Time Series MT 2.1

for GAUSS™ Mathematical
and Statistical System

Information in this document is subject to change without notice and does not

represent a commitment on the part of Aptech Systems, Inc. The software

described in this document is furnished under a license agreement or nondis-
closure agreement. The software may be used or copied only in accordance with

the terms of the agreement. The purchaser may make one copy of the software

for backup purposes. No part of this manual may be reproduced or transmitted in

any form or by any means, electronic or mechanical, including photocopying and

recording, for any purpose other than the purchaser’s personal use without the

written permission of Aptech Systems, Inc.

© Copyright 2006-2013 by Aptech Systems, Inc., Black Diamond, WA.
All Rights Reserved.

GAUSS, GAUSS Engine and GAUSS Light are trademarks of Aptech
Systems, Inc. Other trademarks are the property of their respective owners.

Part Number: 008624

Version 2.1

Documentation Revision: 2648
December 03, 2013

Contents

Contents

1 Installation ...l 11
1.1 Linux/MacC . 1-1
1.1.1 Download 1-2
11,2 CD 1-2
1.2 WINdOWS . 1-3
1.2.1 Download .. ol 1-3
1.2.2 CD 1-9
1.3 Difference Between the Linux/Mac and Windows Versions 1-9
2 Getting Started 2-1
2.1 READMEFiles 2-1
2.2 S UD o 2-1
3 VARMAX, ECM, SVARMAX . . . 31
3.1 Introduction 3-1
3.1.1 The varmamtControl Structure 3-4
3.1.2 Printing Output ...l 3-5
3.2 VARMAXModels 3-6
3.2.1 Stationarity and Invertibility 3-7

il

Time Series MT 2.1

3.3 Seasonal SVARMAXModels ... 3-7
3.4 ErrorCorrectionModels 3-11
3.4.1 Cointegration Tests 3-12
3.4.2 Cointegration Coefficients 3-13
3.5 Unit Root and Cointegration Tests 3-13
3.5.1 Univariate Root Tests 3-14
3.5.2 Cointegration Tests 3-27
3.6 Identification 3-28
3.6.1 Multivariate ldentification .. 3-32
3.7 Estimation ... 3-34
3.7.1 Quasi-Maxiumum Likelihood Covariance Matrix of
Parameters L 3-35
3.7.2 StartingValues ... L 3-35
3.8 sgpsolvemtand Newton'sMethod 3-39
3.9 Setting Constraints 3-43
3.9.1 Constraints and the CoefficientVector 3-43
3.9.2 Linear Equality Constraints 3-45
3.9.3 Linear Inequality Constraints 3-47
3.9.4 Nonlinear Equality Constraints _.._......_....................... 3-48

v

Contents

3.9.5 Nonlinear Inequality Constraints 3-49
3.9.6 Bounds Constraints .. 3-50
3.9.7 StartValues 3-50
3.10 sqpsolvemt and Managing Optimization _......................... 3-52
3101 Scaling ..o 3-52
3.10.2 Condition ... 3-53
3.10.3 Starting Point 3-54
3.11 DiagnosticChecking 3-54
312 Forecasting 3-54
3. 13 References 3-55
4 Nonlinear Time SeriesModels 41
4.1 Parameter Instability Tests 4-1
4.1.1 Rolling Regressionsol 4-1
4.1.2 Chow Forecast 4-5
4.1.3 CUSUM Test of CoefficientEquality 4-10
4.1.4 The Hansen-Nymblom Test 4-13
4.2 Threshold Autoregressive Models ... 4-17
421 TARModel 4-19
4.2.2 TAR Model Control Structure ... 4-19

Time Series MT 2.1

4.2.3 Estimatingthe TARModel 4-21
4.2.4 Example ... 4-21
4.3 Switching Regression o 4-26
4.3.1 switchmtControll 4-26
432 References ... 4-28
4.4 Structural BreakModels 4-29
4.5 Structural Break Control Structure 4-30
4.6 Estimating the StructuralBreak 4-31
4.6.1 Example ... o 4-32
4.7 References 4-33
B LS DV 5-1
5.1 LSDV Model 5-1
5.1.1 BiasCorrection 5-2
5.2 EXample . 5-3
5.1.3 Special Features 5-5
5.1.4 ThelsdvmtControl Structure 5-6
5.1.5 ThelsdvmtOut Structure 5-7
5.2 References ... 5-8
6 Univariate GARCH Models 6-1

vi

Contents

6.1 Standard Model L 6-1
6.2 Log-likelihood 6-2
6.3 Nonnegativity of Conditional Variances 6-4
6.3.1 Stationarity 6-6
6.3.2 Initialization 6-6
6.4 IGARCH . 6-6
6.5 GJRGARCH ... 6-7
6.6 GARCHM 6-7
6.7 Inference 6-7
6.7.1 Testing Against Inequality Constraints 6-10
6.7.2 One-sided Score Test 6-12
6.7.3 Likelihood Ratio Test 6-16
6.7.4 Covariance Matrix of Parameters 6-17
6.7.5 Quasi-Maximum Likelihood Covariance Matrix of
Parameters 6-20
6.7.6 Confidence Limitsl 6-20
6.7.7 Setting Typeof Constraints 6-20
6.7.8 Altering sqpsolvemt Control Variables 6-22
6.7.9 Bibliography 6-23

vii

Time Series MT 2.1

7 Panel Data 71
7.1 Pooled Time-Series Cross-Section Regression Model 7-1
7.1.1 Panel SeriesUnitRootTests ... 7-2
7.2 References 7-16
8 ARIMA . 8-1
8.1 ARIMAModels 8-1
8.2 References 8-2
9 AUtoregresSioNn 9-1
9.1 AutoregressionModels 9-1
9.2 References 9-2
10 Command Reference 10-1
actmt ... 10-1
A TS 10-2
agaData 10-7
arimamt 10-9
arimamtControlCreate 10-13
autocormt ... 10-14
autoCoOVMt .. L 10-16
automtControlCreate 10-18

viii

Contents

autoregmMt L 10-19
reItUNG .l 10-25
chowfest 10-26
CUSUM e 10-28
afgls 10-30
CCMIMt .. 10-31
QaICN 10-41
QarChM 10-45
getlirv il 10-48
OIrQarCN 10-49
hansen L 10-53
Igarch .. 10-54
DS el 10-58
KPS o 10-59
I 10-60
ISAVMt L 10-62
IsdvmtControlCreate 10-67
mactimt L 10-68
MOSUM L 10-69

X

Time Series MT 2.1

numCombReplace 10-72
NUMP M 10-73
numPermReplace 10-75
WM L 10-76
YD oM 10-78
PACN 10-79
paramCoONfigmMt .. 10-80
PErMREPIACE ... 10-83
permuUtate ... 10-84
FOIING ol 10-85
sbControlCreate 10-87
Sbreak 10-88
SeleCtLagS ..ol 10-91
simarmamt .. 10-92
stackDatal 10-94
standardizeData 10-95
starTest ... 10-96
SVarmaxXmMt ... 10-97
switchmt .l 10-109

Contents

TARControlCreate 10-120
tarTest . 10-121
tautocovmt .. 10-124
ESCSMt 10-125
tscsmtControlCreate 10-133
tsforecastmt ... 10-134
varmamtControlCreate 10-136
varmaxmt .. 10-138
vmadfmt .l 10-149
VMG S oL 10-151
VMG St 10-152
vecadfmt .. 10-153
vmdetrendmt ...l 10-154
vendiffmt . 10-155
vmforecastmt ... 10-156
VPPN 10-158
vmrzteritmt L 10-162
VS M 10-163
vmzteritmt . 10-165

x1

Time Series MT 2.1

ZANAT WS

xii

1 Installation

If you are using GAUSS 13 or later, there is an applications installation wizard
available to install your application. Go to Tools -> Install Applications and
follow the prompts to install applications from the CD or downloaded . zip file.

i

< GAUSS13

File Edit | Tools | View Help

o &

History

1and

Preferences
Install Application I},
Change Font

For older versions of GAUSS, follow the instructions for the appropriate

platform below.

1.1 Linux/Mac

If you are unfamiliar with Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below. Note
that if you have more than one version of GAUSS installed on your machine,

1-1

uolne|eisu|

Installation

Time Series MT 2.1

you must install the application to each version where you want to use it. This
will also be necessary when upgrading to a newer version of GAUSS.

1.1.1 Download

1. Copythe .tar.gz or .zip file to /tmp.

2. Ifthe file has a . tar.gz extension, unzip it using gunzip. Otherwise
skip to step 3.
gunzip app_ appname vernum.revnum UNIX.tar.gz

3. cd to your GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.
cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extension, to extract the
file.
tar xvf /tmp/app_appname vernum.revnum UNIX.tar
unzip /tmp/app appname vernum.revnum UNIX.zip

1.1.2 CD
1. Insert the CD into your machine’s CD-ROM drive.

2. Open a terminal window.

1-2

Installation

cd to your current GAUSS or GAUSS Engine installation directory. We
are assuming /usr/local/gauss in this case.

cd /usr/local/gauss

. Use tar or unzip, depending on the file name extensions, to extract the
files found on the CD. For example:

tar xvf /cdrom/apps/app appname vernum.revinum
UNIX.tar

—or—

unzip /cdrom/apps/app_ appname vernum.revnum
UNIX.zip

However, note that the paths may be different on your machine.

1.2 Windows

If you are unfamiliar with how to extract (unzip) files, see your system
administrator or system documentation for information on the commands
referred to below. Note that if you have more than one version of

GAUSS installed on your machine, you must install the application to each
version where you want to use it. This will also be necessary when upgrading to
a newer version of GAUSS.

1.2.1 Download

GAUSS applications are a set of files that need to be placed in the /src, /lib and
/examples directory from your GAUSSHOME directory. To install an
application, you simply need to extract them to your GAUSSHOME directory.

1-3

uolne|eisu|

Installation

Time Series MT 2.1

Internally the application zip file has the same file hierarchy as the GAUSS
directory structure and so all files will automatically go to the right place.

Step by step installation

Open the windows file explorer and browse to the location to which you have
downloaded your application.

Right-click the application file and select Extract All...from the context menu.

e (1 @ |

Jr Favoribes = Plamnie : Date modified Type
B Desktop k spp_crnit_2.0 WIN 1AW 5 P Compees
B Dowrlsads Open
& Recent Places Open in nisv windiovs
L My Documents Al
J. venshare -
B Merten Inbernast Security]
A Libeaies = i
o 1 Restore previous wersions
b= Pictures Send to L]
Videos
a8 Cut I
8 Comgpuier :‘W
& Local Disk it =t
i Local Disk {E) 4 Create shorcut
Ca Windiata (F) Dielete
.) . | Rensme "
i app_cminmt_2.0 Wi Date modified Properties
1 Cermpresiad [1ipped) Folder Size- WETEE

Select the Browse button.

1-4

Installation

Select a Destination and Extract Files

Files will b2 extracted to this folden
Fi\Downdoads'myappstapp_cmimt_2.0_ Wi

[+ Show edracted files when complete

Browse to your GAUSS home directory.

1-5

uolne|eisu|

Installation

Time Series MT 2.1

Select a destination

Select a Destination and Extract
Salact the place whene you want o exiract the ssected

Files will b estracted to this folder B Thowry chck fhm D Duciem.

F:‘.Dmﬂund:ﬁmpppd\npp_mlmlﬂj

FE) Computer
o L Lo<al Disk ()
[+ Show edracted files when complete v gaussld

s goussl
) Eplltmp
b Eplimp
b Tetel
s NVIDLA
P Perflogs

Te e subifolders, cick the symbol nest o a folder

[Maerewroer | [os | [cancs |

Browse to the your GAUSS home directory. By default this will be
C:\gauss12. Then press the OK button at the bottom of the window. If your
GAUSS version is other than 12, the folder will end with that version number
instead.

1-6

Installation

Select a Destination and Extract Files

Files will be evtracted to this folder
Cligeussl?

[+ Show edracted files when complete

Click the Extract button.

1-7

uolne|eisu|

Installation

Time Series MT 2.1

This destination already contains a folder named 'lib'.

- I ariy files have the same names, you will be asked if you want to replace
those files.

Do you still want to merge this folder

lib
|] ‘ Date crested: 10/3/2002 11:21 AM

with this one?
lib
Type: File folder
Date modified: 6/1/2012 1:18 PM
) ' |
[Yes] [Skip] [Cancel
'3
| D thiis for all current items

Windows will warn you that some of the folders already exist. This is correct.
Click the Yes button confirming that folder already exists.

Y our application module is now installed.

1-8

Installation

1.2.2 CD

The process of installing an application from a CD is the same as that of
installing from a downloaded file. Insert the CD into your machine’s CD-ROM
drive, then follow the steps listed previously to locate the file on the CD and
extract the file into your GAUSS folder.

1.3 Difference Between the Linux/Mac
and Windows Versions

If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press ENTER after the keystroke in the
Linux/Mac version.

1-9

uolne|eisu|

2 Getting Started

GAUSS 13.1+ is required to use these routines.
The Time Series MT version number is stored in a global variable:

_tsmt ver 3% 1 matrix, the first element contains the major
version number, the second element the minor
version number, and the third element the revision
number.

If you call for technical support, you may be asked for the version of your copy
of Time Series MT.

2.1 README Files

The file README . t smt contains any last minute information on the Time
Series MT procedures. Please read it before using them.

2.2 Setup

There are four essential steps to using the procedures in this module. These must
be specified in any programs that call these procedures.

2-1

paueis Bunien

Getting Started

Time Series MT 2.1

1. Header:

The header consists of up to five statements:

1. A library statement which activates the TSMT library, making
its functions available

library tsmt;

2. Declarations of instances of any needed Control structures.

struct varmamtControl wvmc;

3. Declarations of instances of any needed Out structures.

struct varmamtOut vmo;

4. A call to the appropriate ControlCreate procedure for any

needed Control structures, which sets its members to the default
values.

vmc = varmamtControlCreate () ;

There are four types of Control and Out structures included with
TSMT, corresponding to four groups of procedures:
1. arimamt uses arimamtControl and arimamtOut
structures.
2. The autoreg procedures use automtControl and
automtOut structures.
3. tsesmt uses tscsmtControl and tscsmtOut structures.

2-2

Getting Started

4. The varmamt and ecmmt procedures use varmamtControl
and varmamtOut structures.

Here is an example of a full TSMT header section needed to call the
arimamt function (for GAUSS 13.1 and newer):

library tsmt;

struct arimamtControl a ctl;
struct arimamtOut a out;

a ctl = arimamtControlCreate();

2. Data Setup:

Next, the user must specify the data to be passed to the procedures. For
example, the format for varmaxmt is:

vmo = varmaxmt (vmc,y, x) ;

Here is an example of the data setup for that procedure call:

load y[62,3] = minkmt.asc;
x =vyl[.,1];
y =vyl.,2 3];

3. Specify Options:

Options are controlled by setting the members of the appropriate Con-
trol structure:

2-3

paueis Bunien

Getting Started

Time Series MT 2.1

vmc.ar = 3; //Estimate 3 AR matrices
vmc.printIters = 1; //Print iteration
//information

4. Calling the Procedure:

Each estimation procedure can print results to the screen and send output
to the specified output file and/or return a global output structure to
memory. If all you need is the printed results, you can call the
procedure. Placing the GAUSS keyword call in front of a function call
tells GAUSS to execute the function, but disgard the return values. For
example:

call varmaxmt (vmc,y, x) ;

In this case, you would not need to declare an instance of a
varmamtOut structure at the top of the program. However, if you want
information returned to memory, you must assign the result to a
varmamtOut structure.

vmo = wvarmaxmt (vmc, y, x) ;

The resulting structure, vmo, stores all of the return statistics in an
efficient manner. See Chapter 10 for more information on the statistics
returned by each procedure.

2-4

3 VARMAX, ECM, SVARMAX

The TSMT module contains procedures for estimating and analyzing VARMA,
VARMAX, ARMA, ARMAX, SVARMA, SARMA, SVARMAX, and
ECMMT models.

3.1 Introduction

The procedure varmaxmt estimates VARMA, VARMAX, ARMA, and
ARMAX models. Linear and nonlinear equality and inequality constraints may
be placed on the parameter estimates, calling the sqpsolvemt procedure.
varmaxmt calls a number of subordinate procedures that enable identification,
estimation, diagnostic checking, and forecasting. These are described in the
sections below. The varmaxmt procedures return parameter estimates,
residuals, and various summary statistics.

The procedure svarmaxmt estimates the seasonal effects models SVARMA,
SVARMAX, and SARMA.

The procedure ecmmt estimates ECM models. It calls a number of subordinate
procedures that enable the recovery and analysis of long-run and short-run
parameters and cointegrating vectors. The ecmmt procedures return parameter
estimates (including cointegration coefficients), eigenvalues and eigenvectors

3-1

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

(computed using full information maximum likelihood), residuals, and summary
statistics.

The procedures varmaxmt, svarmaxmt and ecmmt all use a full
information maximum likelihood (FIML, exact, unconditional) estimation
procedure adapted from code developed by Jose Alberto Mauricio of the
Universidad Complutense de Madrid. The code was published as Algorithm
AS311 in Applied Statistics. It is also described in "Exact maximum likelihood
estimation of stationary vector ARMA models," JASA, 90:282-291. The
estimation algorithm assumes that a covariance stationary process is passed to
it. Sample means are removed from all data prior to estimation. Further
discussion of the estimation method and requirements is contained in Section
3.7.

The sgpsolvemt procedure in the GAUSS Run-Time Library links
Mauricio’s FIML (exact, unconditional) estimation to constraints.
sgpsolvemt uses Newton’s method to minimize the negative of a log-
likelihood function subject to different types of constraints.

The following procedures are included in the TSMT library to enable estimating
and analyzing VARMA and ECM models:

ecmmt Estimates an Error Correction Model.
l1sdvmt Estimates Least Squares Dummy
Variable with bias correction.
svarmaxmt Estimates seasonal VARMAX.
switchmt Estimates switching-regression model.
macfmt Returns an ACF matrix for multivariate
models.
nwmt Returns the Newey-West Covariance
matrix.

varmamtControlCreate Resets the VARMA global variables.
varmaxmt Estimates a VARMAX model.

3-2

VARMAX, ECM, SVARMAX

vmadfmt

vmcadfmt

vmc_sjamt
vmc_sjtmt
vmdetrendmt

vmndiffmt
vmsdiffmt

vmforecastmt
vmppmt
vmptrendmt

vmrztcritmt

vmsjmt

Computes the Augmented Dickey
Fuller statistic, allowing for
deterministic polynomial time trends of
an arbitrary order.

Computes the Augmented Dickey
Fuller statistic applied to the residuals
of a cointegrating regression, allowing
for deterministic polynomial time
trends of an arbitrary order.

Returns critical values for Johansen’s
Maximum Eigenvalue statistic.
Returns critical values for Johansen’s
Trace statistic.

Returns residuals from regressing on a
time trend polynomial.

Differences a time series matrix.
Differences a seasonal time series
matrix.

Forecasts VARMAXMT models.
Performs Phillips-Perron unit root tests.
Creates a polynomial matrix of time
trends of order p.

Returns 7 critical values for the
Augmented Dickey-Fuller statistic,
derived from the residuals of a
cointegrating regression. Depends on p,
the AR order in the fitted regression,
the number of observations, and the
number of explanatory variables.
Calculates Johansen’s Trace and
Maximum Eigenvalue test statistics.

3-3

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

vmztcritmt Returns t critical values for the

Augmented Dickey-Fuller test statistic,
depending on the number of
observations and p, the AR order in the
fitted regression.

3.1.1 The varmamtControl Structure

The table below contains a list of the numerous control variables, which are
members of the varmamtControl structure. They give the user considerable
control over the model’s specification and estimation. A more complete
description of their use is in the following sections.

A
adforder

altdepvarNames

ar
covparType

critl

ctl

diff

IndEquations
lags

ma

matrix, linear equality constraint coefficients.
scalar, number of AR lags in the ADF test
statistic.

string array, alternate names for dependent
variables. ar scalar, order of autoregression.
scalar, order of autoregression.

scalar, specifies ML or QML covariance matrix
of parameters.

scalar, the significance level for ACF indicator
matrices.

sgpsolvemtControl structure, control
parameters for sqpsolvemt optimization.
scalar, order of differencing to achieve
stationarity.

matrix, set zero restrictions on x coefficients.
scalar, lags over which the ACF and
Diagnostics are defined.

scalar, order of moving average.

3-4

VARMAX, ECM, SVARMAX

maxvec scalar, maximum number of elements allowed in
any one matrix.
NoDet scalar, controls the constant term in the
Johansen tests.
nwtrunc scalar, the Newey-West truncation lag.
olsqgtol scalar, tolerance used by olsgrmt.
output scalar, determines the output to be printed.
PrintIters scalar flag, to print each iteration’s information.
rho scalar, order of cointegration.
row scalar, number of rows to read at a time from
dataset.
s scalar, seasonal parameter.
sar scalar, order of seasonal autoregression.
sdiff scalar, order of seasonal differencing.
sma scalar, order of seasonal moving average.
scale vector, used to scale time series.

SetConstraints

scalar flag, impose stationarity and invertibility.

Start an instance of a PV structure containing start
values.
title string, title to be printed at top of header.

3.1.2 Printing Output

Two members of the varmamtControl structure, output and
PrintIters, determine the output that is displayed from ecmmt,
varmaxmt, sgpsolvemt, and other subordinate procedures.

1. Set output =0 to suppress all printing from the varmaxmt and
ecmmt procedures.

3-5

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

2. Set output > 0 to print results from the varmaxmt and ecmmt pro-
cedures.

3. Set PrintIters =0 (output is not equal to zero) to suppress printing
while starting values are calculated for each dependent variable during
the sgqpsolvemt operation.

4. Set PrintIters >0 (output is not equal to zero) to print
sgpsolvent iteration information. This information includes the value
of the objective function and the gradient at each estimated coefficient. It
is useful in finding where and why convergence might fail.

3.2 VARMAX Models

A stationary and centered (means-removed) VARMAX model may be written
as:

P q
Y- Zlq)jyt—j X =&~ Zl(ajgt—i
j= =

fort =1 --- Twhere Y; has dimension Lx 1, €; is a zero mean covariance
stationary process that is normally distributed with positive definite covariance

matrix ¥, and X; is a Kx 1 vector of fixed explanatory variables. The @ and @
matrices have dimension Lx L. The f coefficients have dimension L x K.

Another way to write the same system is using the backshift operator, B:

©,(B)Y; + pX, = O(B)e, (D

3-6

VARMAX, ECM, SVARMAX

where ®p(B)= @~ @B~ ...~ ®,B” 4,40 (B)=0) OB~ ...~ OB

are matrix polynomials and ®(and © () are nonsingular matrices of dimension L
x L (often assumed to be the identity matrices).

3.2.1 Stationarity and Invertibility

The VARMAX process is stationary if the roots of det(d)p(B) are greater than
one in modulus. The VARMAX process is invertible if the roots of det(®(B))
are greater than one in modulus. The vimroots procedure finds the AR and
MA characteristic roots and their moduli. The roots and their moduli are printed
if the output member of the varmamtControl structure is nonzero.

3.3 Seasonal SVARMAX Models

The SVARMAX model includes parameters for describing seasonal effects in a
VARMAX model. The SARIMA model is a special case that can also be
estimated with svarmaxmt.

In widely used terminology, the SVARMAX model can be described as
SVARMAX(p,d,q,P,D,Q,s) where

autoregression order
differencing parameter

moving average order

seasonal autoregressive order
seasonal differencing parameter
seasonal moving average order
seasonal order

n O o vwQ QT

The model represented by

3-7

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

(1= 1)(1 = L gL)OL)Y, = ALIOL),

where

2
$L) = 1=$L—g,L7 . ¢ L
OL) = 1 - DL — 0,17 ... D, L7
o(L)

2
L+0OL+0,L%...0,L1

2 o
OL) = 1+0,L°+0,L% ... 0yLY

Errors are assumed to be distributed N(0,Q). The estimation procedure assumes

that all series are stationary. Setting vimc . SetConstraints a nonzero value
enforces stationarity, by constraining the roots of the characteristic equations

2
l=¢z— ¢y ...¢pzp
and
1 -®z° - CDZZZS ¢PZPS

are constrained to be outside the unit circle.

3-8

VARMAX, ECM, SVARMAX

Example

library tsmt;
#include tsmt.sdf
load y[62,3] = minkmt.asc;
struct DS dO;

d0 = dsCreate();

dO0.dataMatrix = y[.,2 3];

struct varmamtControl wvmc;

vmc = varmamtControlCreate () ;
vmc.ar = 1;

vmc.sar = 1;

vmc.s = 2;

vmc.output = 1;

struct varmamtOut vout;

vout = svarmaxmt (vmc,d0) ;

phi = pvUnpack (vout.par, "phi");
sphi = pvUnpack (vout.par,"sphi");

vc = pvUnpack (vout.par,"vc") ;

print;

print;

print;

print;

format /1d 12,8;
print "PHI";

3-9

XVYINHVAS
‘WO XVINYVA

Time Series MT 2.1

with results:

3-10

VARMAX, ECM, SVARMAX

3.4 Error Correction Models

Error Correction Models are often used to estimate long-run and short-run
relationships and to test for cointegration.

A stationary (means-removed) VAR(p) model is written as:

p
KLY, =1, 2 Yoy Y, =, @
“

where Y; is an L dimensioned covariance stationary time series process, the &,

are i.i.d. N(0,9Q,), Q, is a positive definite matrix of order L, and X; is a K x
1 vector of fixed explanatory variables, has the error correction form:

k

AY,=TIY, |+ 2TAY, ,+ X, +e,t=1, ..., T 3
i=1

where the [T and " matrices have dimension Lx L. The / coefficients have
dimension L x K.

ecmmt estimates this model using FIML (exact, unconditional - Mauricio’s
procedure, discussed in Section 3.7). They both return a
varmamtOutstructure, which includes the following members:

aa L>r matrix of coefficients, such that (aa)*(bb) = 11.

bb r* L matrix, eigenvectors spanning the cointegrating
space of dimension 7.

va r*1 vector, eigenvalues.

par An instance of a PV structure containing parameter

estimates, which can be retrieved with pvUnpack.
par includes:

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

Pi L>* L matrix of cointegration
coefficients.
Note that p1i is a reserved word in GAUSS. Users will need to assign this
to a different variable name.

3.4.1 Cointegration Tests

Given the above ECMMT model, the degree of cointegration (the dimension of
the cointegrating space) may be examined using Johansen’s likelihood ratio
Trace and Maximum Eigenvalue statistics, returned by the vms3j procedure.
The first set is based on Johansen’s estimation procedure, specifically on his
method for calculating eigenvalues of the [T matrix. The second set is based on
the [T eigenvalues returned from Full Information Maximum Likelihood
estimation of the ECMMT model.

If IT has full rank then all the variables in Y; are stationary. If I has less than
full rank, say r, then » of the variables are cointegrated. The Trace statistic tests
the null hypothesis that the rank of I is less than or equal to r versus the
alternative that it is greater than . The Maximum Eigenvalue statistic tests the
null hypothesis that the rank of II is equal to » versus the alternative that the
rank of IT is ;- + . These statistics are given in Johansen (1995):

L
-T 2 ln(l—ft\,-)

Trace =
i=r+1
Amax = _Tln(l _/Ir+1)
where 441> -2 AL are the smallest 7, — ;- eigenvalues of Sl_llSlog()_olSOl and

the ij matrices represent sums of square from two regressions, AY, on

AY,— . AY,— 4+ (returning residuals R,) and Y,_; on

3-12

VARMAX, ECM, SVARMAX

AY;—p .. AYy—p+ 1 (returning residuals Ry,).

Asymptotic critical values for the Trace and Maximum Eigenvalue statistics,
based on Johansen’s method of calculating eigenvalues and given that the
correlations are estimated rather than observed, are returned by vmc_sja and
vmc_sjt. The former returns Maximum Eigenvalue critical values and the
latter returns Trace critical values.

3.4.2 Cointegration Coefficients

Occasionally the (aa)*(bb) calculation will not match the returned IT matrix.
This is because the eigenvalues close to zero are associated with eigenvectors
not in the cointegrating space. (aa * bb) will always equal II if » equals zero,
i.e., if all eigenvectors are in the cointegrating space. If » equals one, (aa)*(bb)
will equal II only if the eigenvalue associated with the removed eigenvector is
zero. If the eigenvalue is close to zero, (aa)*(bb) will almost equal I1. If the
eigenvalue is not close to zero, (aa)*(bb) will be quite different from IT.

3.5 Unit Root and Cointegration Tests

Much applied research tests whether theoretically predicted relationships among
variables are confirmed in the real world. Other research involves forecasting,
whether from a naive time series model or using a structural model based on
behavior. In all cases it is important to work with stationary or cointegrated
variables. Spurious correlation may result if the relationships between
nonstationary series are examined. In addition, forecast variances for
nonstationary series increase without bound.

Model building involves first testing for unit roots. The vmadfmt procedure
performs Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) unit root
tests. The vmppmt procedure performs Phillips-Perron (PP) unit root tests.

3-13

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

Cointegration tests follow to ward off spurious estimated relationships. The
vmadfmt procedure performs ADF cointegration tests. The vmsjmt
procedure performs Johansen’s Trace and Maximum Eigenvalue cointegration
tests.

The COINT module, written by Sam Ouliaris and Peter C.B. Phillips and sold
by Aptech Systems, Inc., contains numerous other unit root and cointegration
tests, including Park-Choi (1988) G(p,q) and J(p,q) tests, the Stock and Watson
(1988) common trends test, and the Phillips-Ouliaris (1990) P(u) and P(z) tests.
The COINT module also contains numerous (time and frequency domain)
methods for estimating the cointegrating vector, ARMA models, various model
selection criteria, spectral density estimation, and long-run variance estimation.

3.5.1 Univariate Root Tests

The unitroots procedure calls a variety of unit root and cointegration tests
and prints the results. The univariate unit root test statistics calculated are the
Dickey-Fuller, Augmented Dickey-Fuller (both called with the vmadfmt
procedure) and Phillips-Perron (called with vmppmt) statistics.

DF and ADF Unit Root Tests

The vmadfmt procedure calculates Dickey-Fuller and Augmented Dickey-
Fuller unit root test statistics, returning the statistic, its t statistic, and a 6 x 1
vector of critical values.

Three specifications are typically analyzed, a random walk with drift and trend,
a random walk with drift, and a random walk:

AY, = atfit(p—1)Yy+ 2 pAYite 4)
—1,2,...

l 24

3-14

VARMAX, ECM, SVARMAX

A, = at(p- DYt 2 pAY+e,)
i-1,2,...
AY, = (- DY+ 2 p AT, ite, ©

i—1,2,...

The time polynomial input argument to vmad£fmt determines which of the
above models will be estimated.

The Dickey-Fuller test assumes independent and identically distributed errors.
This assumption precludes models with lagged dependent variables, (i.e., the
lagged dependent variable terms in specifications (4) to (6) are not estimated)
since lags induce dependency in the errors.

The Augmented Dickey-Fuller test eliminates serial correlation in the residuals
by including lagged dependent variables in the specification. The adforder
member of the varmamtControl structure sets the the number of AR terms
to include in the Augmented Dickey-Fuller test statistic calculations. The default
is 2.

The GAUSS dfgls unit root test follows the methodology proposed by Elliot,
Rothenberg, and Stock (1996). Given Y, such that

v, = Opyy @y)’
Za such that
Z, = (,2=a2—-1),...t—a(t— 1))’
and X, such that

x, = (L1-0,..,1—a)’

3-15

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

The testing parameter is given as for the case including a time trend and as for
the case including only a constant.

GLS detrends the data uses the estimators from the OLS regression
Y, = Bt Pt e

such that

v =y, = (Bo+By)

After detrending, the augmented Dickery-Fuller test is performed on the
detrended data using a standard ADF testing regression

k
d d d
J= ’

to test the null hypothesis using the ERS critical values.

Example

For this example we will use an autoregressive time series created using the
simarmamt data generating function (included in the TSMT library). The
series will include both a trend and constant:

b = 0.95;

p = 1;
q= 0;

const = 0.9;
trend = 0;

n = 500;

3-16

VARMAX, ECM, SVARMAX

k =1;

std = 1;

seed = 10191;

yt = simarmamt (b, p, q, const, trend, n, k, std, seed) ;

The results in a single AR(1) time series vector with 500 observations, a
constant equal to 0.9, and an autoregressive coefficient equal to 0.5. If a trend in
the data is desired it must be added to the generated series

yt = 0.05*seqa (1,1, rows (yt)) + yt;
The dfgls can be directly called to test the null hypothesis of a unit root

{ adf stat, crit mat } = dfgls(yt,0,1);
print "The DFGLS stats:";

adf stat;

print "The ERS critical wvalues:";
crit mat;

where the second input specifies that no lags are included in the ADF regression
and the third input specifies that the model includes a trend.

The command produces the following output:

The DFGLS stat:

-3.3137976

The ERS critical values:

-3.4800000 -3.1500000 -2.8900000 -2.5700000

These results indicate the rejection of the null hypothesis of a unit root at the 1%
level.

3-17

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

References

1. Elliott, G., T. J. Rothenberg, and J. H. Stock. 1996. "Efficient tests for an
autoregressive unit root." Econometrica 64: 813-836.

