
Time Series MT 2.1
for GAUSS™ Mathematical

and Statistical System

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software
described in this document is furnished under a license agreement or nondis­
closure agreement. The software may be used or copied only in accordance with
the terms of the agreement. The purchaser may make one copy of the software
for backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying and
recording, for any purpose other than the purchaser’s personal use without the
written permission of Aptech Systems, Inc.

© Copyright 2006­2013 by Aptech Systems, Inc., Black Diamond, WA.
All Rights Reserved.

GAUSS, GAUSS Engine and GAUSS Light are trademarks of Aptech
Systems, Inc. Other trademarks are the property of their respective owners.

Part Number: 008624
Version 2.1
Documentation Revision: 2648
December 03, 2013

iii

Contents

1 Installation 1-1

1.1 Linux/Mac 1-1

1.1.1 Download 1-2

1.1.2 CD 1-2

1.2 Windows 1-3

1.2.1 Download 1-3

1.2.2 CD 1-9

1.3 Difference Between the Linux/Mac andWindowsVersions 1-9

2 Getting Started 2-1

2.1 README Files 2-1

2.2 Setup 2-1

3 VARMAX, ECM, SVARMAX 3-1

3.1 Introduction 3-1

3.1.1 The varmamtControl Structure 3-4

3.1.2 Printing Output 3-5

3.2 VARMAXModels 3-6

3.2.1 Stationarity and Invertibility 3-7

Contents

3.3 Seasonal SVARMAXModels 3-7

3.4 Error CorrectionModels 3-11

3.4.1 Cointegration Tests 3-12

3.4.2 Cointegration Coefficients 3-13

3.5 Unit Root and Cointegration Tests 3-13

3.5.1 Univariate Root Tests 3-14

3.5.2 Cointegration Tests 3-27

3.6 Identification 3-28

3.6.1 Multivariate Identification 3-32

3.7 Estimation 3-34

3.7.1 Quasi-MaxiumumLikelihood CovarianceMatrix of
Parameters 3-35

3.7.2 Starting Values 3-35

3.8 sqpsolvemt and Newton'sMethod 3-39

3.9 Setting Constraints 3-43

3.9.1 Constraints and the Coefficient Vector 3-43

3.9.2 Linear Equality Constraints 3-45

3.9.3 Linear Inequality Constraints 3-47

3.9.4 Nonlinear Equality Constraints 3-48

iv

Time Series MT 2.1

v

3.9.5 Nonlinear Inequality Constraints 3-49

3.9.6 BoundsConstraints 3-50

3.9.7 Start Values 3-50

3.10 sqpsolvemt andManagingOptimization 3-52

3.10.1 Scaling 3-52

3.10.2 Condition 3-53

3.10.3 Starting Point 3-54

3.11 Diagnostic Checking 3-54

3.12 Forecasting 3-54

3.13 References 3-55

4 Nonlinear Time Series Models 4-1

4.1 Parameter Instability Tests 4-1

4.1.1 Rolling Regressions 4-1

4.1.2 Chow Forecast 4-5

4.1.3 CUSUMTest of Coefficient Equality 4-10

4.1.4 The Hansen-NymblomTest 4-13

4.2 Threshold AutoregressiveModels 4-17

4.2.1 TAR Model 4-19

4.2.2 TAR Model Control Structure 4-19

Contents

4.2.3 Estimating the TAR Model 4-21

4.2.4 Example 4-21

4.3 Switching Regression 4-26

4.3.1 switchmtControl 4-26

4.3.2 References 4-28

4.4 Structural BreakModels 4-29

4.5 Structural BreakControl Structure 4-30

4.6 Estimating the Structural Break 4-31

4.6.1 Example 4-32

4.7 References 4-33

5 LSDV 5-1

5.1 LSDV Model 5-1

5.1.1 BiasCorrection 5-2

5.1.2 Example 5-3

5.1.3 Special Features 5-5

5.1.4 The lsdvmtControl Structure 5-6

5.1.5 The lsdvmtOut Structure 5-7

5.2 References 5-8

6 Univariate GARCH Models 6-1

vi

Time Series MT 2.1

vii

6.1 StandardModel 6-1

6.2 Log-likelihood 6-2

6.3 Nonnegativity of Conditional Variances 6-4

6.3.1 Stationarity 6-6

6.3.2 Initialization 6-6

6.4 IGARCH 6-6

6.5 GJRGARCH 6-7

6.6 GARCHM 6-7

6.7 Inference 6-7

6.7.1 Testing Against Inequality Constraints 6-10

6.7.2 One-sided Score Test 6-12

6.7.3 Likelihood Ratio Test 6-16

6.7.4 CovarianceMatrix of Parameters 6-17

6.7.5 Quasi-MaximumLikelihood CovarianceMatrix of
Parameters 6-20

6.7.6 Confidence Limits 6-20

6.7.7 Setting Type of Constraints 6-20

6.7.8 Altering sqpsolvemt Control Variables 6-22

6.7.9 Bibliography 6-23

Contents

7 Panel Data 7-1

7.1 Pooled Time-Series Cross-Section RegressionModel 7-1

7.1.1 Panel Series Unit Root Tests 7-2

7.2 References 7-16

8 ARIMA 8-1

8.1 ARIMA Models 8-1

8.2 References 8-2

9 Autoregression 9-1

9.1 AutoregressionModels 9-1

9.2 References 9-2

10 Command Reference 10-1

acfmt 10-1

adjrsq 10-2

aggData 10-7

arimamt 10-9

arimamtControlCreate 10-13

autocormt 10-14

autocovmt 10-16

automtControlCreate 10-18

viii

Time Series MT 2.1

ix

autoregmt 10-19

breitung 10-25

chowfcst 10-26

cusum 10-28

dfgls 10-30

ecmmt 10-31

garch 10-41

garchm 10-45

getlrv 10-48

gjrgarch 10-49

hansen 10-53

igarch 10-54

ips 10-58

kpss 10-59

llc 10-60

lsdvmt 10-62

lsdvmtControlCreate 10-67

macfmt 10-68

mosum 10-69

Contents

numCombReplace 10-72

numPerm 10-73

numPermReplace 10-75

nwmt 10-76

nyblom 10-78

pacmt 10-79

paramConfigmt 10-80

permReplace 10-83

permutate 10-84

rolling 10-85

sbControlCreate 10-87

sbreak 10-88

selectLags 10-91

simarmamt 10-92

stackData 10-94

standardizeData 10-95

starTest 10-96

svarmaxmt 10-97

switchmt 10-109

x

Time Series MT 2.1

xi

TARControlCreate 10-120

tarTest 10-121

tautocovmt 10-124

tscsmt 10-125

tscsmtControlCreate 10-133

tsforecastmt 10-134

varmamtControlCreate 10-136

varmaxmt 10-138

vmadfmt 10-149

vmc_sja 10-151

vmc_sjt 10-152

vmcadfmt 10-153

vmdetrendmt 10-154

vmdiffmt 10-155

vmforecastmt 10-156

vmppmt 10-158

vmrztcritmt 10-162

vmsjmt 10-163

vmztcritmt 10-165

Contents

zandrews 10-166

xii

Time Series MT 2.1

1 Installation

If you are using GAUSS 13 or later, there is an applications installation wizard
available to install your application. Go to Tools -> Install Applications and
follow the prompts to install applications from the CD or downloaded .zip file.

For older versions of GAUSS, follow the instructions for the appropriate
platform below.

1.1 Linux/Mac
If you are unfamiliar with Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below. Note
that if you have more than one version of GAUSS installed on your machine,

1­1

Installation

you must install the application to each version where you want to use it. This
will also be necessary when upgrading to a newer version of GAUSS.

1.1.1 Download

1. Copy the .tar.gz or .zip file to /tmp.

2. If the file has a .tar.gz extension, unzip it using gunzip. Otherwise
skip to step 3.

gunzip app_appname_vernum.revnum_UNIX.tar.gz
3. cd to your GAUSS or GAUSS Engine installation directory. We are

assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extension, to extract the
file.

tar xvf /tmp/app_appname_vernum.revnum_UNIX.tar

– or –

unzip /tmp/app_appname_vernum.revnum_UNIX.zip

1.1.2 CD

1. Insert the CD into your machine’s CD­ROM drive.

2. Open a terminal window.

1­2

Time Series MT 2.1

In
st
al
la
tio
n

1­3

3. cd to your current GAUSS or GAUSS Engine installation directory. We
are assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extensions, to extract the
files found on the CD. For example:

tar xvf /cdrom/apps/app_appname_vernum.revnum_
UNIX.tar
– or –
unzip /cdrom/apps/app_appname_vernum.revnum_
UNIX.zip

However, note that the paths may be different on your machine.

1.2 Windows
If you are unfamiliar with how to extract (unzip) files, see your system
administrator or system documentation for information on the commands
referred to below. Note that if you have more than one version of
GAUSS installed on your machine, you must install the application to each
version where you want to use it. This will also be necessary when upgrading to
a newer version of GAUSS.

1.2.1 Download

GAUSS applications are a set of files that need to be placed in the /src, /lib and
/examples directory from your GAUSSHOME directory. To install an
application, you simply need to extract them to your GAUSSHOME directory.

Installation

Installation

Internally the application zip file has the same file hierarchy as the GAUSS
directory structure and so all files will automatically go to the right place.

Step by step installation

Open the windows file explorer and browse to the location to which you have
downloaded your application.

Right­click the application file and select Extract All…from the context menu.

Select the Browse button.

1­4

Time Series MT 2.1

In
st
al
la
tio
n

1­5

Browse to your GAUSS home directory.

Installation

Installation

Browse to the your GAUSS home directory. By default this will be
C:\gauss12. Then press the OK button at the bottom of the window. If your
GAUSS version is other than 12, the folder will end with that version number
instead.

1­6

Time Series MT 2.1

In
st
al
la
tio
n

1­7

Click the Extract button.

Installation

Installation

Windows will warn you that some of the folders already exist. This is correct.
Click the Yes button confirming that folder already exists.

Your application module is now installed.

1­8

Time Series MT 2.1

In
st
al
la
tio
n

1­9

1.2.2 CD

The process of installing an application from a CD is the same as that of
installing from a downloaded file. Insert the CD into your machine’s CD­ROM
drive, then follow the steps listed previously to locate the file on the CD and
extract the file into your GAUSS folder.

1.3 Difference Between the Linux/Mac
and Windows Versions
If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press ENTER after the keystroke in the
Linux/Mac version.

Installation

Installation

2 Getting Started

GAUSS 13.1+ is required to use these routines.

The Time Series MT version number is stored in a global variable:

_tsmt_ver 3×1 matrix, the first element contains the major
version number, the second element the minor
version number, and the third element the revision
number.

If you call for technical support, you may be asked for the version of your copy
of Time Series MT.

2.1 README Files
The file README.tsmt contains any last minute information on the Time
Series MT procedures. Please read it before using them.

2.2 Setup
There are four essential steps to using the procedures in this module. These must
be specified in any programs that call these procedures.

2­1

G
etting

S
tarted

1. Header:

The header consists of up to five statements:
1. A library statement which activates the TSMT library, making

its functions available

library tsmt;

2. Declarations of instances of any needed Control structures.

struct varmamtControl vmc;

3. Declarations of instances of any needed Out structures.

struct varmamtOut vmo;

4. A call to the appropriate ControlCreate procedure for any
needed Control structures, which sets its members to the default
values.

vmc = varmamtControlCreate();

There are four types of Control and Out structures included with
TSMT, corresponding to four groups of procedures:

1. arimamt uses arimamtControl and arimamtOut
structures.

2. The autoreg procedures use automtControl and
automtOut structures.

3. tscsmt uses tscsmtControl and tscsmtOut structures.

2­2

Time Series MT 2.1

G
et
tin
g
S
ta
rt
ed

2­3

4. The varmamt and ecmmt procedures use varmamtControl
and varmamtOut structures.

Here is an example of a full TSMT header section needed to call the
arimamt function (for GAUSS 13.1 and newer):

library tsmt;
struct arimamtControl a_ctl;
struct arimamtOut a_out;
a_ctl = arimamtControlCreate();

2. Data Setup:

Next, the user must specify the data to be passed to the procedures. For
example, the format for varmaxmt is:

vmo = varmaxmt(vmc,y,x);

Here is an example of the data setup for that procedure call:

load y[62,3] = minkmt.asc;
x = y[.,1];
y = y[.,2 3];

3. Specify Options:

Options are controlled by setting the members of the appropriate Con-
trol structure:

Getting Started

G
etting

S
tarted

vmc.ar = 3; //Estimate 3 AR matrices
vmc.printIters = 1; //Print iteration

//information

4. Calling the Procedure:

Each estimation procedure can print results to the screen and send output
to the specified output file and/or return a global output structure to
memory. If all you need is the printed results, you can call the
procedure. Placing the GAUSS keyword call in front of a function call
tells GAUSS to execute the function, but disgard the return values. For
example:

call varmaxmt(vmc,y,x);

In this case, you would not need to declare an instance of a
varmamtOut structure at the top of the program. However, if you want
information returned to memory, you must assign the result to a
varmamtOut structure.

vmo = varmaxmt(vmc,y,x);

The resulting structure, vmo, stores all of the return statistics in an
efficient manner. See Chapter 10 for more information on the statistics
returned by each procedure.

2­4

Time Series MT 2.1

G
et
tin
g
S
ta
rt
ed

3 VARMAX, ECM, SVARMAX

The TSMT module contains procedures for estimating and analyzing VARMA,
VARMAX, ARMA, ARMAX, SVARMA, SARMA, SVARMAX, and
ECMMT models.

3.1 Introduction
The procedure varmaxmt estimates VARMA, VARMAX, ARMA, and
ARMAX models. Linear and nonlinear equality and inequality constraints may
be placed on the parameter estimates, calling the sqpsolvemt procedure.
varmaxmt calls a number of subordinate procedures that enable identification,
estimation, diagnostic checking, and forecasting. These are described in the
sections below. The varmaxmt procedures return parameter estimates,
residuals, and various summary statistics.

The procedure svarmaxmt estimates the seasonal effects models SVARMA,
SVARMAX, and SARMA.

The procedure ecmmt estimates ECM models. It calls a number of subordinate
procedures that enable the recovery and analysis of long­run and short­run
parameters and cointegrating vectors. The ecmmt procedures return parameter
estimates (including cointegration coefficients), eigenvalues and eigenvectors

3­1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

(computed using full information maximum likelihood), residuals, and summary
statistics.

The procedures varmaxmt, svarmaxmt and ecmmt all use a full
information maximum likelihood (FIML, exact, unconditional) estimation
procedure adapted from code developed by Jose Alberto Mauricio of the
Universidad Complutense de Madrid. The code was published as Algorithm
AS311 in Applied Statistics. It is also described in "Exact maximum likelihood
estimation of stationary vector ARMA models," JASA, 90:282­291. The
estimation algorithm assumes that a covariance stationary process is passed to
it. Sample means are removed from all data prior to estimation. Further
discussion of the estimation method and requirements is contained in Section
3.7.

The sqpsolvemt procedure in the GAUSS Run-Time Library links
Mauricio’s FIML (exact, unconditional) estimation to constraints.
sqpsolvemt uses Newton’s method to minimize the negative of a log­
likelihood function subject to different types of constraints.

The following procedures are included in the TSMT library to enable estimating
and analyzing VARMA and ECM models:

ecmmt Estimates an Error Correction Model.
lsdvmt Estimates Least Squares Dummy

Variable with bias correction.
svarmaxmt Estimates seasonal VARMAX.
switchmt Estimates switching­regression model.

macfmt Returns an ACF matrix for multivariate
models.

nwmt Returns the Newey­West Covariance
matrix.

varmamtControlCreate Resets the VARMA global variables.
varmaxmt Estimates a VARMAX model.

3­2

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­3

vmadfmt Computes the Augmented Dickey
Fuller statistic, allowing for
deterministic polynomial time trends of
an arbitrary order.

vmcadfmt Computes the Augmented Dickey
Fuller statistic applied to the residuals
of a cointegrating regression, allowing
for deterministic polynomial time
trends of an arbitrary order.

vmc_sjamt Returns critical values for Johansen’s
Maximum Eigenvalue statistic.

vmc_sjtmt Returns critical values for Johansen’s
Trace statistic.

vmdetrendmt Returns residuals from regressing on a
time trend polynomial.

vmdiffmt Differences a time series matrix.
vmsdiffmt Differences a seasonal time series

matrix.
vmforecastmt Forecasts VARMAXMT models.

vmppmt Performs Phillips­Perron unit root tests.
vmptrendmt Creates a polynomial matrix of time

trends of order p.
vmrztcritmt Returns τ critical values for the

Augmented Dickey­Fuller statistic,
derived from the residuals of a
cointegrating regression. Depends on p,
the AR order in the fitted regression,
the number of observations, and the
number of explanatory variables.

vmsjmt Calculates Johansen’s Trace and
Maximum Eigenvalue test statistics.

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

vmztcritmt Returns τ critical values for the
Augmented Dickey­Fuller test statistic,
depending on the number of
observations and p, the AR order in the
fitted regression.

3.1.1 The varmamtControl Structure

The table below contains a list of the numerous control variables, which are
members of the varmamtControl structure. They give the user considerable
control over the model’s specification and estimation. A more complete
description of their use is in the following sections.

A matrix, linear equality constraint coefficients.
adforder scalar, number of AR lags in the ADF test

statistic.
altdepvarNames string array, alternate names for dependent

variables. ar scalar, order of autoregression.
ar scalar, order of autoregression.

covparType scalar, specifies ML or QML covariance matrix
of parameters.

critl scalar, the significance level for ACF indicator
matrices.

ctl sqpsolvemtControl structure, control
parameters for sqpsolvemt optimization.

diff scalar, order of differencing to achieve
stationarity.

IndEquations matrix, set zero restrictions on x coefficients.
lags scalar, lags over which the ACF and

Diagnostics are defined.
ma scalar, order of moving average.

3­4

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­5

maxvec scalar, maximum number of elements allowed in
any one matrix.

NoDet scalar, controls the constant term in the
Johansen tests.

nwtrunc scalar, the Newey­West truncation lag.
olsqtol scalar, tolerance used by olsqrmt.
output scalar, determines the output to be printed.

PrintIters scalar flag, to print each iteration’s information.
rho scalar, order of cointegration.
row scalar, number of rows to read at a time from

dataset.
s scalar, seasonal parameter.

sar scalar, order of seasonal autoregression.
sdiff scalar, order of seasonal differencing.

sma scalar, order of seasonal moving average.
scale vector, used to scale time series.

SetConstraints scalar flag, impose stationarity and invertibility.
Start an instance of a PV structure containing start

values.
title string, title to be printed at top of header.

3.1.2 Printing Output

Two members of the varmamtControl structure, output and
PrintIters, determine the output that is displayed from ecmmt,
varmaxmt, sqpsolvemt, and other subordinate procedures.

1. Set output = 0 to suppress all printing from the varmaxmt and
ecmmt procedures.

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

2. Set output > 0 to print results from the varmaxmt and ecmmt pro­
cedures.

3. Set PrintIters = 0 (output is not equal to zero) to suppress printing
while starting values are calculated for each dependent variable during
the sqpsolvemt operation.

4. Set PrintIters >0 (output is not equal to zero) to print
sqpsolvemt iteration information. This information includes the value
of the objective function and the gradient at each estimated coefficient. It
is useful in finding where and why convergence might fail.

3.2 VARMAX Models
A stationary and centered (means­removed) VARMAX model may be written
as:

Σ ΣY − Y βX ε εΦ + = − Θt
j=1

p

j t−j t t
i

q

j t−i
=1

for t = 1 ··· T where Yt has dimension L×1, ϵ t is a zero mean covariance
stationary process that is normally distributed with positive definite covariance
matrix Σ , and X t is a K×1 vector of fixed explanatory variables. The Φ and Θ
matrices have dimension L×L. The β coefficients have dimension L×K.

Another way to write the same system is using the backshift operator, B:

B Y βX B εΦ () + = Θ()p t t t (1)

3­6

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­7

where B B BΦ () = Φ − Φ − … − Φp p
p

0 1 and B − B BΘ () = Θ Θ − … − Θq 1 q
q

0

are matrix polynomials and Φ0 and Θ0 are nonsingular matrices of dimension L
×L (often assumed to be the identity matrices).

3.2.1 Stationarity and Invertibility

The VARMAX process is stationary if the roots of Bdet(Φ ())
p are greater than

one in modulus. The VARMAX process is invertible if the roots of Bdet(Θ())
are greater than one in modulus. The vmroots procedure finds the AR and
MA characteristic roots and their moduli. The roots and their moduli are printed
if the output member of the varmamtControl structure is nonzero.

3.3 Seasonal SVARMAX Models
The SVARMAX model includes parameters for describing seasonal effects in a
VARMAX model. The SARIMA model is a special case that can also be
estimated with svarmaxmt.

In widely used terminology, the SVARMAX model can be described as
SVARMAX(p,d,q,P,D,Q,s) where

p autoregression order
d differencing parameter
q moving average order
P seasonal autoregressive order
D seasonal differencing parameter
Q seasonal moving average order
s seasonal order

The model represented by

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

L L ϕ L L Y θ L L(1 −) (1 −) ()Φ() = ()Θ()ϵd s D s
t

s
t

where

ϕ L ϕ L ϕ L ϕ L

L L L L

θ L θ L θ L θ L

L L L L

() = 1 − − …

Φ() = 1 − Φ − Φ …Φ

() = 1 + + …

Θ() = 1 + Θ + Θ …Θ

p
p

s s s
p
Ps

s s
Q
Qs

1 2
2

1 2
2

1 2
2

1 2
2

Errors are assumed to be distributed N(0,Q). The estimation procedure assumes
that all series are stationary. Setting vmc.SetConstraints a nonzero value
enforces stationarity, by constraining the roots of the characteristic equations

ϕ z − ϕ z ϕ z1 − …
p
p

1 2

2

and

z − z ϕ z1 − Φ Φ …
s s

P
Ps

1 2
2

are constrained to be outside the unit circle.

3­8

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­9

Example

library tsmt;
#include tsmt.sdf

load y[62,3] = minkmt.asc;

struct DS d0;
d0 = dsCreate();
d0.dataMatrix = y[.,2 3];

struct varmamtControl vmc;
vmc = varmamtControlCreate();
vmc.ar = 1;
vmc.sar = 1;
vmc.s = 2;

vmc.output = 1;

struct varmamtOut vout;
vout = svarmaxmt(vmc,d0);

phi = pvUnpack(vout.par,"phi");
sphi = pvUnpack(vout.par,"sphi");
vc = pvUnpack(vout.par,"vc");

print;
print;
print;
print;
format /ld 12,8;
print "PHI";

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

print phi;
print;
print "Seasonal PHI";
print sphi;
print;
print "residual covariance matrix";
print vc;

with results:

PHI

Plane [1,.,.]

0.67647089 0.45828681
-0.51253821 0.80645045

Seasonal PHI

Plane [1,.,.]

0.34567984 -0.66783469
-0.13131616 0.05201072

residual covariance matrix

0.05126324 0.02088442
0.02088442 0.07058108

3­10

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­11

3.4 Error Correction Models
Error Correction Models are often used to estimate long­run and short­run
relationships and to test for cointegration.

A stationary (means­removed) VAR(p) model is written as:

Σϕ L Y Y ϕ Y βX() = − + = ϵt t
j

p

j t j t t
=1

−
(2)

where Yt is an L dimensioned covariance stationary time series process, the εt
are i.i.d. N (0, Ω)n , Ωn is a positive definite matrix of order L, and X t is a K×
1 vector of fixed explanatory variables, has the error correction form:

ΣY Y Y βX ε t T∆ = Π + Γ∆ + + , = 1,… ,t t
i

k

i t i t t−1
=1

−
(3)

where the Π and Γ matrices have dimension L×L. The β coefficients have
dimension L×K.

ecmmt estimates this model using FIML (exact, unconditional ­ Mauricio’s
procedure, discussed in Section 3.7). They both return a
varmamtOutstructure, which includes the following members:

aa L×r matrix of coefficients, such that (aa)*(bb) = Π .
bb r×L matrix, eigenvectors spanning the cointegrating

space of dimension r.
va r×1 vector, eigenvalues.
par An instance of a PV structure containing parameter

estimates, which can be retrieved with pvUnpack.
par includes:

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

Pi L×L matrix of cointegration
coefficients.

Note that pi is a reserved word in GAUSS. Users will need to assign this
to a different variable name.

3.4.1 Cointegration Tests

Given the above ECMMT model, the degree of cointegration (the dimension of
the cointegrating space) may be examined using Johansen’s likelihood ratio
Trace and Maximum Eigenvalue statistics, returned by the vmsj procedure.
The first set is based on Johansen’s estimation procedure, specifically on his
method for calculating eigenvalues of the Π matrix. The second set is based on
the Π eigenvalues returned from Full Information Maximum Likelihood
estimation of the ECMMT model.

If Π has full rank then all the variables in Yt are stationary. If Π has less than
full rank, say r, then r of the variables are cointegrated. The Trace statistic tests
the null hypothesis that the rank of Π is less than or equal to r versus the
alternative that it is greater than r. The Maximum Eigenvalue statistic tests the
null hypothesis that the rank of Π is equal to r versus the alternative that the
rank of Π is r + 1 . These statistics are given in Johansen (1995):

µ

µΣTrace T λ

λ T λ

= − ln(1 −)

= − ln(1 −)

i r

L

i

r

= +1

max +1

where µ µ
λ λ,… ,
r L+1 are the smallest L − r eigenvalues of S S S S

− −
11
1
10 00

1
01 and

the Sij matrices represent sums of square from two regressions, Y∆ t on
Y ,… Y∆ ∆t−1 t−p+1 (returning residuals R t0) and Yt−1 on

3­12

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­13

Y ,… , Y∆ ∆t−1 t−p+1 (returning residuals R t1).

Asymptotic critical values for the Trace and Maximum Eigenvalue statistics,
based on Johansen’s method of calculating eigenvalues and given that the
correlations are estimated rather than observed, are returned by vmc_sja and
vmc_sjt. The former returns Maximum Eigenvalue critical values and the
latter returns Trace critical values.

3.4.2 Cointegration Coefficients

Occasionally the (aa)*(bb) calculation will not match the returned Π matrix.
This is because the eigenvalues close to zero are associated with eigenvectors
not in the cointegrating space. (aa * bb) will always equal Π if r equals zero,
i.e., if all eigenvectors are in the cointegrating space. If r equals one, (aa)*(bb)
will equal Π only if the eigenvalue associated with the removed eigenvector is
zero. If the eigenvalue is close to zero, (aa)*(bb) will almost equal Π . If the
eigenvalue is not close to zero, (aa)*(bb) will be quite different from Π .

3.5 Unit Root and Cointegration Tests
Much applied research tests whether theoretically predicted relationships among
variables are confirmed in the real world. Other research involves forecasting,
whether from a naive time series model or using a structural model based on
behavior. In all cases it is important to work with stationary or cointegrated
variables. Spurious correlation may result if the relationships between
nonstationary series are examined. In addition, forecast variances for
nonstationary series increase without bound.

Model building involves first testing for unit roots. The vmadfmt procedure
performs Dickey­Fuller (DF) and Augmented Dickey­Fuller (ADF) unit root
tests. The vmppmt procedure performs Phillips­Perron (PP) unit root tests.

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

Cointegration tests follow to ward off spurious estimated relationships. The
vmadfmt procedure performs ADF cointegration tests. The vmsjmt
procedure performs Johansen’s Trace and Maximum Eigenvalue cointegration
tests.

The COINT module, written by Sam Ouliaris and Peter C.B. Phillips and sold
by Aptech Systems, Inc., contains numerous other unit root and cointegration
tests, including Park­Choi (1988) G(p,q) and J(p,q) tests, the Stock and Watson
(1988) common trends test, and the Phillips­Ouliaris (1990) P(u) and P(z) tests.
The COINT module also contains numerous (time and frequency domain)
methods for estimating the cointegrating vector, ARMA models, various model
selection criteria, spectral density estimation, and long­run variance estimation.

3.5.1 Univariate Root Tests

The unitroots procedure calls a variety of unit root and cointegration tests
and prints the results. The univariate unit root test statistics calculated are the
Dickey­Fuller, Augmented Dickey­Fuller (both called with the vmadfmt
procedure) and Phillips­Perron (called with vmppmt) statistics.

DF and ADF Unit Root Tests

The vmadfmt procedure calculates Dickey­Fuller and Augmented Dickey­
Fuller unit root test statistics, returning the statistic, its τ statistic, and a 6 × 1
vector of critical values.

Three specifications are typically analyzed, a random walk with drift and trend,
a random walk with drift, and a random walk:

ΣY α βt ρ Y ρ Y ε∆ = + + (− 1) + ∆ +t t
i

i t i t−1
−1,2,…

− (4)

3­14

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­15

ΣY α ρ Y ρ Y ε∆ = + (− 1) + ∆ +t t
i

i t i t−1
−1,2,…

− (5)

ΣY ρ Y ρ Y ε∆ = (− 1) + ∆ +t t
i

i t i t−1
−1,2,…

− (6)

The time polynomial input argument to vmadfmt determines which of the
above models will be estimated.

The Dickey­Fuller test assumes independent and identically distributed errors.
This assumption precludes models with lagged dependent variables, (i.e., the
lagged dependent variable terms in specifications (4) to (6) are not estimated)
since lags induce dependency in the errors.

The Augmented Dickey­Fuller test eliminates serial correlation in the residuals
by including lagged dependent variables in the specification. The adforder
member of the varmamtControl structure sets the the number of AR terms
to include in the Augmented Dickey­Fuller test statistic calculations. The default
is 2.

The GAUSS dfgls unit root test follows the methodology proposed by Elliot,
Rothenberg, and Stock (1996). Given ya such that

y y y αy y αy= (, − , ..., −) ′
T T1 2 1 −1

Za such that

Z α t α t= (1, 2 − (2 − 1), ..., − (− 1)) ′

and xa such that

x α α= (1, 1 − , ..., 1 −) ′

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

The testing parameter is given as for the case including a time trend and as for
the case including only a constant.

GLS detrends the data uses the estimators from the OLS regression

y β x β z= + + ϵ
a t t t0 1

such that

µ µ()y y β β t= − +d
t 0 1

After detrending, the augmented Dickery­Fuller test is performed on the
detrended data using a standard ADF testing regression

Σα γy y y= + +∆ ζ ∆ +ϵ
j

t
d

t
d

k

j t−j
d

t
=1

−1

to test the null hypothesis using the ERS critical values.

Example

For this example we will use an autoregressive time series created using the
simarmamt data generating function (included in the TSMT library). The
series will include both a trend and constant:

b = 0.95;
p = 1;
q = 0;
const = 0.9;
trend = 0;
n = 500;

3­16

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­17

k = 1;
std = 1;
seed = 10191;
yt = simarmamt(b,p,q,const,trend,n,k,std,seed);

The results in a single AR(1) time series vector with 500 observations, a
constant equal to 0.9, and an autoregressive coefficient equal to 0.5. If a trend in
the data is desired it must be added to the generated series

yt = 0.05*seqa(1,1,rows(yt)) + yt;

The dfgls can be directly called to test the null hypothesis of a unit root

{ adf_stat, crit_mat } = dfgls(yt,0,1);
print "The DFGLS stats:";
adf_stat;
print "The ERS critical values:";
crit_mat;

where the second input specifies that no lags are included in the ADF regression
and the third input specifies that the model includes a trend.

The command produces the following output:

The DFGLS stat:
-3.3137976
The ERS critical values:
-3.4800000 -3.1500000 -2.8900000 -2.5700000

These results indicate the rejection of the null hypothesis of a unit root at the 1%
level.

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

References

1. Elliott, G., T. J. Rothenberg, and J. H. Stock. 1996. "Efficient tests for an
autoregressive unit root." Econometrica 64: 813–836.

2. Enders, W. (2010). Applied Econometric Time Series, 3e. Hoboken,
NJ: John Wiley & Sons, Inc.

Phillips-Perron Unit Root Tests

Phillips (1987) and Phillips and Perron (1988) test for unit roots by adjusting the
OLS estimate of an AR(1) coefficient for serial correlation in the OLS
residuals. Three specifications are considered, an AR(1) model without a drift,
an AR(1) with a drift, and an AR(1) model with a drift and linear trend:

Y ρY ε= +t t t−1
(7)

Y α ρY ε= + +t t t−1
(8)

Y α δt ρY ε= + + +t t t−1
(9)

The unit root null hypothesis is H ρ: (− 1) = 00 .

Hamilton (1994, pp. 506­511) tests this hypothesis using two statistics that are
analogs of the Phillips and Perron (1988) Zα and Z t statistics. Hamilton’s
statistics are based on OLS estimation of (7) to (9). They allow an identical
formula for each statistic to be used for all three cases.

The vmppmt procedure returns the Z t statistic as calculated by Hamilton and
critical values. Suppose any one of the above equations is estimated by OLS,

returning µρT and µσ̂ ρ
T (the OLS estimates of ρ and the standard error of µρT

3­18

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­19

respectively), µ()t ρ σ= − 1 / ^T ρ
T (the usual OLS t statistic for testing H0), ε̂t

(the OLS residuals), and sT (the estimated standard error of the regression).

Hamilton's Z t statistic is:

µ µ 


























































1

2
Z γ λ t λ γ γ T σ= ^ / − − ^ / ^ ^ /t T ρ T0

2 1

2

2

0 T

µλ
2 is an estimate of the asymptotic variance of the sample mean of εt . In the

vmppmt procedure µλ
2 is estimated using the Newey­West (1987) estimator,

µ 



()Σλ γ j q γ=^ + 2 1 − / + 1 ^

j

q

j

2

0
=1

where Σγ T ε ε^ = ^ ^
j t=j

T
t t j

−1
+1 − are the sample autocovariances of εt .

The nwtrunc member of the varmamtControl structure sets the number of
autocorrelations to use in calculating the Newey­West correction (q in the above
equation). The default setting, 0, causes GAUSS to use a trunctation lag given

by Newey and West, q T= 4(/ 100)2/9 .

Under the null hypothesis, the Z t statistics have the same asymptotic
distribution as Dickey­Fuller statistics.

KPSS

The KPSS test uses a Lagrange­Multiplier type test to the null hypothesis of
stationarity.

