 0 Black 8 Dark Grey

 1 Blue 9 Light Blue

 2 Green 10 Light Green

 3 Cyan 11 Light Cyan

 4 Red 12 Light Red

 5 Magenta 13 Light Magenta

 6 Brown 14 Yellow

 7 Grey 15 White

π

µ µ µ
µ

22-12

Publication Quality Graphics
Global Control Variables
The following global variables are used to control various graphics elements. Default
values are provided. Any or all of these variables can be set before calling one of the
main graphing routines. The default values can be modified by changing the
declarations in pgraph.dec and the statements in the procedure graphset in
pgraph.src. graphset can be called whenever the user wants to reset these
variables to their default values.

_pageshf 2x1 vector, the graph will be shifted to the right and up if this is not 0.
If this is 0, the graph will be centered on the output page. Default is 0.

Note: Used internally. (For the same functionality, see axmargin in
the GAUSS Language Reference.) This is used by the graphics graphic
panel routines. The user must not set this when using the graphic panel
procedures.

_pagesiz 2x1 vector, size of the graph in inches on the printer output. Maximum
size is 9.0 x 6.855 inches (unrotated) or 6.855 x 9.0 inches (rotated). If
this is 0, the maximum size will be used. Default is 0.

Note: Used internally. (For the same functionality, see axmargin in
the GAUSS Language Reference.) This is used by the graphics graphic
panel routines. The user must not set this when using the graphic panel
procedures.

_parrow Mx11 matrix, draws one arrow per row M of the input matrix. If scalar
zero, no arrows will be drawn.

[M,1] x starting point.

[M,2] y starting point.

[M,3] x ending point.

[M,4] y ending point.

[M,5] ratio of the length of the arrow head to half its width.

[M,6] size of arrow head in inches.

[M,7] type and location of arrow heads. This integer number will
be interpreted as a decimal expansion mn. For example: if
10, then m = 1, n = 0.

m type of arrow head:

0 solid
22-13

GAUSS User Guide
1 empty

2 open

3 closed

n location of arrow head:

0 none

1 at the final end

2 at both ends

[M,8] color of arrow, see “Colors,” page 22-12.

[M,9] coordinate units for location:

1 x,y starting and ending locations in plot coordinates

2 x,y starting and ending locations in inches

3 x,y starting and ending locations in pixels

[M,10] line type:

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

[M,11] controls thickness of lines used to draw arrow. This value
may be zero or greater. A value of zero is normal line
width.

To create two single-headed arrows, located using inches, use

_parrow = { 1 1 2 2 3 0.2 11 10 2 6 0,
3 4 2 2 3 0.2 11 10 2 6 0 };

_parrow3 Mx12 matrix, draws one 3-D arrow per row of the input matrix. If
scalar zero, no arrows will be drawn.

[M,1] x starting point in 3-D plot coordinates.

[M,2] y starting point in 3-D plot coordinates.
22-14

Publication Quality Graphics
[M,3] z starting point in 3-D plot coordinates.

[M,4] x ending point in 3-D plot coordinates.

[M,5] y ending point in 3-D plot coordinates.

[M,6] z ending point in 3-D plot coordinates.

[M,7] ratio of the length of the arrow head to half its width.

[M,8] size of arrow head in inches.

[M,9] type and location of arrow heads. This integer number will
be interpreted as a decimal expansion mn. For example: if
10, then m = 1, n = 0.

m type of arrow head:

0 solid

1 empty

2 open

3 closed

n location of arrow head:

0 none

1 at the final end

2 at both ends

[M,10] color of arrow, see “Colors,” page 22-12.

[M,11] line type:

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

[M,12] controls thickness of lines used to draw arrow. This value
may be zero or greater. A value of zero is normal line
width.
22-15

GAUSS User Guide
To create two single-headed arrows, located using plot coordinates, use

_parrow3 = { 1 1 1 2 2 2 3 0.2 11 10 6 0,
3 4 5 2 2 2 3 0.2 11 10 6 0 };

_paxes scalar, 2x1, or 3x1 vector for independent control for each axis. The
first element controls the X axis, the second controls the Y axis, and
the third (if set) will control the Z axis. If 0, the axis will not be drawn.
Default is 1.

If this is a scalar, it will be expanded to that value.

For example:

_paxes = { 1, 0 }; /* turn X axis on, */
/* Y axis off */

_paxes = 0; /* turn all axes off */
_paxes = 1; /* turn all axes on */

_paxht scalar, size of axes labels in inches. If 0, a default size will be
computed. Default is 0.

_pbartyp global 1x2 or Kx2 matrix. Controls bar shading and colors in bar
graphs and histograms.

The first column controls the bar shading:

0 no shading

1 dots

2 vertical cross-hatch

3 diagonal lines with positive slope

4 diagonal lines with negative slope

5 diagonal cross-hatch

6 solid

The second column controls the bar color, see “Colors,” page 22-12.

_pbarwid global scalar, width of bars in bar graphs and histograms. The valid
range is 0-1. If this is 0, the bars will be a single pixel wide. If this is 1,
the bars will touch each other. The default is 0.5, so the bars take up
about half the space open to them.
22-16

Publication Quality Graphics
_pbox scalar, draws a box (border) around the entire graph. Set to desired
color of box to be drawn. Use 0 if no box is desired. Default is 0.

_pboxctl 5x1 vector, controls box plot style, width, and color. Used by procedure
box only.

[1] box width between 0 and 1. If zero, the box plot is drawn
astwo vertical lines representing the quartile ranges with a

filled circle representing the 50th percentile.

[2] box color, see “Colors,” page 22-12. If this is set to 0, the
colors may be individually controlled using global variable
_pcolor.

[3] min/max style for the box symbol. One of the following:

1 minimum and maximum taken from the actual
limits of the data. Elements 4 and 5 are ignored.

2 statistical standard with the minimum and
maximum calculated according to interquartile
range as follows:

intqrange = 75th - 25th

min = 25th - 1.5intqrange

max = 75th + 1.5intqrange

Elements 4 and 5 are ignored.

3 minimum and maximum percentiles taken from
elements 4 and 5.

[4] minimum percentile value (0-100) if
_pboxctl[3] = 3.

[5] maximum percentile value (0-100) if
_pboxctl[3] = 3.

_pboxlim 5xM output matrix containing computed percentile results from
procedure box. M corresponds to each column of input y data.

[1,M] minimum whisker limit according to _pboxctl[3].

[2,M] 25th percentile (bottom of box).

[3,M] 50th percentile (median).
22-17

GAUSS User Guide
[4,M] 75th percentile (top of box).

[5,M] maximum whisker limit according to _pboxctl[3].

_pcolor scalar or Kx1 vector, colors for main curves in xy, xyz, and log
graphs. To use a single color set for all curves, set this to a scalar color
value. If 0, use default colors. Default is 0.

The default colors come from a global vector called _pcsel. This
vector can be changed by editing pgraph.dec to change the default
colors, see “Colors,” page 22-12. (_pcsel is not documented
elsewhere.)

_pcrop scalar or 1x5 vector, allows plot cropping for different graphic
elements to be individually controlled. Valid values are 0 (disabled) or
1 (enabled). If cropping is enabled, any graphical data sent outside the
axes area will not be drawn. If this is scalar, _pcrop is expanded to a
1x5 vector using the given value for all elements. All cropping is
enabled by default.

[1] crop main curves/symbols.

[2] crop lines generated using _pline.

[3] crop arrows generated using _parrow.

[4] crop circles/arcs generated using _pline.

[5] crop symbols generated using _psym.

This example will crop main curves, and lines and circles drawn by
_pline:

_pcrop = { 1 1 0 1 0 };

_pcross scalar. If 1, the axes will intersect at the (0,0) X-Y location if it is
visible. Default is 0, meaning the axes will be at the lowest end of the
X-Y coordinates.

_pdate date string. If this contains characters, the date will be appended and
printed.

The default is set as follows (the first character is a font selection
escape code):

_pdate = “\201GAUSS ”;
22-18

Publication Quality Graphics
If this is set to a null string, no date will be printed. (For more
information on using fonts within strings, see “Graphics Text
Elements,” page 22-9.)

_perrbar Mx9 matrix, draws one error bar per row of the input matrix. If scalar
0, no error bars will be drawn. Location values are in plot coordinates.

[M,1] x location.

[M,2] left end of error bar.

[M,3] right end of error bar.

[M,4] y location.

[M,5] bottom of error bar.

[M,6] top of error bar.

[M,7] line type:

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

[M,8] color, see “Colors,” page 22-12.

[M,9] line thickness. This value may be zero or greater. A value
of zero is normal line width.

To create one error bar using solid lines, use

_perrbar = { 1 0 2 2 1 3 6 2 0 };

_pframe 2x1 vector, controls frame around axes area. On 3-D plots, this is a
cube surrounding the 3-D workspace.

[1] 1 frame on.

0 frame off.

[2] 1 tick marks on frame.

0 no tick marks.

The default is a frame with tick marks.
22-19

GAUSS User Guide
_pgrid 2x1 vector to control grid.

[1] grid through tick marks:

0 no grid

1 dotted grid

2 fine dotted grid

3 solid grid

[2] grid subdivisions between major tick marks:

0 no subdivisions

1 dotted lines at subdivisions

2 tick marks only at subdivisions

The default is no grid and tick marks at subdivisions.

_plctrl scalar or Kx1 vector to control whether lines and/or symbols will be
displayed for the main curves. This also controls the frequency of
symbols on main curves. The rows (K) is equal to the number of
individual curves to be plotted in the graph. Default is 0.

 0 draw line only.

>0 draw line and symbols every _plctrl points.

<0 draw symbols only every _plctrl points.

-1 all of the data points will be plotted with no connecting
lines.

This example draws a line for the first curve, draws a line and plots a
symbol every 10 data points for the second curve, and plots symbols
only every 5 data points for the third curve:

_plctrl = { 0, 10, -5 };

_plegctl scalar or 1x4 vector, legend control variable.

If scalar 0, no legend is drawn (default). If nonzero scalar, create
legend in the default location in the lower right of the page.

If 1x4 vector, set as follows:

[1] legend position coordinate units:

1 coordinates are in plot coordinates
22-20

Publication Quality Graphics
2 coordinates are in inches

3 coordinates are in pixels

[2] legend text font size. 1 <= size <= 9. Default is 5.

[3] x coordinate of lower left corner of legend box.

[4] y coordinate of lower left corner of legend box.

This example puts a legend in the lower right corner:

_plegctl = 1;

This example creates a smaller legend and positions it 2.5 inches from
the left and 1 inch from the bottom:

_plegctl = { 2 3 2.5 1 };

_plegstr string, legend entry text. Text for multiple curves is separated by a null
byte (“\000”).

