
GAUSS 16
™

User Guide

1

Information in this document is subject to change without notice and does not represent a
commitment on the part of Aptech Systems, Inc. The software described in this doc-
ument is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. The pur-
chaser may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or mech-
anical, including photocopying and recording, for any purpose other than the purchaser’s
personal use without the written permission of Aptech Systems, Inc.

©Copyright Aptech Systems, Inc. Chandler, AZ 1984-2016
All Rights Reserved Worldwide.

SuperLU. ©Copyright 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required approvals
from U.S. Dept. of Energy). All Rights Reserved. See GAUSS Software Product
License for additional terms and conditions.

TAUCS Version 2.0, November 29, 2001. ©Copyright 2001, 2002, 2003 by Sivan
Toledo, Tel-Aviv University, stoledo@tau.ac.il. All Rights Reserved. See GAUSS Soft-
ware License for additional terms and conditions.

Econotron Software, Inc. beta, polygamma, zeta, gammacplx, lngammacplx, erfcplx,er-
fccplx, psi, gradcp, hesscp Functions: ©Copyright 2009 by Econotron Software,Inc. All
Rights Reserved Worldwide.

GAUSS, GAUSS Engine and GAUSS Light are trademarks of Aptech Systems, Inc.

GEM is a trademark of Digital Research, Inc.

Lotus is a trademark of Lotus Development Corp.

HP LaserJet and HP-GL are trademarks of Hewlett-Packard Corp.

PostScript is a trademark of Adobe Systems Inc.IBM is a trademark of International
Business Machines Corporation

GraphiC is a trademark of Scientific Endeavors Corporation

Tektronix is a trademark of Tektronix, Inc.

Windows is a registered trademark of Microsoft Corporation.

Other trademarks are the property of their respective owners.

The Java API for the GAUSS Engine uses the JNA library. The JNA library is covered
under the LGPL license version 3.0 or later at the discretion of the user. A full copy of
this license and the JNA source code have been included with the distribution.

Version 16
Revision Date: 5/26/2016

2

Table of Contents

1 Introduction 1-1

1.1 Product Overview 1-1

1.2 Documentation Conventions 1-1

2 Getting Started with GAUSS 2-1

2.1 Entering Interactive Commands 2-1

2.2 Configuring the User Interface 2-3

2.2.1 Helpful Hints: 2-5

2.3 Running an Example Program 2-6

3 Introduction to the GAUSS Graphical User Interface 3-1

3.1 Page Organization Concept 3-3

3.2 Command Page 3-5

3.2.1 Command Page Menus 3-6

3.2.2 Command Page Toolbar 3-8

3.2.3 Working Directory Toolbar 3-9

3.2.4 Command History Toolbar 3-9

3.2.5 Action List Toolbar 3-10

3.2.6 Layout and Usage 3-10

TOC-1

3.2.7 Command History Window 3-11

3.2.8 Command Line History and Command Line Editing 3-12

3.2.9 Error Output Window 3-13

3.3 Source Page 3-14

3.3.1 Source Page Menus 3-14

3.3.2 Layout and Usage 3-15

3.3.3 Find and Replace 3-23

3.3.4 Changing Editor Properties 3-25

3.3.5 Error Output Window 3-27

3.3.6 The Source Browser: Advanced Search and Replace 3-27

3.3.7 Project Organizer: Keeping track of files with the Project Window 3-31

3.4 Data Page 3-36

3.4.1 Changing values 3-37

3.4.2 Changing formatting 3-38

3.4.3 Navigating multi-dimensional arrays 3-39

3.4.4 Viewing structure members 3-41

3.4.5 Creating a floating watch window 3-41

3.5 Debug Page 3-41

3.5.1 Menus and Toolbars 3-41

3.5.2 Using Breakpoints 3-44

3.5.3 Stepping Through a Program 3-45

TOC-2

GAUSS User Guide

TOC-3

3.5.4 Viewing Variables 3-47

3.6 Help Page 3-49

4 Hot Keys and Shortcuts 4-1

4.1 Hot Keys and Shortcuts 4-1

4.2 Navigation Hot Keys 4-3

4.3 Focus Program Output on I/O 4-4

4.4 F1 Help 4-5

4.5 CTRL+F1 Source Browsing 4-6

5 Using the GAUSS Debugger 5-1

5.1 Starting the Debugger 5-2

5.2 Examining Variables 5-4

5.3 The Call Stack Window 5-6

5.4 Ending Your Debug Session 5-6

6 GAUSS Graphics 6-1

6.1 Overview 6-2

6.2 Basic Plotting 6-3

6.2.1 Plotting multiple curves 6-4

6.3 Plot Customization 6-5

6.3.1 Using the Graphics Preferences Settings Window 6-6

6.4 PlotControl Structures 6-10

Example 6-12

Contents

6.5 Adding Data to Existing Plots 6-14

Example 6-15

6.5.1 Styling and the plotAdd functions 6-16

6.6 Creating Subplots 6-17

Example 6-18

6.6.1 Creating Mixed Layouts 6-19

Example 6-19

6.6.2 Creating Custom Regions 6-20

Example 6-21

6.7 Time Series Plots in GAUSS 6-22

Example 6-23

Understanding the dstart parameter 6-24

6.7.1 Quarterly Example 6-25

6.7.2 Controlling Tic Label Locations 6-26

6.7.3 Tic Label Formatting 6-28

6.8 Interacting with Plots in GAUSS 6-31

6.8.1 Interacting with 2-D Plots 6-31

6.8.2 3-D Plots 6-35

6.8.3 File Export 6-35

6.8.4 Saving Graphs 6-38

6.9 Adding Annotations Programmatically in GAUSS 6-39

TOC-4

GAUSS User Guide

TOC-5

6.9.1 Basic usage 6-40

6.9.2 Creating multiple annotations with vector inputs 6-41

6.9.3 Customization with a plotAnnotation structure 6-42

6.9.4 Using the annotationSet functions 6-43

7 Graphics Editing 7-1

7.1 Changing Appearance 7-2

7.2 Adding Items 7-4

7.3 Adding Text to a Text Box 7-5

7.4 Which Object Will Be Edited? 7-7

7.5 Moving and Resizing Objects 7-8

7.5.1 Note on Programmatic Annotations 7-8

8 Using the Command Line Interface 8-1

8.1 Viewing Graphics 8-2

8.2 Command Line History and Command Line Editing 8-3

8.2.1 Movement 8-3

8.2.2 Editing 8-4

8.2.3 History Retrieval 8-4

8.3 Interactive Commands 8-5

8.3.1 quit 8-5

8.3.2 ed 8-6

8.3.3 browse 8-6

Contents

8.3.4 config 8-6

8.4 Debugging 8-8

8.4.1 General Functions 8-8

8.4.2 Listing Functions 8-8

8.4.3 Execution Functions 8-9

8.4.4 View Commands 8-10

8.4.5 Breakpoint Commands 8-11

8.5 Using the Source Browser in TGAUSS 8-12

9 Language Fundamentals 9-1

9.1 Expressions 9-3

9.2 Statements 9-3

9.2.1 Executable Statements 9-4

9.2.2 Nonexecutable Statements 9-5

9.3 Programs 9-6

9.3.1 Main Section 9-6

9.3.2 Secondary Sections 9-6

9.4 Compiler Directives 9-7

9.5 Procedures 9-10

9.6 Data Types 9-10

9.6.1 Constants 9-11

9.6.2 Matrices 9-12

TOC-6

GAUSS User Guide

TOC-7

9.6.3 Sparse Matrices 9-19

9.6.4 N-dimensional Arrays 9-20

9.6.5 Strings 9-20

9.6.6 String Arrays 9-24

9.6.7 Character Matrices 9-26

9.6.8 Date and Time Formats 9-27

9.6.9 Special Data Types 9-29

9.7 Operator Precedence 9-31

9.8 Flow Control 9-32

9.8.1 Looping 9-32

9.8.2 Conditional Branching 9-35

9.8.3 Unconditional Branching 9-36

9.9 Functions 9-37

9.10 Rules of Syntax 9-38

9.10.1 Statements 9-39

9.10.2 Case 9-39

9.10.3 Comments 9-39

9.10.4 Extraneous Spaces 9-40

9.10.5 Symbol Names 9-40

9.10.6 Labels 9-40

9.10.7 Assignment Statements 9-41

Contents

9.10.8 Function Arguments 9-41

9.10.9 Indexing Matrices 9-41

9.10.10 Arrays of Matrices and Strings 9-42

9.10.11 Arrays of Procedures 9-44

10 Operators 10-1

10.1 Element-by-Element Operators 10-1

10.2 Matrix Operators 10-4

10.2.1 Numeric Operators 10-4

10.2.2 Other Matrix Operators 10-7

10.3 Relational Operators 10-9

10.4 Logical Operators 10-12

10.5 Other Operators 10-14

10.6 Using Dot Operators with Constants 10-18

10.7 Operator Precedence 10-20

11 Procedures and Keywords 11-1

11.1 Defining a Procedure 11-2

11.1.1 Procedure Declaration 11-4

11.1.2 Local Variable Declarations 11-4

11.1.3 Body of Procedure 11-6

11.1.4 Returning from the Procedure 11-6

11.1.5 End of Procedure Definition 11-6

TOC-8

GAUSS User Guide

TOC-9

11.2 Calling a Procedure 11-7

11.3 Keywords 11-8

11.3.1 Defining a Keyword 11-8

11.3.2 Calling a Keyword 11-9

11.4 Passing Procedures to Procedures 11-10

11.5 Indexing Procedures 11-11

11.6 Multiple Returns from Procedures 11-12

11.7 Saving Compiled Procedures 11-14

12 Random Number Generation in GAUSS 12-1

12.1 Available Random Number Generators 12-2

12.1.1 Choosing a Random Number Generator 12-2

12.2 Thread-safe Random Number Generators 12-4

12.3 Parallel Random Number Generation 12-5

12.3.1 Multiple Stream Generators 12-5

12.3.2 Block-skipping 12-6

13 Sparse Matrices 13-1

13.1 Defining Sparse Matrices 13-1

13.2 Creating and Using Sparse Matrices 13-2

13.3 Sparse Support in Matrix Functions and Operators 13-4

13.3.1 Return Types for Dyadic Operators 13-5

14 N-Dimensional Arrays 14-1

Contents

14.1 Bracketed Indexing 14-3

14.2 ExE Conformability 14-5

14.3 Glossary of Terms 14-5

15 Working with Arrays 15-1

15.1 Initializing Arrays 15-2

15.1.1 areshape 15-3

15.1.2 aconcat 15-5

15.1.3 aeye 15-7

15.1.4 arrayinit 15-7

15.1.5 arrayalloc 15-8

15.2 Assigning to Arrays 15-9

15.2.1 index operator 15-10

15.2.2 getarray 15-12

15.2.3 getmatrix 15-13

15.2.4 getmatrix4D 15-13

15.2.5 getscalar3D, getscalar4D 15-14

15.2.6 putarray 15-16

15.2.7 setarray 15-16

15.3 Looping with Arrays 15-17

15.3.1 loopnextindex 15-19

15.4 Miscellaneous Array Functions 15-21

TOC-10

GAUSS User Guide

TOC-11

15.4.1 atranspose 15-22

15.4.2 amult 15-23

15.4.3 amean, amin, amax 15-25

15.4.4 getdims 15-27

15.4.5 getorders 15-27

15.4.6 arraytomat 15-27

15.4.7 mattoarray 15-28

15.5 Using Arrays with GAUSS functions 15-28

15.6 A Panel Data Model 15-32

15.7 Appendix 15-34

16 Structures 16-1

16.1 Basic Structures 16-2

16.1.1 Structure Definition 16-3

16.1.2 Declaring an Instance 16-4

16.1.3 Initializing an Instance 16-4

16.1.4 Arrays of Structures 16-6

16.1.5 Structure Indexing 16-7

16.1.6 Saving an Instance to the Disk 16-9

16.1.7 Loading an Instance from the Disk 16-10

16.1.8 Passing Structures to Procedures 16-10

16.2 Structure Pointers 16-11

Contents

16.2.1 Creating and Assigning Structure Pointers 16-11

16.2.2 Structure Pointer References 16-12

16.2.3 Using Structure Pointers in Procedures 16-14

16.3 Special Structures 16-16

16.3.1 The DS Structure 16-16

16.3.2 The PV Structure 16-17

16.3.3 Miscellaneous PV Procedures 16-21

16.3.4 Control Structures 16-23

16.4 sqpSolveMT 16-24

16.4.1 Input Arguments 16-25

16.4.2 Output Argument 16-29

16.4.3 Example 16-31

16.4.4 The Command File 16-31

17 Run-Time Library Structures 17-1

17.1 The PV Parameter Structure 17-1

17.2 Fast Pack Functions 17-6

17.3 The DS Data Structure 17-7

18 Multi-Threaded Programming in GAUSS 18-1

18.1 The Functions 18-2

18.2 GAUSS Threading Concepts 18-4

18.3 Coding With Threads 18-4

TOC-12

GAUSS User Guide

TOC-13

18.4 Coding Restrictions 18-7

18.5 Parallel for Loops 18-11

18.5.1 Basic syntax 18-11

18.5.2 Single threaded example 18-12

18.5.3 threadFor variables 18-12

18.5.4 Temporary variables 18-13

18.5.5 Broadcast variables 18-14

18.5.6 Slice variables 18-15

18.5.7 Reduction variables 18-16

18.5.8 Categorizing the variables in our example 18-17

18.6 Controlling thread count 18-18

19 Libraries 19-1

19.1 Autoloader 19-1

19.1.1 Forward References 19-2

19.1.2 The Autoloader Search Path 19-3

Example 1 19-6

Example 2 19-7

19.2 Global Declaration Files 19-9

19.3 Troubleshooting 19-12

19.3.1 Using .dec Files 19-13

20 The Library Tool 20-1

Contents

20.1 Creating New Libraries 20-1

20.2 Loading a Library 20-4

20.3 Viewing Procedures 20-5

20.4 Refreshing a Library 20-5

21 Compiler 21-1

21.1 Compiling Programs 21-2

21.1.1 Compiling a File 21-2

21.2 Saving the Current Workspace 21-2

21.3 Debugging 21-3

22 Data Import Export 22-1

22.1 Data Import Wizard 22-4

22.2 Programmatic Data Import and Export 22-14

22.3 Data Sets 22-17

22.3.1 Layout 22-18

22.3.2 Creating Data Sets 22-18

22.3.3 Reading and Writing 22-19

22.3.4 Distinguishing Character and Numeric Data 22-20

22.4 GAUSS Data Archives 22-22

22.4.1 Creating and Writing Variables to GDA's 22-22

22.4.2 Reading Variables from GDA's 22-23

22.4.3 Updating Variables in GDA's 22-24

TOC-14

GAUSS User Guide

TOC-15

22.5 Matrix Files 22-24

22.6 File Formats 22-25

22.6.1 Small Matrix v89 (Obsolete) 22-27

22.6.2 Extended Matrix v89 (Obsolete) 22-28

22.6.3 Small String v89 (Obsolete) 22-28

22.6.4 Extended String v89 (Obsolete) 22-29

22.6.5 Small Data Set v89 (Obsolete) 22-29

22.6.6 Extended Data Set v89 (Obsolete) 22-31

22.6.7 Matrix v92 (Obsolete) 22-32

22.6.8 String v92 (Obsolete) 22-33

22.6.9 Data Set v92 (Obsolete) 22-33

22.6.10 Matrix v96 22-34

22.6.11 Data Set v96 22-36

22.6.12 GAUSS Data Archives 22-37

23 Databases with GAUSS 23-1

23.1 Connecting to Databases 23-1

23.2 Executing SQL Statements 23-3

23.2.1 Creating a Query 23-3

23.2.2 Fetching Query Results 23-4

23.2.3 Inserting, Updating, and Deleting Records 23-5

23.2.4 Transactions 23-7

Contents

24 Foreign Language Interface 24-1

24.1 Writing FLI Functions 24-1

24.2 Creating Dynamic Libraries 24-3

25 Data Transformations 25-1

25.1 Data Loop Statements 25-2

25.2 Using Other Statements 25-3

25.3 Debugging Data Loops 25-3

25.3.1 Translation Phase 25-3

25.3.2 Compilation Phase 25-4

25.3.3 Execution Phase 25-4

25.4 Reserved Variables 25-4

26 The GAUSS Profiler 26-1

26.1 Using the GAUSS Profiler 26-1

26.1.1 Collection 26-2

26.1.2 Analysis 26-2

27 Time and Date 27-1

27.1 Time and Date Formats 27-2

27.2 Time and Date Functions 27-4

27.2.1 Timed Iterations 27-6

28 ATOG 28-1

28.1 Command Summary 28-1

TOC-16

GAUSS User Guide

TOC-17

28.2 Commands 28-3

Soft Delimited ASCII Files 28-4

Hard Delimited ASCII Files 28-5

Packed ASCII Files 28-8

28.3 Examples 28-12

28.4 Error Messages 28-14

29 Maximizing Performance 29-1

29.1 Library System 29-1

29.2 Loops 29-2

29.3 Memory Usage 29-4

29.3.1 Hard Disk Maintenance 29-6

29.3.2 CPU Cache 29-6

30 Singularity Tolerance 30-1

30.1 Reading and Setting the Tolerance 30-2

30.2 Determining Singularity 30-2

31 Publication Quality Graphics 31-1

31.1 General Design 31-2

31.2 Using Publication Quality Graphics 31-3

31.2.1 Getting Started 31-3

31.2.2 Graphics Coordinate System 31-6

31.3 Graphic Panels 31-7

Contents

31.3.1 Tiled Graphic Panels 31-8

31.3.2 Overlapping Graphic Panels 31-8

31.3.3 Nontransparent Graphic Panels 31-9

31.3.4 Transparent Graphic Panels 31-9

31.3.5 Using Graphic Panel Functions 31-9

31.3.6 Inch Units in Graphic Panels 31-10

31.3.7 Saving Graphic Panel Configurations 31-11

31.4 Graphics Text Elements 31-11

31.4.1 Selecting Fonts 31-12

31.4.2 Greek and Mathematical Symbols 31-13

31.5 Colors 31-14

31.6 Global Control Variables 31-15

32 PQG Fonts 32-1

32.1 Simplex 32-1

32.2 Simgrma 32-2

32.3 Microb 32-3

32.4 Complex 32-4

TOC-18

GAUSS User Guide

1 Introduction

1.1 Product Overview

The GAUSS Mathematical and Statistical System (GAUSS)TM is a complete analysis
environment suitable for performing quick calculations, complex analysis of millions of
data points, or anything in between. Whether you are new to computerized analysis or a
seasoned programmer, the GAUSS family of products combine to offer you an easy to
learn environment that is powerful and versatile enough for virtually any numerical task.

Since its introduction in 1984, GAUSS has been the standard for serious number crunch-
ing and complex modeling of large-scale data. Worldwide acceptance and use in gov-
ernment, industry, and the academic community is a firm testament to its power and
versatility.

The GAUSS System can be described several ways: It is an exceptionally efficient num-
ber cruncher, a comprehensive programming language, and an interactive analysis envir-
onment. GAUSS may be the only numerical tool you will ever need.

1.2 Documentation Conventions

The following table describes how text formatting is used to identify GAUSS pro-
gramming elements:

Text Style Use Example
regular text narrative "... text formatting is

1-1

Introduction

used ..."
bold text emphasis "...not supported under

UNIX."
italics variables "... If vnames is a string

or has fewer elements
than x has columns, it
will be ..."

monospace code example if scalerr(cm);
cm = inv(x);

endif;

monospace filename, path, etc. "...is located in the
examples
subdirectory..."

monospace
bold

reference to a GAUSS
command or other
programming element
within a narrative
paragraph

"...as explained under
plotScatter..."

Bold Text reference to section of the
manual

"...see Operator
Precedence, Section
10.7 ..."

1-2

GAUSS User Guide

In
tro
du
ct
io
n

2 Getting Started with GAUSS

This section will guide you through the following tasks:

l Entering Interactive Commands
l Configuring the User Interface
l Running an Example Program

2.1 Entering Interactive Commands

Open GAUSS and click on the Command tab on the left side of the GAUSS user inter-
face. This will take you to the Command Page, which contains a command history win-
dow and a large area for the Program Input/Output Window.

2-1

G
etting

S
tarted

w
ith

G
A
U
S
S

Command Tab

The Program Input/Output Window allows you to enter interactive commands and is the
location to which your program files will also send their printed output.

Let's start by entering some simple commands. First type:

x = 4 * 5;

2-2

GAUSS User Guide

G
et
tin
g
S
ta
rt
ed

w
ith

G
A
U
S
S

2-3

and then press the 'Enter' key to execute the command. The above command will create
a 1x1 matrix that is equal to 20. We can print out the contents of x with the print com-
mand like this:

print x;

You should now see that GAUSS printed out the value of x which should be 20.

Semi-colon. If you were paying close attention, you may have noticed that both state-
ments above were ended with a semi-colon. In GAUSS, a semi-colon is what separates
statements. If you are entering one command at a time, semi-colons are not strictly
required. However, if you would like to enter multiple commands, or run a program file,
you will need to separate each statement with a semi-colon.

2.2 Configuring the User Interface

We will now move to the GAUSS Source Page. The Source Page is where you will
likely spend most of your time in GAUSS. It allows you to open, edit and run GAUSS
program files as well as keep track of different folders and libraries. Click the "Source"
tab on the left side of the GAUSS user interface to go to the Source Page.

Getting Started with GAUSS

G
etting

S
tarted

w
ith

G
A
U
S
S

The first thing that we will do is to move the Program Input/Output Window. Most of the
windows in the GAUSS user interface are 'Dock Widgets'. Dock Widgets are windows
that can be dragged to different locations in the main application.

We will move the Program Input/Output Window from the top of GAUSS to the bottom
by:

1. Clicking and dragging the Program Input/Output Window title bar toward the bot-
tom of the screen.

2. Waiting until a new area with a blue background opens up for the Program
Input/Output Window to land.

3. Letting go of the mouse button to allow the Program Input/Output Window to land
in the newly opened area.

2-4

GAUSS User Guide

G
et
tin
g
S
ta
rt
ed

w
ith

G
A
U
S
S

2-5

If you have trouble with this, the key is to move slowly and patiently, rather than making
quick jerky motions. Do not let go of the window title bar until you are sure that the cor-
rect location has opened for you.

2.2.1 Helpful Hints:

1. You can close any window in the GAUSS user interface by clicking the 'x' icon
in that window's title bar.

Getting Started with GAUSS

G
etting

S
tarted

w
ith

G
A
U
S
S

2. You may reopen any window that you have closed by selecting it from the 'View'
menu located at the top of GAUSS in the main menu bar.

2.3 Running an Example Program

We will stay on the GAUSS Source Page for this section. Our first task will be to open
the GAUSS examples folder in the Project Folders Window. If the Project Folders Win-
dow is not open, click the 'View' menu at the top of the GAUSS user interface and select
'Project Folders' to open the Project Folders Window. Once it is open, right-click in an
empty portion of the Project Folders Window and select 'Add Folder'.

This will open a system file browser (Windows Explorer on Windows, or Finder on
Mac). Once this is open, browse to the folder in which you installed GAUSS, click the
'examples' folder and then select the 'Open' button.

2-6

GAUSS User Guide

G
et
tin
g
S
ta
rt
ed

w
ith

G
A
U
S
S

2-7

Our next step will be to set our GAUSS working directory to the examples directory.
Right-click over 'examples' in the Project Folders Window and select 'Set to Working
Directory'. Notice that this directory is now listed in the GAUSS toolbar.

Getting Started with GAUSS

G
etting

S
tarted

w
ith

G
A
U
S
S

View the contents of this folder by expanding the 'examples' node (click on the triangle
to the left of 'examples'). Next scroll down until you see 'glmgamma1.e' and double-click
it to open the file.

2-8

GAUSS User Guide

G
et
tin
g
S
ta
rt
ed

w
ith

G
A
U
S
S

2-9

Once the file is open, we can run it by clicking the downward pointing triangle next to
the 'Run' button on the toolbar and selecting 'Run current file'.

Getting Started with GAUSS

G
etting

S
tarted

w
ith

G
A
U
S
S

After this step, you should see a results table in the Program Input/Output Window.
Please try and run other example files. The names of all example files that draw graphs
start with 'plot'.

2-10

GAUSS User Guide

G
et
tin
g
S
ta
rt
ed

w
ith

G
A
U
S
S

3 Introduction to the GAUSS Graphical
User Interface

3.1 Page Organization Concept 3-3

3.2 Command Page 3-5

3.2.1 Command Page Menus 3-6

3.2.2 Command Page Toolbar 3-8

3.2.3 Working Directory Toolbar 3-9

3.2.4 Command History Toolbar 3-9

3.2.5 Action List Toolbar 3-10

3.2.6 Layout and Usage 3-10

3.2.7 Command History Window 3-11

3.2.8 Command Line History and Command Line Editing 3-12

3.2.9 Error Output Window 3-13

3.3 Source Page 3-14

3-1

Introduction
to
the

G
A
U
S
S
G
U
I

3.3.1 Source Page Menus 3-14

3.3.2 Layout and Usage 3-15

3.3.3 Find and Replace 3-23

3.3.4 Changing Editor Properties 3-25

3.3.5 Error Output Window 3-27

3.3.6 The Source Browser: Advanced Search and Replace 3-27

3.3.7 Project Organizer: Keeping track of files with the Project Window 3-31

3.4 Data Page 3-36

3.4.1 Changing values 3-37

3.4.2 Changing formatting 3-38

3.4.3 Navigating multi-dimensional arrays 3-39

3.4.4 Viewing structure members 3-41

3.4.5 Creating a floating watch window 3-41

3.5 Debug Page 3-41

3.5.1 Menus and Toolbars 3-41

3.5.2 Using Breakpoints 3-44

3.5.3 Stepping Through a Program 3-45

3.5.4 Viewing Variables 3-47

3.6 Help Page 3-49

3-2

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-3

3.1 Page Organization Concept

GAUSS graphical user interface is organized into six separate "pages," each designed to
facilitate the performance of one of the common tasks performed in GAUSS:

Command Page For executing interactive commands.
Source Page For editing program files.
Data Page For examining and editing GAUSS matrices and

other data.
Debug Page For interactively debugging your programs.
Graphics Page For viewing and interacting with graphs.
Help Page For accessing the GAUSS help system.

Pages are separate, customizable, main windows with their own set of widgets. Each
page is shown as a tab on the left-hand side of the main application, allowing you to
instantly access a window custom-configured for the task you wish to perform.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.1: GAUSS page tabs along the left side of the application

Pages may be undocked from the main application and redocked by toggling the Dock
button on the right side of the status bar. Navigation between an undocked page and the
main application may be accomplished with ALT+TAB and ALT+SHIFT+TAB. To nav-
igate between pages, use CTRL+TAB to cycle forward and CTRL+SHIFT+TAB to
cycle backward.

Each page has its own toolbars and menus, which perform desired functions and facil-
itate intuitive navigation through the GUI. For example, clicking the " New" toolbar but-
ton from any page in the GUI will bring the Source Page to the top of the window stack
with a new file open and ready for editing.

3-4

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-5

3.2 Command Page

The Command Page is designed for entering interactive commands and viewing results.

Figure 3.2: Command Page

3.2.1 Command Page Menus 3-6

3.2.2 Command Page Toolbar 3-8

3.2.3 Working Directory Toolbar 3-9

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

3.2.4 Command History Toolbar 3-9

3.2.5 Action List Toolbar 3-10

3.2.6 Layout and Usage 3-10

3.2.7 Command History Window 3-11

3.2.8 Command Line History and Command Line Editing 3-12

3.2.9 Error Output Window 3-13

3.2.1 Command Page Menus

File Menu

New Creates a new, untitled file in a programming editor
on the Source Page.

Open File Opens an existing file in a programming editor on
the Source Page.

Open Project
Folder

Adds a folder and its contents to the GAUSS project
window on the Source Page.

Open Graph Opens a previously created GAUSS graph (.plot
file).

Print Prints selected text.
Recent Files Contains a dropdown list of recently edited files.
Exit Exits a GAUSS session.

Edit Menu

Undo Restores your last unsaved change.
Redo Re-inserts changes removed with undo.

3-6

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-7

Cut Removes selected text and copies it to the clipboard.
Copy Copies selected text to the clipboard.
Paste Pastes the clipboard contents at the cursor position.
Search Opens a search pane for the Program Input/Output

window.
Advanced Search Opens the Source Browser.

Tools Menu

Preferences Allows you to configure the GAUSS user
environment.

Install Application Opens an installation wizard to install a GAUSS
application package.

Change Font Allows you to specify a new font. Aptech
recommends using a monospaced font such as
Courier.

Clear Action List Clears the recent files from the action list menus.
Change Working
Directory

Allows you to browse for a new working directory.

Clear Working
Directory History

Deletes the contents of your recent working
directory history.

Recent Working
Directories

Contains a dropdown list of your most recent
working directories.

View Menu

The View menu lets you toggle on or off the windows on the current page.

Help Menu

Goto Help Takes you to the Help Page.
About GAUSS Provides information regarding your version of

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

GAUSS .

3.2.2 Command Page Toolbar

Figure 3.3: Command Page Toolbar

New Opens a new, untitled document in a programming
editor on the Source Page and brings you to the
Source Page.

Open Opens an existing file for editing.
Open Folder Adds a folder and its contents to the GAUSS project

window on the Source Page.
Cut Removes selected text and places it on the clipboard.

Copy Copies selected text to the clipboard.
Paste Copies the clipboard contents to the cursor position.
Print Prints selected text.
Run Runs the file at the top of the Action List.
Debug Debugs the file at the top of the Action List.
Edit Opens the file at the top of the Action List.
Stop Program Stops a running GAUSS program.

3-8

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-9

3.2.3 Working Directory Toolbar

Figure 3.4: Working Directory Toolbar

The Working Directory Toolbar contains a dropdown list that shows your current work-
ing directory and a history of recent directories. The Change Working Directory button
allows you to browse for and select a new working directory.

3.2.4 Command History Toolbar

Figure 3.5: Command History Toolbar

Run Executes the highlighted command from the
command history.

Paste Pastes the highlighted command to the Program
Input/Output Window for further editing.

Search Previous Searches the Command Output Window for
previous executions of a command and its output.

Search Next Searches the Command Output Window for the next
execution of a command and its output.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

3.2.5 Action List Toolbar

Figure 3.6: Action List Toolbar

Run Executes a file from the Action List.
Debug Debugs a file from the Action List.
Edit Edits a file from the Action List.
Stop Stops a program that is currently running or being

debugged.

The Action List is a dropdown list of the files you have most recently performed an
action on. Clicking on the Run, Debug, or Edit button will perform the specified action
on the file at the top of the Action List. Placing your mouse over the button produces a
tooltip with the name of that file. To perform an action on a different file in the Action
List, click on the downward-pointing triangle immediately to the right of the desired but-
ton.

All of the buttons share the same Action List. You may add a file to the Action List by
running it from the command line. Or while editing a file, you can either select Current
File from the dropdown menu next to the Run or Debug button or Add to List from the
Edit dropdown menu.

3.2.6 Layout and Usage

The Command Page contains three main widgets: the Program Input/Output Window, the
Command History Window, and the Error Output Window.

3-10

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-11

Figure 3.7: Command Page Widgets

3.2.7 Command History Window

The Command History Window contains a list of recently-executed commands organ-
ized by date or by GAUSS session. To re-run a command, double-click on it or select
the command and then press the Enter key.

Context Menu

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.8: Command History

Right-click in the Command History Window to bring up the context menu with the fol-
lowing options:

Copy Copies the highlighted entry to the clipboard.
Delete Deletes the highlighted entry.
Clear Window Deletes all Command History entries.
Send to File Creates a new source file containing the highlighted

commands.
Toggle View Mode Toggles between date mode and session mode.

3.2.8 Command Line History and Command Line Editing

When you run a command at the GAUSS prompt, it is added to your command line his-
tory. The last 1,000 commands executed at the GAUSS command line are stored. The

3-12

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-13

following keystrokes are supported for movement and editing at the command line and
for retrieving the command line history:

Left Arrow Moves cursor left one character.
Right Arrow Moves cursor right one character.
HOME Moves cursor to beginning of line.
END Moves cursor to end of line.
CTRL+Left Arrow Moves cursor left one word.
CTRL+Right
Arrow

Moves cursor right one word.

Up Arrow Search up through command history.
Down Arrow Search down through command history.

NOTE: Use CTRL+PAGE-UP or CTRL+PAGE-DOWN to scroll through your program
output in the program input/output window.

3.2.9 Error Output Window

The Error Output Window shows errors messages from program runs or interactive com-
mands and may be viewed from any page by clicking the Error Output button on the right
side of the status bar. However, it will automatically open when an error occurs and will
close and empty its contents on the next program run or interactive command.

The line number shown next to the error message is a clickable link (indicated by blue
text), which will take you to the file and line containing the error.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.9: Error Output Window

3.3 Source Page

The Source Page is designed for creating and editing programs and procedures.

3.3.1 Source Page Menus 3-14

3.3.2 Layout and Usage 3-15

3.3.3 Find and Replace 3-23

3.3.4 Changing Editor Properties 3-25

3.3.5 Error Output Window 3-27

3.3.6 The Source Browser: Advanced Search and Replace 3-27

3.3.7 Project Organizer: Keeping track of files with the Project Window 3-31

3.3.1 Source Page Menus

Section 3.2) and the Debug Menu, the Source Page contains the following additional
menu options.

File Menu

Close Closes the selected file.
Close All Closes all open files.
Save Saves the active file.
Save As Saves the active file with a different file or path

name.

3-14

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-15

Window Menu

Split File Buffer
Horizontally

Horizontally splits the active file into two views.

Split File Buffer
Vertically

Vertically splits the active file into two views.

Remove Buffer
Split

Removes a buffer split in the active file.

Split Tab Stack
Horizontally

Tiles any open programming editors horizontally.

Split Tab Stack
Vertically

Tiles any open programming editors vertically.

Remove Tab Split Removes any editor window tiling.
Go Back Takes you to your last cursor position, which could

be in a different file.
Go Forward After using Go Back, takes you to the next cursor

position, which could be in a different file.
Previous Open
Document

Cycles backwards through the list of open tabs.

Next Open
Document

Cycles forward through the list of open tabs.

3.3.2 Layout and Usage

The Source Page contains seven separate widgets: the Programming Editor, the Error
Output Window, the Program Input/Output Window, the Projects List, the Bookmarks
List, the Library Tool, and the Source Browser.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.10: Source Page

Programming Editor

Individual programming editors are opened in the editor docking area. The editor docking
area allows tabbing of multiple open files, with the option to tile editors with a horizontal
or vertical split. SelectWindow->Split Horizontally orWindow->Split Vertically to
tile open editor windows.

3-16

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-17

Figure 3.11: Programming Editor

Programming editor features:

1. Syntax highlighting:The GAUSS programming editor will provide syntax high-
lighting for GAUSS, C/C++, Java, Fortran, R and many other languages.

2. Autocompletion:Autocompletion is available in the GAUSS programming editor
for GAUSS functions and for structure members of any structure in an active
GAUSS library.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.12: Autocomplete

Using autocomplete: if the characters you enter match items in the autocomplete
list, a dropdown box will appear containing those functions. To navigate the drop-
down list, press the down arrow or continue typing until only one selection
remains. Once the desired command is highlighted, press the ENTER key to
insert the remainder of the word.

The editor will provide autocomplete for the members of any structures that are in
a GAUSS library if: the library is loaded, the file contains a statement to load the
library, or the structure definition is in the current file.

3. Function Call Tooltips:After a GAUSS command and an opening parenthesis
has been entered, a tooltip will appear with the argument list for the function.

3-18

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-19

Figure 3.13: Tooltips

4. Function Browser:Dropdown list lists all procedures defined in your file and
lists their arguments. Select a procedure from the list to navigate to its definition.

Figure 3.14: Function Browser

5. Code folding:At the start of code blocks (e.g., procedure definitions, do and for
loops, and if statements), the left margin of the programming editor will contain
a +. Clicking the + will hide the block of code from view and place a horizontal
line across the editor indicating folded code and changing the + to a -. Clicking on
the - will reveal the hidden code.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.15: Code folding of 'if' block

6. Autoindenting: The GAUSS programming editor provides automatic code indent-
ing and deindenting. Autoindenting not only simplifies the process of writing code
but also encourages the creation of readable code.

7. Variable highlighting:Click on a variable name and all instances of that variable
will be highlighted.

Figure 3.16: Variable highlighting

8. Find usages: Right click on a variable or procedure and select 'Find Usages' from
the context menu to create an organized clickable list of all usages in your file.

3-20

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-21

Figure 3.17: Find usages

9. Bookmarks:Bookmarks allow quick navigation to often visited lines of code. To
insert a bookmark, hold down the SHIFT key and left click in the left margin of
the file on the line where you would like to set the bookmark.

If a file contains more than one bookmark, you may use F2 to navigate to the next
bookmark in the file. To navigate between bookmarks in multiple files, use the
bookmark window. The bookmark window contains a list of all of your book-
marks.

Double-click on a listed bookmark and GAUSS will bring you to the file and line
of your bookmark regardless of whether the file is already open for editing or not.

10. Source code formatting: The GAUSS editor will correctly format a source file
with incorrect formatting. This is available from the context menu or with the hot

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

key CTRL+I.

Programming Editor Hot Keys

CTRL+A Select All.
CTRL+C Copy.
CTRL+D Debug current file.
CTRL+F Find and replace.
CTRL+G Go to line.
CTRL+I Formats the current file.
CTRL+L Delete line.
CTRL+N Open new file.
CTRL+O Open existing file.
CTRL+P Print file.
CTRL+/ Used for block commenting.
CTRL+R Run current file.
CTRL+S Save current file.
CTRL+T Switches current line with the line above.
CTRL+V Paste.
CTRL+W Closes the current file.
CTRL+Z Undo.
CTRL+Y Redo.
CTRL+~ Cycles through open editor windows.
CTRL+F1 Go to definition of function under cursor.
F1 Go to Help Page for function under cursor.
SHIFT+F1 Open inline help for function under cursor.
ALT+Left-Arrow Go to previous cursor position, which may be in a

previous file
ALT+Right-Arrow After ALT+Left-Arrow, go to next cursor position.

3-22

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-23

3.3.3 Find and Replace

From the Edit Menu, selecting Find and Replace or pressing CTRL+F will bring up the
find and replace widget at the bottom of your open programming editor. If a word is high-
lighted when you access find and replace, it will automatically be present in the find box
when the find and replace widget is opened. Press the ENTER key or > to search for-
ward. Press the < button to search backwards. To close the find and replace widget,
press ESC or click the button on the left.

Figure 3.18: Find and Replace

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

The Replace Box has three buttons: > means replace the highlighted expression and
search forwards, < means replace the highlighted expression and search backwards and
replace means replace the highlighted text and do not change the cursor position.

Regular Expressions

Find and Replace in GAUSS supports regular expression searching. Regular expression
searching gives users tremendous power allowing quick and precise search and replace
throughout an entire file. For example, let us start with a file containing the following
commands:

r = 100;
c = 50;
x = rndn(r,c);
y = rndu(r,c);
z = x.*rndn(r,c);

Regular expressions allow you to perform very specific find and replace commands. Sup-
pose that we want to find all usages of rndu and rndn and replace them with
rndKMu.

3-24

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-25

Figure 3.19: Find and Replace Regular Expression

To open Find and Replace, we enter CTRL+F in out open text editor. In the Find and
Replace widget, select the check box next to Regex to enable regular expression search-
ing. One of the most simple regular expression options is to add a '.'. The '.' means any
character. So, if we search for "rnd." that will find any string that contains rnd fol-
lowed by any character, such as rnda, rndb, rndc, rndn, rndu, etc. Now enter
"rndKMu" in the replace box and click Replace All. Now all instances of rndu and
rndn should be replaced with rndKMu.

3.3.4 Changing Editor Properties

Programming editor preferences can be accessed by selecting: Tools->Preferences
from the menu bar. From the Preferences window, select Source from the tree on the
left. Here you can customize the programming editor's behavior.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.20: Editor Preferences

The editor preferences has three main sections:

General Settings

The general settings are located on the top left.

Colors

This section is located along the bottom half of the preferences dialog window. Click
one of the color buttons to change an element in the color scheme used in the editor.

Autocomplete Settings

On the top right of the Source Preferences, under the heading "Autocompletion Source" ,
are the controls for autocompletion settings. This allows you to choose the contents of

3-26

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-27

your dropdown autocomplete suggestions. The options are:

GAUSS Library Provides autocomplete suggestions for
GAUSS intrinsic functions.

Current Document Provides autocomplete suggestions for all variables,
procedures, GAUSS functions and keywords that
are used in the file.

All Provides autocomplete suggestions for both above.
None Provides autocomplete suggestions only when

CTRL+SPACE are pressed.

3.3.5 Error Output Window

The Error Output Window can be accessed by toggling the Error Output button on the
right side of the status bar. For details regarding the features and usage of the Error Out-
put Window, see Section 3.2.9 .

Figure 3.21: Error Output Window

3.3.6 The Source Browser: Advanced Search and Replace

The Source Browser is a powerful search and replace tool that makes it much easier to
work with your code--especially when completing larger projects. You may open the
Source Browser by selecting View->Source Browser from the Source Page or entering
the hot-key SHIFT+CTRL+F.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.22: Source Browser

The Source Browser is made up of two main sections. The control tabs are on the left
and on the results display on the right.

You can enter your search query in the Search tab, which allows you to specify a par-
ticular file pattern, filename, or directory to search. The button with three dots [...] to the
right of the directory dropdown menu is a browse button that will open a dialog window
allowing you to browse for the desired directory.

3-28

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-29

Figure 3.23: Search and Replace

The Advanced tab allows you to refine your search criteria. Checking the References
check box will limit your search to only locations where a variable is referenced. Altern-
atively, checking the Assignments box would limit your search to only those places
where the variable was assigned to. For example, if you were searching for the variable
'nobs', this is an assignment:

nobs = 300;

whereas this is a reference:

myVar = nobs - 1;

Figure 3.24: Advanced Search and Replace

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

You may also select to limit your search to whole words, match case or use regular
expressions. This tab also allows you to control whether your search extends to sub-
directories and if you would like to exclude files larger than a certain size. It is recom-
mended that you always select Ignore Binaries.

Executing a search

Once you have a search string in the Find box and have your desired parameters set,
press the 'search' button to execute your search. In the results display window, you will
see a list of files that contain matches to your search. To the left of each file in the list
you will see a check box which can be used to include or exclude the matches in a file
from any Replace actions. To the right of the file name you will see a number in par-
entheses which indicates how many matches were found in the file.

Figure 3.25: Executing a search

Expand the node of a file to examine its list of matches, or right-click and select 'Expand
All' from the context menu. Once you expand the node for a file, you will see the line
number of the match followed by a colon and then the line of code with the match high-
lighted in yellow. Double-click on a line to edit that file.

Executing a replace

After you have completed your search and unchecked any matches that you do not want
replaced, click the Replace tab. Enter your replacement term and press the Replace but-
ton. GAUSS will warn you that any changes in unsaved files cannot be undone. If you
are certain of your replacement, click OK.

3-30

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-31

If you are making a change across a large number of files, particularly if you are not
using a version control system like Subversion or Git, it is a good idea to select the
'Backup Original' check box. With this selected, before GAUSS makes the replace-
ments to your file it will save a copy of the original with a .bak extension. For example
if your original file was myfile.gss, the backup file will be called
myfile.gss.bak.

If you select the 'Overwrite Backup' checkbox, the next time that you make a change to
this file, the file myfile.gss.bak will be overwritten. If you do NOT check the
'Overwrite Backup' check box, GAUSS will make incremented backup files:
myfile.gss.bak(1), myfile.gss.bak(2), etc.

3.3.7 Project Organizer: Keeping track of files with the Pro-
ject Window

The Project Window displays the contents of any folder you choose as well as its sub-
folders. To add a folder to the Project Window, either right-click in the Project Window
and select “Add Folder” from the bottom of the context menu or click the “Open Folder”
toolbar button.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.26: Open Project Folder

By default, all files in the folder will be shown. If you would like the Project Window to
display only certain file types, you can enable file filtering by right-clicking in the Pro-
ject Window and selecting “Filter GAUSS Files.”

3-32

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-33

Figure 3.27: Filter File List

With “Filter GAUSS Files” enabled, the Project Window will display only files that
match the list of file extensions found under "Tools->Preferences->Source->Project
View Filter: Files to Show". This is a comma-separated list of file extensions, which
may be modified by the user.

Interacting with files in “Project Window”

Double-click on a file name to open it or right click to bring up a context menu that will
allow you to perform other actions, such as: "open", "run", "delete" and "rename".

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Searching for text through all files in a directory

Right-clicking on a directory in the Project Window and selecting “Find in folder” will
open up the “Source Browser” an advanced find-and-replace window. The "Directory"
field will be pre-populated with the directory you selected.

Figure 3.28: "Find in Folder"

By default the “File Pattern” field will contain “*.*”. This means GAUSS will search in
all files in the specified directory that have any type of file extension. If you would like
to include in your search files that do not have file extensions, change the “File Pattern”
field to just “*”. Finally, add the text you wish to search for to the “Find” field and click
the "search" button.