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

The test statistic γ is given by

µ

µ()
γ =

T S

σ

Σ t
T

t
−2 2

2

The KPSS test requires OLS detrending or demeaning data (if necessary) and is
formulated using the residuals from the OLS regression

Dy δ u= +
t t t

′

where yt is the test variable and is a matrix of deterministic components,
including the constant and trend. Using the residuals from the regression the
partial sum series and its squares are constructed

µΣS
t

T

t
=1

2

where

µµ ΣS u=t
j

T

j
=1

Calculation of the KPSS test statistic requires a consistent estimator of the long­
run variance, µσ2 . This is achieved using the nonparametric heteroskedasticity
and autocorrelation consistent estimation approach discussed in Hobijn,et al.
(1998). For full details of the estimation methodology refer to the help section
for the getlrv function.

The kpss function requires several inputs allowing the user to control
estimation of the long­run variance. First, providing a non­negative, non­zero

3­20

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­21

integer for max_lags allows the user to directly specify the maximum lag
autocovariance used during estimation. If the max_lags input is zero, the
maximum number of lags is determined using the Schwert criterion.

In addition, the user must specify whether to use the Newey­West automatic,
data dependent procedure to estimate bandwidth. The alternative option is to
choose the bandwidth as a deterministic function of the sample size T. Users
must also choose between the Bartlett kernel and the Quadratic Spectral Kernel.

Example

This example uses a simulated trend­stationary, AR(1) series which follows the

data generation process y y ε= 1 + 0.95 + 0.05 +
t t t−1 .

This is simulated using the simarmamt function

b = 0.95;
p = 1;
q = 0;
const = 1;
trend = 0.05;
n = 500;
k = 1;
std = 1;
seed = 10191;
yt = simarmamt(b,p,q,const,trend,n,k,std,seed);

The kpss function is used to test null hypothesis of stationarity. The kpss
function requires a number of inputs which allow users to control the estimation
of the long run variance used in calculating the long­run variance.

max_lags = 0;
trend = 1;

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

qsk = 1;
auto = 1;
print_out = 1;
{ mat, crit } = kpss(yt,max_lags, trend, qsk, auto,
print_out);
print "The t-stats for all possible lags:";
mat;
print "Critical values:";
crit;

This call of the kpss function specifies that the KPSS test statistic will use the
Quadratic Spectral Kernel and will automatically calculate the data­specific
bandwidth used in estimating the long­run variance. The code above produces
the following results:

Trend stationary
Maxlag 6.0000000 chosen by Schwert criterion
Automatic bandwidth selection (max_lags)
7.0000000

The t­stats for all possible lags:

0.44832631
0.44798139
0.44326471
0.42492583
0.38668238
0.33610897
0.28911678
0.25789383
Critical values:

3­22

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­23

0.21600000 0.17600000 0.14600000
0.11900000

Zivot and Andrews

The Zivot and Andrews (1992) unit root tests the null hypothesis of a unit root
against the alternative of trend stationarity with a break in the intercept, trend, or
both intercept and trend. The proposed test statistic is the minimum t­test across
all possible breakpoint. Hence, the Zivot and Andrews (1992) test modifies the
standard ADF unit root test with dummy variables to implement breaks in the
intercept and trend.

Under the null hypothesis the data generating process is

∝y y u= + +
t t t−1

and yt is I(1) with no structural break. The testing regression depends on
whether the user specifies a break in the trend, the intercept or both.

Test A of the alternative hypothesis that yt is stationary with a break in the
intercept requires OLS estimation of

∝ Σy θ D γ β γy δ y u∆ = + () + + + ∆ +
t t t t

i

p

t−i t1 1 −1
=1

and





D λ
t nλ

otherwise
() =

1, >

0,t1

with p specifying the lags used for the ADF unit root testing and λ specifying the
break fraction (nbreak/n).

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

Test B of the alternative hypothesis that yt is stationary with a break in the trend
requires OLS estimation of

∝ Σy θ D γ β γy δ y u∆ = + () + + + ∆ +
t t t t

i

p

t−i t2 2 −1
=1

and





D λ
t nλ t nλ

otherwise
() =

− , >

0,t2

with p specifying the lags used for the ADF unit root testing and λ specifying the
break fraction (nbreak/n).

Test C of the alternative hypothesis that yt is stationary with a break in the
intercept and trend requires OLS estimation of

∝ Σy θ D γ β θ D γ z γy δ y u∆ = + () + + () + + ∆ +
t t t t t

i

p

t−i t1 1 2 2 −1
=1

In all cases, the testing procedure performs OLS regressions for all possible
break point and computes the t­test statistic that γ=0. The minimum of all t­tests
is used for testing the null hypothesis using the critical values specified in table
below.

Zivot­Andrews test statistic critical values

Significance Level
Test 5% 1%
A ­4.80 ­5.34
B ­4.42 ­4.93
C ­5.08 ­5.57

3­24

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­25

Example

First consider the AR(1) time series, yt, generated using the simarmamt data
generating function (included in the TSMT library):

b = 0.5;
p = 1;
q = 0;
const = 0.9;
trend = 0;
n = 500;
k = 8;
std = 1;
seed = 10191;
yt = simarmamt(b,p,q,const,trend,n,k,std,seed);

This reproduces the following data series, pulling error terms randomly from the
standard normal distribution:

∼

y y u

u NIID

= 0.9 + 0.5 +

(0, 1)

t t t

t

−1

Suppose we wish to test the null hypothesis of unit root against the alternative
hypothesis that yt is stationary with a break in the intercept using the Zivot­
Andrews unit root test:

{ t_test, break_pt } = zandrews(yt,4,0.10,0,2);

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

This command implements the Zivot­Andrews using a maximum of 4 lags in the
ADF test regression. The bottom and top 10% of data points are excluded from
possible break points with the specification that tr = 0.10. A graph of the t­stats
is produced, because the last input, draw_graph, is set to 1. The command
produces the following output:

The min t-stat is: -8.310
The break point occurs at observation: 404.00
The five percent critical value is: -4.800
The one percent critical value is: -5.430

In addition, the specification that which_outputis equal to 2, results in the
following graph:

3­26

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­27

References

1. Hobijn, B. Franses, P.H., & Ooms, M. (2004). "Generalizations of the
KPSS­test for stationarity." Statistica neerlandixa, 58(4), 483­502.

2. Kwiatkowski, D. Phillips, C.B., Schmidt, P., & Shin, Y. (1992). "Testing
the null hypothesis of stationarity against the alternative of a unit root."
Journal of Econometrics, 54, 159­178.

3. Zivot, E. & Andrews, D. (1992). "Further evidence on the great crash, the
oil­price shock, and the unit­root hypothesis." Journal of Business & Eco-
nomic Statistics, 10, 251­270.

3.5.2 Cointegration Tests

Residual Based Cointegration Tests

Cointegration tests fit into two categories, those based on single­equation
estimation methods and those based on estimating systems of equations. Single
equation tests involve testing for a unit root in the residuals that result from
regressing one series on another. The Augmented Dickey­Fuller (ADF) test may
be used for this purpose. The vmcadf procedure implements the ADF test for
cointegration. The vmrztcrit procedure returns critical values for ADF
cointegration tests.

System Based Cointegration Tests

Maddala and Kim (1998, p 211) note that single equation cointegration test
results depend on the variable used to normalize the cointegrating relationship.
In addition, the number of cointegrating relationships cannot be determined using
single equation tests. These problems are avoided using tests based on systems
of equations. System based cointegration tests examine the dimension of the
cointegrating space across two or more variables.

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

The vmsjmt procedure implements Johansen’s (1988) Trace and Maximum
Eigenvalue system­based cointegration tests, using an ECMMT model. The null
hypothesis under the Trace test is that the cointegrating space has dimension
less than or equal to r. The alternative hypothesis is that there are more than r
cointegrating vectors. The null hypothesis under the Maximum Eigenvalue test is
that there are r + 1 cointegrating vectors versus the alternative that there are r
cointegrating vectors.

The vmsjmt procedure returns the Trace and Maximum Eigenvalue test
statistics. The vmc_sjt procedure returns Trace critical values at the 1%, 5%,
10%, 90%, 95%, and 99% levels. The vmc_sja procedure returns Maximum
Eigenvalue critical values at the 1%, 5%, 10%, 90%, 95%, and 99% levels.

3.6 Identification
The first step in time series analysis is the identification of a stationary time
series process. For univariate models, ACF, PACF functions and Ljung­Box
statistics are returned. The ACF and PACF functions examine individual
autocorrelations across different lags while the Ljung­Box statistics summarize
all autocorrelations over a given number of lags. All are calculated across the
number of lags specified in the lags member of the varmamtControl
.structure. The default is 12.

The Ljung­Box statistics (see Ljung and Box (1978)) test:

H ρ ρ ρ: = … = = 00 s1 2

where ρ j is the population correlation between the ARMAX disturbances at
time t and the ARMAX disturbances at time t - j. The statistics are defined by:









ΣQ T T= (+ 2)

s
j

s
r

T − j=1

j
2

(10)

3­28

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­29

where rj is the sample correlation between the ARMAX residuals at time t and
the ARMAX residuals at time t - j. Under H0 , Qs has a chi­squared
distribution with (s ­ the number of parameters estimated) degrees of freedom.

Six members of the varmamtOut structure are set: aic, bic, lrs, mse,
sse, and ssy, containing the following information for each dependent
variable:

aic The Akaike Information Criterion (AIC) = 2 * (F + the
number of estimated parameters).

bic The Schwarz Bayesian Information Criterion (BIC) = 2 * F
+ (the number of estimated parameters)*ln (number of
observations).

lrs The Likelihood Ratio Statistic (LRS) = 2 * F.
mse Mean sum of error squares.
sse Error sum of squares.
ssy Sum of squares Y(SSyy).

Identification information, summary statistics and univariate model output are
printed if the output member of the varmamtControl structure is
nonzero. For univariate model output, ACF and PACF values are appended with
* and ** symbols to indicate significance at the 5% and 1% levels (using

Bartlett’s large sample approximation for the standard errors, T1 /).

ACF and PACF Lag Report

The lagreport function will create a full graphical report and return the acf
and pacf for the specified number of lags. The following code

diff = 0;
lags=12;
{acf1, pacf1} = lagreport(yt,lags,diff);

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

Produces the following output

Lags ACF
0.00 0.98
1.00 0.96
2.00 0.95
3.00 0.95
4.00 0.94
5.00 0.94
6.00 0.93
7.00 0.93
8.00 0.92
9.00 0.91
10.00 0.90
11.00 0.90
Lags PACF
1.00 0.98
2.00 0.01
3.00 0.25
4.00 0.20
5.00 0.06
6.00 0.09
7.00 0.05
8.00 -0.02
9.00 -0.05
10.00 -0.01
11.00 -0.07
12.00 0.01

along with the following graphs:

3­30

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­31

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3.6.1 Multivariate Identification

For multivariate processes, ACF matrices are returned as well as a multivariate
portmanteau lack of fit statistic, Qs. PACF values are returned for univariate
processes, but are not returned for multivariate models. Sums of squares and the
information vector are returned for multivariate models.

Multivariate Portmanteau Statistic

A multivariate portmanteau statistic (see Hosking (1980), Poksitt and Tremayne
(1982), Li and McLeod (1981)) described in Reinsel (1993, p 133) is used to
examine the residual autocorrelation matrices en toto.

Let the residuals be εt . Define the residual covariance matrix as:

3­32

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­33

Σ

Σ

C l ε ε l s

C ε ε

() = = 0,… ,

(0) =

ε
T

T

t t l

ε
T

T

t t

1

1

−1

+
′

1

1

−1

′

The residual autocorrelation matrix is:

µ µ

µ µ µ µ

µ µ µµ

{ }

Σ Σ Σ

Σ

Σ { }

ρ l V Cε l V ρ l

Q T T − l C l l

T T − l t C l C l

T T − l t ρ l ρ ρ l ρ

() ≡ () = ()

= () () (−)

= () () Σ () Σ

= () () (0) (−) (0)

t t t ij

s
l

s

i

k

j

k

ij ji

l

s

ε ε

l

s

ε ε ε ε

−1/2 −1/2

2

=1

−1

=1 =1

2

=1

−1 −1 −1

2

=1

−1 − −1

Under the null hypothesis:

H0
: Yt is an ARMA(p,q) process

H1
: not H0

and assuming that s is large, the Qs statistic has approximately a

X L s − p − q(())2 2 distribution.

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

Wei (1990) notes that without further information a VARMAMT process may not
be uniquely identified from its ACF function. Hannan (1969, 1970, 1976, and
1979) describes additional restrictions needed to identify a VARMAMT process.

If output is requested by the user, ACF and indicator matrices are printed,
together with the portmanteau statistic. The indicator matrices contain + and ­
symbols, depending whether the individual autocorrelations are significantly
positive or negative at the level specified in the critl member of the

varmamtControl structure, using Bartlett’s approximation, T1 / , as the
large sample standard error of each autocorrelation. The macfmt procedure
calculates the ACF matrices.

3.7 Estimation
The varmaxmt and ecmmt procedures use a full information maximum
likelihood (FIML, exact, unconditional) estimation procedure adapted from code
developed by Jose Alberto Mauricio of the Universidad Complutense de Madrid.
The code was published as Algorithm AS311 in Applied Statistics. It is also
described in “Exact maximum likelihood estimation of stationary vector ARMA
models,” JASA, 90:282­291. Sample means are removed from all data prior to
estimation and errors are assumed to be distributed N(0, Σ).

Linear and non­linear constraints may be imposed on the coefficient estimates,
invoking the sqpsolvemt procedure. For example, setting the
SetConstraints member of the varmamtControl structure to a nonzero
value enforces the stationarity required by the estimation procedure, by
constraining the roots of the characteristic equation

I z z z− Φ − Φ − … − Φp
p

1 2
2

3­34

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­35

to be outside the unit circle (where i pΦ , = 1,… ,i are the AR coefficient
matrices).

As noted earlier, the vmroots procedure returns roots of the AR and MA
characteristic equations. The roots are printed if output is requested.

If any estimated parameters are on a constraint boundary, the Lagrangeans
associated with these parameters will be nonzero. These Lagrangeans are stored
in the lagr member of the varmamtOut structure. Standard errors are
generally not available for parameters on constraint boundaries.

3.7.1 Quasi-Maxiumum Likelihood Covariance
Matrix of Parameters

The varmaxmt and ecmmt procedures compute a QML covariance matrix of
the parameters when requested. Let F be the log­likelihood function. Define
B F θ F θ= (∂ / ∂) ′ (∂ / ∂)A A evaluated at the estimates. The covariance matrix

of the parameters is BΩ Ω
−1 −1 where Ω is)(F θ θ∂ / ∂ ′ ∂A

2

.

To request the QML covariance matrix, set the covparType member of the
varmamtControl structure equal to one. The default, covparType = 0, is
ML estimation of the covariance matrix.

3.7.2 Starting Values

The time that sqpsolvemt needs to reach a solution is often reduced
significantly when starting values are specified. ecmmt and varmaxmt fit
univariate ARMA models to generate starting values for each Y variable in the
model, unless the user supplies their own starting values in the start member of
the varmamtControl structure. Starting values must be specified by the user
when the computed starting point fails or when there are inequality constraints.

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

The latter case requires a starting point which is feasible, i.e., one that satisfies
the inequality constraints.

Starting values are entered into start by creating and initializing a PV
structure. The parameter matrices are entered into the PV instance using
pvPacki. The third argument in the call to pvPacki is which parameter
matrix is being specified. This argument is as follows:

1 phi, L p p× × array of autoregression coefficients
2 theta, L q q× × array of moving average coefficients
3 vc, L L× residual covariance matrix
4 beta, L K× regression coefficient matrix
5 beta0, L × 0 constant vector
6 zeta, L p p× × array of ECM coefficients
7 pi, L L× matrix

All models require the constant vector (5), and if there are independent
variables, a starting regression coefficient matrix (4).

The univariate ARMA model requires, in addition, either the AR coefficient
array (1) or the MA coefficient array (2), or both.

The multivariate VARMA model requires either the AR coefficient array (1) or
the MA coefficient array (2), or both, and, in addition, the residual covariance
matrix (3).

The ECM model requires only the phi array (1) and the residual covariance
matrix (3), in addition to the constant vector (5), and the regression coefficient
matrix (4) if there are any independent variables.

For example, for a VARMA model,

3­36

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­37

library tsmt;
#include tsmt.sdf

load y[62,3] = minkmt.asc;

struct DS d0;
d0 = dsCreate();
d0.dataMatrix = y[.,2 3];

struct varmamtControl vmc;
vmc = varmamtControlCreate();
vmc.ar = 3;
vmc.output = 1;

phi0 = arrayalloc(3|2|2,0);
setArray phi0, 1, (.708~.469|-.699~1.151);
setArray phi0,2,(.277~-.68|.316~-.380);
setArray phi0,3,(-.504~.332|.050~.108);

vmc.start = pvCreate();
vmc.start = pvPacki(vmc.start, phi0,"phi",1);
vmc.start = pvPacksi(vmc.start, (.0499~.0188)|

(.0188~.0565),"vc",3);

struct varmamtOut vout;
vout = varmaxmt(vmc,d0);

phi = pvUnpack(vout.par,"phi");
vc = pvUnpack(vout.par,"vc");

print;
print;

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

print;
print;
format /ld 12,8;
print "PHI";
print phi;

print "residual covariance matrix";
print vc;

And for the ECM model,

library tsmt;
#include tsmt.sdf

load y[362,3] = ecmmt.asc;

print "ECM Model";

struct varmamtControl vmc;
vmc = varmamtControlCreate();
vmc.ar = 1;
vmc.setConstraints = 0;

vmc.ctl.trustRadius = .01;
vmc.ctl.dirtol = 1e-6;

phi = { .05 -.05, 0 0.01, .1 -.07, .05 -.04 };

vmc.start = pvcreate;
vmc.start = pvPacki(vmc.start,areshape(phi,2|2|2),

"phi",1);
vmc.start = pvPacksi(vmc.start,

3­38

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­39

xpnd(15.9521|14.2525|15.9908),"vc",3);

struct DS d0;
d0[1].dataMatrix = y[.,2:3];

struct varmamtOut vout;
vout = ecmmt(vmc,d0);

format /ld 12,4;
print;
print;
print "eigenvalues";
print vout.va;

3.8 sqpsolvemt and Newton's Method
ecmmt and varmaxmt minimize a log­likelihood function. When constraints
exist (see Section 3.9 for a discussion of constraints and how to place them),
sqpsolvemt uses Newton’s method to minimize the log­likelihood function.
This section provides a summary of the sqpsolvemt method. The reader is
referred to Han (1977) for further details.

The varmamtControl structure contains a sqpsolvemtControl
structure instance. The parameters of the optimization may be controlled by
setting members of the sqpsolvemtControl structure instance
appropriately. For details on the sqpsolvemtControl structure see
documentation for sqpsolvemt in the Run-Time Library or in the header
portion of the sqpsolvemt.src file in the src subdirectory. For examples
of its use see Section 3.7.2 and Section 3.9.

Newton’s method minimizes functions iteratively. Each iteration involves
evaluating the function and determining the direction to move in the domain of

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

the function that results in the greatest increase in the function’s value. Given
the direction, the STEPBT line search method determines the step length that
results in a lower objective function. See Dennis and Schnabel (1983) for a
discussion of the STEPBT line search method.

Initial values for the unknown coefficients are required for the first iteration.
These are generated automatically by the ecmmt and varmaxmt procedures if
the start member of the varmamtControl structure is a missing value (the
default).

They may also be set by the user as described in Section 3.7.2.

Let F be the log­likelihood function. sqpsolvemt minimizes F within the
context of a standard nonlinear programming problem:

minF(θ)

subject to the linear constraints,

Aθ B

Cθ D

=

≥

the nonlinear constraints,

G θ

H θ

() = 0

() ≥ 0

and bounds,

θ θ θ≤ ≤l u

G θ() and H θ() are functions provided by the user and must be differentiable at
least once with respect to θ . F θ() must have first and second derivatives with

3­40

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­41

Hessian, Σ below) must be positive semi­definite.

Without loss of generality, we assume that the linear constraints and bounds
have been incorporated into G and H. However, in practice, linear constraints
are specified separately from G and H because their Jacobians are known and
easy to compute. Bounds constraints are also more easily handled separately
from the linear inequality constraints.

Successive parameter values are defined by:

θ θ ρd= +t t+1

where θt are the parameter values at time t, d, the direction, is an NP × 1
vector (NP is the number of coefficients) and ρ is the step length, a scalar that
applies equally to each element of d.

The direction, d, solves the quadratic program

minimize d ′ d dΣ(θ) + Ψ(θ)t t

1

2

subjectto G θ d G θ

H θ d H θ

() + () = 0

() + () ≥ 0

.

t t
.

t t

where Σ is positive semi­definite. The θΣ() and θΨ() matrices are given by:

θ

θ

Σ() =

Ψ() =

F

θ θ

F

θ

∂

∂ ∂ ′

∂

∂

2

and the Jacobians are:

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

G θ

H θ

() =

() =

G

θ

H

θ

.
∂ (θ)

∂
.

∂ (θ)

∂

sqpsolvemt computes the Hessian Σ) , Ψ , various gradients, and the

Jacobians, G(θ)
.

, and H(θ)
.

using numerical methods.

Given θt and d, the STEPBT line search method finds the step length, ρ , by
minimizing the merit function:

Σ Σm θ ρd F g θt ρd λ h θ ρd(+) = + max (+) − max min(0, (+))t K
j

j t
ℓ

ℓ

as a scalar function of ρ , where gj is the j­th row of G, hℓ is the ℓ ­th row of
H, K is the vector of Lagrangean coefficients of the equality constraints, and λ
the Lagrangean coefficients of the inequality constraints.

STEPBT first approximates m as a quadratic function, and computes ρ to
minimize the quadratic. If a feasible ρ does not exist, it attempts to fit a cubic
function. If the cubic function fails and the RandRadius member of the
sqpsolvemtControl structure is set to 0, sqpsolvemt stops iterating,
without a solution.

Set RandRadius > 0 to have sqpsolvemt enter a random search in case
the cubic loss function fitting fails. In a random search, sqpsolvemt chooses
a random direction from the current point, within the radius set by
RandRadius. If the RandRadius member of the varmamtControl
structure is set to zero, a random search will not be attempted and the iterations
will terminate.

3­42

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­43

A poor starting point and an excessively large direction can often put the
sqpsolvemt iterations into ill­defined regions, from which the iterations
cannot escape. To avoid this, a "trust region" can be defined to limit the
direction (see Fletcher (1985)).

Setting the TrustRadius member of the varmamtControl structure
imposes boundary constraints on the direction, relative to the starting position of
the iterations. The direction is constrained to be no greater than TrustRadius
in absolute value.

3.9 Setting Constraints
General constraints may be placed on parameters of VARMAMT models.
There are five types of constraints: linear equality, linear inequality, nonlinear
equality, nonlinear inequality, and bounds. These are not exclusive categories
(i.e., there are several ways most constraints can be placed.) Below we give
examples of specifying constrained parameters.

3.9.1 Constraints and the Coefficient Vector

Log­likelihood optimization is conducted by the sqpsolvemt function.
sqpsolvemt "sees" all parameters in the model as a single vector. This
parameter vector must be used to place constraints. The best way to look at this
vector is to first run an unconstrained model and call pvGetParNames. The
names will tell you which parameter is where in the parameter vector.

library tsmt;
#include tsmt.sdf

y = y[.,2 3];

struct varmamtControl vmc;

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

vmc = varmamtControlCreate();
vmc.ar = 3;
vmc.output = 1;

load y[62,3] = minkmt.asc;

struct varmamtOut vout;
vout = varmaxmt(vmc,y[.,2:3],0);

print pvGetParNames(vout.par);

phi[1,1,1]
phi[1,1,2]
phi[1,2,1]
phi[1,2,2]
phi[2,1,1]
phi[2,1,2]
phi[2,2,1]
phi[2,2,2]
phi[3,1,1]
phi[3,1,2]
phi[3,2,1]
phi[3,2,2]

vc[1,1]
vc[2,1]
vc[2,2]

beta0[1,1]
beta0[2,1]

Now suppose that you want to estimate AR parameters for the first and third
lags only, i.e., the second lag parameters are to be set to zero. First estimate the
unconstrained model and then determine where the parameters for the second

3­44

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­45

lag from the call to pvGetParnames. In the above example they are in rows 5
through 8 in the parameter vector. You would then set up the constraint matrices
a and b in the varmamtControl structure in the following way, where
vmc.ctl is the sqpsolvemtControl structure instance:

struct varmamtControl vmc;
vmc = varmamtControlCreate();
vmc.ctl.a = { 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 };

vmc.ctl.b = { 0, 0, 0, 0 };

Some attention may have to be paid to the starting point when there are
inequality constraints placed on the parameters. In general, sqpsolvemt
requires a starting point that satisfies inequality constraints. You may need to
provide starting values if the ones computed by varmaxmt do not satisfy the
inequality constraints. It is not necessary for starting points to satisfy equality
constraints. See Section 3.7.2 for a discussion about setting a starting point.

3.9.2 Linear Equality Constraints

For computational convenience linear equality constraints are treated separately
from general nonlinear constraints. Let θ be the coefficient vector. Linear
constraints are described as:

Aθ B=

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

To place a linear equality constraint, A and B are assigned to the ctl.A and
ctl.B members of the varmamtControlstructure, respectively, where
vmc.ctl is the sqpsolvemtControl structure instance.

For example, suppose we wish to constrain the first AR coefficient matrix of a
bivariate AR(2) model to equal zero. The coefficient vector looks like this

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

σ

σ

σ

111

121

211

221

112

122

212

222

11

21

22

Then in the command file we define the control variables:

vmc.ctl.A = { 1 0 0 0 0 0 0 0 0 0 0,
0 1 0 0 0 0 0 0 0 0 0,
0 0 1 0 0 0 0 0 0 0 0,

3­46

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­47

0 0 0 1 0 0 0 0 0 0 0 };
vmc.ctl.B = { 0, 0, 0, 0 };

This constrains the first four elements of the parameter vector to zero.

3.9.3 Linear Inequality Constraints

Linear inequality constraints are described as:

Cθ D≥

To place a linear inequality constraint, C and D are assigned to the C and D
members of the varmamtControlstructure, respectively, where vmc.ctl is
the sqpsolvemtControl structure instance.

For example, suppose a bivariate AR(1) model is specified. We wish to
constrain the diagonal elements of the AR coefficient matrix to be greater than
the off diagonal elements. The coefficient vector looks like this:

ϕ

ϕ

ϕ

ϕ

σ

σ

σ

11

12

21

22

11

21

22

In the command file we define the control variables:

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

vmc.ctl.C = { 1 -1 0 0 0 0 0
1 0 -1 0 0 0 0,
0 -1 0 1 0 0 0,
0 0 -1 1 0 0 0 };

vmc.ctl.D = { 0, 0, 0, 0 };

3.9.4 Nonlinear Equality Constraints

Nonlinear equality constraints are described as:

G θ() = 0

i.e., values for θ are found such that G θ() = 0 .

Nonlinear constraints are placed by supplying a GAUSS procedure for G.

sqpsolvemt finds parameter estimates, µθ such that ¶G θ() = 0 .

To place a nonlinear equality constraint, write a procedure taking the parameter
vector as an input argument and returning a vector. Each element of the return
vector represents a different constraint.

The following code, added to the command file, constrains the singular values of
a bivariate AR(2) model coefficient matrices to be equal:

proc eqp(struct PV p, struct DS d);
local phi,s1,s2;

 phi = pvUnpack(p,"phi");
s1 = svd(getMatrix(phi,1));
s2 = svd(getMatrix(phi,2));
retp(s1-s2);

endp;

3­48

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­49

vmc.ctl.EqProc = &eqp;

3.9.5 Nonlinear Inequality Constraints

Nonlinear inequality constraints are described as:

H θ() ≥ 0

Nonlinear inequality constraints are placed by providing a GAUSS procedure for

H. sqpsolvemt finds parameter estimates, µθ such that ¶H θ() ≥ 0 .

To place a nonlinear inequality constraint, write a procedure taking the
parameter vector as an input argument and returning a vector. Each element of
the return vector represents a different constraint.

For example, for a bivariate AR(2) model, the following constrains the absolute
value of the eigenvalues of the first coefficient matrix to be greater than the
eigenvalues of the second coefficient matrix:

proc ineqp(struct PV p, struct DS d);
local phi,l1,l2;
phi = pvUnpack(p,"phi");
l1 = abs(eig(getMatrix(phi,1)));
l2 = abs(eig(getMatrix(phi,2)));
retp(l1-l2);

endp;

vmc.ctl.IneqProc = &ineqp;

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3.9.6 Bounds Constraints

Bounds are a type of linear inequality constraint but are treated separately by
sqpsolvemt for computational convenience. To place bounds on parameters,
lower and upper values are entered into the bounds member of the
varmamtControl structure. For example, to bound the coefficients of an AR
(1) model to be between ­.5 and +.5 define

vmc.ctl.bounds = { -.5 .5,
-.5 .5,
-.5 .5,
-.5 .5,

-1e256 1e256,
-1e256 1e256,
-1e256 1e256 };

The first column of bounds corresponds to the lower boundaries and the
second column the upper boundaries. The first four rows correspond to the AR
coefficients in the parameter vector and the last three rows to the elements of
the covariance matrix of the residuals which we choose not to constrain.

3.9.7 Start Values

The varmamtControl structure contains a member for setting start values.
This member is an instance of a PV structure with the name start. The PV
instance contains the following parameter matrices:

1 phi p × L × L array, autoregression coefficients
2 theta q × L × L array, moving average coefficients
3 vc L × L matrix, residual covariance matrix
4 beta L × K matrix, regression coefficients
5 beta0 L × l vector, constants

3­50

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­51

6 sphi P × L × L array, seasonal autoregression
coefficients

7 stheta Q × L × L array, seasonal moving average
coefficients

Depending on the model several or all of these parameters must be specified for
a starting point:

Model Parameters
AR phi
MA theta
ARMA phi, theta
ARMAX phi, theta, beta
VAR phi, vc
VARMA phi, theta, vc
VARMAX phi, theta, beta, vc
ECM phi, vc
SAR phi, sphi
SARMA phi, theta, sphi, stheta
SVAR phi, sphi, vc
SVARMA phi, sphi, theta, stheta, vc
SVARMAX phi, sphi, theta, stheta, beta, vc

The constant vector is not required for start values because the time series is
centered for the estimation and the constants estimated afterwards. The
covariance matrix, vc, is required only for multivariate models.

Example

The starting point for a VARMAX model might look like this:

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

struct PV p0;
p0 = pvCreate();

a = areshape(0.2*eye(2),2|2|2);
p0 = pvPack(p0,a,"phi",1);
p0 = pvPack(p0,a,"theta",2);
p0 = pvPack(p0, 0.8*eye(2),"vc",3);

3.10 sqpsolvemt and Managing
Optimization
The critical elements in optimization are scaling, the starting point, and the
condition of the model. When the starting point is reasonably close to the
solution and the model is well­specified and reasonably scaled, the iterations
converge quickly and without difficulty.

3.10.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be
roughly equal (the Hessian member of the varmamtOut structure contains
the estimated Hessian). sqpsolvemt has difficulty converging when some
diagonal elements contain numbers that are very large and/or very small with
respect to the others. It may not be obvious how to scale the diagonal elements
of the Hessian. However, ensuring that the data are of the same magnitude may
help.

The scale member of the varmamtControl structure, used to scale the
data, is either a scalar or an L × 1 vector. If scale is a scalar, the data in all
series are multiplied by the value. If scale is an L × 1 vector, each series is

3­52

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­53

multiplied by the corresponding element of scale. The default scale value is
4/standard deviation of each series (found to be best by experimentation).

3.10.2 Condition

A well­conditioned problem has a Hessian for which the columns are linearly
independent and the diagonal elements are roughly the same size, i.e., the data
are properly scaled. In this case, the condition number of the Hessian, the ratio
of the largest eigenvalue to the smallest eigenvalue, is close to unity. The
condition number will be large when the data are improperly scaled or when the
columns of the Hessian are linearly dependent. Users may examine the
estimated Hessian. It’s in the Hessian member of the varmamtOut
structure.

The sqpsolvemt solution is found by searching for parameter values for
which the gradient is zero. However, sqpsolvemt has difficulty determining
optimal values when the Jacobian of the gradient (i.e., the Hessian) is very
small for a particular parameter. In this case, a large region of the function
appears virtually flat to sqpsolvemt. When the Hessian has very small
elements, the inverse of the Hessian has very large elements and the search
direction gets buried in the large numbers.

Poor condition can be caused by bad scaling, poor model specification, or bad
data. Bad models and bad data are two sides of the same coin. If the problem is
highly nonlinear, it is important that data are available to describe the curve over
all relevant regions. For example, one of the parameters of the Weibull function
describes the shape of the curve as it approaches the upper asymptote. If data
are not available for that portion of the curve, the corresponding parameter is
poorly estimated. The gradient of the function with respect to the parameter is
very flat; elements of the Hessian associated with that parameter are very small
and the inverse of the Hessian contains very large numbers. In this case, if the

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

underlying behavioral theory allows it, the model should be respecified to
exclude the parameter.

3.10.3 Starting Point

For a starting point ecmmt and varmaxmt fit univariate ARMA models to
generate starting values for each Y variable in the model, unless the user
supplies their own starting values in the start member of the
varmamtControl structure. User­defined start values are required when
the automatically generated starting values fail or when there are inequality
constraints in the model. The latter case requires a starting point that satisfies
the inequality constraints. See Section 3.7.2 with regard to setting a user­defined
starting point.

The starting point can be critical in finding a solution to a model that is not well­
defined. Try different starting points when the optimization does not seem to
work. If the underlying behavioral theory allows it, a simpler problem with the
same parameters might be specified. This could lead to a closed form solution.
For example, ordinary least squares estimates might be used for nonlinear least
squares problems or nonlinear regressions like probit or logit. There are no
general methods for computing start values and it may be necessary to attempt
the estimation from a variety of starting points.

3.11 Diagnostic Checking
Identification and diagnostic checking go hand in hand. The earlier Identification
section discussed the ACF, PACF, portmanteau, and information criteria.

3.12 Forecasting
The vmforecast procedure calculates t step ahead forecasts for a VARMAX
model. Users must specify the coefficients involved, the dependent variable

3­54

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­55

dataset, residuals from the VARMAX estimation, the AR and MA orders, and
the number of periods to forecast. A t K× matrix of fixed explanatory
variables, covering only the forecast horizon, is also entered if beta coefficients
were estimated.

vmforecastmt returns a t × L(+ 1) matrix. The first column is the forecast
horizon, i.e., the t in T t+ . Subsequent columns contain the forecast Y values.

3.13 References
1. Ansely, Craig F. (1979). “An Algorithm for the Exact Likelihood of a

Mixed Autoregressive­Moving Average Process,” Biometrika, 66, 59­65.

