
FORWARD COMPUTING and CONTROL PTY. LTD.

Investigation of GAUSS' Random Number
Generators

18th June 2001

prepared for

Aptech Systems, Inc.

by

Dr. M. P. Ford

and

D. J. Ford

©2001FORWARD Computing and Control Pty. Ltd.

NSW Australia

ABN 11 003 669 994

Gauss' Random Number Generators

©2001, FORWARD Computing and Control Pty. Ltd. ABN 11 003 669 994

Table of Contents

INTRODUCTION.. 1

WHAT DO WE MEAN BY A "RANDOM NUMBER".. 1

PERIOD OF RANDOM NUMBER GENERATORS.. 2

TESTS OF RANDOM NUMBER GENERATORS .. 2

THE KOLMOGOROV-SMIRNOV TEST... 3

DESCRIPTION OF THE DIEHARD TEST SUITE.. 3
1. BS: Birthday spacings test.. 4
2. OPERM5: Overlapping 5-permutation test .. 4

Binary Rank tests ... 4
3. Binary Rank test (31x31) ... 4
4. Binary Rank test (32x32) ... 4
5. Binary Rank test (6x8) ... 5

Sparse Occupancy Tests .. 5
6. Bitstream test (20bit words) ... 5
7. OPSO Overlapping pairs sparse occupancy test.. 5
8. OQSO Overlapping Quadruples-Sparse occupancy test.. 5
9. DNA... 5

Occurrences of 1's and 0's ... 6
10. Count the 1's test (in each byte).. 6
11. Count the 1's test (in each byte) each byte separately... 6

Dimensional Correlations .. 6
12. Parking Lot test .. 6
13. Minimum Distance test... 6
14. 3d Spheres .. 7

Miscellaneous tests ... 7
15. Squeeze test .. 7
16. Overlapping sums test .. 7
17. Runs test ... 7
18. Craps test.. 8

RANDOM NUMBER GENERATORS IN GAUSS V3.6 .. 8

RESULTS OF TESTS FOR GAUSS V3.6.. 9

DISCUSSION OF THE RESULTS ... 11

Gauss' Random Number Generators

©2001, FORWARD Computing and Control Pty. Ltd. ABN 11 003 669 994

APPENDIX A - TEST CODE.. 11

REFERENCES... 13

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 1 of 18

Investigation of GAUSS' Random Number
Generators

18th June 2001

Introduction

This paper reports on the tests of the random number generators provided in
Gauss V3.6. Gauss V3.6 contains two random number generators:- a slightly
revised version of the linear congruential one tested by Vinod(Vinod 2000), rndi,
and a new recur-with-carry generator, rndkmi. The new generator, rndkmi,
passes all the DieHard tests (Marsaglia 1996) and has period of greater then
108888 and dimension of greater than 920. It is recommended that rndkmi be
used whenever random numbers are required.

The outline of this report is:-

A brief introduction to random number generators will be given together with a
discussion of the period of a random number generator and necessity of testing
random number generators. This will be followed by a description of the
DieHard suite of test (Marsaglia 1996). Then the two random number
generators provided in Gauss V3.6 will be described and the results of the
DieHard suite presented. This will be followed by a discussion of the results.
Appendix A contains the Gauss code used to generate the input data for the
DieHard tests.

What do we mean by a "Random Number"

It is still being debated exactly what a random sequence of numbers is.
Computers use pseudo-random number generators (RNGs), which although not
truly random have the desired properties of a sequence of random numbers. In
fact, in the interests of reproducibility of results, deterministic methods are
preferable.

The generally accepted qualities desired by RNGs are (Ripley, 1990)

i) be reproducible from a simply specified starting point.

ii) have a very long period.

iii) produce numbers which are a very good approximation to a uniform

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 2 of 18

distribution.

iv) produce numbers very close to independent output in a moderate number
of dimensions.

The output of a RNG is usually a sequence of 32- or 64-bit integers. There are
two ways to view such sequences of numbers. The first, is to consider them as
truncations of real numbers in the range (0,1), with a uniform distribution. The
second is to view the sequence of integers as a sequence of random bits. Which
view one takes depends on the use to which the sequence is being put. Does the
sequence represent random positions on a line, or a sequence of coin tosses?