3-34

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-35

Figure 3.29: "Find in Folder" opens the Source Browser

Searching for a file by name

When working with large numbers of files over multiple directories, it can be difficult to
search through a growing list of tabs. The GAUSS Project View Window allows you to
almost instantly locate any file that is in one of the folders you have open or in your
GAUSS SRC_PATH. To search for a file, click in the text edit box at the bottom of the
Project Window, or use the Ctrl+K shortcut. As you begin to enter the filename, an auto-
complete list of matching files will appear. The up and down arrow keys will navigate
the autocomplete list. Press ENTER to open the file.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.30: Find File

3.4 Data Page

The Data Page provides a tree view of all of the active symbols in your GAUSS work-
space organized by data type. Double-click one of your active symbols to open the data
in a Symbol Editor. Symbol Editors provide a spreadsheet like view of your data.

3-36

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-37

Figure 3.31: Symbol Editor

3.4.1 Changing values

You may change the value of a single cell in a symbol editor by double-clicking in the
cell and entering the new value. Note that hitting enter or clicking outside the cell will
save your change. To revert an in-process change before it is saved, hit the escape key.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.32: Change Cell Value

3.4.2 Changing formatting

Change the formatting of the numbers in a symbol editor by clicking the “Format” button
and then, selecting a format type and then selecting the precision.

Figure 3.33: Change Number Format

3-38

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-39

The “Compact” format will choose either “Scientific” or “Decimal”, whichever creates
the most compact representation of the data.

If none of the cells are selected, the formatting will be applied to all cells. If you select
a cell, column or row before you choose the format style, it will only be applied to the
selected data. This allows you to apply different formatting to each of your variables if
you desire.

3.4.3 Navigating multi-dimensional arrays

At the top-right of an array symbol editor you will find a listing of the all the dimensions
in the array. All but the final two dimensions will be list widgets. Click them to select a
particular dimension to view.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.34: Select Dimension to View

On the left of the array dimensions is a button with a leftward facing chevron. Clicking
this button will navigate towards the start of the array. The corresponding button on the
right of the array dimensions will navigate towards the end of the array.

3-40

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-41

3.4.4 Viewing structure members

Double-click on a structure member in the Active Symbol Tree to open it in a symbol
editor.

3.4.5 Creating a floating watch window

You may undock the symbol editors from the “Data Page” and place them anywhere on
your screen by clicking the “Toggle dock” button which looks like an arrow to the left of
the “Format” button. They will be updated every time that a program ends or a com-
mand-line statement is executed, which can make this a good way to keep track of your
data.

3.5 Debug Page

3.5.1 Menus and Toolbars 3-41

3.5.2 Using Breakpoints 3-44

3.5.3 Stepping Through a Program 3-45

3.5.4 Viewing Variables 3-47

3.5.1 Menus and Toolbars

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.35: Debug Toolbar

Go Runs the program to the next breakpoint.
Toggle Breakpoint Sets/Clears a breakpoint at the cursor.
Clear Breakpoints Clears all breakpoints in a file.
Examine Variable Opens a watch variable in a symbol editor.
Step Into Runs the next executable line of code in the

application and steps into procedures.
Step Over Runs the next executable line of code, but does not

step into procedures.
Step Out Runs the remainder of the current procedure and

stops at the next line in the calling procedure.
Run to Cursor Runs the program until it reaches the cursor position.
Stop Terminates a debugging session.

Components and Usage

The Debug Page is composed of five main widgets:

Breakpoint List An interactive list of all breakpoints.
Call Stack Window An interactive display of the chain of procedure

calls.
Local Variable
Window

An interactive display of all variables that are in
scope.

3-42

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-43

Variable Dump
Window

Displays the full contents of a variable.

Watch Window An interactive display of user specified variables.

The Debug Window indicates which line it is on by the >>> located in the left margin.
This is also the location where breakpoints are added. To add a breakpoint, click in the
left margin of the Debug Window on the line you wish to add the breakpoint. Clicking an
active breakpoint will remove it.

Figure 3.36: Debug Window

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Starting and Stopping the Debugger

You can start debugging of a file you are in by pressing CTRL+D. Click the Debug but-
ton to debug the file in the top of the Action List. Placing your mouse over the Debug but-
ton will reveal a tooltip with the name of this file, or click the downward pointing
triangle next to the debug button and select a file from the list.

Figure 3.37: Debug Button

When the debugger is started, it will highlight the first line of code to be run. Any break-
points are shown in the left margin of the window. You can stop debugging at any time
by clicking the Stop button on the debug toolbar.

3.5.2 Using Breakpoints

Breakpoints stop code execution where you have inserted them. Breakpoints are nor-
mally set prior to running the debugger, but can also be set or cleared during debugging
by clicking the Set/Clear Breakpoint option on the Debug menu.

Setting and Clearing Breakpoints

To set breakpoints in any part of the file not currently being executed, just click in the
left margin of the line on which you would like the breakpoint. Alternatively, you can
highlight a line then click Toggle Breakpoint.

3-44

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-45

Figure 3.38: Setting Breakpoints

To clear a breakpoint in the file, click on the breakpoint you would like to remove or
click a line of code that has a breakpoint set and then click Set/Clear Breakpoint. You
can clear all breakpoints from the active file by clicking Clear All Breakpoints.

3.5.3 Stepping Through a Program

GAUSS's debugger includes the ability to step into, step out of, and step over code dur-
ing debugging.

Use Step Into to execute the line of code currently highlighted by the debugger.

Figure 3.39: Step In (F8)

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Use Step Out to execute to the end of the current function without pause and return to
the calling function.

Figure 3.40: Step Out (F10)

Use Step Over to execute the line of code currently highlighted by the debugger without
entering the functions that are called.

Figure 3.41: Step Over (F9)

Use Stop to stop the debugger.

3-46

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-47

Figure 3.42: Stop

3.5.4 Viewing Variables

GAUSS allows you several ways to view the values of variables during debugging.

Hover Tool-tip View

Once the debugger is started, hovering your mouse over a variable name will open tool-
tip with a preview of the values in the variable.

Figure 3.43: Hover Tool-tip

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

These tooltip views are only intended to give a quick view of the data, so they may not
show all data held by the variable. If you need to view more data, you may either click
on the variable name in the file and type CTRL+E, click the Examine Variable toolbar
button and enter the variable name, or double-click the variable in the Local/Watch Win-
dow to view the variable in a floating symbol editor.

Figure 3.44: Watch Window

3-48

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

3-49

Setting a Watch Variable

The Watch Window list is directly below the the Local Variable list. It displays the
same information about the variables in its list as does the Local Variable list. By
default this list starts empty. You may add variables to the list by either right-clicking
over the name of a variable in the Local Variable list and selecting "Add to watch" from
the context menu, or by right-clicking directly in the Watch Window and selecting "Add
new".

The debugger searches for a watch variable using the following order:

1. A local variable within a currently active procedure.

2. A global variable.

3.6 Help Page

The Help Page gives you access to the entire GAUSS help system in HTML format.
The table of contents tree is on the left. Click the + symbol to expand a particular sec-
tion of the contents and double-click on the title to view the page. As on the other pages,
the Program Input/Output Window and the Error Window are available via toggle but-
tons on the status bar. It can be helpful to enter an interactive command and/or view
error output while simultaneously viewing the relevant documentation.

Introduction to the GAUSS GUI

Introduction
to
the

G
A
U
S
S
G
U
I

Figure 3.45: Help Page

Hot Keys

F1 Opens the Command Reference section for the
highlighted command.

CTRL+F1 Opens a programming editor with the function
definition of a highlighted procedure.

SHIFT+F1 Opens a floating Help Window for the highlighted
command.

3-50

GAUSS User Guide

In
tr
od
uc
tio
n
to
th
e

G
A
U
S
S
G
U
I

4 Hot Keys and Shortcuts

4.1 Hot Keys and Shortcuts 4-1

4.2 Navigation Hot Keys 4-3

4.3 Focus Program Output on I/O 4-4

4.4 F1 Help 4-5

4.5 CTRL+F1 Source Browsing 4-6

4.1 Hot Keys and Shortcuts

Action Hot Keys

F2 Navigates to the next bookmark in the Active File.
F3 Find again.
F4 Runs highlighted text, or of no text is highlighted,

runs the statement under cursor and goes to the next
statement.

F5 Run file at top of Action List.

4-1

H
otK

eys
and

S
hortcuts

F6 Debug file at top of Action List. Inside a debug
session, F6 will cause the debugger to run to the
next breakpoint, or the end of the file if no
breakpoints are encountered.

F7 Edit file at top of Action List.
F8 Step in (during a debug session).
F9 Step over (during a debug session).
F10 Step out (during a debug session).
CTR+D Debug the Active File.
CTRL+R Run the Active File.

Editor Hot Keys

CTRL+A Select all.
CTRL+C Copy.
CTRL+D Debug the current file.
CTRL+E Opens the variable under cursor in a floating symbol

editor window.
CTRL+F Find and replace.
SHIFT+CTRL+F Open Source Browser--advanced find and replace

inside a file, or across directories.
CTRL+G Go to line.
CTRL+I Format, or autoindent, current file or selected text.
CTRL+K Locates a file in the project view.
CTRL+L Delete current line.
CTRL+N Open new file.
CTRL+O Open file.
CTRL+R Run active file.
CTRL+S Save current file.

4-2

GAUSS User Guide

H
ot
K
ey
s
an
d
S
ho
rt
cu
ts

4-3

CTRL+T Swaps current line with line above.
CTRL+W Close current file.
CTRL+Y
(CMD+SHIFT+Z
on Mac)

Redo.

CTRL+Z Undo.
CTRL+/ Toggle block comment.
CTRL+~ Cycle through open editor windows.
CTRL+F1 Go to definition of procedure under cursor.
CTRL+SPACE Activates autocomplete.
ALT+Left
Arrow

Go to previous cursor position (may be in a
previously edited file).

ALT+Right
Arrow

Go to next cursor position (after going backwards
with ALT+Right Arrow).

ESCAPE Close 'find and replace' or 'source browser'
windows, if they are open.

Help Hot Keys

F1 Opens the Command Reference page for command
under cursor on the Help Page.

SHIFT+F1 Opens a floating Command Reference page for the
command under cursor.

4.2 Navigation Hot Keys

GAUSS automatically navigates between pages when you perform certain actions. For
example, if you are editing a file in the Source Page and type CTRL+D to debug that
file, GAUSS will automatically take you to the Debug Page.

Hot Keys and Shortcuts

H
otK

eys
and

S
hortcuts

However, there are also several hot keys that allow you to navigate quickly and easily
between pages without performing any actions:

CTRL+1 Brings up the Command Page.
CTRL+2 Brings up the Source Page.
CTRL+3 Brings up the Data Page.
CTRL+4 Brings up the Debug Page.
CTRL+5 Brings up the Help Page.
CTRL+TAB Brings up the next page. For example, CTRL+TAB

from the Command Page will bring up the Source
Page. CTRL+TAB from the Help Page will wrap
and bring up the Command Page.

ALT+TAB Cycles between any pages that are undocked as well
as other open programs.

WINDOW+TAB Windows only: Cycles between any pages that are
undocked as well as other open programs.

Mouse Scroll
Wheel

When floating over any set of tabs, the mouse scroll
wheel will cycle through the open tabs. This will
work for programming editor tabs, symbol editor
tabs, and the main page tabs on the left of the main
application.

4.3 Focus Program Output on I/O

Under the Tools->Preferences->Command is a check box entitled Focus Program
Output on I/O. Selecting this option will open up a Program Output Window if any pro-
gram output is printed or if any input is requested by the GAUSS commands key,
keyw, or cons.

4-4

GAUSS User Guide

H
ot
K
ey
s
an
d
S
ho
rt
cu
ts

4-5

4.4 F1 Help

If your cursor is on the name of a GAUSS command in an editor, you can press F1 and
it will take you to the Command Reference listing for that command. Inside the Help sys-
tem, highlight command names by double-clicking on them to enable F1 help navigation.

Shift+F1 Inline Help

Typing SHIFT+F1 when your cursor is on a GAUSS command will open an inline help
window that floats above your editor window.

Figure 4.1: Inline help window opened with SHIFT+F1

Hot Keys and Shortcuts

H
otK

eys
and

S
hortcuts

4.5 CTRL+F1 Source Browsing

If your cursor is on the name of a procedure or global variable that resides in an active
GAUSS Library (.lcg file), typing CTRL+F1 will open the source file in a Pro-
gramming Editor.

To learn more about creating a User Library for your procedures, see LIBRARIES,
CHAPTER 19 .

4-6

GAUSS User Guide

H
ot
K
ey
s
an
d
S
ho
rt
cu
ts

5 Using the GAUSS Debugger

The GAUSS debugger is a powerful tool to speed up and simplify your program devel-
opment. Debugging takes place on the Debug Page, which is a full-featured dashboard
providing you a wealth of information about the status of your variables and your pro-
gram every step of the way.

Figure 5.1: The debug button automatically opens the
Debug Page

5.1 Starting the Debugger 5-2

5.2 Examining Variables 5-4

5.3 The Call Stack Window 5-6

5.4 Ending Your Debug Session 5-6

5-1

U
sing

the
G
A
U
S
S

D
ebugger

5.1 Starting the Debugger

Figure 5.2: Debug Button

You may start a debug session by selecting the Action List Debug button, by entering
CTRL+D from the file that you would like to debug, or by entering debug filename
from the command line. GAUSS will bring the Debug Page to the front, and the debug
session will begin with the first line of code highlighted, waiting to be run.

Figure 5.3: Debug Window

5-2

GAUSS User Guide

U
si
ng

th
e
G
A
U
S
S

D
eb
ug
ge
r

5-3

From here you can step through your program line-by-line, or run to a line of interest. To
tell the debugger to run to a particular line, you must first set a breakpoint. Setting a
breakpoint on a line in your program tells the debugger to pause when it gets to that line.
You may set a breakpoint in any source file by simply clicking in the margin to the left
of the line numbers. You will see a red dot appear in the margin, and a new entry will be
added to the breakpoint window, which can be viewed on both the Source and Debug
Pages. New breakpoints can be added before or during a debug session.

The Debug Page toolbar gives you the controls you need to navigate during debugging.
Hover over any of the buttons to get a tooltip with a description of the button's function
and its corresponding hot key.

Figure 5.4: Debug Toolbar

Debug Run Runs to the next breakpoint.
Debug Stop Stops the debug session.
Toggle Breakpoint Toggles a breakpoint on the current line.
Clear Breakpoints Removes all breakpoints from all files.
Examine Variable Opens a user-specified variable in a floating Symbol

Editor window.
Step in Steps to the next line. If the next line is a procedure,

it will step inside this procedure.
Step over Steps to the next line without stepping into other

procedures.
Step out Runs through the end of the current procedure and

stops in the calling file.

Using the GAUSS Debugger

U
sing

the
G
A
U
S
S

D
ebugger

Run to cursor Runs to the location of your cursor as if it were a
breakpoint.

5.2 Examining Variables

When the debugger is paused at a line in your program, you may view any of the vari-
ables in your GAUSS workspace. GAUSS offers several options for this. The first is
through the Local Variable window. This window contains an alphabetical list of every
variable that is currently in scope. It also lists the first value of each variable, its type
(matrix, string, structure, etc.) and dimensions. The contents of this window are imme-
diately updated each time you step to a new line of your program.

Figure 5.5: Local Variable Window

5-4

GAUSS User Guide

U
si
ng

th
e
G
A
U
S
S

D
eb
ug
ge
r

5-5

Double-clicking on a variable in the Local Variable window opens that variable in a
floating symbol editor. This symbol editor window looks much like a spreadsheet and
will display the entire contents of the variable.

Located just below the Local Variable window is the Watch window. The Watch win-
dow looks and acts much the same as the Local Variable window, but it holds only vari-
ables that you specifically add to it. This allows you to place variables of interest in a
smaller list that is easier to scan. You can add a variable to the Watch window by either
right-clicking on a variable in the Locals list and selecting "Add to watchlist", by right-
clicking in the Watch window and selecting "Add new", or by highlighting a variable in
the file and then dragging and dropping it into the watch window.

Figure 5.6: Symbol Editor Window

Using the GAUSS Debugger

U
sing

the
G
A
U
S
S

D
ebugger

You may see a tooltip preview of any variable in your file by floating your cursor over
the variable name. Placing your cursor on a variable and pressing CTRL-E will open
that variable in a floating symbol editor.

5.3 The Call Stack Window

The Call Stack window is like a map into your program. The top entry in the Call Stack
window is always your current location. It lists the name of the procedure you are in, the
arguments that this procedure takes, the name of the file it is in, and the line number you
are on. The next item in the list displays the same information for the location from
which your current procedure was called. The item after that displays the location from
which that procedure was called and so on.

Figure 5.7: Call Stack Window

This list is interactive. Single-clicking on any of the items in the Call Stack window will
bring you to that particular line and file. For example, if you would like to examine the
line from which your current procedure was called, click on the second item in the call
stack list. Not only will this open that line and file in your Debug window, but it will
also update the Local Variable window to display all the variables that exist at that loc-
ation, as well as their current values. To return to your current location, click the top line
in the Call Stack window.

5.4 Ending Your Debug Session

If you would like to terminate a debug session before the debugger has run through the
entire program, click the Debug Stop button, located at the top left of the Debug Page.

5-6

GAUSS User Guide

U
si
ng

th
e
G
A
U
S
S

D
eb
ug
ge
r

5-7

Figure 5.8: Debug stop button

Using the GAUSS Debugger

U
sing

the
G
A
U
S
S

D
ebugger

6 GAUSS Graphics

6.1 Overview 6-2

6.2 Basic Plotting 6-3

6.2.1 Plotting multiple curves 6-4

6.3 Plot Customization 6-5

6.3.1 Using the Graphics Preferences Settings Window 6-6

6.4 PlotControl Structures 6-10

6.5 Adding Data to Existing Plots 6-14

6.5.1 Styling and the plotAdd functions 6-16

6.6 Creating Subplots 6-17

6.6.1 Creating Mixed Layouts 6-19

6.6.2 Creating Custom Regions 6-20

6.7 Time Series Plots in GAUSS 6-22

Understanding the dstart parameter 6-24

6.7.1 Quarterly Example 6-25

6-1

G
A
U
S
S
G
raphics

6.7.2 Controlling Tic Label Locations 6-26

6.7.3 Tic Label Formatting 6-28

6.8 Interacting with Plots in GAUSS 6-31

6.8.1 Interacting with 2-D Plots 6-31

6.8.2 3-D Plots 6-35

6.8.3 File Export 6-35

6.8.4 Saving Graphs 6-38

6.9 Adding Annotations Programmatically in GAUSS 6-39

6.9.1 Basic usage 6-40

6.9.2 Creating multiple annotations with vector inputs 6-41

6.9.3 Customization with a plotAnnotation structure 6-42

6.9.4 Using the annotationSet functions 6-43

6.1 Overview

The plotting functionality available in GAUSS is designed to provide intuitive methods
for visualizing data using a variety of plot types. The main plot drawing functions are:

plotArea Creates a cumulative area plot.
plotBar Creates a bar plot.
plotBox Creates a box plot using the box graph percentile

method.
plotContour Creates a contour plot.
plotHist Calculates and creates a frequency histogram plot.
plotHistF Creates a histogram plot from a vector of

6-2

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-3

frequencies.
plotHistP Calculates and creates a percentage frequency

histogram plot.
plotLogLog Creates a 2-dimensional line plot with logarithmic

scaling of the both the x and y axes.
plotLogX Creates a 2-dimensional line plot with logarithmic

scaling of the x-axis.
plotLogY Creates a 2-dimensional line plot with logarithmic

scaling of the y-axis.
plotPolar Creates a polar plot.
plotScatter Creates a 2-dimensional scatter plot.
plotSurface Creates a 3-dimensional surface plot.
plotTS Creates a graph of time series data.
plotXY Creates a 2-dimensional line plot.

6.2 Basic Plotting

The simplest way to plot data in GAUSS is to use default values for the plot settings,
such as line color, line size, legend text, etc. These settings may be changed by the user
from the main menu bar: Tools-> Preferences-> Graphics. To create a plot using
default plot settings, simply call one of the plotting functions with your data as inputs:

//Create a sequential column vector from
//-5 to 5 with 101 steps
x = seqa(-5, 0.1, 101);

//Set y to the normal probability density function
y = pdfn(x);

//Plot the data
plotXY(x, y);

GAUSS Graphics

G
A
U
S
S
G
raphics

Figure 6.1: One-Curve Plot

6.2.1 Plotting multiple curves

Each column of the input matrices is treated as a separate curve or line on the graph.
Below is an example that uses the variables created from the example above and adds
an additional line:

x = seqa(-5, 0.1, 101);
y1 = pdfn(x);

//Set y2 to the Cauchy probability density function

6-4

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-5

y2 = pdfCauchy(x, 1, 1);

//Plot the data using the ~ operator to horizontally
//concatenate y1 and y2
//Note that y1 and y2 will be plotted against the same
//x values
plotXY(x, y1~y2);

Figure 6.2: Two-Curve Plot

6.3 Plot Customization

GAUSS offers two ways to customize your graphs. The first is through the graphics pref-
erences dialog window. The second method for plot customization is using a plotCon-
trol structure.

GAUSS Graphics

G
A
U
S
S
G
raphics

6.3.1 Using the Graphics Preferences Settings Window

Main Graph Settings

The default settings for graphics can be opened by selecting Tools->Preferences from
the main application menu bar . Then select Graphics from the list on the left of the pref-
erences window.

Figure 6.3: The Graph Settings Tab

Selecting a graph type

Each type of graph in GAUSS has its own settings. Click on the graph type list widget to
expand the list of graph types. Click on one of the listed graph types to view its settings.

6-6

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-7

Figure 6.4: The Group Tab

Once you have selected a graph type, browse through the settings by clicking on a an
individual graph component, such as the “Legend”, “Axis Style” or “Axis Text”. "Series
1", "Series 2", etc contain the preferences for the curves such as "line color", "line thick-
ness", "symbol type", etc.

GAUSS Graphics

G
A
U
S
S
G
raphics

Figure 6.5: Scatter plot graph settings

After you have made your desired changes, Click the 'Apply' and 'OK' buttons. GAUSS
will use these preferences for all future graphs that are made without passing in a
plotControl structure. As we will see in the next section, these settings will also be the
starting point when you create a plotControl structure. These settings may be changed at
any time.

6-8

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-9

Contour/Surface Plot Z-Level Color Settings

Surface/Contour Level Color Settings

If you select the 'Surface' graph type, you will see a 'Colors' option instead of 'Series 1,
Series 2...' as shown above. The "Colors" control allows you to add and subtract default
z-level colors and to also change their order.

Available Actions

Add a new color Click the add (+) button
Edit a color Double-click the color
Select a color Single-click the color
Delete a color Select a color and click the minus (-) button
Change color order Click-and-drag color to desired position, or select a

color and click the up or down button

GAUSS Graphics

G
A
U
S
S
G
raphics

6.4 PlotControl Structures

The GAUSSplotControl structure provides a powerful and flexible method for pro-
grammatic control of your graphs in GAUSS. This structure is a convenient package that
stores all of the information about how you would like a specific graph to be displayed.
These structures may be saved to disk and reloaded during a future session or passed on
to colleagues. Using a plotControl structure requires just two easy steps:

1. Declare the structure.
2. Initialize the structure.

Once these steps are completed, you may change any of the plot settings in the structure.
Once the plotControl structure is set how you would like, you can pass it in as the first
argument to any of the GAUSS plot-creating functions. Below is an example that draws
a graph using a plotControl structure set to default values:

//Declare the structure
struct plotControl myPlot;

//Initialize the structure
myplot = plotGetDefaults("xy");

//Create a column vector from -3 to 3 with a step size of 0.1
x = seqa(-3, 0.1, 60);
y = sin(x);

//Plot the data using the plotControl structure
plotXY(myPlot, x, y);

The available plotControl setting functions include:

plotGetDefaults Applies the user defined default settings
for a specified graph type to a
plotControl structure.

plotSetAxesPen Sets the color and thickness of the axes
lines.

6-10

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-11

plotSetBar Sets the fill style and format of bars in a
histogram or bar graph.

plotSetBkdColor Sets background color of a graph.
plotSetFill Sets the fill style, opacity and color for

area and bar plots as well as histograms.
plotSetGrid Controls the settings for the background

grid of a plot.
plotSetLegend Adds a legend to a graph and optionally

applies settings.
plotSetLineColor Sets line colors for a graph.
plotSetLineStyle Sets line styles for a graph.
plotSetLineSymbol Sets line symbols displayed on the

plotted points of a graph.
plotSetLineThickness Sets line thickness for a graph.
plotSetNewWindow Sets whether new graphs should be

drawn in the same window or in a newly
created window.

plotSetTitle Controls the settings for the title for a
graph.

plotSetWhichYAxis Controls whether a particular curve uses
the right or left Y-axis.

plotSetXLabel Controls the settings for the X-axis label
on a graph.

plotSetXRange Controls the minimum and maximum
values of the X-axis.

plotSetXTicCount Sets the number of major tics along the
X-axis.

plotSetXTicInterval Controls the interval between X-axis tic
labels and optionally at which X-value

GAUSS Graphics

G
A
U
S
S
G
raphics

to place the first tic label.
plotSetXTicLabel Controls the formatting and angle of X-

axis tic labels for 2-D graphs.
plotSetYLabel Controls the settings for the Y-axis label

on a graph.
plotSetYRange Controls the minimum and maximum

values of the Y-axis.
plotSetYTicCount Sets the number of major tics along the

Y-axis.
plotSetZLabel Controls the settings for the Z-axis label

on a graph.

Most of these functions begin with plotSet. This has two main advantages. First, you
may quickly and easily survey the plotSet options by typing plotSet in a GAUSS
editor and scrolling through the auto-complete list without needing to consult the doc-
umentation. Second, this convention makes your GAUSS code easy to read and under-
stand.

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize the structure with the "bar" default values from
//the main application menu Tools->Preferences->Graphics
myPlot = plotGetDefaults("bar");

//Create data to plot
x = seqa(1, 1, 10);
y = abs(rndn(10, 1));

//Change plot settings
//Turn off the grid
plotSetGrid(&myPlot, "off");

6-12

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-13

// Set x-axis label
plotSetXLabel(&myPlot, "Day of Project");

//Set the title, title font and font size
plotSetTitle(&myPlot, "Example Bar Plot", "arial", 18);

//Draw graph
plotBar(myPlot, x, y);

Figure 6.6: Example Bar Plot

Notice in the previous example that the first input to the plotSetTitle function is
&myPlot and not just the variable name, myPlot. This is because all of the plotCon-
trol setting functions take a structure pointer as the first input. The ampersand (&) in
front of the variable name makes the input argument a pointer to that structure.

GAUSS Graphics

G
A
U
S
S
G
raphics

Passing structure pointers as arguments is much faster and more efficient than passing
an entire structure. The rule for remembering when to use a plotControl structure
pointer instead of plotControl structure is simple. If the function you are calling sets a
value in the structure, you need to use a structure pointer. In all other cases, use the
structure.

Fortunately the function completion tooltip in the GAUSS editor will indicate which is
required, in case you forget this simple rule. For more information on structures and
structure pointers see STRUCTURES, CHAPTER 16 .

6.5 Adding Data to Existing Plots

You may add additional data to 2-D plots. This functionality is accessed through the fol-
lowing:

plotAddArea Adds a cumulative area plot an existing 2-D
graph.

plotAddBar Adds a set of bars to an existing 2-D graph.
plotAddBox Adds a box plot to an existing 2-D graph.
plotAddHist Adds a histogram to an existing 2-D graph.
plotAddHistF Adds a frequency histogram to an existing

2-D graph.
plotAddHistP Adds a percentage histogram to an existing

2-D graph.
plotAddPolar Adds a polar plot to an existing polar graph.
plotAddScatter Adds a scatter plot to an existing 2-D graph.
plotAddTS Adds a time series plot to an existing time

series graph.
plotAddXY Adds an XY line to an existing 2-D graph.

Any 2-D plot type may be added to any other 2-D plot type, with the exception of con-
tour plots, polar plots and time series plots. You may add a polar plot to a previous polar

6-14

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-15

plot or a time series plot to a time series plot. Use the plotAdd functions only to add
data to an existing graph. Do not attempt to use them to create a new graph.

Example

//Create and plot multivariate random normal data
rndseed 19823434;
cov = { 1 0.9, 0.9 1 };
mu = { 2, 2 };
y = rndMVn(300, mu, cov);
plotScatter(y[.,1], y[.,2]);

//Create line coordinates and add to scatter plot
x = { -0.3, 4.8 };
y2 = { 0, 4.3 };
plotAddXY(x, y2);

Figure 6.7: Example Adding Data to a Plot

GAUSS Graphics

G
A
U
S
S
G
raphics

6.5.1 Styling and the plotAdd functions

Plot-wide attributes

The plotAdd functions will not make any styling changes to the existing plot-wide
attributes, such as the title, axes labels, grid, etc. It will, however, increase the scale of
the view if needed to accommodate the new curve.

Curve level attributes

If the plotAdd call does not use a plotControl structure, attributes for the added
curves such as line or fill color, symbol style and the curve's legend text will be con-
trolled by the preferences settings. The new curve will be treated as an additional series
in sequence with any curves that already exist on the plot. For example if you draw a
scatter plot with one column of data and then add another column of data with plotAd-
dScatter and do not pass in a plotControl structure, the second set of scatter points
will use the scatter settings from "Tools->Preferences->Graphics->Scatter->Series 2".

//Use scatter "Series 1" settings
plotScatter(x_1, x_2);

//Use scatter "Series 2" settings
plotAddScatter(x_3, x_4);

If you pass in a plotControl structure to the plotAdd call, GAUSS will apply the first
series curve settings in the plotControl structure to the first series of data that is added.
For example:

struct plotControl myPlot;
myPlot = plotGetDefaults ("scatter");

//Use the Series 1 line color settings
//set in 'myPlot' by 'plotGetDefaults'
plotScatter(myPlot, x_1, x_2);

plotSetLineColor (myPlot, "purple" $| "blue");

6-16

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-17

//Use the Series 1 line color settings
//in the plotControl structure, purple
//for x_3 vs x4, use blue for x_3 vs x_5
plotAddScatter(myPlot, x_3, x_4~x5);

The above code first creates a scatter plot of x_1 vs. x_2. It then changes the line
color settings inside the plotControl structure to purple for the first set of scatter points
and blue for the second set of scatter points. Finally, it adds the scatter series x_3 vs.
x_4 which will be drawn in purple and x_3 vs. x_5 which will be drawn in blue.

6.6 Creating Subplots

GAUSS allows you to create two types of graphs within graphs. The first is called a sub-
plot. In GAUSS a subplot divides the canvas up into tiles of equal size and shape.

This functionality is controlled with the plotLayout function. The plotLayout
function splits the canvas up into a specified number of rows and columns and also spe-
cifies into which cell to draw the next graph.

//Divide the canvas into 2 rows and 3 columns
and
//set the next drawn graph to be placed into the
//last position (which is the sixth cell);
//plotLayouts use row major ordering
plotLayout(2, 3, 6);

Figure 6.8: plotLayouts use row major ordering

GAUSS Graphics

G
A
U
S
S
G
raphics

After calling plotLayout, all future graphs will be placed in the cell location spe-
cified by the plotLayout call until plotLayout is called again with new para-
meters or a call to plotClearLayout is made. A call to plotClearLayout will
cause the next graph to be drawn to take up the entire canvas.

This next graph, after a call to plotClearLayout, will either draw over any existing
graphs or be drawn in a new window depending on your graphics preferences. This set-
ting can be controlled from the "New graphs" setting, located under Tools-> Prefer-
ences-> Graphics. It may also be set with the plotSetNewWindow function.

Example

//Divide the canvas into 2 rows and 2 columns
and
//place each successive graph in the next
//available cell
for i(1, 4, 1);

plotLayout(2, 2, i);
//Plot a percentage histogram with 10*i bins

of
//random normal data
plotHistP(rndn(1e5, 1), 10*i);

endfor;
//Clear the layout so future graphs are not
drawn in
//this layout
plotClearLayout();

6-18

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-19

Figure 6.9: Example Subplot

6.6.1 Creating Mixed Layouts

In GAUSS, plotLayouts may not overlap. For this functionality use the plotCus-
tomLayout function. However, you may divide the canvas into sections of different
size as long as they do not overlap.

Example

//Divide the canvas into a 2x2 grid and fill in the first row
plotLayout(2, 2, 1);
plotHistP(rndn(1e5,1), 20);
plotLayout(2, 2, 2);
plotHistP(rndn(1e5, 1), 40);

//Divide the canvas into a 2x1 grid and fill in the

GAUSS Graphics

G
A
U
S
S
G
raphics

//bottom half, leaving the top section alone
plotLayout(2, 1, 2);
plotHistP(rndu(1e5, 1), 80);

Figure 6.10: Example Mixed Layout

6.6.2 Creating Custom Regions

Custom regions in GAUSS are graphs inside of graphs. They may be placed in any loc-
ation on the canvas and may be any size. This functionality is controlled by the
plotCustomLayout function. It takes the location and size parameters for the cus-
tom region as a percentage of the entire canvas. As with plotLayout, these settings
will be applied to the next drawn graph.

//Draw a custom region that starts 25% of the
//distance from the left edge of the canvas, 10%
//from the bottom of the canvas with a width of 40%
//of the canvas and a height of 28% of the canvas
plotCustomLayout(0.25, 0.1, 0.4, 0.28);

6-20

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-21

Unlike with plotLayout, these custom regions will not delete any graphs below them
and can thus be used to place a small graph over a portion of a larger graph.

Example

//Draw a full size graph
rndseed 908734;
y = rndn(1e5, 1);
plotHistP(y, 30);

//Draw a custom region, close-up over the bottom left
// of the previously created graph
plotCustomLayout(0.1, 0.3, 0.2, 0.4);

//Set up plotControl struct with simple view
struct plotControl myPlot;
myPlot = plotGetDefaults("box");
plotSetLegend(&myPlot, "off");
plotSetGrid(&myPlot, "off");
plotSetXAxisShow(&myPlot, 0);
plotSetYAxisShow(&myPlot, 0);

//Create plot in custom region defined above
plotBox(myPlot, 0, y);

//Clear the layout, so future graphs will not be
//drawn in this custom region
plotClearLayout();

GAUSS Graphics

G
A
U
S
S
G
raphics

Figure 6.11: Example Custom Layout

6.7 Time Series Plots in GAUSS

GAUSS provides the following functions to simplify the process of creating time series
graphics:

plotAddTS Adds a time series curve to a previously
draw time series graph.

plotTS Creates a graph of time series data.
plotSetXTicLabel Controls the formatting and angle of X-

axis tic labels for 2-D time series graphs.
plotSetXTicInterval Controls the interval between X-axis tic

labels and also allows the user to specify
the first tic to be labeled for 2-D time
series graphs.

To create a basic time series plot in GAUSS, you will use the plotTS function. In addi-
tion to the y data to plot, this function requires the following inputs:

6-22

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-23

dstart Scalar, the starting date of the time series in
DT scalar format.

frequency Scalar, the frequency of the data per year.
Valid options include:
12 Monthly

4 Quarterly

1 Yearly data

Example

//Data to plot
y = rndu(24, 1);

//Start the series in January of 1987
dstart = 1987;

//Specify the data as monthly
freq = 12;

//Plot the data
plotTS(dstart, freq, y);

The example program above will create a graph of monthly data from January of 1987
through December of 1988. It should look similar to the graph below:

GAUSS Graphics

G
A
U
S
S
G
raphics

Figure 6.12: Close-up of monthly data plot

Understanding the dstart parameter

The dstart parameter is specified to be a scalar value in DT scalar format. In DT
scalar format the leading four digits are the year and the next two digits, if present, rep-
resent the month. If the month information is not present, as in the example above,
GAUSS will assume the first month of the year. This means that this:

2008

and this:

200801

will both be treated as specifying January of 2008.

To specify a starting quarter in DT scalar format, set the final digits of your dstart to
be the first month of the quarter. The following represent 2008 Q1, 2008 Q2, 2008 Q3
and 2008 Q4 respectively.

200801
200804

6-24

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-25

200807
200810

6.7.1 Quarterly Example

Using what we have just learned, we will create a quarterly graph that starts at 2007 Q4
and runs for 16 quarters.

//Create 16 random data points
y = rndu(16, 1);

//Start the series in 2007 Q4
dstart = 200710;

//Specify the data as quarterly
freq = 4;

//Plot the data
plotTS(dstart, freq, y);

This should produce a graph that looks similar to this:

GAUSS Graphics

G
A
U
S
S
G
raphics

Figure 6.13: Close-up of quarterly data plot

6.7.2 Controlling Tic Label Locations

The first tic label on the X-axis of the graph that we drew at the end of the last section
is located on the first data point, 2007 Q4. Let us suppose that we would prefer the graph
to have tic labels only on the first quarter of each year. We can accomplish this by using
the function plotSetXTicInterval.

plotSetXTicInterval has the following parameters:

interval the number of data points between each X-
tic that is labeled.

firstLabeled the value of the first data point to be labeled.

Since we are working with quarterly data and would like to place X-tic labels on each
year, we will set the interval parameter equal to four and we will set the

6-26

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-27

firstLabeled to be the first full year in our series, 2008. This will change our pro-
gram to look like this:

//Declare and initialize plotControl structure
struct plotControl myPlot;
myPlot = plotGetDefaults(“xy”);

//Create 16 example data points
y = exp(seqa(0, 0.2, 16)) + rndu(16, 1);

//Start the series in 2007 Q4 and specify
//quarterly data
dstart = 200710;
freq = 4;

//Start x-tic labels at 2008 and label every 4th
//data point
interval = 4;
firstLabeled = 2008;
plotSetXTicInterval(&myPlot, interval, firstLabeled);

//Plot the data
plotTS(myPlot, dstart, freq, y);

This code should create a graph with x-tic labels only on the first quarter of each year as
you see below:

GAUSS Graphics

G
A
U
S
S
G
raphics

Figure 6.14: Quarterly data graph

We can see that the X-tics are in the correct location. However since we are only
labeling each year, we may not want Q1 printed next to the year on each of the X-tic
labels.

6.7.3 Tic Label Formatting

We can change the formatting of these labels and optionally the angle at which they are
printed with the function plotSetXTicLabel. This function has the following argu-
ments:

fmt string, specifying the format with which to
format the X-tic labels.

angle scalar, the angle at which to print the labels

The fmt input can take many forms, see dttostr and strtodt for all options, but for this
purpose we are only concerned with these three:

6-28

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-29

YYYY print the four digit year.
QQ print the quarter as Q1, Q2, Q3 or Q4.
MO print the month as a two digit number.

These format specifiers can be placed in any order. You may place any characters in
between them and they will be printed literally. For example if we start with 201204:

fmt = “YYYY-QQ”;

will tell GAUSS to print the date as:

2012-Q2

whereas:

fmt = “MO/YYYY”;

tells GAUSS to print the date as:

04/2012

Since we want to print only the four digit year on our x-tic labels, we will set:

fmt = “YYYY”;

Giving us the following program:

//Declare and initialize plotControl structure
struct plotControl myPlot;
myPlot = plotGetDefaults(“xy”);

//Create 16 example data points
y = exp(seqa(0, 0.2, 16)) + rndu(16, 1);

//Start the series in 2007 Q4 and specify
//quarterly data

GAUSS Graphics

G
A
U
S
S
G
raphics

dstart = 200710;
freq = 4;

//Start x-tic labels at 2008 and label every 4th
//data point
interval = 4;
firstLabeled = 2008;
plotSetXTicInterval(&myPlot, interval, firstLabeled);

//Label X-tics with only the 4 digit year
plotSetXTicLabel(&myPlot, “YYYY”);

//Plot the data
plotTS(myPlot, dstart, freq, y);

This final program should yield a graph that looks similar to:

Figure 6.15: Quarterly data graph

6-30

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-31

6.8 Interacting with Plots in GAUSS

Once a graph has been created, GAUSS provides interactive zooming, panning, and the
moving of legends and subplots as well as the ability to hide and restore individual
curves on the graph. Plot rotation is also available for 3-dimensional plots.

6.8.1 Interacting with 2-D Plots 6-31

6.8.2 3-D Plots 6-35

6.8.3 File Export 6-35

6.8.4 Saving Graphs 6-38

6.8.1 Interacting with 2-D Plots

To interact with plots in GAUSS, first select the "Zoom/Pan Plot" button from the tool-
bar. With this button selected, you will be able to perform actions on the view of a par-
ticular plot. Zooming is controlled by the mouse scroll wheel. Scroll the mouse wheel
forward to zoom in. Pan and scroll is accomplished by drag-and-drop with the mouse.
Note that upon zooming or panning, the axes will be automatically updated to reflect the
new view.

Figure 6.16: Zoom/Pan Plot Toolbar

GAUSS Graphics

G
A
U
S
S
G
raphics

Hide/Restore Curves

Each legend item is also a button that hides and restores individual curves, bars, etc.
Click on a legend item to hide the corresponding curve. Notice that the axes will auto-
matically scale to the remaining curves. Click the legend item again to restore the curve
to the graph.

Figure 6.17: The legend acts as a button to hide curves

Relocating Graphic Items

To relocate subplots or legends first select the "Revise Layout" button. You may then
drag and drop the item to its desired location. If you would like the legend to maintain its
position relative to the graph when it is relocated, you can accomplish this by selecting
the legend, right-clicking and selecting "regroup" from the context menu.

6-32

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-33

Figure 6.18: Drag and drop to relocate the legend

If you would like to change the z-order of an item in a layout, you may select it, right-
click to bring up the context menu and then choose, either "Send to Front" or "Send to
Back." Individual plots and their respective legends will both be affected.

GAUSS Graphics

G
A
U
S
S
G
raphics

Figure 6.19: Bring textbox to top of z-order to cover arrow tail

6-34

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-35

6.8.2 3-D Plots

Figure 6.20: Surface plot

Zoom

Zooming in and out on a 3-dimensional graph may be accomplished by use of the mouse
scroll wheel.

Rotate/Viewpoint Change

To rotate 3-dimensional plots and examine the graph from different viewpoints, right-
click and drag with the mouse (two-finger click and drag on Mac).

6.8.3 File Export

When exporting a graph interactively, the first step is to set the size of the entire graph
image, called the Canvas.

GAUSS Graphics

G
A
U
S
S
G
raphics

Customizing the Canvas

To access the Canvas settings, from the Graphics Page toolbar select “View->Graphics
Settings”. This will display the settings for whichever graphics object has focus. This
could be the graph and its legend, an annotation object such as an arrow or textbox, or
the Canvas. To give focus to the Canvas, click between the edge of your graph and the
edge of the graphics tab.

Figure 6.21: Select Canvas

Once you have opened the Canvas settings, set “Fixed Size” to “true”. This will prevent
the Canvas, and your graph, from being resized if you manually resize your GAUSS win-
dow. With this box is checked, the Canvas size will be controlled only by the Canvas
Settings window.

Setting the size in terms of pixels

If you will be using the image in an electronic format, you will want to set the image
size in terms of pixels. The “Units” Canvas setting controls whether the canvas will be

6-36

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-37

sized in terms of pixels or a unit of physical size. By default, “Units” will be set to
“pixels”.

Double-click the numbers in the “Width” and “Height” boxes to edit the numbers. If the
“Fixed Ratio” option is set to “true”, then when you change the “Width” or the
“Height”, the other dimension will be changed to keep the height-to-width ratio the
same.

Figure 6.22: Control canvas size

Setting the size in terms of physical size (inches, millimeters)

If you are exporting an image for print, you may want to set the image size in terms of a
physical size. To accomplish this, you will need to set the “Units” to either “mil-
limeters” or “inches” and you will have to set “Width”, “Height”, and the “DPI” or dots
per inch. This will allow GAUSS to create an image with enough pixels for your image
to be printed at your desired size with the required dots per inch.

GAUSS Graphics

G
A
U
S
S
G
raphics

Make any final adjustments

As you will see, when you change the Canvas dimensions in GAUSS, the graph image
will be adjusted to reflect those changes. This gives you a live preview of what your
exported image will look like. After you have changed the overall size of your Canvas,
you may want to make some adjustments to the size of fonts or lines on your graph to
make them proportional to the new size of the whole. Click on the graph to display the
Graph Settings in the Graphics Editor window, then make any necessary adjustments.

Exporting the file

Once you have the image as you would like it, select File->Export Graph from the main
application menu and then select a filename, image type, and folder in which to save
your file.

Copy and paste graphs into other programs

To copy and paste a graph from GAUSS to another program such as PowerPoint® or
Word®, right click on the graph inside of GAUSS and select “Copy to clipboard”. Next,
open the other program and “paste” the graph at an appropriate location into your file.

Note that when you copy an image to the clipboard, it becomes a raster image, which
means that resizing may decrease the image quality. Therefore, it is recommended that
you first appropriately size the image in GAUSS before copying the image to the clip-
board.

6.8.4 Saving Graphs

Graphs may be saved and then reloaded later. To save a graph, select the graph you
would like to save and then select File->Save Graph from the main menu. GAUSS
graphs are saved in a file with JSON format and a .plot extension.

6-38

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-39

Figure 6.23: Save Graph menu

Graphs may also be saved programmatically with the plotSave function.