2. Fletcher, R. (1985). “An ℓ1 penalty method for nonlinear constraints,” in
P.T. Boggs, R.H. Byrd, and R.B. Schnabel, Numerical Optimization
1984, SIAM, 26­40.

3. Granger, C.W.J. and Newbold, Paul. (1986). Forecasting Economic
Time Series. Second Edition, San Diego: Academic Press.

4. Hamilton, James D. (1994). Time Series Analysis, Princeton University
Press.

5. Han, S.P. (1977). “A Globally Convergent Method for Nonlinear
Programming,” Journal of Optimization Theory and Applications, 22, 297­
309.

6. Hannan, E.J. (1969). “The Identification of Vector Mixed Autoregressive
Moving Average System,” Biometrika, 56, 223­225.

7. Hannan, E.J. (1970). Multiple Time Series, John Wiley, New York.

8. Hannan, E.J. (1976). “Review of Multiple Time Series,” SIAM Reviews,

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

18, 132.

9. Hannan, E.J. (1979). “The Estimation of the Order of an ARMA
Process,” Ann. Statist, 8, 1071­1081.

10. Hosking, J.R.M. (1980). “The Multivariate Portmanteau Statistic,”
Journal of the American Statistical Association, 75, 602­608.

11. Johansen, S.J. (1988). “Statistical Analysis of Cointegration Vectors,”
Journal of Economic Dynamics and Control, 12, 231­254.

12. Johansen, S.J. and Juselius, K. (1990). “Maximum Likelihood Estimation
and Inference on Cointegration­with Applications to the Demand for
Money,” Oxford Bulletin of Economics and Statistics, 52, 169­2 10.

13. Li, W.K. and McLeod, A.I. (1981). “Distribution of the Residual
Autocorrelations in Multivariate ARMA Time Series Models,” Journal of
the Royal Statistical Society Series B, 43, 231­239.

14. Ljung, G. and Box, G.E.P. (1978). “On a Measure of Lack of Fit in Time
Series,” Biometrika, 65, 297­303.

15. Maddala, G.S. and Kim, In­Moo. (1998). Unit Roots, Cointegration,
and Structural Change, Cambridge University Press.

16. Newey, W.K. and West, K.D. (1987). “A Simple Positive Semi­Definite
Heteroskedasticity and Autocorrelation­Consistent Covariance Matrix,”
Econometrica, 55, 703­708.

17. Osterwald­Lenum, M. (1992). “A Note with Fractiles of the Asymptotic
Distribution of the Maximum Likelihood Cointegration Rank Test
Statistics: Four Cases,” Oxford Bulletin of Economics and Statistics, 54,

3­56

Time Series MT 2.1

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

3­57

461­72.

18. Park, J.Y. and Choi, B. (1988). “A New Approach to Testing for a Unit
Root,” working paper 88­23, Department of Economics, Cornell
University.

19. Phillips, P.C.B. and Ouliaris, S. (1990). “Asymptotic Properties of
Residual Based Tests for Cointegration,” Econometrica 58, 165­193.

20. Poskitt, D.S., and Tremayne, A.R. (1982). “Diagnostic Tests for Multiple
Time Series Models,” Annals of Statistics, 10, 114­120.

21. Reinsel, Gregory. (1993). Elements of Multivariate Time Series
Analysis, Springer­Verlag.

22. Wei, William, W.S. (1990). Time Series Analysis: Univariate and
Multivariate Methods, Addison­Wesley Publishing.

VARMAX, ECM, SVARMAX

V
A
R
M
A
X
,E

C
M
,

S
V
A
R
M
A
X

4­1

4 Nonlinear Time Series Models

There are a number of circumstances under which time series may include
nonlinearities. When nonlinearities arise, traditional estimation techniques for
linear time series are invalid. As such a number of techniques for testing for
nonlinearities, as well as estimating models which include nonlinearities have
developed. The GAUSS TSMT module contains a family of tools for both
testing for nonlinearities. In addition, it includes procedures for estimating three
fundamental nonlinear models: regime switching models, structural break
models, and threshold autoregressive models.

4.1 Parameter Instability Tests
Thorough time series modeling often requires diagnostic testing for sources of
nonlinearities. In the face of nonlinearities, model parameters and/or estimates
change, such that the assumption of constant parameters across all time periods
is invalid. The GAUSS TMST module provides several pre­programmed
procedures for parameter stability analysis.

4.1.1 Rolling Regressions

The GAUSS rolling procedure performs rolling OLS regressions for a
provided vector of dependent data and matrix of independent regressors. The
rolling procedure estimates a rolling or expanding window OLS model. For
a fixed window width, n, the OLS model for estimation is given by

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

() () ()y n X n β n ε n t n T= + (), = ,… ,
t t t t

The dependent data vector, y n()t , and the dependent data vector, X n()t , include
the most recent observations for time t – n – 1 to t.

The procedure allows the implementation of a forward expanding regression
window of size τ such that the regression window including observations 1 …(
τ+1), 1…(τ+2), etc.

Similarly, users may utilize a backward expanding regression window such that
the window includes the last τ, τ+1, τ+2,…, τ+(T­ τ) observations.

The rolling procedure produces time series plots of rolling estimates for
clear and quick visualization of the dynamic behavior of estimates.

Example

This example uses 400 observations of generated data with a break in the
intercept after 120 observations. The error terms are standard normal. The data
is replicated using the code below:

//This generates 400 observations of a
//linear time series with a break in the
//constant at observation 120

b1 = { 1.2, -2, 0.75 };
b2 = { 5, -2, 0.75 };

n1 = 120;
n_tot = 400;
xt = ones(n_tot,1)~rndn(n_tot,2);

4­2

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­3

et = rndn(n_tot,1);

//Create series with break
y1 = xt[1:n1,.]*b1 + et[1:n1,.];
y2 = xt[n1+1:n_tot,.]*b2 + et[n1+1:n_tot,.];
yt_break = y1|y2;

Three rolling techniques are available for estimating the model, pure rolling
static windows, forward expanding windows, and backward expanding window.
To first estimate the model using a static rolling window, set the input window
to a positive integer value less than the number of observations. This sets the
fixed estimation window size. When using the static window rolling regression
the input add is irrelevant. Finally, the indicator input gr is set to one to
produce time series graphs of the coefficient estimates:

//First set parameters to run a
//rolling window regression.
//Set-up expanding window size
wind = 15;

//Specify increment to increase window size
//Irrelevant for rolling window regression
add = 15;

//gr is an indicator for graphing
gr = 1;

Finally call the rolling procedure

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

{ beta, res, w } = rolling(yt_break, xt, wind, add,
gr);

To estimate the same model using a forward expanding window, the input
parameter window is set to any negative integer. The input add is the used to
specify the initial window size. A positive value for add indicates a forward
expanding window and a negative value for add indicates a backward
expanding window. The window size is always incremented by one observation
for both forward and backward expanding window.

//Set parameters for a forward expanding
//window regression
//Set-up expanding window size
wind = -15;

//Specify increment to increase window size
//Irrelevant for rolling window regression
add = 15;

//gr is an indicator for graphing
gr = 1;

{ beta_fwd,res_fwd,w_fwd } = rolling(yt_break, xt,
wind, add, gr);

This produces time series estimates of the model coefficients, beta_fwd, one­
step­ahead prediction residuals, res_fwd, and standardized one­step­ahead
prediction residuals, w_fwd. In addition, it plots the rolling estimates in beta_
fwd.

4­4

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­5

4.1.2 Chow Forecast

The Chow (1960) forecast test is a more statistically formal test for parameter
stability and uses out­of­sample forecasts to test parameter constancy. It is built
on the theory that if parameters are constant then out­of­sample forecasts should
be unbiased.

The test considers a linear model such that

∼ ()
y x β u

u σ

t n

= +

0, ,

= 1,… ,

t t t

t

′
,

2

The Chow (1960) procedure for testing coefficient stability first splits the data
sample into estimation and forecast subsamples using an estimation window,
n k>1 such that



















y

y

y
X

X

X
= , =

1

2

1

2

where sample one includes the first n1 observations and sample two contains
the last T n− 1 observations.

This OLS fitted model yields

µ

µ µ µ

µ

µ

()β X X X y

u y X β

σ u u

=

= −

=
n k

1 1
′
1

−1

1
′
1

1 1 1 1

1
2 1

(−) 1
′
1

1

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

Out­of­sample forecasts for the last T n− 1 observations are constructed using

µ µy X β=
2 2 1

with out­of­sample prediction errors and error variance given by

µ µ

µ

µ









()

u y y y X β

and

var u σ I X X X X

= − = −

() = +T n

2 2 2 2 2 1

2
2

− 2 1
′
1

−1

2
′

1

Given this and the assumption of Gaussian errors, u, the Chow F­test of the null
hypothesis of coefficient stability is

µ µ

µ
∼











Chow n F n n k() = * (, −)FCST

u I X X X X u

σ

n k

n2

+ ()
−

2 1

n2
′

2 2 1
′
1

−1

2
′

2

1
2

1

2

Example

This example uses the Chow forecast test to test for structural breaks in two
different simulated data series, one with a break in the constant and one without
any breaks. The first step is to generate the data using the simarmamt
function. The series with a break is generated in two segments, one with a
constant equal to 0.5 and a second with a constant equal to 3. Both series are
AR(1) series with an autoregressive coefficient equal to 0.6:

library tsmt;

b = 0.6;

4­6

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­7

q = 0;
p = 1;
tr = 0;

//Set first constant
const1 = 0.5;

// Number of observations before break
N1 = 90;

//Total observation in complete series
n_tot = 300;
k = 1;
std = 0.5;
seed = 19786;

//First series with constant=0.3
y1 = simarmamt(b,p,q,const1,tr,n1,k,std,seed);

//Second series with constant=1.7
const2 = 3;
y2 = simarmamt(b,p,q,const2,tr,n_tot-n1,k,std,seed);

//Full time series with break
t_break = y1|y2;

The series without a break can be similarly generated using simarmamt

//Full time series without break
yt = simarmamt(b,p,q,const1,tr,n_tot,k,std,seed);

Next, compare and visualize the data using the plotXY function

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

//Plot time series data
//Declare the structure
struct plotControl myPlot;

//Initialize the structure
myplot = plotGetDefaults("xy");

//Set graph appearance
plotSetLegend(&myPlot, "off");

//Plot Series with break in first element of 2x1
layout
plotLayout(2,1,1);
plotSetTitle(&myPlot, "Simulated time series with

break at observation 90");
plotXY(myPlot,seqa(1,1,rows(yt_break)),yt_break);

//Plot Series without break
plotLayout(2,1,2);
plotSetTitle(&myPlot, "Simulated time series

without break");
plotXY(myPlot,seqa(1,1,rows(yt)),yt);

//Turn off 2x1 layout for future plots
plotClearLayout();

Finally, call the chowfcst procedure to test for a structural break. This
requires first constructing the independent regressor matrix. This matrix should
include a vector of ones for estimating the constant, and the lagged dependent
variable:

4­8

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­9

//Generate xt regressors
//These should include a constant
xt_const = ones(n_tot,1);

//Lagged dependent variable
yt_lag1 = lag1(yt_break);
yt_lag2 = lag1(yt);

//Concat both into one data matrix
xt1 = xt_const~yt_lag1;
xt1 = xt_const~yt_lag2;

//Trim the first missing observation due to lag-
ging
xt1 = trimr(xt1,1,0);
xt2 = trimr(xt2,1,0);

In addition to the regressor matrix, the chowfcst function requires an input
specifying the size of the prediction window. In the case, we will use a
prediction window of our known break, n1. To test for a structural break using
the chowfcst function:

//Call chowfcst using data with break
{chow_br, prob_br} = chowfcst(yt1,xt1,n1);
print "The Chow test statistic for series with
break:"; chow_br;
print "The p-value for series with break:"
prob_br;

//Call chowfcst using data without break

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

{chow, prob} = chowfcst(yt2,xt2,n1);
print "The Chow test statistic for series with
break:";
chow;
print "The p-value for series with break:";
prob;

Produces the following output:

The Chow test statistic for series with break:
272.14587

The p-value for series with break: 1.3671052e-086
The Chow test statistic for series with break:

2.9906912
The p-value for series with break: 1.4451492e-008

4.1.3 CUSUM Test of Coefficient Equality

In contrast to the CHOW test, the CUSUM test of coefficient equality compares
subsample specific estimates to test for parameter equality across all
subsamples.The Brown, Durbin, and Evans (1975) CUSUM test considers the
empirical fluctuation process of the cumulative sums of standardized residuals.
Under the null hypothesis of constant coefficients the residuals should have zero
mean. Hence, significant deviation from zero at time, t, indicates possible
structural change at time t.

The CUSUM test for instability is most appropriate for testing for parameter
instability in the intercept term. It is best described as a test for instability of the
variance of post­regression residuals. The model considers the linear model

4­10

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­11

∼ ()
y x β u

u σ

t n

= +

0, ,

= 1,… ,

t t t

t

′
,

2

The CUSUM test utilizes the standardized one­step ahead recursive estimation
residuals. The estimation residual are given by

µ

w =t

y B x

f

−
t t y

t

−1

′

where

µ








()f σ x x x x= 1 +

t t t t t
2 ′ ′

−1

The resulting CUSUM test statistic utilizes the cumulative sum of these
residuals such that

µ

µ

∑CUSUM
w

σ
=t
j k

t
j

w= +1

where

µ ∑σ w w= (−)w n k
t

n

t

2 1

−
=1

2

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

Example

This example uses the cusum residual test to test for structural breaks in two
different simulated data series, one with a break in the constant and one without
any breaks. Similar to the previous example, the first step is to generate the
linear data. The series with a break is generated in two segments, one with a
constant equal to 0.6 and a second with a constant equal to 0.95. The series
without a break has a stable constant equal to 0.6.

b1 = { 0.6,0.25,0.75 };
b2 = { 0.95,0.25,0.75 };

n1 = 90;
n_tot = 300;
xt = ones(n_tot,1)~rndn(n_tot,2);
et = rndn(n_tot,1);

//Create series with break
y1 = xt[1:n1,.]*b1 + et[1:n1,.];
y2 = xt[n1+1:n_tot,.]*b2 + et[n1+1:n_tot,.];
yt_break = y1|y2;

//Create series without break
yt = xt*b1 + et;

The next step is to set the parameter inputs for the cusum test, which include an
indicator variable for graphing the test statistics, and the minimum window
length for the recursive regression:

//Next set the cusum parameters

4­12

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­13

minwin = 30;
gr=1;

Finally, call the cusum procedure to test both series for parameter instability.

//Next test residuals using cusum
{ cst1, cst1_2 } = cusum(yt_break,xt,gr,minwin);
{ cst2, cst2_2 } = cusum(yt,xt,gr,minwin);

Calling the cusum procedure for the nonlinear series produces the following
graphical output of the cusum and cusum squared test statistics, respectively.

4.1.4 The Hansen-Nymblom Test

The Hansen­Nyblom (1989) parameter stability tests uses a Lagrange multiplier
test to test the null hypothesis of constant parameters against the alternative of
parameter instability. The GAUSS procedure tests for joint stability of all
parameters, as well as individual parameter stability. The test should not be used
for unit root processes or processes with deterministic trends. Under the null
hypothesis the test statistic follows the Cramer­von Mises distribution.

The Hansen­Nyblom test for parameter instability is a locally most powerful,
Lagrange multiplier test. The test considers the null hypothesis of parameter
constancy against the alternative that the series follows a martingale. Though it
is appropriate for testing the joint stability of all parameters as well as the
stability of individual parameters, it should not be used for determining the
timing of structural breaks. Consider a linear model such that

y x β ε= +
t t t

′

Under the assumption of time varying parameters

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

∼ ()
β β β η

η σ

= = +

0,

t t t

t η

−1

2

The null hypothesis

H β β for all t: =
t0

is equivalently given as

H σ: = 0η0

2

The GAUSS procedure first estimates the model parameters and the regression
error such that

µ

µ

µ

β X X X y

ε y x β

= (′) ′

= −t t t

−1

′

The least squares estimates follow directly from two first order conditions

µ

µ µ()

∑

∑

x e i m

e σ

0 = , = 1,… ,

0 = −

t

n

it t

t

n

t

2 2

These conditions are rewritten by defining a score variable, fit , such that

µ

µ µ 

 







f
x e

e σ

i m

i m
=

−

= 1,… ,

= + 1it

it t

t
2 2

4­14

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­15

Using the score variable the Nyblom­Hansen test for individual parameters are
given by

∑L S=i nV
i

n

it

1

=1

2

i

where

∑S f=i
i

n

it
=1

2

The joint test statistic is

∑L S V S= ,c n
i

n

t t

1

=1

′ −1

where

()
()

∑V f f

f f f

S S S

= ,

= ,… , ,

= ,… , .

i

n

t i

t t m t

t t m t

=1

′

1 +1,

1 +1,

The Nyblom­Hansen test statistic follows the Cramer­von Mises distribution.

Example

This example uses the Nyblom­Hansen LR test to test for structural breaks a
series with a break in the constant. Similar to the previous example, the first
step is to generate the linear data. The series with a break is generated in two

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

segments, one with an intercept equal to 1.2 and one with an intercept equal to
5.

/**/
//This generates 400 observations of an
//linear time series with a break in the con-
stant
//at observations 120

b1 = { 1.2, -2, 0.75 };
b2 = { 5, -2, 0.75 };

n1 = 120;
n_tot = 400;
xt = ones(n_tot,1)~rndn(n_tot,2);
et = rndn(n_tot,1);

//Create series with break
y1 = xt[1:n1,.]*b1 + et[1:n1,.];
y2 = xt[n1+1:n_tot,.]*b2 + et[n1+1:n_tot,.];
yt_break = y1|y2;
/**/

//Set parameters for a rolling window regression
//printOut is an indicator for graphing
printOut = 1;

{ ny, crit } = hansen(yt_break,xt,printOut);

With the printOut indicator input set to one, the following output is printed to
the screen

4­16

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­17

Hansen test statistic for constancy of B_1 21.67736
Hansen test statistic for constancy of B_2 0.09693
Hansen test statistic for constancy of B_3 0.02684
Hansen test statistic for variance constancy 10.85039
Hansen test for joint parameter stability -10.70504
Critical values 1% 2.5% 5% 7.5% 10% 20%

2.12000 1.89000 1.68000 1.58000 1.49000
1.28000

4.2 Threshold Autoregressive Models
Threshold autoregressive models (TAR) are a family of models for dealing with
structural breaks in which regime­switches occur when threshold variable, qt ,
reaches a threshold value, c. Rather than assuming that regime­switches occur
as a function of time, or as a function of an unobservable underlying mechanism,
TAR models consider regime switches that are dependent on observable data.
The assumed threshold variable and nature of the regime adjustment results in a
variety of possible TAR models. The standard TAR model assumes that the
threshold variable is a known function of the data. Estimation of the TAR model
requires determining the optimal parameter estimates, as well as the optimal
threshold value.

Self­Exciting TAR model assumes that the threshold variable is a lagged value
of the dependent variable, and requires estimating both the threshold value and
the threshold lag, along with the standard model parameters.

The general two­regime TAR model is given by

⋯

⋯

()
() ()

()y α α y α y q γ

β β y β y q γ e

= + + + 1 ≤

+ + + 1 > +

t t p t p t

t p t p t t

0 1 −1 − −1

0 1 −1 − −1

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

where 1(.) is the indicator function and ⋯()q q y y= , ,
t t t p−1 −1 − is a function of

the data. The model can be more clearly represented for least squares estimation
by define

⋯()
()() ()

() ()

x y y

x γ x q γ x q γ

y x α q γ x β q γ e

= 1 ′ ,

() = 1 ≤ 1 > ′ ,

= 1 ≤ + 1 ≤ + ,

t t t p

t t t t t

t t t t t t

−1 −

′
−1

′
−1

′
−1

′
−1

or

y x y θ e= () ′ +
t t t

where ∝θ β= (′ ′) .

Under LS estimation the parameter vector θ then becomes































∑ ∑θ γ x γ x γ x γ y() = () () ′ ()

t

n

t t

t

n

t t
=1

−1

=1

The estimation residuals and residual variance are given by

µ∑σ γ e γ() = ()n n
t

n

t
2 1

=1

2

The optimal LS estimate of the threshold value is then the value that minimizes
the residual variance,

4­18

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­19

µ µ

∈

γ σ γ

γ

= argmin ()

Γ

n
2

While both the TAR and SETAR models consider abrupt regime switches, the
model can be adjusted to allow for smoothed transitions between regimes. The
family of Smooth Transition Autoregressive model (STAR) assumes that regime
switches follow a continuous process which is a function of the threshold
variable. This results in a family of models such that

⋯







()x y y

y x α G q γ c x β q γ c e

= 1 ′

= 1 − (: ,) + (: ,) +

t t t p

t t t t t t

−1 −

′
−1

′
−1

The GAUSS TSMT module provides the tarTest procedure for testing for
and estimating TAR models. In addition, it includes the starTest procedure
for testing for STAR dynamics.

4.2.1 TAR Model

The GAUSS tarTest procedure estimates a p'th order threshold
autoregression and tests the hypothesis of a linear autoregression, using the
statistics described in"Inference when a nuisance parameter is not identified
under the null hypothesis."(Hansen, 1996).

4.2.2 TAR Model Control Structure

The TAR control structure allows users to specify and pass model parameters
efficiently to the tarTest procedure. The first step to TAR modeling is to
declare and initialize an instance of the TAR control structure. The GAUSS
procedure tarControlCreate initializes an instance of the TAR control

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

structure with preset default values. The following example code sets the
GAUSS workspace for TAR modeling:

//Declare the structure
struct tarControl TAR0;

//Initialize the structure
TAR0 = tarControlCreate();

Once initialize, the TAR control structure contains default values for 8
parameters used in TAR estimation and testing:

omit Scalar or vector, lags (below p) to omit from.
p Autoregression [0 implies an AR(p)].
lowerQuantile Scalar, the lower quantile.
upperQuantile Scalar, the upper quantile.
rep Scalar, the number of simulation replications.
out Scalar, 0 or 1, 1 indicates screen output.
graph Scalar, 0 or 1, 1 indicates screen output.
dstart Start date of the time series (follows format used

by plotTS).
freq Data frequency, "12" for monthly, "4" for

quarterly, "1" for annual.

Parameters are changed from the default values using standard structure "dot"
referencing:

//CHANGE PARAMETER VALUE
TAR0.p = 3;

4­20

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­21

4.2.3 Estimating the TAR Model

Once the TAR control structure is initialized it is passed to directly to the
tarTest procedure, along with a Nx1 vector of time series data,for estimating
the TAR model. The output from the tarTest procedure are then returned to
TAR output structure:

//DECLARE OUTPUT STRUCTURE
struct tarOutput TARout;

//ESTIMATE MODEL
TARout = tarTest(y,p,TAR0);

4.2.4 Example

This example follows the empirical example found in Hansen (1996) and
estimates a threshold model for quarterly GNP growth rates. The data file
"gnp.dat" contains seasonable adjusted GNP for 1947­1990 and is transformed to
annualized quarterly growth rates:

load gnp[175,2] = gnp.asc;
yg = ln(gnp[.,1]);
y = (yg[2:175] - yg[1:174]) * 400;

Next all parameter values for the TAR estimation must be set

//Declare the structure
struct tarControl TAR0;

//Initialize the structure
TAR0 = tarControlCreate();

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

//Maximum number of lags considered
TAR0.p = 5;

//Lags to omit from the test
TAR0.omit = 3 4;

//Trimming from top (lowerQuantile) and bottom
(upperQuantile) of data
TAR0.lowerQuantile = .15;
TAR0.upperQuantile = .85;

//Number of replications for Monte Carlo
TAR0.rep = 5000;

//Output and graph reporting
TAR0.printOutput = 1;
TAR0.graph = 1;

//Data start date and frequency
TAR0.dstart = 1947;
TAR0.freq = 4;

Finally, call the GAUSS procedure tarTest

//DECLARE OUTPUT STRUCTURE
struct tarOutput TARout;

//ESTIMATE MODEL
TARout = tarTest(y,p,TAR0)

This produces the following output to the command/program window:

4­22

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­23

OLS Estimation of Null Linear Model

Variable Estimate S.E.
C 1.99225488 0.59341810
Y(t-1) 0.31753696 0.08929921
Y(t-2) 0.13197878 0.08801236
Y(t-5) -0.08696297 0.06763670

Residual Variance 15.960496

Searching over Threshold Variable: 1
Searching over Threshold Variable: 2
Searching over Threshold Variable: 3
Global Estimates
Threshold Variable Lag 2.0000000
Threshold Estimate 0.012572093
Error Variance 14.548361

Regime 1: Y(t-2) < 0.012572

Variable Estimate S.E.
C -3.21255539 2.12039565
Y(t-1) 0.51278104 0.24699822
Y(t-2) -0.92692272 0.30831951
Y(t-5) 0.38445656 0.24603002

Regime 1 Error Variance 23.533054

Regime 2: Y(t-2) > 0.012572

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

Variable Estimate S.E.
C 2.14186153 0.77389336
Y(t-1) 0.30085440 0.10132777
Y(t-2) 0.18484356 0.10131018
Y(t-5) -0.15813482 0.07335517

Regime 2 Error Variance 12.143010

Test Statistics and Estimated Asymptotic P-Values

Robust LM Statistics
SupLM 14.06847762 0.16940000
ExpLM 3.96481133 0.16620000
AveLM 4.68986250 0.27380000

Standard LM Statistics
SupLMs 18.24477743 0.94380000
ExpLMs 4.77627149 0.94320000
AveLMs 4.57209118 0.87960000

In addition, the following graphs are sent to the graphics window:

4­24

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­25

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

4.3 Switching Regression
The TSMT module contains a procedure for estimating the regime­switching
model of Hamilton (1994, 2005).

4.3.1 switchmtControl

This table contains a list of the members of the switchmtControl structure:

constVariance scalar, if nonzero, error variances are
constant across states.

relevantStates scalar, if nonzero, lagged states are
relevant for time series variable.

aBayes, bBayes, scalars, if nonzero, parameters that

4­26

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­27

cBayes control the Bayesian prior as described in
Hamilton (1991).

userTransEqp scalar, pointer to user­provided function
for setting equality constraints on
transition probability matrix.

start instance of a PV structure containing
start values.

ctl instance of an sqpsolvemtControl
structure.

output scalar, controls printing. The default is
print output, otherwise no output is
printed.

title string, title of run, default = "".

Start

Switching models can be difficult to estimate and may require a good starting
point. This can be done by assigning a PV structure containing the starting point
to the start member of the switchmtControl structure passed in as the
first argument in the call to switchmt.

Only those members of the PV structure need to be filled that are relevant to the
model being estimated. It contains the following members:

beta0 1, num_states by 1 vector, constants.
beta 2, num_states by K, coefficients on K

independent variables if any.
phi 3, num_lags by 1 vector, autoregression

coefficients.
sigma 4, scalar or num_states by 1 vector, error

variances. If vmc.constVariance is zero,
it is a scalar, otherwise it’s a vector.

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

p 5, num_states by num_states matrix,
transition probabilities.

For example,

struct switchmtControl vmc;
vmc.start = pvPacki(pvCreate(),3|-3, "beta0", 1);
vmc.start = pvPacki(vmc.start,.1|.01,"Phi",3);
vmc.start = pvPacki(vmc.start, 1, "Sigma",4);
vmc.start = pvPacki(vmc.start,(.8˜.1)|(.2˜.9),"P",5);

Controlling Optimization

The switchmtControl structure contains an
sqpsolvemtControlstructure, the elements of which can be set to control
the optimization. For example,

struct switchmtControl vmc;
vmc.ctl.maxIters = 1000;

will set the maximum number of iterations to 1000. See the documentation for
sqpsolvemt for discussion of the members of its control structure.

4.3.2 References

1. Engel, Charles and Hamilton, James, D., 1990, "Long Swings in the
Exchange Rate: Are They in the Data and Do Markets Know It?"
American Economic Review, 80(4):689.

2. Hamilton, James D., 1991, "A quasi­Bayesian approach to estimating

4­28

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­29

parameters for mixtures of Normal distributions," Journal of Business and
Economic Statistics, 9:27­39.

3. Hamilton, James D., 1994, Time Series Analysis, Princeton University
Press.

4. Hamilton, James D., 2005, "Regime­switching models," Department of
Economics, University of San Diego, California.

4.4 Structural Break Models
The sbreak procedure estimates models with multiple structural breaks
following the Bai and Perron (1998) global estimation method. The procedure
may be used with complete or partial structural break models.

The Bai and Perron (1998) methodology utilizes least squares to estimate all
structural breaks up to a user specified maximum number of breaks. Consider
the model:

()

y x β z δ u

t T T

= + +

= + 1,… ,

t t t t t

j j

′ ′

−1

for j 1 ,…, m+1. This model allows the observed dependent variable, yt , to be
modeled as a linear combination of regressors with both time invariant
coefficients,xt ,and time variant regressors, zt .

Both the model parameters and all break points are estimated such that the sum
of squares across all possible sample splits is minimized:

µ

 

 






















() ()∑ ∑k argmin Y x β z δ Y x β z δ= min − + + − +
k
µ µ t

k

t t t

t k

T

t t t
, =1

,1 ,1
′

,1
′

1

2

= +1

,2 ,2
′

,2
′

2

2

1 2

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

4.5 Structural Break Control Structure
The structural break control structure allows users to specify and pass model
parameters efficiently to the sbreak procedure. The first step to modeling
structural breaks is to declare and initialize an instance of the structural break
control structure. The GAUSS procedure sbControlCreate initializes an
instance of the structural break control structure with preset default values. The
following example code sets the GAUSS workspace for structural break
modeling:

//Declare the structure
struct SBControl sbc0;

//Initialize the structure
sbc0 = sbControlCreate();

Once initialized, the structural break control structure contains default values for
10 parameters used in structural break estimation and testing:

q Scalar, number of regressors subject to change.
p Scalar, number of time­invariant regressors (x).
m Scalar, maximum number of breaks.
trim Scalar, trimming value.
h Scalar, minimum length of segment (h>p+q), if less

GAUSS automatically sets at default value of
trim*T.

initialBeta Scalar, initial values for beta
maxIters Scalar, maximum number of iterations.
printOutput Scalar, 0 or 1, 1 prints output to screen.
eps Scalar, conversion criterion.

4­30

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­31

Parameters are changed from the default values using standard structure "dot"
referencing:

//CHANGE PARAMETER VALUE
sbc0.q = 1;
sbc0.m = 5;
sbc0.trim = 0.15;
sbc0.h = 0;
sbc0.printOutput = 1;
sbc0.initialBeta = 0.5;
sbc0.maxIters = 40;

4.6 Estimating the Structural Break
Once the structural break control structure is initialized it is passed to directly to
the sbreak procedure, along with a Tx1 vector of time series data, Txq
variable of regressors subject to structural change, and a Txp vector of
regressors with time invariant coefficients.The output from the sbreak
procedure is then returned to sbreak output structure:

//Declare the structure
struct sbOutput SBout;

//ESTIMATE MODEL
SBout = sbreak(y,z,x,sbc0);

The GAUSS procedure utilizes the dynamic programming methodology of Bai
and Perron (2003), incorporating matrix functions and structures for improved
efficiency.

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

4.6.1 Example

This example follows the empirical application of Bai and Perron (2003). Below
we use the GAUSS sbreak procedure to estimate breaks in the mean of the
US ex­post real interest rate. The first step is to directly load the quarterly series
of the three­month treasury bill provided in the file real.out:

//Load y data
load path = c:\gauss14\examples
load y[] = real.dat

//Specify regressors
//Time varying coefficients in z
z = ones(rows(y),1);

//No time invariant regressors
x = 0;

Next we declare and initialize the structural break control structure and set
model specific parameters:

//Declare sbControl structure
struct sbControl sbc0;

//Initialize instance of structure
sbc0 = sbControlCreate();

//Set individual model parameters
sbc0.q = 1;
sbc0.m = 5;
sbc0.trim = 0.15;

4­32

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

4­33

h = 0;
sbc0.printOutput = 1;
sbc0.initialBeta = 0.5;
sbc0.maxIters = 40;

Finally we declare the output structure and call the sbreak procedure:

//DECLARE OUTPUT STRUCTURE
struct sbOutput SBout;

//ESTIMATE MODEL
SBout = sbreak(y,z,x,sbc0);

4.7 References
1. Bai, J and Perron, P. (1998) Estimating and Testing Linear Models with

Structural Change, Econometrica, 66(1), 47­78.

2. Bai, J and Perron, P. (2003) Computation and analysis of multiple
structural change models, Journal of Applied Econometrics, 18(1), 1­22.

3. Brown, R.L., Durbin, J., and Evans, J.M. (1975). Techniques for testing
the constancy of regression relationships over time, Journal of Royal
Statistical Society, Series B, 35, 149­192.

4. Chow, G.C. (1960). Tests of equality between sets of coefficients in two
linear regressions, Econometrica, 52, 211­22.

5. Engel,C. and Hamilton, J. (1990). Long swings in the exchange rate: Are
they in the data and do markets know it?, American Economic Review, 80
(4), 689.

6. Franses, P.H. and Dijk, D. (2000) Non-linear Time Series Models in

Nonlinear Time Series Models

N
onlinearT

im
e
S
eries

M
odels

Empirical Finance. Cambridge University Press, New York.

7. Hamilton, J. (1991) A quasi­bayesian approach to estimating parameters
for mixtures of normal distributions, Journal of Business and Economic
Statistics, 9, 27­39.

8. Hamilton, J. (1994) Time Series Analysis, Princeton University Press,
New York.

9. Hamilton, J. (2005), Regime­switching models, Mimeo Department of
Economics, University of San Diego, California.

10. Hansen, B.E. (1996). Inference when a nuisance parameter is not
identified under the null hypothesis, Econometrica, 64(2), 413­430.

11. Hansen, B.E. (1992). Testing for parameter instability in linear models,
Journal of Policy Modeling, 14(4): 517­533.

12. Nyblom, J. (1989). Testing for the constancy of parameters over time,
Journal of American Statistical Association, 84(405), 223­230.

13. Zivot, E., and Wang, J. (2002). Modeling Financial Time Series with S-
PLUS. Springer­ Verlag, New York.

4­34

Time Series MT 2.1

N
on
lin
ea
rT

im
e
S
er
ie
s

M
od
el
s

5 LSDV

The TSMT module contains a procedure for estimating and LSDV models for
unbalanced data with correlation for bias. lsdvmt is the main procedure for
estimating LSDV models. This model analyzes data that are both time series
and cross­sectional..