For example:

_plegstr = “Curve 1\000Curve 2\000Curve 3”;

_plev Mx1 vector, user-defined contour levels for contour. Default is 0.
(See contour in the GAUSS Language Reference.)

_pline Mx9 matrix, to draw lines, circles, or radii. Each row controls one item
to be drawn. If this is a scalar zero, nothing will be drawn. Default is 0.

[M,1] item type and coordinate system:

1 line in plot coordinates

2 line in inch coordinates

3 line in pixel coordinates

4 circle in plot coordinates

5 circle in inch coordinates

6 radius in plot coordinates

7 radius in inch coordinates

[M,2] line type:

1 dashed

2 dotted
22-21

GAUSS User Guide
3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

[M,3-7] coordinates and dimensions.

(1) line in plot coordinates:

[M,3] x starting point.

[M,4] y starting point.

[M,5] x ending point.

[M,6] y ending point.

[M,7] 0 if this is a continuation of a curve, 1
if this begins a new curve.

(2) line in inches:

[M,3] x starting point.

[M,4] y starting point.

[M,5] x ending point.

[M,6] y ending point.

[M,7] 0 if this is a continuation of a curve, 1
if this begins a new curve.

(3) line in pixel coordinates:

[M,3] x starting point.

[M,4] y starting point.

[M,5] x ending point.

[M,6] y ending point.

[M,7] 0 if this is a continuation of a curve, 1
if this begins a new curve.

(4) circle in plot coordinates:

[M,3] x center of circle.
22-22

Publication Quality Graphics
[M,4] y center of circle.

[M,5] radius in x plot units.

[M,6] starting point of arc in radians.

[M,7] ending point of arc in radians.

(5) circle in inches:

[M,3] x center of circle.

[M,4] y center of circle.

[M,5] radius.

[M,6] starting point of arc in radians.

[M,7] ending point of arc in radians.

(6) radius in plot coordinates:

[M,3] x center of circle.

[M,4] y center of circle.

[M,5] beginning point of radius in x plot
units, 0 is the center of the circle.

[M,6] ending point of radius.

[M,7] angle in radians.

(7) radius in inches:

[M,3] x center of circle.

[M,4] y center of circle.

[M,5] beginning point of radius, 0 is the
center of the circle.

[M,6] ending point of radius.

[M,7] angle in radians.

[M,8] color, see “Colors,” page 22-12.

[M,9] controls line thickness. This value may be zero or greater.
A value of zero is normal line width.

_pline3d Mx9 matrix. Allows extra lines to be added to an xyz or surface
graph in 3-D plot coordinates.
22-23

GAUSS User Guide
[M,1] x starting point.

[M,2] y starting point.

[M,3] z starting point.

[M,4] x ending point.

[M,5] y ending point.

[M,6] z ending point.

[M,7] color, see “Colors,” page 22-12.

[M,8] line type:

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

[M,9] line thickness, 0 = normal width.

[M,10] hidden line flag, 1 = obscured by surface, 0 = not
obscured.

_plotshf 2x1 vector, distance of plot from lower left corner of output page in
inches.

[1] x distance.

[2] y distance.

If scalar 0, there will be no shift. Default is 0.

Note: Used internally. (For the same functionality, see axmargin in
the GAUSS Language Reference.) This is used by the graphics panel
routines. The user must not set this when using the graphic panel
procedures.

_plotsiz 2x1 vector, size of the axes area in inches. If scalar 0, the maximum
size will be used.
22-24

Publication Quality Graphics
Note: Used internally. (For the same functionality, see axmargin in
the GAUSS Language Reference.) This is used by the graphics panel
routines. The user must not set this when using the graphic panel
procedures.

_pltype scalar or Kx1 vector, line type for the main curves. If this is a nonzero
scalar, all lines will be this type. If scalar 0, line types will be default
styles. Default is 0.

1 dashed

2 dotted

3 short dashes

4 closely spaced dots

5 dots and dashes

6 solid

The default line types come from a global vector called _plsel. This
vector can be changed by editing pgraph.dec to change the default
line types. (_plsel is not documented elsewhere.)

_plwidth scalar or Kx1 vector, line thickness for main curves. This value may be
zero or greater. A value of zero is normal (single pixel) line width.
Default is 0.

_pmcolor 9x1 vector, color values to use for plot, see “Colors,” page 22-12.

[1] axes.

[2] axes numbers.

[3] X axis label.

[4] Y axis label.

[5] Z axis label.

[6] title.

[7] box.

[8] date.

[9] background.

If this is scalar, it will be expanded to a 9x1 vector.
22-25

GAUSS User Guide
_pmsgctl Lx7 matrix of control information for printing the strings contained in
_pmsgstr.

[L,1] horizontal location of lower left corner of string.

[L,2] vertical location of lower left corner of string.

[L,3] character height in inches.

[L,4] angle in degrees to print string. This may be -180 to 180
relative to the positive X axis.

[L,5] location coordinate system:

1 location of string in plot coordinates

2 location of string in inches

[L,6] color, see “Colors,” page 22-12.

[L,7] font thickness, may be zero or greater. If 0, use normal line
width.

_pmsgstr string, contains a set of messages to be printed on the plot. Each
message is separated from the next with a null byte (\ 000). The
number of messages must correspond to the number of rows in the
_pmsgctl control matrix. This can be created as:

_pmsgstr = “Message one.\000Message two.”;

_pnotify scalar, controls window output during the creation of the graph.
Default is 1.

0 no activity to the window while writing .tkf file.

1 display progress as fonts are loaded and .tkf file is being
generated.

_pnum scalar, 2x1 or 3x1 vector for independent control for axes numbering.
The first element controls the X axis numbers, the second controls the
Y axis numbers, and the third (if set) controls the Z axis numbers.
Default is 1.

If this value is scalar, it will be expanded to a vector.

0 no axes numbers displayed.

1 axes numbers displayed, vertically oriented on Y axis.

2 axes numbers displayed, horizontally oriented on Y axis.
22-26

Publication Quality Graphics
For example:

_pnum = { 0, 2 }; /* no X axis numbers,*/
/* horizontal on */
/* Y axis */

_pnumht scalar, size of axes numbers in inches. If 0 (default), a size of 0.13 inch
will be used.

_protate scalar. If 0, no rotation, if 1, plot will be rotated 90 degrees. Default is
0.

_pscreen scalar. If 1, display graph in window, if 0, do not display graph in
window. Default is 1.

_psilent scalar. If 0, a beep will sound when the graph is finished drawing to the
window. Default is 1 (no beep).

_pstype scalar or Kx1 vector, controls symbol used at graph points. To use a
single symbol type for all points, set this to one of the following scalar
values:

1 circle 8 solid circle

2 square 9 solid square

3 triangle 10 solid triangle

4 plus 11 solid plus

5 diamond 12 solid diamond

6 inverted triangle 13 solid inverted triangle

7 star (x) 14 solid star (x)

If this is a vector, each line will have a different symbol. Symbols will
repeat if there are more lines than symbol types.

_psurf 2x1 vector, controls 3-D surface characteristics.

[1] if 1, show hidden lines. Default is 0.

[2] color for base (default 7), see “Colors,” page 22-12. The
base is an outline of the X-Y plane with a line connecting
each corner to the surface. If 0, no base is drawn.

_psym Mx7 matrix, M extra symbols will be plotted.

[M,1] x location.
22-27

GAUSS User Guide
[M,2] y location.

[M,3] symbol type. (See _pstype, earlier.)

[M,4] symbol height. If this is 0, a default height of 5.0 will be
used.

[M,5] symbol color, see “Colors,” page 22-12.

[M,6] type of coordinates:

1 plot coordinates

2 inch coordinates

[M,7] line thickness. A value of zero is normal line width.

_psym3d Mx7 matrix for plotting extra symbols on a 3-D (surface or xyz)
graph.

[M,1] x location in plot coordinates.

[M,2] y location in plot coordinates.

[M,3] z location in plot coordinates.

[M,4] symbol type. (See _pstype, earlier.)

[M,5] symbol height. If this is 0, a default height of 5.0 will be
used.

[M,6] symbol color, see “Colors,” page 22-12.

[M,7] line thickness. A value of 0 is normal line width.

Use _psym for plotting extra symbols in inch coordinates.

_psymsiz scalar or Kx1 vector, symbol size for the symbols on the main curves.
This is NOT related to _psym. If 0, a default size of 5.0 is used.

_ptek string, name of Tektronix format graphics file. This must have a .tkf
extension. If this is set to a null string, the graphics file will be
suppressed. The default is graphic.tkf.

_pticout scalar. If 1, tick marks point outward on graphs. Default is 0.

_ptitlht scalar, the height of the title characters in inches. If this is 0, a default
height of approx. 0.13 inch will be used.

_pversno string, the graphics version number.
22-28

Publication Quality Graphics
_pxpmax scalar, the maximum number of places to the right of the decimal point
for the X axis numbers. Default is 12.

_pxsci scalar, the threshold in digits above which the data for the X axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.

_pypmax scalar, the maximum number of places to the right of the decimal point
for the Y axis numbers. Default is 12.

_pysci scalar, the threshold in digits above which the data for the Y axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.

_pzclr scalar, row vector, or Kx2 matrix, Z level color control for procedures
surface and contour. (See surface in the GAUSS Language
Reference.)

_pzoom 1x3 row vector, magnifies the graphics display for zooming in on
detailed areas of the graph. If scalar 0 (default), no magnification is
performed.

[1] magnification value. 1 is normal size.

[2] horizontal center of zoomed plot (0-100).

[3] vertical center of zoomed plot (0-100).

To see the upper left quarter of the window magnified 2 times, use

_pzoom = { 2 25 75 };

_pzpmax scalar, the maximum number of places to the right of the decimal point
for the Z axis numbers. Default is 3.

_pzsci scalar, the threshold in digits above which the data for the Z axis will
be scaled and a power of 10 scaling factor displayed. Default is 4.
22-29

Utilities 23

ATOG

ATOG is a stand-alone conversion utility that converts ASCII files into GAUSS data
sets. ATOG can convert delimited and packed ASCII files into GAUSS data sets.
ATOG can be run from a batch file or the command line.

The syntax is:

atog cmdfile

cmdfile is the name of the command file. If no extension is given, .cmd will be
assumed. If no command file is specified, a command summary will be displayed.