2. Enders, W. (2010). Applied Econometric Time Series, 3e. Hoboken,
NJ: John Wiley & Sons, Inc.

Phillips-Perron Unit Root Tests

Phillips (1987) and Phillips and Perron (1988) test for unit roots by adjusting the
OLS estimate of an AR(1) coefficient for serial correlation in the OLS
residuals. Three specifications are considered, an AR(1) model without a drift,
an AR(1) with a drift, and an AR(1) model with a drift and linear trend:

Y, = pYate 0
Y, = atplte (8)
Y, = atot+tpY,_teg)

The unit root null hypothesis is /:(p —1)=0.

Hamilton (1994, pp. 506-511) tests this hypothesis using two statistics that are

analogs of the Phillips and Perron (1988) Z,, and Z; statistics. Hamilton’s
statistics are based on OLS estimation of (7) to (9). They allow an identical
formula for each statistic to be used for all three cases.

The vmppmt procedure returns the Z; statistic as calculated by Hamilton and
critical values. Suppose any one of the above equations is estimated by OLS,

AN
returning 27 and % 7, (the OLS estimates of p and the standard error of 27

3-18

VARMAX, ECM, SVARMAX

— _ AN =
respectively), Ir = (’0 1) / T (the usual OLS 7 statistic for testing H O)’ ét
(the OLS residuals), and s T (the estimated standard error of the regression).

Hamilton's Z; statistic is:

Z,= @0/ zzjgfr - {%{zz - 90} / ?HT[épT /ST}

/’1\2 is an estimate of the asymptotic variance of the sample mean of &; . In the

vmppmt procedure 22 is estimated using the Newey-West (1987) estimator,
) q
T gy 22|10/ (g 1)},

j=1
AN _ p=INT A A
=T X =j+1¢¢1—j are the sample autocovariances of &; .

where /;

The nwtrunc member of the varmamtControl structure sets the number of
autocorrelations to use in calculating the Newey-West correction (¢ in the above
equation). The default setting, 0, causes GAUSS to use a trunctation lag given

by Newey and West, g =4(7T"/ 100)2/9.

Under the null hypothesis, the Z; statistics have the same asymptotic
distribution as Dickey-Fuller statistics.

KPSS

The KPSS test uses a Lagrange-Multiplier type test to the null hypothesis of
stationarity.

3-19

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

The test statistic y is given by

The KPSS test requires OLS detrending or demeaning data (if necessary) and is
formulated using the residuals from the OLS regression

yt :Dl:5+ut

where Y, is the test variable and is a matrix of deterministic components,
including the constant and trend. Using the residuals from the regression the
partial sum series and its squares are constructed

T
23]
=1

where

j=1
Calculation of the KPSS test statistic requires a consistent estimator of the long-
run variance, ;2. This is achieved using the nonparametric heteroskedasticity
and autocorrelation consistent estimation approach discussed in Hobijn,et al.

(1998). For full details of the estimation methodology refer to the help section
for the getlrv function.

The kpss function requires several inputs allowing the user to control
estimation of the long-run variance. First, providing a non-negative, non-zero

3-20

VARMAX, ECM, SVARMAX

integer for max I1ags allows the user to directly specify the maximum lag
autocovariance used during estimation. If the max Iags input is zero, the
maximum number of lags is determined using the Schwert criterion.

In addition, the user must specify whether to use the Newey-West automatic,
data dependent procedure to estimate bandwidth. The alternative option is to
choose the bandwidth as a deterministic function of the sample size T. Users
must also choose between the Bartlett kernel and the Quadratic Spectral Kernel.

Example

This example uses a simulated trend-stationary, AR(1) series which follows the

data generation process V; = 1 70.95y,_; +0.05 + ¢,

This is simulated using the simarmamt function

b = 0.95;
p=1;
q=0;
const = 1;
trend = 0.05;
n = 500;

k =1;

std = 1;

seed = 10191;
yt = simarmamt (b, p, q, const, trend, n, k, std, seed) ;

The kpss function is used to test null hypothesis of stationarity. The kpss
function requires a number of inputs which allow users to control the estimation
of the long run variance used in calculating the long-run variance.

max lags = 0;
trend = 1;

3-21

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

print out = 1;

{ mat, crit } = kpss(yt,max_lags, trend, gsk, auto,
print out);

print "The t-stats for all possible lags:";
mat;

print "Critical values:";

@rilit g

This call of the kpss function specifies that the KPSS test statistic will use the
Quadratic Spectral Kernel and will automatically calculate the data-specific
bandwidth used in estimating the long-run variance. The code above produces
the following results:

Trend stationary

Maxlag 6.0000000 chosen by Schwert criterion
Automatic bandwidth selection (max lags)
7.0000000

The t-stats for all possible lags:

.44832631
.44798139
.44326471
.42492583
.38668238
.33610897
.28911678
.25789383
Critical wvalues:

O O O O O O O O

3-22

VARMAX, ECM, SVARMAX

0.21600000 0.17600000 0.14600000
0.11900000

Zivot and Andrews

The Zivot and Andrews (1992) unit root tests the null hypothesis of a unit root
against the alternative of trend stationarity with a break in the intercept, trend, or
both intercept and trend. The proposed test statistic is the minimum t-test across
all possible breakpoint. Hence, the Zivot and Andrews (1992) test modifies the
standard ADF unit root test with dummy variables to implement breaks in the
intercept and trend.

Under the null hypothesis the data generating process is
Y, =y, Tuy

and Y, is I(1) with no structural break. The testing regression depends on
whether the user specifies a break in the trend, the intercept or both.

Test A of the alternative hypothesis that Y, is stationary with a break in the
intercept requires OLS estimation of

p
Ayt — +91D1t(7) +ﬁz + D=1 ’ ZlaAyZ_i " N
i=
and

1, t>nk
0, otherwise

Di44) :{

with p specifying the lags used for the ADF unit root testing and A specifying the
break fraction (n?"¢k/y).

3-23

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

Test B of the alternative hypothesis that Y, is stationary with a break in the trend
requires OLS estimation of

P
Ay[= +92D21(7) +ﬁt + JA + leéAy[—j + Uy
i=
and

t—nl, t>nl
0, otherwise

Dy d) = {
with p specifying the lags used for the ADF unit root testing and A specifying the
break fraction (n?"¢ak/y).

Test C of the alternative hypothesis that Y, is stationary with a break in the
intercept and trend requires OLS estimation of

p
Ay, = +01D1 (y) + B, + 02D (y)z + v, |+ ZléAyt—i Ty
i=

In all cases, the testing procedure performs OLS regressions for all possible
break point and computes the t-test statistic that y=0. The minimum of all t-tests
is used for testing the null hypothesis using the critical values specified in table
below.

Zivot-Andrews test statistic critical values

Significance Level
Test|5% 1%

A |-4.80 [-5.34

B |-442 |-4.93

C |-5.08 |-5.57

3-24

VARMAX, ECM, SVARMAX

Example

First consider the AR(1) time series, yt, generated using the simarmamt data
generating function (included in the TSMT library):

b =0.5;
p=1;

q = 0;
const = 0.9;
trend = 0;

n = 500;

k = 8;
std = 1;

seed = 10191;
yt = simarmamt (b,p, q, const, trend, n, k, std, seed) ;

This reproduces the following data series, pulling error terms randomly from the
standard normal distribution:

Y, =09+0.5y, | +u,
u; ~ NIID(0, 1)

Suppose we wish to test the null hypothesis of unit root against the alternative
hypothesis that yt is stationary with a break in the intercept using the Zivot-
Andrews unit root test:

{ t test, break pt } = zandrews (yt,4,0.10,0,2);

3-25

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

This command implements the Zivot-Andrews using a maximum of 4 lags in the
ADF test regression. The bottom and top 10% of data points are excluded from
possible break points with the specification that tr = 0.10. A graph of the t-stats
is produced, because the last input, draw graph, is set to 1. The command
produces the following output:

The min t-stat is: -8.310
The break point occurs at observation: 404.00
The five percent critical value is: -4.800
The one percent critical value is: -5.430

In addition, the specification that which outputis equal to 2, results in the
following graph:

T-LaSE STASHE of Hull Hypothass

88

3-26

VARMAX, ECM, SVARMAX

References

1. Hobijn, B. Franses, P.H., & Ooms, M. (2004). "Generalizations of the
KPSS-test for stationarity." Statistica neerlandixa, 58(4), 483-502.

2. Kwiatkowski, D. Phillips, C.B., Schmidt, P., & Shin, Y. (1992). "Testing
the null hypothesis of stationarity against the alternative of a unit root."
Journal of Econometrics, 54, 159-178.

3. Zivot, E. & Andrews, D. (1992). "Further evidence on the great crash, the
oil-price shock, and the unit-root hypothesis." Journal of Business & Eco-
nomic Statistics, 10, 251-270.

3.5.2 Cointegration Tests

Residual Based Cointegration Tests

Cointegration tests fit into two categories, those based on single-equation
estimation methods and those based on estimating systems of equations. Single
equation tests involve testing for a unit root in the residuals that result from
regressing one series on another. The Augmented Dickey-Fuller (ADF) test may
be used for this purpose. The vmecad£ procedure implements the ADF test for
cointegration. The vimrztcrit procedure returns critical values for ADF
cointegration tests.

System Based Cointegration Tests

Maddala and Kim (1998, p 211) note that single equation cointegration test
results depend on the variable used to normalize the cointegrating relationship.
In addition, the number of cointegrating relationships cannot be determined using
single equation tests. These problems are avoided using tests based on systems
of equations. System based cointegration tests examine the dimension of the
cointegrating space across two or more variables.

3-27

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

The vmsjmt procedure implements Johansen’s (1988) Trace and Maximum
Eigenvalue system-based cointegration tests, using an ECMMT model. The null
hypothesis under the Trace test is that the cointegrating space has dimension
less than or equal to 7. The alternative hypothesis is that there are more than
cointegrating vectors. The null hypothesis under the Maximum Eigenvalue test is
that there are » + 1 cointegrating vectors versus the alternative that there are r»
cointegrating vectors.

The vmsjmt procedure returns the Trace and Maximum Eigenvalue test
statistics. The vmc_s3jt procedure returns Trace critical values at the 1%, 5%,
10%, 90%, 95%, and 99% levels. The vmc_sja procedure returns Maximum
Eigenvalue critical values at the 1%, 5%, 10%, 90%, 95%, and 99% levels.

3.6 Identification

The first step in time series analysis is the identification of a stationary time
series process. For univariate models, ACF, PACF functions and Ljung-Box
statistics are returned. The ACF and PACF functions examine individual
autocorrelations across different lags while the Ljung-Box statistics summarize
all autocorrelations over a given number of lags. All are calculated across the
number of lags specified in the 1ags member of the varmamtControl
.structure. The default is 12.

The Ljung-Box statistics (see Ljung and Box (1978)) test:
Hy:p,=p,y...=p,=0

where #; is the population correlation between the ARMAX disturbances at
time ¢ and the ARMAX disturbances at time ¢ - j. The statistics are defined by:

0, = T(T+ 2)2{ ’”’j} (10)
=

T_

3-28

VARMAX, ECM, SVARMAX

where 7 is the sample correlation between the ARMAX residuals at time 7 and

the ARMAX residuals at time 7 - j. Under /1y, 0 s has a chi-squared
distribution with (s - the number of parameters estimated) degrees of freedom.

Six members of the varmamtOut structure are set: aic, bic, 1rs, mse,
sse, and ssy, containing the following information for each dependent
variable:

aic The Akaike Information Criterion (AIC) =2 * (F + the
number of estimated parameters).

bic The Schwarz Bayesian Information Criterion (BIC) =2 * F
+ (the number of estimated parameters)*/n (number of
observations).

Irs The Likelihood Ratio Statistic (LRS) =2 * F.

mse Mean sum of error squares.

sse Error sum of squares.

ssy Sum of squares Y(SS”).

Identification information, summary statistics and univariate model output are
printed if the output member of the varmamtControl structure is
nonzero. For univariate model output, ACF and PACF values are appended with
* and ** symbols to indicate significance at the 5% and 1% levels (using

Bartlett’s large sample approximation for the standard errors, 1 / ﬁ).
ACF and PACF Lag Report

The lagreport function will create a full graphical report and return the acf
and pacf for the specified number of lags. The following code

diff = 0;
lags=12;
{acfl, pacfl} = lagreport (yt,lags,diff);

3-29

XVYINHVAS
‘WO XVINYVA

Time Series MT 2.1

Produces the following output

along with the following graphs:

3-30

VARMAX, ECM, SVARMAX

[
a
a
Y
(%]

'

e

3-31

XVINHVAS
‘WO ‘XVINHVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

=

3.6.1 Multivariate Identification

For multivariate processes, ACF matrices are returned as well as a multivariate
portmanteau lack of fit statistic, Qs. PACEF values are returned for univariate
processes, but are not returned for multivariate models. Sums of squares and the
information vector are returned for multivariate models.

Multivariate Portmanteau Statistic

A multivariate portmanteau statistic (see Hosking (1980), Poksitt and Tremayne
(1982), Li and McLeod (1981)) described in Reinsel (1993, p 133) is used to
examine the residual autocorrelation matrices en toto.

Let the residuals be €;. Define the residual covariance matrix as:

3-32

VARMAX, ECM, SVARMAX

N -

T-1

21: 8[8;4,_[[=0,...,s

-1

2o
1

The residual autocorrelation matrix is:

C()

~|—

C0)

~—1/2 ~-1/2
P e 7 =0

A0

N

k k
0, = T2 (T—z)“z > Cyi(hry (1)
I=1 i=1 j=1 °
) N {Cg(z) s'lcns! }
=1

- T2121<T— D e {5,09,000 3,5, 00}

Under the null hypothesis:
H, : Yt is an ARMA(p,q) process
H, : not H

and assuming that s is large, the O, statistic has approximately a

X 2(Lz(s — p — q)) distribution.

3-33

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

Wei (1990) notes that without further information a VARMAMT process may not
be uniquely identified from its ACF function. Hannan (1969, 1970, 1976, and
1979) describes additional restrictions needed to identify a VARMAMT process.

If output is requested by the user, ACF and indicator matrices are printed,
together with the portmanteau statistic. The indicator matrices contain + and -
symbols, depending whether the individual autocorrelations are significantly
positive or negative at the level specified in the crit1 member of the

varmamtControl structure, using Bartlett’s approximation, 1 / ﬁ , as the
large sample standard error of each autocorrelation. The macfmt procedure
calculates the ACF matrices.

3.7 Estimation

The varmaxmt and ecmmt procedures use a full information maximum
likelihood (FIML, exact, unconditional) estimation procedure adapted from code
developed by Jose Alberto Mauricio of the Universidad Complutense de Madrid.
The code was published as Algorithm AS311 in Applied Statistics. It is also
described in “Exact maximum likelihood estimation of stationary vector ARMA
models,” JASA, 90:282-291. Sample means are removed from all data prior to
estimation and errors are assumed to be distributed N(0, X).

Linear and non-linear constraints may be imposed on the coefficient estimates,
invoking the sgpsolvemt procedure. For example, setting the
SetConstraints member of the varmamtControl structure to a nonzero
value enforces the stationarity required by the estimation procedure, by
constraining the roots of the characteristic equation

[=®z—Dyz°— ...~ @, z7

3-34

VARMAX, ECM, SVARMAX

to be outside the unit circle (where @;,i=1, ..., p are the AR coefficient
matrices).

As noted earlier, the vmroots procedure returns roots of the AR and MA
characteristic equations. The roots are printed if output is requested.

If any estimated parameters are on a constraint boundary, the Lagrangeans
associated with these parameters will be nonzero. These Lagrangeans are stored
in the 1agr member of the varmamtOut structure. Standard errors are
generally not available for parameters on constraint boundaries.

3.7.1 Quasi-Maxiumum Likelihood Covariance
Matrix of Parameters

The varmaxmt and ecmmt procedures compute a QML covariance matrix of
the parameters when requested. Let F be the log-likelihood function. Define

B=(0F,/00)' (OF,/ 00) evaluated at the estimates. The covariance matrix

2 '
. —1 1 .
of the parameters is 2 B~ where Q is (aFA /06 80).
To request the QML covariance matrix, set the covparType member of the
varmamtControl structure equal to one. The default, covparType =0, is
ML estimation of the covariance matrix.

3.7.2 Starting Values

The time that sqpsolvemt needs to reach a solution is often reduced
significantly when starting values are specified. ecmmt and varmaxmt fit
univariate ARMA models to generate starting values for each Y variable in the
model, unless the user supplies their own starting values in the start member of
the varmamtControl structure. Starting values must be specified by the user
when the computed starting point fails or when there are inequality constraints.

3-35

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

The latter case requires a starting point which is feasible, i.e., one that satisfies
the inequality constraints.

Starting values are entered into start by creating and initializing a PV
structure. The parameter matrices are entered into the PV instance using
pvPacki. The third argument in the call to pvPacki is which parameter
matrix is being specified. This argument is as follows:

phi, 7 x p x p array of autoregression coefficients
theta, 7 x g x g array of moving average coefficients
ve, J, x [, residual covariance matrix

beta, ; x g regression coefficient matrix

betal, [, x () constant vector

zeta,], x p x p array of ECM coefficients

N QNN A W -

pi, J, x J, matrix

All models require the constant vector (5), and if there are independent
variables, a starting regression coefficient matrix (4).

The univariate ARMA model requires, in addition, either the AR coefficient
array (1) or the MA coefficient array (2), or both.

The multivariate VARMA model requires either the AR coefficient array (1) or
the MA coefficient array (2), or both, and, in addition, the residual covariance
matrix (3).

The ECM model requires only the phi array (1) and the residual covariance
matrix (3), in addition to the constant vector (5), and the regression coefficient
matrix (4) if there are any independent variables.

For example, for a VARMA model,

3-36

VARMAX, ECM, SVARMAX

library tsmt;
#include tsmt.sdf

load y[62,3] = minkmt.asc;

struct DS dO;
d0 = dsCreate();
d0.dataMatrix = y[.,2 3];

struct varmamtControl vmc;
vmc = varmamtControlCreate () ;
vmc.ar = 3;

vmc.output = 1;

phi0 = arrayalloc(3(2]2,0);

setArray phi0O, 1, (.708~.469]|-
setArray phi0,2, (.277~-.68].31
setArray phi0,3, (-.504~.332].0

vmc.start = pvCreate();

vmc.start = pvPacki (vmc.start,

vmc.start = pvPacksi (vmc.start
(.0188~.0565),"vc", 3);

struct varmamtOut vout;
vout = varmaxmt (vmc,d0) ;

2 ®99~1,151) 2
6~-.380) ;
50~.108) ;

phiQ, "phi", 1) ;
, (.0499~.0188) |

phi = pvUnpack (vout.par, "phi");

vce = pvUnpack (vout.par, "vc");

print;
print;

3-37

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

print;

print;

format /1d 12,8;
print "PHI";
print phi;

print "residual covariance matrix";
print vc;

And for the ECM model,

library tsmt;
#include tsmt.sdf

load y[362,3] = ecmmt.asc;
print "ECM Model";

struct varmamtControl vmc;
vmc = varmamtControlCreate () ;
vmc.ar = 1;

vmc.setConstraints = 0;

vmc.ctl.trustRadius = .01;
vmc.ctl.dirtol = le-6;

phi = { .05 -.05, 0 0.02, .1 -.07, .05

vmc.start = pvcreate;

vmc.start
"phi",l);
vmc.start = pvPacksi (vmc.start,

pvPacki (vmc.start,areshape (phi,2(2|2),

3-38

VARMAX, ECM, SVARMAX

xpnd (15.9521114.2525(15.9908), "vc", 3);

struct DS dO;
d0[1l].dataMatrix = y[.,2:3];

struct varmamtOut vout;
vout = ecmmt (vmc,do0) ;

format /1d 12,4;
print;

print;

print "eigenvalues";
print vout.va;

3.8 sqgpsolvemt and Newton's Method

ecmmt and varmaxmt minimize a log-likelihood function. When constraints
exist (see Section 3.9 for a discussion of constraints and how to place them),
sgpsolvemt uses Newton’s method to minimize the log-likelihood function.
This section provides a summary of the sqpsolvemt method. The reader is
referred to Han (1977) for further details.

The varmamtControl structure contains a sgpsolvemtControl
structure instance. The parameters of the optimization may be controlled by
setting members of the sgpsolvemtControl structure instance
appropriately. For details on the sgpsolvemtControl structure see
documentation for sgqpsolvemt in the Run-Time Library or in the header
portion of the sqpsolvemt. src file in the src subdirectory. For examples
of its use see Section 3.7.2 and Section 3.9.

Newton’s method minimizes functions iteratively. Each iteration involves
evaluating the function and determining the direction to move in the domain of

3-39

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

the function that results in the greatest increase in the function’s value. Given
the direction, the STEPBT line search method determines the step length that
results in a lower objective function. See Dennis and Schnabel (1983) for a
discussion of the STEPBT line search method.

Initial values for the unknown coefficients are required for the first iteration.
These are generated automatically by the ecmmt and varmaxmt procedures if
the start member of the varmamtControl structure is a missing value (the
default).

They may also be set by the user as described in Section 3.7.2.

Let F be the log-likelihood function. sgpsolvemt minimizes F within the
context of a standard nonlinear programming problem:

minF(0)

subject to the linear constraints,

A0 = B

co > D
the nonlinear constraints,

GO =0

H@O) = 0
and bounds,

0<0<40,

G(0) and H(0) are functions provided by the user and must be differentiable at
least once with respect to . F(0) must have first and second derivatives with

3-40

VARMAX, ECM, SVARMAX

Hessian, X below) must be positive semi-definite.

Without loss of generality, we assume that the linear constraints and bounds
have been incorporated into G and H. However, in practice, linear constraints
are specified separately from G and H because their Jacobians are known and
easy to compute. Bounds constraints are also more easily handled separately
from the linear inequality constraints.

Successive parameter values are defined by:
01+1=0,+pd
where 0, are the parameter values at time ¢, d, the direction, is an NP x |

vector (VP is the number of coefficients) and p is the step length, a scalar that
applies equally to each element of d.

The direction, d, solves the quadratic program
Ry
mlmmzzegd 20,)d +¥(0,)d

subjectto G(Ht)d +G@OH)=0
H(6,)d + H(,)>0

where ¥ is positive semi-definite. The X(6) and W(¢) matrices are given by:

_ &*F
=0) 2000"

- OF
Y(0) =

and the Jacobians are:

3-41

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

: _ 3G(8)
G(O) 0
: _ OH®)
H(@) 0

sgpsolvemt computes the Hessian X), ‘¥, various gradients, and the

Jacobians, G(O), and H(O) using numerical methods.

Given 0, and d, the STEPBT line search method finds the step length, p, by
minimizing the merit function:

m(@; + pd)=F + max |K]| Z|g/(Ht +pd)| — maxu@mm(o, ho@; + pdy)
I

as a scalar function of 2, where &; is the j-throw of G, /1y is the U-th row of
H, K is the vector of Lagrangean coefficients of the equality constraints, and A
the Lagrangean coefficients of the inequality constraints.

STEPBT first approximates m as a quadratic function, and computes p to
minimize the quadratic. If a feasible # does not exist, it attempts to fit a cubic
function. If the cubic function fails and the RandRadius member of the
sgpsolvemtControl structure is set to 0, sgpsolvemt stops iterating,
without a solution.

Set RandRadius > 0to have sqpsolvemt enter a random search in case
the cubic loss function fitting fails. In a random search, sgpsolvemt chooses
a random direction from the current point, within the radius set by
RandRadius. If the RandRadius member of the varmamtControl
structure is set to zero, a random search will not be attempted and the iterations
will terminate.

3-42

VARMAX, ECM, SVARMAX

A poor starting point and an excessively large direction can often put the
sgpsolvemt iterations into ill-defined regions, from which the iterations
cannot escape. To avoid this, a "trust region" can be defined to limit the
direction (see Fletcher (1985)).

Setting the TrustRadius member of the varmamtControl structure
imposes boundary constraints on the direction, relative to the starting position of
the iterations. The direction is constrained to be no greater than TrustRadius
in absolute value.

3.9 Setting Constraints

General constraints may be placed on parameters of VARMAMT models.
There are five types of constraints: linear equality, linear inequality, nonlinear
equality, nonlinear inequality, and bounds. These are not exclusive categories
(i.e., there are several ways most constraints can be placed.) Below we give
examples of specifying constrained parameters.

3.9.1 Constraints and the Coefficient Vector

Log-likelihood optimization is conducted by the sgqpsolvemt function.
sgpsolvemt "sees" all parameters in the model as a single vector. This
parameter vector must be used to place constraints. The best way to look at this
vector is to first run an unconstrained model and call pvGetParNames. The
names will tell you which parameter is where in the parameter vector.

library tsmt;
#include tsmt.sdf

y = vyl.,2 3];

struct varmamtControl wvmc;

3-43

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

vmc = varmamtControlCreate () ;
vmc.ar = 3;
vmc.output = 1;

load y[62,3] = minkmt.asc;

struct varmamtOut vout;
vout = wvarmaxmt (vmc,y[.,2:3]1,0);

print pvGetParNames (vout.par) ;

Now suppose that you want to estimate AR parameters for the first and third
lags only, i.e., the second lag parameters are to be set to zero. First estimate the
unconstrained model and then determine where the parameters for the second

3-44

VARMAX, ECM, SVARMAX

lag from the call to pvGetParnames. In the above example they are in rows 5
through 8 in the parameter vector. You would then set up the constraint matrices
a and b in the varmamtControl structure in the following way, where
vmc.ctl is the sgpsolvemtControl structure instance:

struct varmamtControl wvmc;
vmc = varmamtControlCreate () ;

vmc.ctl.a = { 00 0010000O0O0CO0O0OO0COOGO0O0O,
00000100O0O0O0OO0COOOOOO0O,
0000001000O0OO0COOOCOOO0O,
000000O0C1000O0O0CO0O0OOGO®OQO };

vmc.ctl.b = { 0, 0, 0, O };

Some attention may have to be paid to the starting point when there are
inequality constraints placed on the parameters. In general, sgpsolvemt
requires a starting point that satisfies inequality constraints. Y ou may need to
provide starting values if the ones computed by varmaxmt do not satisfy the
inequality constraints. It is not necessary for starting points to satisfy equality
constraints. See Section 3.7.2 for a discussion about setting a starting point.

3.9.2 Linear Equality Constraints

For computational convenience linear equality constraints are treated separately
from general nonlinear constraints. Let 9 be the coefficient vector. Linear
constraints are described as:

AO0=B

3-45

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

To place a linear equality constraint, 4 and B are assigned to the ct1. A and
ctl.B members of the varmamtControlstructure, respectively, where
vmc. ctlis the sgpsolvemtControl structure instance.

For example, suppose we wish to constrain the first AR coefficient matrix of a
bivariate AR(2) model to equal zero. The coefficient vector looks like this

¢111

021
%)

Then in the command file we define the control variables:

vmc.ctl.A = {

o O =
O B O
= O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O

~ 0~

~

3-46

VARMAX, ECM, SVARMAX

O0O0O1O0O0O0OO0OO0OGO0OO };
vmc.ctl.B = { 0, 0, 0, 0 };

This constrains the first four elements of the parameter vector to zero.

3.9.3 Linear Inequality Constraints

Linear inequality constraints are described as:

Co=D

To place a linear inequality constraint, C and D are assigned to the C and D
members of the varmamtControlstructure, respectively, where vmc. ct1 is
the sgqpsolvemtControl structure instance.

For example, suppose a bivariate AR(1) model is specified. We wish to
constrain the diagonal elements of the AR coefficient matrix to be greater than
the off diagonal elements. The coefficient vector looks like this:

¢11

022

In the command file we define the control variables:

3-47

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

vmc.ctl.C = {1 -1 0 O O 0 O
1 0-1 0 0O 0 O,
o-1 0 1 0 0 O,
O 0-1 1 0 0 0 };
vmc.ctl.D = { 0, 0, 0, O };

3.9.4 Nonlinear Equality Constraints

Nonlinear equality constraints are described as:
G@@)=0
i.e., values for 0 are found such that G(6) = 0.

Nonlinear constraints are placed by supplying a GAUSS procedure for G.

sgpsolvemt finds parameter estimates, ¢ such that G@ =0.

To place a nonlinear equality constraint, write a procedure taking the parameter
vector as an input argument and returning a vector. Each element of the return
vector represents a different constraint.

The following code, added to the command file, constrains the singular values of
a bivariate AR(2) model coefficient matrices to be equal:

proc eqgp (struct PV p, struct DS d);
local phi,sl,s2;
phi = pvUnpack (p, "phi");
sl = svd(getMatrix (phi,1));
s2 = svd(getMatrix (phi,2));
retp(sl-s2);

endp;

3-48

VARMAX, ECM, SVARMAX

vmc.ctl.EgProc = &eqp;
3.9.5 Nonlinear Inequality Constraints

Nonlinear inequality constraints are described as:
H(0)>0

Nonlinear inequality constraints are placed by providing a GAUSS procedure for

H. sgqpsolvemt finds parameter estimates, 0 such that H@ >0.

To place a nonlinear inequality constraint, write a procedure taking the
parameter vector as an input argument and returning a vector. Each element of
the return vector represents a different constraint.

For example, for a bivariate AR(2) model, the following constrains the absolute
value of the eigenvalues of the first coefficient matrix to be greater than the
eigenvalues of the second coefficient matrix:

proc inegp (struct PV p, struct DS d);
local phi,1l1,12;
phi = pvUnpack (p, "phi");
11 = abs(eig(getMatrix (phi,1)));
12 = abs(eig(getMatrix (phi,2)));
retp(11-12);

endp;

vmc.ctl.InegProc = &ineqgp;

3-49

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

3.9.6 Bounds Constraints

Bounds are a type of linear inequality constraint but are treated separately by
sgpsolvemt for computational convenience. To place bounds on parameters,
lower and upper values are entered into the bounds member of the
varmamtControl structure. For example, to bound the coefficients of an AR
(1) model to be between -.5 and +.5 define

vmc.ctl.bounds = { -.

4

4

(GG INE)]
(GG NE)]

14
-.5 .5,
-1e256 1le256,
-1le256 le256,
-1le256 1le256 };

The first column of bounds corresponds to the lower boundaries and the
second column the upper boundaries. The first four rows correspond to the AR
coefficients in the parameter vector and the last three rows to the elements of
the covariance matrix of the residuals which we choose not to constrain.

3.9.7 Start Values

The varmamtControl structure contains a member for setting start values.
This member is an instance of a PV structure with the name start. The PV
instance contains the following parameter matrices:

1 phi p x L x L array, autoregression coefficients
2 theta q x L x L array, moving average coefficients
3 ve L x [, matrix, residual covariance matrix

4 beta L x K matrix, regression coefficients

5 betal 1, x | vector, constants

3-50

VARMAX, ECM, SVARMAX

6 sphi P x [x [, array, seasonal autoregression
coefficients

7 stheta Q x L x L array, seasonal moving average
coefficients

Depending on the model several or all of these parameters must be specified for
a starting point:

Model Parameters

AR phi

MA theta

ARMA phi, theta

ARMAX phi, theta, beta

VAR phi, vc

VARMA phi, theta, vc

VARMAX phi, theta, beta, vc

ECM phi, vc

SAR phi, sphi

SARMA phi, theta, sphi, stheta
SVAR phi, sphi, vc

SVARMA phi, sphi, theta, stheta, vc
SVARMAX phi, sphi, theta, stheta, beta, vc

The constant vector is not required for start values because the time series is
centered for the estimation and the constants estimated afterwards. The
covariance matrix, ve, is required only for multivariate models.

Example

The starting point for a VARMAX model might look like this:

3-51

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

struct PV p0;
p0 = pvCreate();

a = areshape (0.2*eye(2),2]2]2);

pO pvPack (p0,a, "phi",1);

p0 = pvPack (p0,a,"theta",2);

pO pvPack (p0, 0.8*eye(2),"vc",3);

3.10 sqpsolvemt and Managing
Optimization

The critical elements in optimization are scaling, the starting point, and the
condition of the model. When the starting point is reasonably close to the
solution and the model is well-specified and reasonably scaled, the iterations
converge quickly and without difficulty.

3.10.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be
roughly equal (the Hessian member of the varmamtOut structure contains
the estimated Hessian). sgpsolvemt has difficulty converging when some
diagonal elements contain numbers that are very large and/or very small with
respect to the others. It may not be obvious how to scale the diagonal elements
of the Hessian. However, ensuring that the data are of the same magnitude may
help.

The scale member of the varmamtControl structure, used to scale the
data, is either a scalar or an J, x | vector. If scale is a scalar, the data in all
series are multiplied by the value. If scaleis an J x | vector, each series is

3-52

VARMAX, ECM, SVARMAX

multiplied by the corresponding element of scale. The default scale value is
4/standard deviation of each series (found to be best by experimentation).

3.10.2 Condition

A well-conditioned problem has a Hessian for which the columns are linearly
independent and the diagonal elements are roughly the same size, i.c., the data
are properly scaled. In this case, the condition number of the Hessian, the ratio
of the largest eigenvalue to the smallest eigenvalue, is close to unity. The
condition number will be large when the data are improperly scaled or when the
columns of the Hessian are linearly dependent. Users may examine the
estimated Hessian. It’s in the Hessian member of the varmamtoOut
structure.

The sgpsolvemt solution is found by searching for parameter values for
which the gradient is zero. However, sqpsolvemt has difficulty determining
optimal values when the Jacobian of the gradient (i.e., the Hessian) is very
small for a particular parameter. In this case, a large region of the function
appears virtually flat to sgpsolvemt. When the Hessian has very small
elements, the inverse of the Hessian has very large elements and the search
direction gets buried in the large numbers.