5.1 LSDV Model
Following Bruno (2005) a set of time­series/cross­sectional is estimated by the
LSDV model:

y γ y γ y γ y x β η= + + … + + ′ + + ϵ
it i, t i,t m i, t m it i i, t1 −1 2 −2 −

where i = 1,···, N, and t = 1,···, T,xi,t is the k(− 1) × 1 vector of strictly
exogenous explanatory variables, ηi is the unobserved individual effect, and ϵ i,t
is the unobserved disturbance.

Bruno’s model allows for missing observations. Define the selection rule for the
it observation where

5­1

LS
D
V









()s
if y x y x observed

otherwise

=
1 , ,… , (,)

0
i,t

i,t i,t i,t−m i,t−m

In matrix form we have

Sy SDη SW S= + δ + ϵ

where S is the NT NT× diagonal matrix with si,t on the diagonal, ⊗D I= N lT

is the NT N× matrix of individual dummies, lT is a T × 1 vector of ones
 yandW y y X= …

m−1 − are the NT × 1 and NT K× matrices of observations,
δ γβ= [′] ′ is the vector of coefficients, and η is the NT × 1 vector of individual
effects, ϵ is the NT × 1 vector of disturbances,

The LSDV estimator is

δ W ′ A w W ′ A y= ()ls v s s
−1

where

A S D D ′ SD D ′ S= (1 − ())s
−1

5.1.1 Bias Correction

The lsdv model is well­known to be biased. Bruno (2005) reports several
corrections for this bias. The one implemented in LSDVMT is

5­2

Time Series MT 2.1

LS
D
V

5­3

 






{

}

()

()

(

c σ tr q

c σ QW A W tr QW A W I σ q tr I q

c σ tr q QW Wq q ′ W Wq

c q tr QW W tr q qm

1 = Π

2 = − [′Π + (′Π) + 2 (Π ′ΠΠ)]

3 = Π 2 ′ΠΠ ′Π + ′ΠΠ ′

1 = + (′ΠΠ ′) + 2 Π ′ΠΠ ′Π)]

m

k m k m

mm m m m

mm

ϵ
2

ϵ
2

+ ϵ
2
11 + 1

ϵ
4

11
2

where




()Q E W ′ A W W ′ A W σ tr e em= [()] = + Π ′Π ′m

−1
ϵ
2

−1

; W E W= ()

; e = (1, 1,… 0, 0,) ′m is a k × 1 vector with m ones; q Qe=
m m ; q e q=

mm
′
m m ;

LT is the T T× matrix with m until lower subdiagonals and all other elements

set to zero; ⊗L I L= N T ; I γLΓ = (−)T T T
−1; ⊗IΓ = ΓN T ; and A LΠ = Γs .

The correction for bias is

B c c c= 1 + 2 + 3

5.1.2 Example

The data must be organized in the following manner,

individual 1 T1
T2
.
.
.

individual 2 T1
T2
.

LSDV

LS
D
V

.

.
. T1
. T2
. .
. .
. .

LSDVMT

library tsmt;

struct lsdvmtControl c0;
c0 = lsdvmtControlCreate();

series_len = 5;
num_lags = 2;

struct DS d0;
d0 = reshape(dsCreate(),2,1);
d0[1].dname = "lsdvmt";
d0[1].vnames = "Y";
d0[2].vnames = "X1" $| "X2" $| "x3";

struct lsdvmtOut out1;
out1 = lsdvmt(c0,d0,series_len,num_lags);

5­4

Time Series MT 2.1

LS
D
V

5­5

5.1.3 Special Features

Constraints

By default, lsdvmt constrains the coefficients of the lagged dependent
variable to (­1, 1). This can be disabled by setting the Constrain member of
the lsdvmtControl structure to zero.

Additional linear constraints can be placed on any of the coefficients by setting
the A, B members of the lsdvmtControl structure for linear equality
constraints, and the C and D members for linear inequality constraints. You may
also set the Bounds member for setting bounds on the coefficients. For
example:

struct lsdvmtControl c0;
c0 = lsdvmtControlCreate();

c0.A = { 0 -1 1 0 0 };
c0.B = 0;

will constrain the second coefficient to be equal to the third coefficient.

The following:

struct lsdvmtControl c0;
c0 = lsdvmtControlCreate();

c0.C = { 0 0 1 1 0 };
c0.D = 0;

constrains the sum of the third and fourth coefficients to be greater than zero.
And this:

LSDV

LS
D
V

struct lsdvmtControl c0;
c0 = lsdvmtControlCreate();

c0.bounds = { 0 1e256,
0 1e256,
0 1e256,
0 1e256,
0 1e256 };

constrains all coefficients to be greater than zero.

Scaling

By default the data are scaled before the estimation and the results unscaled.
This can be turned off by setting the scale member of the lsdvmtControl
structure to zero.

5.1.4 The lsdvmtControl Structure

The table below contains a list of the control variables that are members of the
lsdvmtControl structure. They give the user control over the model’s
specification and estimation.

Constrain scalar, if nonzero, constraints applied to
autoregression coefficients.

A matrix, linear equality coefficient matrix.
B matrix, linear equality constant vector.
Bounds matrix, upper and lower bounds on

parameter estimates.
C matrix, linear inequality coefficients matrix.
D matrix, linear inequality constant vector.
scale scalar, if nonzero, data are scaled.

5­6

Time Series MT 2.1

LS
D
V

5­7

output scalar, determines the output to be printed.
title string, title to be printed at top of header.

5.1.5 The lsdvmtOut Structure

This table contains a list of the members of the lsdvmtOutstructure.

AutoCoefficients vector, uncorrected autoregression
coefficients.

RegCoefficients vector, uncorrected regression
coefficients.

AutoCoefficientsCorr vector, bias corrected autoregression
coefficients.

RegCoefficientsCorr vector, bias corrected regression
coefficients.

AutoStderrs vector, autoregression coefficient
standard errors.

RegStderrs vector, regression coefficient standard
errors.

CovPar matrix, covariance matrix of
parameters.

SSresidual scalar, residual sums of squares.
SStotal scalar, total sums of squares.
SSexplained scalar, explained sums of squares.
SSpooledResidual scalar, pooled residual sums of

squares.
biasCorr vector, bias corrections.
Lagrange vector, Lagrangeans for constraints.
numCases scalar, number of cases.
numObservations scalar, number of observations.
numMissing scalar, number of observations with

LSDV

LS
D
V

missing data.
numDF scalar, number of degrees of freedom.
numPeriods scalar, number of periods.
numParameters scalar, number of parameters.
numPeriods scalar, number of periods in time

series.

5.2 References
1. Bruno, Giovanni S .F. (2005). "Approximating the bias of the LSDVMT

estimator for dynamic unbalanced panel data models," Economic Letters,
87, 361­366.

2. Greene, William H. (2000). Econometric Analysis, 4th Ed., Prentice­
Hall, New Jersey.

5­8

Time Series MT 2.1

LS
D
V

6 Univariate GARCH Models

For the generalized autoregressive conditional heteroskedastic (GARCH) model
let

y x βϵ = −t t t

where t T= 1, 2,… , and yt is an observed time series, xt is an observed time
series of fixed exogenous variables including a column of ones, β a vector of
coefficients, and σ E= (ϵ)t t .

Also define

η σϵ ≡t t t

where () ()E η Var η= 0, = 1
t t .

6.1 Standard Model
The standard specification of the conditional variance is

6­1

U
nivariate

G
A
R
C
H
 M
odels

σ ω α α

β σ β σ

= + ϵ + ... + ϵ +

+ ... +

t t q t q

t p t p

2
1 −1
2

−
2

1 −1
2

−
2

where Zt is an observed time series of fixed exogenous variables.

6.2 Log-likelihood
For maximum likelihood estimation of all models three distributions may be
specified for ηt , the Normal, Student's t, and the skew generalized t distribution.

The log­likelihood conditional on µ max p q= (,) initial estimates of the

conditional variances is, for ∼ ()η N 0, 1
t

Σ ΣlogL log π log σ= − (2) − () −
T µ

T

t

T

σ

−

2

1

2

ϵT

T

2

2
t µ t µ+ + 1 + + 1

where

Σσ σ σ= = ... = = ϵµ T

T

t1
2

2
2 2 1 2

t= 1

Student's t Distribution

The student's t distribution with ν degrees of freedom and variance σ 2 for ηt is









f η() = 1 +

t

ν

ν νπ σ

η

νσ

ν
Γ((+ 1) / 2)

Γ(/ 2)()

−((+1)/2)

t

1/2

2

2

6­2

Time Series MT 2.1

U
ni
va
ria
te

G
A
R
C
H
 M
od
el
s

6­3

The conditional log­likelihood for ∼ ()η t σ ν0, ,
t is then





















Σ

Σ
()

logL log log σ

log

= − − ()

− 1 +

T µ ν

ν νπ σ

T
t

ν T

νσ

−

2

Γ((+ 1) / 2)

Γ(/ 2)()

+ 1

2

ϵ t

t

1/2

2

2

t µ

t µ

+

+

Skew Generalized t Distribution

The skew generalized t distribution is described in Theodossiou (1998). This
distribution is available only for univariate models. The log­likelihood for an
observation is































()()

logl logγ lo= − 1 +
i i

ν

κ θ λsign µ µ

+ 1

1 + +

µ i µ i

σi

i i

+

where

()

γ σ κB κ ν κ B κ ν κ

θ S B κ ν κ B κ ν κ

S λ λ B κ ν κ B κ ν κ B κ ν κ

µ σ λB κ ν κ B κ ν κ B κ ν κ

= 0.55 (1 / , /) (3 / , (− 2) /)

= (1 / , /) (3 / , (− 2) /)

= 1 + 3 + 4 (2 / , (− 1) /) (1 / , /) (3 / , (− 2) /)

= 2 (2 / , (− 1) /) (1 / , /) (3 / , (− 2) /)

i i

i i

−1 −
1
2

−1
1
2

−

2 2 2 −1 −1
1
2

− −

3

2

1

2

1

2

1

2

Univariate GARCH Models

U
nivariate

G
A
R
C
H
 M
odels

and where λ−1 < < 1 is a skew parameter, and κ > 0 and ν > 2 are kurtosis
parameters. For λ = 0 and κ = 2 we have the Student's t distribution, for
λ κ ν= 0, = 1, = inf we have the Laplace distribution, for λ κ ν= 0, = 2, = inf

the Normal distribution, and for λ κ ν= 0, = inf, = inf the uniform distribution.

6.3 Nonnegativity of Conditional
Variances
Constraints may be placed on the parameters to enforce the stationarity of the
GARCH model as well as the nonnegativity of the conditional variances.

Nelson and Cao (1992) established necessary and sufficient conditions for
nonnegativity of the conditional variances for the GARCH(1,q) and GARCH
(2,q) models.

GARCH(1,q)

Σ

ω

β

α β k q

≥ 0

≥ 0

≥ 0, = 0,… , − 1

k

j
k j

1

+1
−

j=0

GARCH(2,q)

Define ∆1 and ∆2 as the roots of

β Z β Z1 − −
1

−1

2

−2

Then

6­4

Time Series MT 2.1

U
ni
va
ria
te

G
A
R
C
H
 M
od
el
s

6­5

Σ

ω

β β

α

/ (1 − ∆ − ∆ + ∆ ∆) ≥ 0

1 + 4 ≥ 0

∆ > 0

∆ > 0j
j

1 2 1 2

2
2

1

+1
−

j

q

=0

−1

and,

ϕ k q≥ 0, = 0,… ,
k

where

ϕ α

ϕ β ϕ α

ϕ β ϕ β ϕ α

ϕ β ϕ β ϕ

=

= +

= +

.

.

.

= +
q q q

0 1

1 1 0 2

2 1 1 2 0 3

1 −1 2 −2

GARCH(p,q)

General constraints for p > 2 haven't been worked out. For such models the
conditional variances are directly constrained to be greater than zero. It also
constrains the roots of the polynomial

β Z β Z β Z1 − − − … −
p
p

1 2

2

Univariate GARCH Models

U
nivariate

G
A
R
C
H
 M
odels

to be outside the unit circle. This only guarantees that the conditional variances
will be nonnegative in the sample, and does not guarantee that the conditional
variances will be nonnegative for all realizations of the data.

6.3.1 Stationarity

To ensure that the GARCH process is covariance stationary, the roots of

()()α β Z α β Z1 − + − + − …1 1 2 2
2

may be constrained to be outside the unit circle (Gouriéroux, 1997, page 37).

Most GARCH models reported in the economics literature are estimated using
software that cannot impose nonlinear constraints on parameters and thus either
impose a more highly restrictive set of linear constraints than the ones described
here, or impose no constraints at all. The procedures provided ensure that you
have the best fitting solution that satisfies the conditions of stationarity and
nonnegative of conditional variances.

6.3.2 Initialization

The calculation of the log­likelihood is recursive and requires initial values for
the conditional variance. Following standard practice, the first q values of the
conditional variances are fixed to the sample unconditional variance of the
series.

6.4 IGARCH
The IGARCH(p,q) model is a GARCH(p,q) model with a unit root. This is
accomplished by adding the equality constraint

6­6

Time Series MT 2.1

U
ni
va
ria
te

G
A
R
C
H
 M
od
el
s

6­7

Σ Σα β+ = 1

i i
i1

6.5 GJRGARCH
Glosten, L.R., Jagannathan, R., and Runkle, D.E., 1993, proposed a model with
asymmetrical effects of the conditional variance:

()σ ω α τS α τS

β σ β σ Z

= + (+)ϵ + … + + ϵ +

+ … + + Γ

q q q

p p

2
1 −1 −1

2
− −

2

1 −1
2

−
2

where St = 1 if ϵ < 0t and St = 0 otherwise.

6.6 GARCHM
For the GARCHM, or GARCH­in­mean, model the time series equation is
modified to include the square root of the conditional variance

y x β δσϵ = − −t t t t
1/2

6.7 Inference
The parameters of time series models in general are highly constrained. This
presents severe difficulties for statistical inference. The usual method for
statistical inference, comprising the calculation of the covariance matrix of the
parameters and constructing t­statistics from the standard errors of the
parameters, fails in the context of inequality constrained parameters because
confidence regions will not generally be symmetric about the estimates. For this
reason TSMT procedures don't compute t­statistics, but rather compute and
report confidence limits.

Univariate GARCH Models

U
nivariate

G
A
R
C
H
 M
odels

The most common type of inference is based on the Wald statistic. A α(1 −)
joint Wald­type confidence region for θ is the hyper­ellipsoid

µ µJF J N K α θ θ V θ θ(, − ;) = (−) ′ (−)
−1 (11)

where V is the covariance matrix of the parameters. The confidence limits are
the maximum and minimum solution of

µ µ{)}η θ θ θ V θ θ JF J N K αmin (−) ′ (−) ≥ (, − ;)
k
′ −1 (12)

where η can be an arbitrary vector of constants and J η= Σ ≠ 0
k .

When there are no constraints, the solution to this problem for a given parameter
is the well known

µ
µθ t σ± α T k θ(1−)/2, −

where µσ θ is the square root of the diagonal element of V associated with µθ .

When there are constraints in the model, two things happen that render the
classical method invalid. First, the solution to (12) is no longer (5.7) and second,
(11) is not valid whenever the hyper­ellipsoid is on or near a constraint
boundary.

(11) is based on an approximation to the likelihood ratio statistic.

This approximation fails in the region of constraint boundaries because the
likelihood ratio statistic itself is known to be distributed there as a mixture of
chi­squares (Gouriéroux, et al.; 1982, Wolak, 1991).

6­8

Time Series MT 2.1

U
ni
va
ria
te

G
A
R
C
H
 M
od
el
s

6­9

In finite samples these effects occur in the region of the constraint boundary,

specifically when the true value is within ()σ N Xϵ = /e α k
2

(1− ,)
2

of the
constraint boundary.

Here we consider only the solution for a given parameter, a "parameter of
interest;"' all other parameters are "nuisance parameters.'' There are three cases
to consider:

1. Parameter constrained, no nuisance parameters constrained.
2. Parameter unconstrained, one or more nuisance parameters constrained.
3. Parameter constrained, one or more nuisance parameters constrained.

Case 1: When the true value is on the boundary, the statistics are distributed as a
simple mixture of two chi­squares.

Case 2: The statistics are distributed as weighted mixtures of chi­squares when
the correlation of the constrained nuisance parameter with the unconstrained
parameter of interest is greater than about 0.8. A correction for these effects is
feasible. However, for finite samples, the effects on the statistics due to a true
value of a constrained nuisance parameter being within ϵ of the boundary are
greater and more complicated than the effects of actually being on the constraint
boundary. There is no systematic strategy available for correcting for these
effects.

Case 3: The references disagree. Gouriéroux, et al., (1982) and Wolak (1991)
state that the statistics are distributed as a mixture of chi­squares. However,
Self and Liang (1987) argue that when the distributions of the parameter of
interest and the nuisance parameter are correlated, the distributions of the
statistics are not chi­square mixtures.

There is no known solution for these problems with the type of confidence limits
discussed here. Bayesian limits may produce correct limits (Geweke, 1995), but

Univariate GARCH Models

U
nivariate

G
A
R
C
H
 M
odels

they are considerably more computationally intensive. This method also assumes
that the likelihood can be computed for parameters outside constraint
boundaries. This is not the case for most constrained models and in this case the
sampling method used for Bayesian limits will be biased.

6.7.1 Testing Against Inequality Constraints

Constraints of the form

Hθ ≥ 0 (13)

where H is a matrix of constants, arise in various empirical studies. There is a
large literature on statistical inference under such linear inequality constraints,
and more generally under nonlinear inequality constraints as well. An up­to­date
account of these developments may be found in Silvapulle and Sen (2005). In
what follows, we shall provide an introduction to tests against inequality
constraints and indicate how GAUSS may be used for implementing a simple
score test against inequality constraints.

Let ψ denote a q × 1 subvector of θ and λ denote the remaining components of

θ . For simplicity, let us write
 





θ λ
ψ

=
where ()ψ ψ ψ= ,… , ′

q1 and

()λ λ λ= ,… , ′q1 .

Suppose that we wish to test

H ψ: = 00
against H Rψ ψ: ≥ 0, = 01

(14)

where R is a given matrix of constants; thus, R does not depend on θ and it is
nonstochastic. If our objective were to test ψ = 0 against ψ ≠ 0 , then a simple
and easy to apply test is the Rao's Score test, or equivalently the Lagrange

6­10

Time Series MT 2.1

U
ni
va
ria
te

G
A
R
C
H
 M
od
el
s

6­11

Multiplier test. This test is also a valid for the inequality constrained testing
problem in (14), but it may not be the best because it ignores the inequality
constraint Rψ ≥ 0 in the alternative hypothesis. Various tests of (14), including
likelihood ratio and score tests, have been developed. Now, we provide the
essential details for testing (14) using a one-sided score test.

First, it is convenient to introduce the so called chi­bar square distribution that
plays an important role in constrained statistical inference. The asymptotic null
distribution of the likelihood ratio/Wald/Score test of ψ = 0 against ψ ≠ 0 is a
chi­square. When there are inequality constraints, such as Rψ ≥ 0 , in the null or
the alternative hypothesis, the role of the chi­square distribution is replaced by a
chi­bar square distribution; this is defined in the next paragraph.

Let ∼Z N V(0,) , where Z is a q × 1 random vector and V is a q q× positive
definite matrix. Let

χ V R Z V Z Z a V Z a(,) ′ − min (−) ′ (−)
Ra

2 −1

≥0

−1 (15)

in the second term, it is implicit that a is a vector of the same length as Z.

We shall use the notation χ V R(,)2 is used for the random variable on the RHS

of (15) and also for its distribution. The random variable, χ V R(,)2 is said to
have a chi-bar square distribution and it can be expressed as follows:

Σ{ } ()χ V R w χPr (,) ≤ = Pr ≤
i

q

i i
2

=0

2

for some non­negative numbers,w i q, = 0,… ,i that are functions of (q, V, R);
these quantities are known as chi-bar square weights and also as level
probabilities. Except in some very special cases

Univariate GARCH Models

U
nivariate

G
A
R
C
H
 M
odels

{ }χ V RPr (,) ≤2
is difficult to compute exactly. However, it can be estimated

by simulation to a desired degree of precision as follows:

1. Generate Z from N(0, V).

2. Compute χ V R(,)2 .
3. Repeat the first two steps M times, sayM=10000.

4. Estimate { }χ V RPr (,) ≤2
by the proportion of times χ V R(,)2 turned

out to be less than or equal to c.

This is the method employed by GAUSS; for a similar method for estimating
w{ }i see Wolak (1987). When the number of repeated samples M is 10000, the
standard error of the estimate of the probability obtained by this simulation

method does not exceed 0.005; if c is large so that { }χ V RPr (,) ≤2
is less

than 0.1, then the standard error is less than 0.003. Thus, the precision in the
estimation can be controlled by adjusting the number of repeated samples, M.

The asymptotic null distributions of several statistics for testing (14) turns out to
be a chi­bar square distribution. Therefore, the chibarsq() procedure plays
an important role in the implementation of tests against inequality constraints.

6.7.2 One-sided Score Test

As in (14) let ()ψ ψ ψ= ,… , ′
q1 denote a q × 1 subvector of θ and let λ denote

the remaining components of θ ,
 





θ λ
ψ

=
where ()ψ ψ ψ= ,… ,

q1 and

()λ λ λ= ,… , ′p q1 − . Suppose that we wish to test

H ψ: = 00
against H Rψ ψ: ≥ 0, ≠ 01

(16)

6­12

Time Series MT 2.1

U
ni
va
ria
te

G
A
R
C
H
 M
od
el
s

6­13

where R is a given matrix of constants. A generalized version of Rao's Score
test can be applied for testing H0 vs H1. Let us first introduce the following: Let
L θ() denote the log­likelihood and

()s θ =
L θ

θ

∂ ()

∂

: score function.
(17)

Let s θ() be partitioned as follows to conform with λ ψ(,) :

































s

s =
λ

ψ

L

γ

L

ψ

∂

∂

∂

∂

(18)

Similarly, let us introduce the following notation for partitioning any given
matrix P of the same order as θ , to conform with the partition, λ θ(,) :











P
P P

P P
=

λλ λψ

ψλ ψ

(19)

Let ∼λ denote the mle of λ under H ψ: = 00 , and let

∼
∼






θ
λ

=
0

(20)

denote the mle of θ under H ψ: = 00 .

Let















A θ E n s θ n E L θ() = − () − ()

θ θ θ

−1 ∂

∂ ′

−1 ∂

∂ ′ ∂

2 (21),
(22)

Univariate GARCH Models

U
nivariate

G
A
R
C
H
 M
odels

Let ∼s , °A and °B denote the corresponding quantities evaluated at ∼θ . These
three quantities can be obtained by calling the constrained maximum likelihood
procedure under the constraint Hθ = 0 where

H I= (0)

and I is the identity matrix of the same order as the dimension of ψ ; note that
Hθ ψ= and hence Hθ = 0 is equivalent to ψ = 0 .

Now, the one-sided score statistic of Silvapulle and Silvapulle (1995) [SS,
hereafter], which is a generalized version of Rao's Score statistic, for testing
H ψ: = 00 against the one­sided alternative H Rψ ψ: ≥ 0, ≠ 01 is

∼ ∼ ∼ ∼° °T u D u u a D u a= ′ − min (−) ′ (−)s

−1 −1

Ra≥0

(23)

where

°° °°












()D A B A= ′

ψψ

−1
−1

(24)

and

∼ ∼∼ ° ° ° ° ° °

















()u n A A A A s A A s= − −ψψ ψλ λλ λψ ψ ψλ ψψ λ
−1/2 −1

−1 −1
(25)

An attractive feature of this one­sided score test of SS is that it does not require
estimation of the model under the inequality constraints in the alternative
hypothesis, and further, the test is applicable for methods based on estimating
equations such as Generalized Estimating Equations (GEE) of Liang and Zeger
(1986).

6­14

Time Series MT 2.1

U
ni
va
ria
te

G
A
R
C
H
 M
od
el
s

6­15

The asymptotic distribution of Ts under the null hypothesis is °χ D R(,)
2 where









()D AB A= ′

ψψ

−1
−1

Therefore, if ts denotes the sample value of Ts and D does not depend on λ
then an approximate large sample p­value is

{ }χ D R tPr (,) ≥ s
2

Further, if the exact form of D is unknown, then an estimate of the p­value is
obtained by substituting an estimate for D.

Usually D depends on λ . In this case, it is customary to define the asymptotic p­
value as

{ }χ D R tsupPr (,) ≥
λ

λ s
−2

where the suffix λ is used to indicate the D matrix depends on λ . This can be
computed approximately by evaluating

{ }χ D R tPr (,) ≥λ s
−2

over a grid of λ values and finding the maximum over that grid; if the dimension
q of λ is large, this may be computing intensive. Alternatively, some authors
have suggested to estimate the large sample p­value by

° °{ }p χ D R t= Pr (,) ≥ s
−2 (26)

Univariate GARCH Models

U
nivariate

G
A
R
C
H
 M
odels

where °D is treated as nonstochastic; its suitability would depend on the
particular case, and hence should be used with caution.

An upper bound for the large sample p­value is





() ()p χ t χ t= 0.5 Pr ≥ + Pr ≥

u q s q s−1
2 2

where q is the number of components in ψ .

6.7.3 Likelihood Ratio Test

The likelihood ratio statistic is defined as









LRT L θ L θ= 2 max () − max ()

H H1 0

(27)

The asymptotic null distribution of LRT is
°()χ HA H I′ ,2 −1

where I is the
identity matrix (see Theorem 4.3.1 in Silvapulle and Sen, 2005). Therefore, an
estimate of the p­value, corresponding to (26), for the likelihood ratio test is

°


{ })χ HA H I LRTPr ′ , ≥2 −1

.

An upper bound for the p­value of LRT is





() ()χ LRT χ LRT0.5 Pr ≥ + Pr ≥

2
2

3
2

.

6­16

Time Series MT 2.1

U
ni
va
ria
te

G
A
R
C
H
 M
od
el
s

6­17

6.7.4 Covariance Matrix of Parameters

The computed covariance matrix of the parameters is an approximate estimate
when there are constrained parameters in the model (Gallant, 1987, Wolfgang
and Hartwig, 1995). When the model includes inequality constraints, the
covariance matrix computed directly from the Hessian, the usual method for
computing this covariance matrix is incorrect because they do not account for
boundaries placed on the distributions of the parameters. By an argument based
on a Taylor­series approximation to the likelihood function (e.g., Amemiya,
1985, page 111) shows that

()θ N θ A BA→ , −1 −1

where















() ()

A E

B E

=

= ′

L

θ θ

L

θ

L

θ

∂

∂ ∂ ′

∂

∂

∂

∂

2

.

Estimates of A and B are

µ

µ

() ()

Σ

Σ

A

B

=

= ′

N
i

N

L

θ θ

N
i

N

L

θ

L

θ

1 ∂

∂ ∂ ′

1 ∂

∂

∂

∂

i

i i

2

Assuming the correct specification of the model plim(A) = plim(B),

Univariate GARCH Models

U
nivariate

G
A
R
C
H
 M
odels

µ 






θ N θ A→ ,
−1

.

Without loss of generality we may consider two types of constraints: the
nonlinear equality, and the nonlinear inequality constraints (the linear constraints
are included in nonlinear, and the bounds are regarded as a type of linear
inequality). Furthermore, the inequality constraints may be treated as equality
constraints with the introduction of "slack'' parameters into the model:

H θ() ≥ 0

is changed to

()H θ ζ= 2

where ζ is a conformable vector of slack parameters.

Further, we distinguish active from inactive inequality constraints. Active
inequality constraints have nonzero Lagrangeans, γj , and zero slack parameters,
ζ
j , while the reverse is true for inactive inequality constraints. Keeping this in

mind, define the diagonal matrix, Z, containing the slack parameters, ζ j , for the
inactive constraints, and another diagonal matrix, Γ , containing the Lagrangean

coefficients. Also, define ⊕()H θ representing the active constraints, and
!H θ() the inactive.

The likelihood function augmented by constraints is then

! !

⊕ ⊕

()
() ()L L λ g θ λ g θ γ h θ γ h θ

h θ ζ h θ ζ

= + () + … () + + … +

+ () − + … + −

A J J

i K

1 1 1
1

1 1

1 1
2

1
2

,

6­18

Time Series MT 2.1

U
ni
va
ria
te

G
A
R
C
H
 M
od
el
s

6­19

and the Hessian of the augmented likelihood is

!

!





































⊕

⊕

E

G H H

Z

G

H

H Z

=

Σ 0 0 ˙ ′ ˙ ˙

0 2Γ 0 0 0 0

0 0 0 0 0 2

˙ 0 0 0 0 0

˙ 0 0 0 0 0

˙ 0 2 0 0 0

L

θ θ

∂

∂ ∂ ′

′ ′

A

2

where the dot represents the Jacobian with respect to ()θ L P Y θ, = Σ log ;N
ii− 1 ,

and L θ θΣ = ∂ / ∂ ∂ ′
2 . The covariance matrix of the parameters, Lagrangeans,

and slack parameters is the Moore­Penrose inverse of this matrix.

Construct the partitioned array

!

















⊕B

G

H

H

==

˙

˙

˙

Let Ξ be the orthonormal basis for the null space of °B , then the covariance
matrix of the parameters is

Ξ(Ξ ′ ΣΞ) Ξ ′−1 .

Rows of this matrix associated with active inequality constraints may not be
available, i.e., the rows and columns of Ω associated with those parameters
may be all zeros.

Univariate GARCH Models

U
nivariate

G
A
R
C
H
 M
odels

6.7.5 Quasi-Maximum Likelihood Covariance
Matrix of Parameters

A QML covariance matrix of the parameters is computed when requested.
Define B L θ L θ= (∂ / ∂) ′ (∂ / ∂)A A evaluated at the estimates. Then the
covariance matrix of the parameters is BΩ Ω .

6.7.6 Confidence Limits

TSMT computes, by default, confidence limits computed in the standard way
from t­statistics. These limits suffer from the deficiencies reported in the
previous section­­they are symmetric about the estimate, which is not usually the
case for constrained parameters, and they can include undefined regions of the
parameter space.

6.7.7 Setting Type of Constraints

By default constraints described in Nelson and Cao (1992) are imposed on
GARCH(1,q) and GARCH(2,q) models to ensure stationarity and nonnegativity
of conditional variances (as described in Section 6.3). These are the least
restrictive constraints for these models.

For constraints on the conditional variances set

struct garchControl f0;
f0 = garchControlCreate();
f0.cvConstraintsType = 1;

to select the Nelson and Cao (1992) constraints (described in Section 6.3).
These are the least restrictive constraints that ensure stationarity and
nonnegativity of the conditional variances, and are imposed by default.

6­20

Time Series MT 2.1

U
ni
va
ria
te

G
A
R
C
H
 M
od
el
s

6­21

For direct constraints on the conditional variances set

f0.cvConstraintsType = 0;

Most GARCH estimation reported in the economics literature employ more
restrictive constraints for ensuring stationarity. They are invoked primarily
because the optimization software does not provide for nonlinear constraints on
parameters. In this case, the GARCH parameters are simultaneously
constrained to be positive and to sum to less than one.

For several reasons, including comparisons with published results, you may want
to impose either no constraints or the commonly employed more highly
restrictive constraints.

f0.stConstraintsType = 0;

will produce GARCH estimates without constraints to ensure stationarity.
Nonnegativity of conditional variances is maintained by bounds constraints
placed directly on the conditional variances themselves.

The least restrictive enforcement of stationarity is to constrain the characteristic
polynomial to be outside the unit circle. Set

f0.stConstraintsType = 1;

f0.stConstraintsType = 2

imposes the more highly restrictive linear constraints on the parameters. They
constrain the coefficients in the conditional variance equation simultaneously to
be greater than zero and to sum to less than one.

Univariate GARCH Models

U
nivariate

G
A
R
C
H
 M
odels

6.7.8 Altering sqpsolvemt Control Variables

If you wish to alter any of the sqpsolvemt control variables, add a proc to the
command file that takes an sqpsolvemtControl structure as an input
argument and output argument. In the proc modify the control variables as
desired.

proc sqpcont(struct sqpsolvemtControl c0);
c0.maxiters = 100;
c0.printiters = 1;
retp(c0);

endp;

struct garchControl f0;
f0 = garchControlCreate();
f0.sqpsolvemtControlProc = &sqpcont;

Be aware that some of the control variables are required for the estimation and
their modification may produce unpredictable results. If you wish, for example,
to add linear constraints to the model, you must test first whether the linear
constraint matrices have already been set:

proc sqpcont(struct sqpsolvemtControl c0);
if rows(c0.A) == 0;

c0.A = 1~0~0~0~0~-1;
c0.b = 1;

else;
c0.A = c0.A | (1~0~0~0~0~-1);
c0.b = c0.B | 1;

endif;

6­22

Time Series MT 2.1

U
ni
va
ria
te

G
A
R
C
H
 M
od
el
s

6­23

retp(c0);
endp;

struct garchControl f0;
f0 = garchControlCreate();
f0.sqpsolvemtControlProc = &sqpcont;

6.7.9 Bibliography

1. Geweke, John, 1995. "Posterior simulators in econometrics,'' Working
Paper 555, Research Department, Federal Reserve Bank of Minneapolis.

2. Glosten, L.R., Jagannathan, R., and Runkle, D.E., 1993. "On the relation
between the expected value and the volatility of the nominal excess return
on stocks'', Journal of Finance, 48(5):1779­1801.

3. Gouriéroux, Christian, 1997. ARCHModels and Financial
Applications. New York: Springer­Verlag.

4. Nelson, Daniel B. and Cao, Charles Q., 1992. "Inequality constraints in
the univariate GARCH model,'' Journal of Business and Economic Stat-
istics, 10:229­235.

5. Wolak, Frank, 1991. "The local nature of hypothesis tests involving
inequality constraints in nonlinear models,'' Econometrica, 59:981­995.

Univariate GARCH Models

U
nivariate

G
A
R
C
H
 M
odels

7 Panel Data

The TSMT module includes procedures for the computation of estimates for the
"pooled times­series cross­section" (TSCS) regression model.

7.1 Pooled Time-Series Cross-Section
Regression Model
The assumption is that there are multiple observations over time on a set of
cross­sectional units (e.g., people, firms, countries). For example, the analyst
may have data for a cross­section of individuals each measured over 10 time
periods. While these models were devised to study a cross­section of units over
multiple time periods, they also correspond to models in which there are data for
groups such as schools or firms with measurements on multiple observations
within the groups (e.g., students, teachers, employees).

The specific model that can be estimated with this program is a regression
model with variable intercepts, i.e., a model with individual­specific effects.
The regression parameters for the exogenous variables are assumed to be
constant across cross­sectional units. The intercept varies across individuals.