Ideally, a RNG should cater for both these uses. However, viewing the output
as a random sequence of bits is more demanding as all the bits of each integer,
even the 'least significant', are equally important. This can be seen in several
cases of RNGs which pass tests viewing the sequence as truncations of random
real numbers in (0,1), but fail bit-stream tests as the less significant bits of the
'random' integers are not very random at all.

Period of Random Number Generators

Almost all RNG's are (more or less) cyclic (or periodic). That is to say, they will
output a sequence of integers which repeats itself exactly after a number of
steps. The length of the part which is repeated is called the period of the
sequence. To be precise, if we have a sequence x(1), x(2), x(3),…. which is
periodic with period k, then x(n+k) = x(n) for all n greater than 1. Many
generators also have a small leading 'tail' of integers which do not form part of
the repeating part of the sequence. In this case x(n+k) = x(n) once n is larger
than the length of the 'tail'.

It is essential that the period of the generator be larger than the number of
random numbers to be used. Modern applications are increasingly demanding
longer and longer sequences of random numbers, for use in Monte-Carlo
simulations and 'boot-strap' methods for example. Some methods require not
only millions of random numbers, but billions. Generators with a small period
of only 231 or 232 are therefore of limited use.

Tests of Random Number Generators

Good pseudo-random number generators are hard to design, and the literature
is littered with RNGs which appeared good at the time, but were later found to
fail even the most simple of tests. It is therefore desirable to test the suitability
of a RNG with as many tests as possible.

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 3 of 18

Most hard RNG tests require some advanced probability and statistics theory,
as well as some difficult calculations. It is therefore difficult to perform such
tests on ones own. Fortunately, a quite comprehensive suite of RNG tests,
called DIEHARD, have been provided by George Marsaglia (Marsaglia 1996).

The underlying statistical tests are of three basic types:

i) a number calculated from the random stream should fit a given
distribution, and can be converted into point in a uniform [0,1]
distribution (a p-value) by applying the inverse distribution. A large
number of such p-values is calculated and a Kolmogorov-Smirnov test
(see below) is performed to determine if they are collectively uniform
[0,1).

ii) a number calculated from the random stream should fit a given
distribution which has a small number of possible values. A large
sample of such numbers is calculated and a chi-squared test performed to
determine how well the sample fits the expected distribution.

iii) the numbers calculated from the random stream should have an expected
distribution, so a probability value is found as a single value, or a
likelihood ratio test is performed on a sample.

In some tests the sequence of calculated values is not independent, but has a
known covariance matrix. In these case the results are transformed into an
independent sample of another distribution before applying one of the above
tests.

The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov(K-S) test tests if a set of p-values has been sampled
from a [0,1) distribution. The result is a probability value in the range 0 to 1.

A p value result near 1 indicates that this set of p-values is too good to be true.
For example the set 0.2, 0.4, 0.6, 0.8 (the numbers are too evenly spread). A p
value result near 0 indicates that the numbers are unlikely to be from a
uniform [0,1) distribution. For example 0.8, 0.8, 0.81, 0.81 … 0.98, 0.98 (the
numbers are clumped together). For further information and an on-line
calculation of this test see http://www.physics.csbsju.edu/stats/KS-test.html

Description of the DieHard Test Suite

We now list the 18 tests in the DieHard suite and briefly describe what each

http://www.physics.csbsju.edu/stats/KS-test.html

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 4 of 18

one does.

Tests 1 to 11 consider the output as a stream of bits.

1. BS: Birthday spacings test

Choose m birthdays in a year of n days. If j is the number of values occurring
more than once in the list of birthdays, then j has an asymptotic Poisson
distribution with mean m3/(4n). This test uses n = 224 and m = 29 so the mean
should be 227/226 = 2. A sample of 500 j's is taken and a chi-squared test used to
find a p-value (using test type ii) from above). This p-value is computed using
bits 1-24, 2-25, … and 9-32, and a K-S test performed on these p-values.

2. OPERM5: Overlapping 5-permutation test

Tests magnitude ordering of numbers. Each set of five consecutive integers can
be in any one of 120 = 5! different size orderings. A sequence of 1,000,004
integers are used to get 1,000,000 sets of 5. As these sets overlap, the sample
must be transformed by the inverse of the covariance matrix before a likelihood
ratio test may be performed (test type iii)).