6.9 Adding Annotations Programmatically in GAUSS

In addition to adding annotations such as text boxes, arrows and lines interactively with
the Graphics Editor, you may also add annotations in your GAUSS program. This func-
tionality is provided through the following functions:

plotAddArrow Adds arrows or lines to the last created graph.
plotAddShape Adds ellipses and rectangles to the last created

graph.

GAUSS Graphics

G
A
U
S
S
G
raphics

plotAddTextbox Adds a textbox to the last created graph.

Basic rules

1. As you can see from the function prefix, plotAdd, these functions are meant to add
to a graph that already exists. They will not create a new graph.

2. Added annotations will not expand the range of the X and Y axis so that they will fit
inside the visible axes. This allows you to place annotations outside the axes or
between different subplots.

6.9.1 Basic usage 6-40

6.9.2 Creating multiple annotations with vector inputs 6-41

6.9.3 Customization with a plotAnnotation structure 6-42

6.9.4 Using the annotationSet functions 6-43

6.9.1 Basic usage

Like the plotting functions, the graph annotation functions can be called without any styl-
ing options specified, or the user can pass in a control structure which will set the styling
for the annotation. Here is a basic example of adding a text box:

//Create and plot some data
x = seqa(0, 0.01, 628);
y = cos(x)~sin(x);
plotXY(x, y);

//Text to place in the text box
text_string = "Sine is the derivative of cosine";

//Location of the top left corner of the text box

6-40

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-41

//will be the position (3,0.8) on the graph
x_start = 3;
y_start = 0.8;

//Add text box
plotAddTextbox(text_string, x_start, y_start);

The positioning of the annotation, set by x_start and y_start above, are in terms
of the points on the graph to which the annotation is added.

Here is another basic example of adding an arrow:

//Arrow start and end locations
x_start = 3;
y_start = 0.8;
x_end = 1.07;
y_end = 0.5;

//Specify the head size
//at the end of the arrow
//in terms of points
head_size 10;

//Add the arrow to the last created graph
plotAddArrow(x_start, y_start, x_end, y_end, head_size);

6.9.2 Creating multiple annotations with vector inputs

You may create multiple annotations with one function call by passing vector inputs to
plotAddArrow, plotAddShape or plotAddTextbox. Here is an example
adding three text boxes to a graph at once:

//Create x and y coordinates
x = { 67, 80, 46 };
y = { 2.9, 3.6, 1.4 };

GAUSS Graphics

G
A
U
S
S
G
raphics

//Create scatter plot
plotScatter(x, y);

//Create string array of text labels
countries = "France" $| "Germany" $| "Spain";

//Add labels to scatter points
plotAddTextbox(countries, x, y);

6.9.3 Customization with a plotAnnotation structure

After an annotation has been added to a graph, you can customize it with the Graphics
Editor. If you would to set the style for your annotation inside of your GAUSS program,
you can do this with a plotAnnotation structure. The steps for using a plotAnnotation
structure are:

1. Declare an instance of a plotAnnotation structure

2. Fill in the plotAnnotation with default values

3. Set your desired options

4. Pass the structure in as the first argument to one of the annotation add functions

If you would like to create an instance of a plotAnnotation structure called myAn-
notation and fill it in with default values, steps 1 and 2 above, you would do this:

//Declare ‘myAnnotation’ to be an instance
//of a ‘plotAnnotation’ structure
struct plotAnnotation myAnnotation;

6-42

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

6-43

//Fill ‘myAnnotation’ with default values
myAnnotation = annotationGetDefaults();

Now you are ready to apply your desired style preferences to ‘myAnnotation’ with the
‘annotationSet’ functions. Available functions include:

annotationSetBkd Sets the color and transparency level of the
annotation’s background

annotationSetFont Sets the font style, font size and font color for a
text box

annotationSetLineColor Sets the line color for an arrow or the border of
a shape

annotationSetLineStyle Sets the line style for an arrow or the border of a
shape

annotationSetLineThickness Sets the line thickness for an arrow or the border
of a shape

You do not need to memorize this list or consult it when you are writing a program. Sim-
ply start typing “annotationSet” into the GAUSS editor and the autocomplete will
provide the full list of available functions.

6.9.4 Using the annotationSet functions

The ‘annotationSet’ functions work in the same manner as the ‘plotSet’ functions. The
first argument will be a pointer to a ‘plotAnnotation’ structure (which simply means that
there is an ampersand (&) in front of the name). The remaining arguments to the func-
tion will be the settings to apply.

GAUSS Graphics

G
A
U
S
S
G
raphics

Example: Styling an ellipse

Let’s say that we would like to highlight a section of the center of our graph. We can do
this by adding a semi-transparent circle to the center of the graph.

//Declare instance of ‘plotAnnotation’ structure
struct plotAnnotation myEllipse;

//Fill in ‘myEllipse’ with default values
myEllipse = annotationGetDefaults();

//Set the ellipse color to be violet
//and make it 30% opaque
annotationSetBkd(&myEllipse, "violet", 0.3);

//Add ellipse to the center of the graph
x_start = 2;
y_start = 5;
x_end = 3;
y_end = 8;
plotAddShape(myEllipse, "ellipse", x_start, y_start, x_end,
y_end);

To see examples of styling text boxes or arrows see the documentation for plotAd-
dTextbox and plotAddArrow.

6-44

GAUSS User Guide

G
A
U
S
S
G
ra
ph
ic
s

7 Graphics Editing

GAUSS allows you to interactively change most all attributes of a created graph. First
create a graph. For demonstration purposes you may run the example program ran-
domwalk.e to create a graph. Next open the Graph Settings window if it is not open
already, by selecting View->Graph Settings from the menu bar.

Figure 7.1: Open the Graph Settings Window

7.1 Changing Appearance 7-2

7.2 Adding Items 7-4

7-1

G
raphics

E
diting

7.3 Adding Text to a Text Box 7-5

7.4 Which Object Will Be Edited? 7-7

7.5 Moving and Resizing Objects 7-8

7.5.1 Note on Programmatic Annotations 7-8

7.1 Changing Appearance

Click on the graph or a graph annotation object to view its settings in the Graph Settings
Window. When an item is selected its outer border will be highlighted with a red, dash
line. Interacting with the Graph Settings is simple. Single-click on color squares to open
a color settings dialog. Single-click on drop-down menus to view the available options.
Double-click on font names to open your systems font dialog and also double-click on
text inputs, such as the "X-Axis" label, to enter new text.

7-2

GAUSS User Guide

G
ra
ph
ic
s
Ed
iti
ng

7-3

Figure 7.2: Color Palette

For example, click on the red color square next to "Line Color" under "Curve 1" to open
the Color Palette dialog as shown above. Double-click the current text next to "Caption"
under "Title" to enter text for the graph title as shown below.

Figure 7.3: Text Options

Graphics Editing

G
raphics

E
diting

Double-click font names in the graph settings window to open a font dialog window.

Figure 7.4: Font Options

7.2 Adding Items

The Graphics Page toolbar has buttons for adding

l Lines and arrows
l Rectangles

7-4

GAUSS User Guide

G
ra
ph
ic
s
Ed
iti
ng

7-5

l Ellipses
l Text boxes

To add an item, click the appropriate toolbar button and then click and drag to create the
object in your graphic window.

Figure 7.5: Select the item to add

Figure 7.6: Click and drag to add the object

7.3 Adding Text to a Text Box

First add the textbox to the graph by selecting the textbox icon, which looks like a capital
T, from the main GAUSS menubar. Then click and drag to size the textbox inside of
your graph.

Graphics Editing

G
raphics

E
diting

Figure 7.7: Color Palette

When you finish sizing the textbox, the Graphics Settings Window will open, displaying
the graphical controls that allow you to customize the textbox. Towards the bottom of the
graphics Settings Window will be the Content Input Pane. Its header will read "Content
(Text/HTML). Enter the text that you would like to appear inside the textbox in the Con-
tent Input Pane and click the "Apply" button. You may enter text which can include snip-
pets of HTML to create subscripting, superscripting, Greek letters or other special
characters and formatting.

Figure 7.8: Entering content for a textbox

7-6

GAUSS User Guide

G
ra
ph
ic
s
Ed
iti
ng

7-7

7.4 Which Object Will Be Edited?

If a graph or graphics object is actively selected, its border will be highlighted red.
Changes made in the Graph Settings Window will apply to this selected object. If no
object is actively selected, the Graph Settings Window will display the settings for the
Canvas. The Canvas is the entire scene in which the graph or graphs are placed.
Changing the Canvas properties is used to make final changes to the sizing of a graph
before exporting.

Figure 7.9: Highlighted Object

Graphics Editing

G
raphics

E
diting

7.5 Moving and Resizing Objects

To move an object, including graphs, legends, textboxes and other annotations, hover
your mouse over it. When your mouse pointer is a hand icon and the object you would
like to move has a blue highlight around its edges, click and drag to move the object to
its desired location.

Figure 7.10: Moving a graphic object

Hover over the corner of an object until your mouse pointer is two opposing arrows and
the object has a blue edge highlight. Then click and drag to resize the object.

Figure 7.11: Resizing a graphic object

7.5.1 Note on Programmatic Annotations

Annotations that are added programmatically are tied to the coordinates to which they
are placed. Items that are placed on the graph by two graph coordinate points such as
arrow cannot be manually relocated. Items that are placed on the graph by only one
coordinate point, such as textboxes, may be manually pivoted around the fixed point.

7-8

GAUSS User Guide

G
ra
ph
ic
s
Ed
iti
ng

8 Using the Command Line Interface

TGAUSS is the command line version of GAUSS. The executable file, tgauss, is loc-
ated in the GAUSS installation directory.

The format for using TGAUSS is:

tgauss flag(s) program program...

-b Execute file in batch mode and then exit. You can
execute multiple files by separating file names with
spaces.

-l logfile Set the name of the batch mode log file when using
the -b argument. The default is tmp/gauss.log###,
where ### is the process ID.

-e
expression

Execute a GAUSS expression. This command is not
logged when GAUSS is in batch mode.

-o Suppress the sign-on banner (output only).
-T Turn the dataloop translator on.
-t Turn the dataloop translator off.

8.1 Viewing Graphics 8-2

8-1

U
sing

the
C
om

m
and

Line
Interface

8.2 Command Line History and Command Line Editing 8-3

8.2.1 Movement 8-3

8.2.2 Editing 8-4

8.2.3 History Retrieval 8-4

8.3 Interactive Commands 8-5

8.3.1 quit 8-5

8.3.2 ed 8-6

8.3.3 browse 8-6

8.3.4 config 8-6

8.4 Debugging 8-8

8.4.1 General Functions 8-8

8.4.2 Listing Functions 8-8

8.4.3 Execution Functions 8-9

8.4.4 View Commands 8-10

8.4.5 Breakpoint Commands 8-11

8.5 Using the Source Browser in TGAUSS 8-12

8.1 Viewing Graphics

NOTE: Graphics using plot* functions are only available from the graphical user inter-
face.

The deprecated Publication Quality Graphics graphics generated .tkf files for graph-
ical output. The default output for these graphics is graphic.tkf. On Windows, you
can use vwr.exe to view the graphics file; on Linux/Mac, you can use vwrmp. Two

8-2

GAUSS User Guide

U
si
ng

th
e
C
om

m
an
d

Li
ne

In
te
rf
ac
e

8-3

functions are available to convert .tkf files to PostScript for printing and viewing with
external viewers: the tkf2ps function will convert .tkf files to PostScript (.ps)
files, and the tkf2eps function will convert .tkf files to encapsulated PostScript
(.eps) files. For example, to convert the file graphic.tkf to a postscript file named
graphic.ps use:

ret = tkf2ps("filename.tkf", "filename.ps")

If the function is successful it returns 0.

8.2 Command Line History and Command Line Editing

When you run a command at the TGAUSS prompt, it is added to your command line his-
tory, which is stored in a file called .gauss_prompt_history in your $(HOME) directory
on Linux or in your $(HOMEDRIVE)\$(HOMEPATH) directory on Windows. A sep-
arate history for commands entered in the command line debugger is stored in a file
called .gauss_debug_prompt_history in the same directory. By default, the last 500 com-
mands executed at the TGAUSS and debugger command lines are stored in these files.
You can change this number by changing prompt_hist_num in your gauss.cfg file.
The following keystrokes are supported for movement and editing at the command line
and for retrieving the command line history:

8.2.1 Movement 8-3

8.2.2 Editing 8-4

8.2.3 History Retrieval 8-4

8.2.1 Movement

HOME or CTRL+A Moves cursor to beginning of line
END or CTRL+E Moves cursor to end of line

Using the Command
Line Interface

U
sing

the
C
om

m
and

Line
Interface

8.2.2 Editing

DELETE or
CTRL+D

Deletes character at cursor

BACKSPACE or
CTRL+H

Deletes character left of cursor

CTRL+U Cuts all characters left of cursor
CTRL+K Cuts all characters right of cursor, including cursor
CTRL+X Cuts whole line
ESC (Win only) Deletes whole line
CTRL+V Pastes text from buffer to left of cursor
CTRL+T Transposes character at cursor and character left of

cursor

8.2.3 History Retrieval

Up Arrow or
CTRL+P

Retrieves previous line in history

Down Arrow or
CTRL+P

Retrieves next line in history

PAGE UP or
CTRL+W

Retrieves previous line in history that matches text to
left of cursor

PAGE DOWN or
CTRL+S

Retrieves next line in history that matches text to left
of cursor

ALT+H or
OPTION+H
(MAC only)

Prints prompt history to screen

!! Runs last line in history
! num Runs the num line in history

8-4

GAUSS User Guide

U
si
ng

th
e
C
om

m
an
d

Li
ne

In
te
rf
ac
e

8-5

!- num Runs the line num before current line in history;
!-1 is equivalent to !!

!text Runs last line in history beginning with text

ALT+/ or ALT+?
or OPTION+/
(MAC only)

Prints help screen

Note that some of these keystrokes are mapped differently on different computers. For
example, on some computers, SHIFT+RIGHT ARROW behaves the same as RIGHT
ARROW, while ALT+RIGHT ARROW moves the cursor right one word. Therefore, mul-
tiple keystroke mappings have been supported to maximize the availability of these com-
mandson any given machine.

8.3 Interactive Commands

This section discusses interactive commands available in TGAUSS.

8.3.1 quit 8-5

8.3.2 ed 8-6

8.3.3 browse 8-6

8.3.4 config 8-6

8.3.1 quit

The quit command will exit TGAUSS.

The format for quit is:

quit

Using the Command
Line Interface

U
sing

the
C
om

m
and

Line
Interface

You can also use the system command to exit TGAUSS from either the command line
or a program (see system in the GAUSS LANGUAGEREFERENCE).

The format for system is:

system

8.3.2 ed

The ed command will open an input file in an external text editor (see ed in the
GAUSS LANGUAGEREFERENCE).

The format for ed is:

ed filename

8.3.3 browse

The browse command allows you to search for specific symbols in a file and open the
file in the default editor. You can use wildcards to extend search capabilities of the
browse command.

The format for browse is:

browse
symbol

8.3.4 config

The config command gives you access to the configuration menu allowing you to
change the way GAUSS runs and compiles files.

The format for config is:

8-6

GAUSS User Guide

U
si
ng

th
e
C
om

m
an
d

Li
ne

In
te
rf
ac
e

8-7

config

Run Menu

Translator Toggles on/off the translation of a file using
dataloop. The translator is not necessary for
GAUSS program files not using dataloop.

Translator line
number tracking

Toggles on/off execution time line number tracking
of the original file before translation.

Line number
tracking

Toggles on/off the execution time line number
tracking. If the translator is on, the line numbers refer
to the translated file.

Compile Menu

Autoload Toggles on/off the autoloader.
Autodelete Toggles on/off autodelete.
GAUSS Library Toggles on/off the GAUSS library functions.
User Library Toggles on/off the user library functions.
Declare Warnings Toggles on/off the declare warning messages during

compiling.
Compiler Trace Includes the following options:

Off Turns off the compiler trace
function.

File Traces program file openings and
closings.

Line Traces compilation by line.
Symbol Creates a report of procedures and the local and

global symbols they reference.

Using the Command
Line Interface

U
sing

the
C
om

m
and

Line
Interface

8.4 Debugging

The debug command runs a program under the source level debugger.

The format for debug is:

debug filename

8.4.1 General Functions 8-8

8.4.2 Listing Functions 8-8

8.4.3 Execution Functions 8-9

8.4.4 View Commands 8-10

8.4.5 Breakpoint Commands 8-11

8.4.1 General Functions

? Displays a list of available commands.
q/Esc Exits the debugger and returns to the GAUSS

command line.
+/- Disables the last command repeat function.

8.4.2 Listing Functions

l number Displays a specified number of lines of source code
in the current file.

lc Displays source code in the current file starting with
the current line.

ll file line Displays source code in the named file starting with
the specified line.

8-8

GAUSS User Guide

U
si
ng

th
e
C
om

m
an
d

Li
ne

In
te
rf
ac
e

8-9

ll file Displays source code in the named file starting with
the first line.

ll line Displays source code starting with the specified line.
File does not change.

ll Displays the next page of source code.
lp Displays the previous page of source code.

8.4.3 Execution Functions

s number Executes the specified number of lines, stepping into
procedures.

n number Executes the specified number of lines, stepping
over procedures.

x number Executes code from the beginning of the program to
the specified line count, or until a breakpoint is hit.

g Executes from the current line to the end of the
program, stopping at breakpoints. The optional
arguments specify other stopping points. The syntax
for each optional argument is:
filename
line
period

The debugger will stop every
period times it reaches the
specified line in the
named file.

filename
line

The debugger will stop when it
reaches the specified line
in the named file.

filename
,, period

The debugger will stop every
period times it reaches any
line in the named file.

line The debugger will stop every

Using the Command
Line Interface

U
sing

the
C
om

m
and

Line
Interface

period period times it reaches the
specified line in the
current file.

filename The debugger will stop at every
line in the named file.

line The debugger will stop when it
reaches the specified line
in the current file.

procedure
period

The debugger will stop every
period times it reaches the
first line in a called procedure.

procedure The debugger will stop every
time it reaches the first line in a
called procedure.

j Executes code to a specified line, procedure, or
period in the file without stopping at breakpoints.
The optional arguments are the same as g, listed
above.

jx number Executes code to the execution count specified
(number) without stopping at breakpoints.

o Executes the remainder of the current procedure (or
to a breakpoint) and stops at the next line in the
calling procedure.

8.4.4 View Commands

v [[vars]] Searches for (a local variable, then a global variable)
and displays the value of a specified variable.

v$[[vars]] Searches for (a local variable, then a global variable)
and displays the specified character matrix.

8-10

GAUSS User Guide

U
si
ng

th
e
C
om

m
an
d

Li
ne

In
te
rf
ac
e

8-11

The display properties of matrices and string arrays can be set using the following com-
mands.

r Specifies the number of rows to be shown.
c Specifies the number of columns to be shown.
num, num Specifies the indices of the upper left corner of the

block to be shown.
w Specifies the width of the columns to be shown.
p Specifies the precision shown.
f Specifies the format of the numbers as decimal,

scientific, or auto format.
q Quits the matrix viewer.

8.4.5 Breakpoint Commands

lb Shows all the breakpoints currently defined.
b Sets a breakpoint in the code. The syntax for each optional

argument is:
filename line
period

The debugger will stop every
period times it reaches the specified
line in the named file.

filename line The debugger will stop when it
reaches the specified line in the
named file.

filename ,,
period

The debugger will stop every
period times it reaches any line in
the named file.

line period The debugger will stop every
period times it reaches the specified

Using the Command
Line Interface

U
sing

the
C
om

m
and

Line
Interface

line in the current file.
filename The debugger will stop at every line in

the named file.
line The debugger will stop when it

reaches the specified line in the current
file.

procedure
period

The debugger will stop every
period times it reaches the first line
in a called procedure.

procedure The debugger will stop every time it
reaches the first line in a called
procedure.

d Removes a previously specified breakpoint. The optional
arguments are the same arguments as b, listed above.

8.5 Using the Source Browser in TGAUSS

To start the Source Browser in TGAUSS, type BROWSE followed by a symbol name.
When the Source Browser is active, the prompt displays Browse:. GAUSS searches
through all active libraries for the file in which the symbol is defined. If found, the file
containing the source code is opened in the default editor.

Wildcard (*) searches can also be used. When using wildcard searches, each symbol
that the string matches will be displayed on-screen in a numbered list. To select a spe-
cific command to view in the default editor, select the number from the list.

The Source Browser will remain active until you type CTRL+C to return to the GAUSS
prompt.

8-12

GAUSS User Guide

U
si
ng

th
e
C
om

m
an
d

Li
ne

In
te
rf
ac
e

9 Language Fundamentals

GAUSS is a compiled language. GAUSS is also an interpreter. A compiled language,
because GAUSS scans the entire program once and translates it into a binary code
before it starts to execute the program. An interpreter, because the binary code is not the
native code of the CPU. When GAUSS executes the binary pseudocode it must "inter-
pret" each instruction for the computer.

How can GAUSS be so fast if it is an interpreter? Two reasons. First, GAUSS has a
fast interpreter, and the binary compiled code is compact and efficient. Second, and
most significantly, GAUSS is a matrix language. It is designed to tackle problems that
can be solved in terms of matrix or vector equations. Much of the time lost in inter-
preting the pseudocode is made up in the matrix or vector operations.

This chapter will enable you to understand the distinction between "compile time" and
"execution time," two very different stages in the life of a GAUSS program.

9.1 Expressions 9-3

9.2 Statements 9-3

9.2.1 Executable Statements 9-4

9.2.2 Nonexecutable Statements 9-5

9.3 Programs 9-6

9-1

Language
F
undam

entals

9.3.1 Main Section 9-6

9.3.2 Secondary Sections 9-6

9.4 Compiler Directives 9-7

9.5 Procedures 9-10

9.6 Data Types 9-10

9.6.1 Constants 9-11

9.6.2 Matrices 9-12

9.6.3 Sparse Matrices 9-19

9.6.4 N-dimensional Arrays 9-20

9.6.5 Strings 9-20

9.6.6 String Arrays 9-24

9.6.7 Character Matrices 9-26

9.6.8 Date and Time Formats 9-27

9.6.9 Special Data Types 9-29

9.7 Operator Precedence 9-31

9.8 Flow Control 9-32

9.8.1 Looping 9-32

9.8.2 Conditional Branching 9-35

9.8.3 Unconditional Branching 9-36

9.9 Functions 9-37

9.10 Rules of Syntax 9-38

9-2

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-3

9.10.1 Statements 9-39

9.10.2 Case 9-39

9.10.3 Comments 9-39

9.10.4 Extraneous Spaces 9-40

9.10.5 Symbol Names 9-40

9.10.6 Labels 9-40

9.10.7 Assignment Statements 9-41

9.10.8 Function Arguments 9-41

9.10.9 Indexing Matrices 9-41

9.10.10 Arrays of Matrices and Strings 9-42

9.10.11 Arrays of Procedures 9-44

9.1 Expressions

An expression is a matrix, string, constant, function reference, procedure reference, or
any combination of these joined by operators. An expression returns a result that can be
assigned to a variable with the assignment operator '='.

9.2 Statements

A statement is a complete expression or command. Statements end with a semicolon.

y = x*3;

If an expression has no assignment operator (=), it will be assumed to be an implicit
print statement:

print x*3;

Language
Fundamentals

Language
F
undam

entals

or

x*3;

Here is an example of a statement that is a command rather than an expression:

output on;

Commands cannot be used as a part of an expression.

There can be multiple statements on the same line as long as each statement is ter-
minated with a semicolon.

9.2.1 Executable Statements 9-4

9.2.2 Nonexecutable Statements 9-5

9.2.1 Executable Statements

Executable statements are statements that can be "executed" over and over during the
execution phase of a GAUSS program (execution time). As an executable statement is
compiled, binary code is added to the program being compiled at the current location of
the instruction pointer. This binary code will be executed whenever the interpreter
passes through this section of the program. If this code is in a loop, it will be executed
each iteration of the loop.

Here are some examples of executable statements:

y = 34.25;

print y;

x = 1 3 7 2 9 4 0 3 ;

9-4

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-5

9.2.2 Nonexecutable Statements

Nonexecutable statements are statements that have an effect only when the program is
compiled (compile time). They generate no executable code at the current location of the
instruction pointer.

Here are two examples:

declare matrix x = 1 2 3 4 ;

external matrix ybar;

Procedure definitions are nonexecutable. They do not generate executable code at the
current location of the instruction pointer.

Here is an example:

zed = rndn(3,3);

proc sqrtinv(x);
local y;
y = sqrt(x);
retp(y+inv(x));

endp;

zsi = sqrtinv(zed);

There are two executable statements in the example above: the first line and the last
line. In the binary code that is generated, the last line will follow immediately after the
first line. The last line is the call to the procedure. This generates executable code.
The procedure definition generates no code at the current location of the instruction
pointer.

There is code generated in the procedure definition, but it is isolated from the rest of the
program. It is executable only within the scope of the procedure and can be reached only
by calling the procedure.

Language
Fundamentals

Language
F
undam

entals

9.3 Programs

A program is any set of statements that are run together at one time. There are two sec-
tions within a program.

9.3.1 Main Section 9-6

9.3.2 Secondary Sections 9-6

9.3.1 Main Section

The main section of the program is all of the code that is compiled together WITHOUT
relying on the autoloader. This means code that is in the main file or is included in the
compilation of the main file with an #include statement. ALL executable code should
be in the main section.

There must always be a main section even if it consists only of a call to the one and only
procedure called in the program.

9.3.2 Secondary Sections

Secondary sections of the program are files that are neither run directly nor included in
the main section with #include statements.

The secondary sections of the program can be left to the autoloader to locate and com-
pile when they are needed. Secondary sections must have only procedure definitions and
other nonexecutable statements.

#include statements are allowed in secondary sections as long as the file being
included does not violate the above criteria.

Here is an example of a secondary section:

declare matrix tol = 1.0e-15;
proc feq(a,b);

9-6

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-7

retp(abs(a-b) <= tol);
endp;

9.4 Compiler Directives

Compiler directives are commands that tell GAUSS how to process a program during
compilation. Directives determine what the final compiled form of a program will be.
They can affect part or all of the source code for a program. Directives are not execut-
able statements and have no effect at run-time. They do not take a semicolon at the end
of the line.

The #include statement mentioned earlier is actually a compiler directive. It tells
GAUSS to compile code from a separate file as though it were actually part of the file
being compiled. This code is compiled in at the position of the #include statement.

Here are the compiler directives available in GAUSS:

#define Define a case-insensitive text-replacement or flag
variable.

#definecs Define a case-sensitive text-replacement or flag
variable.

#undef Undefine a text-replacement or flag variable.
#ifdef Compile code block if a variable has been

#define'd.
#ifndef Compile code block if a variable has not been

#define'd.
#iflight Compile code block if running GAUSS Light.
#ifmac Compile code block if running Mac.
#ifos2win Compile code block if running Windows.
#ifunix Compile code block if running UNIX.
#else Else clause for #if-#else-#endif code block.
#endif End of #if-#else-#endif code block.

Language
Fundamentals

Language
F
undam

entals

#include Include code from another file in program.
#lineson Compile program with line number and file name

records.
#linesoff Compile program without line number and file name

records.
#srcfile Insert source file name record at this point (currently

used when doing data loop translation).
#srcline Insert source file line number record at this point

(currently used when doing data loop translation).

The #define statement can be used to define abstract constants. For example, you
could define the default graphics page size as:

#define hpage 9.0
#define vpage 6.855

and then write your program using hpage and vpage. GAUSS will replace them with
9.0 and 6.855 when it compiles the program. This makes a program much more readable.

The #ifdef-#else-#endif directives allow you to conditionally compile sections of
a program, depending on whether a particular flag variable has been #define'd. For
example:

#ifdef log_10
y = log(x);

#else
y = ln(x);

#endif

This allows the same program to calculate answers using different base logarithms,
depending on whether or not the program has a #define log_10 statement at the
top.

9-8

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-9

#undef allows you to undefine text-replacement or flag variables so they no longer
affect a program, or so you can #define them again with a different value for a dif-
ferent section of the program. If you use #definecs to define a case-sensitive vari-
able, you must use the right case when #undef'ing it.

With #lineson, #linesoff, #srcline, and #srcfile you can include line
number and file name records in your compiled code, so that run-time errors will be
easier to track down. #srcline and #srcfile are currently used by GAUSS
when doing data loop translation.

For more information on line number tracking, see Debugging, Section 8.4 and see
Debugging Data Loops, Section 25.3 . See also #lineson in the GAUSS LANGUAGE
REFERENCE.

The syntax for #srcfile and #srcline is different than for the other directives that
take arguments. Typically, directives do not take arguments in parentheses; that is, they
look like keywords:

#define red 4

#srcfile and #srcline, however, do take their arguments in parentheses (like pro-
cedures):

#srcline(12)

This allows you to place #srcline statements in the middle of GAUSS commands,
so that line numbers are reported precisely as you want them. For example:

#srcline(1) print "Here is a multi-line "
#srcline(2) "sentence--if it contains a run-time error, "
#srcline(3) "you will know exactly "
#srcline(4) "which part of the sentence has the problem.";

The argument supplied to #srcfile does not need quotes:

#srcfile(/gauss/test.e)

Language
Fundamentals

Language
F
undam

entals

9.5 Procedures

A procedure allows you to define a new function which you can then use as if it were an
intrinsic function. It is called in the same way as an intrinsic function.

y = myproc(a,b,c);

Procedures are isolated from the rest of your program and cannot be entered except by
calling them. Some or all of the variables inside a procedure can be local variables.
local variables exist only when the procedure is actually executing and then dis-
appear. Local variables cannot get mixed up with other variables of the same name in
your main program or in other procedures.

For details on defining and calling procedures, see PROCEDURES AND KEYWORDS,
CHAPTER 11 .

9.6 Data Types

There are four basic data types in GAUSS, matrices, N-dimensional arrays, strings and
string arrays. It is not necessary to declare the type of a variable, but it is good pro-
gramming practice to respect the types of variables whenever possible. The data type
and size can change in the course of a program.

The declare statement, used for compile-time initialization, enforces type checking.

Short strings of up to 8 bytes can be entered into elements of matrices, to form character
matrices (For details, see Command Summary, Section 28.1).

9.6.1 Constants 9-11

9.6.2 Matrices 9-12

9.6.3 Sparse Matrices 9-19

9.6.4 N-dimensional Arrays 9-20

9.6.5 Strings 9-20

9.6.6 String Arrays 9-24

9-10

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-11

9.6.7 Character Matrices 9-26

9.6.8 Date and Time Formats 9-27

9.6.9 Special Data Types 9-29

9.6.1 Constants

The following constant types are supported:

Decimal

Decimal constants can be either integer or floating point values:

1.34e-10
1.34e123

-1.34e+10
-1.34d-10
1.34d10
1.34d+10
123.456789345

Up to 18 consecutive digits before and after the decimal point(depending on the plat-
form) are significant, but the final result will be rounded to double precision if neces-
sary. The range is the same as for matrices (For details, see Matrices, Section 9.6.2

String

String constants are enclosed in quotation marks:

"This is a string."

Hexadecimal Integer

Hexadecimal integer constants are prefixed with 0x:

Language
Fundamentals

Language
F
undam

entals

0x0ab53def2

Hexadecimal Floating Point

Hexadecimal floating point constants are prefixed with 0v. This allows you to input a
double precision value exactly as you want using 16 hexadecimal digits. The highest
order byte is to the left:

0vfff8000000000000

9.6.2 Matrices
Matrices are 2-dimensional arrays of double precision numbers. All matrices are impli-
citly complex, although if it consists only of zeros, the imaginary part may take up no
space. Matrices are stored in row major order. A 2x3 real matrix will be stored in the fol-
lowing way from the lowest addressed element to the highest addressed element:

[1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

A 2x3 complex matrix will be stored in the following way from the lowest addressed ele-
ment to the highest addressed element:

(real part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]
(imaginary part) [1,1] [1,2] [1,3] [2,1] [2,2] [2,3]

Conversion between complex and real matrices occurs automatically and is transparent
to the user in most cases. Functions are provided to provide explicit control when neces-
sary.

All elements of a GAUSS matrix are stored in double precision floating point format,
and each takes up 8 bytes of memory. This is the IEEE 754 format:

Bytes Data Type Significant
Digits Range

8 floating
point

15-16 4.19 x 10-
307

9-12

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-13

<=|
X|<=1.67
x 10+308

Matrices with only one element (1x1 matrices) are referred to as scalars, and matrices
with only one row or column (1xN or Nx1 matrices) are referred to as vectors.

Any matrix or vector can be indexed with two indices. Vectors can be indexed with one
index. Scalars can be indexed with one or two indices also, because scalars, vectors,
and matrices are the same data type to GAUSS.

The majority of functions and operators in GAUSS take matrices as arguments. The fol-
lowing functions and operators are used for defining, saving, and loading matrices:

[] Indexing matrices.
= Assignment operator.
| Vertical concatenation.
~ Horizontal concatenation.
con Numeric input from keyboard.
cons Character input from keyboard.
declare Compile-time matrix or string initialization.
let Matrix definition statement.
load Load matrix (same as loadm).
readr Read from a GAUSS matrix or data set file.
save Save matrices, procedures and strings to disk.
saved Convert a matrix to a GAUSS data set.
stof Convert string to matrix.
submat Extract a submatrix.
writer Write data to a GAUSS data set.

Following are some examples of matrix definition statements.

Language
Fundamentals

Language
F
undam

entals

An assignment statement followed by data enclosed in braces is an implicit let state-
ment. Only constants are allowed in let statements; operators are illegal. When braces
are used in let statements, commas are used to separate rows. The statement

let x = 1 2 3, 4 5 6, 7 8 9 ;

or

x = 1 2 3, 4 5 6, 7 8 9 ;

will result in

1 2 3
x = 4 5 6

7 8 9

The statement

let x[3,3] = 1 2 3 4 5 6 7 8 9;

will result in

1 2 3
x = 4 5 6

7 8 9

The statement

let x[3,3] = 1;

will result in

1 1 1
x = 1 1 1

1 1 1

The statement

9-14

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-15

let x[3,3];

will result in

0 0 0
x = 0 0 0

0 0 0

The statement

let x = 1 2 3 4 5 6 7 8 9;

will result in

1
2
3
4

x = 5
6
7
8
9

Complex constants can be entered in a let statement. In the following example, the +
or - is not a mathematical operator, but connects the two parts of a complex number.
There should be no spaces between the + or - and the parts of the number. If a number
has both real and imaginary parts, the trailing 'i' is not necessary. If a number has no real
part, you can indicate that it is imaginary by appending the 'i'. The statement

let x[2,2] = 1+2i 3-4 5 6i;

will result in

x = 1+2i 3-4i
5 0+6i

Language
Fundamentals

Language
F
undam

entals

Complex constants can also be used with the declare, con and stof statements.

An ''empty matrix'' is a matrix that contains no data. Empty matrices are created with
the let statement and braces:

x = {};

Empty matrices are supported by several functions, including rows and cols and the
concatenation (~, |) operators.

x = {};
hsec0 = hsec;
do until hsec-hsec0 > 6000;
x = x ~ data_in(hsec-hsec0);

endo;

You can test whether a matrix is empty by entering rows(x), cols(x) and scalerr
(x). If the matrix is empty rows and cols will return a 0, and scalerr will return
65535.

The ~ is the horizontal concatenation operator and the | is the vertical concatenation
operator. The statement

y = 1~2|3~4;

will be evaluated as

y = (1~2)|(3~4);

and will result in a 2x2 matrix because horizontal concatenation has precedence over ver-
tical concatenation:

y = 1 2
3 4

The statement

9-16

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-17

y = 1+1~2*2|3-2~6/2;

will be evaluated as

y = ((1+1) ~ (2*2)) | ((3-2) ~ (6/2));

and will result in a 2x2 matrix because the arithmetic operators have precedence over
concatenation:

y = 2 4
1 3

For more information, see Operator Precedence, Section 10.7 .

The let command is used to initialize matrices with constant values:

let x[2,2] = 1 2 3 4;

Unlike the concatenation operators, it cannot be used to define matrices in terms of
expressions such as:

y = x1-x2~x2|x3*3~x4;

The statement

y = x[1:3,5:8];

will put the intersection of the first three rows and the fifth through eighth columns of x
into the matrix y.

The statement

y = x[1 3 1,5 5 9];

will create a 3x3 matrix y with the intersection of the specified rows and columns pulled
from x (in the indicated order).

The following code

Language
Fundamentals

Language
F
undam

entals

let r = 1 3 1;
let c = 5 5 9;
y = x[r,c];

will have the same effect as the previous example, but is more general.

The statement

y[2,4] = 3;

will set the 2,4 element of the existing matrix y to 3. This statement is illegal if y does
not have at least 2 rows and 4 columns.

The statement

x = con(3,2);

will cause the following prompt to be printed in the window:

- (1,1)

indicating that the user should enter the [1,1] element of the matrix. Entering a number
and then pressing ENTER will cause a prompt for the next element of the matrix to
appear. Pressing ? will display a help screen, and pressing x will exit.

The statement

load x[] = b:mydata.asc

will load data contained in an ASCII file into an Nx1 vector x. (Use rows(x) to find
out how many numbers were loaded, and use reshape(x,N,K) to reshape it to an
NxK matrix).

The statement

load x;

9-18

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-19

will load the matrix x.fmt from disk (using the current load path) into the matrix x in
memory.

The statement

open d1 = dat1;
x = readr(d1,100);

will read the first 100 rows of the GAUSS data set dat1.dat.

9.6.3 Sparse Matrices

Many GAUSS operators and commands support the sparse matrix data type. You may
use any of the following commands to create a sparse matrix:

denseToSp Converts a dense matrix to a sparse matrix.
denseToSpRE Converts a dense matrix to a sparse matrix, using a

relative epsilon.
packedToSp Creates a sparse matrix from a packed matrix of non-

zero values and row and column indices.
spCreate Creates a sparse matrix from vectors of non-zero

values, row indices, and column indices.
spEye Creates a sparse identity matrix.
spOnes Generates a sparse matrix containing only ones and

zeros
spZeros Creates a sparse matrix containing no non-zero

values.

See SPARSE MATRICES, CHAPTER 13 , for more information.

Language
Fundamentals

Language
F
undam

entals

9.6.4 N-dimensional Arrays

Many GAUSS commands support arrays of N dimensions. The following commands
may be used to create and manipulate an N-dimensional array:

aconcat Concatenate conformable matrices and arrays in a
user-specified dimension.

aeye Create an N-dimensional array in which the planes
described by the two trailing dimensions of the array
are equal to the identity.

areshape Reshape a scalar, matrix, or array into an array of
user-specified size.

arrayalloc Create an N-dimensional array with unspecified
contents.

arrayinit Create an N-dimensional array with a specified fill
value.

mattoarray Convert a matrix to a type array.

See N-DIMENSIONAL ARRAYS, CHAPTER 14 , for a more detailed explanation.

9.6.5 Strings

Strings can be used to store the names of files to be opened, messages to be printed,
entire files, or whatever else you might need. Any byte value is legal in a string from 0-
255. The buffer where a string is stored always contains a terminating byte of ASCII 0.
This allows passing strings as arguments to C functions through the Foreign Language
Interface.

Here is a partial list of the functions for manipulating strings:

$+ Combine two strings into one long string.
^ Interpret following name as a variable, not a literal.

9-20

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-21

chrs Convert vector of ASCII codes to character string.
dttostr Convert a matrix containing dates in DT scalar

format to a string array.
ftocv Character representation of numbers in NxK

matrix.
ftos Character representation of numbers in 1x1 matrix.
ftostrC Convert a matrix to a string array using a C

language format specification.
getf Load ASCII or binary file into string.
indcv Find index of element in character vector.
lower Convert to lowercase.
stof Convert string to floating point.
strindx Find index of a string within a second string.
strlen Length of a string.
strsect Extract substring of string.
strsplit Split an Nx1 string vector into an NxK string array

of the individual tokens.
strsplitPad Split a string vector into a string array of the

individual tokens. Pads on the right with null
strings.

strtodt Convert a string array of dates to a matrix in DT
scalar format.

strtof Convert a string array to a numeric matrix.
strtofcplx Convert a string array to a complex numeric

matrix.
upper Convert to uppercase.
vals Convert from string to numeric vector of ASCII

codes.

Language
Fundamentals

Language
F
undam

entals

Strings can be created like this:

x = "example string";

or

x = cons; // keyboard input

or

x = getf("myfile",0); // read a file into a string

They can be printed like this:

print x;

A character matrix must have a '$' prefixed to it in a print statement:

print $x;

A string can be saved to disk with the save command in a file with a .fst extension
and then loaded with the load command:

save x;
loads x;

or

loads x=x.fst;

The backslash is used as the escape character inside double quotes to enter special
characters:

"\b" backspace (ASCII 8)
"\e" escape (ASCII 27)
"\f" formfeed (ASCII 12)

9-22

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-23

"\g" beep (ASCII 7)
"\l" line feed (ASCII 10)
"\r" carriage return (ASCII 13)
"\t" tab (ASCII 9)
"\\" a backslash
"\###" the ASCII character whose decimal value is ''###''.

When entering DOS pathnames in double quotes, two backslashes must be used to insert
one backslash:

st = "c:\\gauss\\myprog.prg";

An important use of strings and character elements of matrices is with the substitution
operator (^). In the command

create f1 = olsdat with x,4,2;

by default, GAUSS will interpret the olsdat as a literal; that is, the literal name of the
GAUSS data file you want to create. It will also interpret the x as the literal prefix
string for the variable names: x1 x2 x3 x4. If you want to get the data set name
from a string variable, the substitution operator (^) could be used as:

dataset="olsdat";
create f1=^dataset with x,4,2;

If you want to get the data set name from a string variable and the variable names from
a character vector, use

dataset="olsdat";
let vnames=age pay sex;
create f1=^dataset with ^vnames,0,2;

The substitution operator (^) works with load and save also:

Language
Fundamentals

Language
F
undam

entals

lpath="/gauss/procs";
name="mydata";
load path=^lpath x=^name;
command="dir *.fmt";

The general syntax is:

^variable_name

Expressions are not allowed. The following commands are supported with the sub-
stitution operator (^):

create f1=^dataset with ^vnames,0,2;
create f1=^dataset using ^cmdfile;
open f1=^dataset;
output file=^outfile;
load x=^datafile;
load path=^lpath x,y,z,t,w;
loadexe buf=^exefile;
save ^name=x;
save path=^spath;
dos ^cmdstr;
run ^prog;
msym ^mstring;

9.6.6 String Arrays

String arrays are NxK matrices of strings. Here is a partial list of the functions for
manipulating string arrays:

$| Vertical string array concatenation operator.
$~ Horizontal string array concatenation operator.
[] Extract subarrays or individual strings from their

corresponding array, or assign their values.

9-24

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-25

' Transpose operator.
.' Bookkeeping transpose operator.
declare Initialize variables at compile time.
delete Delete specified global symbols.
fgetsa Read multiple lines of text from a file.
fgetsat Reads multiple lines of text from a file, discarding

newlines.
format Define output format for matrices, string arrays, and

strings.
fputs Write strings to a file.
fputst Write strings to a file, appending newlines.
let Initialize matrices, strings, and string arrays.
loads Load a string or string array file (.fst file).
lprint Print expressions to the printer.
lshow Print global symbol table to the printer.
print Print expressions on window and/or auxiliary

output.
reshape Reshape a matrix or string array to new dimensions.
save Save matrix, string array, string, procedure, function

or keyword to disk and gives the disk file either a
.fmt , .fst or .fcg extension.

show Display global symbol table.
sortcc Quick-sort rows of matrix or string array based on

character column.
type Indicate whether variable passed as argument is

matrix, string, or string array.
typecv Indicate whether variables named in argument are

strings, string arrays, matrices, procedures, functions
or keywords.

Language
Fundamentals

Language
F
undam

entals

varget Access the global variable named by a string array.
varput Assign the global variable named by a string array.
vec Stack columns of a matrix or string array to form a

column vector.
vecr Stack rows of a matrix or string array to form a

column vector.

String arrays are created through the use of the string array concatenation operators.
Below is a contrast of the horizontal string and horizontal string array concatenation
operators. The statements:

x = "age";
y = "pay";
n = "sex";
s = x$+y$+n;
sa = x$~y$~n;

assign the values:

s = agepaysex
s = age pay sex

9.6.7 Character Matrices

Matrices can have either numeric or character elements. For convenience, a matrix con-
taining character elements is referred to as a character matrix.

A character matrix is not a separate data type, but gives you the ability to store and
manipulate data elements that are composed of ASCII characters as well as floating
point numbers. For example, you may want to concatenate a column vector containing
the names of the variables in an analysis onto a matrix containing the coefficients, stand-
ard errors, t-statistic, and p-value. You can then print out the entire matrix with a sep-
arate format for each column with one call to the function printfm.

9-26

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-27

The logic of the programs will dictate the type of data assigned to a matrix, and the
increased flexibility allowed by being able to bundle both types of data together in a
single matrix can be very powerful. You could, for instance, create a moment matrix
from your data, concatenate a new row onto it containing the names of the variables and
save it to disk with the save command.

Numeric matrices are double precision, which means that each element is stored in
8 bytes. A character matrix can thus have elements of up to 8 characters.