Command Summary
The following commands are supported in ATOG:

append Append data to an existing file.

complex Treat data as complex variables.

input The name of the ASCII input file.

invar Input file variables (column names).

msym Specify missing value character.
23-1

GAUSS User Guide
The principal commands for converting an ASCII file that is delimited with spaces or
commas are given in the following example.

input agex.asc;

output agex;

invar $ race # age pay $ sex region;

outvar region age sex pay;

outtyp d;

From this example, a delimited ASCII file agex.asc is converted to a double
precision GAUSS data file agex.dat. The input file has five variables. The file will
be interpreted as having five columns:

The output file will have four columns since the first column of the input file (race) is
not included in the output variables. The columns of the output file will be:

nocheck Do not check data type or record length.

output The name of the GAUSS data set to be created.

outtyp Output data type.

outvar List of variables to be included in output file.

preservecase Preserves the case of variable names in output file.

column name data type

1 race character

2 AGE numeric

3 PAY numeric

4 sex character

5 region character

column name data type

1 region character

2 AGE numeric

3 sex character

4 PAY numeric
23-2

Utilities
The variable names are saved in the file header. Unless preservecase has been
specified, the names of character variables will be saved in lower case, and the names
of numeric variables will be saved in upper case. The $ in the invar statement
specifies that the variables that follow are character type. The # specifies numeric. If $
or # are not used in an invar statement, the default is numeric.

Comments in command files must be enclosed between ‘@’ characters.

Commands
A detailed explanation of each of the ATOG commands follows.

append

Instructs ATOG to append the converted data to an existing data set:

append;

No assumptions are made regarding the format of the existing file. Make certain the
number, order, and type of data converted match the existing file. ATOG creates v96
format data files, so will only append to v96 format data files.

complex

Instructs ATOG to convert the ASCII file into a complex GAUSS data set:

complex;

Complex GAUSS data sets are stored by rows, with the real and imaginary parts
interleaved, element by element. ATOG assumes the same structure for the ASCII
input file, and will thus read TWO numbers out for EACH variable specified.

complex cannot be used with packed ASCII files.

input

Specifies the file name of the ASCII file to be converted. The full path name can be
used in the file specification.

For example, the command

input data.raw;

will expect an ASCII data file in the current working directory.

The command

input c:\research\data\myfile.asc;

specifies a file to be located in the c:\research\data subdirectory.
23-3

GAUSS User Guide
invar

Soft Delimited ASCII Files Soft delimited files may have spaces, commas, or cr/lf
as delimiters between elements. Two or more consecutive delimiters with no data
between them are treated as one delimiter. For example:

invar age $ name sex # pay var[1:10] x[005];

The invar command above specifies the following variables:

As the input file is translated, the first 19 elements will be interpreted as the first row
(observation), the next 19 will be interpreted as the second row, and so on. If the

column name data type

1 AGE numeric

2 name character

3 sex character

4 PAY numeric

5 VAR01 numeric

6 VAR02 numeric

7 VAR03 numeric

8 VAR04 numeric

9 VAR05 numeric

10 VAR06 numeric

11 VAR07 numeric

12 VAR08 numeric

13 VAR09 numeric

14 VAR10 numeric

15 X001 numeric

16 X002 numeric

17 X003 numeric

18 X004 numeric

19 X005 numeric
23-4

Utilities
number of elements in the file is not evenly divisible by 19, the final incomplete row
will be dropped and a warning message will be given.

Hard Delimited ASCII Files Hard delimited files have a printable character as a
delimiter between elements. Two delimiters without intervening data between them
will be interpreted as a missing. If \n is specified as a delimiter, the file should have
one element per line and blank lines will be considered missings. Otherwise,
delimiters must be printable characters. The dot ‘.’ is illegal and will always be
interpreted as a missing value. To specify the backslash as a delimiter, use \\. If \r
is specified as a delimiter, the file will be assumed to contain one case or record per
line with commas between elements and no comma at the end of the line.

For hard delimited files, the delimit subcommand is used with the invar
command. The delimit subcommand has two optional parameters. The first
parameter is the delimiter; the default is a comma. The second parameter is an ‘N’. If
the second parameter is present, ATOG will expect N delimiters. If it is not present,
ATOG will expect N-1 delimiters.

This example:

invar delimit(, N) $ name # var[5];

will expect a file like this:

This example:

invar delimit(,) $ name # var[5];

or

invar delimit $ name # var[5];

will expect a file like this::

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,

STEVE, 624.3, 340.3, , 624.3, 639.5,

TOM , 244.2, 834.3, 602.3, 333.4, 822.5,

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,

STEVE, 624.3, 340.3, , 624.3, 639.5,

TOM , 244.2, 834.3, 602.3, 333.4, 822.5
23-5

GAUSS User Guide
The difference between specifying N or N-1 delimiters can be seen here:

If the invar statement had specified 3 variables and N-1 delimiters, this file would
be interpreted as having three rows containing a missing in the 2,1 element and the 3,3
element like this:

If N delimiters had been specified, this file would be interpreted as having two rows,
and a final incomplete row that is dropped:

The spaces were shown only for clarity and are not significant in delimited files, so

BILL,222.3,123.2,456.4,345.2,533.2,

STEVE,624.3,340.3,,624.3,639.5,

TOM,244.2,834.3,602.3,333.4,822.5

would work just as well.

Linefeeds are significant only if \n is specified as the delimiter, or when using \r.
This example:

invar delimit(\r) $ name # var[5];

will expect a file with no comma after the final element in each row:

456.4, 345.2, 533.2,

 , 624.3, 639.5,

602.3, 333.4,

456.4 345.2 533.2

 . 624.3 639.5

602.3 333.4 .

456.4 345.2 533.2

 . 624.3 639.5

BILL , 222.3, 123.2, 456.4, 345.2, 533.2

STEVE, 624.3, 340.3, 245.3, 624.3, 639.5

TOM , 244.2, 834.3, 602.3, 333.4, 822.5
23-6

Utilities
Packed ASCII Files Packed ASCII files must have fixed length records. The
record subcommand is used to specify the record length, and variables are specified
by giving their type, starting position, length, and the position of an implicit decimal
point if necessary.

outvar is not used with packed ASCII files. Instead, invar is used to specify only
those variables to be included in the output file.

For packed ASCII files, the syntax of the invar command is

invar record=reclen (format) variables (format) variables;

where,

If several variables are listed after a format definition, each succeeding field will be
assumed to start immediately after the preceding field. If an asterisk is used to specify
the starting position, the current logical default will be assumed. An asterisk in the
length position will select the current default for both length and prec. This is
illegal: (3,8.*).

The type change characters $ and # are used to toggle between character and numeric
data type.

Any data in the record that is not defined in a format is ignored.

The examples below assume a 32-byte record with a carriage return/line feed
occupying the last 2 bytes of each record. The data can be interpreted in different ways
using different invar statements:

This example:

reclen the total record length in bytes, including the final carriage return/
line feed if applicable. Records must be fixed length.

format (start,length,prec) where:

start starting position of the field in the record, 1 is the first
position. The default is 1.

length length of the field in bytes. The default is 8.

prec optional; a decimal point will be inserted automatically
prec places in from the RIGHT edge of the field.

ABCDEFGHIJ12345678901234567890<CR><LF>

| | | | | |

position 1 10 20 30 31 32
23-7

GAUSS User Guide
invar record=32 $(1,3) group dept #(11,4.2) x[3] (*,5)

 y;

will result in:

This example:

invar record=32 $ dept (*,2) id # (*,5) wage (*,2) area

will result in:

msym

Specifies the character in the input file that is to be interpreted as a missing value.

This example:

msym &;

Defines the character & as the missing value character.

The default ‘.’ (dot) will always be interpreted as a missing value unless it is part of a
numeric value.

variable value type

group ABC character

dept DEF character

X1 12.34 numeric

X2 56.78 numeric

X3 90.12 numeric

Y 34567 numeric

variable value type

dept ABCDEFGH character

id IJ character

WAGE 12345 numeric

AREA 67 numeric
23-8

Utilities
nocheck

Optional; suppresses automatic checking of packed ASCII record length and output
data type. The default is to increase the record length by 2 bytes if the second record in
a packed file starts with cr/lf, and any files that have explicitly defined character data
will be output in double precision regardless of the type specified.

output

The name of the GAUSS data set. A file will be created with the extension .dat. For
example:

output c:\gauss\dat\test;

creates the file test.dat on the c:\gauss\dat directory.

outtyp

Selects the numerical accuracy of the output file. Use of this command should be
dictated by the accuracy of the input data and storage space limitations. The format is:

outtyp fmt;

where fmt is

D or 8 double precision

F or 4 single precision (default)

I or 2 integer

The ranges of the different formats are:

If the output type is integer, the input numbers will be truncated to integers. If your
data has more than 6 or 7 significant digits, specify outtyp as double.

Character data require outtyp d. ATOG automatically selects double precision
when character data is specified in the invar statement, unless you have specified
nocheck.

Bytes Data Type
Significant

Digits Range

2 integer 4

4 single
precision

6-7

8 double
precision

15-16

32768– X 32767≤ ≤

8.43x10 37– X 3.37x10+38≤ ≤

4.19 307–×10 X 1.67 +308×10≤ ≤
23-9

GAUSS User Guide
The precision of the storage selected does not affect the accuracy of GAUSS
calculations using the data. GAUSS converts all data to double precision when the file
is read.

outvar

Selects the variables to be placed in the GAUSS data set. The outvar command
needs only the list of variables to be included in the output data set. They can be in any
order. For example:

invar $name #age pay $sex #var[1:10] x[005];

outvar sex age x001 x003 var[1:8];

outvar is not used with packed ASCII files.

preservecase

Optional; preserves the case of variable names. The default is nopreservecase,
which will force variable names for numeric variables to upper case and character
variables to lower case.

Examples
The first example is a soft delimited ASCII file called agex1.asc.

column name data type

1 sex character

2 AGE numeric

3 X001 numeric

4 X003 numeric

5 VAR01 numeric

6 VAR02 numeric

7 VAR03 numeric

8 VAR04 numeric

9 VAR05 numeric

10 VAR06 numeric

11 VAR07 numeric

12 VAR08 numeric
23-10

Utilities
The file contains seven columns of ASCII data:

Jan 167.3 822.4 6.34E06 yes 84.3 100.4

Feb 165.8 987.3 5.63E06 no 22.4 65.6

Mar 165.3 842.3 7.34E06 yes 65.4 78.3

The atog command file is agex1.cmd:

input c:\gauss\agex1.asc;

output agex1;

invar $month #temp pres vol $true var[02];

outvar month true temp pres vol;

The output data set will contain the following information:

The data set is double precision since character data is explicitly specified.

The second example is a packed ASCII file called xlod.asc.

The file contains 32-character records:

name month true TEMP PRES VOL

case 1 Jan yes 167.3 822.4 6.34e+6

case 2 Feb no 165.8 987.3 5.63e+6

case 3 Mar yes 165.3 842.3 7.34e+6

type char char numeric numeric numeric

AEGDRFCSTy02345678960631567890<CR><LF>

EDJTAJPSTn12395863998064839561<CR><LF>

GWDNADMSTy19827845659725234451<CR><LF>

| | | | | |

position 1 10 20 30 31 32
23-11

GAUSS User Guide
The atog command file is xlod.cmd:

input c:\gauss\dat\xlod.asc;

output xlod2;

invar record=32 $(1,3) client[2] zone (*,1) reg #(20,5)

 zip;

The output data set will contain the following information:

The data set is double precision since character data is explicitly specified.