This program provides three estimators:

7­1

P
anelD

ata

l The fixed­effects OLS estimator (analysis of covariance estimator).

l The constrained OLS estimator (individual­specific effects are excluded
from the equation).

l The random effects estimator using GLS.

A Hausman test is computed to show whether the error components (random
effects) model is the correct specification.

In addition to providing the analysis of covariance and GLS estimates, two
multiple partial­squared correlations are computed. The first partial correlation
(squared correlation) shows the percentage of variation in the dependent
variable that can be explained by the set of independent variables while holding
constant the group variable. The second estimate shows the extent to which
variation in the dependent variable can be accounted for by the group variable
after the other independent variables have been statistically held constant.

A feature of this program is that it allows for a variable number of time­series
observations per cross­sectional unit. For instance, there might be 5 time­series
observations for the first individual, 10 for the second, and so on. This is useful,
for example, if there are missing values.

7.1.1 Panel Series Unit Root Tests

Im, Pesaran, and Shin

Assuming that yit is an autoregressive process such that

()y ϕ µ ϕ y ε

for i N t T

= 1 − + +

= 1,… , , = 1,… ,

it i i i i t it, −1

7­2

Time Series MT 2.1

P
an
el
D
at
a

7­3

The Im, Pesaran, and Shin (2003) test considers the null hypothesis of a unit root
across in all panels. When written in first difference form such that

y α β y ε∆ = + +
it i i i t it, −1

The null and alternative hypothesis become

H β for all i

H β i N β i N N N

: = 0 ,

: < 0 = 1, 2,… , , = 0, = + 1, + 2,… ,

i

i i

0

1 1 1 1

Individual ADF tests are performed for each panel, resulting in individual t­

ratios for βi in each panel. For each individual panel the t­ratio is

µ
µ

µ ()

()
t = =i T

β y M y

σ

y M y

σ y M y

,

∆
iT i τ i

iT

i τ i

iT i τ i

′
, −1 , −1

1/2
′
, −1 , −1

′
, −1 , −1

1/2 ′

where µβiT is the OLS estimator of

()

()

β X τ y

τ

y y y y

, = ,

= (1, 1,… , 1) ′

= , ,… , ′

i i T i

T

i i i i T

,−1

,−1 ,0 ,1 , −1 ,

and

()M I X X X X= −X T i i i i
′ ′

i

The IPS panel unit root test statistic is the average t­ratio across all panels

Panel Data

P
anelD

ata

Σt t=bar
N
i

N

i T

1

=1
,NT

This is modified such that

{ ()}
Z N= ~ (0, 1)t

N t E τ

Var τ

−

()bar

barNT T

T

where E τ()T and Var τ()T are extrapolated from the tables provided in Im,
Pesaran, Shin (2003).

Example

This example follows the Im, Pesaran, and Shin discussion found in Enders
(2010). The example uses the PANEL.XLS file of quarterly values of the real
effective exchange rates (CPI­based) for Australia, Canada, France, Germany,
Japan, Netherlands, United Kingdom, and United States, as provided online by
Enders, (2010).

The first step is loading the data, note that the first column is a time column.

load data[] = "panel_g.csv";
N = 8;
yt = reshape(data,rows(data)/(N+1),N+1);
log_yt = log(yt[.,2:9]);

The parameters for input into ips are set following Enders (2010)

//Input the lags used in Enders, Table 4.8

lags = {5,6,3,1,3,1,1,3};
demean = 0;

7­4

Time Series MT 2.1

P
an
el
D
at
a

7­5

prt = 1;
trend = 0;

In this case a 8 x 1 vector specifies the lags to be used in the ADF tests,
indicating the individually determined lags for each panel. As an alternative, a
single integer could be entered for lags, in which case the same number of lags
would be used for each panel. The additional parameters indicate that the data
will not demeaned across time periods (demean), that no trend is included in
the data (trend), and that all output should be printed to screen (prt). The
final step is the call to the ips function:

//Run IPS test without a trend and without
//demeaning
{z_1,pcrt1} = ips(log_yt,trend,demean,lags,prt);

Running all parts of code together prints the following output:

Individual t-stats:
-2.46627
-2.00066
-3.51045
-3.42360
-1.86847
-1.94953
-2.06635
-2.37869
Average t-stat:
-2.458
The adjusted z-stat is: -2.85025
The critical values are: -1.90700 -2.01086 -2.20629

Panel Data

P
anelD

ata

Comparing these results to the case of cross panel demeaned data requires an
adjustment to the demean parameter

//Run IPS test with time demeaning:

demean = 1;
{z_2,pcrt2} = ips(log_yt,trend,demean,lags,prt);

Demeaning the effective exchange rate data and maintaining the same lag
specification results in the following output:

Individual t-stats:
-2.466
-2.001
-3.511
-3.424
-1.869
-1.950
-2.066
-2.379
Average t-stat:
-2.458
The adjusted z-stat is: -3.067
The critical values are: -1.907 -2.011 -2.206

References

Enders, W. (2010). Applied Econometric Time Series, 3e. Hoboken, NJ: John
Wiley & Sons, Inc.

Im, S.K. Pesaran, M.H., & Shin, Y. (2003). "Testing for unit roots in
heterogeneous panels." Journal of Econometrics, 115, 53­74.

7­6

Time Series MT 2.1

P
an
el
D
at
a

7­7

Levin-Lin-Chu Panel Unit Root Test

The Levin­Lin­Chu (2002) (LLC) panel unit root test is applicable to three
different autoregressive models, varying only in the deterministic components
included in the model:

Model y δy ζ

Mo el y α δy ζ

Mo el y α α δy ζ

1 : ∆ = +

2 : ∆ = + +

3 : ∆ = + + +

it i t it

it i i t it

it i i i t it

, −1

0, , −1

0, 1 , −1

where δ−2 < ≤ 0 for i = 1, … , N.

This test assumes a homogenous autoregressive parameter across all panels but
does allow for heterogeneous error processes such the for each individual

Σζ θ ζ ε= +
it

j
ij i t j it

=1

∞

, −

The table below summarizes the LLC hypotheses tested given the assumed
model.

LLC Testing Hypotheses by Model

Model H0 H1
1 δ = 0 δ < 0

2
δ = 0

and α = 0i0, for all i δ < 0 and α Rϵi0,

3
δ = 0

and α = 0i1, for all i δ < 0 and α Rϵi1,

The LLC test utilizes a three step testing procedure. The first step of the
procedure performs standard ADF regression for each panel

Panel Data

P
anelD

ata

Σy δy θ y α ε

m

∆ = + ∆ + +

= 1, 2, 3

it i t
L

p

iL i t L mi mt it, −1
=1

, −

i

The LLC testing procedure allows for panel specific serial correlation
correction lags, pi , in each individual panel ADF test. The GAUSS llc
function allows the user to provide a vector of non­negative integer lags directly
specifying the values of pi .

Once the optimal lag length is determined, y andy∆
i t i t, , −1 are regressed against

()y for L p∆ = 1,… ,
i t L i, − and the deterministic variables dmt . The regressions

are used to construct two vectors of residuals

µ µΣe y π y α d^ = ∆ − ∆ −it i t
L

iL i t L mi mt,
=1

, −

i

and

µ ° ∼Σv y π y α d= − ∆ −it i t
L

iL i t L mi mt, −1
=1

, −

i

These are normalized such that

∼ ∼µ

µ

µ

µ
e v= , =it

e

σ
it

v

σ

it

εi

it

εi

where σ̂εi is the panel specific regression standard error from the panel specific
ADF regression.

7­8

Time Series MT 2.1

P
an
el
D
at
a

7­9

The second step of testing is to calculate the ratio of the long­run to short­run
standard deviations. The llc function uses the getlrv function to calculate
the long­run variance. The methodology and kernel used for determining the
long­run function are specified using the input lag_method and kernel,
respectively. Once the long­run variance is calculated, panel specific deviation
ratios are constructed such that

µ

µ
ŝ =i

σ

σ

yi

εi

with the average standard deviation ratio given by

µ ΣS s= ^
N

N
i

N

i

1

=1

The final step of the procedure is to calculate the panel test statistics. First, all
series are pooled to estimate the common autoregressive parameter

∼ ∼∼
e δv ε= +it i t it, −1

From this regression a standard t –ratio is constructed for δ given by

µ

µ
t =δ

δ

STD δ() ′

where

Panel Data

P
anelD

ata

∼µ µ

µ

°

° °

°

°

















Σ Σ

Σ Σ ()

Σ Σ

Σ Σ
δ

STD δ δ v

δ e δv an

T T p

= ,

() =

= −

= − − 1

v e

v

ε
i

N

t p

N

i t

ε
NT i

N

t p

N

i t i t

=1 =12+
, −1
2

1/2

2 1

=1 =12+
, , −1

2

i
N

t p i

N
i t i t

i
N

t p i

N
i t

i

i

=1 =2+ , −1 ,

=1 =2+ , −1

These calculations use p , the average ADF serial correlation lag length across
all panels. For Model 1, the test statistic tδ has a standard normal distribution.
For Models 2 and 3, an adjusted test statistic, t*δ ,

µ°µ ∼
∼

°

°










t* =δ

t

δ *

δ NTSN δ ε STD δ µ
mT

mT

−
−2

*

follows a standard normal distribution. Both the mean adjustment parameter,

°µ*
mT , and the standard deviation adjustment parameter, °

δ*
mT , are extrapolated

from Table 2 in Levin, et al. (2003).

References

Levin, A., Lin, C., & Chu, C.J. (2002). "Unit root tests in panel data:
asymptotics and finite­sample properties." Journal of Econometrics, 108, 1­24.

7­10

Time Series MT 2.1

P
an
el
D
at
a

7­11

Breitung and Das Panel Root Test

The Breitung and Das (2005) unit root tests the null hypothesis that yit is
nonstationary. The test estimates a model similar to that of the Levin­Lin­Chu
test

y D γ x= +
it it i it

′

where

x α x α x= + + ϵit i t i t it1 , −1 2 , −2

The GAUSS implementation of the Breitung test assumes what is uncorrelated
across panels. Note that this model assumes that the autoregressive parameters
are constant across all panels. Hence, the alternative hypothesis that yit is
stationary is equivalent to the alternative hypothesis that the common
autoregressive parameters sum to less than one, α α+ < 11 2 .

No trend

The testing procedure depends directly on the deterministic terms included in the

model, D it
′ . If the deterministic terms include a constant and no trend, the

procedure pre­whitens the dependent variable such that

y y y= −
i t
l

i t i t p, , −1 , −

where p is the predetermined or user specified, optimal number of lags for
removing serial correlation.

If the deterministic model does not include a constant or trend, the data is pre­
whitened such that

Panel Data

P
anelD

ata

y y=
i t
l

i t, , −1

In these two cases, the test statistic is formulated using the residuals from two

testing regressions, the regression of y∆
it and yi t

l
, on y y∆ ,… , ∆

i t it p, −1 − . The
test statistic λ is given by

⋅

()
λ =

y

y σ

Σ Σ

Σ Σ /

i
N

t p
T

it

y it

σ i

i
N

t p
T

it i

=1 = +2

∆

2

=1 = +2

2
2

where

Σ ()σ y= ∆i T p t p

T

it
2 1

− − 2 = +2

2

The test statistic λ is asymptotically distributed N(0,1). The null hypothesis is
rejected at small values of λ.

With trend

When a trend is included in the deterministic terms, the testing procedure
requires additional prewhitening to remove the trend. Prewhitening with a trend

involves the construction of four modified residual vectors, u∆ i , ui
l , v∆ i , and

vi
l . The procedure first estimates the regression

Σy α α y v∆ = + ∆ +
it i

j

p

ij i t j it0
=1

, −

7­12

Time Series MT 2.1

P
an
el
D
at
a

7­13

From this regression, two vectors, u∆ i and vi
l are constructed such that

µΣu y α y∆ = ∆ − ∆is is
j

p

ij is j
=1

−

and

µΣu y α y= − ∆is
l

i,s−1
j

p

ij is j
=1

− −1

From these let

Σσ u u u= (∆ − ∆)i T p

T p

i i i
2 1

− − 2 =1

− −1

The two additional, vectors and ,are constructed such that

















Σv u u∆ = ∆ − ∆is
T p s

T p
is T p s j s

T p

ij
− − − 1

− − 2

1

− − − 1
= +1

− −1

and

v u u T p u= − − (− − 1)∆is
l

is
l

i
l

i1

where u∆ i is the mean of u∆ is across s.

From these, both the variance and test statistic are constructed

Panel Data

P
anelD

ata

Σσ u u u= (∆ − ∆)i T p

T p

i i i
2 1

− − 2 =1

− −1

and

⋅

()
λ =

y

y σ

Σ Σ

Σ Σ /

i
N

t p
T

it

y it

σ i

i
N

t p
T

it i

=1 = +2

∆

2

=1 = +2

2
2

Example

For this example we will use a matrix of fifteen autoregressive time series
created using the simarmamt data generating function (included in the TSMT
library). All series will include a constant, but no trend:

b = 0.75;
p = 1;
q = 0;
const = 1;
tr = 0;
n = 1000;
k = 15;
std = 1;
seed = 10191;
yt = simarmamt(b,p,q,const,tr,n,k,std,seed);

This results in a panel of fifteen AR(1) time series with 1000 observations each,
constants equal to 1, and a common autoregressive coefficient equal to 0.75. It
also has a constant, which must be indicated as an input into the breitung
function

7­14

Time Series MT 2.1

P
an
el
D
at
a

7­15

trend = 0;
constant = 1;

In addition, the function inputs include an indicator whether to demean the data
across panels and a specification of the lag selection.

demean = 0;
lags = 3;

Finally, call the breitung function to test for unit roots and print the output.

bstat = breitung(yt,trend,constant,demean,lags);
print "The Breitung test statstic is:";;
print bstat;

This will produce the following output:

The Breitung test statstic is: -4.89

References

1. Breitung, J. 2000. "The local power of some unit root tests for panel
data." In Advances in Econometrics, Volume 15: Nonstationary Panels,
Panel Cointegration, and Dynamic Panels, ed. B. H. Baltagi, 161–178.
Amsterdam: JAI Press.

2. Breitung, J., and S. Das. 2005. "Panel unit root tests under cross­sectional
dependence." Statistica Neerlandica 59: 414–433.

Panel Data

P
anelD

ata

7.2 References
1. Judge, George C., R. Carter Hill, William E. Griffiths, Helmut

Lutkepohl, and Tsoung­Chao Lee. 1988. Introduction to the Theory and
Practice of Econometrics. Second Edition, New York: Wiley.

2. Hsiao, Cheng. 1986. Analysis of Panel Data. Cambridge: Cambridge
University Press.

7­16

Time Series MT 2.1

P
an
el
D
at
a

8 ARIMA

The TSMT module includes procedures for the computation of estimates and
forecasts for the autoregressive integrated moving average model. The model
may include fixed regressors such as linear or quadratic time trends, or other
explanatory variables which are predetermined. Forecasts are computed using
the estimated parameters and errors.

8.1 ARIMA Models
This program will compute estimates of the parameters and standard errors for a
time series model with ARMA errors. If the model contains only autoregressive
parameters, then arimamt gives the same estimates as autoregmt.
arimamt reports standard errors, parameters estimates, model selection
criteria, roots of the parameters, the Ljung­Box portmanteau statistic and the
covariance and correlation matrices.

The model estimated is of the general form:







ϕ L L y x β θ L() (1 −) − = ()ϵ
d
t t t

where

8­1

A
R
IM
A

L y y

ϕ L ϕ L ϕ L

θ L θ L θ L

=

() = 1 − −…−

() = 1 − −…−

j
t t j

p
p

−

2
2

1
2

where it is assumed that et is a white noise error term, distributed as ()N σ0, 2
.

Such models are referred to as ARIMA(p, d, q), where p is the autoregressive
order, d is the difference order and q is the moving average order.

The parameters to be estimated are thus: ϕ θ β(P × 1), (Q × 1), (M × 1) and

σ (1 × 1)2 .

The arimamt procedure computes starting values or allows the user to specify
starting values. User specified starting values are useful when the user wants to
determine whether the parameter estimates computed by arimamt correspond
to the global maximum of the log likelihood function and not just a local
maximum. Finally, the tsforecast procedure computes forecasts for the
series h steps ahead using the estimated parameters and errors returned by the
arimamt procedure.

8.2 References
1. Granger, C.W.J. and Newbold, Paul. 1986. Forecasting Economic Time

Series. Second Edition, San Diego: Academic Press.

2. Ansely, Craig F. 1979. "An Algorithm for the Exact Likelihood of a
Mixed Autoregressive­Moving Average Process," Biometrika 66:59­65.

8­2

Time Series MT 2.1

A
R
IM
A

9 Autoregression

The TSMT module includes procedures for the computation of estimates for the
autoregression model with autoregressive errors of any specified order and the
computation of autocorrelations and autocovariances.

9.1 Autoregression Models
This program will compute estimates of the parameters and standard errors for a
regression model with autoregressive errors. Thus, it can be used for models for
which the Cochrane­Orcutt or similar procedure can be used. It is also similar to
the SAS autoreg procedure except that this routine will compute the maximum
likelihood estimates based upon the exact likelihood function.

The model estimated is of the general form:

y x β u

u − ϕ u − … ϕ u e

= +

− =

t t t

t t p t−p t1 −1

where it is assumed that et is a white noise error term, distributed as ()N σ0, 2

.

9­1

A
utoregression

The parameters to be estimated are thus: β ϕ(K × 1), (L × 1) and σ 2 (a scalar).
The order of the process is L.

In addition, this program will estimate the autocovariances and autocorrelations
of the error term u. It produces initial estimates of these based upon the
residuals of an OLS regression. Then it computes the maximum likelihood
estimates of these based upon the maximum likelihood estimates of the other
parameters.

9.2 References
1. Judge, George C., R. Carter Hill, William E. Griffiths, Helmut

Lutkepohl, and Tsoung­Chao Lee. 1988. Introduction to the Theory and
Practice of Econometrics. Second Edition, New York: Wiley.

9­2

Time Series MT 2.1

A
ut
or
eg
re
ss
io
n

10­1

10 Command Reference

The Command Reference chapter describes each of the commands, procedures
and functions available in TSMT.

acfmt
Purpose

Computes sample autocorrelations for a univariate time series.

Library

tsmt

Format

a = acfmt(x,l,d);

Input

x Nx1 vector. The mean is subtracted automatically.

C
om

m
and

R
eference

l scalar, the maximum lags to compute.

d scalar, the difference order.

Output

a l×1 vector, sample autocorrelations.

Remarks

This function is similar to autocor; however, acfmt allows the users to
compute the autocorrelations for the differenced data.

Source

tsutilmt.src

adjrsq
Purpose

Finds the adjusted R­Squared statistic following the estimation of a
linear regression model. It requires both the original data and the
residuals from the estimate as inputs.

Library

tsmt

10­2

adjrsq

C
om

m
an
d
R
ef
er
en
ce

10­3

Format

{r_sq, adj_rsq} = adjrsq(yt,res,num_vars);

Input

yt T×M numerical matrix of panel series data.

res T×M numerical matrix of estimation residuals.

num_vars scalar, number of estimated coefficients (including
constant) in the original regression.

Output

r_sq M×1 matrix of standard R­Squared statistics.

adj_rsq M×1 matrix of adjusted R­Squared statistics.

Remarks

The adjusted R­Squared provides a diagnostic tool for evaluating goodness­of­
fit following linear regressions. The statistic adjusts the standard R­Squared to
account for the addition of variables in the model. Because the addition of
variables will always increase the R­Squared the adjusted R­Squared
generally provides a truer measure the explanatory power of the model. The
adjusted R­Squared is given by

R = 1 −adj
MSE

MST

C
om

m
and

R
eference

where

ΣMSE e=
n − p − i

n

i
1

1
=1

2

and,

with p = number of estimated coefficients, including a constant.

Example

This example utilizes a simple multivariate linear model. To begin consider
randomly generating an 5 x 500 matrix of independent data (X), and a 1 x 500
vector of dependent data (Y):

struct olsmtControl oc0;
struct olsmtOut oOut;
oc0 = olsmtControlCreate();
oc0.res = 1;
oOut = olsmt(oc0,0,y,x);

Finally, call the adjrsq function:

res = oOut.resid;
num_var = cols(x) + oc0.con;
{ r, adj_r }= adjrsq(y,res,num_var);

10­4

adjrsq

C
om

m
an
d
R
ef
er
en
ce

10­5

In calling this function we input the residuals from the olsmt output structure,
oOut.resid. Because the olsmt function automatically includes a
constant, by default the number of variables estimated in this regression is
equal to the columns of the dependent variable plus one. The code above uses
a more general method for setting the number of estimated variables using the
olsmt control structure. The scalar oc0.con is an element of the olsmt control
structure used to specify whether to include a constant. When no constant is
included, oc0.con is set to 0, and when a constant is included, oc0.con is
set to one.

Running all blocks of code above produces the following output:

Valid cases: 100 Dependent variable: Y
Missing cases: 0 Deletion method: None
Total SS: 7.658 Degrees of freedom: 94
R-squared: 0.046 Rbar-squared: -0.005
Residual SS: 7.307 Std error of est: 0.279
F(5,94): 0.901 Probability of F: 0.484
Durbin-Watson: 2.083
Standard Prob Standardized Cor with
Var Estimate Error t-value >|t| Estimate Dep Var
--
CONST 0.5232 0.0286 18.3244 0.000 --- ---
X1 0.0399 0.0335 1.1907 0.237 0.1212 0.1069
X2 -0.0373 0.0285 -1.3075 0.194 -0.1323 -0.1300
X3 -0.0202 0.0303 -0.6647 0.508 -0.0671 -0.0727
X4 -0.0241 0.0275 -0.8764 0.383 -0.0885 -0.0948
X5 0.0138 0.0264 0.5241 0.601 0.0532 0.0434
The standard R squared is

0.0457298

C
om

m
and

R
eference

The adjusted R squared is
-0.0158360

This example is more relevant when it utilizes the simple multivariate linear
model generated by the following data generation process:

y x x x x x ε= 0.4 + 4.75 + 0.9 + 3.2 − 2.1 − 2.9 +
t t1 2 3 4 4

To begin consider randomly generating a 5x500 matrix of independent data
(Xt) and the appropriate 1x500 vector of dependent data (Yt):

rndseed 89102;
xt = rndn(100,5);
yt = 0.4 + 4.75*xt[.,1] + 0.9*xt[.,2] + 3.2*xt[.,3]

- 2.1*xt[.,4] - 2.9*xt[.,5] + rndn(100,1);

struct olsmtControl oc0_2;
struct olsmtOut oOut_2;
oc0_2 = olsmtControlCreate();
oc0_2.res = 1;
oOut_2 = olsmt(oc0_2,0,yt,xt);
res = oOut_2.resid;
num_var = cols(xt) + oc0_2.con;
{ r, adj_r }= adjRsq(yt,res,num_var);

This produces the following output:

Valid cases: 100 Dependent variable: Y
Missing cases: 0 Deletion method: None
Total SS: 3461.187 Degrees of freedom: 94

10­6

adjrsq

C
om

m
an
d
R
ef
er
en
ce

10­7

R-squared: 0.972 Rbar-squared: 0.971
Residual SS: 95.912 Std error of est: 1.010
F(5,94): 659.640 Probability of F: 0.000
Durbin-Watson: 2.093
Standard Prob Standardized Cor with
Var Estimate Error t-value >|t| Estimate Dep Var
--
CONST 0.2996 0.1032 2.9036 0.005 --- ---
X1 4.7128 0.1076 43.7811 0.000 0.7671 0.6528
X2 0.9561 0.1058 9.0379 0.000 0.1600 0.3434
X3 3.3507 0.1178 28.4434 0.000 0.5081 0.3188
X4 -2.0465 0.1078 -18.9913 0.000 -0.3302 -0.2412
X5 -2.8348 0.1055 -26.8741 0.000 -0.4814 -0.3634

The standard R squared is 0.972289

The adjusted R squared is 0.970502

aggData
Purpose

Estimates a p'th order threshold autoregression and tests the
hypothesis of a linear autoregression, using the statistics described in
"Inference when a nuisance parameter is not identified under the null
hypothesis." (Hansen, 1996).

Library

tsmt

C
om

m
and

R
eference

Format

x_new = aggData(xt,st_freq,end_freq,method);

Input

xt Nxk matrix, data.

st_freq string, starting frequency of data: "M" for monthly or
"Q" for quarterly.

end_freq string, ending frequency of data: "M" for monthly or
"Q" for quarterly.

method string, method of aggregation, "B" for beginning of
period, "E" for end of period, "AVE" for moving
average.

Output

x_new matrix, aggregated data.

Source

aggregatedata.src

10­8

aggData

C
om

m
an
d
R
ef
er
en
ce

10­9

arimamt
Purpose

Estimates coefficients of a univariate time series model with
autoregressive­moving average errors. Model may include fixed
regressors.

Library

tsmt

Format

amo = arimamt(amc,y);

Input

amc An instance of an arimamtControl structure. The
following members of amc are referenced within this
routine:

amc.ar scalar, the autoregressive order.
Default = 0.

amc.const scalar, if 1, a constant is estimated, 0
otherwise. N×1 matrix, fixed
regressors. The number of rows in
the fixed regressor matrix must equal
the number of rows for y after

C
om

m
and

R
eference

differencing. Default = 1.

amc.diff scalar, the order of differencing.
Default = 0.

amc.itol 3×1 vector, controls the convergence
criterion.

[1] Maximum number of
iterations. Default = 100.

[2] Minimum percentage change
in the sum of squared errors.
Default = 1e­8.

[3] Minimum percentage change
in the parameter values.
Default = 1e­6.

amc.ma scalar, the moving average order.
Default = 0.

amc.output scalar, controls printing of output .

0 Nothing will be printed by
arimamt.

1 Final results are printed.

2 Final results, iterations
results, residual

10­10

arimamt

C
om

m
an
d
R
ef
er
en
ce

10­11

autocorrelations, Box­Ljung
statistic, and covariance and
correlation matrices are
printed.

Default = 1.

amc.ranktol scalar, the tolerance used in
determining if any of the singular
values are effectively zero when
computing the rank of a matrix.
Default = 1e­13.

amc.start scalar 0, then arimamt computes
starting values K×1 vector, starting
values. Default = 0.

amc.varn 1×(M+1) vector of parameter names.
This is used for models with fixed
regressors. The first element contains
the name of the independent variable;
the second through Mth elements
contain the variable names for the
fixed regressors. If amc.varn = 0,
the fixed regressors labeled as
X X X, , … , M0 1

. Default = 0.

y N×1 vector, data.

C
om

m
and

R
eference

Output

amo An instance of an arimamtOut structure containing the
following members:

amo.aic scalar, value of the Akaike
information criterion.

amo.b K×1 vector, estimated model
coefficients.

amo.e N×1 vector, residual from fitted
model.

amo.ll scalar, the value of the log
likelihood function.

amo.sbc scalar, value of the Schwartz
Bayesian criterion.

amo.vcb K×K matrix, the covariance matrix
of estimated model coefficients.

Remarks

There are other members of the arimamtControl structure which are used
by arimamt's likelihood function but need not be set by the user. These are
amc.b, amc.y, amc.n, amc.e, amc.k, amc.m, amc.inter.

10­12

arimamt

C
om

m
an
d
R
ef
er
en
ce

10­13

arimamt forces the autoregressive coefficients to be invertible (in other
words, the autoregressive roots have modulus greater than one). The moving
average roots will have modulus one or greater. If a moving average root is
one, arimamt reports a missing value for the moving average coefficient's
standard deviation, t­statistic and p­value. This is because these values are
meaningless when one of the moving average roots is equal to one. A moving
average root equal to one suggests that the data may have been over­
differenced.

Source

arimamt.src

arimamtControlCreate
Purpose

Sets the members of an instance of an arimamtControl structure
to default values.

Library

tsmt

Format

amc = arimamtControlCreate();

C
om

m
and

R
eference

Input

None

Output

amc An instance of an arimamtControl structure with its
members set to default values.

Remarks

Putting this instruction at the top of all programs that invoke arimamt is
generally good practice. This will prevent control variables from being
inappropriately defined when a program is run either several times or after
another program that also calls arimamt.

Source

arimamt.src

autocormt
Purpose

Computes specified autocorrelations for each column of a matrix.

Library

tsmt

10­14

autocormt

C
om

m
an
d
R
ef
er
en
ce

10­15

Format

a = autocormt(x,f,l);

Input

x N×K matrix. Autocorrelations will be computed for
each column separately. x is assumed to have 0 mean.

f scalar, in range [0, rows x() − 1], denoting the first
autocorrelation to compute.

l scalar, in range [0, rows x() − 1], denoting the last
autocorrelation to compute. It must be that f l≤ ; if
l = 0 and f = 0 , then l is set to rows x() − 1 and all
autocorrelations from f to l are computed. If l = 0 and
f < 0 , then only the 0th order autocorrelation is
computed (this equals x'x).

Output

a G×K matrix, where G l f= − + 1 , containing the
autocorrelations of order f f l, + 1,… , for each of the
columns of x. If the variance of any variable is 0,
missings will be returned for that variable.

C
om

m
and

R
eference

Remarks

The 0th autocorrelation will always be 1.

The data are assumed to have 0 mean. Thus, use:

x = x - meanc(x)';

prior to the use of this function if the mean is not 0.

Source

autoregmt.src

autocovmt
Purpose

Computes specified autocovariances for each column of a matrix.

Library

tsmt

Format

a = autocovmt(x,f,l);

10­16

autocovmt

C
om

m
an
d
R
ef
er
en
ce

10­17

Input

x N×K matrix. Autocovariances will be computed for
each column separately. x is assumed to have 0 mean.

f scalar, in range [0, rows x() − 1], denoting the first
autocovariance to compute.

l scalar, in range [0, rows x() − 1], denoting the last
autocovariance to compute. It must be that f l≤ ; if
l = 0 and f = 0 , then l is set to rows x() − 1 and all
autocovariances are computed. If l = 0 and f < 0 , then
only the 0th order autocovariance is computed (this
equals x'x).

Output

a G×K matrix, where G l f= − + 1 , containing the
autocovariances of order f f l, + 1,… , for each of the
columns of x.

Remarks

The 0th autocovariance is just the variance of the variable. The divisor for
each autocovariance is the number of elements involved in its computation.

Thus, the pth order cross product is divided by N P− , where N = rows(x),

C
om

m
and

R
eference

to obtain the pth order autocovariance.

The data are assumed to have 0 mean. Thus, use:

x = x - meanc(x)';

prior to the use of this function if the mean is not 0.

Source

autoregmt.src

automtControlCreate
Purpose

Sets the members of an instance of an automtControl structure to
default values.

Library

tsmt

Format

arc = automtControlCreate();

Input

None

10­18

automtControlCreate

C
om

m
an
d
R
ef
er
en
ce

10­19

Output

arc An instance of an automtControl structure with its
members set to default values.

Remarks

Putting this instruction at the top of all programs that invoke autoreg or
autoregmt is generally good practice. This will prevent control variables
from being inappropriately defined when a program is run either several times
or after another program that also calls one of these procedures.

Source

autoregmt.src

autoregmt
Purpose

Estimates coefficients of a regression model with autoregressive
errors of any specified order.

Library

tsmt

C
om

m
and

R
eference

Format

aro = autoregmt(arc,d0,lagvars,order);

Input

arc An instance of an automtControl structure. The
following members of arc are referenced within this
routine:

arc.const scalar. If 1, constant will be used in
model. Default = 1.

arc.header string, specifies the format for the
output header. arc.header can
contain zero or more of the
following characters:

t title is to be printed.

l lines are to bracket the
title.

d a date and time is to be
printed.

v version number of
program is to be
printed.

f file name of program is

10­20

autoregmt

C
om

m
an
d
R
ef
er
en
ce

10­21

to be printed

Example:

arc.header = "tld";

If arc.header = "", no header is
printed. Default = "tldvf".

arc.init scalar. If 1, only initial estimates will
be computed. Default = 0.

arc.iter scalar. If 0, iteration information will
not be printed. If 1, iteration
information will be printed
(arc.output must be nonzero).
Default = 0.

arc.maxvec scalar, the maximum number of
elements allowed in any one matrix.
Default = 20000.

arc.output scalar, if nonzero, results are printed
to screen. Default = 1.

arc.title string, a title to be printed at the top
of the output header (see
arc.header). By default, no title
is printed (arc.title="").

arc.tol scalar, convergence tolerance.

C
om

m
and

R
eference

Default = 1e­5.

d0 1×1 or 2×1 instance of a DS data structure. If there are
independent variables, d0 is 2×1. For the first instance in
d0,

d0[1].datamatrix if time series is stored in a matrix in
memory, N×1 matrix, time series.

d0[1].dname string, if time series is stored in a
GAUSS dataset, name of dataset.

d0[1].vnames string array, if time series is stored in
a GAUSS dataset, column name of
time series in the GAUSS dataset.

If there are independent variables in the model, then the
second instance in d0 includes:

d0[2].data matrix, if independent variables are
stored in a matrix in memory, N×K
matrix, time series.

d0[2].dname string, if the independent variables
are stored in a GAUSS dataset, name
of dataset.

d0[2].vnames string array, if the independent
variables are stored in a
GAUSS dataset, column names of
the independent variables in the

10­22

autoregmt

C
om

m
an
d
R
ef
er
en
ce

10­23

GAUSS dataset.

lagvars K×1 vector, the number of periods to lag the variables in
indvars. If there are no lagged variables, set to scalar 0.
The variables in indvars will be lagged the number of
periods indicated in the corresponding entries in
lagvars.

order scalar, order of the autoregressive process; must be greater
than 0 and less than the number of observations.

Output

aro An instance of an autoOut structure containing the
following members:

aro.acor (L+1)×1 vector,
autocorrelations.

aro.acov (L+1)×1 vector,
autocovariances.

aro.chisq scalar, ­2 * log­likelihood.

aro.coefs K×1 vector, estimated
regression coefficients.

aro.phi L×1 vector, lag coefficients.

aro.rsq scalar, explained variance.

C
om

m
and

R
eference

aro.sigsq scalar, variance of white noise
error.

aro.tobs scalar, number of observations.

aro.vcb K×K matrix, covariance matrix
of estimated regression
coefficients.

aro.vcphi L×L matrix, covariance matrix
of phi.

aro.vsig scalar, variance of aro.sigsq
(variance of the variance of
white noise error).

Remarks

This program will handle only datasets that fit in memory.

All autoregressive parameters are estimated up to the specified lag. You
cannot estimate only the first and fourth lags, for instance.