GAUSS does not automatically keep track of whether a matrix contains character or
numeric information. The ASCII to GAUSS conversion program ATOG will record the
types of variables in a data set when it creates it. The create command will, also. The
function vartypef gets a vector of variable type information from a data set. This vec-
tor of ones and zeros can be used by printfm when printing your data. Since GAUSS
does not know whether a matrix has character or numeric information, it is up to you to
specify which type of data it contains when printing the contents of the matrix. (For
details, see print and printfm in the GAUSS LANGUAGEREFERENCE.)

Most functions that take a string argument will take an element of a character matrix
also, interpreting it as a string of up to 8 characters.

9.6.8 Date and Time Formats

DT Scalar Format

The DT scalar format is a double precision representation of the date and time with up
to 14 digits. Each group of digits represents a different aspect of the date and time such
as the year or month. Using characters, to represent each digit in a DT scalar number
would look like this:

YYYYMODDHHSS

Starting from the left: the first four digits represent the year; the fifth and sixth digits, if
present, represent the month; the seventh and eight digits, if present, represent the day;
the ninth and tenth digits represent the hour; the eleventh and twelfth digits, if present,

Language
Fundamentals

Language
F
undam

entals

represent the minutes and finally, the thirteenth and fourteenth digits represent the
seconds.

For example, in DT scalar format, the number:

20120723143207

represents 14:32:07 or 2:32:07 PM on July 23, 2012. It is important to remember that the
leading digits will always be the year. This becomes relevant if the DT scalar number
contains fewer than 14 digits to the right of the decimal point. For example, the number:

201302

would represent February 2013, rather than the time 20:13:02 (or 8:13:02 PM).

DTV Vector Format

The DTV vector is a 1x8 vector. The format for the DTV vector is:

[1] Year
[2] Month, 1-12
[3] Day of month, 1-31
[4] Hour of day, 0-23
[5] Minute of hour, 0-59
[6] Second of minute, 0-59
[7] Day of week, 0-6 where 0 is Sunday
[8] Day since beginning of year, 0-365

UTC Scalar Format

The UTC scalar format is the number of seconds since January 1, 1970, Greenwich
Mean Time.

9-28

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-29

9.6.9 Special Data Types

The IEEE floating point format has many encodings that have special meaning. The
print command will print them accurately so that you can tell if your calculation is pro-
ducing meaningful results.

NaN

There are many floating point encodings which do not correspond to a real number.
These encodings are referred to as NaN's. NaN stands for Not A Number.

Certain numerical errors will cause the math coprocessor to create a NaN called an
"indefinite." This will be printed as a -NaN when using the print command. These val-
ues are created by the following operations:

l +∞ plus -∞

l +∞ minus +∞

l -∞ minus -∞

l 0 * ∞

l ∞/∞

l 0 / 0

l Operations where one or both operands is a NaN

l Trigonometric functions involving ∞

INF

When the math coprocessor overflows, the result will be a properly signed infinity. Sub-
sequent calculations will not deal well with an infinity; it usually signals an error in your
program. The result of an operation involving an infinity is most often a NaN.

DEN, UNN

When some math coprocessors underflow, they may do so gradually by shifting the sig-
nificand of the number as necessary to keep the exponent in range. The result of this is a

Language
Fundamentals

Language
F
undam

entals

denormal (DEN). When denormals are used in calculations, they are usually handled
automatically in an appropriate way. The result will either be an unnormal (UNN),
which like the denormal represents a number very close to zero, or a normal, depending
on how significant the effect of the denormal was in the calculation. In some cases the
result will be a NaN.

Following are some procedures for dealing with these values. These procedures are not
defined in the Run-Time Library. If you want to use them, you will need to define
them yourself.

The procedure isindef will return 1 (true) if the matrix passed to it contains any
NaN's that are the indefinite mentioned earlier. The GAUSS missing value code as well
as GAUSS scalar error codes are NaN's, but this procedure tests only for indefinite:

proc isindef(x);
retp(not x $/= __INDEFn);

endp;

Be sure to call gausset before calling isindef. gausset will initialize the value
of the global __INDEFn to a platform-specific encoding.

The procedure normal will return a matrix with all denormals and unnormals set to
zero.

proc normal(x);
retp(x .* (abs(x) .> 4.19e-307));

endp;

The procedure isinf, will return 1 (true) if the matrix passed to it contains any infin-
ities:

proc isinf(x);
local plus,minus;
plus = __INFp;
minus = __INFn;
retp(not x /= plus or not x /= minus);

endp;

9-30

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-31

Be sure to call gausset before calling isinf. gausset will initialize the values of
the globals __INFn and __INFp to platform specific encodings.

9.7 Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the * and / oper-
ators have a higher precedence than the + and - operators. In expressions that contain
these operators, the operand pairs associated with the * or / operator are evaluated
first. Whether * or / is evaluated first depends on which comes first in the particular
expression. For a listing of the precedence of all operators, see Operator Precedence,
Section 10.7 .

The expression

-5+3/4+6*3

is evaluated as

(-5)+(3/4)+(6*3)

Within a term, operators of equal precedence are evaluated from left to right.

The term

2^3^7

is evaluated

(23)7

In the expression

f1(x)*f2(y)

f1 is evaluated before f2. Here are some examples:

Language
Fundamentals

Language
F
undam

entals

Expression Evaluation
a+b*c+d (a + (b * c)) + d
-2+4-6*inv(8)/9 ((-2) + 4) - ((6 * inv(8))/9)
3.14^5*6/(2+sqrt(3)/4) ((3.145) * 6)/(2 + (sqrt(3) / 4))
-a+b*c^2 (-a) + (b * (c2))
a+b-c+d-e (((a + b) - c) + d) - e
a^b^c*d ((ab)c) * d
a*b/d*c ((a * b) / d) * c
a^b+c*d (ab) + (c * d)
2^4! 2(4!)

2*3! 2 * (3!)

9.8 Flow Control

A computer language needs facilities for decision making and looping to control the
order in which computations are done. GAUSS has several kinds of flow control state-
ments.

9.8.1 Looping 9-32

9.8.2 Conditional Branching 9-35

9.8.3 Unconditional Branching 9-36

9.8.1 Looping

do loop

The do statement can be used in GAUSS to control looping.

9-32

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-33

do while
scalar_expression; // loop if expression is true

.

.
statements
.
.
endo;

also

do until scalar_expression; // loop if expression is false
.
.
statements
.
.
endo;

The scalar_expression is any expression that returns a scalar result. The
expression will be evaluated as TRUE if its real part is nonzero and FALSE if it is zero.
There is no counter variable that is automatically incremented in a do loop. If one is
used, it must be set to its initial value before the loop is entered and explicitly incre-
mented or decremented inside the loop.

The following example illustrates nested do loops that use counter variables.

format /rdn 1,0;
space = " ";
comma = ",";
i = 1;
do while i <= 4;

j = 1;
do while j <= 3;

print space i comma j;;
j = j+1;

endo;

Language
Fundamentals

Language
F
undam

entals

i = i+1;
print;

endo;

This will print:

1,1 1,2 1,3
2,1 2,2 2,3
3,1 3,2 3,3
4,1 4,2 4,3

Use the relational and logical operators without the dot '.' in the expression that controls
a do loop. These operators always return a scalar result.

break and continue are used within do loops to control execution flow. When
break is encountered, the program will jump to the statement following the endo. This
terminates the loop. When continue is encountered, the program will jump up to the
top of the loop and reevaluate the while or until expression. This allows you to reit-
erate the loop without executing any more of the statements inside the loop:

do until eof(fp); // continue jumps here
x = packr(readr(fp,100));
if scalmiss(x);

continue; // iterate again
endif;
s = s + sumc(x);
count = count + rows(x);
if count >= 10000;

break; // break out of loop
endif;

endo;
mean = s / count; // break jumps here

for loop

The fastest looping construct in GAUSS is the for loop:

9-34

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-35

for counter (start, stop, step);
.
.

statements
.
.
endfor;

counter is the literal name of the counter variable. start, stop and step are
scalar expressions. start is the initial value, stop is the final value and step is the
increment.

break and continue are also supported by for loops. (For more information, see
for in the GAUSS LANGUAGEREFERENCE.)

9.8.2 Conditional Branching

The if statement controls conditional branching:

if scalar_expression;
.
.
statements
.
.

elseif scalar_expression;
.
.
statements
.
.

else;
.
.
statements

Language
Fundamentals

Language
F
undam

entals

.

.
endif;

The scalar_expression is any expression that returns a scalar result. The expres-
sion will be evaluated as TRUE if its real part is nonzero and FALSE if it is zero.

GAUSS will test the expression after the if statement. If it is TRUE, then the first list
of statements is executed. If it is FALSE, then GAUSS will move to the expression after
the first elseif statement, if there is one, and test it. It will keep testing expressions
and will execute the first list of statements that corresponds to a TRUE expression. If no
expression is TRUE, then the list of statements following the else statement is
executed. After the appropriate list of statements is executed, the program will go to the
statement following the endif and continue on.

Use the relational and logical operators without the dot '.' in the expression that controls
an if or elseif statement. These operators always return a scalar result.

if statements can be nested.

One endif is required per if clause. If an else statement is used, there may be only
one per if clause. There may be as many elseif's as are required. There need not be
any elseif's or any else statement within an if clause.

9.8.3 Unconditional Branching

The goto and gosub statements control unconditional branching. The target of both a
goto and a gosub is a label.

goto

A goto is an unconditional jump to a label with no return:

label:
.
.

goto label;

9-36

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-37

Parameters can be passed with a goto. The number of parameters is limited by avail-
able stack space. This is helpful for common exit routines:

.

.
goto errout("Matrix singular");

.

.
goto errout("File not found");

.

.
errout:
pop errmsg;
errorlog errmsg;
end;

gosub

With a gosub, the address of the gosub statement is remembered and when a
return statement is encountered, the program will resume executing at the statement
following the gosub.

Parameters can be passed with a gosub in the same way as a goto. With a gosub it
is also possible to return parameters with the return statement.

Subroutines are not isolated from the rest of your program and the variables referred to
between the label and the return statement can be accessed from other places in your
program.

Since a subroutine is only an address marked by a label, there can be subroutines inside
of procedures. The variables used in these subroutines are the same variables that are
known inside the procedure. They will not be unique to the subroutine, but they may be
locals that are unique to the procedure that the subroutine is in. (For details, see gosub
in the GAUSS LANGUAGEREFERENCE.)

9.9 Functions

Single line functions that return one item can be defined with the fn statement.

Language
Fundamentals

Language
F
undam

entals

fn area(r) = pi * r * r;

These functions can be called in the same way as intrinsic functions. The above function
could be used in the following program sequence.

diameter = 3;
radius = 3 / 2;
a = area(radius);

9.10 Rules of Syntax

This section lists the general rules of syntax for GAUSS programs.

9.10.1 Statements 9-39

9.10.2 Case 9-39

9.10.3 Comments 9-39

9.10.4 Extraneous Spaces 9-40

9.10.5 Symbol Names 9-40

9.10.6 Labels 9-40

9.10.7 Assignment Statements 9-41

9.10.8 Function Arguments 9-41

9.10.9 Indexing Matrices 9-41

9.10.10 Arrays of Matrices and Strings 9-42

9.10.11 Arrays of Procedures 9-44

9-38

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-39

9.10.1 Statements

A GAUSS program consists of a series of statements. A statement is a complete expres-
sion or command. Statements in GAUSS end with a semicolon with one exception: from
the GAUSS command line, the final semicolon in an interactive program is implicit if it
is not explicitly given:

(gauss) x=5; z=rndn(3,3); y=x+z

Column position is not significant. Blank lines are allowed. Inside a statement and out-
side of double quotes, the carriage return/line feed at the end of a physical line will be
converted to a space character as the program is compiled.

A statement containing a quoted string can be continued across several lines with a back-
slash as follows.

s = "This is one really long string that would be \
difficult to assign in just a single line.";

9.10.2 Case

GAUSS does not distinguish between uppercase and lowercase except inside double
quotes.

9.10.3 Comments

// This comments out all text between the '//' and the end
// of the line
/* This kind of comment can be nested */
@ We consider this kind of comment to be obsolete, but it
is supported for backwards compatibility. We do, however,
recommend replacing them with one of the other types of
comments @

Language
Fundamentals

Language
F
undam

entals

9.10.4 Extraneous Spaces

Extraneous spaces are significant in print and lprint statements where the space is
a delimiter between expressions:

print x y z;

In print and lprint statements, spaces can be used in expressions that are in par-
entheses:

print (x * y) (x + y);

9.10.5 Symbol Names

The names of matrices, strings, procedures, and functions can be up to 32 characters
long. The characters must be alphanumeric or an underscore. The first character must be
alphabetic or an underscore.

9.10.6 Labels

A label is used as the target of a goto or a gosub. The rules for naming labels are the
same as for matrices, strings, procedures, and functions. A label is followed imme-
diately by a colon:

here:

The reference to a label does not use a colon:

goto here;

9-40

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-41

9.10.7 Assignment Statements

The assignment operator is the equal sign '=':

y = x + z;

Multiple assignments must be enclosed in braces '{ }'. The statement:

mant,pow = base10(x);

is incorrect. It should be:

{ mant, pow } = base10(x);

The comparison operator (equal to) is two equal signs '==':

if x == y;
print "x is equal to y";

endif;

9.10.8 Function Arguments

The arguments to functions are enclosed in parentheses '()':

y = sqrt(x);

9.10.9 Indexing Matrices

Brackets '[]' are used to index matrices:

x = { 1 2 3,
3 7 5,
3 7 4,

Language
Fundamentals

Language
F
undam

entals

8 9 5,
6 1 8 };

y = x[3,3];
z = x[1 2:4,1 3];

Vectors can be indexed with either one or two indices:

v = 1 2 3 4 5 6 7 8 9 ;
k = v[3];
j = v[1,6:9];

x[2,3] returns the element in the second row and the third column of x.

x[1 3 5,4 7] returns the submatrix that is the intersection of rows 1, 3, and 5 and
columns 4 and 7.

x[.,3] returns the third column of x.

x[3:5,.] returns the submatrix containing the third through the fifth rows of x.

The indexing operator will take vector arguments for submatrix extraction or submatrix
assignments:

y = x[rv,cv];

y[rv,cv] = x;

rv and cv can be any expressions returning vectors or matrices. The elements of rv
will be used as the row indices and the elements of cv will be used as the column
indices. If rv is a scalar 0, all rows will be used; if cv is a scalar 0, all columns will be
used. If a vector is used in an index expression, it is illegal to use the space operator or
the colon operator on the same side of the comma as the vector.

9.10.10 Arrays of Matrices and Strings

It is possible to index sets of matrices or strings using the varget function.

9-42

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

9-43

In this example, a set of matrix names is assigned to mvec. The name y is indexed from
mvec and passed to varget which will return the global matrix y. The returned matrix
is inverted and assigned to g:

mvec = { x y z a };
i = 2;
g = inv(varget(mvec[i]));

The following procedure can be used to index the matrices in mvec more directly:

proc
imvec(i);
retp(varget(mvec[i]));

endp;

Then imvec(i) will equal the matrix whose name is in the ith element of mvec.

In the example above, the procedure imvec() was written so that it always operates on
the vector mvec. The following procedure makes it possible to pass in the vector of
names being used:

proc
get(array,i);
retp(varget(array[i]));

endp;

Then get(mvec,3) will return the 3rd matrix listed in mvec.

proc
put(x,array,i);
retp(varput(x,array[i]));

endp;

And put(x,mvec,3) will assign x to the 3rd matrix listed in mvec and return a 1 if suc-
cessful or a 0 if it fails.

Language
Fundamentals

Language
F
undam

entals

9.10.11 Arrays of Procedures

It is also possible to index procedures. The ampersand operator (&) is used to return a
pointer to a procedure.

Assume that f1, f2, and f3 are procedures that take a single argument. The following
code defines a procedure fi that will return the value of the ith procedure, evaluated
at x.

nms = &f1 | &f2 | &f3;
proc fi(x,i);

local f;
f = nms[i];
local f:proc;

retp(f(x));
endp;

fi(x,2) will return f2(x). The ampersand is used to return the pointers to the pro-
cedures. nms is a numeric vector that contains a set of pointers. The local statement
is used twice. The first tells the compiler that f is a local matrix. The ith pointer, which
is just a number, is assigned to f. Then the second local statement tells the compiler
to treat f as a procedure from this point on; thus the subsequent statement f(x) is inter-
preted as a procedure call.

9-44

GAUSS User Guide

La
ng
ua
ge

F
un
da
m
en
ta
ls

10 Operators

10.1 Element-by-Element Operators 10-1

10.2 Matrix Operators 10-4

10.2.1 Numeric Operators 10-4

10.2.2 Other Matrix Operators 10-7

10.3 Relational Operators 10-9

10.4 Logical Operators 10-12

10.5 Other Operators 10-14

10.6 Using Dot Operators with Constants 10-18

10.7 Operator Precedence 10-20

10.1 Element-by-Element Operators

Element-by-element operators share common rules of conformability. Some functions
that have two arguments also operate according to the same rules.

Element-by-element operators handle those situations in which matrices are not con-
formable according to standard rules of matrix algebra. When a matrix is said to be ExE

10-1

O
perators

conformable, it refers to this element-by-element conformability. The following cases
are supported:

matrix op matrix

matrix op scalar

scalar op matrix

matrix op vector

vector op matrix

vector op vector

In a typical expression involving an element-by-element operator

z = x + y;

conformability is defined as follows:

l If x and y are the same size, the operations are carried out corresponding
element by corresponding element:

1 3 2
x = 4 5 1

3 7 4

2 4 3
y = 3 1 4

6 1 2

3 7 6
z = 7 6 5

9 8 6

l If x is a matrix and y is a scalar, or vice versa, then the scalar is operated on
with respect to every element in the matrix. For example, x + 2 will add 2 to
every element of x:

10-2

GAUSS User Guide

O
pe
ra
to
rs

10-3

1 3 2
x = 4 5 1

3 7 4

y = 2

3 5 4
z = 6 7 3

5 9 6

l If x is an Nx1 column vector and y is an NxK matrix, or vice versa, the vector is
swept "across" the matrix:

vector matrix result
1 → 2 4 3 3 5 4
4 → 3 1 4 = 7 5 8
3 → 6 1 2 9 4 5

l If x is an 1xK column vector and y is an NxK matrix, or vice versa, then the
vector is swept "down" the matrix:

vector 2 4 3

↓ ↓ ↓

matrix 7 2 4
3 0 1
5 3 2

↓ ↓ ↓

result 9 6 7
5 4 4
7 7 5

Operators

O
perators

l When one argument is a row vector and the other is a column vector, the result of
an element-by-element operation will be the "table" of the two:

row vector 2 4 3 1
↓ ↓ ↓ ↓

3 → 5 7 6 4
column vector 2 → 4 6 5 3

5 → 7 9 8 6

If x and y are such that none of these conditions apply, the matrices are not conformable
to these operations and an error message will be generated.

10.2 Matrix Operators

The following operators work on matrices. Some assume numeric data and others will
work on either character or numeric data.

10.2.1 Numeric Operators 10-4

10.2.2 Other Matrix Operators 10-7

10.2.1 Numeric Operators

For details on how matrix conformability is defined for element-by-element operators,
see Element-by-Element Operators, Section 10.1 .

+ Addition:

y = x + z;

Performs element-by-element addition.

- Subtraction or negation:

10-4

GAUSS User Guide

O
pe
ra
to
rs

10-5

y = x - z;
y = - k;

Performs element-by-element subtraction or the negation of all elements, depending on
context. *Matrix multiplication or multiplication:

y = x * z;

When z has the same number of rows as x has columns, this will perform matrix mul-
tiplication (inner product). If x or z are scalar, this performs standard element-by-ele-
ment multiplication.

/Division or linear equation solution:

x = b / A;

If A and b are scalars, this performs standard division. If one of the operands is a mat-
rix and the other is scalar, the result is a matrix the same size with the results of the divi-
sions between the scalar and the corresponding elements of the matrix. Use ./ for
element-by-element division of matrices.

If b and A are conformable, this operator solves the linear matrix equation:

Linear equation solution is performed in the following cases:

l If A is a square matrix and has the same number of rows as b, this statement
will solve the system of linear equations using an LU decomposition.

l If A is rectangular with the same number of rows as b, this statement will
produce the least squares solutions by forming the normal equations and using the
Cholesky decomposition to get the solution:

If trap 2 is set, missing values will be handled with pairwise deletion.

Operators

O
perators

%Modulo division

y = x % z;

For integers, this returns the integer value that is the remainder of the integer division of
x by z. If x or z is noninteger, it will first be rounded to the nearest integer. This is an
element-by-element operator.

!Factorial

y = x!;

Computes the factorial of every element in the matrix x. Nonintegers are rounded to the
nearest integer before the factorial operator is applied. This will not work with complex
matrices. If x is complex, a fatal error will be generated.

.* Element-by-element multiplication

y = x .* z;

If x is a column vector, and z is a row vector (or vice versa), the ''outer product'' or
''table'' of the two will be computed. (For comformability rules, see Element-by-Ele-
ment Operators, Section 10.1 .)

./ Element-by-element division

y = x ./ z;

^ Element-by-element exponentiation

y = x^z;

If x is negative, z must be an integer.
.^ Same as ^

.*.Kronecker (tensor) product:

y = x .*. z;

10-6

GAUSS User Guide

O
pe
ra
to
rs

10-7

This results in a matrix in which every element in x has been multiplied (scalar mul-
tiplication) by the matrix z. For example:

x = { 1 2,
3 4 };

z = { 4 5 6,
7 8 9 };

y = x .*. z;

4 5 6 8 10 12
y = 7 8 9 14 16 18

12 15 18 16 20 24
21 24 27 28 32 36

*~Horizontal direct product:

x = 1 2
3 4

y = 5 6
7 8

z = x *~ y;

z = 5 6 10 12
21 24 28 32

The input matrices x and y must have the same number of rows. The result will have
cols(x) * cols(y) columns.

10.2.2 Other Matrix Operators

' Transpose operator:

y = x';

Operators

O
perators

The columns of y will contain the same values as the rows of x and the rows of y will
contain the same values as the columns of x. For complex matrices this computes the
complex conjugate transpose.

If an operand immediately follows the transpose operator, the ' will be interpreted as
'*. Thus y = x'x is equivalent to y = x'*x.

.' Bookkeeping transpose operator:

y = x.';

This is provided primarily as a matrix handling tool for complex matrices. For all
matrices, the columns of y will contain the same values as the rows of x and the rows
of y will contain the same values as the columns of x. The complex conjugate transpose
is NOT computed when you use .'.

If an operand immediately follows the bookkeeping transpose operator, the .' will be
interpreted as .'*. Thus y = x.'x is equivalent to y = x.'*x.

| Vertical concatenation:

z = x | y;

x = 1 2 3
4 5 6

y = 7 8 9

z = x | y;

1 2 3
z = 4 5 6

7 8 9

10-8

GAUSS User Guide

O
pe
ra
to
rs

10-9

10.3 Relational Operators

For details on how matrix conformability is defined for element-by-element operators,
see Element-by-Element Operators, Section 10.1 .

Each of these operators has two equivalent representations. Either can be used (for
example, < or lt), depending only upon preference. The alphabetic form should be sur-
rounded by spaces.

A third form of these operators has a '$' and is used for comparisons between character
data and for comparisons between strings or string arrays. The comparisons are done
byte by byte starting with the lowest addressed byte of the elements being compared.

The equality comparison operators (<=, ==, >=, /=, !=) and their dot equivalents can
be used to test for missing values and the NaN that is created by floating point excep-
tions. Less than and greater than comparisons are not meaningful with missings or
NaN's, but equal and not equal are valid. These operators are sign-insensitive for miss-
ings, NaN's, and zeros.

The string '$' versions of these operators can also be used to test missings, NaN's and
zeros. Because they do a strict byte-to-byte comparison, they are sensitive to the sign
bit. Missings, NaN's, and zeros can all have the sign bit set to 0 or 1, depending on how
they were generated and have been used in a program.

If the relational operator is NOT preceded by a dot '.', then the result is always a scalar
1 or 0, based upon a comparison of all elements of x and y. All comparisons must be
true for the relational operator to return TRUE.

By this definition, then:

if x /= y;

is interpreted as: "if every element of x is not equal to the corresponding element of y".
To check if two matrices are not identical, use

if not x == y;

Operators

O
perators

For complex matrices, the ==, /=, .== and ./= operators compare both the real and
imaginary parts of the matrices; all other relational operators compare only the real
parts.

l Less than

z = x < y;
z = x lt y;
z = x $< y;

l Less than or equal to

z = x <= y;
z = x le y;
z = x $<= y;

l Equal to

z = x == y;
z = x eq y;
z = x $== y;

l Not equal

z = x /= y;
z = x ne y;
z = x != y;
z = x $/= y;
z = x $!= y;

l Greater than or equal to

z = x >= y;
z = x ge y;
z = x $>= y;

10-10

GAUSS User Guide

O
pe
ra
to
rs

10-11

l Greater than

z = x > y;
z = x gt y;
z = x $> y;

If the relational operator IS preceded by a dot '.', then the result will be a matrix of 1's
and 0's, based upon an element-by-element comparison of x and y.

l Element-by-element less than

z = x .< y;
z = x .lt y;
z = x .$< y;

l Element-by-element less than or equal to

z = x .<= y;
z = x .le y;
z = x .$<= y;

l Element-by-element equal to

z = x .== y;
z = x .eq y;
z = x .$== y;

l Element-by-element not equal to

z = x ./= y;
z = x .ne y;
z = x .!= y;
z = x .$/= y;
z = x .$!= y;

Operators

O
perators

l Element-by-element greater than or equal to

z = x .>= y;
z = x .ge y;
z = x .$>= y;

l Element-by-element greater than

z = x .> y;
z = x .gt y;
z = x .$> y;

10.4 Logical Operators

The logical operators perform logical or Boolean operations on numeric values. On input
a nonzero value is considered TRUE and a zero value is considered FALSE. The logical
operators return a 1 if TRUE and a 0 if FALSE. Decisions are based on the following
truth tables:

Complement
x not x

T F
F T
Conjunction

x y x and y

T T T
T F F
F T F
F F F
Disjunction

x y x or y

T T T
T F T

10-12

GAUSS User Guide

O
pe
ra
to
rs

10-13

F T T
F F F
Exclusive Or

x y x xor y

T T F
T F T
F T T
F F F
Equivalence

x y x eqv y

T T T
T F F
F T F
F F T

For complex matrices, the logical operators consider only the real part of the matrices.
The following operators require scalar arguments. These are the ones to use in if and
do statements:

l Complement

z = not x;

l Conjunction

z = x and y;

l Disjunction

z = x or y;

l Exclusive or

z = x xor y;

Operators

O
perators

l Equivalence

z = x eqv y;

If the logical operator is preceded by a dot '.', the result will be a matrix of 1's and 0's
based upon an element-by-element logical comparison of x and y:

l Element-by-element logical complement

z = .not x;

l Element-by-element conjunction

z = x .and y;

l Element-by-element disjunction

z = x .or y;

l Element-by-element exclusive or

z = x .xor y;

l Element-by-element equivalence

z = x .eqv y;

10.5 Other Operators

Assignment Operator

Assignments are done with one equal sign:

y = 3;

Comma

Commas are used to delimit lists:

clear x,y,z;

10-14

GAUSS User Guide

O
pe
ra
to
rs

10-15

to separate row indices from column indices within brackets:

y = x[3,5];

and to separate arguments of functions within parentheses:

y = momentd(x,d);

Period

Dots are used in brackets to signify ''all rows'' or ''all columns'':

y = x[.,5];

Space

Spaces are used inside of index brackets to separate indices:

y = x[1 3 5,3 5 9];

No extraneous spaces are allowed immediately before or after the comma, or imme-
diately after the left bracket or before the right bracket.

Spaces are also used in print and lprint statements to separate the separate expres-
sions to be printed:

print x/2 2*sqrt(x);

No extraneous spaces are allowed within expressions in print or lprint statements
unless the expression is enclosed in parentheses:

print (x / 2) (2 * sqrt(x));

Colon

A colon is used within brackets to create a continuous range of indices:

y = x[1:5,.];

Operators

O
perators

Ampersand

The (&) ampersand operator will return a pointer to a procedure (proc), function (fn),
or structure (struct). It is used when passing procedures or functions to other func-
tions, when indexing procedures, and when initializing structure pointers. (For more
information, see Indexing Procedures, Section 11.5 or Structure Pointers, Section
16.2 .)

String Concatenation

x = "dog";
y = "cat";
z = x $+ y;
print z;
dogcat

If the first argument is of type string, the result will be of type string. If the first argu-
ment is of type matrix, the result will be of type matrix. Here are some examples:

y = 0 $+ "caterpillar";

The result will be a 1x1 matrix containing 'caterpil'.

y = zeros(3,1) $+ "cat";

The result will be a 3x1 matrix, each element containing 'cat'.

If we use the y created above in the following:

k = y $+ "fish";

The result will be a 3x1 matrix with each element containing 'catfish'.

If we then use k created above:

t = "" $+ k[1,1];

The result will be a string containing 'catfish'.

10-16

GAUSS User Guide

O
pe
ra
to
rs

10-17

If we used the same k to create z as follows:

z = "dog" $+ k[1,1];

The resulting z will be a string containing 'dogcatfish'.

String Array Concatenation

$| Vertical string array concatenation

x = "dog";
y = "fish";
k = x $| y;
print k;

dog
fish

$~ Horizontal string array concatenation

x = "dog";
y = "fish";
k = x $~ y;
print k;

dog fish

String Variable Substitution

In a command like the following:

create f1 = olsdat with x,4,2;

by default GAUSS will interpret olsdat as the literal name of the GAUSS data file
you want to create. It will also interpret x as the literal prefix string for the variable
names x1 x2 x3 x4.

To get the data set name from a string variable, the substitution operator (^) could be
used as follows:

Operators

O
perators

dataset = "olsdat";
create f1 = ^dataset with x,4,2;

To get the data set name from a string variable and the variable names from a character
vector, use the following:

dataset = "olsdat";
vnames = { age, pay, sex };
create f1 = ^dataset with ^vnames,0,2;

The general syntax is:

^variable_name

Expressions are not allowed.

The following commands are currently supported with the substitution operator (^) in the
current version.

create f1 = ^dataset with ^vnames,0,2;
create f1 = ^dataset using ^cmdfile;
open f1 = ^dataset;
output file = ^outfile;
load x = ^datafile;
load path = ^lpath x,y,z,t,w;
loadexe buf = ^exefile;
save ^name = x;
save path = ^spath;
dos ^cmdstr;
run ^prog;
msym ^mstring;

10.6 Using Dot Operators with Constants

When you use those operators preceded by a '.' (dot operators) with a scalar integer con-
stant, insert a space between the constant and any following dot operator. Otherwise, the

10-18

GAUSS User Guide

O
pe
ra
to
rs

10-19

dot will be interpreted as part of the scalar; that is, the decimal point. For example:

let y = 1 2 3;
x = 2.<y;

will return x as a scalar 0, not a vector of 0's and 1's, because

x = 2.<y;

is interpreted as

x = 2. < y;

and not as

x = 2 .< y;

Be careful when using the dot relational operators (.<, .<=, .==, ./=, .>, .>=). The
same problem can occur with other dot operators, also. For example:

let x = 1 1 1;
y = x./2./x;

will return y as a scalar .5 rather than a vector of .5's, because

y = x./2./x;

is interpreted as

y =(x ./ 2.) / x;

not

y =(x ./ 2) ./ x;

Operators

O
perators

The second division, then, is handled as a matrix division rather than an element-by-ele-
ment division.

10.7 Operator Precedence

The order in which an expression is evaluated is determined by the precedence of the
operators involved and the order in which they are used. For example, the * and / oper-
ators have a higher precedence than the + and - operators. In expressions that contain
the above operators, the operand pairs associated with the * or / operator are evaluated
first. Whether * or / is evaluated first depends on which comes first in the particular
expression.

The expression

-5+3/4+6*3

is evaluated as

(-5)+(3/4)+(6*3)

Within a term, operators of equal precedence are evaluated from left to right. The pre-
cedence of all operators, from the highest to the lowest, is listed in the table below.
PLEASE NOTE: The transpose operator is listed with a precedence of 90. This applies
for the transpose operation only. It does NOT apply for the expression:

X'X

Which is shorthand for:

X'*X

For a compound statement such as:

Z = (X'X)/(Y'X);

the parentheses are required.

10-20

GAUSS User Guide

O
pe
ra
to
rs

10-21

Operator Precedence Operator Precedence Operator Precedence
.' 90 .$>= 65 $>= 55

90 ./= 65 /= 55
89 .< 65 < 55

.^ 85 .<= 65 <= 55

^ 85 .== 65 == 55
(unary -) 83 .> 65 > 55

* 80 .>= 65 >= 55
* 80 .eq 65 eq 55
.* 80 .ge 65 ge 55
.*. 80 .gt 65 gt 55
./ 80 .le 65 le 55
/ 80 .lt 65 lt 55
% 75 .ne 65 ne 55
$+ 70 .not 64 not 49
+ 70 .and 63 and 48
- 70 .or 62 or 47

68 .xor 61 xor 46
67 .eqv 60 eqv 45

.$/= 65 $/= 55 (space) 35
.$< 65 $< 55 : 35
.$<= 65 $<= 55 = 10
.$== 65 $== 55
.$> 65 $> 55

Operators

O
perators

11 Procedures and Keywords

Procedures are multiple-line, recursive functions that can have either local or global vari-
ables. Procedures allow a large computing task to be written as a collection of smaller
tasks. These smaller tasks are easier to work with and keep the details of their operation
from the other parts of the program that do not need to know them. This makes programs
easier to understand and easier to maintain.

A procedure in GAUSS is basically a user-defined function that can be used as if it
were an intrinsic part of the language. A procedure can be as small and simple or as
large and complicated as necessary to perform a particular task. Procedures allow you to
build on your previous work and on the work of others rather than starting over again and
again to perform related tasks.

Any intrinsic command or function may be used in a procedure, as well as any user-
defined function or other procedure. Procedures can refer to any global variable; that is,
any variable in the global symbol table that can be shown with the show command. It is
also possible to declare local variables within a procedure. These variables are known
only inside the procedure they are defined in and cannot be accessed from other pro-
cedures or from the main level program code.

All labels and subroutines inside a procedure are local to that procedure and will not be
confused with labels of the same name in other procedures.

11.1 Defining a Procedure 11-2

11.1.1 Procedure Declaration 11-4

11-1

P
rocedures

and
K
eyw

ords

11.1.2 Local Variable Declarations 11-4

11.1.3 Body of Procedure 11-6

11.1.4 Returning from the Procedure 11-6

11.1.5 End of Procedure Definition 11-6

11.2 Calling a Procedure 11-7

11.3 Keywords 11-8

11.3.1 Defining a Keyword 11-8

11.3.2 Calling a Keyword 11-9

11.4 Passing Procedures to Procedures 11-10

11.5 Indexing Procedures 11-11

11.6 Multiple Returns from Procedures 11-12

11.7 Saving Compiled Procedures 11-14

11.1 Defining a Procedure

A procedure definition consists of five parts, four of which are denoted by explicit
GAUSS commands:

1. Procedure declaration proc statement
2. Local variable declaration local statement
3. Body of procedure
4. Return from procedure retp statement
5. End of procedure definition endp statement

11-2

GAUSS User Guide

P
ro
ce
du
re
s
an
d

K
ey
w
or
ds

11-3

There is always one proc statement and one endp statement in a procedure definition.
Any statements that come between these two statements are part of the procedure. Pro-
cedure definitions cannot be nested. local and retp statements are optional. There
can be multiple local and retp statements in a procedure definition. Here is an
example:

proc (3) = regress(x, y);
local xxi,b,ymxb,sse,sd,t;
xxi = invpd(x'x);
b = xxi * (x'y);
ymxb = y - x * b;
sse = ymxb'ymxb/(rows(x)-cols(x));
sd = sqrt(diag(sse*xxi));
t = b./sd;

retp(b,sd,t);
endp;

This could be used as a function that takes two matrix arguments and returns three
matrices as a result. For example: is:

{ b,sd,t } = regress(x,y);

Following is a discussion of the five parts of a procedure definition.

11.1.1 Procedure Declaration 11-4

11.1.2 Local Variable Declarations 11-4

11.1.3 Body of Procedure 11-6

11.1.4 Returning from the Procedure 11-6

11.1.5 End of Procedure Definition 11-6

Procedures and
Keywords

P
rocedures

and
K
eyw

ords

11.1.1 Procedure Declaration

The proc statement is the procedure declaration statement. The format is:

proc (rets) = name(arg1, arg2,...argn);

rets Optional constant, number of values returned by the
procedure. Acceptable values here are 0-1023; the default is
1.

name Name of the procedure, up to 32 alphanumeric characters or
an underscore, beginning with an alpha or an underscore.

arg# Names that will be used inside the procedure for the
arguments that are passed to the procedure when it is called.
There can be 0-1023 arguments. These names will be known
only in the procedure being defined. Other procedures can
use the same names, but they will be separate entities.

11.1.2 Local Variable Declarations

The local statement is used to declare local variables. Local variables are variables
known only to the procedure being defined. The names used in the argument list of the
proc statement are always local. The format of the local statement is:

local x, y, f:proc, g:fn, z, h:keyword;

Local variables can be matrices or strings. If :proc, :fn, or :keyword follows the
variable name in the local statement, the compiler will treat the symbol as if it were a
procedure, function, or keyword respectively. This allows passing procedures, functions,
and keywords to other procedures. (For more information, see Passing Procedures to
Procedures, Section 11.4 .)

Variables that are global to the system (that is, variables listed in the global symbol table
that can be shown with the show command) can be accessed by any procedure without

11-4

GAUSS User Guide

P
ro
ce
du
re
s
an
d

K
ey
w
or
ds

11-5

any redundant declaration inside the procedure. If you want to create variables known
only to the procedure being defined, the names of these local variables must be listed in
a local statement. Once a variable name is encountered in a local statement, fur-
ther references to that name inside the procedure will be to the local rather than to a
global having the same name. (See clearg, varget, and varput in the GAUSS
LANGUAGEREFERENCE for ways of accessing globals from within procedures that have
locals with the same name.)

The local statement does not initialize (set to a value) the local variables. If they are
not passed in as parameters, they must be assigned some value before they are accessed
or the program will terminate with a Variable not initialized error message.

All local and global variables are dynamically allocated and sized automatically during
execution. Local variables, including those that were passed as parameters, can change
in size during the execution of the procedure.

Local variables exist only when the procedure is executing and then disappear. Local
variables cannot be listed with the show command.

The maximum number of locals is limited by stack space and the size of workspace
memory. The limiting factor applies to the total number of active local symbols at any
one time during execution. If cat has 10 locals and it calls dog which has 20 locals,
there are 30 active locals whenever cat is called.

There can be multiple local statements in a procedure. They will affect only the code
in the procedure that follows. Therefore, for example, it is possible to refer to a global x
in a procedure and follow that with a local statement that declares a local x. All sub-
sequent references to x would be to the local x. (This is not good programming practice,
but it demonstrates the principle that the local statement affects only the code that is
physically below it in the procedure definition.) Another example is a symbol that is
declared as a local and then declared as a local procedure or function later in the same
procedure definition. This allows doing arithmetic on local function pointers before call-
ing them. (For more information, see Indexing Procedures, Section 11.5 .)

Procedures and
Keywords

P
rocedures

and
K
eyw

ords

11.1.3 Body of Procedure

The body of the procedure can have any GAUSS statements necessary to perform the
task the procedure is being written for. Other user-defined functions and other pro-
cedures can be referenced as well as any global matrices and strings.

GAUSS procedures are recursive, so the procedure can call itself as long as there is
logic in the procedure to prevent an infinite recursion. The process would otherwise ter-
minate with either an Insufficient workspace memory message or a Pro-
cedure calls too deep message, depending on the space necessary to store the
locals for each separate invocation of the procedure.

11.1.4 Returning from the Procedure

The return from the procedure is accomplished with the retp statement:

retp;
retp(expression1, expression2, arg1, arg2, argN,

expressionN);

The retp statement can have multiple arguments. The number of items returned must
coincide with the number of rets in the proc statement.

If the procedure was defined with no items returned, the retp statement is optional.
The endp statement that ends the procedure will generate an implicit retp with no
objects returned. If the procedure returns one or more objects, there must be an explicit
retp statement.

There can be multiple retp statements in a procedure, and they can be anywhere inside
the body of the procedure.

11.1.5 End of Procedure Definition

The endp statement marks the end of the procedure definition:

endp;

11-6

GAUSS User Guide

P
ro
ce
du
re
s
an
d

K
ey
w
or
ds

11-7

An implicit retp statement that returns nothing is always generated here so it is
impossible to run off the end of a procedure without returning. If the procedure was
defined to return one or more objects, executing this implicit return will result in a
Wrong number of returns error message and the program will terminate.

11.2 Calling a Procedure

Procedures are called like this:

dog(i, j, k); // no returns

y = cat(i, j, k); // one return

{ x, y, z } = bat(i, j, k); // multiple returns
call bat(i, j, k); // ignore any returns

Procedures are called in the same way that intrinsic functions are called. The procedure
name is followed by a list of arguments in parentheses. The arguments must be sep-
arated by commas.

If there is to be no return value, use

proc (0) = dog(x, y ,z);

when defining the procedure and use

dog(ak, 4, 3);

or

call
dog(ak, 4, 3);

when calling it.

Procedures and
Keywords

P
rocedures

and
K
eyw

ords

The arguments passed to procedures can be complicated expressions involving calls to
other functions and procedures. This calling mechanism is completely general. For
example,

y = dog(cat(3*x, bird(x, y))-2, 2, 1);

is legal.

11.3 Keywords

A keyword, like a procedure, is a subroutine that can be called interactively or from
within a GAUSS program. A keyword differs from a procedure in that a keyword
accepts exactly one string argument, and returns nothing. Keywords can perform many
tasks not as easily accomplished with procedures.

11.3.1 Defining a Keyword 11-8

11.3.2 Calling a Keyword 11-9

11.3.1 Defining a Keyword

A keyword definition is much like a procedure definition. Keywords always are defined
with 0 returns and 1 argument. The beginning of a keyword definition is the keyword
statement:

keyword
name(strarg);

name Name of the keyword, up to 32 alphanumeric
characters or an underscore, beginning with an alpha or
an underscore.

strarg Name that will be used inside of the keyword for the
argument that is passed to the keyword when it is

11-8

GAUSS User Guide

P
ro
ce
du
re
s
an
d

K
ey
w
or
ds

11-9

called. There is always one argument. The name is
known only in the keyword being defined. Other
keywords can use the same name, but they will be
separate entities. This will always be a string. If the
keyword is called with no characters following the
name of the keyword, this will be a null string.

The rest of the keyword definition is the same as a procedure definition. (For more
information, see Defining a Procedure, Section 11.1 . Keywords always return nothing.
Any retp statements, if used, should be empty. For example:

keyword
add(s);
local tok, sum;
if s $== "";

print "The argument is a null string";
retp;

endif;
print "The argument is: '" s "'";
sum = 0;
do until s $== "";

{ tok, s } = token(s);
sum = sum + stof(tok);

endo;
format /rd 1,2;
print "The sum is: " sum;

endp;

The keyword defined above will print the string argument passed to it. The argument
will be printed enclosed in single quotes.

11.3.2 Calling a Keyword

When a keyword is called, every character up to the end of the statement, excluding the
leading spaces, is passed to the keyword as one string argument. For example, if you

Procedures and
Keywords

P
rocedures

and
K
eyw

ords

type

add 1 2 3 4 5;

the keyword will respond

The sum is: 15.00

Here is another example:

add;

the keyword will respond

The argument is a null string

11.4 Passing Procedures to Procedures

Procedures and functions can be passed to procedures in the following way:

proc max(x,y); // procedure to return maximum
if x>y;

retp(x);
else;

retp(y);
endif;

endp;

proc min(x,y); // procedure to return minimum
if x<y;

retp(x);
else;

retp(y);
endif;

endp;

fn lgsqrt(x) = ln(sqrt(x)); /* function to return

11-10

GAUSS User Guide

P
ro
ce
du
re
s
an
d

K
ey
w
or
ds

11-11

log of square root */
proc myproc(&f1, &f2, x, y);

local f1:proc, f2:fn, z;
z = f1(x, y);
retp(f2(z));

endp;

The procedure myproc takes four arguments. The first is a procedure f1 that has two
arguments. The second is a function f2 that has one argument. It also has two other
arguments that must be matrices or scalars. In the local statement, f1 is declared to
be a procedure and f2 is declared to be a function. They can be used inside the pro-
cedure in the usual way. f1 will be interpreted as a procedure inside myproc, and f2
will be interpreted as a function. The call to myproc is made as follows:

k = myproc(&max, &lgsqrt, 5, 7); // log of square root of 7

k = myproc(&min, &lgsqrt, 5, 7); // log of square root of 5

The ampersand (&) in front of the function or procedure name in the call to myproc
causes a pointer to the function or procedure to be passed. No argument list should fol-
low the name when it is preceded by the ampersand.

Inside myproc, the symbol that is declared as a procedure in the local statement is
assumed to contain a pointer to a procedure. It can be called exactly like a procedure is
called. It cannot be save'd but it can be passed on to another procedure. If it is to be
passed on to another procedure, use the ampersand in the same way.