Binary Rank tests

These tests measure the coverage of an N-dimensional cube using the columns
of a matrix as axes. If the rank is the same size as the matrix, eg 31 for the
first test, then you can get to any point in the cube using these axes. The likely
values for the ranks are precalculated and the actual values compared to these
using the chi-squared test (test type ii)).

3. Binary Rank test (31x31)

The leftmost 31 bits (all but the last bit) of 31 integers are used to form a 31x31
binary matrix. The rank of this matrix is between 0 and 31 (but ranks less
than 28 are rare and so combined). A sample of 40,000 is taken and a chi-
squared test performed on the ranks (test type ii)). This test thus uses
40,000*31 = 1,240,000 integers, and ignores the lowest bit.

4. Binary Rank test (32x32)

As in the previous test, 40,000 ranks are calculated and a chi-squared test
performed (test type ii)). This uses 1,280,000 integers.

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 5 of 18

5. Binary Rank test (6x8)

8 bits are selected from 6 random integers to form a 6x8 binary matrix. The
ranks of 100,000 such matrices are calculated and a chi-squared test performed
(test type ii)). This uses 100,000*8 = 800,000 integers.

Sparse Occupancy Tests

The next few tests are all "sparse occupancy" tests on the bitstream. It relies on
pre-calculating the probability that a given number of spaces will be empty.

6. Bitstream test (20bit words)

The file is viewed as a stream of bits. Each (overlapping, offsetting one at a
time) sequence of 20 consecutive bits is taken to be a 20-bit word. A total of 221

overlapping words are taken and the number j of missing 20-bit words should
be (very close to) normally distributed with mean 141,909 and sigma 428. This
is converted to a uniform [0,1) p-value and the test is repeated 20 times before a
K-S test is applied to the p-values (test type i)).

7. OPSO Overlapping pairs sparse occupancy test

A selected 10 bits from each integer are used to get a stream of letters from an
alphabet of 1024 letters. From a stream of 221+1 letters, 221 overlapping 2 letter
words are considered and the number of missing words counted. This number
should be very close to normally distributed, with mean 141,909 and sigma 290,
and a p-value is calculated (test type i)). This test is performed using bits 1-10,
2-11,… 23-32 of the first 221+1 integers in the test file.

8. OQSO Overlapping Quadruples-Sparse occupancy test

Overlapping four letter words from an alphabet of 32 letters (5 bits) are taken.
The number of missing words is almost normal with mean 141,909 and sigma
295, so a p-value is calculated (test type i)). Note that the sigma (standard
deviation) is experimentally determined. This test is performed on bits 1-5, 2-6,
… 28-32 of the first 221+3 integers.

9. DNA

Overlapping 10-letter words from an alphabet of 4 letters (2 bits) are taken.
The number of missing words is almost normal with mean 141,909 and sigma
290, so a p-value is calculated (test type i)). Note that the sigma (standard
deviation) is experimentally determined, correct to three places. This test is

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 6 of 18

performed on bit 1-2, 2-3, … , 31-32 of the first 221+9 integers.

Occurrences of 1's and 0's

The next two tests focus on the occurrence of 1's and 0's in each byte.

10. Count the 1's test (in each byte)

The number of binary 1's in each byte of the file is counted to give a sequence of
letters from an alphabet of size 5 (A=0,1,2 B=3 .. D=5 E=6,7,8). Overlapping
words of length 5 and of length 4 are taken and the frequencies recorded. After
transforming by the weak inverses of the covariance matrices a chi-squared test
may be performed (test type ii) after transformation).

11. Count the 1's test (in each byte) each byte separately

The number of binary 1's in a specified 8 bits are taken from each integer (bits
1-8, 2-9, … , 25-32) of the file is counted to give a sequence of letters from an
alphabet of size 5 (A=0,1,2 B=3 .. D=5 E=6,7,8). Overlapping words of length 5
and of length 4 are taken and the frequencies recorded. After transforming by
the weak inverses of the covariance matrices a chi-squared test may be
performed (test type ii) after transformation).

For the remaining tests, the leading (most significant) bits are most important,
and the trailing bits less important.

