GAUSS™
User Guide

Information in this document is subject to change without notice and does not represent a
commitment on the part of Aptech Systems, Inc. The software described in thisdocument
is furnished under a license agreement or nondisclosure agreement. The software may
be used or copied only in accordance with the terms of the agreement. The purchaser
may make one copy of the software for backup purposes. No part ofthis manual may be
reproduced or transmitted in any form or by any means, electronic or mechanical, includ-
ing photocopying and recording, for any purpose other than thepurchaser’s personal use
without the written permission of Aptech Systems, Inc.

©Copyright Aptech Systems, Inc. Black Diamond, WA 1984-2013
All Rights Reserved Worldwide.

SuperLU. ©Copyright 2003, The Regents of the University of California, through Law-
rence Berkeley National Laboratory (subject to receipt of any required approvals from
U.S. Dept. of Energy). All Rights Reserved. See GAUSS Software Product License for
additional terms and conditions.

TAUCS Version 2.0, November 29, 2001. ©Copyright 2001, 2002, 2003 by Sivan
Toledo, Tel-Aviv University, stoledo@tau.ac.il. All Rights Reserved. See GAUSS Soft-
ware License for additional terms and conditions.

Econotron Software, Inc. beta, polygamma, zeta, gammacplx, Ingammacplx, erfcplx,
erfceplx, psi, gradep, hesscp Functions: ©Copyright 2009 by Econotron Software,Inc.
All Rights Reserved Worldwide.

GAUSS, GAUSS Engine and GAUSS Light are trademarks of Aptech Systems, Inc.
GEM is a trademark of Digital Research, Inc.

Lotus is a trademark of Lotus Development Corp.

HP LaserJet and HP-GL are trademarks of Hewlett-Packard Corp.

PostScript is a trademark of Adobe Systems Inc.IBM is a trademark of International
Business Machines Corporation

Hercules is a trademark of Hercules Computer Technology, Inc.

GraphiC is a trademark of Scientific Endeavors Corporation

Tektronix is a trademark of Tektronix, Inc.
Windows is a registered trademark of Microsoft Corporation.
Other trademarks are the property of their respective owners.

The Java API for the GAUSS Engine uses the JNA library. The JNA library is covered
under the LGPL license version 3.0 or later at the discretion of the user. A full copy of
this license and the JNA source code have been included with the distribution.

Part Number: 008471
Version 13

Documentation Revision: 1781
6/14/2013

i

Contents

Contents

1 Introduction il 1-1
1.1 Product OVerVIeW 1-1
1.2 Documentation Conventionso...... 1-1
2 Getting Started . 2-1
2.1 Installation Under Linux 2-1
2.2 Installation Under Windows 2-2
2.2.1 Machine Requirements 2-2
2.2.2 Installation from Download 2-3
2.2.3 Installation from CD 2-3

3 Introduction to the GAUSS Graphical User Interface 3-1
3.1 Page Organization COnCept i 3-1
3.2 Command Page L 3-3
3.2.1 Menus and Toolbars 3-4
3.2.2 Command Page Toolbar 3-6
3.2.3 Working Directory Toolbar 3-7
3.2.4 Command History Toolbar 3-7
3.2.5 The Action List Toolbar 3-8

3.3 LayOUL . 3-9
3.3.1 Command History Window 3-10

il

GAUSS User Guide

3.4 Command Line History and Command Line Editing 3-12
3.4.1 Error Output Window 3-12
3.5 Source Page: Editing Programs 3-13
3.5.1 Menus and Toolbars 3-13
3.5.2 Layout and Usage L 3-14
3.53Findand Replace 3-22
3.5.4 Changing Editor Properties 3-24
3.5.5 Error Output Window 3-26
3.5.6 The Source Browser: Advanced Search and Replace 3-26
3.6 Data Page .. 3-29
3.6.1 Menu Bar ... 3-30
3.6.2 Layout ... L 3-32
3.6.3 Symbol Editor 3-35
3.7 Debug Page 3-37
3.7.1 Menus and Toolbars 3-37
3.7.2 Using Breakpoints 3-40
3.7.3 Stepping Through a Program ... 3-41
3.7.4 Viewing Variables 3-43

3 8 Help Page o 3-45
4 Navigating the GAUSS Graphical User Interface ..._........................... . 4-1
4.1 Hot Keys and Shortcutsl 4-1

v

Contents

4.2 Navigating Between Pages 4-2
4.3 Focus Program Output on /O 4-3
A4 L Help ool 4-3
4.5 CTRLAF1 Source Browsing 4-4
5 Using the GAUSS Debugger 5-1
5.1 Starting the Debugger 5-1
5.2 Examining Variables 5-3
5.3 The Call Stack Window ____ ... 5-5
5.4 Ending Your Debug Session 5-6
6 GAUSS Graphics 6-1
6.1 OVeTIVICW .. 6-1
6.2 Basic Plotting i 6-2
6.2.1 Plotting multiple CUrves 6-3
6.3 Plot Customization 6-4
6.3.1 Using the Graphics Preferences Settings Window __...._...................... 6-4
6.4 PlotControl Structures 6-7
6.5 Adding Data to Existing Plots 6-11
6.6 Creating Subplots 6-13
6.6.1 Creating Mixed Layouts 6-16
6.6.2 Creating Custom Regions 6-17
6.7 Time Series Plots in GAUSS 6-18

GAUSS User Guide

Understanding the dstart parameter_.. 6-20
6.7.1 Quarterly Example 6-21
6.7.2 Controlling Tic Label Locations ... 6-22
6.7.3 Tic Label Formatting 6-24
6.8 Interacting with Plots in GAUSS 6-27
6.8.1 Interacting with 2-D Plots 6-28
Hide/Restore CUrves oL 6-28
Relocating Graphic Items 6-29

6.8.2 3-D PlotS ... 6-31
ZOOMY _ .o 6-31

Panning and Scrolling 6-31
Rotate/Viewpoint Change 6-31

6.8.3 File EXpOrt .. L 6-32
6.8.4 Saving Graphs 6-34

7 Graphics Editing 7-1
7.1 Changing APPEATanCeoooo el 7-1
7.2 Adding Ttems 7-3
7.3 Adding Text to a Text Boxl 7-4
7.4 Which Object Will Be Edited? 7-4
7.5 Moving and Resizing Objects 7-6
8 Using the Command Line Interface 8-1

vi

Contents

8.1 Viewing GraphiCs 8-2
8.2 Command Line History and Command Line Editing .._....._...................... 8-2
8.2. 1 Movement 8-3
8.2 2 BAiting . 8-4
8.2.3 History Retrieval 8-5
8.3 Interactive Commands 8-6
8.3 L qQUIt 8-7

8.3 2 O il 8-8
8.3, 3 DI OW S . 8-9

8. 3.4 CONTIg il 8-10
8.4 DU NG 8-11
8.4.1 General Functions 8-12
8.4.2 Listing Functions 8-13
8.4.3 Execution Functions 8-14
8.4.4 View Commands 8-16
8.4.5 Breakpoint Commands 8-17
8.5 Using the Source Browser in TGAUSS 8-18
9 Language Fundamentals ___._ 9-1
0.1 EXPIesSIONS . ..o 9-1
0. State MmNt ... 9-1
9.2.1 Executable Statements 9-2

vii

GAUSS User Guide

9.2.2 Nonexecutable Statements 9-3
0.3 PrOgIamS .] 9-4
9.3.1 Main Section 9-4
9.3.2 Secondary Sectionsl 9-4
9.4 Compiler DIreCtiVves o 9-5
9.5 Procedures 9-8
9.6 Data TYPeS ..o 9-8
9.6.1 Constants 9-8
9.6.2 MatriCeS . 9-9
9.6.3 Sparse MatriCes 9-17
9.6.4 N-dimensional ATTays i 9-17
0.6.5 StrINGS .. . 9-18
9.6.6 StrING ATTAYS ... 9-23
9.6.7 Character MatriCes 9-25
9.6.8 Date and Time Formats 9-26
9.6.9 Special Data TyPeSo 9-27
9.7 Operator Precedence 9-29
9.8 Flow Control L 9-31
9.8.1 LOOPING ..o 9-31
9.8.2 Conditional Branching 9-34
9.8.3 Unconditional Branching 9-35

viii

Contents

0.0 FUNCHIONS .. 9-36
9.10 Rules of Syntax 9-37
9.10.1 Statements 9-38
0,10, 2 CaSe ol 9-39
9.10.3 Comments i 9-40
9.10.4 EXtraneous SPacCesooiom oo 9-41
9.10.5 Symbol Names 9-42
9.10.6 Labels .. .l 9-43
9.10.7 Assignment Statements 9-44
9.10.8 Function Arguments 9-45
9.10.9 Indexing MatriCeso 9-46
9.10.10 Arrays of Matrices and Strings ... 9-48
9.10.11 Arrays of Procedures 9-49
10 Operators i 10-1
10.1 Element-by-Element Operators 10-1
10.2 Matrix OPeratorsl 10-3
10.2.1 Numeric Operators o L 10-4
10.2.2 Other Matrix Operators L 10-8
10.3 Relational Operatorso i 10-9
10.4 Logical Operatorso . 10-12
10.5 Other Operators 10-14

X

GAUSS User Guide

10.6 Using Dot Operators with Constants .. 10-19
10.7 Operator Precedence 10-20
11 Procedures and Keywords 11-1
11.1 Defining a Procedure 11-2
11.1.1 Procedure Declaration 11-3
11.1.2 Local Variable Declarations .. 11-4
11.1.3 Body of Procedure 11-6
11.1.4 Returning from the Procedure 11-7
11.1.5 End of Procedure Definition 11-8
11.2 Calling a Procedure 11-8
113 KeyWOrdS ..ol 11-9
11.3.1 Defining a Keyword 11-10
11.3.2 Calling a Keyword 11-12
11.4 Passing Procedures to Procedures 11-12
11.5 Indexing Procedures 11-14
11.6 Multiple Returns from Procedures 11-14
11.7 Saving Compiled Procedures 11-16
12 Random Number Generation in GAUSS 12-1
12.1 Available Random Number Generators _... 12-1
12.1.1 Choosing a Random Number Generator ..._................................. 12-3
12.2 Thread-safe Random Number Generators .. 12-4

Contents

12.3 Parallel Random Number Generation _.. 12-5
12.3.1 Multiple Stream Generators 12-6
12.3.2 Block-SKipping oo 12-7

13 Sparse Matrices 13-1

13.1 Defining Sparse MatriCes 13-1

13.2 Creating and Using Sparse Matrices 13-2

13.3 Sparse Support in Matrix Functions and Operators 13-4
13.3.1 Return Types for Dyadic Operatorsc..coiiiiiiiioi . 13-5

14 N-Dimensional Arrays 14-1

14.1 Bracketed Indexing 14-3

14.2 ExE Conformability L 14-4

14.3 Glossary of Terms 14-5

15 Working with Arrays ... 15-1

15.1 Initializing ATTaYS o . 15-1
15 Ll areshape 15-2
15.1.2 aconcat ..o .. 15-4
15,13 @Y C e 15-5
15. 1.4 arrayinit .l 15-6
15.1.5 arrayalloc ...l 15-6

15.2 Assigning to ATTAYS oL 15-7
15.2.1 indeX Operator il 15-8

x1

GAUSS User Guide

15.2.2 GetaTTay ... 15-10
15.2.3 @etmatrix ...l 15-11
15.2.4 getmatrixdD . . 15-11
15.2.5 getscalar3D, getscalardD 15-12
15.2.6 PULATTAY .. 15-14
15.2.7 SETATTAY ..o 15-14
15.3 Looping with Arrays 15-15
15.3.1 loopnextindeX o 15-17
15.4 Miscellaneous Array Functions _...... 15-19
15.4.1 atranSPOSe . ..o 15-19
I5.4.2 amuUlt oL 15-21
15.4.3 amean, amin, AMAX 15-22
15.4.4 getdims ... il 15-24
15.4.5 getorders ... L 15-24
15.4.6 arraytomat 15-25
15.4.7 MattOarTay 15-25
15.5 Using Arrays with GAUSS functions ... 15-26
15.6 A Panel Data Model 15-29
15,7 ApPendix . 15-31
16 Structures 16-1
16.1 Basic Structures L 16-1

xii

Contents

16.1.1 Structure Definition 16-1
16.1.2 Declaring an Instance 16-3
16.1.3 Initializing an Instance 16-3
16.1.4 Arrays of Structures 16-5
16.1.5 Structure Indexing L 16-5
16.1.6 Saving an Instance to the Disk 16-8
16.1.7 Loading an Instance from the Disk 16-8
16.1.8 Passing Structures to Procedures 16-9
16.2 Structure Pointers 16-10
16.2.1 Creating and Assigning Structure Pointers 16-10
16.2.2 Structure Pointer References 16-11
16.2.3 Using Structure Pointers in Procedures 16-12
16.3 Special Structures ... oL 16-14
16.3.1 The DS Structure 16-14
16.3.2 The PV Structure 16-15
16.3.3 Miscellaneous PV Procedures 16-19
16.3.4 Control Structures 16-21
16.4 sqQpSolveM T 16-22
16.4.1 Input Arguments 16-22
16.4.2 Output ArgUment 16-27
16.4.3 EXample ... o 16-29

Xiii

GAUSS User Guide

16.4.4 The Command File 16-29

17 Run-Time Library Structures 17-1
17.1 The PV Parameter Structure _...... i .. 17-1
17.2 Fast Pack Functions il 17-5
17.3 The DS Data Structure 17-6
18 Multi-Threaded Programming in GAUSS 18-1
18.1 The Functions 18-1
18.2 GAUSS Threading ConCeptso 18-3
18.3 Coding With Threads 18-4
18.4 Coding Restrictions 18-6
19 Libraries . . 19-1
19.1 Autoloader 19-1
19.1.1 Forward References 19-1
19.1.2 The Autoloader Search Path 19-2
19.2 Global Declaration Files 19-8
19.3 TroubleShoOting 19-12
19.3.1 Using .dec Files 19-13

20 The Library Tool 20-1
20.1 Creating New Librarieso o . 20-1
20.2 Loading a Library 20-4
20.3 Viewing Procedures 20-5

X1v

Contents

20.4 Refreshing a Library 20-5
21 Compiler il 21-1
21.1 Compiling Programs 21-1
21.1.1 Compiling a File 21-2
21.2 Saving the Current Workspace 21-2
21.3 Debugging ... 21-3
22 File /O il 22-1
22.1 ASCITFIIES .o 22-3
22.1.1 Matrix Data 22-3
22.1.2 General File I/O 22-6
2.2 Data SetS . 22-7
22.2.1 Layout ... 22-7
22.2.2 Creating Data Sets 22-8
22.2.3 Reading and Writing 22-8
22.2.4 Distinguishing Character and Numeric Data ._..._........................ 22-10
22.3 GAUSS Data Archives 22-11
22.3.1 Creating and Writing Variables to GDA's 22-11
22.3.2 Reading Variables from GDA'S 22-12
22.3.3 Updating Variables in GDA'S 22-13
22.4 Matrix Files 22-14
22.5 File Formats ... 22-15

XV

GAUSS User Guide

22.5.1 Small Matrix v89 (Obsolete) 22-16
22.5.2 Extended Matrix v89 (Obsolete) 22-17
22.5.3 Small String v89 (Obsolete) 22-18
22.5.4 Extended String v89 (Obsolete) 22-19
22.5.5 Small Data Set v89 (Obsolete), 22-19
22.5.6 Extended Data Set v89 (Obsolete) 22-21
22.5.7 Matrix v92 (Obsolete) 22-22
22.5.8 String v92 (Obsolete) o L 22-23
22.5.9 Data Set v92 (Obsolete) 22-24
22.5.10 Matrix VOO .. 22-25
22.5.11 Data Set VOO0 . 22-27
22.5.12 GAUSS Data Archives 22-29
23 Foreign Language Interface 23-1
23.1 Writing FLI Functions 23-1
23.2 Creating Dynamic Libraries 23-2
24 Data Transformations 24-1
24.1 Data Loop Statementso i 24-1
24.2 Using Other Statements 24-2
24.3 Debugging Data LoopS ... i 24-3
24.3.1 Translation Phase 24-3
24.3.2 Compilation Phase 24-3

Xvi

Contents

24.3.3 Execution Phase 24-4
24.4 Reserved Variables 24-4
25 The GAUSS Profiler 25-1
25.1 Using the GAUSSProfiler 25-1
25.1.1 Collection 25-1
25.1.2 Analysis ..ol 25-2

26 Time and Date il 26-1
26.1 Time and Date Formats 26-2
26.2 Time and Date Functions _...... 26-4
26.2.1 Timed Iterations 26-7

2T ATOG .o 27-1
27.1 Command SUMMATY 27-1
27.2 Commands ...l 27-3
27,3 EXamples 27-13
27.4 Error MESSAZESo 27-16
28 Exrror MeSSages il 28-1
29 Maximizing Performance 29-1
29.1 Library System ... 29-1
29,2 L 00D - - oo 29-2
293 Memory USaZEe ... 29-2
29.3.1 Hard Disk Maintenanceo iioiiii .. 29-4

Xvii

GAUSS User Guide

29.3.2 CPU Cache ...l 29-4

30 GAUSS Graphics Colors 30-1
31 Reserved Wordsl 31-1
32 Singularity Tolerancel 32-1
32.1 Reading and Setting the Tolerance 32-2
32.2 Determining Singularity 32-2
33 Publication Quality Graphics 33-1
33.1 General DeSign ..o o 33-1
33.2 Using Publication Quality Graphics ... 33-2
33.2.1 Getting Started 33-3
33.2.2 Graphics Coordinate System 33-7
33.3 Graphic Panels 33-7
33.3.1 Tiled Graphic Panels 33-8
33.3.2 Overlapping Graphic Panels 33-9
33.3.3 Nontransparent Graphic Panels 33-10
33.3.4 Transparent Graphic Panels 33-11
33.3.5 Using Graphic Panel Functions _.. 33-12
33.3.6 Inch Units in Graphic Panels 33-14
33.3.7 Saving Graphic Panel Configurations 33-15
33.4 Graphics Text Elements 33-15
33.4.1 Selecting Fonts 33-17

Xviil

Contents

33.4.2 Greek and Mathematical Symbols 33-18
33.5 CO0l0TS .. 33-19
33.6 Global Control Variables ... 33-19

34 PQG Fonts ... 34-1
34 SIMPleX L 34-1
34.2 SIM@IMa . 34-2
34.3 MICTOD ..o 34-3
34.4 COMPICX ..o 34-4

35 PQG Graphics Colors il 35-1

X1X

1 Introduction

1.1 Product Overview

GAUSS™ is a complete analysis environment suitable for performing quick cal-
culations, complex analysis of millions of data points, or anything in between. Whether
you are new to computerized analysis or a seasoned programmer, the GAUSS family of
products combine to offer you an easy to learn environment that is powerful and ver-
satile enough for virtually any numerical task.

Since its introduction in 1984, GAUSS has been the standard for serious number crunch-
ing and complex modeling of large-scale data. Worldwide acceptance and use in gov-
ernment, industry, and the academic community is a firm testament to its power and
versatility.

The GAUSS System can be described several ways: It is an exceptionally efficient
number cruncher, a comprehensive programming language, and an interactive analysis
environment. GAUSS may be the only numerical tool you will ever need.

1.2 Documentation Conventions

The following table describes how text formatting is used to identify GAUSS pro-
gramming elements:

Text Style Use Example

regular text narrative "... text formatting is

1-1

GAUSS User Guide

bold text

italics

monospace

monospace

monospace
bold

Bold Text

emphasis

variables

code example

filename, path, etc.

reference to a GAUSS
command or other
programming element
within a narrative
paragraph

reference to section of the
manual

used ..."

"...not supported
under UNIX."

"...If vnamesisa
string or has fewer
elements than x has
columns, it will be ..."
if scalerr (cm);
cm = inv (x);
endif;
"...1s located in the
examples
subdirectory..."

"...as explained under
plotScatter..."

"...see Operator
Precedence, Section
10.7 .."

1-2

2 Getting Started

2.1 Installation Under Linux

1.

el S

Make a directory to install GAUSS in.

NOTE: If you choose to install GAUSS in a directory which does not have write
permissions for normal user accounts such as /opt or /usr/local, then you must
choose the Advanced Installation and Multi-User Installation options during instal-
lation.

cd to that directory.

Gunzip the . gz file.

Untar the . tar file.

Run the executable script ginstall.

The script will give you the option of a default or advanced install. The default
option will install everything under the current directory.

The advanced installation allows you to choose a single-user or multi-user instal-
lation and also allows you to place the shared libraries that GAUSS depends on in
another location. If you choose a multi-user installation, the binaries and most of
the rest of the installation will reside in the current directory. Each time a new

2-1

GAUSS User Guide

user (a user that has never started GAUSS on this machine) starts GAUSS on
this machine, GAUSS will create a local working directory for that user under the
user's home directory. This local working directory will contain the files and fold-
ers that which may be customized by the user. This allows the admin to install
GAUSS in a location without universal write privileges. No files will be placed
under the home directory of any user who does not start GAUSS.

. Put the installation directory in the executable path.

. Install the license. To receive a license and license installation instructions, email

license@aptech.com and include your serial number and hostid. The hostid infor-
mation of your machine is usually generated automatically during installation and
stored in the main GAUSS directory in a file called myhostid.txt.

For last-minute information, see README.term.

2.2 Installation Under Windows

Following are the minimum recommended machine requirements and information on
how to install GAUSS under Windows.

2.2.1 Machine Requirements

e Operating System and Memory (RAM) requirements: Aptech strongly

recommends Windows 7 for greatest performance and reliability.
e Windows XP, 256 MB minimum, 2 GB recommended.
¢ Windows Vista 32-bit, 512 MB minimum, 2 GB recommended.
¢ Windows Vista 64-bit, 1 GB minimum, 2 GB or more recommended.
e Windows 7 32-bit, 1 GB minimum, 2 GB or more recommended.

e Windows 7 64-bit, 2 GB minimum, 4 GB or more recommended.

2-2

mailto:license@aptech.com?subject=License Code Request

Getting Started

¢ Windows 8 32-bit, 1 GB minimum, 2 GB or more recommended.
e Windows 8 64-bit, 2 GB minimum, 4 GB or more recommended.

e Minimum of 200 MB free hard disk space, more may be needed depending on the
size of matrices and the complexity of the program.

e Minimum of 128 MB of RAM for video is required to run 3-D graphics. A
dedicated graphics card is not required.

e Monthly defragmenting is recommended for traditional hard drives. Solid-state
drives should not be defragmented.

2.2.2 Installation from Download

For information on downloading and download instructions, email info@aptech.com .

2.2.3 Installation from CD

Insert the GAUSS compact disc into the CD-ROM drive, and setup should start auto-
matically. If setup does not start automatically, browse to the CD-ROM drive, and dou-
ble-click on the *.msi file to launch the installer.

You can use this procedure for the initial installation of GAUSS, and for additions or
modifications to GAUSS components.

Obtaining a license

To receive a license and license installation instructions, email license@aptech.com and
include your serial number and hostid. The hostid information of your machine is usually
generated automatically during installation and stored in the main GAUSS directory in a
file called myhostid. txt.

2-3

mailto:info@aptech.com?subject=GAUSS Download Instructions

3 Introduction to the GAUSS Graphical
User Interface

3.1 Page Organization Concept

The GAUSS graphical user interface is organized into separate "pages." Pages are sep-
arate, customizable, main windows with their own set of widgets. Each page is designed
to facilitate the performance of one of the common tasks performed in GAUSS: entering
commands interactively, editing a program, examining data, viewing graphs, debugging a
program, and accessing the help system. Each page is a tab on the main application,
allowing you to instantly access a window custom configured for the task you wish to
perform. The GAUSS graphical user interface is composed of six different pages.

3-1

GAUSS User Guide

€ GALISS 13 =tk
[Fle Edi ook View . Helgp
Jdad AU TR T G (e S—
E Hewy 5 Progyss DsunCulpat
] *
fi e il return oode = r]
@ [dehiveg normal ssnvergence
Last Mosdh
T Lant Went value of cbjeotive function 474, 350953
;| Todoy
| Faramsters Extimatess Direction Gradisnt
|
— lambda[2, 1] 0.72200 -0. 00036 -0. 0001
5 lambdna [4,2] .62251 =0. 00017 0002
phifl,1] 0.B0518 0. 00054 -0, 00001
i | phi[z, 1] 0.33197 0. D006 0. 00004
B phi [2,3] 0.77515 0. 00023 0. 00001
| thezafl,1] 0. 33023 =0, irirGrE1 & 001
§| thetal[2, 2] 0.24651 0. D021 -0. 00004
| thata[3, 3] 0.15022 -0, DO022 0. 00018
'I theta[4,4] G.90Ed2 0. 00008 G 00003

Linsar Equality Lagrangsan Cosfficisnts
i)

Linear Insgqaality Lagoangsan Cosfficianta
ik

o 2047, 2ot 3 (0 B
Figure 3.1: GAUSS page organization
Command Page For executing interactive commands.
Source Page For editing program files.
Data Page For examining and editing GAUSS matrices and
other data.
Debug Page For interactively debugging your programs.
Graphics Page For viewing and interacting with graphs.
Help Page For accessing the GAUSS help system.

Introduction to the GAUSS GUI

Each page may be undocked from the main application and redocked by toggling the
Dock button on the right side of the status bar. Navigation between an undocked page
and the main application may be accomplished with ALT+TAB and ALT+SHIFT+TAB.
To navigate between pages, use CTRL+TAB to cycle forward and CTRL+SHIFT+TAB
to cycle backwards between pages.

Each page has its own toolbars and menus. The menus and toolbars facilitate intuitive
navigation through the GUI as well as performing desired functions. For example, click-
ing the New toolbar button from any page in the GUI will bring the Source Page to the
top of the window stack with a new file opened ready for editing. More details on navi-
gating the GUI are in NAVIGATING THE GAUSS GRAPHICAL USER INTERFACE, CHAP-
TER 4 .

3.2 Command Page

The Command Page is for entering interactive commands to GAUSS .

3-3

GAUSS User Guide

L@ | e | @ |

© oS 1 ENE=)
[Fle Edt ok View Halp |
dad Xab 0% 40 bmes. L !
E Hea B ¥ Progeas DneuCupa
fi pPRO9 return oode = r]
& [dehiveg normal ssnvergence
| ¥ Last Masth
= % Loat Wt valus of obhjsotive function 474, 350952
5 Todoy
4 FAramsters Extimaten Direction Gradisnt
T lambaa[2,1] 0.72200 -0 D36 -0 001
E lambda [4,2] 0. 62251 2. 00017 0. 00002
H phifl,1] &.80518 G D005 =0. 00001
i} phifz, 1] 0.33187 0. DO00E 0. 00004
_' phi [2.32] 0.77515 oL o023 0, 0000
theta[l.1] B.33023 el il h 0, 0001
thetal[Z, 2] 0.24681 0. 00021 -0 00004
theta[3, 3] 0.15022 -0, D0022 0. 00018
thetal4,4] C.490E32 G 00008 €. 00003

Linsar Equality Lagrangsan Cosfficisnts
i

Linenar Inaguality Lagrangean Cosffizients
ik

In 104%, &l :i :&.

Figure 3.2: Command Page

3.2.1 Menus and Toolbars

Command Page

File Menu

New

Open File

on the Source Page.

Source Page.

Creates a new, untitled file in a programming editor

Opens an existing file in a programming editor on the

Introduction to the GAUSS GUI

Open Graph

Print

Recent Files

Exit

Edit Menu
Undo
Redo
Cut

Copy

Paste

Tools Menu

Preferences

Install Application

Change Font

Clear Action List

Change Working

Opens a previously created GAUSS graph (.plot
file).

Prints selected text.

Holds a selectable dropdown list of recently edited
files.

Exits a GAUSS session.

Restores your last unsaved change.

Re-inserts changes removed with undo.

Removes selected text and copies it to the clipboard.
Copies selected text to the clipboard.

Copies the clipboard contents to the cursor position.

Allows you to configure the GAUSS user
environment.

Opens an installation wizard to install a GAUSS
application package.

Allows you to specify a new font. Aptech
recommends using a monospaced font such as
Courier.

Clears the recent files from the action list menus.

Allows you to browse for a new working directory.

3-5

GAUSS User Guide

Directory

Clear Working Deletes the contents of your working directory
Directory History history.

Recent Working Contains a dropdown list of your most recent
Directories working directories.

View Menu

The View menu lets you toggle on or off the windows on the current page.

Help Menu
Goto Help Takes you to the Help Page.
About GAUSS Provides information regarding your version of

GAUSS.

3.2.2 Command Page Toolbar

id @ A J0 O % K-O

Figure 3.3: Command Page Toolbar

New Opens a new, untitled document in a programming
editor on the Source Page and brings you to the
Source Page.

Open Opens an existing file for editing.

Cut Removes selected text and places it on the clipboard.

3-6

Introduction to the GAUSS GUI

Copy Copies selected text to the clipboard.

Paste Copies the clipboard contents to the cursor position.
Print Prints selected text.

Run Runs the file at the top of the Action List.

Debug Debugs the file at the top of the Action List.

Edit Opents the file at the top of the Action List.

Stop Program Stops a running GAUSS program.

3.2.3 Working Directory Toolbar

The Working Directory Toolbar contains a dropdown list that shows your current work-
ing directory and a history of recent directories. The Change Working Directory button
allows you to browse for and select a new working directory.

[F:‘lgaussl’j v][]

Figure 3.4: Working Directory Toolbar

3.2.4 Command History Toolbar

Search
Run Previous

o[t @ @
Paste Search
Mext

3-7

GAUSS User Guide

Figure 3.5: Command History Toolbar

Run Executes the highlighted command from the
command history.

Paste Pastes the highlighted command to the Program
Input/Output Window for further editing.

Search Previous Searches the Command Output Window for previous
executions of a command and its output.

Search Next Searches the Command Output Window for the next
execution of a command and its output.

3.2.5 The Action List Toolbar

Immediately to the right of the Run, Debug, and Edit buttons is a downward pointing tri-
angle. Clicking on this triangle reveals the Action List. The Action List is a selectable
drop down list of your most recently acted upon files. The Run, Debug, and Edit buttons
share the same Action List. You may add a file to the Action List by running it from the
command line or while editing a file, click on the drop down menu from Run, Debug, or
Edit, and select Current File. Clicking on the Run button will run the file on the top of
the Action List. Placing your mouse over the Run Button produces a tooltip indicating
which file will be run.

To run one of the other files in the list, access the Action List by clicking on the triangle
next to the Run button and select the name of the file you wish to run. The Debug and
Edit buttons work in the same manner.

3-8

Introduction to the GAUSS GUI

H.lim Ecliit
@ - ' - ﬂ - wl
| |

Debug Stop
Figure 3.6: Action List Toolbar

3.3 Layout

The Command Page contains three main widgets: the Program Input/Output Window, the

Command History Window, and the Error Output Window, which appears when
GAUSS encounters an error.

£
i
||
L
L |
i
'.
:
| <Y BT Cuipet 5
? .::Ilu.l Tgusd 30IL | lderomaundd
,'@: a5, Col 3 ._ﬁm

Figure 3.7: Command Page Widgets

GAUSS User Guide

The Program Input/Output Window allows the user to enter interactive commands as
well as displaying any output from a program run. It is also the location for user input
requested by the GAUSS functions keyw and cons.

3.3.1 Command History Window

The Command History Window contains a list of recently executed commands. Com-
mands in the command history can be executed by double clicking them or highlighting a
command and clicking the Run button from the Command History toolbar.

Search
Run Previous

| Last Month
Last Week

. [# Today
i run ols.e)
Paste n:w, Search
cls Mext
§ [s=rndnEs
=l | p = cdfBetafx3,2)

Figure 3.8: Command History Window

Commands can be sent to the Program Input/Output Window for further editing before
executing by highlighting a command and clicking the Paste button. The Search Next and
Search Previous buttons will search the window forward or backwards for previous
executions of that command so that you may inspect its output.

Context Menu

3-10

Introduction to the GAUSS GUI

File Edit Tools View Help
dald X JdE Q-%-
-E History & X Program InputOutput:
- I : ;
G L o 6 I}> load -nyd.ita.
|®»m lag 1 = lagl{my:
ﬁ. [Anchives |
| Last Manth
'T: Last Week
4 Today
I ‘E cls
1 [lad mydate; vz = |
mlagl=laglimydi CORY
= Delete
3 Clear Window
i Send to File ;k
i ;E Toggle View Mede

Figure 3.9: Command History

Right-click in the Command History Window to bring up the context menu with the fol-
lowing options:

Copy Copies the highlighted entry to the clipboard.

Delete Deletes the highlighted entry.

Clear Window Deletes all Command History entries.

Send to File Creates a new source file containing the highlighted
commands.

Toggle View Mode Toggles between session mode and date mode.

GAUSS User Guide

3.4 Command Line History and Command Line Editing

When you run a command at the GAUSS prompt, it is added to your command line his-
tory. The last 1,000 commands executed at the GAUSS command line are stored. The
following keystrokes are supported for movement and editing at the command line and
for retrieving the command line history:

Left Arrow Moves cursor left one character.

Right Arrow Moves cursor right one character.

HOME Moves cursor to beginning of line.

END Moves cursor to end of line.

CTRL+Left Arrow Moves cursor left one word.

CTRL+Right Arrow Moves cursor right one word.

Up Arrow Search up through command history.
Down Arrow Search down through command history.

NOTE: Use CTRL+PAGE-UP or CTRL+PAGE-DOWN to scroll through your program
output in the program input/output window.

3.4.1 Error Output Window

The Error Output Window shows errors messages from program runs or interactive com-
mands. It may be viewed from any page by clicking the Error Output button on the right
side of the status bar. The Error Window will automatically open when an error occurs.
It will close and empty its contents on the next program run or interactive command.

3-12

Introduction to the GAUSS GUI

Double-clicking on the first line of the error will bring you to the file and line on which
the error occurred.

Figure 3.10: Error Window

3.5 Source Page: Editing Programs

The Source Page is for creating and editing programs and procedures.

3.5.1 Menus and Toolbars

Section 3.2 provides details of the main menus and toolbars. The Source Page contains
the following additional menu options.

File Menu
Save Saves the active file.
Save As Saves the active file with a new or different file or
path name.
Close Closes the selected file.
Close All Closes all open files.

Window Menu

GAUSS User Guide

Split File Bufter
Horizontally

Split File Buffer
Vertically

Split Tab Stack
Horizontally

Split Tab Stack
Vertically

Remove Tab Split

Remove Buffer
Split

Horizontally splits the active file into two views.

Vertically splits the active file into two views.

Tiles any open programming editors horizontally.

Tiles any open programming editors vertically.

Removes any editor window tiling.

Removes a buffer split in the active file.

3.5.2 Layout and Usage

The Source Page contains four separate window components, Program Input/Output,
Bookmarks, Active Libraries, and Programming Editor.

3-14

Introduction to the GAUSS GUI

Iﬁhwﬂhﬂﬂ'ﬁi—-%%

[O T SRR PR - B RS R T m—

| Proggree Tnget Dwpast "
I Q. 00000000 [P vl baliTeliTv] 0.25000533 0. 0DODaDED -r:_
8. Ga0bc000 G, 3a000G00 0. DohEbodn g.i13ziad48 i
.@. ®| e
1° L] - — - = — - !
- Ly Ei. &::.m,::__ | mrioregee. w0 -
g Creste Liewry o 183 == -
164
i | Fakm 135
) pi kg > 188 WHin- in s
E uzarleg & 187 finslude rosdt
raraliont g # ids
| 1B9 Hproo sotorsgnt (8Trwot AMCOMTCONtrol Aro, struct DO A0, Lagrars, orderd|
|| ¢ mimnkg # 130
1%
E i e 132 LAE GO[1].doana §l= ==
EL L T] s is3
3 —— & 19§ local Fhdeprarmm, indvarzms, indl, ind2, v, K. dos, dataess)
| 5 135 FErLSE Bubomidut acod
i 186
ﬁ 157 | depvaces, indl | = indlcssfe(80[1] .dsame,d0{1] . vnanes, 3)
5 138
| 133 if rows(ddl > 1y
1 | 200 { indvaconma,isdl | = isdiceafn({di[l].&anne,d0[2] .voamaea, D] ;
= 207 andif;
§ 20z -
a nan o e

Procr sutoregme Ln 383, Cod 4 |UTF-8 jgh) ’@'

Programming Editor

Figure 3.11: Source Page

Individual programming editors are opened in the editor docking area. The editor docking
area allows tabbing of multiple open files, with the option to tile editors with a horizontal
or vertical split. Select Window->Split Horizontally or Window->Split Vertically to

tile open editor windows.

3-15

GAUSS User Guide

=l mmﬂmmrfi | mutoregmesrc (7 | oroiace

——

=% ARUTOREG.E

-

libracy tsmt;

WM o=l U e R e

10 struct automtControl arcc;
1l struct avtomtOut AEo;
12 arc ® automtControlCreate:

14 lagvaza = 0;
15 oxder = !41

17 struct DS d40;
18 di = reashapsi(dd, 2.1);

18 d0[1)].dname = "antorsgmt";
20 dio[1l] .voam== i

241 d0[2].vhamas = "I §| *Na=:

22

28 oputput file = auntoregmt.ont resst;

24 aro = autoregmt (arc,df,lagvars,orderc];
2% oputput off;

26

Figure 3.12: Programming Editor

Programming editor features:

seanple autsregression on data genarated by ADTORED.SIM

1. Syntax highlighting:The GAUSS programming editor will provide syntax high-
lighting for GAUSS, C/C++, Java, Fortran, R and many other languages.

2. Autocompletion: Autocompletion is available in the GAUSS programming editor
for GAUSS functions and for structure members of any structure in an active

GAUSS library.

3-16

Introduction to the GAUSS GUI

egqiolvs

eqiclvemt
egioclvemtControlCreate
egSolvemtutCreats
eqiclveset

Figure 3.13: Autocomplete

Using autocomplete: if the characters you enter match items in the autocomplete
list, a dropdown box will appear containing those functions. To navigate the drop-
down list, press the down arrow or continue typing until only one selection
remains. Once the desired command is highlighted, press the ENTER key to
insert the remainder of the word.

The editor will provide autocomplete for the members of any structures that are in
a GAUSS library if: the library is loaded, the file contains a statement to load the
library, or the structure definition is in the current file.

3. Function Call Tooltips:After a GAUSS command and an opening parenthesis
has been entered, a tooltip will appear with the argument list for the function.

2
2 { gty % b) = qty:eFd

Figure 3.14: Tooltips

4. Function Browser:Dropdown list lists all procedures defined in your file and
lists their arguments. Select a procedure from the list to navigate to its definition.

3-17

GAUSS User Guide

©-®-4 -0 [Fes=s 2

| £' ” autoregmt.e || | plotadd2.e [| arimamt.src || | randomwalk.e ||
patternl (n5tate, pState)
regress (depVar, indVar) =fines the user's conventions
plotLags (x, nLags) Markov transition probabilit
echoo (th) bt
pm {xth) ;
161 local pm, ixth;
162 ixth = rows(xth);

Figure 3.15: Function Browser

5. Code folding:At the start of code blocks (e.g., procedure definitions, do and for
loops, and 1 f statements), the left margin of the programming editor will contain
a +. Clicking the + will hide the block of code from view and place a horizontal
line across the editor indicating folded code and changing the + to a -. Clicking on
the - will reveal the hidden code.

160 Hproc (1) = matpm{xth);

161 local pm,ixth;

162 ixth = rows(xth) ;

163 pm = zerocs(ns,.ns);

164 B if ipm == 1; // for ms = |2
165 H if izz == 1;

168 H el=e;

169 pm[1,1] = xth[1,1];
170 pm[2,2] = xh[2,.1];
171 endif;

Figure 3.16: Code folding of 'if' block

3-18

Introduction to the GAUSS GUI

6. Autoindenting: The GAUSS programming editor provides automatic code indent-
ing and deindenting. Autoindenting not only simplifies the process of writing code
but also encourages the creation of readable code.

7. Variable highlighting:Click on a variable name and all instances of that variable
will be highlighted.

160 Hproc (1) = matpm(xth);

161 local pm,ixth;

162 ixth = rows{ﬂfh};

163 pm = zeros(ns, ns);

164 H if ipm =— 1; // for ns =2 this option has para
165 [H if izz — 1;

1tk pml[l,1] = mthi[l,1]1"2/{(1 +pcth[1,1]1"2);
qui pm[2,2] = xthi[2,1]1°2/{(1 + xth[2,1]1"2);

Figure 3.17: Variable highlighting

8. Find usages: Right click on a variable or procedure and select 'Find Usages' from
the context menu to create an organized clickable list of all usages in your file.

3-19

GAUSS User Guide

9.

10.

f-:’ sutoregmt.= | poteddie [—— i hw . %25 £} |'1-’
1e0 Bpx - - . : ..-
161 i Gk
162 Hedo
163)
1e4 0 Lt ity his option has parameters as pll and p22
1E2 B2 Copy Crke-C
166 e Chied §f (1 +xh[1,11%2);

1&7 Fil + xeh[2,1]%2);

1682 E—

1E49

170 Select Al Cirl=A&

171 F

172 ot

173 Rur Sabsctid Teat Fa

17483 i iE EATAR - = arck =1

1o | Foumnst Text Cark=1 e T e e W1 e mm i b =
4 L] I Toggle Dock Copment Ciri+ ¥
Sguroe Broweser Hazlp on Selected Test f - 3
sexch | Ady Inline Help on Selected Tet APl R, pppy 1y mowph[, 1002001 exchil, 1]%3) s -

- Upnfunctiondefinsben TMRTE): BEe2.20 = xthi2, 1042401 + xthi2, 117215

S—— = ¥ 165: pmfi,1] = xchfl,1]:

Directory! Fjfomes 11 mcamplas * (o b oty L b

. : . ¥ 172 paf2,;1] = 1 ="pm[1;1})

Cew | 50D | - Smandy
= P! ¥ 172: pmfl, 1] = 1 - pm[1,1]}:
S0 AT el 21 e 1 - renl3 3La E
Proo: matpm |Ln 160, Col 3 |orF-a ghy| |8

Figure 3.18: Find usages

Bookmarks:Bookmarks allow quick navigation to often visited lines of code. To
insert a bookmark, hold down the SHIFT key and left click in the left margin of
the file on the line where you would like to set the bookmark.

If a file contains more than one bookmark, you may use F2 to navigate to the next
bookmark in the file. To navigate between bookmarks in multiple files, use the
bookmark window. The bookmark window contains a list of all of your book-
marks.

Double-click on a listed bookmark and GAUSS will bring you to the file and line
of your bookmark regardless of whether the file is already open for editing or not.

Source code formatting: The GAUSS editor will correctly format a source file
with incorrect formatting. This is available from the context menu or with the hot

3-20

Introduction to the GAUSS GUI

key CTRL+1I.

Programming Editor Hot Keys

CTRL+A

CTRL+C

CTRL+D

CTRL+F

CTRL+G

CTRL+I

CTRL+L

CTRL+N

CTRL+O

CTRL+P

CTRL+/

CTRL+R

CTRL+S

CTRL+T

CTRL+V

CTRL+W

Select AllL

Copy.

Debug current file.

Find and replace.

Go to line.

Formats the current file.
Delete line.

Open new file.

Open existing file.

Print file.

Used for block commenting.
Run current file.

Save current file.

Switches current line with the line above.
Paste.

Closes the current file.

3-21

GAUSS User Guide

CTRL+Z UndO.

CTRL+Y Redo‘

CTRLH~ Cycles through open editor windows.
CTRLAEL Go to definition of function under cursor.
Fl Go to Help Page for function under cursor.
SHIFT+EL Open inline help for function under cursor.

3.5.3 Find and Replace

From the Edit Menu, selecting Find and Replace or pressing CTRL+F will bring up the
find and replace widget at the bottom of your open programming editor. If a word is high-
lighted when you access find and replace, it will automatically be present in the find box
when the find and replace widget is opened. Press the ENTER key or > to search for-
ward. Press the < button to search backwards. To close the find and replace widget,
press ESC or click the button on the left.

3-22

Introduction to the GAUSS GUI

'Fﬂi Edt Debug Teali Vew Wedsw Help
LagANGLEL-D-9-d-0 |Fees sl
[T CE i = e —— | o
E Fpra— o 255 HepwatEm = a0[1].voamas; 3|
258 mndif;
L 1] =
@ 237 M = sErar (0
by ’ 228 B if zows(20) * 1f
= werheg > e if d40(32].vnaman S== =r;
2ED dvacnms = "KTF4+Ivacy {segall; l.ecls(x)), are. . ypad*flase | (Lag |
E oL iy ¥
o 281 mlenm;
| aire kg » 262 indvarnms = d0(2).Tnamss;
ogah kg n 2E3 mndif;
264 x = di[7] .dataMatTing
i wrgeim i + 285 sndify
- ot g # 2EE catp|_sutoregnt (scc, B9, d8(1] .dataMatsix, x, depyacom, indvascos, lagrarcs,
28T
— 2EH madif;
a4 -
E 370 emdp
271
‘ 272
e 273
% 274 DF ros _actorcsget (etroct autani:Control sars,dstasst, y, o, Seprsrmm, indrarmma, lsgva
275 |
(] 276 B8 local kb, kp, tobe, nop, np, ybar, yy, ==, =y, batsl, tstact,
| a7 P e T =
'
g, il Frs depwsynm |a] 2] 7] witoks ord Mmich Caas Sege
3 (| e o] o foscBontoon) |ipemlirnal
: Prog: susoreges Lo J48, Col 4% |UTP-% .'-;h J,.:

Figure 3.19: Find and Replace

The Replace Box has three buttons: > means replace the highlighted expression and
search forwards, < means replace the highlighted expression and search backwards and
replace means replace the highlighted text and do not change the cursor position.

Regular Expressions

Find and Replace in GAUSS supports regular expression searching. Regular expression
searching gives users tremendous power allowing quick and precise search and replace
throughout an entire file. For example, let us start with a file containing the following
commands:

= 100;
50;
rndn (r,c) ;
= rndu(r,c);
= x.*rndn(r,c);

N K X QB

3-23

GAUSS User Guide

Regular expressions allow you to perform very specific find and replace commands. Sup-
pose that we want to find all usages of rndu and rndn and replace them with
rndKMu.

gndsasd 245346;
¥ = prdn(l00,5);
y = gndulllD, 1) ;

cutput file = ols_pcutput.txt reset;

print "in ols. e";
call els{™",y,x)l]

K
= a
uwm-a.p.maunn-m

cutput off;

b s
T

prime:

™
L

print "Results of this rupn stored in ols output.ext file";

-
=

print "The file will ke found in your werking diceskory”™;

-
v AN
.

© o < > Wy 'Wand Matdh Case | R

Replacn: 1 AT} t = W Faplacn &l
Ln 1, Col 1 |phy| (mm| |y

Figure 3.20: Find and Replace Regular Expression

To open Find and Replace, we enter CTRL+F in out open text editor. In the Find and
Replace widget, select the check box next to Regex to enable regular expression search-
ing. One of the most simple regular expression options is to add a '.". The '.' means any
character. So, if we search for "rnd." that will find any string that contains rnd fol-
lowed by any character, such as rnda, rndb, rndc, rndn, rndu, etc. Now enter
"rndKMu" in the replace box and click Replace All. Now all instances of rndu and
rndn should be replaced with rndKMu.

3.5.4 Changing Editor Properties

Programming editor preferences can be accessed by selecting: Tools->Preferences
from the menu bar. From the Preferences window, select Source from the tree on the

3-24

Introduction to the GAUSS GUI

left. Here you can customize the programming editor's behavior.

‘Command

i o Siger 4 Autocomgleton Sowrce
it Auto Inderd: GALSS Libriry
Dby
Graphics Lire Fumibers: (o Clr 0
Cernpile Optioes Current Lne Highlight: =
Lisa UTFS Enceding: i
Colors
|
! Curment Line; Hurmhers: -
|
. petmit et [operstor: [
l mnd: .
| st _| -
| e | e—
|
| Cimmerss: - Gebertion Background: I
I

Figure 3.21: Editor Preferences

The editor preferences has three main sections:
General Settings

The general settings are located on the top left.
Colors

This section is located along the bottom half of the preferences dialog window. Click
one of the color buttons to change an element in the color scheme used in the editor.

Autocomplete Settings

On the top right of the Source Preferences, under the heading "Autocompletion Source" ,
are the controls for autocompletion settings. This allows you to choose the contents of
your dropdown autocomplete suggestions. The options are:

3-25

GAUSS User Guide

GAUSS Library Provides autocomplete suggestions for
GAUSS intrinsic functions.

Current Document Provides autocomplete suggestions for all variables,
procedures, GAUSS functions and keywords that
are used in the file.

Both Provides autocomplete suggestions for both above.

None Turns off autocomplete suggestions in the editor.

3.5.5 Error Output Window

The Error Output Window can be accessed by toggling the Error Output button on the
right side of the status bar. For details regarding the features and usage of the Error Out-
put Window, see Section 3.4.1 .

 Incex out of 'r:-'u-g-e 5

e

{F s St crcimea] rer S8

Figure 3.22: Error Output Window

3.5.6 The Source Browser: Advanced Search and Replace

The Source Browser is a powerful search and replace tool that makes it much easier to
work with your code--especially larger projects. You may open the source browser by
selecting View->Source Browser from the Source Page, or entering the hot-key
SHIFT+CTRL+F.

3-26

Introduction to the GAUSS GUI

I File Edt Debug Teoli Vew Wedsw Help
™ - i3 [—
LaBABASLESY B-9--0 bees. .
Ly X || e B T =
5L Bt ot | . =g
Dieste Linwy o 255 depeacen = A0[1] .wnanes; A
P 58 andif;
@ 237 = =rraxr (0]
pau g £l amp if rowaidi] > 1;
necrkey e 259 B if d0[3] .vnanan == =mp
E Y & ;:i ‘ll.tuuvuum= = "KUFsfvacy {segaill, 1, sels (k)), are . rpad flace | (1og
| aire kg - 282 indvarnms = Jd3[2].vnames)
aarach ks # 263 mndif;
3 2E4 = = @#[2] .dataMatring
qY - - # 265 ndlf;
. ot g & -1 49 catp|_sutorsgn:s (arc, #9 dO[1] .dataMatcix, x, Deprarom, indvaccos, lagracs
| 267 [
- 2€8 mndi £ -
asn L
i : -
* | S Brovs &
B | mowch | Acawced | Repisce | o |r: fonusmiz/ecc/estcouget aze [16) =
ﬁ Erd: depearm iy ¥ Fi/gaussllfecc/paacls. aze (I3)
4 [e — o= ¥ Fi/geussilrsrefclant.axe (15} y
B R s ~ 7 | |+ & Fi/gunssilsero/ Tacens axe (B
_: d = ____' # 186 sy, s, nodr, mec, vody, voen, STE,], TREAT T, HEpYATDE, 3
!- S| oo | ¥ 714: | depratem,dvind | = indicesfsjcutfn, ", depvsch;
a' Bomdrayts | Lirams ¥ 216: | depwarom,dvind | = indicesfs|cutfn,depvms.Df; =
- :.'rwchhul'dqr-mnrﬂcmdﬂmm-n«nnzm Procs susoregr Mstches:s &1 | Files; 4 jgh| ’ﬁ

Figure 3.23: Source Browser

The source browser is made up of two main sections. On the left are the control tabs and
on the right is the results display. The first of the control tabs is the Search tab. In this
tab you enter your search query. You can specify a specific file pattern or filename to
search and also the directory within which to search. The button with three dots [...] to
the right of the directory dropdown menu is a browse button that will open a dialog win-
dow that will allow you to browse to locate the desired directory.

Search | Advanced | Replace |

Find: rndu -
Pattern: *.src ok
Directory: F:fgauss13/sre| - [_]

Cear || stop || search |

Figure 3.24: Search and Replace

3-27

GAUSS User Guide

The Advanced tab allows you to refine your search criteria. Checking the References
check box will limit your search to only locations where a variable is referenced. Alter-
natively, checking the Assignments box would limit your search to only those places
where the variable was assigned to. For example, if you were searching for the variable
'nobs’', this is an assignment:

nobs = 300;
whereas this is a reference:
myVar = nobs - 1;

Search Advanced | Replace

Match Case: |:| Occurrences
Whole Word: [
RegEx: [[] References
Max File Size (MB): 500 o
Search Subdirs: [¥] B A=signmens
Ignore Binaries: [

Figure 3.25: Advanced Search and Replace

You may also select to limit your search to whole words, match case or use regular
expressions. This tab also allows you to control whether your search extends to sub-
directories and if you would like to exclude files larger than a certain size. It is rec-
ommended that you always select Ignore Binaries.

Executing a search

Once you have a search string in the Find box and have your desired parameters set,
press the 'search' button to execute your search. In the results display window, you will
see a list of files that contain matches to your search. To the left of each file in the list
you will see a check box which can be used to include or exclude the matches in a file
from any Replace actions. To the right of the file name you will see a number in paren-
theses which indicates how many matches were found in the file.

3-28

Introduction to the GAUSS GUI

Seerch | Advanced | Rapiace ¥ F1/gaussidfsrc/dacanchn.soo (27) |
Frck | nobs - ¥ F:/ganssidfarc/gdadatat.src |7}
Pabtemz % ge e « [F:/gavasllfarc/gdacla.azs (36)
= " V] 253: sow,noba,mocbs,. be.b, Ve, STSeIT, T, 289, theg, Tatat, BVl
Dveciory: Fojgoussiifec > | | £ - Z
2 ¥ 303% nobs = tobs:

Czar | S | Se=ardh =
e —! (oot i ¥| 315;: slear @®n, 5,06, 1, bebs:

il %38 sohe s ookbsd o fe A

Figure 3.26: Executing a search

Expand the node of a file to examine its list of matches, or right-click and select 'Expand
All' from the context menu. Once you expand the node for a file, you will see the line
number of the match followed by a colon and then the line of code with the match high-
lighted in yellow. Double-click on a line to edit that file.