11.5 Indexing Procedures

This example assumes there are a set of procedures named f1-f5 that are already
defined. A 1x5 vector procvec is defined by horizontally concatenating pointers to
these procedures. A new procedure, g(x, i) is then defined to return the value of the
ith procedure evaluated at x:

procVec = &f1 ~ &f2 ~ &f3 ~ &f4 ~ &f5;
proc g(x, i);

Procedures and
Keywords

P
rocedures

and
K
eyw

ords

local f;
f = procVec[i];
local f:proc;
retp(f(x));

endp;

The local statement is used twice. The first time, f is declared to be a local matrix.
After f has been set equal to the ith pointer, f is declared to be a procedure and is
called as a procedure in the retp statement.

11.6 Multiple Returns from Procedures

Procedures can return multiple items, up to 1023. The procedure is defined like this
example of a complex inverse:

proc (2) = cminv(xr,xi); /* (2) specifies number of
return values */

local ixy, zr, zi;
ixy = inv(xr)*xi;
zr = inv(xr+xi*ixy); //real part of inverse
zi = -ixy*zr; //imaginary part of inverse
retp(zr, zi); //return: real part, imaginary part

endp;

It can then be called like this:

{ zr, zi } = cminv(xr, xi);

To make the assignment, the list of targets must be enclosed in braces.

Also, a procedure that returns more than one argument can be used as input to another
procedure or function that takes more than one argument:

proc (2) = cminv(xr, xi);
local ixy, zr, zi;
ixy = inv(xr)*xi;

11-12

GAUSS User Guide

P
ro
ce
du
re
s
an
d

K
ey
w
or
ds

11-13

zr = inv(xr+xi*ixy); //real part of inverse
zi = -ixy*zr; //imaginary part of inverse

retp(zr, zi);
endp;

proc (2) = cmmult(xr, xi, yr, yi);
local zr,zi;
zr = xr*yr-xi*yi;
zi = xr*yi+xi*yr;

retp(zr, zi);
endp;

{ zr, zi } = cminv(cmmult(xr, xi, yr, yi));

The two returned matrices from cmmult() are passed directly to cminv() in the state-
ment above. This is equivalent to the following statements:

{ tr, ti } = cmmult(xr, xi, yr, yi);
{ zr, zi } = cminv(tr, ti);

This is completely general so the following program is legal:

proc (2) = cmcplx(x);
local r,c;
r = rows(x);
c = cols(x);

retp(x, zeros(r,c));
endp;

proc (2) = cminv(xr,xi);
local ixy, zr, zi;
ixy = inv(xr)*xi;
zr = inv(xr+xi*ixy); //real part of inverse
zi = -ixy*zr; //imaginary part of inverse

retp(zr,zi);
endp;

Procedures and
Keywords

P
rocedures

and
K
eyw

ords

proc (2) = cmmult(xr, xi, yr, yi);
local zr, zi;
zr = xr*yr-xi*yi;
zi = xr*yi+xi*yr;

retp(zr, zi);
endp;

{ xr, xi } = cmcplx(rndn(3,3));
{ yr, yi } = cmcplx(rndn(3,3));
{ zr, zi } = cmmult(cminv(xr, xi), cminv(yr, yi));
{ qr, qi } = cmmult(yr, yi, cminv(yr, yi));
{ wr, wi } = cmmult(yr, yi, cminv(cmmult(cminv(xr, xi), yr,
yi)));

11.7 Saving Compiled Procedures

When a file containing a procedure definition is run, the procedure is compiled and is
then resident in memory. The procedure can be called as if it were an intrinsic function.
If the new command is executed or you quit GAUSS and exit to the operating system,
the compiled image of the procedure disappears and the file containing the procedure
definition will have to be compiled again.

If a procedure contains no global references, that is, if it does not reference any global
matrices or strings and it does not call any user-defined functions or procedures, it can
be saved to disk in compiled form in a .fcg file with the save command, and loaded
later with the loadp command whenever it is needed. This will usually be faster than
recompiling. For example:

save path = c:\gauss\cp proc1,proc2,proc3;
loadp path = c:\gauss\cp proc1,proc2,proc3;

The name of the file will be the same as the name of the procedure, with a .fcg exten-
sion. (For details, see loadp and save in the GAUSS LANGUAGEREFERENCE.)

11-14

GAUSS User Guide

P
ro
ce
du
re
s
an
d

K
ey
w
or
ds

11-15

All compiled procedures should be saved in the same subdirectory, so there is no ques-
tion where they are located when it is necessary to reload them. The loadp path can be
set in your startup file to reflect this. Then, to load in procedures, use

loadp proc1,proc2,proc3;

Procedures that are saved in .fcg files will NOT be automatically loaded. It is neces-
sary to explicitly load them with loadp. This feature should be used only when the time
necessary for the autoloader to compile the source is too great. Also, unless these pro-
cedures have been compiled with #lineson, debugging will be more complicated.

Procedures and
Keywords

P
rocedures

and
K
eyw

ords

12 Random Number Generation in
GAUSS

GAUSS provides a powerful suite of functionality for random number generation. The
key features include:

1. Availability of several modern random number generators

2. Sampling of many distributions

3. Thread-safe random number generators

4. Parallel random number generation

12.1 Available Random Number Generators 12-2

12.1.1 Choosing a Random Number Generator 12-2

12.2 Thread-safe Random Number Generators 12-4

12.3 Parallel Random Number Generation 12-5

12.3.1 Multiple Stream Generators 12-5

12.3.2 Block-skipping 12-6

12-1

R
andom

N
um

ber
G
eneration

12.1 Available Random Number Generators

1. KISS-Monster

2. MRG32k3a

3. MT19937: Mersenne-Twister 19937

4. MT2203: Mersenne-Twister 2203

5. Niederreiter

6. SFMT19937: Optimized Mersenne-Twister 19937

7. Sobol

8. WH: Wichmann-Hill

12.1.1 Choosing a Random Number Generator 12-2

12.1.1 Choosing a Random Number Generator

Quality

What is a high quality random number generator? Pierre L'Ecuyer stated that "The dif-
ference between the good and bad random number generators, in a nutshell, is that the
bad ones fail very simple tests whereas the good ones fail only very complicated tests
that are hard to figure out or impractical to run." The most prominent testsuites for test-
ing random number generators (RNGs) are Marsaglia's DIEHARD, DIEHARDER (an
extended version of DIEHARD maintained by Brown), and L'Ecuyer's TestU01. These
are all good testsuites, with BigCrush from TestU01 being the most expansive and strin-
gent. Below is a summary of the performance of each of the RNGs included in GAUSS
on the BigCrush test.

RNG Number of
streams

Period
Length Diehard TestU01

BigCrush

12-2

GAUSS User Guide

R
an
do
m
N
um

be
r

G
en
er
at
io
n

12-3

KISS-Monster 1 10^8859 PASS PASS
MRG32k3a 1 2^191 PASS PASS
MT19937 1 2^19937 PASS* 2
MT2203 6024 2^2203 PASS* 4
Wichmann-Hill 273 2^42.7 PASS* 22

*The column under Test U01 indicates the number of test failures.

As we can see from the table above, all of the available RNGs (with the possible excep-
tion of Wichmann-Hill) provide very good to excellent performance. It is beyond the
scope of this document to discuss the implications of particular test failures.

Speed

All of the RNGs in GAUSS are very fast. However, some are faster than others. Below
is a chart of the relative speed of each random number generator in GAUSS.

1. SFMT19937
2. MT19937
3. MRG32K3A
4. Wichmann-Hill
5. Kiss-Monster

Beyond simply choosing the fastest available generators, two coding techniques can also
cause your programs to run faster. The first is creating larger numbers of random devi-
ates at a time. For example, creating one million random numbers in one call will be
much faster than creating the same one million numbers through 100,000 calls that each
create 10 numbers. Creating too many numbers at once can also slow down your pro-
gram's performance if the resulting matrix takes up too much of your available RAM.
The key point is to avoid creating large random matrices one or two numbers at a time.
The second coding technique is incorporate multi-threading into your random number gen-
eration. This is covered in the next section of this chapter.

Random Number
Generation

R
andom

N
um

ber
G
eneration

12.2 Thread-safe Random Number Generators

Each successive number in a pseudo-random sequence is computed based upon the gen-
erator's current state. The RNGs in GAUSS that take and return a state, such as
rndKMu and rndGamma, are inherently thread-safe. These functions can be used inde-
pendently in separate threads as long as the same state variable is not written to in more
than one concurrent thread. Functions that do not take or return a state should not be
used inside concurrent thread sets. For example, the following is not a legal program:

ThreadBegin;
x = rndn(500, 1);
y = myFunction(x);

ThreadEnd;
ThreadBegin;

x2 = rndn(500, 1);
y2 = myFunction(x2);

ThreadEnd;
ThreadJoin;

The problem with the above example is that implicit in each call to rndn is a write to
the same global state. Note that rndn, rndGam and rndu all share the same global
state. So replacing one of the above calls to rndn with a call to rndu would still result
in an illegal program. To solve this problem, either move the call to rndn above the
first ThreadBegin, like this:

x = rndn(500, 1);
x2 = rndn(500, 1);
ThreadBegin;

y = myFunction(x);
ThreadEnd;
ThreadBegin;

y2 = myFunction(x2);
ThreadEnd;
ThreadJoin;

Or pass in and return the state vector:

12-4

GAUSS User Guide

R
an
do
m
N
um

be
r

G
en
er
at
io
n

12-5

seed1 = 723193;
seed2 = 94493;
ThreadBegin;

{ x1, state1 } = rndn(500, 1, seed1);
y1 = myFunction(x1);

ThreadEnd;
ThreadBegin;

{ x2, state2 } = rndn(500,1,seed2);
y2 = myFunction(x2);

ThreadEnd;
ThreadJoin;

12.3 Parallel Random Number Generation

12.3.1 Multiple Stream Generators 12-5

12.3.2 Block-skipping 12-6

12.3.1 Multiple Stream Generators

Some of the RNGs in GAUSS are a collection of more than one independent stream of
random numbers. A stream is an independent series of numbers with a length that is the
period length of the generator. Each of these sequences or streams has the same stat-
istical properties. However, not all of the RNGs in GAUSS offer this ability. The
MT2203 and the Wichman-Hill are examples of RNGs with multiple streams. The
MT2203 is a set of 6024 different streams; the Wichmann-Hill contains 273 streams.
You can initialize any of these streams with the rndCreateState function, like this:

// Initialize two Wichmann-Hill streams
seed = 192938;
whState3 = rndCreateState("wh-3", seed);
whState117 = rndCreateState("wh-117", seed);

// Initialize two MT2203 streams

Random Number
Generation

R
andom

N
um

ber
G
eneration

seed = 192938;
mt2203State9 = rndCreateState("mt2203-3", seed);
mt2203State21 = rndCreateState("mt2203-21", seed);

Once created, these states can be passed into any of the new random number functions
to create random numbers. To reiterate, from each of these newly created states you can
create a full period length of random numbers.

12.3.2 Block-skipping

Creating random numbers from multiple streams provides multiple sets of independent
random numbers with similar statistical properties that can be used in different threads.
However, these separate streams do not form a contiguous set of random numbers. If
you would like to process a contiguous stream of random numbers in multiple threads,
you can use block-splitting. Block-splitting involves splitting a large chunk of random
numbers into smaller contiguous blocks which can each be processed by different
threads. This can be accomplished with the rndSkip function.

Example

// Set seed and create new state vector
seed = 23423;
state1 = rndCreateState("mrg32k3a", seed);

// Advance state by 2
state2 = rndSkip(2, state1);
{ r, state1 } = rndn(4, 1, state1);

// Same sequence as after skipping 2
{ r2, state2 } = rndn(2, 1, state2);

0.19971499
r = 0.14053340

-0.53132702
0.48660530

12-6

GAUSS User Guide

R
an
do
m
N
um

be
r

G
en
er
at
io
n

12-7

r2 = -0.53132702
0.48660530

For example if your program required four hundred million random numbers, you could
split it into four blocks of one hundred million numbers each. This can be accomplished
in GAUSS using the function rndStateSkip.

Each successive thread in the above program will process a different chunk of the
sequence of random numbers.

// Set seed and create initial state vector
seed = 2342343;
state1 = rndCreateState("mrg32k3a", seed);

// Create 3 additional state vectors each starting 1e8
// numbers forward from the state just above it
state2 = rndStateSkip(1e8, state1);
state3 = rndStateSkip(1e8, state2);
state4 = rndStateSkip(1e8, state3);

// Use each state vector in a separate, concurrent thread
threadBegin;

{ x, state1 } = rndGamma(1e8, 1, 2, 2, state1);
y = myfunc(x);

threadEnd;
threadBegin;

{ x2, state2 } = rndGamma(1e8, 1, 2, 2, state2);
y2 = myfunc(x2);

threadEnd;
threadBegin;

{ x, state3 } = rndGamma(1e8, 1, 2, 2, state3);
y3 = myfunc(x3);

threadEnd;
threadBegin;

{ x, state4 } = rndGamma(1e8, 1, 2, 2, state4);
y4 = myfunc(x);

Random Number
Generation

R
andom

N
um

ber
G
eneration

threadEnd;
threadJoin;

References

1. (MRG32k3a) L'Ecuyer, P. "Good Parameter Sets for Combined Multiple Recurs-
ive Random Number Generators." Operations Research, 47, 1, 159-164, 1999.

2. (TestU01) L'Ecuyer, P. and Simard, R. "TestU01: A C Library for Empirical Test-
ing of Random Number Generators." ACM Trans. Math. Softw. 33, 4, Article 22
, 2007.

3. (Wichmann-Hill) MacLaren, N.M. "The Generation of Multiple Independent
Sequences of Pseudorandom Numbers." Applied Statistics, 38, 351-359, 1989.

12-8

GAUSS User Guide

R
an
do
m
N
um

be
r

G
en
er
at
io
n

13 Sparse Matrices

The sparse matrix data type stores only the non-zero values of a 2-dimensional sparse
matrix, which makes working with sparse matrices use less memory. Sparse matrix cal-
culations may be faster or slower than those on an equivalent dense matrix, depending
upon several factors.

Sparse matrix computations require extra complexity. This makes them slower than the
same operation on an equivalent dense matrix. If the matrix is sufficiently sparse, the
reduced element count can make up for this and provide better performance than dense
operations. However, it is generally recommended to use dense matrices if your problem
will fit into memory.

13.1 Defining Sparse Matrices 13-1

13.2 Creating and Using Sparse Matrices 13-2

13.3 Sparse Support in Matrix Functions and Operators 13-4

13.3.1 Return Types for Dyadic Operators 13-5

13.1 Defining Sparse Matrices

The sparse matrix data type is strongly typed in GAUSS, which means that a variable
must be defined as a sparse matrix variable before it may be used as such. Once a

13-1

S
parse

M
atrices

variable has been defined as a sparse matrix, it may not be used as another data type.
Similarly, once a variable has been used as a matrix, array, or other non-sparse data
type, it may not be redefined as a sparse matrix.

To define a global sparse matrix, you may use either the declare or the let com-
mand:

declare sparse matrix sm1;
let sparse matrix sm1;

or the following implicit let statement:

sparse matrix sm1;

declare may be used to define multiple sparse matrices in a single statement:

declare sparse matrix sm1, sm2, sm3;

To define a local sparse matrix inside of a procedure, use an implicit let statement:

sparse matrix lsm1;

As neither let nor declare support the initialization of a sparse matrix at this time,
you must initialize a sparse matrix with an assignment after defining it.

13.2 Creating and Using Sparse Matrices

Several new functions have been added to allow you to create and manipulate sparse
matrices. These functions are:

denseToSp Converts a dense matrix to a sparse matrix.
denseToSpRE Converts a dense matrix to a sparse matrix, using

a relative epsilon.
packedToSp Creates a sparse matrix from a packed matrix of

non-zero values and row and column indices.
spBiconjGradSol Solves the system of linear equations Ax=b

13-2

GAUSS User Guide

Sp
ar
se
M
at
ric
es

13-3

using the biconjugate gradient method.
spConjGradSol Solves the system of linear equations Ax=b for

symmetric matrices using the conjugate gradient
method.

spCreate Creates a sparse matrix from vectors of non-zero
values, row indices, and column indices.

spDenseSubmat Returns a dense submatrix of sparse matrix.
spDiagRvMat Inserts submatrices along the diagonal of a

sparse matrix.
spEigv Computes a specified number of eigenvalues

and eigenvectors of a square, sparse matrix.
spEye Creates a sparse identity matrix.
spGetNZE Returns the non-zero values in a sparse matrix,

as well as their corresponding row and column
indices.

spLDL Computes the LDL decomposition of a
symmetric sparse matrix.

spLU Computes the LU decomposition of a sparse
matrix with partial pivoting.

spNumNZE Returns the number of non-zero elements in a
sparse matrix.

spOnes Generates a sparse matrix containing only ones
and zeros

spSubmat Returns a sparse submatrix of sparse matrix.
spToDense Converts a sparse matrix to a dense matrix.
spTrTDense Multiplies a sparse matrix transposed by a dense

matrix.
spTScalar Multiplies a sparse matrix by a scalar.
spZeros Creates a sparse matrix containing no non-zero

Sparse Matrices

S
parse

M
atrices

values.

See COMMAND REFERENCE for detailed information on each command.

13.3 Sparse Support in Matrix Functions and Operators

Support for the sparse matrix data type has also been added to many matrix functions
and operators. The following is a complete list of the matrix functions and operators that
currently support the new sparse matrix type:

... /= .>= minc

~ != < print
| ./= .< rows
* .!= .< scalerr
.* == <= show
+ .== .<= type
- > abs
/ .> cols
./ >= maxc

Indexing is also supported for sparse matrices, using the same syntax as matrix indexing.

Note that printing a sparse matrix results in a table of the non-zero values contained
in the sparse matrix, followed by their corresponding row and column indices, respect-
ively.

13.3.1 Return Types for Dyadic Operators 13-5

13-4

GAUSS User Guide

Sp
ar
se
M
at
ric
es

13-5

13.3.1 Return Types for Dyadic Operators

The types of the returns for the dyadic operators were decided on a case-by-case basis,
using the following general principles:

1. The return type for dyadic operations on two dense arguments is always dense.

2. The return type for dyadic operations on two sparse arguments is always sparse
unless the result is likely to be significantly less sparse than the sparse arguments.

3. The return type for dyadic operations on a dense argument and a sparse argument
(regardless of order) is dense unless the return is likely to be at least as sparse as
the sparse argument.

These general principles have led to the following decisions regarding return types (note
that only the cases that are displayed in these tables have been implemented at this
point):

Element-by-Element Numeric Operators

Element-by-Element Addition
Result = Left Operator Right
dense = sparse + dense
dense = dense + dense
sparse = sparse + sparse
dense = dense + sparse

Element-by-Element Subtraction
Result = Left Operator Right
dense = sparse - dense
dense = dense - dense
sparse = sparse - sparse
dense = dense - sparse

Sparse Matrices

S
parse

M
atrices

Element-by-Element Multiplication
Result = Left Operator Right
sparse = sparse .* dense
dense = dense .* dense
sparse = sparse .* sparse
sparse = dense .* sparse

Element-by-Element Division
Result = Left Operator Right
sparse = sparse ./ dense
dense = dense ./ dense
dense = sparse ./ sparse
dense = dense ./ sparse

Other Numeric Operators

Matrix Multiplication
Result = Left Operator Right
dense = sparse * dense
dense = dense * dense
sparse = sparse * sparse

Linear Solve
Result = Left Operator Right
dense = dense / dense
dense = dense / sparse

Note that at this time, the dense = dense / sparse case is defined only for real data.

When either of its arguments are sparse, the / operator uses a tolerance to determine
the result, which may be read or set using the sysstate function, case 39. The default
tolerance is 1e-14.

13-6

GAUSS User Guide

Sp
ar
se
M
at
ric
es

13-7

Relational Operators

Since the results of element-by-element 'dot' comparison operators depend largely on the
kind of data inputted, there are both both dense-returning and sparse-returning versions
of the dot comparison operators when one or both arguments is a sparse matrix. The reg-
ular dot comparison operators and their alphabetic counterparts always return dense
matrices, and there is a new set of alphabetic dot comparison operators that all return
sparse matrices:

Element-by-Element Dot Comparison Operators
Operation Dense-

Returning
Sparse-
Returning

Equal to .== .eq .speq
Not equal to ./= .ne .spne
Less than .< .lt .splt
Less than or equal to .<= .le .sple
Greater than .> .gt .spgt
Greater than or equal to .>= .ge .spge

Since the element-by-element 'non-dot' comparison operators (==, /=, <, <=, >, >=) and
their alphabetic counterparts (eq, ne, lt, le, gt, ge) all return scalars, there are no sparse-
returning versions of them.

Other Matrix Operators

Horizontal Concatenation
Result = Left Operator Right
dense = dense dense
sparse = sparse sparse

Vertical Concatenation
Result = Left Operator Right

Sparse Matrices

S
parse

M
atrices

dense = dense dense

sparse = sparse sparse

13-8

GAUSS User Guide

Sp
ar
se
M
at
ric
es

14 N-Dimensional Arrays

In GAUSS, internally, matrices and arrays are separate data types. Matrices, which are
2-dimensional objects, are stored in memory in row major order. Therefore, a 3x2 matrix
is stored as follows:

[1,1] [1,2] [2,1] [2,2] [3,1] [3,2]

The slowest moving dimension in memory is indexed on the left, and the fastest moving
dimension is indexed on the right. This is true of N-dimensional arrays as well. A 4x3x2
array is stored in the following way:

[1,1,1] [1,1,2] [1,2,1] [1,2,2] [1,3,1] [1,3,2]
[2,1,1] [2,1,2] [2,2,1] [2,2,2] [2,3,1] [2,3,2]
[3,1,1] [3,1,2] [3,2,1] [3,2,2] [3,3,1] [3,3,2]
[4,1,1] [4,1,2] [4,2,1] [4,2,2] [4,3,1] [4,3,2]

A complex N-dimensional array is stored in memory in the same way. Like complex
matrices, complex arrays are stored with the entire real part first, followed by the entire
imaginary part.

Every N-dimensional array has a corresponding Nx1 vector of orders that contains the
sizes of each dimension of the array. This is stored with the array and can be accessed
with getorders. The first element of the vector of orders corresponds to the slowest

14-1

N
-D
im
ensionalA

rrays

moving dimension, and the last element corresponds to the fastest moving dimension
(refer to the Glossary of Terms at the end of the chapter for clear definitions of these
terms). The vector of orders for a 6x5x4x3x2 array, which has 5 dimensions, is the fol-
lowing 5x1 vector:

6
5
4
3
2

Two terms that are important in working with N-dimensional arrays are "dimension
index" and "dimension number." A dimension index specifies a dimension based on
indexing the vector of orders. It is a scalar, 1-to-N, where 1 corresponds to the dimen-
sion indicated by the first element of the vector of orders of the array (the slowest mov-
ing dimension) and N corresponds to the dimension indicated by the last element of the
vector of orders (the fastest moving dimension).

A dimension number specifies dimensions by numbering them in the same order that one
would add dimensions to an array. In other words, the dimensions of an N-dimensional
array are numbered such that the fastest moving dimension has a dimension number of 1,
and the slowest moving dimension has a dimension number of N.

A 6x5x4x3x2 array has 5 dimensions, so the first element of the vector of orders (in this
case, 6) refers to the size of dimension number 5. Since the index of this element in the
vector of orders is 1, the dimension index of the corresponding dimension (dimension
number 5) is also 1.

You will find references to both dimension index and dimension number in the doc-
umentation for the functions that manipulate arrays.
There are a number of functions that have been designed to manipulate arrays. These
functions allow you to manipulate a subarray within the array by passing in a locator vec-
tor to index any subarray that comprises a contiguous block of memory within the larger
block. A vector of indices of an N-dimensional array is a [1-to-N]x1 vector of base 1
indices into the array, where the first element corresponds to the first element in a vec-
tor of orders. An Nx1 vector of indices locates the scalar whose position is indicated by
the indices. For a 4x3x2 array x, the 3x1 vector of indices:

14-2

GAUSS User Guide

N
-D
im
en
si
on
al
A
rr
ay
s

14-3

3
2
1

indexes the [3,2,1] element of x. A 2x1 vector of indices for this 3-dimensional example,
references the 1-dimensional array whose starting location is given by the indices.

Because the elements of the vector of indices are always in the same order (the first ele-
ment of the vector of indices corresponds to the slowest moving dimension of the array,
the second element to the second slowest moving dimension, and so on), each unique
vector of indices locates a unique subarray.

In general, an [N-K]x1 vector of indices locates a K-dimensional subarray that begins at
the position indicated by the indices. The sizes of the dimensions of the K-dimensional
subarray correspond to the last K elements of the vector of orders of the N-dimensional
array. For a 6x5x4x3x2 array y, the 2x1 vector of indices:

2
5

locates the 4x3x2 subarray in y that begins at [2,5,1,1,1] and ends at [2,5,4,3,2].

14.1 Bracketed Indexing 14-3

14.2 ExE Conformability 14-5

14.3 Glossary of Terms 14-5

14.1 Bracketed Indexing

Brackets '[]' can be used to index N-dimensional arrays in virtually the same way that
they are used to index matrices. Bracketed indexing is slower than the convenience
array functions, such as getarray and setarray; however, it can be used to index
non-contiguous elements. In order to index an N-dimensional array with brackets, there
must be N indices located within the brackets, where the first index corresponds to the

N-Dimensional Arrays

N
-D
im
ensionalA

rrays

slowest moving dimension of the array and the last index corresponds to the fastest mov-
ing dimension.

For a 2x3x4 array x, such that:

[1,1,1] through [1,3,4] =

1 2 3 4
5 6 7 8
9 10 11 12

[2,1,1] through [2,3,4] =

13 14 15 16
17 18 19 20
21 22 23 24

x[1,2,3] returns a 1x1x1 array containing the [1,2,3] element of x.

7

x[.,3,2] returns a 2x1x1 array containing:

10
22

x[2,.,1 4] returns a 1x3x2 array containing

13 16
17 20
21 24

x[.,2,1:3] returns a 2x1x3 array containing

5 6 7
17 18 19

14-4

GAUSS User Guide

N
-D
im
en
si
on
al
A
rr
ay
s

14-5

14.2 ExE Conformability

The following describes rules for ExE conformability of arrays for operators and func-
tions with two or more arguments.

l Any N-dimensional array is conformable to a scalar.

l An array is conformable to a matrix only if the array has fewer than 3
dimensions, and the array and matrix follow the standard rules of ExE
conformability.

l Two arrays are ExE conformable if they comply with one of the following
requirements:

l The two arrays have the same number of dimensions, and each dimension
has the same size.

l The two arrays have the same number of dimensions, and each of the N-2
slowest moving dimensions has the same size. In this case, the 2 fastest
moving dimensions of the arrays must follow the ExE comformability rules
that apply to matrices.

l Both of the arrays have fewer than 3 dimensions, and they follow the ExE
conformability rules that apply to matrices.

14.3 Glossary of Terms

dimensions The number of dimensions of an object.
vector of orders Nx1 vector of the sizes of the dimensions of an

object, where N is the number of dimensions, and
the first element corresponds to the slowest moving
dimension.

vector of indices [1-to-N]x1 vector of indices into an array, where the
first element corresponds to the first element in a
vector of orders.

dimension number Scalar [1-to-N], where 1 corresponds to the fastest
moving dimension and N to the slowest moving
dimension.

N-Dimensional Arrays

N
-D
im
ensionalA

rrays

dimension index Scalar [1-to-N], where 1 corresponds to the first
element of the vector of orders or vector of indices.

locator [1-to-N]x1 vector of indices into an array used by
array functions to locate a contiguous block of the
array.

14-6

GAUSS User Guide

N
-D
im
en
si
on
al
A
rr
ay
s

15 Working with Arrays

15.1 Initializing Arrays 15-2

15.1.1 areshape 15-3

15.1.2 aconcat 15-5

15.1.3 aeye 15-7

15.1.4 arrayinit 15-7

15.1.5 arrayalloc 15-8

15.2 Assigning to Arrays 15-9

15.2.1 index operator 15-10

15.2.2 getarray 15-12

15.2.3 getmatrix 15-13

15.2.4 getmatrix4D 15-13

15.2.5 getscalar3D, getscalar4D 15-14

15.2.6 putarray 15-16

15-1

W
orking

w
ith

A
rrays

15.2.7 setarray 15-16

15.3 Looping with Arrays 15-17

15.3.1 loopnextindex 15-19

15.4 Miscellaneous Array Functions 15-21

15.4.1 atranspose 15-22

15.4.2 amult 15-23

15.4.3 amean, amin, amax 15-25

15.4.4 getdims 15-27

15.4.5 getorders 15-27

15.4.6 arraytomat 15-27

15.4.7 mattoarray 15-28

15.5 Using Arrays with GAUSS functions 15-28

15.6 A Panel Data Model 15-32

15.7 Appendix 15-34

15.1 Initializing Arrays

The use of N-dimensional arrays in GAUSS is an additional tool for reducing devel-
opment time and increasing execution speed of programs. There are multiple ways of
handling N-dimensional arrays and using them to solve problems, and these ways some-
times have implications for a trade-off between speed of execution and development
time. We will try to make this clear in this chapter.

The term ''arrays'' specifically refers to N-dimensional arrays and must not be confused
with matrices. Matrices and arrays are distinct types even if in fact they contain

15-2

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-3

identical information. Functions for conversion from one to the other are described
below.

There are five basic ways of creating an array depending on how the contents are spe-
cified:

areshape Create array from specified matrix .
aconcat Create array from matrices and arrays.
aeye Create array of identity matrices.
arrayinit Allocate array filled with specified scalar value.
arrayalloc Allocate array with no specified contents.

15.1.1 areshape 15-3

15.1.2 aconcat 15-5

15.1.3 aeye 15-7

15.1.4 arrayinit 15-7

15.1.5 arrayalloc 15-8

15.1.1 areshape

areshape is a method for creating an array with specified contents. arrayinit cre-
ates an array filled with a selected scalar value: areshape will do the same, but with
a matrix. For example, given a matrix, areshape will create an array containing mul-
tiple copies of that matrix:

x = reshape(seqa(1, 1, 4), 2, 2);
ord = 3 | 2 | 2;
a = areshape(x, ord);
print a;

Plane [1,.,.]

Working with Arrays

W
orking

w
ith

A
rrays

1.0000 2.0000
3.0000 4.0000

Plane [2,.,.]
1.0000 2.0000
3.0000 4.0000

Plane [3,.,.]
1.0000 2.0000
3.0000 4.0000

Reading Data from the Disk into an Array

areshape is a fast way to re-dimension a matrix or array already in memory. For
example, suppose we have a GAUSS data set containing panel data and that it's small
enough to be read in all at once:

panel = areshape(loadd("panel"),5|100|10);
mn = amean(panel,2); // 5x1x10 array of means of each panel
mm = moment(panel,0); // 5x10x10 array of moments of each
panel
/*
** vc is a 5x10x10 array of
** covariance matrices
*/

vc = mm / 100 - amult(atranspose(mn, 1|3|2), mn);

panel is a 5x100x10 array, and in this context is 5 panels of 100 cases measured on 10
variables.

Inserting Random Numbers into Arrays

A random array of any dimension or size can be quickly created using areshape.
Thus, for a 10x10x5x3 array:

15-4

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-5

ord = { 10, 10, 5, 3 };
y = areshape(rndu(prodc(ord),1),ord);

Expanding a Matrix into an Array Vector of Matrices

For computing the log-likelihood of a variance components model of panel data, it is
necessary to expand a TxT matrix into an NTxT array of these matrices. This is easily
accomplished using areshape. For example:

m = { 1.0 0.3 0.2,
0.3 1.0 0.1,
0.2 0.1 1.0 };

r = areshape(m, 3|3|3);
print r;

Plane [1,.,.]
1.0000 0.3000 0.2000
0.3000 1.0000 0.1000
0.2000 0.1000 1.0000

Plane [2,.,.]
1.0000 0.3000 0.2000
0.3000 1.0000 0.1000
0.2000 0.1000 1.0000

Plane [3,.,.]
1.0000 0.3000 0.2000
0.3000 1.0000 0.1000
0.2000 0.1000 1.0000

15.1.2 aconcat

aconcat creates arrays from conformable sets of matrices or arrays. With this func-
tion, contents are completely specified by the user. This example tries three con-
catenations, one along each dimension:

Working with Arrays

W
orking

w
ith

A
rrays

rndseed 345678;
x1 = rndn(2,2);
x2 = arrayinit(2|2,1);

/*
** along the first dimension or rows
*/

a = aconcat(x1,x2,1);
print a;

-0.4300 -0.2878 1.0000 1.0000
-0.1327 -0.0573 1.0000 1.0000

/*
** along the second dimension or columns
*/

a = aconcat(x1,x2,2);
print a;

-0.4300 -0.2878
-0.1327 -0.0573
1.0000 1.0000
1.0000 1.0000

/*
** along the third dimension
*/

a = aconcat(x1,x2,3);
print a;

Plane [1,.,.]
-0.4300 -0.2878
-0.1327 -0.0573

15-6

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-7

Plane [2,.,.]
1.0000 1.0000
1.0000 1.0000

15.1.3 aeye

aeye creates an array in which the principal diagonal of the two trailing dimensions is
set to one. For example:

ord = 2 | 3 | 3;
a = aeye(ord);
print a;

Plane [1,.,.]
1.00000 0.00000 0.00000
0.00000 1.00000 0.00000
0.00000 0.00000 1.00000

Plane [2,.,.]
1.00000 0.00000 0.00000
0.00000 1.00000 0.00000
0.00000 0.00000 1.00000

15.1.4 arrayinit

arrayinit creates an array with all elements set to a specified value. For example:

ord = 3 | 2 | 3;
a = arrayinit(ord,1);
print a;

Plane [1,.,.]
1.0000 1.0000 1.0000

Working with Arrays

W
orking

w
ith

A
rrays

1.0000 1.0000 1.0000

Plane [2,.,.]
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000

Plane [3,.,.]
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000

15.1.5 arrayalloc

arrayalloc creates an array with specified number and size of dimensions without
setting elements to any values. This requires a vector specifying the order of the array.
The length of the vector determines the number of dimensions, and each element determ-
ines the size of the corresponding dimensions. The array will then have to be filled using
any of several methods described later in this chapter.

For example, to allocate a 2x2x3 array:

rndseed 345678;
ord = 3 | 2 | 2;
a = arrayalloc(ord, 0);

for i(1,ord[1],1);
a[i,.,.] = rndn(2, 3);

endfor;

print a;

Plane [1,.,.]
-0.4300 -0.2878 -0.1327
-0.0573 -1.2900 0.2467

15-8

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-9

Plane [2,.,.]
-1.4249 -0.0796 1.2693
-0.7530 -1.7906 -0.6103

Plane [3,.,.]
1.2586 -0.4773 0.7044

-1.2544 0.5002 0.3559

The second argument in the call to arrayalloc specifies whether the created array is
real or complex. arrayinit creates only real arrays.

15.2 Assigning to Arrays

There are three methods used for assignment to an array:

index
operator

The same method as matrices, generalized to arrays.

putarray Put a subarray into an N-dimensional array and
returns the result.

setarray Set a subarray of an N-dimensional array in place.

And there are several ways to extract parts of arrays:

index
operator

The same method as matrices, generalized to arrays.

getarray Get a subarray from an array.
getmatrix Get a matrix from an array.
getmatrix4D Get a matrix from a 4-dimensional array.
getscalar4D Get a scalar from a 4-dimensional array.

The index operator is the slowest way to extract parts of arrays. The specialized func-
tions are the fastest when the circumstances are appropriate for their use.

15.2.1 index operator 15-10

Working with Arrays

W
orking

w
ith

A
rrays

15.2.2 getarray 15-12

15.2.3 getmatrix 15-13

15.2.4 getmatrix4D 15-13

15.2.5 getscalar3D, getscalar4D 15-14

15.2.6 putarray 15-16

15.2.7 setarray 15-16

15.2.1 index operator

The index operator will put a subarray into an array in a manner analogous to the use
of index operators on matrices:

a = arrayinit(3|2|2, 0);
b = arrayinit(3|1|2, 1);
a[.,2,.] = b;
print a;

Plane [1,.,.]
0.0000 0.0000
1.0000 1.0000

Plane [2,.,.]
0.0000 0.0000
1.0000 1.0000

Plane [3,.,.]
0.0000 0.0000
1.0000 1.0000

As this example illustrates, the assignment doesn't have to be contiguous. putMatrix
and setMatrix require a contiguous assignment, but for that reason they are faster.

15-10

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-11

The right hand side of the assignment can also be a matrix:

a[1,.,.] = rndn(2, 2);
print a;

Plane [1,.,.]
-1.7906502 -0.61038103
1.2586160 -0.47736360

Plane [2,.,.]
0.00000 0.00000
1.00000 1.00000

Plane [3,.,.]
0.00000 0.00000
1.00000 1.00000

The index operator will extract an array from a subarray in a manner analogous to the
use of index operators on matrices:

a = areshape(seqa(1,1,12), 3|2|2);
b = a[.,1,.];
print a;

Plane [1,.,.]
1.0000 2.0000
3.0000 4.0000

Plane [2,.,.]
5.0000 6.0000
7.0000 8.0000

Plane [3,.,.]
9.0000 10.000
11.000 12.000

print b;

Working with Arrays

W
orking

w
ith

A
rrays

Plane [1,.,.]
1.0000 2.0000

Plane [2,.,.]
5.0000 6.0000

Plane [3,.,.]
9.0000 10.000

It is important to note that the result is always an array even if it's a scalar value:

c = a[1,1,1];
print c;

Plane [1,.,.]
1.0000

If you require a matrix result, and if the result has one or two dimensions, use arrayto-
mat to convert to a matrix, or use getmatrix, or getmatrix4D. Or, if the result is
a scalar, use getscalar3D or getscalar4D.

15.2.2 getarray

getarray is an additional method for extracting arrays:

a = areshape(seqa(1,1,12), 3|2|2);
b = getarray(a, 2|1);
print a;

Plane [1,.,.]
1.0000 2.0000
3.0000 4.0000

Plane [2,.,.]
5.0000 6.0000

15-12

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-13

7.0000 8.0000

Plane [3,.,.]
9.0000 10.000
11.000 12.000

print b;

5.0000 6.0000

getarray can only extract a contiguous part of an array. To get non-contiguous parts
you must use the index operator.

15.2.3 getmatrix

If the result is one or two dimensions, getmatrix returns a portion of an array con-
verted to a matrix. getmatrix is about 20 percent faster than the index operator:

a = areshape(seqa(1,1,12), 3|2|2);
b = getmatrix(a, 2);
print b;

5.0000 6.0000
7.0000 8.0000

15.2.4 getmatrix4D

This is a specialized version of getmatrix for 4-dimensional arrays. It behaves just
like getmatrix but is dramatically faster for that type of array. The following illus-
trates the difference in timing:

a = arrayinit(100|100|10|10, 1);
t0 = date;

for i(1, 100, 1);

Working with Arrays

W
orking

w
ith

A
rrays

for j(1, 100, 1);
b = a[i,j,.,.];

endfor;
endfor;

t1 = date;
e1 = ethsec(t0, t1);
print e1;
print;
t2 = date;

for i(1,100,1);
for j(1,100,1);

b = getmatrix4d(a, i, j);
endfor;

endfor;

t3 = date;
e2 = ethsec(t2, t3);
print e2;
print;
print ftostrC(100*((e1-e2)/e1), "percent difference -
%6.2lf%%");

13.000000
5.0000000

percent difference - 61.54%

15.2.5 getscalar3D, getscalar4D

These are specialized versions of getmatrix for retrieving scalar elements of 3-
dimensional and 4-dimensional arrays, respectively. They behave just like getmatrix,
with scalar results, but are much faster. For example:

15-14

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-15

a = arrayinit(100|10|10, 1);
t0 = date;

for i(1,100,1);
for j(1,10,1);

for k(1,10,1);
b = a[i,j,k];

endfor;
endfor;

endfor;

t1 = date;
e1 = ethsec(t0, t1);
print e1;
print;
t2=date;

for i(1,100,1);
for j(1,10,1);

for k(1,10,1);
b = getscalar3d(a, i, j, k);

endfor;
endfor;

endfor;

t3 = date;
e2 = ethsec(t2, t3);
print e2;
print;
print ftostrC(100*((e1-e2)/e1), "percent difference -
%6.2lf%%");

7.0000000
2.0000000
percent difference - 71.43%

Working with Arrays

W
orking

w
ith

A
rrays

15.2.6 putarray

putarray enters a subarray, matrix, or scalar into an N-dimensional array and returns
the result in an array. This function is much faster than the index operator, but it requires
the part of the array being assigned to be contiguous:

a = arrayinit(3|2|2, 3);
b = putarray(a, 2, eye(2));
print b;

Plane [1,.,.]
3.0000 3.0000
3.0000 3.0000

Plane [2,.,.]
1.0000 0.00000
0.00000 1.0000

Plane [3,.,.]
3.0000 3.0000
3.0000 3.0000

15.2.7 setarray

setarray enters a subarray, matrix, or scalar into an N-dimensional array in place:

a = arrayinit(3|2|2,3);
setarray a,2, eye(2);
print b;

Plane [1,.,.]
3.0000 3.0000
3.0000 3.0000

Plane [2,.,.]

15-16

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-17

1.0000 0.0000
0.0000 1.0000

Plane [3,.,.]
3.0000 3.0000
3.0000 3.0000

15.3 Looping with Arrays

When working with arrays, for loops and do loops may be used in the usual way. In
the following, let Y be an Nx1xL array of L time series, X an Nx1xK array of K inde-
pendent variables, b a KxL matrix of regression coefficients, phi a PxLxL array of
garch coefficients, theta a QxLxL array of arch coefficients, and omega a LxL sym-
metric matrix of constants. The log-likelihood for a multivariate garch BEKK model can
be computed using the index operator:

yord = getorders(Y);
xord = getorders(X);
gord = getorders(phi);
aord = getorders(theta);
N = yord[1]; // No. of observations
L = yord[3]; // No. of time series
K = xord[3]; // No. of independent variables // in mean equa-
tion
P = gord[1]; // order of garch parameters
Q = aord[1]; // order of arch parameters

r = maxc(P|Q);
E = Y - amult(X, areshape(B, N|K|L));
sigma = areshape(omega,N|L|L);

for i(r+1, N, 1);
for j(1,Q,1);

W = amult(theta[j,.,.],
atranspose(E[i-j,.,.], 1|3|2));

Working with Arrays

W
orking

w
ith

A
rrays

sigma[i,.,.] = sigma[i,.,.] + amult(W, atranspose
(W,1|3|2));

endfor;
for j(1, P, 1);

sigma[i,.,.] = sigma[i,.,.] + amult(amult(phi[j,.,.],
sigma[i-j,.,.]),phi[j,.,.]);

endfor;
endfor;

sigmai = invpd(sigma);
lndet = ln(det(sigma));
lnl = -0.5*(L*(N-R)*asum(ln(det(sigmai)),1) + asum(amult
(amult(E, sigmai), atranspose(E,1|3|2)), 3);

Instead of index operators, the above computation can be done using getarray and
setarray:

yord = getorders(Y);
xord = getorders(X);
gord = getorders(phi);
aord = getorders(theta);
N = yord[1]; // No. of observations
L = yord[3]; // No. of time series
K = xord[3]; // No. of independent variables in mean equation
P = gord[1]; // order of garch parameters
Q = aord[1]; // order of arch parameters

r = maxc(P|Q);
E = Y - amult(X, areshape(B,N|K|L));
sigma = areshape(omega, N|L|L);

for i(r+1, N, 1);
for j(1,Q,1);

W = amult(getarray(theta, j),
atranspose(getarray(E, i-j), 2|1));
setarray sigma,i, getarray(sigma, i)+

15-18

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-19

amult(W, atranspose(W, 2|1));
endfor;
for j(1, P, 1);

setarray sigma,i, getarray(sigma,i)+
areshape(amult(amult(getarray(phi, j),
getarray(sigma, i-j)), getarray(phi, j)), 3|3);

endfor;
endfor;

sigmai = invpd(sigma);
lndet = ln(det(sigma));
lnl = -0.5*(L*(N-R)*asum(ln(det(sigmai)),1)+
asum(amult(amult(E,sigmai), atranspose(E,1|3|2)), 3)

Putting the two code fragments above into loops that called them a hundred times and
measuring the time, produced the following results:

index operator: 2.604 seconds

getarray, setarray: 1.092 seconds

Thus, the getarray and setarray methods are more than twice as fast.