Poor condition can be caused by bad scaling, poor model specification, or bad
data. Bad models and bad data are two sides of the same coin. If the problem is
highly nonlinear, it is important that data are available to describe the curve over
all relevant regions. For example, one of the parameters of the Weibull function
describes the shape of the curve as it approaches the upper asymptote. If data
are not available for that portion of the curve, the corresponding parameter is
poorly estimated. The gradient of the function with respect to the parameter is
very flat; elements of the Hessian associated with that parameter are very small
and the inverse of the Hessian contains very large numbers. In this case, if the

3-53

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

underlying behavioral theory allows it, the model should be respecified to
exclude the parameter.

3.10.3 Starting Point

For a starting point ecmmt and varmaxmt fit univariate ARMA models to
generate starting values for each Y variable in the model, unless the user
supplies their own starting values in the start member of the
varmamtControl structure. User-defined start values are required when
the automatically generated starting values fail or when there are inequality
constraints in the model. The latter case requires a starting point that satisfies
the inequality constraints. See Section 3.7.2 with regard to setting a user-defined
starting point.

The starting point can be critical in finding a solution to a model that is not well-
defined. Try different starting points when the optimization does not seem to
work. If the underlying behavioral theory allows it, a simpler problem with the
same parameters might be specified. This could lead to a closed form solution.
For example, ordinary least squares estimates might be used for nonlinear least
squares problems or nonlinear regressions like probit or logit. There are no
general methods for computing start values and it may be necessary to attempt
the estimation from a variety of starting points.

3.11 Diagnostic Checking

Identification and diagnostic checking go hand in hand. The earlier Identification
section discussed the ACF, PACF, portmanteau, and information criteria.

3.12 Forecasting

The vmforecast procedure calculates ¢ step ahead forecasts fora VARMAX
model. Users must specify the coefficients involved, the dependent variable

3-54

VARMAX, ECM, SVARMAX

dataset, residuals from the VARMAX estimation, the AR and MA orders, and
the number of periods to forecast. A x g matrix of fixed explanatory
variables, covering only the forecast horizon, is also entered if beta coefficients
were estimated.

vmforecastmt returns a / X (L + 1) matrix. The first column is the forecast
horizon, i.e., the ¢ in 7'+ ¢. Subsequent columns contain the forecast ¥ values.

3.13 References

1.

Ansely, Craig F. (1979). “An Algorithm for the Exact Likelihood of a
Mixed Autoregressive-Moving Average Process,” Biometrika, 66, 59-65.

Fletcher, R. (1985). “An {; penalty method for nonlinear constraints,” in
P.T. Boggs, R.H. Byrd, and R.B. Schnabel, Numerical Optimization
1984, SIAM, 26-40.

Granger, C.W.J. and Newbold, Paul. (1986). Forecasting Economic
Time Series. Second Edition, San Diego: Academic Press.

Hamilton, James D. (1994). Time Series Analysis, Princeton University
Press.

Han, S.P. (1977). “A Globally Convergent Method for Nonlinear
Programming,” Journal of Optimization Theory and Applications, 22, 297-
3009.

Hannan, E.J. (1969). “The Identification of Vector Mixed Autoregressive
Moving Average System,” Biometrika, 56, 223-225.

Hannan, E.J. (1970). Multiple Time Series, John Wiley, New Y ork.

Hannan, E.J. (1976). “Review of Multiple Time Series,” SIAM Reviews,

3-55

XVYINHVAS
‘WO XVINYVA

VARMAX, ECM,
SVARMAX

Time Series MT 2.1

10.

11.

12.

13.

14.

15.

16.

17.

18, 132.

Hannan, E.J. (1979). “The Estimation of the Order of an ARMA
Process,” Ann. Statist, 8, 1071-1081.

Hosking, J.R.M. (1980). “The Multivariate Portmanteau Statistic,”
Journal of the American Statistical Association, 75, 602-608.

Johansen, S.J. (1988). “Statistical Analysis of Cointegration Vectors,”
Journal of Economic Dynamics and Control, 12, 231-254.

Johansen, S.J. and Juselius, K. (1990). “Maximum Likelihood Estimation
and Inference on Cointegration-with Applications to the Demand for
Money,” Oxford Bulletin of Economics and Statistics, 52, 169-2 10.

Li, W.K. and McLeod, A.IL. (1981). “Distribution of the Residual
Autocorrelations in Multivariate ARMA Time Series Models,” Journal of
the Royal Statistical Society Series B, 43, 231-239.

Ljung, G. and Box, G.E.P. (1978). “On a Measure of Lack of Fit in Time
Series,” Biometrika, 65, 297-303.

Maddala, G.S. and Kim, In-Moo. (1998). Unit Roots, Cointegration,
and Structural Change, Cambridge University Press.

Newey, W.K. and West, K.D. (1987). “A Simple Positive Semi-Definite
Heteroskedasticity and Autocorrelation-Consistent Covariance Matrix,”
Econometrica, 55, 703-708.

Osterwald-Lenum, M. (1992). “A Note with Fractiles of the Asymptotic
Distribution of the Maximum Likelihood Cointegration Rank Test
Statistics: Four Cases,” Oxford Bulletin of Economics and Statistics, 54,

3-56

VARMAX, ECM, SVARMAX

18.

19.

20.

21.

22.

461-72.

Park, J.Y. and Choi, B. (1988). “A New Approach to Testing for a Unit
Root,” working paper 88-23, Department of Economics, Cornell
University.

Phillips, P.C.B. and Ouliaris, S. (1990). “Asymptotic Properties of
Residual Based Tests for Cointegration,” Econometrica 58, 165-193.

Poskitt, D.S., and Tremayne, A.R. (1982). “Diagnostic Tests for Multiple
Time Series Models,” Annals of Statistics, 10, 114-120.

Reinsel, Gregory. (1993). Elements of Multivariate Time Series
Analysis, Springer-Verlag.

Wei, William, W.S. (1990). Time Series Analysis: Univariate and
Multivariate Methods, Addison-Wesley Publishing.

3-57

XVYINHVAS
‘WO XVINYVA

Nonlinear Time Series Models

4 Nonlinear Time Series Models

There are a number of circumstances under which time series may include
nonlinearities. When nonlinearities arise, traditional estimation techniques for
linear time series are invalid. As such a number of techniques for testing for
nonlinearities, as well as estimating models which include nonlinearities have
developed. The GAUSS TSMT module contains a family of tools for both
testing for nonlinearities. In addition, it includes procedures for estimating three
fundamental nonlinear models: regime switching models, structural break
models, and threshold autoregressive models.

4.1 Parameter Instability Tests

Thorough time series modeling often requires diagnostic testing for sources of
nonlinearities. In the face of nonlinearities, model parameters and/or estimates
change, such that the assumption of constant parameters across all time periods
is invalid. The GAUSS TMST module provides several pre-programmed
procedures for parameter stability analysis.

4.1.1 Rolling Regressions

The GAUSS rolling procedure performs rolling OLS regressions for a
provided vector of dependent data and matrix of independent regressors. The
rolling procedure estimates a rolling or expanding window OLS model. For
a fixed window width, n, the OLS model for estimation is given by

4-1

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

y’(”):Xf(n)ﬁt(”)+3t(”)a t=n,...,T

The dependent data vector,), (n) , and the dependent data vector, X,(n), include
the most recent observations for time t —n — 1 to 7.

The procedure allows the implementation of a forward expanding regression
window of size T such that the regression window including observations 1 ...(
t+1), 1...(1+2), etc.

Similarly, users may utilize a backward expanding regression window such that
the window includes the last T, t+1, t+2,..., T+(T- 1) observations.

The rolling procedure produces time series plots of rolling estimates for
clear and quick visualization of the dynamic behavior of estimates.

Example

This example uses 400 observations of generated data with a break in the
intercept after 120 observations. The error terms are standard normal. The data
is replicated using the code below:

//This generates 400 observations of a
//linear time series with a break in the
//constant at observation 120

bl = { 1.2, -2, 0.75 };
b2 = { 5, -2, 0.75 };
nl = 120;

n_tot = 400;
xt = ones (n tot,1)~rndn(n tot,2);

4.2

Nonlinear Time Series Models

et = rndn(n tot,1);

//Create series with break

yl = xt[l:nl,.]*bl + et[1l:nl,.];

y2 = xt[nl+l:n tot,.]*b2 + et[nl+l:n tot,.];
yt break = yl|y2;

Three rolling techniques are available for estimating the model, pure rolling

static windows, forward expanding windows, and backward expanding window.
To first estimate the model using a static rolling window, set the input window

to a positive integer value less than the number of observations. This sets the

fixed estimation window size. When using the static window rolling regression

the input add is irrelevant. Finally, the indicator input gz is set to one to
produce time series graphs of the coefficient estimates:

//First set parameters to run a
//rolling window regression.
//Set-up expanding window size
wind = 15;

//Specify increment to increase window size
//Irrelevant for rolling window regression

add = 15;

//gr i1s an indicator for graphing
gr = 1;

Finally call the rolling procedure

43

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

{ beta, res, w } = rolling(yt break, xt, wind, add,
gr) ;

To estimate the same model using a forward expanding window, the input
parameter window is set to any negative integer. The input add is the used to
specify the initial window size. A positive value for add indicates a forward
expanding window and a negative value for add indicates a backward
expanding window. The window size is always incremented by one observation
for both forward and backward expanding window.

//Set parameters for a forward expanding
//window regression

//Set-up expanding window size

wind = -15;

//Specify increment to increase window size
//Irrelevant for rolling window regression
add = 15;

//gr 1s an indicator for graphing
gr = 1;

{ beta fwd,res fwd,w fwd } = rolling(yt break, xt,
wind, add, gr);

This produces time series estimates of the model coefficients, beta fwd, one-
step-ahead prediction residuals, res fwd, and standardized one-step-ahead
prediction residuals, w fwd. In addition, it plots the rolling estimates in beta
fwd.

4-4

Nonlinear Time Series Models

4.1.2 Chow Forecast

The Chow (1960) forecast test is a more statistically formal test for parameter
stability and uses out-of-sample forecasts to test parameter constancy. It is built
on the theory that if parameters are constant then out-of-sample forecasts should
be unbiased.

The test considers a linear model such that

yt:xtﬁ—’_ul,
ut~(0,02),
t=1,...,n

The Chow (1960) procedure for testing coefficient stability first splits the data
sample into estimation and forecast subsamples using an estimation window,

n1>k such that
M1 X
- X=
’ M [Xj

where sample one includes the first 7] observations and sample two contains

the last 7' — 1| observations.

This OLS fitted model yields

4-5

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

Out-of-sample forecasts for the last 7' — 1 observations are constructed using
V) =Xp
with out-of-sample prediction errors and error variance given by

L/I\Z :yz_j;z :)/2_X2ﬁ1
and

r _1 ’
var(it,) = Uz(lTnl +X2(X1X1) le

Given this and the assumption of Gaussian errors, u#, the Chow F-test of the null
hypothesis of coefficient stability is

N = A

u2(1n2+X2(X1)(1) X2ju2
Chowpcsr(ny) = =
I

Example

This example uses the Chow forecast test to test for structural breaks in two
different simulated data series, one with a break in the constant and one without
any breaks. The first step is to generate the data using the simarmamt
function. The series with a break is generated in two segments, one with a
constant equal to 0.5 and a second with a constant equal to 3. Both series are
AR(1) series with an autoregressive coefficient equal to 0.6:

library tsmt;

b =0.6;

46

Nonlinear Time Series Models

q= 0;
p=1;
tr = 0;

//Set first constant
constl = 0.5;

// Number of observations before break
N1 = 90;

//Total observation in complete series
n_tot = 300;

k =1;

std = 0.5;

seed = 19786;

//First series with constant=0.3
yl = simarmamt (b,p,q,constl,tr,nl,k,std, seed) ;

//Second series with constant=1.7
const2 = 3;

y2 = simarmamt (b,p, q,const2,tr,n tot-nl,k,std, seed) ;

//Full time series with break
t break = yl|y2;

The series without a break can be similarly generated using simarmamt

//Full time series without break
yt = simarmamt (b,p,q,constl, tr,n tot,k,std, seed);

Next, compare and visualize the data using the plotXY function

4-7

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

//Plot time series data
//Declare the structure
struct plotControl myPlot;

//Initialize the structure
myplot = plotGetDefaults ("xy");

//Set graph appearance
plotSetLegend (smyPlot, "off");

//Plot Series with break in first element of 2x1

layout

plotLayout(2,1,1);

plotSetTitle (¢myPlot, "Simulated time series with
break at observation 90");

plotXY (myPlot,seqa (1,1, rows (yt break)),yt break);

//Plot Series without break

plotLayout(2,1,2);

plotSetTitle (¢myPlot, "Simulated time series
without break");

plotXY (myPlot,seqa(l,1l,rows (yt)),yt);

//Turn off 2x1 layout for future plots
plotClearlLayout () ;

Finally, call the chowfcst procedure to test for a structural break. This
requires first constructing the independent regressor matrix. This matrix should
include a vector of ones for estimating the constant, and the lagged dependent
variable:

4-8

Nonlinear Time Series Models

//Generate xt regressors
//These should include a constant
xt const = ones(n _tot,1);

//Lagged dependent variable
vt lagl = lagl (yt break);
yt lag2 = lagl (yt);

//Concat both into one data matrix
xtl = xt const~yt lagl;
xtl = xt const~yt lag2;

//Trim the first missing observation due to lag-
ging

xtl = trimr (xtl,1,0);

xt2 = trimr (xt2,1,0);

In addition to the regressor matrix, the chowfecst function requires an input
specifying the size of the prediction window. In the case, we will use a
prediction window of our known break, n1. To test for a structural break using
the chowfecst function:

//Call chowfcst using data with break
{chow br, prob br} = chowfest(ytl,xtl,nl);
print "The Chow test statistic for series with

break:"; chow br;
print "The p-value for series with break:"
prob br;

//Call chowfcst using data without break

4-9

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

{chow, prob} = chowfecst (yt2,xt2,nl);
print "The Chow test statistic for series with

break:";

chow;

print "The p-value for series with break:";
prob;

Produces the following output:

The Chow test statistic for series with break:
272.14587

The p-value for series with break: 1.3671052e-086

The Chow test statistic for series with break:
2.9906912

The p-value for series with break: 1.4451492e-008

4.1.3 CUSUM Test of Coefficient Equality

In contrast to the CHOW test, the CUSUM test of coefficient equality compares
subsample specific estimates to test for parameter equality across all
subsamples.The Brown, Durbin, and Evans (1975) CUSUM test considers the
empirical fluctuation process of the cumulative sums of standardized residuals.
Under the null hypothesis of constant coefficients the residuals should have zero
mean. Hence, significant deviation from zero at time, ¢, indicates possible
structural change at time ¢.

The CUSUM test for instability is most appropriate for testing for parameter
instability in the intercept term. It is best described as a test for instability of the
variance of post-regression residuals. The model considers the linear model

4-10

Nonlinear Time Series Models

yl x[ﬁ—’_u[
ut~(0,02),
t=1,...,n

The CUSUM test utilizes the standardized one-step ahead recursive estimation
residuals. The estimation residual are given by

yl - BZ‘* 1Xy

7

w, =
where

/= 82{1 +x;(x;xt)lx[}

The resulting CUSUM test statistic utilizes the cumulative sum of these
residuals such that

Q>| §>

t
CUSUM Z
J=k+

where

& Z(wz W)

n—k

4-11

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

Example

This example uses the cusum residual test to test for structural breaks in two
different simulated data series, one with a break in the constant and one without
any breaks. Similar to the previous example, the first step is to generate the
linear data. The series with a break is generated in two segments, one with a
constant equal to 0.6 and a second with a constant equal to 0.95. The series
without a break has a stable constant equal to 0.6.

bl = { 0.6,0.25,0.75 };
b2 = { 0.95,0.25,0.75 };
nl = 90;

n_tot = 300;
xt = ones(n tot,1l)~rndn(n tot,2);
et = rndn(n tot,1);

//Create series with break

vyl = xt[l:nl,.]*bl + et[1l:nl,.];

y2 = xt[nl+l:n tot,.]*b2 + et[nl+l:n tot,.];
yt break = yl|y2;

//Create series without break
yt = xt*bl + et;

The next step is to set the parameter inputs for the cusum test, which include an

indicator variable for graphing the test statistics, and the minimum window
length for the recursive regression:

//Next set the cusum parameters

4-12

Nonlinear Time Series Models

minwin = 30;
gr=1;

Finally, call the cusum procedure to test both series for parameter instability.

//Next test residuals using cusum
{ cstl, cstl 2 }
{ cst2, cst2 2 }

cusum(yt break,xt,gr,minwin) ;

cusum (yt,xt,gr,minwin) ;

Calling the cusum procedure for the nonlinear series produces the following
graphical output of the cusum and cusum squared test statistics, respectively.

4.1.4 The Hansen-Nymblom Test

The Hansen-Nyblom (1989) parameter stability tests uses a Lagrange multiplier
test to test the null hypothesis of constant parameters against the alternative of
parameter instability. The GAUSS procedure tests for joint stability of all
parameters, as well as individual parameter stability. The test should not be used
for unit root processes or processes with deterministic trends. Under the null
hypothesis the test statistic follows the Cramer-von Mises distribution.

The Hansen-Nyblom test for parameter instability is a locally most powerful,
Lagrange multiplier test. The test considers the null hypothesis of parameter
constancy against the alternative that the series follows a martingale. Though it
is appropriate for testing the joint stability of all parameters as well as the
stability of individual parameters, it should not be used for determining the
timing of structural breaks. Consider a linear model such that

yt:xtﬂ+gt

Under the assumption of time varying parameters

4-13

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

P=FB=F 1,
"~ (O, 0,72)
The null hypothesis
Hy: B, =p for all t
is equivalently given as
Hy: 0,72 =0

The GAUSS procedure first estimates the model parameters and the regression
error such that

3 ' -1 '
F=xy'xy
é\l‘ = y[_xtﬁ
The least squares estimates follow directly from two first order conditions

n
0= xy6,i=1,..,m
t
n
0=Z(a,2—32)
t

These conditions are rewritten by defining a score variable, fit , such that

;= Xi€r i=1,....m
it e2-5% i=m+l

4-14

Nonlinear Time Series Models

Using the score variable the Nyblom-Hansen test for individual parameters are
given by

L.=

1
Loy, 4

~
Il

where
n
_ -2
Si - Zf it
i=1
The joint test statistic is
| n
-1 7
Le==2 SV S,
i=1
where
n
=31
i=1

fy= (e S
S =(S1 s Ser)
The Nyblom-Hansen test statistic follows the Cramer-von Mises distribution.

Example

This example uses the Nyblom-Hansen LR test to test for structural breaks a
series with a break in the constant. Similar to the previous example, the first
step is to generate the linear data. The series with a break is generated in two

4-15

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series
Models

Time Series MT 2.1

segments, one with an intercept equal to 1.2 and one with an intercept equal to
5.

/**********~k~k********************************/

//This generates 400 observations of an
//linear time series with a break in the con-
stant

//at observations 120

02y =2, 0,75 g

bl = {1
{ 5, _21 0.75 };

b2 =

nl = 120;

n_tot = 400;

xt = ones (n tot,1)~rndn(n tot,2);
et = rndn(n_tot,1);

//Create series with break
yl = xt[1l:nl,.]*bl + et[1l:nl,.];
y2 = xt[nl+l:n tot,.]*b2 + et[nl+l:n tot,.];

yt break = yl|y2;
KKK KKK K Kk KK KKK KKk KK KK KKK KKK A KKK KKK KKK KA KKK/

//Set parameters for a rolling window regression
//printOut is an indicator for graphing
printOut = 1;

{ ny, crit } = hansen (yt break, xt,printoOut) ;

With the printOut indicator input set to one, the following output is printed to
the screen

4-16

Nonlinear Time Series Models

Hansen test statistic for constancy of B 1 21.67736
Hansen test statistic for constancy of B 2 0.09693
Hansen test statistic for constancy of B 3 0.02684
Hansen test statistic for variance constancy 10.85039
Hansen test for joint parameter stability -10.70504
Critical values 1% 2.5% 5% 7.5% 10% 20%

2.12000 1.89000 1.68000 1.58000 1.49000
1.28000

4.2 Threshold Autoregressive Models

Threshold autoregressive models (TAR) are a family of models for dealing with
structural breaks in which regime-switches occur when threshold variable, 9;,
reaches a threshold value, ¢. Rather than assuming that regime-switches occur
as a function of time, or as a function of an unobservable underlying mechanism,
TAR models consider regime switches that are dependent on observable data.
The assumed threshold variable and nature of the regime adjustment results in a
variety of possible TAR models. The standard TAR model assumes that the
threshold variable is a known function of the data. Estimation of the TAR model
requires determining the optimal parameter estimates, as well as the optimal
threshold value.

Self-Exciting TAR model assumes that the threshold variable is a lagged value
of the dependent variable, and requires estimating both the threshold value and
the threshold lag, along with the standard model parameters.

The general two-regime TAR model is given by

yt:(“0+a1)’t71+"'+apyzfp) 1 (qlilfy)

4-17

S|Spo
SOLI9g S| | JBaulUON

Time Series MT 2.1

where 1(.) is the indicator function and 9-1~ q(ytfl’ ’yt*p) is a function of
the data. The model can be more clearly represented for least squares estimation

Nonlinear Time Series

Models

by define

x[y) = (x,'l(q,_l <ykl(g, > V)) g
Y, :x;al(q[_l < y)+xt/,81(qt_l < y)+et,
or

yt:x[(.y)'8+et

where 0= (o< 'f).

Under LS estimation the parameter vector 6 then becomes

-1
o) = {Z X7 (7) J 2 X,
=1

=1

The estimation residuals and residual variance are given by

i) =~ Y ()’

=1

The optimal LS estimate of the threshold value is then the value that minimizes
the residual variance,

4-18

Nonlinear Time Series Models

~ -~ 2
7 = argming,(y)
ye I’

While both the TAR and SETAR models consider abrupt regime switches, the
model can be adjusted to allow for smoothed transitions between regimes. The
family of Smooth Transition Autoregressive model (STAR) assumes that regime
switches follow a continuous process which is a function of the threshold
variable. This results in a family of models such that

w= ()

= x0 1-Glg,_y:7,0) [+x,8a, | :7,0) +e,

The GAUSS TSMT module provides the tarTest procedure for testing for
and estimating TAR models. In addition, it includes the starTest procedure
for testing for STAR dynamics.

4.2.1 TAR Model

The GAUSS tarTest procedure estimates a p'th order threshold
autoregression and tests the hypothesis of a linear autoregression, using the
statistics described in"Inference when a nuisance parameter is not identified
under the null hypothesis."(Hansen, 1996).

4.2.2 TAR Model Control Structure

The TAR control structure allows users to specify and pass model parameters
efficiently to the tarTest procedure. The first step to TAR modeling is to
declare and initialize an instance of the TAR control structure. The GAUSS
procedure tarControlCreate initializes an instance of the TAR control

4-19

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

structure with preset default values. The following example code sets the
GAUSS workspace for TAR modeling:

//Declare the structure
struct tarControl TARO;

//Initialize the structure
TARO = tarControlCreate();

Once initialize, the TAR control structure contains default values for 8
parameters used in TAR estimation and testing:

omit

p
lowerQuantile
upperQuantile
rep

out

graph

dstart

freq

Scalar or vector, lags (below p) to omit from.
Autoregression [0 implies an AR(p)].

Scalar, the lower quantile.

Scalar, the upper quantile.

Scalar, the number of simulation replications.
Scalar, 0 or 1, 1 indicates screen output.
Scalar, 0 or 1, 1 indicates screen output.
Start date of the time series (follows format used
by plotTs).

Data frequency, "12" for monthly, "4" for
quarterly, "1" for annual.

Parameters are changed from the default values using standard structure "dot"

referencing:

//CHANGE PARAMETER VALUE

TARO.p = 3;

4-20

Nonlinear Time Series Models

4.2.3 Estimating the TAR Model

Once the TAR control structure is initialized it is passed to directly to the
tarTest procedure, along with a Nx1 vector of time series data,for estimating
the TAR model. The output from the tarTest procedure are then returned to
TAR output structure:

//DECLARE OUTPUT STRUCTURE
struct tarOutput TARout;

//ESTIMATE MODEL
TARout = tarTest (y,p,TARO);

4.2.4 Example

This example follows the empirical example found in Hansen (1996) and
estimates a threshold model for quarterly GNP growth rates. The data file
"gnp.dat" contains seasonable adjusted GNP for 1947-1990 and is transformed to
annualized quarterly growth rates:

load gnp[175,2] = gnp.asc;
yg = ln(gnp[.,1]);
y = (ygl2:175] - yg[1:174]) * 400;

Next all parameter values for the TAR estimation must be set

//Declare the structure
struct tarControl TARO;

//Initialize the structure
TARO = tarControlCreate();

4-21

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series
Models

Time Series MT 2.1

//Maximum number of lags considered
TARO.p = 5;

//Lags to omit from the test
TARO.omit = 3 4;

//Trimming from top (lowerQuantile) and bottom
(upperQuantile) of data

TARO.lowerQuantile = .15;

TARO.upperQuantile = .85;

//Number of replications for Monte Carlo
TARO.rep = 5000;

//0Output and graph reporting
TARO.printOutput = 1;

TARO.graph = 1;

//Data start date and frequency
TARO.dstart = 1947;

TARO.freq = 4;

Finally, call the GAUSS procedure tarTest

//DECLARE OUTPUT STRUCTURE
struct tarOutput TARout;

//ESTIMATE MODEL
TARout = tarTest (y,p, TARO)

This produces the following output to the command/program window:

4-22

Nonlinear Time Series Models

OLS Estimation of Null Linear Model

Variable Estimate S.E.

C 1.99225488 0.59341810

Y (t-1) 0.31753696 0.08929921

Y (t-2) 0.13197878 0.08801236

Y (t-5) -0.08696297 0.06763670

Residual Variance 15.960496

Searching over Threshold Variable: 1
Searching over Threshold Variable: 2
Searching over Threshold Variable: 3
Global Estimates

Threshold Variable Lag 2.0000000

Threshold Estimate 0.012572093

Error Variance 14.548361

Regime 1: Y (t-2) < 0.012572

Variable Estimate S.E.

C -3.21255539 2.12039565

Y (t-1) 0.51278104 0.24699822

Y (t-2) -0.92692272 0.30831951

Y (£t-5) 0.38445656 0.24603002

Regime 1 Error Variance 23.533054

Regime 2: Y (t-2) > 0.012572

4-23

S|Spo
SOLI9g S| | JBaulUON

Time Series MT 2.1

Variable Estimate SEIEN:

C 2.14186153 0.77389336

Y (t-1) 0.30085440 0.10132777

Y (t-2) 0.18484356 0.10131018

Y (t-5) -0.15813482 0.07335517
Regime 2 Error Variance 12.143010

Test Statistics and Estimated Asymptotic P-Values

Robust LM Statistics

SupLM 14.06847762 0.16940000
ExpLM 3.96481133 0.16620000
AvelM 4.68986250 0.27380000

Standard LM Statistics

SupLMs 18.24477743 0.94380000
ExpLMs 4.77627149 0.94320000
AvelMs 4.57209118 0.87960000

In addition, the following graphs are sent to the graphics window:

Nonlinear Time Series

Models

4-24

Nonlinear Time Series Models

\ AV AA =

1965401

19501

W01

W

16801

19621

Vit

193641

195301

10501

10431

Nonlinear Time Series
Models

4-25

Nonlinear Time Series

Models

Time Series MT 2.1

Figure 2

7 st 15341 W1 18501 6201 196591 18841 W 1034

4.3 Switching Regression

The TSMT module contains a procedure for estimating the regime-switching
model of Hamilton (1994, 2005).

4.3.1 switchmtControl

This table contains a list of the members of the switchmtControl structure:

constVariance scalar, if nonzero, error variances are
constant across states.

relevantStates scalar, if nonzero, lagged states are
relevant for time series variable.

aBayes, bBayes, scalars, if nonzero, parameters that

4-26

Nonlinear Time Series Models

cBayes

userTransEqp

start

ctl

output

title

Start

control the Bayesian prior as described in
Hamilton (1991).

scalar, pointer to user-provided function
for setting equality constraints on
transition probability matrix.

instance of a PV structure containing
start values.

instance of an sgpsolvemtControl
structure.

scalar, controls printing. The default is
print output, otherwise no output is
printed.

string, title of run, default ="".

Switching models can be difficult to estimate and may require a good starting
point. This can be done by assigning a PV structure containing the starting point
to the start member of the switchmtControl structure passed in as the
first argument in the call to switchmt.

Only those members of the PV structure need to be filled that are relevant to the
model being estimated. It contains the following members:

betal
beta

phi

sigma

1, num_states by 1 vector, constants.

2, num_states by K, coefficients on K
independent variables if any.

3, num_lags by 1 vector, autoregression
coefficients.

4, scalar or num_states by 1 vector, error
variances. If vmc.constVariance is zero,
it is a scalar, otherwise it’s a vector.

4-27

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

p 5, num_states by num_states matrix,
transition probabilities.

For example,

struct switchmtControl wvmc;

vmc.start = pvPacki (pvCreate(),3|-3, "betalO", 1);
vmc.start = pvPacki (vmc.start,.1].01,"Phi",3);
vmc.start = pvPacki (vmc.start, 1, "Sigma",4);
pvPacki (vmc.start, (.87.1) | (.27.9),"P",5);

vmc.start

Controlling Optimization

The switchmtControl structure contains an
sgpsolvemtControlstructure, the elements of which can be set to control
the optimization. For example,

struct switchmtControl wvmc;
vmc.ctl.maxIters = 1000;

will set the maximum number of iterations to 1000. See the documentation for
sgpsolvemt for discussion of the members of its control structure.

4.3.2 References

1. Engel, Charles and Hamilton, James, D., 1990, "Long Swings in the
Exchange Rate: Are They in the Data and Do Markets Know It?"
American Economic Review, 80(4):6809.

2. Hamilton, James D., 1991, "A quasi-Bayesian approach to estimating

4-28

Nonlinear Time Series Models

parameters for mixtures of Normal distributions," Journal of Business and
Economic Statistics, 9:27-39.

3. Hamilton, James D., 1994, Time Series Analysis, Princeton University
Press.

4. Hamilton, James D., 2005, "Regime-switching models," Department of
Economics, University of San Diego, California.

4.4 Structural Break Models

The sbreak procedure estimates models with multiple structural breaks
following the Bai and Perron (1998) global estimation method. The procedure
may be used with complete or partial structural break models.

The Bai and Perron (1998) methodology utilizes least squares to estimate all
structural breaks up to a user specified maximum number of breaks. Consider
the model:

Y, =xp+z,0,tu,

(1=7;1+1,....7))

forj 1,..., m+1. This model allows the observed dependent variable,); , to be
modeled as a linear combination of regressors with both time invariant

coefficients, X, ,and time variant regressors, Z; .

Both the model parameters and all break points are estimated such that the sum
of squares across all possible sample splits is minimized:

2

A~

k , T
k:argmink min Z(Ym—xt’]ﬁ-kzt’lél) + z (thz—xtjzﬁ-i-ztvzéz)
HpHol =1 t=k+1

4-29

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

4.5 Structural Break Control Structure

The structural break control structure allows users to specify and pass model
parameters efficiently to the sbreak procedure. The first step to modeling
structural breaks is to declare and initialize an instance of the structural break
control structure. The GAUSS procedure sbControlCreate initializes an
instance of the structural break control structure with preset default values. The
following example code sets the GAUSS workspace for structural break
modeling:

//Declare the structure
struct SBControl sbcO;

//Initialize the structure
sbc0 = sbControlCreate () ;

Once initialized, the structural break control structure contains default values for
10 parameters used in structural break estimation and testing:

q Scalar, number of regressors subject to change.
p Scalar, number of time-invariant regressors (x).
m Scalar, maximum number of breaks.

trim Scalar, trimming value.

h Scalar, minimum length of segment (h>p+q), if less
GAUSS automatically sets at default value of
trim*T.

initialBeta Scalar, initial values for beta

maxIters Scalar, maximum number of iterations.

printOutput Scalar, 0 or 1, 1 prints output to screen.

eps Scalar, conversion criterion.

4-30

Nonlinear Time Series Models

Parameters are changed from the default values using standard structure "dot"
referencing:

//CHANGE PARAMETER VALUE

sbcO0.g = 1;
sbcO.m = 5;
sbcO.trim = 0.15;
sbcO0.h = 0;

sbcO.printOutput = 1;
sbcO0.initialBeta
sbcO.maxIters = 40;

Il
o
(&)}
~

4.6 Estimating the Structural Break

Once the structural break control structure is initialized it is passed to directly to
the sbreak procedure, along with a 7x1 vector of time series data, Txg
variable of regressors subject to structural change, and a Txp vector of
regressors with time invariant coefficients. The output from the sbreak
procedure is then returned to sbreak output structure:

//Declare the structure
struct sbOutput SBout;

//ESTIMATE MODEL
SBout = sbreak (y, z, x, sbc0) ;

The GAUSS procedure utilizes the dynamic programming methodology of Bai
and Perron (2003), incorporating matrix functions and structures for improved
efficiency.