Executing a replace

After you have completed your search and unchecked any matches that you do not want
replaced, click the Replace tab. Enter your replacement term and press the Replace but-
ton. GAUSS will warn you that any changes in unsaved files cannot be undone. If you
are certain of your replacement, click OK.

If you are making a change across a large number of files, particularly if you are not
using a version control system like Subversion or Git, it is a good idea to select the
'Backup Original' check box. With this selected, before GAUSS makes the replace-
ments to your file it will save a copy of the original with a . bak extension. For example
if your original file was myfile.gss, the backup file will be called
myfile.gss.bak.

If you select the 'Overwrite Backup' checkbox, the next time that you make a change to
this file, the file myfile.gss.bak will be overwritten. If you do NOT check the
'Overwrite Backup' check box, GAUSS will make incremented backup files:
myfile.gss.bak(l),myfile.gss.bak(2), etc.

3.6 Data Page

Section 3.2.1 provides details of the main menus and toolbars. The Data Page contains
the following changes to the toolbar and menu options.

3-29

GAUSS User Guide

AU 13
File Edit
e e —
= H@ OO -0 Eweas o]
g (Fmeo 3% 1 s - e (USRI LE
j @ Bt Syrmbels e Gd Hen Ow
& Maince -
& it 1 z 3 s 3 | 7
| lnrbahaflad]l |1 1TER s 1 nrTBeE aapmay FEST T 145
= larebanaiad|
!| [T hiA] & SN 418RR DAY [b 147 43350 RS L] TARTT)
| :M'."'"'m.”' 13 ez 1xaEm L) 130687 L5 e 18 T
-]
| m:l TR T A5k 4580880 La7sm DAELLE EF ST 1454
3 _phis[3] I3 amEe 3% 15E0E T T L e 0ITIH D
thetaitd]
m thensatjisl] (6 L399 1am3 a1z ngans orgam D paTEIS paaT
thetmslde !
=1 h,q"d.,i ' [r amiw il Aaiam BT armen Qusn [E soTin
§| bnskfiel] 8 aamoe 4TS DT AT T 580 sk L
L Sparme Matroe: o anns L5143 4TSRS -LDEzs Q5083 163 -ASE -L6as
L= Srirg
ﬁ - lw s L g7 85854 Tz a4s96a7 477852 La7ELE L3375
Ariilies 1
14 st 11 avooeer BE] aE LEL L5716 11187 28I 1T
i<l 17 4500 A0 A58 agmE SE LER T aan
§ 13 1oA30E AsEE Qs -LTeea P QssEn) 0377358 1007
| |
@ i i ety |
|| I T rcl
= gl (&l
|

e Menu Bar

o Layout
o Symbol Editor

3.6.1 Menu Bar

Symbol Editor Menu
Edit Symbol

Save Symbol

Figure 3.27: Data Page

Opens an active symbol from your current GAUSS
workspace in a symbol editor.

Saves changes to the symbol in the active symbol
editor.

3-30

Introduction to the GAUSS GUI

Reload Symbol

Toggle Auto-reload

Preferences

Window Menu
Split Horizontally
Split Vertically

Toolbar

New

Save

Reload

Reloads a symbol that is out-of-sync with the
GAUSS symbol table. Note: This only applies if
auto-reload mode is turned off.

Turns on/off autoreload for the active symbol editor.

Brings up preference dialog for changing the settings
of open symbol editors.

Tiles open symbol editors horizontally.

Tiles open symbol editors vertically.

Edit Reload
Symbal Symbal

h g o

Symbo

Figure 3.28: Data Page Toolbar
Opens an active symbol from your current GAUSS
workspace in a symbol editor.

Saves changes to the symbol in the active symbol
editor.

Reloads an out-of-sync symbol editor. Note: This
applies only if autoreload is disabled.

3-31

GAUSS User Guide

3.6.2 Layout

The Data Page has two main widgets: the symbol tree and the source editor docking
area. The Program Input/Output and Error Windows are also accessible from the toggle
buttons on the right side of the status bar.

The Symbol Tree window lists all of your active symbols, organized by type. To view
your active symbols, click on the node expander or right click and select Symbol View
from the context menu. Hovering over a symbol in the Symbol Tree will produce a tool-
tip with a preview of the symbol's contents. To view the entire contents of a symbol, dou-
ble-click the symbol or right-click the symbol and select Edit. The symbol will now
appear in a symbol editor (see Symbol Editor, Section 3.6.3).

3-32

Introduction to the GAUSS GUI

File Edit Tools SymbolEditor View Window Help

28 @ 0 ®-7-0

o |Symbols & X r_obs - matrix (30%3){auto)(sync)
E 4 Active Symbols Dec Sd Hex Chr
= 4 Matrices 1 2 3
I lambda[dxZ]
o I lambdahat[#x2] 1 1725 0.215372 1.01384
I lambdase[dx?]
a b lind[2xd] 2 -0.696438 0193132 -0.821473
3 b Imask(4:2]
= y S 3 -0.0372896 -133333 -0.551368
b phi[2:a]
3 i phihat{2x2
b PR] 4 0171176 -0.926643 0.592686
i | phise[2a,
= b r_obs[30:8] 5 0938308 .37649 0331085
5 I theta[4xd phise - ([2x2)
i b thetahat -0.509162
PHE S ; 251258 S 108786 111448
i 'i t'”d[ﬁ 0.108786 0.280458 '
g b tmask[4xsy T 0139061 -0.044758 -0.726566
i Arrays

Figure 3.29: Symbol View

Double-clicking an already open symbol will bring that symbol to the top of the stack of
open symbol editors. If you would like to open a second copy of a symbol, right-click on
the symbol in the symbol tree and select Edit Another Copy. GAUSS allows you to
open more than one copy of each symbol so that you can examine different portions of a
large matrix at the same time.

Special Case: Structures

3-33

GAUSS User Guide

To view a structure in the GAUSS Symbol Editor, expand the Structures node on the
Symbol Tree. From here you will see a full list of all structures in your current GAUSS
workspace. Expanding the node of a structure will reveal its members.

To view the contents of any member of a GAUSS structure, first open the structure in a
Struct Viewer, by either double-clicking or right-clicking and selecting Edit over the
name of the structure in the Symbol Tree. Once open in the Struct Viewer, individual
members of the structure can be accessed for viewing and editing from the Struct Tree.

The Struct Editor

When opened from the Symbol Tree, structures will be loaded into a special Struct
Editor. The Struct Editor is composed of a Struct Tree Widget and a Struct Member
Editor. The Struct Tree Widget displays the structure being edited and its members
names, data types and dimensions. The Struct Member editor displays the contents of
individual struct members. The Struct Editor is displayed in the Source Editor docking
area like all other Source Editors.

File Edl T SymbelBdim view Wirdes el
EBE L A R Sl = QT V1
Stk 1 3 o antartyi - o (100 imERe LS
@ Bt Syrmbels e Gd Hen Ow
& Pduinces 8% 4 o
& [- 4 2 -
larrbsdahatitad] + ol [abruct] i 1esaz 11803 LRETL 2248305 :
R e 4| trpes [ecalsd
line{2ul] ddatabdntom |E00wl] | rrastrin 1 -aEE 103533 [P E L ST
i et} datairay | | jamay)
e degeres [1] sming] 1 LARIS SEHITE [T 1 JETE
b S wramve] fatr mrma)
:::}L-‘fl batr a2 apavse] ¢ AT 155 4563 Wk
4 1. pbi{ e8] § 116 D217 0. 2E5048 455075
oi thtalisd|
m fre—) CRTIE T ATLH -1 BOGTT 02308
| ::.::2."" 7 SAET B iet] Lo DAY
§ rmaskflal] B sam 455048 L0058 4MERY
& Spare Mammos: R ET 030 D4 153008
et Sringa
Strirg ey WAL 108072 AASEATS LET
i R T [P
14 chtad] 1 17T EET Sk k] 124073
LU " T P
| g EREE 1o 236758 1A%
g qu:l-ﬁl I osnost JEERAY [IELE R AENOTE
sAe{ial] =
a. Cornre am ¥_es - wphve IRNOROO0E) 50 bbb - e | 100 e
gkl [l

3-34

Introduction to the GAUSS GUI

Figure 3.30: The Struct Editor

Individual structure members can be opened for editing or viewing from the Struct Tree
Widget in the same manner as other data types, such as matrices, are opened from the
Symbol Tree. Structure members will be opened in a Symbol Editor to the right of the
Struct Tree Widget.

Multi-dimensional Arrays

Expand the Arrays node and double-click on an array to open it in a symbol editor. Use
CTRL+Up-Arrow and CTRL+Down-Arrow to cycle through views of the different
dimensions.

3.6.3 Symbol Editor

Symbol editors are like spreadsheets that allow viewing and editing data in your work-
space. Data may be viewed in decimal, scientific, hexadecimal, or character rep-
resentation. Double-clicking in a cell allows you to change its contents. Navigation
throughout the cells can be accomplished with the arrow keys, tab, and the mouse.

3-35

GAUSS User Guide

File Edit Tools SymbolEditor View Window Help

=l-1C ©-%-4-0

¢ |Symbols & X r_obs - matrix (30x9)(auto)(sync)
E 4 Active Symbols Dec Sd Hex Chr
- 4 Patrices 1 5 3
I lambdal4x2]
. b lambdahat[4x2] 1 (17256 0.215372 1.01384
I lambdase[4x2]
s b lind[2x] . 3ll1-0.626433 156 1779733 RS -0.821473
2 b Imask[4x2]
g 3 -0.03723% -1.33333 -0.551368
I phi[2x2]
B I phihat[2:2]
* DI 4 0171176 -0.926643 0.592686
[phise[2x2]
= I r_obs[30:4] 5 0.933308 0.37649 0.931085
& I theta[4:d]
il I thetahat[4xd] 6 -197376 1.42039 -0.509162
[+ thetase[4xd]

Figure 3.31: Changing a value inside a symbol editor

To highlight multiple cells, click on the corresponding row or column header. To high-
light the entire contents of a symbol editory, click in the empty header box that connects
the first row header to the first column header.

Autoreload

By default, open symbol editors will automatically update when the symbol has been
changed programmatically. This behavior is referred to as autoreload. A symbol editor in
autoreload mode will show (auto) on its header. The header will also display (sync), indi-
cating that the symbol editor's contents are synchronized with the current value of the
symbol in the GAUSS symbol table.

If you would like the contents of a particular symbol editor to stay the same even if the
value of the symbol is changed by running a program or an interactive command, you

3-36

Introduction to the GAUSS GUI

may disable autoreload for that symbol. If the value of a symbol with autoreload disabled
is changed in the GAUSS symbol table, the symbol editor will display the message out-
of-sync. This indicates that the values in the symbol editor are not current.

3.7 Debug Page

3.7.1 Menus and Toolbars

Go

Toggle Breakpoint
Clear Breakpoints
Set Watch

Step Into

Step Over

Step Out

Clear Step Step
GID Ereakl:p:ulnt n{t-::u E-r:
e
OQLRAMAM
loggle set Step Runto
Breakpoint Watch Ower Cursor

Figure 3.32: Debug Toolbar

Runs the program to the next breakpoint.
Sets/Clears a breakpoint at the cursor.
Clears all breakpoints in a file.

Opens a watch variable in a symbol editor.

Runs the next executable line of code in the
application and steps into procedures.

Runs the next executable line of code, but does not
step into procedures.

Runs the remainder of the current procedure and
stops at the next line in the calling procedure.

3-37

GAUSS User Guide

Run to Cursor Runs the program until it reaches the cursor position.

Stop Terminates a debugging session.

Components and Usage

The Debug Page is composed of five main widgets:

Breakpoint List An interactive list of all breakpoints.

Call Stack Window An interactive display of the chain of procedure calls.
Local Variable An interactive display of all variables that are in
Window scope.

Variable Dump Displays the full contents of a variable.

Window

Watch Window An interactive display of user specified variables.

The Debug Window indicates which line it is on by the >>> located in the left margin.
This is also the location where breakpoints are added. To add a breakpoint, click in the
left margin of the Debug Window on the line you wish to add the breakpoint. Clicking an
active breakpoint will remove it.

3-38

Introduction to the GAUSS GUI

TR
- : T
ALK EAZNA Y D-8-4-D [Fommiremmes =
| Program TnputEhrpue ® Lol ek an
| # print betakat o | b1 = gracthaTo s, pant, ek pgrahmatt.coc: 4]
| » dasug i igeussldiexamplessgpfact .. L) = SOPsskebATHroE, pal, dietal, c1] [sagmberntsoe 50
,@ _' A = raind} fagelacta 61
— # i J 4
i | Ba eedif; * Local W Variskien LR
aT 7
| Sum ¥
| 1] KO = peSstParVeacsr |parl} | aclis P Iaki
a3 a9 k= rows=d): el L IR Mutrm 0.5
= 80 deal 1xE Wm0
E S/ Campubation af stepsiee (dh} Far geadisnt =f k Lat Mt g
e Bt dal [TEE
. 3 1al Syuct o
I 33 axl = abe (kD1) el
1 ag if x0 = Or i) 2xi Fdatrm s
[S] daxl = % ./ swdy
i 58 alse
T dax = 1
3 38 sndit)
- 93
1 100 db = {machEpeilon® (1/2)) “maxc (ax0* | (1e=3) “anss (1, § e e
ﬁ 101 Mare Sim Trpe: Wikse
4 1oE xdn = =il + dh;
| 103 e = jeys(k).*indh - x01}";
g 104
| 105 threadetat
i 106 £l = 1fet(pyBatParVestor (paxl, wi+detEriow {se, 1
@.' i heematatas TEeBTers | Localreich st
" i chgmaml Dsigeadmit mr on bne 34 dal (&

Figure 3.33: Debug Window

Starting and Stopping the Debugger

You can start debugging of a file you are in by pressing CTRL+D. Click the Debug but-
ton to debug the file in the top of the Action List. Placing your mouse over the Debug but-
ton will reveal a tooltip with the name of this file, or click the downward pointing
triangle next to the debug button and select a file from the list.

3-39

GAUSS User Guide

File Edit Debug Tools View Help

jProgram Inpu.tICh..Jtput Fhgausslexamplesirandomwalk.e

¥You will find this file in your F:\gauss13\examples\circular.e
» run randomwalk.e
»

Fihgaussl3exampleshols.e

"‘:@' Command
F

o 8& endif; »
ug} 87
88 x0 = pvGetParVector (parl);
I Ny = —— e e s W e W

Figure 3.34: Debug Button

When the debugger is started, it will highlight the first line of code to be run. Any break-
points are shown in the left margin of the window. You can stop debugging at any time
by clicking the Stop button on the debug toolbar.

3.7.2 Using Breakpoints

Breakpoints stop code execution where you have inserted them. Breakpoints are nor-
mally set prior to running the debugger, but can also be set or cleared during debugging
by clicking the Set/Clear Breakpoint option on the Debug menu.

Setting and Clearing Breakpoints

To set breakpoints in any part of the file not currently being executed, just click in the
left margin of the line on which you would like the breakpoint. Alternatively, you can
highlight a line then click Toggle Breakpoint.

3-40

Introduction to the GAUSS GUI

(Wi} o
| 3 | b,f0,grd,xret]} = QNewton(&lpr,b0);

. 31

"E':I.l q} 32 cov = invpd{hessp(&lpr,b));

a 33

" 34 print "coefficients standard errors";

3% print;

36 print b~sgrt{diag(cov));
27

38 output off;

Graphics

Figure 3.35: Setting Breakpoints

To clear a breakpoint in the file, click on the breakpoint you would like to remove or
click a line of code that has a breakpoint set and then click Set/Clear Breakpoint. You
can clear all breakpoints from the active file by clicking Clear All Breakpoints.

3.7.3 Stepping Through a Program

GAUSS's debugger includes the ability to step into, step out of, and step over code dur-
ing debugging.

Use Step Into to execute the line of code currently highlighted by the debugger.

File Edit Debug Tools Wiew Help

'@ ﬂ & ﬂi&;lﬁ o

Lag
g= Program Input/Cutput |m
= T v:.n.-:nm)—g-r-r—e—hf

Figure 3.36: Step In (F8)

3-41

GAUSS User Guide

Use Step Out to execute to the end of the current function without pause and return to
the calling function.

File Edit Debug Tools View Help

@@ & 82 & Eﬂ|u'ﬁ|"‘| :5'&

Progran Ir‘putf[hmut

Step Cut (F10) k
[% vun randemwalk.e
Figure 3.37: Step Out (F10)

nand

Use Step Over to execute the line of code currently highlighted by the debugger without
entering the functions that are called.

File Edit Debug Tools View Help

©L 4ean IE'E |

ngran Ir'rputfmtmt

JI Step Owver (F3) i
| % +un randomwal ko=

Figure 3.38: Step Over (F9)

Use Stop to stop the debugger.

3-42

Introduction to the GAUSS GUI

File Edit Debug Tools View Help

©LGRAMSR .'-'@"B‘ﬂvf@\ @

Program Input/Output “[57
Stop Program

| Resulta =mawverd in the file named citrenlar outore

Figure 3.39: Stop

nand

3.7.4 Viewing Variables

GAUSS allows you several ways to view the values of variables during debugging.
Hover Tool-tip View

Once the debugger is started, hovering your mouse over a variable name will open tool-
tip with a preview of the values in the variable.

These tooltip views are only intended to give a quick view of the data, so they may not
show all data held by the variable. If you need to view more data, click on the variable
name and type CTRL+E or click the Set Watch Variable and enter the variable name.
Y ou may single-click on a variable in the local variable window, or double-click it to
view the variable in a floating symbol editor. Entering CTRL+E will open the variable
under your cursor in a floating symbol editor window.

Editing Variable Values During Debugging

The debugger integrates the Matrix Editor to edit values of loaded variables, or to use as
a watch window to view the changing values of variables as you step through a program.

To view a variable in a symbol editor, highlight the variable in the edit window, or the
Program Input/Output Window and then open the Matrix Editor. You can use the menu
or toolbar to start the Matrix Editor.

Making a Watch Window

3-43

GAUSS User Guide

You can make the Matrix Editor a Watch Window, allowing you to watch the changing
value of a variable as the lines of the program are executed. You can activate the Watch
Window by clicking Set Watch on the Debug toolbar or by highlighting a variable name
in the Debugger Window and pressing CTRL+E.

i 2§65 lozal x, atata;
& 256

267 stata = sysstate (28, O);
%_1. 288 eall sysstate (38, state)
5 270

271 retp Kl

" mil 272 endp;
= 213
!‘ 27
il

{ In <FAgaamlliscuandom s on e X8

| » daug T igeussl Sexamplesicicoular..
@ clecular.e - A olrcular regression modd

= pregeding sssd using

280 - whers & iw ths mod cparstor.

Rbfipres rndve(zows K, cols W, 4, Bl

i -0y

[Fommremme =

aug - fimw mand = [a*msad +)% [E]

268 | Bl wtats | = rndiowmirows_x. cole x, a.|

1« mitre {500n 1 Hainlocalioy. 0]

| Dec B0 Fex O

{1

B . b} [rancamoe 63
|
Tepw Wl
Matrm (L74XE
Muira 1
Matsm 1
s 50
Mams 1508
Maten (443050
Trpe Vabut

ool [Buizh Trisblen

ikl [/

Figure 3.40: Watch Window

You use a Watch Window to see how variables change in value during debugging.

Watch variables can be specified prior to running the debugger or during a debugging ses-

sion.

The debugger searches for a watch variable using the following order:

1. A local variable within a currently active procedure.

2. A global variable.

3-44

Introduction to the GAUSS GUI

A watch variable can be the name of a matrix, a scalar, a string array, or a string. For a
matrix or a string array, the first element is displayed. If a matrix element is clicked, the
Matrix Editor is loaded with the matrix. The matrix elements can be changed during the

debugging session.

3.8 Help Page

The Help Page gives you access to the entire GAUSS help system in HTML format.
The table of contents tree is on the left. Click the + symbol to expand a particular sec-
tion of the contents and double-click on the title to view the page. As on the other pages,
the Program Input/Output Window and the Error Window are available via toggle but-
tons on the status bar. It can be helpful to enter an interactive command and/or view
error output while simultaneously viewing the relevant documentation.

[e s —
o e -
TR TR W ———
o0 G-9-4d- Fr v
e
e
&
Lo Pl
; it o) heewnz E2 02 acf Up: 3200 o Previous: 3210
il Py B
1 il bop e s
i 32.1.1 abs

i =
rn at %

—

e - : .
E e i

-)
3 Ay Bl B Fimrmg

vl B Ses
g Lrsres wrBrsams o Seephi = abs x);
a

i e 4

Figure 3.41: Help Page

3-45

GAUSS User Guide

Hot Keys

Fl

CTRL+F1

SHIFT+F1

Opens the Command Reference section for the
highlighted command.

Opens a programming editor with the function
definition of a highlighted procedure.

Opens a floating Help Window for the highlighted
command.

3-46

4 Navigating the GAUSS Graphical
User Interface

Navigation of the GAUSS Graphical User Interface is designed to naturally follow your
actions. For example, if the action you would like to perform is debugging the file that
you are editing, you can either enter CTRL+D to debug or select the file from the Debug
Toolbar Button's drop down Action List. Both of these options will begin your debugging
session and take you to the Debug Page. Regardless of the method you choose to initiate
the action, debugging in this case, the navigation is done for you.

The same automatic and intuitive navigation is enabled for many common GAUSS
actions, such as opening a new or existing file for editing or using the F1 help.

4.1 Hot Keys and Shortcuts

F2 Navigates to the next bookmark in the Active File.
F3 Find again.

F4 Runs highlighted text.

F5

Run file at top of Action List.

4-1

GAUSS User Guide

F6 Debug file at top of Action List. Inside a debug
session, F'6 will cause the debugger to run to the
next breakpoint, or the end of the file if no
breakpoint is set.

7 Edit file at top of Action List.

F8 Step in (During a debug session).
Fo Step over (During a debug session).
F10 Step out (During a debug session).

The Control Keys operate on a file that is being edited or is open in a Programming
Editor and has focus. This file is referred to as the Active File.

CTRL+D Debug the Active File.

CTRL+R Run the Active File.

4.2 Navigating Between Pages

CTRL+1 Brings up the Command Page.

CTRL+2 Brings up the Source Page.

CTRL+3 Brings up the Data Page.

CTRL+4 Brings up the Debug Page.

CTRL+5 Brings up the Help Page.

CTRL+TAB Brings up the next page. For example, CTRL+TAB

Navigating the
GAUSS GUI

from the Command Page will bring up the Source
Page. CTRL+TAB from the Help Page will wrap
and bring up the Command Page.

ALT+TAB Cycles between any pages that are undocked as well
as other open programs.

WINDOW+TAB Windows only: Cycles between any pages that are
undocked as well as other open programs.

SEZZT scroll When floating over any set of tabs, the mouse scroll
wheel will cycle through the open tabs. This will
work for programming editor tabs, symbol editor
tabs, and the main page tabs on the left of the main
application.

4.3 Focus Program OutputonI/O

Under the Tools->Preferences->Command is a check box entitled Focus Program
Output on I/0. Selecting this option will open up a Program Output Window if any pro-
gram output is printed or if any input is requested by the GAUSS commands key,
keyw, or cons.

4.4 F1 Help

If your cursor is on the name of a GAUSS command in an editor, you can press F1 and
it will take you to the Command Reference listing for that command. Inside the Help sys-
tem, highlight command names by double-clicking them to enable F1 help navigation.

Shift+F1 Inline Help

Entering SHIFT+F1 when your cursor is on a GAUSS function will open an inline help
window that floats above your editor window.

43

GAUSS User Guide

& G 1 [1 e |

|Fu5uumq'hhh-mruu [

LB AL IS 9940 (B

|
| ' || smaemgete 1) |M¢, sovssarpg [| rwoorestn [| Meassc [| messgee] -
E 20 delta T delka + D.01:
1
22 // lnccoase msgnitudo of dmlss ko { =ik
!& 33 crascs desirsd lsval of wolacilly :_Mi“]%
| 26 deles = 2edeles; Exaanple
- o5
i z6 f Instantiste y : indax p-ice dats
i E: ¥ = 1000*anesl mePointe.lhi pimw can b used ta solve an undetermined leact squanes
3 29 /) Loop thoough v mod sdd the cumales| prabiam.
i B0 /¢ suma of dalts to cesscs candom wslf
! B Bfor il 3. mmPoinks, 1 iz | fiCraate an underdetermined aystam of aguatiops A
:l-.l P ylil= yli-11+delenli] A whndnid, 51§
E {4 33 wndior
a4 formate a Tigh e
i a8 B & rundnid,.1];
|. B
| ar if rankiRl < ooleinis |
—4 ap prine®A doea nct have full rank. using piny %o sclve™| |
an Apl = plnwikig Li|
g L] u = Apd+hg
| *1 crmilling ¥ aloe;
| £} W2 Elfor i1 1, mmPaink princ"h hea Foll genk, solvs with 'J' operecor®) [
L1 5B si= i - &0 = = bR
LT twanMR & twsnMAj{ somci o y(mizi] endif)
| B w5 cnaren
L1
A /7 Ben = data Eoc @ mkie | -
M k= magei 1, 1, rousiy;
L)
S0 // Srsace plot of date
51 plagly¥i =yrlak, =, p-Ewerd® §
T4

4 " ¥

Froal Bore | Ln B, Cod § | OTE-R |j1= o

Figure 4.1: Inline help window opened with SHIFT+F1

4.5 CTRL+F1 Source Browsing

For procedures that reside in a GAUSS Library (. 1cg file), you can browse to the pro-
cedure definition and to the initiation of any global variables with CTRL+F1. Like F1
help, set your cursor on the procedure or global variable name and enter CTRL+F1. If it
resides in an active library, the source file will be immediately opened in a Programming
Editor.

To learn more about creating a User Library for your procedures, see LIBRARIES, CHAP-
TER 19 .

5 Using the GAUSS Debugger

The GAUSS debugger is a powerful tool to speed up and simplify your program devel-
opment. Debugging takes place on the Debug Page, which is a full-featured dashboard
providing you a wealth of information about the status of your variables and your pro-
gram every step of the way.

5.1 Starting the Debugger
mlm Ecljit
D-%-4-Q
Dukljug, Stln:Jp

Figure 5.1: Debug Button

You may start a debug session by selecting the Action List Debug button, by entering
CTRL+D from the file that you would like to debug, or by entering debug filename
from the command line. GAUSS will bring the Debug Page to the front, and the debug
session will begin with the first line of code highlighted, waiting to be run.

5-1

GAUSS User Guide

®-4-Q [Femmitemme =] -
* Ol Frak LR
| print bataba: o | L= grackha T Tt part, labad} [gracimttere: 4]
| ¥ dabug Fiigaussldiesasples)sgpfact.e (L] = SOPssbebAT ek, pael, detal, cl] [sagiobgrt s 570)
{@ | B = rmsind} agfuct.a 67
L L ‘
i BB esdir Ll bt e e
aT 7
| L] KD = prdstiarVeacor |parl}) anlind o Top= Mkl
1 aa k = cowms(xd); R T Metm 05
—1 »0 dstsl 1wl Trut L)
B/ + Cappubation &F stepsles (dh) Faf geadient * k Lat Mam 0
i a5 s x Fot ixd [T
i | 2 axl = sbs (€01 Pl 1sl Sua 0
11 if x0 = 0z ti) 2xl Fdatrn s
[S] daxd = w0 ./ awdy
i 58 alsg)
a7 daxil = 1;
L >8 apdifs
| 5
ico db = {machEpsilon® (L/3)] “wasc (et | (1e=3) “anss |1, § - = -
%_ 101 M Site Trpe Vabue
5 1oz xdh = xl + dh;
103 ge = (eysik).* indh - =01}y
‘ml 104
B 105 thrsadscat
!‘ 106 £1 = 1fot(pyEutParVestox [pasl, wl+d3etTrhow {=e,
W et ey
a il ™ TBEBTORE | LocalWakch merabe
o 1 B <P\ geanl e gredmit e on bne 3l l".'J.',l m.

From here you can step through
tell the debugger to run to a part

Figure 5.2: Debug Window

your program line-by-line, or run to a line of interest. To
icular line, you must first set a breakpoint. Setting a

breakpoint on a line in your program tells the debugger to pause when it gets to that line.
You may set a breakpoint in any source file by simply clicking in the margin to the left

of the line numbers. You will se

added to the breakpoint window,

Pages. New breakpoints can be

e a red dot appear in the margin, and a new entry will be
which can be viewed on both the Source and Debug
added before or during a debug session.

The Debug Page toolbar gives you the controls you need to navigate during debugging.

Hover over any of the buttons to get a tooltip with a description of the button's function

and its corresponding hot key.

Clear Step Step
G:- Breakpolnt ritc: Du:

'&‘F _ﬁ,ﬁlhuan .l

Toggle Set RL'\ to
Breakpoint Watch Cursor

Step—
Over

5-2

Using the GAUSS Debugger

Debug Run
Debug Stop
Toggle Breakpoint
Clear Breakpoints

Examine Variable

Step in

Step over

Step out

Run to cursor

Figure 5.3: Debug Toolbar

Runs to the next breakpoint.

Stops the debug session.

Toggles a breakpoint on the current line.
Removes all breakpoints from all files.

Opens a user-specified variable in a floating Symbol
Editor window.

Steps to the next line. If the next line is a procedure, it
will step inside this procedure.

Steps to the next line without stepping into other
procedures.

Runs through the end of the current procedure and
stops in the calling file.

Runs to the location of your cursor as if it were a
breakpoint.

5.2 Examining Variables

When the debugger is paused at a line in your program, you may view any of the var-
iables in your GAUSS workspace. GAUSS offers several options for this. The first is
through the Local Variable window. This window contains an alphabetical list of every
variable that is currently in scope. It also lists the type of the variable (matrix, string,
structure, etc.) and its first value. The contents of this window are immediately updated
each time you step to a new line of your program.

5-3

GAUSS User Guide

LocalMatch Vanables @
Mame = Type Value i
Lgradproc[lxl] Matrix 0.000000
Lmaxiters[1x1] Matrix 100000,000000
Lprintiters[1:1] Mlatrix 0.000000
Lrelgradtol[1:1] Mlatrix 0.000010 .
Lrteps[1xd] Mlatrix 0,010000 T
dif1x1] P atrix 0.000000
frnct1x] M atrix 840.000000
rmaxtry[lxl] Matrix 100000000
np[lxd] Matrix 4.000000 |
sp2[1:x2] Matrix 0.000000
ww[2x2] Matrix 1.000000 -
Mame = Type Value
u[dd] M atrix 5000000
z[2l] I atrix 0.000000

Figure 5.4: >Local Variable Window

A single-click to one of these variables will display its full contents in the symbol dump
window. The symbol dump window is a GAUSS symbol editor, similar in appearance to
a spreadsheet. Double-clicking on a variable in the Local Variable window opens that

variable in a floating symbol editor.

Located just below the Local Variable window is the Watch window. The Watch win-
dow looks and acts much the same as the Local Variable window, but it holds only var-
iables that you specifically add to it. This allows you to place variables of interest in a

smaller list that is easier to scan.

5-4

Using the GAUSS Debugger

=

x - matrix (500x2)
1
1 0.355422
2 D.587155
3 0433401
4 0.269375
5 0.29448
6 0142013
7 D.515185
8 0.24B6874
9 0412779
10 0.860144

042271

0.429803

0.165308

0.195832

0.278413

0.807589

0.098845

0.944933

0141731

0.992356

s

Figure 5.5: Symbol Dump Window

You may see a tooltip preview of any variable in your file by floating your cursor over
the variable name. Placing your cursor on a variable and pressing CTRL-E will open

that variable in a floating symbol editor.

5.3 The Call Stack Window

The Call Stack window is like a map into your program. The top entry in the Call Stack
window is always your current location. It lists the name of the procedure you are in, the
arguments that this procedure takes, the name of the file it is in, and the line number you
are on. The next item in the list displays the same information for the location from
which your current procedure was called. The item after that displays the location from

which that procedure was called and so on.

5-5

GAUSS User Guide

' Call Stack =

(5) = _bfgs(fnct, x0, Lmaxiters, Lrelgradtel, Lgradproc, Lprintiters, Lrteps) [qnewton.src: 178]
4] = QMewton(fnct, 0 [gnewton.sre: 98]
0 = main) [circular.e: 30]

Figure 5.6: Call Stack Window

This list is interactive. Single-clicking on any of the items in the Call Stack window will
bring you to that particular line and file. For example, if you would like to examine the
line from which your current procedure was called, click on the second item in the call
stack list. Not only will this open that line and file in your Debug window, but it will
also update the Local Variable window to display all the variables that exist at that loca-
tion, as well as their current values. To return to your current location, click the top line
in the Call Stack window.

5.4 Ending Your Debug Session

If you would like to terminate a debug session before the debugger has run through the
entire program, click the Debug Stop button, located at the top left of the Debug Page.

File Edit Debug Tools View Help

Q24La R+ ©O-®-4-Q =

Program Input/Output lﬁ[ri
Stop Program

| Reaunlta =saved in the file named cireunlar ountTr

Figure 5.7: Debug stop button

nand

5-6

6.1 Overview

6 GAUSS Graphics

The plotting functionality available in GAUSS is designed to provide intuitive methods
for visualizing data using a variety of plot types. The main plot drawing functions are:

plotBar

plotBox

plotContour
plotHist
plotHistF

plotHistP

plotLoglLog

plotLogX

plotLogY

plotPolar

Creates a bar plot.

Creates a box plot using the box graph percentile
method.

Creates a contour plot.
Calculates and creates a frequency histogram plot.
Creates a histogram plot from a vector of frequencies.

Calculates and creates a percentage frequency
histogram plot.

Creates a 2-dimensional line plot with logarithmic
scaling of the both the x and y axes.

Creates a 2-dimensional line plot with logarithmic
scaling of the x axis.

Creates a 2-dimensional line plot with logarithmic
scaling of the y axis.

Creates a polar plot.

GAUSS User Guide

plotScatter
plotSurface
PlotTS

plotXY

6.2 Basic Plotting

Creates a 2-dimensional scatter plot.
Creates a 3-dimensional surface plot.
Creates a graph of time series data.

Creates a 2-dimensional line plot.

The simplest way to plot data in GAUSS is to use default values for the plot settings,
such as line color, line size, legend text, etc. These settings may be changed by the user
from the main menu bar: Tools-> Preferences-> Graphics. To create a plot using
default plot settings, simply call one of the plotting functions with your data as inputs:

//Create a sequential column vector from -5 to 5 with

//101 steps
x = seqa (-5, O.

101) ;

//Set y to the normal probability density function

y = pdfn (x);

//Plot the data
plotXY (x, vy);

6-2

GAUSS Graphics

[LSR8 (e i
& G- | D L

g s 7

E Lo b — Ao 1
|: i

= REE

4 /

i | R

Figure 6.1: One Curve Plot

6.2.1 Plotting multiple curves

Each column of the input matrices is treated as a separate curve or line on the graph.
Below is an example that uses the variables created from the example above and adds
an additional line:

x = seqa (-5, 0.1, 101);
yl = pdfn(x);

//Set y2 to the Cauchy probability density function
y2 = pdfCauchy (x, 1, 1);

//Plot the data using the ~ operator to horizontally
//concatenate yl and y2

//Note that yl and y2 will be plotted against the same
//x values

plotXY (x, yl~y2);

6-3

GAUSS User Guide

I o1z P e
Ha B Twoh mew Bep

T
i
i

b [

=)

Figure 6.2: Two Curve Plot

6.3 Plot Customization

GAUSS offers two ways to customize your graphs. The first is through the graphics pref-
erences dialog window. The second method for plot customization is using a plot-
Control structure.

6.3.1 Using the Graphics Preferences Settings Window

Main Graph Settings

The default settings for graphics can be opened from the main application menu bar
Tools-> Preferences. Then select Graphics from the list on the top left of the pref-
erences window. The Graphics Preferences are broken up into two categories. The first
is the Graph Settings tab which controls the settings that apply to the entire graph, such
as background color.

GAUSS Graphics

Gty | et | and | Gwed | Sewa | eeb

-
ey
P Vardana

.

P G

e

v

s T
romt Vardans Chasgi

S
ey

iii

pid

gi

ol S |

o

Figure 6.3: The Graph Settings Tab

2-D Curve Settings

The second section is the Group tabs. These specify the settings for each curve, set of
bars, or set of points. Here you may specify line color, thickness, symbol type, bar fill
type and the corresponding legend description. Note that you may specify separate pref-
erences for each plot type: xy, scatter, polar, etc.

Graph Types

@ Xy

() Scatter

() Polar

(71 Bar

Graph Settings Group 1 | Group 2 I Group 3 Group 4

Legend Title

Style

Symbol

Color:

Line Width (px):

Symbol Width (pax):

Group 5

¢ Group 1

2

x [Solid Line

2

- [Nune

i

10

6-5

GAUSS User Guide

Figure 6.4: The Group Tab

Click the 'Apply' and 'OK' buttons after making your desired changes. GAUSS will use
these preferences for all future graphs that are made without passing in a plotControl
structure. As we will see in the next section, these settings will also be the starting point
when you create a plotControl structure. These settings may be changed at any time.

Contour/Surface Plot Z-Level Color Settings

Graph Types

=y () Scatter (7) Polar () Bar @ Surface

Graph Settings Colors

e -

dit

al
g
g
€ |4=| =] |E e
i
3
=

Level Count: 10

Surface/Contour Level Color Settings

If you select the 'Surface' radio button, you will see a 'Colors' tab instead of 'Groups' as
shown above. This tab allows you to add and subtract default z-level colors and to also
change their order.

Available Actions

Edit a color Double-click the color

Select a color Single-click the color

Delete a color Select a color and click the delete button

Change color order Click-and-drag color to desired position, or select a

color and click the up or down button

GAUSS Graphics

6.4 PlotControl Structures

The GAUSSplotControl structure provides a powerful and flexible method for pro-
grammatic control of your graphs in GAUSS. This structure is a convenient package that
stores all of the information about how you would like a specific graph to be displayed.
These structures may be saved to disk and reloaded during a future session or passed on
to colleagues. Using a plotControl structure requires just two easy steps:

1. Declare the structure.
2. Initialize the structure.

Once these steps are completed, you may change any of the plot settings in the structure.
Once the plotControl structure is set how you would like, you can pass it in as the first
argument to any of the GAUSS plot-creating functions. Below is an example that draws
a graph using a plotControl structure set to default values:

//Declare the structure
struct plotControl myPlot;

//Initialize the structure
myplot = plotGetDefaults ("xy") ;

//Create a column vector from -3 to 3 with a step size of 0.1
x = seqa (-3, 0.1, 60);
y = sin(x);

//Plot the data using the plotControl structure
plotXY (myPlot, x, y);

6-7

GAUSS User Guide

& -t

|
1
| &

| |

F S Hem @

firg

Figure 6.5: Plot Using plotControl Structure

The available plotControl setting functions include:

plotGetDefaults

plotSetBar

plotSetBkdColor

plotSetGrid

plotSetLegend

plotSetLineColor
plotSetLineStyle

plotSetLineSymbol

plotSetLineThickness

Applies the user defined default settings
for a specified graph type to a
plotControl structure.

Sets the fill style and format of bars in a
histogram or bar graph.

Sets background color of a graph.

Controls the settings for the background
grid of a plot.

Adds a legend to a graph and optionally
applies settings.

Sets line colors for a graph.
Sets line styles for a graph.

Sets line symbols displayed on the plotted
points of a graph.

Sets line thickness for a graph.

GAUSS Graphics

plotSetNewWindow

plotSetTitle

plotSetXLabel

plotSetXTicInterval

plotSetXTicLabel

plotSetYLabel

plotSetZLabel

Sets whether new graphs should be
drawn in the same window or in a newly
created window.

Controls the settings for the title for a
graph.

Controls the settings for the X-axis label
on a graph.

Controls the interval between X-axis tic
labels and optionally at which X-value to
place the first tic label.

Controls the formatting and angle of X-
axis tic labels for 2-D graphs.

Controls the settings for the Y-axis label
on a graph.

Controls the settings for the Z-axis label
on a graph.

Most of these functions begin with plotSet. This has two main advantages. First, you
may quickly and easily survey the plotSet options by typing plotSet in a GAUSS
editor and scrolling through the auto-complete list without needing to consult the doc-
umentation. Second, this convention makes your GAUSS code easy to read and under-

stand.

Example

//Declare plotControl structure

struct plotControl myPlot;

//Initialize the structure with the "bar" default values from

//the main application menu Tools->Preferences->Graphics

6-9

GAUSS User Guide

myPlot = plotGetDefaults ("bar");

//Create data to plot
x = seqa(l, 1, 10);
y = abs(rndn(10, 1));

//Change plot settings
//Turn off the grid
plotSetGrid (smyPlot, "off");

// Make the background light-gray
plotSetBkdColor (&émyPlot, "light gray");

//Set the title, title font and font size
plotSetTitle (&myPlot, "Example Bar Plot", "verdana", 16);

//Draw graph
plotBar (myPlot, x, vy);

W v iz P

> Q- - | s wLes

Example Bar Plot

|
| e—
X

Figure 6.6: Example Bar Plot

L L ::-i

L.

ol &

R, i

6-10

GAUSS Graphics

Notice in the previous example that the first input to the plotSetTitle function is
&myP1ot and not just the variable name, my P1ot. This is because all of the plot-
Control setting functions take a structure pointer. The ampersand (&) in front of the var-
iable name makes the input argument a pointer to that structure.

Passing structure pointers as arguments is much faster and more efficient than passing
an entire structure. The rule for remembering when to use a plotControl structure
pointer instead of plotControl structure is simple. If the function you are calling sets a
value in the structure, you need to use a structure pointer. In all other cases, use the
structure.

Fortunately the function completion tooltip in the GAUSS editor will indicate which is
required, in case you forget this simple rule. For more information on structures and
structure pointers see STRUCTURES, CHAPTER 16 .

6.5 Adding Data to Existing Plots

Y ou may add additional data to 2-D plots. This functionality is accessed through the fol-
lowing:

plotAddBar Adds a set of bars to an existing 2-D graph.

plotAddBox Adds a box plot to an existing 2-D graph.

plotAddHist Adds a histogram to an existing 2-D graph.

PlotAddHistF Adds a frequency histogram to an existing 2-
D graph.

pPlotAddHistP Adds a percentage histogram to an existing
2-D graph.

plotAddPolar Adds a polar plot to an existing polar graph.

plotAddScatter Adds a scatter plot to an existing 2-D graph.

plotAddXy Adds an XY line to an existing 2-D graph.

6-11

GAUSS User Guide

Any 2-D plot type may be added to any other 2-D plot type, with the exception of con-
tour plots, polar plots and time series plots. You may add a polar plot to a previous polar
plot or a time series plot to a time series plot.

Example

. 'M\h W= Help

?[ibf'.[ﬂ’uj Q- %0 |[Feedenss x|

//Create and plot multivariate random normal data
rndseed 19823434;

cov={10.9, 0.91};

mu = { 2, 2 };

y = rndMVn (300, mu, cov);

plotScatter(yI[.,1], v[.,2]);

//Create line coordinates and add to scatter plot
x = { -0.3, 4.8 };

y2 = { 0, 4.3 };

plotAddXY (x, y2);

Figure 6.7: Example Adding Data to a Plot

6-12

GAUSS Graphics

The plotAdd functions will not make any styling changes to the existing plot. They
may, however, increase the scale of the view if needed to accommodate the new curve.

Use the plotAdd functions only to add data to an existing graph. Do not attempt to use
them to create a new graph.

6.6 Creating Subplots

GAUSS allows you to create two types of graphs within graphs. The first is called a sub-
plot. In GAUSS a subplot divides the canvas up into tiles of equal size and shape.

This functionality is controlled with the plotLayout function. The plotLayout
function splits the canvas up into a specified number of rows and columns and also spec-
ifies into which cell to draw the next graph.

//Divide the canvas into 3 rows and 2 columns
and

//set the next drawn graph to be placed into the
//last position (which is the sixth cell);
//plotLayouts use row major ordering
plotLayout (3, 2, 6);

1123
41516

Figure 6.8: plotLayouts use row major ordering

After calling plotLayout, all future graphs will be placed in the cell location spec-
ified by the plotLayout call until plotLayout is called again with new param-
eters or a call to plotClearLayout is made. A call to plotClearLayout will
cause the next graph to be drawn to take up the entire canvas.

6-13

GAUSS User Guide

This next graph, after a call to plotClearLayout, will either draw over any existing
graphs or be drawn in a new window depending on your graphics preferences. This set-
ting can be controlled from the "On graph load" setting, located under Tools-> Pref-
erences-> Graphics. [t may also be set with the plotSetNewWindow function.

Example

//Divide the canvas into 2 rows and 2 columns
and
//place each successive graph in the next
//available cell
for 1(1, 4, 1);

plotlLayout (2, 2, 1i);

//Plot a percentage histogram with 10*i bins
of

//random normal data

plotHistP (rndn (le5, 1), 10*1i);
endfor;
//Clear the layout so future graphs are not
drawn in
//this layout
plotClearLayout () ;

GAUSS Graphics

[28 BN R =")

o (e D | e | s

-

ot

iy

X i .
i@l

Figure 6.9: Example Subplot

GAUSS Graphics

GAUSS User Guide

6.6.1 Creating Mixed Layouts

In GAUSS, plotLayouts may not overlap. For this functionality use the plot-
CustomLayout function. However, you may divide the canvas into sections of dif-
ferent size as long as they do not overlap.

Example

//Divide the canvas into a 2x2 grid and fill in the first
//row

plotLayout (2, 2, 1);
pPlotHistP (rndn (1e5,1), 20);
plotLayout (2, 2, 2);
pPlotHistP (rndn (1e5, 1), 40);

//Divide the canvas into a 2x1 grid and fill in the bottom
//half, leaving the top section alone

plotLayout (2, 1, 2);

plotHistP (rndu(le5, 1), 80);

Wowan
+ -4 -0 | [

4

o e L e TR R e S R |
"

if i
| nALE
& aam
s
* ot]
i
[TH

frnT
i

g
El
{ & &

Figure 6.10: Example Mixed Layout

6-16

GAUSS Graphics

6.6.2 Creating Custom Regions

Custom regions in GAUSS are graphs inside of graphs. They may be placed in any loca-
tion on the canvas and may be any size. This functionality is controlled by the plot-
CustomLayout function. It takes the location and size parameters for the custom
region as a percentage of the entire canvas. As with plotLayout, these settings will
be applied to the next drawn graph.

//Draw a custom region that starts 25% of the
//distance from the left edge of the canvas, 10%
//from the bottom of the canvas with a width of 40%
//of the canvas and a height of 28% of the canvas
plotSetCustomRegion (0.25, 0.1, 0.4, 0.28);

Unlike with plotLayout, these custom regions will not delete any graphs below them
and can thus be used to place a small graph over a portion of a larger graph.

Example

//Draw a full size graph
rndseed 908734;

y = rndn(le5, 1);
plotHistP (y, 30);

//Draw a custom region, close-up over the bottom left
// of the previously created graph
plotCustomLayout (0.1, 0.3, 0.2, 0.4);

//Set up plotControl struct with simple view
struct plotControl myPlot;

myPlot = plotGetDefaults ("box") ;
plotSetLegend (&myPlot, "off");

plotSetGrid (&myPlot, "off");
plotSetXAxisShow (&myPlot, O0);
plotSetYAxisShow (&myPlot, O0);

6-17

sojydern SSNVO

GAUSS Graphics

GAUSS User Guide

//Create plot in custom region defined above
plotBox (myPlot, 0, vy);

//Clear the layout, so future graphs will not be
//drawn in this custom region
plotClearlLayout () ;

i a1z
+ B D [
—r

I
E
|

Baia |

E
:

[T r—
2
i

=
P

Figure 6.11: Example Custom Layout

6.7 Time Series Plots in GAUSS

GAUSS provides the following functions to simplify the process of creating time series
graphics:

plotTs Creates a graph of time series data.

plotSetXTicLabel Controls the formatting and angle of X-axis tic
labels for 2-D time series graphs.

plotSetXTicInterval Controls the interval between X-axis tic labels
and also allows the user to specify the first tic to

6-18

GAUSS Graphics

be labeled for 2-D time series graphs.
To create a basic time series plot in GAUSS, you will use the plotTS function. In addi-
tion to the y data to plot, this function requires the following inputs:

dstart Scalar, the starting date of the time series in DT
scalar format.

frequency Scalar, the frequency of the data per year. Valid
options include:

12 Monthly
4 Quarterly

1 Yearly data

Example
//Data to plot
y = rndu(24, 1);

//Start the series in January of 1987
dstart = 1987;

//Specify the data as monthly
freq = 12;

//Plot the data
plotTS (dstart, freq, vy):;

The example program above will create a graph of monthly data from January of 1987
through December of 1988. It should look similar to the graph below:

6-19

sojydern ssNvo

GAUSS Graphics

GAUSS User Guide

Graphics

0.2

|

S E e e S S e B S
1987-01 1987-03 1987-05

@ Help

Figure 6.12: Close-up of monthly data plot
Understanding the dstart parameter

The dstart parameter is specified to be a scalar value in DT scalar format. In DT sca-
lar format the leading four digits are the year and the next two digits, if present, rep-
resent the month. If the month information is not present, as in the example above,
GAUSS will assume the first month of the year. This means that this:

2008

and this:

200801

will both be treated as specifying January of 2008.

To specify a starting quarter in DT scalar format, set the final digits of your dstart to
be the first month of the quarter. The following represent 2008 Q1, 2008 Q2, 2008 Q3
and 2008 Q4 respectively.

200801
200804

6-20

GAUSS Graphics

200807
200810

6.7.1 Quarterly Example
Using what we have just learned, we will create a quarterly graph that starts at 2007 Q4
and runs for 16 quarters.

//Create 16 random data points

y = rndu(le, 1);

//Start the series in 2007 Q4
dstart = 200710;

//Specify the data as quarterly
freq = 4;

//Plot the data
plotTS (dstart, freq, v);

This should produce a graph that looks similar to this:

6-21

sojydern SSNVO

GAUSS Graphics

GAUSS User Guide

=
S

‘ Debug
]
(%]

£ 0.2
m
&
0.1
Eﬂ-l- I T T I T T I T T | T T I T 1
,@ 2007-Q4 2008-Q2 2008-Q4
I\.

Figure 6.13: Close-up of quarterly data plot

6.7.2 Controlling Tic Label Locations

The first tic label on the X-axis of the graph that ended the last section is located on the
first data point, 2007 Q4. Let us suppose that we would prefer the graph to have tic
labels only on the first quarter of each year. We can accomplish this by using the func-
tion plotSetXTicInterval.

plotSetXTicInterval has the following parameters:

interval the number of data points between each X-tic that
is labeled.
firstLabeled the value of the first data point to be labeled.

Since we are working with quarterly data and would like to place X-tic labels on each
year, we will set the interval parameter equal to four and we will set the first-

6-22

GAUSS Graphics

Labeled to be the first full year in our series, 2008. This will change our program to
look like this:

//Declare and initialize plotControl structure
struct plotControl myPlot;
myPlot = plotGetDefaults (“xy”) ;

//Create 16 random data points
y = rndu(le, 1);

//Start the series in 2007 Q4 and specify
//quarterly data

dstart = 200710;

freq = 4;

//Start x-tic labels at 2008 and label every 4th
//data point

interval = 4;

firstLabeled = 2008;

plotSetXTicInterval (&myPlot, interval, firstLabeled);

//Plot the data
plotTS (myPlot, dstart, freq, vy):

This code should create a graph with x-tic labels only on the first quarter of each year as
you see below:

6-23

sojydern ssNvo

GAUSS Graphics

GAUSS User Guide

f
| = GalkE1T
|

.*E/'Qm“_ﬂ'.‘_" ;-wuu

st 11 [

& |

& L) "

E. crail II|I II|III /In'lll /\ IIII/\/ Ill\

=l [\
[\] & \

ol Y vay

a4/

| - T "
200G

R T DV TR VRSP USSR N S Lo 1P
¥ -1 008 2001
B

Figure 6.14: Quarterly data graph

We can see that the X-tics are in the correct location. However since we are only label-
ing each year, we may not want Q1 printed next to the year on each of the X-tic labels.

6.7.3 Tic Label Formatting

We can change the formatting of these labels and optionally the angle at which they are
printed with the function plotSetXTicLabel. This function has the following argu-

ments:

fmt string, specifying the format with which to format
the X-tic labels.

angle scalar, the angle at which to print the labels

The fmt input can take many forms, see dttostr and strtodt for all options, but for this
purpose we are only concerned with these three:

YYYY print the four digit year.

6-24

GAUSS Graphics

Q0 print the quarter as Q1, Q2, Q3 or Q4.

MO print the month as a two digit number.

These format specifiers can be placed in any order. You may place any characters in
between them and they will be printed literally. For example if we start with 201204:

fmt = “YYYY-00”;
will tell GAUSS to print the date as:
2012-02
whereas:
fmt = “MO/YYYY”;
tells GAUSS to print the date as:
04/2012
Since we want to print only the four digit year on our x-tic labels, we will set:
fmt = “YYYY”;
Giving us the following program:
//Declare and initialize plotControl structure
struct plotControl myPlot;
myPlot = plotGetDefaults (“xvy”) ;

//Create 16 random data points
y = rndu(le, 1);

//Start the series in 2007 Q4 and specify
//quarterly data

6-25

soyders SSNVO

GAUSS User Guide

This final program should yield a graph that looks similar to:

Figure 6.15: Quarterly data graph

6-26

GAUSS Graphics

6.8 Interacting with Plots in GAUSS

Once a graph has been created, GAUSS provides interactive zooming, panning, and the
moving of legends and subplots as well as the ability to hide and restore individual
curves on the graph. Plot rotation is also available for 3-dimensional plots.