Dimensional Correlations

The next three tests look for 2 and 3 dimensional correlations.

12. Parking Lot test

Cars of radius 1 are randomly parked in a 100x100 square. If there is a crash
when attempting to park the car then we try again until it fits.
Experimentation indicates that after 12,000 attempts at parking, the number of
cars parked is normally distributed with mean 3523 and sigma 21.9. This gives
a p-value (test type i)), and the test is performed 10 times before a K-S test is
performed on the p-values.

13. Minimum Distance test

Choose 8000 random points in a square of side 10000. If d is the minimum

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 7 of 18

distance between points then d2 should be exponentially distributed with mean
.995. Thus 1- exp(-d2/0.995) should be uniform [0,1) (test type i)). After
calculating 100 such p-values, perform a K-S test.

14. 3d Spheres

Choose 4000 random points in a cube of side 10000. Calculate the minimum
distance between points and cube it. This number should be exponential with
mean 30 (experimentally determined), giving rise to a p-value (test type i)).
Find 20 such p-values and perform a K-S test.

Miscellaneous tests

15. Squeeze test

The integers are floated to get uniform [0,1) numbers. Starting with k = 231

count the number of times k = ceiling(k*U) must be performed before k is
reduced to 1, where U are the random floating point numbers in [0,1). The
expected distribution of counts is known, so after finding 100,000 such counts a
chi-squared test is performed (test type ii)).

16. Overlapping sums test

Float the integers to get a sequence U(1), U(2), … of uniform [0,1) variables.
The overlapping sums S(1) = U(1) + … + U(100), S(2) = U(2) + … +U(101), …
are almost normal with a known covariance matrix. A linear transformation of
the S's gives a sequence of independent standard normals which are then
converted to uniform variables for a K-S test (test type i)). The p-values from
10 such K-S tests are together given a K-S test (test type i)). This test looks
for short "cycles" in the high order bits. Cycles will give rise to approximately
evenly spaced p-values which will fail the K-S tests. The combination of the
two tests just extends the size of the cycle that can be detected.

17. Runs test

Counts the number of runs up and runs down for sequences of 10,000 [0,1)
variables. The covariance matrix for runs up and runs down is well known, so a
chi-squared test may be performed to obtain a p-value (test type ii)). This is
done 10 times and a K-S test performed on the p-values. The whole test is then
repeated. This uses 200,000 integers.

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 8 of 18

18. Craps test

Each integer is divided and multiplied to give a dice roll: 1,2,3,4,5 or 6. With
these dice rolls 200,000 games of Craps are played and the number of wins as
well as the number of throws for each game is counted. The p-value for the
number of wins is calculated, and a chi-squared test is performed on the
number of throws per game (test type ii)).

Random number generators in GAUSS V3.6

Gauss V3.6 provides two random number generators:- rndi and rndkmi.

RNDI

rndi is a linear congruent type random number generator. That is
new_seed = (a * seed + c) % m

m is 232 (it was 231-1 in the DOS version).

This type of random number generator has three know failings:-

i) the maximum period is 232-1 which is too short for many of today's uses.

ii) the lower order bits produces by this type of generator are not random.
However in previous versions of Gauss only floating point numbers in the range
[0,1) were generated so this failing was not so serious.

iii) when used as a source of points in an N-dimensional cube, the points tend to
cluster on plains as the number of dimensions is increased (see Marsaglia 1968
and 1972 and Knuth 1980 p 91).

RNDKMI

rndkmi is an implementation of the "Monster" random number generator
proposed by Marsaglia (Marsaglia 2000). It is a "recur-with-carry" type
generator with an extremely long period.

Recur-with-carry generators (which include subtract-with-carry as a special
case) create each new value of the sequence as a linear combination of the
previous r values:

xn = a1 xn-1 + a2 xn-2 + … + ar xn-r + carry mod b
where the carry is the number of multiples of b dropped when reducing the
previous linear combination to lie in the range 0 to b-1.

The period of these generators is the order of b (except for the two trivial seed

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 9 of 18

sets 0,…,0 and a_1 + a_2 + … + a_r - 1, b-1 ,b-1,… b-1).

The dimension of such a generator is r. If we break our sequence into blocks of
r integers and use each block to plot a point in an r-dimensional cube then the
points will random.