4-31

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

4.6.1 Example

This example follows the empirical application of Bai and Perron (2003). Below
we use the GAUSS sbreak procedure to estimate breaks in the mean of the
US ex-post real interest rate. The first step is to directly load the quarterly series
of the three-month treasury bill provided in the file real.out:

//Load y data
load path = c:\gaussl4\examples
load y[] = real.dat

//Specify regressors
//Time varying coefficients in z
z = ones (rows (y),1);

//No time invariant regressors
x = 0;

Next we declare and initialize the structural break control structure and set
model specific parameters:

//Declare sbControl structure
struct sbControl sbcO;

//Initialize instance of structure
sbc0 = sbControlCreate () ;

//Set individual model parameters
sbcO0.g = 1;
sbcO.m = 5;

sbcO.trim 0.15;

4-32

Nonlinear Time Series Models

h = 0;

sbcO.printOutput 1g
sbcO.initialBeta = 0.5;
sbcO.maxIters = 40;

Finally we declare the output structure and call the sbreak procedure:

//DECLARE OUTPUT STRUCTURE
struct sbOutput SBout;

//ESTIMATE MODEL
SBout = sbreak (y, z, x, sbc0) ;

4.7 References

1.

Bai, J and Perron, P. (1998) Estimating and Testing Linear Models with
Structural Change, Econometrica, 66(1), 47-78.

Bai, J and Perron, P. (2003) Computation and analysis of multiple
structural change models, Journal of Applied Econometrics, 18(1), 1-22.

Brown, R.L., Durbin, J., and Evans, J.M. (1975). Techniques for testing
the constancy of regression relationships over time, Journal of Royal
Statistical Society, Series B, 35, 149-192.

Chow, G.C. (1960). Tests of equality between sets of coefficients in two
linear regressions, Econometrica, 52, 211-22.

Engel,C. and Hamilton, J. (1990). Long swings in the exchange rate: Are
they in the data and do markets know it?, American Economic Review, 80
(4), 689.

Franses, P.H. and Dijk, D. (2000) Non-linear Time Series Models in

4-33

S|Spo
SOLI9g S| | JBaulUON

Nonlinear Time Series

Models

Time Series MT 2.1

10.

11.

12.

13.

Empirical Finance. Cambridge University Press, New Y ork.

Hamilton, J. (1991) A quasi-bayesian approach to estimating parameters
for mixtures of normal distributions, Journal of Business and Economic
Statistics, 9, 27-39.

Hamilton, J. (1994) Time Series Analysis, Princeton University Press,
New York.

Hamilton, J. (2005), Regime-switching models, Mimeo Department of
Economics, University of San Diego, California.

Hansen, B.E. (1996). Inference when a nuisance parameter is not
identified under the null hypothesis, Econometrica, 64(2), 413-430.

Hansen, B.E. (1992). Testing for parameter instability in linear models,
Journal of Policy Modeling, 14(4): 517-533.

Nyblom, J. (1989). Testing for the constancy of parameters over time,
Journal of American Statistical Association, 84(405), 223-230.

Zivot, E., and Wang, J. (2002). Modeling Financial Time Series with S-
PLUS. Springer- Verlag, New York.

4-34

5 LSDV

The TSMT module contains a procedure for estimating and LSDV models for
unbalanced data with correlation for bias. 1sdvmt is the main procedure for
estimating LSDV models. This model analyzes data that are both time series
and cross-sectional..

5.1 LSDV Model

Following Bruno (2005) a set of time-series/cross-sectional is estimated by the
LSDV model:

— !
Vit =NYi g1tV T T e TX BT €

where i=1,"-, N,and t=1,-"", T,xl.tis the (kK — 1) x 1 vector of strictly
exogenous explanatory variables, 7714’ is the unobserved individual effect, and €; ¢
is the unobserved disturbance.

Bruno’s model allows for missing observations. Define the selection rule for the
it observation where

5-1

AdST

LSDV

Time Series MT 2.1

1 l'f()’ijt,xi,t), s (yl-,t_m,xi’,,m)observed

0 otherwise

Sit™

In matrix form we have
Sy=8Dn+ SWo + Se

where S is the NT* NT' diagonal matrix with S; s on the diagonal, D = Iy ® I
is the NT* N matrix of individual dummies, /7 isa 7% | vector of ones

yandW = [y—l ...y_mX] are the N7 % 1 and NT* K matrices of observations,

0= [yB']" is the vector of coefficients, and # is the N7 % 1 vector of individual
effects, € is the N7 < 1 vector of disturbances,

The LSDV estimator is
! 71 ’
5lsdv: (W ASW) w Asy
where
A,=S(1-DMD'SD) 'D"S
5.1.1 Bias Correction

The Isdv model is well-known to be biased. Bruno (2005) reports several
corrections for this bias. The one implemented in LSDVMT is

LSDV

cl = a€2tr(H)qm

2 = —O'EZ[QV_V "HAW + tr(QW "HA W 1y + 20'€2q] fr T 104,
3 = ag‘z{nj {2qmeV_V 'TIL 1T g, + [(q L, W T W,)

+qyr(@ T)+ 20r(T1'TI ' T)2]qm}

mm

-1
' —1_| 757/ k774 2 , ,
where O=[EW'A,W)] *[W ASW+a€tr(H H)emem J T = EOV)

’

sen=(1,1,...0,0,)" isa k x 1 vector with m ones; 4,, = s Gy = € mp;
Ly is the 7% T matrix with m until lower subdiagonals and all other elements

setto zero; L=Iy Q@ Ly; Ip= (7~ yLT)_l; I'=Iy®I7;and [I=ALI.
The correction for bias is
B=cl+c2+c3

5.1.2 Example

The data must be organized in the following manner,

individual 1 Tl
T2
individual 2 Tl
T2

5-3

AdST

LSDV

Time Series MT 2.1

T1
T2

LSDVMT

library tsmt;

struct 1lsdvmtControl cO;
c0 = lsdvmtControlCreate () ;

series lem = 5g
num lags = 2;

struct DS dO;

d0 = reshape (dsCreate(),2,1);
dO[1].dname = "lsdvmt";

IIY";

"X1"M §| "X2" $| "x3";

d0[1] .vnames

d0[2] .vnhames

struct 1sdvmtOut outl;
outl = lsdvmt(c0,d0,series len,num lags) ;

5-4

LSDV

5.1.3 Special Features

Constraints

By default, 1sdvmt constrains the coefficients of the lagged dependent
variable to (-1, 1). This can be disabled by setting the Constrain member of
the 1sdvmtControl structure to zero.

Additional linear constraints can be placed on any of the coefficients by setting
the A, B members of the 1sdvmtControl structure for linear equality
constraints, and the C and D members for linear inequality constraints. You may
also set the Bounds member for setting bounds on the coefficients. For
example:

struct IsdvmtControl cO0;
c0 = lsdvmtControlCreate () ;

c0O.A={0-1100 };
c0.B = 0;

will constrain the second coefficient to be equal to the third coefficient.

The following:

struct IsdvmtControl cO0;
c0 = lsdvmtControlCreate () ;

c0.C {00110 };
c0.D = 0;

constrains the sum of the third and fourth coefficients to be greater than zero.
And this:

5-5

AdST

LSDV

Time Series MT 2.1

struct lsdvmtControl cO0;
c0 = lsdvmtControlCreate () ;
c0.bounds = { le256,
le256,
le256,
le256,
le256 };

O O O O O

constrains all coefficients to be greater than zero.

Scaling

By default the data are scaled before the estimation and the results unscaled.
This can be turned off by setting the scale member of the 1sdvmtControl
structure to zero.

5.1.4 The IsdvmtControl Structure

The table below contains a list of the control variables that are members of the
IsdvmtControl structure. They give the user control over the model’s
specification and estimation.

Constrain scalar, if nonzero, constraints applied to
autoregression coefficients.

A matrix, linear equality coefficient matrix.

B matrix, linear equality constant vector.

Bounds matrix, upper and lower bounds on
parameter estimates.

C matrix, linear inequality coefficients matrix.

D matrix, linear inequality constant vector.

scale scalar, if nonzero, data are scaled.

5-6

LSDV

output scalar, determines the output to be printed.
title string, title to be printed at top of header.

5.1.5 The IsdvmtOut Structure

This table contains a list of the members of the I sdvmtOu tstructure.

AutoCoefficients

RegCoefficients

AutoCoefficientsCorr

RegCoefficientsCorr

vector, uncorrected autoregression
coefficients.

vector, uncorrected regression
coefficients.

vector, bias corrected autoregression
coefficients.

vector, bias corrected regression
coefficients.

AutoStderrs vector, autoregression coefficient
standard errors.

RegStderrs vector, regression coefficient standard
errors.

CovPar matrix, covariance matrix of
parameters.

SSresidual scalar, residual sums of squares.

SStotal scalar, total sums of squares.

SSexplained scalar, explained sums of squares.

SSpooledResidual scalar, pooled residual sums of
squares.

biasCorr vector, bias corrections.

Lagrange vector, Lagrangeans for constraints.

numCases scalar, number of cases.

numObservations
numMissing

scalar, number of observations.
scalar, number of observations with

5-7

AdST

LSDV

Time Series MT 2.1

missing data.

numDF scalar, number of degrees of freedom.

numPeriods scalar, number of periods.

numParameters scalar, number of parameters.

numPeriods scalar, number of periods in time
series.

5.2 References

1.

Bruno, Giovanni S .F. (2005). "Approximating the bias of the LSDVMT
estimator for dynamic unbalanced panel data models," Economic Letters,
87, 361-366.

Greene, William H. (2000). Econometric Analysis, 4th Ed., Prentice-
Hall, New Jersey.

5-8

6 Univariate GARCH Models

For the generalized autoregressive conditional heteroskedastic (GARCH) model
let

Et:y[_xtﬁ

where 1=1,2,... T, and y, is an observed time series, x is an observed time
series of fixed exogenous variables including a column of ones, f a vector of

coefficients, and 0, = E(€/).

Also define
€ =1,0¢
where E(ﬂt) =0, Var(iyt) =1

6.1 Standard Model

The standard specification of the conditional variance is

S|8PON HOHVD

ajeleAlun

Univariate
GARCH Models

Time Series MT 2.1

2
¢€r—q "

2 2
Boi1t .. +/3/1,01—;7

0',22 o+ a1€,2_1+ .. Ta

where Z , is an observed time series of fixed exogenous variables.

6.2 Log-likelihood

For maximum likelihood estimation of all models three distributions may be
specified for 77;, the Normal, Student's t, and the skew generalized t distribution.

The log-likelihood conditional on @ = max(p, q) initial estimates of the

conditional variances is, for /s ~ N (0’ 1)

T T
logl = —T_T”zog(zn) ~ 2 log(o,) % P
+ut t+u+1 OT
where
T
oP=0i=..=gt= 12

Student's t Distribution

The student's t distribution with ,, degrees of freedom and variance 2 for 7, is

AU TETe

SV +1)/2)
C((v+1)/2) (1+ nt}

Univariate GARCH Models

The conditional log-likelihood for /s ~ t(O’ o, V) is then

- _I-n T(v+1/72) ZT
logl = ——"=I b
0g 5 Og(m 20 % j - 10g(0;)

VHZT Zog(l + (MZ)]

ttu

Skew Generalized t Distribution

The skew generalized t distribution is described in Theodossiou (1998). This
distribution is available only for univariate models. The log-likelihood for an
observation is

Hitug
i

9(1 +)»sign(,u T u 1))

1
logl, = logy; — %log 1+

where

3 1
= O.SSU;IKB(I /k,v/Kk) 2BB3 /Kk,(v—2)/K)2

1 1
= ST'B(1/x,v/x)2B3 /x,(v—2)/ k) 2

1
= (1 +322+42%BQ2 [k, (v — 1)/ k)*B(1 | x,v |) B3/ x,(v — 2) /K)*1)2

1 1
u, = 202BQ2 /K, (v—1)/1)BA /1,v k) ZBB Kk, (v —2) k) 2

S|8PON HOHVD

ajeleAlun

Univariate
GARCH Models

Time Series MT 2.1

and where ~1 <4 <1 is a skew parameter, and ¥ > 0 and v > 2 are kurtosis
parameters. For 4 =0 and ¥ =2 we have the Student's t distribution, for
A=0,x=1,v = inf we have the Laplace distribution, for 1 =0, x =2, v = inf
the Normal distribution, and for 4 = 0, x = inf, v = inf the uniform distribution.

6.3 Nonnegativity of Conditional
Variances

Constraints may be placed on the parameters to enforce the stationarity of the
GARCH model as well as the nonnegativity of the conditional variances.

Nelson and Cao (1992) established necessary and sufficient conditions for
nonnegativity of the conditional variances for the GARCH(1,q) and GARCH
(2,q) models.

GARCH(1,q)
>0
=0
k
2 ajﬂﬂk*jZO,k:O, cg—1
j=0
GARCH(2,q)

Define Ay and A5 as the roots of

-1 -2
1-p 1Z -p 2Z
Then

Univariate GARCH Models

and,

where

GARCH(p,q)

C()/(l _Al_A2+A]A2)ZO

P12 +46,>0
A>0

q—1
Eaj+1A*f> 0
j=0

¢1 = 151¢0+a2
¢2 = ﬂ1¢1+52¢0a3

¢q = ﬁl(bqfl +ﬁz¢q72

General constraints for p > 2 haven't been worked out. For such models the
conditional variances are directly constrained to be greater than zero. It also
constrains the roots of the polynomial

1= Z- B, 2% ... - B,Z"

S|8PON HOHVD

ajeleAlun

Univariate
GARCH Models

Time Series MT 2.1

to be outside the unit circle. This only guarantees that the conditional variances
will be nonnegative in the sample, and does not guarantee that the conditional
variances will be nonnegative for all realizations of the data.

6.3.1 Stationarity

To ensure that the GARCH process is covariance stationary, the roots of

2
L= (o1 +8,)Z - (a2+ﬂ2)Z -
may be constrained to be outside the unit circle (Gouriéroux, 1997, page 37).

Most GARCH models reported in the economics literature are estimated using
software that cannot impose nonlinear constraints on parameters and thus either
impose a more highly restrictive set of linear constraints than the ones described
here, or impose no constraints at all. The procedures provided ensure that you
have the best fitting solution that satisfies the conditions of stationarity and
nonnegative of conditional variances.

6.3.2 Initialization

The calculation of the log-likelihood is recursive and requires initial values for
the conditional variance. Following standard practice, the first q values of the
conditional variances are fixed to the sample unconditional variance of the
series.

6.4 IGARCH

The IGARCH(p,q) model is a GARCH(p,q) model with a unit root. This is
accomplished by adding the equality constraint

6-6

Univariate GARCH Models

Z“1+Zﬂi:1

6.5 GJRGARCH

Glosten, L.R., Jagannathan, R., and Runkle, D.E., 1993, proposed a model with
asymmetrical effects of the conditional variance:

2 _ 2 2
7= o+ (S et ot (gt S el gt

2 2
ﬁlo-[_]_’_ cee +ﬂp0-,_p+rZ’

where § = 1if €, < 0 and S,= 0 otherwise.

6.6 GARCHM

For the GARCHM, or GARCH-in-mean, model the time series equation is
modified to include the square root of the conditional variance

— 1/2
€ =Y, ~ X~ do;

6.7 Inference

The parameters of time series models in general are highly constrained. This
presents severe difficulties for statistical inference. The usual method for
statistical inference, comprising the calculation of the covariance matrix of the
parameters and constructing t-statistics from the standard errors of the
parameters, fails in the context of inequality constrained parameters because
confidence regions will not generally be symmetric about the estimates. For this
reason TSMT procedures don't compute t-statistics, but rather compute and
report confidence limits.

6-7

S|8PON HOHVD

ajeleAlun

Univariate
GARCH Models

Time Series MT 2.1

The most common type of inference is based on the Wald statistic. A (1 — a)
joint Wald-type confidence region for ¢ is the hyper-ellipsoid

JFJ,N-K;a)=0—0)' vV \6-0) (11

where V' is the covariance matrix of the parameters. The confidence limits are
the maximum and minimum solution of

rrﬁn{n}(@‘(@— 0)' vV \0-0y>JFU,N-K; a))} (12)

where 77 can be an arbitrary vector of constants and J=2n # 0,

When there are no constraints, the solution to this problem for a given parameter
is the well known

O +1(1-0)2,7-k0 9
where 07 is the square root of the diagonal element of ¥ associated with § .

When there are constraints in the model, two things happen that render the
classical method invalid. First, the solution to (12) is no longer (5.7) and second,
(11) is not valid whenever the hyper-ellipsoid is on or near a constraint
boundary.

(11) is based on an approximation to the likelihood ratio statistic.

This approximation fails in the region of constraint boundaries because the
likelihood ratio statistic itself is known to be distributed there as a mixture of
chi-squares (Gouriéroux, et al.; 1982, Wolak, 1991).

Univariate GARCH Models

In finite samples these effects occur in the region of the constraint boundary,

_ 2 2
specifically when the true value is within €= \/(ae /N)X(l_“’k) of the
constraint boundary.

Here we consider only the solution for a given parameter, a "parameter of
interest;"" all other parameters are "nuisance parameters." There are three cases
to consider:

1. Parameter constrained, no nuisance parameters constrained.
2. Parameter unconstrained, one or more nuisance parameters constrained.
3. Parameter constrained, one or more nuisance parameters constrained.

Case 1: When the true value is on the boundary, the statistics are distributed as a
simple mixture of two chi-squares.

Case 2: The statistics are distributed as weighted mixtures of chi-squares when
the correlation of the constrained nuisance parameter with the unconstrained
parameter of interest is greater than about 0.8. A correction for these effects is
feasible. However, for finite samples, the effects on the statistics due to a true
value of a constrained nuisance parameter being within ¢ of the boundary are
greater and more complicated than the effects of actually being on the constraint
boundary. There is no systematic strategy available for correcting for these
effects.

Case 3: The references disagree. Gouriéroux, et al., (1982) and Wolak (1991)
state that the statistics are distributed as a mixture of chi-squares. However,
Self and Liang (1987) argue that when the distributions of the parameter of
interest and the nuisance parameter are correlated, the distributions of the
statistics are not chi-square mixtures.

There is no known solution for these problems with the type of confidence limits
discussed here. Bayesian limits may produce correct limits (Geweke, 1995), but

6-9

S|8PON HOHVD

ajeleAlun

Univariate
GARCH Models

Time Series MT 2.1

they are considerably more computationally intensive. This method also assumes
that the likelihood can be computed for parameters outside constraint
boundaries. This is not the case for most constrained models and in this case the
sampling method used for Bayesian limits will be biased.

6.7.1 Testing Against Inequality Constraints

Constraints of the form

HO>0 (13)

where H is a matrix of constants, arise in various empirical studies. There is a
large literature on statistical inference under such linear inequality constraints,
and more generally under nonlinear inequality constraints as well. An up-to-date
account of these developments may be found in Silvapulle and Sen (2005). In
what follows, we shall provide an introduction to tests against inequality
constraints and indicate how GAUSS may be used for implementing a simple
score test against inequality constraints.

Let y denote a ¢ x 1 subvector of g and) denote the remaining components of

A
0= — ’
@ . For simplicity, let us write [‘//j where ¥ (Wl’ B wfI) and
= (A s),

Suppose that we wish to test
Hy: =0 3gainst f1,: Rys> 0,y = 0 (14)

where R is a given matrix of constants; thus, R does not depend on ¢ and it is

nonstochastic. If our objective were to test iy = 0 against y # 0, then a simple
and easy to apply test is the Rao's Score test, or equivalently the Lagrange

6-10

Univariate GARCH Models

Multiplier test. This test is also a valid for the inequality constrained testing
problem in (14), but it may not be the best because it ignores the inequality

constraint Ry > 0 in the alternative hypothesis. Various tests of (14), including
likelihood ratio and score tests, have been developed. Now, we provide the
essential details for testing (14) using a one-sided score test.

First, it is convenient to introduce the so called chi-bar square distribution that
plays an important role in constrained statistical inference. The asymptotic null

distribution of the likelihood ratio/Wald/Score test of y = 0 against # 0 is a

chi-square. When there are inequality constraints, such as Ry > 0, in the null or
the alternative hypothesis, the role of the chi-square distribution is replaced by a
chi-bar square distribution; this is defined in the next paragraph.

Let Z~N(0, V), where Zis a ¢ x |1 random vector and V'is a ¢ X g positive
definite matrix. Let

P2V, RZ'V Z-mn(Z-a)'V Z-0a) (15)
Ra>0

in the second term, it is implicit that a is a vector of the same length as Z.

We shall use the notation)_(2(V, R) is used for the random variable on the RHS

of (15) and also for its distribution. The random variable, ZZ(V, R) is said to
have a chi-bar square distribution and it can be expressed as follows:

q
Pr{;—(z(V,R) < C} = ZWiPr(Xl.z < c)
i=0

for some non-negative numbers,w;, i = 0, ... g, that are functions of (¢, V, R);
these quantities are known as chi-bar square weights and also as level
probabilities. Except in some very special cases

6-11

S|8PON HOHVD

ajeleAlun

Univariate
GARCH Models

Time Series MT 2.1

=2
Pr {X V., R)< c} is difficult to compute exactly. However, it can be estimated
by simulation to a desired degree of precision as follows:

1. Generate Z from N(0, V).
2. Compute)_(Z(V, R).
3. Repeat the first two steps M times, say M=10000.

=2
4. Estimate LT {X V. R) = C} by the proportion of times ZZ(V, R) turned
out to be less than or equal to c.

This is the method employed by GAUSS; for a similar method for estimating

{w;} see Wolak (1987). When the number of repeated samples M is 10000, the
standard error of the estimate of the probability obtained by this simulation

=2
method does not exceed 0.005; if ¢ is large so that Pr {X (V. R) = c} is less
than 0.1, then the standard error is less than 0.003. Thus, the precision in the
estimation can be controlled by adjusting the number of repeated samples, M.

The asymptotic null distributions of several statistics for testing (14) turns out to
be a chi-bar square distribution. Therefore, the chibarsqg () procedure plays
an important role in the implementation of tests against inequality constraints.

6.7.2 One-sided Score Test

As in (14) let V= (Wl’ o WQ) denote a ¢ X 1 subvector of ¢ and let) denote

A
0= =
the remaining components of ¢, (V’j where ¥ (l’”l’ e WC]) and

A= (’1 boeeeo }“PW) B Suppose that we wish to test

Hyy=0 against Hi:Ry >0,y #0 (16)

Univariate GARCH Models

where R is a given matrix of constants. A generalized version of Rao's Score

test can be applied for testing H o Vs H,. Letus first introduce the following: Let

L(0) denote the log-likelihood and

oL(o) : score function.
S(H) o (17)

Let s(@) be partitioned as follows to conform with (4, y):

oL
S
Al=| @ (18)
Sy a
oy

Similarly, let us introduce the following notation for partitioning any given

matrix P of the same order as ¢, to conform with the partition, (4, 6):

P, P
p= ML Ly (19)
Pt//i Pl//

Let] denote the mle of) under Hy: =0, and let

J= @ (20)
0

denote the mle of g under Hy:y = 0.
Let

o0’ 00' o0

A(Q)Z—E[nl—aS(Q)}—nlE{ . LW)} gg

S|8PON HOHVD

ajeleAlun

Univariate
GARCH Models

Time Series MT 2.1

Let 5, 4 and B denote the corresponding quantities evaluated at g . These
three quantities can be obtained by calling the constrained maximum likelihood

procedure under the constraint jg = () where
H=(0I)
and / is the identity matrix of the same order as the dimension of y ; note that

HO =y and hence 10 =0 is equivalent to = 0.

Now, the one-sided score statistic of Silvapulle and Silvapulle (1995) [SS,
hereafter], which is a generalized version of Rao's Score statistic, for testing

Hy:w =0 against the one-sided alternative H: Ry >0,y # 0 is

T,= @D - min@@—a)'D (@-a) (23)
Ra>0
where
~ ~]~ -1
b- (AB Y) (24)
44
and
—_ vl g o e _7 (7 %
u=—n Z[AWW_AWXAJN)»A}LW} {SW_AW/I(AV/V/) S/{| (25)

An attractive feature of this one-sided score test of SS is that it does not require
estimation of the model under the inequality constraints in the alternative
hypothesis, and further, the test is applicable for methods based on estimating
equations such as Generalized Estimating Equations (GEE) of Liang and Zeger
(1986).

Univariate GARCH Models

The asymptotic distribution of 7 under the null hypothesis is)_(2(5, R) where

D= [(ABIA ')ILI

Therefore, if ¢, denotes the sample value of 7 and D does not depend on 4
then an approximate large sample p-value is

Pr {72(1), R)> ts}

Further, if the exact form of D is unknown, then an estimate of the p-value is
obtained by substituting an estimate for D.

Usually D depends on) . In this case, it is customary to define the asymptotic p-
value as

supPr {7*2(D R > ts}
)L

where the suffix 4 is used to indicate the D matrix depends on 4 . This can be
computed approximately by evaluating

Pr {7‘2(1) W R)> zs}
over a grid of 4 values and finding the maximum over that grid; if the dimension

g of 4 is large, this may be computing intensive. Alternatively, some authors
have suggested to estimate the large sample p-value by

p =Pr {7‘2(5, Ry> ts} (26)

S|8PON HOHVD

ajeleAlun

Univariate
GARCH Models

Time Series MT 2.1

where) is treated as nonstochastic; its suitability would depend on the
particular case, and hence should be used with caution.

An upper bound for the large sample p-value is

2 2
p,= O.S[Pr()(q1 > tS) + Pr()(q > tS)J

where ¢ is the number of components in ¥'.

6.7.3 Likelihood Ratio Test

The likelihood ratio statistic is defined as

LRT = 2| max L(0) — max L(6) (27)
H, Hy
—2(HZ L 1)
The asymptotic null distribution of LRT is X ") where I is the

identity matrix (see Theorem 4.3.1 in Silvapulle and Sen, 2005). Therefore, an
estimate of the p-value, corresponding to (26), for the likelihood ratio test is

Pr {ZZ(HZ u, 1) > LRT}
An upper bound for the p-value of LRT is
O.S[Pr()(zz > LRT) + Pr{y3 2 LRT)J

Univariate GARCH Models

6.7.4 Covariance Matrix of Parameters

The computed covariance matrix of the parameters is an approximate estimate
when there are constrained parameters in the model (Gallant, 1987, Wolfgang
and Hartwig, 1995). When the model includes inequality constraints, the
covariance matrix computed directly from the Hessian, the usual method for
computing this covariance matrix is incorrect because they do not account for
boundaries placed on the distributions of the parameters. By an argument based
on a Taylor-series approximation to the likelihood function (e.g., Amemiya,
1985, page 111) shows that

0 N(@,A*BA*I)

where

Estimates of A and B are

S|8PON HOHVD

ajeleAlun

Univariate
GARCH Models

Time Series MT 2.1

~—1
9—>N(¢9,A j

Without loss of generality we may consider two types of constraints: the
nonlinear equality, and the nonlinear inequality constraints (the linear constraints
are included in nonlinear, and the bounds are regarded as a type of linear
inequality). Furthermore, the inequality constraints may be treated as equality
constraints with the introduction of "slack" parameters into the model:

H(0)>0

is changed to

where (is a conformable vector of slack parameters.

Further, we distinguish active from inactive inequality constraints. Active

inequality constraints have nonzero Lagrangeans, //, and zero slack parameters,
(j , while the reverse is true for inactive inequality constraints. Keeping this in

mind, define the diagonal matrix, Z, containing the slack parameters, Cj , for the
inactive constraints, and another diagonal matrix, [, containing the Lagrangean

coefficients. Also, define /7 @(9) representing the active constraints, and
H(0) the inactive.

The likelihood function augmented by constraints is then
Ly= L+2g0)+ ... 280 +yhg(0)+ ... +7hg (0
A 18(0) ... Ag0) +y, 1 e TV g

e (0); = G2+ -+ he o(0) -

2

6-18

Univariate GARCH Models

and the Hessian of the augmented likelihood is

0 0 G' Hg H

0 2 0 0 0 0
E{&J: 0 0 0 0 0 2z
006" G 0 0 0 0 0
Hgy 0 0 0 0 0

H, 0 2Z 0 0 0

_vN .
where the dot represents the Jacobian with respect to 0,L =% logP (Yl’ 0) ,

2 . .
and X =07L/0000" The covariance matrix of the parameters, Lagrangeans,
and slack parameters is the Moore-Penrose inverse of this matrix.

Construct the partitioned array
G

B== H @

el ©

.

Let = be the orthonormal basis for the null space of B, then the covariance
matrix of the parameters is

R
HE'ZE) B

Rows of this matrix associated with active inequality constraints may not be
available, i.e., the rows and columns of £ associated with those parameters
may be all zeros.

S|8PON HOHVD

ajeleAlun

Univariate
GARCH Models

Time Series MT 2.1

6.7.5 Quasi-Maximum Likelihood Covariance
Matrix of Parameters

A QML covariance matrix of the parameters is computed when requested.

Define B= (0Ly / 00)'(OL4 / 00) evaluated at the estimates. Then the
covariance matrix of the parameters is QQBQ) .

6.7.6 Confidence Limits

TSMT computes, by default, confidence limits computed in the standard way
from t-statistics. These limits suffer from the deficiencies reported in the
previous section--they are symmetric about the estimate, which is not usually the
case for constrained parameters, and they can include undefined regions of the
parameter space.

6.7.7 Setting Type of Constraints

By default constraints described in Nelson and Cao (1992) are imposed on
GARCH(1,q) and GARCH(2,q) models to ensure stationarity and nonnegativity
of conditional variances (as described in Section 6.3). These are the least
restrictive constraints for these models.

For constraints on the conditional variances set

struct garchControl f0;
f0 = garchControlCreate();
f0.cvConstraintsType = 1;

to select the Nelson and Cao (1992) constraints (described in Section 6.3).
These are the least restrictive constraints that ensure stationarity and
nonnegativity of the conditional variances, and are imposed by default.

6-20

Univariate GARCH Models

For direct constraints on the conditional variances set

f0.cvConstraintsType = 0;

Most GARCH estimation reported in the economics literature employ more
restrictive constraints for ensuring stationarity. They are invoked primarily
because the optimization software does not provide for nonlinear constraints on
parameters. In this case, the GARCH parameters are simultaneously
constrained to be positive and to sum to less than one.

For several reasons, including comparisons with published results, you may want
to impose either no constraints or the commonly employed more highly
restrictive constraints.

f0.stConstraintsType = 0;

will produce GARCH estimates without constraints to ensure stationarity.
Nonnegativity of conditional variances is maintained by bounds constraints
placed directly on the conditional variances themselves.

The least restrictive enforcement of stationarity is to constrain the characteristic
polynomial to be outside the unit circle. Set

f0.stConstraintsType g

f0.stConstraintsType = 2

imposes the more highly restrictive linear constraints on the parameters. They
constrain the coefficients in the conditional variance equation simultaneously to
be greater than zero and to sum to less than one.

6-21

S|8PON HOHVD

ajeleAlun

Univariate
GARCH Models

Time Series MT 2.1

6.7.8 Altering sqpsolvemt Control Variables

If you wish to alter any of the sgpsolvemt control variables, add a proc to the
command file that takes an sgpsolvemtControl structure as an input
argument and output argument. In the proc modify the control variables as
desired.

proc sgpcont (struct sgpsolvemtControl cO);

cO.maxiters = 100;
cO.printiters = 1;
retp (c0) ;

endp;

struct garchControl £fO0;
f0 = garchControlCreate();
f0.sgpsolvemtControlProc = &sgpcont;

Be aware that some of the control variables are required for the estimation and
their modification may produce unpredictable results. If you wish, for example,
to add linear constraints to the model, you must test first whether the linear
constraint matrices have already been set:

proc sqgpcont (struct sgpsolvemtControl cO);

if rows (c0.2) == 0;
c0.A = 1~0~0~0~0~-1;
cO0.b = 1;

else;

c0O.A = c0.A | (1~0~0~0~0~-1);
cO0O.b = c0.B | 1;
endif;

6-22

Univariate GARCH Models

retp (c0) ;
endp;

struct garchControl fO0;
f0 = garchControlCreate();
f0.sgpsolvemtControlProc = &sqgpcont;

6.7.9 Bibliography

1.

2.

Geweke, John, 1995. "Posterior simulators in econometrics," Working
Paper 555, Research Department, Federal Reserve Bank of Minneapolis.
Glosten, L.R., Jagannathan, R., and Runkle, D.E., 1993. "On the relation
between the expected value and the volatility of the nominal excess return
on stocks", Journal of Finance, 48(5):1779-1801.

Gouriéroux, Christian, 1997. ARCH Models and Financial
Applications. New York: Springer-Verlag.

Nelson, Daniel B. and Cao, Charles Q., 1992. "Inequality constraints in
the univariate GARCH model," Journal of Business and Economic Stat-
istics, 10:229-235.

Wolak, Frank, 1991. "The local nature of hypothesis tests involving
inequality constraints in nonlinear models," Econometrica, 59:981-995.

6-23

S|8PON HOHVD

ajeleAlun

7 Panel Data

The TSMT module includes procedures for the computation of estimates for the
"pooled times-series cross-section” (TSCS) regression model.

7.1 Pooled Time-Series Cross-Section
Regression Model

The assumption is that there are multiple observations over time on a set of
cross-sectional units (e.g., people, firms, countries). For example, the analyst
may have data for a cross-section of individuals each measured over 10 time
periods. While these models were devised to study a cross-section of units over
multiple time periods, they also correspond to models in which there are data for
groups such as schools or firms with measurements on multiple observations
within the groups (e.g., students, teachers, employees).