6-27

sojydern SSNVO

GAUSS Graphics

GAUSS User Guide

6.8.1 Interacting with 2-D Plots

To interact with plots in GAUSS, first select the "Zoom/Pan Plot" button from the tool-
bar. With this button selected, you will be able to perform actions on the view of a par-
ticular plot. Zooming is controlled by the mouse scroll wheel. Scroll the mouse wheel
forward to zoom in. Pan and scroll is accomplished by drag-and-drop with the mouse.
Note that upon zooming or panning, the axes will be automatically updated to reflect the

new view.

Zoom,/Pan
Plot

I
Revise
Layout
Figure 6.16: Zoom/Pan Plot Toolbar

Hide/Restore Curves

Each legend item is also a button that hides and restores individual curves, bars, etc.
Click on a legend item to hide the corresponding curve. Notice that the axes will auto-
matically scale to the remaining curves. Click the legend item again to restore the curve

to the graph.

6-28

GAUSS Graphics

Sl -H @ R R R e e— |

bl &

B'aunm =
it © s i
[l o

i o

%

]

i |

i

Il*

I

[i

IF:

L

Figure 6.17: The legend acts as a button to hide curves

Relocating Graphic Items

To relocate subplots or legends first select the "Revise Layout" button. You may then
drag and drop the item to its desired location. Initially, legends will be grouped with their
respective graph. This means that when you select and move a graph, its legend will
also be selected and maintain its position relative to the graph.

You may ungroup a legend from its parent graph by right-clicking the legend and select-
ing "Ungroup." This legend will no longer move along with its graph. Y ou may regroup
the legend to the graph by right-clicking the legend and selecting "Regroup."

If you would like to change the z-order of an item in a layout, you may select it, right-
click to bring up the context menu and then choose, either "Send to Front" or "Send to
Back." Individual plots and their respective legends will both be affected.

6-29

sojydern ssNvo

Hm@

Jmm_x.n e @ [woes T [| ol cen

[

GAUSS User Guide

sorgder SSNVO

Figure 6.18: Drag and drop to relocate the legend

6-30

GAUSS Graphics

6.8.2 3-D Plots

Zoom

Zooming in and out on a 3-dimensional graph may be accomplished by use of the mouse
scroll wheel.

Panning and Scrolling

To move a 3-D image without rotating it, hold down the CTRL key and drag the image
to its desired location with your mouse.

Rotate/Viewpoint Change

To rotate 3-dimensional plots and examine the graph from different viewpoints, click
and drag with the mouse.

6-31

sojydern SSNVO

GAUSS Graphics

GAUSS User Guide

6.8.3 File Export

GAUSS graphs may be exported to many popular file formats, including BMP, PNG, PS,
SVG and PDF. Graphics may be exported programmatically or using the graphical con-
trols. To export a graph programmatically, use the plotSave function, passing in the
filename with extension and the dimensions in centimeters for the second argument:

//Save the graph just created as mygraph.pdf with a width of
//30 cm and a height of 18 cm

size = { 30, 18 };

plotSave ("mygraph.pdf", size);

To export a graph using the graphical controls, select the graph you would like to export
and then select File->Export Graph from the main menu.

File name:

*.pp

5 p *.png *.|

PDF Documents (*.pdf)

Hide Folders SVG Documents (*.svg)
Postscript Documents (*.ps)

Figure 6.19: Export Options

Once you have selected a filename and clicked the save button, a window with export
sizing options will appear. This window has two sections. The first section sets the with

and height of your exported image.

The second section sets the font sizes. If "Auto size" is checked, GAUSS will auto-
matically scale the fonts so that they will be the same size relative to the size of the
graph as they appear when viewed in GAUSS. Otherwise you may specify individual
font sizes to use for each text object. For convenience, the font sizes specified for your
graph will be automatically entered in the respective field (title, axes and legend).

6-32

GAUSS Graphics

- b
B Export Graph m

Width {(mm): 423

Height {mm): 234
Keep Aspect Ratio: EI

Font Size
Auto size: [E
All Text:
Title: |15
Axes: |10
Legend: |10

[Cancel][Export]

Figure 6.20: Export Dialog

6-33

sojydern SSNVO

GAUSS Graphics

GAUSS User Guide

6.8.4 Saving Graphs

Graphs may be saved and then reloaded later. To save a graph, select the graph you
would like to save and then select File-> Save Graph from the main menu. GAUSS

graphs are saved in an XML format with a . plot extension.

[File] Edit Tools View Help

o Mew Chrl+M m
= OpenFile Ctrl+0 p—---—+—+-—
Open Graph
Close Chrl+W
Close All
Save Graph
Export Graph
& Print Ctrl+P
Recent Files L4
Exit Alt+F4
i
=
o
g o 980
Z =
[
o
o 970

Figure 6.21: Save Graph menu

Graphs may also be saved programmatically with the plotSawve function.

6-34

7 Graphics Editing

GAUSS allows you to interactively change most all attributes of a created graph. First
create a graph. For demonstration purposes you may run the example program ran-
domwalk.e to create a graph. Next open the Graph Settings window if it is not open
already, by selecting View->Graph Settings from the menu bar.

7.1 Changing Appearance

Figure 7.1: Changing Appearance

7-1

GAUSS User Guide

Click on the graph to populate the Graph Settings Window. To change one of the colors,
single-click on the color button to bring up a color palette window.

Enabled
Lebed
+ Curvel

_Im-

Labed

E Coler

I Lne Width
e Style

i Symmbal

Symbaol Width

‘.’ * Curved

Ee Leboel

3

Celes

Figure 7.2: Color Palette

To change text for a label or title, double-click the current text and edit the text.

4 Title
Caption |
Font Werdana 10
Color -

Figure 7.3: Text Options

Double-click font names in the graph settings window to open a font dialog window.

7-2

Graphics Editing

W Select Font — “

Fant Fant style
'I-I'—

Sipz

Jver darag Mormal 10
(]
7
B

Trebuchet M5
Tunga Ralic
Tw Cen MT Bald
Tw Cen MT Condensed Bold Ralic 9 4
Tw Cen MT Condensed Extra Bodd 10

Utsaah
Vani
Verdana

Wiizya it

Mormal

Effects Sample
]| Strikeout by
Kixienoe AaBbYyZz
Writing System :
Any |

o][conce

Figure 7.4: Font Options

7.2 Adding Items

The Graphics Page toolbar has buttons for adding

Lines and arrows
Rectangles
Ellipses

o Text boxes

To add an item, click the appropriate toolbar button and then click and drag to create the
object in your graphic window.

7-3

GAUSS User Guide

File Edit Tools VYiew Help

| a ¥/ -[{em

l? Graph Settings g x |_G.

Figure 7.5: Select the item to add

0.0358, 4.0304

=l
o Oo@%
- 00
(]

Figure 7.6: Click and drag to add the object

7.3 Adding Text to a Text Box

To add text to a text box, double-click in the text box. When you see a text cursor (which
looks similar to a capital i), you may begin entering text.

7.4 Which Object Will Be Edited?

If a graph or graphics object is actively selected, its border will be highlighted red.
Changes made in the Graph Settings window will apply to this selected object. If no
object is actively selected, changes made in the Graph Settings window will apply to the
last selected object.

Graphics Editing

| e Ede Tools View Hep
E/-Hom %00 Em—i
| g |orensense 8% ownsl | =
g Feeld value K = ra_
Benerl . @ o8
b ST — 00 20¥% 8 oo |
g e o & o @ 3’-:9,5*‘ oo
i Bnl.grh.:tl M (o] %%33 DD%G o a N
= - o, &0 o)
- Caption (s] [+] (s} o
| = o o [#]
a Font ‘erdana 100 | o o
&l Calor [| L i I-IEI Tt .|1 ul 1 1 :II ,.
| + ipesisbels :
i e o L
a = - lo_. 0% %a 302 Y00

Figure 7.7: Highlighted Object

When you place your mouse in the Graph Settings window, if no object is actively
selected, the last selected object will be given a blue edge highlight to indicate to which
object your changes will be made.

| File Edi Tosls Wiew Hep

| F/-mEem U R | —
| § v 9% wwniD | =
Genersl
B oo 00 0¥ o & 5s
i Gried Color el d:! o d® o W :3"5& & o
| ° €, 800380007 h
cags | o 3 gﬂd:l o c
| + e GG.:?O 28 o
] Caption o o O'm‘
i Font Verdana 10 = - e o fo)
| Cor - z A ' =
| g = P :
Fenk ‘derclana 10 (%] [(8]
‘i i - |m_°¢b %0 892 "0 3

Figure 7.8: Last Selected Object

GAUSS User Guide

7.5 Moving and Resizing Objects

To move an object, hover your mouse over it. When your mouse pointer is a hand icon
and the object you would like to move has a blue highlight around its edges, click and
drag to move the object to its desired location.

Figure 7.9: Moving a graphic object

Hover over the corner of an object until your mouse pointer is two opposing arrows and
the object has a blue edge highlight. Then click and drag to resize the object.

Figure 7.10: Resizing a graphic object

8 Using the Command Line Interface

TGAUSS is the command line version of GAUSS. The executable file, tgauss, is
located in the GAUSS installation directory.

The format for using TGAUSS is:

tgauss flag(s) program program. . .

-1 logfile

-e expression

Execute file in batch mode and then exit. You can
execute multiple files by separating file names with
spaces.

Set the name of the batch mode log file when using
the —b argument. The default is tmp/gauss.log###,
where ### is the process ID.

Execute a GAUSS expression. This command is not
logged when GAUSS is in batch mode.

Suppress the sign-on banner (output only).
Turn the dataloop translator on.

Turn the dataloop translator off.

GAUSS User Guide

8.1 Viewing Graphics

NOTE: Graphics using plot* functions are only available from the graphical user inter-
face.

The deprecated Publication Quality Graphics graphics generated . t k£ files for graph-
ical output. The default output for these graphics is graphic.tkf. On Windows, you
canuse vwr .exe to view the graphics file; on UNIX/Linux/Mac, you can use vwrmp.
Two functions are available to convert . t k£ files to PostScript for printing and viewing
with external viewers: the tkf2ps function will convert . tkf files to PostScript
(.ps) files, and the tkf2eps function will convert . tkf files to encapsulated Post-
Script (. eps) files. For example, to convert the file graphic. tkf to a postscript file
named graphic.ps use:

ret = tkf2ps("filename.tkf", "filename.ps")

If the function is successful it returns 0.

8.2 Command Line History and Command Line Editing

When you run a command at the TGAUSS prompt, it is added to your command line his-
tory, which is stored in a file called .gauss prompt history in your §(HOME) directory
on UNIX/Linux or in your S(HOMEDRIVE)\$(HOMEPATH) directory on Windows. A
separate history for commands entered in the command line debugger is stored in a file
called .gauss_debug prompt_ history in the same directory. By default, the last 500 com-
mands executed at the TGAUSS and debugger command lines are stored in these files.
You can change this number by changing prompt hist num in your gauss.cfqg file.
The following keystrokes are supported for movement and editing at the command line
and for retrieving the command line history:

8-2

Using the Command
Line Interface

8.2.1 Movement

HOME or CTRL+A

END or CTRL+E

Moves cursor to beginning of line

Moves cursor to end of line

8-3

@oel91U| BUIT
puewwo) ay buisn

Using the Command

Line Interface

GAUSS User Guide

8.2.2 Editing

DELETE or CTRL+D

BACKSPACE or
CTRL+H

CTRL+U

CTRL+K

CTRL+X

ESC (Win only)

CTRL+V

CTRL+T

Deletes character at cursor

Deletes character left of cursor

Cuts all characters left of cursor

Cuts all characters right of cursor, including cursor
Cuts whole line

Deletes whole line

Pastes text from buffer to left of cursor

Transposes character at cursor and character left of
cursor

8-4

Using the Command
Line Interface

Up Arrow Or
CTRL+P

Down Arrow Or
CTRL+P

PAGE UP or CTRL+W

PAGE DOWN or
CTRL+S

ALT+H or OPTION+H
(MAC only)

! num

!'— num

! text

ALT+/ or ALT+? or
OPTION+/ (MAC
only)

8.2.3 History Retrieval

Retrieves previous line in history

Retrieves next line in history

Retrieves previous line in history that matches text to
left of cursor

Retrieves next line in history that matches text to left
of cursor

Prints prompt history to screen

Runs last line in history

Runs the num line in history

Runs the line num before current line in history;
I-1 is equivalent to !!

Runs last line in history beginning with text

Prints help screen

aoeL1U| BUIT
puewwo) ay buisn

Note that some of these keystrokes are mapped differently on different computers. For
example, on some computers, SHIFT+RIGHT ARROW behaves the same as RIGHT
ARROW, while ALT+RIGHT ARROW moves the cursor right one word. Therefore, mul-

8-5

Using the Command
Line Interface

GAUSS User Guide

tiple keystroke mappings have been supported to maximize the availability of these com-
mandson any given machine.

8.3 Interactive Commands

This section discusses interactive commands available in TGAUSS.

8-6

Using the Command
Line Interface

8.3.1 quit

The quit command will exit TGAUSS.
The format for quit is:
quit

You can also use the system command to exit TGAUSS from either the command line
or a program (see system in the GAUSS LANGUAGE REFERENCE).

The format for system is:

system

8-7

@oel91U| BUIT
puewwo) ay buisn

Using the Command
Line Interface

GAUSS User Guide

8.3.2 ed

The ed command will open an input file in an external text editor (see ed in the
GAUSS LANGUAGE REFERENCE).

The format for ed is:

ed filename

8-8

Using the Command
Line Interface

8.3.3 browse

The browse command allows you to search for specific symbols in a file and open the
file in the default editor. You can use wildcards to extend search capabilities of the
browse command.

The format for browse is:

browse symbol

8-9

@oel91U| BUIT
puewwo) ay buisn

Using the Command
Line Interface

GAUSS User Guide

8.3.4 config

The config command gives you access to the configuration menu allowing you to
change the way GAUSS runs and compiles files.

The format for config is:

config

Run Menu

Translator

Translator line
number tracking

Line number
tracking

Compile Menu
Autoload
Autodelete
GAUSS Library
User Library

Declare Warnings

Toggles on/off the translation of a file using
dataloop. The translator is not necessary for
GAUSS program files not using dataloop.

Toggles on/off execution time line number tracking
of the original file before translation.

Toggles on/off the execution time line number
tracking. If the translator is on, the line numbers refer
to the translated file.

Toggles on/off the autoloader.

Toggles on/off autodelete.

Toggles on/off the GAUSS library functions.
Toggles on/off the user library functions.

Toggles on/off the declare warning messages during
compiling.

8-10

Using the Command
Line Interface

Compiler Trace Includes the following options:
Off Turns off the compiler trace
function.
File Traces program file openings and
closings.
Line Traces compilation by line.
Symbol Creates a report of procedures and the local and

global symbols they reference.

8.4 Debugging
The debug command runs a program under the source level debugger.

The format for debug is:

debug filename

@oel91U| BUIT
puewwo) ay buisn

Using the Command
Line Interface

GAUSS User Guide

8.4.1 General Functions

? Displays a list of available commands.

q/Esc Exits the debugger and returns to the GAUSS
command line.

+/- Disables the last command repeat function.

8-12

Using the Command
Line Interface

8.4.2 Listing Functions

1l number

lc

11

11

11

11

1p

file 1line

file

line

Displays a specified number of lines of source code
in the current file.

Displays source code in the current file starting with
the current line.

Displays source code in the named file starting with
the specified line.

Displays source code in the named file starting with
the first line.

Displays source code starting with the specified line.
File does not change.

Displays the next page of source code.

Displays the previous page of source code.

@oel91U| BUIT
puewwo) ay buisn

Using the Command
Line Interface

GAUSS User Guide

8.4.3 Execution Functions

S number

n number

X number

Executes the specified number of lines, stepping into

procedures.

Executes the specified number of lines, stepping over

procedures.

Executes code from the beginning of the program to
the specified line count, or until a breakpoint is hit.

Executes from the current line to the end of the
program, stopping at breakpoints. The optional
arguments specify other stopping points. The syntax
for each optional argument is:

filename
line
period

filename
line

filename
,, period

line
period

The debugger will stop every
period times it reaches the
specified Iine in the named
file.

The debugger will stop when it
reaches the specified 1ine
in the named file.

The debugger will stop every
period times it reaches any
line in the named file.

The debugger will stop every
period times it reaches the
specified 1ine inthe
current file.

8-14

Using the Command
Line Interface

jx number

filename The debugger will stop at every
line in the named file.

line The debugger will stop when it
reaches the specified 1ine
in the current file.

procedure The debugger will stop every
period period times it reaches the
first line in a called procedure.

procedure The debugger will stop every
time it reaches the first line in a
called procedure.

Executes code to a specified line, procedure, or
period in the file without stopping at breakpoints. The
optional arguments are the same as g, listed above.

Executes code to the execution count specified
(numbe r) without stopping at breakpoints.

Executes the remainder of the current procedure (or
to a breakpoint) and stops at the next line in the
calling procedure.

8-15

@oel91U| BUIT
puewwo) ay buisn

Using the Command

Line Interface

GAUSS User Guide

8.4.4 View Commands

v [[vars]] Searches for (a local variable, then a global variable)
and displays the value of a specified variable.

v$[[vars]] Searches for (a local variable, then a global variable)

and displays the specified character matrix.

The display properties of matrices and string arrays can be set using the following com-
mands.

r Specifies the number of rows to be shown.
c Specifies the number of columns to be shown.
num, num Specifies the indices of the upper left corner of the

block to be shown.

w Specifies the width of the columns to be shown.
P Specifies the precision shown.
f Specifies the format of the numbers as decimal,

scientific, or auto format.

q Quits the matrix viewer.

8-16

Using the Command
Line Interface

8.4.5 Breakpoint Commands

1b
b

Shows all the breakpoints currently defined.

Sets a breakpoint in the code. The syntax for each optional argument

1S:

filename
line
period

filename
line

filename
,, period

line
period
filename

line

procedure
period

The debugger will stop every period
times it reaches the specified 11ine inthe
named file.

The debugger will stop when it reaches the
specified 11ine in the named file.

The debugger will stop every period
times it reaches any line in the named file.

The debugger will stop every period
times it reaches the specified 1ine inthe
current file.

The debugger will stop at every line in the
named file.

The debugger will stop when it reaches the
specified line in the current file.

The debugger will stop every period
times it reaches the first line in a called
procedure.

@oel91U| BUIT
puewwo) ay buisn

Using the Command
Line Interface

GAUSS User Guide
procedure The debugger will stop every time it reaches
the first line in a called procedure.
d Removes a previously specified breakpoint. The optional arguments

are the same arguments as b, listed above.

8.5 Using the Source Browser in TGAUSS

To start the Source Browser in TGAUSS, type BROWSE followed by a symbol name.
When the Source Browser is active, the prompt displays Browse :. GAUSS searches
through all active libraries for the file in which the symbol is defined. If found, the file
containing the source code is opened in the default editor.

Wildcard (*) searches can also be used. When using wildcard searches, each symbol
that the string matches will be displayed on-screen in a numbered list. To select a spe-
cific command to view in the default editor, select the number from the list.

The Source Browser will remain active until you type CTRL+C to return to the GAUSS
prompt.

8-18

9 Language Fundamentals

GAUSS is a compiled language. GAUSS is also an interpreter. A compiled language,
because GAUSS scans the entire program once and translates it into a binary code
before it starts to execute the program. An interpreter, because the binary code is not the
native code of the CPU. When GAUSS executes the binary pseudocode it must "inter-
pret" each instruction for the computer.

How can GAUSS be so fast if it is an interpreter? Two reasons. First, GAUSS has a
fast interpreter, and the binary compiled code is compact and efficient. Second, and
most significantly, GAUSS is a matrix language. It is designed to tackle problems that
can be solved in terms of matrix or vector equations. Much of the time lost in inter-
preting the pseudocode is made up in the matrix or vector operations.

This chapter will enable you to understand the distinction between "compile time" and
"execution time," two very different stages in the life of a GAUSS program.

9.1 Expressions

An expression is a matrix, string, constant, function reference, procedure reference, or
any combination of these joined by operators. An expression returns a result that can be
assigned to a variable with the assignment operator '='.

9.2 Statements

A statement is a complete expression or command. Statements end with a semicolon.

9-1

GAUSS User Guide

y = x*3;

If an expression has no assignment operator (=), it will be assumed to be an implicit
print statement:

print x*3;

or
x*3;

Here is an example of a statement that is a command rather than an expression:
output on;

Commands cannot be used as a part of an expression.

There can be multiple statements on the same line as long as each statement is ter-
minated with a semicolon.

9.2.1 Executable Statements

Executable statements are statements that can be "executed" over and over during the
execution phase of a GAUSS program (execution time). As an executable statement is
compiled, binary code is added to the program being compiled at the current location of
the instruction pointer. This binary code will be executed whenever the interpreter
passes through this section of the program. If this code is in a loop, it will be executed
each iteration of the loop.

Here are some examples of executable statements:

y = 34.25;

print y;

9-2

Language
Fundamentals

x=1372940 3 ;

9.2.2 Nonexecutable Statements

Nonexecutable statements are statements that have an effect only when the program is
compiled (compile time). They generate no executable code at the current location of the
instruction pointer.

Here are two examples:

declare matrix x = 1 2 3 4 ;
external matrix ybar;

Procedure definitions are nonexecutable. They do not generate executable code at the
current location of the instruction pointer.

Here is an example:
zed = rndn (3, 3);

proc sgrtinv(x) ;
local y;
y = sqrt(x);
retp (yt+inv (x)) ;
endp;

zsl = sqrtinv(zed);

There are two executable statements in the example above: the first line and the last
line. In the binary code that is generated, the last line will follow immediately after the
first line. The last line is the call to the procedure. This generates executable code.
The procedure definition generates no code at the current location of the instruction
pointer.

9-3

GAUSS User Guide

There is code generated in the procedure definition, but it is isolated from the rest of the
program. It is executable only within the scope of the procedure and can be reached only
by calling the procedure.

9.3 Programs

A program is any set of statements that are run together at one time. There are two sec-
tions within a program.

9.3.1 Main Section

The main section of the program is all of the code that is compiled together WITHOUT
relying on the autoloader. This means code that is in the main file or is included in the
compilation of the main file with an #include statement. ALL executable code should
be in the main section.

There must always be a main section even if it consists only of a call to the one and only
procedure called in the program.

9.3.2 Secondary Sections

Secondary sections of the program are files that are neither run directly nor included in
the main section with #include statements.

The secondary sections of the program can be left to the autoloader to locate and com-
pile when they are needed. Secondary sections must have only procedure definitions and
other nonexecutable statements.

#include statements are allowed in secondary sections as long as the file being
included does not violate the above criteria.

Here is an example of a secondary section:

declare matrix tol = 1.0e-15;
proc feq(a,b);

9-4

Language
Fundamentals

retp (abs (a-b) <= tol);
endp;

9.4 Compiler Directives

Compiler directives are commands that tell GAUSS how to process a program during
compilation. Directives determine what the final compiled form of a program will be.
They can affect part or all of the source code for a program. Directives are not execut-
able statements and have no effect at run-time. They do not take a semicolon at the end
of the line.

The #1include statement mentioned earlier is actually a compiler directive. It tells
GAUSS to compile code from a separate file as though it were actually part of the file
being compiled. This code is compiled in at the position of the #include statement.

Here are the compiler directives available in GAUSS:

#define Define a case-insensitive text-replacement or flag
variable.

tdefinecs Define a case-sensitive text-replacement or flag
variable.

#undef Undefine a text-replacement or flag variable.

#ifdef Compile code block if a variable has been
#define'd.

#ifndef Compile code block if a variable has not been
tdefine'd.

#iflight Compile code block if running GAUSS Light.

#ifunix Compile code block if running UNIX.

telse Else clause for # 1 f-#else-#endif code block.

9-5

GAUSS User Guide

tendif Endof #if-#else-f#endif code block.

#include Include code from another file in program.

#lineson Compile program with line number and file name
records.

#linesoff Compile program without line number and file name
records.

#srcfile Insert source file name record at this point (currently

used when doing data loop translation).

#srcline Insert source file line number record at this point
(currently used when doing data loop translation).

The #define statement can be used to define abstract constants. For example, you
could define the default graphics page size as:

#define hpage 9.0
#define vpage 6.855

and then write your program using hpage and vpage. GAUSS will replace them with
9.0 and 6.855 when it compiles the program. This makes a program much more readable.

The #ifdef-#else-#endif directives allow you to conditionally compile sections of
a program, depending on whether a particular flag variable has been #de fine'd. For
example:

#ifdef log 10
y = log(x);
felse
y = 1n(x);
#endif

9-6

Language
Fundamentals

This allows the same program to calculate answers using different base logarithms,
depending on whether or not the program has a #define log 10 statement at the
top.

#undef allows you to undefine text-replacement or flag variables so they no longer
affect a program, or so you can #define them again with a different value for a dif-
ferent section of the program. If you use #definecs to define a case-sensitive var-
iable, you must use the right case when #unde f'ing it.

With #1ineson, #1inesoff, #srcline, and #srcfile you can include line
number and file name records in your compiled code, so that run-time errors will be eas-
ier to track down. #srcline and #srcfile are currently used by GAUSS when
doing data loop translation.

For more information on line number tracking, see Debugging, Section 8.4 and see
Debugging Data Loops, Section 24.3 . See also #1ineson in the GAUSS LANGUAGE
REFERENCE.

The syntax for #srcfile and #srcline is different than for the other directives that
take arguments. Typically, directives do not take arguments in parentheses; that is, they
look like keywords:

#define red 4

#srcfile and #srcline, however, do take their arguments in parentheses (like pro-
cedures):

#srcline (12)

This allows you to place #srcline statements in the middle of GAUSS commands,
so that line numbers are reported precisely as you want them. For example:

#srcline(l) print "Here is a multi-line "

#srcline (2) "sentence--if it contains a run-time error, "
#srcline(3) "you will know exactly "

#srcline (4) "which part of the sentence has the problem.";

The argument supplied to #srcfile does not need quotes:

9-7

GAUSS User Guide

#srcfile (/gauss/test.e)

9.5 Procedures

A procedure allows you to define a new function which you can then use as if it were an
intrinsic function. It is called in the same way as an intrinsic function.

y = myproc(a,b,c);

Procedures are isolated from the rest of your program and cannot be entered except by
calling them. Some or all of the variables inside a procedure can be 1ocal variables.
local variables exist only when the procedure is actually executing and then dis-
appear. Local variables cannot get mixed up with other variables of the same name in
your main program or in other procedures.

For details on defining and calling procedures, sce PROCEDURES AND KEYWORDS,
CHAPTER 11 .

9.6 Data Types

There are four basic data types in GAUSS, matrices, N-dimensional arrays, strings and
string arrays. It is not necessary to declare the type of a variable, but it is good pro-
gramming practice to respect the types of variables whenever possible. The data type
and size can change in the course of a program.

The declare statement, used for compile-time initialization, enforces type checking.

Short strings of up to 8 bytes can be entered into elements of matrices, to form character
matrices (For details, sece Command Summary, Section 27.1).

9.6.1 Constants

The following constant types are supported:

Decimal

9-8

Language
Fundamentals

Decimal constants can be either integer or floating point values:

1.34e-10
1.34e123
-1.34e+10
-1.34d-10
1.34d10
1.34d+10
123.456789345

Up to 18 consecutive digits before and after the decimal point(depending on the plat-
form) are significant, but the final result will be rounded to double precision if nec-
essary. The range is the same as for matrices (For details, see Matrices, Section 9.6.2

String
String constants are enclosed in quotation marks:

"This is a string.”

Hexadecimal Integer

Hexadecimal integer constants are prefixed with 0x:

0x0ab53def2

Hexadecimal Floating Point

Hexadecimal floating point constants are prefixed with 0v. This allows you to input a
double precision value exactly as you want using 16 hexadecimal digits. The highest
order byte is to the left:

OvE££8000000000000

9.6.2 Matrices

Matrices are 2-dimensional arrays of double precision numbers. All matrices are implic-
itly complex, although if it consists only of zeros, the imaginary part may take up no

9-9

GAUSS User Guide

space. Matrices are stored in row major order. A 2x3 real matrix will be stored in the fol-
lowing way from the lowest addressed element to the highest addressed element:

(1,11 1,21 (1,31 [2,1] [2,2] [2,3]

A 2x3 complex matrix will be stored in the following way from the lowest addressed ele-
ment to the highest addressed element:

(real part) (1,11 1,21 (1,31 (2,11 [2,2] [2,3]
(imaginary part) [1,1] [1,2] [1,3] [2,1] [2,2] [2Z,3]

Conversion between complex and real matrices occurs automatically and is transparent
to the user in most cases. Functions are provided to provide explicit control when nec-
essary.

All elements of a GAUSS matrix are stored in double precision floating point format,
and each takes up 8 bytes of memory. This is the IEEE 754 format:

Bytes Data Type Significant Digits Range
8 floating point 15-16 4.19 x 10307
<=|X|<=1.67 x
10+308

Matrices with only one element (1x1 matrices) are referred to as scalars, and matrices
with only one row or column (1xN or Nx1 matrices) are referred to as vectors.

Any matrix or vector can be indexed with two indices. Vectors can be indexed with one
index. Scalars can be indexed with one or two indices also, because scalars, vectors,
and matrices are the same data type to GAUSS.

The majority of functions and operators in GAUSS take matrices as arguments. The fol-
lowing functions and operators are used for defining, saving, and loading matrices:

L] Indexing matrices.

= Assignment operator.

9-10

Language

Fundamentals
Vertical concatenation.
~ Horizontal concatenation.
con Numeric input from keyboard.
cons Character input from keyboard.
declare Compile-time matrix or string initialization.
let Matrix definition statement.
load Load matrix (same as 1oadm).
readr Read from a GAUSS matrix or data set file.
save Save matrices, procedures and strings to disk.
saved Convert a matrix to a GAUSS data set.
stof Convert string to matrix.
submat Extract a submatrix.
writer Write data to a GAUSS data set.

Following are some examples of matrix definition statements.

An assignment statement followed by data enclosed in braces is an implicit 1et state-
ment. Only constants are allowed in 1et statements; operators are illegal. When braces
are used in 1et statements, commas are used to separate rows. The statement

let x =12 3, 456, 7829 ;

or

will result in

9-11

GAUSS User Guide

will result in

will result in

will result in

=]

-12

Language
Fundamentals

will result in

b
Il
© 0 J oUW N

Complex constants can be entered in a 1et statement. In the following example, the +
or - is not a mathematical operator, but connects the two parts of a complex number.
There should be no spaces between the + or - and the parts of the number. If a number
has both real and imaginary parts, the trailing 'i' is not necessary. If a number has no real
part, you can indicate that it is imaginary by appending the 'i'. The statement

let x[2,2] = 1+21 3-4 5 6i;
will result in

x = 1+21 3-4i
5 0+61

Complex constants can also be used with the declare, con and stof statements.

An "empty matrix'" is a matrix that contains no data. Empty matrices are created with
the 1et statement and braces:

x = {};

Empty matrices are supported by several functions, including rows and cols and the
concatenation (~, |) operators.

x = {};
hsecO = hsec;
do until hsec-hsecO > 6000;

9-13

GAUSS User Guide

x = x ~ data_in (hsec-hsec0);
endo;

You can test whether a matrix is empty by entering rows(x), cols(x) and scalerr
(x). If the matrix is empty rows and cols will return a 0, and scalerr will return
65535.

The ~ is the horizontal concatenation operator and the | is the vertical concatenation
operator. The statement

y = 1~2|3~4;
will be evaluated as
y = (1~2) 1 (3~4);

and will result in a 2x2 matrix because horizontal concatenation has precedence over ver-
tical concatenation:

y =12
3 4
The statement

y = 1+1~2%2]3-2~6/2;
will be evaluated as

y = ((1+1) ~ (2*2)) | ((3-2) ~ (6/2));

and will result in a 2x2 matrix because the arithmetic operators have precedence over
concatenation:

y = 2 4
13

For more information, see Operator Precedence, Section 10.7 .

9-14

Language
Fundamentals

The 1let command is used to initialize matrices with constant values:
let x[2,2] =1 2 3 4;

Unlike the concatenation operators, it cannot be used to define matrices in terms of
expressions such as:

y = x1-x2~x2|x3*3~x4;

The statement

y = x[1:3,5:8];

will put the intersection of the first three rows and the fifth through eighth columns of x
into the matrix y.

The statement

y = x[1 31,55 9];

will create a 3x3 matrix y with the intersection of the specified rows and columns pulled
from x (in the indicated order).

The following code

let r =1 3 1;
let ¢ =55 9;
y = x[r,cl;

will have the same effect as the previous example, but is more general.
The statement

yl2,4] = 3;

9-15

GAUSS User Guide

will set the 2,4 element of the existing matrix y to 3. This statement is illegal if y does
not have at least 2 rows and 4 columns.

The statement
x = con(3,2);
will cause the following prompt to be printed in the window:

- (1,1)

indicating that the user should enter the [1,1] element of the matrix. Entering a number
and then pressing ENTER will cause a prompt for the next element of the matrix to
appear. Pressing » will display a help screen, and pressing x will exit.

The statement

load x[] = b:mydata.asc

will load data contained in an ASCII file into an Nx1 vector x. (Use rows (x) to find
out how many numbers were loaded, and use reshape (x, N, K) toreshape it to an
NxK matrix).

The statement

load x;

will load the matrix x . fmt from disk (using the current load path) into the matrix x in
memory.

The statement

open dl = datl;
x = readr(dl,100);

will read the first 100 rows of the GAUSS data set datl.dat.

9-16

Language
Fundamentals

9.6.3 Sparse Matrices

Many GAUSS operators and commands support the sparse matrix data type. You may
use any of the following commands to create a sparse matrix:

denseToSp

denseToSpRE

packedToSp

spCreate

spEye

spOnes

spZeros

Converts a dense matrix to a sparse matrix.

Converts a dense matrix to a sparse matrix, using a
relative epsilon.

Creates a sparse matrix from a packed matrix of non-
zero values and row and column indices.

Creates a sparse matrix from vectors of non-zero
values, row indices, and column indices.

Creates a sparse identity matrix.

Generates a sparse matrix containing only ones and
Zeros

Creates a sparse matrix containing no non-zero
values.

See SPARSE MATRICES, CHAPTER 13 , for more information.

9.6.4 N-dimensional Arrays

Many GAUSS commands support arrays of N dimensions. The following commands
may be used to create and manipulate an N-dimensional array:

aconcat

aeye

Concatenate conformable matrices and arrays in a
user-specified dimension.

Create an N-dimensional array in which the planes

9-17

GAUSS User Guide

areshape

arrayalloc

arrayinit

mattoarray

described by the two trailing dimensions of the array
are equal to the identity.

Reshape a scalar, matrix, or array into an array of
user-specified size.

Create an N-dimensional array with unspecified
contents.

Create an N-dimensional array with a specified fill
value.

Convert a matrix to a type array.

See N-DIMENSIONAL ARRAYS, CHAPTER 14 , for a more detailed explanation.

9.6.5 Strings

Strings can be used to store the names of files to be opened, messages to be printed,
entire files, or whatever else you might need. Any byte value is legal in a string from 0-
255. The buffer where a string is stored always contains a terminating byte of ASCII 0.
This allows passing strings as arguments to C functions through the Foreign Language

Interface.

Here is a partial list of the functions for manipulating strings:

S+

~

chrs

dttostr

ftocv

Combine two strings into one long string.
Interpret following name as a variable, not a literal.
Convert vector of ASCII codes to character string.

Convert a matrix containing dates in DT scalar
format to a string array.

Character representation of numbers in NxK

9-18

Language
Fundamentals

ftos

ftostrC

getf

indcv

lower

stof

strindx

strlen

strsect

strsplit

strsplitPad

strtodt

strtof

strtofcplx

upper

matrix.
Character representation of numbers in 1x1 matrix.

Convert a matrix to a string array using a C
language format specification.

Load ASCII or binary file into string.

Find index of element in character vector.
Convert to lowercase.

Convert string to floating point.

Find index of a string within a second string.
Length of a string.

Extract substring of string.

Split an Nx1 string vector into an NxK string array
of the individual tokens.

Split a string vector into a string array of the
individual tokens. Pads on the right with null
strings.

Convert a string array of dates to a matrix in DT
scalar format.

Convert a string array to a numeric matrix.

Convert a string array to a complex numeric
matrix.

Convert to uppercase.

9-19

GAUSS User Guide

vals Convert from string to numeric vector of ASCII
codes.

Strings can be created like this:

X "example string";

or

i
|

= cons; // keyboard input
or
x = getf ("myfile",0); // read a file into a string
They can be printed like this:
print x;
A character matrix must have a '$' prefixed to it in a print statement:
print $x;

A string can be saved to disk with the save command in a file with a . £st extension
and then loaded with the 1oad command:

save X;
loads x;

or

loads x=x.fst;

The backslash is used as the escape character inside double quotes to enter special
characters:

9-20

Language

Fundamentals
mp" backspace (ASCII 8)
men escape (ASCII 27)
m\f" formfeed (ASCII 12)
"\g" beep (ASCII 7)
VAL line feed (ASCII 10)
"\ carriage return (ASCII 13)
At tab (ASCII 9)
A a backslash
T\ FFH the ASCII character whose decimal value is "###".

When entering DOS pathnames in double quotes, two backslashes must be used to insert
one backslash:

st = "c:\\gauss\\myprog.prg";

An important use of strings and character elements of matrices is with the substitution
operator (). In the command

create fl1 = olsdat with x,4,2;

by default, GAUSS will interpret the oIsdat as a literal; that is, the literal name of the
GAUSS data file you want to create. It will also interpret the x as the literal prefix
string for the variable names: x1 x2 x3 x4.If you want to get the data set name
from a string variable, the substitution operator () could be used as:

dataset="olsdat";
create fl="dataset with x,4,2;

9-21

GAUSS User Guide

If you want to get the data set name from a string variable and the variable names from
a character vector, use

dataset="olsdat";
let vnames=age pay sex;
create fl="dataset with “vnames,0,2;

The substitution operator () works with 1oad and save also:

lpath="/gauss/procs";
name="mydata";

load path="1lpath x="name;
command="dir *.fmt";

The general syntax is:

“variable name

Expressions are not allowed. The following commands are supported with the sub-
stitution operator (*):

create fl="dataset with “vnames,0,2;
create fl="dataset using “cmdfile;
open fl="dataset;

output file="outfile;

load x="datafile;

load path="1lpath x,vy,z,t,w;
loadexe buf="exefile;

save “name=x;

save path="spath;

dos “cmdstr;

run “prog;

msym “mstring;

9-22

Language
Fundamentals

9.6.6 String Arrays

String arrays are NxK matrices of strings. Here is a partial list of the functions for

manipulating string arrays:

Sl

declare

delete

fgetsa

fgetsat

format

fputs

fputst

let

loads

lprint

Vertical string array concatenation operator.
Horizontal string array concatenation operator.

Extract subarrays or individual strings from their
corresponding array, or assign their values.

Transpose operator.

Bookkeeping transpose operator.
Initialize variables at compile time.
Delete specified global symbols.
Read multiple lines of text from a file.

Reads multiple lines of text from a file, discarding
newlines.

Define output format for matrices, string arrays, and
strings.

Write strings to a file.

Write strings to a file, appending newlines.
Initialize matrices, strings, and string arrays.
Load a string or string array file (. £st file).

Print expressions to the printer.

9-23

GAUSS User Guide

lshow

print

reshape

save

show

sortcc

type

typecv

varget

varput

vec

vecr

Print global symbol table to the printer.
Print expressions on window and/or auxiliary output.
Reshape a matrix or string array to new dimensions.

Save matrix, string array, string, procedure, function
or keyword to disk and gives the disk file either a
.fmt, . fst or . fcg extension.

Display global symbol table.

Quick-sort rows of matrix or string array based on
character column.

Indicate whether variable passed as argument is
matrix, string, or string array.

Indicate whether variables named in argument are
strings, string arrays, matrices, procedures, functions
or keywords.

Access the global variable named by a string array.
Assign the global variable named by a string array.

Stack columns of a matrix or string array to form a
column vector.

Stack rows of a matrix or string array to form a
column vector.

String arrays are created through the use of the string array concatenation operators.
Below is a contrast of the horizontal string and horizontal string array concatenation

operators. The statements:

9-24

Language
Fundamentals

— nagen;
— "pay"’.

— "SeX";

= xS$+yS$+n;
sa = xS$~y$~n;

n 85X

assign the values:

S = agepaysex
s = age pay sex

9.6.7 Character Matrices

Matrices can have either numeric or character elements. For convenience, a matrix con-
taining character elements is referred to as a character matrix.

A character matrix is not a separate data type, but gives you the ability to store and
manipulate data elements that are composed of ASCII characters as well as floating
point numbers. For example, you may want to concatenate a column vector containing
the names of the variables in an analysis onto a matrix containing the coefficients, stand-
ard errors, t-statistic, and p-value. You can then print out the entire matrix with a sep-
arate format for each column with one call to the function print£m.

The logic of the programs will dictate the type of data assigned to a matrix, and the
increased flexibility allowed by being able to bundle both types of data together in a sin-
gle matrix can be very powerful. You could, for instance, create a moment matrix from
your data, concatenate a new row onto it containing the names of the variables and save
it to disk with the save command.

Numeric matrices are double precision, which means that each element is stored in
8 bytes. A character matrix can thus have elements of up to 8 characters.

GAUSS does not automatically keep track of whether a matrix contains character or
numeric information. The ASCII to GAUSS conversion program ATOG will record the
types of variables in a data set when it creates it. The create command will, also. The
function vartypef gets a vector of variable type information from a data set. This

9-25

GAUSS User Guide

vector of ones and zeros can be used by print£fm when printing your data. Since
GAUSS does not know whether a matrix has character or numeric information, it is up
to you to specify which type of data it contains when printing the contents of the matrix.
(For details, see print and print£fm in the GAUSS LANGUAGE REFERENCE.)

Most functions that take a string argument will take an element of a character matrix
also, interpreting it as a string of up to 8 characters.

9.6.8 Date and Time Formats

DT Scalar Format

The DT scalar format is a double precision representation of the date and time with up
to 14 digits. Each group of digits represents a different aspect of the date and time such
as the year or month. Using characters, to represent each digit in a DT scalar number
would look like this:

YYYYMODDHHSS

Starting from the left: the first four digits represent the year; the fifth and sixth digits, if
present, represent the month; the seventh and eight digits, if present, represent the day;
the ninth and tenth digits represent the hour; the eleventh and twelfth digits, if present,
represent the minutes and finally, the thirteenth and fourteenth digits represent the sec-
onds.

For example, in DT scalar format, the number:

20120723143207

represents 14:32:07 or 2:32:07 PM on July 23, 2012. It is important to remember that the
leading digits will always be the year. This becomes relevant if the DT scalar number
contains fewer than 14 digits to the right of the decimal point. For example, the number:

201302

would represent February 2013, rather than the time 20:13:02 (or 8:13:02 PM).

9-26

Language
Fundamentals

DTV Vector Format

The DTV vector is a 1x8 vector. The format for the DTV vector is:

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

UTC Scalar Format

Year

Month, 1-12

Day of month, 1-31

Hour of day, 0-23

Minute of hour, 0-59

Second of minute, 0-59

Day of week, 0-6 where 0 is Sunday

Day since beginning of year, 0-365

The UTC scalar format is the number of seconds since January 1, 1970, Greenwich

Mean Time.

9.6.9 Special Data Types

The IEEE floating point format has many encodings that have special meaning. The
print command will print them accurately so that you can tell if your calculation is pro-

ducing meaningful results.

NaN

There are many floating point encodings which do not correspond to a real number.
These encodings are referred to as NaN's. NaN stands for Not A Number.

9-27

GAUSS User Guide

Certain numerical errors will cause the math coprocessor to create a NaN called an
"indefinite." This will be printed as a -NaN when using the print command. These
values are created by the following operations:

e oo plus -0
e oo minus +oo
e -00 MINUS -0
e 0*o0
e 00/00
e« 0/0
e Operations where one or both operands is a NaN
e Trigonometric functions involving o
INF

When the math coprocessor overflows, the result will be a properly signed infinity. Sub-
sequent calculations will not deal well with an infinity; it usually signals an error in your
program. The result of an operation involving an infinity is most often a NaN.

DEN, UNN

When some math coprocessors underflow, they may do so gradually by shifting the sig-
nificand of the number as necessary to keep the exponent in range. The result of this is a
denormal (DEN). When denormals are used in calculations, they are usually handled
automatically in an appropriate way. The result will either be an unnormal (UNN),
which like the denormal represents a number very close to zero, or a normal, depending
on how significant the effect of the denormal was in the calculation. In some cases the
result will be a NaN.

Following are some procedures for dealing with these values. These procedures are not
defined in the Run-Time Library. If you want to use them, you will need to define
them yourself.

9-28

Language
Fundamentals

The procedure isindef will return 1 (true) if the matrix passed to it contains any
NaN's that are the indefinite mentioned earlier. The GAUSS missing value code as well
as GAUSS scalar error codes are NaN's, but this procedure tests only for indefinite:

proc isindef (x);
retp (not x $/= INDEFn);
endp;

Be sure to call gausset before calling isindef. gausset will initialize the value
of the global INDEFnN to a platform-specific encoding.

The procedure normal will return a matrix with all denormals and unnormals set to
Zero.

proc normal (x) ;
retp(x .* (abs(x) .> 4.19e-307));
endp;

The procedure isin£, will return 1 (true) if the matrix passed to it contains any infin-
ities:

proc isinf (x);
local plus,minus;

plus = INFp;

minus = INFn;

retp (not x /= plus or not x /= minus);
endp;

Be sure to call gausset before calling isinf. gausset will initialize the values of
the globals INFnand INFp to platform specific encodings.

9.7 Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the * and / oper-
ators have a higher precedence than the + and - operators. In expressions that contain

9-29

GAUSS User Guide

these operators, the operand pairs associated with the * or / operator are evaluated
first. Whether * or / is evaluated first depends on which comes first in the particular
expression. For a listing of the precedence of all operators, see Operator Precedence,
Section 10.7 .

The expression

-5+3/4+6*3
is evaluated as
(=5)+(3/4)+(6*3)

Within a term, operators of equal precedence are evaluated from left to right.

The term
27377

is evaluated
(23)7

In the expression

£1(x) *£2 (y)

£1 is evaluated before £2. Here are some examples:

Expression Evaluation
atb*c+d (a+(b*c)+d
2+4-6*inv(8)/9 ((-2) +4) - ((6 * inv(8))/9)

9-30

Language
Fundamentals

3.14"5*%6/(2+sqrt(3)/4)
-atb*c2

atb-ct+d-e

a’b”c*d

a*b/d*c

a’"bt+c*d

2741

2%31

9.8 Flow Control

((3.145) *6)/(2 + (sqrt(3)/4))
(-a) + (b * (c?)
(((@+b)-c)+d)-e

((a°)°) * d

((a@*b)/d)*c

(@) + (¢ * d)

2(4)

2% @3))

A computer language needs facilities for decision making and looping to control the
order in which computations are done. GAUSS has several kinds of flow control state-

ments.

9.8.1 Looping

do loop

The do statement can be used in GAUSS to control looping.

do while scalar expression; // loop if expression is true

statements

9-31

GAUSS User Guide

endo;

also

do until scalar expression; // loop 1f expression is false

statements

endo;

The scalar expression is any expression that returns a scalar result. The
expression will be evaluated as TRUE if its real part is nonzero and FALSE if it is zero.
There is no counter variable that is automatically incremented in a do loop. If one is
used, it must be set to its initial value before the loop is entered and explicitly incre-
mented or decremented inside the loop.

The following example illustrates nested do loops that use counter variables.

format /rdn 1,0;

w

space = " ";
comma = ",";
i=1;
do while 1 <= 4;
J =1
do while j <= 3;
print space i1 comma Jj;;
J o= 3+1;
endo;
i = i+1;
print;
endo;

This will print:

9-32

Language
Fundamentals

S w NP

~ N~ =
e e
S w NP
~ N~ =~ ~
w W w w

~

Use the relational and logical operators without the dot '." in the expression that controls
a do loop. These operators always return a scalar result.

break and continue are used within do loops to control execution flow. When
break is encountered, the program will jump to the statement following the endo. This
terminates the loop. When continue is encountered, the program will jump up to the
top of the loop and reevaluate the while or until expression. This allows you to reit-
erate the loop without executing any more of the statements inside the loop:

do until eof (fp); // continue jumps here
x = packr (readr (fp,100)) ;
if scalmiss (x);

continue; // iterate again
endif;
S = s + sumc (x);
count = count + rows(x);
if count >= 10000;
break; // break out of loop
endif;
endo;
mean = s / count; // break jumps here
for loop

The fastest looping construct in GAUSS is the for loop:

for counter (start, stop, step);

statements

9-33

GAUSS User Guide

endfor;

counter is the literal name of the counter variable. start, stop and step are sca-
lar expressions. start is the initial value, stop is the final value and step is the
increment.

break and continue are also supported by for loops. (For more information, see
for in the GAUSS LANGUAGE REFERENCE.)

9.8.2 Conditional Branching
The if statement controls conditional branching:
if scalar expression;
statements
eléeif scalar expression;
statements
elseg
;tatements

endif;

9-34

Language
Fundamentals

The scalar expressionis any expression that returns a scalar result. The expres-
sion will be evaluated as TRUE if its real part is nonzero and FALSE if it is zero.

GAUSS will test the expression after the i f statement. If it is TRUE, then the first list
of statements is executed. If it is FALSE, then GAUSS will move to the expression after
the first elsei f statement, if there is one, and test it. It will keep testing expressions
and will execute the first list of statements that corresponds to a TRUE expression. If no
expression is TRUE, then the list of statements following the e 1 se statement is
executed. After the appropriate list of statements is executed, the program will go to the
statement following the endi f and continue on.

Use the relational and logical operators without the dot '." in the expression that controls
an 1f or elseif statement. These operators always return a scalar result.

i f statements can be nested.

One endif is required per if clause. If an el se statement is used, there may be only
one per if clause. There may be as many elseif's as are required. There need not be
any elseif's or any else statement within an i f clause.

9.8.3 Unconditional Branching

The goto and gosub statements control unconditional branching. The target of both a
goto and a gosub is a label.

goto

A goto is an unconditional jump to a label with no return:

label:

goto label;

Parameters can be passed with a goto. The number of parameters is limited by avail-
able stack space. This is helpful for common exit routines:

9-35

GAUSS User Guide

goto errout ("Matrix singular");
goto errout("File not found");

errout:

pop errmsg;
errorlog errmsg;
end;

gosub

With a gosub, the address of the gosub statement is remembered and when a
return statement is encountered, the program will resume executing at the statement
following the gosub.

Parameters can be passed with a gosub in the same way as a goto. Witha gosub it
is also possible to return parameters with the return statement.

Subroutines are not isolated from the rest of your program and the variables referred to
between the label and the return statement can be accessed from other places in your
program.

Since a subroutine is only an address marked by a label, there can be subroutines inside
of procedures. The variables used in these subroutines are the same variables that are
known inside the procedure. They will not be unique to the subroutine, but they may be
locals that are unique to the procedure that the subroutine is in. (For details, see gosub
in the GAUSS LANGUAGE REFERENCE.)

9.9 Functions

Single line functions that return one item can be defined with the fn statement.

fn area(r) = pi * r * r;

9-36

Language
Fundamentals

These functions can be called in the same way as intrinsic functions. The above function

could be used in the following program sequence.

diameter = 3;
radius = 3 / 2;
a = area (radius) ;

9.10 Rules of Syntax

This section lists the general rules of syntax for GAUSS programs.

9-37

Language
Fundamentals

GAUSS User Guide

9.10.1 Statements

A GAUSS program consists of a series of statements. A statement is a complete expres-
sion or command. Statements in GAUSS end with a semicolon with one exception: from
the GAUSS command line, the final semicolon in an interactive program is implicit if it
is not explicitly given:

(gauss) x=5; z=rndn(3,3); y=x+z

Column position is not significant. Blank lines are allowed. Inside a statement and out-
side of double quotes, the carriage return/line feed at the end of a physical line will be
converted to a space character as the program is compiled.

A statement containing a quoted string can be continued across several lines with a back-
slash as follows.

s = "This is one really long string that would be "
"difficult to assign in just a single line.";

9-38

Language
Fundamentals

9.10.2 Case

GAUSS does not distinguish between uppercase and lowercase except inside double
quotes.

9-39

s|ejuswepun 4

abenbue

GAUSS User Guide

9.10.3 Comments

9-40

Language
Fundamentals

9.10.4 Extraneous Spaces

Extraneous spaces are significant in print and 1print statements where the space is
a delimiter between expressions:

print x y z;

Inprint and lprint statements, spaces can be used in expressions that are in paren-
theses:

print (x * y) (x + y);

9-41

s|ejuswepun 4

abenbue

Language

Fundamentals

GAUSS User Guide

9.10.5 Symbol Names

The names of matrices, strings, procedures, and functions can be up to 32 characters
long. The characters must be alphanumeric or an underscore. The first character must be
alphabetic or an underscore.