The third example is a hard delimited ASCII file called cplx.asc.

The file contains six columns of ASCII data:

The ATOG command file is cplx.cmd:

input c:\gauss\cplx.asc;

output cplx;

invar delimit #cvar[3];

complex;

name client1 client2 zone reg ZIP

case 1 AEG DRF CST y 60631

case 2 EDJ TAJ PST n 98064

case 3 GWD NAD MST y 59725

type char char char char numeric

456.4, 345.2, 533.2, -345.5, 524.5, 935.3,

-257.6, 624.3, 639.5, 826.5, 331.4, 376.4,

602.3, -333.4, 342.1, 816.7, -452.6, -690.8
23-12

Utilities
The output data set will contain the following information:

The data set defaults to single precision since no character data is present, and no
outtyp command is specified.

Error Messages
atog - Can’t find input file

The ASCII input file could not be opened.

atog - Can’t open output file

The output file could not be opened.

atog - Can’t open temporary file

Notify Aptech Systems.

atog - Can’t read temporary file

Notify Aptech Systems.

atog - Character data in output file

Setting output file to double precision

The output file contains character data. The type was set to double precision
automatically.

atog - Character data longer than 8 bytes were truncated

The input file contained character elements longer than 8 bytes. The conversion
continued and the character elements were truncated to 8 bytes.

atog - Disk Full

The output disk is full. The output file is incomplete.

atog - Found character data in numeric field

This is a warning that character data was found in a variable that was specified as
numeric. The conversion will continue.

atog - Illegal command

An unrecognizable command was found in a command file.

name cvar1 cvar2 cvar3

case 1 456.4 + 345.2i 533.2 - 345.5i 524.5 + 935.3i

case 2 -257.6 + 624.3i 639.5 + 826.5i 331.4 + 376.4i

case 3 602.3 - 333.4i 342.1 + 816.7i -452.6 - 690.8i

type numeric numeric numeric
23-13

GAUSS User Guide
atog - Internal error

Notify Aptech Systems.

atog - Invalid delimiter

The delimiter following the backslash is not supported.

atog - Invalid output type

Output type must be I, F, or D.

atog - Missing value symbol not found

No missing value was specified in an msym statement.

atog - No Input file

No ASCII input file was specified. The input command may be missing.

atog - No input variables

No input variable names were specified. The invar statement may be missing.

atog - No output file

No output file was specified. The output command may be missing.

atog - output type d required for character data

Character data in output file will be lost

Output file contains character data and is not double precision.

atog - Open comment

The command file has a comment that is not closed. Comments must be enclosed in
@’s.

@ comment @

atog - Out of memory

Notify Aptech Systems.

atog - read error

A read error has occurred while converting a packed ASCII file.

atog - Record length must be 1-16384 bytes

The record subcommand has an out-of-range record length.

atog - Statement too long

Command file statements must be less than 16384 bytes.

atog - Syntax error at:

There is unrecognizable syntax in a command file.
23-14

Utilities
atog - Too many input variables

More input variables were specified than available memory permitted.

atog - Too many output variables

More output variables were specified than available memory permitted.

atog - Too many variables

More variables were specified than available memory permitted.

atog - Undefined variable

A variable requested in an outvar statement was not listed in an invar statement.

atog WARNING: missing ‘)’ at:

The parentheses in the delimit subcommand were not closed.

atog WARNING: some records begin with cr/lf

A packed ASCII file has some records that begin with a carriage return/linefeed. The
record length may be wrong.

atog - complex illegal for packed ASCII file

A complex command was encountered following an invar command with
record specified.

atog - Cannot read packed ASCII. (complex specified)

An invar command with record specified was encountered following a complex
command.

LIBLIST
LIBLIST is a library symbol listing utility. It is a stand-alone program that lists the
symbols available to the GAUSS autoloading system.

LIBLIST will also perform .g file conversion and listing operations. .g files are
specific files once used in older versions of GAUSS. Due to compiler efficiency and
other reasons, .g files are no longer recommended for use. The LIBLIST options
related to .g files are supplied to aid the user in consolidating .g files and converting
them to the standard .src files.

The format for using LIBLIST is:

liblist -flags lib1 lib2 ... libn

flags control flags to specify the operation of liblist.

G list all .g files in the current directory and along the src_path.
23-15

GAUSS User Guide
The search is performed in the following manner:

1. List all symbols available as .g files in the current directory and then the
src_path.

2. List all symbols defined in .lcg files in the lib_path subdirectory.
gauss.lcg, if it exists, will be listed last.

Report Format
The listing produced will go to the standard output. The order the symbols will be
listed in is the same order they will be found by GAUSS, except that LIBLIST
processes the .lcg files in the order they appear in the lib_path subdirectory,
whereas GAUSS processes libraries according to the order specified in your
library statement. LIBLIST assumes that all of your libraries are active; that is,
you have listed them all in a library statement. gauss.lcg will be listed last.

Here is an exampe of a listing:

D create gfile.lst using all .g files in the current directory and
along the src_path.

C convert .g files to .src files and list the files in srcfile.lst.

L list the contents of the specified libraries.

N list library names.

F use page breaks and form feed characters.

Symbol Type File Library Path

==

1. autoreg ------ autoreg .src auto.lcg c:\gauss\src

2. autoprt ------ autoreg .src auto.lcg c:\gauss\src

3. autoset ------ autoreg .src auto.lcg c:\gauss\src

4. _pticout matrix pgraph .dec pgraph.lcg c:\gauss\src

5. _pzlabel string pgraph .dec pgraph.lcg c:\gauss\src

6. _pzpmax matrix pgraph .dec pgraph.lcg c:\gauss\src

7. asclabel proc pgraph .src pgraph.lcg c:\gauss\src

8. fonts proc pgraph .src pgraph.lcg c:\gauss\src

9. graphset proc pgraph .src pgraph.lcg c:\gauss\src
23-16

Utilities
Symbol is the symbol name available to the autoloader.

Type is the symbol type. If the library is not strongly typed, this will be a line of
dashes.

File is the file the symbol is supposed to be defined in.

Library is the name of the library, if any, the symbol is listed in.

Path is the path the file is located on. If the file cannot be found, the path will be
*** not found ***.

Using LIBLIST
LIBLIST is executed with

liblist -flags lib1 lib2 ... libn

To put the listing in a file called lib.lst, use

liblist -l > lib.lst

To convert all your .g files and list them in srcfile.lst, use

liblist -c

The numbers are there so that you can sort the listing and still tell which symbol
would be found first by the autoloader. You may have more than one symbol by the
same name in different files. LIBLIST can help you keep them organized so you do
not inadvertently use the wrong one.

10. _svdtol matrix svd .dec gauss.lcg c:\gauss\src

12. _maxvec matrix system .dec gauss.lcg c:\gauss\src

13. besselj proc bessel .src gauss.lcg c:\gauss\src

14. bessely proc bessel .src gauss.lcg c:\gauss\src
23-17

Error Messages 24

The following is a list of error messages intrinsic to the GAUSS programming
language. Error messages generated by library functions are not included here.

G0002 File too large

load Input file too large.

getf Input file too large.

G0003 Indexing a matrix as a vector

A single index can be used only on vectors. Vectors have only one row or only
one column.

G0004 Compiler stack overflow - too complex

An expression is too complex. Break it into smaller pieces. Notify Aptech
Systems.

G0005 File is already compiled

G0006 Statement too long

Statement longer than 4000 characters.
24-1

GAUSS User Guide
G0007 End of file encountered

G0008 Syntax error

Compiler Unrecognizable or incorrect syntax. Semicolon missing on
previous statement.

create Unrecognizable statement in command file, or numvar or
outvar statement error.

G0009 Compiler pass out of memory

Compiler pass has run out of memory. Notify Aptech Systems.

G0010 Can't open output file

G0011 Compiled file must have correct extension

GAUSS requires a .gcg extension.

G0012 Invalid drive specifier

G0013 Invalid filename

G0014 File not found

G0015 Directory full

G0016 Too many #includes

#included files are nested too deep.

G0017 WARNING: local outside of procedure

A local statement has been found outside a procedure definition. The
local statement will be ignored.

G0018 Read error in program file

G0019 Can't edit .gcg file

G0020 Not implemented yet
24-2

Error Messages
Command not supported in this implementation.

G0021 use must be at the beginning of a program

G0022 User keyword cannot be used in expression

G0023 Illegal attempt to redefine symbol to an index

variable

G0025 Undefined symbol

A symbol has been referenced that has not been given a definition.

G0026 Too many symbols

The global symbol table is full. (To set the limit, see new in the GAUSS
Language Reference.)

G0027 Invalid directory

G0028 Can't open configuration file

GAUSS cannot find the configuration file.

G0029 Missing left parenthesis

G0030 Insufficient workspace memory

The space used to store and manipulate matrices and strings is not large
enough for the operations attempted. (To make the main program space
smaller and reclaim enough space to continue, see new in the GAUSS
Language Reference.)

G0031 Execution stack too deep - expression too complex

An expression is too complex. Break it into smaller pieces. Notify Aptech
Systems.

G0032 fn function too large

G0033 Missing right index bracket
24-3

GAUSS User Guide
G0034 Missing arguments

G0035 Argument too large

G0036 Matrices are not conformable

For a description of the function or operator being used and conformability
rules, see “Matrix Operators,” page 11-4, or the GAUSS Language Reference.

G0037 Result too large

The size of the result of an expression is greater than the limit for a single
matrix.

G0038 Not all the eigenvalues can be computed

G0039 Matrix must be square to invert

G0040 Not all the singular values can be computed

G0041 Argument must be scalar

A matrix argument was passed to a function that requires a scalar.

G0042 Matrix must be square to compute determinant

G0043 Not implemented for complex matrices

G0044 Matrix must be real

G0045 Attempt to write complex data to real data set

Data sets, unlike matrices, cannot change from real to complex after they are
created. Use create complex to create a complex data set.

G0046 Columns don't match

The matrices must have the same number of columns.

G0047 Rows don't match

The matrices must have the same number of rows.
24-4

Error Messages
G0048 Matrix singular

The matrix is singular using the current tolerance.

G0049 Target matrix not complex

G0050 Out of memory for program

The main program area is full. (To increase the main program space, see new
in the GAUSS Language Reference.)

G0051 Program too large

The main program area is full. (To increase the main program space, see new
in the GAUSS Language Reference.)

G0052 No square root - negative element

G0053 Illegal index

 An illegal value has been passed in as a matrix index.

G0054 Index overflow

An illegal value has been passed in as a matrix index.