Marsaglia has devised a simple, fast, "recur-with-carry" type generator which
has a period of about 108859 and dimension of 920.

Experience with generators of this type with shorter period has shown poor
performance on some of the DieHard tests. However the huge period of this
generator makes such (suspected) failings invisible on 'small' samples of only
millions or billions of integers.

The initialisation of this generator requires 920 random numbers. Marsaglia
recommends initialising it using the KISS (Keep It Simple Stupid) random
number generator, which combines three simple generators and seems to pass
all current tests. The KISS generator has a period of about 1041.

The KISS generator itself requires 6 initial values. In order to simplify the use
of rndkmi all but one of these values was set to those values suggested by
Marsaglia (Marsaglia 2000). The only initial seed is the input to the 3-shift
shift-register generator of the KISS generator. For any non-zero seed this 3-
shift shift-register generator as a period of 232-1

Finally, the output of Marsaglia's "Monster" recur-with-carry generator can be
further improved adding the outputs of the KISS and the Monster which gives a
period of greater than 108888 and ensures a sequence of random numbers at
least as good as the Monster or KISS taken separately. This combination also
extends the dimension of the generator to greater than 920.

Results of Tests for GAUSS V3.6

The two random number generators provided in Gauss V3.6 were tested. The
following table summarises the results of each test where P is Pass and F is
fail.

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 10 of 18

Rndi RndKMi

Birthday Spacing F* (bits 8-31 and 9-32
gave p-value 1.00000)

P

Overlapping 5's F* (one test gave p-
value 0.999993)

P

Binary rank 31x31 P P

Binary rank 32x32 P P

Binary rank 6x8 F* (bits 17 to 32 give
p-values of 1.000000)

P

Bitstream F P* (one test out
of 20 was 0.003)

OPSO F (bits 3 to 32) P

OQSO F (bits 6 to 32) P

DNA F (bits 9 to 32) P

Count the 1's (steam of bytes) F P

Count the 1's (selective bytes F (bits 16 to 32) P

Parking Lot P P* (one test out
of 10 was 0.005)

Minimum distance P P

3d spheres P P

Squeeze P P

Overlapping sums P P

Runs P P

Craps P P

As explained by Marsaglia (Marsaglia1996) occasional p-values near 0 and 1
are to be expected, here Pass means the p-value was between 0.01 and 0.99.
When a test really fails p-values of 0 or 1 to six digits are recorded.

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 11 of 18

Discussion of the Results

In both tests the integer output of the random number generator was used.
This integer output function is new to Gauss V3.6 and gives the user access to
the raw bits generated by the random number generator. In previous versions
of Gauss only the floating point numbers [0,1) were available.

These tests indicate that RNDI produces acceptable random real numbers for
small sample sizes in [0,1) but is not suitable as a source of random bits due to
the non-randomness of the low order bits. The maximum period of RNDI is 232-
1 which is too small for many of today's uses. Another problem with RNDI is
that when it is used as a source of points in an N-dimensional cube, the points
tend to cluster on plains as the dimensions is increased (see Marsaglia 1968
and 1972 and Knuth 1980 p 91).

On the other hand the RNDKMI passes all the DieHard tests and appears to be
suitable for all purposes. It has a period of greater then 108888 and dimension of
greater than 920. One problem of a generator like this, with such a long period,
is that it is possible to get results much closer to 1 and 0 in the normal course of
use. So occasionally the DieHard results for this generator give p-values close
to 1 or 0. In these cases, generate further sets of random integers for DieHard
to process and then apply the K-S test to the set of results.

It is recommended that rndkmi be used whenever random numbers are
required.

Appendix A - Test Code

The following Gauss program was used to output the test file needed by
DieHard.