9-42

Language
Fundamentals

9.10.6 Labels

A label is used as the target of a goto or a gosub. The rules for naming labels are the
same as for matrices, strings, procedures, and functions. A label is followed imme-
diately by a colon:

here:

The reference to a label does not use a colon:

goto here;

9-43

s|ejuswepun 4

abenbue

Language

Fundamentals

GAUSS User Guide

9.10.7 Assignment Statements
The assignment operator is the equal sign '="
vy =x + z;
Multiple assignments must be enclosed in braces '{ }'. The statement:
mant, pow = baselO (x) ;
is incorrect. It should be:
{ mant, pow } = baselO (x);
The comparison operator (equal to) is two equal signs '=="
if x == y;

print "x is equal to y";
endif;

9-44

Language
Fundamentals

9.10.8 Function Arguments

The arguments to functions are enclosed in parentheses '()':

y = sqrt(x);

9-45

s|ejuswepun 4

abenbue

Language
Fundamentals

GAUSS User Guide

9.10.9 Indexing Matrices

Brackets '/]'are used to index matrices:

x = {12 3,

375,
37 4,
8 9 5,
6 18 };
y = x[3,3];
z = x[1 2:4,1 3];

Vectors can be indexed with either one or two indices:

123456789 ;
k = v[3];
j = vI[1,6:9];

<
Il

returns the element in the second row and the third column of x.

—

x[2,3

x[1 3 5,4 7] returns the submatrix that is the intersection of rows 1, 3, and 5 and
columns 4 and 7.

x [., 3] returns the third column of x.
x[3:5, .] returns the submatrix containing the third through the fifth rows of x.

The indexing operator will take vector arguments for submatrix extraction or submatrix
assignments:

y = x[rv,cv];
ylrv,cv] = x;

rvand cv can be any expressions returning vectors or matrices. The elements of rv
will be used as the row indices and the elements of cv will be used as the column

9-46

Language
Fundamentals

indices. If rv is a scalar 0, all rows will be used; if cv is a scalar 0, all columns will be
used. If a vector is used in an index expression, it is illegal to use the space operator or
the colon operator on the same side of the comma as the vector.

9-47

s|ejuswepun 4

abenbue

Language

Fundamentals

GAUSS User Guide

9.10.10 Arrays of Matrices and Strings

It is possible to index sets of matrices or strings using the varget function.

In this example, a set of matrix names is assigned to mvec. The name y is indexed from
mvec and passed to varget which will return the global matrix y. The returned matrix
is inverted and assigned to g:

mvec = { X y z a };
q0 =2
g = inv(varget (mvec[i]));

The following procedure can be used to index the matrices in mvec more directly:

proc imvec (i) ;
retp (varget (mvec([i])) ;
endp;

Then imvec(i) will equal the matrix whose name is in the 1ith element of mvec.

In the example above, the procedure imvec() was written so that it always operates on
the vector mvec. The following procedure makes it possible to pass in the vector of
names being used:

proc get(array,i);
retp (varget (array[i]));
endp;

Then get(mvec,3) will return the 3rd matrix listed in mvec.
proc put(x,array,i);
retp (varput (x,array[i])) ;

endp;

And put(x,mvec,3) will assign x to the 3rd matrix listed in mvec and return a 1 if suc-
cessful or a 0 if it fails.

9-48

Language
Fundamentals

9.10.11 Arrays of Procedures

It is also possible to index procedures. The ampersand operator (&) is used to return a
pointer to a procedure.

Assume that £1, £2, and £3 are procedures that take a single argument. The following
code defines a procedure £i that will return the value of the ith procedure, evaluated
at x.

nms = &fl1 | &f2 | &£3;
proc fi(x,1i);
local f£f;
f = nms[i];
local f:proc;
retp (£ (x));
endp;

£i(x,2) will return £2(x). The ampersand is used to return the pointers to the pro-
cedures. nms is a numeric vector that contains a set of pointers. The 1ocal statement
is used twice. The first tells the compiler that £ is a local matrix. The ith pointer, which
is just a number, is assigned to £. Then the second 1ocal statement tells the compiler
to treat £ as a procedure from this point on; thus the subsequent statement £(x) is inter-
preted as a procedure call.

9-49

s|ejuswepun 4

abenbue

10 Operators

10.1 Element-by-Element Operators

Element-by-element operators share common rules of conformability. Some functions
that have two arguments also operate according to the same rules.

Element-by-element operators handle those situations in which matrices are not con-
formable according to standard rules of matrix algebra. When a matrix is said to be ExE
conformable, it refers to this element-by-element conformability. The following cases

are supported:

matrix op
matrix op
scalar op
matrix op
vector op
vector op

matrix
scalar
matrix
vector
matrix

vector

In a typical expression involving an element-by-element operator

z = X + vy;

conformability is defined as follows:

o If x and y are the same size, the operations are carried out corresponding

element by corresponding element:

10-1

GAUSS User Guide

o If x is a matrix and y is a scalar, or vice versa, then the scalar is operated on
with respect to every element in the matrix. For example, x + 2 will add 2 to
every element of x:

132
x =451
3 7 4

e If xis an NxI column vector and y is an NxK matrix, or vice versa, the vector is
swept "across" the matrix:

vector matrix result
1 = 2 4 3 3 5 4
4 - 31 4 = 7 5 8
3 - 6 1 2 9 4 5

o If xis an 1xK column vector and y is an NxK matrix, or vice versa, then the
vector is swept "down" the matrix:

10-2

Operators

vector 2 4 3

matrix 7 2 4

3 0 1

5 3 2

! ! !

result 9 6 7
4 4

7 7 5

e When one argument is a row vector and the other is a column vector, the result of
an element-by-element operation will be the "table" of the two:

row vector 2 4 3 1
! ! ! !

3 - 5 7 6 4

column vector 2 - 4 6 5 3
55 7 9 8 6

If x and y are such that none of these conditions apply, the matrices are not conformable
to these operations and an error message will be generated.

10.2 Matrix Operators

The following operators work on matrices. Some assume numeric data and others will
work on either character or numeric data.

10-3

Operators

GAUSS User Guide

10.2.1 Numeric Operators

For details on how matrix conformability is defined for element-by-element operators,
see Element-by-Element Operators, Section 10.1 .

+ Addition:

y = X + z;
Performs element-by-element addition.
- Subtraction or negation:

y = X — Z;
y - k;

Performs element-by-element subtraction or the negation of all elements, depending on
context. *Matrix multiplication or multiplication:

yzx*z;

When z has the same number of rows as x has columns, this will perform matrix mul-
tiplication (inner product). If x or z are scalar, this performs standard element-by-ele-
ment multiplication.

/Division or linear equation solution:

X = b / A;

If Aand b are scalars, this performs standard division. If one of the operands is a
matrix and the other is scalar, the result is a matrix the same size with the results of the
divisions between the scalar and the corresponding elements of the matrix. Use . / for
element-by-element division of matrices.

If band A are conformable, this operator solves the linear matrix equation:

10-4

Operators

Ax=b

Linear equation solution is performed in the following cases:

o If Ais asquare matrix and has the same number of rows as b, this statement

will solve the system of linear equations using an LU decomposition.
o If A is rectangular with the same number of rows as b, this statement will
produce the least squares solutions by forming the normal equations and using the

Cholesky decomposition to get the solution:

A'b

A'A

If trap 2 is set, missing values will be handled with pairwise deletion.

x:

$Modulo division
y = X % zZ;

For integers, this returns the integer value that is the remainder of the integer division of
x by z. If x or z is noninteger, it will first be rounded to the nearest integer. This is an

element-by-element operator.
!Factorial
y = x!;

Computes the factorial of every element in the matrix x. Nonintegers are rounded to the
nearest integer before the factorial operator is applied. This will not work with complex
matrices. If x is complex, a fatal error will be generated.

. * Element-by-element multiplication

y = X .* z;

10-5

slojeladQ

Operators

GAUSS User Guide

If x is a column vector, and z is a row vector (or vice versa), the "outer product” or
"table" of the two will be computed. (For comformability rules, see Element-by-Ele-
ment Operators, Section 10.1 .)

. / Element-by-element division

If x is negative, z must be an integer.
.~ Same as *

. *. Kronecker (tensor) product:
y = X .*. z;

This results in a matrix in which every element in x has been multiplied (scalar mul-
tiplication) by the matrix z. For example:

4 5 6 8 10 12

y = 7 8 9 14 16 18
12 15 18 16 20 24

21 24 27 28 32 36

*~Horizontal direct product:

10-6

Operators

Xx = 1 2

3 4
y = 5 6

7 8
Z = X *~ y;

z = 5 6 10 12
21 24 28 32

The input matrices x and y must have the same number of rows. The result will have
cols(x) * cols(y) columns.

10-7

slojeladQ

Operators

GAUSS User Guide

10.2.2 Other Matrix Operators

" Transpose operator:

The columns of y will contain the same values as the rows of x and the rows of y will
contain the same values as the columns of x. For complex matrices this computes the
complex conjugate transpose.

If an operand immediately follows the transpose operator, the ' will be interpreted as
"* Thus y = x'xisequivalentto y = x'*x,

. 'Bookkeeping transpose operator:

This is provided primarily as a matrix handling tool for complex matrices. For all
matrices, the columns of y will contain the same values as the rows of x and the rows
of y will contain the same values as the columns of x. The complex conjugate transpose
is NOT computed when you use . '.

If an operand immediately follows the bookkeeping transpose operator, the . ' will be
interpreted as . ' *. Thus y = x.'x is equivalent to y = x.'*x.

| Vertical concatenation:

z = x | y;
x= 1 2 3
5 6

10-8

Operators

10.3 Relational Operators

For details on how matrix conformability is defined for element-by-element operators,
see Element-by-Element Operators, Section 10.1 .

Each of these operators has two equivalent representations. Either can be used (for
example, < or 1t), depending only upon preference. The alphabetic form should be sur-
rounded by spaces.

A third form of these operators has a '$' and is used for comparisons between character
data and for comparisons between strings or string arrays. The comparisons are done
byte by byte starting with the lowest addressed byte of the elements being compared.

The equality comparison operators (<=, ==, >=, /=, ! =) and their dot equivalents can
be used to test for missing values and the NaN that is created by floating point excep-
tions. Less than and greater than comparisons are not meaningful with missings or
NaN's, but equal and not equal are valid. These operators are sign-insensitive for miss-
ings, NaN's, and zeros.

The string '$' versions of these operators can also be used to test missings, NaN's and
zeros. Because they do a strict byte-to-byte comparison, they are sensitive to the sign
bit. Missings, NaN's, and zeros can all have the sign bit set to 0 or 1, depending on how
they were generated and have been used in a program.

If the relational operator is NOT preceded by a dot '."', then the result is always a scalar
1 or 0, based upon a comparison of all elements of x and y. All comparisons must be
true for the relational operator to return TRUE.

By this definition, then:

if x /= y;

10-9

slojeladQ

Operators

GAUSS User Guide

is interpreted as: "if every element of x is not equal to the corresponding element of y".
To check if two matrices are not identical, use

if not x == y;

For complex matrices, the ==, /=, . == and . /= operators compare both the real and
imaginary parts of the matrices; all other relational operators compare only the real
parts.

e Less than

= x < y;

x 1t y;
z = x $< y;

Less than or equal to

z = x <= Yy;
= x le y;
z = X $<= y;

Equal to

X

eq vy
z = X $== y;

e Not equal
z =x/=y;
Z = X ne yj;
z x l=vy;
z =x §/=vy;
z = x Sl=vy;

10-10

Operators

o Greater than or equal to

zZ = X >= y;
= X ge y;
z = x $>= y;

e Qreater than
zZ = X > y;

z = xX gt y;
z = X $> y;

If the relational operator IS preceded by a dot '.", then the result will be a matrix of 1's

and 0's, based upon an element-by-element comparison of x and y.

o Element-by-element less than
z = xXx .<Yy;
z = x .1t y;

z = X .5< y;

Element-by-element less than or equal to

z = X .<= y;
z = x .le y;
z = X .$<= y;

Element-by-element equal to

zZ = X .==Yy;
z X .eq y;
z = x .$==y;

Element-by-element not equal to

z =x ./=y;
z = X .ne y;

10-11

slojeladQ

Operators

GAUSS User Guide
z = x .!=vy;
z = x .$/=y;
z = x .$l=y;

o Element-by-element greater than or equal to

zZ = X .>=Yy;
z = X .ge y;
zZ = X .$>= y;

o Element-by-element greater than

zZ =X .>Y;
z = X .gt y;
z = x .$> y;

10.4 Logical Operators

The logical operators perform logical or Boolean operations on numeric values. On input
a nonzero value is considered TRUE and a zero value is considered FALSE. The logical
operators return a 1 if TRUE and a 0 if FALSE. Decisions are based on the following
truth tables:

Complement
X not x
T K
F T
Conjunction
x y xand y
T T T
T F F
F T P
F F F

10-12

Operators
Disjunction
X y xory
T T T
T F T
If T T
F F F
Exclusive Or
x y X xor y
T T F
T F T
F T T
F F F
Equivalence
x y xeqv y
T T T
T F F
F T F
F F T

For complex matrices, the logical operators consider only the real part of the matrices.
The following operators require scalar arguments. These are the ones to use in i f and

do statements:
o Complement
z = not x;
o Conjunction

z = x and y;

10-13

slojeladQ

Operators

GAUSS User Guide

¢ Disjunction

z = X Or yy
¢ Exclusive or

Z = X XOr y;
o Equivalence

z = X eqv y;
If the logical operator is preceded by a dot '.", the result will be a matrix of 1's and 0's
based upon an element-by-element logical comparison of x and y:

o Element-by-element logical complement
z = .not x;

Element-by-element conjunction

z = x .and y;

Element-by-element disjunction

z = X .0r Vy;

Element-by-element exclusive or

Z = X .XOr V;
o Element-by-element equivalence

Z = X .eqv y;

10.5 Other Operators
Assignment Operator

Assignments are done with one equal sign:

10-14

Operators

Comma

Commas are used to delimit lists:

clear x,y,z;
to separate row indices from column indices within brackets:
y = x[3,5];
and to separate arguments of functions within parentheses:
y = momentd (x,d) ;
Period
Dots are used in brackets to signify "all rows" or "all columns'":

y = x[.,5];
Space

Spaces are used inside of index brackets to separate indices:
y = x[1 35,35 9];

No extraneous spaces are allowed immediately before or after the comma, or imme-
diately after the left bracket or before the right bracket.

Spaces are also used in print and 1print statements to separate the separate expres-
sions to be printed:

print x/2 2*sqrt(x);

10-15

slojeladQ

Operators

GAUSS User Guide

No extraneous spaces are allowed within expressions in print or lprint statements
unless the expression is enclosed in parentheses:

print (x / 2) (2 * sqrt(x));

Colon

A colon is used within brackets to create a continuous range of indices:

Ampersand

The (&) ampersand operator will return a pointer to a procedure (proc), function (£n),
or structure (struct). It is used when passing procedures or functions to other func-
tions, when indexing procedures, and when initializing structure pointers. (For more
information, see Indexing Procedures, Section 11.5 or Structure Pointers, Section
16.2)

String Concatenation
x = "dog";
y = "cat";
z = x S+ y;
print z;
dogcat

If the first argument is of type string, the result will be of type string. If the first argu-
ment is of type matrix, the result will be of type matrix. Here are some examples:

y = 0 $+ "caterpillar";
The result will be a 1x1 matrix containing 'caterpil'.
y = zeros (3,1) $+ "cat";

The result will be a 3x1 matrix, each element containing 'cat'.

If we use the y created above in the following:

10-16

Operators

k =y $+ "fish";

The result will be a 3x1 matrix with each element containing 'catfish'.

If we then use k created above:
t ="" S+ k[1,1]1;
The result will be a string containing 'catfish'.
If we used the same k to create z as follows:
z = "dog" $+ k[1,1];
The resulting z will be a string containing 'dogcatfish'.

String Array Concatenation

S| Vertical string array concatenation

x = "dog";
y = "fish";
k =x 8| y;
print k;
dog
fish

S~ Horizontal string array concatenation

x = "dog";
y = "fish";
k =x $~ y;
print k;
dog fish

String Variable Substitution

In a command like the following:

10-17

slojeladQ

Operators

GAUSS User Guide

create fl = olsdat with x,4,2;

by default GAUSS will interpret olsdat as the literal name of the GAUSS data file
you want to create. It will also interpret x as the literal prefix string for the variable
names x1 x2 x3 x4.

To get the data set name from a string variable, the substitution operator (") could be
used as follows:

dataset = "olsdat";
create fl1 = "“dataset with x,4,2;

To get the data set name from a string variable and the variable names from a character
vector, use the following:

dataset = "olsdat";
vnames = { age, pay, sex };
create fl = “dataset with “vnames,0,2;

The general syntax is:

“variable name

Expressions are not allowed.

The following commands are currently supported with the substitution operator () in the
current version.

create fl1 = “dataset with “vnames,0,2;
create fl1 = "“dataset using “cmdfile;
open fl = “dataset;

output file = “outfile;

load x = “~datafile;

load path = “lpath x,vy,z,t,w;

loadexe buf = “exefile;

save “name = Xx;

save path = “spath;

dos “cmdstr;

10-18

Operators

run “prog;
msym “mstring;

10.6 Using Dot Operators with Constants

When you use those operators preceded by a '."' (dot operators) with a scalar integer con-
stant, insert a space between the constant and any following dot operator. Otherwise, the
dot will be interpreted as part of the scalar; that is, the decimal point. For example:

let y =1 2 3;
x = 2.<y;

will return x as a scalar 0, not a vector of 0's and 1's, because

x = 2.<y;

is interpreted as

Be careful when using the dot relational operators (. <, . <=, .==, . /=, .>, .>=). The
same problem can occur with other dot operators, also. For example:

let x =11 1;
y = X./2./%;

will return y as a scalar .5 rather than a vector of .5's, because

y = x./2./%;

is interpreted as

10-19

slojeladQ

Operators

GAUSS User Guide

not

The second division, then, is handled as a matrix division rather than an element-by-ele-
ment division.

10.7 Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the * and / oper-
ators have a higher precedence than the + and - operators. In expressions that contain
the above operators, the operand pairs associated with the * or / operator are evaluated
first. Whether * or / is evaluated first depends on which comes first in the particular
expression.

The expression

-5+3/4+6*3

1s evaluated as

(=5)+(3/4)+(6*3)

Within a term, operators of equal precedence are evaluated from left to right. The prec-
edence of all operators, from the highest to the lowest, is listed in the table below.
PLEASE NOTE: The transpose operator is listed with a precedence of 90. This applies
for the transpose operation only. It does NOT apply for the expression:

X'X
Which is shorthand for:

X'*X

10-20

Operators
For a compound statement such as:
Z = (X'X)/(X'X);
the parentheses are required.
Operator Precedence Operator Precedence Operator Precedence

! 90 L9>= 65 §>= 55
! 90 /= 65 /= 55
! 89 .< 65 < 55
A 85 . <= 65 <= 55
A 85 == 65 == 55
(unary -) 83 .> 65 > 55
* 80 L= 65 >= 55
*r 80 eq 65 eq 55
LK 80 .ge 65 ge 55
*. 80 .gt 65 gt 55
./ 80 .le 65 le 55
/ 80 L1t 65 1t 55
g 75 .ne 65 ne 55
S+ 70 .not 64 not 49
+ 70 .and 63 and 48
- 70 .or 62 or 47
o 68 .xor 61 xor 46
| 67 .eqv 60 eqv 45
.9/= 65 5/= 55 (space) 35

10-21

slojeladQ

Operators

GAUSS User Guide

65
65
65
65

55
55
55
55

35
10

10-22

11 Procedures and Keywords

Procedures are multiple-line, recursive functions that can have either local or global var-
iables. Procedures allow a large computing task to be written as a collection of smaller
tasks. These smaller tasks are easier to work with and keep the details of their operation
from the other parts of the program that do not need to know them. This makes programs
easier to understand and easier to maintain.

A procedure in GAUSS is basically a user-defined function that can be used as if it
were an intrinsic part of the language. A procedure can be as small and simple or as
large and complicated as necessary to perform a particular task. Procedures allow you to
build on your previous work and on the work of others rather than starting over again and
again to perform related tasks.

Any intrinsic command or function may be used in a procedure, as well as any user-
defined function or other procedure. Procedures can refer to any global variable; that is,
any variable in the global symbol table that can be shown with the show command. It is
also possible to declare local variables within a procedure. These variables are known
only inside the procedure they are defined in and cannot be accessed from other pro-
cedures or from the main level program code.

All labels and subroutines inside a procedure are local to that procedure and will not be
confused with labels of the same name in other procedures.

GAUSS User Guide

11.1 Defining a Procedure

A procedure definition consists of five parts, four of which are denoted by explicit
GAUSS commands:

1. Procedure declaration proc statement
2. Local variable declaration local statement
3. Body of procedure

4. Return from procedure retp statement
5. End of procedure definition endp statement

There is always one proc statement and one endp statement in a procedure definition.
Any statements that come between these two statements are part of the procedure. Pro-
cedure definitions cannot be nested. 1ocal and retp statements are optional. There
can be multiple 1ocal and retp statements in a procedure definition. Here is an exam-
ple:

proc (3) = regress(x, V);
local xxi,b,ymxb,sse,sd, t;
xxi = invpd(x'x) ;
b = xxi * (x'y);
ymxb = y-xb;
sse = ymxb'ymxb/ (rows (x)-cols (x)) ;
sd = sqgrt(diag(sse*xxi));
t = b./sd;
retp(b,sd, t);
endp;

This could be used as a function that takes two matrix arguments and returns three
matrices as a result. For example: is:

{ b,sd,t } = regress(x,vy);

Following is a discussion of the five parts of a procedure definition.

11-2

Procedures and
Keywords

11.1.1 Procedure Declaration

The proc statement is the procedure declaration statement. The format is:

proc

rets

name

arg#

(rets) = name(argl, arg2,...argn);

Optional constant, number of values returned by the procedure.
Acceptable values here are 0-1023; the default is 1.

Name of the procedure, up to 32 alphanumeric characters or an
underscore, beginning with an alpha or an underscore.

Names that will be used inside the procedure for the arguments
that are passed to the procedure when it is called. There can be 0-
1023 arguments. These names will be known only in the
procedure being defined. Other procedures can use the same
names, but they will be separate entities.

splomAa)]
pue sainpadoid

Procedures and

Keywords

GAUSS User Guide

11.1.2 Local Variable Declarations

The 1local statement is used to declare local variables. Local variables are variables
known only to the procedure being defined. The names used in the argument list of the
proc statement are always local. The format of the 1ocal statement is:

local x, y, f:proc, g:fn, z, h:keyword;

Local variables can be matrices or strings. If :proec, : £n, or : keyword follows the
variable name in the 1ocal statement, the compiler will treat the symbol as if it were a
procedure, function, or keyword respectively. This allows passing procedures, functions,
and keywords to other procedures. (For more information, see Passing Procedures to
Procedures, Section 11.4)

Variables that are global to the system (that is, variables listed in the global symbol table
that can be shown with the show command) can be accessed by any procedure without
any redundant declaration inside the procedure. If you want to create variables known
only to the procedure being defined, the names of these local variables must be listed in
a local statement. Once a variable name is encountered in a 1ocal statement, fur-
ther references to that name inside the procedure will be to the local rather than to a
global having the same name. (See clearg, varget, and varput in the GAUSS
LANGUAGE REFERENCE for ways of accessing globals from within procedures that have
locals with the same name.)

The 1local statement does not initialize (set to a value) the local variables. If they are
not passed in as parameters, they must be assigned some value before they are accessed
or the program will terminate with a Variable not initialized error message.

All local and global variables are dynamically allocated and sized automatically during
execution. Local variables, including those that were passed as parameters, can change
in size during the execution of the procedure.

Local variables exist only when the procedure is executing and then disappear. Local
variables cannot be listed with the show command.

11-4

Procedures and
Keywords

The maximum number of locals is limited by stack space and the size of workspace
memory. The limiting factor applies to the total number of active local symbols at any
one time during execution. If cat has 10 locals and it calls dog which has 20 locals,
there are 30 active locals whenever cat is called.

There can be multiple 1ocal statements in a procedure. They will affect only the code
in the procedure that follows. Therefore, for example, it is possible to refer to a global x
in a procedure and follow that with a 1ocal statement that declares a local x. All sub-
sequent references to x would be to the local x. (This is not good programming practice,
but it demonstrates the principle that the 1ocal statement affects only the code that is
physically below it in the procedure definition.) Another example is a symbol that is
declared as a local and then declared as a local procedure or function later in the same
procedure definition. This allows doing arithmetic on local function pointers before call-
ing them. (For more information, see Indexing Procedures, Section 11.5 .)

splomAa)]
pue sainpadoid

Procedures and

Keywords

GAUSS User Guide

11.1.3 Body of Procedure

The body of the procedure can have any GAUSS statements necessary to perform the
task the procedure is being written for. Other user-defined functions and other pro-
cedures can be referenced as well as any global matrices and strings.

GAUSS procedures are recursive, so the procedure can call itself as long as there is
logic in the procedure to prevent an infinite recursion. The process would otherwise ter-
minate with either an Insufficient workspace memory message or a Pro-

cedure calls too deep message, depending on the space necessary to store the
locals for each separate invocation of the procedure.

11-6

Procedures and
Keywords

11.1.4 Returning from the Procedure

The return from the procedure is accomplished with the retp statement:

retp;
retp (expressionl, expression?2, argl, arg2, argl,
expressionN) ;

The retp statement can have multiple arguments. The number of items returned must
coincide with the number of rets inthe proc statement.

If the procedure was defined with no items returned, the retp statement is optional.
The endp statement that ends the procedure will generate an implicit retp with no
objects returned. If the procedure returns one or more objects, there must be an explicit
retp statement.

There can be multiple retp statements in a procedure, and they can be anywhere inside
the body of the procedure.

splomAa)]
pue sainpadoid

Procedures and

Keywords

GAUSS User Guide

11.1.5 End of Procedure Definition

The endp statement marks the end of the procedure definition:

endp;

An implicit retp statement that returns nothing is always generated here so it is impos-
sible to run off the end of a procedure without returning. If the procedure was defined to
return one or more objects, executing this implicit return will result in a Wrong
number of returns error message and the program will terminate.

11.2 Calling a Procedure

Procedures are called like this:
dog (i, 7, k); // no returns
y = cat(i, 7J, k); // one return

{ x, y, z } = bat(i, j, k); // multiple returns
call bat(i, 7J, k); // ignore any returns

Procedures are called in the same way that intrinsic functions are called. The procedure

name is followed by a list of arguments in parentheses. The arguments must be sep-
arated by commas.

If there is to be no return value, use
proc (0) = dog(x, v ,z);

when defining the procedure and use
dog(ak, 4, 3);

or

11-8

Procedures and
Keywords

call dog(ak, 4, 3);

when calling it.

The arguments passed to procedures can be complicated expressions involving calls to
other functions and procedures. This calling mechanism is completely general. For exam-

ple,

y = dog(cat(3*x, bird(x, y))-2, 2, 1);

is legal.

11.3 Keywords

A keyword, like a procedure, is a subroutine that can be called interactively or from
within a GAUSS program. A keyword differs from a procedure in that a keyword
accepts exactly one string argument, and returns nothing. Keywords can perform many
tasks not as easily accomplished with procedures.

11-9

splomAa)]
pue sainpadoid

Procedures and

Keywords

GAUSS User Guide

11.3.1 Defining a Keyword

A keyword definition is much like a procedure definition. Keywords always are defined

with 0 returns and 1 argument. The beginning of a keyword definition is the keyword
statement:

keyword name (strarqg) ;

name Name of the keyword, up to 32 alphanumeric characters or an
underscore, beginning with an alpha or an underscore.

strarg Name that will be used inside of the keyword for the
argument that is passed to the keyword when it is called.
There is always one argument. The name is known only in
the keyword being defined. Other keywords can use the same
name, but they will be separate entities. This will always be a
string. If the keyword is called with no characters following
the name of the keyword, this will be a null string.

The rest of the keyword definition is the same as a procedure definition. (For more infor-
mation, see Defining a Procedure, Section 11.1 . Keywords always return nothing. Any
retp statements, if used, should be empty. For example:

keyword add(s) ;
local tok, sum;

if s S== "";
print "The argument is a null string";
retp;

endif;

print "The argument is: '" s "'";

sum = 0;

do until s S$== "";
{ tok, s } = token(s);

11-10

Procedures and
Keywords

sum = sum + stof (tok);

endo;

format /rd 1,2;

print "The sum is: " sum;
endp;

The keyword defined above will print the string argument passed to it. The argument
will be printed enclosed in single quotes.

11-11

splomAa)]
pue sainpadoid

Procedures and

Keywords

GAUSS User Guide

11.3.2 Calling a Keyword

When a keyword is called, every character up to the end of the statement, excluding the
leading spaces, is passed to the keyword as one string argument. For example, if you
type

add 1 2 3 4 5;
the keyword will respond

The sum is: 15.00

Here is another example:

add;

the keyword will respond

The argument is a null string

11.4 Passing Procedures to Procedures

Procedures and functions can be passed to procedures in the following way:

proc max(x,y); // procedure to return maximum
if x>y;
retp (x) ;
else;
retp (y);
endif;
endp;

proc min(x,y); // procedure to return minimum
if x<y;

11-12

Procedures and
Keywords

retp (%) ;
else;
retp (y);
endif;
endp;

fn lgsqrt(x) = ln(sqrt(x)); /* function to return
log of square root */
proc myproc (&fl, &f2, x, vy);
local fl:proc, f2:fn, z;
z = £f1(x, y);
retp (£2(z));
endp;

The procedure myproc takes four arguments. The first is a procedure £1 that has two
arguments. The second is a function £2 that has one argument. It also has two other
arguments that must be matrices or scalars. Inthe 1ocal statement, £1 is declared to
be a procedure and £2 is declared to be a function. They can be used inside the pro-
cedure in the usual way. £1 will be interpreted as a procedure inside myproc, and £2
will be interpreted as a function. The call to myproc is made as follows:

k = myproc (&max, &lgsqgrt, 5, 7); // log of square root of 7

k = myproc(&min, &lgsgrt, 5, 7); // log of square root of 5

The ampersand (&) in front of the function or procedure name in the call to myproc
causes a pointer to the function or procedure to be passed. No argument list should fol-
low the name when it is preceded by the ampersand.

Inside myproc, the symbol that is declared as a procedure in the 1ocal statement is
assumed to contain a pointer to a procedure. It can be called exactly like a procedure is
called. It cannot be save'd but it can be passed on to another procedure. If it is to be
passed on to another procedure, use the ampersand in the same way.

11-13

splomAa)]
pue sainpadoid

Procedures and

Keywords

GAUSS User Guide

11.5 Indexing Procedures

This example assumes there are a set of procedures named £1-£5 that are already
defined. A 1x5 vector procvec is defined by horizontally concatenating pointers to

these procedures. A new procedure, g(x, 1) is then defined to return the value of the
ith procedure evaluated at x:

procVec = &fl ~ &f2 ~ &£f3 ~ &f4 ~ &f5;
proc g(x, 1i);

local £;

f = procVec[i];

local f:proc;

retp(£(x));
endp;

The 1local statement is used twice. The first time, £ is declared to be a local matrix.
After £ has been set equal to the ith pointer, £ is declared to be a procedure and is
called as a procedure in the retp statement.

11.6 Multiple Returns from Procedures

Procedures can return multiple items, up to 1023. The procedure is defined like this
example of a complex inverse:

proc (2) = eminv(xr,xi); /* (2) specifies number of
return values */
local ixy, zr, zi;

ixy = inv (xr) *xi;

zr = inv(xrtxi*ixy); //real part of inverse

zi = -ixy*zr; //imaginary part of inverse

retp(zr, zi); //return: real part, imaginary part
endp;

It can then be called like this:

{ zr, zi } = cminv (xr, xi);

11-14

Procedures and
Keywords

To make the assignment, the list of targets must be enclosed in braces.

Also, a procedure that returns more than one argument can be used as input to another
procedure or function that takes more than one argument:

proc (2) = cminv(xr, xi);
local ixy, zr, zi;
ixy = inv(xr) *xi;
zr = inv(xr+xi*ixy); //real part of inverse
zi = —-ixy*zr; //imaginary part of inverse
retp(zr, zi);
endp;
proc (2) = cmmult(xr, xi, yr, vyi);
local zr,zi;
Zr = Xr¥yr-xi*yi;
zl = xr*yit+xi*yr;
retp(zr, zi);
endp;
{ zr, zi } = cminv(cmmult (xr, xi, yr, vyi));

The two returned matrices from emmult() are passed directly to eminwv() in the state-
ment above. This is equivalent to the following statements:

{ tr, ti } = cmmult(xr, xi, yr, yi);
cminv (tr, ti);

{ zr, zi }

This is completely general so the following program is legal:

proc (2) = cmcplx(x);
local r,c;
r = rows (x);

c = cols (x);
retp (x, zeros(r,c));
endp;

proc (2) = cminv(xr,xi);

11-15

splomAa)]
pue sainpadoid

Procedures and

Keywords

GAUSS User Guide

local ixy,
ixy

Zr
zi

zr, zi;
inv (xr) *xi;
inv (xr+xi*ixy); //real part of inverse

—-ixy*zr; //imaginary part of inverse

retp(zr,zi);

endp;

proc

(2)
local zr,

cmmult (xr, xi, yr, yi);

zi;

zr = Xr*yr-xi*yi;
zi = xr*yit+xi*yr;
retp (zr, zi);

endp;
{ xr, xi } = emcplx(rndn(3,3));
{ yr, yi } = emcplx(rndn(3,3));
{ zr, zi } = cmmult(cminv(xr, xi), cminv(yr, yi));
{ gr, gi } = emmult(yr, yi, cminv(yr, vyi));
{ wr, wi } = cmmult(yr, yi, cminv (cmmult (cminv (xr, xi), yr,
yi)));

11.7 Saving Compiled Procedures

When a file containing a procedure definition is run, the procedure is compiled and is
then resident in memory. The procedure can be called as if it were an intrinsic function.
If the new command is executed or you quit GAUSS and exit to the operating system,
the compiled image of the procedure disappears and the file containing the procedure def-
inition will have to be compiled again.

If a procedure contains no global references, that is, if it does not reference any global
matrices or strings and it does not call any user-defined functions or procedures, it can
be saved to disk in compiled form in a . fcg file with the save command, and loaded
later with the 1 oadp command whenever it is needed. This will usually be faster than
recompiling. For example:

11-16

Procedures and
Keywords

save path = c:\gauss\cp procl,proc2,proc3;
loadp path = c:\gauss\cp procl,proc2,proc3;

The name of the file will be the same as the name of the procedure, with a . fcg exten-
sion. (For details, see 1oadp and save in the GAUSS LANGUAGE REFERENCE.)

All compiled procedures should be saved in the same subdirectory, so there is no ques-
tion where they are located when it is necessary to reload them. The 1oadp path can be
set in your startup file to reflect this. Then, to load in procedures, use

loadp procl,proc2,proc3;

Procedures that are saved in . fcg files will NOT be automatically loaded. It is nec-
essary to explicitly load them with 1 cadp. This feature should be used only when the
time necessary for the autoloader to compile the source is too great. Also, unless these
procedures have been compiled with # 1 ineson, debugging will be more complicated.

11-17

splomAa)]
pue sainpadoid

12 Random Number Generation in
GAUSS

GAUSS provides a powerful suite of functionality for random number generation. The
key features include:

1. Availability of several modern random number generators
Sampling of many distributions

Thread-safe random number generators

Bl

Parallel random number generation

12.1 Available Random Number Generators
1. KISS-Monster

MRG32k3a

MT19937: Mersenne-Twister 19937

Sl

MT2203: Mersenne-Twister 2203

12-1

GAUSS User Guide

5. SFMT19937: Optimized Mersenne-Twister 19937
6. WH: Wichmann-Hill

12-2

Random Number
Generation

12.1.1 Choosing a Random Number Generator

Quality

What is a high quality random number generator? Pierre L'Ecuyer stated that "The dif-
ference between the good and bad random number generators, in a nutshell, is that the
bad ones fail very simple tests whereas the good ones fail only very complicated tests
that are hard to figure out or impractical to run." The most prominent testsuites for test-
ing random number generators (RNGs) are Marsaglia's DIEHARD, DIEHARDER (an
extended version of DIEHARD maintained by Brown), and L'Ecuyer's TestUO1. These
are all good testsuites, with BigCrush from TestUO1 being the most expansive and strin-
gent. Below is a summary of the performance of each of the RNGs included in GAUSS
on the BigCrush test.

Number of Period . TestUO01
RNG streams Length Dichard BigCrush
KISS-Monster 1 1078859 PASS PASS
MRG32k3a 1 27191 PASS PASS
MT19937 1 2719937 PASS* 2
MT2203 6024 272203 PASS* 4
Wichmann-Hill 273 27427 PASS* 22

*The column under Test UO1 indicates the number of test failures.

As we can see from the table above, all of the available RNGs (with the possible excep-
tion of Wichmann-Hill) provide very good to excellent performance. It is beyond the
scope of this document to discuss the implications of particular test failures.

Speed

All of the RNGs in GAUSS are very fast. However, some are faster than others. Below
is a chart of the relative speed of each random number generator in GAUSS.

1. SFMT19937
2. MT19937

12-3

uoljeIausL)
Jaquinp wopuey

Random Number

Generation

GAUSS User Guide

3. MRG32K3A
4. Wichmann-Hill
5. Kiss-Monster

Beyond simply choosing the fastest available generators, two coding techniques can also
cause your programs to run faster. The first is creating larger numbers of random devi-
ates at a time. For example, creating one million random numbers in one call will be
much faster than creating the same one million numbers through 100,000 calls that each
create 10 numbers. Creating too many numbers at once can also slow down your pro-
gram's performance if the resulting matrix takes up too much of your available RAM.
The key point is to avoid creating large random matrices one or two numbers at a time.
The second coding technique is incorporate multi-threading into your random number gen-
eration. This is covered in the next section of this chapter.

12.2 Thread-safe Random Number Generators

Each successive number in a pseudo-random sequence is computed based upon the gen-
erator's current state. The RNGs in GAUSS that take and return a state, such as
rndKMu and rndGamma, are inherently thread-safe. These functions can be used inde-
pendently in separate threads as long as the same state variable is not written to in more
than one concurrent thread. Functions that do not take or return a state should not be
used inside concurrent thread sets. For example, the following is not a legal program:

ThreadBegin;
x = rndn (500, 1
y = myFunction (
ThreadEnd;
ThreadBegin;
x2 = rndn (500, 1);
y2 = myFunction (x2) ;
ThreadEnd;
ThreadJoin;

) 2
X);

12-4

Random Number
Generation

The problem with the above example is that implicit in each call to rndn is a write to
the same global state. Note that rndn, rndGam and rndu all share the same global
state. So replacing one of the above calls to rndn with a call to rndu would still result
in an illegal program. To solve this problem, either move the call to rndn above the
first ThreadBegin, like this:

x = rndn (500, 1);
x2 = rndn (500, 1);
ThreadBegin;

y = myFunction (x) ;
ThreadEnd;
ThreadBegin;

y2 = myFunction (x2) ;
ThreadEnd;
ThreadJdoin;

Or pass in and return the state vector:

seedl = 723193;
seed2 = 94493;
ThreadBegin;

{ x1, statel } = rndn (500, 1, seedl):;
yl = myFunction (x1);
ThreadEnd;
ThreadBegin;
{ x2, state2 } = rndn(500,1,seed?2);
y2 = myFunction (x2) ;
ThreadEnd;
ThreadJoin;

12.3 Parallel Random Number Generation

12-5

uoljeIausL)
Jaquinp wopuey

Random Number

Generation

GAUSS User Guide

12.3.1 Multiple Stream Generators

Some of the RNGs in GAUSS are a collection of more than one independent stream of
random numbers. A stream is an independent series of numbers with a length that is the
period length of the generator. Each of these sequences or streams has the same sta-
tistical properties. However, not all of the RNGs in GAUSS offer this ability. The
MT2203 and the Wichman-Hill are examples of RNGs with multiple streams. The
MT2203 is a set of 6024 different streams; the Wichmann-Hill contains 273 streams.
You can initialize any of these streams with the rndCreateState function, like this:

// Initialize two Wichmann-Hill streams

seed = 192938;
whState3 = rndCreateState ("wh-3", seed):;
whStatell7 = rndCreateState ("wh-117", seed);

// Initialize two MT2203 streams

seed = 192938;
mt2203State9 = rndCreateState ("mt2203-3", seed):;
mt2203State2]l = rndCreateState ("mt2203-21", seed);

Once created, these states can be passed into any of the new random number functions
to create random numbers. To reiterate, from each of these newly created states you can
create a full period length of random numbers.

12-6

Random Number
Generation

12.3.2 Block-skipping

Creating random numbers from multiple streams provides multiple sets of independent
random numbers with similar statistical properties that can be used in different threads.
However, these separate streams do not form a contiguous set of random numbers. If
you would like to process a contiguous stream of random numbers in multiple threads,
you can use block-splitting. Block-splitting involves splitting a large chunk of random
numbers into smaller contiguous blocks which can each be processed by different
threads. This can be accomplished with the rndSkip function.

Example

// Set seed and create new state vector
seed = 23423;
statel = rndCreateState ("mrg32k3a", seed);

// Advance state by 2
state2 = rndSkip (2, statel);
{ r, statel } = rndn(4, 1, statel);

// Same sequence as after skipping 2
{ r2, state2 } = rndn(2, 1, state2);

0.19971499
E = 0.14053340
-0.53132702
0.48660530

r2 = -0.53132702
0.48660530

For example if your program required four hundred million random numbers, you could
split it into four blocks of one hundred million numbers each. This can be accomplished
in GAUSS using the function rndStateSkip.

12-7

uoljeIausL)
Jaquinp wopuey

Random Number

Generation

GAUSS User Guide

Each successive thread in the above program will process a different chunk of the

sequence of random numbers.

// Set seed and create initial state vector
seed = 2342343;
statel = rndCreateState ("mrg32k3a", seed);

// Create 3 additional state vectors each starting 1le8//
numbers forward from the state just above it

state?2 rndStateSkip (1e8, statel);

state3 rndStateSkip (1e8, state2);

state4 = rndStateSkip(le8, state3l);

// Use each state vector in a separate, concurrent thread

ThreadBegin;
{ x, statel } = rndGamma (le8, 1, 2, 2, statel);
y = myfunc (x) ;

ThreadEnd;

ThreadBegin;
{ x2, state2 } = rndGamma (1e8, 1, 2, 2, state2);
y2 = myfunc (x2) ;

ThreadEnd;

ThreadBegin;
{ x, state3 } = rndGamma (le8, 1, 2, 2, state3);
y3 = myfunc (x3) ;

ThreadEnd;

ThreadBegin;
{ x, stated4 } = rndGamma (le8, 1, 2, 2, stated);
y4 = myfunc (x);

ThreadEnd;

ThreadJdoin;

References

12-8

Random Number
Generation

1. (MRG32k3a) L'Ecuyer, P. "Good Parameter Sets for Combined Multiple Recur-
sive Random Number Generators." Operations Research, 47, 1, 159-164, 1999.

2. (TestUO1) L'Ecuyer, P. and Simard, R. "TestUO1: A C Library for Empirical Test-
ing of Random Number Generators." ACM Trans. Math. Softw. 33, 4, Article 22
, 2007.

3. (Wichmann-Hill) MacLaren, N.M. "The Generation of Multiple Independent
Sequences of Pseudorandom Numbers." Applied Statistics, 38, 351-359, 1989.

12-9

uoljeIausL)
Jaquinp wopuey

13 Sparse Matrices

The sparse matrix data type stores only the non-zero values of a 2-dimensional sparse
matrix, which makes working with sparse matrices use less memory. Sparse matrix cal-
culations may be faster or slower than those on an equivalent dense matrix, depending
upon several factors.

Sparse matrix computations require extra complexity. This makes them slower than the
same operation on an equivalent dense matrix. If the matrix is sufficiently sparse, the
reduced element count can make up for this and provide better performance than dense
operations. However, it is generally recommended to use dense matrices if your problem
will fit into memory.

13.1 Defining Sparse Matrices

The sparse matrix data type is strongly typed in GAUSS, which means that a variable
must be defined as a sparse matrix variable before it may be used as such. Once a var-
iable has been defined as a sparse matrix, it may not be used as another data type. Sim-
ilarly, once a variable has been used as a matrix, array, or other non-sparse data type, it
may not be redefined as a sparse matrix.

To define a global sparse matrix, you may use either the declare or the let com-
mand:

13-1

GAUSS User Guide

declare sparse matrix sml;

let sparse matrix sml;

or the following implicit 1et statement:

sparse matrix sml;

declare may be used to define multiple sparse matrices in a single statement:

declare sparse matrix sml, sm2, sm3;

To define a local sparse matrix inside of a procedure, use an implicit let statement:

sparse matrix lsml;

As neither 1et nor declare support the initialization of a sparse matrix at this time,
you must initialize a sparse matrix with an assignment after defining it.

13.2 Creating and Using Sparse Matrices

Several new functions have been added to allow you to create and manipulate sparse

matrices. These functions are:

denseToSp

denseToSpRE

packedToSp

spBiconjGradSol

spConjGradSol

Converts a dense matrix to a sparse matrix.

Converts a dense matrix to a sparse matrix, using a
relative epsilon.

Creates a sparse matrix from a packed matrix of non-
zero values and row and column indices.

Solves the system of linear equations Ax=Db using the
biconjugate gradient method.

Solves the system of linear equations Ax=b for
symmetric matrices using the conjugate gradient

13-2

Sparse Matrices

spCreate

spDenseSubmat

spDiagRvMat

spEigv

spEye

spGetNZE

spLDL

spLU

spNumNZE

spOnes

spSubmat
spToDense

spTrTDense

method.

Creates a sparse matrix from vectors of non-zero
values, row indices, and column indices.

Returns a dense submatrix of sparse matrix.

Inserts submatrices along the diagonal of a sparse
matrix.

Computes a specified number of eigenvalues and
eigenvectors of a square, sparse matrix.

Creates a sparse identity matrix.

Returns the non-zero values in a sparse matrix, as
well as their corresponding row and column indices.

Computes the LDL decomposition of a symmetric
sparse matrix.

Computes the LU decomposition of a sparse matrix
with partial pivoting.

Returns the number of non-zero elements in a sparse
matrix.

Generates a sparse matrix containing only ones and
Zeros

Returns a sparse submatrix of sparse matrix.
Converts a sparse matrix to a dense matrix.

Multiplies a sparse matrix transposed by a dense
matrix.

13-3

GAUSS User Guide

spTScalar Multiplies a sparse matrix by a scalar.
spZeros Creates a sparse matrix containing no non-zero
values.

See COMMAND REFERENCE for detailed information on each command.

13.3 Sparse Support in Matrix Functions and Operators

Support for the sparse matrix data type has also been added to many matrix functions
and operators. The following is a complete list of the matrix functions and operators that
currently support the new sparse matrix type:

/= >= minc
~ 1= < print
| L= .< rows
* = .< scalerr
L* == <= show
+ == <= type
- > abs
/ > cols
./ >= maxc

Indexing is also supported for sparse matrices, using the same syntax as matrix indexing.

13-4

Sparse Matrices

Note that printing a sparse matrix results in a table of the non-zero values contained
in the sparse matrix, followed by their corresponding row and column indices, respec-
tively.

13.3.1 Return Types for Dyadic Operators

The types of the returns for the dyadic operators were decided on a case-by-case basis,
using the following general principles:

1. The return type for dyadic operations on two dense arguments is always dense.

2. The return type for dyadic operations on two sparse arguments is always sparse
unless the result is likely to be significantly less sparse than the sparse arguments.

3. The return type for dyadic operations on a dense argument and a sparse argument
(regardless of order) is dense unless the return is likely to be at least as sparse as
the sparse argument.

These general principles have led to the following decisions regarding return types (note
that only the cases that are displayed in these tables have been implemented at this
point):

Element-by-Element Numeric Operators

Element-by-Element Addition

Result = Left Operator Right
dense = sparse + dense
dense = dense + dense
sparse = sparse + sparse
dense = dense + sparse

Element-by-Element Subtraction
Result = Left Operator Right

13-5

GAUSS User Guide

dense =
dense =
sparse =

dense =

Result =
sparse =
dense =
sparse =

sparse =

Result =
sparse =
dense =
dense =

dense =

Other Numeric Operators

Result =
dense =
dense =

sparse =

Result =

sparse
dense
sparse

dense

Element-by-Element Multiplication

Left
sparse
dense
sparse

dense

Operator
. *
.*
. *

%

Element-by-Element Division

Left
sparse
dense
sparse

dense

Operator
J

,
,
/

Matrix Multiplication

Left
sparse
dense
sparse
Linear Solve
Left

Operator
*

*

sk

Operator

dense
dense
sparse

sparse

Right
dense
dense
sparse

sparse

Right
dense
dense
sparse

sparse

Right
dense
dense

sparse

Right

13-6

Sparse Matrices

dense = dense / dense

dense = dense / sparse

Note that at this time, the dense = dense / sparse case is defined only for real data.

When either of its arguments are sparse, the / operator uses a tolerance to determine
the result, which may be read or set using the sysstate function, case 39. The default
tolerance is le-14.

Relational Operators

Since the results of element-by-element 'dot' comparison operators depend largely on the
kind of data inputted, there are both both dense-returning and sparse-returning versions
of the dot comparison operators when one or both arguments is a sparse matrix. The reg-
ular dot comparison operators and their alphabetic counterparts always return dense
matrices, and there is a new set of alphabetic dot comparison operators that all return
sparse matrices:

Element-by-Element Dot Comparison Operators

Operation Dense-Returning Sparse-
Returning
Equal to = .eq .speq
Not equal to J= .ne .spne
Less than < It .splt
Less than or equal to <= e .sple
Greater than > gt .spgt
Greater than or equal to >= .ge .spge
Since the element-by-element 'non-dot' comparison operators (=, /=, <, <=, >, >=) and

their alphabetic counterparts (eq, ne, It, le, gt, ge) all return scalars, there are no sparse-
returning versions of them.

Other Matrix Operators

13-7

GAUSS User Guide

Horizontal Concatenation

Result = Left Operator Right
dense = dense e dense
sparse = sparse r sparse

Vertical Concatenation

Result = Left Operator Right
dense = dense | dense
sparse = sparse | sparse

13-8

14 N-Dimensional Arrays

In GAUSS, internally, matrices and arrays are separate data types. Matrices, which are
2-dimensional objects, are stored in memory in row major order. Therefore, a 3x2 matrix
is stored as follows:

(1,11 [1,2] (2,11 [2,2] [3,1] [3,2]

The slowest moving dimension in memory is indexed on the right, and the fastest moving
dimension is indexed on the left. This is true of N-dimensional arrays as well. A 4x3x2
array is stored in the following way:

(1,1,11 [1,1,21 [(1,2,1] [1,2,2] [1,3,1] [1,3,2]
[2,1,1]1 [2,1,2] [2,2,1] [2,2,2] [2,3,1] [2,3,2]
[3,1,11 [3,1,2]1 [3,2,1]1 [3,2,2] [3,3,1]1 [3,3,2]
[4,1,11 [4,1,2] [4,2,1]1 [4,2,2] [4,3,1]1 [4,3,2]

A complex N-dimensional array is stored in memory in the same way. Like complex
matrices, complex arrays are stored with the entire real part first, followed by the entire
imaginary part.

Every N-dimensional array has a corresponding Nx1 vector of orders that contains the
sizes of each dimension of the array. This is stored with the array and can be accessed
with getorders. The first element of the vector of orders corresponds to the slowest
moving dimension, and the last element corresponds to the fastest moving dimension
(refer to the Glossary of Terms at the end of the chapter for clear definitions of these

14-1

GAUSS User Guide

terms). The vector of orders for a 6x5x4x3x2 array, which has 5 dimensions, is the fol-
lowing 5x1 vector:

N W b 01 o

Two terms that are important in working with N-dimensional arrays are "dimension
index" and "dimension number." A dimension index specifies a dimension based on
indexing the vector of orders. It is a scalar, 1-to-N, where 1 corresponds to the dimen-
sion indicated by the first element of the vector of orders of the array (the slowest mov-
ing dimension) and N corresponds to the dimension indicated by the last element of the
vector of orders (the fastest moving dimension).

A dimension number specifies dimensions by numbering them in the same order that one
would add dimensions to an array. In other words, the dimensions of an N-dimensional
array are numbered such that the fastest moving dimension has a dimension number of 1,
and the slowest moving dimension has a dimension number of N.

A 6x5x4x3x2 array has 5 dimensions, so the first element of the vector of orders (in this
case, 60) refers to the size of dimension number 5. Since the index of this element in the
vector of orders is 1, the dimension index of the corresponding dimension (dimension
number 5) is also 1.

You will find references to both dimension index and dimension number in the doc-
umentation for the functions that manipulate arrays.

There are a number of functions that have been designed to manipulate arrays. These
functions allow you to manipulate a subarray within the array by passing in a locator vec-
tor to index any subarray that comprises a contiguous block of memory within the larger
block. A vector of indices of an N-dimensional array is a [1-to-N]x1 vector of base 1
indices into the array, where the first element corresponds to the first element in a vec-
tor of orders. An Nx1 vector of indices locates the scalar whose position is indicated by
the indices. For a 4x3x2 array x, the 3x1 vector of indices:

14-2

N-Dimensional Arrays

indexes the [3,2,1] element of x. A 2x1 vector of indices for this 3-dimensional example,
references the 1-dimensional array whose starting location is given by the indices.

Because the elements of the vector of indices are always in the same order (the first ele-
ment of the vector of indices corresponds to the slowest moving dimension of the array,
the second element to the second slowest moving dimension, and so on), each unique
vector of indices locates a unique subarray.