G0055 retp outside of procedure

A retp statement has been encountered outside a procedure definition.

G0056 Too many active locals

The execution stack is full. There are too many local variables active.
Restructure your program. Notify Aptech Systems.

G0057 Procedure stack overflow - expression too complex

The execution stack is full. There are too many nested levels of procedure
calls. Restructure your program. Notify Aptech Systems.
24-5

GAUSS User Guide
G0058 Index out of range

You have referenced a matrix element that is out of bounds for the matrix
being referenced.

G0059 exec command string too long

G0060 Nonscalar index

G0061 Cholesky downdate failed

G0062 Zero pivot encountered

crout The Crout algorithm has encountered a diagonal element equal to
0. Use croutp instead.

G0063 Operator missing

An expression contains two consecutive operands with no intervening
operator.

G0064 Operand missing

An expression contains two consecutive operators with no intervening
operand.

G0065 Division by zero!

G0066 Must be recompiled under current version

You are attempting to use compiled code from a previous version of GAUSS.
Recompile the source code under the current version.

G0068 Program compiled under GAUSS-386 real version

G0069 Program compiled under GAUSS-386i complex version

G0070 Procedure calls too deep

You may have a runaway recursive procedure.
24-6

Error Messages
G0071 Type mismatch

You are using a string where a matrix is called for, or vice versa.

G0072 Too many files open

The limit on simultaneously open files is 10.

G0073 Redefinition of

declare An attempt has been made to initialize a variable that is already
initialized. This is an error when declare := is used. declare != or
declare ?= may be a better choice for your application.

declare An attempt has been made to redefine a string as a matrix or
procedure, or vice versa. delete the symbol and try again. If this happens in
the context of a single program, you have a programming error. If this is a
conflict between different programs, use a new statement before running the
second program.

let A string is being forced to type matrix. Use an external
matrix (symbol); statement before the let statement.

G0074 Can't run program compiled under GAUSS Light

G0075 gscroll input vector the wrong size

G0076 Call Aptech Systems Technical Support

G0077 New size cannot be zero

You cannot reshape a matrix to a size of zero.

G0078 vargetl outside of procedure

G0079 varputl outside of procedure

G0080 File handle must be an integer

G0081 Error renaming file

G0082 Error reading file
24-7

GAUSS User Guide
G0083 Error creating temporary file

G0084 Too many locals

A procedure has too many local variables.

G0085 Invalid file type

You cannot use this kind of file in this way.

G0086 Error deleting file

G0087 Couldn't open

The auxiliary output file could not be opened. Check the file name and make
sure there is room on the disk.

G0088 Not enough memory to convert the whole string

G0089 WARNING: duplicate definition of local

G0090 Label undefined

Label referenced has no definition.

G0091 Symbol too long

Symbols can be no longer than 8 characters.

G0092 Open comment

A comment was never closed.

G0093 Locate off screen

G0094 Argument out of range

G0095 Seed out of range

G0096 Error parsing string

parse encountered a token that was too long.
24-8

Error Messages
G0097 String not closed

A string must have double quotes at both ends.

G0098 Invalid character for imaginary part of complex

number

G0099 Illegal redefinition of user keyword

G0100 Internal E R R O R ###

Notify Aptech Systems.

G0101 Argument cannot be zero

The argument to ln or log cannot be zero.

G0102 Subroutine calls too deep

Too many levels of gosub. Restructure your program.

G0103 return without gosub

You have encountered a subroutine without executing a gosub.

G0104 Argument must be positive

G0105 Bad expression or missing arguments

Check the expression in question, or you forgot an argument.

G0106 Factorial overflow

G0107 Nesting too deep

Break the expression into smaller statements.

G0108 Missing left bracket [

G0109 Not enough data items

You omitted data in a let statement.

G0110 Found) expected] -
24-9

GAUSS User Guide
G0111 Found] expected) -

G0112 Matrix multiplication overflow

G0113 Unclosed (

G0114 Unclosed [

G0115 Illegal redefinition of function

You are attempting to turn a function into a matrix or string. If this is a name
conflict, delete the function.

G0116 sysstate: invalid case

G0117 Invalid argument

G0118 Argument must be integer

File handles must be integral.

G0120 Illegal type for save

G0121 Matrix not positive definite

The matrix is either not positive definite, or singular using the current
tolerance.

G0122 Bad file handle

The file handle does not refer to an open file or is not in the valid range for file
handles.

G0123 File handle not open

The file handle does not refer to an open file.
24-10

Error Messages
G0124 readr call too large

You are attempting to read too much in one call.

G0125 Read past end of file

You have already reached the end of the file.

G0126 Error closing file

G0127 File not open for write

G0128 File already open

G0129 File not open for read

G0130 No output variables specified

G0131 Can't create file, too many variables

G0132 Can't write, disk probably full

G0133 Function too long

G0134 Can't seekr in this type of file

G0135 Can't seek to negative row

G0136 Too many arguments or misplaced assignment op...

You have an assignment operator (=) where you want a comparison operator
(==), or you have too many arguments.

G0137 Negative argument - erf or erfc

G0138 User keyword must have one argument

G0139 Negative parameter - Incomplete Beta
24-11

GAUSS User Guide
G0140 Invalid second parameter - Incomplete Beta

G0141 Invalid third parameter - Incomplete Beta

G0142 Nonpositive parameter - gamma

G0143 NaN or missing value - cdfchic

G0144 Negative parameter - cdfchic

G0145 Second parameter < 1.0 - cdfchic

G0146 Parameter too large - Incomplete Beta

G0147 Bad argument to trig function

G0148 Angle too large to trig function

G0149 Matrices not conformable

For a description of the function or operator being used and conformability
rules, see “Matrix Operators,” page 11-4, or the GAUSS Language Reference.

G0150 Matrix not square

G0151 Sort failure

G0152 Variable not initialized

You have referenced a variable that has not been initialized to any value.

G0153 Unsuccessful close on auxiliary output

The disk may be full.

G0154 Illegal redefinition of string

G0155 Nested procedure definition
24-12

Error Messages
A proc statement was encountered inside a procedure definition.

G0156 Illegal redefinition of procedure

You are attempting to turn a procedure into a matrix or string. If this is a name
conflict, delete the procedure.

G0157 Illegal redefinition of matrix

G0158 endp without proc

You are attempting to end something you never started.

G0159 Wrong number of parameters

You called a procedure with the wrong number of arguments.

G0160 Expected string variable

G0161 User keywords return nothing

G0162 Can't save proc/keyword/fn with global references

Remove the global references or leave this in source code form for the
autoloader to handle. (See library in the GAUSS Language Reference.)

G0163 Wrong size format matrix

G0164 Bad mask matrix

G0165 Type mismatch or missing arguments

G0166 Character element too long

The maximum length for character elements is 8 characters.

G0167 Argument must be column vector

G0168 Wrong number of returns

 The procedure was defined to return a different number of items.
24-13

GAUSS User Guide
G0169 Invalid pointer

You are attempting to call a local procedure using an invalid procedure
pointer.

G0170 Invalid use of ampersand

G0171 Called symbol is wrong type

You are attempting to call a local procedure using a pointer to something else.

G0172 Can't resize temporary file

G0173 varindx failed during open

The global symbol table is full.

G0174 ‘.’ and ‘ ’ operators must be inside [] brackets

These operators are for indexing matrices.

G0175 String too long to compare

G0176 Argument out of range

G0177 Invalid format string

G0178 Invalid mode for getf

G0179 Insufficient heap space

G0180 trim too much

You are attempting to trim more rows than the matrix has.

G0181 Illegal assignment - type mismatch

G0182 2nd and 3rd arguments different order

G0274 Invalid parameter for conv
24-14

Error Messages
G0275 Parameter is NaN (Not A Number)

The argument is a NaN (see “Special Data Types,” page 10-21).

G0276 Illegal use of reserved word

G0277 Null string illegal here

G0278 proc without endp

You must terminate a procedure definition with an endp statement.

G0286 Multiple assign out of memory

G0287 Seed not updated

The seed argument to rndns and rndus must be a simple local or global
variable reference. It cannot be an expression or constant. These functions are
obsolete, please use rndlcn and rndlcu

G0288 Found break not in do loop

G0289 Found continue not in do loop

G0290 Library not found

The specified library cannot be found on the lib_path path. Make sure
installation was correct.

G0291 Compiler pass out of memory

Notify Aptech Systems.

G0292 File listed in library not found

A file listed in a library could not be opened.
24-15

GAUSS User Guide
G0293 Procedure has no definition

The procedure was not initialized. Define it.

G0294 Error opening temporary file

One of the temporary files could not be opened. The directory may be full.

G0295 Error writing temporary file

One of the temporary files could not be written to. The disk may be full.

G0296 Can't raise negative number to nonintegral power

G0300 File handle must be a scalar

G0301 Syntax error in library

G0302 File has been truncated or corrupted

getname File header cannot be read.

load Cannot read input file, or file header cannot be read.

open File size does not match header specifications, or file header
cannot be read.

G0317 Can't open temp file

G0336 Disk full

G0339 Can't debug compiled program

G0341 File too big

G0347 Can't allocate that many globals

G0351 Warning: Not reinitializing : declare ?=

The symbol is already initialized. It will be left as is.

G0352 Warning: Reinitializing : declare !=
24-16

Error Messages
The symbol is already initialized. It will be reset.

G0355 Wrong size line matrix

G0360 Write error

G0364 Paging error

G0365 Unsupported executable file type

G0368 Unable to allocate translation space

G0369 Unable to allocate buffer

G0370 Syntax Error in code statement

G0371 Syntax Error in recode statement

G0372 Token verify error

Notify Aptech Systems.

G0373 Procedure definition not allowed

A procedure name appears on the left side of an assignment operator.

G0374 Invalid make statement

G0375 make Variable is a Number

G0376 make Variable is Procedure

G0377 Cannot make Existing Variable

G0378 Cannot make External Variable

G0379 Cannot make String Constant
24-17

GAUSS User Guide
G0380 Invalid vector statement

G0381 vector Variable is a Number

G0382 vector Variable is Procedure

G0383 Cannot vector Existing Variable

G0384 Cannot vector External Variable

G0385 Cannot vector String Constant

G0386 Invalid extern statement

G0387 Cannot extern number

G0388 Procedures always external

A procedure name has been declared in an extern statement. This is a
warning only.

G0389 extern variable already local

A variable declared in an extern statement has already been assigned local
status.