The specific model that can be estimated with this program is a regression
model with variable intercepts, i.e., a model with individual-specific effects.
The regression parameters for the exogenous variables are assumed to be
constant across cross-sectional units. The intercept varies across individuals.

This program provides three estimators:

7-1

eleq |sued

Panel Data

Time Series MT 2.1

o The fixed-effects OLS estimator (analysis of covariance estimator).

o The constrained OLS estimator (individual-specific effects are excluded
from the equation).

e The random effects estimator using GLS.

A Hausman test is computed to show whether the error components (random
effects) model is the correct specification.

In addition to providing the analysis of covariance and GLS estimates, two
multiple partial-squared correlations are computed. The first partial correlation
(squared correlation) shows the percentage of variation in the dependent
variable that can be explained by the set of independent variables while holding
constant the group variable. The second estimate shows the extent to which
variation in the dependent variable can be accounted for by the group variable
after the other independent variables have been statistically held constant.

A feature of this program is that it allows for a variable number of time-series
observations per cross-sectional unit. For instance, there might be 5 time-series
observations for the first individual, 10 for the second, and so on. This is useful,
for example, if there are missing values.

7.1.1 Panel Series Unit Root Tests

Im, Pesaran, and Shin

Assuming that Y is an autoregressive process such that

Yie = (1 7¢i)'ui T Y1 G
for i=1,...,N,t=1,...,T

7-2

Panel Data

The Im, Pesaran, and Shin (2003) test considers the null hypothesis of a unit root
across in all panels. When written in first difference form such that

Ayit = a; +ﬁiyz‘,t*1 T e
The null and alternative hypothesis become

Hy:$,=0 for all i,
Hliﬁl—<0 i:1,2,...,N1, ﬁi:O’i:N1+1’N1+2:---7N

Individual ADF tests are performed for each panel, resulting in individual t-
ratios for ﬁl- in each panel. For each individual panel the t-ratio is

P 1/2)
ﬁiT(y 1,—1Mtyi,—1) Ay, (M,

~ 172’
o;r A~ !
l o,»T(y i,—erVi,—l)

where ﬂiT is the OLS estimator of

ﬂj’Xi = (TT,)/I-’,I)
rr=(L1, .., 1)

yi,*lz(yi,O’yi,l”"’ i,T—l) ,

and

MXi:IT_Xi(X iXi)X i

The IPS panel unit root test statistic is the average t-ratio across all panels

7-3

eleq |sued

Panel Data

Time Series MT 2.1

This is modified such that
7 = ol {t barNT E(TT)}
thar W

where E(t7) and Var(t7) are extrapolated from the tables provided in Im,
Pesaran, Shin (2003).

~N(0, 1)

Example

This example follows the Im, Pesaran, and Shin discussion found in Enders
(2010). The example uses the PANEL.XLS file of quarterly values of the real
effective exchange rates (CPI-based) for Australia, Canada, France, Germany,
Japan, Netherlands, United Kingdom, and United States, as provided online by
Enders, (2010).

The first step is loading the data, note that the first column is a time column.
load data[] = "panel g.csv";
N = 8;
yt = reshape (data, rows (data)/ (N+1),N+1);
log yt = log(yt[.,2:9]);
The parameters for input into ips are set following Enders (2010)

//Input the lags used in Enders, Table 4.8

lags = {5,6,3,1,3,1,1,3};
demean = 0;

Panel Data

prt = 1;
trend = 0;

In this case a 8 x 1 vector specifies the lags to be used in the ADF tests,
indicating the individually determined lags for each panel. As an alternative, a
single integer could be entered for lags, in which case the same number of lags
would be used for each panel. The additional parameters indicate that the data
will not demeaned across time periods (demean), that no trend is included in
the data (t rend), and that all output should be printed to screen (prt). The
final step is the call to the ips function:

//Run IPS test without a trend and without
//demeaning
{z 1,pcrtl} = ips(log_yt, trend,demean, lags,prt) ;

Running all parts of code together prints the following output:

Individual t-stats:

-2.46627

-2.00066

-3.51045

-3.42360

-1.86847

-1.94953

-2.06635

-2.37869

Average t-stat:

-2.458

The adjusted z-stat is: -2.85025
The critical values are: -1.90700 -2.01086 -2.20629

7-5

eleq |sued

Panel Data

Time Series MT 2.1

Comparing these results to the case of cross panel demeaned data requires an
adjustment to the demean parameter

//Run IPS test with time demeaning:

demean = 1;
{z_2,pcrt2} = ips(log_yt,trend,demean,lags,prt);

Demeaning the effective exchange rate data and maintaining the same lag
specification results in the following output:

Individual t-stats:

-2.466

-2.001

-3.511

-3.424

-1.869

-1.950

-2.066

-2.379

Average t-stat:

-2.458

The adjusted z-stat is: =-3.067
The critical values are: -1.907 -2.011 -2.206

References

Enders, W. (2010). Applied Econometric Time Series, 3e. Hoboken, NJ: John
Wiley & Sons, Inc.

Im, S.K. Pesaran, M.H., & Shin, Y. (2003). "Testing for unit roots in
heterogeneous panels." Journal of Econometrics, 115, 53-74.

7-6

Panel Data

Levin-Lin-Chu Panel Unit Root Test

The Levin-Lin-Chu (2002) (LLC) panel unit root test is applicable to three
different autoregressive models, varying only in the deterministic components
included in the model:

Model 1: Ay, = (5yl~’t,1 +¢,
Model 2 : Ay't =ap;t 5)’,- —1 T Cn
Model 3 : Ay, = ag;+ ay;+ 9y, +(,

where 2<0<0 fori=1,...,N.

This test assumes a homogenous autoregressive parameter across all panels but
does allow for heterogeneous error processes such the for each individual

The table below summarizes the LLC hypotheses tested given the assumed
model.

LLC Testing Hypotheses by Model

Model H, H,
1 5=0 5<0
2 s=02ag;=0pra; 5< 0 and 0.0, €R
3 5=0 and a1,;=0 for all i 5<0 and @1 £R

The LLC test utilizes a three step testing procedure. The first step of the
procedure performs standard ADF regression for each panel

eleq |sued

Panel Data

Time Series MT 2.1

D;
Ay =t LzleiLAyi,t—L + ity + €y
m=1,2,3

The LLC testing procedure allows for panel specific serial correlation

correction lags, #; , in each individual panel ADF test. The GAUSS 1llc
function allows the user to provide a vector of non-negative integer lags directly

specifying the values of 7; .

Once the optimal lag length is determined, 2;./4"4Y; ;| are regressed against

Ay, i,t*Lf or (L =L...p) and the deterministic variables d,,; . The regressions
are used to construct two vectors of residuals

D;
/e\it = Ayl',t - IglﬁiLAyi’tL = Qi
and
Di
Vit Vi1 z_ﬁiLAyi,tL = @il
These are normalized such that
é\il‘ {}\il‘

€t —

xd

s Vit T

&l &l

V|

where 38,- is the panel specific regression standard error from the panel specific
ADF regression.

7-8

Panel Data

The second step of testing is to calculate the ratio of the long-run to short-run
standard deviations. The 11c¢ function uses the getlrv function to calculate
the long-run variance. The methodology and kernel used for determining the
long-run function are specified using the input lag method and kernel,
respectively. Once the long-run variance is calculated, panel specific deviation
ratios are constructed such that

‘E)

/_
8§;=

V|

Q

with the average standard deviation ratio given by

N

26
S

o 1
SN=N
Ni=1

The final step of the procedure is to calculate the panel test statistics. First, all
series are pooled to estimate the common autoregressive parameter

8t =0V -1 T &
From this regression a standard t —ratio is constructed for 6 given by

~

5
t(s =
STD@)’

where

7-9

eleq |sued

Panel Data

Time Series MT 2.1

- valthzﬂ;Vi 1€

211 t=2+p; lll

STD(&) 5 2 2

i=1r=124p.

5

1/2

These calculations use P , the average ADF serial correlation lag length across
all panels. For Model 1, the test statistic /5 has a standard normal distribution.

For Models 2 and 3, an adjusted test statistic, l:;k ,

t o A2 -
0-NTSNI7 STD(J}: *
* mT

ly = 5% _

follows a standard normal distribution. Both the mean adjustment parameter,

u :ﬁ , and the standard deviation adjustment parameter, 5:17 , are extrapolated
from Table 2 in Levin, et al. (2003).

References

Levin, A., Lin, C., & Chu, C.J. (2002). "Unit root tests in panel data:
asymptotics and finite-sample properties." Journal of Econometrics, 108, 1-24.

7-10

Panel Data

Breitung and Das Panel Root Test

The Breitung and Das (2005) unit root tests the null hypothesis that Vi is
nonstationary. The test estimates a model similar to that of the Levin-Lin-Chu
test

’

Vig =Dy +xi
where
Xjp = O -1 T 00X 10 T €4

The GAUSS implementation of the Breitung test assumes what is uncorrelated
across panels. Note that this model assumes that the autoregressive parameters
are constant across all panels. Hence, the alternative hypothesis that Yy is
stationary is equivalent to the alternative hypothesis that the common

autoregressive parameters sum to less than one, aj+ oy <1.
No trend
The testing procedure depends directly on the deterministic terms included in the

model, D ;;. If the deterministic terms include a constant and no trend, the
procedure pre-whitens the dependent variable such that

[_ _
Vit = Yie—1"Vit—p

where p is the predetermined or user specified, optimal number of lags for

removing serial correlation.

If the deterministic model does not include a constant or trend, the data is pre-
whitened such that

7-11

eleq |sued

Panel Data

Time Series MT 2.1

[_
Yit = Vi1

In these two cases, the test statistic is formulated using the residuals from two

/
testing regressions, the regression of A, and Vi ; on Ayi,tfl’ e Ayitqp . The
test statistic A is given by

N T I Ay
=1 Z=pt2Vy, ;
o
A= = L
N T ! 2
Jzizlzf:p+2(yf) /oj
where
T
1 2
01'2: Po—— 2 (Ayl.t)
P=c=p+2

The test statistic A is asymptotically distributed N(0,1). The null hypothesis is
rejected at small values of A.

With trend

When a trend is included in the deterministic terms, the testing procedure
requires additional prewhitening to remove the trend. Prewhitening with a trend

involves the construction of four modified residual vectors, Au;, ul-l, Av;, and

/ . .
v; . The procedure first estimates the regression

P
Ayl'; = o0t jglaleyi’l_j T Vi

7-12

Panel Data

. . [
From this regression, two vectors, Au; and v; are constructed such that

p
Aujs= Ay~ ZaiJAyis—j
j=1
and
p
ufy = Vis—1" Z iV
j=1
From these let
T-p—1
01.2 = ﬁ ;1 (Aujg — A_u,-)uis

The two additional, vectors and ,are constructed such that

T—p—1
T—p—s—1 1
AViS: L Auis_— 2 Aul
T-p-2 T=p=s=1 ;04" Y

and
I 11 —
Vis=ujg—ujp— (T'—p—DAu;

where Au; is the mean of Au;g across s.

From these, both the variance and test statistic are constructed

7-13

eleq |sued

Panel Data

Time Series MT 2.1

T-p—1
o} = # ,§1 (Aujs = Dujyug
and
Zil\ilztrzp+2y[/t ' Ay;
A= =
Jzij\iler:p+2(yil)2 /of
Example

For this example we will use a matrix of fifteen autoregressive time series

created using the simarmamt data generating function (included in the TSMT

library). All series will include a constant, but no trend:

b = 0.75;
p=1;
q = 0;
const = 1;
tr = 0;

n = 1000;
k = 15;
std = 1;

seed = 10191;
yt = simarmamt (b,p, g, const, tr,n,k,std, seed) ;

This results in a panel of fifteen AR(1) time series with 1000 observations each,
constants equal to 1, and a common autoregressive coefficient equal to 0.75. It
also has a constant, which must be indicated as an input into the breitung
function

7-14

Panel Data

trend = 0;

constant 1g

In addition, the function inputs include an indicator whether to demean the data
across panels and a specification of the lag selection.

demean 0;

lags = 3;
Finally, call the breitung function to test for unit roots and print the output.

bstat = breitung(yt,trend,constant,demean, lags) ;
print "The Breitung test statstic is:";;
print bstat;

This will produce the following output:

The Breitung test statstic is: -4.89

References

1. Breitung, J. 2000. "The local power of some unit root tests for panel
data." In Advances in Econometrics, Volume 15: Nonstationary Panels,
Panel Cointegration, and Dynamic Panels, ed. B. H. Baltagi, 161-178.

Amsterdam: JAI Press.
2. Breitung, J., and S. Das. 2005. "Panel unit root tests under cross-sectional

dependence." Statistica Neerlandica 59: 414-433.

7-15

eleq |sued

Panel Data

Time Series MT 2.1

7.2 References

1. Judge, George C., R. Carter Hill, William E. Griffiths, Helmut
Lutkepohl, and Tsoung-Chao Lee. 1988. Introduction to the Theory and
Practice of Econometrics. Second Edition, New York: Wiley.

2. Hsiao, Cheng. 1986. Analysis of Panel Data. Cambridge: Cambridge
University Press.

8 ARIMA

The TSMT module includes procedures for the computation of estimates and

forecasts for the autoregressive integrated moving average model. The model
may include fixed regressors such as linear or quadratic time trends, or other

explanatory variables which are predetermined. Forecasts are computed using
the estimated parameters and errors.

8.1 ARIMA Models

This program will compute estimates of the parameters and standard errors for a
time series model with ARMA errors. If the model contains only autoregressive
parameters, then arimamt gives the same estimates as autoregmt.
arimamt reports standard errors, parameters estimates, model selection
criteria, roots of the parameters, the Ljung-Box portmanteau statistic and the
covariance and correlation matrices.

The model estimated is of the general form:
d
$] (1-1)'y, x| = oLe,

where

8-1

VINIHY

ARIMA

Time Series MT 2.1

Ljyf ~ ey
¢(L)
oL) = 1-0,L°—...— 0,

2
=g, ... ~¢ 1"

2
where it is assumed that €; is a white noise error term, distributed as N (O’ g)
Such models are referred to as ARIMA(p, d, q), where p is the autoregressive
order, d is the difference order and ¢ is the moving average order.

The parameters to be estimated are thus: ¢(P % 1), 0(Q x 1), f(M % 1) and
(1% 1).

The arimamt procedure computes starting values or allows the user to specify
starting values. User specified starting values are useful when the user wants to
determine whether the parameter estimates computed by arimamt correspond
to the global maximum of the log likelihood function and not just a local
maximum. Finally, the tsforecast procedure computes forecasts for the
series £ steps ahead using the estimated parameters and errors returned by the
arimamt procedure.

8.2 References

1. Granger, C.W.J. and Newbold, Paul. 1986. Forecasting Economic Time
Series. Second Edition, San Diego: Academic Press.

2. Ansely, Craig F. 1979. "An Algorithm for the Exact Likelihood of a
Mixed Autoregressive-Moving Average Process," Biometrika 66:59-65.

9 Autoregression

The TSMT module includes procedures for the computation of estimates for the
autoregression model with autoregressive errors of any specified order and the
computation of autocorrelations and autocovariances.

9.1 Autoregression Models

This program will compute estimates of the parameters and standard errors for a
regression model with autoregressive errors. Thus, it can be used for models for
which the Cochrane-Orcutt or similar procedure can be used. It is also similar to
the SAS autoreg procedure except that this routine will compute the maximum
likelihood estimates based upon the exact likelihood function.

The model estimated is of the general form:

yt :xtﬂ—‘rut

Uy = Py~ - *¢p”t—p ~ ¢

2
where it is assumed that ¢, is a white noise error term, distributed as N(O’ o)

9-1

uoissaibaioiny

Autoregression

Time Series MT 2.1

The parameters to be estimated are thus: S(K % 1),#(L x 1) and 0 . (a scalar).
The order of the process is L.

In addition, this program will estimate the autocovariances and autocorrelations
of the error term u. It produces initial estimates of these based upon the
residuals of an OLS regression. Then it computes the maximum likelihood
estimates of these based upon the maximum likelihood estimates of the other
parameters.

9.2 References

1. Judge, George C., R. Carter Hill, William E. Griffiths, Helmut
Lutkepohl, and Tsoung-Chao Lee. 1988. Introduction to the Theory and
Practice of Econometrics. Second Edition, New York: Wiley.

10 Command Reference

The Command Reference chapter describes each of the commands, procedures
and functions available in TSMT.

acfmt

Purpose
Computes sample autocorrelations for a univariate time series.

Library

tsmt

Format
a=acfmt(x,1,d);
Input

x Nx1 vector. The mean is subtracted automatically.

10-1

22UdJ9JoY puUBWIWOD

Command Reference

adjrsq

1 scalar, the maximum lags to compute.
d scalar, the difference order.
Output
a 1x1 vector, sample autocorrelations.
Remarks

This function is similar to autocor; however, acfmt allows the users to
compute the autocorrelations for the differenced data.

Source

tsutilmt.src

adjrsq
Purpose

Finds the adjusted R-Squared statistic following the estimation of a
linear regression model. It requires both the original data and the
residuals from the estimate as inputs.

Library

tsmt

10-2

Format

{r sq, adj rsq}=adjrsq(yt,res,num vars),

Input
yt TxM numerical matrix of panel series data.
res TxM numerical matrix of estimation residuals.
num_vars scalar, number of estimated coefficients (including
constant) in the original regression.
Output
r sq Mx1 matrix of standard R-Squared statistics.
adj_rsq Mx1 matrix of adjusted R-Squared statistics.
Remarks

The adjusted R-Squared provides a diagnostic tool for evaluating goodness-of-
fit following linear regressions. The statistic adjusts the standard R-Squared to
account for the addition of variables in the model. Because the addition of
variables will always increase the R-Squared the adjusted R-Squared
generally provides a truer measure the explanatory power of the model. The
adjusted R-Squared is given by

MSE

R ,.=1-22
MST

adj

10-3

22UdJ9JoY puUBWIWOD

Command Reference

adjrsq

where

MSE = ;Zez

and,

with p = number of estimated coefficients, including a constant.

Example

This example utilizes a simple multivariate linear model. To begin consider
randomly generating an 5 x 500 matrix of independent data (X), and a 1 x 500
vector of dependent data (Y):

struct olsmtControl ocO;
struct olsmtOut oOut;

oc0 = olsmtControlCreate();
ocO.res = 1;

oOut = olsmt(oc0,0,vy,x);

Finally, call the adjrsq function:

res = oOut.resid;
num var = cols(x) + ocO.con;
{ r, adj r }= adjrsq(y,res,num var);

10-4

In calling this function we input the residuals from the olsmt output structure,
oOut.resid. Because the olsmt function automatically includes a
constant, by default the number of variables estimated in this regression is
equal to the columns of the dependent variable plus one. The code above uses
a more general method for setting the number of estimated variables using the
olsmt control structure. The scalar ocO.con is an element of the olsmt control
structure used to specify whether to include a constant. When no constant is
included, oc0. con is set to 0, and when a constant is included, oc0. con is

set to one.

Running all blocks of code above produces the following output:

Valid cases:
Missing cases:
Total SS:
R-squared:
Residual SS:
F(5,94):
Durbin-Watson:
Standard

Var Estimate

100
0

7.658
0.046
7.
0
2

307

.901
.083

Prob
Error

t-value >|t]

Dependent variable:
Deletion method:
Degrees of freedom:

Rbar-squared:
Std error of est:
Probability of F:

Standardized Cor with

None

94

-0.005

0.279
0.484

Estimate Dep Var

CONST 0.5232

X1 0.0399
X2 -0.0373
X3 -0.0202
X4 -0.0241
X5 0.0138
The standard R
0.0457298

squared

O O O O O O
(@}
w
(@)
w

.3244
.1907
.3075
.6647
.8764
.5241

.000
.237
.194
.508
.383
.601

10-5

22UdJ9JoY puUBWIWOD

Command Reference

adjrsq

The adjusted R squared is
-0.0158360

This example is more relevant when it utilizes the simple multivariate linear

model generated by the following data generation process:

Y, =0.4+475x1+09x; +3.2x3 = 2.1x4 —2.9x4 t &

To begin consider randomly generating a 5x500 matrix of independent data

(Xt) and the appropriate 1x500 vector of dependent data (Yt):

rndseed 89102;
xt = rndn (100,5);
vt

struct olsmtControl ocO_2;

struct olsmtOut oOut 2;

ocO0 2 = olsmtControlCreate();

ocO 2.res = 1;

oout 2 = olsmt (oc0 2,0,yt,xt);

res = oOut 2.resid;

num var = cols (xt) + oc0 2.con;

{ r, adj_r }= adjRsq(yt,res,num var);

This produces the following output:

Valid cases: 100 Dependent variable:
Missing cases: 0 Deletion method:
Total SS: 3461.187 Degrees of freedom:

0.4 + 4.75*xt[.,1] + 0.9*xt[.,2] + 3.2*xt[.,3]
- 2.1*xt[.,4] - 2.9*xt[.,5] + rndn(100,1);

None
94

10-6

R-squared:
Residual SS:

0.972
95.912
659.640
2.093

Rbar-squared:

Std error of est:
Probability of F:

Prob Standardized Cor with
Error t-value >|t]

0.971
1.010
0.000

F(5,94):

Durbin-Watson:
Standard

Var Estimate
CONST 0.2996
X1 4.7128
X2 0.9561
X3 3.3507
X4 -2.0465
X5 -2.8348

The standard R

The adjusted R

aggData

Purpose

.1178 28.
.1078 -18.
.1055 -26.

squared is

squared is

0.972289

0.970502

Estimate
005 -—-
000 0.7671
000 0.1600
000 0.5081
000 -0.3302
000 -0.4814

Estimates a p'th order threshold autoregression and tests the
hypothesis of a linear autoregression, using the statistics described in
"Inference when a nuisance parameter is not identified under the null
hypothesis." (Hansen, 1996).

Library

tsmt

10-7

22UdJ9JoY puUBWIWOD

Command Reference

aggData

Format

x new=aggData(xt,st freqg,end freq,method),

Input

Xt

st freq

end freq

method

Output

X new

Source

Nxk matrix, data.

string, starting frequency of data: "M" for monthly or
"Q" for quarterly.

string, ending frequency of data: "M" for monthly or
"Q" for quarterly.

string, method of aggregation, "B" for beginning of
period, "E" for end of period, "AVE" for moving
average.

matrix, aggregated data.

aggregatedata.src

10-8

arimamt

Purpose

Estimates coefficients of a univariate time series model with
autoregressive-moving average errors. Model may include fixed
regressors.

Library

tsmt

Format

amo = arimamt(amc, y);

Input
amc An instance of an arimamtControl structure. The
following members of amc are referenced within this
routine:
amc.ar scalar, the autoregressive order.
Default = 0.
amc.const scalar, if 1, a constant is estimated, 0

otherwise. Nx1 matrix, fixed
regressors. The number of rows in
the fixed regressor matrix must equal
the number of rows for y after

10-9

22UdJ9JoY puUBWIWOD

Command Reference

arimamt

amc.diff

amc.itol

amc.ma

amc.output

differencing. Default = 1.

scalar, the order of differencing.
Default = 0.

3x1 vector, controls the convergence
criterion.

(1]

2]

[3]

Maximum number of
iterations. Default = 100.

Minimum percentage change
in the sum of squared errors.
Default = 1e-8.

Minimum percentage change
in the parameter values.
Default = 1e-6.

scalar, the moving average order.
Default = 0.

scalar, controls printing of output .

0

Nothing will be printed by

arimamt.
Final results are printed.

Final results, iterations
results, residual

10-10

amc.ranktol

amc.start

amc.vam

Nx1 vector, data.

autocorrelations, Box-Ljung
statistic, and covariance and
correlation matrices are
printed.

Default = 1.

scalar, the tolerance used in
determining if any of the singular
values are effectively zero when
computing the rank of a matrix.
Default = 1e-13.

scalar 0, then arimamt computes
starting values Kx 1 vector, starting
values. Default = 0.

1x(M+1) vector of parameter names.
This is used for models with fixed
regressors. The first element contains
the name of the independent variable;
the second through M elements
contain the variable names for the
fixed regressors. If amc.varn=0,
the fixed regressors labeled as

Xo, X, ..., Xy - Default = 0.

10-11

22UdJ9JoY puUBWIWOD

Command Reference

arimamt

Output
amo An instance of an arimamtOut structure containing the
following members:
amo.aic scalar, value of the Akaike
information criterion.
amo.b Kx1 vector, estimated model
coefficients.
amo.e Nx1 vector, residual from fitted
model.
amo.ll scalar, the value of the log
likelihood function.
amo.sbc scalar, value of the Schwartz
Bayesian criterion.
amo.vchb KxK matrix, the covariance matrix
of estimated model coefficients.
Remarks

There are other members of the arimamtControl structure which are used
by arimamt's likelihood function but need not be set by the user. These are
amc.b, amc.y, amc.n, amc.e, amc.k, amc.m, amc.inter.

10-12

arimamt forces the autoregressive coefficients to be invertible (in other
words, the autoregressive roots have modulus greater than one). The moving
average roots will have modulus one or greater. If a moving average root is
one, arimamt reports a missing value for the moving average coefficient's
standard deviation, t-statistic and p-value. This is because these values are
meaningless when one of the moving average roots is equal to one. A moving
average root equal to one suggests that the data may have been over-
differenced.

Source

arimamt.src

arimamtControlCreate

Purpose

Sets the members of an instance of an arimamtControl structure
to default values.

Library

tsmt
Format

amc = arimamtControlCreate();

10-13

22UdJ9JoY puUBWIWOD

Command Reference

autocormt

Input
None
Output
amc An instance of an arimamtControl structure with its
members set to default values.
Remarks

Putting this instruction at the top of all programs that invoke arimamt is
generally good practice. This will prevent control variables from being
inappropriately defined when a program is run either several times or after
another program that also calls arimamt.

Source

arimamt.src

autocormt

Purpose

Computes specified autocorrelations for each column of a matrix.

Library

tsmt

10-14

Format

a =autocormt(x, £, 1);

Input

X

Output

NxK matrix. Autocorrelations will be computed for
each column separately. x is assumed to have 0 mean.

scalar, in range [0, rows(x) — 1], denoting the first
autocorrelation to compute.

scalar, in range [0, rows (x) — 1], denoting the last
autocorrelation to compute. It must be that <1 if
/=0 and /=0, then /is set to rows(x)— 1 and all
autocorrelations from fto / are computed. If /=0 and
/<0, then only the 0? order autocorrelation is
computed (this equals xx).

GxK matrix, where G = I-f+1, containing the
autocorrelations of order £, 7+ 1, ...] for each of the
columns of x. If the variance of any variable is 0,
missings will be returned for that variable.

10-15

22UdJ9JoY puUBWIWOD

Command Reference

autocovmt

Remarks

The 0% autocorrelation will always be 1.

The data are assumed to have 0 mean. Thus, use:
X = x - meanc (x)';

prior to the use of this function if the mean is not 0.

Source

autoregmt.src

autocovmt

Purpose

Computes specified autocovariances for each column of a matrix.

Library

tsmt
Format

a = autocovmt(x, £, 1);

10-16

Input

Output

Remarks

NxK matrix. Autocovariances will be computed for
each column separately. x is assumed to have 0 mean.

scalar, in range [0, rows(x) — 1], denoting the first
autocovariance to compute.

scalar, in range [0, rows(x) — 1], denoting the last
autocovariance to compute. It must be that £ < /; if
[=0 and f=0, then /is setto rows(x)— 1 and all
autocovariances are computed. If /=0 and < (, then
only the (/' order autocovariance is computed (this

equals xx).

GxK matrix, where G =/ — f+1, containing the
autocovariances of order 7, £+ 1, ...] for each of the
columns of x.

The () autocovariance is just the variance of the variable. The divisor for
each autocovariance is the number of elements involved in its computation.

Thus, the pth order cross product is divided by y — p, where N = rows(x),

10-17

22UdJ9JoY puUBWIWOD

Command Reference

automtControlCreate

to obtain the pth order autocovariance.

The data are assumed to have 0 mean. Thus, use:
X = x - meanc (x)';
prior to the use of this function if the mean is not 0.

Source

autoregmt.src

automtControlCreate

Purpose

Sets the members of an instance of an automtControl structure to

default values.

Library

tsmt
Format

arc = automtControlCreate();
Input

None

10-18

Output

arc An instance of an automtControl structure with its
members set to default values.
Remarks
Putting this instruction at the top of all programs that invoke autoreg or
autoregmt is generally good practice. This will prevent control variables

from being inappropriately defined when a program is run either several times
or after another program that also calls one of these procedures.

Source

autoregmt.src

autoregmt

Purpose

Estimates coefficients of a regression model with autoregressive
errors of any specified order.

Library

tsmt

10-19

22UdJ9JoY puUBWIWOD

Command Reference

autoregmt

Format

aro=autoregmt(arc,d0, lagvars,order),

Input
arc An instance of an automtControl structure. The
following members of arc are referenced within this
routine:
arc.const scalar. If 1, constant will be used in
model. Default=1.
arc.header string, specifies the format for the

output header. arc. header can
contain zero or more of the
following characters:

t

1

title is to be printed.

lines are to bracket the
title.

a date and time is to be
printed.

version number of
program is to be
printed.

file name of program is

10-20

arc.init

arc.iter

arc.maxvec

arc.output

arc.title

arc.tol

to be printed

Example:
arc.header = "t1d";
If arc. header ="", no header is

printed. Default = "tldvf".

scalar. If 1, only initial estimates will
be computed. Default = 0.

scalar. If 0, iteration information will
not be printed. If 1, iteration
information will be printed
(arc.output must be nonzero).
Default = 0.

scalar, the maximum number of
elements allowed in any one matrix.
Default = 20000.

scalar, if nonzero, results are printed
to screen. Default = 1.

string, a title to be printed at the top
of the output header (see
arc.header). By default, no title
is printed (arc. title="").

scalar, convergence tolerance.

10-21

22UdJ9JoY puUBWIWOD

Command Reference

autoregmt

Default = 1e-5.

do 1x1 or 2x1 instance of a DS data structure. If there are
independent variables, dO is 2x1. For the first instance in

do,

dO[1].datamatrix

dO[1].dname

dO[1].vnames

if time series is stored in a matrix in
memory, Nx1 matrix, time series.

string, if time series is stored in a
GAUSS dataset, name of dataset.

string array, if time series is stored in
a GAUSS dataset, column name of
time series in the GAUSS dataset.

If there are independent variables in the model, then the
second instance in d0 includes:

do[2].data

dO[2].dname

dO[2].vnames

matrix, if independent variables are
stored in a matrix in memory, NxK
matrix, time series.

string, if the independent variables
are stored in a GAUSS dataset, name
of dataset.

string array, if the independent
variables are stored in a

GAUSS dataset, column names of
the independent variables in the

10-22

lagvars

order

Output

aro

GAUSS dataset.

Kx1 vector, the number of periods to lag the variables in
indvars. If there are no lagged variables, set to scalar 0.
The variables in i ndvars will be lagged the number of
periods indicated in the corresponding entries in
lagvars.

scalar, order of the autoregressive process; must be greater
than 0 and less than the number of observations.

An instance of an autoOut structure containing the
following members:

aro.acor (L+1)x1 vector,
autocorrelations.

aro.acov (L+1)x1 vector,
autocovariances.

aro.chisq scalar, -2 * log-likelihood.

aro.coefs Kx1 vector, estimated

regression coefficients.
aro.phi Lx1 vector, lag coefficients.

aro.rsq scalar, explained variance.

10-23

22UdJ9JoY puUBWIWOD

Command Reference

autoregmt

aro.sigsq

aro.tobs

aro.vcb

aro.vcphi

aro.vsig

Remarks

scalar, variance of white noise
error.

scalar, number of observations.

KxK matrix, covariance matrix
of estimated regression
coefficients.

LXL matrix, covariance matrix
of phi.

scalar, variance of aro. sigsqg
(variance of the variance of
white noise error).

This program will handle only datasets that fit in memory.

All autoregressive parameters are estimated up to the specified lag. You
cannot estimate only the first and fourth lags, for instance.

The algorithm will fail if the model is not stationary at the estimated
parameters. Thus, in that sense it automatically tests for stationarity.

Source

autoregmt.src

10-24

breitung

Purpose

Panel series unit root testing. The z-statistics constructed from the
mean t-statistic has an asymptotic standardized normal distribution
and tests the null hypothesis that all series are I(1) against the
alternative that all series are 1(0)

Library

tsmt

Format

bstat =breitung(y,trend,constant,demean,lags);

Input
y TXM matrix, data, M > 5.
trend scalar, 0 = no trend, 1 = trend.
constant if nonzero, constant included in model.
demean scalar, 0 to specify no demeaning, or 1 to subtract cross-
sectional means.
lags scalar, number of lags.

10-25

22UdJ9JoY puUBWIWOD

Command Reference

chowfcst

Output

bstat test statistic.

Remarks

The Breitung panel series unit root test utilizes the sample mean of the t-
statistics across all individual series within a panel of time series variables.
However, the procedure pre-adjusts data to address biased estimation.

It is assumed that the autoregressive parameter is constant across all panels.
This allows the use of the standard t-statistic but requires that the panels be
strongly balanced.

The procedure performs an individual ADF test on each series n then forms
the sample mean of the t-statistics. The z-statistic constructed from the mean
t-statistic has an asymptotic standardized normal distribution and tests the null
hypothesis that all series are I(1) against the alternative that all series are I(0).

chowfcst

Purpose

Tests and dates likely structural breaks using out-of-sample forecasts.