15.3.1 loopnextindex 15-19

15.3.1 loopnextindex

Several keyword functions are available in GAUSS for looping with arrays. The prob-
lem in the previous section, for example, can be written using these functions rather than
with for loops:

sigind = r + 1;
sigloop:

sig0ind = sigind[1];

Working with Arrays

W
orking

w
ith

A
rrays

thetaind = 1;
thetaloop:

sig0ind = sig0ind - 1;
W = amult(getarray(theta,thetaind),
atranspose(getarray(E, sig0ind), 2|1));
setarray sigma,sigind, getarray(sigma, sigind)+
amult(W, atranspose(W, 2|1));

loopnextindex thetaloop,thetaind,aord;
sig0ind = sigind;
phiind = 1;
philoop:

sig0ind[1] = sig0ind[1] - 1;
setarray sigma,sigind, getarray(sigma, sigind)+
areshape(amult(amult(getarray(phi, phiind),
getArray(sigma, sig0ind)),
getArray(phi, phiind)), 3|3);

loopnextindex philoop,phiind,gord;
loopnextindex sigloop,sigind,sigord;

The loopnextindex function in this example isn't faster than the for loop used in
the previous section primarily because the code is looping only through the first dimen-
sion in each loop. The advantages of loopnextindex, previousindex, nex-
tindex, and walkindex are when the code is looping through the higher dimensions
of a highly dimensioned array. In this case, looping through an array can be very com-
plicated and difficult to manage using for loops. loopnextindex can be faster and
more useful.

The next example compares two ways of extracting a subarray from a 5-dimensional
array:

ord = 3|3|3|3|3;
a = areshape(seqa(1, 1, prodc(ord)) ,ord);

15-20

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-21

b = eye(3);

for i(1, 3, 1);
for j(1, 3, 1);

for k(1, 3, 1);
setarray a,i|j|k,b;

endfor;
endfor;

endfor;

ind = { 1,1,1 };
loopi:

setarray a,ind,b;
loopnextindex loopi,ind,ord;

Calling each loop 10,000 times and measuring the time each takes, we get

for loop: 1.171 seconds

loopnextindex: .321 seconds

In other words, loopnextindex is about four times faster, a very significant dif-
ference.

15.4 Miscellaneous Array Functions

This section discusses miscellaneous array functions.

15.4.1 atranspose 15-22

15.4.2 amult 15-23

15.4.3 amean, amin, amax 15-25

15.4.4 getdims 15-27

15.4.5 getorders 15-27

Working with Arrays

W
orking

w
ith

A
rrays

15.4.6 arraytomat 15-27

15.4.7 mattoarray 15-28

15.4.1 atranspose

This function changes the order of the dimensions. For example:

a = areshape(seqa(1, 1, 12), 2|3|2);
print a;

Plane [1,.,.]
1.0000 2.0000
3.0000 4.0000
5.0000 6.0000

Plane [2,.,.]
7.0000 8.0000
9.0000 10.000
11.000 12.000

/*
** swap 2nd and 3rd dimension
*/
print atranspose(a,1|3|2);

Plane [1,.,.]
1.0000 3.0000 5.0000
2.0000 4.0000 6.0000

Plane [2,.,.]
7.0000 9.0000 11.000
8.0000 10.000 12.000

/*

15-22

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-23

** swap 1st and 3rd dimension
*/
print atranspose(a,3|2|1);

Plane [1,.,.]
1.0000 7.0000
3.0000 9.0000
5.0000 11.000

Plane [2,.,.]
2.0000 8.0000
4.0000 10.000
6.0000 12.000

/*
** move 3rd into the front
*/
print atranspose(a,3|1|2);

Plane [1,.,.]
1.0000 3.0000 5.0000
7.0000 9.0000 11.000

Plane [2,.,.]
2.0000 4.0000 6.0000
8.0000 10.000 12.000

15.4.2 amult

This function performs a matrix multiplication on the last two trailing dimensions of an
array. The leading dimensions must be strictly conformable, and the last two trailing
dimensions must be conformable in the matrix product sense. For example:

a = areshape(seqa(1, 1, 12), 2|3|2);
b = areshape(seqa(1, 1, 16), 2|2|4);

Working with Arrays

W
orking

w
ith

A
rrays

c = amult(a, b);
print a;

Plane [1,.,.]
1.0000 2.0000
3.0000 4.0000
5.0000 6.0000

Plane [2,.,.]
7.0000 8.0000
9.0000 10.000
11.000 12.000

print b;

Plane [1,.,.]
1.0000 2.0000 3.0000 4.0000
5.0000 6.0000 7.0000 8.0000

Plane [2,.,.]
9.0000 10.000 11.000 12.000
13.000 14.000 15.000 16.000

print c;

Plane [1,.,.]
11.000 14.000 17.000 20.000
23.000 30.000 37.000 44.000
35.000 46.000 57.000 68.000

Plane [2,.,.]
167.00 182.00 197.00 212.00
211.00 230.00 249.00 268.00
255.00 278.00 301.00 324.00

15-24

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-25

Suppose we have a matrix of data sets, a 2x2 matrix of 100x5 data sets that we've stored
in a 2x2x100x5 array called x. The moment matrices of these data sets can easily and
quickly be computed using atranspose and amult:

vc = amult(atranspose(x, 1|2|4|3), x);

15.4.3 amean, amin, amax

These functions compute the means, minimums, and maximums, respectively, across a
dimension of an array. The size of the selected dimension of the resulting array is shrunk
to one and contains the means, minimums, or maximums depending on the function
called. For example:

a = areshape(seqa(1,1,12), 2|3|2);
print a;

Plane [1,.,.]
1.0000 2.0000
3.0000 4.0000
5.0000 6.0000

Plane [2,.,.]
7.0000 8.0000
9.0000 10.000
11.000 12.000

/*
** compute means along third dimension
*/
print amean(a, 3);

Plane [1,.,.]
4.0000 5.0000
6.0000 7.0000
8.0000 9.0000

Working with Arrays

W
orking

w
ith

A
rrays

/*
** print means along the second dimension, i.e.,
** down the columns
*/
print amean(a, 2);

Plane [1,.,.]
3.0000 4.0000

Plane [2,.,.]
9.0000 10.000

/*
** print the minimums down the columns
*/
print amin(a, 2);

Plane [1,.,.]
1.0000 2.0000

Plane [2,.,.]
7.0000 8.0000

/*
** print the maximums along the third dimension
*/
print amax(a, 3);

Plane [1,.,.]
7.0000 8.0000
9.0000 10.000
11.000 12.000

15-26

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-27

15.4.4 getdims

This function returns the number of dimensions of an array:

a = arrayinit(4|4|5|2, 0);
print getdims(a);

4.00

15.4.5 getorders

This function returns the sizes of each dimension of an array. The length of the vector
returned by getorders is the dimension of the array:

a = arrayinit(4|4|5|2,0);
print getorders(a);

4.00
4.00
5.00
2.00

15.4.6 arraytomat

This function converts an array with two or fewer dimensions to a matrix:

a = arrayinit(2|2, 0);
b = arraytomat(a);
type(a);

21.000

type(b);

Working with Arrays

W
orking

w
ith

A
rrays

6.0000

15.4.7 mattoarray

This function converts a matrix to an array:

b = rndn(2,2);
a = mattoarray(b);
type(b);

6.0000

type(a);

21.000

15.5 Using Arrays with GAUSS functions

Many of the GAUSS functions have been re-designed to work with arrays. There are
two general approaches to this implementation. There are exceptions, however, and you
are urged to refer to the documention if you are not sure how a particular GAUSS func-
tion handles array input.

In the first approach, the function returns an element-by-element result that is strictly
conformable to the input. For example, cdfNc returns an array of identical size and
shape to the input array:

a = areshape(seqa(-2, .5, 12), 2|3|2);
b = cdfnc(a);
print b;

Plane [1,.,.]
0.9772 0.9331

15-28

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-29

0.8413 0.6914
0.5000 0.3085

Plane [2,.,.]
0.1586 0.0668
0.0227 0.0062
0.0013 0.0002

In the second approach, which applies generally to GAUSS matrix functions, the func-
tion operates on the matrix defined by the last two trailing dimensions of the array. Thus,
given a 5x10x3 array, moment returns a 5x3x3 array of five moment matrices computed
from the five 10x3 matrices in the input array.

Only the last two trailing dimensions matter; i.e., given a 2x3x4x5x10x6 array, moment
returns a 2x3x4x5x6x6 array of moment matrices.

For example, in the following the result is a 2x3 array of 3x1 vectors of singular values
of a 2x3 array of 6x3 matrices:

a = areshape(seqa(1,1,108), 2|3|6|3);
b=svds(a);
print b;

Plane [1,1,.,.]
45.894532
1.6407053
1.2063156e-015

Plane [1,2,.,.]
118.72909
0.63421188
5.8652600e-015

Plane [1,3,.,.]
194.29063
0.38756064

Working with Arrays

W
orking

w
ith

A
rrays

1.7162751e-014

Plane [2,1,.,.]
270.30524
0.27857175
1.9012118e-014

Plane [2,2,.,.]
346.47504
0.21732995
1.4501098e-014

Plane [2,3,.,.]
422.71618
0.17813229
1.6612287e-014

It might be tempting to conclude from this example that, in general, a GAUSS function's
behavior on the last two trailing dimensions of an array is strictly analogous to the
GAUSS function's behavior on a matrix. This may be true with some of the functions,
but not all. For example, the GAUSSmeanc function returns a column result for matrix
input. However, the behavior for the GAUSSamean function is not analogous. This
function takes a second argument that specifies on which dimension the mean is to be
taken. That dimension is then collapsed to a size of 1. Thus:

a = areshape(seqa(1, 1, 24), 2|3|4);
print a;

Plane [1,.,.]
1.000 2.000 3.000 4.000
5.000 6.000 7.000 8.000
9.000 10.000 11.000 12.000

Plane [2,.,.]
13.000 14.000 15.000 16.000

15-30

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-31

17.000 18.000 19.000 20.000
21.000 22.000 23.000 24.000

/*
** means computed across rows
*/

b = amean(a,1);
print b;

Plane [1,.,.]
2.500
6.500
10.500

Plane [2,.,.]
14.500
18.500
22.500

/*
** means computed down columns
*/
c = amean(a,2);
print c;

Plane [1,.,.]
5.000 6.000 7.000 8.000
Plane [2,.,.]
17.000 18.000 19.000 20.000

/*
** means computed along 3rd dimension
*/

d = amean(a,3);
print d;

Working with Arrays

W
orking

w
ith

A
rrays

Plane [1,.,.]
7.000 8.000 9.000 10.000
11.000 12.000 13.000 14.000
15.000 16.000 17.000 18.000

15.6 A Panel Data Model

Suppose we have N cases observed at T times. Let yit be an observation on a depend-
ent variable for the ith case at time t, Xit an observation of k independent vari-
ables for the ith case at time t, B, a Kx1 vector of coefficients. Then

yit = ΧitΒ + μi + εit

is a variance components model where μi is a random error term uncorrelated with εit,
but which is correlated within cases. This implies an NTxNT residual moment matrix
that is block diagonal with N TxT moment matrices with the following form:

The log-likelihood for this model is

lnL = -0.5(NT(ln(2π)) - ln|Ω| + (Y - ΧΒ)'Ω-1(Y - ΧΒ))

where Ω is the block-diagonal moment matrix of the residuals.

15-32

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-33

Computing the Log-likelihood

Using GAUSS arrays, we can compute the log-likelihood of this model without resorting
to do loops. Let Y be a 100x3x1 array of observations on the dependent variable, and X
a 100x3x5 array of observations on the independent variables. Further let b be a 5x1 vec-
tor of coefficients, and sigu and sige be the residual variances of μ and ε respect-
ively. Then, in explicit steps we compute

N = 100;
T = 3;
K = 5;
sigma = sigu * ones(T, T) + sige * eye(T); // TxT sigma
sigmai = invpd(sigma); // sigma inverse
lndet = N*ln(detl);
E = Y - amult(X, areshape(B, N|K|1)); // residuals
Omegai = areshape(sigmai, N|T|T); // diagonal blocks //
stacked in a vector array
R1 = amult(atranspose(E, 1|3|2), Omegai); // E'Omegai
R2 = amult(R1, E); // R1*E
lnL = -0.5*(N*T*ln(2*pi) - lndet + asum(R2, 3)); // log-likel-
hood

All of this can be made more efficient by nesting statements, which eliminates copying
of temporary intervening arrays to local arrays. It is also useful to add a check for the
positive definiteness of sigma:

N = 100;
T = 3;
K = 5;
const = -0.5*N*T*ln(2*pi);
oldt = trapchk(1);
trap 1,1;
sigmai = invpd(sigu*ones(T, T)+sige*eye(T));
trap oldt,1;

if not scalmiss(sigmai);
E = Y - amult(X, areshape(B,N|K|1));

Working with Arrays

W
orking

w
ith

A
rrays

lnl = const + 0.5*N*ln(detl)-
0.5*asum(amult(amult(atranspose(E,1|3|2),
areshape(sigmai,N|T|T)),E),3);

else;
lnl = error(0);

endif;

15.7 Appendix

This is an incomplete list of special functions for working with arrays. Many GAUSS
functions have been modified to handle arrays and are not listed here. For example,
cdfNc computes the complement of the Normal cdf for each element of an array just as
it would for a matrix. See the documentation for these GAUSS functions for information
about their behavior with arrays.

aconcat Concatenate conformable matrices and arrays in a
user-specified dimension.

aeye Create an array of identity matrices.
amax Compute the maximum elements across a

dimension of an array.
amean Compute the mean along one dimension of an

array.
amin Compute the minimum elements across a dimension

of an array.
amult Perform a matrix multiplication on the last two

trailing dimensions of an array.
areshape Reshape a scalar, matrix, or array into an array of

user-specified size.
arrayalloc Create an N-dimensional array with unspecified

contents.
arrayinit Create an N-dimensional array with a specified fill

value.

15-34

GAUSS User Guide

W
or
ki
ng

w
ith

A
rr
ay
s

15-35

arraytomat Change an array to type matrix.
asum Compute the sum across one dimension of an array.

atranspose Transpose an N-dimensional array.
getarray Get a contiguous subarray from an N-dimensional

array.
getdims Get the number of dimensions in an array.
getmatrix Get a contiguous matrix from an N-dimensional

array.
getmatrix4D Get a contiguous matrix from a 4-dimensional

array.
getorders Get the vector of orders corresponding to an array.
getscalar3D Get a scalar from a 3-dimensional array.
getscalar4D Get a scalar form a 4-dimensional array.
loopnextindex Increment an index vector to the next logical index

and jump to the specified label if the index did not
wrap to the beginning.

mattoarray Change a matrix to a type array.
nextindex Return the index of the next element or subarray in

an array.
previousindex Return the index of the previous element or

subarray in an array.
putarray Put a contiguous subarray into an N-dimensional

array and return the resulting array.
setarray Set a contiguous subarray of an N-dimensional

array.
walkindex Walk the index of an array forward or backward

through a specified dimension.

Working with Arrays

W
orking

w
ith

A
rrays

16 Structures

16.1 Basic Structures 16-2

16.1.1 Structure Definition 16-3

16.1.2 Declaring an Instance 16-4

16.1.3 Initializing an Instance 16-4

16.1.4 Arrays of Structures 16-6

16.1.5 Structure Indexing 16-7

16.1.6 Saving an Instance to the Disk 16-9

16.1.7 Loading an Instance from the Disk 16-10

16.1.8 Passing Structures to Procedures 16-10

16.2 Structure Pointers 16-11

16.2.1 Creating and Assigning Structure Pointers 16-11

16.2.2 Structure Pointer References 16-12

16.2.3 Using Structure Pointers in Procedures 16-14

16.3 Special Structures 16-16

16-1

S
tructures

16.3.1 The DS Structure 16-16

16.3.2 The PV Structure 16-17

16.3.3 Miscellaneous PV Procedures 16-21

16.3.4 Control Structures 16-23

16.4 sqpSolveMT 16-24

16.4.1 Input Arguments 16-25

16.4.2 Output Argument 16-29

16.4.3 Example 16-31

16.4.4 The Command File 16-31

16.1 Basic Structures

16.1.1 Structure Definition 16-3

16.1.2 Declaring an Instance 16-4

16.1.3 Initializing an Instance 16-4

16.1.4 Arrays of Structures 16-6

16.1.5 Structure Indexing 16-7

16.1.6 Saving an Instance to the Disk 16-9

16.1.7 Loading an Instance from the Disk 16-10

16.1.8 Passing Structures to Procedures 16-10

16-2

GAUSS User Guide

S
tr
uc
tu
re
s

16-3

16.1.1 Structure Definition

The syntax for a structure definition is

struct A { /* list of members */ };

The list of members can include scalars, arrays, matrices, strings, and string arrays, as
well as other structures. As a type, scalars are unique to structures and don't otherwise
exist.

For example, the following defines a structure containing the possible contents:

struct generic_example {
scalar x;
matrix y;
string s1;
string array s2;
struct other_example t;

};

Defining a structure in a program

A useful convention is to save the structure definition into a file with a .sdf extension.
After the structure definition has been created and saved in a file, the next step is to
make the structure definition available for your program. This may be accomplished by
either executing the structure definition file or by adding the structure definition to a lib-
rary.
Executing a structure definition file

You can execute a structure definition just like any other GAUSS program file.
However, any time that the new command is entered, the structure definition will be
cleared from your workspace. To ensure that the structure definition is always available
for your program, you can add an #include statement like this:

#include filename.sdf

Structures

S
tructures

to the top of your program file. This will ensure that the structure definition is always
available for your program.
Adding a structure definition to a library

Starting in GAUSS version 13.1, you can also add structure definition files to a GAUSS
library. You can add structure definitions to any GAUSS library with the lib command
or using the Library Tool in the user interface. If a structure definition is in a library file,
you can make all procedures and structure definitions available with one statement. For
example:

library mylibrary;

instead of:

library mylibrary;
#include mystruct1.sdf
#include mystruct2.sdf

Also if a structure is defined in an active library, autocomplete will be available for the
structure members.

The next section describes how to create an instance of a structure.

16.1.2 Declaring an Instance

To use a structure, it is necessary to declare an instance. The syntax for this is

struct structure_type structure_name;

For example:

#include example.sdf
struct generic_example p0;

16.1.3 Initializing an Instance

Members of structures are referenced using a "dot" syntax:

16-4

GAUSS User Guide

S
tr
uc
tu
re
s

16-5

p0.x = rndn(20,3);

The same syntax applies when referred to on the right-hand side:

mn = meanc(p0.x);

Initialization of Global Structures

Global structures are initialized at compile time. Each member of the structure is ini-
tialized according to the following schedule:

scalar 0, a scalar zero
matrix {}, an empty matrix with zero rows and zero

columns
array 0, a 1-dimensional array set to zero
string "", a null string
string array "", a 1x1 string array set to null
sparse matrix {}, an empty sparse matrix with zero rows and zero

columns

If a global already exists in memory, it will not be reinitialized. It may be the case in
your program that when it is rerun, the global variables may need to be reset to default
values. That is, your program may depend on certain members of a structure being set to
default values that are set to some other value later in the program. When you rerun this
program, you will want to reinitialize the global structure. To do this, make an assign-
ment to at least one of the members. This can be made convenient by writing a pro-
cedure that declares a structure and initializes one of its members to a default value, and
then returns it. For example:

//ds.src
#include ds.sdf

proc dsCreate;
struct DS d0;

Structures

S
tructures

d0.dataMatrix = 0;
retp(d0);

endp;

Calling this function after declaring an instance of the structure will ensure initialization
to default values each time your program is run:

struct DS d0;
d0 = dsCreate;

Initializing Local Structures

Local structures, which are structures defined inside procedures, are initialized at the
first assignment. The procedure may have been written in such a way that a subset of
structures are used an any one call, and in that case time is saved by not initializing the
unused structures. They will be initialized to default values only when the first assign-
ment is made to one of its members.

16.1.4 Arrays of Structures

To create a matrix of instances, use the reshape command:

#include ds.sdf
struct DS p0;
p0 = reshape(dsCreate,5,1);

This creates a 5x1 vector of instances of DS structures, with all of the members ini-
tialized to default values.

When the instance members have been set to some other values, reshape will produce
multiple copies of that instance set to those values.

Matrices or vectors of instances can also be created by concatenation:

#include trade.sdf
struct option p0,p1,p2;

16-6

GAUSS User Guide

S
tr
uc
tu
re
s

16-7

p0 = optionCreate;
p1 = optionCreate;
p2 = p1 | p0;

16.1.5 Structure Indexing

Structure indexing may be used to reference a particular element in a structure array.
The syntax follows that of matrix indexing. For example, given the following structure
definition:

struct example1 {
matrix x;
matrix y;
string str;

};

you could create an array of example1 structures and index it as follows:

struct example1 e1a;
struct example1 e1b;

e1a = e1a | e1b;
e1a[2,1].y = rndn(25,10);

In this example, e1a and e1b are concatenated to create a 2x1 array of example1
structures that is assigned back to e1a. Then the y member of the [2,1] element of e1a
is set to a random matrix.

Indexing of structure arrays can occur on multiple levels. For example, let's define the
following structures:

struct example3 {
matrix w;
string array sa;

};

Structures

S
tructures

struct example2 {
matrix z;
struct example3 e3;

};

and let's redefine example1 to include an instance of an example2 structure:

struct example1 {
matrix x;
matrix y;
string str;
struct example2 e2;

};

Figure 16.1: Structure tree for e1

16-8

GAUSS User Guide

S
tr
uc
tu
re
s

16-9

Let's assume that we have an example1 structure e1 like the one displayed in the fig-
ure above. We could then index the structure as follows:

r = e1.e2[3,1].e3[2,1].w

You can also use indexing to reference the structure itself, rather than a member of that
structure:

struct example3 e3tmp;
e3tmp = e1.e2[3,1].e3[2,1];

Or you can use indexing to reference a subarray of structures:

e3tmp = e1.e2[3,1].e3[.,1];

In this case, e3tmp would be an array of 3x1 example3 structures, since the [3,1]
member of e1.e2 contains a 3x1 array of example3 structures.

It is important to remember, however, that when indexing a structure array on multiple
levels, only the final index may resolve to an array of structures. For example:

e3tmp = e1.e2[.,1].e3[2,1];

would be invalid, since e1.e2 [.,1] resolves to a 3x1 array of example2 structures.

16.1.6 Saving an Instance to the Disk

Instances and vectors or matrices of instances of structures can be saved in a file on the
disk, and later loaded from the file onto the disk. The syntax for saving an instance to the
disk is

ret = savestruct(instance, filename);

The file on the disk will have an .fsr extension.

For example:

Structures

S
tructures

#include ds.sdf
struct DS p0;
p0 = reshape(dsCreate,2,1);
retc = saveStruct(p2, "p2");

This saves the vector of instances in a file called p2.fsr. The variable retc will be
zero if the save was successful; otherwise, nonzero.

16.1.7 Loading an Instance from the Disk

The syntax for loading a file containing an instance or matrix of instances is

{ instance, retc } = loadstruct(file_name, structure_name);

For example:

#include ds.sdf;
struct DS p3;
{ p3, retc } = loadstruct("p2", "ds");

16.1.8 Passing Structures to Procedures

Structures or members of structures can be passed to procedures. When a structure is
passed as an argument to a procedure, it is passed by value. The structure becomes a
local copy of the structure that was passed. The data in the structure is not duplicated
unless the local copy of the structure has a new value assigned to one of its members.
Structure arguments must be declared in the procedure definition:

struct rectangle {
matrix ulx;
matrix uly;
matrix lrx;
matrix lry;

};

16-10

GAUSS User Guide

S
tr
uc
tu
re
s

16-11

proc area(struct rectangle rect);
retp((rect.lrx - rect.ulx).*(rect.uly - rect.lry));

endp;

Local structures are defined using a struct statement inside the procedure definition:

proc center(struct rectangle rect);
struct rectangle cent;
cent.lrx =(rect.lrx - rect.ulx) / 2;
cent.ulx = -cent.lrx;
cent.uly =(rect.uly - rect.lry) / 2;
cent.lry = -cent.uly;

retp(cent);
endp;

16.2 Structure Pointers

A structure pointer is a separate data type that contains the address of a structure and is
used to reference that structure.

16.2.1 Creating and Assigning Structure Pointers 16-11

16.2.2 Structure Pointer References 16-12

16.2.3 Using Structure Pointers in Procedures 16-14

16.2.1 Creating and Assigning Structure Pointers

Given the following structure type definition:

struct example_struct {
matrix x;

Structures

S
tructures

matrix y;
};

a pointer to an example_struct structure can be created with the following syntax:

struct example_struct *esp;

However, at this point, esp is not yet pointing at anything. It has only been defined to be
the kind of pointer that points at example_struct structures. To set it to point at a
particular structure instance, we must first create the structure instance:

struct example_struct es;

and then we can set esp to point at es by setting esp to the address of es:

esp = &es;

The following code:

struct example_struct es2;
es2 = *esp;

copies the contents of the structure that esp is pointing at (i.e., the contents of es) to
es2. It is the same as

struct example_struct es2;
es2 = es;

16.2.2 Structure Pointer References

To reference a member of a structure, we use a "dot" syntax. For example, we might
use the following code to set the x member of es.

es.x = rndn(3,3);

16-12

GAUSS User Guide

S
tr
uc
tu
re
s

16-13

To reference a member of a structure using a pointer to that structure, we use an
"arrow" syntax. For example, we might use the following code to set the x member of
es using the pointer esp:

esp->x = rndn(10,5);

This code will modify es, since esp is merely a pointer to es.

Structure pointers cannot be members of a structure. The following is illegal:

struct example_struct_2 {
matrix z;
struct example_struct *ep;

};

Therefore, since a structure pointer will never be a member of a structure, neither

sp1->sp2->x;

nor

s.sp1->x;

will ever be valid (sp1 and sp2 are assumed to be structure pointers, s a structure
instance, and x a matrix). The "arrow" (->) will only be valid if it is used for the first
(or furthest left) dereference, as in:

sp1->st.x;

At this point we do not support indexing of structure pointers. Thus, a structure pointer
should point at a scalar structure instance, not a matrix of structures. However, you may
index members of that scalar structure instance. So, for example, let us suppose that you
defined the following structure types:

struct sb {
matrix y;
matrix z;

Structures

S
tructures

};
struct sa {

matrix x;
struct structb s;

};

and then created an instance of an sa structure, a0, setting a0.s to a 3x2 matrix of sb
structures. The following would be legal:

struct sa *sap
sap = &a0;
sap->s[3,1].y = rndn(3,3);

16.2.3 Using Structure Pointers in Procedures

Structure pointers are especially useful in cases where structures are passed into and out
of procedures. If a procedure takes a structure as an argument and modifies any mem-
bers of that structure, then it makes a local copy of the entire structure before modifying
it. Thus if you want to have the modified copy of the structure after running the pro-
cedure, you need to pass the structure out of the procedure as one of its return argu-
ments. For example:

struct example_struct {
matrix x;
matrix y;
matrix z;

};

proc product(struct example_struct es);
es.z = (es.x).*(es.y);
retp(es);

endp;

struct example_struct es1;
es1.x = rndn(1000,100);

16-14

GAUSS User Guide

S
tr
uc
tu
re
s

16-15

es1.y = rndn(1000,1);
es1 = product(es1);

In this example, the structure es1 is passed into the procedure, copied and modified.
The modified structure is then passed out of the procedure and assigned back to es1.

Structure pointers allow you to avoid such excessive data copying and eliminate the need
to pass a structure back out of a procedure in cases like this. When you pass a structure
pointer into a procedure and then modify a member of the structure that it references, the
actual structure is modified rather than a local copy of it. Thus there is no need to pass
the modifed structure back out of the procedure. For example, the above example could
be accomplished using structure pointers as follows:

struct example_struct {
matrix x;
matrix y;
matrix z;

};

proc(0) = product(struct example_struct *esp);
esp->z = (esp->x).*(esp->y);

endp;

struct example_struct es1;
struct example_struct *es1p;
es1p = &es1;
es1.x = rndn(1000,100);
es1.y = rndn(1000,1);
product(es1p);

In this case, the procedure modifies the structure es1, which es1p is pointing at,
instead of a local copy of the structure.

Structures

S
tructures

16.3 Special Structures

There are three common types of structures that will be found in the GAUSS Run-Time
Library and applications.

The DS and PV structures are defined in the GAUSS Run-Time Library. Their defin-
itions are found in ds.sdf and pv.sdf, respectively, in the src source code sub-
directory.

Before structures, many procedures in the Run-Time Library and all applications had
global variables serving a variety of purposes, such as setting and altering defaults. Cur-
rently, these variables are being entered as members of "control" structures.

16.3.1 The DS Structure 16-16

16.3.2 The PV Structure 16-17

16.3.3 Miscellaneous PV Procedures 16-21

16.3.4 Control Structures 16-23

16.3.1 The DS Structure

The DS structure, or "data" structure, is a very simple structure. It contains a member
for each GAUSS data type. The following is found in ds.sdf:

//DS Structure definition
struct DS {

scalar type;
matrix dataMatrix;
array dataArray;
string dname;
string array vnames;

};

16-16

GAUSS User Guide

S
tr
uc
tu
re
s

16-17

This structure was designed for use by the various optimization functions in GAUSS, in
particular, sqpSolvemt, as well as a set of gradient procedures, gradmt, hessmt,
et al.

These procedures all required that the user provide a procedure computing a function (to
be optimized or take the derivative of, etc.), which takes the DS structure as an argu-
ment before GAUSS version 16. These functions will still work with a DS structure, but
you can now pass one or more matrices directly instead of placing them in a DS struc-
ture.

The Run-Time Library procedures such as sqpSolvemt take the extra data needed
by the user provided objective or likelihood function (whether in a DS structure or as sep-
arate matrices) as argument(s) and pass it on to the user-provided procedure without
modification.

To initialize an instance of a DS structure, the procedure dsCreate is defined in
ds.src:

//Declare 'd0' to be an instance of a 'DS' structure
struct DS d0;

//Initialize structure
d0 = dsCreate();

16.3.2 The PV Structure

The PV structure, or parameter vector structure, is used by various optimization, mod-
eling, and gradient procedures, in particular sqpSolvemt, for handling the parameter
vector. The GAUSS Run-Time Library contains special functions that work with this
structure. They are prefixed by "pv" and defined in pv.src. These functions store
matrices and arrays with parameters in the structure, and retrieve various kinds of
information about the parameters and parameter vector from it.

Structures

S
tructures

"Packing" into a PV Structure

The various procedures in the Run-Time Library and applications for optimization,
modelling, derivatives, etc., all require a parameter vector. Parameters in complex mod-
els, however, often come in matrices of various types, and it has been the responsibility
of the programmer to generate the parameter vector from the matrices and vice versa.
The PV procedures make this problem much more convenient to solve.

The typical situation involves two parts: first, "packing" the parameters into the PV struc-
ture, which is then passed to the Run-Time Library procedure or application; and
second, "unpacking" the PV structure in the user-provided procedure for use in com-
puting the objective function. For example, to pack parameters into a PV structure:

#include sqpsolvemt.sdf

/* starting values */

b0 = 1; //constant in mean equation
garch = { .1, .1 }; //garch parameters
arch = { .1, .1 }; //arch parameters
omega = .1; //constant in variance equation
struct PV p0;
p0 = pvPack(pvCreate,b0, "b0");
p0 = pvPack(p0,garch, "garch");
p0 = pvPack(p0,arch, "arch");
p0 = pvPack(p0,omega, "omega");

/* data */

z = loadd("tseries");
struct DS d0;
d0.dataMatrix = z;

Next, in the user-provided procedure for computing the objective function, in this case
minus the log-likelihood, the parameter vector is unpacked:

16-18

GAUSS User Guide

S
tr
uc
tu
re
s

16-19

proc ll(struct PV p0, struct DS d0);
local b0,garch,arch,omega,p,q,h,u,vc,w;
b0 = pvUnpack(p0, "b0");
garch = pvUnpack(p0, "garch");
arch = pvUnpack(p0, "arch");
omega = pvUnpack(p0, "omega");
p = rows(garch);
q = rows(arch);
u = d0.dataMatrix - b0;
vc = moment(u,0)/rows(u);
w = omega + (zeros(q,q) | shiftr((u.*ones(1,q))',
seqa(q-1,-1,q))) * arch;
h = recserar(w,vc*ones(p,1),garch);
logl = -0.5 * ((u.*u)./h + ln(2*pi) + ln(h));

retp(logl);
endp;

Masked Matrices

The pvUnpack function unpacks parameters into matrices or arrays for use in com-
putations. The first argument is a PV structure containing the parameter vector. Some-
times the matrix or vector is partly parameters to be estimated (that is, a parameter to be
entered in the parameter vector) and partly fixed parameters. To distinguish between
estimated and fixed parameters, an additional argument is used in the packing function
called a "mask", which is strictly conformable to the input matrix. Its elements are set to
1 for an estimated parameter and 0 for a fixed parameter. For example:

p0 = pvPackm(p0,.1*eye(3), "theta", eye(3));

Here just the diagonal of a 3x3 matrix is added to the parameter vector.

When this matrix is unpacked, the entire matrix is returned with current values of the
parameters on the diagonal:

print
pvUnpack(p0, "theta");

Structures

S
tructures

0.1000 0.0000 0.0000
0.0000 0.1000 0.0000
0.0000 0.0000 0.1000

Symmetric Matrices

Symmetric matrices are a special case because even if the entire matrix is to be estim-
ated, only the nonredundant portion is to be put into the parameter vector. Thus, for them
there are special procedures. For example:

vc = { 1 .6 .4, .6 1 .2, .4 .2 1 };
p0 = pvPacks(p0,vc, "vc");

There is also a procedure for masking in case only a subset of the nonredundant ele-
ments are to be included in the parameter vector:

vc = { 1 .6 .4, .6 1 .2, .4 .2 1 };
mask = { 1 1 0, 1 1 0, 0 0 1 };
p0 = pvPacksm(p0,vc, "vc",mask);

Fast Unpacking

When unpacking matrices using a matrix name, pvUnpack has to make a search
through a list of names, which is relatively time-consuming. This can be alleviated by
using an index rather than a name in unpacking. To do this, though, requires using a spe-
cial pack procedure that establishes the index:

p0 = pvPacki(p0,b0, "b0",1);
p0 = pvPacki(p0,garch, "garch",2);
p0 = pvPacki(p0,arch, "arch",3);
p0 = pvPacki(p0,omega, "omega",4);

//Now they may be unpacked using the index number:
b0 = pvUnpack(p0,1);
garch = pvUnpack(p0,2);

16-20

GAUSS User Guide

S
tr
uc
tu
re
s

16-21

arch = pvUnpack(p0,3);
omega = pvUnpack(p0,4);

When packed with an index number, they may be unpacked either by index or by name,
but unpacking by index is faster.

16.3.3 Miscellaneous PV Procedures

pvList

This procedure generates a list of the matrices or arrays packed into the structure:

p0 = pvPack(p0,b0, "b0");
p0 = pvPack(p0,garch, "garch");
p0 = pvPack(p0,arch, "arch");
p0 = pvPack(p0,omega, "omega");
print pvList(p0);

b0
garch
arch
omega

pvLength

This procedure returns the length of the parameter vector:

print
pvLength(p0);

6.0000

pvGetParNames

This procedure generates a list of parameter names:

Structures

S
tructures

print
pvGetParNames(p0);

b0[1,1]
garch[1,1]
garch[2,1]
arch[1,1]
arch[2,1]
omega[1,1]

pvGetParVector

This procedure returns the parameter vector itself:

print
pvGetParVector(p0);

1.0000
0.1000
0.1000
0.1000
0.1000
1.0000

pvPutParVector

This procedure replaces the parameter vector with the one in the argument:

newp = { 1.5, .2, .2, .3, .3, .8 };
p0 = pvPutParVector(newp,p0);
print pvGetParVector(p0);
1.5000
0.2000
0.2000
0.3000
0.3000
0.8000

16-22

GAUSS User Guide

S
tr
uc
tu
re
s

16-23

pvGetIndex

This procedure returns the indices in the parameter vector of the parameters in a matrix.
These indices are useful when setting linear constraints or bounds in sqpSolvemt.
Bounds, for example, are set by specifying a Kx2 matrix where K is the length of the
parameter vector and the first column are the lower bounds and the second the upper
bounds. To set the bounds for a particular parameter, then, requires knowing where that
parameter is in the parameter vector. This information can be found using pvGetIn-
dex. For example:

// get indices of lambda parameters in parameter vector
lind = pvGetIndex(par0, "lambda");

// set bounds constraint matrix to unconstrained default
c0.bounds = ones(pvLength(par0),1).*(-1e250~1e250);

// set bounds for lambda parameters to be positive
c0.bounds[lind,1] = zeros(rows(lind),1);

16.3.4 Control Structures

Another important class of structures is the "control" structure. Applications developed
before structures were introduced into GAUSS typically handled some program spe-
cifications by the use of global variables which had some disadvantages, in particular,
preventing the nesting of calls to procedures.

Currently, the purposes served by global variables are now served by the use of a control
structure. For example, for sqpSolvemt:

struct
sqpSolvemtControl {

matrix A;
matrix B;
matrix C;
matrix D;
scalar eqProc;

Structures

S
tructures

scalar ineqProc;
matrix bounds;
scalar gradProc;
scalar hessProc;
scalar maxIters;
scalar dirTol;
scalar CovType;
scalar feasibleTest;
scalar maxTries;
scalar randRadius;
scalar trustRadius;
scalar seed;
scalar output;
scalar printIters;
matrix weights;

};

The members of this structure determine optional behaviors of sqpSolvemt.

16.4 sqpSolveMT

sqpSolveMT is a procedure in the GAUSS Run-Time Library that solves the general
nonlinear programming problem using a Sequential Quadratic Programming descent
method, that is, it solves

min ƒ(Θ)

subject to

AΘ = B linear equality
CΘ >= D linear equality
H(Θ) = 0 nonlinear equality
G(Θ) >= 0 nonlinear equality
Θlb <= Θ <= Θub bounds

16-24

GAUSS User Guide

S
tr
uc
tu
re
s

16-25

The linear and bounds constraints are redundant with respect to the nonlinear con-
straints, but are treated separately for computational convenience.

The call to sqpSolveMT has four input arguments and one output argument:

out = sqpSolveMT(&fct, P, D, C);

16.4.1 Input Arguments 16-25

16.4.2 Output Argument 16-29

16.4.3 Example 16-31

16.4.4 The Command File 16-31

16.4.1 Input Arguments

The first input argument is a pointer to the objective function to be minimized. The pro-
cedure computing this objective function has two arguments: a PV structure containing
the start values, and a DS structure containing data, if any. For example:

proc fct(struct PV p0, struct DS d0);
local y, x, b0, b, e, s;
y = d0[1].dataMatrix;
x = d0[2].dataMatrix;
b0 = pvUnpack(p0, "constant");
b = pvUnpack(p0, "coefficients");
e = y - b0 - x * b;
s = sqrt(e'e/rows(e));

retp(-pdfn(e/s);
endp;

Note that this procedure returns a vector rather than a scalar. When the objective func-
tion is a properly defined log-likelihood, returning a vector of minus log-probabilities per-
mits the calculation of a QML covariance matrix of the parameters.

Structures

S
tructures

The remaining input arguments are structures:

P a PV structure containing starting values of the
parameters

D a DS structure containing data, if any
C an sqpSolvemtControl structure

The DS structure is optional. sqpSolvemt passes this argument on to the user-
provided procedure that &fct is pointing to without modification. If there is no data, a
default structure can be passed to it.

sqpSolvemtControl Structure

A default sqpSolvemtControl structure can be passed in the fourth argument for
an unconstrained problem. The members of this structure are as follows:

A MxK matrix, linear equality constraint coefficients:
ΑΘ = Β, where p is a vector of the parameters.

B Mx1 vector, linear equality constraint constants: ΑΘ
= Β, where p is a vector of the parameters.

C MxK matrix, linear inequality constraint coefficients:
CΘ = D, where p is a vector of the parameters.

D Mx1 vector, linear inequality constraint constants:
CΘ = D, where p is a vector of the parameters.

eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a
procedure has been provided, it has two input
arguments, instances of PV and DS structures, and
one output argument, a vector of computed
inequality constraints.

Default = .; i.e., no inequality procedure.
IneqProc scalar, pointer to a procedure that computes the

16-26

GAUSS User Guide

S
tr
uc
tu
re
s

16-27

nonlinear inequality constraints. When such a
procedure has been provided, it has two input
arguments, instances of PV and DS structures, and
one output argument, a vector of computed
inequality constraints.

Default = .; i.e., no inequality procedure.
Bounds 1x2 or Kx2 matrix, bounds on parameters. If 1x2 all

parameters have same bounds.

Default = -1e256 1e256.
GradProc scalar, pointer to a procedure that computes the

gradient of the function with respect to the
parameters. When such a procedure has been
provided, it has two input arguments, instances of
PV and DS structures, and one output argument, the
derivatives. If the function procedure returns a
scalar, the gradient procedure returns a 1xK row
vector of derivatives. If function procedure turns an
Nx1 vector, the gradient procedure returns an NxK
matrix of derivatives.

This procedure may compute a subset of the
derivatives. sqpSolvemt will compute numerical
derivatives for all those elements set to missing values
in the return vector or matrix.

Default = .; i.e., no gradient procedure has been
provided.

HessProc scalar, pointer to a procedure that computes the
Hessian; i.e., the matrix of second order partial
derivatives of the function with respect to the
parameters. When such a procedure has been
provided, it has two input arguments, instances of

Structures

S
tructures

PV and DS structures, and one output argument, a
vector of computed inequality constraints.

Default = .; i.e., no Hessian procedure has been
provided.

Whether the objective function procedure returns a
scalar or vector, the Hessian procedure must return a
KxK matrix. Elements set to missing values will be
computed numerically by sqpSolvemt.

MaxIters scalar, maximum number of iterations. Default =
1e+5.

MaxTries scalar, maximum number of attemps in random
search. Default = 100.

DirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When this
criterion has been satisifed, sqpSolvemt exits the
iterations.

CovType scalar, if 2, QML covariance matrix, else if 0, no
covariance matrix is computed, else ML covariance
matrix is computed. For a QML covariance matrix,
the objective function procedure must return an Nx1
vector of minus log-probabilities.

FeasibleTest scalar, if nonzero, parameters are tested for
feasibility before computing function in line search.
If function is defined outside inequality boundaries,
then this test can be turned off. Default = 1.

randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search.
Default = .001.

seed scalar, if nonzero, seeds random number generator
for random search, otherwise time in seconds from

16-28

GAUSS User Guide

S
tr
uc
tu
re
s

16-29

midnight is used.
trustRadius scalar, radius of the trust region. If scalar missing,

trust region not applied. The trust sets a maximum
amount of the direction at each iteration. Default =
.001.

output scalar, if nonzero, results are printed. Default = 0.
PrintIters scalar, if nonzero, prints iteration information.

Default = 0.
weights vector, weights for objective function returning a

vector. Default = 1.

16.4.2 Output Argument

The single output argument is an sqpSolvemtOut structure. Its definition is:

struct SQPsolveMTOut {
struct PV par;
scalar fct;
struct SQPsolveMTLagrange lagr;
scalar retcode;
matrix moment;
matrix hessian;
matrix xproduct;

};

The members of this structure are:

par instance of a PV structure containing the parameter
estimates are placed in the matrix member par.

fct scalar, function evaluated at final parameter estimates.

Structures

S
tructures

lagr an instance of an SQPLagrange structure containing
the Lagrangeans for the constraints. For an instance
named lagr, the members are:
lagr.lineq Mx1 vector, Lagrangeans of linear

equality constraints
lagr.nlineq Nx1 vector, Lagrangeans of

nonlinear equality constraints
lagr.linineq Px1 vector, Lagrangeans of linear

inequality constraints
lagr.nlinineq Qx1 vector, Lagrangeans of

nonlinear inequality constraints
lagr.bounds Kx2 matrix, Lagrangeans of bounds

Whenever a constraint is active, its associated
Lagrangean will be nonzero. For any constraint that
is inactive throughout the iterations as well as at
convergence, the corresponding Lagrangean matrix
will be set to a scalar missing value.

retcode return
0 normal convergence
1 forced exit
2 maximum number of iterations

exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 error with constraints
8 function complex
9 feasible direction couldn't be

16-30

GAUSS User Guide

S
tr
uc
tu
re
s

16-31

found

16.4.3 Example

Define

Y = Λη + Θ

where Λ is a KxL matrix of loadings, η an Lx1 vector of unobserved "latent" vari-
ables, and Θ a Kx1 vector of unobserved errors. Then

Σ = ΛΦΛ'Ψ

where Φ is the LxL covariance matrix of the latent variables, and Ψ is the KxK cov-
ariance matrix of the errors.

The log-likelihood of the ith observation is

logP(i) = -½[Kln(2π) + ln| π | + Y(i)ΣY(i)']

Not all elements of Λ, Φ, and Ψ can be estimated. At least one element of each column
of Λ must be fixed to 1, and Ψ is usually a diagonal matrix.

Constraints

To ensure a well-defined log-likelihood, constraints on the parameters are required to
guarantee positive definite covariance matrices. To do this, a procedure is written that
returns the eigenvalues of Σ and Φ minus a small number. sqpSolvemt then finds
parameters such that these eigenvalues are greater than or equal to that small number.