G0390 String constant cannot be external

G0391 Invalid code statement

G0392 code Variable is a Number

G0393 code Variable is Procedure

G0394 Cannot code Existing Variable

G0395 Cannot code External Variable
24-18

Error Messages
G0396 Cannot code String Constant

G0397 Invalid recode statement

G0398 recode Variable is a Number

G0399 recode Variable is Procedure

G0400 Cannot recode External Variable

G0401 Cannot recode String Constant

G0402 Invalid keep statement

G0403 Invalid drop statement

G0404 Cannot define Number

G0405 Cannot define String

G0406 Invalid select statement

G0407 Invalid delete statement

G0408 Invalid outtyp statement

G0409 outtyp already defaulted to 8

Character data has been found in the output data set before an outtyp 2 or
outtyp 4 statement. This is a warning only.

G0410 outtyp must equal 2, 4, or 8

G0411 outtyp override...precision set to 8

Character data has been found in the output data set after an outtyp 2 or
outtyp 4 statement. This is a warning only.
24-19

GAUSS User Guide
G0412 default not allowed in recode statement

default allowed only in code statement.

G0413 Missing file name in dataloop statement

G0414 Invalid listwise statement

G0415 Invalid lag statement

G0416 lag variable is a number

G0417 lag variable is a procedure

G0418 Cannot lag External Variable

G0419 Cannot lag String Constant

G0421 compile command not supported in Run-Time Module

G0428 Cannot use debug command inside program

G0429 Invalid number of subdiagonals

G0431 Error closing dynamic library

G0432 Error opening dynamic library

G0433 Cannot find DLL function

G0435 Invalid mode

G0436 Matrix is empty

G0437 loadexe not supported; use dlibrary instead
24-20

Error Messages
G0438 callexe not supported; use dllcall instead

G0439 File has wrong bit number

G0441 Type vector malloc failed

G0442 No type vector in gfblock

G0445 Illegal left-hand side reference in procedure

G0447 vfor called with illegal loop level

G0454 Failure opening printer for output

G0456 Failure buffering output for printer

G0457 Can't take log of a negative number

G0458 Attempt to index proc/fn/keyword as a matrix

G0459 Missing right brace }

G0460 Unexpected end of statement

G0461 Too many data items

G0462 Negative trim value

G0463 Failure generating graph
24-21

Maximizing Performance 25

These hints will help you maximize the performance of your new GAUSS System.

Library System
Some temporary files are created during the autoloading process. If you have a
tmp_path configuration variable or a tmp environment string that defines a path on
a RAM disk, the temporary files will be placed on the RAM disk.

For example:

set tmp=f:\tmp

tmp_path takes precedence over the tmp environment variable.

A disk cache will also help, as well as having your frequently used files in the first
path in the src_path.

You can optimize your library .lcg files by putting the correct drive and path on each
file name listed in the library. The lib command will do this for you.

Use the compile command to precompile your large frequently used programs. This
will completely eliminate compile time when the programs are rerun.
25-1

GAUSS User Guide
Loops
The use of the built-in matrix operators and functions rather than do loops will ensure
that you are utilizing the potential of GAUSS.

Here is an example:

Given the vector x with 8000 normal random numbers,

x = rndn(8000,1);

you could get a count of the elements with an absolute value greater than 1 with a do
loop, like this:

c = 0;

i = 1;

do while i <= rows(x);

if abs(x[i]) > 1;

c = c+1;

endif;

i = i+1;

endo;

print c;

Or, you could use:

c = sumc(abs(x) .> 1);

print c;

The do loop takes over 40 times longer.

Virtual Memory
The following are hints for making the best use of virtual memory in GAUSS.

Data Sets
Large data sets can often be processed much faster by reading them in small sections
(about 20000-40000 elements) instead of reading the entire data set in one piece.
maxvec is used to control the size of a single disk read. Here is an example. The ols
25-2

Maximizing Performance
command can take either a matrix in memory or a data set on disk. Here are the times
for a regression with 100 independent variables and 1500 observations on an IBM
model 80 with 4 MB RAM running at 16 MHz:

ols(0,y,x matrices in memory 7 minutes 15.83 seconds

ols(“olsdat”,0,0 data on disk (maxvec = 500000) 8 minutes 48.82 seconds

ols(“olsdat”,0,0 data on disk (maxvec = 25000) 1 minute 42.77 seconds

As you can see, the fastest time occurred when the data was read from disk in small
enough sections to allow the ols procedure to execute entirely in RAM. This ensured
that the only disk I/O was one linear pass through the data set.

The optimum size for maxvec depends on your available RAM and the algorithms
you are using. GAUSS is shipped with maxvec set to 20000. maxvec is a procedure
defined in system.src that returns the value of the global scalar __maxvec. The
value returned by a call to maxvec can be modified by editing system.dec and
changing the value of __maxvec. The value returned when running GAUSS Light is
always 8192.

Complex numbers use twice the space of real numbers, so the optimum single disk
read size for complex data sets is half that for real data sets. You can set __maxvec
for real data sets, then use maxvec/2 when processing complex data sets. iscplxf
will tell you if a data set is complex.

Hard Disk Maintenance
The hard disk used for the swap file should be optimized occasionally with a disk
optimizer. Use a disk maintenance program to ensure that the disk media is in good
shape.

CPU Cache
There is a line for cache size in the gauss.cfg file. Set it to the size of the CPU data
cache for your computer.

This affects the choice of algorithms used for matrix multiply functions.

This will not change the results you get, but it can radically affect performance for
large matrices.
25-3

Fonts Appendix A

There are four fonts available in the Publication Quality Graphics System:

Simplex standard sans serif font

Simgrma Simplex greek, math

Microb bold and boxy

Complex standard font with serif

The following tables show the characters available in each font and their ASCII
values. (For details on selecting fonts for your graph, see “Selecting Fonts,” page 22-
10.
A-1

GAUSS User Guide
Simplex
A-2

Fonts Appendix
Simgrma
A-3

GAUSS User Guide
Microb
A-4

Fonts Appendix
Complex
A-5

Reserved Words Appendix B

The following words are used for GAUSS intrinsic functions. You cannot use these
names for variables or procedures in your programs:

a

b

c

abs and atan atan2

balance bandcholsol bandsolpd break

band bandltsol besselj

bandchol bandrv bessely

call cdfchic cdfnc cdftvn

callexe cdffc cdfni cdir

cdfbeta cdfgam cdftc ceil

cdfbvn cdfn cdftci cfft
B-1

GAUSS User Guide
d

e

cffti clearg complex countwts

ChangeDir close con create

chol closeall conj crout

choldn cls cons croutp

cholsol color continue csrcol

cholup cols conv csrlin

chrs colsf coreleft csrtype

cint comlog cos cvtos

clear compile counts

date debug diag dos

dbcommit declare diagrv dtvnormal

dbconnect delete disable dtvtoutc

dbdisconnect det dlibrary

dbopen detl dllcall

dbstrerror dfree do

ed else endp error

edit elseif envget errorlog

editm enable eof exec

eig end eq exp

eigh endfor eqv external

eighv endif erf eye

eigv endo erfc
B-2

Reserved Words Appendix
f

g

h

i

k

l

fcheckerr fgetsat fn fputs

fclearerr fgetst font fputst

fflush fileinfo fontload fseek

fft files fontunload fstrerror

ffti filesa fontunloadall ftell

fftn fix fopen ftocv

fgets floor for ftos

fgetsa fmod format

gamma getname goto gt

ge getnamef graph

getf gosub graphsev3

hasimag hess hsec

if indexcat inv iscplx

imag indnv invpd iscplxf

indcv int invswp ismiss

key keyw keyword

le loadexe locate lt

let loadf log ltrisol

lib loadk lower lu
B-3

GAUSS User Guide
m

n

o

p

r

library loadm lpos lusol

line loadp lprint

ln loads lpwidth

load local lshow

matrix meanc miss msym

maxc minc missrv

maxindc minindc moment

ndpchk ndpcntrl new

ndpclex ne not

oldfft ones openpqg output

oldffti open or outwidth

packr plot prcsn proc

parse plotsym print prodc

pdfn pop printdos push

pi pqgwin printfm

rankindx return rndcon rotater

rcondl rev rndmod round

readr rfft rndmult rows

real rffti rndn rowsf

recserar rfftip rndns run
B-4

Reserved Words Appendix
s

t

u

recsercp rfftn rndseed

reshape rfftnp rndu

retp rfftp rndus

save shiftr sortindc submat

saveall show sqrt subscat

scalerr showpqg stdc sumc

scalmiss sin stocv svdcusv

schur sleep stof svds

screen solpd stop svdusv

scroll sortc strindx sysstate

seekr sortcc string system

seqa sorthc strlen

seqm sorthcc strrindx

setvmode sortind strsect

tab timeutc trim typecv

tan trace trimr typef

tempname trap trunc

time trapchk type

union unique upper utctodtv

uniqindx until use utrisol
B-5

GAUSS User Guide
v

w

x

z

vals varput vec vfor

varget varputl vech

vargetl vartypef vecr

while wingetcolorcells winrefresh winsetforeground

winclear wingetcursor winrefresharea winsetrefresh

wincleararea winmove winresize winsettextwrap

winclearttylog winopenpqg winsetactive winwrite

winclose winopentext winsetbackground winzoompqg

wincloseall winopentty winsetcolor writer

winconvertpqg winpan winsetcolorcells

wingetactive winprint winsetcolormap

wingetattributes winprintpqg winsetcursor

xor xpnd

zeros
B-6

Singularity Tolerance
Appendix B
The tolerance used to determine whether or not a matrix is singular can be changed.
The default value is 1.0e-14 for both the LU and the Cholesky decompositions. The
tolerance for each decomposition can be changed separately. The following operators
are affected by a change in the tolerance:

Crout LU Decomposition

crout(x)
croutp(x)
inv(x)
det(x)
y/x when neither x nor y is scalar and x is square.

Cholesky Decomposition

chol(x)
invpd(x)
solpd(y,x)
y/x when neither x nor y is scalar and x is not square.
B-1

GAUSS User Guide
Reading and Setting the Tolerance
The tolerance value may be read or set using the sysstate function, cases 13 and
14.

Determining Singularity
There is no perfect tolerance for determining singularity. The default is 1.0e-14. You
can adjust this as necessary.