The algorithm will fail if the model is not stationary at the estimated
parameters. Thus, in that sense it automatically tests for stationarity.

Source

autoregmt.src

10­24

autoregmt

C
om

m
an
d
R
ef
er
en
ce

10­25

breitung
Purpose

Panel series unit root testing. The z­statistics constructed from the
mean t­statistic has an asymptotic standardized normal distribution
and tests the null hypothesis that all series are I(1) against the
alternative that all series are I(0)

Library

tsmt

Format

bstat = breitung(y,trend,constant,demean,lags);

Input

y T×M matrix, data, M > 5.

trend scalar, 0 = no trend, 1 = trend.

constant if nonzero, constant included in model.

demean scalar, 0 to specify no demeaning, or 1 to subtract cross­
sectional means.

lags scalar, number of lags.

C
om

m
and

R
eference

Output

bstat test statistic.

Remarks

The Breitung panel series unit root test utilizes the sample mean of the t­
statistics across all individual series within a panel of time series variables.
However, the procedure pre­adjusts data to address biased estimation.

It is assumed that the autoregressive parameter is constant across all panels.
This allows the use of the standard t­statistic but requires that the panels be
strongly balanced.

The procedure performs an individual ADF test on each series n then forms
the sample mean of the t­statistics. The z­statistic constructed from the mean
t­statistic has an asymptotic standardized normal distribution and tests the null
hypothesis that all series are I(1) against the alternative that all series are I(0).

chowfcst
Purpose

Tests and dates likely structural breaks using out­of­sample forecasts.

Library

tsmt

10­26

chowfcst

C
om

m
an
d
R
ef
er
en
ce

10­27

Format

{ cs,prob } = chowfcst(yt,res,window);

Input

yt Tx1 numerical vector of panel series data.

xt TxK numerical matrix of estimation regressors.

window scalar, a positive integer specifying a fixed window
size of K<window<T. Coefficient estimates from this
window will be used to forecast observations for the
last T­window observations.

Output

cs scalar, the Chow out­of­sample forecast F­stat.

prob scalar, probability.

Remarks

The Chow (1960) test uses out­of­sample forecasts, given a coefficient
estimates from a subset of the data sample. Under the null hypothesis of
constant coefficients, the out­of­sample forecasts are expected to be
unbiased, equivalently the forecast errors are expected to have zero mean.

C
om

m
and

R
eference

Reference

Chow, G.C. (1960). Tests of equality between sets of coefficients in two
linear regressions, Econometrica, 52, 211­22.

Source

chowfcst.src

cusum
Purpose

The Brown, Durbin, and Evans (1975) CUSUM test considers the empirical
fluctuation process of the cumulative sums of standardized residuals. Under the
null hypothesis of constant coefficients the residuals should have zero mean.
Hence, significant deviation from zero at time, t, indicates possible structural
change at time t. The test is valid for dynamic models.

Library

tsmt

Format

{ cs, cst2 } = cusum(yt,xt,gr,minwin);

Input

yt Tx1 numerical vector of panel series data.

10­28

cusum

C
om

m
an
d
R
ef
er
en
ce

10­29

xt TxK numerical matrix of estimation regressors.

gr scalar, 1 to graph the vector of CUSUM test statistics,
including boundaries or 0 for no graph.

minwin scalar, minimum regression window size.

Output

cst Tx1 vector containing CUSUM test statistics.

cst2 Tx1 vector containing CUSUM sq test statistics.

Remarks

The Brown, Durbin, and Evans (1975) CUSUM test considers the
empirical fluctuation process of the cumulative sums of standardized
residuals. Under the null hypothesis of constant coefficients the residuals
should have zero mean. Hence, significant deviation from zero at time, t,
indicates possible structural change at time t. The test is valid for dynamic
models.

Reference

Brown, R.L., Durbin, J., and Evans, J.M. (1975). Techniques for testing the
constancy of regression relationships over time, Journal of Royal Statistical
Society, Series B, 35, 149­192. .

C
om

m
and

R
eference

Source

cusum.src

dfgls
Purpose

Test for unit root in univariate time series.

Library

tsmt

Format

{ t_stat,z_crit } = dfgls(y,max_lags,trend);

Input

y N×1 vector, data.

max_lags maximum number of lags to be tested.

trend scalar, 0 = no trend, 1 = trend.

Output

tstat t­statistic.

10­30

dfgls

C
om

m
an
d
R
ef
er
en
ce

10­31

zcrit Elliot, Rothenberg and Stock (1996) critical values for the
GLS detrended unit root test at the 1%, 2.5%, 5%, and
10% significance level.

ecmmt
Purpose

Calculates and returns parameter estimates for an error correction
model.

Library

tsmt

Format

vmo = ecmmt(vmc,d0);

Input

vm
c

An instance of a varmamtControl structure. The following
members of vmc are referenced within this routine:

vmc.ar scalar, order of AR process. Default = 0.

vmc.rho scalar, number of cointegrating relations. Set
to ­1 to have GAUSS estimate this value.

C
om

m
and

R
eference

Default = 0.

vmc.header string, specifies the format for the output
header. vmc.header can contain zero or
more of the following characters:

t title is to be printed.

l lines are to bracket the
title.

d a date and time is to be
printed.

v version number of
program is to be
printed.

f file name being
analyzed is to be
printed.

Example:

vmc.header = "tld";

If vmc.header = "", no header is printed.
Default = "tldvf".

vmc.IndEquations K×L matrix of zeros and ones. Used to set
zero restrictions on the x variables to be

10­32

ecmmt

C
om

m
an
d
R
ef
er
en
ce

10­33

estimated. Used only if the number of
equations, vmc.L, is greater than one.
Elements set to one indicate the coefficients to
be estimated. If vmc.L = 1, all coefficients
will be estimated. If vmc.L > 1 and
vmc.IndEquations is set to a missing
value (the default), all coefficients will be
estimated.

vmc.lags scalar, number of lags over which ACF and
Diagnostics are calculated. Default = 12.

vmc.start Instance of a PV structure containing starting
values. See Section 3.7.2 for an example.

vmc.nodet scalar. Set vmc.nodet = 1 to suppress the
constant term from the fitted regression and
include it in the co­integrating regression;
otherwise, set vmc.nodet = 0. Default = 0.

vmc.nwtrunc scalar, the number of autocorrelations to use in
calculating the Newey­West correction. If
vmc.nwtrunc = 0, GAUSS will use a
truncation lag given by Newey and West,

vmc.nwtrunc T= 4(/ 100)2/9 .

vmc.ctl An instance of an sqpsolvemtControl
structure.

C
om

m
and

R
eference

vmc.ctl.covType scalar, if 2, QML
standard errors are
computed, if 0, none;
otherwise Wald­type.

vmc.ctl.printIte
rs

scalar, iteration
information printed
every
swc.ctl.printIte
rs­th iteration.

See documentation for
sqpsolvemtControl for further
information regarding members of this
structure.

vmc.olsqtol scalar, the tolerance used in determining if
diagonal elements are approaching zero in
olsqrmt. Default = 1e­14.

vmc.output scalar, if nonzero, results are printed to screen.
Default = 1.

vmc.row scalar. Specifies how many rows of the
dataset are to be read per iteration of the read
loop. By default, the number of rows to be
read is calculated by ecmmt.

vmc.scale scalar or an L×1 vector, scales for the time
series. If scalar, all series are multiplied by the

10­34

ecmmt

C
om

m
an
d
R
ef
er
en
ce

10­35

value. If an L×1 vector, each series is
multiplied by the corresponding element of
vmc.scale. Default = 4/standard deviation
(found to be best by experimentation).

vmc.SetConstrain
ts

scalar, set to a nonzero value to impose
stationarity and invertibility by constraining
roots of the AR and MA characteristic
equations to be outside the unit circle. Set to
zero to estimate an unconstrained model.
Default = 1.

vmc.title string, a title to be printed at the top of the
output header (see vmc.header). By default,
no title is printed (vmc.title = "").

d0 1×1 or 2×1 instance of a DS data structure. If there are independent
variables, d0 is 2×1. For the first instance in d0,

d0[1].datamatrix if time series is stored in a matrix in memory,
N×1 matrix, time series.

d0[1].dname string, if time series is stored in a
GAUSS dataset, name of dataset.

d0[1].vnames string array, if time series is stored in a
GAUSS dataset, column name of time series in
the GAUSS dataset.

If there are independent variables in the model, then the second

C
om

m
and

R
eference

instance in d0 includes:

d0[2].data matrix, if independent variables are stored in a
matrix in memory, N×K matrix, time series.

d0[2].dname string, if the independent variables are stored
in a GAUSS dataset, name of dataset.

d0[2].vnames string array, if the independent variables are
stored in a GAUSS dataset, column name of
the independent variables in the
GAUSS dataset.

Output

vmo An instance of a varmamtOut structure containing the
following members:

vmo.aa L×r matrix of coefficients, such that
aa bb* = Π (see remarks below).

vmo.acfm L×(p*L) matrix, the autocorrelaton function.
The first L columns are the lag l ACF; the last
L columns are the lag p ACF.

vmo.aic L×1 vector, the Akaike Information Criterion.

vmo.arroots p×1 vector of AR roots, possibly complex.

10­36

ecmmt

C
om

m
an
d
R
ef
er
en
ce

10­37

vmo.bb r×L matrix, eigenvectors spanning the
cointegrating space of dimension r.

vmo.bic L×1 vector, the Schwarz Bayesian
Information Criterion.

vmo.covpar Q×Q matrix of estimated parameters where Q
is the number of estimated parameters. The
parameters are in the row­major order: Π ,
AR(1) to AR p() , beta (if x variables were
present in the estimation), and the constants.

vmo.fct L×1 vector, the likelihood value.

vmo.lagr An instance of an sqpsolvemtLagrange
structure containing the following members:

vmo.lagr.lineq linear equality
constraints.

vmo.lagr.nlineq nonlinear equality
constraints.

vmo.lagr.linineq linear inequality
constraints.

vmo.lagr.nlinineq nonlinear inequality
constraints.

vmo.lagr.bounds bounds.

C
om

m
and

R
eference

When an inequality or bounds constraint is
active, its associated Lagrangean is nonzero.
The linear Lagrangeans precede the nonlinear
Lagrangeans in the covariance matrices.

vmo.lrs L×1 vector, the likelihood ratio statistic.

vmo.maroots q×1 vector of MA roots, possibly complex.

vmo.pacfm L×p*L) matrix, the partial autocorrelation
function, computed only if a univariate model
is estimated. The first L columns are the lag 1
ACF; the last L columns are the lag p ACF.

vmo.par An instance of a PV structure containing the
parameter estimates, which can be retrieved
using pvUnpack. For example,

struct varmamtOut vout;
vout = varmaxmt(vmc,y,0);
ph = pvUnpack(vout.par, "zeta");
th = pvUnpack(vout.par, "pi");
vc = pvUnpack(vout.par, "vc");

The complete set of parameter matrices and
arrays that can be unpacked depending on the
model is:

phi L×p×p array,
autoregression

10­38

ecmmt

C
om

m
an
d
R
ef
er
en
ce

10­39

coefficients.

theta L×q×q array, moving
average coefficients.

vc L×L residual
covariance matrix.

beta L×K regression
coefficient matrix.

beta0 L×1 constant vector.

zeta L×p×ar array of ecm
coefficients.

pi L×L matrix. Note
that 'pi' is a reserved
word in GAUSS.
Users will need to
assign this to a
different variable
name.

vmo.portman vmc.lags­(p+q)×3 matrix of portmanteau
statistics for the multivariate model and Ljung­
Box statistics for the univariate model. The
time period is in column one, the Qs
(portmanteau) statistic in column two and the
p­value in column three.

C
om

m
and

R
eference

vmo.residuals T×L matrix, residuals.

vmo.retcode 2×1 vector, return code. First element:

0 normal convergence.

1 forced exit.

2 maximum number of
iterations exceeded.

3 function calculation
failed.

4 gradient calculation
failed.

5 Hessian calculation
failed.

6 line search failed.

7 error with
constraints.

Second element:

0 covariance matrix of
parameters failed.

1 ML covariance
matrix.

10­40

ecmmt

C
om

m
an
d
R
ef
er
en
ce

10­41

2 QML covariance
matrix.

3 Cross­Product
covariance matrix.

vmo.ss L×2 matrix, the sum of squares for Y in
column one and the sum of squared error in
column two.

vmo.va r×1 vector, eigenvalues.

Remarks

Errors are assumed to be distributed N(0,Q).

Source

varmamt.src

garch
Purpose

Estimates parameters of univariate time series.

Library

tsmt

C
om

m
and

R
eference

Format

out1 = garch(f0,d0);

Input

f0 garchControl structure.

f0.p scalar, order of the
GARCH parameters.

f0.q scalar, order of the ARCH
parameters.

f0.density scalar, density of error
term, 0 ­ Normal, 1 ­
Student's t, 3 ­ skew
generalized t.

f0.asymmetry scalar, if nonzero
assymetry terms are
added.

f0.inmean scalar, GARCH­in­mean,
square root of conditional
variance is included in the
mean equation.

f0.unitRoot scalar, if nonzero
IGARCH model,

10­42

garch

C
om

m
an
d
R
ef
er
en
ce

10­43

parameters contain a unit
root.

f0.cvConstraintsType scalar, type of
enforcement of
nonnegative conditional
variances, 0 ­ direct
constraints, 1 ­ Nelson &
Cao constraints

f0.covType scalar, type of covariance
matrix of parameters, 1 ­
ML, 2 ­ QML, 3 ­ none.

d0 1×1 or 2×1 DS structure, data.

d0[1].endoVector N×1 vector, time series..

d0[1].exoMatrix N×k matrix, independent
variables (optional).

Output

out1 garchEstimation structure.

aic scalar, Akiake criterion.

bic scalar, Bayesian information
criterion.

C
om

m
and

R
eference

lrs scalar, likelihood ratio statistic.

numbObs scalar, number of observations.

df scalar, degrees of freedom.

par instance of PV structure containing
parameter estimates.

retcode scalar, return code.

1 normal convergence.

1 normal convergence.

2 forced exit.

3 function calculation failed.

4 gradient calculation failed.

5 Hessian claculation failed.

6 line search failed.

7 error with constraints.

8 function complex.

moment K×K matrix, moment matrix of
parameter estimates.

climits K×2 matrix, confidence limits.

10­44

garch

C
om

m
an
d
R
ef
er
en
ce

10­45

garchm
Purpose

Estimates parameters of GARCH­in­mean model, i.e., where the
square root of the conditional variance is added to the mean equation.

Library

tsmt

Format

out1 = garchm(f0,d0);

Input

f0 garchControl structure.

f0.p scalar, order of the
GARCH parameters.

f0.q scalar, order of the ARCH
parameters.

f0.density scalar, density of error
term, 0 ­ Normal, 1 ­
Student's t, 3 ­ skew
generalized t.

C
om

m
and

R
eference

f0.asymmetry scalar, if nonzero
assymetry terms are
added.

f0.inmean scalar, GARCH­in­mean,
square root of conditional
variance is included in the
mean equation.

f0.unitRoot scalar, if nonzero
IGARCH model,
marameters contain a unit
root.

f0.cvConstraintsType scalar, type of
enforcement of
nonnegative conditional
variances, 0 ­ direct
constraints, 1 ­ Nelson &
Cao constraints.

f0.covType scalar, type of covariance
matrix of parameters, 1 ­
ML, 2 ­ QML, 3 ­ none.

d0 1×1 or 2×1 DS structure, data.

d0[1].endoVector N×1 vector, time series.

d0[1].exoMatrix N×k matrix, independent

10­46

garchm

C
om

m
an
d
R
ef
er
en
ce

10­47

variables (optional).

Output

out1 garchEstimation structure.

aic scalar, Akiake criterion.

bic scalar, Bayesian information
criterion.

lrs scalar, likelihood ratio statistic.

numbObs scalar, number of observations.

df scalar, degrees of freedom.

par instance of PV structure containing
parameter estimates.

retcode scalar, return code.

1 normal convergence.

1 normal convergence.

2 forced exit.

3 function calculation failed.

4 gradient calculation failed.

C
om

m
and

R
eference

5 Hessian claculation failed.

6 line search failed.

7 error with constraints.

8 function complex.

moment K×K matrix, moment matrix of
parameter estimates.

climits K×2 matrix, confidence limits.

getlrv
Purpose

Estimate long­run variance following user­selected kernel.

Library

tsmt

Format

{ LRV, bw } = getlrv(y, kernel, lag_method, model);

10­48

getlrv

C
om

m
an
d
R
ef
er
en
ce

10­49

Input

y N×1 vector, data.

kernel string, "Bartlet," "Parzen," "Quad."

lag_method string, "LLC," "NW."

model scalar, ­1 = no constant nor trend; 0 = constant; 1 =
constant and trend.

Output

LRV long run variance.

bw selected bandwidth.

gjrgarch
Purpose

Estimates parameters of GJR GARCH model, i.e., one with
asymmetry parameters (Glosten, L.R., Jagannathan, R., and Runkle,
D.E., 1993).

Library

tsmt

C
om

m
and

R
eference

Format

out1 = GJRGarch(f0,d0);

Input

f0 garchControl structure.

f0.p scalar, order of the
GARCH parameters.

f0.q scalar, order of the ARCH
parameters.

f0.density scalar, density of error
term, 0 ­ Normal, 1 ­
Student's t, 3 ­ skew
generalized t.

f0.inmean scalar, GARCH­in­mean,
square root of conditional
variance is included in the
mean equation.

f0.unitRoot scalar, if nonzero
IGARCH model,
marameters contain a unit
root.

f0.cvConstraintsType scalar, type of

10­50

gjrgarch

C
om

m
an
d
R
ef
er
en
ce

10­51

enforcement of
nonnegative conditional
variances, 0 ­ direct
constraints, 1 ­ Nelson &
Cao constraints.

f0.covType scalar, type of covariance
matrix of parameters, 1 ­
ML, 2 ­ QML, 3 ­ none.

d0 1×1 or 2×1 DS structure, data.

d0[1].endoVector N×1 vector, time series.

d0[1].exoMatrix N×k matrix, independent
variables (optional).

Output

out1 garchEstimation structure.

aic scalar, Akiake criterion.

bic scalar, Bayesian information
criterion.

lrs scalar, likelihood ratio statistic.

numbObs scalar, number of observations.

C
om

m
and

R
eference

df scalar, degrees of freedom.

par instance of PV structure containing
parameter estimates.

retcode scalar, return code.

1 normal convergence.

1 normal convergence.

2 forced exit.

3 function calculation failed.

4 gradient calculation failed.

5 Hessian claculation failed.

6 line search failed.

7 error with constraints.

8 function complex.

moment K×K matrix, moment matrix of
parameter estimates.

climits K×2 matrix, confidence limits.

10­52

gjrgarch

C
om

m
an
d
R
ef
er
en
ce

10­53

hansen
Purpose

Test for stability of all parameters using a cumulative sums of
weighted full sample residuals. The test employs the locally best
invariant tests in a Lagrange multiplier format.

Library

tsmt

Format

{ ny,prob } = hansen(yt,xt);

Input

yt Tx1 numerical vector of panel series data.

xt TxK numerical matrix of estimation regressors.

Output

ny scalar, the Hansen­Nyblom test statistic.

crit vector, 1%, 2.5%, 5%, 7.5%, 10%, and 20% critical
values

C
om

m
and

R
eference

Reference

1. Nyblom, J. (1989). Testing for the constancy of parameters over time,
Journal of American Statistical Association, 84(405), 223­230.

2. Hansen, B.E. (1992). Testing for parameter instability in linear models,
Journal of Policy Modeling, 14(4): 517­533.

Source

hansen.src

igarch
Purpose

Estimates integrated GARCH model, i.e., a model containing a unit
root.

Library

tsmt

Format

out1 = igarch(f0,d0);

Input

f0 garchControl structure.

10­54

igarch

C
om

m
an
d
R
ef
er
en
ce

10­55

f0.p scalar, order of the
GARCH parameters.

f0.q scalar, order of the ARCH
parameters.

f0.density scalar, density of error
term, 0 ­ Normal, 1 ­
Student's t, 3 ­ skew
generalized t.

f0.asymmetry scalar, if nonzero
assymetry terms are
added.

f0.inmean scalar, GARCH­in­mean,
square root of conditional
variance is included in the
mean equation.

f0.stConstraintsType scalar, type of
enforcement of stationarity
requirements, 1 ­ roots of
characteristic polynomial
constrained outside unit
circle, 2 ­ arch, GARCH
parameters constrained to
sum to less than one and
greater than zero, 3 ­

C
om

m
and

R
eference

none.

f0.cvConstraintsType scalar, type of
enforcement of
nonnegative conditional
variances, 0 ­ direct
constraints, 1 ­ Nelson &
Cao constraints.

f0.covType scalar, type of covariance
matrix of parameters, 1 ­
ML, 2 ­ QML, 3 ­ none.

d0 1×1 or 2×1 DS structure, data.

d0[1].endoVector N×1 vector, time series..

d0[1].exoMatrix N×k matrix, independent
variables (optional).

Output

out1 garchEstimation structure.

aic scalar, Akiake criterion.

bic scalar, Bayesian information
criterion.

lrs scalar, likelihood ratio statistic.

10­56

igarch

C
om

m
an
d
R
ef
er
en
ce

10­57

numbObs scalar, number of observations.

df scalar, degrees of freedom.

par instance of PV structure containing
parameter estimates.

retcode scalar, return code.

1 normal convergence.

1 normal convergence.

2 forced exit.

3 function calculation failed.

4 gradient calculation failed.

5 Hessian claculation failed.

6 line search failed.

7 error with constraints.

8 function complex.

moment K×K matrix, moment matrix of
parameter estimates.

climits K×2 matrix, confidence limits.

C
om

m
and

R
eference

ips
Purpose

Panel series unit root testing. This test uses the sample mean of the t­
statistics across all individual series within a panel of time series
variables.

Library

tsmt

Format

{ zstat, pcrit } = ips(y,trend,demean,lags, print_out);

Input

y N×k matrix, data, k >= 5.

trend scalar, 0 =no trend, 1 = trend.

demean if nonzero, means removed.

lags scalar or k×1 vector, lags.

print_out if nonzero, intermediate quantities printed to screen.

10­58

ips

C
om

m
an
d
R
ef
er
en
ce

10­59

Output

zstat test statistic.

pcrit critical values for unit root testing at the 1%, 2.5%, 5%,
and 10% significance level.

kpss
Purpose

Test for stationarity using a Lagrange Multiplier score statistic.

Library

tsmt

Format

{ tstat, crit } = kpss(y, max_lags, trend, qsk, auto,
print_out);

Input

y N×1 vector, data.

max_lags if max_lags <= 0, maximum lag set using Schwert
criterion; if ­1, Schwert criterion = 12; if 0, Schwert

C
om

m
and

R
eference

criterion = 4; else if max_lags > 0, maximum
lag = max_lags.

trend scalar, 0 no trend, 1 trend.

qsk if nonzero, quadratic spectral kernel is used.

auto if nonzero, automatic max_lags computed.

print_out if nonzero, intermediate quantities printed to the screen.

Output

tstat test statistic for each lag.

crit critical values for stationary test at the 1%, 2.5%, 5%,
and 10% significance level.

llc
Purpose

Panel series unit root testing. The Levin­Lin­Chu panel series unit
root test assumes a homogenous autoregressive parameter and
independently distributed error terms across all series.

10­60

llc

C
om

m
an
d
R
ef
er
en
ce

10­61

Library

tsmt

Format

tstat = llc(y,trend,constant,demean,lags,kernel,
 lag_meth,print_out);

Input

y N×k matrix, data, k > 5.

trend scalar, 0 ­ no trend, 1 ­ trend.

constant if nonzero, constant included in model.

demean if nonzero, means removed.

lags scalar, number of lags.

kernel string, "Bartlet," "Parzen," "Quad."

lag_meth string, "LLC," "NW."

print_out if nonzero, intermediate quantities printed to the screen.

Output

tstat test statistic.

C
om

m
and

R
eference

lsdvmt
Purpose

Estimates the parameters of the least squares dummy variable model
with bias correction.

Library

tsmt

Format

out = lsdvmt(lsc,d0,series_len,num_lags);

Input

lsc An instance of a lsdvmtControl structure. The
following members of lsc are referenced within this
routine:

lsc.Constrain scalar, if nonzero constraints will be
applied to the autoregression
coefficients. Default = 1.

lsc.scale scalar, if nonzero, data are scaled.

lsc.output scalar, determines the output to be
printed.

lsc.title string, title to be printed at top of

10­62

lsdvmt

C
om

m
an
d
R
ef
er
en
ce

10­63

header.

d0 1×1 or 2×1 instance of a DS data structure. If there are
independent variables, d0 is 2×1. For the first instance
in d0:

d0
[1].datamatrix

if time series is stored in a matrix in
memory, N×1 matrix, time series.

d0[1].dname string, if time series is stored in a
GAUSS dataset, name of dataset.

d0[1].vnames string array, if time series is stored
in a GAUSS dataset, column name
of time series in the GAUSS dataset.

If there are independent variables in the model, then the
second instance in d0 includes:

d0[2].data matrix, if independent variables are
stored in a matrix in memory, N×K
matrix, time series.

d0[2].dname string, if the independent variables
are stored in a GAUSS dataset,
name of dataset.

d0[2].vnames string array, if the independent
variables are stored in a
GAUSS dataset, column name of
the independent variables in the

C
om

m
and

R
eference

GAUSS dataset.

series_len scalar, length of time series, that is, the number of time
periods in the data.

num_lags scalar, number of lagged dependent variables on the
right­hand side.

Output

out An instance of an lsdvOutstructure. The following
members of out are referenced within this routine:

AutoCoefficients J×1 vector, uncorrected
autoregression coefficients.

RegCoefficients K×1 vector, uncorrected
regression coefficients.

AutoCoefficientsCorr J×1 vector, bias corrected
autoregression coefficients.

RegCoefficientsCorr K×1 vector, bias corrected
regression coefficients.

AutoStderrs J×1 vector, autoregression
coefficient standard errors.

10­64

lsdvmt

C
om

m
an
d
R
ef
er
en
ce

10­65

RegStderrs K×1 vector, regression
coefficient standard errors.

CovPar K×K matrix, covariance
matrix of parameters

SSresidual scalar, residual sums of
squares.

SStotal scalar, total sums of
squares.

SSexplained scalar, explained sums of
squares.

SSpooledResidual scalar, pooled residual
sums of squares.

biasCorr K+J×1 vector, bias
corrections.

Lagrange J×2 matrix, Lagrangeans
for constraints.

numCases scalar, number of cases.

numMissing scalar, number of
observations with missing
data.

numDF scalar, number of degrees
of freedom.

C
om

m
and

R
eference

numObservations scalar, number of
observations.

numParameters scalar, number of
parameters.

numPeriods scalar, number of periods
in time series.

Remarks

The data must be contained in a GAUSS dataset cross­sectional unit by cross­
sectional unit, with one variable containing an index for the units. From each
cross­sectional unit all observations must be grouped together. For example,
for the first cross­sectional unit there may be 10 rows in the dataset, for the
second cross­sectional unit there may be another 10 rows, and so on. Each row
in the dataset contains measurements on the endogenous and exogenous
variables measured for each observation along with the index identifying the
cross­sectional unit.

The index variable must be a series of integers. While all observations for
each cross­sectional unit must be grouped together, they do not have to be
sorted according to the index.

Example

The following example is taken from the program lsdvmt.e, located in the
examples subdirectory. The program uses the sample data in
jdatamt.dat.

10­66

lsdvmt

C
om

m
an
d
R
ef
er
en
ce

10­67

library tsmt;

struct lsdvmtControl lsc;
struct lsdvmtOut out;
lsc = lsdvmtControlCreate();

z = loadd("lsdvmt");
out = lsdvmt(tsc,z[.,1],z[.,2:4],5,1);

Source

lsdvmt.src

lsdvmtControlCreate
Purpose

Sets the members of an instance of an lsdvmtControl structure to
default values.

Library

tsmt

Format

lsc = lsdvmtControlCreate();

C
om

m
and

R
eference

Input

None

Output

lsc An instance of an lsdvmtControl structure with its
members set to default values.

Remarks

Putting this instruction at the top of all programs that invoke lsdvmt is
generally good practice. This will prevent control variables from being
inappropriately defined when a program is run either several times or after
another program that also calls lsdvmt.

Source

lsdvmt.src

macfmt
Purpose

Finds an autocorrelation function matrix for multiple dependent
variables.

Library

tsmt

10­68

macfmt

C
om

m
an
d
R
ef
er
en
ce

10­69

Format

x = macfmt(y,lag);

Input

y T×L matrix of data.

lag scalar, the lag for which an autocorrelation matrix is
desired. Specify 0 to obtain the initial correlation.

Output

x L×L matrix of autocorrelations, res and res(­lag).

Source

varmamt.src

mosum
Purpose

Tests and dates likely structural breaks using a moving window sums
of recursive residuals. Estimation procedure is user specified and
dynamic models are permitted.

C
om

m
and

R
eference

Library

tsmt

Format

ms = mosum(yt,xt,h,gr,level);

Input

yt Tx1 numerical vector of panel series data.

xt TxK numerical matrix of estimation regressors.

h scalar, a 0<h<1, bandwidth parameter for determining
moving window size..

gr scalar, any number greater than zero will graph the
vector of MOSUM test statistics, including boundaries.

level scalar, confidence level for creating statistic boundaries.

Output

ms vector containing T­K MOSUM test statistics.

Remarks

Consider the a linear model such that

10­70

mosum

C
om

m
an
d
R
ef
er
en
ce

10­71

∼ ()
y x β u

u σ

t n

= +

0, ,

= 1,… ,

t t t

t

′
,

2

The MOSUM test utilizes the standardized one­step ahead recursive
estimation residuals. The estimation residual are given by

µ

w =

"

t

y B x

f

−
t t y

t

−1

where

µ








()f σ x x x x= 1 +

t t t t t
2 ′ ′

−1

The resulting MOSUM test statistic utilizes the cumulative sum of these
residuals such that

µ

µ

 

 

∑MOSUM =t
i k N t

k N t η
w

σ
= + +1

+ +

η

η
j

w

⌊ ⌋

where

N =η
n η−

(1 −)

⌊ ⌋

and

C
om

m
and

R
eference

µ ∑σ w w= (−)w n k
t

n

t

2 1

−
=1

2

numCombReplace
Purpose

Calculates the number of possible permutations of n number of items
chosen k times, with replacement.

Library

tsmt

Format

y = numCombReplace(n,k);

Input

n number of items.

k number of times items are chosen.

Output

y number of possible combinations allowing for

10­72

numCombReplace

C
om

m
an
d
R
ef
er
en
ce

10­73

replacement.

Example

To find the number of permutations of 10 items, chosen 3 times, allowing for
replacement we call the GAUSS procedure numCombReplace

numCombReplace(10,3);

The resulting output reads

220.0000

Source

permutate.src

numPerm
Purpose

Calculates the number of possible permutations of n number of items
chosen k times, without replacement.

Library

tsmt

C
om

m
and

R
eference

Format

num = numPerm(n,k);

Input

n number of items.

k number of times items are chosen.

Output

num number of possible permutations without replacement.

Example

To find the number of permutations of 10 items, chosen 3 times, withut
replacement we call the GAUSS procedure numPerm

numperm(10,3);

The resulting output reads

720.0000

Source

permutate.src

10­74

numPerm

C
om

m
an
d
R
ef
er
en
ce

10­75

numPermReplace
Purpose

Calculates the number of possible permutations of n number of items
chosen k times with replacement.

Library

tsmt

Format

num = numPermReplace(n,k);

Input

n number of items.

k number of times items are chosen.

Output

num number of possible permutations allowing for
replacement.

Example

To find the number of permutations of 10 items, chosen 3 times, allowing for

C
om

m
and

R
eference

replacement we call the GAUSS procedure numPermReplace

numPermReplace(10,3);

The resulting output reads

1000.0000

Source

permutate.src

nwmt
Purpose

Finds the Newey­West covariance matrix.

Library

tsmt

Format

x = nwmt(covb,resid,nwtrunc);

Input

covb Q×Q matrix, covariance matrix for the AR parameters.

10­76

nwmt

C
om

m
an
d
R
ef
er
en
ce

10­77

resid T×L matrix of residuals.

nwtrunc scalar, the number of autocorrelations to use in
calculating the Newey­West correction (q in the
Remarks section below). If nwtrunc = 0, GAUSS will
use a truncation lag given by Newey and West,
q T= 4(/ 100)2/9 .

Output

x Q×Q matrix, Newey­West adjusted covariances.

Remarks

The Newey­West correction is used to account for the effect of
heteroskedasticity and residual serial correlation on estimated parameter
standard errors. The adjusted parameter covariance matrix is

X ′ X X ′ X() Ω()−1 −1 where.







Σ Σ Σε x x x ε ε x x ε ε xΩ = + 1 − (+)(11)
t

T

t t
′
t

j

q

j

q t j

T

t t t−j t−j t−j t−j t t
=1

2

=1 + 1 = +1

′ ′

Source

varmamt.src

C
om

m
and

R
eference

nyblom
Purpose

Tests for stability of all parameters using a cumulative sums of
weighted full sample residuals. The test employs the locally best
invariant tests in a Lagrange multiplier format.

Library

tsmt

Format

{ ny,crit } = nyblom(yt,xt);

Input

yt Tx1 numerical vector of panel series data.

xt TxK numerical matrix of estimation regressors.

Output

ny scalar, the Nyblom test statistic.

crit vector, 1%, 2.5%, 5%, 7.5%, 10%, and 20% critical
values.

10­78

nyblom

C
om

m
an
d
R
ef
er
en
ce

10­79

Reference

1. Nyblom, J. (1989). Testing for the constancy of parameters over time,
Journal of American Statistical Association, 84(405), 223­230.

2. Hansen, B.E. (1992). Testing for parameter instability in linear models,
Journal of Policy Modeling, 14(4): 517­533.

Source

hansen.src

pacmt
Purpose

Computes partial autocorrelations for a univariate time series.

Library

tsmt

Format

a = pacfmt(y,l,d);

Input

y N×1 vector, data.

l scalar, number of partial correlations to compute.

C
om

m
and

R
eference

d scalar, order of differencing.

Output

a 1×1 vector, partial autocorrelations.

Source

tsutilmt.src

paramConfigmt
Purpose

Returns parameter estimates from ecmmt and varmaxmt.

Library

tsmt

Format

coeffs = paramConfigmt(p,q,coeffs,se,x,ecmflag);

Input

p scalar, order of the AR process.