16.4.4 The Command File

This command file can be found in the file sqpfact.e in the examples subdirectory:

Structures

S
tructures

#include sqpsolvemt.sdf
lambda = { 1.0 0.0,

0.5 0.0,
0.0 1.0,
0.0 0.5 };

lmask = { 0 0,
1 0,
0 0,
0 1 };

phi = { 1.0 0.3,
0.3 1.0 };

psi = { 0.6 0.0 0.0 0.0,
0.0 0.6 0.0 0.0,
0.0 0.0 0.6 0.0,
0.0 0.0 0.0 0.6 };

tmask = { 1 0 0 0,
0 1 0 0,
0 0 1 0,
0 0 0 1 };

struct PV par0;
par0 = pvCreate;
par0 = pvPackm(par0,lambda, "lambda",lmask);
par0 = pvPacks(par0,phi, "phi");
par0 = pvPacksm(par0,psi, "psi",tmask);

struct SQPsolveMTControl c0;
c0 = sqpSolveMTcontrolCreate;
//get indices of lambda; parameters in parameter vector
lind = pvGetIndex(par0, "lambda");
//get indices of psi; parameters in parameter vector
tind = pvGetIndex(par0, "psi");

c0.bounds = ones(pvLength(par0),1).*(-1e250~1e250);
c0.bounds[lind,1] = zeros(rows(lind),1);

16-32

GAUSS User Guide

S
tr
uc
tu
re
s

16-33

c0.bounds[lind,2] = 10*ones(rows(lind),1);
c0.bounds[tind,1] = .001*ones(rows(tind),1);
c0.bounds[tind,2] = 100*ones(rows(tind),1);
c0.output = 1;
c0.printIters = 1;
c0.trustRadius = 1;
c0.ineqProc = &ineq;
c0.covType = 1;

struct DS d0;
d0 = dsCreate;
d0.dataMatrix = loadd("maxfact");
output file = sqpfact.out reset;

struct SQPsolveMTOut out0;
out0 = SQPsolveMT(&lpr,par0,d0,c0);

lambdahat = pvUnpack(out0.par, "lambda");
phihat = pvUnpack(out0.par, "phi");
psihat = pvUnpack(out0.par, "psi");

print "estimates";
print;
print "lambda" lambdahat;
print;
print "phi" phihat;
print;
print "psi" psihat;

struct PV stderr;
stderr = out0.par;

if not scalmiss(out0.moment);
stderr = pvPutParVector(stderr,sqrt(diag(out0.moment)));
lambdase = pvUnpack(stderr, "lambda");
phise = pvUnpack(stderr, "phi");

Structures

S
tructures

psise = pvUnpack(stderr, "psi");
print "standard errors";
print;
print "lambda" lambdase;
print;
print "phi" phise;
print;
print "psi" psise;

endif;

output off;

proc lpr(struct PV par1, struct DS data1);
local lambda,phi,psi,sigma,logl;
lambda = pvUnpack(par1, "lambda");
phi = pvUnpack(par1, "phi");
psi = pvUnpack(par1, "psi");
sigma = lambda*phi*lambda' + psi;
logl = -lnpdfmvn(data1.dataMatrix,sigma);

retp(logl);
endp;

proc ineq(struct PV par1, struct DS data1);
local lambda,phi,psi,sigma,e;
lambda = pvUnpack(par1, "lambda");
phi = pvUnpack(par1, "phi");
psi = pvUnpack(par1, "psi");
sigma = lambda*phi*lambda' + psi;
e = eigh(sigma) - .001; //eigenvalues of sigma
e = e | eigh(phi) - .001; //eigenvalues of phi
retp(e);

endp;

16-34

GAUSS User Guide

S
tr
uc
tu
re
s

17 Run-Time Library Structures

Two structures are used by several GAUSSRun-Time Library functions for handling
parameter vectors and data: the PV parameter structure and the DS data structure.

17.1 The PV Parameter Structure 17-1

17.2 Fast Pack Functions 17-6

17.3 The DS Data Structure 17-7

17.1 The PV Parameter Structure

The members of an instance of structure of type PV are all "private," that is, not access-
ible directly to the user. It is designed to handle parameter vectors for thread-safe optim-
ization functions. Entering and receiving parameter vectors, and accessing properties of
this vector, are accomplished using special functions.

Suppose you are optimizing a function containing a KxL matrix of coefficients. The
optimization function requires a parameter vector but your function uses a KxL matrix.
Your needs and the needs of the optimization function can be both satisfied by an
instance of the structure of type PV. For example:

17-1

R
un-T

im
e
Library

S
tructures

struct PV p1;
p1 = pvCreate;
//on input contains start values
//on exit contains estimates
x = zeros(4,3);
p1 = pvPack(p1,x, "coefficients");

The pvCreate function initializes p1 to default values. pvPack enters the 4x3 matrix
stored row-wise as a 12x1 parameter vector for the optimization function. The optim-
ization program will pass the instance of the structure of type PV to your objective func-
tion.

By calling pvUnpack your 4x3 coefficient matrix is retrieved from the parameter vec-
tor. For example, in your procedure you have

x = pvUnpack(p1, "coefficients");

and now x is a 4x3 matrix of coefficients for your use in calculating the object function.

Suppose that your objective function has parameters to be estimated in a covariance mat-
rix. The covariance matrix is a symmetric matrix where only the lower left portion con-
tains unique values for estimation. To handle this, use pvPacks. For example:

struct PV p1;
p1 = pvCreate;
cov = { 1.0 0.1 0.1,

0.1 1.0 0.1,
0.1 0.1 1.0 };

p1 = pvPacks(p1,cov, "covariance");

Only the lower left portion of cov will be stored in the parameter vector. When the cov-
ariance matrix is unpacked, the parameters in the parameter vector will be entered into
both the lower and upper portions of the matrix.

There may be cases where only a portion of a matrix being used to compute the object-
ive function are parameters to be estimated. In this case use pvPackm with a "mask"

17-2

GAUSS User Guide

R
un
-T
im
e
Li
br
ar
y

S
tr
uc
tu
re
s

17-3

matrix that contains ones where parameters are to be estimated and zeros otherwise. For
example,

struct PV p1;
p1 = pvCreate;
cov = { 1.0 0.5,

0.5 1.0 };
mask = { 0 1,

1 0 };
p1 = pvPacksm(p1,cov, "correlation",mask);

Here only the one element in the lower left of cov is stored in the parameter vector. Sup-
pose the optimization program sends a trial value for that parameter of, say, .45. When
the matrix is unpacked in your procedure it will contain the fixed values associated with
the zeros in the mask as well as the trial value in that part of the matrix associated with
the ones. Thus,

print unpack(p1, "correlation");
1.0000 .4500
.4500 1.0000

A mask may also be used with general matrices to store a portion of a matrix in the para-
meter vector.

struct PV p1;
p1 = pvCreate;
m = { 0.0 0.5 1.0,

0.5 0.0 0.3 };
mask = { 0 1 1,

1 0 0};
p1 = pvPackm(p1,m, "coefficients",mask);

A PV instance can, of course, hold parameters from all these types of matrices: sym-
metric, masked symmetric, rectangular, and masked rectangular. For example:

Run-Time Library
Structures

R
un-T

im
e
Library

S
tructures

lambda = { 1.0 0.0,
0.5 0.0,
0.0 1.0,
0.0 0.5 };

lmask = { 0 0,
1 0,
0 0,
0 1 };

phi = { 1.0 0.3,
0.3 1.0 };

theta = { 0.6 0.0 0.0 0.0,
0.0 0.6 0.0 0.0,
0.0 0.0 0.6 0.0,
0.0 0.0 0.0 0.6 };

tmask = { 1 0 0 0,
0 1 0 0,
0 0 1 0,
0 0 0 1 };

struct PV par0;
par0 = pvCreate;
par0 = pvPackm(par0,lambda, "lambda",lmask);
par0 = pvPacks(par0,phi, "phi");
par0 = pvPacksm(par0,theta, "theta",tmask);

It isn't necessary to know where in the parameter vector the parameters are located in
order to use them in your procedure calculating the objective function. Thus:

lambda = pvUnpack(par1, "lambda");
phi = pvUnpack(par1, "phi");
theta = pvUnpack(par1, "theta");
sigma = lambda*phi*lambda' + theta;

Additional functions are available to retrieve information on the properties of the para-
meter vector. pvGetParVector and pvPutParVector get and put parameter vector from
and into the PV instance, pvGetParNames retrieves names for the elements of the

17-4

GAUSS User Guide

R
un
-T
im
e
Li
br
ar
y

S
tr
uc
tu
re
s

17-5

parameter vector, pvList returns the list of matrix names in the PV instance, pvLength
the length of the parameter vector.

struct PV p1;
p1 = pvCreate;
cov = { 0.1 0.5,

0.5 1.0 };
mask = { 0 1,

1 0 };

p1 = pvPacksm(p1,cov, "correlation",mask);

print pvGetParVector(p1);
0.5000

p1 = pvPutParVector(p1,.8);

print pvGetParVector(p1);
0.8000

print pvUnpack(p1, "correlation");
1.0000 .8000
0.8000 1.0000

print pvGetParNames(p1);

correlation[2,1]

print pvLength(p1);
1.0000

Also, pvTest tests an instance to make sure it is properly constructed. pvCreate gen-
erates an initialized instance, and pvGetIndex returns the indices of the parameters
of an input matrix in the parameter vector. This last function is most useful when con-
structing linear constraint indices for the optimization programs.

Run-Time Library
Structures

R
un-T

im
e
Library

S
tructures

17.2 Fast Pack Functions

Unpacking matrices using matrix names is slow because it requires a string search
through a string array of names. A set of special packing functions are provided that
avoid the search altogether. These functions use a "table" of indices that you specify to
find the matrix in the PV instance. For example:

struct PV p1;
p1 = pvCreate;
y = rndn(4,1);
x = rndn(4,4);
p1 = pvPacki(p1,y, "Y",1);
p1 = pvPacki(p1,x, "X",2);

print pvUnpack(p1,1);

.3422

.0407

.5611

.0953

print pvUnpack(p1, "Y");

.3422

.0407

.5611

.0953

The call to pvPacki puts an entry in the table associating the matrix in its second argu-
ment with the index 1. As indicated above the matrix can be unpacked either by index or
by name. Unpacking by index, however, is much faster than by name.

Note that the matrix can be unpacked using either the index or the matrix name.

There are index versions of all four of the packing functions, pvPacki, pvPackmi,
pvPacksi, and pvPacksmi.

17-6

GAUSS User Guide

R
un
-T
im
e
Li
br
ar
y

S
tr
uc
tu
re
s

17-7

17.3 The DS Data Structure

An instance of the DS data structure contains the following members:

struct DS d0;
d0.dataMatrix MxK matrix, data
d0.dataArray N-dimensional array, data
d0.type scalar
d0.dname string
d0.vnames string array

The definition and use of the elements of d0 are determined by the particular application
and are mostly up to the user. A typical use might use a vector of structures. For
example, suppose the objective function requires a vector of observations on a dependent
variable as well as on K independent variables. Then:

struct DS d0;
d0 = dsCreate;

y = rndn(20,1);
x = rndn(20,5);

d0 = reshape(d0,2,1);
d0[1].dataMatrix = y;
d0[2].dataMatrix = X;

The d0 instance would be passed to the optimization program which then passes it to
your procedure computing the objective function. For example:

proc
lpr(struct PV p1, struct DS d1);
local u;
u = d0[1].dataMatrix - d0[2].dataMatrix * pvUnpack(p1,

"beta");
retp(u'u);

endp;

Run-Time Library
Structures

R
un-T

im
e
Library

S
tructures

A particular application may require setting other members of the DS instance for par-
ticular purposes, but in general you may use them for your own purposes. For example,
d0.dname could be set to a GAUSS dataset name from which you read the data in the
objective function procedure, or d0.vnames could be set to the variable names of the
columns of the data stored in d0.dataMatrix, or d0.type could be an indicator variable
for the elements of a vector of DS instances.

The following are complete examples of the use of the PV and DS structures. The first
example fits a set of data to the Micherlitz model. It illustrates packing and unpacking
by index.

#include sqpsolvemt.sdf
struct DS Y;
Y = dsCreate;
Y.dataMatrix = 3.183|

3.059|
2.871|
2.622|
2.541|
2.184|
2.110|
2.075|
2.018|
1.903|
1.770|
1.762|
1.550;

struct DS X;
X = dsCreate;
X.dataMatrix = seqa(1,1,13);

struct DS Z;
Z = reshape(Z,2,1);

17-8

GAUSS User Guide

R
un
-T
im
e
Li
br
ar
y

S
tr
uc
tu
re
s

17-9

Z[1] = Y;
Z[2] = X;

struct SQPsolveMTControl c1;
c1 = sqpSolveMTcontrolCreate; // initializes to default val-
ues

c1.bounds = 0~100; // constrains parameters to be
positive
c1.CovType = 1;
c1.output = 1;
c1.printIters = 0;
c1.gradProc = &grad;

struct PV par1;
par1 = pvCreate;
start = { 2, 4, 2 };
par1 = pvPacki(par1,start, "Parameters",1);

struct SQPsolveMTout out1;
out1 = SQPsolveMT(&Micherlitz,par1,Z,c1);
estimates = pvGetParVector(out1.par);

print " parameter estimates ";
print estimates;
print;
print " standard errors ";
print sqrt(diag(out1.moment));

proc Micherlitz(struct PV par1,struct DS Z);
local p0,e,s2;
p0 = pvUnpack(par1,1);
e = Z[1].dataMatrix - p0[1] - p0[2]*exp(-p0[3]
*Z[2].dataMatrix);
s2 = moment(e,0)/(rows(e)-1);

retp((2/rows(e))*(e.*e/s2 + ln(2*pi*s2)));
endp;

Run-Time Library
Structures

R
un-T

im
e
Library

S
tructures

proc grad(struct PV par1, struct DS Z);
local p0,e,e1,e2,e3,w,g,s2;
p0 = pvUnpack(par1,1);
w = exp(-p0[3]*Z[2].dataMatrix);
e = z[1].dataMatrix - p0[1] - p0[2] * w;
s2 = moment(e,0) / rows(e);
e1 = -ones(rows(e),1);
e2 = -w;
e3 = p0[2]*Z[2].dataMatrix.*w;
w =(1 - e.*e / s2) / rows(e);
g = e.*e1 + w*(e'e1);
g = g ~ (e.*e2 + w*(e'e2));
g = g ~ (e.*e3 + w*(e'e3));

retp(4*g/(rows(e)*s2));
endp;

This example estimates parameters of a "confirmatory factor analysis" model.

#include sqpsolvemt.sdf
lambda = { 1.0 0.0,

0.5 0.0,
0.0 1.0,
0.0 0.5 };

lmask = { 0 0,
1 0,
0 0,
0 1 };

phi = { 1.0 0.3,
0.3 1.0 };

theta = { 0.6 0.0 0.0 0.0,
0.0 0.6 0.0 0.0,
0.0 0.0 0.6 0.0,
0.0 0.0 0.0 0.6 };

tmask = { 1 0 0 0,
0 1 0 0,

17-10

GAUSS User Guide

R
un
-T
im
e
Li
br
ar
y

S
tr
uc
tu
re
s

17-11

0 0 1 0,
0 0 0 1 };

struct PV par0;
par0 = pvCreate;
par0 = pvPackm(par0,lambda, "lambda",lmask);
par0 = pvPacks(par0,phi, "phi");
par0 = pvPacksm(par0,theta, "theta",tmask);

struct SQPsolveMTControl c0;
c0 = sqpSolveMTcontrolCreate;

lind = pvGetIndex(par0, "lambda"); // get indices of lambda
parameters // in parameter vector

tind = pvGetIndex(par0, "theta"); // get indices of theta
parameters // in parameter vector

c0.bounds = ones(pvLength(par0),1).*(-1e250~1e250);
c0.bounds[lind,1] = zeros(rows(lind),1);
c0.bounds[lind,2] = 10*ones(rows(lind),1);
c0.bounds[tind,1] = .001*ones(rows(tind),1);
c0.bounds[tind,2] = 100*ones(rows(tind),1);
c0.ineqProc = &ineq;
c0.covType = 1;

struct DS d0;
d0 = dsCreate;
d0.dataMatrix = loadd("maxfact");

struct SQPsolveMTOut out0;
out0 = SQPsolveMT(&lpr,par0,d0,c0);

lambdahat = pvUnpack(out0.par, "lambda");
phihat = pvUnpack(out0.par, "phi");
thetahat = pvUnpack(out0.par, "theta");

Run-Time Library
Structures

R
un-T

im
e
Library

S
tructures

print "estimates";
print;
print "lambda" lambdahat;
print;
print "phi" phihat;
print;
print "theta" thetahat;

struct PV stderr;
stderr = out0.par;

if not scalmiss(out0.moment);
stderr = pvPutParVector(stderr,sqrt(diag(out0.moment)));
lambdase = pvUnpack(stderr, "lambda");
phise = pvUnpack(stderr, "phi");
thetase = pvUnpack(stderr, "theta");
print"standard errors";
print;
print"lambda" lambdase;
print;
print"phi" phise;
print;
print"theta" thetase;

endif;

proc lpr(struct PV par1, struct DS data1);
local lambda,phi,theta,sigma,logl;
lambda = pvUnpack(par1, "lambda");
phi = pvUnpack(par1, "phi");
theta = pvUnpack(par1, "theta");
sigma = lambda*phi*lambda' + theta;
logl = -lnpdfmvn(data1.dataMatrix,sigma);

retp(logl);
endp;

proc ineq(struct PV par1, struct DS data1);

17-12

GAUSS User Guide

R
un
-T
im
e
Li
br
ar
y

S
tr
uc
tu
re
s

17-13

local lambda,phi,theta,sigma,e;
lambda = pvUnpack(par1, "lambda");
phi = pvUnpack(par1, "phi");
theta = pvUnpack(par1, "theta");
sigma = lambda*phi*lambda' + theta;
e = eigh(sigma) - .001; // eigenvalues of sigma
e = e | eigh(phi) - .001; // eigenvalues of phi

retp(e);
endp;

Run-Time Library
Structures

R
un-T

im
e
Library

S
tructures

18 Multi-Threaded
Programming in GAUSS

The term thread comes from the phrase "thread of execution"--simply, it denotes a sec-
tion of code that you want to execute. A single-threaded program has only one thread of
execution, i.e., the program itself. A multi-threaded program is one that can have mul-
tiple threads--sections of code--executing simultaneously. Since these threads are part
of the same program, they share the same workspace, and see and operate on the same
symbols. Threads allow you to take full advantage of the hardware processing resources
available on hyper-threaded, multi-core, and multi-processor systems, executing inde-
pendent calculations simultaneously, combining and using the results of their work when
done.

18.1 The Functions 18-2

18.2 GAUSS Threading Concepts 18-4

18.3 Coding With Threads 18-4

18.4 Coding Restrictions 18-7

18.5 Parallel for Loops 18-11

18.5.1 Basic syntax 18-11

18.5.2 Single threaded example 18-12

18-1

M
ulti-T

hreaded
P
rogram

m
ing

18.5.3 threadFor variables 18-12

18.5.4 Temporary variables 18-13

18.5.5 Broadcast variables 18-14

18.5.6 Slice variables 18-15

18.5.7 Reduction variables 18-16

18.5.8 Categorizing the variables in our example 18-17

18.6 Controlling thread count 18-18

18.1 The Functions

GAUSS includes four keywords for multi-threading your programs:

ThreadStat Marks a single statement to be
executed as a thread.

ThreadBegin Marks the beginning of a block
of code to be executed as a
thread.

ThreadEnd Marks the end of a block of
code to be executed as a thread.

threadfor, threadendfor Begins a parallel for loop.
ThreadJoin Completes the definition of a set

of threads, waits until they are
done.

ThreadStat defines a single statement to be executed as a thread:

ThreadStat n = m'm;

18-2

GAUSS User Guide

M
ul
ti-
T
hr
ea
de
d

P
ro
gr
am

m
in
g

18-3

ThreadBegin and ThreadEnd define a multi-line block of code to be executed as a
thread:

ThreadBegin;
y = x'x;
z = y'y;

ThreadEnd;

Together these define sets of threads to be executed concurrently:

ThreadStat n = m'm; // Thread 1
ThreadBegin; // Thread 2

y = x'x;
z = y'y;

ThreadEnd;
ThreadBegin; // Thread 3

q = r'r;
r = q'q;

ThreadEnd;
ThreadStat p = o'o; // Thread 4

Finally, ThreadJoin completes the definition of a set of threads. It waits for the
threads in a set to finish and rejoin the creating (the parent) thread, which can then con-
tinue, making use of their individual calculations:

ThreadBegin; // Thread 1
y = x'x;
z = y'y;

ThreadEnd;
ThreadBegin; // Thread 2

q = r'r;
r = q'q;

ThreadEnd;
ThreadStat n = m'm; // Thread 3
ThreadStat p = o'o; // Thread 4
ThreadJoin; // waits for Threads 1-4 to finish
b = z + r + n'p; // Using the results

Multi-Threaded
Programming

M
ulti-T

hreaded
P
rogram

m
ing

18.2 GAUSS Threading Concepts

This is really the one and only thing you need to know about threads: threads are sep-
arate sections of the same program, executing simultaneously, operating on the same
data. In fact, it's so fundamental it's worth saying again: threads are separate sections of
code in a program, running at the same time, using the same workspace, referencing and
operating on the same symbols.

This raises basic issues of workflow and data integrity. How do you manage the creation
and execution of threads, and make use of the work they do? And how do you maintain
data integrity? (You do not want two threads assigning to the same symbol at the same
time.)

To handle thread workflow, GAUSS employs a split-and-join approach. At various
points in your program (as many as you like), you define a set of threads that will be cre-
ated and run as a group. When created, the threads in the set execute simultaneously,
each doing useful work. The parent thread waits for the created threads to complete,
then continues, the results of their work now available for further use.

To maintain data integrity, we introduce the writer-must-isolate (informally, the any-
thread-can-read-unless-some-thread-writes) programming rule. That is to say, sym-
bols that are read from but not assigned to can be referenced by as many threads in a set
as you like. Symbols that are assigned to, however, must be wholly owned by a single
thread. No other thread in the set can reference that symbol. They cannot assign to it,
nor can they read from it. They cannot refer to it at all.

Note: the writer-must-isolate rule only applies to the threads within a given set (includ-
ing any child thread sets they may create). It does not apply between thread sets that
have no chance of running simultaneously.

For threads defined in the main code, the writer-must-isolate rule applies to the global
symbols. For threads defined in procedures or keywords, it applies to the global symbols,
local symbols, and the procedure/keyword arguments.

18.3 Coding With Threads

There are two main points to coding with threads.

18-4

GAUSS User Guide

M
ul
ti-
T
hr
ea
de
d

P
ro
gr
am

m
in
g

18-5

1. You can define threads anywhere.

You can define them in the main code, you can define them in proc's and
keyword's, and yes, you can define them inside other threads.

2. You can call proc's and keyword's from threads.

This is what really ties everything together. You can call a proc from a thread,
and that proc can create threads, and any of those threads can call proc's, and
any of those proc's can create threads, and ... you get the picture.

So--you can do things like this:

q = chol(b);
ThreadBegin;

x = q + m;
ThreadBegin;

y = x'x;
z = q'm;

ThreadEnd;
ThreadBegin;

a = b + x;
c = a + m;

ThreadEnd;
ThreadJoin;

q = m'c;
ThreadEnd;
ThreadBegin;

ThreadStat r = m'm;
ThreadStat s = m + inv(b);
ThreadJoin;

t = r's;
ThreadEnd;
ThreadJoin;
x = r+s+q+z-t;

More importantly, you can do things like this:

Multi-Threaded
Programming

M
ulti-T

hreaded
P
rogram

m
ing

proc
bef(x);
local y,t;
ThreadStat y = nof(x);
ThreadStat t = dof(x'x);
ThreadJoin;
t = t+y;

retp(t);
endp;

proc abr(m);
local x,y,z,a,b;
a = m'm;
ThreadStat x = inv(m);
ThreadStat y = bef(m);
ThreadStat z = dne(a);
ThreadJoin;
b = chut(x,y,z,a);

retp(inv(b));
endp;

s = rndn(500,500);
ThreadStat t = abr(s);
ThreadStat q = abr(s^2);
ThreadStat r = che(s);
ThreadJoin;

w = del(t,q,r);
print w[1:10,1:10];

This means you can multi-thread anything you want, and call it from anywhere. You can
multi-thread all the proc's and keyword's in your libraries, and call them freely any-
where in your multi-threaded programs.

18-6

GAUSS User Guide

M
ul
ti-
T
hr
ea
de
d

P
ro
gr
am

m
in
g

18-7

18.4 Coding Restrictions

A few points on coding restrictions. First, you can't interlace thread definition statements
and regular statements. You can't do this:

ThreadStat a = b'b;
n = q;
ThreadStat c = d'd;
ThreadJoin;

Or this:

if k == 1;
ThreadStat a = b'b;

elseif k == 2;
ThreadStat a = c'c;

endif;
if j == 1;

ThreadStat d = e'e;
elseif j == 2;

ThreadStat d = f'f;
endif;
ThreadJoin;

Each set of threads is defined as a group, and always completed by a ThreadJoin,
like this:

n = q;
ThreadStat a = b'b;
ThreadStat c = d'd;
ThreadJoin;

And this:

ThreadBegin;
if k == 1;

a = b'b;

Multi-Threaded
Programming

M
ulti-T

hreaded
P
rogram

m
ing

elseif k == 2;
a = c'c;

endif;
ThreadEnd;
ThreadBegin;

if j == 1;
d = e'e;

elseif j == 2;
d = f'f;

endif;
ThreadEnd;
ThreadJoin;

Second--as stated above, you can reference read-only symbols in as many threads within
a set as you like, but any symbols that are assigned to must be wholly owned by a single
thread. A symbol that is assigned to by a thread cannot be written or read by any other
thread in that set. This is the writer-must-isolate rule.

So, you can do this:

ThreadStat x = y'y;
ThreadStat z = y+y;
ThreadStat a = b-y;
ThreadJoin;

You cannot do this:

ThreadStat x = y'y;
Threadstat z = x'x;
ThreadStat a = b-y;
ThreadJoin;

This is because the threads within a set run simultaneously. Thus, there is no way of
knowing when an assignment to a symbol has taken place, no way of knowing in one
thread the "state" of a symbol in another.

18-8

GAUSS User Guide

M
ul
ti-
T
hr
ea
de
d

P
ro
gr
am

m
in
g

18-9

Let's revisit the nested thread example for a minute and see how the writer-must-isol-
ate rule applies to it:

q = chol(b); // main code, no threads yet
ThreadBegin; // Th1: isolates x,y,z,a,c,q from
Th2

x = q + m;
ThreadBegin; // Th1.1: isolates y,z from 1.2

y = x'x;
z = q'm;

ThreadEnd;
ThreadBegin; // Th1.2: isolates a,c from 1.1

a = b + x;
c = a + m;

ThreadEnd;
ThreadJoin; // Joins 1.1, 1.2
q = m'c;

ThreadEnd;
ThreadBegin; // Th2: isolates r,s,t from Th1
ThreadStat r = m'm; // Th2.1: isolates r from 2.2
ThreadStat // Th2.2: isolates s from 2.1

s = m + inv(b);
ThreadJoin; // Joins 2.1, 2.1
t = r's;

ThreadEnd;
ThreadJoin; // Joins Th1, Th2
x = r+s+q+z-t;

The main point here is that any symbols a thread or its children assign to must be isol-
ated from all the other threads (and their children) of the same nesting level in that set.
On the other hand, the children of a thread can freely read/write symbols that are
read/written by their parent, because there is no risk of simultaneity; they must only isol-
ate written symbols from their siblings and siblings' offspring.

If you break the writer-must-isolate rule, your program (and probably GAUSS) will
crash. Worse, until it crashes, it will be happily producing indeterminate results.

Multi-Threaded
Programming

M
ulti-T

hreaded
P
rogram

m
ing

Finally--the ThreadEnd command is what tells a thread to terminate, so you mustn't
write code that keeps a thread from reaching it. For example, don't retp from the
middle of a thread:

ThreadStat m = imt(9);
ThreadBegin;

x = q[1];
if x = 1;

retp(z);
else;

r = z + 2;
endif;

ThreadEnd;
ThreadJoin;

And don't use goto to jump into or out of the middle of a thread:

retry:
ThreadBegin;

{ err, x } = fna(q);
if err;

goto badidea;
endif;
x = fnb(x);

ThreadEnd;
ThreadStat y = fnb(y);
ThreadJoin;

z = fnc(x,y);
save z;
end;

badidea:
errorlog "Error computing fna(q)";
q = fnd(q);

goto retry;

18-10

GAUSS User Guide

M
ul
ti-
T
hr
ea
de
d

P
ro
gr
am

m
in
g

18-11

Basically, don't do anything that will keep a thread from reaching its ThreadEnd com-
mand. That's the only way it knows its work is done. end and stop are okay to call,
though--they will bring the program to an end as usual, and terminate all running threads
in the process.

(You can use goto and labels to jump around within a thread--that is, within the con-
fines of a ThreadBegin/ThreadEnd pair.)

18.5 Parallel for Loops

The GAUSS threadFor keyword allows you to create compact code that will run in
parallel. In order for a for loop construct to execute correctly concurrently in separate
threads, the threadFor loop has a few special rules. In this section, we will explain
these rules by working through a simple example.

18.5.1 Basic syntax

The syntax of a threadFor loop is the same as a standard for loop:

threadFor loop_counter(start, stop, step);
//loop body

threadEndFor;

Below is one of the most simple, specific examples of a threadFor loop. It will print
out the loop counter from one to ten:

threadFor i(1, 10, 1);
print i;

threadEndFor;

Multi-Threaded
Programming

M
ulti-T

hreaded
P
rogram

m
ing

18.5.2 Single threaded example

As we learn how to use threadFor loops, we will illustrate the concepts by con-
verting the following single-threaded for loop to a threadFor loop:

//Using the trapezoidal rule to integrate//the cosine func-
tion from 0 to 0.5
n_slices = 1000;
a = 0;
b = 0.5;

h = (a - b) ./ n_slices;

approx = zeros(n_slices + 1, 1);
approx[1] = (cos(a) + cos(b)) ./ 2;

for i(1, n_slices, 1);
x_tmp = a + i*h;
approx[i+1] = cos(x_tmp);

endfor;

final = sumc(approx) .* h;

18.5.3 threadFor variables

A threadFor loop contains three types of variables: temporary variables, broadcast
variables and slice variables. The next sections will explain how they are defined and
how they operate. Before we start it is important to point out that the assignment of a
variable to a category is permanent for the remainder of the threadFor loop. Vari-
ables cannot change to different categories during a threadFor loop.

18-12

GAUSS User Guide

M
ul
ti-
T
hr
ea
de
d

P
ro
gr
am

m
in
g

18-13

18.5.4 Temporary variables

One of the most important rules of parallel programming is that you should not assign to
the same global variable from multiple threads that are running at the same time. This
can cause a “race condition” in which the output from your program will depend upon
which thread “wins the race” and assigns to the variable first. It can also cause your pro-
gram to crash if they try to assign at the same time.

With that in mind, it may appear that we have a problem when we try to convert the first
line inside the for loop from our program above to a threadFor loop:

threadFor i(1, n_slices, 1);
x_tmp = a + i*h;
approx[i+1] = cos(x_tmp);

threadEndFor;

In the sequential version, every iteration of the for loop is certainly assigning to the same
global variable, x_tmp. While we might expect that this is not allowed in the
threadFor loop, it is actually acceptable.

The reason that this works is because GAUSS will make a separate temporary version
of x_tmp for each thread. When a variable in a threadFor loop is assigned to in it’s
entirety, not simply a portion of it by index, it becomes a temporary variable.

The rules for temporary variables are:

1. A temporary variable may have any legal variable name

In our example above, our variable name ended in _tmp, but this is not required.

2. A temporary variable is not the same as a variable with the same name outside the
‘threadFor’ loop.

Temporary variables exist only in the scope of the threadFor loop. They do not
start the loop with any value and their value is not available outside the
threadFor loop. For example:

Multi-Threaded
Programming

M
ulti-T

hreaded
P
rogram

m
ing

x = 100;
threadFor i(1, 4, 1);

x = i;
threadEndFor;
print "x = " x;

will print out:

x = 100

3. The first reference to a temporary variable must be an assignment.

Since temporary variables do not exist outside the loop and are not related to vari-
ables outside the loop with the same name, they will not have a value until they are
assigned to inside of the ‘threadFor’ loop. For example:

x = 100;
threadFor i(1, 4, 1);

a = x; //‘x’ does not have a value until the next line
x = i; //This line makes ‘x’ a temporary

variablethreadEndfor;

18.5.5 Broadcast variables

threadFor i(1, n_slices, 1);
x_tmp = a + i*h; //'a' and 'h' are broadcast variables
approx[i+1] = cos(x_tmp);

threadEndFor;

Besides x_tmp which we discussed above, were two other variables on the first line of
our loop, ‘h’ and ‘a’ which were only referenced. They were not assigned to on that line
or anywhere else in the loop. These variables are called broadcast variables, because

18-14

GAUSS User Guide

M
ul
ti-
T
hr
ea
de
d

P
ro
gr
am

m
in
g

18-15

the same value is “broadcast” to every thread. If a variable is not assigned to and it is
not the loop counter, it will be, by default, a broadcast variable.

18.5.6 Slice variables

Next we will look at the indexed assignment of approx on the second line inside our
loop.

threadFor i(1, n_slices, 1);
x_tmp = a + i*h; //‘a’ and ‘h’ are broadcast variables
approx[i+1] = cos(x_tmp);

threadEndFor;

Earlier we discussed that you are not allowed to assign to the same global variable from
more than one thread at one time. It is allowable to assign to portions of a variable, how-
ever, as long as multiple threads never assign to the same location.

If a variable is assigned to by index it becomes a slice variable. In order to ensure cor-
rect multi-threaded programs, the rules for ‘slice variables’ are:

1. The dimension that is assigned to using the threadFor loop counter defines the
slice. The index into this dimension may contain, in addition to the loop counter, a
commutative operator, such as +, - or .*, a constant or a variable that is constant dur-
ing the threadFor loop. For example, assuming that ‘i’ is the threadFor loop
counter and that approx is an nx1 vector, any of these statements would be cor-
rect:

approx[i] = cos(x_tmp);
approx[i+1] = cos(x_tmp);
approx[n-i] = cos(x_tmp);

These statements, however, would be incorrect:

approx[maxc(idx)] = cos(x_tmp); //function call cannot be
an index

Multi-Threaded
Programming

M
ulti-T

hreaded
P
rogram

m
ing

approx[8] = cos(x_tmp); //each iteration would assign to
the same location
approx[i:i+5] = cos(x_tmp); //ranges are not allowed to
define the slice

2. The dimension or dimensions that do not define the slice may be assigned to freely.
These statements would all be legal:

approx[i, maxc(idx) = cos(x_tmp);
approx[i+1, .] = cos(x_tmp);
approx[i+3, 1:10] = cos(x_tmp);

18.5.7 Reduction variables

A reduction variable is a variable that accumulates the result of a commutative operator
over all the iterations of a threadFor loop. For example, if we changed our example
loop to this:

approx = (cos(a) + cos(b)) ./ 2;

for i(1, n_slices, 1);
x_tmp = a + i*h;
approx = approx + cos(x_tmp);

endfor;

then ‘approx’ would be a an reduction variable. Reduction variables are not yet sup-
ported in GAUSS threadFor statements as of the release of this version. To perform
a reduction, instead assign the result from each iteration to an element of an array and
perform a ‘sumc’ or ‘prodc’ on this final vector as is shown in this example.

18-16

GAUSS User Guide

M
ul
ti-
T
hr
ea
de
d

P
ro
gr
am

m
in
g

18-17

18.5.8 Categorizing the variables in our example

Take a moment and look through the loop below. Can you identify which classification
each of the variables belongs to? Based upon what we have covered, is this a legal
threadFor loop?

for i(1, n_slices, 1);
x_tmp = a + i*h;
approx[i+1] = cos(x_tmp);

endfor;

After you have tried to categorize the variables, look at the table below to compare your
answers and see if your reasoning is correct:

i The loop counter.

x_tmp Temporary variable, it is assigned to in its entirety.

a Broadcast variable, it is never assigned to.

h Broadcast variable, it is never assigned to.

approx Slice variable, it is assigned by index, using the loop
counter.

To the second question, yes the code above is a legal threadFor loop. Below is the
entire program converted to use threadFor.

//Using the trapezoidal rule to integrate//the cosine func-
tion from 0 to 0.5
n_slices = 1000;
a = 0;
b = 0.5;

h = (a - b) ./ n_slices;

approx = zeros(n_slices + 1, 1);

Multi-Threaded
Programming

M
ulti-T

hreaded
P
rogram

m
ing

approx[1] = (cos(a) + cos(b)) ./ 2;

threadFor i(1, n_slices, 1);
x_tmp = a + i*h;
approx[i+1] = cos(x_tmp);

threadEndFor;

final = sumc(approx) .* h;

18.6 Controlling thread count

By default when dividing up the iterations of a threadFor loop, GAUSS will create
one thread for each core on your machine. This is a good setting in many cases. You
may, however, override this behavior if you like with the sysstate command, case
42. Here is an example of setting the number of threads that threadFor will create to
16:

new_num = 16;
old_num = sysstate(42,new_num);

After the above code, old_num will be a 2x1 vector. The first element will be the old
thread count used by threadFor and the second element is reserved for future use.

18-18

GAUSS User Guide

M
ul
ti-
T
hr
ea
de
d

P
ro
gr
am

m
in
g

19 Libraries

The GAUSS library system allows for the creation and maintenance of modular pro-
grams. The user can create "libraries" of frequently used functions that the GAUSS sys-
tem will automatically find and compile whenever they are referenced in a program.

19.1 Autoloader 19-1

19.1.1 Forward References 19-2

19.1.2 The Autoloader Search Path 19-3

19.2 Global Declaration Files 19-9

19.3 Troubleshooting 19-12

19.3.1 Using .dec Files 19-13

19.1 Autoloader

The autoloader resolves references to procedures, keywords, matrices, and strings that
are not defined in the program from which they are referenced. The autoloader auto-
matically locates and compiles the files containing the symbol definitions that are not
resolved during the compilation of the main file. The search path used by the autoloader
is first the current directory, and then the paths listed in the src_path configuration

19-1

Libraries

variable in the order they appear. src_path can be defined in the GAUSS con-
figuration file.

19.1.1 Forward References 19-2

19.1.2 The Autoloader Search Path 19-3

19.1.1 Forward References

When the compiler encounters a symbol that has not previously been defined, that is
called a "forward reference." GAUSS handles forward references in two ways, depend-
ing on whether they are "left-hand side" or "right-hand side" references.

Left-Hand Side

A left-hand side reference is usually a reference to a symbol on the left-hand side of the
equal sign in an expression.

x = 5;

Left-hand side references, since they are assignments, are assumed to be matrices. In
the statement above, x is assumed to be a matrix and the code is compiled accordingly.
If, at execution time, the expression actually returns a string, the assignment is made and
the type of the symbol x is forced to string.

Some commands are implicit left-hand side assignments. There is an implicit left-hand
side reference to x in each statement below:

clear x;
load x;
open x = myfile;

Right-Hand Side

A right-hand side reference is usually a reference to a symbol on the right-hand side of
the equal sign in an expression such as:

19-2

GAUSS User Guide

Li
br
ar
ie
s

19-3

z = 6;
y = z + dog;
print y;

In the program above, since dog is not previously known to the compiler, the autoloader
will search for it in the active libraries. If it is found, the file containing it will be com-
piled. If it is not found in a library, the autoload/autodelete state will determine how it is
handled.

19.1.2 The Autoloader Search Path

If the autoloader is OFF, no forward references are allowed. Every procedure, matrix,
and string referenced by your program must be defined before it is referenced. An
external statement can be used above the first reference to a symbol, but the defin-
ition of the symbol must be in the main file or in one of the files that are #include'd.
No global symbols are deleted automatically.

If the autoloader is ON, GAUSS searches for unresolved symbol references during com-
pilation using a specific search path as outlined below. If the autoloader is OFF, an
Undefined symbol error message will result for right-hand side references to unknown
symbols.

When autoload is ON, the autodelete state controls the handling of references to
unknown symbols.

The following search path will be followed to locate any symbols not previously defined:

Autodelete ON

1. user library
2. user-specified libraries.
3. gauss library
4. current directory, then src_path for files with a .g extension.

Forward references are allowed and .g files need not be in a library. If there are sym-
bols that cannot be found in any of the places listed above, an Undefined symbol error

Libraries

Libraries

message will be generated and all uninitialized variables and all procedures with global
references will be deleted from the global symbol table. This autodeletion process is
transparent to the user, since the symbols are automatically located by the autoloader the
next time the program is run. This process results in more compile time, which may or
may not be significant, depending on the speed of the computer and the size of the pro-
gram.

Autodelete OFF

1. user library
2. user-specified libraries.
3. gauss library

All .g files must be listed in a library. Forward references to symbols that are not listed
in an active library are not allowed. For example:

x = rndn(10,10);
y = sym(x); // Forward reference to sym

proc sym(x);
retp(x+x');

endp;

Use an external statement for anything referenced above its definition if autodelete
is OFF:

external proc sym;

x = rndn(10,10);
y = sym(x);

proc sym(x);
retp(x+x');

endp;

19-4

GAUSS User Guide

Li
br
ar
ie
s

19-5

When autodelete is OFF, symbols not found in an active library will not be added to the
symbol table. This prevents the creation of uninitialized procedures in the global symbol
table. No deletion of symbols from the global symbol table will take place.

Libraries

The first place GAUSS looks for a symbol definition is in the ''active'' libraries. A
GAUSS library is a text file that serves as a dictionary to the source files that contain
the symbol definitions. When a library is active, GAUSS will look in it whenever it is
looking for a symbol it is trying to resolve. The library statement is used to make a
library active. Library files should be located in the subdirectory listed in the lib_
path configuration variable. Library files have an .lcg extension.

Suppose you have several procedures that are all related and you want them all defined
in the same file. You can create such a file, and, with the help of a library, the auto-
loader will be able to find the procedures defined in that file whenever they are called.

First, create the file that is to contain your desired procedure definitions. By convention,
this file is usually named with a .src extension, but you may use any name and any file
extension. In this file, put all the definitions of related procedures you wish to use. Here
is an example of such a file. It is called norm.src:

/*
** norm.src
**
** This is a file containing the definitions of three
** procedures which return the norm of a matrix x.
** The three norms calculated are the 1-norm, the
** inf-norm and the E-norm.
*/

proc onenorm(x);
retp(maxc(sumc(abs(x))));

endp;

proc infnorm(x);
retp(maxc(sumc(abs(x'))));

endp;

Libraries

Libraries

proc Enorm(x);
retp(sumc(sumc(x.*x)));

endp;

Next, create a library file that contains the name of the file you want access to, and the
list of symbols defined in it. This can be done with the lib command. (For details, see
lib in the GAUSS LANGUAGEREFERENCE.)

A library file entry has a filename that is flush left. The drive and path can be included
to speed up the autoloader. Indented below the filename are the symbols included in the
file. There can be multiple symbols listed on a line, with spaces between. The symbol
type follows the symbol name, with a colon delimiting it from the symbol name. The
valid symbol types are:

fn user-defined single line function.
keyword keyword.
proc procedure.
matrix matrix, numeric or character.
array N-dimensional array.
string string.
sparse matrix sparse matrix.
struct structure.

A structure is always denoted by struct followed by the structure type name.

If the symbol type is missing, the colon must not be present and the symbol type is
assumed to be proc. Both library files below are valid:

Example 1

/*
** math
**
** This library lists files and procedures for mathematical

19-6

GAUSS User Guide

Li
br
ar
ie
s

19-7

routines.
*/

norm.src
onenorm:proc infnorm:proc Enorm:proc

complex.src
cmmult:proc cmdiv:proc cmadd:proc cmsoln:proc

poly.src
polychar:proc polyroot:proc polymult:proc

Example 2

/*
** math
**
** This library lists files and procedures for mathematical
routines.
*/

c:\gauss\src\norm.src
onenorm : proc
infnorm : proc
Enorm : proc

c:\gauss\src\complex.src
cmmult : proc
cmdiv : proc
cmadd : proc
cmsoln : proc

c:\gauss\src\fcomp.src
feq : proc
fne : proc
flt : proc
fgt : proc
fle : proc
fge : proc

Libraries

Libraries

c:\gauss\src\fcomp.dec
_fcmptol : matrix

Once the autoloader finds, via the library, the file containing your procedure definition,
everything in that file will be compiled. For this reason, you should combine related pro-
cedures in the same file in order to minimize the compiling of procedures not needed by
your program. In other words, you should not combine unrelated functions in one .src
file because if one function in a .src file is needed, the whole file will be compiled.

User Library

This is a library for user-created procedures. If the autoloader is ON, the user library is
the first place GAUSS looks when trying to resolve symbol references.

You can update the user library with the lib command as follows:

lib user myfile.src

This will update the user library by adding a reference to myfile.src.

No user library is shipped with GAUSS. It will be created the first time you use the lib
command to update it.

For details on the parameters available with the lib command, see the GAUSS
LANGUAGEREFERENCE.

.g Files

If autoload and autodelete are ON and a symbol is not found in a library, the autoloader
will assume it is a procedure and look for a file that has the same name as the symbol
and a .g extension. For example, if you have defined a procedure called square, you
could put the definition in a file called square.g in one of the subdirectories listed in your
src_path. If autodelete is OFF, the .g file must be listed in an active library; for
example, in the user library.