Library

tsmt

10-26

Format

{ cs,prob } = chowfest(yt, res, window);

Input
yt Tx1 numerical vector of panel series data.
xt TxK numerical matrix of estimation regressors.
window scalar, a positive integer specifying a fixed window
size of K<window<T. Coefficient estimates from this
window will be used to forecast observations for the
last T-window observations.
Output
cs scalar, the Chow out-of-sample forecast F-stat.
prob scalar, probability.
Remarks

The Chow (1960) test uses out-of-sample forecasts, given a coefficient
estimates from a subset of the data sample. Under the null hypothesis of
constant coefficients, the out-of-sample forecasts are expected to be
unbiased, equivalently the forecast errors are expected to have zero mean.

10-27

22UdJ9JoY puUBWIWOD

Command Reference

cusum

Reference

Chow, G.C. (1960). Tests of equality between sets of coefficients in two
linear regressions, Econometrica, 52, 211-22.

Source

chowfcst.src

cusum

Purpose

The Brown, Durbin, and Evans (1975) CUSUM test considers the empirical
fluctuation process of the cumulative sums of standardized residuals. Under the
null hypothesis of constant coefficients the residuals should have zero mean.
Hence, significant deviation from zero at time, t, indicates possible structural
change at time t. The test is valid for dynamic models.

Library

tsmt

Format
{ cs, cst2 } = cusum(yt,xt,gr,minwin);
Input

yt Tx1 numerical vector of panel series data.

10-28

xt TxK numerical matrix of estimation regressors.

gr scalar, 1 to graph the vector of CUSUM test statistics,
including boundaries or 0 for no graph.
minwin scalar, minimum regression window size.
Output
cst Tx1 vector containing CUSUM test statistics.
cst2 Tx1 vector containing CUSUM sq test statistics.
Remarks

The Brown, Durbin, and Evans (1975) CUSUM test considers the
empirical fluctuation process of the cumulative sums of standardized
residuals. Under the null hypothesis of constant coefficients the residuals
should have zero mean. Hence, significant deviation from zero at time, ¢,
indicates possible structural change at time ¢. The test is valid for dynamic
models.

Reference

Brown, R.L., Durbin, J., and Evans, J.M. (1975). Techniques for testing the
constancy of regression relationships over time, Journal of Royal Statistical
Society, Series B, 35, 149-192. .

10-29

22UdJ9JoY puUBWIWOD

Command Reference

dfgls

Source

cusum. srcC

dfgls
Purpose

Test for unit root in univariate time series.

Library

tsmt
Format

{ t stat,z crit}=dfgls(y,max lags,trend);

Input
v Nx1 vector, data.
max_lags maximum number of lags to be tested.
trend scalar, 0 = no trend, 1 = trend.
Output
tstat t-statistic.

10-30

zerit Elliot, Rothenberg and Stock (1996) critical values for the
GLS detrended unit root test at the 1%, 2.5%, 5%, and
10% significance level.

ecmmt

Purpose

Calculates and returns parameter estimates for an error correction
model.

Library
tsmt
Format
vmo = ecmmt(vmc, d0);
Input

vm An instance of a varmamtControl structure. The following
€ members of vimc are referenced within this routine:

vmc.ar scalar, order of AR process. Default = 0.

vmc. rho scalar, number of cointegrating relations. Set
to -1 to have GAUSS estimate this value.

10-31

22UdJ9JoY puUBWIWOD

Command Reference

ecmmt

vmc . header

vmc. IndEquations

Default = 0.

string, specifies the format for the output
header. vmc. header can contain zero or
more of the following characters:

t title is to be printed.

1 lines are to bracket the
title.

d a date and time is to be
printed.

v version number of
program is to be
printed.

= file name being
analyzed is to be
printed.

Example:

vmc.header = "tld";
If vimc. header ="", no header is printed.

Default = "tldvf".

KxL matrix of zeros and ones. Used to set
zero restrictions on the x variables to be

10-32

vmc.

vmc.

vmce.

vmc.

vmc.

lags

start

nodet

nwtrunc

ctl

estimated. Used only if the number of
equations, vmc. L, is greater than one.
Elements set to one indicate the coefficients to
be estimated. If vmc. L = 1, all coefficients
will be estimated. If vmc. L > 1 and

vmc . IndEquations is set to a missing
value (the default), all coefficients will be
estimated.

scalar, number of lags over which ACF and
Diagnostics are calculated. Default = 12.

Instance of a PV structure containing starting
values. See Section 3.7.2 for an example.

scalar. Set vmc. nodet = 1 to suppress the
constant term from the fitted regression and
include it in the co-integrating regression;
otherwise, set vmc . nodet = 0. Default = 0.

scalar, the number of autocorrelations to use in
calculating the Newey-West correction. If
vme . nwtrunc = 0, GAUSS will use a
truncation lag given by Newey and West,

= 4T/ 100)*°.

vmc.nwtrunc

An instance of an sgpsolvemtControl
structure.

10-33

22UdJ9JoY puUBWIWOD

Command Reference

ecmmt

vmc.

vmc.

vmc.

vmc.

olsqgtol

output

row

scale

vmc.ctl.covType scalar, if 2, QML
standard errors are
computed, if 0, none;

otherwise Wald-type.
vmc.ctl.printIte gcalar, iteration
rs information printed
every

swc.ctl.printIte
rs-th iteration.

See documentation for
sgpsolvemtControl for further
information regarding members of this
structure.

scalar, the tolerance used in determining if
diagonal elements are approaching zero in
olsgrmt. Default = le-14.

scalar, if nonzero, results are printed to screen.
Default = 1.

scalar. Specifies how many rows of the
dataset are to be read per iteration of the read
loop. By default, the number of rows to be
read is calculated by ecmmt.

scalar or an Lx1 vector, scales for the time
series. If scalar, all series are multiplied by the

10-34

do

vmc.SetConstrain
ts

vmc.title

value. If an Lx1 vector, each series is
multiplied by the corresponding element of
vme . scale. Default = 4/standard deviation
(found to be best by experimentation).

scalar, set to a nonzero value to impose
stationarity and invertibility by constraining
roots of the AR and MA characteristic
equations to be outside the unit circle. Set to
zero to estimate an unconstrained model.
Default = 1.

string, a title to be printed at the top of the
output header (see vmc . header). By default,
no title is printed (vmec. title="").

1x1 or 2x1 instance of a DS data structure. If there are independent
variables, d0 is 2x1. For the first instance in do0,

dO[1l].datamatrix

dO0[1].dname

dO[1].vnames

if time series is stored in a matrix in memory,
Nx1 matrix, time series.

string, if time series is stored in a
GAUSS dataset, name of dataset.

string array, if time series is stored in a
GAUSS dataset, column name of time series in
the GAUSS dataset.

If there are independent variables in the model, then the second

10-35

22UdJ9JoY puUBWIWOD

Command Reference

ecmmt

instance in d0 includes:

dO[2].data

d0[2] .dname

dO0[2].vnames

Output

vmo

matrix, if independent variables are stored in a
matrix in memory, NxK matrix, time series.

string, if the independent variables are stored
m a GAUSS dataset, name of dataset.

string array, if the independent variables are
stored in a GAUSS dataset, column name of
the independent variables in the

GAUSS dataset.

An instance of a varmamtOut structure containing the
following members:

vmo.aa

vmo.acfm

vmo.aic

VMo .arroots

Lxr matrix of coefficients, such that
aa * bb = I (see remarks below).

Lx(p*L) matrix, the autocorrelaton function.
The first L columns are the lag / ACF; the last
L columns are the lag p ACF.

Lx1 vector, the Akaike Information Criterion.

p*1 vector of AR roots, possibly complex.

10-36

vmo

vmo

vmo.

vmo.

vmo .

.bb

.bic

covpar

fct

lagr

rxL matrix, eigenvectors spanning the
cointegrating space of dimension 7.

Lx1 vector, the Schwarz Bayesian
Information Criterion.

QxQ matrix of estimated parameters where Q
is the number of estimated parameters. The
parameters are in the row-major order: 7,

AR(1) t© AR(p)» beta (if x variables were
present in the estimation), and the constants.

Lx1 vector, the likelihood value.

An instance of an sgpsolvemtLagrange
structure containing the following members:

vmo.lagr.lineq linear equality
constraints.

vmo.lagr.nlineq nonlinear equality
constraints.

vmo.lagr.linineq linear inequality
constraints.

vmo. lagr.nlininegnonlinear inequality
constraints.

vmo.lagr.bounds bounds.

10-37

22UdJ9JoY puUBWIWOD

Command Reference

ecmmt

vmo

vmo

vmo

vmo

.1lrs
.maroots

.pactm

.par

When an inequality or bounds constraint is
active, its associated Lagrangean is nonzero.
The linear Lagrangeans precede the nonlinear
Lagrangeans in the covariance matrices.

Lx1 vector, the likelihood ratio statistic.
gx1 vector of MA roots, possibly complex.

Lxp*L) matrix, the partial autocorrelation
function, computed only if a univariate model
is estimated. The first L columns are the lag /
ACEF; the last L columns are the lag p ACF.

An instance of a PV structure containing the
parameter estimates, which can be retrieved
using pvUnpack. For example,

struct varmamtOut vout;

vout = varmaxmt (vmc,vy,0);

ph = pvUnpack (vout.par, "zeta");
th = pvUnpack (vout.par, "pi");
vce = pvUnpack (vout.par, "vc");

The complete set of parameter matrices and
arrays that can be unpacked depending on the
model is:

phi Lxpxp array,
autoregression

10-38

vmo.portman

coefficients.

theta Lxqgxq array, moving
average coefficients.

ve LxL residual
covariance matrix.

beta LxK regression
coefficient matrix.

betal Lx1 constant vector.

zeta Lxpxar array of ecm
coefficients.

pi LxL matrix. Note

that 'pi'is a reserved
word in GAUSS.
Users will need to
assign this to a
different variable
name.

vmc. 1ags-(p+q)*3 matrix of portmanteau
statistics for the multivariate model and Ljung-
Box statistics for the univariate model. The
time period is in column one, the Os
(portmanteau) statistic in column two and the
p-value in column three.

10-39

22UdJ9JoY puUBWIWOD

Command Reference

ecmmt

vmo . residuals TxL matrix, residuals.

vmo.retcode

2x1 vector, return code. First element:

0
1

Second element:

0

normal convergence.
forced exit.

maximum number of
iterations exceeded.

function calculation
failed.

gradient calculation
failed.

Hessian calculation
failed.

line search failed.

error with
constraints.

covariance matrix of
parameters failed.

ML covariance
matrix.

10-40

2 QML covariance
matrix.

3 Cross-Product
covariance matrix.

vmo. ss Lx2 matrix, the sum of squares for Y in
column one and the sum of squared error in
column two.
vmo . va rx1 vector, eigenvalues.
Remarks

Errors are assumed to be distributed N(0,Q).

Source

varmamt.src

garch

Purpose
Estimates parameters of univariate time series.

Library

tsmt

10-41

22UdJ9JoY puUBWIWOD

Command Reference

garch

Format

outl =garch(f0,d0);

Input

£0

garchControl structure.

f0.p

£f0.qg

fO0.density

f0.asymmetry

f0.1inmean

f0.unitRoot

scalar, order of the
GARCH parameters.

scalar, order of the ARCH
parameters.

scalar, density of error
term, 0 - Normal, 1 -
Student's t, 3 - skew
generalized t.

scalar, if nonzero
assymetry terms are
added.

scalar, GARCH-in-mean,
square root of conditional
variance is included in the
mean equation.

scalar, if nonzero
IGARCH model,

10-42

do

outl

parameters contain a unit
root.

£0.cvConstraintsType scalar, type of
enforcement of
nonnegative conditional
variances, 0 - direct
constraints, 1 - Nelson &
Cao constraints

£0.covType scalar, type of covariance
matrix of parameters, 1 -
ML, 2 - QML, 3 - none.

1x1 or 2x1 DS structure, data.
d0[1].endoVector Nx1 vector, time series..

dO[1].exoMatrix Nxk matrix, independent
variables (optional).

garchEstimation structure.

aic scalar, Akiake criterion.
bic scalar, Bayesian information
criterion.

10-43

22UdJ9JoY puUBWIWOD

Command Reference

garch

lrs

numbObs

df

par

retcode

moment

climits

scalar, likelihood ratio statistic.

scalar, number of observations.

scalar, degrees of freedom.

instance of PV structure containing
parameter estimates.

scalar, return code.

1

7
8

normal convergence.
normal convergence.
forced exit.

function calculation failed.
gradient calculation failed.
Hessian claculation failed.
line search failed.

error with constraints.

function complex.

KxK matrix, moment matrix of
parameter estimates.

K %2 matrix, confidence limits.

10-44

garchm

Purpose

Estimates parameters of GARCH-in-mean model, i.e., where the
square root of the conditional variance is added to the mean equation.

Library

tsmt

Format

outl =garchm(fr0,d0);

Input
o garchControl structure.
f0.p scalar, order of the
GARCH parameters.
f0.q scalar, order of the ARCH
parameters.
f0.density scalar, density of error

term, 0 - Normal, 1 -
Student's t, 3 - skew
generalized t.

10-45

22UdJ9JoY puUBWIWOD

Command Reference

garchm

do

£0.

£0.

£0.

£0.

£0.

asymmetry

inmean

unitRoot

scalar, if nonzero
assymetry terms are
added.

scalar, GARCH-in-mean,
square root of conditional
variance is included in the
mean equation.

scalar, if nonzero
IGARCH model,
marameters contain a unit
root.

cvConstraintsType scalar, type of

covType

enforcement of
nonnegative conditional
variances, 0 - direct
constraints, 1 - Nelson &
Cao constraints.

scalar, type of covariance
matrix of parameters, 1 -
ML, 2 - QML, 3 - none.

1x1 or 2x1 DS structure, data.

dO[1].endoVector

dO[1].exoMatrix

Nx1 vector, time series.

Nxk matrix, independent

10-46

outl

variables (optional).

garchEstimation structure.

aic

bic

lrs

numbObs

df

par

retcode

scalar, Akiake criterion.

scalar, Bayesian information
criterion.

scalar, likelihood ratio statistic.

scalar, number of observations.

scalar, degrees of freedom.

instance of PV structure containing
parameter estimates.

scalar, return code.

1

VS S

normal convergence.
normal convergence.
forced exit.

function calculation failed.

gradient calculation failed.

10-47

22UdJ9JoY puUBWIWOD

Command Reference

getirv

5 Hessian claculation failed.

6 line search failed.

7 error with constraints.

8 function complex.
moment KxK matrix, moment matrix of

parameter estimates.

climits Kx2 matrix, confidence limits.

getirv

Purpose

Estimate long-run variance following user-selected kernel.

Library

tsmt
Format

{ LRV, bw } =getlrv(y, kernel, lag method, model);

10-48

Input

Y

kernel
lag method

model

Output

LRV

gjrgarch

Purpose

Nx1 vector, data.
string, "Bartlet," "Parzen," "Quad."
String’ "LLC’H "NW'"

scalar, -1 = no constant nor trend; 0 = constant; 1 =
constant and trend.

long run variance.

selected bandwidth.

Estimates parameters of GJR GARCH model, i.e., one with
asymmetry parameters (Glosten, L.R., Jagannathan, R., and Runkle,

D.E., 1993).

Library

tsmt

10-49

22UdJ9JoY puUBWIWOD

Command Reference

gjrgarch

Format

outl =GJRGarch(f0,d0),

Input

£0

garchControl structure.

f0.p

£f0.qg

fO0.density

f0.inmean

fO0.unitRoot

scalar, order of the
GARCH parameters.

scalar, order of the ARCH
parameters.

scalar, density of error
term, 0 - Normal, 1 -
Student's t, 3 - skew
generalized t.

scalar, GARCH-in-mean,
square root of conditional
variance is included in the
mean equation.

scalar, if nonzero
IGARCH model,
marameters contain a unit
root.

f0.cvConstraintsType scalar, type of

10-50

do

outl

enforcement of
nonnegative conditional
variances, 0 - direct
constraints, 1 - Nelson &
Cao constraints.

£0.covType scalar, type of covariance
matrix of parameters, 1 -
ML, 2 - QML, 3 - none.

1x1 or 2x1 DS structure, data.
d0[1].endoVector Nx1 vector, time series.

d0[1].exoMatrix Nxk matrix, independent
variables (optional).

garchEstimation structure.

aic scalar, Akiake criterion.

bic scalar, Bayesian information
criterion.

1lrs scalar, likelihood ratio statistic.

numbObs scalar, number of observations.

10-51

22UdJ9JoY puUBWIWOD

Command Reference

gjrgarch

df

par

retcode

moment

climits

scalar, degrees of freedom.

instance of PV structure containing
parameter estimates.

scalar, return code.

1 normal convergence.

1 normal convergence.
forced exit.

function calculation failed.
gradient calculation failed.
Hessian claculation failed.
line search failed.

error with constraints.

0 N9 N B W

function complex.

KxK matrix, moment matrix of
parameter estimates.

K x2 matrix, confidence limits.

10-52

hansen

Purpose

Test for stability of all parameters using a cumulative sums of
weighted full sample residuals. The test employs the locally best
invariant tests in a Lagrange multiplier format.

Library

tsmt

Format

{ ny,prob } =hansen(yt, xt);

Input

yt Tx1 numerical vector of panel series data.

xt TxK numerical matrix of estimation regressors.
Output

ny scalar, the Hansen-Nyblom test statistic.

crit vector, 1%, 2.5%, 5%, 7.5%, 10%, and 20% critical

values

10-53

22UdJ9JoY puUBWIWOD

Command Reference

igarch

Reference

1. Nyblom, J. (1989). Testing for the constancy of parameters over time,
Journal of American Statistical Association, 84(405), 223-230.

2. Hansen, B.E. (1992). Testing for parameter instability in linear models,
Journal of Policy Modeling, 14(4): 517-533.

Source

hansen.src

igarch
Purpose

Estimates integrated GARCH model, i.e., a model containing a unit
root.

Library

tsmt
Format

outl =igarch(£0,d0);
Input

£0 garchControl structure.

10-54

£0.

£0.

£0.

£0.

£0.

£0

density

asymmetry

inmean

scalar, order of the
GARCH parameters.

scalar, order of the ARCH
parameters.

scalar, density of error
term, 0 - Normal, 1 -
Student's t, 3 - skew
generalized t.

scalar, if nonzero
assymetry terms are
added.

scalar, GARCH-in-mean,
square root of conditional
variance is included in the
mean equation.

. stConstraintsType scalar, type of

enforcement of stationarity
requirements, 1 - roots of
characteristic polynomial
constrained outside unit
circle, 2 - arch, GARCH
parameters constrained to
sum to less than one and
greater than zero, 3 -

10-55

22UdJ9JoY puUBWIWOD

Command Reference

igarch

do

Output

outl

none.

f£0.cvConstraintsType scalar, type of
enforcement of
nonnegative conditional
variances, 0 - direct
constraints, 1 - Nelson &
Cao constraints.

f£0.covType scalar, type of covariance
matrix of parameters, 1 -
ML, 2 - QML, 3 - none.

1x1 or 2x1 DS structure, data.
d0[1].endoVector Nx1 vector, time series..

d0[1].exoMatrix Nxk matrix, independent
variables (optional).

garchEstimation structure.

aic scalar, Akiake criterion.

bic scalar, Bayesian information
criterion.

lrs scalar, likelihood ratio statistic.

10-56

numbObs

df

par

retcode

moment

climits

scalar, number of observations.

scalar, degrees of freedom.

instance of PV structure containing
parameter estimates.

scalar, return code.

1
1

E VS]

o 9 N W

normal convergence.
normal convergence.
forced exit.

function calculation failed.
gradient calculation failed.
Hessian claculation failed.
line search failed.

error with constraints.

function complex.

KxK matrix, moment matrix of
parameter estimates.

K x2 matrix, confidence limits.

10-57

22UdJ9JoY puUBWIWOD

Command Reference

ips

ips
Purpose

Panel series unit root testing. This test uses the sample mean of the t-
statistics across all individual series within a panel of time series
variables.

Library

tsmt

Format

{ zstat, pcrit } = ips(y,trend,demean,lags, print out);

Input
y Nxk matrix, data, k >= 5.
trend scalar, 0 =no trend, 1 = trend.
demean if nonzero, means removed.
lags scalar or kx1 vector, lags.
print out if nonzero, intermediate quantities printed to screen.

10-58

Output

zstat test statistic.

pcrit critical values for unit root testing at the 1%, 2.5%, 5%,
and 10% significance level.

kpss
Purpose

Test for stationarity using a Lagrange Multiplier score statistic.

Library

tsmt

Format

{ tstat, crit } =kpss(y, max lags, trend, gsk, auto,
print out);

Input
y Nx1 vector, data.
max lags if max_lags <= 0, maximum lag set using Schwert

criterion; if -1, Schwert criterion = 12; if 0, Schwert

10-59

22UdJ9JoY puUBWIWOD

Command Reference

lic

trend
gsk
auto

print out

Output

tstat

crit

lic

Purpose

criterion = 4; else if max_lags > 0, maximum
lag = max_lags.

scalar, 0 no trend, 1 trend.
if nonzero, quadratic spectral kernel is used.
if nonzero, automatic max Iags computed.

if nonzero, intermediate quantities printed to the screen.

test statistic for each lag.

critical values for stationary test at the 1%, 2.5%, 5%,
and 10% significance level.

Panel series unit root testing. The Levin-Lin-Chu panel series unit
root test assumes a homogenous autoregressive parameter and
independently distributed error terms across all series.

10-60

Library

tsmt
Format

tstat =1lle(y,trend,constant,demean,lags,kernel,
lag meth,print out),

Input
y Nxk matrix, data, k > 5.
trend scalar, 0 - no trend, 1 - trend.
constant if nonzero, constant included in model.
demean if nonzero, means removed.
lags scalar, number of lags.
kernel string, "Bartlet," "Parzen," "Quad."
lag meth string, "LLC," "NW."
print out if nonzero, intermediate quantities printed to the screen.
Output
tstat test statistic.

10-61

22UdJ9JoY puUBWIWOD

Command Reference

Isdvmt

Isdvmt

Purpose

Estimates the parameters of the least squares dummy variable model
with bias correction.

Library

tsmt
Format

out =1sdvmt(lsc,d0,series len,num lags);

Input
lsc An instance of a 1sdvmtControl structure. The
following members of 1sc are referenced within this
routine:

lsc.Constrain scalar, if nonzero constraints will be
applied to the autoregression
coefficients. Default = 1.

lsc.scale scalar, if nonzero, data are scaled.

Isc.output scalar, determines the output to be
printed.

lsc.title string, title to be printed at top of

10-62

do

header.

1x1 or 2x1 instance of a DS data structure. If there are
independent variables, d0 is 2x1. For the first instance

in do:

do

if time series is stored in a matrix in

[1].datamatrixmemory, Nx1 matrix, time series.

dO[1].dname

dO[1].vnames

string, if time series is stored in a
GAUSS dataset, name of dataset.

string array, if time series is stored
in a GAUSS dataset, column name
of time series in the GAUSS dataset.

If there are independent variables in the model, then the
second instance in d0 includes:

dO[2].data

dO0[2].dname

dO0[2].vnames

matrix, if independent variables are
stored in a matrix in memory, NxK
matrix, time series.

string, if the independent variables
are stored in a GAUSS dataset,
name of dataset.

string array, if the independent
variables are stored in a

GAUSS dataset, column name of
the independent variables in the

10-63

22UdJ9JoY puUBWIWOD

Command Reference

Isdvmt

series len

num_lags

Output

out

GAUSS dataset.

scalar, length of time series, that is, the number of time
periods in the data.

scalar, number of lagged dependent variables on the
right-hand side.

An instance of an 1sdvoutstructure. The following
members of out are referenced within this routine:

AutoCoefficients Jx1 vector, uncorrected
autoregression coefficients.

RegCoefficients Kx1 vector, uncorrected
regression coefficients.

AutoCoefficientsCorr Jx| vector, bias corrected
autoregression coefficients.

RegCoefficientsCorr KxI vector, bias corrected
regression coefficients.

AutoStderrs Jx1 vector, autoregression
coefficient standard errors.

10-64

RegStderrs

CovPar

SSresidual

SStotal

SSexplained

SSpooledResidual

biasCorr

Lagrange

numCases

numMissing

numDF

Kx1 vector, regression
coefficient standard errors.

KxK matrix, covariance
matrix of parameters

scalar, residual sums of
squares.

scalar, total sums of
squares.

scalar, explained sums of
squares.

scalar, pooled residual
sums of squares.

K+Jx1 vector, bias
corrections.

Jx2 matrix, Lagrangeans
for constraints.

scalar, number of cases.

scalar, number of
observations with missing
data.

scalar, number of degrees
of freedom.

10-65

22UdJ9JoY puUBWIWOD

Command Reference

Isdvmt

numObservations scalar, number of
observations.

numParameters scalar, number of
parameters.

numPeriods scalar, number of periods

in time series.

Remarks

The data must be contained in a GAUSS dataset cross-sectional unit by cross-
sectional unit, with one variable containing an index for the units. From each
cross-sectional unit all observations must be grouped together. For example,
for the first cross-sectional unit there may be 10 rows in the dataset, for the
second cross-sectional unit there may be another 10 rows, and so on. Each row
in the dataset contains measurements on the endogenous and exogenous
variables measured for each observation along with the index identifying the
cross-sectional unit.

The index variable must be a series of integers. While all observations for
each cross-sectional unit must be grouped together, they do not have to be
sorted according to the index.

Example

The following example is taken from the program 1sdvmt . e, located in the
examples subdirectory. The program uses the sample data in
jdatamt.dat.

10-66

library tsmt;
struct lsdvmtControl 1lsc;
struct lsdvmtOut out;

lsc = lsdvmtControlCreate();

z = loadd("lsdvmt");
out = lsdvmt(tsc,z[.,1],z[.,2:41,5,1);

Source

lsdvmt.src

IsdvmtControlCreate

Purpose

Sets the members of an instance of an 1 sdvmtControl structure to
default values.

Library

tsmt

Format

1sc = 1lsdvmtControlCreate (),

10-67

22UdJ9JoY puUBWIWOD

Command Reference

macfmt

Input
None
Output
lsc An instance of an 1sdvmtControl structure with its
members set to default values.
Remarks

Putting this instruction at the top of all programs that invoke 1sdvmt is
generally good practice. This will prevent control variables from being
inappropriately defined when a program is run either several times or after
another program that also calls 1sdvmt.

Source

lsdvmt.src

macfmt

Purpose

Finds an autocorrelation function matrix for multiple dependent
variables.

Library

tsmt

10-68

Format

x=macfmt(y, 1ag);

Input
y TxL matrix of data.
lag scalar, the lag for which an autocorrelation matrix is
desired. Specify 0 to obtain the initial correlation.
Output
x LxL matrix of autocorrelations, res and res(-lag).
Source

varmamt.src

mosum

Purpose

Tests and dates likely structural breaks using a moving window sums
of recursive residuals. Estimation procedure is user specified and
dynamic models are permitted.

10-69

22UdJ9JoY puUBWIWOD

Command Reference

mosum

Library

tsmt
Format

ms =mosum(yt,xt,h,gr,level);

Input
yt Tx1 numerical vector of panel series data.
Xt TxK numerical matrix of estimation regressors.
h scalar, a 0<h<1, bandwidth parameter for determining
moving window size..
gr scalar, any number greater than zero will graph the
vector of MOSUM test statistics, including boundaries.
level scalar, confidence level for creating statistic boundaries.
Output
ms vector containing T-K MOSUM test statistics.
Remarks

Consider the a linear model such that

10-70

The MOSUM test utilizes the standardized one-step ahead recursive
estimation residuals. The estimation residual are given by

~n

yt 7Bl*1xy

T

w, =
where

-1
. /'\2 ’ ’
f,=0 {1+x,(xtx[) xt}

The resulting MOSUM test statistic utilizes the cumulative sum of these
residuals such that

n W
Mosum,= Yy = =L
z=k+LN,7[J+1 v
where
n—Lyhl
N =~=h
and

10-71

22UdJ9JoY puUBWIWOD

Command Reference

numCombReplace

numCombReplace
Purpose

Calculates the number of possible permutations of n number of items
chosen k times, with replacement.

Library

tsmt

Format

v = numCombReplace(n, k);

Input
n number of items.
k number of times items are chosen.
Output
vy number of possible combinations allowing for

10-72

replacement.

Example

To find the number of permutations of 10 items, chosen 3 times, allowing for
replacement we call the GAUSS procedure numCombReplace

numCombReplace (10, 3) ;

The resulting output reads

220.0000

Source

permutate.src

numPerm

Purpose

Calculates the number of possible permutations of n number of items
chosen k times, without replacement.

Library

tsmt

10-73

22UdJ9JoY puUBWIWOD

Command Reference

numPerm

Format

num = numPerm(n, k);

Input

n number of items.

k number of times items are chosen.
Output

num number of possible permutations without replacement.
Example

To find the number of permutations of 10 items, chosen 3 times, withut
replacement we call the GAUSS procedure numPerm

numperm (10, 3) ;
The resulting output reads

720.0000

Source

permutate.src

10-74

numPermReplace

Purpose

Calculates the number of possible permutations of n number of items
chosen k times with replacement.

Library

tsmt
Format

num = numPermReplace(n, k);

Input
n number of items.
k number of times items are chosen.
Output
num number of possible permutations allowing for
replacement.
Example

To find the number of permutations of 10 items, chosen 3 times, allowing for

10-75

22UdJ9JoY puUBWIWOD

Command Reference

nwmt

replacement we call the GAUSS procedure numPermReplace
numPermReplace (10, 3) ;

The resulting output reads

1000.0000

Source

permutate.src

nwmt

Purpose

Finds the Newey-West covariance matrix.

Library

tsmt
Format

x =nwmt(covb, resid, nwtrunc);,

Input

covb QxQ matrix, covariance matrix for the AR parameters.

10-76

resid TxL matrix of residuals.

nwtrunc scalar, the number of autocorrelations to use in
calculating the Newey-West correction (g in the
Remarks section below). If nwtrune =0, GAUSS will
use a truncation lag given by Newey and West,
q=4T/100)%°.

Output

X QxQ matrix, Newey-West adjusted covariances.

Remarks

The Newey-West correction is used to account for the effect of
heteroskedasticity and residual serial correlation on estimated parameter
standard errors. The adjusted parameter covariance matrix is

(X'X)_IQ(X’X)_1 where.
) q T

Q =Dk x, + 2 [1—L}Z(xge.’,+x.g.g (1)
A p= q+1t:j+lztt]xt] t—je1—E¥ t

Source

varmamt.src

10-77

22UdJ9JoY puUBWIWOD

Command Reference

nyblom

nyblom
Purpose

Tests for stability of all parameters using a cumulative sums of
weighted full sample residuals. The test employs the locally best
invariant tests in a Lagrange multiplier format.

Library

tsmt

Format

{ ny,crit } =nyblom(yt, xt);

Input

yt Tx1 numerical vector of panel series data.

xt TxK numerical matrix of estimation regressors.
Output

ny scalar, the Nyblom test statistic.

crit vector, 1%, 2.5%, 5%, 7.5%, 10%, and 20% critical

values.

10-78

Reference

1. Nyblom, J. (1989). Testing for the constancy of parameters over time,
Journal of American Statistical Association, 84(405), 223-230.

2. Hansen, B.E. (1992). Testing for parameter instability in linear models,
Journal of Policy Modeling, 14(4): 517-533.

Source

hansen.src

pacmt

Purpose
Computes partial autocorrelations for a univariate time series.

Library

tsmt

Format

a=pacfmt(y, 1,d);

Input
y Nx1 vector, data.
A scalar, number of partial correlations to compute.

10-79

22UdJ9JoY puUBWIWOD

Command Reference

paramConfigmt

d scalar, order of differencing.
Output

a 1x1 vector, partial autocorrelations.
Source

tsutilmt.src

paramConfigmt

Purpose

Returns parameter estimates from ecmmt and varmaxmt.

Library

tsmt

Format

coeffs =paramConfigmt(p, g, coeffs,se,x,ecmflag);
Input

p scalar, order of the AR process.

10-80

q

coeffs

se

X

ecmflag

Output

coeffs

scalar, order of the MA process.

L*(p+q+K+1)x1 vector of coefficient estimates in the
order AR, MA, x, constant.

L*(p+q+K+1)x1 vector of standard error estimates in
the order AR, MA, x, constant.

TxK matrix of explanatory variables.

scalar, equals one if an ECM model was estimated,

zero otherwise.

Compact matrix created using vput. Read it using
vread. It contains:

pi

pi se

phi

LxL matrix, the impact matrix. Only
returned if an ECM model was
estimated.

Note that pi is a reserved word in
GAUSS. Users will need to assign this
to a different variable name.

LxL matrix of impact coefficient
standard errors. Only returned if an
ECM model was estimated.

p*(LxL) matrix of AR coefficient
estimates stacked in the order

10-81

22UdJ9JoY puUBWIWOD

Command Reference

paramConfigmt

phi se

theta

theta se

beta

beta se

Source

varmamt.src

AR(1), ..., AR(p)-

p*(LxL) matrix of AR standard
errors stacked in the order
AR(1), ..., AR(p)-

q*(LxL) matrix of MA coefficient
estimates stacked in the order

MAQ1), ..., MA(q)- Only returned if
a varmaxmt model was estimated.

q*(L*L) matrix of MA standard
errors stacked in the order

MA(1), ..., MA(q)- Only returned if
a varmaxmt model was estimated.