In general, an [N-K]x1 vector of indices locates a K-dimensional subarray that begins at
the position indicated by the indices. The sizes of the dimensions of the K-dimensional
subarray correspond to the last K elements of the vector of orders of the N-dimensional
array. For a 6x5x4x3x2 array y, the 2x1 vector of indices:

2
5

locates the 4x3x2 subarray in y that begins at [2,5,1,1,1] and ends at [2,5,4,3,2].

14.1 Bracketed Indexing

Brackets '[]' can be used to index N-dimensional arrays in virtually the same way that
they are used to index matrices. Bracketed indexing is slower than the convenience
array functions, such as getarray and setarray; however, it can be used to index
non-contiguous elements. In order to index an N-dimensional array with brackets, there
must be N indices located within the brackets, where the first index corresponds to the
slowest moving dimension of the array and the last index corresponds to the fastest mov-
ing dimension.

For a 2x3x4 array x, such that:

14-3

GAUSS User Guide

[1,1,1] through [1,3,4]

1 2 3 4
5 6 7 8
9 10 11 12

[2,1,1] through [2,3,4]
13 14 15 16

17 18 19 20
21 22 23 24

x[1,2,3] returns a 1x1x1 array containing the [1,2,3] element of x.

7

x[.,3,2] returns a 2x1x1 array containing:

10
22

x[2,.,1 4] returns a 1x3x2 array containing

13 16
17 20
21 24

x[.,2,1:3] returns a 2x1x3 array containing

5 6 7
17 18 19

14.2 ExE Conformability

The following describes rules for EXE conformability of arrays for operators and func-
tions with two or more arguments.

14-4

N-Dimensional Arrays

e Any N-dimensional array is conformable to a scalar.

e An array is conformable to a matrix only if the array has fewer than 3
dimensions, and the array and matrix follow the standard rules of ExE
conformability.

e Two arrays are EXE conformable if they comply with one of the following
requirements:

e The two arrays have the same number of dimensions, and each dimension
has the same size.

e The two arrays have the same number of dimensions, and each of the N-2
slowest moving dimensions has the same size. In this case, the 2 fastest
moving dimensions of the arrays must follow the EXE comformability rules
that apply to matrices.

o Both of the arrays have fewer than 3 dimensions, and they follow the EXE
conformability rules that apply to matrices.

14.3 Glossary of Terms

dimensions The number of dimensions of an object.

vector of orders Nx1 vector of the sizes of the dimensions of an
object, where N is the number of dimensions, and the
first element corresponds to the slowest moving
dimension.

vector of indices [1-to-N]x1 vector of indices into an array, where the
first element corresponds to the first element in a
vector of orders.

dimension number Scalar [1-to-N], where 1 corresponds to the fastest
moving dimension and N to the slowest moving
dimension.

14-5

GAUSS User Guide

dimension index Scalar [1-to-N], where 1 corresponds to the first
element of the vector of orders or vector of indices.

locator [1-to-N]x1 vector of indices into an array used by
array functions to locate a contiguous block of the
array.

14-6

15 Working with Arrays

15.1 Initializing Arrays

The use of N-dimensional arrays in GAUSS is an additional tool for reducing devel-
opment time and increasing execution speed of programs. There are multiple ways of
handling N-dimensional arrays and using them to solve problems, and these ways some-
times have implications for a trade-off between speed of execution and development
time. We will try to make this clear in this chapter.

The term "arrays" specifically refers to N-dimensional arrays and must not be confused
with matrices. Matrices and arrays are distinct types even if in fact they contain iden-
tical information. Functions for conversion from one to the other are described below.

There are five basic ways of creating an array depending on how the contents are spec-
ified:

areshape Create array from specified matrix .

aconcat Create array from matrices and arrays.

aeye Create array of identity matrices.

arrayinit Allocate array filled with specified scalar value.
arrayalloc Allocate array with no specified contents.

15-1

GAUSS User Guide

15.1.1 areshape

areshape is a method for creating an array with specified contents. arrayinit
creates an array filled with a selected scalar value: areshape will do the same, but
with a matrix. For example, given a matrix, areshape will create an array containing
multiple copies of that matrix:

x = reshape(seqa(l, 1, 4), 2, 2);
ord =3 | 2 | 2;
a = areshape (x, ord);
print a;
Plane [1,.,.]
1.0000 2.0000
3.0000 4.0000

Plane [2,.,.]
1.0000 2.0000
3.0000 4.0000

Plane [3,.,.]
1.0000 2.0000
3.0000 4.0000

Reading Data from the Disk into an Array

areshape is a fast way to re-dimension a matrix or array already in memory. For
example, suppose we have a GAUSS data set containing panel data and that it's small
enough to be read in all at once:

panel = areshape (loadd ("panel"”),5[100|10) ;

mn = amean (panel,2); // 5x1x10 array of means of each panel
mm = moment (panel,0); // 5x10x10 array of moments of each
panel

/*

** yc is a 5x10x10 array of

** covariance matrices

*/

15-2

Working with Arrays

vc = mm / 100 - amult (atranspose (mn, 1|3[2), mn);

panel is a 5x100x10 array, and in this context is 5 panels of 100 cases measured on 10
variables.

Inserting Random Numbers into Arrays

A random array of any dimension or size can be quickly created using areshape.
Thus, for a 10x10x5x3 array:

ord = { 10, 10, 5, 3 };
y = areshape (rndu (prodc (ord),1l),ord) ;

Expanding a Matrix into an Array Vector of Matrices

For computing the log-likelihood of a variance components model of panel data, it is nec-
essary to expand a TxT matrix into an NTXT array of these matrices. This is easily
accomplished using areshape. For example:

m={ 1.0 0.3 0.2,

0.3 1.0 0.1,

0.2 0.1 1.0 };
r = areshape (m, 3[|3]3);
print r;

Plane [1,.,.]

1.0000 0.3000 0.2000
0.3000 1.0000 0.1000
0.2000 0.1000 1.0000

Plane [2,.,.]

1.0000 0.3000 0.2000
0.3000 1.0000 0.1000
0.2000 0.1000 1.0000

Plane [3,.,.]

15-3

GAUSS User Guide

1.0000 0.3000 0.2000
0.3000 1.0000 0.1000
0.2000 0.1000 1.0000

15.1.2 aconcat

aconcat creates arrays from conformable sets of matrices or arrays. With this func-
tion, contents are completely specified by the user. This example tries three con-
catenations, one along each dimension:

rndseed 345678;
xl = rndn(2,2);
X2 = arrayinit(2(2,1);

/%
** along the first dimension or rows

*/

a = aconcat(xl,x2,1);
print a;

-0.4300 -0.2878 1.0000 1.0000
-0.1327 -0.0573 1.0000 1.0000

/*
** along the second dimension or columns

*/

a = aconcat (x1,x2,2);
print a;

-0.4300 -0.2878
-0.1327 -0.0573
1.0000 1.0000
1.0000 1.0000

15-4

Working with Arrays

15.1.3 aeye

aeye creates an array in which the principal diagonal of the two trailing dimensions is
set to one. For example:

15-5

GAUSS User Guide

15.1.4 arrayinit

arrayinit creates an array with all elements set to a specified value. For example:

ord = 3 | 2 | 3;
a = arrayinit (ord,1);
print a;

Plane [1,.,.]
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000

Plane [2,.,.]
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000

Plane [3,.,.]
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000

15.1.5 arrayalloc

arrayalloc creates an array with specified number and size of dimensions without
setting elements to any values. This requires a vector specifying the order of the array.
The length of the vector determines the number of dimensions, and each element deter-
mines the size of the corresponding dimensions. The array will then have to be filled
using any of several methods described later in this chapter.

For example, to allocate a 2x2x3 array:
rndseed 345678;

ord = 3 | 2 | 2;
a = arrayalloc (ord, 0);

for i(1l,ord[1],1);

15-6

Working with Arrays

afi,.,.] = rndn(2, 3);
endfor;

print a;
Plane [1,.,.]

-0.4300 -0.2878 -0.1327
-0.0573 -1.2900 0.2467

Plane [2,.,.]
-1.4249 -0.0796 1.2693
-0.7530 -1.7906 -0.6103

Plane [3,.,.]
1.2586 -0.4773 0.7044
-1.2544 0.5002 0.3559

The second argument in the call to arrayalloc specifies whether the created array is
real or complex. arrayinit creates only real arrays.

15.2 Assigning to Arrays
There are three methods used for assignment to an array:
index operator The same method as matrices, generalized to arrays.

putarray Put a subarray into an N-dimensional array and
returns the result.

setarray Set a subarray of an N-dimensional array in place.

And there are several ways to extract parts of arrays:
index operator The same method as matrices, generalized to arrays.

getarray Get a subarray from an array.

15-7

GAUSS User Guide

getmatrix Get a matrix from an array.
getmatrix4D Get a matrix from a 4-dimensional array.
getscalar4D

Get a scalar from a 4-dimensional array.

The index operator is the slowest way to extract parts of arrays. The specialized func-
tions are the fastest when the circumstances are appropriate for their use.

15.2.1 index operator

The index operator will put a subarray into an array in a manner analogous to the use
of index operators on matrices:

a = arrayinit(3/2|2, 0);
b arrayinit(3(11(2, 1);
al.,2,.] = b;

print a;

Plane [1,.,.]
0.0000 0.0000
1.0000 1.0000

Plane [2,.,.]
0.0000 0.0000
1.0000 1.0000

Plane [3,.,.]
0.0000 0.0000
1.0000 1.0000

As this example illustrates, the assignment doesn't have to be contiguous. putMatrix
and setMatrix require a contiguous assignment, but for that reason they are faster.

The right hand side of the assignment can also be a matrix:

15-8

Working with Arrays

The index operator will extract an array from a subarray in a manner analogous to the
use of index operators on matrices:

GAUSS User Guide

Plane [1,.,.]
1.0000 2.0000

Plane [2,.,.]
5.0000 6.0000

Plane [3,.,.]
9.0000 10.000

It is important to note that the result is always an array even if it's a scalar value:

c =all,1,1];
print c;

Plane [1,.,.]
1.0000

If you require a matrix result, and if the result has one or two dimensions, use array-
tomat to convert to a matrix, or use getmatrix, or getmatrix4D. Or, if the result
is a scalar, use getscalar3D or getscalar4D.

15.2.2 getarray

getarray is an additional method for extracting arrays:

a = areshape(seqa(l,1,12), 3|2]2);
b getarray(a, 211);
print a;

Plane [1,.,.]
1.0000 2.0000
3.0000 4.0000

Plane [2,.,.]
5.0000 6.0000
7.0000 8.0000

15-10

Working with Arrays

Plane [3,.,.]
9.0000 10.000
11.000 12.000

print b;
5.0000 6.0000

getarray can only extract a contiguous part of an array. To get non-contiguous parts
you must use the index operator.

15.2.3 getmatrix

If the result is one or two dimensions, getmatrix returns a portion of an array con-
verted to a matrix. getmatrix is about 20 percent faster than the index operator:

a = areshape(seqa(l,1,12), 3|2|2);
b = getmatrix(a, 2);
print b;

5.0000 6.0000
7.0000 8.0000

15.2.4 getmatrix4D

This is a specialized version of getmatrix for 4-dimensional arrays. It behaves just
like getmatrix but is dramatically faster for that type of array. The following illus-
trates the difference in timing:

a = arrayinit(100/100/10(10, 1);
t0 = date;

for i(1, 100, 1);

15-11

GAUSS User Guide

for j (1, 100, 1);
b =ali,j,.,-1;
endfor;
endfor;

tl date;

el ethsec (t0, t1);
print el;

print;

t2 = date;

for 1(1,100,1);
for j(1,100,1);
b = getmatrix4d(a, i, 3J);
endfor;
endfor;

t3 date;
e2 = ethsec(t2, t3);
print e2;

print;
print ftostrC(100* ((el-e2)/el), "percent difference -
$6.21£%%") ;

13.000000
5.0000000
percent difference - 61.54%

15.2.5 getscalar3D, getscalar4D

These are specialized versions of getmatrix for retrieving scalar elements of 3-
dimensional and 4-dimensional arrays, respectively. They behave just like getmatrix,
with scalar results, but are much faster. For example:

15-12

Workin with Arrays

GAUSS User Guide

15.2.6 putarray

putarray enters a subarray, matrix, or scalar into an N-dimensional array and returns
the result in an array. This function is much faster than the index operator, but it requires
the part of the array being assigned to be contiguous:

a = arrayinit (322, 3);
b = putarray(a, 2, eye(2));
print b;

Plane [1,.,.]
3.0000 3.0000
3.0000 3.0000

Plane [2,.,.]
1.0000 0.00000
0.00000 1.0000

Plane [3,.,.]
3.0000 3.0000
3.0000 3.0000

15.2.7 setarray

setarray enters a subarray, matrix, or scalar into an N-dimensional array in place:

a = arrayinit(3(2]2,3);
setarray a,2, eye(2);
print b;

Plane [1,.,.]
3.0000 3.0000
3.0000 3.0000

Plane [2,.,.]

15-14

Working with Arrays

1.0000 0.0000
0.0000 1.0000

Plane [3,.,.]
3.0000 3.0000
3.0000 3.0000

15.3 Looping with Arrays

When working with arrays, for loops and do loops may be used in the usual way. In
the following, let ¥ be an Nx1xL array of L time series, X an Nx1xK array of K inde-
pendent variables, b a KxL matrix of regression coefficients, phi a PxLxL array of
garch coefficients, theta a QxLxL array of arch coefficients, and omega a LxL sym-
metric matrix of constants. The log-likelihood for a multivariate garch BEKK model can
be computed using the index operator:

yord = getorders (Y) ;

xord getorders (X) ;

gord = getorders (phi) ;

getorders (theta) ;

N = yord[l]; // No. of observations

Y
X

aord

L = yord[3]; // No. of time series

K = xord[3]; // No. of independent variables // in mean equa-
tion

P = gord[1l]; // order of garch parameters

Q = aord[1]; // order of arch parameters

r maxc (P|Q) ;
E =Y - amult(X, areshape (B, N|K|L));
sigma = areshape (omega,N|L|L) ;

for i(r+l1, N, 1);
for 3(1,Q,1);
W = amult (thetalj,.,.],
atranspose (E[i-3,.,.]1, 11312));

15-15

GAUSS User Guide

—
Il

sigmal[i, ., .
11312));
endfor;
for (1, ®, 1)p
sigmal[i, ., .] sigma[i,.,.] + amult (amult (phi[j,.,.],
sigmal[i-j,.,.]),phi[],.,.]1);
endfor;
endfor;

sigmal[i,.,.] + amult (W, atranspose (W,

sigmai = invpd(sigma) ;

lndet = ln(det(sigma)) ;

Inl = -0.5*(L*(N-R)*asum(ln(det(sigmai)),1l) + asum(amult
(amult (E, sigmai), atranspose(E,1[3[2)), 3);

Instead of index operators, the above computation can be done using getarray and
setarray:

yord getorders (Y) ;

(Y
getorders (X) ;

(

(

xord
gord = getorders (phi)
aord

getorders theta)

= yord[1l]; // No. of observations
= yord[3]; // No. of time series
= xord][
= gord[1l
= aord[

31; // No. of independent variables in mean equation
1; // order of garch parameters

O " x =2

1]; // order of arch parameters

r = maxc (P|Q) ;
E =Y - amult(X, areshape (B,N|K|L))
sigma = areshape (omega, N|L|L);

for i(r+l1, N, 1);
for j(1,Q,1);
W = amult (getarray (theta, 7j),
atranspose (getarray (E, 1i-3), 2|1));
setarray sigma,i, getarray(sigma, i)+

15-16

Working with Arrays

amult (W, atranspose (W, 2|1));
endfor;
for j(1, P, 1);
setarray sigma,i, getarray(sigma,i)+
areshape (amult (amult (getarray (phi, j),
getarray (sigma, i-j)), getarray(phi, 3j)), 3I13);
endfor;
endfor;

sigmai = invpd(sigma) ;

lndet = ln(det(sigma)) ;

1nl = -0.5*(L*(N-R)*asum(ln(det(sigmai)), 1)+

asum (amult (amult (E, sigmai), atranspose(E,1(3[2)), 3)

Putting the two code fragments above into loops that called them a hundred times and
measuring the time, produced the following results:

index operator: 2.604 seconds
getarray, setarray: 1.092 seconds

Thus, the getarray and setarray methods are more than twice as fast.

15.3.1 loopnextindex

Several keyword functions are available in GAUSS for looping with arrays. The prob-
lem in the previous section, for example, can be written using these functions rather than
with for loops:

sigind = r + 1;
sigloop:

sig0ind = sigind[1];
thetaind = 1;
thetaloop:

15-17

GAUSS User Guide

sig0ind = sig0Oind - 1;

W = amult (getarray (theta, thetaind),

atranspose (getarray (E, sigOind), 2]1));
setarray sigma,sigind, getarray(sigma, sigind)+
amult (W, atranspose (W, 2|1));

loopnextindex thetaloop,thetaind,aord;
sig0ind = sigind;

phiind = 1;

philoop:

sig0ind[1l] = sig0ind[1] - 1;

setarray sigma,sigind, getarray(sigma, sigind)+
areshape (amult (amult (getarray (phi, phiind),
getArray (sigma, sigOind)),

getArray (phi, phiind)), 31[3);

loopnextindex philoop,phiind, gord;
loopnextindex sigloop,sigind, sigord;

The loopnextindex function in this example isn't faster than the for loop used in
the previous section primarily because the code is looping only through the first dimen-
sion in each loop. The advantages of loopnextindex, previousindex, nex-
tindex, and walkindex are when the code is looping through the higher dimensions
of a highly dimensioned array. In this case, looping through an array can be very com-
plicated and difficult to manage using for loops. loopnextindex can be faster and
more useful.

The next example compares two ways of extracting a subarray from a 5-dimensional
array:

ord = 3313337
a = areshape(seqa(l, 1, prodc(ord)) ,ord);
b eye (3) ;

for i(1, 3, 1);

15-18

Working with Arrays

for (1, 3, 1);
for k(1, 3, 1);
setarray a,iljlk,b;
endfor;
endfor;
endfor;

ind = { 1,1,1 };
loopi:

setarray a,ind,b;
loopnextindex loopi,ind,ord;

Calling each loop 10,000 times and measuring the time each takes, we get
for loop: 1.171 seconds
loopnextindex: .321 seconds
In other words, 1loopnextindex is about four times faster, a very significant dif-

ference.

15.4 Miscellaneous Array Functions

This section discusses miscellaneous array functions.

15.4.1 atranspose

This function changes the order of the dimensions. For example:

a = areshape(seqa(l, 1, 12), 2|3(2);
print a;

Plane [1,.,.]
1.0000 2.0000

15-19

GAUSS User Guide

Working with Arrays

** move 3rd into the front
*/
print atranspose(a,3[1[2);

Plane [1,.,.]
1.0000 3.0000 5.0000
7.0000 9.0000 11.000

Plane [2,.,.]
2.0000 4.0000 6.0000
8.0000 10.000 12.000

15.4.2 amult

This function performs a matrix multiplication on the last two trailing dimensions of an
array. The leading dimensions must be strictly conformable, and the last two trailing
dimensions must be conformable in the matrix product sense. For example:

a = areshape(seqa(l, 1, 12), 2|312);
b = areshape(seqa(l, 1, 16), 2|2]4);
€ amult(a, b);

print a;

Plane [1,.,.]
1.0000 2.0000
3.0000 4.0000
5.0000 6.0000

Plane [2,.,.]
7.0000 8.0000
9.0000 10.000
11.000 12.000

print b;

15-21

GAUSS User Guide

Plane [1,.,.]
1.0000 2.0000 3.0000 4.0000
5.0000 6.0000 7.0000 8.0000

Plane [2,.,.]
9.0000 10.000 11.000 12.000
13.000 14.000 15.000 16.000

print c;

Plane [1,.,.]

11.000 14.000 17.000 20.000
23.000 30.000 37.000 44.000
35.000 46.000 57.000 68.000

Plane [2,.,.]

167.00 182.00 197.00 212.00
211.00 230.00 249.00 268.00
255.00 278.00 301.00 324.00

Suppose we have a matrix of data sets, a 2x2 matrix of 100x5 data sets that we've stored
in a 2x2x100x5 array called x. The moment matrices of these data sets can easily and
quickly be computed using atranspose and amult:

vc = amult (atranspose(x, 1[2[4]3), x);

15.4.3 amean, amin, amax

These functions compute the means, minimums, and maximums, respectively, across a
dimension of an array. The size of the selected dimension of the resulting array is shrunk
to one and contains the means, minimums, or maximums depending on the function
called. For example:

a = areshape(seqa(l,1,12), 2|3[2);
print a;

15-22

Workin with Arrays

GAUSS User Guide

print amin(a, 2);

Plane [1,.,.]
1.0000 2.0000

Plane [2,.,.]
7.0000 8.0000

/*
** print the maximums along the third dimension
*/
print amax(a, 3);
Plane [1,.,.]
7.0000 8.0000

9.0000 10.000
11.000 12.000

15.4.4 getdims

This function returns the number of dimensions of an array:

a = arrayinit(4/41|5|2, 0);
print getdims(a) ;

4.00

15.4.5 getorders

This function returns the sizes of each dimension of an array. The length of the vector
returned by getorders is the dimension of the array:

a = arrayinit(41(41/5/2,0);
print getorders(a);

15-24

Working with Arrays

.00
.00
.00
.00

N O B >

15.4.6 arraytomat

This function converts an array with two or fewer dimensions to a matrix:
a = arrayinit(2(2, 0);
b = arraytomat (a) ;
type (a) ;
21.000

type (b) ;

6.0000

15.4.7 mattoarray

This function converts a matrix to an array:

b = rndn(2,2);
a mattoarray (b) ;
type (b) ;

6.0000

type (a) ;

21.000

15-25

GAUSS User Guide

15.5 Using Arrays with GAUSS functions

Many of the GAUSS functions have been re-designed to work with arrays. There are
two general approaches to this implementation. There are exceptions, however, and you
are urged to refer to the documention if you are not sure how a particular GAUSS func-
tion handles array input.

In the first approach, the function returns an element-by-element result that is strictly
conformable to the input. For example, cdfNc returns an array of identical size and
shape to the input array:

a = areshape(seqa (-2, .5, 12), 2]312);
b cdfnc (a) ;
print b;

Plane [1,.,.]
0.9772 0.9331
0.8413 0.6914
0.5000 0.3085

Plane [2,.,.]
0.1586 0.0668
0.0227 0.0062
0.0013 0.0002

In the second approach, which applies generally to GAUSS matrix functions, the func-
tion operates on the matrix defined by the last two trailing dimensions of the array. Thus,
given a 5x10x3 array, moment returns a 5x3x3 array of five moment matrices computed
from the five 10x3 matrices in the input array.

Only the last two trailing dimensions matter; i.e., given a 2x3x4x5x10x6 array, moment
returns a 2x3x4x5x6x6 array of moment matrices.

For example, in the following the result is a 2x3 array of 3x1 vectors of singular values
of a 2x3 array of 6x3 matrices:

15-26

Working with Arrays

a = areshape(seqa(1l,1,108), 2|3|6]3);
b=svds (a) ;
print b;

Plane [1,1,.,.]
45.894532
1.6407053
1.2063156e-015

Plane [1,2,.,.]
118.72909
0.63421188
5.8652600e-015

Plane [1,3,.,.]
194.29063
0.38756064
1.7162751e-014

Plane [2,1,.,.]
270.30524
0.27857175
1.9012118e-014

Plane [2,2,.,.]
346.47504
0.21732995
1.4501098e-014

Plane [2,3,.,.]
422.71618
0.17813229
1.6612287e-014

It might be tempting to conclude from this example that, in general, a GAUSS function's
behavior on the last two trailing dimensions of an array is strictly analogous to the

15-27

GAUSS User Guide

GAUSS function's behavior on a matrix. This may be true with some of the functions,
but not all. For example, the GAUSSmeanc function returns a column result for matrix
input. However, the behavior for the GAUSSamean function is not analogous. This
function takes a second argument that specifies on which dimension the mean is to be
taken. That dimension is then collapsed to a size of 1. Thus:

a = areshape(seqa(l, 1, 24), 2|314);
print a;
Plane [1,.,.]
1.000 2.000 3.000 4.000
5.000 6.000 7.000 8.000
9.000 10.000 11.000 12.000
Plane [2,.,.]
13.000 14.000 15.000 16.000
17.000 18.000 19.000 20.000
21.000 22.000 23.000 24.000
/*
** means computed across rows
4
b = amean(a,l);
print b;
Plane [1,.,.]
2.500
6.500
10.500
Plane [2,.,.]
14.500
18.500
22.500
/*

15-28

Working with Arrays

** means computed down columns
*/

c = amean (a,?2);

print c;

Plane [1,.,.]

5.000 6.000 7.000 8.000
Plane [2,.,.]

17.000 18.000 19.000 20.000

/*
** means computed along 3rd dimension

*/

d = amean(a, 3);
print d;

Plane [1,.,.]

7.000 8.000 9.000 10.000
11.000 12.000 13.000 14.000
15.000 16.000 17.000 18.000

15.6 A Panel Data Model

Suppose we have N cases observed at T times. Let Yie be an observation on a depend-
ent variable for the ith case attime ¢, X, an observation of k independent var-
iables for the ith caseattime t, B, a KxI vector of coefficients. Then

Tooe = % Ty T By
is a variance components model where M is a random error term uncorrelated with £,

but which is correlated within cases. This implies an NTXNT residual moment matrix
that is block diagonal with N TxT moment matrices with the following form:

t)

15-29

GAUSS User Guide

2 2 2 2

Oy + o; a Oy

e 2 2 2

oy o + o, gy

2 2 2
L Tk oy HLee
The log-likelihood for this model is

1nL = -0.5(NT(1n(2m)) - 1n|Q| + (Y - XB)'Ql(Y - XB))

where Q is the block-diagonal moment matrix of the residuals.

Computing the Log-likelihood

Using GAUSS arrays, we can compute the log-likelihood of this model without resorting
to do loops. Let Y be a 100x3x1 array of observations on the dependent variable, and X
a 100x3x5 array of observations on the independent variables. Further let b be a 5x1 vec-
tor of coefficients, and sigu and sige be the residual variances of p and € respec-

tively.

Then, in explicit steps we compute

N = 100;

T = 3;

K = 5;

sigma = sigu * ones (T, T) + sige * eye(T); // TxT sigma
sigmai = invpd(sigma); // sigma inverse

lndet = N*1ln(detl);

E = Y - amult (X, areshape (B, N|K|1)); // residuals

Omegai = areshape (sigmai, N|T|T); // diagonal blocks //
stacked in a vector array

Rl = amult (atranspose(E, 1[3|2), Omegai); // E'Omegai

R2 = amult (R1, E); // R1*E

InL = -0.5* (N*T*1n(2*pi) - Ilndet + asum(R2, 3)); // log-likel-
hood

15-30

Working with Arrays

All of this can be made more efficient by nesting statements, which eliminates copying
of temporary intervening arrays to local arrays. It is also useful to add a check for the
positive definiteness of sigma:

N = 100;

T = 3;

K = 5;

const = -0.5*N*T*1n(2*pi) ;

oldt = trapchk (1) ;

trap 1,1;

sigmai = invpd(sigu*ones (T, T)+sige*eye(T)) ;
trap oldt,1;

if not scalmiss(sigmai) ;
E =Y - amult(X, areshape (B,N|K|1));
Inl = const + 0.5*N*1ln(detl)-
0.5*asum (amult (amult (atranspose (E,1|3(2),
areshape (sigmai,N|T|T)),E),3);

else;
Inl = error (0);
endif;
15.7 Appendix

This is an incomplete list of special functions for working with arrays. Many GAUSS
functions have been modified to handle arrays and are not listed here. For example,
cd£Nc computes the complement of the Normal cdf for each element of an array just as
it would for a matrix. See the documentation for these GAUSS functions for information
about their behavior with arrays.

aconcat Concatenate conformable matrices and arrays in a
user-specified dimension.

aeye Create an array of identity matrices.

amax Compute the maximum elements across a dimension

15-31

GAUSS User Guide

amean

amin

amult

areshape

arrayalloc

arrayinit

arraytomat

asum

atranspose

getarray

getdims

getmatrix

getmatrix4D
getorders

getscalar3D

of an array.
Compute the mean along one dimension of an array.

Compute the minimum elements across a dimension
of an array.

Perform a matrix multiplication on the last two
trailing dimensions of an array.

Reshape a scalar, matrix, or array into an array of
user-specified size.

Create an N-dimensional array with unspecified
contents.

Create an N-dimensional array with a specified fill
value.

Change an array to type matrix.
Compute the sum across one dimension of an array.
Transpose an N-dimensional array.

Get a contiguous subarray from an N-dimensional
array.

Get the number of dimensions in an array.

Get a contiguous matrix from an N-dimensional
array.

Get a contiguous matrix from a 4-dimensional array.
Get the vector of orders corresponding to an array.

Get a scalar from a 3-dimensional array.

15-32

Working with Arrays

getscalar4D

loopnextindex

mattoarray

nextindex

previousindex

putarray

setarray

walkindex

Get a scalar form a 4-dimensional array.

Increment an index vector to the next logical index
and jump to the specified label if the index did not
wrap to the beginning.

Change a matrix to a type array.

Return the index of the next element or subarray in
an array.

Return the index of the previous element or subarray
in an array.

Put a contiguous subarray into an N-dimensional
array and return the resulting array.

Set a contiguous subarray of an N-dimensional array.

Walk the index of an array forward or backward
through a specified dimension.

15-33

16 Structures

16.1 Basic Structures

16.1.1 Structure Definition

The syntax for a structure definition is

struct A { /* list of members */ };

The list of members can include scalars, arrays, matrices, strings, and string arrays, as
well as other structures. As a type, scalars are unique to structures and don't otherwise

exist.

For example, the following defines a structure containing the possible contents:

struct generic example {

scalar
matrix
string
string
struct

b

X7

%

sl;

array s2;

other example t;

Defining a structure in a program

A useful convention is to save the structure definition into a file with a . sdf extension.
After the structure definition has been created and saved in a file, the next step is to

16-1

GAUSS User Guide

make the structure definition available for your program. This may be accomplished by
either executing the structure definition file or by adding the structure definition to a
library.

Executing a structure definition file

You can execute a structure definition just like any other GAUSS program file. How-
ever, any time that the new command is entered, the structure definition will be cleared
from your workspace. To ensure that the structure definition is always available for your
program, you can add an #include statement like this:

#include filename.sdf

to the top of your program file. This will ensure that the structure definition is always
available for your program.
Adding a structure definition to a library

Starting in GAUSS version 13.1, you can also add structure definition files to a GAUSS

library. You can add structure definitions to any GAUSS library with the 1ib command
or using the Library Tool in the user interface. If a structure definition is in a library file,
you can make all procedures and structure definitions available with one statement. For

example:

library mylibrary;

instead of:

library mylibrary;
#include mystructl.sdf
#include mystruct2.sdf

Also if a structure is defined in an active library, autocomplete will be available for the
structure members.

The next section describes how to create an instance of a structure.

16-2

Structures

16.1.2 Declaring an Instance
To use a structure, it is necessary to declare an instance. The syntax for this is

struct structure type structure name;

For example:

#include example.sdf
struct generic example pO0;

16.1.3 Initializing an Instance

Members of structures are referenced using a "dot" syntax:
pO0.x = rndn (20,3);

The same syntax applies when referred to on the right-hand side:
mn = meanc (p0.x) ;

Initialization of Global Structures

Global structures are initialized at compile time. Each member of the structure is initial-
ized according to the following schedule:

scalar 0, a scalar zero

matrix {}, an empty matrix with zero rows and zero
columns

array 0, a 1-dimensional array set to zero

string """ anull string

16-3

GAUSS User Guide

string array """ a 1x1 string array set to null
sparse matrix {}, an empty sparse matrix with zero rows and zero
columns

If a global already exists in memory, it will not be reinitialized. It may be the case in
your program that when it is rerun, the global variables may need to be reset to default
values. That is, your program may depend on certain members of a structure being set to
default values that are set to some other value later in the program. When you rerun this
program, you will want to reinitialize the global structure. To do this, make an assign-
ment to at least one of the members. This can be made convenient by writing a pro-
cedure that declares a structure and initializes one of its members to a default value, and
then returns it. For example:

// ds.src
#include ds.sdf

proc dsCreate;
struct DS dO;
dO0.dataMatrix = 0;
retp (d0) ;

endp;

Calling this function after declaring an instance of the structure will ensure initialization
to default values each time your program is run:

struct DS dO;
d0 = dsCreate;

Initializing Local Structures

Local structures, which are structures defined inside procedures, are initialized at the
first assignment. The procedure may have been written in such a way that a subset of
structures are used an any one call, and in that case time is saved by not initializing the

16-4

Structures

unused structures. They will be initialized to default values only when the first assign-
ment is made to one of its members.

16.1.4 Arrays of Structures

To create a matrix of instances, use the reshape command:

#include ds.sdf
struct DS p0;
p0 = reshape (dsCreate,5,1) ;

This creates a 5x1 vector of instances of DS structures, with all of the members initial-
ized to default values.

When the instance members have been set to some other values, reshape will produce
multiple copies of that instance set to those values.

Matrices or vectors of instances can also be created by concatenation:

#include trade.sdf
struct option p0,pl,p2;
p0 = optionCreate;

pl optionCreate;

p2 = pl | pO0;

16.1.5 Structure Indexing
Structure indexing may be used to reference a particular element in a structure array.

The syntax follows that of matrix indexing. For example, given the following structure
definition:

struct examplel {

16-5

GAUSS User Guide

matrix x;
matrix y;
string str;

}i
you could create an array of examplel structures and index it as follows:

struct examplel ela;
struct examplel elb;

ela = ela | elb;
ela[2,1].y = rndn (25,10);

In this example, e1a and el1b are concatenated to create a 2x1 array of examplel
structures that is assigned back to e1a. Then the y member of the [2,1] element of e1a
is set to a random matrix.

Indexing of structure arrays can occur on multiple levels. For example, let's define the
following structures:

struct example3 {
matrix w;
string array sa;

I g

struct example2 {
matrix z;
struct example3 e3;

bi
and let's redefine examplel to include an instance of an example2 structure:

struct examplel {
matrix x;
matrix y;
string str;

16-6

Structures

struct example2 e2;

el

matrix x

matrix y

string str
struct example2 e2

e?2 is a 3xl array

matrix =z matrix z matrix =z
struct example3d e3 struct examplel e3 struct examplel e3
el is a 2Zx1 array el is a 1lxl array e3 is a 3xl1 array
matrizx w matrix w matrix w matrix w
atring aray sa string aray sa string aray sa string aray sa
matrix w matrix w
string aray sa string aray sa

Figure 16.1: Structure tree for e

Let's assume that we have an examplel structure el like the one displayed in the fig-
ure above. We could then index the structure as follows:

r = el.e2[3,1].e3[2,1].w

You can also use indexing to reference the structure itself, rather than a member of that
structure:

struct example3 e3tmp;
e3tmp = el.e2[3,1].e3[2,1];

Or you can use indexing to reference a subarray of structures:

16-7

GAUSS User Guide

e3tmp = el.e2[3,1].e3[.,1];

In this case, e 3tmp would be an array of 3x1 example3 structures, since the [3,1]
member of e1.e2 contains a 3x1 array of example3 structures.

It is important to remember, however, that when indexing a structure array on multiple
levels, only the final index may resolve to an array of structures. For example:

e3tmp = el.e2[.,1].e3[2,1];

would be invalid, since el .e2 [.,1] resolves to a 3x1 array of exampleZ structures.

16.1.6 Saving an Instance to the Disk

Instances and vectors or matrices of instances of structures can be saved in a file on the
disk, and later loaded from the file onto the disk. The syntax for saving an instance to the
disk 1s

ret = savestruct(instance, filename);

The file on the disk will have an . £sr extension.

For example:

#include ds.sdf

struct DS p0;

p0 = reshape (dsCreate,2,1) ;
retc = saveStruct (p2, "p2");

This saves the vector of instances in a file called p2 . fsr. The variable retc will be
zero if the save was successful; otherwise, nonzero.

16.1.7 Loading an Instance from the Disk

The syntax for loading a file containing an instance or matrix of instances is

16-8

Structures

{ instance, retc } = loadstruct(file name, structure name);

For example:

#include ds.sdf;
struct DS p3;
{ p3, retc } = loadstruct("p2", "ds");

16.1.8 Passing Structures to Procedures

Structures or members of structures can be passed to procedures. When a structure is
passed as an argument to a procedure, it is passed by value. The structure becomes a
local copy of the structure that was passed. The data in the structure is not duplicated
unless the local copy of the structure has a new value assigned to one of its members.
Structure arguments must be declared in the procedure definition:

struct rectangle {
matrix ulx;
matrix uly;
matrix lrx;
matrix lry;

1

proc area (struct rectangle rect);
retp((rect.lrx - rect.ulx).*(rect.uly - rect.lry)):

endp;
Local structures are defined using a st ruct statement inside the procedure definition:

proc center (struct rectangle rect);
struct rectangle cent;

cent.lrx =(rect.lrx - rect.ulx) / 2;
cent.ulx = -cent.lrx;
cent.uly =(rect.uly - rect.lry) / 2;

16-9

GAUSS User Guide

cent.lry = -cent.uly;
retp (cent) ;
endp;

16.2 Structure Pointers

A structure pointer is a separate data type that contains the address of a structure and is
used to reference that structure.

16.2.1 Creating and Assigning Structure Pointers
Given the following structure type definition:
struct example struct ({
matrix x;
matrix y;
bi
a pointer to an example struct structure can be created with the following syntax:

struct example struct *esp;

However, at this point, esp is not yet pointing at anything. It has only been defined to be
the kind of pointer that points at example struct structures. To set it to point at a
particular structure instance, we must first create the structure instance:

struct example struct es;
and then we can set esp to point at es by setting esp to the address of es:
esp = &es;

The following code:

16-10

Structures

struct example struct es2;
es2 = *esp;

copies the contents of the structure that esp is pointing at (i.e., the contents of es) to
esZ2. Itis the same as

struct example struct es2;
es2 = es;

16.2.2 Structure Pointer References

To reference a member of a structure, we use a "dot" syntax. For example, we might
use the following code to set the x member of es.

es.x = rndn (3, 3);

To reference a member of a structure using a pointer to that structure, we use an
"arrow" syntax. For example, we might use the following code to set the x member of
es using the pointer esp:

esp->x = rndn(10,5) ;

This code will modify es, since esp is merely a pointer to es.

Structure pointers cannot be members of a structure. The following is illegal:

struct example struct 2 {
matrix z;
struct example struct *ep;

i
Therefore, since a structure pointer will never be a member of a structure, neither

spl->sp2->x;

nor

16-11

GAUSS User Guide

S.spl->x;

will ever be valid (sp1 and sp2 are assumed to be structure pointers, s a structure
instance, and x a matrix). The "arrow" (->) will only be valid if it is used for the first
(or furthest left) dereference, as in:

spl->st.x;

At this point we do not support indexing of structure pointers. Thus, a structure pointer
should point at a scalar structure instance, not a matrix of structures. However, you may
index members of that scalar structure instance. So, for example, let us suppose that you
defined the following structure types:

struct sb {
matrix y;
matrix z;
}i
struct sa {
matrix x;
struct structb s;

17
and then created an instance of an sa structure, a0, setting a0 . s to a 3x2 matrix of sb

structures. The following would be legal:

struct sa *sap
sap = &al;
sap->s([3,1].y = rndn(3,3);

16.2.3 Using Structure Pointers in Procedures

Structure pointers are especially useful in cases where structures are passed into and out
of procedures. If a procedure takes a structure as an argument and modifies any

16-12

Structures

members of that structure, then it makes a local copy of the entire structure before mod-
ifying it. Thus if you want to have the modified copy of the structure after running the
procedure, you need to pass the structure out of the procedure as one of its return argu-
ments. For example:

struct example struct ({
matrix x;
matrix y;
matrix z;

}i

proc product (struct example struct es);

es.z = (es.x).*(es.y);
retp (es) ;
endp;

struct example struct esl;
esl.x = rndn (1000, 100) ;
esl.y = rndn(1000,1) ;

esl = product (esl);

In this example, the structure es is passed into the procedure, copied and modified.
The modified structure is then passed out of the procedure and assigned back to es 1.

Structure pointers allow you to avoid such excessive data copying and eliminate the need
to pass a structure back out of a procedure in cases like this. When you pass a structure
pointer into a procedure and then modify a member of the structure that it references, the
actual structure is modified rather than a local copy of it. Thus there is no need to pass
the modifed structure back out of the procedure. For example, the above example could
be accomplished using structure pointers as follows:

struct example struct ({
matrix x;
matrix y;
matrix z;

b

16-13

GAUSS User Guide

proc (0) = product (struct example struct *esp);
esp->z = (esp->x).* (esp->V);
endp;

struct example struct esl;
struct example struct *eslp;
eslp = &esl;

esl.x = rndn(1000,100) ;
esl.y = rndn(1000,1) ;
product (eslp) ;

In this case, the procedure modifies the structure es 1, which es1p is pointing at,
instead of a local copy of the structure.

16.3 Special Structures

There are three common types of structures that will be found in the GAUSS Run-Time
Library and applications.

The DS and PV structures are defined in the GAUSS Run-Time Library. Their def-
initions are found in ds . sdf and pv. sdf, respectively, in the src source code sub-
directory.

Before structures, many procedures in the Run-Time Library and all applications had
global variables serving a variety of purposes, such as setting and altering defaults. Cur-
rently, these variables are being entered as members of "control" structures.

16.3.1 The DS Structure

The DS structure, or "data" structure, is a very simple structure. It contains a member
for each GAUSS data type. The following is found in ds . sdf:

16-14

Structures

struct DS {
scalar type;
matrix dataMatrix;
array dataArray;
string dname;
string array vnames;

b

This structure was designed for use by the various optimization functions in GAUSS, in
particular, sgpSolvemt, as well as a set of gradient procedures, gradmt, hessmt,
etal.

These procedures all require that the user provide a procedure computing a function (to
be optimized or take the derivative of, etc.), which takes the DS structure as an argu-
ment. The Run-Time Library procedures such as sqpSolvemt take the DS structure
as an argument and pass it on to the user-provided procedure without modification. Thus,
the user can put into that structure whatever might be needed as data in the procedure.

To initialize an instance of a DS structure, the procedure dsCreate is defined in
ds.src:

#include ds.sdf
struct DS dO;
d0 = dsCreate;

16.3.2 The PV Structure

The PV structure, or parameter vector structure, is used by various optimization, mod-
eling, and gradient procedures, in particular sqpSolvemt, for handling the parameter
vector. The GAUSS Run-Time Library contains special functions that work with this
structure. They are prefixed by "pv" and defined in pv . src. These functions store
matrices and arrays with parameters in the structure, and retrieve various kinds of infor-
mation about the parameters and parameter vector from it.

"Packing" into a PV Structure

16-15

GAUSS User Guide

The various procedures in the Run-Time Library and applications for optimization,
modelling, derivatives, etc., all require a parameter vector. Parameters in complex mod-
els, however, often come in matrices of various types, and it has been the responsibility
of the programmer to generate the parameter vector from the matrices and vice versa.
The PV procedures make this problem much more convenient to solve.

The typical situation involves two parts: first, "packing" the parameters into the PV struc-
ture, which is then passed to the Run-Time Library procedure or application; and sec-
ond, "unpacking" the PV structure in the user-provided procedure for use in computing
the objective function. For example, to pack parameters into a PV structure:

#include sgpsolvemt.sdf

/* starting values */

b0 = 1; //constant in mean equation
garch = { .1, .1 }; //garch parameters

arch = { .1, .1 }; //arch parameters

omega = .1; //constant in variance equation

struct PV p0;
p0 = pvPack (pvCreate,b0, "b0O");
joJ0) pvPack (p0,garch, "garch");
(
(

p0 = pvPack (p0,arch, "arch");

p0 = pvPack (p0,omega, "omega");
/* data */
z = loadd("tseries");

struct DS dO;
d0.dataMatrix = z;

Next, in the user-provided procedure for computing the objective function, in this case
minus the log-likelihood, the parameter vector is unpacked:

proc 11 (struct PV p0, struct DS dO0);
local b0,garch,arch,omega,p,q,h,u,vc,w;
b0 = pvUnpack (p0, "b0");

16-16

Structures

garch = pvUnpack (p0O, "garch");
arch = pvUnpack (p0, "arch");
omega = pvUnpack (p0, "omega");
p = rows (garch) ;

o} rows (arch) ;

u = dO0.dataMatrix - b0;

vc = moment (u,0) /rows (u) ;

w = omega + (zeros(qg,q) | shiftr((u.*ones(1l,q))"',
seqa(g-1,-1,g9))) * arch;
h = recserar (w,vc*ones (p,1l),garch);
logl = -0.5 * ((u.*u)./h + 1In(2*pi) + 1ln(h));
retp (logl) ;

endp;

Masked Matrices

The pvUnpack function unpacks parameters into matrices or arrays for use in com-
putations. The first argument is a PV structure containing the parameter vector. Some-
times the matrix or vector is partly parameters to be estimated (that is, a parameter to be
entered in the parameter vector) and partly fixed parameters. To distinguish between esti-
mated and fixed parameters, an additional argument is used in the packing function
called a "mask", which is strictly conformable to the input matrix. Its elements are set to
1 for an estimated parameter and 0 for a fixed parameter. For example:

p0 = pvPackm(pQ, .l*eye (3), "theta", eye(3));

Here just the diagonal of a 3x3 matrix is added to the parameter vector.

When this matrix is unpacked, the entire matrix is returned with current values of the
parameters on the diagonal:

print pvUnpack (p0O, "theta");
0.1000 0.0000 0.0000

0.0000 0.1000 0.0000
0.0000 0.0000 0.1000

Symmetric Matrices

16-17

GAUSS User Guide

Symmetric matrices are a special case because even if the entire matrix is to be esti-
mated, only the nonredundant portion is to be put into the parameter vector. Thus, for
them there are special procedures. For example:

ve = {1 .6 .4, .61 .2, .4 .21 };
p0 = pvPacks (p0,vc, "vc");

There is also a procedure for masking in case only a subset of the nonredundant ele-
ments are to be included in the parameter vector:

ve = {1 .6 .4, .61 .2, .4 .21 };
= {110, 110, 001 };
p0 = pvPacksm(p0,vc, "vc",mask);

Fast Unpacking

When unpacking matrices using a matrix name, pvUnpack has to make a search
through a list of names, which is relatively time-consuming. This can be alleviated by
using an index rather than a name in unpacking. To do this, though, requires using a spe-
cial pack procedure that establishes the index:

p0 = pvPacki
p0 = pvPacki
)0, pvPacki
jold) pvPacki

p0,b0, "bO",1);
p0,garch, "garch",2);
p0,arch, "arch",3);
p0, omega, "omega",4);

—_~ o~~~

//Now they may be unpacked using the index number:
b0 = pvUnpack (p0,1);

garch = pvUnpack (p0,2) ;

arch = pvUnpack (p0, 3) ;

omega = pvUnpack (p0,4) ;

When packed with an index number, they may be unpacked either by index or by name,
but unpacking by index is faster.

16-18

Structures

16.3.3 Miscellaneous PV Procedures
pvlList

This procedure generates a list of the matrices or arrays packed into the structure:

p0 = pvPack (p0,b0, "bO");

p0 = pvPack (p0,garch, "garch");
p0 = pvPack (p0,arch, "arch");
p0 = pvPack (p0, omega, "omega");

print pvList (pO0) ;

b0
garch
arch
omega

pvLength This procedure returns the length of the parameter vector:
print pvLength (p0) ;
6.0000

pvGetParNames

This procedure generates a list of parameter names:
print pvGetParNames (p0) ;

bO[1,1]
garch[1l,1]
garch[2,1]
arch([1l,1]
arch([2,1]
omegal[l,1]

pvGetParVector

This procedure returns the parameter vector itself:

16-19

GAUSS User Guide

print pvGetParVector (p0) ;

R O o o o -

.0000
.1000
.1000
.1000
.1000
.0000

pvPutParVector

This procedure replaces the parameter vector with the one in the argument:

newp =
p0 = pvPutParVector (newp, p0) ;
print pvGetParVector (p0) ;

1.
.2000
.2000
.3000
.3000
.8000

O O O O O

5000

pvGetIndex

1 Lo, o2, o2, o3, 3, 8 J2

This procedure returns the indices in the parameter vector of the parameters in a matrix.
These indices are useful when setting linear constraints or bounds in sqpSolvemt.
Bounds, for example, are set by specifying a Kx2 matrix where K is the length of the
parameter vector and the first column are the lower bounds and the second the upper
bounds. To set the bounds for a particular parameter, then, requires knowing where that
parameter is in the parameter vector. This information can be found using pvGe -
tIndex. For example:

// get indices of lambda parameters in parameter vector
lind =

pvGetIndex (par0, "lambda");

// set bounds constraint matrix to unconstrained default

16-20

Structures

cO0.bounds = ones (pvLength (par0),1).*(-1e250~1e250) ;

// set bounds for lambda parameters to be positive
c0.bounds[lind,1] = zeros(rows (lind),1);

16.3.4 Control Structures

Another important class of structures is the "control" structure. Applications developed
before structures were introduced into GAUSS typically handled some program spec-
ifications by the use of global variables which had some disadvantages, in particular, pre-
venting the nesting of calls to procedures.

Currently, the purposes served by global variables are now served by the use of a control
structure. For example, for sqpSolvent:

struct sqgpSolvemtControl ({
matrix A;
matrix B;
matrix C;
matrix D;
scalar egProc;
scalar inegProc;
matrix bounds;
scalar gradProc;
scalar hessProc;
scalar maxIters;
scalar dirTol;
scalar CovType;
scalar feasibleTest;
scalar maxTries;
scalar randRadius;
scalar trustRadius;
scalar seed;
scalar output;
scalar printIters;

16-21

GAUSS User Guide

matrix weights;

b

The members of this structure determine optional behaviors of sqpSolvemt.

16.4 sqpSolveMT

sgqpSolveMT is a procedure in the GAUSS Run-Time Library that solves the general
nonlinear programming problem using a Sequential Quadratic Programming descent
method, that is, it solves

min f(©)
subject to
A® =B linear equality
CO>=D linear equality
H®)=0 nonlinear equality
G®)>=0 nonlinear equality
®lb <=0 <= ®ub bounds

The linear and bounds constraints are redundant with respect to the nonlinear con-
straints, but are treated separately for computational convenience.

The call to sgpSolveMT has four input arguments and one output argument:

out = sgpSolveMT (&fct, P, D, C);

16.4.1 Input Arguments

The first input argument is a pointer to the objective function to be minimized. The pro-
cedure computing this objective function has two arguments: a PV structure containing
the start values, and a DS structure containing data, if any. For example:

16-22

Structures

proc fct(struct PV p0, struct DS dO);

local y, x, b0, b, e, s;

y = d0[1l] .dataMatrix;

X d0[2] .dataMatrix;

b0 = pvUnpack (p0, "constant");

b = pvUnpack (p0, "coefficients");
y — b0 - x * b;
sgrt(e'e/rows (e)) ;

€

S

retp (-pdfn (e/s) ;

endp;

Note that this procedure returns a vector rather than a scalar. When the objective func-
tion is a properly defined log-likelihood, returning a vector of minus log-probabilities per-
mits the calculation of a QML covariance matrix of the parameters.

The remaining input arguments are structures:

P

C

a PV structure containing starting values of the
parameters

a DS structure containing data, if any

an sqpSolvemtControl structure

The DS structure is optional. sgpSolvemt passes this argument on to the user-pro-
vided procedure that & fct is pointing to without modification. If there is no data, a
default structure can be passed to it.

sgpSolvemtControl Structure

A default sgpSolvemtControl structure can be passed in the fourth argument for
an unconstrained problem. The members of this structure are as follows:

A

MxK matrix, linear equality constraint coefficients:
A® = B, where p is a vector of the parameters.

Mx1 vector, linear equality constraint constants: A ©

16-23

GAUSS User Guide

eqProc

IneqProc

Bounds

GradProc

= B, where p is a vector of the parameters.

MxK matrix, linear inequality constraint coefficients:
CO = D, where p is a vector of the parameters.

Mx1 vector, linear inequality constraint constants:
CO = D, where p is a vector of the parameters.

scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a
procedure has been provided, it has two input
arguments, instances of PV and DS structures, and
one output argument, a vector of computed inequality
constraints.

Default = .; i.e., no inequality procedure.

scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a
procedure has been provided, it has two input
arguments, instances of PV and DS structures, and
one output argument, a vector of computed inequality
constraints.

Default = .; i.e., no inequality procedure.

1x2 or Kx2 matrix, bounds on parameters. If 1x2 all
parameters have same bounds.

Default = -1e256 1e256.

scalar, pointer to a procedure that computes the
gradient of the function with respect to the
parameters. When such a procedure has been
provided, it has two input arguments, instances of PV

16-24

Structures

HessProc

MaxlIters

MaxTries

and DS structures, and one output argument, the
derivatives. If the function procedure returns a scalar,
the gradient procedure returns a 1xK row vector of
derivatives. If function procedure turns an Nx1
vector, the gradient procedure returns an NxK matrix
of derivatives.

This procedure may compute a subset of the derivatives.
sgpSolvemt will compute numerical derivatives for
all those elements set to missing values in the return
vector or matrix.

Default = .; i.e., no gradient procedure has been
provided.

scalar, pointer to a procedure that computes the
Hessian; i.e., the matrix of second order partial
derivatives of the function with respect to the
parameters. When such a procedure has been
provided, it has two input arguments, instances of PV
and DS structures, and one output argument, a vector
of computed inequality constraints.