A numerically better method of determining singularity is to use cond to determine
the condition number of the matrix. If the equation

1 / cond(x) + 1 eq 1

is true, then the matrix is usually considered singular to machine precision. (See
LINPACK for a detailed discussion on the relationship between the matrix condition
and the number of significant figures of accuracy to be expected in the result.)
B-2

Index
Index

Operators and Symbols

! 11-5
– 11-4
21-1, 21-2
$+ 11-14
$| 11-15
$~ 11-16
% 11-5
& (ampersand) 11-14
(colon) 11-14
(semicolon) 10-2
* 11-4
*~ 11-7
+ 11-4
, (comma) 11-13
. 11-10, 11-10
. (dot) 11-9, 11-10, 11-14
.* 11-5
.*. 11-6
./ 11-6
./= 11-10
.== 11-10
.> 11-11
.>= 11-11
.^ 11-6
.and 11-13
.eq 11-10
.eqv 11-13
.fcg file 12-12
.ge 11-11
.gt 11-11
.le 11-10
.lt 11-10
.ne 11-10
.not 11-13
.xor 11-13
/ 11-5
/= 11-10
= 10-1
== 11-9
> 11-10
^ 11-6
_pageshf 22-13
_parrow 22-13
_parrow3 22-14
_paxes 22-16

_paxht 22-16
_pbartyp 22-16
_pbarwid 22-16
_pbox 22-17
_pboxctl 22-17
_pboxlim 22-17
_pcolor 22-18
_pcrop 22-18
_pcross 22-18
_pdate 22-18
_perrbar 22-19
_pframe 22-19
_pgrid 22-20
_plctrl 22-20
_plectrl 22-20
_plegstr 22-21
_plev 22-21
_pline 22-21
_pline3d 22-23
_plotshf 22-24
_plotsiz 22-24
_pltype 22-25
_plwidth 22-25
_pmcolor 22-25
_pmsgctl 22-26
_pmsgstr 22-26
_pnotify 22-26
_pnum 22-26
_pnumht 22-27
_protate 22-27
_pscreen 22-27
_psilent 22-27
_pstype 22-27
_psurf 22-27
_psym 22-27
_psym3d 22-28
_psymsiz 22-28
_ptek 22-28
_pticout 22-28
_ptitlht 22-28
_pversno 22-28
_pxpmax 22-29
_pxsci 22-29
_pypmax 22-29
_pysci 22-29
_pzclr 22-29
_pzoom 22-29
_pzpmax 22-29
_pzsci 22-29
| 11-8
~ 11-8
Index-1

GAUSS User Guide
A

aconcat 16-1, 16-4
aeye 16-1, 16-5
amax 16-22
amean 16-22
amin 16-22
ampersand 11-14
amult 16-20
and 11-11, 11-12
append 23-3
append, atog command 23-1
areshape 16-1, 16-2
arguments 10-32, 12-2, 12-3
arrayalloc 16-1, 16-6
arrayinit 16-1, 16-6
Arrays of Structures 13-3
arraytomat 16-24
arrows 22-13
ASCII Files 19-3
ASCII files 23-1

reading 19-3
writing 19-4

asclabel 22-9
assigning arrays 16-7
assignment operator 10-2, 10-32, 11-13
atog 23-1
atranspose 16-19
autoloader 17-1, 23-17
axes 22-3
axes numbering 22-3

B

bar 22-1
bar shading 22-16
bar width 22-16
batch mode 3-1
begwind 22-5, 22-8
blank lines 10-31
Bookmarks 5-2
Boolean operations 11-11
box 22-1
Breakpoints

Setting and Clearing 5-6
using 5-6

browse 3-2

C

calling a procedure 12-5

caret 11-6, 11-16
case 10-31
Cholesky decomposition 11-5
circles 22-4, 22-18, 22-21
code 21-2
colon 10-31
color 22-5, 22-19

arrow 22-14
bar 22-16
box 22-17
pbox 22-17
z-level 22-5

comma 11-13
command 10-2
command line

configuration 3-3
debugging 3-4
editing 3-2

CommandInput-OutputWindow 5-3
comments 10-31
comparison operator 10-32
compilation phase 21-3
compile 18-1
Compile Options 5-9
compile time 10-1
compiled language 10-1
compiler 4-1, 18-1
complex 23-3
complex constants 10-11
complex, atog command 23-1
concatenation, matrix 11-8
conditional branching 10-28
conformability 11-1
constants, complex 10-11
Constraints 13-19
contour 22-1
contour levels 22-21
Control Structures 13-12
control, flow 10-24
coordinates 22-6
cropping 22-3, 22-18

D

data loop 21-1
data sets 19-6
dataloop 21-1
date 22-3
date formats 10-20
Debugger

Using 5-5
debugging 18-2

command line 3-4
Index-2

Index
delete 21-2
delimited

hard 23-5
soft 23-4

delimited files 19-3
division 11-5
do loop 10-25
dot relational operator 11-17, 11-18
draw 22-2
drop 21-2
DS structure 13-6
DT Scalar Format 10-20
DTV vector format 10-20

E

edit windows 5-1
editing

command line 3-2
editing keys 5-11
Editing Matrices 6-1
Editor Properties 5-10
element-by-element conformability 11-1
element-by-element operators 11-1
empty matrix 10-11
encapsulated PostScript Graphics 3-2
endp 12-2, 12-5
endwind 22-8
eq 11-9
eqv 11-13
error bar 22-7, 22-19
Example 13-19
ExE conformable 11-1
executable code 10-3
executable statement 10-2
execution phase 21-3
execution time 10-1
exponentiation 11-6
expression, evaluation order 10-23, 11-18
expression, scalar 10-27
expressions 10-1
extern 21-2
extraneous spaces 10-31

F

factorial 11-5
FALSE 10-25
Fast Unpacking 13-9
file formats 19-11
files 19-2

binary 19-12

matrix 19-12
string 19-13

finding symbols 3-2
flow control 10-24
fonts A-1
forward reference 17-1
function 10-30

G

GAUSS Help 9-1
GAUSS Source Browser 8-1
ge 11-10
getArray 16-10
getDims 16-23
getMatrix 16-10
getMatrix4D 16-11
getOrders 16-23
getScalar3D 16-12
getScalar4D 16-12
global variable 12-1, 12-4
graphics

viewing 3-2
graphics text elements 22-9
graphics windows 22-4, 22-6
graphics, publication quality 22-1
grid subdivisions 22-20
gt 11-10

H

hard delimited 23-5
hardware requirements 2-1
hat operator 11-6, 11-16
Help 9-1
hidden lines 22-27
horizontal direct product 11-7

I

indefinite 10-21
index operator 16-7, 16-8
indexing matrices 10-32, 11-13
indexing procedures 11-14
infinity 10-21
initialize 12-3
inner product 11-4
inpu, atog command 23-1
input 23-3
Input Arguments 13-14
instruction pointer 10-2
Index-3

GAUSS User Guide
interactive commands
running 5-4

interpreter 10-1
intrinsic function 10-6
invar 23-4
invar, atog command 23-1

K

keep 21-2
keys, editing 5-11
Keystroke Macros 5-2
keyword 12-1, 12-6
Kronecker 11-6

L

label 10-29, 10-31, 12-1
lag 21-2
le 11-9
least squares 11-5
left-hand side 17-2
legend 22-3
lib_path 23-16
liblist 23-15
libraries, troubleshooting 17-11
library 17-1
library symbol listing utility 23-15
Library Tool 7-1
library, optimizing 25-1
line thickness 22-19, 22-23, 22-24, 22-25, 22-28
line type 22-14, 22-15, 22-19, 22-21, 22-24, 22-25
linear equation solution 11-5
lines 22-1
listwise 21-2
literal 10-16, 11-16
loadp 12-12
loadstruct 13-4
local 12-2
local variable declaration 12-3
local variables 10-7, 12-3
logical operators 11-11
looping 10-25
looping with arrays 16-14, 16-17
loopnextindex 16-17
lt 11-9
LU decomposition 11-5

M

Macros 5-2

magnification 22-29
main program code 10-4
main section 10-3
make 21-2
Making a Watch Window 5-8
Managing Libraries 7-1
Masked Matrices 13-8
math coprocessor 2-1
matrices, indexing 10-32
matrix conformability 11-1
Matrix Editor 6-1
matrix, empty 10-11
mattoarray 16-24
maxvec 25-2
menu

command line 3-3
Miscellaneous PV Procedures 13-10
missing values 11-5, 11-9
modulo division 11-5
msym 23-8
msym, atog command 23-1
multiplication 11-4

N

NaN 10-21
NaN, testing for 10-21, 11-9
ne 11-10
nocheck 23-9
nocheck, atog command 23-2
nonexecutable statement 10-2
nontransparent windows 22-7
not 11-9, 11-11, 11-12, 11-19

O

operators 10-1, 11-4
Options

Compile 5-9
Run 5-8

or 11-12, 11-13
outer product 11-5
output 19-2, 19-4, 23-9
Output Argument 13-17
output, atog command 23-2
outtyp 21-2, 23-9
outtyp, atog command 23-2
outvar 23-10
outvar, atog command 23-2
overlapping windows 22-7
Index-4

Index
P

packed ASCII files 23-7
pagesiz 22-13
pairwise deletion 11-5
panel data 16-28
passing to other procedures 12-8
performance hints 25-1
pointer 11-14, 12-4
pointer, instruction 10-2
PostScript graphics 3-2
precedence 10-23, 11-18
precedence, operator 11-18
preservecase 23-10
proc 12-2
procedure definition 10-3
procedure, saving 12-12
procedures

indexing 12-9
multiple returns 12-10

program 10-3
Properties

Editor 5-10
putArray 16-7, 16-13
PV structure 13-7
pvGetIndex 13-12
pvGetParNames 13-10
pvGetParVector 13-11
pvGetParvector 13-11
pvLength 13-10
pvList 13-10
pvPack 13-7
pvPacki 13-9
pvPutParVector 13-11
pvUnpack 13-8

R

radii 22-21
recode 21-2
recursion 12-4
relational operator 11-8, 11-10
relational operator, dot 11-18
reserved words B-1
retp 12-2, 12-4
right-hand side 17-2
rules of syntax 10-30
run

commands interactively 5-4
Run Options 5-8
Run-Time Library Structures 14-1

S

savestruct 13-4
scalar 13-2
screen 19-4
search

active libraries 9-2
Autoloader Search Path 17-2
Find specified text 4-3
GAUSS Source Browser 8-1
symbols 3-2

secondary section 10-4
select 21-2
semicolon 10-2
setArray 16-7, 16-14
singularity tolerance B-1
soft delimited 23-4
spaces 11-14
spaces, extraneous 10-31, 11-14
sqpSolvemt 13-6, 13-13
sqpSolvemt Control Structure 13-15
sqpSolvemtControl 13-15
sqpSolvemtOut 13-17
src_path 17-1, 23-15, 25-1
startup file 12-13
statement 10-2, 10-30
statement, executable 10-2
statement, nonexecutable 10-2
string array concatenation 11-15
string arrays 10-18, 10-19
string concatenation 11-14
string files 19-13
strings, graphics 22-9
struct 13-1
Structures 13-1