LxK matrix of x coefficient
estimates. Only returned if a
varmaxmt model was estimated.

LxK matrix of x coefficient standard
errors. Only returned if a
varmaxmt model was estimated.

10-82

permReplace

Purpose

Lists all possible permutations with replacement for n number of
items, chosen k times.

Library

tsmt

Format

v =permReplace(n, k);

Input

n number of items.

k number of times items are chosen.
Output

y a matrix listing all possible permutations.
Example

To list all permutations with replacement for 3 items, chosen 2 times, we call

10-83

22UdJ9JoY puUBWIWOD

Command Reference

permutate

the GAUSS procedure permReplace

permReplace (3,2);
The resulting output reads

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

w W w NN N R

Source

permReplace.src

permutate

Purpose

Lists all possible permutations without replacement for n number of

items, chosen k times.

Library

tsmt

W NP W NDE wNDR

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

10-84

Format

v =permutate(n, k);

Input

n number of items.

k number of times items are chosen.
Output

y a matrix listing all possible permutations.
Source

permutate.src

rolling

Purpose

Performs rolling OLS regressions for a provided vector of dependent
data and matrix of independent regressors.

Library

tsmt

10-85

22UdJ9JoY puUBWIWOD

Command Reference

rolling

Format

{ coef,res } =rolling(yt,xt,window,add,graph),

Input

vt
Xt

window

add

graph

Output

coef

res

Tx1 numerical vector of panel series data.
TxK numerical matrix of estimation regressors.

scalar, a positive integer specifying a fixed window
size of K<window<T. A window size of less than zero
results in an expanding window.

scalar, specifying the initial observation for the forward
expanding window. Negative values indicate a
backward window expansion, beginning with the last
add number of observations. The add input is valid
only if a negative window size is provided.

scalar, any number greater than zero will graph the
rolling values of all coefficient estimates, including the
constant.

matrix, rolling coefficient estimates.

matrix, one-step ahead rolling residuals.

10-86

Remarks

The GAUSS rolling procedure performs rolling OLS regressions for a
provided vector of dependent data and matrix of independent regressors.

Reference

Zivot, E., and Wang, J. (2002). Modeling Financial Time Series with S-
PLUS. Springer-Verlag, New York.

Source

rolling.src

sbControlCreate

Purpose

Sets the members of a declared structural break control structure to
default values.

Library

tsmt

Format

sbc0O = sbControlCreate();

10-87

22UdJ9JoY puUBWIWOD

Command Reference

sbreak

Input
None
Output
sbcO An instance of a sbControlCreate structure with
all members set to default values.
Source

sbcontrolcreate.src

sbreak

Purpose

Estimates the p'th order threshold autoregression model.

Library

tsmt
Format

sbout = sbreak(yt,xt,zt,sbc0);

10-88

vt
Xt

zt

sbc0

Nx1 vector, data.
autoregressive order of the TAR model.

scalar or vector, lags (below p) to omit from
autoregression [0 implies an AR(p)].

sbControl structure containing the following elements:

omit scalar or vector, lags (below p) to
omit from autoregression [0 implies
an AR(p)].

lowerQuantile scalar, the lower quantile for trimming
data.

upperQuantile scalar, the upper quantile for trimming
data.

printOutput scalar, 0 or 1, 1 indicates screen

output.

graph scalar, 0 or 1, 1 indicates screen
output.

dstart scalar, starting date in DT scalar
format.

freq frequency of the data per year. Valid

options include:.

10-89

22UdJ9JoY puUBWIWOD

Command Reference

sbreak

1 yearly.
4 quarterly.

12 yearly.

Output

sbOutput sbOutput structure containing the following elements:

breakDate matrix, MXxM of date breaks estimated for
possible number of breaks less than or
equal to m.

breakSSR MxM, vector of ssr associated with all
number of breaks less than or equal to m.

References

Bai, J and Perron, P. (2003) Computation and analysis of multiple structural
change models, Journal of Applied Econometrics, 18(1), 1-22.

Source

sb.src

10-90

selectLags

Purpose
Select lags based on method of statistical inference.

Library

tsmt

Format

{ opt,crit mat } = selectlLags(y,max lag,method);

Input

y Nx1 vector, data.

max lag scalar, maximum lags.

method string, "AIC," "BIC," "HQC," "LRS," "FPE."
Output

opt scalar, optimum lags.

crit mat vector, critical values for each lag.

10-91

22UdJ9JoY puUBWIWOD

Command Reference

simarmamt

simarmamt

Purpose
Simulate ARMA time series process.

Library

tsmt

Format

v =simarmamt(b,p, g, const,trend,n,k,std, seed);

Input

b Kx1 vector, coefficient values for theoretical ARMA
process.

p scalar, the autoregressive order.

q scalar, the moving average order.

const scalar, value of the constant term NxM matrix, fixed
regressor matrix.

trend scalar, trend parameter or O for no trend.

n scalar, the number of observations to generate.

k scalar, the number of replications to generate.

10-92

std scalar, the standard deviation of the error process.

seed scalar, the value of the seed. If seed =0, then rndn is
used, otherwise rndns is used.

Output
vy NxK matrix, simulated ARMA process. Each column
represents an independent realization of a univariate
time series.
Remarks

simarmamt only simulates times series which are generated by normally
distributed errors.

If your simulation is large or if your available memory is limited, make several
calls to simarmamt during a simulation. Keep in mind that there is some
overhead computing the starting values with the desired multivariate
distribution.

If the process you are simulating lies on or near a boundary, try generating a
longer time series, then trim the beginning observations. In general,
simarmamt should give reasonable results since the starting values are
normalized to have required multivariate normal distribution.

Source

simarmamt.src

10-93

22UdJ9JoY puUBWIWOD

Command Reference

stackData

stackData

Purpose

Stacks columns of panel series into a single stacked vector of data.

Library

tsmt

Format

y_ st =stackData(yt);

Input
yt TxK matrix of cross sectional data.
Output
y_st (T*K)x1 Matrix of stacked cross sectional data, i.e. yt
L1 ytl,2] [w31 - oyl K
Source

stackdata.src

10-94

standardizeData

Purpose
Demeans and standardizes data matrix with standard deviation.

Library

tsmt

Format

y_std=standardizeData(yt, demean);

Input
yt Tx1 vector of time series data.
demean scalar, indicator variable to demean data [1 to demean
data].
Output
y_std Tx1 numerical vector of standardized time series data.
Source

standardizedata.src

10-95

22UdJ9JoY puUBWIWOD

Command Reference

starTest

starTest

Purpose

Estimates a p'th order threshold autoregression and tests the
hypothesis of a linear autoregression, using the statistics described in
"Inference when a nuisance parameter is not identified under the null
hypothesis." (Hansen, 1996).

Library

tsmt

Format

{ s3,p3} =starTest(yt,p,omit);

Input
yt Nx1 vector, data.
p autoregressive order of the TAR model.
omit scalar or vector, lags (below p) to omit from
autoregression [0 implies an AR(p)].
Output
s3 scalar, value of the LM test statistic.

10-96

p3 scalar, p-value of s3.

References

1. Hansen, B.E. (1996). Inference when a nuisance parameter is not iden-
tified under the null hypothesis, Econometrica, 64(2), 413-430.

2. Franses, P.H. and Dijk, D. (2000) Non-linear Time Series Models in
Empirical Finance. Cambridge University Press, New Y ork.

Source

startest.src

svarmaxmt

Purpose

Computes exact maximum likelihood parameter estimates for a
VARMAX model with seasonal parameters.

Library

tsmt

Format

vmo = svarmaxmt(vmc, d0);

10-97

22UdJ9JoY puUBWIWOD

Command Reference

svarmaxmt

Input

vm An instance of a varmamtControl structure. The following
members of vmc are referenced within this routine:

€

vmc.adforder

vmc.ar

vmc.ma

vmc.diff

vmc.sar

vmc.sma

vmc.sdiff

vmc. s

vmc.ctl

scalar, number of AR lags in the ADF test
statistic. Default = 1.

scalar, number of AR matrices to be
estimated. Default = 0.

scalar, number of MA matrices to be
estimated. Default = 0.

scalar, order of differencing to achieve
stationarity. Default = 0.

scalar, number of seasonal AR matrices to be
estimated. Default = 0.

scalar, number of seasonal MA matrices to be
estimated. Default = 0.

scalar, order of seasonal differencing to
achieve stationarity. Default = 0.

scalar, seasonal period. Default = 0.
mstance of sgpsolvemtControl structure.

vmc.ctl.covType scalar, if 2, QML
standard errors are

10-98

vmc.critl

vmc . header

computed, if 0, none;
otherwise Wald-type.

vmc.ctl.printIte gcalar, iteration

rs

See documentation for

information printed

every
swc.ctl.printIte

rs-th iteration.

sgpsolvemtControl for further
information regarding members of this

structure.

scalar, the significance levels defining p-

values. Default = .95.

string, specifies the format for the output
header. vimc. header can contain zero or
more of the following characters:

t

1

title is to be printed.

lines are to bracket the
title.

a date and time is to be
printed.

version number of
program is to be

10-99

22UdJ9JoY puUBWIWOD

Command Reference

svarmaxmt

vmc. IndEquations

vmc.lags

vmc .nodet

printed.

t file name being
analyzed is to be
printed

Example:

vmc.header = "t1d";
If vmc. header ="", no header is printed.

Default = "tldv{".

K XL matrix of zeros and ones. Used to set
zero restrictions on the x variables to be
estimated. Only used if the number of
equations, vmc. L is greater than one.
Elements set to indicate the coefficients to be
estimated. If vmc. L = 1, all coefficients will
be estimated. If vmc.L>1 and

vmc. IndEquations is set to a missing
value (the default), all coefficients will be
estimated.

scalar, number of lags over which ACF and
Diagnostics are calculated. Default = 12.

scalar. Set vmc. nodet =1 to suppress the
constant term from the fitted regression and
include it in the co-integrating regression;

10-100

vmc.

vmc.

vmc.

vmc.

ts

vmc.

nwtrunc

output

scale

SetConstrain

Start

otherwise, set vmc. nodet = 0. Default = 0.

scalar, the number of autocorrelations to use in
calculating the Newey-West correction. If
vmc . nwtrunc =0, GAUSS will use a
truncation lag given by Newey and West,

= 4(T/100)*°.

vmc.nwtrunc

scalar. Set to 0 to suppress all printing from
varmaxmt. Set vmc. output > 0 to print
results. Default = 1.

scalar or an Lx1 vector, scales for the time
series. If scalar, all series are multiplied by the
value. If an Lx1 vector, each series is
multiplied by the corresponding element of
vmc . scale. Default = 4/standard deviation
(found to be best by experimentation).

scalar, set to a nonzero value to impose
stationarity and invertibility by constraining
roots of the AR and MA characteristic
equations to be outside the unit circle. Set to
zero to estimate an unconstrained model.
Default = 1.

Instance of a PV structure containing starting
values. See Section 3.7.2 for discussion of
setting starting values. By default, varmaxmt

10-101

22UdJ9JoY puUBWIWOD

Command Reference

svarmaxmt

vmc.title

calculates starting values.

string, a title to be printed at the top of the
output header (see vmc . header). By default,
no title is printed (vmc. title="").

d0 1x1 or 2x1 instance of a DS data structure. If there are independent
variables, d0 is 2x1. For the first instance in dO:

dO[1].datamatrix

dO[1].dname

dO[1].vnames

if time series is stored in a matrix in memory,
Nx1 matrix, time series.

string, if time series is stored in a
GAUSS dataset, name of dataset.

string array, if time series is stored in a
GAUSS dataset, column name of time series in
the GAUSS dataset.

If there are independent variables in the model, then the second instance

in d0 includes:

do[2].data

dO[2].name

dO[2].vnames

matrix, if independent variables are stored in a
matrix in memory, NxK matrix, time series.

string, if the independent variables are stored
i a GAUSS dataset, name of dataset.

string array, if the independent variables are
stored in a GAUSS dataset, column names of
the independent variables in the

GAUSS dataset.

10-102

Output

vmo

An instance of a varmamtOut structure containing the following

members:

vmo.acfim

VMO.aic

Vmo.arroots

vmo.bic

vmo.covpar

vmo.fct

vmo.lagr

Lx(p*L) matrix, the autocorrelation function.
The first L columns are the lag / ACF; the last
L columns are the lag p ACF.

Lx1 vector, the Akaike Information Criterion.

px1 vector of AR roots, possibly complex.

Lx1 vector, the Schwarz Bayesian
Information Criterion.

QxQ matrix of estimated parameters. The
parameters are in the row-major order: AR(1)
to AR(p), MA(1) to MA(q), beta (if x variables
were present in the estimation), and the
constants.

Lx1 vector, the likelihood value.

An instance of an sgpsolvemtLagrange
structure containing the following members:

vmo.lagr.lineq linear equality
constraints.

vmo.lagr.nlineq nonlinear equality

10-103

22UdJ9JoY puUBWIWOD

Command Reference

svarmaxmt

vmo.lIrs
VMO.Mmaroots

vmo.pacfm

vmo.par

constraints.

vmo.lagr.linineq linear inequality
constraints.

vmo. lagr.nlinineqgnonlinear inequality
constraints.

vmo.lagr.bounds bounds.

When an inequality or bounds constraint is
active, its associated Lagrangean is nonzero.
The linear Lagrangeans precede the nonlinear
Lagrangeans in the covariance matrices.

Lx1 vector, the Likelihood Ratio Statistic.
gx1 vector of MA roots, possibly complex.

Lx(p*L) matrix, the partial autocorrelation
function, computed only if a univariate model
is estimated. The first L columns are the lag /
ACEF; the last L columns are the lag p ACF.

An instance of a PV structure containing the
parameter estimates, which can be retrieved
using pvUnpack. For example,

struct varmamtOut vout;
vout = wvarmaxmt (vmc,y,0);

10-104

ph = pvUnpack (vout.par,"phi");
th = pvUnpack (vout.par, "theta");
vce = pvUnpack (vout.par, "vc");

The complete set of parameter matrices and
arrays that can be unpacked depending on the
model is:

phi Lxpxp array,
autoregression
coefficients.

theta Lxgxq array, moving

average coefficients.

ve LxL residual
covariance matrix.

beta LxK regression
coefficient matrix.

betal Lx1 constant vector.

zeta Lxpxar array of
ECM coefficients.

pi LxL matrix. Note
that pi isa

reserved word in
GAUSS. Users will

10-105

22UdJ9JoY puUBWIWOD

Command Reference

svarmaxmt

vmo.portman

vmo.residuals

vmo.retcode

need to assign this to
a different variable
name.

vme. lags-(p+ q)*3 matrix of portmanteau
statistics for the multivariate model and Ljung-
Box statistics for the univariate model. The
time period is in column one, the Os
(portmanteau) statistic in column two and the
p-value in column three.

TXL matrix, residuals.

2x1 vector, return code. First element:

0 normal convergence.
1 forced exit.
2 maximum number of

iterations exceeded.

3 function calculation
failed.

4 gradient calculation
failed.

5 Hessian calculation
failed.

10-106

6 line search failed.

7 error with
constraints.

Second element:

0 covariance matrix of
parameters failed.

1 ML covariance
matrix.

2 QML covariance
matrix.

3 Cross-Product

covariance matrix.

Vmo.ss Lx2 matrix, the sum of squares for Y in
column one and the sum of squared error in
column 2.

The SVARMAX model includes parameters for describing seasonal effects in
a VARMAX model. The SARIMA model is a special case that can also be
estimated with svarmaxmt.

10-107

22UdJ9JoY puUBWIWOD

Command Reference

svarmaxmt

Using widely used terminology, the SVARMAX model can be described as
SVARMAX(p,d,q,P,D,Q,s) where

p vmo.ar autoregression order.

d vmo.diff differencing parameter.

q vmo.ma moving average order.

P vmo.sar seasonal autoregressive order.

D vmo.sdiff seasonal differencing parameter.
0 vmo.sma seasonal moving average order.
s Vmo.s seasonal order.

The model represented by

(1- Ly - 1976)DLy, = 01O (L),

where
L) = 1—¢]L—¢2L2...¢pr
DL = 1- DL — L ... DpLls
OL) = 1+0L+0,L%...0,L7

2
OL) = 1+OL +0,L%...0nLY

Errors are assumed to be distributed N(0,Q). The estimation procedure
assumes that all series are stationary. Setting vmc. SetConstraintstoa

10-108

nonzero value enforces stationarity, by constraining the roots of the
characteristic equations

1— = S P
Pz 97 . B2
and
1 -0z — 0z ... Opz’™
are constrained to be outside the unit circle.

If any estimated parameters in the coefficient matrices are on a constraint
boundary, the Lagrangeans associated with these parameters will be nonzero.
These Lagrangeans are stored in vmo . Iagr. Standard errors are generally
not available for parameters on constraint boundaries.

Source

svarmamt.src

switchmt

Purpose
Estimates the parameters of the Markov switching regression model.

Library

tsmt

10-109

22UdJ9JoY puUBWIWOD

Command Reference

switchmt

Format

swo = switchmt(swc,d, num states,num lags),

Input

SwWC

An instance of a switchmtControl structure. The following
members of swc are referenced within this routine:

swc.constVarian scalar, if nonzero, error variances are

ce

constant across states, otherwise if zero, not.

swc.relevantSta scalar, if nonzero, lagged states are relevant

tes

sSwc.aBayes

swc.bBayes

SwcC.cBayes

for time series variable, otherwise if zero,
only the current state is relevant.

scalar, if nonzero, "a" parameter controlling
the Bayesian prior as described in James D.
Hamilton, 1991, "A quasi-Bayesian
approach to estimating parameters for
mixtures of Normal distributions," Journal
of Business and Economic Statistics, 9:27-39.

scalar, if nonzero, "b" parameter controlling
the Bayesian prior.

scalar, if nonzero, "c" parameter controlling
the Bayesian prior.

swc.userTransEq scalar, pointer to user-provided function for

10-110

swc.start

setting equality constraints on transition
probability matrix.

instance of a PV structure containing start
values.

betal 1, num statesby 1
vector, constants.

beta 2, num states by
K, coefficients on K
independent variables

if any.

phi 3, num lagsby 1
vector, autoregression
coefficients.

sigma 4, scalar or num_

states by 1 vector,

error variances. If
swc.constVarian

ce IS zero, itis a
scalar, otherwise it is
a vector.

p 5, num_states by
num_states matrix,
transition
probabilities.

10-111

22UdJ9JoY puUBWIWOD

Command Reference

switchmt

swc.ctl

For example:

swc.start = pvPacki
(swc.start,3]-3,"betal",

1)

swc.start = pvPacki
(swc.start, .1].01,"Phi",

3);
swc.start

pvPacki
(swc.start,1,"Sigma", 4);
swc.start = pvPacki
(swc.start, (.87.1) |
(.27.9),"p",
5);

mstance of an sgpsolvemtControl
structure.

swc.ctl.covType scalar, if 2, QML
standard errors are
computed, if 0, none;

otherwise Wald-type.
swc.ctl.printIt gscalar, iteration
ers information printed
every

swc.ctl.printIt
ers-th iteration.

See documentation for

10-112

swc.header

sqgpsolvemtControl for further
information regarding members of this
structure.

string, specifies the format for the output
header. swc. header can contain zero or
more of the following characters:

t title is to be printed.

1 lines are to bracket
the title.

d a date and time is to
be printed.

v version number of
program is to be
printed.

i file name being
analyzed is to be
printed.

Example:

swc.header = "tl1ld";

nn

If swc.header =
Default = "tldvf".

, no header is printed.

10-113

22UdJ9JoY puUBWIWOD

Command Reference

switchmt

swc.output scalar, if nonzero, results are printed to
screen. Default=1 .

1x1 or 2x1 instances of a DS data structure. If the time series and
independent variables, if any are in a dataset, if there are no
independent variables

d.dname string containing name of GAUSS dataset.
d.vnames string containing name of time series.

and if there are independent variables

d[1].dname string containing name of GAUSS dataset.

d[1].vnames string containing name of time series.

d[2].vnames Kx1 string array containing names of
independent variables.

Note: create vector of DS instances using reshape:
d = reshape(d, 2, 1).

If the time series and independent variables, if any, are in matrices
stored in memory, if there are no independent variables

d.dataMatrix Nx1 vector, time series.
d.vnames string containing name of time series,
optional.

and if there are independent variables

10-114

d[1].dataMatrix NxI vector, time series.

d[1].vnames string containing name of time series,
optional.

d[2].dataMatrix NxK matrix, independent variables.

d[2].vnames KXx1 string array containing names, optional
of independent variables, optional.

Note: create vector of DS instances using reshape:
d = reshape(d, 2, 1).

num_ scalar, number of states.
state

S

num_ scalar, number of lagged values of the dependent variable.
lags

Output

out An instance of a switchmtOut structure containing the
following members:

out.par instance of a PV structure containing the
estimates:
betal 1, num statesxl

vector, constants.

10-115

22UdJ9JoY puUBWIWOD

Command Reference

switchmt

beta

phi

sigma

For example,

2, num_statesxK,
coefficients on K
independent variables if
any.

3, num_lagsxl vector,
autoregression
coefficients.

4, scalar or num_
statesX1 vector, error
variances. If
vmc.constVariance
IS zero, it is a scalar,
otherwise it is a vector.

5, num statesxnum
states matrix,
probabilities.

consts = pvUnpack (out.par,

or

"betalO");

consts = pvUnpack (out.par,1);

out.covPar MxM matrix, covariance matrix of parameters.

10-116

out.logl

out.retcode

out.lagr

scalar, log-likelihood at maximum.

return code:
0
1

7
8

normal convergence.
forced exit.

maximum number of
iterations exceeded.

function calculation
failed.

gradient calculation
failed.

Hessian calculation
failed.

line search failed.
error with constraints.

function complex.

instance of sgqpsolvemtLagrange structure.

out.lagr.lineq

out.lagr.nlineq

Mx1 vector,
Lagrangeans of linear
equality constraints.

Nx1 vector,

10-117

22UdJ9JoY puUBWIWOD

Command Reference

switchmt

Example

Lagrangeans of
nonlinear equality
constraints.

out.lagr.linineq Px] vector,
Lagrangeans of linear
inequality constraints.

out.lagr.nlininegQx1 vector,
Lagrangeans of
nonlinear inequality
constraints.

out.lagr.bounds Kx2 matrix,
Lagrangeans of bounds.

Whenever a constraint is active, its associated
Lagrangean will be nonzero. For any constraint that
is inactive throughout the iterations as well as at
convergence, the corresponding Lagrangean matrix
will be set to a scalar missing value.

This example reproduces the results for the French exchange rate in “Long
Swings in the Exchange Rate: Are They in the Data and Do Markets Know
1t?” by Charles Engel and James D. Hamilton, American Economic Review,

Sept. 1990.

10-118

load y0[58,3]

exdata.txt;

struct DS dO;
d0.dataMatrix = y0[.,1];

struct switchmtControl cO;
c0 = switchmtControlCreate();

cO.constVariance = 0;
cO.output = 1;
cO0.aBayes = .2;
cO0.bBayes = 1;
cO.cBayes = .1;

/%

** The log-likelihood is somewhat flat and thus
** the problem requires a good starting point.

*/

b0 = { 3.3, -2.7 };
sig = { 10, 37 };
p=41{ .8 .2, .2 .8 };

struct PV st0;

st0 = pvPacki (pvCreate(),b0, "betalO",1);
st0 = pvPacki (st0,sig,"sigma",4);

st0 pvPacki (st0,p,"p",5);

cO.start = st0;

struct switchmtOut outO;

10-119

22UdJ9JoY puUBWIWOD

Command Reference

TARControlCreate

out0 = switchmt (c0,d0,2,0);

Source

switchmt.src

TARControlCreate

Purpose

Sets the members of a declared structural break control structure to
default values.

Library

tsmt
Format
tar0= TARControlCreate();
Input
None
Output

tar0 An instance of a TARControlCreate structure with
all members set to default values.

10-120

Source

tarcontrolcreate.src

tarTest

Purpose
Estimates the p'th order threshold autoregression model.

Library

tsmt

Format

TARout = tarTest(yt,p,struct TARControl tar0);

Input
yt Nx1 vector, data.
pr autoregressive order of the TAR model.
tar0 TARControl structure containing the following
elements:
p scalar, Autoregressive order of the

STAR model.

10-121

22UdJ9JoY puUBWIWOD

Command Reference

tarTest

Output

TAROut

omit

scalar, Nx1 vector number of lags
(below p) to omit from the matrix.

lowerQuantile scalar, the lower quantile.

upperQuantile scalar, the upper quantile.

rep

printOutput

graph

dstart

freq

tests

scalar, the number of simulation
replications.

scalar, 0 or 1, 1 prints output to the
screen.

scalar, 0 or 1, 1 turns on plotting.

scalar, start date of the time series in
DT scalar format as used by
PlotTs.

scalar, Data frequency, 12 for
monthly, 4 for quarterly or 1 for
annual.

TAROutstructure containing the following return
elements:

vector of test statistics (in
order): SupLM, ExpLM,

10-122

AvelLM, SupLMs, ExpLMs,
AveLMs.

pvalues vector, estimated asymptotic
p-values or test statistics.

coefficients matrix, first column contains
estimated coefficients and
second column contains
standard errors.

regimeErrorVariance vector, 2x1, error variance
for Regime 1 and Regime 2,

respectively.
thresholdLag scalar, threshold variable lag.
thresholdValue scalar, threshold estimate.
errorVariance scalar, threshold model error
variance.

References

1. Hansen, B.E. (1996). Inference when a nuisance parameter is nost iden-
tified under the null hypothesis, Econometrica, 64(2), 413-430.

2. Franses, P.H. and Dijk, D. (2000) Non-linear Time Series Models in
Empirical Finance. Cambridge University Press, New Y ork.

Source

tartest.src

10-123

22UdJ9JoY puUBWIWOD

Command Reference

tautocovmt

tautocovimt

Purpose

Computes the theoretical autocovariances given the coefficient values
from an ARMA((p,q) process.

Library

tsmt

Format

g = tautocovmt(b, p, 9);

Input

b Kx1 vector, parameter coefficients.

p scalar, the autoregressive order.

q scalar, the moving average order.
Output

g [Max(p,q)+1]x1 vector, theoretical autocovariances.
Remarks

The theoretical autocorrelations are found by dividing g by g[1].

10-124

Source

tautocovmt.src

tscsmt

Purpose

Estimates the parameters of the pooled time-series cross-section
regression model.

Library

tsmt

Format

tso=tsesmt(tsc,d0,grp);

Input
tsc An instance of a tscsmtControl structure. The
following members of tsc are referenced within this
routine:
tsc.header string, specifies the format for the

output header. tsc. header can
contain zero or more of the
following characters:

10-125

22UdJ9JoY puUBWIWOD

Command Reference

tscsmt

tsc.ise

tsc.output

tsc.meth

i title is to be printed.

1 lines are to bracket
the title.

d a date and time is to
be printed.

v version number of
program is to be
printed

i file name being
analyzed is to be
printed

Example:

tsc.header = "t1ld";
If tsc.header ="", no header is

printed. Default = "tldv{".

scalar. If 1, the individual-specific
effects are not printed. Default = 0.

scalar, if nonzero, results are
printed to screen. Default = 1.

scalar. Possible values are:

10-126

0 Uses the fixed effects
estimates of the
individual-specific
effects to estimate the
variance components
of the random effects
model. Use this
option if there are a
different number of
observations for each
cross-sectional unit.
The chi-squared test
for the individual
error components
equal to 0 may not be
correct if there are a
different number of
observations for each
individual.

1 Uses regression on
group means to
estimate variance
components.

Default = 0.

tsc.mnsfn string, the name of a file in which

10-127

22UdJ9JoY puUBWIWOD

Command Reference

tscsmt

tsc.model

tsc.row

tsc.rowfac

to save the group means of the
dataset. By default, tsc.mnsfn=
""" "so the means are not saved.

scalar, controls the type of models
to be estimated. Possible values
are:

0 All models are
estimated.
1 The random effects

(error components
model) is not
estimated.

scalar. Specifies how many rows
of the dataset are to be read per
iteration of the read loop. By
default, the number of rows to be
read is calculated by tscsmt.

scalar, "row factor." If tscsmt
fails due to insufficient memory
while attempting to read a GAUSS
dataset, tsc. rowfac may be set
to some value between 0 and 1 to
read a proportion of the original
number of rows of the GAUSS
dataset. For example, setting

10-128

do

tsc.stnd

tsc.title

tsc.rowfac = 0.8;

causes GAUSS to read in 80% of the
rows of the GAUSS dataset that
were read when the failure due to
insufficient memory occurred.
tsc.rowfac has an effect only
when tsc. row= 0. Default = 1.

scalar. If 1, print standardized
estimates of regression parameters.
Default = 1.

string, a title to be printed at the top
of the output header (see
tsc.header). By default, no title
isprinted (tsc.title="").

1x1 or 2x1 instance of a DS data structure. If there are
independent variables, dO is 2x1. For the first instance in

do:

do

if time series is stored in a matrix in

[1].datamatrixmemory, Nx1 matrix, time series.

dO[1].dname

dO[1].vnames

string, if time series is stored in a
GAUSS dataset, name of dataset.

string array, if time series is stored
m a GAUSS dataset, column name
of time series in the

10-129

22UdJ9JoY puUBWIWOD

Command Reference

tscsmt

Output

tso

GAUSS dataset.

If there are independent variables in the model, then the
second instance in d0 includes:

d0[2] .data

dO0[2] .dname

dO[2].vnames

matrix, if independent variables are
stored in a matrix in memory, NxK
matrix, time series.

string, if the independent variables
are stored in a GAUSS dataset,
name of dataset.

string array, if the independent
variables are stored in a

GAUSS dataset, column names of
the independent variables in the
GAUSS dataset.

An instance of a tscsmtOut structure containing the

following members:

tso.bdv

Kx1 vector, regression coefficients
from the dummy effects model
(excluding individual-variables
regression model).

10-130

tso.

tso.

tso.

tso.

tso.

Remarks

vcdv

mdv

bec

vcec

mec

KxK matrix, variance-covariance
matrix of the dummy variables
regression model.

(K+1)x(K+1) matrix, moment
matrix of the transformed variables
(including a constant) from the
dummy variables regression model.

Kx1 vector, regression coefficients
from the random effects regression
model.

KxK matrix, variance-covariance
matrix of the random effects
regression model..

(K+1)x(K+1) matrix, moment
matrix of the transformed variables
(including a constant) from the
random effects regression model.

The data must be contained in a GAUSS dataset cross-sectional unit by cross-
sectional unit, with one variable containing an index for the units. From each
cross-sectional unit all observations must be grouped together. For example,
for the first cross-sectional unit there may be 10 rows in the dataset, for the
second cross-sectional unit there may be another 10 rows, and so on. Each row

10-131

22UdJ9JoY puUBWIWOD

Command Reference

tscsmt

in the dataset contains measurements on the endogenous and exogenous
variables measured for each observation along with the index identifying the
cross-sectional unit.

The index variable must be a series of integers. While all observations for
each cross-sectional unit must be grouped together, they do not have to be
sorted according to the index.

Example

The following example is taken from the program tscsmt . e, located in the
examples subdirectory. The program uses the sample data in
jdatamt.dat.

library tsmt;

struct tscsmtControl tsc;
struct tscsmtOut tso;
tsc = tscsmtControlCreate();

lhs = "x2";
exog = "x3";
inname = "Jjdatamt";

output file = jdatamt.out reset;

grp = "x1";

tsc.meth = 1;

tso = tsesmt (tsc,inname, lhs,exog,grp);
output off;

10-132

Source

tscsmt.src

tscsmtControlCreate

Purpose

Sets the members of an instance of a tscsmtControl structure to
default values.

Library

tsmt

Format
tsc = tscsmtControlCreate();
Input
None
Output

ESEe An instance of a tscsmtControl structure with its
members set to default values.

10-133

22UdJ9JoY puUBWIWOD

Command Reference

tsforecastmt

Remarks
Putting this instruction at the top of all programs that invoke tscsmt is
generally good practice. This will prevent control variables from being

inappropriately defined when a program is run either several times or after
another program that also calls tscsmt.

Source

tscsmt.src

tsforecastmt

Purpose

Estimates forecasts using estimation results obtained from arimamt.

Library

tsmt
Format

f=tsforecastmt(amc,b,y,p,d,q,const,e, h);
Input

amc An instance of an arimamtControl structure. The
following members of amc are referenced within this

10-134

const

routine:

amc.critl scalar, confidence level to compute
for forecast confidence bounds.
Default = 0.95.

amc.output scalar, controls printing of output .

0 Nothing is printed.

1 Forecasts, confidence bounds
and forecast standard errors
are printed.

Kx1 vector, estimated coefficients

Nx1 vector, data.

scalar, the autoregressive order.

scalar, the order of differencing

scalar, the moving average order.

scalar, if 1, a constant is estimated, O otherwise.

Nx1 vector, residuals reported by arimamt program.

scalar, the number of step-ahead forecasts to computer.

10-135

22UdJ9JoY puUBWIWOD

Command Reference

varmamtControlCreate

Output
f hx3 matrix,
[.,1] Lower forecast confidence bounds.
[.2] Forecasts.
[.,3] Upper forecast confidence bounds.
Remarks

Data must be transformed before being sent to tsForecast.

tsForecast does not compute forecasts for models with fixed regressors.

Source

forecastmt.src

varmamtControlCreate

Purpose

Sets the members of an instance of a varmamtControl structure to
default values.