Default = .; i.e., no Hessian procedure has been
provided.

Whether the objective function procedure returns a
scalar or vector, the Hessian procedure must return a
KxK matrix. Elements set to missing values will be
computed numerically by sqpSolvemnt.

scalar, maximum number of iterations. Default =
le+5.

scalar, maximum number of attemps in random
search. Default = 100.

16-25

GAUSS User Guide

DirTol

CovType

FeasibleTest

randRadius

seed

trustRadius

output

scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When this
criterion has been satisifed, sgpSolvemt exits the
iterations.

scalar, if 2, QML covariance matrix, else if 0, no
covariance matrix is computed, else ML covariance
matrix is computed. For a QML covariance matrix,
the objective function procedure must return an Nx1
vector of minus log-probabilities.

scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function
is defined outside inequality boundaries, then this test
can be turned off. Default=1.

scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default
=.001.

scalar, if nonzero, seeds random number generator
for random search, otherwise time in seconds from
midnight is used.

scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum
amount of the direction at each iteration. Default =
.001.

scalar, if nonzero, results are printed. Default = 0.

16-26

Structures

Printlters

weights

scalar, if nonzero, prints iteration information. Default
=0.

vector, weights for objective function returning a
vector. Default = 1.

16.4.2 Output Argument

The single output argument is an sqpSolvemtQOut structure. Its definition is:

struct SQPsolveMTOut ({

b

struct
scalar
struct
scalar
matrix
matrix
matrix

PV par;
teits

SQPsolveMTLagrange lagr;

retcode;
moment;

hessian;
xproduct

’

The members of this structure are:

par

fct

lagr

instance of a PV structure containing the parameter
estimates are placed in the matrix member par.

scalar, function evaluated at final parameter estimates.

an instance of an SQPLagrange structure containing
the Lagrangeans for the constraints. For an instance
named lagr, the members are:

lagr.lineq Mx1 vector, Lagrangeans of linear

16-27

GAUSS User Guide

retcode

lagr.nlineq

lagr.linineq

lagr.nlinineq

lagr.bounds

equality constraints

Nx1 vector, Lagrangeans of
nonlinear equality constraints

Px1 vector, Lagrangeans of linear
inequality constraints

Qx1 vector, Lagrangeans of
nonlinear inequality constraints

Kx2 matrix, Lagrangeans of bounds

Whenever a constraint is active, its associated
Lagrangean will be nonzero. For any constraint that
is inactive throughout the iterations as well as at
convergence, the corresponding Lagrangean matrix
will be set to a scalar missing value.

return
0
1

AU NV S N

normal convergence
forced exit

maximum number of iterations
exceeded

function calculation failed
gradient calculation failed
Hessian calculation failed
line search failed

error with constraints

16-28

Structures

8 function complex

9 feasible direction couldn't be found

16.4.3 Example

Define
Y=4dn + 0O

where 4 is a KxL matrix of Joadings, 7 an Lx1 vector of unobserved "latent" var-
1ables, and @ a Kx1 vector of unobserved errors. Then

5% = NON'Y
where @ is the LxL covariance matrix of the latent variables, and ¥ is the KxK covar-
iance matrix of the errors.

The log-likelihood of the i th observation is
logP(i) = % [Kin(2x) + In| 7 | + Y()ZY(i)']

Not all elements of 4, @, and ¥ can be estimated. At least one element of each column
of A4 must be fixed to 1, and ¥ is usually a diagonal matrix.

Constraints

To ensure a well-defined log-likelihood, constraints on the parameters are required to
guarantee positive definite covariance matrices. To do this, a procedure is written that
returns the eigenvalues of 2 and @ minus a small number. sqpSolvemt then finds

parameters such that these eigenvalues are greater than or equal to that small number.

16.4.4 The Command File

This command file can be found in the file sqpfact.e in the examples subdirectory:

16-29

GAUSS User Guide

#include sgpsolvemt.sdf
lambda = { 1.0 0.0,

0.5 0.0,
0.0 1.0,
0.0 0.5 };
lmask = { 0 O,
10,
0 0,
01 };
phi = { 1.0 0.3,
0.3 1.0 };
psi = { 0.6 0.0 0.0 0.0,
0.0 0.6 0.0 0.0,
0.0 0.0 0.6 0.0,
0.0 0.0 0.0 0.6 };
tmask = { 1 0 0 O,
010 0,
0010,
00011},

struct PV par0;

par0 = pvCreate;

par0 = pvPackm(par0,lambda, "lambda",lmask);
par0 = pvPacks (par0O,phi, "phi");

par0 = pvPacksm(parO,psi, "psi",tmask);

struct SQPsolveMTControl cO;

c0 = sgpSolveMTcontrolCreate;

//get indices of lambda; parameters in parameter vector
lind = pvGetIndex (par(0, "lambda");

//get indices of psi; parameters in parameter vector
tind = pvGetIndex (par0, "psi");

c0.bounds = ones (pvLength (par0),1) .* (-1e250~1e250) ;
c0.bounds[lind,1] = zeros(rows (lind),1);

16-30

Structures

c0.bounds[1lind, 2] 10*ones (rows (1lind), 1) ;
c0.bounds[tind, 1] .001*ones (rows (tind), 1) ;
c0.bounds[tind, 2] = 100*ones (rows (tind), 1) ;
cO0.output = 1;

cO.printIters = 1;

c0.trustRadius = 1;

c0.inegProc = &ineqg;

cO0.covType = 1;

struct DS dO;
d0 = dsCreate;
d0.dataMatrix = loadd("maxfact");
output file = sgpfact.out reset;

struct SQPsolveMTOut outO;
out0 = SQPsolveMT (&1pr,par0,d0,cO) ;

lambdahat = pvUnpack (outO.par, "lambda");
phihat = pvUnpack (outO.par, "phi");
psihat = pvUnpack (out0O.par, "psi"):;

print "estimates";

print;

print "lambda" lambdahat;
print;

print "phi" phihat;
print;

print "psi" psihat;

struct PV stderr;
stderr = outO.par;

if not scalmiss (outO.moment) ;
stderr = pvPutParVector (stderr,sqrt(diag(out0.moment))) ;
lambdase = pvUnpack (stderr, "lambda");
phise = pvUnpack (stderr, "phi");

16-31

GAUSS User Guide

psise = pvUnpack (stderr, "psi");
print "standard errors";
print;
print "lambda" lambdase;
print;
print "phi" phise;
print;
print "psi" psise;
endif;

output off;

proc lpr(struct PV parl, struct DS datal);
local lambda,phi,psi,sigma,logl;
lambda = pvUnpack (parl, "lambda");
phi = pvUnpack (parl, "phi");
psi = pvUnpack (parl, "psi");
sigma = lambda*phi*lambda'’ + psi;

logl = -lnpdfmvn (datal.dataMatrix, sigma) ;
retp(logl) ;
endp;

proc ineq(struct PV parl, struct DS datal);
local lambda,phi,psi,sigma,e;
lambda = pvUnpack (parl, "lambda");
phi = pvUnpack (parl, "phi");
psi = pvUnpack (parl, "psi");
sigma = lambda*phi*lambda' + psi;

e = eigh(sigma) - .001; //eigenvalues of sigma
e = e | eigh(phi) - .001; //eigenvalues of phi
retp (e) ;

endp;

16-32

17 Run-Time Library Structures

Two structures are used by several GAUSSRun-Time Library functions for handling
parameter vectors and data: the PV parameter structure and the DS data structure.

17.1 The PV Parameter Structure

The members of an instance of structure of type PV are all "private," that is, not acces-
sible directly to the user. It is designed to handle parameter vectors for thread-safe opti-
mization functions. Entering and receiving parameter vectors, and accessing properties
of this vector, are accomplished using special functions.

Suppose you are optimizing a function containing a KxL matrix of coefficients. The opti-
mization function requires a parameter vector but your function uses a KxL matrix. Your
needs and the needs of the optimization function can be both satisfied by an instance of
the structure of type PV. For example:

struct PV pl;

pl = pvCreate;

//on input contains start values
//on exit contains estimates

x = zeros (4,3);

pl = pvPack(pl,x, "coefficients");

17-1

GAUSS User Guide

The pvCreate function initializes p1 to default values. pvPack enters the 4x3 matrix
stored row-wise as a 12x1 parameter vector for the optimization function. The opti-
mization program will pass the instance of the structure of type PV to your objective
function.

By calling pvUnpack your 4x3 coefficient matrix is retrieved from the parameter vec-
tor. For example, in your procedure you have

x = pvUnpack (pl, "coefficients");

and now x is a 4x3 matrix of coefficients for your use in calculating the object function.

Suppose that your objective function has parameters to be estimated in a covariance
matrix. The covariance matrix is a symmetric matrix where only the lower left portion
contains unique values for estimation. To handle this, use pvPacks. For example:

struct PV pl;
pl = pvCreate;
cov = { 1.0 0.1 0.1,
0.1 1.0 0.1,
0.1 0.1 1.0 };
pl = pvPacks (pl,cov, "covariance");

Only the lower left portion of cov will be stored in the parameter vector. When the covar-
iance matrix is unpacked, the parameters in the parameter vector will be entered into
both the lower and upper portions of the matrix.

There may be cases where only a portion of a matrix being used to compute the objec-
tive function are parameters to be estimated. In this case use pvPackm with a "mask"
matrix that contains ones where parameters are to be estimated and zeros otherwise. For
example,

struct PV pl;

pl = pvCreate;

cov = { 1.0 0.5,
0.5 1.0 };
{0

mask = 1,

17-2

Run-Time Library
Structures

10 };
pl = pvPacksm(pl,cov, "correlation",mask);

Here only the one element in the lower left of cov is stored in the parameter vector. Sup-
pose the optimization program sends a trial value for that parameter of, say, .45. When
the matrix is unpacked in your procedure it will contain the fixed values associated with
the zeros in the mask as well as the trial value in that part of the matrix associated with
the ones. Thus,

print unpack(pl, "correlation"):;

1.0000 .4500
.4500 1.0000

A mask may also be used with general matrices to store a portion of a matrix in the
parameter vector.

struct PV pl;
pl = pvCreate;
m={ 0.0 0.5 1.0,
0.5 0.0 0.3 };
mask = { 0 1 1,
1 0 0};
pl = pvPackm(pl,m, "coefficients",mask);

A PV instance can, of course, hold parameters from all these types of matrices: sym-
metric, masked symmetric, rectangular, and masked rectangular. For example:

lambda = {

~

o O U1 O

O B O O

. . . .

g O O O
~ 0~

1,
0.
0.
0.

lmask = {

O B O
O O O
~

~

17-3

GAUSS User Guide

01 };
phi = { 1.0 0.3,
0.3 1.0 };
theta = { 0.6 0.0 0.0 0.0,
0.0 0.6 0.0 0.0,
0.0 0.0 0.6 0.0,
0.0 0.0 0.0 0.6 };
tmask = { 1 0 0 O,
010 0,
0010,
00011},

struct PV par0;

par0 = pvCreate;

par0 = pvPackm(par0,lambda, "lambda",lmask);
par0 pvPacks (par0,phi, "phi");

par0 = pvPacksm(par0O,theta, "theta", tmask);

It isn't necessary to know where in the parameter vector the parameters are located in
order to use them in your procedure calculating the objective function. Thus:

lambda = pvUnpack (parl, "lambda");
phi = pvUnpack (parl, "phi");

theta = pvUnpack (parl, "theta");
sigma = lambda*phi*lambda' + theta;

Additional functions are available to retrieve information on the properties of the param-
eter vector. pvGetParVector and pvPutParVector get and put parameter vector from
and into the PV instance, pvGetParNames retrieves names for the elements of the
parameter vector, pvList returns the list of matrix names in the PV instance, pvLength
the length of the parameter vector.

struct PV pl;

pl = pvCreate;

cov = { 0.1 0.5,
0.5 1.0 };

mask = { 0 1,

17-4

Run-Time Library
Structures

10 };
pl = pvPacksm(pl,cov, "correlation",mask);

print pvGetParVector (pl) ;
0.5000

pl = pvPutParVector (pl, .8);

print pvGetParVector (pl) ;
0.8000

print pvUnpack (pl, "correlation");
1.0000 .8000
0.8000 1.0000

print pvGetParNames (pl) ;

correlation([2,1]

print pvLength (pl) ;
1.0000

Also, pvTest tests an instance to make sure it is properly constructed. pvCreate gen-
erates an initialized instance, and pvGetIndex returns the indices of the parameters

of an input matrix in the parameter vector. This last function is most useful when con-
structing linear constraint indices for the optimization programs.

17.2 Fast Pack Functions

Unpacking matrices using matrix names is slow because it requires a string search
through a string array of names. A set of special packing functions are provided that
avoid the search altogether. These functions use a "table" of indices that you specify to
find the matrix in the PV instance. For example:

struct PV pl;
pl = pvCreate;
y = rndn(4,1);

17-5

GAUSS User Guide

x = rndn(4,4) ;
pl pvPacki (pl,y, "Y",1);
pl = pvPacki (pl,x, "X",2);

print pvUnpack (pl,1);

.3422
.0407
.5611
.0953

print pvUnpack (pl, "Y");

.3422
.0407
.5611
.0953

The call to pvPacki puts an entry in the table associating the matrix in its second argu-
ment with the index 1. As indicated above the matrix can be unpacked either by index or
by name. Unpacking by index, however, is much faster than by name.

Note that the matrix can be unpacked using either the index or the matrix name.

There are index versions of all four of the packing functions, pvPacki, pvPackmi,
pvPacksi, and pvPacksmi.

17.3 The DS Data Structure

An instance of the DS data structure contains the following members:
struct DS dO;
d0.dataMatrix MxK matrix, data

d0.dataArray N-dimensional array, data

17-6

Run-Time Library

Structures
d0.type scalar
d0.dname string
d0.vnames string array

The definition and use of the elements of d0 are determined by the particular application
and are mostly up to the user. A typical use might use a vector of structures. For exam-
ple, suppose the objective function requires a vector of observations on a dependent var-
iable as well as on K independent variables. Then:

struct DS dO;
d0 = dsCreate;

= rndn (20,1);
X = rndn (20,5);

K
I

d0 = reshape(d0,2,1);
d0[1l].dataMatrix = y;
d0[2] .dataMatrix = X;

The d0 instance would be passed to the optimization program which then passes it to
your procedure computing the objective function. For example:

proc lpr(struct PV pl, struct DS dl);
local u;
u = d0[1l].dataMatrix - dO[2].dataMatrix * pvUnpack (pl,
"beta");
retp(u'u) ;
endp;

A particular application may require setting other members of the DS instance for par-
ticular purposes, but in general you may use them for your own purposes. For example,
d0.dname could be set to a GAUSS dataset name from which you read the data in the
objective function procedure, or d).vnames could be set to the variable names of the col-

17-7

GAUSS User Guide

umns of the data stored in d0.dataMatrix, or d0.type could be an indicator variable for
the elements of a vector of DS instances.

The following are complete examples of the use of the PV and DS structures. The first
example fits a set of data to the Micherlitz model. It illustrates packing and unpacking
by index.

#include sgpsolvemt.sdf
struct DS Y;

Y = dsCreate;

Y.dataMatrix = 3.183]
.059]
.871 |
.622 |
.541 |
.184 |
.110]
.075|
.018]|
.903]|
.770 |
.762 |
.550;

R PR R DNDDNDDNDDNDDNDDNDDNDWW

struct DS X;
X = dsCreate;
X.dataMatrix = seqa(l,1,13);

struct DS Z;

7 = reshape(Z,2,1);
Z[1] = Y;

Z[2] = X;

struct SQPsolveMTControl cl;
cl = sgpSolveMTcontrolCreate; // initializes to default
values

17-8

Run-Time Library
Structures

cl.bounds = 0~100; // constrains parameters to be
positive

cl.CovType = 1;

cl.output = 1;

cl.printIters = 0;

cl.gradProc = &grad;

struct PV parl;

parl = pvCreate;

start = { 2, 4, 2 };

parl = pvPacki (parl,start, "Parameters",1);

struct SQPsolveMTout outl;

outl = SQPsolveMT (&Micherlitz,parl,z,cl);
estimates = pvGetParVector (outl.par) ;
print " parameter estimates ";
print estimates;

print;

print " standard errors ";
print sqrt(diag(outl.moment)) ;

proc Micherlitz (struct PV parl,struct DS Z);
local pO0,e,s2;
p0 = pvUnpack (parl,1);
e = Z[1l].dataMatrix - pO[1l] - pO[2]*exp (-pO0[3]
*7Z[2] .dataMatrix) ;
s2 = moment (e, 0)/ (rows (e)-1);
retp((2/rows(e))*(e.*e/s2 + 1ln(2*pi*s2)));
endp;

proc grad(struct PV parl, struct DS 7);
local pO,e,el,e2,e3,w,qg,s2;
p0 = pvUnpack (parl,l);
w = exp(-p0[3]1*Z[2].dataMatrix) ;
e = z[1l].dataMatrix - pO0[1l] - p0[2] * w;

17-9

GAUSS User Guide

This example estimates parameters of a "confirmatory factor analysis" model.

Run-Time Library

Structures
par0 = pvPacks (par0,phi, "phi");
par0 = pvPacksm(par0,theta, "theta", tmask);
struct SQPsolveMTControl cO;
c0 = sgpSolveMTcontrolCreate;
lind = pvGetIndex (par0, "lambda"); // get indices of lambda
parameters // in parameter vector
tind = pvGetIndex (par0, "theta"); // get indices of theta

parameters // in parameter vector

c0.bounds = ones (pvLength (par0),1).*(-1e250~1e250) ;
cO.bounds[lind,1] = zeros(rows(lind),1);

[
cO0.bounds[lind,2] = 10*ones (rows (lind), 1)
cO0.bounds[tind,1] = .00l*ones (rows (tind),1);
c0.bounds[tind,2] = 100*ones (rows (tind), 1)

cO0.inegProc = &ineq;
cO0.covType = 1;

struct DS dO;
d0 = dsCreate;
d0.dataMatrix = loadd("maxfact");

struct SQPsolveMTOut outO;
out0 = SQPsolveMT (&1lpr,par0,d0,cO) ;

lambdahat = pvUnpack (outO.par, "lambda");
phihat = pvUnpack (outO.par, "phi");
thetahat = pvUnpack (out0O.par, "theta");

print "estimates";

print;

print "lambda" lambdahat;
print;

print "phi" phihat;
print;

17-11

GAUSS User Guide

print "theta" thetahat;

struct PV stderr;
stderr = outO.par;

if not scalmiss (outO.moment) ;
stderr = pvPutParVector (stderr,sqrt(diag(out0.moment))) ;
lambdase = pvUnpack (stderr, "lambda");
phise = pvUnpack (stderr, "phi");
thetase = pvUnpack (stderr, "theta");
print"standard errors";
print;
print"lambda" lambdase;
print;
print"phi" phise;
print;
print"theta" thetase;

endif;

proc lpr(struct PV parl, struct DS datal);
local lambda,phi, theta,sigma, logl;
lambda = pvUnpack (parl, "lambda");
phi = pvUnpack (parl, "phi");
theta = pvUnpack (parl, "theta");

sigma = lambda*phi*lambda' + theta;
logl = -lnpdfmvn (datal.dataMatrix,sigma) ;
retp (logl) ;
endp;

proc ineqg(struct PV parl, struct DS datal);
local lambda,phi,theta,sigma,e;
lambda = pvUnpack (parl, "lambda");
phi = pvUnpack (parl, "phi");
theta = pvUnpack (parl, "theta");
sigma = lambda*phi*lambda' + theta;
e = eigh(sigma) - .001; // eigenvalues of sigma

17-12

Run-Time Library
Structures

e = e | eigh(phi) - .001; // eigenvalues of phi
retp (e) ;
endp;

17-13

18 Multi-Threaded
Programming in GAUSS

The term thread comes from the phrase "thread of execution"--simply, it denotes a sec-
tion of code that you want to execute. A single-threaded program has only one thread of
execution, i.e., the program itself. A multi-threaded program is one that can have mul-
tiple threads--sections of code--executing simultaneously. Since these threads are part
of the same program, they share the same workspace, and see and operate on the same
symbols. Threads allow you to take full advantage of the hardware processing resources
available on hyper-threaded, multi-core, and multi-processor systems, executing inde-
pendent calculations simultaneously, combining and using the results of their work when
done.

18.1 The Functions
GAUSS includes four keywords for multi-threading your programs:

ThreadStat Marks a single statement to be executed as a thread.

ThreadBegin Marks the beginning of a block of code to be
executed as a thread.

18-1

GAUSS User Guide

ThreadEnd Marks the end of a block of code to be executed as a
thread.
ThreadJoin Completes the definition of a set of threads, waits

until they are done.

ThreadStat defines a single statement to be executed as a thread:
ThreadStat n = m'm;

ThreadBegin and ThreadEnd define a multi-line block of code to be executed as a
thread:

ThreadBegin;
y = x'x;
z =y'y;

ThreadEnd;

Together these define sets of threads to be executed concurrently:

ThreadStat n = m'm; // Thread 1

ThreadBegin; // Thread 2
y = x'x;
z =y'y;

ThreadEnd;

ThreadBegin; // Thread 3
q=r'r;
r=q'q;

ThreadEnd;

ThreadStat p = o'o; // Thread 4

Finally, ThreadJoin completes the definition of a set of threads. It waits for the
threads in a set to finish and rejoin the creating (the parent) thread, which can then con-
tinue, making use of their individual calculations:

18-2

Multi-Threaded

Programming

ThreadBegin; // Thread 1

y = x'x;

z =vy'y;
ThreadEnd;
ThreadBegin; // Thread 2

q=1r'r;

r=q'q;
ThreadEnd;
ThreadStat n = m'm; // Thread 3
ThreadStat p = o0'o; // Thread 4
ThreadJdoin; // waits for Threads 1-4 to finish
o=z + ® + a'"pg // Using the results

18.2 GAUSS Threading Concepts

This is really the one and only thing you need to know about threads: threads are sep-
arate sections of the same program, executing simultaneously, operating on the same
data. In fact, it's so fundamental it's worth saying again: threads are separate sections of
code in a program, running at the same time, using the same workspace, referencing and
operating on the same symbols.

This raises basic issues of workflow and data integrity. How do you manage the creation
and execution of threads, and make use of the work they do? And how do you maintain
data integrity? (You do not want two threads assigning to the same symbol at the same
time.)

To handle thread workflow, GAUSS employs a split-and-join approach. At various
points in your program (as many as you like), you define a set of threads that will be
created and run as a group. When created, the threads in the set execute simultaneously,
each doing useful work. The parent thread waits for the created threads to complete,
then continues, the results of their work now available for further use.

To maintain data integrity, we introduce the writer-must-isolate (informally, the any-
thread-can-read-unless-some-thread-writes) programming rule. That is to say, sym-
bols that are read from but not assigned to can be referenced by as many threads in a set
as you like. Symbols that are assigned to, however, must be wholly owned by a single

18-3

GAUSS User Guide

thread. No other thread in the set can reference that symbol. They cannot assign to it,
nor can they read from it. They cannot refer to it at all.

Note: the writer-must-isolate rule only applies to the threads within a given set (includ-
ing any child thread sets they may create). It does not apply between thread sets that
have no chance of running simultaneously.

For threads defined in the main code, the writer-must-isolate rule applies to the global
symbols. For threads defined in procedures or keywords, it applies to the global symbols,
local symbols, and the procedure/keyword arguments.

18.3 Coding With Threads

There are two main points to coding with threads.
1. You can define threads anywhere.

You can define them in the main code, you can define them in proc's and key—
word's, and yes, you can define them inside other threads.

2. You can call proc's and keyword's from threads.

This is what really ties everything together. You can call a proc from a thread,
and that proc can create threads, and any of those threads can call proc's, and
any of those proc's can create threads, and ... you get the picture.

So--you can do things like this:

g = chol (b);
ThreadBegin;
X = q t+ m;
ThreadBegin;

y = x'x;

z = q'm;
ThreadEnd;
ThreadBegin;

a =b + x;

c = a + m;

18-4

Multi-Threaded
Programming

ThreadEnd;
ThreadJoin;
g =m'c;
ThreadEnd;
ThreadBegin;
ThreadStat r
ThreadStat s
ThreadJoin;
t =1r's;
ThreadEnd;
ThreadJdoin;
X = r+s+gtz-t;

= m + inv(b);

More importantly, you can do things like this:

proc bef (x);
local vy, t;

ThreadStat y =

ThreadStat t

ThreadJdoin;

t = t+y;

retp(t);
endp;

proc abr (m) ;
local x,vy,z,
a = m'm;

ThreadStat x =
ThreadStat y
ThreadStat z

ThreadJoin;

dof (x'x) ;

2,198

inv (m) ;
bef (m) ;
= dne (a);

b = chut(x,vy,z,a);

retp (inv (b)) ;
endp;

s = rndn(500,500) ;

ThreadStat t =

abr (s) ;

18-5

GAUSS User Guide

ThreadStat g
ThreadStat r
ThreadJoin;

abr (s"2);
che (s);

w = del(t,q,r);
print w[1:10,1:10];

This means you can multi-thread anything you want, and call it from anywhere. You can
multi-thread all the proc's and keyword's in your libraries, and call them freely any-
where in your multi-threaded programs.

18.4 Coding Restrictions

A few points on coding restrictions. First, you can't interlace thread definition statements
and regular statements. You can't do this:

ThreadStat a
n = q;
ThreadStat c
ThreadJoin;

b'b;

d'd;

Or this:

if k == 1;
ThreadStat a
elseif k == 2;
ThreadStat a = c'c;
endif;

Il
o
o

iiE 3 = 1g
ThreadStat d
elseif j == 2;
ThreadStat d
endif;
ThreadJoin;

Il
0}
)

Il
Hj
=

18-6

Multi-Threaded
Programming

Each set of threads is defined as a group, and always completed by a ThreadJoin,
like this:

n = qg;
ThreadStat a =
ThreadStat ¢ = d'd;
ThreadJoin;

I
o
(2

And this:

ThreadBegin;
if k == 1;
a = b'b;
elseif k == 2;
a =~c'c;
endif;
ThreadEnd;
ThreadBegin;
if jJ == 1;
d = e'e;
elseif j == 2;
d = f'f;
endif;
ThreadEnd;
ThreadJoin;

Second--as stated above, you can reference read-only symbols in as many threads within
a set as you like, but any symbols that are assigned to must be wholly owned by a single
thread. A symbol that is assigned to by a thread cannot be written or read by any other
thread in that set. This is the writer-must-isolate rule.

So, you can do this:
ThreadStat x v'y;:

ThreadStat z = yty;

ThreadStat a b-y;

18-7

GAUSS User Guide

ThreadJoin;

Y ou cannot do this:

ThreadStat x = y'y;
Threadstat z = x'x;
ThreadStat a = b-y;
ThreadJoin;

This is because the threads within a set run simultaneously. Thus, there is no way of
knowing when an assignment to a symbol has taken place, no way of knowing in one

thread the "state" of a symbol in another.

Let's revisit the nested thread example for a minute and see how the writer-must-iso-

late rule applies to it:

g = chol (b) ; //
ThreadBegin; //
Th2
X =g + m;
ThreadBegin; //
y = x'x;
z = q'm;
ThreadEnd;
ThreadBegin; //
a =b + x;
c = a + my;
ThreadEnd;
ThreadJdoin; //
g =m'c;
ThreadEnd;
ThreadBegin; //
ThreadStat r = m'm; //
ThreadStat //
s = m + inv (b);
ThreadJoin; //
t =1r's;
ThreadEnd;

main code, no threads yet
Thl: isolates x,y,z,a,c,q from

Thl.1l: isolates y,z from 1.2

Thl.2: isolates a,c from 1.1

Joins 1.1, 1.2

Th2: isolates r,s,t from Thl
Th2.1: isolates r from 2.2
Th2.2: isolates s from 2.1

Joins 2.1, 2.1

18-8

Multi-Threaded
Programming

ThreadJoin; // Joins Thl, Th2
X = r+s+gtz-t;

The main point here is that any symbols a thread or its children assign to must be iso-
lated from all the other threads (and their children) of the same nesting level in that set.
On the other hand, the children of a thread can freely read/write symbols that are
read/written by their parent, because there is no risk of simultaneity; they must only iso-
late written symbols from their siblings and siblings' offspring.

If you break the writer-must-isolate rule, your program (and probably GAUSS) will
crash. Worse, until it crashes, it will be happily producing indeterminate results.

Finally--the ThreadEnd command is what tells a thread to terminate, so you mustn't
write code that keeps a thread from reaching it. For example, don't retp from the
middle of a thread:

ThreadStat m = imt (9) ;
ThreadBegin;

x = q[l];

if x = 1;

retp(z) ;
else;
r =2z + 2;

endif;
ThreadEnd;
ThreadJoin;

And don't use goto to jump into or out of the middle of a thread:

retry:
ThreadBegin;
{ err, x } = fna(q);
if err;
goto badidea;
endif;
x = fnb(x);
ThreadEnd;
ThreadStat y = £nb(y);

18-9

GAUSS User Guide

ThreadJdoin;

z = fne(x,y);

save z;

end;

badidea:

errorlog "Error computing fna (q)";
qg = fnd(q);

goto retry;

Basically, don't do anything that will keep a thread from reaching its ThreadEnd com-
mand. That's the only way it knows its work is done. end and stop are okay to call,
though--they will bring the program to an end as usual, and terminate all running threads
in the process.

(You can use goto and labels to jump around within a thread--that is, within the con-
fines of a ThreadBegin/ThreadEnd pair.)

18-10

19 Libraries

The GAUSS library system allows for the creation and maintenance of modular pro-
grams. The user can create "libraries" of frequently used functions that the GAUSS sys-
tem will automatically find and compile whenever they are referenced in a program.

19.1 Autoloader

The autoloader resolves references to procedures, keywords, matrices, and strings that
are not defined in the program from which they are referenced. The autoloader auto-
matically locates and compiles the files containing the symbol definitions that are not
resolved during the compilation of the main file. The search path used by the autoloader
is first the current directory, and then the paths listed in the src path configuration
variable in the order they appear. src path can be defined in the GAUSS con-
figuration file.

19.1.1 Forward References

When the compiler encounters a symbol that has not previously been defined, that is
called a "forward reference." GAUSS handles forward references in two ways, depend-
ing on whether they are "left-hand side" or "right-hand side" references.

Left-Hand Side

19-1

GAUSS User Guide

A left-hand side reference is usually a reference to a symbol on the left-hand side of the
equal sign in an expression.

x = 5;

Left-hand side references, since they are assignments, are assumed to be matrices. In
the statement above, x is assumed to be a matrix and the code is compiled accordingly.
If, at execution time, the expression actually returns a string, the assignment is made and
the type of the symbol x is forced to string.

Some commands are implicit left-hand side assignments. There is an implicit left-hand
side reference to x in each statement below:

clear x;
load x;
open x = myfile;

Right-Hand Side

A right-hand side reference is usually a reference to a symbol on the right-hand side of
the equal sign in an expression such as:

z = 6;
y = z + dog;
print vy;

In the program above, since dog is not previously known to the compiler, the autoloader
will search for it in the active libraries. If it is found, the file containing it will be com-
piled. If it is not found in a library, the autoload/autodelete state will determine how it is
handled.

19.1.2 The Autoloader Search Path

If the autoloader is OFF, no forward references are allowed. Every procedure, matrix,
and string referenced by your program must be defined before it is referenced. An
external statement can be used above the first reference to a symbol, but the

19-2

Libraries

definition of the symbol must be in the main file or in one of the files that are
#include'd. No global symbols are deleted automatically.

If the autoloader is ON, GAUSS searches for unresolved symbol references during com-
pilation using a specific search path as outlined below. If the autoloader is OFF, an
Undefined symbol error message will result for right-hand side references to unknown
symbols.

When autoload is ON, the autodelete state controls the handling of references to
unknown symbols.

The following search path will be followed to locate any symbols not previously defined:

Autodelete ON

user library

user-specified libraries.

gauss library

current directory, then src_path for files with a . g extension.

Bl

Forward references are allowed and . g files need not be in a library. If there are sym-
bols that cannot be found in any of the places listed above, an Undefined symbol error
message will be generated and all uninitialized variables and all procedures with global
references will be deleted from the global symbol table. This autodeletion process is
transparent to the user, since the symbols are automatically located by the autoloader the
next time the program is run. This process results in more compile time, which may or
may not be significant, depending on the speed of the computer and the size of the pro-
gram.

Autodelete OFF

1. user library
2. user-specified libraries.
3. gauss library

All . g files must be listed in a library. Forward references to symbols that are not listed
in an active library are not allowed. For example:

19-3

GAUSS User Guide

be
Yy

rndn (10, 10) ;
sym(x) ; // Forward reference to sym

proc sym(x);
retp (x+x');
endp;

Use an external statement for anything referenced above its definition if autodelete
is OFF:

external proc sym;

X = rndn(10,10) ;
y sym (x) ;

proc sym(x);
retp (x+x"') ;
endp;

When autodelete is OFF, symbols not found in an active library will not be added to the
symbol table. This prevents the creation of uninitialized procedures in the global symbol
table. No deletion of symbols from the global symbol table will take place.

Libraries

The first place GAUSS looks for a symbol definition is in the "active" libraries. A
GAUSS library is a text file that serves as a dictionary to the source files that contain
the symbol definitions. When a library is active, GAUSS will look in it whenever it is
looking for a symbol it is trying to resolve. The 1ibrary statement is used to make a
library active. Library files should be located in the subdirectory listed in the 1ib
path configuration variable. Library files have an . 1 cg extension.

Suppose you have several procedures that are all related and you want them all defined
in the same file. You can create such a file, and, with the help of a library, the auto-
loader will be able to find the procedures defined in that file whenever they are called.

19-4

Libraries

First, create the file that is to contain your desired procedure definitions. By convention,

this file is usually named with a . src extension, but you may use any name and any file
extension. In this file, put all the definitions of related procedures you wish to use. Here

is an example of such a file. It is called norm.szrc:

/*

** norm.src

** This is a file containing the definitions of three
** procedures which return the norm of a matrix x.

** The three norms calculated are the l1-norm, the

** inf-norm and the E-norm.

*/

proc onenorm(x) ;
retp (maxc (sumc (abs (x)))) ;
endp;

proc infnorm(x) ;
retp (maxc (sumc (abs (x')))) ;
endp;

proc Enorm(x) ;
retp (sumc (sumc (x.*x))) ;
endp;

Next, create a library file that contains the name of the file you want access to, and the
list of symbols defined in it. This can be done with the 1ib command. (For details, see
1ib in the GAUSS LANGUAGE REFERENCE.)

A library file entry has a filename that is flush left. The drive and path can be included
to speed up the autoloader. Indented below the filename are the symbols included in the
file. There can be multiple symbols listed on a line, with spaces between. The symbol
type follows the symbol name, with a colon delimiting it from the symbol name. The
valid symbol types are:

19-5

GAUSS User Guide

fn user-defined single line function.
keyword keyvvord.

proc procedure

matrix matrix, numeric or character.
array N-dimensional array.

string snjng.

sparse matrix sparse matrix.

struct structure.

A structure is always denoted by struct followed by the structure type name.

If the symbol type is missing, the colon must not be present and the symbol type is
assumed to be proc. Both library files below are valid:

Example 1

/%
** math

* %

** This library lists files and procedures for mathematical
routines.

*/

norm.src

onenorm:proc infnorm:proc Enorm:proc
complex.src

cmmult:proc cmdiv:proc cmadd:proc cmsoln:proc
poly.src

polychar:proc polyroot:proc polymult:proc

Example 2

19-6

Libraries

/*

** math

* %

** This library lists files and procedures for mathematical
routines.

*/

c:\gauss\src\norm.src

onenorm

infnorm

Enorm

cmdiv
cmadd
cmsoln

feq
fne
flt
fgt
fle
fge

c:\gauss\src\fcomp.dec

proc
c:\gauss\src\complex.src
cmmult proc
proc
proc
proc

c:\gauss\src\fcomp.src

proc
proc
proc
proc
proc
proc

_femptol

Once the autoloader finds, via the library, the file containing your procedure definition,
everything in that file will be compiled. For this reason, you should combine related pro-
cedures in the same file in order to minimize the compiling of procedures not needed by
your program. In other words, you should not combine unrelated functions in one .src
file because if one function in a . src file is needed, the whole file will be compiled.

User Library

This is a library for user-created procedures. If the autoloader is ON, the user library is

the first place GAUSS looks when trying to resolve symbol references.

You can update the user library with the 1 ib command as follows:

19-7

GAUSS User Guide

lib user myfile.src

This will update the user library by adding a reference tomyfile.src.

No user library is shipped with GAUSS. It will be created the first time you use the 1ib
command to update it.

For details on the parameters available with the 1ib command, see the GAUSS
LANGUAGE REFERENCE.

.g Files

If autoload and autodelete are ON and a symbol is not found in a library, the autoloader
will assume it is a procedure and look for a file that has the same name as the symbol
and a . g extension. For example, if you have defined a procedure called square, you
could put the definition in a file called square.g in one of the subdirectories listed in your
src_ path. If autodelete is OFF, the . g file must be listed in an active library; for
example, in the user library.

19.2 Global Declaration Files

If your application makes use of several global variables, create a file containing
declare statements. Use files with the extension . dec to assign default values to
global matrices and strings with declare statements and to declare global N-dimen-
sional arrays, sparse matrices, and structures, which will be initialized as follows:

Variable Type Initializes To
N-dimensional 1-dimensional array of 1 containing 0
array

19-8

Libraries

sparse matrix empty sparse matrix
structure Ix1 structure containing empty and/or zeroed out
members

In order to declare structures in a . dec file, you must #include the file(s) con-
taining the definitions of the types of structures that you wish to declare at the top of
your . dec file. For example, if you have the following structure type definition in a file
called mystruct.sdf:

struct mystruct {
matrix m;
array a;
scalar scal;
string array sa;

b

You could declare an instance of that structure type, called ms, in a . dec file as fol-
lows:

#include mystruct.sdf
declare struct mystruct ms;

See declare in the COMMAND REFERENCE for more information.

A file with a . ext extension containing the same symbols in external statements
can also be created and #1include'd at the top of any file that references these global
variables. An appropriate library file should contain the name of the . dec files and the
names of the globals they declare. This allows you to reference global variables across
source files in an application.

Here is an example that illustrates the way in which .dec, .ext, .1lcgand .src
files work together. Always begin the names of global matrices or strings with ' ' to dis-
tinguish them from procedures.

.src File:

19-9

GAUSS User Guide

.dec File:

.ext File:

Libraries

*/

external matrix fcmptol;
. 1lcg File:

/*
** fcomp.lcg - fuzzy compare library
*/
fcomp.dec

_fcmptol:matrix

fcomp.src

feqg:proc

fne:proc

With the exception of the library (. 1cqg) files, these files must be located along your
src_path. The library files must be on your 1ib path. With these files in place,
the autoloader will be able to find everything needed to run the following programs:

library fcomp;
x = rndn (3, 3) ;
xi = inv (x);
Xix = xXi*x;
if feqg(xix, eye(3));
print "Inverse within tolerance.";
elseg
print "Inverse not within tolerance.";
endif;

If the default tolerance of 1e-14 is too tight, the tolerance can be relaxed:

library fcomp;
x = rndn (3, 3);

xi = inv (x);
xXix = xi*x;
_femptol = le-12; // reset tolerance

if feqg(xix, eye(3));

19-11

GAUSS User Guide

print "Inverse within tolerance.";
elseg

print "Inverse not within tolerance.";
endif;

19.3 Troubleshooting

Below is a partial list of errors you may encounter in using the library system, followed
by the most probable cause.

(4) : error G0290 : '/gauss/lib/prt.lcg' : Library not found

The autoloader is looking for a library file called prt . 1cg, because it has been
activated in a 1ibrary statement. Check the subdirectory listed in your 1ib
path configuration variable for a file called prt. lcg.

(0) : error G0292 : 'prt.dec' : File listed in library not found

The autoloader cannot find a file called prt . dec. Check for this file. It should
exist somewhere along your src_path, if you have it listed in prt.lcg

Undefined symbols:
PRTVEC /gauss/src/tstprt.g(2)

The symbol prtvec could not be found. Check if the file containing prtvec is
in the src_path. You may have not activated the library that contains your
symbol definition. Do soina 1ibrary statement.

/gauss/src/prt.dec(3) : Redefinition of '__vnames'
(proc) _vnames being declared external matrix

You are trying to illegally force a symbol to another type. Y ou probably have a
name conflict that needs to be resolved by renaming one of the symbols.

19-12

Libraries

/gauss/lib/prt.lcg(5) : error G030l : 'prt.dec'
Syntax error in library

Undefined symbols:

__VNAMES /gauss/src/prt.src(6)

Check your library to see that all filenames are flush left and that all the symbols
defined in that file are indented by at least one space.

19.3.1 Using .dec Files

Below is some advice you are encouraged to follow when constructing your own library
system:

e Whenever possible, declare variables in a file that contains only declare

statements. When your program is run again without clearing the workspace, the
file containing the variable declarations will not be compiled and declare
warnings will be prevented.

Provide a function containing regular assignment statements to reinitialize the
global variables in your program if they ever need to be reinitialized during or
between runs. Put this in a separate file from the declarations:

proc (0) = globset;
_vname = "X";
Dcons =Ml
_row = 0;
_title = "";
endp;

Never declare any global in more than one file.

To avoid meaningless redefinition errors and declare warnings, never declare
a global more than once in any one file. Redefinition error messages and
declare warnings are meant to help you prevent name conflicts, and will be
useless to you if your code generates them normally.

19-13

GAUSS User Guide

By following these guidelines, any declare warnings and redefinition errors you get
will be meaningful. By knowing that such warnings and errors are significant, you will
be able to debug your programs more efficiently.

19-14

20 The Library Tool

Libraries are collections of GAUSS procedures that are grouped together. The GAUSS
Library Tool makes it easy for users to create and manage GAUSS libraries. The
Library Tool is available on the Source Page and may be opened from the application
menu View->Library Tool.

20.1 Creating New Libraries

20-1

GAUSS User Guide

File Edit Debug Tools WView Window Help

Figure 20.1: Create new library

T Library Toal ﬁlx[f"” autoregmt.e [| | autor

|| E Create Library o 1 // Declare an
= B i 2 struct plotCo
R "P[Creategewlihrar}r]t- = plot
. user.lcg > 5 // Bet plot a
B | e e i
B [optmum.log P 8 plotSet¥axisL
v i F E_i plotSetLegend

At the top right corner of the Library Tool is a plus icon (+). Click this icon to create a
new library. A file system window will open and ask you to enter a name for the library.
Do not add a file extension as GAUSS will automatically add the correct file extension

(.1cq).

20-2

The Library Tool

£ Create Library . - e -
—
Guvi 4 ¢ Computer » WinData (F) » gaussi3d » b 'l"?m Seavch lib B
e . — N e
Organize = Mew folder oW ﬂ
5 F
o Music o Mame Drate rmodified Type 5
| Pict
; U!d . | gaussdcg BRI ZIEPM LCG File
ideos
i | madikmnt.log BALI002 2:58 PM LCG File
optmum e 10710/2012 1159 .., LCG Fle
i :. Enmpu!:l’ - Pt] 2
| pgraph.lcg BEZ 216 PM LCG File
| £ \ocal Disk [C:) i
| Smegauss.log TR 006 302 PM LCG File
= Local Dusk (E:) o2 5 5
RS 8 | tmtlg 10/10/2002 24 PM LG File
= P) | | userlcg S22 L3 PM LCG File
i Network m
= 4| nr ¥
File name: | rmynewlib =
mﬁqwlﬁ-&uﬁum;ﬂ".lnm -
[
= Hide Foiders save %J | Gancel |

Figure 20.2: File browser

Once you have create a new empty library, you need to add some files. Click the
wrench icon next to the library to which you would like to add a file and select 'Add
Files' from the menu. This will open up a file browser window. Locate and select the
file or files that you would like to add to the library.

20-3

GAUSS User Guide

File Edt Debug Tesk View Windew Help

UdBNCXLUED2 ©-®-J-0O

orweod o X[Fr] ammegte D) [o
il:.‘rele:rw [+] T // Declars an
';_h" 2 struct plotCo

ﬁ 3 ‘myPlot = plot

1 gatss.log . 3

I " wserbog & 5 // 8=t plot =
| ¥ tTitle|
E mandkm log Unfcad Library | "o % o
| mymeib.kog Fiefresh t¥hxisl
) ItLagend
| oplmum.icg [y Add Fies

= W“i‘q t ¥
3| a Add Paths 3;9_;‘5‘2
i m’ ' Strip Paths ol
th Ints = 1

Dielete Library il

g 16 | delta, =tat
= 17

Figure 20.3: Add Files

20.2 Loading a Library

Loading a library makes all of its procedures available in GAUSS. It also allows you to
navigate to the definition of a procedure by clicking on the name of a procedure and
using the hotkey CTRL+F1, or selecting 'Open function definition' from the source
editor's context menu.

To load the library, click the wrench icon and select 'Load Library' from the menu. The
newly loaded library's name will be moved towards the top of the list of libraries and it
will be bolded.

The library may be unloaded from the same menu accessible from the wrench icon.

20-4

The Library Tool

20.3 Viewing Procedures

Expanding the node of any library in the tree will reveal a list of the included files. Dou-
ble-clicking on one of the file names will open that file a source editor. Loaded libraries
have an additional expandable node for each file. Expand this node to view each pro-
cedure stored in that file. Double-click the procedure name to open the file at the loca-
tion of that procedure.

[File Edit Debug Tools View Window Help
B8 At LUl D
| Library Too! 8 x
Create Library O -

I =

t ra
4 maxdikmtlcg ¥
manddiamt. dec
maadkmi.sre
4 madkmtbayes. e
mandkmiBayes
§ 4 madkmiboot. 5o [’\‘?‘
il madkmiboot
@ maudkmitkern. e
i mandibrn SzrmelDensity
-

Ro
g
;
g

| Source

mimtemeDensityControlCreate

Figure 20.4: Library Tool Tree

20.4 Refreshing a Library

Changes made to files in a library such as adding procedures will be made available to
GAUSS. However, to view and navigate correctly to new and changed library files

20-5

GAUSS User Guide

requires a library refresh. To perform this action, click on the corresponding wrench
icon and select 'Refresh'.

20-6

21 Compiler

GAUSS allows you to compile your large, frequently used programs to a file that can be
run over and over with no compile time. The compiled image is usually smaller than the
uncompiled source. GAUSS is not a native code compiler; rather, it compiles to a form

of pseudocode. The file will have a . gcg extension.

The compile command will compile an entire program to a compiled file. An attempt
to edit a compiled file will cause the source code to be loaded into the editor if it is avail-
able to the system. The run command assumes a compiled file if no extension is given,
and that a file with a . gcg extension is in the src _path. A saveall command is
available to save the current contents of memory in a compiled file for instant recall
later. The use command will instantly load a compiled program or set of procedures at
the beginning of an ASCII program before compiling the rest of the ASCII program file.

Since the compiled files are encoded binary files, the compiler is useful for developers
who do not want to distribute their source code.

21.1 Compiling Programs

Programs are compiled with the compile command.

21-1

GAUSS User Guide

21.1.1 Compiling a File

Source code program files that can be run with the run command can be compiled to
.gcg files with the compile command:

compile gxy.e;

All procedures, global matrices, arrays, strings and string arrays, and the main program
segment will be saved in the compiled file. The compiled file can be run later using the
run command. Any libraries used in the program must be present and active during the
compile, but not when the program is run. If the program uses the d1ibrary com-
mand, the .d11 files must be present when the program is run and the d1ibrary path
must be set to the correct subdirectory. This will be handled automatically in your con-
figuration file. If the program is run on a different computer than it was compiled on, the

.d11 files must be present in the correct location. sysstate (case 24) can be used
to set the d1ibrary path at run-time.

21.2 Saving the Current Workspace

The simplest way to create a compiled file containing a set of frequently used pro-
cedures is to use saveall and an external statement:

library pgraph;
external proc xy,logx,logy,loglog,hist;
saveall pgraph;

Just list the procedures you will be using in an external statement and follow it with
a saveall statement. It is not necessary to list procedures that you do not explicitly
call, but are called from another procedure, because the autoloader will automatically
find them before the saveall command is executed. Nor is it necessary to list every
procedure you will be calling, unless the source will not be available when the compiled
file is use'd.

Remember, the list of active libraries is NOT saved in the compiled file, so you may
still need a 1ibrary statement in a program that is use'ing a compiled file.

21-2

Compiler

21.3 Debugging

If you are using compiled code in a development situation in which debugging is impor-
tant, compile the file with line number records. After the development is over, you can
recompile without line number records if the maximum possible execution speed is
important. If you want to guarantee that all procedures contain line number records, put
a new statement at the top of your program and turn line number tracking on.

21-3

22 FileI/O

The following is a partial list of the I/O commands in the GAUSS programming lan-

guage:

close

closeall

colsf

create

eof

fcheckerr

fclearerr

fflush

fgets

fgetsa

fgetsat

Close a file.

Close all open files.

Number of columns in a file.

Create GAUSS data set.

Test for end of file.

Check error status of a file.

Check error status of a file and clear error flag.
Flush a file's output buffer.

Read a line of text from a file.

Read multiple lines of text from a file.

Read multiple lines of text from a file, discarding
newlines.

22-1

GAUSS User Guide

fgetst

fileinfo

files

filesa

fopen

fputs

fputst

fseek

fstrerror

ftell

getf

getname

iscplxf

load

loadd

loadm

loads

open

output

Read a line of text from a file, discarding newline.

Return names and information of files matching a
specification.

Return a directory listing as a character matrix.
Return a list of files matching a specification.
Open a file.

Write strings to a file.

Write strings to a file, appending newlines.
Reposition file pointer.

Get explanation of last file I/O error.

Get position of file pointer.

Load a file into a string.

Get variable names from data set.

Return whether a data set is real or complex.

Load matrix file or small ASCII file (same as
loadm).

Load a small GAUSS data set into a matrix.
Load matrix file or small ASCII file.

Load string file.

Open a GAUSS data set.

Control printing to an auxiliary output file or device.

22-2

File I/O

reads Read a specified number of rows from a file.
rowsf Number of rows in file.

save Save matrices, strings, procedures.

saved Save a matrix in a GAUSS data set.

seekr Reset read/write pointer in a data set.

sortd Sort a data set.

typef Return type of data set (bytes per element).
writer Write data to a data set.

22.1 ASCII Files

GAUSS has facilities for reading and writing ASCII files. Since most software can also
read and write ASCII files, this provides one method of sharing data between GAUSS
and many other kinds of programs.

22.1.1 Matrix Data

Reading

Files containing numeric data that are delimited with spaces or commas and are small
enough to fit into a single matrix or string can be read with 1oad. Larger ASCII data
files can be converted to GAUSS data sets with the ATOG utility program (see ATOG,
CHAPTER 27). ATOG can convert packed ASCII files as well as delimited files.

For small delimited data files, the 1o0ad statement can be used to load the data directly
into a GAUSS matrix. The resulting GAUSS matrix must be no larger than the limit for
a single matrix.

For example,

22-3

GAUSS User Guide

load x[] = datl.asc;

will load the data in the file datl.asc into an NxI matrix x. This method is preferred
because rows(x) can be used to determine how many elements were actually loaded,
and the matrix can be reshape'd to the desired form:

load x[] = datl.asc;
if rows (x) eqgq 500;
x = reshape(x,100,5);
else;
errorlog "Read Error";
end;
endif;

For quick interactive loading without error checking, use

load x[100,5] = datl.asc;

This will load the data into a 100x5 matrix. If there are more or fewer than 500 numbers
in the data set, the matrix will automatically be reshaped to 100x5.

Writing

To write data to an ASCII file the print or print£fm command is used to print to the
auxiliary output. The resulting files are standard ASCII files and can be edited with
GAUSS's editor or another text editor.

The output and outwidth commands are used to control the auxiliary output. The
print or printfm command is used to control what is sent to the output file.

The window can be turned on and off using screen. When printing a large amount of
data to the auxiliary output, the window can be turned off using the command

screen off;

This will make the process much faster, especially if the auxiliary output is a disk file.

22-4

File I/O

It is easy to forget to turn the window on again. Use the end statement to terminate your
programs; end will automatically perform screen on and output off.

The following commands can be used to control printing to the auxiliary output:

format Specify format for printing a matrix.

output Open, close, rename auxiliary output file or device.
outwidth Set auxiliary output width.

printfm Formatted matrix print.

print Print matrix or string.

screen Tum printing to the window on and off.

This example illustrates printing a matrix to a file:

format /rd 8,2;

outwidth 132;

output file = myfile.asc reset;
screen off;

print x;

output off;

screen on;

The numbers in the matrix x will be printed with a field width of 8 spaces per number,
and with 2 places beyond the decimal point. The resulting file will be an ASCII data
file. It will have 132 column lines maximum.

A more extended example follows. This program will write the contents of the GAUSS
file mydata.dat into an ASCII file called mydata.asc. If there is an existing file
by the name of mydata.asc, it will be overwritten:

output file = mydata.asc reset;
screen off;
format /rd 1,8;

22-5

GAUSS User Guide

open fp = mydata;
do until eof (fp) ;
print readr (fp,200);;
endo;
fp = close(fp);

end;

The output ... reset command will create an auxiliary output file called myda-
ta.asc toreceive the output. The window is turned off to speed up the process. The
GAUSS data file mydata.dat is opened for reading and 200 rows are read per iter-
ation until the end of the file is reached. The data read are printed to the auxiliary output
mydata.asc only, because the window is off.

22.1.2 General FileI/O

getf will read a file and return it in a string variable. Any kind of file can be read in
this way as long as it will fit into a single string variable.