Arrays of 13-3
Declaring an Instance 13-2
Definition 13-1
DS Structure 13-6
Initialization of Global Structures 13-2
Initializing an Instance 13-2
Initializing Local Structures 13-3
Loading an Instance from the Disk 13-4
Masked Matrices 13-8
Packing into a PV Structure 13-7
Passing Structures to Procedures 13-5
PV Structure 13-7
Saving an Instance to the Disk 13-4
Special Structures 13-6

subroutine 10-30
substitution 11-16, 11-17
symbol names 10-31
symbols
Index-5

GAUSS User Guide
finding 3-2
Symmetric Matrices 13-9
syntax 10-30

T

table 11-4
temporary files 25-1
tensor 11-6
TGAUSS 3-1
The Command File 13-19
thickness, line 22-19, 22-23, 22-24, 22-25
tick marks 22-12
tilde 11-8
tiled windows 22-6
time formats 10-20
tmp environment string 25-1
tolerance B-1
translation phase 21-3
transparent windows 22-7
transpose 11-7
transpose, bookkeeping 11-7
troubleshooting, libraries 17-11
TRUE 10-25, 11-9

U

unconditional branching 10-29
Using Breakpoints 5-6
Using The Debugger 5-5
UTC scalar format 10-21

V

vector 21-2
vectors 10-32
viewing graphics 3-2
Viewing Variables 6-1
virtual memory 25-2
vwr 3-2

W

watch window 6-2
Making a 5-8

windows
graphics 22-4, 22-6
nontransparent 22-7
overlapping 22-7
tiled 22-6

transparent 22-7

X

xor 11-12, 11-13

Z

zooming 22-29
Index-6

	Contents
	Language Fundamentals 10-1
	Operators 11-1
	Procedures and Keywords 12-1
	Structures 13-1
	Run-Time Library Structures 14-1
	N-Dimensional Arrays 15-1
	Working with Arrays 16-1
	Libraries 17-1
	Compiler 18-1
	File I/O 19-1
	Foreign Language Interface 20-1
	Data Transformations 21-1
	Publication Quality Graphics 22-1
	Utilities 23-1
	Error Messages 24-1
	Maximizing Performance 25-1

	Introduction
	Product Overview
	Documentation Conventions

	Getting Started
	Installation Under UNIX/Linux
	Installation Under Windows
	Machine Requirements
	Installation from Download
	Downloading
	Installation

	Installation from CD

	Using the Command Line Interface
	Viewing Graphics
	Interactive Commands
	quit
	ed
	browse
	config
	Run Menu
	Compile Menu

	Debugging
	General Functions
	Listing Functions
	Execution Functions
	View Commands
	Breakpoint Commands

	Introduction to the Windows Interface
	GAUSS Menus
	File Menu
	Edit Menu
	View Menu
	Configure Menu
	Run Menu
	Debug Menu
	Tools Menu
	Window Menu
	Help Menu

	GAUSS Toolbars
	Main Toolbar
	Working Directory Toolbar
	Debug Toolbar

	Status Bar
	GAUSS Status

	Using the Windows Interface
	Using the GAUSS Edit Windows
	Editing Programs
	Using Bookmarks
	Changing the Editor Properties
	Using Keystroke Macros
	Using Margin Functions
	Editing with Split Views
	Finding and Replacing Text
	Running Selected Text

	Using The Command Input - Output Window
	Running Commands
	Running Programs in Files

	Using Source View
	Source Tab
	Opening a Source File
	Finding Commands in Source Files

	Symbols Tab
	Editing or Viewing a Symbols
	Finding Symbols in Source Files

	Using the Error Output Window
	Using The Debugger
	Starting and Stopping the Debugger
	Using Breakpoints
	Setting and Clearing Breakpoints
	Using the Breakpoint Editor to Set and Clear Breakpoints

	Stepping Through a Program
	Viewing and Editing Variables
	Viewing Variable Values During Debugging
	Editing Variable Values During Debugging
	Making a Watch Window

	Customizing GAUSS
	Preferences Dialog Box
	Run Options
	Compile Options
	Files
	DOS Window

	Editor Properties
	Color/Font
	Language/Tabs
	Misc

	Using GAUSS Keyboard Assignments
	Cursor Movement Keys
	Edit Keys
	Text Selection Keys
	Command Keys
	Function Keys
	Menu Keys

	Matrix Editor
	Using the Matrix Editor
	Editing Matrices
	Viewing Variables
	Setting Watch Variables

	Matrix Editor Menu Bar
	Matrix Menu
	Format Menu
	Edit Menu
	View Menu

	Library Tool
	Using the Library Tool
	Managing Libraries
	Managing the Library Index
	Managing Library Files

	GAUSS Source Browser
	Using the Source Browser in TGAUSS
	Using the Source Browser in GAUSS
	Opening Files From the Source Browser
	Source Browser Keyboard Controls

	GAUSS Help
	Help Menu
	Context-Sensitive Help
	SHIFT+F1 Support
	CTRL+F1 Support
	ToolTips
	Other Help

	Language Fundamentals
	Expressions
	Statements
	Executable Statements
	Nonexecutable Statements

	Programs
	Main Section
	Secondary Sections

	Compiler Directives
	Procedures
	Data Types
	Constants
	Decimal
	String
	Hexadecimal Integer
	Hexadecimal Floating Point

	Matrices
	Strings and String Arrays
	Strings
	String Arrays

	Character Matrices
	Date and Time Formats
	DT Scalar Format
	DTV Vector Format
	UTC Scalar Format

	Special Data Types
	NaN
	INF
	DEN, UNN

	Operator Precedence
	Flow Control
	Looping
	do loop
	for loop

	Conditional Branching
	Unconditional Branching
	goto
	gosub

	Functions
	Rules of Syntax
	Statements
	Case
	Comments
	Extraneous Spaces
	Symbol Names
	Labels
	Assignment Statements
	Function Arguments
	Indexing Matrices
	Arrays of Matrices and Strings
	Arrays of Procedures

	Operators
	Element-by-Element Operators
	Matrix Operators
	Numeric Operators
	Other Matrix Operators

	Relational Operators
	Logical Operators
	Other Operators
	Assignment Operator
	Comma
	Period
	Space
	Colon
	Ampersand
	String Concatenation
	String Array Concatenation
	String Variable Substitution

	Using Dot Operators with Constants
	Operator Precedence

	Procedures and Keywords
	Defining a Procedure
	Procedure Declaration
	Local Variable Declarations
	Body of Procedure
	Returning from the Procedure
	End of Procedure Definition

	Calling a Procedure
	Keywords
	Defining a Keyword
	Calling a Keyword

	Passing Procedures to Procedures
	Indexing Procedures
	Multiple Returns from Procedures
	Saving Compiled Procedures

	Structures
	Basic Structures
	Structure Definition
	Declaring an Instance
	Initializing an Instance
	Initialization of Global Structures
	Initializing Local Structures

	Arrays of Structures
	Saving an Instance to the Disk
	Loading an Instance from the Disk
	Passing Structures to Procedures

	Special Structures
	The DS Structure
	The PV Structure
	"Packing" into a PV Structure
	Masked Matrices
	Symmetric Matrices
	Fast Unpacking

	Miscellaneous PV Procedures
	pvList
	pvLength
	pvGetParNames
	pvGetParVector
	pvPutParVector
	pvGetIndex
	Control Structures

	sqpSolvemt
	Input Arguments
	sqpSolvemt Control Structure

	Output Argument
	Example
	Constraints

	The Command File

	Run-Time Library Structures
	The PV Parameter Structure
	Fast Pack Functions
	The DS Data Structure

	N-Dimensional Arrays
	Bracketed Indexing
	ExE Conformability
	Glossary of Terms

	Working with Arrays
	Initializing Arrays
	areshape
	Reading Data from the Disk into an Array
	Inserting Random Numbers into Arrays
	Expanding a Matrix into an Array Vector of Matrices

	aconcat
	aeye
	arrayinit
	arrayalloc

	Assigning Arrays
	index operator
	getArray
	getMatrix
	getMatrix4D
	getScalar3D, getScalar4D
	putArray
	setArray

	Looping with Arrays
	loopnextindex

	Miscellaneous Array Functions
	atranspose
	amult
	amean, amin, amax
	getDims
	getOrders
	arraytomat
	mattoarray

	Using Arrays with GAUSS functions
	A Panel Data Model
	Computing the Log-likelihood

	Appendix

	Libraries
	Autoloader
	Forward References
	Left-Hand Side
	Right-Hand Side

	The Autoloader Search Path
	Autodelete ON
	Autodelete OFF
	Libraries
	user Library
	.g Files

	Global Declaration Files
	Troubleshooting
	Using dec Files

	Compiler
	Compiling Programs
	Compiling a File

	Saving the Current Workspace
	Debugging

	File I/O
	ASCII Files
	Matrix Data
	Reading
	Writing

	General File I/O

	Data Sets
	Layout
	Creating Data Sets
	Reading and Writing
	Distinguishing Character and Numeric Data
	Using Type Vectors
	Using the Uppercase/Lowercase Convention (v89 Data Sets)

	Matrix Files
	File Formats
	Small Matrix v89 (Obsolete)
	Extended Matrix v89 (Obsolete)
	Small String v89 (Obsolete)
	Extended String v89 (Obsolete)
	Small Data Set v89 (Obsolete)
	Extended Data Set v89 (Obsolete)
	Matrix v92 (Obsolete)
	String v92 (Obsolete)
	Data Set v92 (Obsolete)
	Matrix v96
	Data Set v96

	Foreign Language Interface
	Creating Dynamic Libraries
	Writing FLI Functions

	Data Transformations
	Using Data Loop Statements
	Using Other Statements
	Debugging Data Loops
	Translation Phase
	Compilation Phase
	Execution Phase

	Reserved Variables

	Publication Quality Graphics
	General Design
	Using Publication Quality Graphics
	Getting Started
	Header
	Data Setup
	Graphics Format Setup
	Calling Graphics Routines

	Graphics Coordinate System
	Inch Coordinates
	Plot Coordinates
	Pixel Coordinates

	Graphics Graphic Panels
	Tiled Graphic Panels
	Overlapping Graphic Panels
	Nontransparent Graphic Panels
	Transparent Graphic Panels
	Using Graphic Panel Functions
	Inch Units in Graphics Graphic Panels
	Saving Graphic Panel Configurations

	Graphics Text Elements
	Selecting Fonts
	Greek and Mathematical Symbols

	Colors
	Global Control Variables

	Utilities
	ATOG
	Command Summary
	Commands
	append
	complex
	input
	invar
	msym
	nocheck
	output
	outtyp
	outvar
	preservecase

	Examples
	Error Messages

	LIBLIST
	Report Format
	Using LIBLIST

	Error Messages
	Maximizing Performance
	Library System
	Loops
	Virtual Memory
	Data Sets
	Hard Disk Maintenance
	CPU Cache

	Fonts Appendix
	Simplex
	Simgrma
	Microb
	Complex

	Reserved Words Appendix
	Singularity Tolerance Appendix
	Crout LU Decomposition
	Cholesky Decomposition
	Reading and Setting the Tolerance
	Determining Singularity

	Index