Library

tsmt

10-136

Format

vmc = varmamtControlCreate();

Input
None
Output
amc An instance of a varmamtControl structure with its
members set to default values.
Remarks

Putting this instruction at the top of all programs that invoke varmaxmt or
ecmmt procedures is generally good practice. This will prevent control
variables from being inappropriately defined when a program is run either
several times or after another program that also calls varmaxmt or
ecmmtprocedures.

Source

varmamt.src

10-137

22UdJ9JoY puUBWIWOD

Command Reference

varmaxmt

varmaxmt

Purpose

Computes exact maximum likelihood parameter estimates for a
VARMAX model.

Library

tsmt
Format

vmo = varmaxmt(vmc, d0);
Input

vm An instance of a varmamtControl structure. The following
¢ members of vmc are referenced within this routine:

vmc.adforder scalar, number of AR lags in the ADF test
statistic. Default = 2.

vmc.ar scalar, order of AR process. Default = 0.

vmc.critl scalar, the significance levels defining p-
values. Default = .95.

vmc. diff scalar, the order of differencing to achieve
stationarity. Default = 0.

10-138

vmc.ctl

vmc . header

mstance of an sgpsolvemtControl
structure.

vmc.ctl.covType scalar, if 2, QML
standard errors are
computed, if 0, none;

otherwise Wald-type.
vme.ctl.printIte scalar, iteration
rs information printed
every

swc.ctl.printIte
rs-th iteration.

See documentation for
sgpsolvemtControl for further
information regarding members of this
structure.

string, specifies the format for the output
header. vimc. header can contain zero or
more of the following characters:

t title is to be printed.

1 lines are to bracket the
title.

d a date and time is to be
printed.

10-139

22UdJ9JoY puUBWIWOD

Command Reference

varmaxmt

vmc. IndEquations

vmc.lags

vmc.ma

v version number of
program is to be
printed.

t file name being
analyzed is to be
printed

Example:

vmc.header = "t1d";
If vmc. header ="", no header is printed.

Default = "tldv{".

K XL matrix of zeros and ones. Used to set
zero restrictions on the variables to be
estimated. Only used if the number of
equations, vmc. L is greater than one.
Elements set to indicate the coefficients to be
estimated. If vmc. L = 1, all coefficients will
be estimated. If vmc.L>1 and

vmc. IndEquations is set to a missing
value (the default), all coefficients will be
estimated.

scalar, number of lags over which ACF and
Diagnostics are calculated. Default = 12.

scalar, number of MA matrices to be estimated.

10-140

vmc.

vmc.

vmc.

vmc.

vmc.

ts

nodet

nwtrunc

output

scale

SetConstrain

Default = 0.

scalar. Set vmc. nodet =1 to suppress the
constant term from the fitted regression and
include it in the co-integrating regression;
otherwise, set vmc. nodet = 0. Default = 0.

scalar, the number of autocorrelations to use in
calculating the Newey-West correction. If
vmc.nwtrunc =0, GAUSS will use a
truncation lag given by Newey and West,

= 4(T/100)*°.

vmc.nwtrunc

scalar. Set to 0 to suppress all printing from
varmaxmt. Set vmc. output > 0 to print
results. Default = 1.

scalar or an Lx1 vector, scales for the time
series. If scalar, all series are multiplied by the
value. If an Lx1 vector, each series is
multiplied by the corresponding element of
vmc.scale. Default = 4/standard deviation
(found to be best by experimentation).

scalar, set to a nonzero value to impose
stationarity and invertibility by constraining
roots of the AR and MA characteristic
equations to be outside the unit circle. Set to
zero to estimate an unconstrained model.

10-141

22UdJ9JoY puUBWIWOD

Command Reference

varmaxmt

vmc.Start

vmc.title

Default=1.

Instance of a PV structure containing starting
values. See Section 3.7.2 for discussion of
setting starting values. By default, varmaxmt
calculates starting values.

string, a title to be printed at the top of the
output header (see vmc. header). By default,
no title is printed (vmc. title="").

d0 1x1 or 2x1 instance of a DS data structure. If there are independent
variables, d0 is 2x1. For the first instance in dO0,

d0[1].datamatrix if time series is stored in a matrix in memory,

dO[1].dname

dO[1].vnames

Nx1 matrix, time series.

string, if time series is stored in a
GAUSS dataset, name of dataset.

string array, if time series is stored in a
GAUSS dataset, column name of time series in
the GAUSS dataset.

If there are independent variables in the model, then the second
instance in d0 includes:

d0[2].data

dO0[2].dname

matrix, if independent variables are stored in a
matrix in memory, NxK matrix, time series.

string, if the independent variables are stored

10-142

i a GAUSS dataset, name of dataset.

d0[2].vnames string array, if the independent variables are

Output

vmo

stored in a GAUSS dataset, column names of
the independent variables in the
GAUSS dataset.

An instance of a varmamtOut structure containing the following

members:

vmo.actm Lx(p*L) matrix, the autocorrelation
function. The first L columns are the lag /
ACEF; the last L columns are the lag p
ACF.

vmo.aic Lx1 vector, the Akaike Information
Criterion.

vmo.arroots pxl] vector of AR roots, possibly

vmo

vmo.

complex.

.bic Lx1 vector, the Schwarz Bayesian

Information Criterion.

covpar QxQ matrix of estimated parameters. The
parameters are in the row-major order:
AR(1) to AR(p), MA(1) to MA(q), beta
(if x variables were present in the

10-143

22UdJ9JoY puUBWIWOD

Command Reference

varmaxmt

vmo. fct

vmo.lagr

estimation), and the constants.
Lx1 vector, the likelihood value.

An instance of an
sgpsolvemtLagrange structure
containing the following members:

vmo.lagr.lineqg linear equality
constraints.

vmo.lagr.nlineq nonlinear

equality
constraints.

vmo.lagr.linineq linear inequality
constraints.

vmo. lagr.nlininegnonlinear
inequality
constraints.

vmo.lagr.bounds bounds. When an
inequality or
bounds constraint
1S active, its
associated
Lagrangean is
nonzero. The
linear

10-144

vmo.lrs

VMo .maroots

vmo.pacftfm

vmo .par

Lagrangeans
precede the
nonlinear
Lagrangeans in
the covariance
matrices.

Lx1 vector, the Likelihood Ratio Statistic.

gx1 vector of MA roots, possibly
complex.

Lx(p*L) matrix, the partial autocorrelation
function, computed only if a univariate
model is estimated. The first L columns
are the lag / ACF; the last L columns are
the lag p ACF.

An instance of a PV structure containing the
parameter estimates, which can be retrieved
using pvUnpack. For example,

struct varmamtOut vout;
vout = wvarmaxmt (vmc,vy,0);
ph = pvUnpack (vout.par,

"phi");

th = pvUnpack (vout.par,
"theta");

vc = pvUnpack (vout.par,
"vC") ;

10-145

22UdJ9JoY puUBWIWOD

Command Reference

varmaxmt

The complete set of parameter matrices
and arrays that can be unpacked
depending on the model is:

phi

theta

vec

beta

betal

zeta

Lxpxp array,
autoregression
coefficients.

Lxqxq array,
moving average
coefficients.

LxL residual
covariance
matrix.

LxK regression
coefficient
matrix.

Lx1 constant
vector.

Lxpxar array of
ecm coefficients.

LxL matrix. Note
that pi is a
reserved word in
GAUSS. Users

10-146

will need to
assign this to a
different variable
name.

vmo.portman vmc.lags-(pt+ q)*3 matrix of
portmanteau statistics for the multivariate
model and Ljung-Box statistics for the
univariate model. The time period is in
column one, the Os (portmanteau) statistic
in column two and the p-value in column
three.

vmo . residuals TxL matrix, residuals.

vmo.retcode 2x] vector, return code. First element:

0 normal
convergence.

1 forced exit.

2 maximum
number of
iterations
exceeded.

3 function

calculation failed.

4 gradient

10-147

22UdJ9JoY puUBWIWOD

Command Reference

varmaxmt

vmo.SssSs

Second element:

0

calculation failed.

Hessian
calculation failed.

line search failed.

error with
constraints.

covariance
matrix of
parameters failed.

ML covariance
matrix.

QML covariance
matrix.

Cross-Product
covariance
matrix.

Lx2 matrix, the sum of squares for Y in
column one and the sum of squared error

in column 2.

10-148

Remarks

Errors are assumed to be distributed N(0,Q). The estimation procedure
assumes that all series are stationary. Setting vmc. SetConstraintstoa
nonzero value enforces stationarity, by constraining the roots of the
characteristic equation

1-0z -0y ... —®z°

D,i=1,...

to be outside the unit circle (where 'P are the AR coefficient

matrices).

If any estimated parameters in the coefficient matrices are on a constraint
boundary, the Lagrangeans associated with these parameters will be nonzero.
These Lagrangeans are stored in vmo . Iagr. Standard errors are generally
not available for parameters on constraint boundaries.

Source

varmamt.src

vmadfmt

Purpose

Compute the Augmented Dickey-Fuller statistic, allowing for
deterministic polynomial time trends of an arbitrary order.

Library

tsmt

10-149

22UdJ9JoY puUBWIWOD

Command Reference

vmadfmt

Format

{ alpha,tstat,adf t crit}=vmadfmt(x,p,1);

Input
X

p

Output

alpha
tstat

adf t crit

Source

varmamt.src

Time series variable.

Order of the time-polynomial to include in the ADF
regression. Set p = -1 for no deterministic part.

Number of lagged changes of x to include in the fitted
regression.

Estimate of the autoregressive parameter
ADF t-statistic.

6x1 vector of critical values for the adf-t-statistic: 1%,
5%, 10%, 90%, 95%, 99%.

10-150

vimc_sja
Purpose

Returns critical values for the Johansen Maximum Eigenvalue
statistic. Computed using 8000 iterations and 500 observations.

Library

tsmt
Format

¢ _values=vmc_sja(n,p);

Input
n scalar, number of variables in the system.
p scalar, order of the time-polynomial to include in the
fitted regression.
Output
c_values 6x1 vector of critical values.
Source

varmamt.src

10-151

22UdJ9JoY puUBWIWOD

Command Reference

vmc_sijt

vimc_sjt
Purpose

Returns critical values for the Johansen Trace statistic.

Library

tsmt

Format

c_values=vmec_sjt(n,p);

Input
n scalar, number of variables in the system.
p scalar, order of the time-polynomial to include in the
fitted regression.
Output
c values 6x1 vector of critical values.
Source

varmamt.src

10-152

vmcadfmt

Purpose

Compute the Augmented Dickey-Fuller statistic applied to the
residuals of a cointegrating regression, allowing for deterministic
polynomial time trends of an arbitrary order.

Library

tsmt

Format

{ alpha,tstat,vmrztcrit } =vmcadfmt(y,x,p, 1);

Input

y Dependent variable.

X Explanatory variables.

P Order of the time-polynomial to include in the
cointegrating regression. Set p = -1 for no deterministic
part.

1 Number of lagged changes of the residuals to include

in the fitted regression.

10-153

22UdJ9JoY puUBWIWOD

Command Reference

vmdetrendmt

Output
alpha Estimate of the autoregressive parameter.
tstat ADF t-statistic.
vmrztcrit 6x1 vector of critical values for the adf-t-statistic: 1%,
5%, 10%, 90%, 95%., 99%.
Source

varmamt.src

vmdetrendmt

Purpose

Returns residuals from a regression of data on a time trend
polynomial.

Library

tsmt
Format

res = vmdetrendmt(y, p);

10-154

Input

v TxL matrix of data.

p scalar. If p = -1 returns the data. Use p =0 for
demeaning, p = 1 for regression against a constant term
and trend, p > 1 for a higher order polynomial time

trend.
Output
res TxL matrix of residuals.
Source

varmamt.src

vmdiffmt

Purpose

Differences matrices.

Library

tsmt

10-155

22UdJ9JoY puUBWIWOD

Command Reference

vmforecastmt

Format

v =vmdiffmt(x, d);

Input
x TxX matrix.
d scalar, the number of periods over which differencing
occurs.
Output
y (T-d)xK matrix, the differenced data.
Source

vmutilsmt.src

vmforecastmt
Purpose

Calculates forecasts from a VARMA X model.

Library

tsmt

10-156

Format

f=vmforecastmt(vmc, vmo, y, x, t);

Input

vmc

vmo

Output

An instance of a varmamtControl structure. The
following members of vmc are referenced within this
routine:

vmc.ar scalar, AR order.
vmc . ma scalar, MA order.

An instance of a varmamtOut structure returned by a
call toa VARMAX or ECM procedure.

TXL matrix, the variables to be forecast.

txK matrix of x covering only the forecast horizon, in the

order 7+ 1, ..., T+ ¢ or the scalar zero if there are no x
variables.

scalar, the number of periods to forecast.

tx(L+1) matrix. Column one contains the period forecast.
The remaining columns contain the forecast values.

10-157

22UdJ9JoY puUBWIWOD

Command Reference

vmppmt

Remarks
The varmaxmt and ecmmt procedures estimate centered models and do not
return intercepts. However, vmforecastmt allows intercepts, so that it

might be used with the results of other estimation procedures.

Source

varmamt.src

vmppmt

Purpose

Returns Phillips-Perron unit root test statistics and critical values.

Library

tsmt

Format

{ ppb,ppt,pptcrit } =vmppmt(y,p, nwtrunc),

Input
y Tx1 vector, a time series.
p scalar, order of the time-polynomial to include in the

regression. Set p = -1 for no deterministic part, p = 0

10-158

nwtrunc

Output

ppb

ppt

pptcrit

Remarks

for a constant term, and p = 1 for a constant with trend.

scalar, the number of autocorrelations to use in
calculating the Newey-West correction (g in the
Remarks section below). If nwt runc =0, GAUSS
will use a truncation lag given by Newey and West,

q=4T/100)*°

scalar, estimate of the autoregressive parameter, the p
coefficient below.

scalar, the adjusted t-statistic for testing: 77,:p = 1.

6x1 vector of critical values, vector of critical values
for the adjusted t-statistic, in the order 1%, 5%, 10%,
90%, 95%, 99%.

Phillips (1987) and Phillips and Perron (1988) test for unit roots by adjusting
the OLS estimate of an AR(1) coefficient for serial correlation in the OLS
residuals. Three specifications are considered, an 4R(1) model without a drift,
an AR(1) with a drift, and an AR(1) model with a drift and linear trend:

10-159

22UdJ9JoY puUBWIWOD

Command Reference

vmppmt

Y, = pYate
Y, = atpl teg
Y = atdttpY te

The unit root null hypothesis is Hy:(p —1)=0

Hamilton (1994, pp. 506-511) tests this hypothesis using two statistics that are

analogs of the Phillips and Perron (1988) Z,, and Z; statistics. Hamilton’s
statistics are based on OLS estimation of the above equations. They allow an
identical formula for each statistic to be used for all three cases.

The vmppmt procedure returns the Z; statistic as calculated by Hamilton and
critical values. Suppose any of the equations are estimated by OLS, returning

A~ /\ A~
Pr and % p; (the OLS estimates of p an the standard error of 27

— _ AN .
respectively), Ir= (p 1) / Tpr (the usual OLS t statistic for testing /1)),

Qt (the OLS residuals), and s7 (the estimated standard error of the
regression).

Hamilton's Z; statistic is:

~2 2
ztz(ﬁou] zT—{%[i —QOJ/Q}{T(?;,;T/ST)}
~2

/4 is an estimate of the asymptotic variance of the sample mean of &, . In the
~2
vmppmt procedure 4 is estimated using the Newey-West (1987) estimator:

=

10-160

q
~2
2=y 22[1 - /(q +1)]—§j

j=1

p=T X 88, :
where 7j 1=j+1°1°t=j are the sample autocovariances of &;.

The nwtrunc argument sets the number of autocorrelations to use in
calculating the Newey-West correction (¢ in the above equation). If
nwtrunc = 0, GAUSS will use a truncation lag given by Newey and West,

q=4(T/100)%°.

Under the null hypothesis, the Z; statistics has the same asymptotic
distribution as a Dickey-Fuller statistic.

References

1. Hamilton, James D., (1994). Time Series Analysis, Princeton University
Press.

2. Newey, W.K. and West, K.D., (1987), “A Simple Positive Semi-Definite
Heteroskedasticity and Autocorrelation-Consistent Covariance Matrix,”
Econometrica, 55, 703-708.

Source

varmamt.src

10-161

22UdJ9JoY puUBWIWOD

Command Reference

vmrztcritmt

vmrztcritmt

Purpose

Returns 7 critical values for the Augmented Dickey-Fuller statistic,
derived from the residuals of a cointegrating regression. Depends on
p, the AR order in the fitted regression, the number of observations,
and the number of explanatory variables.

Library

tsmt
Format

c values=vmrztcritmt(nobs,n,p);

Input
nobs scalar, number of observations in the series.
n scalar, column dimension of x.
p scalar, order of the time-polynomial in the null
hypothesis.
Output
c_values 6x1 vector of critical values.

10-162

Source

varmamt.src

vmsjmt
Purpose

Computes Johansen's (1988) ML Trace and Maximum Eigenvalue
statistics.

Library

tsmt

Format

{ev,evec,1rl,1r2} =vmsjmt(x,p, k,nodet),

Input

X TxL matrix.

p scalar, order of the time-polynomial in the fitted
regression. Set p = -1 for no deterministic part, p = 0
for a constant term, and p = 1 for a constant with trend.

k scalar, number of lagged difference terms to use when

computing the estimator.

10-163

22UdJ9JoY puUBWIWOD

Command Reference

vmsjmt

nodet

Output

ev

evec

1lrl

1lr2

Source

varmamt.src

scalar. Set nodet =1 to suppress the constant term
from the fitted regression and include it in the co-
integrating regression; otherwise, set nodet = 0.

Lx1 vector of eigenvalues.

LxL matrix of eigenvectors. The first » columns are the
unnormalized cointegrating vectors.

Lx1 vector of Johansen's likelithood ratio Trace
statistics for the null hypotheses of HO; at most

cointegrating vectors versus H1: not
HO,»=0,...,L—1

Lx1 vector of Johansen's Maximum Eigenvalue
Statistics for the null hypotheses of HO: r cointegrating

vectors versus H1: 7+1 cointegrating vectors,
r=0,...,L—1.

10-164

vmztcritmt

Purpose

Returns 7 critical values for the Augmented Dickey-Fuller statistic,
depending on the nuber of observations and p, the AR order in the
fitted regression. Computed using 10000 iterations.

Library

tsmt

Format

c _values =vmztcritmt(nobs,p);

Input
nobs

P

Output

c values

scalar, number of observations in the series.

scalar, order of the time-polynomial in the null
hypothesis.

6x1 vector of critical values in order 1%, 5%, 10%,
90%, 95%, 99%.

10-165

22UdJ9JoY puUBWIWOD

Command Reference

zandrews

Source

varmamt.src

zandrews

Purpose

The Zivot and Andrews (1992) unit root test uses a t-test statistic for
testing the null hypothesis of stationarity. The procedure tests the null
hypothesis of zero innovation variance in the residual against the
alternative of non-zero residual innovation variance.

Library

tsmt
Format

{ t test, break pt}=zandrews(yt, max lags, trim
end, break type, which output);

Input
yt Tx1 vector of time series data.
max lags scalar, specifies the maximum lag order to be used in

calculating the test statistic. A good default is to
calculate max lags as T"0.25.

10-166

trim end

break type

which output

Output

t test

break pt

scalar, fraction of data range to skip at either end. A
good default is 0.15. Range is 0 to 0.25.

scalar, -1 for intercept break, 0 for trend break, or 1 for
a break in both.

scalar, 0 for no output, 1 to print statistics or 2 to print
statistics and display of graph of unit-root test statistics
across different break points.

scalar, reports Zivot-Andrews test statistic.

scalar, observation where structural break is most likely
to occur.

10-167

22UdJ9JoY puUBWIWOD

Index

ACF 3-28

acfmt 10-1

adjrsq 10-2

aggData 10-7
aggregatedata.src 10-8

Akaike Information Criterion 3-29,
10-103, 10-143

ARIMA 8-1

arimamt 2-2, 8-1, 10-9, 10-14, 10-
134

arimamt.src 10-13, 10-14

arimamtControl structure 2-2, 10-9,
10-13

arimamtControlCreate 10-13
arimamtOut structure 2-2

ARMA 3-1, 3-14, 3-35, 10-92, 10-
124

ARMAX 3-1, 3-28
Augmented 3-13

Augmented Dickey-Fuller
statistic 10-153

Augmented Dickey Fuller
statistic 3-3, 3-14, 3-14, 10-
149, 10-162, 10-165

autocormt 10-14

autocorrelations 9-1, 9-2, 10-1, 10-
14, 10-23, 10-38, 10-68, 10-77,
10-79, 10-124

autocovariances 9-1, 9-2, 10-16, 10-
23

autocovmt 10-16

automtControl structure 2-2, 10-18,
10-20

automtControlCreate 10-18
automtOut structure 2-2
autoOut structure 10-23
autoreg 2-2, 10-19
autoregmt 10-19, 10-19

autoregmt.src 10-16, 10-18, 10-19,
10-24

autoregression 8-1, 9-1, 9-1, 10-62,
10-64

autovariances 10-124
bias correction 5-2
bounds constraints 3-50
breitung 10-25
chowfcst 10-26
chowfcst.src 10-28

cointegration coefficients 3-13

Index-1

Index

cointegration tests 3-12, 3-13, 3-27
condition 3-53

conditional variance 6-4
confidence limits 6-7, 6-7, 6-20
constraints 6-17, 6-17, 6-20
covariance 10-76

covariance matrix of parameters 6-
17

cusum 10-28
cusum.src 10-30
dfgls 10-30

Dickey-Fuller statistic 3-14, 3-14, 3-
14

ECM 3-1, 3-36, 10-157

ecmmt 2-3, 3-1, 3-5, 3-34, 3-35, 3-
35, 3-39, 10-31, 10-80, 10-137

ECMMT 3-12, 3-28

error correction model 3-11, 10-31
forecastmt.src 10-136

garch 10-41

GARCH 6-1, 6-4, 6-6, 6-20
GARCH-in-mean 6-7

garchm 10-45

GARCHM 6-7

getlrv 10-48
gjrgarch 10-49
GJRGarch 6-7
hansen 10-53
hansen.src 10-54
Hessian 3-40, 3-53
identification 3-28
igarch 10-54
IGARCH 6-6
inequality constraints 6-10
inference 6-7
invertibility 3-7, 3-7
ips 10-58

Johansen's MLTrace statistics 10-
163

Johansen Maximum Eigenvalue
statistic 3-3, 3-12, 3-13, 3-14,
3-28, 10-151, 10-163

Johansen Trace statistic 3-3, 3-12,
3-13, 3-14, 3-14, 3-28, 10-152

kpss 10-59

Lagrange coefficients 3-35, 3-42,
10-104, 10-118, 10-144

Lagrange multiplier 10-78

Index-2

Index

Lagrange Multiplier 6-11, 10-59
least squares 10-62
Levin-Lin-Chu 10-60

likelihood ratio test 6-16

linear equality constraints 3-45
linear inequality constraints 3-47
Ljung-Box portmanteau statistic 8-1
Ljung-Box statistics 3-28, 10-106
llc 10-60

log-likelihood 6-2

Isdv 5-2

LSDV model 5-1

Isdvmt 5-4, 5-5, 10-62

Isdvmt.src 10-67, 10-68

IsdvmtControl structure 5-5, 5-6, 10-
62, 10-67

IsdvmtControlCreate 10-67
IsdvmtOut structure 5-7
IsdvOut structure 10-64
macfmt 3-34, 10-68
Markov switching 10-109
mosum 10-69

multivariate identification 3-32

Nelson and Cao 6-4
Newey-West 3-2, 10-76
Newton's method 3-2, 3-39
nonlinear equality constraints 3-48
numCombReplace 10-72
numPerm 10-73
numPermReplace 10-75
nwmt 10-76

nyblom 10-78

OLS estimator 7-2

OLS regression 9-2

OLS regressions 10-85
one-sided score test 6-12
PACF 3-28

pactmt 10-79

panel data 7-1

panel series unit root tests 7-2, 10-
25, 10-60

paramConfigmt 10-80
parameter estimates 10-80
permReplace 10-83
permReplace.src 10-84
permutate 10-84

Index-3

Index

permutate.src 10-73, 10-74, 10-76,
10-85

Phillips-Perron statistic 3-14

Phillips-Perron unit root tests 3-3, 3-

13, 3-18

pooled time-series cross-section
regression model 7-1

portmanteau statistics 3-32, 10-106
printing output 3-5

PV structure 3-50, 4-27
pvGetParNames 3-43

QML covariance matrix 3-35
QMLcovariance matrix 6-20
random effects estimator 7-2
README.tsmt 2-1
regime-switching model 4-26
rolling 10-85

rolling.src 10-87

SARMA 3-1

sb.src 10-90
sbControlCreate 10-87
sbcontrolcreate.src 10-88
sbreak 10-88

scaling 3-52

Schwartz Bayesian Information
Criterion 3-29, 10-103, 10-143

selectLags 10-91

setting constraints 3-43

setup 2-1

simArmamt 10-92

simarmamt.src 10-93

skew generalized t distribution 6-3

sgpsolvemt 3-5, 3-34, 3-35, 3-39, 3-
39, 3-43, 3-48, 3-50, 3-53, 4-
28, 6-22

sqgpsolvemtControl structure 3-4, 3-
39, 3-45, 3-46, 3-47, 4-28, 10-
98, 10-139

sqpsolvemtLagrange structure 10-
103, 10-144

stackData 10-94

stackdata.src 10-94

standard errors 6-7, 6-7
standardizeData 10-95
standardizedata.src 10-95
starTest 10-96

startest.src 10-97

stationarity 3-7, 6-4, 6-6, 10-59

Index-4

Index

STEPBT 3-40
SVARMA 3-1
svarmamt.src 10-109
SVARMAX 3-1, 3-7
svarmaxmt 3-1, 10-97
switching regression 4-26
switchmt 10-109
switchmt.src 10-120

switchmtControl structure 4-26, 10-
110

switchmtOut structure 10-115
t-statistics 6-7, 6-7, 6-7

t distribution 6-2

TAR model 10-89, 10-96, 10-121
TARControlCreate 10-120

TARControlCreate structure 10-88,
10-120

tarcontrolcreate.src 10-121
tarTest 10-121

tartest.src 10-123
tautocovmt 10-124
tautocovmt.src 10-125

threshold autoregression model 10-
88, 10-121

time series 6-1
tscsmt 10-134
tscsmt.src 10-133, 10-134

tscsmtControl structure 2-2, 2-2, 10-
125, 10-133, 10-133

tscsmtControlCreate 10-133
tscsmtOut structure 2-2, 10-130
tsforecast 8-2

tsforecastmt 10-134
tsutilmt.src 10-2, 10-80
two-regime TAR model 4-17
unit root tests 3-13

unitroots 3-14

univariate root tests 3-14
VARMA 3-1, 3-36

varmamt 2-3, 3-34, 3-35
VARMAMT 3-34, 3-43

varmamt.src 10-41, 10-69, 10-77,
10-82, 10-137, 10-149, 10-150,
10-151, 10-152, 10-154, 10-
155, 10-158, 10-161, 10-163,
10-164, 10-166

varmamtControl 3-15

Index-5

Index

varmamtControl structure 2-3, 3-4, vmrzteritmt 10-162
3-5,3-28,3-34,3-34, 335, 3= {1gjmt 3-14, 3-28, 10-163
35, 3-39, 3-45, 3-46, 3-47, 3-
50, 3-50, 3-52, 10-31, 10-98, vmutilsmt.src 10-156
10-136, 10-137, 10-138, 10- vmzteritmt 10-165

1
37 Wald statistic 6-8

zandrews 10-166
Zivot and Andrews 10-166

varmamtControlCreate 10-136

varmamtOut structure 2-3, 2-4, 3-11,
3-29, 3-35, 3-52, 3-53, 10-36,
10-103, 10-143

VARMAX 3-1, 3-2, 3-6, 3-7, 3-7,
10-97, 10-138, 10-156

varmaxmt 2-3, 3-1, 3-5, 3-35, 3-39,
3-45, 10-80, 10-137, 10-138

VARMAXMT 3-3

vmadfmt 3-13, 3-14, 3-14, 10-149
vmc_sja 3-13, 3-28, 10-151
vmc_sjt 3-13, 3-28, 10-152
vmcadfmt 10-153

vmdetrendmt 10-154

vmdiffmt 10-155

vmforecastmt 10-156

vmppmt 3-14, 10-158

vmppt 3-13

vmroots 3-7

Index-6

	 1 Installation
	1.1 Linux/Mac
	1.1.1 Download
	1.1.2 CD

	1.2 Windows
	1.2.1 Download
	1.2.2 CD

	1.3 Difference Between the Linux/Mac and Windows Versions

	 2 Getting Started
	2.1 README Files
	2.2 Setup

	 3 VARMAX, ECM, SVARMAX
	3.1 Introduction
	3.1.1 The varmamtControl Structure
	3.1.2 Printing Output

	3.2 VARMAX Models
	3.2.1 Stationarity and Invertibility

	3.3 Seasonal SVARMAX Models
	3.4 Error Correction Models
	3.4.1 Cointegration Tests
	3.4.2 Cointegration Coefficients

	3.5 Unit Root and Cointegration Tests
	3.5.1 Univariate Root Tests
	3.5.2 Cointegration Tests

	3.6 Identification
	3.6.1 Multivariate Identification

	3.7 Estimation
	3.7.1 Quasi-Maxiumum Likelihood Covariance Matrix of Parameters
	3.7.2 Starting Values

	3.8 sqpsolvemt and Newton's Method
	3.9 Setting Constraints
	3.9.1 Constraints and the Coefficient Vector
	3.9.2 Linear Equality Constraints
	3.9.3 Linear Inequality Constraints
	3.9.4 Nonlinear Equality Constraints
	3.9.5 Nonlinear Inequality Constraints
	3.9.6 Bounds Constraints
	3.9.7 Start Values

	3.10 sqpsolvemt and Managing Optimization
	3.10.1 Scaling
	3.10.2 Condition
	3.10.3 Starting Point

	3.11 Diagnostic Checking
	3.12 Forecasting
	3.13 References

	 4 Nonlinear Time Series Models
	4.1 Parameter Instability Tests
	4.1.1 Rolling Regressions
	4.1.2 Chow Forecast
	4.1.3 CUSUM Test of Coefficient Equality
	4.1.4 The Hansen-Nymblom Test

	4.2 Threshold Autoregressive Models
	4.2.1 TAR Model
	4.2.2 TAR Model Control Structure
	4.2.3 Estimating the TAR Model
	4.2.4 Example

	4.3 Switching Regression
	4.3.1 switchmtControl
	4.3.2 References

	4.4 Structural Break Models
	4.5 Structural Break Control Structure
	4.6 Estimating the Structural Break
	4.6.1 Example

	4.7 References

	 5 LSDV
	5.1 LSDV Model
	5.1.1 Bias Correction
	5.1.2 Example
	5.1.3 Special Features
	5.1.4 The lsdvmtControl Structure
	5.1.5 The lsdvmtOut Structure

	5.2 References

	 6 Univariate GARCH Models
	6.1 Standard Model
	6.2 Log-likelihood
	6.3 Nonnegativity of Conditional Variances
	6.3.1 Stationarity
	6.3.2 Initialization

	6.4 IGARCH
	6.5 GJRGARCH
	6.6 GARCHM
	6.7 Inference
	6.7.1 Testing Against Inequality Constraints
	6.7.2 One-sided Score Test
	6.7.3 Likelihood Ratio Test
	6.7.4 Covariance Matrix of Parameters
	6.7.5 Quasi-Maximum Likelihood Covariance Matrix of Parameters
	6.7.6 Confidence Limits
	6.7.7 Setting Type of Constraints
	6.7.8 Altering sqpsolvemt Control Variables
	6.7.9 Bibliography

	 7 Panel Data
	7.1 Pooled Time-Series Cross-Section Regression Model
	7.1.1 Panel Series Unit Root Tests

	7.2 References

	 8 ARIMA
	8.1 ARIMA Models
	8.2 References

	 9 Autoregression
	9.1 Autoregression Models
	9.2 References

	 10 Command Reference
	 acfmt
	 adjrsq
	 aggData
	 arimamt
	 arimamtControlCreate
	 autocormt
	 autocovmt
	 automtControlCreate
	 autoregmt
	 breitung
	 chowfcst
	 cusum
	 dfgls
	 ecmmt
	 garch
	 garchm
	 getlrv
	 gjrgarch
	 hansen
	 igarch
	 ips
	 kpss
	 llc
	 lsdvmt
	 lsdvmtControlCreate
	 macfmt
	 mosum
	 numCombReplace
	 numPerm
	 numPermReplace
	 nwmt
	 nyblom
	 pacmt
	 paramConfigmt
	 permReplace
	 permutate
	 rolling
	 sbControlCreate
	 sbreak
	 selectLags
	 simarmamt
	 stackData
	 standardizeData
	 starTest
	 svarmaxmt
	 switchmt
	 TARControlCreate
	 tarTest
	 tautocovmt
	 tscsmt
	 tscsmtControlCreate
	 tsforecastmt
	 varmamtControlCreate
	 varmaxmt
	 vmadfmt
	 vmc_sja
	 vmc_sjt
	 vmcadfmt
	 vmdetrendmt
	 vmdiffmt
	 vmforecastmt
	 vmppmt
	 vmrztcritmt
	 vmsjmt
	 vmztcritmt
	 zandrews