10­80

paramConfigmt

C
om

m
an
d
R
ef
er
en
ce

10­81

q scalar, order of the MA process.

coeffs L*(p+q+K+1)×1 vector of coefficient estimates in the
order AR, MA, x, constant.

se L*(p+q+K+1)×1 vector of standard error estimates in
the order AR, MA, x, constant.

x T×K matrix of explanatory variables.

ecmflag scalar, equals one if an ECM model was estimated,
zero otherwise.

Output

coeffs Compact matrix created using vput. Read it using
vread. It contains:

pi L×L matrix, the impact matrix. Only
returned if an ECM model was
estimated.
Note that pi is a reserved word in
GAUSS. Users will need to assign this
to a different variable name.

pi_se L×L matrix of impact coefficient
standard errors. Only returned if an
ECM model was estimated.

phi p*(L×L) matrix of AR coefficient
estimates stacked in the order

C
om

m
and

R
eference

AR AR p(1),… , () .

phi_se p*(L×L) matrix of AR standard
errors stacked in the order
AR AR p(1),… , () .

theta q*(L×L) matrix of MA coefficient
estimates stacked in the order
MA MA q(1),… , () . Only returned if
a varmaxmt model was estimated.

theta_se q*(L×L) matrix of MA standard
errors stacked in the order
MA MA q(1),… , () . Only returned if
a varmaxmt model was estimated.

beta L×K matrix of x coefficient
estimates. Only returned if a
varmaxmt model was estimated.

beta_se L×K matrix of x coefficient standard
errors. Only returned if a
varmaxmt model was estimated.

Source

varmamt.src

10­82

paramConfigmt

C
om

m
an
d
R
ef
er
en
ce

10­83

permReplace
Purpose

Lists all possible permutations with replacement for n number of
items, chosen k times.

Library

tsmt

Format

y = permReplace(n,k);

Input

n number of items.

k number of times items are chosen.

Output

y a matrix listing all possible permutations.

Example

To list all permutations with replacement for 3 items, chosen 2 times, we call

C
om

m
and

R
eference

the GAUSS procedure permReplace

permReplace(3,2);

The resulting output reads

1.0000000 1.0000000
1.0000000 2.0000000
1.0000000 3.0000000
2.0000000 1.0000000
2.0000000 2.0000000
2.0000000 3.0000000
3.0000000 1.0000000
3.0000000 2.0000000
3.0000000 3.0000000

Source

permReplace.src

permutate
Purpose

Lists all possible permutations without replacement for n number of
items, chosen k times.

Library

tsmt

10­84

permutate

C
om

m
an
d
R
ef
er
en
ce

10­85

Format

y = permutate(n,k);

Input

n number of items.

k number of times items are chosen.

Output

y a matrix listing all possible permutations.

Source

permutate.src

rolling
Purpose

Performs rolling OLS regressions for a provided vector of dependent
data and matrix of independent regressors.

Library

tsmt

C
om

m
and

R
eference

Format

{ coef,res } = rolling(yt,xt,window,add,graph);

Input

yt Tx1 numerical vector of panel series data.

xt TxK numerical matrix of estimation regressors.

window scalar, a positive integer specifying a fixed window
size of K<window<T. A window size of less than zero
results in an expanding window.

add scalar, specifying the initial observation for the forward
expanding window. Negative values indicate a
backward window expansion, beginning with the last
add number of observations. The add input is valid
only if a negative window size is provided.

graph scalar, any number greater than zero will graph the
rolling values of all coefficient estimates, including the
constant.

Output

coef matrix, rolling coefficient estimates.

res matrix, one­step ahead rolling residuals.

10­86

rolling

C
om

m
an
d
R
ef
er
en
ce

10­87

Remarks

The GAUSS rolling procedure performs rolling OLS regressions for a
provided vector of dependent data and matrix of independent regressors.

Reference

Zivot, E., and Wang, J. (2002).Modeling Financial Time Series with S-
PLUS. Springer­Verlag, New York.

Source

rolling.src

sbControlCreate
Purpose

Sets the members of a declared structural break control structure to
default values.

Library

tsmt

Format

sbc0 = sbControlCreate();

C
om

m
and

R
eference

Input

None

Output

sbc0 An instance of a sbControlCreate structure with
all members set to default values.

Source

sbcontrolcreate.src

sbreak
Purpose

Estimates the p'th order threshold autoregression model.

Library

tsmt

Format

sbout = sbreak(yt,xt,zt,sbc0);

10­88

sbreak

C
om

m
an
d
R
ef
er
en
ce

10­89

Input

yt Nx1 vector, data.

xt autoregressive order of the TAR model.

zt scalar or vector, lags (below p) to omit from
autoregression [0 implies an AR(p)].

sbc0 sbControl structure containing the following elements:

omit scalar or vector, lags (below p) to
omit from autoregression [0 implies
an AR(p)].

lowerQuantile scalar, the lower quantile for trimming
data.

upperQuantile scalar, the upper quantile for trimming
data.

printOutput scalar, 0 or 1, 1 indicates screen
output.

graph scalar, 0 or 1, 1 indicates screen
output.

dstart scalar, starting date in DT scalar
format.

freq frequency of the data per year. Valid
options include:.

C
om

m
and

R
eference

1 yearly.

4 quarterly.

12 yearly.

Output

sbOutput sbOutput structure containing the following elements:

breakDatematrix, MxM of date breaks estimated for
possible number of breaks less than or
equal to m.

breakSSR MxM, vector of ssr associated with all
number of breaks less than or equal to m.

References

Bai, J and Perron, P. (2003) Computation and analysis of multiple structural
change models, Journal of Applied Econometrics, 18(1), 1­22.

Source

sb.src

10­90

sbreak

C
om

m
an
d
R
ef
er
en
ce

10­91

selectLags
Purpose

Select lags based on method of statistical inference.

Library

tsmt

Format

{ opt,crit_mat } = selectLags(y,max_lag,method);

Input

y N×1 vector, data.

max_lag scalar, maximum lags.

method string, "AIC," "BIC," "HQC," "LRS," "FPE."

Output

opt scalar, optimum lags.

crit_mat vector, critical values for each lag.

C
om

m
and

R
eference

simarmamt
Purpose

Simulate ARMA time series process.

Library

tsmt

Format

y = simarmamt(b,p,q,const,trend,n,k,std,seed);

Input

b K×1 vector, coefficient values for theoretical ARMA
process.

p scalar, the autoregressive order.

q scalar, the moving average order.

const scalar, value of the constant term N×M matrix, fixed
regressor matrix.

trend scalar, trend parameter or 0 for no trend.

n scalar, the number of observations to generate.

k scalar, the number of replications to generate.

10­92

simarmamt

C
om

m
an
d
R
ef
er
en
ce

10­93

std scalar, the standard deviation of the error process.

seed scalar, the value of the seed. If seed = 0, then rndn is
used, otherwise rndns is used.

Output

y N×K matrix, simulated ARMA process. Each column
represents an independent realization of a univariate
time series.

Remarks

simarmamt only simulates times series which are generated by normally
distributed errors.

If your simulation is large or if your available memory is limited, make several
calls to simarmamt during a simulation. Keep in mind that there is some
overhead computing the starting values with the desired multivariate
distribution.

If the process you are simulating lies on or near a boundary, try generating a
longer time series, then trim the beginning observations. In general,
simarmamt should give reasonable results since the starting values are
normalized to have required multivariate normal distribution.

Source

simarmamt.src

C
om

m
and

R
eference

stackData
Purpose

Stacks columns of panel series into a single stacked vector of data.

Library

tsmt

Format

y_st = stackData(yt);

Input

yt TxK matrix of cross sectional data.

Output

y_st (T*K)x1 Matrix of stacked cross sectional data, i.e. yt
[.,1] | yt[.,2] | yt[.,3] || yt[.,K].

Source

stackdata.src

10­94

stackData

C
om

m
an
d
R
ef
er
en
ce

10­95

standardizeData
Purpose

Demeans and standardizes data matrix with standard deviation.

Library

tsmt

Format

y_std = standardizeData(yt, demean);

Input

yt Tx1 vector of time series data.

demean scalar, indicator variable to demean data [1 to demean
data].

Output

y_std Tx1 numerical vector of standardized time series data.

Source

standardizedata.src

C
om

m
and

R
eference

starTest
Purpose

Estimates a p'th order threshold autoregression and tests the
hypothesis of a linear autoregression, using the statistics described in
"Inference when a nuisance parameter is not identified under the null
hypothesis." (Hansen, 1996).

Library

tsmt

Format

{ s3,p3 } = starTest(yt,p,omit);

Input

yt Nx1 vector, data.

p autoregressive order of the TAR model.

omit scalar or vector, lags (below p) to omit from
autoregression [0 implies an AR(p)].

Output

s3 scalar, value of the LM test statistic.

10­96

starTest

C
om

m
an
d
R
ef
er
en
ce

10­97

p3 scalar, p­value of s3.

References

1. Hansen, B.E. (1996). Inference when a nuisance parameter is not iden­
tified under the null hypothesis, Econometrica, 64(2), 413­430.

2. Franses, P.H. and Dijk, D. (2000) Non-linear Time Series Models in
Empirical Finance. Cambridge University Press, New York.

Source

startest.src

svarmaxmt
Purpose

Computes exact maximum likelihood parameter estimates for a
VARMAX model with seasonal parameters.

Library

tsmt

Format

vmo = svarmaxmt(vmc,d0);

C
om

m
and

R
eference

Input

vm
c

An instance of a varmamtControl structure. The following
members of vmc are referenced within this routine:

vmc.adforder scalar, number of AR lags in the ADF test
statistic. Default = 1.

vmc.ar scalar, number of AR matrices to be
estimated. Default = 0.

vmc.ma scalar, number of MA matrices to be
estimated. Default = 0.

vmc.diff scalar, order of differencing to achieve
stationarity. Default = 0.

vmc.sar scalar, number of seasonal AR matrices to be
estimated. Default = 0.

vmc.sma scalar, number of seasonal MA matrices to be
estimated. Default = 0.

vmc.sdiff scalar, order of seasonal differencing to
achieve stationarity. Default = 0.

vmc.s scalar, seasonal period. Default = 0.

vmc.ctl instance of sqpsolvemtControl structure.

vmc.ctl.covType scalar, if 2, QML
standard errors are

10­98

svarmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­99

computed, if 0, none;
otherwise Wald­type.

vmc.ctl.printIte
rs

scalar, iteration
information printed
every
swc.ctl.printIte
rs­th iteration.

See documentation for
sqpsolvemtControl for further
information regarding members of this
structure.

vmc.critl scalar, the significance levels defining p­
values. Default = .95.

vmc.header string, specifies the format for the output
header. vmc.header can contain zero or
more of the following characters:

t title is to be printed.

l lines are to bracket the
title.

d a date and time is to be
printed.

v version number of
program is to be

C
om

m
and

R
eference

printed.

f file name being
analyzed is to be
printed

Example:

vmc.header = "tld";

If vmc.header = "", no header is printed.
Default = "tldvf".

vmc.IndEquations K×L matrix of zeros and ones. Used to set
zero restrictions on the x variables to be
estimated. Only used if the number of
equations, vmc.L is greater than one.
Elements set to indicate the coefficients to be
estimated. If vmc.L = 1, all coefficients will
be estimated. If vmc.L > 1 and
vmc.IndEquations is set to a missing
value (the default), all coefficients will be
estimated.

vmc.lags scalar, number of lags over which ACF and
Diagnostics are calculated. Default = 12.

vmc.nodet scalar. Set vmc.nodet = 1 to suppress the
constant term from the fitted regression and
include it in the co­integrating regression;

10­100

svarmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­101

otherwise, set vmc.nodet = 0. Default = 0.

vmc.nwtrunc scalar, the number of autocorrelations to use in
calculating the Newey­West correction. If
vmc.nwtrunc = 0, GAUSS will use a
truncation lag given by Newey and West,

vmc.nwtrunc = T4(/ 100)2/9 .

vmc.output scalar. Set to 0 to suppress all printing from
varmaxmt. Set vmc.output > 0 to print
results. Default = 1.

vmc.scale scalar or an L×1 vector, scales for the time
series. If scalar, all series are multiplied by the
value. If an L×1 vector, each series is
multiplied by the corresponding element of
vmc.scale. Default = 4/standard deviation
(found to be best by experimentation).

vmc.SetConstrain
ts

scalar, set to a nonzero value to impose
stationarity and invertibility by constraining
roots of the AR and MA characteristic
equations to be outside the unit circle. Set to
zero to estimate an unconstrained model.
Default = 1.

vmc.Start Instance of a PV structure containing starting
values. See Section 3.7.2 for discussion of
setting starting values. By default, varmaxmt

C
om

m
and

R
eference

calculates starting values.

vmc.title string, a title to be printed at the top of the
output header (see vmc.header). By default,
no title is printed (vmc.title = "").

d0 1×1 or 2×1 instance of a DS data structure. If there are independent
variables, d0 is 2×1. For the first instance in d0:

d0[1].datamatrix if time series is stored in a matrix in memory,
N×1 matrix, time series.

d0[1].dname string, if time series is stored in a
GAUSS dataset, name of dataset.

d0[1].vnames string array, if time series is stored in a
GAUSS dataset, column name of time series in
the GAUSS dataset.

If there are independent variables in the model, then the second instance
in d0 includes:

d0[2].data matrix, if independent variables are stored in a
matrix in memory, N×K matrix, time series.

d0[2].name string, if the independent variables are stored
in a GAUSS dataset, name of dataset.

d0[2].vnames string array, if the independent variables are
stored in a GAUSS dataset, column names of
the independent variables in the
GAUSS dataset.

10­102

svarmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­103

Output

vmo An instance of a varmamtOut structure containing the following
members:

vmo.acfm L×(p*L) matrix, the autocorrelation function.
The first L columns are the lag 1 ACF; the last
L columns are the lag p ACF.

vmo.aic L×1 vector, the Akaike Information Criterion.

vmo.arroots p×1 vector of AR roots, possibly complex.

vmo.bic L×1 vector, the Schwarz Bayesian
Information Criterion.

vmo.covpar Q×Q matrix of estimated parameters. The
parameters are in the row­major order: AR(1)
to AR(p), MA(1) to MA(q), beta (if x variables
were present in the estimation), and the
constants.

vmo.fct L×1 vector, the likelihood value.

vmo.lagr An instance of an sqpsolvemtLagrange
structure containing the following members:

vmo.lagr.lineq linear equality
constraints.

vmo.lagr.nlineq nonlinear equality

C
om

m
and

R
eference

constraints.

vmo.lagr.linineq linear inequality
constraints.

vmo.lagr.nlinineq nonlinear inequality
constraints.

vmo.lagr.bounds bounds.

When an inequality or bounds constraint is
active, its associated Lagrangean is nonzero.
The linear Lagrangeans precede the nonlinear
Lagrangeans in the covariance matrices.

vmo.lrs L×1 vector, the Likelihood Ratio Statistic.

vmo.maroots q×1 vector of MA roots, possibly complex.

vmo.pacfm L×(p*L) matrix, the partial autocorrelation
function, computed only if a univariate model
is estimated. The first L columns are the lag 1
ACF; the last L columns are the lag p ACF.

vmo.par An instance of a PV structure containing the
parameter estimates, which can be retrieved
using pvUnpack. For example,

struct varmamtOut vout;
vout = varmaxmt(vmc,y,0);

10­104

svarmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­105

ph = pvUnpack(vout.par,"phi");
th = pvUnpack(vout.par,"theta");
vc = pvUnpack(vout.par,"vc");

The complete set of parameter matrices and
arrays that can be unpacked depending on the
model is:

phi L×p×p array,
autoregression
coefficients.

theta L×q×q array, moving
average coefficients.

vc L×L residual
covariance matrix.

beta L×K regression
coefficient matrix.

beta0 L×1 constant vector.

zeta L×p×ar array of
ECM coefficients.

pi L×L matrix. Note
that pi is a
reserved word in
GAUSS. Users will

C
om

m
and

R
eference

need to assign this to
a different variable
name.

vmo.portman vmc.lags­(p+ q)×3 matrix of portmanteau
statistics for the multivariate model and Ljung­
Box statistics for the univariate model. The
time period is in column one, the Qs
(portmanteau) statistic in column two and the
p­value in column three.

vmo.residuals T×L matrix, residuals.

vmo.retcode 2×1 vector, return code. First element:

0 normal convergence.

1 forced exit.

2 maximum number of
iterations exceeded.

3 function calculation
failed.

4 gradient calculation
failed.

5 Hessian calculation
failed.

10­106

svarmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­107

6 line search failed.

7 error with
constraints.

Second element:

0 covariance matrix of
parameters failed.

1 ML covariance
matrix.

2 QML covariance
matrix.

3 Cross­Product
covariance matrix.

vmo.ss L×2 matrix, the sum of squares for Y in
column one and the sum of squared error in
column 2.

Remarks

The SVARMAX model includes parameters for describing seasonal effects in
a VARMAX model. The SARIMA model is a special case that can also be
estimated with svarmaxmt.

C
om

m
and

R
eference

Using widely used terminology, the SVARMAX model can be described as
SVARMAX(p,d,q,P,D,Q,s) where

p vmo.ar autoregression order.

d vmo.diff differencing parameter.

q vmo.ma moving average order.

P vmo.sar seasonal autoregressive order.

D vmo.sdiff seasonal differencing parameter.

Q vmo.sma seasonal moving average order.

s vmo.s seasonal order.

The model represented by

L L ϕ L L Y θ L L(1 −) (1 −) ()Φ() = ()Θ ()ϵd s D s
t

s
t

where

ϕ L ϕ L ϕ L ϕ L

L L L L

θ L θ L θ L θ L

L L L L

() = 1 − − …

Φ() = 1 − Φ − Φ …Φ

() = 1 + + …

Θ() = 1 + Θ + Θ …Θ

p
p

s s s
P
Ps

s s
Q
Qs

1 2
2

1 2
2

1 2
2

1 2
2

Errors are assumed to be distributed N(0,Q). The estimation procedure
assumes that all series are stationary. Setting vmc.SetConstraints to a

10­108

svarmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­109

nonzero value enforces stationarity, by constraining the roots of the
characteristic equations

ϕ z ϕ z ϕ z1 − − …
s

p
p

1 2

and

z z z1 − Φ − Φ …Φ
s s

P

Ps

1 2
2

are constrained to be outside the unit circle.

If any estimated parameters in the coefficient matrices are on a constraint
boundary, the Lagrangeans associated with these parameters will be nonzero.
These Lagrangeans are stored in vmo.lagr. Standard errors are generally
not available for parameters on constraint boundaries.

Source

svarmamt.src

switchmt
Purpose

Estimates the parameters of the Markov switching regression model.

Library

tsmt

C
om

m
and

R
eference

Format

swo = switchmt(swc,d,num_states,num_lags);

Input

swc An instance of a switchmtControl structure. The following
members of swc are referenced within this routine:

swc.constVarian
ce

scalar, if nonzero, error variances are
constant across states, otherwise if zero, not.

swc.relevantSta
tes

scalar, if nonzero, lagged states are relevant
for time series variable, otherwise if zero,
only the current state is relevant.

swc.aBayes scalar, if nonzero, "a" parameter controlling
the Bayesian prior as described in James D.
Hamilton, 1991, "A quasi­Bayesian
approach to estimating parameters for
mixtures of Normal distributions," Journal
of Business and Economic Statistics, 9:27­39.

swc.bBayes scalar, if nonzero, "b" parameter controlling
the Bayesian prior.

swc.cBayes scalar, if nonzero, "c" parameter controlling
the Bayesian prior.

swc.userTransEq
p

scalar, pointer to user­provided function for

10­110

switchmt

C
om

m
an
d
R
ef
er
en
ce

10­111

setting equality constraints on transition
probability matrix.

swc.start instance of a PV structure containing start
values.

beta0 1, num_states by 1
vector, constants.

beta 2, num_states by
K, coefficients on K
independent variables
if any.

phi 3, num_lags by 1
vector, autoregression
coefficients.

sigma 4, scalar or num_
states by 1 vector,
error variances. If
swc.constVarian
ce is zero, it is a
scalar, otherwise it is
a vector.

p 5, num_states by
num_states matrix,
transition
probabilities.

C
om

m
and

R
eference

For example:

swc.start = pvPacki
(swc.start,3|-3,"beta0",

1);
swc.start = pvPacki

(swc.start,.1|.01,"Phi",
3);
swc.start = pvPacki

(swc.start,1,"Sigma",4);
swc.start = pvPacki

(swc.start,(.8˜.1)|
(.2˜.9),"P",

5);

swc.ctl instance of an sqpsolvemtControl
structure.

swc.ctl.covType scalar, if 2, QML
standard errors are
computed, if 0, none;
otherwise Wald­type.

swc.ctl.printIt
ers

scalar, iteration
information printed
every
swc.ctl.printIt
ers­th iteration.

See documentation for

10­112

switchmt

C
om

m
an
d
R
ef
er
en
ce

10­113

sqpsolvemtControl for further
information regarding members of this
structure.

swc.header string, specifies the format for the output
header. swc.header can contain zero or
more of the following characters:

t title is to be printed.

l lines are to bracket
the title.

d a date and time is to
be printed.

v version number of
program is to be
printed.

f file name being
analyzed is to be
printed.

Example:

swc.header = "tld";

If swc.header = "", no header is printed.
Default = "tldvf".

C
om

m
and

R
eference

swc.output scalar, if nonzero, results are printed to
screen. Default = 1 .

d 1×1 or 2×1 instances of a DS data structure. If the time series and
independent variables, if any are in a dataset, if there are no
independent variables

d.dname string containing name of GAUSS dataset.

d.vnames string containing name of time series.

and if there are independent variables

d[1].dname string containing name of GAUSS dataset.

d[1].vnames string containing name of time series.

d[2].vnames K×1 string array containing names of
independent variables.

Note: create vector of DS instances using reshape:
d = reshape(d,2,1).

If the time series and independent variables, if any, are in matrices
stored in memory, if there are no independent variables

d.dataMatrix N×1 vector, time series.

d.vnames string containing name of time series,
optional.

and if there are independent variables

10­114

switchmt

C
om

m
an
d
R
ef
er
en
ce

10­115

d[1].dataMatrix N×1 vector, time series.

d[1].vnames string containing name of time series,
optional.

d[2].dataMatrix N×K matrix, independent variables.

d[2].vnames K×1 string array containing names, optional
of independent variables, optional.

Note: create vector of DS instances using reshape:
d = reshape(d,2,1).

num_
state
s

scalar, number of states.

num_
lags

scalar, number of lagged values of the dependent variable.

Output

out An instance of a switchmtOut structure containing the
following members:

out.par instance of a PV structure containing the
estimates:

beta0 1, num_states×1
vector, constants.

C
om

m
and

R
eference

beta 2, num_states×K,
coefficients on K
independent variables if
any.

phi 3, num_lags×1 vector,
autoregression
coefficients.

sigma 4, scalar or num_
states×1 vector, error
variances. If
vmc.constVariance
is zero, it is a scalar,
otherwise it is a vector.

p 5, num_states×num_
states matrix,
probabilities.

For example,

consts = pvUnpack(out.par,
"beta0");

or

consts = pvUnpack(out.par,1);

out.covPar M×Mmatrix, covariance matrix of parameters.

10­116

switchmt

C
om

m
an
d
R
ef
er
en
ce

10­117

out.logl scalar, log­likelihood at maximum.

out.retcode return code:

0 normal convergence.

1 forced exit.

2 maximum number of
iterations exceeded.

3 function calculation
failed.

4 gradient calculation
failed.

5 Hessian calculation
failed.

6 line search failed.

7 error with constraints.

8 function complex.

out.lagr instance of sqpsolvemtLagrange structure.

out.lagr.lineq M×1 vector,
Lagrangeans of linear
equality constraints.

out.lagr.nlineq N×1 vector,

C
om

m
and

R
eference

Lagrangeans of
nonlinear equality
constraints.

out.lagr.linineq P×1 vector,
Lagrangeans of linear
inequality constraints.

out.lagr.nlinineqQ×1 vector,
Lagrangeans of
nonlinear inequality
constraints.

out.lagr.bounds K×2 matrix,
Lagrangeans of bounds.

Whenever a constraint is active, its associated
Lagrangean will be nonzero. For any constraint that
is inactive throughout the iterations as well as at
convergence, the corresponding Lagrangean matrix
will be set to a scalar missing value.

Example

This example reproduces the results for the French exchange rate in “Long
Swings in the Exchange Rate: Are They in the Data and Do Markets Know
It?” by Charles Engel and James D. Hamilton, American Economic Review,
Sept. 1990.

10­118

switchmt

C
om

m
an
d
R
ef
er
en
ce

10­119

load y0[58,3] = exdata.txt;

struct DS d0;
d0.dataMatrix = y0[.,1];

struct switchmtControl c0;
c0 = switchmtControlCreate();

c0.constVariance = 0;
c0.output = 1;
c0.aBayes = .2;
c0.bBayes = 1;
c0.cBayes = .1;

/*
** The log-likelihood is somewhat flat and thus
** the problem requires a good starting point.
*/

b0 = { 3.3, -2.7 };
sig = { 10, 37 };
p = { .8 .2, .2 .8 };

struct PV st0;
st0 = pvPacki(pvCreate(),b0,"beta0",1);
st0 = pvPacki(st0,sig,"sigma",4);
st0 = pvPacki(st0,p,"p",5);

c0.start = st0;

struct switchmtOut out0;

C
om

m
and

R
eference

out0 = switchmt(c0,d0,2,0);

Source

switchmt.src

TARControlCreate
Purpose

Sets the members of a declared structural break control structure to
default values.

Library

tsmt

Format

tar0 = TARControlCreate();

Input

None

Output

tar0 An instance of a TARControlCreate structure with
all members set to default values.

10­120

TARControlCreate

C
om

m
an
d
R
ef
er
en
ce

10­121

Source

tarcontrolcreate.src

tarTest
Purpose

Estimates the p'th order threshold autoregression model.

Library

tsmt

Format

TARout = tarTest(yt,p,struct TARControl tar0);

Input

yt Nx1 vector, data.

p autoregressive order of the TAR model.

tar0 TARControl structure containing the following
elements:

p scalar, Autoregressive order of the
STAR model.

C
om

m
and

R
eference

omit scalar, Nx1 vector number of lags
(below p) to omit from the matrix.

lowerQuantile scalar, the lower quantile.

upperQuantile scalar, the upper quantile.

rep scalar, the number of simulation
replications.

printOutput scalar, 0 or 1, 1 prints output to the
screen.

graph scalar, 0 or 1, 1 turns on plotting.

dstart scalar, start date of the time series in
DT scalar format as used by
plotTS.

freq scalar, Data frequency, 12 for
monthly, 4 for quarterly or 1 for
annual.

Output

TAROut TAROutstructure containing the following return
elements:

tests vector of test statistics (in
order): SupLM, ExpLM,

10­122

tarTest

C
om

m
an
d
R
ef
er
en
ce

10­123

AveLM, SupLMs, ExpLMs,
AveLMs.

pvalues vector, estimated asymptotic
p­values or test statistics.

coefficients matrix, first column contains
estimated coefficients and
second column contains
standard errors.

regimeErrorVariance vector, 2x1, error variance
for Regime 1 and Regime 2,
respectively.

thresholdLag scalar, threshold variable lag.

thresholdValue scalar, threshold estimate.

errorVariance scalar, threshold model error
variance.

References

1. Hansen, B.E. (1996). Inference when a nuisance parameter is nost iden­
tified under the null hypothesis, Econometrica, 64(2), 413­430.

2. Franses, P.H. and Dijk, D. (2000) Non-linear Time Series Models in
Empirical Finance. Cambridge University Press, New York.

Source

tartest.src

C
om

m
and

R
eference

tautocovmt
Purpose

Computes the theoretical autocovariances given the coefficient values
from an ARMA(p,q) process.

Library

tsmt

Format

g = tautocovmt(b,p,q);

Input

b Kx1 vector, parameter coefficients.

p scalar, the autoregressive order.

q scalar, the moving average order.

Output

g [Max(p,q)+1]×1 vector, theoretical autocovariances.

Remarks

The theoretical autocorrelations are found by dividing g by g[1].

10­124

tautocovmt

C
om

m
an
d
R
ef
er
en
ce

10­125

Source

tautocovmt.src

tscsmt
Purpose

Estimates the parameters of the pooled time­series cross­section
regression model.

Library

tsmt

Format

tso = tscsmt(tsc,d0,grp);

Input

tsc An instance of a tscsmtControl structure. The
following members of tsc are referenced within this
routine:

tsc.header string, specifies the format for the
output header. tsc.header can
contain zero or more of the
following characters:

C
om

m
and

R
eference

t title is to be printed.

l lines are to bracket
the title.

d a date and time is to
be printed.

v version number of
program is to be
printed

f file name being
analyzed is to be
printed

Example:

tsc.header = "tld";

If tsc.header = "", no header is
printed. Default = "tldvf".

tsc.ise scalar. If 1, the individual­specific
effects are not printed. Default = 0.

tsc.output scalar, if nonzero, results are
printed to screen. Default = 1.

tsc.meth scalar. Possible values are:

10­126

tscsmt

C
om

m
an
d
R
ef
er
en
ce

10­127

0 Uses the fixed effects
estimates of the
individual­specific
effects to estimate the
variance components
of the random effects
model. Use this
option if there are a
different number of
observations for each
cross­sectional unit.
The chi­squared test
for the individual
error components
equal to 0 may not be
correct if there are a
different number of
observations for each
individual.

1 Uses regression on
group means to
estimate variance
components.

Default = 0.

tsc.mnsfn string, the name of a file in which

C
om

m
and

R
eference

to save the group means of the
dataset. By default, tsc.mnsfn =
"", so the means are not saved.

tsc.model scalar, controls the type of models
to be estimated. Possible values
are:

0 All models are
estimated.

1 The random effects
(error components
model) is not
estimated.

tsc.row scalar. Specifies how many rows
of the dataset are to be read per
iteration of the read loop. By
default, the number of rows to be
read is calculated by tscsmt.

tsc.rowfac scalar, "row factor." If tscsmt
fails due to insufficient memory
while attempting to read a GAUSS
dataset, tsc.rowfac may be set
to some value between 0 and 1 to
read a proportion of the original
number of rows of the GAUSS
dataset. For example, setting

10­128

tscsmt

C
om

m
an
d
R
ef
er
en
ce

10­129

tsc.rowfac = 0.8;

causes GAUSS to read in 80% of the
rows of the GAUSS dataset that
were read when the failure due to
insufficient memory occurred.
tsc.rowfac has an effect only
when tsc.row = 0. Default = 1.

tsc.stnd scalar. If 1, print standardized
estimates of regression parameters.
Default = 1.

tsc.title string, a title to be printed at the top
of the output header (see
tsc.header). By default, no title
is printed (tsc.title = "").

d0 1×1 or 2×1 instance of a DS data structure. If there are
independent variables, d0 is 2×1. For the first instance in
d0:

d0
[1].datamatrix

if time series is stored in a matrix in
memory, N×1 matrix, time series.

d0[1].dname string, if time series is stored in a
GAUSS dataset, name of dataset.

d0[1].vnames string array, if time series is stored
in a GAUSS dataset, column name
of time series in the

C
om

m
and

R
eference

GAUSS dataset.

If there are independent variables in the model, then the
second instance in d0 includes:

d0[2].data matrix, if independent variables are
stored in a matrix in memory, N×K
matrix, time series.

d0[2].dname string, if the independent variables
are stored in a GAUSS dataset,
name of dataset.

d0[2].vnames string array, if the independent
variables are stored in a
GAUSS dataset, column names of
the independent variables in the
GAUSS dataset.

Output

tso An instance of a tscsmtOut structure containing the
following members:

tso.bdv K×1 vector, regression coefficients
from the dummy effects model
(excluding individual­variables
regression model).

10­130

tscsmt

C
om

m
an
d
R
ef
er
en
ce

10­131

tso.vcdv K×K matrix, variance­covariance
matrix of the dummy variables
regression model.

tso.mdv (K+1)×(K+1) matrix, moment
matrix of the transformed variables
(including a constant) from the
dummy variables regression model.

tso.bec K×1 vector, regression coefficients
from the random effects regression
model.

tso.vcec K×K matrix, variance­covariance
matrix of the random effects
regression model..

tso.mec (K+1)×(K+1) matrix, moment
matrix of the transformed variables
(including a constant) from the
random effects regression model.

Remarks

The data must be contained in a GAUSS dataset cross­sectional unit by cross­
sectional unit, with one variable containing an index for the units. From each
cross­sectional unit all observations must be grouped together. For example,
for the first cross­sectional unit there may be 10 rows in the dataset, for the
second cross­sectional unit there may be another 10 rows, and so on. Each row

C
om

m
and

R
eference

in the dataset contains measurements on the endogenous and exogenous
variables measured for each observation along with the index identifying the
cross­sectional unit.

The index variable must be a series of integers. While all observations for
each cross­sectional unit must be grouped together, they do not have to be
sorted according to the index.

Example

The following example is taken from the program tscsmt.e, located in the
examples subdirectory. The program uses the sample data in
jdatamt.dat.

library tsmt;

struct tscsmtControl tsc;
struct tscsmtOut tso;
tsc = tscsmtControlCreate();

lhs = "x2";
exog = "x3";
inname = "jdatamt";

output file = jdatamt.out reset;
grp = "x1";
tsc.meth = 1;
tso = tscsmt(tsc,inname,lhs,exog,grp);
output off;

10­132

tscsmt

C
om

m
an
d
R
ef
er
en
ce

10­133

Source

tscsmt.src

tscsmtControlCreate
Purpose

Sets the members of an instance of a tscsmtControl structure to
default values.

Library

tsmt

Format

tsc = tscsmtControlCreate();

Input

None

Output

tsc An instance of a tscsmtControl structure with its
members set to default values.

C
om

m
and

R
eference

Remarks

Putting this instruction at the top of all programs that invoke tscsmt is
generally good practice. This will prevent control variables from being
inappropriately defined when a program is run either several times or after
another program that also calls tscsmt.

Source

tscsmt.src

tsforecastmt
Purpose

Estimates forecasts using estimation results obtained from arimamt.

Library

tsmt

Format

f = tsforecastmt(amc,b,y,p,d,q,const,e,h);

Input

amc An instance of an arimamtControl structure. The
following members of amc are referenced within this

10­134

tsforecastmt

C
om

m
an
d
R
ef
er
en
ce

10­135

routine:

amc.critl scalar, confidence level to compute
for forecast confidence bounds.
Default = 0.95.

amc.output scalar, controls printing of output .