To read files sequentially, use £open to open the file and use £gets, fputs, and
associated functions to read and write the file. The current position in a file can be deter-
mined with £tell. The following example uses these functions to copy an ASCII text
file:

proc copy(src, dest);
local fin, fout, str;
fin = fopen (src, "rb");
if not fin;
retp(l);
endif;
fout = fopen (dest, "wb");
if not fin;
call close(fin) ;
retp(2);

22-6

File I/O

endif;
do until eof (fin);
str = fgets(fin, 1024);
if fputs(fout, str) /= 1;
call close(fin);
call close(fout);
retp(3) ;
endif;
endo;
call close(fin);
call close (fout);
retp (0) ;
endp;

22.2 Data Sets

GAUSS data sets are the preferred method of storing data contained in a single matrix
for use within GAUSS. Use of these data sets allows extremely fast reading and writing
of data. Many library functions are designed to read data from these data sets.

If you want to store multiple variables of various types in a single file, see GAUSS Data
Archives, Section 22.5.12 .

22.2.1 Layout

GAUSSdata sets are arranged as matrices; that is, they are organized in terms of rows
and columns. The columns in a data file are assigned names, and these names are stored
in the header, or, in the case of the v89 format, in a separate header file.

The limit on the number of rows in a GAUSS data set is determined by disk size. The
limit on the number of columns is limited by RAM. Data can be stored in 2, 4, or 8 bytes
per number, rather than just 8 bytes as in the case of GAUSS matrix files.

The ranges of the different formats are:

22-7

GAUSS User Guide

Bytes Type Significant Digits Range
2 integer 4 —32768 <= X <= 32767
4 single 6-7 8.43E —37 <= X|<=3.37E +38
8 double 15-16 4.193E —307 <= X|<=1.67E +308

22.2.2 Creating Data Sets

Data sets can be created with the create or datacreate command. The names of
the columns, the type of data, etc., can be specified. (For details, see create in the
GAUSS LANGUAGE REFERENCE.)

Data sets, unlike matrices, cannot change from real to complex, or vice-versa. Data sets
are always stored a row at a time. The rows of a complex data set, then, have the real
and imaginary parts interleaved, element by element. For this reason, you cannot write
rows from a complex matrix to a real data set--there is no way to interleave the data
without rewriting the entire data set. If you must, explicitly convert the rows of data
first, using thereal and imag functions (see the GAUSS LANGUAGE REFERENCE),
and then write them to the data set. Rows from a real matrix CAN be written to a com-
plex data set; GAUSS simply supplies 0's for the imaginary part.

To create a complex data set, include the complex flag in your create command.

22.2.3 Reading and Writing

The basic functions in GAUSS for reading data files are openand readr:

open fl = datl;
x = readr (f1,100) ;

The call to readr in this example will read in 100 rows from dat1.dat. The data
will be assigned to a matrix x.

loadd and saved can be used for loading and saving small data sets.

22-8

File I/O

The following example illustrates the creation of a GAUSS data file by merging (hor-
izontally concatenating) two existing data sets:

filel = "datl";
file2 = "dat2";
outfile = "daty";

open finl ~filel for read;
open fin2 = ~file2 for read;

varnames = getname (filel) |getname (file2) ;
otyp = maxc (typef (finl) |typef (fin2)) ;
create fout = “outfile with “varnames, 0, otyp;

nr = 400;

do until eof (finl) or eof (fin2);
yl = readr (finl,nr);
y2 = readr (fin2,nr);
r = maxc (rows (yl) |rows (y2)) ;
y = yl[l:r,.] ~ y2[l:r,.];
call writer (fout,y):;

endo;

closeall finl, fin2, fout;

In this example, data sets dat1.dat and dat2.dat are opened for reading. The var-
iable names from each data set are read using getname, and combined in a single vec-
tor called varnames. A variable called otyp is created, which will be equal to the
larger of the two data types of the input files. This will insure that the output is not
rounded to less precision than the input files. A new data set daty.dat is created
using the create ... with ... command. Then, on every iteration of the loop,
400 rows are read in from each of the two input data sets, horizontally concatenated, and
written out to daty.dat. When the end of one of the input files is reached, reading
and writing will stop. The closeall command is used to close all files.

22-9

GAUSS User Guide

22.2.4 Distinguishing Character and Numeric Data

Although GAUSS itself does not distinguish between numeric and character columns in
a matrix or data set, some of the GAUSS Application programs do. When creating a
data set, it is important to indicate the type of data in the various columns. The following
discusses two ways of doing this.

Using Type Vectors

The v89 data set format distinguished between character and numeric data in data sets
by the case of the variable names associated with the columns. The v96 data set for-
mat, however, stores this type information separately, resulting in a much cleaner and
more robust method of tracking variable types, and greater freedom in the naming of
data set variables.

When you create a data set, you can supply a vector indicating the type of data in each
column of the data set. For example:

data = { M 32 21500,

F 27 36000,

F 28 19500,

M 25 32000 };
vnames = { "Sex" "Age" "Pay" };
vtypes = { 0 1 1 };

create f = mydata with “vnames, 3, 8, vtypes;
call writer (f,data);
f = close (f);

To retrieve the type vector, use vartypef.
open f = mydata for read;
vn = getnamef (f) ;

vt = vartypef (f);

print vn';
print vt';

22-10

File I/0

Sex Age Pay
011

The call to getnamef in this example returns a string array rather than a character vec-
tor, so you can print it without the '$' prefix.

Using the Uppercase/Lowercase Convention (v89 Data Sets)

Historically, some GAUSS Application programs recognized an "uppercase/lowercase"
convention: if the variable name was uppercase, the variable was assumed to be
numeric, and if it was lowercase, the variable was assumed to be character.

However, this is now obsolete; use vartypef and v96 data sets to be compatible with
future versions.

22.3 GAUSS Data Archives

The GAUSS Data Archive (GDA) is extremely powerful and flexible, giving you much
greater control over how you store your data. There is no limitation on the number of var-
iables that can be stored in a GDA, and the only size limitation is the amount of avail-
able disk space. Moreover, GDA's are designed to hold whatever type of data you want
to store in them. Y ou may write matrices, arrays, strings, string arrays, sparse matrices,
and structures to a GDA, and the GDA will keep track of the type, size and location of
each of the variables contained in it. Since GAUSS now supports reading and writing to
GDA's that were created on other platforms, GDA's provide a simple solution to the
problem of sharing data across platforms.

See GAUSS Data Archives, Section 22.5.12 , for information on the layout of a GDA.

22.3.1 Creating and Writing Variables to GDA's

To create a GAUSS Data Archive, call gdaCreate, which creates a GDA containing
only header information. It is recommended that file names passed into gdaCreate
have a . gda extension; however, gdaCreate will not force an extension.

22-11

GAUSS User Guide

To write variables to the GDA, you must call gdaWrite. A single call to gdaWrite
writes only one variable to the GDA. Writing multiple variables requires multiple calls
to gdaWrite.

For example, the following code:

ret gdaCreate ("myfile.gda",1) ;

ret = gdaWrite ("myfile.gda",rndn(100,50), "x1");

ret = gdaWrite ("myfile.gda", "This is a string", "strl");
gdaWrite ("myfile.gda",394, "x2");

ret

produces a GDA containing the following variables:

Index Name Type Size
1 x1 matrix 100 x 50
2 strl string 16 chars
3 x2 matrix Ix1

22.3.2 Reading Variables from GDA's

The following table details the commands that you may use to read various types of var-
iables from a GAUSS Data Archive:

Variable Type Read Command(s)
matrix

array gdaRead

string gdaReadByIndex
string array

22-12

File I/O

sparse matrix gdaReadSparse

structure gdaReadStruct

gdaRead, gdaReadSparse, and gdaReadStruct take a variable name and
return the variable data. gdaReadByIndex returns the variable data for a specified
variable index.

For example, to get the variable x1 out of myfile.gda, you could call:
y = gdaRead ("myfile.gda", "x1");

or

\% gdaReadByIndex ("myfile.gda", 1) ;
If you want to read only a part of a matrix, array, string, or string array from a GDA,
call gdaReadSome. Sparse matrices and structures may not be read in parts.

22.3.3 Updating Variables in GDA's

To overwrite an entire variable in a GDA, you may call gdaUpdate or gdaUp-
dateAndPack. If the new variable is not the same size as the variable that it is replac-
ing, gdaUpdate will leave empty bytes in the file, while gdaUpdateAndPack will
pack the file (from the location of the variable that is being replaced to the end of the
file) to remove those empty bytes.

gdaUpdate is usually faster, since it does not move data in the file unnecessarily.
However, calling gdaUpdate several times for one file may result in a file with a
large number of empty bytes.

22-13

GAUSS User Guide

On the other hand, gdaUpdateAndPack uses disk space efficiently, but it may be
slow for large files (especially if the variable to be updated is one of the first variables
in the file).

If speed and disk space are both concerns and you are going to update several variables,
it will be most efficient to use gdaUpdate to update the variables and then call gda-
Pack once at the end to pack the file.

The syntax is the same for both gdaUpdate and gdaUpdateAndPack:

ret = gdaUpdate ("myfile.gda",rndn(1000,100), "x1");

ret gdaUpdateAndPack ("myfile.gda",rndn (1000,100), "x1");

To overwrite part of a variable in a GDA, call gdaWriteSome.

22.4 Matrix Files
GAUSS matrix files are files created by the save command.

The save command takes a matrix in memory, adds a header that contains information
on the number of rows and columns in the matrix, and stores it on disk. Numbers are
stored in double precision just as they are in matrices in memory. These files have the
extension . fmt.

Matrix files can be no larger than a single matrix. No variable names are associated
with matrix files.

GAUSS matrix files can be 1o0ad'ed into memory using the 1oad or 1oadm command
or they can be opened with the open command and read with the readr command.
With the readr command, a subset of the rows can be read. With the 1 ocad command,
the entire matrix is 1oad'ed.

GAUSS matrix files can be open'ed for read, but not for append, or for
update.

If a matrix file has been opened and assigned a file handle, rowsf and colsf can be
used to determine how many rows and columns it has without actually reading it into

22-14

File I/O

memory. seekr and readr can be used to jump to particular rows and to read them
into memory. This is useful when only a subset of rows is needed at any time. This pro-
cedure will save memory and be much faster than 1o0ad'ing the entire matrix into mem-
ory.

22.5 File Formats
This section discusses the GAUSS binary file formats.

There are four currently supported matrix file formats:

Version Extension Support

Small Matrix v89 . fmt Obsolete, use v96.
Extended Matrix v89 . fmt Obsolete, use v96.
Matrix v92 . fmt Obsolete, use v96.
Universal Matrix v96 .fmt Supported for read/write.

There are four currently supported string file formats:

Version Extension Support

Small String v89 .fst Obsolete, use v96.
Extended String v89 .fst Obsolete, use v96.
String v92 .fst Obsolete, use v96.
Universal String v96 .fst Supported for read/write.

There are four currently supported data set formats:

22-15

GAUSS User Guide

Version Extension Support

Small Data Set v89 .dat, Obsolete, use v96.
.dht

Extended Data Set v89 .dat, Obsolete, use v96.
.dht

Data Set v92 .dat Obsolete, use v96.

Universal Data Set v96 .dat Supported for read/write.

22.5.1 Small Matrix v89 (Obsolete)

Matrix files are binary files, and cannot be read with a text editor. They are created
with save. Matrix files with up to 8190 elements have a . fmt extension and a 16-byte
header formatted as follows:

Offset Description

0-1 DDDD hex, identification flag

2-3 rows, unsigned 2-byte integer

4-5 columns, unsigned 2-byte integer

6-7 size of file minus 16-byte header, unsigned 2-byte integer

8-9 type of file, 0086 hex for real matrices, 8086 hex for complex
matrices

10-15 reserved, all 0's

22-16

File I/O

The body of the file starts at offset 16 and consists of IEEE format double precision float-
ing point numbers or character elements of up to 8 characters. Character elements take
up 8 bytes and are padded on the right with zeros. The size of the body of the file is
8*rows*cols rounded up to the next 16-byte paragraph boundary. Numbers are stored

row by row. A 2x3 real matrix will be stored on disk in the following way, from the low-
est addressed element to the highest addressed element:

(1,11 [1,2] [1,3] [2,1] [2,2] [2,3]

For complex matrices, the size of the body of the file is 16*rows*cols. The entire real
part of the matrix is stored first, then the entire imaginary part. A 2x3 complex matrix
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed element:

(real part) [1,1] [1,2] [L1,3
(imaginary part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

—_
—
N
-
—_
[a—
—
—_—
—
-
W
—_

22.5.2 Extended Matrix v89 (Obsolete)

Matrices with more than 8190 elements are saved in an extended format. These files
have a 16-byte header formatted as follows:

Offset Description

0-1 EEDD hex, identification flag

2-3 type of file, 0086 hex for real matrices, 8086 hex for complex
matrices

4-7 rows, unsigned 4-byte integer

22-17

GAUSS User Guide

8-11

columns, unsigned 4-byte integer

12-15

size of file minus 16-byte header, unsigned 4-byte integer

The size of the body of an extended matrix file is 8*rows*cols (not rounded up to a par-
agraph boundary). Aside from this, the body is the same as the small matrix v89 file.

22.5.3 Small String v89 (Obsolete)

String files are created with save. String files with up to 65519 characters have a 16-
byte header formatted as follows:

Offset Description

0-1 DFDF hex, identification flag

2-3 1, unsigned 2-byte integer

4-5 length of string plus null byte, unsigned 2-byte integer
6-7 size of file minus 16-byte header, unsigned 2-byte integer
8-9 001D hex, type of file

10-15 reserved, all 0's

The body of the file starts at offset 16. It consists of the string terminated with a null
byte. The size of the file is the 16-byte header plus the length of the string and null byte
rounded up to the next 16-byte paragraph boundary.

22-18

File I/O

22.5.4 Extended String v89 (Obsolete)

Strings with more than 65519 characters are saved in an extended format. These files
have a 16-byte header formatted as follows:

Offset Description

0-1 EEDF hex, identification flag

2-3 001D hex, type of file

4-7 1, unsigned 4-byte integer

8-11 length of string plus null byte, unsigned 4-byte integer
12-15 size of file minus 16-byte header, unsigned 4-byte integer

The body of the file starts at offset 16. It consists of the string terminated with a null
byte. The size of the file is the 16-byte header plus the length of the string and null byte
rounded up to the next 8-byte boundary.

22.5.5 Small Data Set v89 (Obsolete)

All data sets are created with create. v89 data sets consist of two files; one .dht
contains the header information; the second (.dat) contains the binary data. The data will
be one of three types:

8-byte IEEE floating point
4-byte IEEE floating point
2-byte signed binary integer, twos complement

Numbers are stored row by row.

22-19

GAUSS User Guide

The . dht file is used in conjunction with the . dat file as a descriptor file and as a
place to store names for the columns in the . dat file. Data sets with up to 8175 col-
umns have a . dht file formatted as follows:

Offset Description

0-1 DADA hex, identification flag

2-5 reserved, all 0's

6-7 columns, unsigned 2-byte integer

8-9 row size in bytes, unsigned 2-byte integer
10-11 header size in bytes, unsigned 2-byte integer
12-13 data type in . dat file (2 4 8), unsigned 2-byte integer
14-17 reserved, all 0's

18-21 reserved, all 0's

22-23 control flags, unsigned 2-byte integer
24-127 reserved, all 0's

Column names begin at offset 128 and are stored 8 bytes each in ASCII format. Names
with less than 8 characters are padded on the right with bytes of 0.

The number of rows in the . dat file is calculated in GAUSS using the file size, col-
umns, and data type. This means that users can modify the . dat file by adding or delet-
ing rows with other software without updating the header information.

Names for the columns should be lowercase for character data, to be able to distinguish
them from numeric data with vartype.

22-20

File I/O

GAUSS currently examines only the 4's bit of the control flags. This bit is set to 0 for
real data sets, 1 for complex data sets. All other bits are 0.

Data sets are always stored a row at a time. A real data set with 2 rows and 3 columns
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed element:

The rows of a complex data set are stored with the real and imaginary parts interleaved,
element by element. A 2x3 complex data set, then, will be stored on disk in the fol-
lowing way, from the lowest addressed element to the highest addressed element:

22.5.6 Extended Data Set v89 (Obsolete)

Data sets with more than 8175 columns are saved in an extended format that cannot be
read by the 16-bit version. These files have a . dht descriptor file formatted as follows:

Offset Description

0-1 EEDA hex, identification flag

2-3 data type in . dat file (2 4 8), unsigned 2-byte integer
4-7 reserved, all 0's

8-11 columns, unsigned 4-byte integer

22-21

GAUSS User Guide

12-15 row size in bytes, unsigned 4-byte integer
16-19 header size in bytes, unsigned 4-byte integer
20-23 reserved, all 0's

24-27 reserved, all 0's

28-29 control flags, unsigned 2-byte integer
30-127 reserved, all 0's

Aside from the differences in the descriptor file and the number of columns allowed in
the data file, extended data sets conform to the v8 9 data set description specified
above.

22.5.7 Matrix v92 (Obsolete)

Offset Description

0-3 always 0

4-7 always OxXEECDCDCD

8-11 reserved

12-15 reserved

16-19 reserved

20-23 0 - real matrix, 1 - complex matrix
24-27 number of dimensions

22-22

File I/O

0 - scalar
1 - row vector
2 - column vector, matrix

28-31 header size, 128 + number of dimensions * 4, padded to 8-byte
boundary
32-127 reserved

If the data is a scalar, the data will directly follow the header.

If the data is a row vector, an unsigned integer equaling the number of columns in the
vector will precede the data, along with 4 padding bytes.

If the data is a column vector or a matrix, there will be two unsigned integers preceding
the data. The first will represent the number of rows in the matrix and the second will
represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in double
precision (8 bytes per element, 16 if complex). For complex matrices, all of the real
parts are stored first, followed by all the imaginary parts.

22.5.8 String v92 (Obsolete)

Offset Description

0-3 always 0

4-7 always OXEECFCFCF
8-11 reserved

12-15 reserved

22-23

GAUSS User Guide

16-19 reserved

20-23 size of string in units of 8 bytes

24-27 length of string plus null terminator in bytes
28-127 reserved

The size of the data area is always divisible by 8, and is padded with nulls if the length
of the string is not evenly divisible by 8. If the length of the string is evenly divisible by
8, the data area will be the length of the string plus 8. The data area follows immediately
after the 128-byte header.

22.5.9 Data Set v92 (Obsolete)

Offset Description

0-3 always 0

4-7 always OXEECACACA

8-11 reserved

12-15 reserved

16-19 reserved

20-23 rows in data set

24-27 columns in data set

28-31 0 - real data set, 1 - complex data set

22-24

File I/O

32-35 type of data in data set, 2, 4, or 8
36-39 header size in bytes is 128 + columns * 9
40-127 reserved

The variable names begin at offset 128 and are stored 8 bytes each in ASCII format.

Each name corresponds to one column of data. Names less than 8 characters are padded
on the right with bytes of zero.

The variable type flags immediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

The contents of the data set follow the header and start on an 8-byte boundary. Data is

either 2-byte signed integer, 4-byte single precision floating point or 8-byte double pre-
cision floating point.

22.5.10 Matrix v9é

Offset Description

0-3 always OxFFFFFFFF

4-7 always 0

8-11 always OxFFFFFFFF

12-15 always 0

16-19 always OxFFFFFFFF

20-23 OxFFFFFFFF for forward byte order, 0 for backward byte order

22-25

GAUSS User Guide

24-27 OxFFFFFFFF for forward bit order, O for backward bit order
28-31 always 0OXABCDEFO01
32-35 currently 1
36-39 reserved
40-43 floating point type, 1 for IEEE 754
44-47 1008 (double precision data)
48-51 8, the size in bytes of a double matrix
52-55 0 - real matrix, 1 - complex matrix
56-59 1 - imaginary part of matrix follows real part (standard GAUSS
style)
2 - imaginary part of each element immediately follows real part
(FORTRAN style)
60-63 number of dimensions
0 - scalar
1 - row vector
2 - column vector or matrix
64-67 1 - row major ordering of elements, 2 - column major
68-71 always 0
72-75 header size, 128 + dimensions * 4, padded to 8-byte boundary
76-127 reserved

22-26

File I/O

If the data is a scalar, the data will directly follow the header.

If the data is a row vector, an unsigned integer equaling the number of columns in the
vector will precede the data, along with 4 padding bytes.

If the data is a column vector or a matrix, there will be two unsigned integers preceding
the data. The first will represent the number of rows in the matrix and the second will
represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in double
precision (8 bytes per element, 16 if complex). For complex matrices, all of the real
parts are stored first, followed by all the imaginary parts.

22.5.11 Data Set v9s6

Offset Description

0-3 always OXFFFFFFFF

4-7 always 0

8-11 always OXFFFFFFFF

12-15 always 0

16-19 always OXFFFFFFFF

20-23 OxFFFFFFFF for forward byte order, 0 for backward byte order
24-27 O0xFFFFFFFF for forward bit order, 0 for backward bit order
28-31 0xABCDEF02

32-35 version, currently 1

22-27

GAUSS User Guide

36-39 reserved
40-43 floating point type, 1 for IEEE 754
44-47 12 - signed 2-byte integer
1004 - single precision floating point
1008 - double precision float
48-51 2, 4, or 8, the size of an element in bytes
52-55 0 - real matrix, 1 - complex matrix
56-59 1 - imaginary part of matrix follows real part (standard GAUSS
style)
2 - imaginary part of each element immediately follows real part
(FORTRAN style)
60-63 always 2
64-67 1 for row major ordering of elements, 2 for column major
68-71 always 0
72-75 header size, 128 + columns * 33, padded to 8-byte boundary
76-79 reserved
80-83 rows in data set
84-87 columns in data set
88-127 reserved

22-28

File I/O

The variable names begin at offset 128 and are stored 32 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 32 characters are pad-
ded on the right with bytes of zero.

The variable type flags immediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

Contents of the data set follow the header and start on an 8-byte boundary. Data is either
2-byte signed integer, 4-byte single precision floating point or 8-byte double precision
floating point.

22.5.12 GAUSS Data Archives

A GAUSS Data Archive consists of a header, followed by the variable data and, finally,
an array of variable descriptors containing information about each variable.

Header

The header for a GAUSS Data Archive is laid out as follows:

Offset Type Description

0-3 32-bit unsigned integer always OxFFFFFFFF

4-7 32-bit unsigned integer always 0

8-11 32-bit unsigned integer always OxFFFFFFFF

16-19 32-bit unsigned integer always OxFFFFFFFF

20-23 32-bit unsigned integer OxFFFFFFFF for forward byte
order,
0 for backward byte order

22-29

GAUSS User Guide

24-27 32-bit unsigned integer always 0

28-31 32-bit unsigned integer always 0OxABCDEFO08

32-35 32-bit unsigned integer version, currently 1

36-39 32-bit unsigned integer reserved

40-43 32-bit unsigned integer floating point type, 1 for [IEEE 754

44-55 32-bit unsigned integers reserved

56-63 64-bit unsigned integer number of variables

64-67 32-bit unsigned integer header size, 128

68-95 32-bit unsigned integers reserved

96-103 64-bit unsigned integer offset of variable descriptor table
from end of header

104-127 64-bit unsigned integers reserved

Variable Data

After the header comes the variable data. Matrices are laid out in row-major order, and

strings are written with a null-terminating byte.

For string arrays, an array of rowsx columns struct satable's is written out first, fol-

lowed by the string array data in row-major order with each element null terminated. A

struct satable consists of two members:

Member Type Description

off size t offset of element data from beginning of string array

22-30

File I/O

data

len size t length of element data, including null-terminating
byte

On a 32-bit machine, a size tis 4 bytes. On a 64-bit machine, it is 8 bytes.

Arrays are written with the orders (sizes) of each dimension followed by the array data.
For example, the following 2x3x4 array:

[1,1,1] through [1,3,4] =

o Vo=
S M
- N w
o o &

[2,1,1] through [2,3,4] =

13 14 15 16
17 18 19 20
21 22 23 24

would be written out like this:
123456789101112131415161718 192021222324
Variable Structures

The variable data is followed by an array of variable descriptors. For each variable in
the GDA, there is a corresponding variable descriptor in this array. A variable descrip-
tor is laid out as follows:

22-31

GAUSS User Guide

Offset Type Description

0-3 32-bit unsigned integer variable type

4-7 32-bit unsigned integer data type, 10 for 8 byte floating
point

8-11 32-bit unsigned integer dimensions, used only for arrays

12-15 32-bit unsigned integer complex flag, 1 for real data, O for
complex

16-19 32-bit unsigned integer size of pointer, indicates whether
the variable was written on a 32-bit
or 64-bit platform

20-23 32-bit unsigned integer huge flag, indicates whether the
variable is larger than INT MAX

24-31 64-bit unsigned integer rows for matrices and string arrays

32-39 64-bit unsigned integer columns for matrices and string
arrays, length for strings, including
null-terminating byte

40-47 64-bit unsigned integer index of the variable in the GDA

48-55 64-bit unsigned integer offset of variable data from end of
header

56-63 64-bit unsigned integer length of variable data in bytes

64-143 string name of variable, null-terminated

22-32

File I/O

The variable type (bytes 0-3) may be any of the following:

20 |array

30 |matrix

40 |string

50 |string array

The size of pointer element (bytes 16-19) is the size of a pointer on the machine on
which the variable was written to the GDA. It will be set to 4 on 32-bit machines and 8
on 64-bit machines. This element is used only for string array variables. If a GDA con-
taining string arrays is created on a 32-bit machine and then read on a 64-bit machine, or
vice versa, then the size of pointer element indicates how the members of the struct sat-
able's must be converted in order to be read on the current machine.

The huge flag (bytes 20-23) is set to 1 if the variable size is greater than INT MAX,
which is defined as 2147483647. A variable for which the huge flag is set to 1 may not
be read into GAUSS on a 32-bit machine.

The variable index element (bytes 40-47) contains the index of the variable in the GDA.
Although the variable data is not necessarily ordered by index (see gdaUpdate), the
variable descriptors are. Therefore, the indices are always in ascending order.

22-33

23 Foreign Language Interface

The Foreign Language Interface (FLI) allows users to create functions written in C,
FORTRAN, or other languages, and call them from a GAUSS program. The functions
are placed in dynamic libraries (DLLs, also known as shared libraries or shared objects)
and linked in at run-time as needed. The FLI functions are:

dlibrary Link and unlink dynamic libraries at run-time.

dllcall Call functions located in dynamic libraries.

GAUSS recognizes a default dynamic library directory, a directory where it will look
for your dynamic-link libraries when you call d1ibrary. You can specify the default
directory in gauss.cfg by setting d1ib path. As it is shipped, gauss.cfg spec-
ifies $(GAUSSDIR)/dlib as the default directory.

23.1 Writing FLI Functions

Your FLI functions should be written to the following specifications:

1. Take 0 or more pointers to doubles as arguments.

This does not mean you cannot pass strings to an FLI
function. Just recast

23-1

GAUSS User Guide

the double pointer to a char pointer inside the func-
tion.

2. Take those arguments either in a list or a vector.

3. Return an integer.

In C syntax, then, your functions would take one of the following forms:

1. int func(void) ;
2. int func(double *argl [, double *arg2,...]);
3. int func(double *argl[]);

Functions can be written to take a list of up to 100 arguments, or a vector (in C terms, a
1-dimensional array) of up to 1000 arguments. This does not affect how the function is
called from GAUSS; the d11call statement will always appear to pass the arguments
in a list. That is, the d11call statement will always look as follows:

dllcall func(a,b,c,d[,e...]);

For details on calling your function, passing arguments to it, getting data back, and what
the return value means, see d11call in the GAUSS LANGUAGE REFERENCE.

23.2 Creating Dynamic Libraries

The following describes how to build a dynamic library called hyp.d11 (on Windows)
or 1ibhyp. so (on UNIX/Linux) from the source file hyp. c.

As mentioned in the previous section, your FLI functions may take only pointers to dou-
bles as arguments. Therefore, you should define your FLI functions to be merely
wrapper functions that cast their arguments as necessary and then call the functions that
actually do the work. This is demonstrated in the source file hyp. c:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// This code is not meant to be efficient. It is meant
// to demonstrate the use of the FLI.
// This does all the work, not exported

23-2

Foreign Language
Interface

GAUSS User Guide

Foreign Language
Interface

return hypo(x, y, h, (int)*r, (int)*c);

The following Makefiles contain the compile and link commands you would use to build
the dynamic library on various platforms. For explanations of the various flags used, see
the documentation for your compiler and linker.

Windows

hyp.dll: hyp.obj

link /dll /out:hyp.dll hyp.obj
hyp.obj: hyp.c

cl -¢c -MD -GX hyp.c

Solaris
S (CCOPTS) indicates any optional compilation flags you might add.

CCOPTIONS = -g -xsb -xarch=v9 -KPIC
CC = cc

libhyp.so: hyp.c
$(CC) -G $(CCOPTIONS) -o $Q@ hyp.c -1m

Linux
S (CCOPTS) indicates any optional compilation flags you might add.

CCOPTIONS = -g -02 -fpic -1lm -lc -shared
CC = gece

libhyp.so: hyp.cpp
$(CC) S (CCOPTIONS) -o $@ hyp.c

For details on linking your dynamic library, see d1ibrary in the GAUSS LANGUAGE
REFERENCE.

23-5

24 Data Transformations

GAUSS allows expressions that directly reference variables (columns) of a data set.
This is done within the context of a data loop:

dataloop infile outfile;

drop wagefac wglec shordelt foobly;

csed = ln(sqgrt(csed));

select csed > 0.35 and married $=\,= "y";
make chfac = hcfac + wcfac;

keep csed chfac stid recsum voom;
endata;

GAUSS translates the data loop into a procedure that performs the required operations,
and then calls the procedure automatically at the location (in your program) of the data
loop. It does this by translating your main program file into a temporary file and then
executing the temporary file.

A data loop may be placed only in the main program file. Data loops in files that are
#include'd or autoloaded are not recognized.

24.1 Data Loop Statements

A data loop begins with a dataloop statement and ends with an endata statement.
Inside a data loop, the following statements are supported:

24-1

GAUSS User Guide

code Create variable based on a set of logical expressions.

delete Delete rows (observations) based on a logical
expression.

drop Specify variables NOT to be written to data set.

extern Allow access to matrices and strings in memory.

keep Specify variables to be written to output data set.

lag Lag variables a number of periods.

listwise Control deletion of missing values.

make Create new variable.

outtyp Specify output file precision.

recode Change variable based on a set of logical
expressions.

select Select rows (observations) based on a logical
expression.

vector Create new variable from a scalar returning
expression.

In any expression inside a data loop, all text symbols not immediately followed by a left
parenthesis '(" are assumed to be data set variable (column) names. Text symbols fol-
lowed by a left parenthesis are assumed to be procedure names. Any symbol listed in an
extern statement is assumed to be a matrix or string already in memory.

24.2 Using Other Statements

All program statements in the main file and not inside a data loop are passed through to
the temporary file without modification. Program statements within a data loop that are

24-2

Data Transformations

preceded by a '#' are passed through to the temporary file without modification. The user
familiar with the code generated in the temporary file can use this to do out-of-the-ordi-
nary operations inside the data loop.

24.3 Debugging Data Loops

The translator that processes data loops can be turned on and off. When the translator is
on, there are three distinct phases in running a program:

Translation Translation of main program file to temporary file.
Compilation Compilation of temporary file.
Execution Execution of compiled code.

24.3.1 Translation Phase

In the translation phase, the main program file is translated into a temporary file. Each
data loop is translated into a procedure and a call to this procedure is placed in the tem-
porary file at the same location as the original data loop. The data loop itself is com-
mented out in the temporary file. All the data loop procedures are placed at the end of
the temporary file.

Depending upon the status of line number tracking, error messages encountered in this
phase will be printed with the file name and line numbers corresponding to the main file.

24.3.2 Compilation Phase

In the compilation phase, the temporary file is compiled. Depending upon the status of
line number tracking, error messages encountered in this phase will be printed with the
file name and line numbers corresponding to both the main file and the temporary file.

24-3

GAUSS User Guide

24.3.3 Execution Phase

In the execution phase, the compiled program is executed. Depending on the status of
line number tracking, error messages will include line number references from both the
main file and the temporary file.

24.4 Reserved Variables

The following local variables are created by the translator and used in the produced
code:

X Ccv x 1iptr x ncol x plag
x _drop X keep x nlag X ptrim
x fpin x lval X Nrow X shft
x fpout x lvar x ntrim X tname
x 1 X n x out X _vname
X 1in X name X outtyp X X

These variables are reserved, and should not be used within a dataloop... endata
section.

24-4

25 The GAUSS Profiler

GAUSS includes a profiler, which enables you to determine exactly how much time
your programs are spending on each line and in each called procedure, thereby providing
you with the information you need to increase the efficiency of your programs. The
GAUSS Profiler (gaussprof)and tcollect are both run from a command prompt
window, not at a GAUSS prompt.

25.1 Using the GAUSSProfiler

There are two steps to using the GAUSS Profiler: collection and analysis.

25.1.1 Collection

To collect profiling information, you must run your GAUSS program in tcollect, an
executable shipped with GAUSS that is identical to tgauss except that it generates a
file containing profiling information each time it is run:

tcollect -b myfile.e

The output displayed by tcollect includes the name of the output file containing the
profiling information. tcollect output files have a gaussprof prefix and a . gco extension.

25-1

GAUSS User Guide

Note that running tcollect on long programs may generate a very large . gco out-
put file. Thus you may want to delete the . gco files on your machine regularly.

25.1.2 Analysis

To analyze the information stored in the tcollect output file, you must run the gaus-
sprof executable, which is also shipped with GAUSS, on that file. gaussprof
produces an organized report, displaying the time usage by procedure and by line.

Assuming that runningmyfile.ein tcollect produced an output file called
gaussprof 001.gco, you could analyze the results in that file as follows:

gaussprof gaussprof 001.gco
The syntax for gaussprof is:

gaussprof [flags] profile data file

where [flags] may be any of the following:

-p profile procedure calls

-1 profile line numbers

-h suppress headers

-sp order procedure call sort order where order contains one

or more of the following:

e exclusive time

t total time

c number of times called
p procedure name

25-2

The GAUSS Profiler

a ascending order
d descending order (default)
Columns are sorted all ascending or all descending.

-sl order line number sort order where order contains one or
more of the following:

t time spent on line

c number of times line was executed
f file name

1 line number

a ascending order

d descending order (default)

Columns are sorted all ascending or all descending.

The default, with no flags, is: -p1 -sp dep -sl dtf.

25-3

26 Time and Date

GAUSS offers a comprehensive set of time and date functions. These functions afford
the user the ability to return the current time and date, to carry out most related cal-
culations and format the results for output. GAUSS also allows the user to perform
timed iterations.

In the year 1 AD the calendar in general use was the Julian calendar. The Gregorian cal-
endar that we use today was not invented until the late 1500's. This new calendar
changed the method of calculating leap years on century marks. With the Julian system
simply every fourth year was a leap year. The Gregorian system made every fourth year
a leap year with the exception of century marks which are only leap years if divisible by
400. The British adoption of this calendar, which the GAUSS date functions are based
on, did not happen until the year 1752. In that year eleven days were removed; Sep-
tember 2, 1752 was followed by September 14, 1752.

dtvnormal and utctodtv are accurate back to 1 AD. The rest of the GAUSS date
functions assume a normal Gregorian system regardless of year. Thus, they will not
account for the days taken out in September of 1752, nor will they account for all cen-
tury marks being leap years before the adoption of the Gregorian system in 1752.

The time is given by your operating system, daylight savings time is not automatically
accounted for by GAUSS in calculations.

26-1

GAUSS User Guide

26.1 Time and Date Formats

The Time and Date formats in GAUSS fall into one of two major categories, matrix/vec-
tor and string. The matrix/vector formats can be used for either calculations or if desired
for output. The string formats are, however, mostly for use as ouput. Some manipulation

of strings is possible with the use of the sto£f function.

A 4x1 vector is returned by both the date and time functions.

d = date;

d;

1997.00 // Year

5.00000 // Month

29.0000 // Day

56.4700 // Hundredths of a second since midnight
t = time;

t;

10.00 // Hours since midnight
17.00 // Minutes

33.00 // Seconds

13.81 // Hundredths of a second

These vectors can be written to a string of the desired form by passing them through the
corresponding function.

d = { 1997, 5, 29, 56.47 };
datestr(d);

5/29/97

datestrymd (d) ;

19970529

t = { 10, 17, 33, 13.81 };
timestr (t) ;
10:17:33

26-2

Time and Date

A list and brief description of these, and other related functions is provided in the table
in Section 24.2 .

Another major matrix/vector format is the dtv, or date and time vector. The dtv vector is
a 1x8 vector used with the dtvnormal and utctodtv functions. The format for the
dtv vector is:

Year Month Day Hour Min Sec DoW DiY
1955 4 21 4 16 0 4 110

Where:
Year Y ear, four digit integer.
Month 1-12, Month in year.
Day 1-31, Day of month.
Hour 0-23, Hours since midnight.
Min 0-59, Minutes.
Sec 0-59, Seconds.
DoW 0-6, Day of week, 0=Sunday.
DiY 0-365, Days since Jan 1 of current year.

dtvnormal normalizes a date. The last two elements are ignored for input, as shown
in the following example. They are set to the correct values on output. The input can be
1x8 or Nx8.

dtv = { 1954 3 17 4 16 0 0 0 };
dtv dtvnormal (dtv) ;

26-3

GAUSS User Guide

1954 3 17 4 16 0 3 75

dtv[3] = dtv[3] + 400;
print dtv;

1954 3 417 4 16 0 3 75
dtv = dtvnormal (dtv) ;

print dtv;

1955 4 21 4 16 0 4 110

26.2 Time and Date Functions

Following is a partial listing of the time and date functions available in GAUSS.

datestr Formats a Date vector to a string (mo/dy/yr).

datestrymd Formats a Date vector to an eight character string of
the type yyyymmdd.

dayinyr Returns day number in the year of a given date.

_daypryr Returns the number of days in the years given as
input.

dtvnormal Normalizes a 1x8 dtv vector.

etdays Computes the difference in days between two dates.

26-4

Time and Date

ethsec Computes the difference between two times in
hundredths of a second.

etstr Formats a time difference measured in hundreths of a
second to a string.

_isleap Returns a vector of ones and zeros, 1 if leap year 0 if
not.

timestr Formats a Time vector to a string hr:mn:sc.

timeutc Universal time coordinate, number of seconds since

January 1, 1970 Greenwich Mean Time.

utctodtv Converts a scalar, number of seconds since, or
before, Jan 1 1970 Greenwich mean time, to a dtv
vector.

Below is an example of two ways to calculate a time difference.
dl = { 1996, 12, 19, 82 };
dz = { 1997, 4, 28, 4248879.3 };
dif = ethsec(dl,d2);
ds = etstr(dif);

dif = 1.1274488¢ + 09

ds = 130days 11 hours 48 minutes 7.97 seconds

If only the number of days is needed use etdays.

dl = { 1996, 12, 19, 82 };

26-5

GAUSS User Guide

d2 = { 1997, 4, 28, 4248879.3 };
dif = etdays(dl,d2);

dif = 130.00000

The last element of d1 is optional when used as an input for etdays. isleap
returns a matrix of ones and zeros, ones when the corresponding year is a leap year.

x = seqa(1970,1,20);

y = _isleap(x);

delif (x,abs (y-1));

1972.0000 // Vector containing all leap years
1976.0000 // between 1970 - 1989

1980.0000

1984.0000

1988.0000

To calculate the days of a number of consecutive years:

x = seqa(1983,1,3);
% _daypryr (x) ;
sumc (y) ;

1096.0000

To add a portion of the following year:

g = { 1986, 2, 23, 0 };
dy = dayinyr (qg) ;

sumc (y) +dy;

1150.0000

For more information on any of these functions see their respective pages in the com-
mand reference.

26-6

Time and Date

26.2.1 Timed Iterations

Iterations of a program can be timed with the use of the hsec function in the following
manner.

et = hsec; // Start timer
/* Segment of code to be timed */

et =(hsec-et)/100; // Stop timer, convert to seconds

In the case of a program running from one day into the next you would need to replace
the hsec function with the date function. The ethsec function should be used to
compute the time difference; a straight subtraction as in the previous example will not
give the desired result.

dstart = date; // Start timer
/* Segment of code to be timed */
dend = date; // Stop timer

// Convert time difference to seconds
dif = ethsec(dstart,dend)/100;

26-7

27 ATOG

ATOG is a stand-alone conversion utility that converts ASCII files into GAUSS data
sets. ATOG can convert delimited and packed ASCII files into GAUSS data sets.
ATOG can be run from a batch file or the command line; it is not run from a GAUSS
prompt but rather from a command prompt window.

The syntax is:
atog cmdfile

where cmdfile is the name of the command file. If no extension is given, . cmd will
be assumed. If no command file is specified, a command summary will be displayed.

27.1 Command Summary

The following commands are supported in ATOG:

append Append data to an existing file.
complex Treat data as complex variables.
input The name of the ASCII input file.
invar Input file variables (column names).

27-1

GAUSS User Guide

msym Specify missing value character.

nocheck Don't check data type or record length.

output The name of the GAUSS data set to be created.
outtyp Output data type.

outvar List of variables to be included in output file.
preservecase Preserve case of variable names in output file.

The principle commands for converting an ASCII file that is delimited with spaces or
commas are given in the following example:

input agex.asc;

output agex;

invar $ race # age pay $ sex region;
outvar region age sex pay;

outtyp d;

In this example, a delimited ASCII file agex . asc is converted to a double precision
GAUSS data file agex.dat. The input file has five variables. The file will be inter-
preted as having five columns:

column name data type
1 race character
2 AGE numeric
3 PAY numeric
4 sex character
5 region character

27-2

ATOG

The output file will have four columns since the first column of the input file (race) is
not included in the output variables. The columns of the output file are:

column name data type
1 region character
2 AGE numeric
3 sex character
4 PAY numeric

The variable names are saved in the file header. Unless preservecase has been
specified, the names of character variables will be saved in lowercase, and the names of
numeric variables will be saved in uppercase. The $ in the invar statement specifies
that the variables that follow are character type. The # specifies numeric. If $ and # are
not used in an invar statement, the default is numeric.

Comments in command files must be enclosed between '@' characters.

27.2 Commands

A detailed explanation of each command follows.

append

Instructs ATOG to append the converted data to an existing data set:

append;

No assumptions are made regarding the format of the existing file. Make certain that
the number, order, and type of data converted match the existing file. ATOG creates v96
format data files, so will only append to v96 format data files.

complex

Instructs ATOG to convert the ASCII file into a complex GAUSS data set:

27-3

GAUSS User Guide

complex;

Complex GAUSS data sets are stored by rows, with the real and imaginary parts inter-
leaved, element by element. ATOG assumes the same structure for the ASCII input file,
and will thus read TWO numbers out for EACH variable specified.

complex cannot be used with packed ASCII files.
input

Specifies the file name of the ASCII file to be converted. The full path name can be
used in the file specification.

For example, the command:

input data.raw;
will expect an ASCII data file in the current working directory.
The command:

input /research/data/myfile.asc;

specifies a file to be located in the /research/data subdirectory.

invar

Soft Delimited ASCII Files Soft delimited files may have spaces, commas, or cr/If as
delimiters between elements. Two or more consecutive delimiters with no data between
them are treated as one delimiter. For example:

invar age $ name sex # pay var[1:10] x[005];

The invar command above specifies the following variables:

27-4

ATOG

column name data type
1 AGE numeric
2 name character
3 sex character
4 PAY numeric
5 VAROI numeric
6 VARO02 numeric
7 VARO3 numeric
8 VARO04 numeric
9 VARO5 numeric
10 VARO06 numeric
11 VARO7 numeric
12 VAROS8 numeric
13 VARO09 numeric
14 VARIO numeric
15 X001 numeric
16 X002 numeric

27-5

GAUSS User Guide

17 X003 numeric
18 X004 numeric
19 X005 numeric

As the input file is translated, the first 19 elements will be interpreted as the first row
(observation), the next 19 will be interpreted as the second row, and so on. If the number
of elements in the file is not evenly divisible by 19, the final incomplete row will be
dropped and a warning message will be given.

Hard Delimited ASCII Files Hard delimited files have a printable character as a
delimiter between elements. Two delimiters without intervening data between them will
be interpreted as a missing. If \n is specified as a delimiter, the file should have one ele-
ment per line and blank lines will be considered missings. Otherwise, delimiters must be
printable characters. The dot'."' is illegal and will always be interpreted as a missing
value. To specify the backslash as a delimiter, use \\. If \r is specified as a delimiter,
the file will be assumed to contain one case or record per line with commas between ele-
ments and no comma at the end of the line.

For hard delimited files the delimit subcommand is used with the invar command.
The delimit subcommand has two optional parameters. The first parameter is the
delimiter. The default is a comma. The second parameter is an 'N'. If the second param-
eter is present, ATOG will expect N delimiters. If it is not present, ATOG will expect
N-1 delimiters.

This example:

invar delimit(, N) $ name # var[5];
will expect a file like this:
BILL , 222.3, 123.2, 456.4, 345.2, 533.2,
STEVE, 624.3, 340.3, , 624.3, 639.5,

TOM , 244.2, 834.3, 602.3, 333.4, 822.5,

while

27-6

ATOG

invar delimit(,) $ name # var[5];

or

invar delimit $ name # var([5];

will expect a file like this:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,
STEVE, 624.3, 340.3, , 624.3, 639.5,
TOM , 244.2, 834.3, 602.3, 333.4, 822.5

The difference between specifying N or N-1 delimiters can be seen here:

456.4, 345.2, 533.2,
, 624.3, 639.5,
602.3, 333.4,

If the invar statement specified three variables and N-1 delimiters, this file would be
interpreted as having three rows containing a missing in the [2,1] element and the [3,3]
element like this:

456.4 345.2 533.2
624.3 639.5
602.3 333.4

If N delimiters had been specified, this file would be interpreted as having two rows,
and a final incomplete row that is dropped:

456.4 345.2 533.2
624.3 639.5

The spaces were shown only for clarity and are not significant in delimited files so:

27-7

GAUSS User Guide

BILL,222.3,123.2,456.4,345.2,533.2,
STEVE, 624.3,340.3,,624.3,639.5,
TOM,244.2,834.3,602.3,333.4,822.5

would work just as well.

Linefeeds are significant only if \n is specified as the delimiter, or when using \ . This
example:

invar delimit (\r) $ name # var([5];

will expect a file with no comma after the final element in each row:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2
STEVE, 624.3, 340.3, 245.3, 624.3, 639.5
TOM , 244.2, 834.3, 602.3, 333.4, 822.5

Packed ASCII Files Packed ASCII files must have fixed length records. The
record subcommand is used to specify the record length, and variables are specified
by giving their type, starting position, length, and the position of an implicit decimal point
if necessary.

outvar is not used with packed ASCII files. Instead, invar is used to specify only
those variables to be included in the output file.

For packed ASCII files the syntax of the invar command is as follows:

invar record = reclen (format) variables (format)

variables;
where,
reclen the total record length in bytes, including the final carriage
return/line feed if applicable. Records must be fixed
length.
format (start,length.prec)where:

27-8

ATOG

start starting position of the field in the record, 1 is the
first position. The default is 1.

length the length of the field in bytes. The default is 8.

precoptional; a decimal point will be inserted
automatically prec places in from the RIGHT edge of
the field.

If several variables are listed after a format definition, each succeeding field will be
assumed to start immediately after the preceding field. If an asterisk is used to specify
the starting position, the current logical default will be assumed. An asterisk in the
length position will select the current default for both Iength and prec. This is ille-
gal: (3,8.%).

The type change characters $ and # are used to toggle between character and numeric
data type.

Any data in the record that is not defined in a format is ignored.

The examples below assume a 32-byte record with a carriage return/line feed occupying
the last 2 bytes of each record. The data below can be interpreted in different ways
using different invar statements:

ABCDEFGHIJ12345678901234567890<CR><LF>

position 1 10 20 30 31 32

This example:

invar record=32 $(1,3) group dept #(11,4.2) x[3] (*,5)
Y

will result in:

27-9

GAUSS User Guide

variable value type
group ABC character
dept DEF character
X1 12.34 numeric
X2 56.78 numeric
X3 90.12 numeric
Y 34567 numeric

This example:

invar record=32 $ dept (*,2) id # (*,5) wage (*,2) area

will result in:

variable value type

dept ABCDEFGH character

id 1 character

WAGE 12345 numeric

AREA 67 numeric
msym

Specifies the character in the input file that is to be interpreted as a missing value. This
example:

27-10

ATOG

msym &;

defines the character '&' as the missing value character. The default'."' (dot) will always
be interpreted as a missing value unless it is part of a numeric value.

nocheck

Optional; suppresses automatic checking of packed ASCII record length and output data
type. The default is to increase the record length by 2 bytes if the second record in a
packed file starts with cr/If, and any files that have explicitly defined character data will
be output in double precision regardless of the type specified.

output

The name of the GAUSS data set. A file will be created with the extension . dat. For
example:

output /gauss/dat/test;

creates the file test .dat on the /gauss/dat directory.

outtyp

Selects the numerical accuracy of the output file. Use of this command should be dic-
tated by the accuracy of the input data and storage space limitations. The format is:

outtyp fmt;

where fmt is:

D or 8 | double precision

F or 4 | single precision (default)

I or 2 | integer

The ranges of the different formats are:

27-11

GAUSS User Guide

Bytes Type Significant Digits Range
2 integer 4 —32768 <= X <= 32767
4 single 6-7 8.43E —37 <= X|<=3.37E +38
8 double 15-16 4.193E —307 <= X|<=1.67E +308

If the output type is integer, the input numbers will be truncated to integers. If your data
has more than 6 or 7 significant digits, specify outtyp as double.

Character data require outtyp d. ATOG automatically selects double precision when
character data is specified in the invar statement, unless you have specified
nocheck.

The precision of the storage selected does not affect the accuracy of GAUSS cal-
culations using the data. GAUSS converts all data to double precision when the file is
read.

outvar

Selects the variables to be placed in the GAUSS data set. The outvar command needs
only the list of variables to be included in the output data set. They can be in any order.
In this example:

invar Sname #age pay S$sex #var[1:10] x[005];
outvar sex age x001 x003 var[1:8];

the outvar statement selects the following variables:

column name data type
1 sex character
2 AGE numeric
3 X001 numeric

27-12

ATOG

4 X003 numeric
5 VAROI numeric
6 VARO02 numeric
7 VARO3 numeric
8 VARO04 numeric
9 VAROS5 numeric
10 VARO06 numeric
11 VARO7 numeric
12 VAROS8 numeric

outvar is not used with packed ASCII files.

preservecase

Optional; preserves the case of variable names. The default is nopreservcase,
which will force variable names for numeric variables to upper case and character var-

1ables to lower case.

27.3 Examples

Example 1 The first example is a soft delimited ASCII file called agex1.asc. The

file contains seven columns of ASCII data:

Jan 167.3 822.4 6.34E06 yes 84.3 100.4
Feb 165.8 987.3 5.63E06 no

22.4 65.6

Mar 165.3 842.3 7.34E06 yes 65.4 78.3

The ATOG command file is agex1.cmd:

27-13

GAUSS User Guide

input /gauss/agexl.asc;

output agexl;

invar Smonth #temp pres vol Strue var[02];
outvar month true temp pres vol;

The output data set will contain the following information:

name month true TEMP PRES VOL
case 1 Jan yes 167.3 822.4 6.34e+6
case 2 Feb no 165.8 987.3 5.63e+6
case 3 Mar yes 165.3 842.3 7.34e+6
type char char numeric numeric numeric

The data set is double precision since character data is explicitly specified.

Example 2 The second example is a packed ASCII file x1od.asc The file contains
32-character records:

AEGDRFCSTy02345678960631567890<CR><LF>
EDJTAJPSTNn12395863998064839561<CR><LF>
GWDNADMSTy19827845659725234451<CR><LE>

\ \ \ \ \ \
position 1 10 20 30 31 32

The ATOG command file is x1od. cmd:
input /gauss/dat/xlod.asc;
output xlod2;
invar record=32 $(1,3) client[2] zone (*,1) reg #(20,5) zip;

The output data set will contain the following information:

name clientl client2 zone reg 7Z1pP
case 1 AEG DRF CST y 60631
case 2 EDJ TAJ PST n 98064

27-14

ATOG

case 3 |GWD NAD MST y 59725

type | char char char char numeric

The data set is double precision since character data is explicitly specified.

Example 3 The third example is a hard delimited ASCII file called cplx.asc. The
file contains six columns of ASCII data:

456.4, 345.2, 533.2, -345.5, 524.5, 935.3,
-257.6, 624.3, 639.5, 826.5, 331.4, 376.4,
602.3, -333.4, 342.1, 816.7, —-452.6, -690.8

The ATOG command file is cplx.cmd:

input /gauss/cplx.asc;
output cplx;

invar delimit #cvar([3];
complex;

The output data set will contain the following information:

name cvarl cvar2 cvar3
case 1 456.4 + 345.21 533.2 - 345.51 524.5 +935.3i
case 2 -257.6 + 624.31 639.5 + 826.51 331.4 +376.4i
case 3 602.3 - 333.4i 342.1 +816.71 -452.6 - 690.8i
type numeric numeric numeric

The data set defaults to single precision, since no character data is present, and no out-
typ command is specified.