/* Generate random numbers and convert to text hex */

intelPC = 1;
/* if set to non-zero ascii output arranged so that asc2bin
** produces bin in lsb first as required by DieHard on Intel PCs
** if set zero ascii is in lsb
*/
/* need 80Mbits */
inc = 4096*2;
m = 0;
newstate = 1; /* starting state for Kiss-Monster */
rndseed 1; /* starting state for original random number generator */

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 12 of 18

print "Writing up to 40 ";
screen on;
output file=km.txt reset;
do while m<40; /* 10 numbers per line so 400 in this loop */

/* choose one of the following lines for
** either the original random number generator rndi
** or the new Kiss-Monster random number generator
*/
/* {y,newstate}=rndKMi(inc, 10, newstate); */ /* Kiss-Monster */
y = rndi(inc, 10); /* original random number generator rndi */
m = m+1;
output off;
format /rd 2,0;
print m;;
hex = {"0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"};
format /sa 0,0;
screen off;
output on;
for k (1,rows(y),1);

for j (1,10,1);
a = y[k,j];
hexStr = "";
hexByte = "";
for i (1,4,1);
r = a%16;
a = (a-r)/16;
hexByte = "" $+hex[r+1];
r = a%16;
a = (a-r)/16;
hexByte = "" $+hex[r+1] $+ hexByte;
if intelPC;/* ascii is msb first */

hexStr = hexByte $+ hexStr;
else;

hexStr = hexStr $+ hexByte;
endif;
endfor;
print $hexStr;;

endfor;
print;

endfor;
output off;
screen on;

endo;
output off;
screen on;
print;

The DieHard results were produced by

i) modifying the above Gauss program to select either the new Kiss-Monster
random number generator (rndKMi) or the original linear congruent random
number generator (rndi) and then running the program using Gauss V3.6.13
Windows version. This produces a text output file km.txt.

ii) The ASC2BIN.EXE program supplied with DieHard was then used to
produce a binary file (km.out) from the text file km.txt

Random Number Generator

©1996, FORWARD Computing and Control Pty. Ltd. ACN 003 669 994 13 of 18

iii) Diequick.exe was then used to analyse the binary file, km.out, and produce
a report on the randomness of the generator.

References

Marsaglia, G. (1968), "Random Numbers Fall Mainly in the Planes",
Proceedings of the National Academy of Sciences of the United States of
America, 60, pp 25-28.

Marsaglia, G. (1972), "The structure of linear congruential sequences",
Applications of Number Theory to Numerical Analysis, Academic Press.

Marsaglia, G. (1984) "A current view of Random Number Generators,"
Proceedings of Computer Science and Statistics: 16th Symposium on the
Interface, Atlanta, 1984.

Marsaglia, G. (1993) "Monkey Tests for Random Number Generators,"
Computers and Mathematics with Applications, 26, 1-10.

Marsaglia, G. (1996) "DIEHARD: A battery of Tests of Randomness,"
http://stat.fsu.edu/~geo.

Marsaglia, G. (2000) "The Monster, a random number generator with period
over 10^2857 times as long as the previously touted longest-period one",
preprint.

Ripley, B. D. (1990), "Thoughts on Pseudorandom Number generators", Journal
of Computational and Applied Mathematics, 31, 153-163.

Vinod, H. D. (2000) "Review of Gauss for Windows, including its numerical
accuracy", J. Appl. Econ. 15: 211-220 (2000).

Knuth, D.E. (1980) "The Art of Computer Programming" 2nd ed. Addison-
Wesley.

http://stat.fsu.edu/~geo

	I
	Introduction
	What do we mean by a "Random Number"
	Period of Random Number Generators
	Tests of Random Number Generators
	The Kolmogorov-Smirnov test
	Description of the DieHard Test Suite
	
	1. BS: Birthday spacings test
	2. OPERM5: Overlapping 5-permutation test

	Binary Rank tests
	3. Binary Rank test (31x31)
	4. Binary Rank test (32x32)
	5. Binary Rank test (6x8)

	Sparse Occupancy Tests
	6. Bitstream test (20bit words)
	7. OPSO Overlapping pairs sparse occupancy test
	8. OQSO Overlapping Quadruples-Sparse occupancy test
	9. DNA

	Occurrences of 1's and 0's
	10. Count the 1's test (in each byte)
	11. Count the 1's test (in each byte) each byte separately

	Dimensional Correlations
	12. Parking Lot test
	13. Minimum Distance test
	14. 3d Spheres

	Miscellaneous tests
	15. Squeeze test
	16. Overlapping sums test
	17. Runs test
	18. Craps test

	Random number generators in GAUSS V3.6
	Results of Tests for GAUSS V3.6
	Discussion of the Results
	Appendix A - Test Code
	References