0 Nothing is printed.

1 Forecasts, confidence bounds
and forecast standard errors
are printed.

b K×1 vector, estimated coefficients

y N×1 vector, data.

p scalar, the autoregressive order.

d scalar, the order of differencing

q scalar, the moving average order.

const scalar, if 1, a constant is estimated, 0 otherwise.

e N×1 vector, residuals reported by arimamt program.

h scalar, the number of step­ahead forecasts to computer. C
om

m
and

R
eference

Output

f h×3 matrix,

[.,1] Lower forecast confidence bounds.

[.,2] Forecasts.

[.,3] Upper forecast confidence bounds.

Remarks

Data must be transformed before being sent to tsForecast.

tsForecast does not compute forecasts for models with fixed regressors.

Source

forecastmt.src

varmamtControlCreate
Purpose

Sets the members of an instance of a varmamtControl structure to
default values.

Library

tsmt

10­136

varmamtControlCreate

C
om

m
an
d
R
ef
er
en
ce

10­137

Format

vmc = varmamtControlCreate();

Input

None

Output

amc An instance of a varmamtControl structure with its
members set to default values.

Remarks

Putting this instruction at the top of all programs that invoke varmaxmt or
ecmmt procedures is generally good practice. This will prevent control
variables from being inappropriately defined when a program is run either
several times or after another program that also calls varmaxmt or
ecmmtprocedures.

Source

varmamt.src

C
om

m
and

R
eference

varmaxmt
Purpose

Computes exact maximum likelihood parameter estimates for a
VARMAX model.

Library

tsmt

Format

vmo = varmaxmt(vmc,d0);

Input

vm
c

An instance of a varmamtControl structure. The following
members of vmc are referenced within this routine:

vmc.adforder scalar, number of AR lags in the ADF test
statistic. Default = 2.

vmc.ar scalar, order of AR process. Default = 0.

vmc.critl scalar, the significance levels defining p­
values. Default = .95.

vmc.diff scalar, the order of differencing to achieve
stationarity. Default = 0.

10­138

varmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­139

vmc.ctl instance of an sqpsolvemtControl
structure.

vmc.ctl.covType scalar, if 2, QML
standard errors are
computed, if 0, none;
otherwise Wald­type.

vmc.ctl.printIte
rs

scalar, iteration
information printed
every
swc.ctl.printIte
rs­th iteration.

See documentation for
sqpsolvemtControl for further
information regarding members of this
structure.

vmc.header string, specifies the format for the output
header. vmc.header can contain zero or
more of the following characters:

t title is to be printed.

l lines are to bracket the
title.

d a date and time is to be
printed.

C
om

m
and

R
eference

v version number of
program is to be
printed.

f file name being
analyzed is to be
printed

Example:

vmc.header = "tld";

If vmc.header = "", no header is printed.
Default = "tldvf".

vmc.IndEquations K×L matrix of zeros and ones. Used to set
zero restrictions on the variables to be
estimated. Only used if the number of
equations, vmc.L is greater than one.
Elements set to indicate the coefficients to be
estimated. If vmc.L = 1, all coefficients will
be estimated. If vmc.L > 1 and
vmc.IndEquations is set to a missing
value (the default), all coefficients will be
estimated.

vmc.lags scalar, number of lags over which ACF and
Diagnostics are calculated. Default = 12.

vmc.ma scalar, number of MA matrices to be estimated.

10­140

varmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­141

Default = 0.

vmc.nodet scalar. Set vmc.nodet = 1 to suppress the
constant term from the fitted regression and
include it in the co­integrating regression;
otherwise, set vmc.nodet = 0. Default = 0.

vmc.nwtrunc scalar, the number of autocorrelations to use in
calculating the Newey­West correction. If
vmc.nwtrunc = 0, GAUSS will use a
truncation lag given by Newey and West,

vmc.nwtrunc = T4(/ 100)2/9 .

vmc.output scalar. Set to 0 to suppress all printing from
varmaxmt. Set vmc.output > 0 to print
results. Default = 1.

vmc.scale scalar or an L×1 vector, scales for the time
series. If scalar, all series are multiplied by the
value. If an L×1 vector, each series is
multiplied by the corresponding element of
vmc.scale. Default = 4/standard deviation
(found to be best by experimentation).

vmc.SetConstrain
ts

scalar, set to a nonzero value to impose
stationarity and invertibility by constraining
roots of the AR and MA characteristic
equations to be outside the unit circle. Set to
zero to estimate an unconstrained model.

C
om

m
and

R
eference

Default = 1.

vmc.Start Instance of a PV structure containing starting
values. See Section 3.7.2 for discussion of
setting starting values. By default, varmaxmt
calculates starting values.

vmc.title string, a title to be printed at the top of the
output header (see vmc.header). By default,
no title is printed (vmc.title = "").

d0 1×1 or 2×1 instance of a DS data structure. If there are independent
variables, d0 is 2×1. For the first instance in d0,

d0[1].datamatrix if time series is stored in a matrix in memory,
N×1 matrix, time series.

d0[1].dname string, if time series is stored in a
GAUSS dataset, name of dataset.

d0[1].vnames string array, if time series is stored in a
GAUSS dataset, column name of time series in
the GAUSS dataset.

If there are independent variables in the model, then the second
instance in d0 includes:

d0[2].data matrix, if independent variables are stored in a
matrix in memory, N×K matrix, time series.

d0[2].dname string, if the independent variables are stored

10­142

varmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­143

in a GAUSS dataset, name of dataset.

d0[2].vnames string array, if the independent variables are
stored in a GAUSS dataset, column names of
the independent variables in the
GAUSS dataset.

Output

vmo An instance of a varmamtOut structure containing the following
members:

vmo.acfm L×(p*L) matrix, the autocorrelation
function. The first L columns are the lag 1
ACF; the last L columns are the lag p
ACF.

vmo.aic L×1 vector, the Akaike Information
Criterion.

vmo.arroots p×1 vector of AR roots, possibly
complex.

vmo.bic L×1 vector, the Schwarz Bayesian
Information Criterion.

vmo.covpar Q×Q matrix of estimated parameters. The
parameters are in the row­major order:
AR(1) to AR(p), MA(1) to MA(q), beta
(if x variables were present in the

C
om

m
and

R
eference

estimation), and the constants.

vmo.fct L×1 vector, the likelihood value.

vmo.lagr An instance of an
sqpsolvemtLagrange structure
containing the following members:

vmo.lagr.lineq linear equality
constraints.

vmo.lagr.nlineq nonlinear
equality
constraints.

vmo.lagr.linineq linear inequality
constraints.

vmo.lagr.nlinineq nonlinear
inequality
constraints.

vmo.lagr.bounds bounds. When an
inequality or
bounds constraint
is active, its
associated
Lagrangean is
nonzero. The
linear

10­144

varmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­145

Lagrangeans
precede the
nonlinear
Lagrangeans in
the covariance
matrices.

vmo.lrs L×1 vector, the Likelihood Ratio Statistic.

vmo.maroots q×1 vector of MA roots, possibly
complex.

vmo.pacfm L×(p*L) matrix, the partial autocorrelation
function, computed only if a univariate
model is estimated. The first L columns
are the lag 1 ACF; the last L columns are
the lag p ACF.

vmo.par An instance of a PV structure containing the
parameter estimates, which can be retrieved
using pvUnpack. For example,

struct varmamtOut vout;
vout = varmaxmt(vmc,y,0);
ph = pvUnpack(vout.par,

"phi");
th = pvUnpack(vout.par,

"theta");
vc = pvUnpack(vout.par,

"vc");

C
om

m
and

R
eference

The complete set of parameter matrices
and arrays that can be unpacked
depending on the model is:

phi L×p×p array,
autoregression
coefficients.

theta L×q×q array,
moving average
coefficients.

vc L×L residual
covariance
matrix.

beta L×K regression
coefficient
matrix.

beta0 L×1 constant
vector.

zeta L×p×ar array of
ecm coefficients.

pi L×L matrix. Note
that pi is a
reserved word in
GAUSS. Users

10­146

varmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­147

will need to
assign this to a
different variable
name.

vmo.portman vmc.lags­(p+ q)×3 matrix of
portmanteau statistics for the multivariate
model and Ljung­Box statistics for the
univariate model. The time period is in
column one, the Qs (portmanteau) statistic
in column two and the p­value in column
three.

vmo.residuals T×L matrix, residuals.

vmo.retcode 2×1 vector, return code. First element:

0 normal
convergence.

1 forced exit.

2 maximum
number of
iterations
exceeded.

3 function
calculation failed.

4 gradient

C
om

m
and

R
eference

calculation failed.

5 Hessian
calculation failed.

6 line search failed.

7 error with
constraints.

Second element:

0 covariance
matrix of
parameters failed.

1 ML covariance
matrix.

2 QML covariance
matrix.

3 Cross­Product
covariance
matrix.

vmo.ss L×2 matrix, the sum of squares for Y in
column one and the sum of squared error
in column 2.

10­148

varmaxmt

C
om

m
an
d
R
ef
er
en
ce

10­149

Remarks

Errors are assumed to be distributed N(0,Q). The estimation procedure
assumes that all series are stationary. Setting vmc.SetConstraints to a
nonzero value enforces stationarity, by constraining the roots of the
characteristic equation

z z z1 −Φ −Φ −…−Φp
p

1 2

2

to be outside the unit circle (where i pΦ , = 1,… ,i are the AR coefficient
matrices).

If any estimated parameters in the coefficient matrices are on a constraint
boundary, the Lagrangeans associated with these parameters will be nonzero.
These Lagrangeans are stored in vmo.lagr. Standard errors are generally
not available for parameters on constraint boundaries.

Source

varmamt.src

vmadfmt
Purpose

Compute the Augmented Dickey­Fuller statistic, allowing for
deterministic polynomial time trends of an arbitrary order.

Library

tsmt

C
om

m
and

R
eference

Format

{ alpha,tstat,adf_t_crit } = vmadfmt(x,p,l);

Input

x Time series variable.

p Order of the time­polynomial to include in the ADF
regression. Set p = ­1 for no deterministic part.

l Number of lagged changes of x to include in the fitted
regression.

Output

alpha Estimate of the autoregressive parameter

tstat ADF t­statistic.

adf_t_crit 6×1 vector of critical values for the adf­t­statistic: 1%,
5%, 10%, 90%, 95%, 99%.

Source

varmamt.src

10­150

vmadfmt

C
om

m
an
d
R
ef
er
en
ce

10­151

vmc_sja
Purpose

Returns critical values for the Johansen Maximum Eigenvalue
statistic. Computed using 8000 iterations and 500 observations.

Library

tsmt

Format

c_values = vmc_sja(n,p);

Input

n scalar, number of variables in the system.

p scalar, order of the time­polynomial to include in the
fitted regression.

Output

c_values 6×1 vector of critical values.

Source

varmamt.src

C
om

m
and

R
eference

vmc_sjt
Purpose

Returns critical values for the Johansen Trace statistic.

Library

tsmt

Format

c_values = vmc_sjt(n,p);

Input

n scalar, number of variables in the system.

p scalar, order of the time­polynomial to include in the
fitted regression.

Output

c_values 6×1 vector of critical values.

Source

varmamt.src

10­152

vmc_sjt

C
om

m
an
d
R
ef
er
en
ce

10­153

vmcadfmt
Purpose

Compute the Augmented Dickey­Fuller statistic applied to the
residuals of a cointegrating regression, allowing for deterministic
polynomial time trends of an arbitrary order.

Library

tsmt

Format

{ alpha,tstat,vmrztcrit } = vmcadfmt(y,x,p,l);

Input

y Dependent variable.

x Explanatory variables.

p Order of the time­polynomial to include in the
cointegrating regression. Set p = ­1 for no deterministic
part.

l Number of lagged changes of the residuals to include
in the fitted regression.

C
om

m
and

R
eference

Output

alpha Estimate of the autoregressive parameter.

tstat ADF t­statistic.

vmrztcrit 6×1 vector of critical values for the adf­t­statistic: 1%,
5%, 10%, 90%, 95%, 99%.

Source

varmamt.src

vmdetrendmt
Purpose

Returns residuals from a regression of data on a time trend
polynomial.

Library

tsmt

Format

res = vmdetrendmt(y,p);

10­154

vmdetrendmt

C
om

m
an
d
R
ef
er
en
ce

10­155

Input

y T×L matrix of data.

p scalar. If p = ­1 returns the data. Use p = 0 for
demeaning, p = 1 for regression against a constant term
and trend, p > 1 for a higher order polynomial time
trend.

Output

res T×L matrix of residuals.

Source

varmamt.src

vmdiffmt
Purpose

Differences matrices.

Library

tsmt

C
om

m
and

R
eference

Format

y = vmdiffmt(x,d);

Input

x T×X matrix.

d scalar, the number of periods over which differencing
occurs.

Output

y (T­d)×K matrix, the differenced data.

Source

vmutilsmt.src

vmforecastmt
Purpose

Calculates forecasts from a VARMAX model.

Library

tsmt

10­156

vmforecastmt

C
om

m
an
d
R
ef
er
en
ce

10­157

Format

f = vmforecastmt(vmc,vmo,y,x,t);

Input

vmc An instance of a varmamtControl structure. The
following members of vmc are referenced within this
routine:

vmc.ar scalar, AR order.

vmc.ma scalar, MA order.

vmo An instance of a varmamtOut structure returned by a
call to a VARMAX or ECM procedure.

y T×L matrix, the variables to be forecast.

x t×K matrix of x covering only the forecast horizon, in the
order T T t+ 1,… , + or the scalar zero if there are no x
variables.

t scalar, the number of periods to forecast.

Output

f t×(L+1) matrix. Column one contains the period forecast.
The remaining columns contain the forecast values.

C
om

m
and

R
eference

Remarks

The varmaxmt and ecmmt procedures estimate centered models and do not
return intercepts. However, vmforecastmt allows intercepts, so that it
might be used with the results of other estimation procedures.

Source

varmamt.src

vmppmt
Purpose

Returns Phillips­Perron unit root test statistics and critical values.

Library

tsmt

Format

{ ppb,ppt,pptcrit } = vmppmt(y,p,nwtrunc);

Input

y Tx1 vector, a time series.

p scalar, order of the time­polynomial to include in the
regression. Set p = ­1 for no deterministic part, p = 0

10­158

vmppmt

C
om

m
an
d
R
ef
er
en
ce

10­159

for a constant term, and p = 1 for a constant with trend.

nwtrunc scalar, the number of autocorrelations to use in
calculating the Newey­West correction (q in the
Remarks section below). If nwtrunc = 0, GAUSS
will use a truncation lag given by Newey and West,

q T= 4(/ 100)2/9

Output

ppb scalar, estimate of the autoregressive parameter, the p
coefficient below.

ppt scalar, the adjusted t­statistic for testing: H ρ: = 10
.

pptcrit 6×1 vector of critical values, vector of critical values
for the adjusted t­statistic, in the order 1%, 5%, 10%,
90%, 95%, 99%.

Remarks

Phillips (1987) and Phillips and Perron (1988) test for unit roots by adjusting
the OLS estimate of an AR(1) coefficient for serial correlation in the OLS
residuals. Three specifications are considered, an AR(1) model without a drift,
an AR(1) with a drift, and an AR(1) model with a drift and linear trend:

C
om

m
and

R
eference

Y ρY ε

Y α ρY ε

Y α δt ρY ε

= +

= + +

= + + +

t t t

t t t

t t t

−1

−1

−1

The unit root null hypothesis is H ρ: (− 1) = 00

Hamilton (1994, pp. 506­511) tests this hypothesis using two statistics that are
analogs of the Phillips and Perron (1988) Zα and Z t statistics. Hamilton’s
statistics are based on OLS estimation of the above equations. They allow an
identical formula for each statistic to be used for all three cases.

The vmppmt procedure returns the Z t statistic as calculated by Hamilton and
critical values. Suppose any of the equations are estimated by OLS, returning

µρ
T and µσ̂ ρ

T (the OLS estimates of ρ an the standard error of µρT

respectively), µ()t ρ σ= − 1 / ^T ρ
T (the usual OLS t statistic for testing H0),

ε̂t (the OLS residuals), and sT (the estimated standard error of the
regression).

Hamilton's Z t statistic is:

µ
µ




























{ }()Z γ λ t − T σ= ^ / λ̂ − γ̂ / λ̂ ^ /t T ρ T0

2

1
2

1

2

2

0 T

µλ
2

is an estimate of the asymptotic variance of the sample mean of εt . In the

vmppmt procedure µλ
2

is estimated using the Newey­West (1987) estimator:

10­160

vmppmt

C
om

m
an
d
R
ef
er
en
ce

10­161

µ 



()Σλ γ j q γ= ^ + 2 1 − / +1 − ^

j

q

j

2

0
=1

where Σγ T ε ε^ = ^ ^
j t j

T
t t−j

−1
= +1 are the sample autocovariances of εt .

The nwtrunc argument sets the number of autocorrelations to use in
calculating the Newey­West correction (q in the above equation). If
nwtrunc = 0, GAUSS will use a truncation lag given by Newey and West,

q T= 4(/ 100)2/9 .

Under the null hypothesis, the Z t statistics has the same asymptotic
distribution as a Dickey­Fuller statistic.

References

1. Hamilton, James D., (1994). Time Series Analysis, Princeton University
Press.

2. Newey, W.K. and West, K.D., (1987), “A Simple Positive Semi­Definite
Heteroskedasticity and Autocorrelation­Consistent Covariance Matrix,”
Econometrica, 55, 703­708.

Source

varmamt.src

C
om

m
and

R
eference

vmrztcritmt
Purpose

Returns τ critical values for the Augmented Dickey­Fuller statistic,
derived from the residuals of a cointegrating regression. Depends on
p, the AR order in the fitted regression, the number of observations,
and the number of explanatory variables.

Library

tsmt

Format

c_values = vmrztcritmt(nobs,n,p);

Input

nobs scalar, number of observations in the series.

n scalar, column dimension of x.

p scalar, order of the time­polynomial in the null
hypothesis.

Output

c_values 6×1 vector of critical values.

10­162

vmrztcritmt

C
om

m
an
d
R
ef
er
en
ce

10­163

Source

varmamt.src

vmsjmt
Purpose

Computes Johansen's (1988) ML Trace and Maximum Eigenvalue
statistics.

Library

tsmt

Format

{ ev,evec,lr1,lr2 } = vmsjmt(x,p,k,nodet);

Input

x T×L matrix.

p scalar, order of the time­polynomial in the fitted
regression. Set p = ­1 for no deterministic part, p = 0
for a constant term, and p = 1 for a constant with trend.

k scalar, number of lagged difference terms to use when
computing the estimator.

C
om

m
and

R
eference

nodet scalar. Set nodet = 1 to suppress the constant term
from the fitted regression and include it in the co­
integrating regression; otherwise, set nodet = 0.

Output

ev L×1 vector of eigenvalues.

evec L×L matrix of eigenvectors. The first r columns are the
unnormalized cointegrating vectors.

lr1 L×1 vector of Johansen's likelihood ratio Trace
statistics for the null hypotheses of H0; at most r
cointegrating vectors versus H1: not

r LH0, = 0,… , − 1 .

lr2 L×1 vector of Johansen's Maximum Eigenvalue
Statistics for the null hypotheses of H0: r cointegrating
vectors versus H1: r+1 cointegrating vectors,
r L= 0,… , − 1 .

Source

varmamt.src

10­164

vmsjmt

C
om

m
an
d
R
ef
er
en
ce

10­165

vmztcritmt
Purpose

Returns τ critical values for the Augmented Dickey­Fuller statistic,
depending on the nuber of observations and p, the AR order in the
fitted regression. Computed using 10000 iterations.

Library

tsmt

Format

c_values = vmztcritmt(nobs,p);

Input

nobs scalar, number of observations in the series.

p scalar, order of the time­polynomial in the null
hypothesis.

Output

c_values 6×1 vector of critical values in order 1%, 5%, 10%,
90%, 95%, 99%.

C
om

m
and

R
eference

Source

varmamt.src

zandrews
Purpose

The Zivot and Andrews (1992) unit root test uses a t­test statistic for
testing the null hypothesis of stationarity. The procedure tests the null
hypothesis of zero innovation variance in the residual against the
alternative of non­zero residual innovation variance.

Library

tsmt

Format

{ t_test, break_pt } = zandrews(yt, max_lags, trim_
end, break_type, which_output);

Input

yt T×1 vector of time series data.

max_lags scalar, specifies the maximum lag order to be used in
calculating the test statistic. A good default is to
calculate max_lags as T^0.25.

10­166

zandrews

C
om

m
an
d
R
ef
er
en
ce

10­167

trim_end scalar, fraction of data range to skip at either end. A
good default is 0.15. Range is 0 to 0.25.

break_type scalar, ­1 for intercept break, 0 for trend break, or 1 for
a break in both.

which_output scalar, 0 for no output, 1 to print statistics or 2 to print
statistics and display of graph of unit­root test statistics
across different break points.

Output

t_test scalar, reports Zivot­Andrews test statistic.

break_pt scalar, observation where structural break is most likely
to occur.

C
om

m
and

R
eference

Index

Index­1

ACF 3­28

acfmt 10­1

adjrsq 10­2

aggData 10­7

aggregatedata.src 10­8

Akaike Information Criterion 3­29,
10­103, 10­143

ARIMA 8­1

arimamt 2­2, 8­1, 10­9, 10­14, 10­
134

arimamt.src 10­13, 10­14

arimamtControl structure 2­2, 10­9,
10­13

arimamtControlCreate 10­13

arimamtOut structure 2­2

ARMA 3­1, 3­14, 3­35, 10­92, 10­
124

ARMAX 3­1, 3­28

Augmented 3­13

Augmented Dickey­Fuller
statistic 10­153

Augmented Dickey Fuller
statistic 3­3, 3­14, 3­14, 10­
149, 10­162, 10­165

autocormt 10­14

autocorrelations 9­1, 9­2, 10­1, 10­
14, 10­23, 10­38, 10­68, 10­77,
10­79, 10­124

autocovariances 9­1, 9­2, 10­16, 10­
23

autocovmt 10­16

automtControl structure 2­2, 10­18,
10­20

automtControlCreate 10­18

automtOut structure 2­2

autoOut structure 10­23

autoreg 2­2, 10­19

autoregmt 10­19, 10­19

autoregmt.src 10­16, 10­18, 10­19,
10­24

autoregression 8­1, 9­1, 9­1, 10­62,
10­64

autovariances 10­124

bias correction 5­2

bounds constraints 3­50

breitung 10­25

chowfcst 10­26

chowfcst.src 10­28

cointegration coefficients 3­13

cointegration tests 3­12, 3­13, 3­27

condition 3­53

conditional variance 6­4

confidence limits 6­7, 6­7, 6­20

constraints 6­17, 6­17, 6­20

covariance 10­76

covariance matrix of parameters 6­
17

cusum 10­28

cusum.src 10­30

dfgls 10­30

Dickey­Fuller statistic 3­14, 3­14, 3­
14

ECM 3­1, 3­36, 10­157

ecmmt 2­3, 3­1, 3­5, 3­34, 3­35, 3­
35, 3­39, 10­31, 10­80, 10­137

ECMMT 3­12, 3­28

error correction model 3­11, 10­31

forecastmt.src 10­136

garch 10­41

GARCH 6­1, 6­4, 6­6, 6­20

GARCH­in­mean 6­7

garchm 10­45

GARCHM 6­7

getlrv 10­48

gjrgarch 10­49

GJRGarch 6­7

hansen 10­53

hansen.src 10­54

Hessian 3­40, 3­53

identification 3­28

igarch 10­54

IGARCH 6­6

inequality constraints 6­10

inference 6­7

invertibility 3­7, 3­7

ips 10­58

Johansen's MLTrace statistics 10­
163

Johansen Maximum Eigenvalue
statistic 3­3, 3­12, 3­13, 3­14,
3­28, 10­151, 10­163

Johansen Trace statistic 3­3, 3­12,
3­13, 3­14, 3­14, 3­28, 10­152

kpss 10­59

Lagrange coefficients 3­35, 3­42,
10­104, 10­118, 10­144

Lagrange multiplier 10­78

Index­2

Index

Index­3

Lagrange Multiplier 6­11, 10­59

least squares 10­62

Levin­Lin­Chu 10­60

likelihood ratio test 6­16

linear equality constraints 3­45

linear inequality constraints 3­47

Ljung­Box portmanteau statistic 8­1

Ljung­Box statistics 3­28, 10­106

llc 10­60

log­likelihood 6­2

lsdv 5­2

LSDV model 5­1

lsdvmt 5­4, 5­5, 10­62

lsdvmt.src 10­67, 10­68

lsdvmtControl structure 5­5, 5­6, 10­
62, 10­67

lsdvmtControlCreate 10­67

lsdvmtOut structure 5­7

lsdvOut structure 10­64

macfmt 3­34, 10­68

Markov switching 10­109

mosum 10­69

multivariate identification 3­32

Nelson and Cao 6­4

Newey­West 3­2, 10­76

Newton's method 3­2, 3­39

nonlinear equality constraints 3­48

numCombReplace 10­72

numPerm 10­73

numPermReplace 10­75

nwmt 10­76

nyblom 10­78

OLS estimator 7­2

OLS regression 9­2

OLS regressions 10­85

one­sided score test 6­12

PACF 3­28

pacfmt 10­79

panel data 7­1

panel series unit root tests 7­2, 10­
25, 10­60

paramConfigmt 10­80

parameter estimates 10­80

permReplace 10­83

permReplace.src 10­84

permutate 10­84

Index

permutate.src 10­73, 10­74, 10­76,
10­85

Phillips­Perron statistic 3­14

Phillips­Perron unit root tests 3­3, 3­
13, 3­18

pooled time­series cross­section
regression model 7­1

portmanteau statistics 3­32, 10­106

printing output 3­5

PV structure 3­50, 4­27

pvGetParNames 3­43

QML covariance matrix 3­35

QMLcovariance matrix 6­20

random effects estimator 7­2

README.tsmt 2­1

regime­switching model 4­26

rolling 10­85

rolling.src 10­87

SARMA 3­1

sb.src 10­90

sbControlCreate 10­87

sbcontrolcreate.src 10­88

sbreak 10­88

scaling 3­52

Schwartz Bayesian Information
Criterion 3­29, 10­103, 10­143

selectLags 10­91

setting constraints 3­43

setup 2­1

simArmamt 10­92

simarmamt.src 10­93

skew generalized t distribution 6­3

sqpsolvemt 3­5, 3­34, 3­35, 3­39, 3­
39, 3­43, 3­48, 3­50, 3­53, 4­
28, 6­22

sqpsolvemtControl structure 3­4, 3­
39, 3­45, 3­46, 3­47, 4­28, 10­
98, 10­139

sqpsolvemtLagrange structure 10­
103, 10­144

stackData 10­94

stackdata.src 10­94

standard errors 6­7, 6­7

standardizeData 10­95

standardizedata.src 10­95

starTest 10­96

startest.src 10­97

stationarity 3­7, 6­4, 6­6, 10­59

Index­4

Index

Index­5

STEPBT 3­40

SVARMA 3­1

svarmamt.src 10­109

SVARMAX 3­1, 3­7

svarmaxmt 3­1, 10­97

switching regression 4­26

switchmt 10­109

switchmt.src 10­120

switchmtControl structure 4­26, 10­
110

switchmtOut structure 10­115

t­statistics 6­7, 6­7, 6­7

t distribution 6­2

TAR model 10­89, 10­96, 10­121

TARControlCreate 10­120

TARControlCreate structure 10­88,
10­120

tarcontrolcreate.src 10­121

tarTest 10­121

tartest.src 10­123

tautocovmt 10­124

tautocovmt.src 10­125

threshold autoregression model 10­
88, 10­121

time series 6­1

tscsmt 10­134

tscsmt.src 10­133, 10­134

tscsmtControl structure 2­2, 2­2, 10­
125, 10­133, 10­133

tscsmtControlCreate 10­133

tscsmtOut structure 2­2, 10­130

tsforecast 8­2

tsforecastmt 10­134

tsutilmt.src 10­2, 10­80

two­regime TAR model 4­17

unit root tests 3­13

unitroots 3­14

univariate root tests 3­14

VARMA 3­1, 3­36

varmamt 2­3, 3­34, 3­35

VARMAMT 3­34, 3­43

varmamt.src 10­41, 10­69, 10­77,
10­82, 10­137, 10­149, 10­150,
10­151, 10­152, 10­154, 10­
155, 10­158, 10­161, 10­163,
10­164, 10­166

varmamtControl 3­15

Index

varmamtControl structure 2­3, 3­4,
3­5, 3­28, 3­34, 3­34, 3­35, 3­
35, 3­39, 3­45, 3­46, 3­47, 3­
50, 3­50, 3­52, 10­31, 10­98,
10­136, 10­137, 10­138, 10­
157

varmamtControlCreate 10­136

varmamtOut structure 2­3, 2­4, 3­11,
3­29, 3­35, 3­52, 3­53, 10­36,
10­103, 10­143

VARMAX 3­1, 3­2, 3­6, 3­7, 3­7,
10­97, 10­138, 10­156

varmaxmt 2­3, 3­1, 3­5, 3­35, 3­39,
3­45, 10­80, 10­137, 10­138

VARMAXMT 3­3

vmadfmt 3­13, 3­14, 3­14, 10­149

vmc_sja 3­13, 3­28, 10­151

vmc_sjt 3­13, 3­28, 10­152

vmcadfmt 10­153

vmdetrendmt 10­154

vmdiffmt 10­155

vmforecastmt 10­156

vmppmt 3­14, 10­158

vmppt 3­13

vmroots 3­7

vmrztcritmt 10­162

vmsjmt 3­14, 3­28, 10­163

vmutilsmt.src 10­156

vmztcritmt 10­165

Wald statistic 6­8

zandrews 10­166

Zivot and Andrews 10­166

Index­6

Index

	 1 Installation
	1.1 Linux/Mac
	1.1.1 Download
	1.1.2 CD

	1.2 Windows
	1.2.1 Download
	1.2.2 CD

	1.3 Difference Between the Linux/Mac and Windows Versions

	 2 Getting Started
	2.1 README Files
	2.2 Setup

	 3 VARMAX, ECM, SVARMAX
	3.1 Introduction
	3.1.1 The varmamtControl Structure
	3.1.2 Printing Output

	3.2 VARMAX Models
	3.2.1 Stationarity and Invertibility

	3.3 Seasonal SVARMAX Models
	3.4 Error Correction Models
	3.4.1 Cointegration Tests
	3.4.2 Cointegration Coefficients

	3.5 Unit Root and Cointegration Tests
	3.5.1 Univariate Root Tests
	3.5.2 Cointegration Tests

	3.6 Identification
	3.6.1 Multivariate Identification

	3.7 Estimation
	3.7.1 Quasi-Maxiumum Likelihood Covariance Matrix of Parameters
	3.7.2 Starting Values

	3.8 sqpsolvemt and Newton's Method
	3.9 Setting Constraints
	3.9.1 Constraints and the Coefficient Vector
	3.9.2 Linear Equality Constraints
	3.9.3 Linear Inequality Constraints
	3.9.4 Nonlinear Equality Constraints
	3.9.5 Nonlinear Inequality Constraints
	3.9.6 Bounds Constraints
	3.9.7 Start Values

	3.10 sqpsolvemt and Managing Optimization
	3.10.1 Scaling
	3.10.2 Condition
	3.10.3 Starting Point

	3.11 Diagnostic Checking
	3.12 Forecasting
	3.13 References

	 4 Nonlinear Time Series Models
	4.1 Parameter Instability Tests
	4.1.1 Rolling Regressions
	4.1.2 Chow Forecast
	4.1.3 CUSUM Test of Coefficient Equality
	4.1.4 The Hansen-Nymblom Test

	4.2 Threshold Autoregressive Models
	4.2.1 TAR Model
	4.2.2 TAR Model Control Structure
	4.2.3 Estimating the TAR Model
	4.2.4 Example

	4.3 Switching Regression
	4.3.1 switchmtControl
	4.3.2 References

	4.4 Structural Break Models
	4.5 Structural Break Control Structure
	4.6 Estimating the Structural Break
	4.6.1 Example

	4.7 References

	 5 LSDV
	5.1 LSDV Model
	5.1.1 Bias Correction
	5.1.2 Example
	5.1.3 Special Features
	5.1.4 The lsdvmtControl Structure
	5.1.5 The lsdvmtOut Structure

	5.2 References

	 6 Univariate GARCH Models
	6.1 Standard Model
	6.2 Log-likelihood
	6.3 Nonnegativity of Conditional Variances
	6.3.1 Stationarity
	6.3.2 Initialization

	6.4 IGARCH
	6.5 GJRGARCH
	6.6 GARCHM
	6.7 Inference
	6.7.1 Testing Against Inequality Constraints
	6.7.2 One-sided Score Test
	6.7.3 Likelihood Ratio Test
	6.7.4 Covariance Matrix of Parameters
	6.7.5 Quasi-Maximum Likelihood Covariance Matrix of Parameters
	6.7.6 Confidence Limits
	6.7.7 Setting Type of Constraints
	6.7.8 Altering sqpsolvemt Control Variables
	6.7.9 Bibliography

	 7 Panel Data
	7.1 Pooled Time-Series Cross-Section Regression Model
	7.1.1 Panel Series Unit Root Tests

	7.2 References

	 8 ARIMA
	8.1 ARIMA Models
	8.2 References

	 9 Autoregression
	9.1 Autoregression Models
	9.2 References

	 10 Command Reference
	 acfmt
	 adjrsq
	 aggData
	 arimamt
	 arimamtControlCreate
	 autocormt
	 autocovmt
	 automtControlCreate
	 autoregmt
	 breitung
	 chowfcst
	 cusum
	 dfgls
	 ecmmt
	 garch
	 garchm
	 getlrv
	 gjrgarch
	 hansen
	 igarch
	 ips
	 kpss
	 llc
	 lsdvmt
	 lsdvmtControlCreate
	 macfmt
	 mosum
	 numCombReplace
	 numPerm
	 numPermReplace
	 nwmt
	 nyblom
	 pacmt
	 paramConfigmt
	 permReplace
	 permutate
	 rolling
	 sbControlCreate
	 sbreak
	 selectLags
	 simarmamt
	 stackData
	 standardizeData
	 starTest
	 svarmaxmt
	 switchmt
	 TARControlCreate
	 tarTest
	 tautocovmt
	 tscsmt
	 tscsmtControlCreate
	 tsforecastmt
	 varmamtControlCreate
	 varmaxmt
	 vmadfmt
	 vmc_sja
	 vmc_sjt
	 vmcadfmt
	 vmdetrendmt
	 vmdiffmt
	 vmforecastmt
	 vmppmt
	 vmrztcritmt
	 vmsjmt
	 vmztcritmt
	 zandrews