27-15

GAUSS User Guide

27.4 Error Messages

atog - Can't find input file

The ASCII input file could not be opened.

atog - Can't open output file

The output file could not be opened.

atog - Can't open temporary file
Notify Aptech Systems.

atog - Can't read temporary file
Notify Aptech Systems.

atog - Character data in output file
Setting output file to double precision

The output file contains character data. The type was set to double precision
automatically.

atog - Character data longer than 8 bytes were
truncated

The input file contained character elements longer than 8 bytes. The
conversion continued and the character elements were truncated to 8 bytes.

atog - Disk Full
The output disk is full. The output file is incomplete.
atog - Found character data in numeric field

This is a warning that character data was found in a variable that was
specified as numeric. The conversion will continue.

27-16

ATOG

atog - Illegal command

An unrecognizable command was found in a command file.
atog - Internal error

Notify Aptech Systems.
atog - Invalid delimiter

The delimiter following the backslash is not supported.
atog - Invalid output type

Output type must be I, F, or D.
atog - Missing value symbol not found

No missing value was specified in an msym statement.
atog - No Input file

No ASCII input file was specified. The input command may be missing.
atog - No input variables

No input variable names were specified. The invar statement may be
missing.

atog - No output file
No output file was specified. The output command may be missing.

atog - output type d required for character data
Character data in output file will be lost

Output file contains character data and is not double precision.

atog - Open comment

27-17

GAUSS User Guide

The command file has a comment that is not closed. Comments must be
enclosed in @'s:

@ comment @

atog - Out of memory

Notify Aptech Systems.
atog - read error

A read error has occurred while converting a packed ASCII file.
atog - Record length must be 1-16384 bytes

The record subcommand has an out of range record length.
atog - Statement too long

Command file statements must be less than 16384 bytes.
atog - Syntax error at:

There is unrecognizable syntax in a command file.
atog - Too many input variables

More input variables were specified than available memory permitted.
atog - Too many output variables

More output variables were specified than available memory permitted.
atog - Too many variables

More variables were specified than available memory permitted.

atog - Undefined variable

27-18

ATOG

A variable requested in an outvar statement was not listed in an invar
statement.

atog WARNING: missing ')’ at:
The parentheses in the delimit subcommand were not closed.
atog WARNING: some records begin with cr/If

A packed ASCII file has some records that begin with a carriage
return/linefeed. The record length may be wrong.

atog - complex illegal for packed ASCII file.

A complex command was encountered following an invar command
with record specified.

atog - Cannot read packed ASCII. (complex specified)

An invar command with record specified was encountered following a
complex command.

27-19

28 Error Messages

The following is a list of error messages intrinsic to the GAUSS programming language.
Error messages generated by library functions are not included here.

G0002 File too large
G0003 Indexing a matrix as a vector

A single index can be used only on vectors. Vectors have only one row or only one
column.

G0004 Compiler stack overflow - too complex

An expression is too complex. Break it into smaller pieces. Notify Aptech Systems.

GO0O0OS5 File is already compiled
G0006 Statement too long

Statement longer than 4000 characters.
G0007 End of file encountered
G0008 Syntax error

Compiler Unrecognizable or incorrect syntax. Semicolon

28-1

GAUSS User Guide

missing on previous statement.
create Unrecognizable statement in command file, or

numvar or outvar statement error.

G0009 Compiler pass out of memory
Compiler pass has run out of memory. Notify Aptech Systems.
G0010 Can't open output file
G0011 Compiled file must have correct extension
GAUSS requires a . gcg extension.
G0012 Invalid drive specifier
G0013 Invalid filename
G0014 File not found
G0015 Directory full
G0016 Too many #include's
#include'd files are nested too deep.

G0017 WARNING: local outside of procedure

A local statement has been found outside a procedure definition. The 1ocal
statement will be ignored.

G0018 Read error in program file
G0019 Can't edit .gcg file
G0020 Not implemented yet

Command not supported in this implementation.

28-2

Error Messages

G0021 use must be at the beginning of a program
G0022 User keyword cannot be used in expression

G0023 Illegal attempt to redefine symbol to an index var-
iable

G0024 Invalid use of ->, probably should be .
G0025 Undefined symbol
A symbol has been referenced that has not been given a definition.

G0026 Too many symbols

The global symbol table is full. (To set the limit, see new in the GAUSS LANGUAGE
REFERENCE.)

G0027 Invalid directory

G0028 Can't open configuration file
GAUSS cannot find the configuration file.

G0029 Missing left parenthesis

G0030 Insufficient workspace memory

The space used to store and manipulate matrices and strings is not large enough for
the operations attempted. (To make the main program space smaller and reclaim
enough space to continue, see new in the GAUSS LANGUAGE REFERENCE.)

G0031 Execution stack too deep - expression too complex

An expression is too complex. Break it into smaller pieces. Notify Aptech Systems.

G0032 fn function too large
G0033 Missing right index bracket

28-3

GAUSS User Guide

G0034 Missing arguments
G0035 Argument too large

G0036 Matrices are not conformable

For a description of the function or operator being used and conformability rules,
see Matrix Operators, Section 10.2 , or the GAUSS LANGUAGE REFERENCE
MANUAL.

G0037 Result too large

The size of the result of an expression is greater than the limit for a single matrix.
G0038 Not all the eigenvalues can be computed
G0039 Matrix must be square to invert
G0040 Not all the singular values can be computed

G0041 Argument must be scalar

A matrix argument was passed to a function that requires a scalar.
G004 2 Matrix must be square to compute determinant
G0043 Not implemented for complex matrices
G0044 Matrix must be real

G0045 Attempt to write complex data to real data set

Data sets, unlike matrices, cannot change from real to complex after they are
created. Use create complex to create a complex data set.

G0046 Columns don't match

The matrices must have the same number of columns.

G0047 Rows don't match

The matrices must have the same number of rows.

28-4

Error Messages

G0048 Matrix singular

The matrix is singular using the current tolerance.
G0049 Target matrix not complex
G0050 Out of memory for program

The main program area is full. (To increase the main program space, see new in
the GAUSS LANGUAGE REFERENCE.)

G0051 Program too large

The main program area is full. (To increase the main program space, see new in
the GAUSS LANGUAGE REFERENCE.)

G0052 No square root - negative element
GO0053 Illegal index
An illegal value has been passed in as a matrix index.
G0054 Index overflow
An illegal value has been passed in as a matrix index.
GO0O055 retp outside of procedure
A retp statement has been encountered outside a procedure definition.
G0056 Too many active locals

The execution stack is full. There are too many local variables active. Restructure
your program. Notify Aptech Systems.

G0057 Procedure stack overflow - expression too complex

The execution stack is full. There are too many nested levels of procedure calls.
Restructure your program. Notify Aptech Systems.

G0058 Index out of range

28-5

GAUSS User Guide

You have referenced a matrix element that is out of bounds for the matrix being ref-
erenced.

G0059 exec command string too long
G0060 Nonscalar index
G0061 Cholesky downdate failed

G0062 Zero pivot encountered

crout The Crout algorithm has encountered a diagonal element equal to
0. Use croutp instead.

G0063 Operator missing

An expression contains two consecutive operands with no intervening operator.
G0064 Operand missing

An expression contains two consecutive operators with no intervening operand.
G0065 Division by zero!
G0066 Must be recompiled under current version

You are attempting to use compiled code from a previous version of GAUSS.
Recompile the source code under the current version.

G0068 Program compiled under GAUSS-386 real version

G0069 Program compiled under GAUSS-386i complex ver-
sion

G0070 Procedure calls too deep
You may have a runaway recursive procedure.

G0071 Type mismatch

28-6

Error Messages

You are using an argument of the wrong data type (e.g., inputting a matrix when a

string is called for).

G0072 Too many files open

The limit on simultaneously open files is 10.

G0073 Redefinition of

declare

declare

let

An attempt has been made to initialize a variable that
is already initialized. This is an error when
declare :=isused. declare !=or
declare ?= may be a better choice for your
application.

An attempt has been made to redefine a string as a
matrix or procedure, or vice versa. delete the symbol
and try again. If this happens in the context of a
single program, you have a programming error. If this
is a conflict between different programs, use a new
statement before running the second program.

A string is being forced to type matrix. Use an
external matrix symbol; statement
before the 1 et statement.

G0074 Can't run program compiled under GAUSS Light

G0075 gscroll input vector the wrong size

G0076 Call Aptech Systems Technical Support

G0077 New size cannot be zero

You cannot reshape a matrix to a size of zero.

28-7

GAUSS User Guide

G0078 vargetl outside of procedure
G0079 varputl outside of procedure
GO008O0 File handle must be an integer
GO0081 Error renaming file
G0082 Error reading file
GO0083 Error creating temporary file
G0084 Too many locals

A procedure has too many local variables.
GO0085 Invalid file type

You cannot use this kind of file in this way.
G0086 Error deleting file
G0087 Couldn't open

The auxiliary output file could not be opened. Check the file name and make sure
there is room on the disk.

G0088 Not enough memory to convert the whole string
G0089 WARNING: duplicate definition of local
G0090 Label undefined

Label referenced has no definition.

G0091 Symbol too long

Symbols can be no longer than 32 characters.

G0092 Open comment

A comment was never closed.

28-8

Error Messages

G0093 Locate off screen
G0094 Argument out of range
G0095 Seed out of range
GO0096 Error parsing string

parse encountered a token that was too long.
G0097 String not closed

A string must have double quotes at both ends.

G0098 Invalid character for imaginary part of complex
number

G0099 Illegal redefinition of user keyword
G0100 Internal ERR OR ###

Notify Aptech Systems.
G0101 Argument cannot be zero

The argument to 1n or log cannot be zero.
G0102 Subroutine calls too deep

Too many levels of gosub. Restructure your program.
G0103 return without gosub

You have encountered a subroutine without executing a gosub.
G0104 Argument must be positive
G0105 Bad expression or missing arguments

Check the expression in question, or you forgot an argument.

28-9

GAUSS User Guide

G0106 Factorial overflow

G0107 Nesting too deep

Break the expression into smaller statements.

G0108 Missing left bracket [
G0109 Not enough data items

You omitted data ina let statement.
G0110 Found) expected] -
GO0111 Found] expected) -
G0112 Matrix multiplication overflow
G0113 Unclosed (
G0114 Unclosed [
GO0115 Illegal redefinition of function

You are attempting to turn a function into a matrix or string. If this is a name con-
flict, delete the function.

G0116 sysstate: invalid case
G0117 Invalid argument
G0118 Argument must be integer

File handles must be integral.
G0120 Illegal type for save
G0121 Matrix not positive definite

The matrix is either not positive definite, or singular using the current tolerance.

28-10

Error Messages

G0122 Bad file handle

The file handle does not refer to an open file or is not in the valid range for file han-
dles.

G0123 File handle not open

The file handle does not refer to an open file.

G0124 readr call too large

You are attempting to read too much in one call.

G0125 Read past end of file

You have already reached the end of the file.
GO0126 Error closing file
G0127 File not open for write
G0128 File already open
G0129 File not open for read
G0130 No output variables specified
G0131 Can't create file, too many variables
G0132 Can't write, disk probably full
G0133 Function too long
G0134 Can't seekr in this type of file
G0135 Can't seek to negative row

G0136 Too many arguments or misplaced assignment oper-
ator

28-11

GAUSS User Guide

You have an assignment operator (=) where you want a comparison operator (==),
or you have too many arguments.

G0137 Negative argument - erf or erfc

G0138 User keyword must have one argument
G0139 Negative parameter - Incomplete Beta
G0140 Invalid second parameter - Incomplete Beta
G0141 Invalid third parameter - Incomplete Beta
G0142 Nonpositive parameter - gamma

G0143 NaN or missing value - cdfchic

G0144 Negative parameter - cdfchic

G0145 Second parameter < 1.0 - cdfchic

G0146 Parameter too large - Incomplete Beta
G0147 Bad argument to trig function

G0148 Angle too large to trig function

G0149 Matrices not conformable

For a description of the function or operator being used and conformability rules,
see Matrix Operators, Section 10.2 , or the GAUSS LANGUAGE REFERENCE.

G0150 Matrix not square
GO0151 Sort failure
G0152 Variable not initialized

You have referenced a variable that has not been initialized to any value.

28-12

Error Messages

G0153 Unsuccessful close on auxiliary output

The disk may be full.
G0154 Illegal redefinition of string
GO0155 Nested procedure definition

A proc statement was encountered inside a procedure definition.

GO0156 Illegal redefinition of procedure

You are attempting to turn a procedure into a matrix or string. If this is a name con-
flict, delete the procedure.

G0157 Illegal redefinition of matrix
G0158 endp without proc

You are attempting to end a procedure that you never started.

G0159 Wrong number of parameters

You called a procedure with the wrong number of arguments.
G0160 Expected string variable
G0161 User keywords return nothing

G0162 Can't save proc/keyword/fn with global references

Remove the global references or leave this in source code form for the autoloader
to handle. (See 1ibrary in the GAUSS LANGUAGE REFERENCE.)

G0163 Wrong size format matrix
G0164 Bad mask matrix
G0165 Type mismatch or missing arguments

G0166 Character element too long

28-13

GAUSS User Guide

The maximum length for character elements is 8 characters.
G0167 Argument must be column vector

G0168 Wrong number of returns

The procedure was defined to return a different number of items.

G0169 Invalid pointer

You are attempting to call a local procedure using an invalid procedure pointer.
G0170 Invalid use of ampersand

G0171 Called symbol is wrong type

You are attempting to call a local procedure using a pointer to something else.
G0172 Can't resize temporary file
G0173 varindx failed during open

The global symbol table is full.

G0174 "." and "' " operators must be inside [] brackets

These operators are for indexing matrices.
G0175 String too long to compare
G0176 Argument out of range
G0177 Invalid format string
G0178 Invalid mode for getf
G0179 Insufficient heap space
G0180 Trim too much

You are attempting to trim more rows than the matrix has.

28-14

Error Messages

G0181 Illegal assignment - type mismatch
G0182 2nd and 3rd arguments different order
G0274 Invalid parameter for conv
G0275 Parameter is NaN (Not A Number)

The argument is a NaN (see Special Data Types, Section 9.6.9).
G0276 Illegal use of reserved word
G0277 Null string illegal here
G0278 proc without endp

You must terminate a procedure definition with an endp statement.
G0286 Multiple assign out of memory
G0287 Seed not updated

The seed argument to rndns and rndus must be a simple local or global variable
reference. It cannot be an expression or constant. These functions are obsolete,
please use rndlcn and rndlcu

G0288 Found break not in do loop
G0289 Found continue not in do loop

G0290 Library not found

The specified library cannot be found on the 1ib_path path. Make sure instal-
lation was correct.

G0291 Compiler pass out of memory
Notify Aptech Systems.

G0292 File listed in library not found
A file listed in a library could not be opened.

28-15

GAUSS User Guide

G0293 Procedure has no definition

The procedure was not initialized. Define it.

G0294 Error opening temporary file

One of the temporary files could not be opened. The directory may be full.
G0295 Error writing temporary file

One of the temporary files could not be written to. The disk may be full.
G0296 Can’'t raise negative number to nonintegral power
G0300 File handle must be a scalar
G0301 Syntax error in library

G0302 File has been truncated or corrupted

getname File header cannot be read.
load Cannot read input file, or file header cannot be read.
open File size does not match header specifications, or file

header cannot be read.

G0317 Can't open temp file

G0336 Disk full

G0339 Can't debug compiled program
GO0341 File too big

G0347 Can't allocate that many globals

G0351 Warning: Not reinitializing : declare ?=

The symbol is already initialized. It will be left as is.

28-16

Error Messages

G0352 Warning: Reinitializing : declare I=
The symbol is already initialized. It will be reset.

GO0355 Wrong size line matrix

G0360 Write error

G0364 Paging error

G0365 Unsupported executable file type

G0368 Unable to allocate translation space

G0369 Unable to allocate buffer

G0370 Syntax Error in code statement

G0371 Syntax Error in recode statement

G0372 Token verify error
Notify Aptech Systems.

G0373 Procedure definition not allowed

A procedure name appears on the left side of an assignment operator.
G0374 Invalid make statement
G0375 make Variable is a Number
G0376 make Variable is Procedure
G0377 Cannot make Existing Variable
G0378 Cannot make External Variable
G0379 Cannot make String Constant

G0380 Invalid vector statement

28-17

GAUSS User Guide

GO0381 vector Variable is a Number
G0382 vector Variable is Procedure
G0383 Cannot vector Existing Variable
G0384 Cannot vector External Variable
G0385 Cannot vector String Constant
G0386 Invalid extern statement
G0387 Cannot extern number

G0388 Procedures always external

A procedure name has been declared in an extern statement. This is a warning
only.

G0389 extern variable already local

A variable declared in an extern statement has already been assigned local
status.

G0390 String constant cannot be external
G0391 Invalid code statement

G0392 code Variable is a Number

G0393 code Variable is Procedure

G0394 Cannot code Existing Variable
G0395 Cannot code External Variable
G0396 Cannot code String Constant

G0397 Invalid recode statement

28-18

Error Messages

G0398 recode Variable is a Number
G0399 recode Variable is Procedure
G0400 Cannot recode External Variable
G0401 Cannot recode String Constant
G0402 Invalid keep statement

G0403 Invalid drop statement

G0404 Cannot define Number

G0405 Cannot define String

G0406 Invalid select statement
G0407 Invalid delete statement
G0408 Invalid outtyp statement
G0409 outtyp already defaulted to 8

Character data has been found in the output data set before an outtyp 2 or out-
typ 4 statement. This is a warning only.

G0410 outtyp must equal 2, 4, or 8

G0411 outtyp override...precision set to 8

Character data has been found in the output data set after an outtyp 2 or out-—
typ 4 statement. This is a warning only.

G0412 default not allowed in recode statement

default allowed only in code statement.

G0413 Missing file name in dataloop statement

28-19

GAUSS User Guide

G0414 Invalid listwise statement

GO0415 Invalid lag statement

G0416 lag variable is a number

G0417 lag variable is a procedure

G0418 Cannot lag External Variable

G0419 Cannot lag String Constant

G0421 Command not supported in Run-Time Module
G0428 Cannot use debug command inside program
G0429 Invalid number of subdiagonals

GO0431 Error closing dynamic library

G0432 Error opening dynamic library

G0433 Cannot find DLL function

G0434 Error opening default dynamic library
G0435 Invalid mode

G0436 Matrix is empty

G0437 loadexe not supported; use dlibrary instead
G0438 callexe not supported; use dlicall instead
G0439 File has wrong bit order

G0440 File has wrong byte order

G0441 Type vector malloc failed

28-20

Error Messages

G0442 No type vector in gfblock

G0445 Illegal left-hand side reference in procedure
G0446 Argument is the wrong size

G0447 vfor called with illegal loop level

G0454 Failure opening printer for output

GO0456 Failure buffering output for printer

G0457 Cannot take log of a negative number

G0458 Attempt to index proc/fn/keyword as a matrix
G0459 Missing right brace

G0460 Unexpected end of statement

G0461 Too many data items

G0462 Negative trim value

GO0463 Failure generating graph

G0465 Redefinition of structure, number of elements
G0466 Redefinition of structure, type mismatch
G0467 Redefinition of structure, unrecognized member
G0468 Structure definition inside procedure definition
G0469 Cannot create translator temp file

G0470 Symbol not found

G0472 Invalid name

28-21

GAUSS User Guide

G0473 String not terminated with null byte
G0477 FOR loops nested too deep

G0486 Character argument too long

G0487 License expired

G0490 License manager initialization error
G0491 License manager error

G0492 Licensing failure

G0497 Missing right parenthesis

G0500 Cannot create temporary filename
G0503 Cannot assign matrix to scalar member
G0504 Invalid structure member

GO0505 Invalid structure redefinition

G0506 Structure assignment mismatch
G0507 Undefined structure

GO0508 Structure argument mismatch

G0509 Too many structure members

G0510 Duplicate name for structure member
G0514 Not supported for structures

GO0515 Too many values in locator

G0516 Too many dimensions in result

28-22

Error Messages

G0517 Too many dimensions in argument
G0518 Not implemented for complex

GO0519 Illegal dereference of structure array
G0520 Arguments not conformable

G0521 Argument must be real

G0522 Illegal indexing of dereferenced structure
G0523 Numeric argument must be integer
G0524 Found comma, expecting index
G0525 Argument contains NaNs

G0526 Argument must be compact format
G0529 Array orders must be >=1

G0531 Two trailing dimensions of argument must be the
same size

G0532 Both dimensions of argument must be the same size
G0533 1-dimensional argument must contain only 1 element
G0534 Cannot create file

GO0538 Zero illegal in for loop increment

GO0541 Illegal assignment to FOR loop counter

G0542 Object too large for 32-bit version

G0543 Array has too many dimensions for matrix assign

G0547 Array not conformable for indexing

28-23

GAUSS User Guide

G0548 Array not conformable for boolean operation

G0549 Global structure pointer cannot point to local struc-
ture

GO0550 Invalid use of *

GO0551 Feature not authorized

GO0553 Path too long

G0554 Unable to create sparse matrix
GO0555 Cannot index uninitialized structure
GO0556 #IF nesting limit exceeded

GO0557 #ELSE without #IF

GO0558 #ENDIF without #IF

G0559 Symbol not #DEFINE'd

G0560 Too many #DEFINE's

G0561 Duplicate #DEFINE

G0562 Open /* */comment

G0563 Open @ @ comment

G0564 Illegal redefinition of sparse matrix

GO0565 Initializer too large, increase maxdeclet in config
(.cfg) file

G0566 Can't create profiler data file

G0567 Sparse matrix uninitialized

28-24

Error Messages

G0568 Operation not defined for triangular, symmetric, or
Hermitian sparse matrix

G0569 Argument must be complex
G0570 Diagonal must be real

G0571 Diagonal must not contain zeros
G0572 Argument must be triangular
G0573 Argument must be symmetric
G0574 Sparse type mismatch

GO0575 Unable to load variable

GO0576 Threading error

GO0577 Expected THREADSTAT, THREADBEGIN, or THREAD-
JOIN

G0578 A THREADJOIN failed
G0579 Cannot call RUN from inside thread
G0580 Unable to converge in allowed number of iterations

GO0581 Incorrect Argument: Number of eigenvalues must be
positive

GO0582 Incorrect Argument: Number of column vectors must
be >= number of eigenvalues +2 and < rows of input matrix

G0583 Could not apply shift during an Arnoldi iteration cycle.
Try increasing size of ncv

28-25

GAUSS User Guide

G0584 Invalid Input: 'which' must be 'LM' 'SM' 'LR' 'LI' 'SR’
or 'SI' and type string

GO0585 Error Return from LAPACK eigenvalue calculation
G0586 dneupd error 1: contact Aptech Systems
G0587 Input matrix must be sparse

G0588 Incorrect Input: Number of eigenvalues must be sca-
lar

GO0589 Incorrect Input: Tolerance must be scalar

G0590 No eigenvalues found to specified tolerance in
allowed iterations

GO0591 Incorrect Input: Max iterations must be scalar

G0592 Incorrect Input: Number of column vectors must be
scalar

G0593 Incorrect Input: Third input, probability, must be > 0
and <1

G0594 Incorrect Input: Number of successes (input 1) must
be less than number of trials (input 2)

G0595 Incorrect Input: State vector cannot have more than
1 column

G0596 Incorrect Input: Inputs 1 and 2 (cols and rows) must
be scalar or 1x1 matrix

G0597 Incorrect Input: Input must be dense matrix

G0598 Incorrect Input: First input may have 1 column only

28-26

Error Messages

G0599 Incorrect Input: Input 2 may not have more columns
that input 1 has rows

G0600 Incorrect Input: Input 1 must be square
G0601 Incorrect Input: Input 2 must be square
G0602 Incorrect Input: 1 <= il < iu and iu <= rows of x

G0603 Failure to converge

28-27

29 Maximizing Performance

These hints will help you maximize the performance of your new GAUSS System.

29.1 Library System

Some temporary files are created during the autoloading process. If you have a tmp
path configuration variable or a tmp environment string that defines a path on a RAM
disk, the temporary files will be placed on the RAM disk.

For example:

set tmp=f:\tmp

tmp path takes precedence over the tmp environment variable.

A disk cache will also help, as well as having your frequently used files in the first path
in the src_path.

You can optimize your library . 1cg files by putting the correct drive and path on each
file name listed in the library. The 1ib command will do this for you.

Use the compile command to precompile your large frequently used programs. This
will completely eliminate compile time when the programs are rerun.

29-1

GAUSS User Guide

29.2 Loops

The use of the built-in matrix operators and functions rather than do loops will ensure
that you are utilizing the potential of GAUSS.

Here is an example:

Given the vector x with 8000 normal random numbers,
x = rndn (8000,1) ;

you could get a count of the elements with an absolute value greater than 1 with a do
loop, like this:

c = 0;
i=1;
do while 1 <= rows (x);
if abs(x[i]) > 1;
c = ct+l;
endif;
i = 4i+1;
endo;
print c;

Or, you could use:

c = sumc (abs(x) .> 1);
print c;

The do loop takes over 40 times longer.

29.3 Memory Usage

Computers today can have large amounts of RAM. This doesn't mean that large data
sets should be read entirely into memory. Many GAUSS procedures and applications are
written to allow for data sets to be read in sections rather than all at once. Even if you
have enough RAM to store the data set completely, you should consider taking

29-2

Maximizing Performance

advantage of this feature. The speed-ups using this feature can be significant. For exam-
ple, ols is called using a data set stored in a matrix versus stored on the disk in a
GAUSS data set. The computer is a 2.8 Megahertz computer with Windows XP.

% rndn (250000,1) ;

x = rndn (250000,100) ;

x1bl = 0$+"X"+ftocv(seqa(l,1,100),1,0);
1bl = "Y" | x1bl;

call saved(y~x,"test",1lbl);
__output = 0;

t0 = date;

call ols("",vy,x);

tl = date;

t2 = date;

call ols("test", "Y",xlbl);
t3 = date;

print ethsec(t2,t3) /100 " seconds";
print;
print ethsec(t0,tl) /100 " seconds";
25.750000 seconds
9.6720000 seconds

This represents more than a 50% speedup by leaving the data on the disk.
maxvec, maxbytes

maxvec is a GAUSS procedure that returns the value of the global variable max-
vec that determines the amount of data to be read in at a time from a GAUSS data set.
This value can be modified for a particular run by setting maxvec in your command
file to some other value. The value returned by a call to maxvec can be permanently
modified by editing system. dec and changing the value of maxvec. The value
returned when running GAUSS Light is always 8192.

29-3

GAUSS User Guide

maxbytes is a GAUSS procedure that returns the value of a scalar global max-
bytes that sets the amount of available RAM. This value can be modified for a par-
ticular run by setting maxbytes in your command file to some other value. The
value returned by a call to maxbytes can be permanently modified by editing sys-
tem.dec and changing the value of maxbytes.

If you wish to force GAUSS procedures and applications to read a GAUSS data set in
its entirety, set maxvecand maxbytes to very large values.

29.3.1 Hard Disk Maintenance

The hard disk used for the swap file should be optimized occasionally with a disk opti-
mizer. Use a disk maintenance program to ensure that the disk media is in good shape.

29.3.2 CPU Cache

There is a line for cache size in the gauss.cfg file. Set it to the size of the CPU data
cache for your computer.

This affects the choice of algorithms used for matrix multiply functions.

This will not change the results you get, but it can radically affect performance for large
matrices.

29-4

30 GAUSS Graphics Colors

The following is a chart and list of colors available for use in GAUSS graphics with
both the name and RGB value listed.

30-1

GAUSS User Guide

Color Name RGB Virlue Color Name RGE Value
aliceblue 240, 248, 255 dimgrey 108, 105, 105
antiquewhite 250,235,215 dodgerblue 30, 144, 255
| aqua 0,255,253 firebrick 178,34, 34
aquamaring 127,255,212 floralwhite 255, 250, 240
azure 240, 255, 255 forestgreen 34,139, 4
beige 245,245,220 fuchsia 255,10, 253
bisque 255, 128, 196 inshar 220, 220, 220
black 0,0,0 ghostwhite 248, 248,255
| [blanchedalmond 255, 235,205 sold 255,215, 0
blue 0,0,255 | soldenrod 218, 165, 32
blueviolet 138, 43, 226 gray 128, 128, 128
brown 165, 42 42 arey 128, 128, 128
| [burlywood 222, 184, 135 areen 0,128,0
cadethlue 95, 158, 160 greenyellow 173, 255, 47
- chartrelise 127, 285.0) honeydaw 240, 255, 240
chocolate 210, 105,30 hotpink 255, 105, 180
| coral 255, 127,80 indianred 205,92, 92
comflowerblug 100, 149, 237 indigo 75,0, 130
comsilk 255, MB, 220 Ivary 255,255, 240
crimson 720,20, 60 khaki 240,230, 140
cyan 0,235,255 lavender 230, 230, 250
darkblue 0,0, 139 lavenderblush 255,240,245
darkcyan 0,139,139 lawngreen 124, 252,0
darkgoldenrod 184, 134,11 lemonchiffon 255, 250, 205
| darkeray 169, 169, 169 lightblue 173,216,230
darkgresn 0, 100, 0 lighteoral 240, 128, 128
| darkgrey 169, 169, 169 lightcyan 224,255,255
darkkhaki 189, 183, 107 lighteoldenrodyellow | 230, 250, 210
darkmasenta 139,0, 139 lighteray 201,211, 211
darkolivegreen 85, 107,47 lightgreen 144, 238, 144
darkorange 255, 140,0 lightarey 211,211,211
darkorehid 153, 50, 204 lightpink 155, 182, 193
darkred 139,00 lightsalmen 255, 10, 122
|| darksalmon 133, 150,122 lightssagresn 32,178, 170
|| darkseagreen 143, 188, 143 lightskyblug 135, 206, 250
darkslateblue 72,61,139 lightslategray 119, 136, 153
darkslategray 47.79,79 lights! 119, 136, 153
darkslategrey 47,79, 79 linhtsteelblue 176, 196,222
darkturquoise {1, 206, 209 lghtvellow 155,255,224
darkvielat 148, 0, 211 lime 0, 255, 0
deppink 255 20, 147 limegresn 50, 205, 50
deepskyblue 0,191,255 Jinen 250,240, 230
dimgray 105, 105, 105 magenta 255,0, 255

30-2

GAUSS Graphics Colors

Color Nume RGB Value Color Name RGE Value
margon 128 0.0 skyblue 135, 206, 235
mediumaquamarine | 102, 205, 170 slateblue 106, 90, 205
mediumblus 0,0,205 slategray 112,128, 144
mediumorchid 186, 85, 211 slategrey 112,128, 144
mediumpurple 147,112, 219 TaW 155,250, 250
mediumseagresn 60,179, 113 springgreen 0,255, 127
diumslatehl 123, 104, 238 steelblue 70, 130, 180
mediumspringgreen | 0, 250, 154 tan 210, 180, 140
mediumturquoise 72,209, 204 teal 0, 128, 128
mediumyioletred 199, 21, 133 ihistle 216,191, 216
midnightblue 25,25, 112 tomato 255,99, 7|
minteream 245,255, 250 Turquoise 64,224, 208
misly rase 255,228 225 violet 238, 130, 238
maceasin 255,228, 181 wheat 245,222 179
navajowhire 255,222,173 white 255, 255, 255
navy 0,0,128 whitesmoke 245, 145, 245
oldlace 253, 245, 230 vellow 255, 255,0
alive 126,128,0 I vellowgreen 154,205, 50
olivedrab 107, 142, 35
orange 255 165, 0
orangered 255, 69,0
orchid 218, 112,214
palegoldenrod 238,232,170
_|palegreen 152, 251, 152
paleturquoise 175, 238, 238
palevioletred 219,112, 147
papayawhip 255 239213
peachpuff 255 218, 185
peru 205, 133, 63
pink 255,192, 203
| plum 21, 160, 221
powderblue 176,224, 230
purple 128,0,128
red 255 0.0
osybrown 188, 143 143
rovalblue 65, 105,225
saddlebrown 139 69 19
salmon 250, 128 114
|| sancybrown 244, 164, 96
seagreen 46,139, 87
| [seashel 255, 245, 238
sienna 160, 82, 45
silver 192,192, 192

30-3

31 Reserved Words

The following words are used for GAUSS functions. You cannot use these names for
variables or procedures in your programs:

A

abs

acft

aconcat

acos

aeye

amax

amean

AmericanBinomCall
AmericanBinomCall Greeks
AmericanBinomCall ImpVol
AmericanBinomPut

AmericanBinomPut Greeks

GAUSS User Guide

AmericanBinomPut ImpVol

AmericanBSCall
AmericanBSCall Greeks
AmericanBSCall ImpVol
AmericanBSPut
AmericanBSPut_ Greeks
AmericanBSPut_ ImpVol
amin

amult

and

annualTradingDays
arccos

arcsin

arctan

arctan2

areshape

arrayalloc

arrayindex

arrayinit

arraytomat

asclabel

asin

31-2

Reserved Words

asum
atan

atan2
atranspose

axmargin

balance
band
bandchol
bandcholsol
bandltsol
bandrv
bandsolpd
bar
basel0
begwind
besselj
bessely
box
boxcox

break

31-3

GAUSS User Guide

calcbox
call
callexe
cdfbeta
cdfbvn
cdfbvn2
cdfbvn2e
cdfchic
cdfchii
cdfchinc
cdffc
cdffnc
cdfgam
cdfmvn
cdfn
cdfn2
cdfnc
cdfni
cdftc
cdftci
cdftnc

cdftvn

31-4

Reserved Words

cdir
ceil
cfft
cffti
changedir
chdir
checkinterrupt
chol
choldn
cholsol
cholup
chrs
cint
clear
clearg
close
closeall
cls
cmsplit
cmsplit2
code

color

31-5

GAUSS User Guide

cols

colsf
combinate
combinated
comlog
commandeerm
commandeersa
compile
complex

con

cond
conformed
conj

cons
continue
contour

conv
convertsatostr
convertstrtosa
coreleft
corrm

corrms

31-6

Reserved Words

corrvce
corrx
COorrxs
cos

cosh
counts
countwts
create
crossprd
crout
croutp
csrcol
csrlin
csrtype
cumprodc
cumsumc
curve
cvtos

cvtosa

datacreate

datacreatecomplex

31-7

GAUSS User Guide

datalist
dataload
dataopen
datasave
date
datestr
datestring
datestrymd
dayinyr
dayOfWeek
debug
declare
delete
deletefile
delif
denseSubmat
design

det

detl

dfft

dffti

dfree

31-8

Reserved Words

diag
diagrv
digamma
disable
dlibrary
dllcall
do

dos
doswincloseall
doswinopen
dotfeq
dotfeqgmt
dotfge
dotfgemt
dotfgt
dotfgtmt
dotfle
dotflemt
dotflt
dotfltmt
dotfne

dotfnemt

31-9

GAUSS User Guide

draw
dsCreate
dstat
dstatmt
dstatmtControlCreate
dtdate
dtday
dttime
dttodtv
dttostr
dttoutc
dtvnormal
dtvtodt
dtvtoutc
dummy
dummybr

dummydn

ed
edit
editm

eig

31-10

Reserved Words

eigcg
eigcg2
eigch
eigch2
eigh
eighv
eigrg
eigrg2
eigrs
eigrs2
eigv
elapsedTradingDays
else
elseif
enable
end
endfor
endif
endo
endp
endwind

envget

31-11

GAUSS User Guide

eof

€q

egSolve

egSolvemt
egSolvemtControlCreate
egSolvemtOutCreate
egSolveSet

eqv

erf

erfc

error

errorlog

etdays

ethsec

etstr

EuropeanBinomCall
EuropeanBinomCall Greeks
EuropeanBinomCall ImpVol
EuropeanBinomPut
EuropeanBinomPut_ Greeks
EuropeanBinomPut_ ImpVol

EuropeanBSCall

31-12

Reserved Words

EuropeanBSCall Greeks
EuropeanBSCall ImpVol
EuropeanBSPut
EuropeanBSPut_ Greeks
EuropeanBSPut_ ImpVol
exctsmpl

exec

execbg

exp

expr

external

eye

fcheckerr
fclearerr
feq

feqmt
fflush
fft

ffti

fftm

fftmi

31-13

GAUSS User Guide

fftn
fge
fgemt
fgets
fgetsa
fgetsat
fgetst
fgt
fgtmt
fileinfo
files
filesa
fix
fle
flemt
floor
flt
fltmt
fmod
fn

fne

fnemt

31-14

Reserved Words

font
fontload
fonts
fontunload
fontunloadall
fopen

for

format
formatcv
formatnv
fputs
fputst
fseek
fstrerror
ftell
ftocv

ftos

ftostrc

gamma
gammaii

gausset

31-15

GAUSS User Guide

gdaappend
gdacreate
gdadstat
gdadstatmat
gdagetindex
gdagetname
gdagetnames
gdagetorders
gdagettype
gdagettypes
gdagetvarinfo
gdaiscplx
gdapack
gdaread
gdareadbyindex
gdareadsome
gdareportvarinfo
gdaupdate
gdaupdateandpack
gdawrite
gdawritesome

gdtfastcat

31-16

Reserved Words

ge
getarray

getdims

getf

getmatrix
getmatrix4d
getname

getnamef
getNextTradingDay
getNextWeekDay
getnr

getnrmt

getorders

getpath
getPreviousTradingDay
getPreviousWeekDay
getscalar3d
getscalaré4d
getwind

gosub

goto

gradMT

31-17

GAUSS User Guide

gradMTm
gradp
graph
graphgpg
graphinit
graphprt
graphset

graphsev3

gt

hardcopy
hasimag
header
headermt
hess
hessMT
hessMTg
hessMTgw
hessMTm
hessMTmw
hessMTw

hessp

31-18

Reserved Words

hist
histf
histp

hsec

if

imag
indcv
indexcat
indices
indices2
indicesf
indicesfn
indnv
indsav
int
intgrat2
intgrat3
inthp
intHP1
intHP2

intHP3

31-19

GAUSS User Guide

intHP4
inthpControlCreate
intquadl
intquad2
intquad3
intrleav
intrleavsa
intrsect
intrsectsa
intsimp

inv

invpd

invswp
iscplx
iscplxf
isinfnanmiss
scalmiss

isSparse

key
keyav

keymatchmc

31-20

Reserved Words

keyw

keyword

lag

lagl

lagn
lapeighb
lapeighi
lapeighvb
lapeighvi
lapgeig
lapgeigh
lapgeighv
lapgeigv
lapgschur
lapgsvdcst
lapgsvds
lapgsvdst
lapsvdcusv
lapsvds
lapsvdusv

le

31-21

GAUSS User Guide

let

1lib
library
license_id
line
linsolve
1n
lncdfbvn
lncdfbvn2
lncdfmvn
lncdfn
lncdfn2
lncdfnc
Infact
lngamma
lnpdfmvn
lnpdfmvt
lnpdfn
lnpdft
load
loadarray

loadd

31-22

Reserved Words

loadexe
loadf
loadk
loadm
loadp
loads
loadstruct
loadwind
local
locate
loess
loessmt
loessmtControlCreate
log

loglog
logx

logy
loopnextindex
lower
lowmat
lowmatl

lpos

31-23

GAUSS User Guide

lprint
lpwidth
lshow
1t
ltrisol
1lu

lusol

machEpsilon
makevars
makewind
margin
matalloc
matinit
matrix
mattoarray
maxbytes
maxc
maxindc
maxvec
mbesselei

mbesseleil

31-24

Reserved Words

mbesseleil
mbesseli
mbesselil
mbesselil
meanc
median
mergeby
mergebysa
mergevar
minc
minindc
miss
missex
missrv
moment
momentd

movingave

movingaveExpwgt

movingaveWgt

msym

31-25

GAUSS User Guide

nametype
ndpchk
ndpclex
ndpcntrl
ne

new
nextindex
nextn
nextnevn
nextwind
not

null
nulll

numCombinations

oldfft

oldffti

ols

olsmt
olsmtControlCreate
olsqgr

olsqgr2

31-26

Reserved Words

olsgrmt
ones
open
openpqg
optn
optnevn
or

orth
output

outwidth

pact
packr
parse
pause
pdfn

pi

pinv
pinvmt
plot
plotsym

polar

31-27

GAUSS User Guide

polychar
polyeval
polyint
polymake
polymat
polymroot
polymult
polyroot
pop
pggwin

prcsn

previousindex

princomp
print
printdos
printfm
printfmt
proc
prodc
push
putarray

putf

31-28

Reserved Words

pvCreate
pvgetindex
pvgetparnames
pvgetparvector
pvLength
pvlist
pvnumoffsets
pvoffsets
pvPack

pvPacki
pvPackm
pvPackmi
pvPacks
pvPacksi
pvPacksm
pvPacksmi
pvputparvector
pvtest

pvunpack

ONewton

ONewtonmt

31-29

GAUSS User Guide

ONewtonmtControlCreate
ONewtonmtOutCreate
ONewtonSet

QProg

QProgmt
QProgmtInCreate
qqr

ggqre

qqrep

qr

gre

qrep

grsol

grtsol

qtyr

gtyre

gtyrep

quantile

quantiled
quantilem

quantilemd

qyr

31-30

Reserved Words

gyre

qyrep

rank

rankindx
readr

real

recode
recserar
recsercp
recserrc
register off
register on
register reset
register show
renamefile
replay

rerun

reshape

retp

return

rev

31-31

GAUSS User Guide

rfft
rffti
rfftip
rfftn
rfftnp
rfftp
rndbeta
rndcon
rndgam
rndi
rndKMbeta
rndKMgam
rndkmi
rndkmn
rndKMnb
rndKMp
rndkmu
rndKMvm
rndLCbeta
rndLCgam
rndlci

rndlcn

31-32

Reserved Words

rndLCnb
rndLCp
rndlcu
rndLCvm
rndmod
rndmult
rndn
rndnb
rndns
rndp
rndseed
rndu
rndus
rndvm
rotater
round
rows
rowsf
rref

run

31-33

GAUSS User Guide

satocv
satostrC
save
saveall
saved
savestruct
savewind
scale
scale3d
scalerr
scalinfnanmiss
scalmiss
schtoc
schur
screen
scroll
searchsourcepath
seekr
selif

seqa

seqm

setarray

31-34

Reserved Words

setcnvrt
setdif
setdifsa
setvars
setvmode
setvwrmode
setwind
shell
shiftr
show
showpgg
sin
singleindex
sinh
sleep
solpd
sortc
sortcc
sortd
sorthc
sorthcc

sortind

31-35

GAUSS User Guide

sortindc
sortindmc
sortmc

sortr

sortrc
sparseCols
sparseEye
sparseFD
sparseFP
sparseHConcat
sparseNZE
sparseOnes
sparseRows
sparseScale
sparseSet
sparseSolve
sparseSubmat
sparseTD
sparseTranspose
sparseTrTD
sparseTscalar

sparseVConcat

31-36

Reserved Words

spline

splinelD

spline2D
sgpmt_feasible
sgpmt_meritFunct
sgpSolve

SQPsolveMT
sgpSolveMTcontrolCreate
sgpSolveMTlagrangeCreate
sgpSolveMToutCreate
sgpSolveset

sqrt

stdc

stocv

stof

stop

strcombine

strindx

string

strlen

strput

strrindx

31-37

GAUSS User Guide

strsect
strsplit
strsplitpad
strtodt
strtodtd
strtof
strtofcplx
strtriml
strtrimr
strtrunc
strtruncl
strtruncpad
strtruncr
struct
submat
subscat
substute
subvec
sumc

sumr
surface

svd

31-38

Reserved Words

svdl
svd2
svdcusv
svds
svdusv
sysstate

system

tab

tan

tanh
tempname
ThreadBegin
ThreadEnd
ThreadJoin
ThreadStat
time
timedt
timestr
timeutc
title

tkf2eps

31-39

GAUSS User Guide

tkf2ps
tkf2ps _margin
tocart
todaydt
toeplitz
token
topolar
trace
trap
trapchk
trigamma
trim
trimr
trunc
type
typecv

typef

union
unionsa
unigindmc

unigindx

31-40

Reserved Words

unigindxsa
unique
uniquemc
uniquesa
until
upmat
upmatl
upper
use
utctodt
utctodtv

utrisol

vals
varget
vargetl
varmall
varmares
varput
varputl
vartype

vartypef

31-41

GAUSS User Guide

vcm
vcms
vcx
VCXSs
vec
vech
vecr
vfor
vget
view
viewxyz
vlist
vnamecv
volume
vput
vread

vtypecv

wait
waitc
walkindex

while

31-42

Reserved Words

winclear
wincleararea
winclearttylog
winclose
wincloseall
winconvertpqgqg
window
wingetactive
wingetattributes
wingetcolorcells
wingetcursor
winmove
winopenpgqg
winopentext
winopentty
winpan
winprint
winprintpgg
winrefresh
winrefresharea
winresize

winsetactive

31-43

GAUSS User Guide

winsetbackground
winsetcolor
winsetcolorcells
winsetcolormap
winsetcursor
winsetforeground
winsetrefresh
winsettextwrap
winwrite
winzoompgg

writer

x_indcv
xlabel
Xor
xpnd
xtics
Xy

XyZz

ylabel

ytics

31-44

Reserved Words

Zeros
zlabel

ztics

31-45

32 Singularity Tolerance

The tolerance used to determine whether or not a matrix is singular can be changed. The
default value is 1.0e-14 for both the LU and the Cholesky decompositions. The tolerance
for each decomposition can be changed separately. The following operators are affected
by a change in the tolerance:

Crout LU Decomposition
crout(x)
croutp(x)
inv(x)
det(x)

yix when neither x nor y is scalar and x is square.

Cholesky Decomposition

chol(x)

invpd(x)

32-1

GAUSS User Guide

solpd(y, x)

y/x when neither x nor y is scalar and x is not square.

32.1 Reading and Setting the Tolerance

The tolerance value may be read or set using the sysstate function, cases 13 and 14.

32.2 Determining Singularity

There is no perfect tolerance for determining singularity. The default is 1.0e-14. You
can adjust this as necessary.

A numerically better method of determining singularity is to use cond to determine the
condition number of the matrix. If the equation

1 / cond(x) + 1 eq 1

is true, then the matrix is usually considered singular to machine precision. (See
LAPACK for a detailed discussion on the relationship between the matrix condition and
the number of significant figures of accuracy to be expected in the result.)

32-2

33 Publication Quality Graphics

GAUSS Publication Quality Graphics (PQG) is a set of routines built on the graphics
functions in GraphiC by Scientific Endeavors Corporation. These routines are dep-
recated but included for backward compatibility.

The main graphics routines include xy, xyz, surface, polar and log plots, as well as his-
tograms, bar, and box graphs. Users can enhance their graphs by adding legends, chang-
ing fonts, and adding extra lines, arrows, symbols and messages.

The user can create a single full size graph, inset a smaller graph into a larger one, tile a
window with several equally sized graphs or place several overlapping graphs in the win-
dow. Graphic panel size and location are all completely under the user's control.

33.1 General Design

GAUSS PQG consists of a set of main graphing procedures and several additional pro-
cedures and global variables for customizing the output.

All of the actual output to the window happens during the call to these main routines:

bar Bar graphs.

box Box plots.

contour Contour plots.

draw Draw graphs using only global variables.
hist Histogram.

histp Percentage histogram.

33-1

GAUSS User Guide

histf

loglog

logx

logy

polar

surface

Xy

XyzZ

Histogram from a vector of frequencies.
Log scaling on both axes.

Log scaling on X axis.

Log scaling on Y axis.

Polar plots.

3-D surface with hidden line removal.
Cartesian graph.

3-D Cartesian graph.

33.2 Using Publication Quality Graphics

33-2

Publication Quality
Graphics

33.2.1 Getting Started

There are four basic parts to a graphics program. These elements should be in any pro-
gram that uses graphics routines. The four parts are the header, data setup, graphics for-
mat setup, and graphics call.

Header

In order to use the graphics procedures, the pgraph library must be activated. This is
done in the 1 ibrary statement at the top of your program or command file. The next
line in your program will typically be a command to reset the graphics global variables
to their default state. For example:

library mylib, pgraph;
graphset;

Data Setup

The data to be graphed must be in matrices. For example:

x = seqa(l,1,50);
y = sin(x);

Graphics Format Setup

Most of the graphics elements contain defaults that allow the user to generate a plot with-
out modification. These defaults, however, may be overridden by the user through the

use of global variables and graphics procedures. Some of the elements that may be con-
figured by the user are axes numbering, labeling, cropping, scaling, line and symbol

sizes and types, legends, and colors.

Calling Graphics Routines

The graphics routines take as input the user data and global variables that have pre-
viously been set. It is in these routines where the graphics file is created and displayed.

33-3

sojydeir)
Ayjenp uoneoiqnd

Publication Quality

Graphics

GAUSS User Guide

Following are three PQG examples. The first two programs are different versions of the
same graph. The variables that begin with _p are the global control variables used by
the graphics routines. (For a detailed description of these variables, see Global Control
Variables, Section 33.6 .)

Example 1 The routine being called here is a simple XY plot. The entire window will
be used. Four sets of data will be plotted with the line and symbol attributes auto-
matically selected. This graph will include a legend, title, and a time/date stamp (time
stamp is on by default):

library pgraph; /* activate PGRAPH library */
graphset; /* reset global variables */
x = seqa(.1,.1,100); /* generate data */

y = sin(x);

y =y ~ y*.8 ~ y*.6 ~ y*.4; /* 4 curves plotted against x
=/

_plegctl = 1; /* legend on */

title ("Example xy Graph"); /* Main title */

Xy (X,¥) 7 /* Call to main routine */

Example 2 Here is the same graph with more of the graphics format controlled by the
user. The first two data sets will be plotted using symbols at data points only (observed
data); the data points in the second two sets will be connected with lines (predicted
results):

library pgraph; /* activate PGRAPH library
=4

graphset; /* reset global variables
=/

x = seqa(.1,.1,100); /* generate data */

y = sin(x);

y =y ~ y*.8 ~ y*.6 ~ y*.4; /* 4 curves plotted
against x */

_pdate = ""; /* date is not printed */
_plectrl = { 1, 1, 0, 0 }; /* 2 curves w/symbols, 2

without */

33-4

Publication Quality
Graphics
_pltype = { 1, 2, 6, 6 }; /* dashed, dotted, solid
lines */
_pstype = { 1, 2, 0, 0 }; /* symbol types circles,
squares */
_plEeEiell= G 2, Sy LT, 458 B /* legend size and loca-
tions */
_plegstr= "Sin wave 1.\0"\ /* 4 lines legend text */
"Sin wave .8\0"\
"Sin wave .6\0"\
"Sin wave .4";
ylabel ("Amplitude") ; /* Y axis label */
xlabel ("X Axis"); /* X axis label */
title ("Example xy Graph"); /* main title */
Xy (x,V) 7 /* call to main routine */

Example 3 In this example, two graphics panels are drawn. The first is a full-sized sur-
face representation, and the second is a half-sized inset containing a contour of the same
data located in the lower left corner of the window:

library pgraph; /* activate pgraph library
*/

/* Generate data for surface and contour plots */

x = seqa(-10,0.1,71)"'; /* note x i1s a row vector
Y/

y = seqa(-10,0.1,71); /* note y is a column vec-
tor */

z = cos(5*sin(x) - y); /* z is a 71x71 matrix */
begwind; /* initialize graphics win-
dows */

makewind (9, 6.855,0,0,0); /* first window full size
)

makewind (9/2,6.855/2,1,1,0); /* second window inset to
first */

setwind (1) ; /* activate first window
=/

graphset; /* reset global variables

33-5

sojydeir)
Ayjenp uoneoiqnd

Publication Quality

£ GAUSS User Guide

5

) y
_pzclr = {1, 2, 3, 4 }; /* set Z level colors */
title("cos (5*sin(x) - y)"); /* set main title */
xlabel ("X Axis"); /* set X axis label */

ylabel ("Y Axis");

scale3d (miss (0,0) ,miss (0,0),-5]5);

surface(x,y,z);
nextwind;

=/

graphset;

=

_pzclr = {1, 2, 3, 4 };
_pbox = 15;

contour (x,vy,2) ;

endwind;

/*
/*
/*
/*

/*

/*
/*
/*
/*

set Y axis label */
scale Z axis */

call surface routine */
activate second window.

reset global variables

set Z level colors */
white border */

call contour routine */
Display windows */

While the structure has changed somewhat, the four basic elements of the graphics pro-
gram are all here. The additional routines begwind, endwind, makewind, nex-
twind, and setwind are all used to control the graphic panels.

As Example 3 illustrates, the code between graphic panel functions (that is, setwind
or nextwind) may include assignments to global variables, a call to graphset, or
may set up new data to be passed to the main graphics routines.

You are encouraged to run the example programs supplied with GAUSS. Analyzing
these programs is perhaps the best way to learn how to use the PQG system. The exam-
ple programs are located on the examples subdirectory.

33-6

Publication Quality
Graphics

33.2.2 Graphics Coordinate System

PQG uses a 4190x3120 pixel resolution grid on a 9.0x6.855-inch printable area. There
are three units of measure supported with most of the graphics global elements:

Inch Coordinates

Inch coordinates are based on the dimensions of the full-size 9.0x6.855-inch output page.
The origin is (0,0) at the lower left corner of the page. If the picture is rotated, the origin
is at the upper left. (For more information, see Inch Units in Graphic Panels, Section

33.3.6.)

Plot Coordinates

Plot coordinates refer to the coordinate system of the graph in the units of the user's X,
Y and Z axes.

Pixel Coordinates

Pixel coordinates refer to the 4096x3120 pixel coordinates of the full-size output page.
The origin is (0,0) at the lower left corner of the page. If the picture is rotated, the origin
is at the upper left.

33.3 Graphic Panels

Multiple graphic panels for graphics are supported. These graphic panels allow the user
to display multiple graphs on one window or page.

A graphic panel is any rectangular subsection of the window or page. Graphc panels
may be any size and position on the window and may be tiled or overlapping, transparent