19-8

GAUSS User Guide

Li
br
ar
ie
s

19-9

19.2 Global Declaration Files

If your application makes use of several global variables, create a file containing
declare statements. Use files with the extension .dec to assign default values to
global matrices and strings with declare statements and to declare global N-dimen-
sional arrays, sparse matrices, and structures, which will be initialized as follows:

Variable Type Initializes To
N-dimensional
array

1-dimensional array of 1 containing 0

sparse matrix empty sparse matrix
structure 1x1 structure containing empty and/or zeroed out

members

In order to declare structures in a .dec file, you must #include the file(s) con-
taining the definitions of the types of structures that you wish to declare at the top of
your .dec file. For example, if you have the following structure type definition in a file
called mystruct.sdf:

struct mystruct {
matrix m;
array a;
scalar scal;
string array sa;

};

You could declare an instance of that structure type, calledms, in a .dec file as fol-
lows:

#include mystruct.sdf
declare struct mystruct ms;

See declare in the COMMAND REFERENCE for more information.

A file with a .ext extension containing the same symbols in external statements
can also be created and #include'd at the top of any file that references these global

Libraries

Libraries

variables. An appropriate library file should contain the name of the .dec files and the
names of the globals they declare. This allows you to reference global variables across
source files in an application.

Here is an example that illustrates the way in which .dec, .ext, .lcg and .src
files work together. Always begin the names of global matrices or strings with '_' to dis-
tinguish them from procedures.

.src File:

/*
** fcomp.src
**
** These functions use _fcmptol to fuzz the comparison oper-
ations
** to allow for roundoff error.
**
** The statement: y = feq(a,b);
**
** is equivalent to: y = a eq b;
**
** Returns a scalar result, 1 (true) or 0 (false)
**
** y = feq(a,b);
** y = fne(a,b);
*/

#include fcomp.ext
proc feq(a,b);

retp(abs(a-b) <= _fcmptol);
endp;
proc fne(a,b);

retp(abs(a-b) > _fcmptol);
endp;

.dec File:

19-10

GAUSS User Guide

Li
br
ar
ie
s

19-11

/*
** fcomp.dec - global declaration file for fuzzy
comparisons.
*/

declare matrix _fcmptol != 1e-14;

.ext File:

/*
** fcomp.ext - external declaration file for fuzzy
comparisons.
*/
external matrix _fcmptol;

.lcg File:

/*
** fcomp.lcg - fuzzy compare library
*/
fcomp.dec
_fcmptol:matrix

fcomp.src
feq:proc
fne:proc

With the exception of the library (.lcg) files, these files must be located along your
src_path. The library files must be on your lib_path. With these files in place,
the autoloader will be able to find everything needed to run the following programs:

library fcomp;
x = rndn(3,3);
xi = inv(x);
xix = xi*x;
if feq(xix, eye(3));

print "Inverse within tolerance.";
else;

Libraries

Libraries

print "Inverse not within tolerance.";
endif;

If the default tolerance of 1e-14 is too tight, the tolerance can be relaxed:

library fcomp;
x = rndn(3,3);
xi = inv(x);
xix = xi*x;
_fcmptol = 1e-12; // reset tolerance
if feq(xix, eye(3));

print "Inverse within tolerance.";
else;

print "Inverse not within tolerance.";
endif;

19.3 Troubleshooting

Below is a partial list of errors you may encounter in using the library system, followed
by the most probable cause.

(4) : error G0290 : '/gauss/lib/prt.lcg' : Library not found

The autoloader is looking for a library file called prt.lcg, because it has been
activated in a library statement. Check the subdirectory listed in your lib_
path configuration variable for a file called prt.lcg.

(0) : error G0292 : 'prt.dec' : File listed in library not found

The autoloader cannot find a file called prt.dec. Check for this file. It should
exist somewhere along your src_path, if you have it listed in prt.lcg

Undefined symbols:
PRTVEC /gauss/src/tstprt.g(2)

19-12

GAUSS User Guide

Li
br
ar
ie
s

19-13

The symbol prtvec could not be found. Check if the file containing prtvec is
in the src_path. You may have not activated the library that contains your
symbol definition. Do so in a library statement.

/gauss/src/prt.dec(3) : Redefinition of '__vnames'
(proc)__vnames being declared external matrix

You are trying to illegally force a symbol to another type. You probably have a
name conflict that needs to be resolved by renaming one of the symbols.

/gauss/lib/prt.lcg(5) : error G0301 : 'prt.dec' :
Syntax error in library
Undefined symbols:
__VNAMES /gauss/src/prt.src(6)

Check your library to see that all filenames are flush left and that all the symbols
defined in that file are indented by at least one space.

19.3.1 Using .dec Files 19-13

19.3.1 Using .dec Files

Below is some advice you are encouraged to follow when constructing your own library
system:

l Whenever possible, declare variables in a file that contains only declare
statements. When your program is run again without clearing the workspace, the
file containing the variable declarations will not be compiled and declare
warnings will be prevented.

l Provide a function containing regular assignment statements to reinitialize the
global variables in your program if they ever need to be reinitialized during or
between runs. Put this in a separate file from the declarations:

Libraries

Libraries

proc (0) = globset;
_vname = "X";
_con = 1;
_row = 0;
_title = "";

endp;

l Never declare any global in more than one file.

l To avoid meaningless redefinition errors and declare warnings, never declare
a global more than once in any one file. Redefinition error messages and
declare warnings are meant to help you prevent name conflicts, and will be
useless to you if your code generates them normally.

By following these guidelines, any declare warnings and redefinition errors you get
will be meaningful. By knowing that such warnings and errors are significant, you will
be able to debug your programs more efficiently.

19-14

GAUSS User Guide

Li
br
ar
ie
s

20 The Library Tool

Libraries are collections of GAUSS procedures that are grouped together. The GAUSS
Library Tool makes it easy for users to create and manage GAUSS libraries. The
Library Tool is available on the Source Page and may be opened from the application
menu View->Library Tool.

20.1 Creating New Libraries 20-1

20.2 Loading a Library 20-4

20.3 Viewing Procedures 20-5

20.4 Refreshing a Library 20-5

20.1 Creating New Libraries

20-1

T
he

Library
T
ool

Figure 20.1: Create new library

At the top right corner of the Library Tool is a plus icon (+). Click this icon to create a
new library. A file system window will open and ask you to enter a name for the library.
Do not add a file extension as GAUSS will automatically add the correct file extension
(.lcg).

20-2

GAUSS User Guide

Th
e
Li
br
ar
y
To
ol

20-3

Figure 20.2: File browser

Once you have create a new empty library, you need to add some files. Click the
wrench icon next to the library to which you would like to add a file and select 'Add
Files' from the menu. This will open up a file browser window. Locate and select the
file or files that you would like to add to the library.

The Library Tool

T
he

Library
T
ool

Figure 20.3: Add Files

20.2 Loading a Library

Loading a library makes all of its procedures available in GAUSS. It also allows you to
navigate to the definition of a procedure by clicking on the name of a procedure and
using the hotkey CTRL+F1, or selecting 'Open function definition' from the source
editor's context menu.

To load the library, click the wrench icon and select 'Load Library' from the menu. The
newly loaded library's name will be moved towards the top of the list of libraries and it
will be bolded.

The library may be unloaded from the same menu accessible from the wrench icon.

20-4

GAUSS User Guide

Th
e
Li
br
ar
y
To
ol

20-5

20.3 Viewing Procedures

Expanding the node of any library in the tree will reveal a list of the included files.
Double-clicking on one of the file names will open that file a source editor. Loaded lib-
raries have an additional expandable node for each file. Expand this node to view each
procedure stored in that file. Double-click the procedure name to open the file at the loc-
ation of that procedure.

Figure 20.4: Library Tool Tree

20.4 Refreshing a Library

Changes made to files in a library such as adding procedures will be made available to
GAUSS. However, to view and navigate correctly to new and changed library files

The Library Tool

T
he

Library
T
ool

requires a library refresh. To perform this action, click on the corresponding wrench
icon and select 'Refresh'.

20-6

GAUSS User Guide

Th
e
Li
br
ar
y
To
ol

21 Compiler

GAUSS allows you to compile your large, frequently used programs to a file that can be
run over and over with no compile time. The compiled image is usually smaller than the
uncompiled source. GAUSS is not a native code compiler; rather, it compiles to a form
of pseudocode. The file will have a .gcg extension.

The compile command will compile an entire program to a compiled file. An attempt
to edit a compiled file will cause the source code to be loaded into the editor if it is avail-
able to the system. The run command assumes a compiled file if no extension is given,
and that a file with a .gcg extension is in the src_path. A saveall command is
available to save the current contents of memory in a compiled file for instant recall
later. The use command will instantly load a compiled program or set of procedures at
the beginning of an ASCII program before compiling the rest of the ASCII program file.

Since the compiled files are encoded binary files, the compiler is useful for developers
who do not want to distribute their source code.

21.1 Compiling Programs 21-2

21.1.1 Compiling a File 21-2

21.2 Saving the Current Workspace 21-2

21.3 Debugging 21-3

21-1

C
om

piler

21.1 Compiling Programs

Programs are compiled with the compile command.

21.1.1 Compiling a File 21-2

21.1.1 Compiling a File

Source code program files that can be run with the run command can be compiled to
.gcg files with the compile command:

compile qxy.e;

All procedures, global matrices, arrays, strings and string arrays, and the main program
segment will be saved in the compiled file. The compiled file can be run later using the
run command. Any libraries used in the program must be present and active during the
compile, but not when the program is run. If the program uses the dlibrary com-
mand, the .dll files must be present when the program is run and the dlibrary path
must be set to the correct subdirectory. This will be handled automatically in your con-
figuration file. If the program is run on a different computer than it was compiled on, the
.dll files must be present in the correct location. sysstate (case 24) can be used
to set the dlibrary path at run-time.

21.2 Saving the Current Workspace

The simplest way to create a compiled file containing a set of frequently used pro-
cedures is to use saveall and an external statement:

library pgraph;
external proc xy,logx,logy,loglog,hist;
saveall pgraph;

Just list the procedures you will be using in an external statement and follow it with
a saveall statement. It is not necessary to list procedures that you do not explicitly
call, but are called from another procedure, because the autoloader will automatically

21-2

GAUSS User Guide

C
om

pi
le
r

21-3

find them before the saveall command is executed. Nor is it necessary to list every
procedure you will be calling, unless the source will not be available when the compiled
file is use'd.

Remember, the list of active libraries is NOT saved in the compiled file, so you may
still need a library statement in a program that is use'ing a compiled file.

21.3 Debugging

If you are using compiled code in a development situation in which debugging is import-
ant, compile the file with line number records. After the development is over, you can
recompile without line number records if the maximum possible execution speed is
important. If you want to guarantee that all procedures contain line number records, put
a new statement at the top of your program and turn line number tracking on.

Compiler

C
om

piler

22 Data Import Export

The following is a partial list of the commands for reading and writing data in the
GAUSS programming language:

close Close a file.
closeall Close all open files.
colsf Number of columns in a file.
create Create GAUSS data set.
csvReadM Read data from a delmited text file into a GAUSS

matrix.
csvReadSA Read data from a delmited text file into a GAUSS

string array.
eof Test for end of file.
fcheckerr Check error status of a file.
fclearerr Check error status of a file and clear error flag.
fflush Flush a file's output buffer.
fgets Read a line of text from a file.
fgetsa Read multiple lines of text from a file.
fgetsat Read multiple lines of text from a file, discarding

newlines.

22-1

F
ile

I/O

fgetst Read a line of text from a file, discarding newline.
fileinfo Return names and information of files matching a

specification.
files Return a directory listing as a character matrix.
filesa Return a list of files matching a specification.
fopen Open a file.
fputs Write strings to a file.
fputst Write strings to a file, appending newlines.
fseek Reposition file pointer.
fstrerror Get explanation of last file I/O error.
ftell Get position of file pointer.
getf Load a file into a string.
getname Get variable names from data set.
iscplxf Return whether a data set is real or complex.
load Load matrix (.fmt) file (same as loadm).
loadd Load an entire GAUSS data set into a matrix.
loadm Load matrix file (.fmt) into a GAUSS matrix..
loads Load string file.
open Open a GAUSS data set.
output Control printing to an auxiliary output file or device.
readr Read a specified number of rows from a file.
rowsf Number of rows in file.
save Save matrices, strings, procedures.
saved Save a matrix in a GAUSS data set.
seekr Reset read/write pointer in a data set.
sortd Sort a data set.
typef Return type of data set (bytes per element).

22-2

GAUSS User Guide

F
ile

I/
O

22-3

writer Write data to a data set.
xlsReadM Read data from an Excel file into a GAUSS matrix.
xlsReadSA Read data from an Excel file into a GAUSS string

array.

22.1 Data Import Wizard 22-4

22.2 Programmatic Data Import and Export 22-14

22.3 Data Sets 22-17

22.3.1 Layout 22-18

22.3.2 Creating Data Sets 22-18

22.3.3 Reading and Writing 22-19

22.3.4 Distinguishing Character and Numeric Data 22-20

22.4 GAUSS Data Archives 22-22

22.4.1 Creating and Writing Variables to GDA's 22-22

22.4.2 Reading Variables from GDA's 22-23

22.4.3 Updating Variables in GDA's 22-24

22.5 Matrix Files 22-24

22.6 File Formats 22-25

22.6.1 Small Matrix v89 (Obsolete) 22-27

22.6.2 Extended Matrix v89 (Obsolete) 22-28

22.6.3 Small String v89 (Obsolete) 22-28

22.6.4 Extended String v89 (Obsolete) 22-29

22.6.5 Small Data Set v89 (Obsolete) 22-29

File I/O

F
ile

I/O

22.6.6 Extended Data Set v89 (Obsolete) 22-31

22.6.7 Matrix v92 (Obsolete) 22-32

22.6.8 String v92 (Obsolete) 22-33

22.6.9 Data Set v92 (Obsolete) 22-33

22.6.10 Matrix v96 22-34

22.6.11 Data Set v96 22-36

22.6.12 GAUSS Data Archives 22-37

22.1 Data Import Wizard

Reading Text Files with the Data Import Dialog

The GAUSS Data Import Dialog can open text delimited files such as CSV or tab-sep-
arated files as well as Excel XLS and XLSX files. Select "File->Import Data" from the
main GAUSS menu bar:

22-4

GAUSS User Guide

F
ile

I/
O

22-5

Or right-click in the Project Folder Window over a file you would like to import and
select "Import data" from the context menu.

File I/O

F
ile

I/O

then locate the file that you would like to open and click the "Open" button.

22-6

GAUSS User Guide

F
ile

I/
O

22-7

Data Import Dialog Overview

After you click the "Open" button, the Data Import Dialog Window will appear. The
main area in the Data Import Dialog is a table with a preview of your data. This table
contains the following elements:

File I/O

F
ile

I/O

Figure 22.1: Data Import Dialog

22-8

GAUSS User Guide

F
ile

I/
O

22-9

1. Column Index

A sequential index of all the columns in your data set.

2. Column Header

If you select to import the data as separate column headers, each column will be
imported as a separate GAUSS variable with it's column header as its name.
After clicking "Import As 'Column Vectors'" (shown next to label 6) the column
headers will be editable so that you can change their name prior to import. If the
file does not contain file headers, GAUSS will insert X1, X2...XN.

3. Column Type

A row containing the type of data for each column. These cells show the data
type that GAUSS assumed each column to be. You may click in any of these
cells to change the data type for the column. After doing so, the table will be
updated to show the data when converted to the new type.

4. Data Box

The first rows of your data. There will be a black border surrounding the cells
that are selected for import. You can change the selected cells with the
"Columns" and "Rows" text input boxes shown next to label 9.

l Blue cells contain no problems and will be imported as seen in the
preview.

l Red Cells containing errors or unimportable content and will be imported
as missing values.

l Yellow background will be imported as missing values. Cells containing '.',
'NA' '?', or empty cells will be marked yellow. Also a cell that is selected
to be imported as a "Numeric Matrix" (see label 10) that cannot be
successfully converted to a double precision floating point value will be
marked yellow.

5. Message Window

File I/O

F
ile

I/O

A window to display information about errors in your file or the result of your
import.

6. Desired Data Type

The first section of the left side of the Data Import Dialog controls, with the title
"Import As", controls the type of the data that is imported.

l If "Numeric Matrix" is selected, all selected data will be imported as a
numeric matrix.

l Any cell that cannot be converted to a double precision number will
be imported as a missing value. These cells will be marked in
yellow before import.

l If "Drop string columns" is checked, any string columns inside the
selected import range will be skipped over. These columns will be
grayed out.

l If "String Array" is selected, all selected data will be imported as a string
array.

22-10

GAUSS User Guide

F
ile

I/
O

22-11

l Any data, even numeric columns will be imported into a GAUSS
string array.

l If "Drop numeric columns" is checked, any numeric columns inside
the selected import range will be skipped over. These columns will
be grayed out.

l If "Column Vectors" is selected, each column will be imported separately.
Numeric columns will be imported as numeric vectors and string columns
will be imported as string vectors. Each vector will be a GAUSS global
variable whose name will be the same as it's corresponding column header
as shown in the Data Import Dialog.

7. Symbol Name

You may change the text to any legal variable name in the input box for the name
of the data matrix or string array created in your GAUSS workspace.

8. Import control panel

If you are importing a CSV file:

File I/O

F
ile

I/O

l The "Header Row" text input box specifies the row from which GAUSS
will get the variable names to populate the "column headers" section of the
import dialog (label 2). If the specified header row contains numeric data,
the column headers will be filled with X1, X2.... The cells in the specified
header row will have a gray background to mark them. If the header row is
inside of the selected area, it will be imported. If you do not want this row
imported make sure it is not included in your row range. Set "Header Row"
to zero to indicate no header line.

l If the Import Dialog incorrectly specifies the field separator or quote
character, you can change it here so that the file is imported correctly.

If you are importing an Excel XLS or XLSX file:

l The "Header Row" text input box specifies the row from which GAUSS
will get the variable names to populate the "column headers" section of the
import dialog (label 2). If the specified header row contains numeric data,
the column headers will be filled with X1, X2.... The cells in the specified
header row will have a gray background to mark them. If the header row is
inside of the selected area, it will be imported. If you do not want this row
imported make sure it is not included in your row range. Set "Header Row"
to zero to indicate no header line.

l You can choose which sheet to import in the "sheets" option.

9. Import Range

22-12

GAUSS User Guide

F
ile

I/
O

22-13

The "Columns" and "Rows" text input boxes specify which rows and columns will
be imported.

l For columns, you may specify a comma separated list of ranges or
individual columns. For example 1:3 would specify columns 1, 2 and 3,
whereas 1:3, 7:9, would specify columns 1,2,3,7,8,9. By default, all
columns and all rows will be imported.

l The "Rows" input only accepts a starting row and ending row.

10. Legend

l "Header Row" indicates that the row is used to be as header in the preview
window.

l "Cell Importable" indicates that the contents of a cell are importable as

File I/O

F
ile

I/O

shown in the preview window.

l "Cell Error" indicates that the field is invalid regardless of type (numeric
or string).

l "Missing Value" indicates that the cell will be imported as a missing value.
This may be because it is a specified missing value character (NA, ., ?) or
because the data in the field is not valid for the import type (i.e. importing
string data into a numeric matrix).

11. Import Button

l Click "Import and close", the desired data will be imported and Data
Import Dialog will be closed.

l Click "Import", the desired data will be imported and Data Import Dialog
will be open.

l Click "Cancel", Data Import Dialog will be closed.

22.2 Programmatic Data Import and Export

Reading Text Files Programmatically

Delimited text files, such as CSV, can be read into GAUSS with csvReadM or
csvReadSA. csvReadM reads data into a GAUSS matrix, while, csvReadSA reads
data into a GAUSS string array. Both functions allow you to read an entire file at once,
or only specified row and column ranges. By default they assume the file is comma sep-
arated. However, they allow the user to specify an alternate delimiter such as a semi-
colon, space, tab, etc.

//csvReadM options
data = csvReadM(file_name);
data = csvReadM(file_name, row_range);
data = csvReadM(file_name, row_range, col_range);
data = csvReadM(file_name, row_range, col_range, delimiter);

22-14

GAUSS User Guide

F
ile

I/
O

22-15

See the Command Reference documentation for specific use of these functions and
examples.

Reading Excel Files Programmatically

Spreadsheet files (XLS and XLSX) can be read into GAUSS with xlsReadM or
xlsReadSA. xlsReadM reads data into a GAUSS matrix, while, xlsReadSA reads
data into a GAUSS string array. Both functions allow you to read an entire file at once,
or only specified cell ranges.

//xlsReadM options
data = xlsReadM(file_name);
data = xlsReadM(file_name, cell_range);
data = xlsReadM(file_name, cell_range, sheet);

See the Command Reference documentation for specific use of these functions and
examples.

Converting Large Delimited Data Files to a GAUSS Dataset

While CSV and spreadsheet files are very portable and CSV files are human readable,
they are both relatively slow to read. GAUSS datasets can be loaded into GAUSS
around 40 times faster than data in text form, such as CSV. Larger text data files can be
converted to GAUSS data sets with the ATOG utility program (see ATOG, CHAPTER 28
). ATOG can convert packed ASCII files as well as delimited files.

Writing Data Programmatically

Data can be written to Excel files with the command xlsWrite. See its entry in the
Command Reference section for details on its use.

File I/O

F
ile

I/O

To write data to an ASCII file the print or printfm command is used to print to the
auxiliary output. The resulting files are standard ASCII files and can be edited with
GAUSS's editor or another text editor.

The output and outwidth commands are used to control the auxiliary output. The
print or printfm command is used to control what is sent to the output file.

The window can be turned on and off using screen. When printing a large amount of
data to the auxiliary output, the window can be turned off using the command

screen off;

This will make the process much faster, especially if the auxiliary output is a disk file.

It is easy to forget to turn the window on again. Use the end statement to terminate your
programs; end will automatically perform screen on and output off.

The following commands can be used to control printing to the auxiliary output:

format Specify format for printing a matrix.
output Open, close, rename auxiliary output file or device.
outwidth Set auxiliary output width.
printfm Formatted matrix print.
print Print matrix or string.
screen Turn printing to the window on and off.

This example illustrates printing a matrix to a file:

format /rd 8,2;
outwidth 132;
output file = myfile.asc reset;
screen off;
print x;
output off;
screen on;

22-16

GAUSS User Guide

F
ile

I/
O

22-17

The numbers in the matrix x will be printed with a field width of 8 spaces per number,
and with 2 places beyond the decimal point. The resulting file will be an ASCII data
file. It will have 132 column lines maximum.

A more extended example follows. This program will write the contents of the GAUSS
file mydata.dat into an ASCII file called mydata.asc. If there is an existing file
by the name of mydata.asc, it will be overwritten:

output file = mydata.asc reset;
screen off;
format /rd 1,8;

open fp = mydata;
do until eof(fp);
print readr(fp,200);;
endo;
fp = close(fp);

end;

The output ... reset command will create an auxiliary output file called
mydata.asc to receive the output. The window is turned off to speed up the process.
The GAUSS data file mydata.dat is opened for reading and 200 rows are read per
iteration until the end of the file is reached. The data read are printed to the auxiliary out-
put mydata.asc only, because the window is off.

22.3 Data Sets

GAUSS data sets are the preferred method of storing data contained in a single matrix
for use within GAUSS. Use of these data sets allows extremely fast reading and writing
of data. Many library functions are designed to read data from these data sets.

If you want to store multiple variables of various types in a single file, see GAUSS Data
Archives, Section 22.6.12 .

22.3.1 Layout 22-18

File I/O

F
ile

I/O

22.3.2 Creating Data Sets 22-18

22.3.3 Reading and Writing 22-19

22.3.4 Distinguishing Character and Numeric Data 22-20

22.3.1 Layout

GAUSS data sets are arranged as matrices; that is, they are organized in terms of rows
and columns. The columns in a data file are assigned names, and these names are stored
in the header, or, in the case of the v89 format, in a separate header file.

The limit on the number of rows in a GAUSS data set is determined by disk size. The
limit on the number of columns is limited by RAM. Data can be stored in 2, 4, or 8 bytes
per number, rather than just 8 bytes as in the case of GAUSS matrix files.

The ranges of the different formats are:

Bytes Type Significant
Digits Range

2 integer 4
4 single 6-7

8 double 15-16

22.3.2 Creating Data Sets

Data sets can be created with the create or datacreate command. The names of
the columns, the type of data, etc., can be specified. (For details, see create in the
GAUSS LANGUAGEREFERENCE.)

Data sets, unlike matrices, cannot change from real to complex, or vice-versa. Data sets
are always stored a row at a time. The rows of a complex data set, then, have the real
and imaginary parts interleaved, element by element. For this reason, you cannot write
rows from a complex matrix to a real data set--there is no way to interleave the data

22-18

GAUSS User Guide

F
ile

I/
O

22-19

without rewriting the entire data set. If you must, explicitly convert the rows of data
first, using the real and imag functions (see the GAUSS LANGUAGEREFERENCE),
and then write them to the data set. Rows from a real matrix CAN be written to a com-
plex data set; GAUSS simply supplies 0's for the imaginary part.

To create a complex data set, include the complex flag in your create command.

22.3.3 Reading and Writing

The basic functions in GAUSS for reading data files are open and readr:

open f1 = dat1;
x = readr(f1,100);

The call to readr in this example will read in 100 rows from dat1.dat. The data
will be assigned to a matrix x.

loadd and saved can be used for loading and saving small data sets.

The following example illustrates the creation of a GAUSS data file by merging (hori-
zontally concatenating) two existing data sets:

file1 = "dat1";
file2 = "dat2";
outfile = "daty";

open fin1 = ^file1 for read;
open fin2 = ^file2 for read;

varnames = getname(file1)|getname(file2);
otyp = maxc(typef(fin1)|typef(fin2));
create fout = ^outfile with ^varnames,0,otyp;

nr = 400;
do until eof(fin1) or eof(fin2);

y1 = readr(fin1,nr);
y2 = readr(fin2,nr);

File I/O

F
ile

I/O

r = maxc(rows(y1)|rows(y2));
y = y1[1:r,.] ~ y2[1:r,.];
call writer(fout,y);

endo;

closeall fin1,fin2,fout;

In this example, data sets dat1.dat and dat2.dat are opened for reading. The vari-
able names from each data set are read using getname, and combined in a single vec-
tor called varnames. A variable called otyp is created, which will be equal to the
larger of the two data types of the input files. This will insure that the output is not roun-
ded to less precision than the input files. A new data set daty.dat is created using the
create ... with ... command. Then, on every iteration of the loop, 400 rows
are read in from each of the two input data sets, horizontally concatenated, and written
out to daty.dat. When the end of one of the input files is reached, reading and writ-
ing will stop. The closeall command is used to close all files.

22.3.4 Distinguishing Character and Numeric Data

Although GAUSS itself does not distinguish between numeric and character columns in
a matrix or data set, some of the GAUSS Application programs do. When creating a
data set, it is important to indicate the type of data in the various columns. The following
discusses two ways of doing this.

Using Type Vectors

The v89 data set format distinguished between character and numeric data in data sets
by the case of the variable names associated with the columns. The v96 data set
format, however, stores this type information separately, resulting in a much cleaner and
more robust method of tracking variable types, and greater freedom in the naming of
data set variables.

When you create a data set, you can supply a vector indicating the type of data in each
column of the data set. For example:

22-20

GAUSS User Guide

F
ile

I/
O

22-21

data = { M 32 21500,
F 27 36000,
F 28 19500,
M 25 32000 };

vnames = { "Sex" "Age" "Pay" };
vtypes = { 0 1 1 };

create f = mydata with ^vnames, 3, 8, vtypes;
call writer(f,data);
f = close(f);

To retrieve the type vector, use vartypef.

open f = mydata for read;
vn = getnamef(f);
vt = vartypef(f);

print vn';
print vt';

Sex Age Pay
0 1 1

The call to getnamef in this example returns a string array rather than a character vec-
tor, so you can print it without the '$' prefix.

Using the Uppercase/Lowercase Convention (v89 Data Sets)

Historically, some GAUSS Application programs recognized an "uppercase/lowercase"
convention: if the variable name was uppercase, the variable was assumed to be
numeric, and if it was lowercase, the variable was assumed to be character.

However, this is now obsolete; use vartypef and v96 data sets to be compatible with
future versions.

File I/O

F
ile

I/O

22.4 GAUSS Data Archives

The GAUSS Data Archive (GDA) is extremely powerful and flexible, giving you much
greater control over how you store your data. There is no limitation on the number of
variables that can be stored in a GDA, and the only size limitation is the amount of avail-
able disk space. Moreover, GDA's are designed to hold whatever type of data you want
to store in them. You may write matrices, arrays, strings, string arrays, sparse matrices,
and structures to a GDA, and the GDA will keep track of the type, size and location of
each of the variables contained in it. Since GAUSS now supports reading and writing to
GDA's that were created on other platforms, GDA's provide a simple solution to the
problem of sharing data across platforms.

See GAUSS Data Archives, Section 22.6.12 , for information on the layout of a GDA.

22.4.1 Creating and Writing Variables to GDA's

To create a GAUSS Data Archive, call gdaCreate, which creates a GDA containing
only header information. It is recommended that file names passed into gdaCreate
have a .gda extension; however, gdaCreate will not force an extension.

To write variables to the GDA, you must call gdaWrite. A single call to gdaWrite
writes only one variable to the GDA. Writing multiple variables requires multiple calls
to gdaWrite.

For example, the following code:

ret = gdaCreate("myfile.gda",1);
ret = gdaWrite("myfile.gda",rndn(100,50), "x1");
ret = gdaWrite("myfile.gda", "This is a string", "str1");
ret = gdaWrite("myfile.gda",394, "x2");

produces a GDA containing the following variables:

Index Name Type Size
1 x1 matrix 100 x 50
2 str1 string 16 chars

22-22

GAUSS User Guide

F
ile

I/
O

22-23

3 x2 matrix 1 x 1

22.4.2 Reading Variables from GDA's

The following table details the commands that you may use to read various types of vari-
ables from a GAUSS Data Archive:

Variable Type Read Command(s)
matrix
array
string
string array

gdaRead
gdaReadByIndex

sparse
matrix

gdaReadSparse

structure gdaReadStruct

gdaRead, gdaReadSparse, and gdaReadStruct take a variable name and
return the variable data. gdaReadByIndex returns the variable data for a specified
variable index.

For example, to get the variable x1 out of myfile.gda, you could call:

y = gdaRead("myfile.gda", "x1");

or

y = gdaReadByIndex("myfile.gda",1);

If you want to read only a part of a matrix, array, string, or string array from a GDA,
call gdaReadSome. Sparse matrices and structures may not be read in parts.

File I/O

F
ile

I/O

22.4.3 Updating Variables in GDA's

To overwrite an entire variable in a GDA, you may call gdaUpdate or gdaUp-
dateAndPack. If the new variable is not the same size as the variable that it is repla-
cing, gdaUpdate will leave empty bytes in the file, while gdaUpdateAndPack
will pack the file (from the location of the variable that is being replaced to the end of
the file) to remove those empty bytes.

gdaUpdate is usually faster, since it does not move data in the file unnecessarily.
However, calling gdaUpdate several times for one file may result in a file with a
large number of empty bytes.

On the other hand, gdaUpdateAndPack uses disk space efficiently, but it may be
slow for large files (especially if the variable to be updated is one of the first variables
in the file).

If speed and disk space are both concerns and you are going to update several variables,
it will be most efficient to use gdaUpdate to update the variables and then call
gdaPack once at the end to pack the file.

The syntax is the same for both gdaUpdate and gdaUpdateAndPack:

ret = gdaUpdate("myfile.gda",rndn(1000,100), "x1");

ret = gdaUpdateAndPack("myfile.gda",rndn(1000,100), "x1");

To overwrite part of a variable in a GDA, call gdaWriteSome.

22.5 Matrix Files

GAUSS matrix files are files created by the save command.

22-24

GAUSS User Guide

F
ile

I/
O

22-25

The save command takes a matrix in memory, adds a header that contains information
on the number of rows and columns in the matrix, and stores it on disk. Numbers are
stored in double precision just as they are in matrices in memory. These files have the
extension .fmt.

Matrix files can be no larger than a single matrix. No variable names are associated
with matrix files.

GAUSS matrix files can be load'ed into memory using the load or loadm command
or they can be opened with the open command and read with the readr command.
With the readr command, a subset of the rows can be read. With the load command,
the entire matrix is load'ed.

GAUSS matrix files can be open'ed for read, but not for append, or for
update.

If a matrix file has been opened and assigned a file handle, rowsf and colsf can be
used to determine how many rows and columns it has without actually reading it into
memory. seekr and readr can be used to jump to particular rows and to read them
into memory. This is useful when only a subset of rows is needed at any time. This pro-
cedure will save memory and be much faster than load'ing the entire matrix into
memory.

22.6 File Formats

This section discusses the GAUSS binary file formats.

Supported matrix file formats:

Version Extension Support
Small Matrix v89 .fmt Obsolete, use v96.
Extended Matrix v89 .fmt Obsolete, use v96.
Matrix v92 .fmt Obsolete, use v96.
Universal Matrix v96 .fmt Supported for read/write.

File I/O

F
ile

I/O

Supported string file formats:

Version Extension Support
Small String v89 .fst Obsolete, use v96.
Extended String v89 .fst Obsolete, use v96.
String v92 .fst Obsolete, use v96.
Universal String v96 .fst Supported for read/write.

Supported data set formats:

Version Extension Support
Small Data Set v89 .dat,

.dht
Obsolete, use v96.

Extended Data Set v89 .dat,
.dht

Obsolete, use v96.

Data Set v92 .dat Obsolete, use v96.
Universal Data Set v96 .dat Supported for read/write.

22.6.1 Small Matrix v89 (Obsolete) 22-27

22.6.2 Extended Matrix v89 (Obsolete) 22-28

22.6.3 Small String v89 (Obsolete) 22-28

22.6.4 Extended String v89 (Obsolete) 22-29

22.6.5 Small Data Set v89 (Obsolete) 22-29

22.6.6 Extended Data Set v89 (Obsolete) 22-31

22.6.7 Matrix v92 (Obsolete) 22-32

22.6.8 String v92 (Obsolete) 22-33

22.6.9 Data Set v92 (Obsolete) 22-33

22-26

GAUSS User Guide

F
ile

I/
O

22-27

22.6.10 Matrix v96 22-34

22.6.11 Data Set v96 22-36

22.6.12 GAUSS Data Archives 22-37

22.6.1 Small Matrix v89 (Obsolete)

Matrix files are binary files, and cannot be read with a text editor. They are created
with save. Matrix files with up to 8190 elements have a .fmt extension and a 16-byte
header formatted as follows:

Offset Description
0-1 DDDD hex, identification flag
2-3 rows, unsigned 2-byte integer
4-5 columns, unsigned 2-byte integer
6-7 size of file minus 16-byte header, unsigned 2-byte integer
8-9 type of file, 0086 hex for real matrices, 8086 hex for complex

matrices
10-15 reserved, all 0's

The body of the file starts at offset 16 and consists of IEEE format double precision float-
ing point numbers or character elements of up to 8 characters. Character elements take
up 8 bytes and are padded on the right with zeros. The size of the body of the file is
8*rows*cols rounded up to the next 16-byte paragraph boundary. Numbers are stored
row by row. A 2x3 real matrix will be stored on disk in the following way, from the low-
est addressed element to the highest addressed element:

For complex matrices, the size of the body of the file is 16*rows*cols. The entire real
part of the matrix is stored first, then the entire imaginary part. A 2x3 complex matrix

File I/O

F
ile

I/O

will be stored on disk in the following way, from the lowest addressed element to the
highest addressed element:

22.6.2 Extended Matrix v89 (Obsolete)

Matrices with more than 8190 elements are saved in an extended format. These files
have a 16-byte header formatted as follows:

Offset Description
0-1 EEDD hex, identification flag
2-3 type of file, 0086 hex for real matrices, 8086 hex for complex

matrices
4-7 rows, unsigned 4-byte integer
8-11 columns, unsigned 4-byte integer
12-15 size of file minus 16-byte header, unsigned 4-byte integer

The size of the body of an extended matrix file is 8*rows*cols (not rounded up to a para-
graph boundary). Aside from this, the body is the same as the small matrix v89 file.

22.6.3 Small String v89 (Obsolete)

String files are created with save. String files with up to 65519 characters have a 16-
byte header formatted as follows:

Offset Description
0-1 DFDF hex, identification flag
2-3 1, unsigned 2-byte integer

22-28

GAUSS User Guide

F
ile

I/
O

22-29

4-5 length of string plus null byte, unsigned 2-byte integer
6-7 size of file minus 16-byte header, unsigned 2-byte integer
8-9 001D hex, type of file
10-15 reserved, all 0's

The body of the file starts at offset 16. It consists of the string terminated with a null
byte. The size of the file is the 16-byte header plus the length of the string and null byte
rounded up to the next 16-byte paragraph boundary.

22.6.4 Extended String v89 (Obsolete)

Strings with more than 65519 characters are saved in an extended format. These files
have a 16-byte header formatted as follows:

Offset Description
0-1 EEDF hex, identification flag
2-3 001D hex, type of file
4-7 1, unsigned 4-byte integer
8-11 length of string plus null byte, unsigned 4-byte integer
12-15 size of file minus 16-byte header, unsigned 4-byte integer

The body of the file starts at offset 16. It consists of the string terminated with a null
byte. The size of the file is the 16-byte header plus the length of the string and null byte
rounded up to the next 8-byte boundary.

22.6.5 Small Data Set v89 (Obsolete)

All data sets are created with create. v89 data sets consist of two files; one .dht
contains the header information; the second (.dat) contains the binary data. The data will
be one of three types:

8-byte IEEE floating point
4-byte IEEE floating point

File I/O

F
ile

I/O

2-byte signed binary integer, twos complement

Numbers are stored row by row.

The .dht file is used in conjunction with the .dat file as a descriptor file and as a
place to store names for the columns in the .dat file. Data sets with up to 8175
columns have a .dht file formatted as follows:

Offset Description
0-1 DADA hex, identification flag
2-5 reserved, all 0's
6-7 columns, unsigned 2-byte integer
8-9 row size in bytes, unsigned 2-byte integer
10-11 header size in bytes, unsigned 2-byte integer
12-13 data type in .dat file (2 4 8), unsigned 2-byte integer
14-17 reserved, all 0's
18-21 reserved, all 0's
22-23 control flags, unsigned 2-byte integer
24-127 reserved, all 0's

Column names begin at offset 128 and are stored 8 bytes each in ASCII format. Names
with less than 8 characters are padded on the right with bytes of 0.

The number of rows in the .dat file is calculated in GAUSS using the file size,
columns, and data type. This means that users can modify the .dat file by adding or
deleting rows with other software without updating the header information.

Names for the columns should be lowercase for character data, to be able to distinguish
them from numeric data with vartype.

GAUSS currently examines only the 4's bit of the control flags. This bit is set to 0 for
real data sets, 1 for complex data sets. All other bits are 0.

22-30

GAUSS User Guide

F
ile

I/
O

22-31

Data sets are always stored a row at a time. A real data set with 2 rows and 3 columns
will be stored on disk in the following way, from the lowest addressed element to the
highest addressed element:

The rows of a complex data set are stored with the real and imaginary parts interleaved,
element by element. A 2x3 complex data set, then, will be stored on disk in the fol-
lowing way, from the lowest addressed element to the highest addressed element:

22.6.6 Extended Data Set v89 (Obsolete)

Data sets with more than 8175 columns are saved in an extended format that cannot be
read by the 16-bit version. These files have a .dht descriptor file formatted as follows:

Offset Description
0-1 EEDA hex, identification flag
2-3 data type in .dat file (2 4 8), unsigned 2-byte integer
4-7 reserved, all 0's
8-11 columns, unsigned 4-byte integer
12-15 row size in bytes, unsigned 4-byte integer
16-19 header size in bytes, unsigned 4-byte integer
20-23 reserved, all 0's
24-27 reserved, all 0's

File I/O

F
ile

I/O

28-29 control flags, unsigned 2-byte integer
30-127 reserved, all 0's

Aside from the differences in the descriptor file and the number of columns allowed in
the data file, extended data sets conform to the v89 data set description specified
above.

22.6.7 Matrix v92 (Obsolete)

Offset Description
0-3 always 0
4-7 always 0xEECDCDCD
8-11 reserved
12-15 reserved
16-19 reserved
20-23 0 - real matrix, 1 - complex matrix
24-27 number of dimensions

0 - scalar
1 - row vector
2 - column vector, matrix

28-31 header size, 128 + number of dimensions * 4, padded to 8-
byte boundary

32-127 reserved

If the data is a scalar, the data will directly follow the header.

If the data is a row vector, an unsigned integer equaling the number of columns in the
vector will precede the data, along with 4 padding bytes.

If the data is a column vector or a matrix, there will be two unsigned integers preceding
the data. The first will represent the number of rows in the matrix and the second will
represent the number of columns.

22-32

GAUSS User Guide

F
ile

I/
O

22-33

The data area always begins on an even 8-byte boundary. Numbers are stored in double
precision (8 bytes per element, 16 if complex). For complex matrices, all of the real
parts are stored first, followed by all the imaginary parts.

22.6.8 String v92 (Obsolete)

Offset Description
0-3 always 0
4-7 always 0xEECFCFCF
8-11 reserved
12-15 reserved
16-19 reserved
20-23 size of string in units of 8 bytes
24-27 length of string plus null terminator in bytes
28-127 reserved

The size of the data area is always divisible by 8, and is padded with nulls if the length
of the string is not evenly divisible by 8. If the length of the string is evenly divisible by
8, the data area will be the length of the string plus 8. The data area follows immediately
after the 128-byte header.

22.6.9 Data Set v92 (Obsolete)

Offset Description
0-3 always 0
4-7 always 0xEECACACA
8-11 reserved
12-15 reserved
16-19 reserved
20-23 rows in data set

File I/O

F
ile

I/O

24-27 columns in data set
28-31 0 - real data set, 1 - complex data set
32-35 type of data in data set, 2, 4, or 8
36-39 header size in bytes is 128 + columns * 9
40-127 reserved

The variable names begin at offset 128 and are stored 8 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 8 characters are padded
on the right with bytes of zero.

The variable type flags immediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

The contents of the data set follow the header and start on an 8-byte boundary. Data is
either 2-byte signed integer, 4-byte single precision floating point or 8-byte double pre-
cision floating point.

22.6.10 Matrix v96

Offset Description
0-3 always 0xFFFFFFFF
4-7 always 0
8-11 always 0xFFFFFFFF
12-15 always 0
16-19 always 0xFFFFFFFF
20-23 0xFFFFFFFF for forward byte order, 0 for backward byte

order
24-27 0xFFFFFFFF for forward bit order, 0 for backward bit order
28-31 always 0xABCDEF01
32-35 currently 1

22-34

GAUSS User Guide

F
ile

I/
O

22-35

36-39 reserved
40-43 floating point type, 1 for IEEE 754
44-47 1008 (double precision data)
48-51 8, the size in bytes of a double matrix
52-55 0 - real matrix, 1 - complex matrix
56-59 1 - imaginary part of matrix follows real part (standard

GAUSS style)
2 - imaginary part of each element immediately follows real
part (FORTRAN style)

60-63 number of dimensions
0 - scalar
1 - row vector
2 - column vector or matrix

64-67 1 - row major ordering of elements, 2 - column major
68-71 always 0
72-75 header size, 128 + dimensions * 4, padded to 8-byte boundary
76-127 reserved

If the data is a scalar, the data will directly follow the header.

If the data is a row vector, an unsigned integer equaling the number of columns in the
vector will precede the data, along with 4 padding bytes.

If the data is a column vector or a matrix, there will be two unsigned integers preceding
the data. The first will represent the number of rows in the matrix and the second will
represent the number of columns.

The data area always begins on an even 8-byte boundary. Numbers are stored in double
precision (8 bytes per element, 16 if complex). For complex matrices, all of the real
parts are stored first, followed by all the imaginary parts.

File I/O

F
ile

I/O

22.6.11 Data Set v96

Offset Description
0-3 always 0xFFFFFFFF
4-7 always 0
8-11 always 0xFFFFFFFF
12-15 always 0
16-19 always 0xFFFFFFFF
20-23 0xFFFFFFFF for forward byte order, 0 for backward byte

order
24-27 0xFFFFFFFF for forward bit order, 0 for backward bit order
28-31 0xABCDEF02
32-35 version, currently 1
36-39 reserved
40-43 floating point type, 1 for IEEE 754
44-47 12 - signed 2-byte integer

1004 - single precision floating point
1008 - double precision float

48-51 2, 4, or 8, the size of an element in bytes
52-55 0 - real matrix, 1 - complex matrix
56-59 1 - imaginary part of matrix follows real part (standard

GAUSS style)
2 - imaginary part of each element immediately follows real
part
(FORTRAN style)

60-63 always 2
64-67 1 for row major ordering of elements, 2 for column major
68-71 always 0

22-36

GAUSS User Guide

F
ile

I/
O

22-37

72-75 header size, 128 + columns * 33, padded to 8-byte boundary
76-79 reserved
80-83 rows in data set
84-87 columns in data set
88-127 reserved

The variable names begin at offset 128 and are stored 32 bytes each in ASCII format.
Each name corresponds to one column of data. Names less than 32 characters are pad-
ded on the right with bytes of zero.

The variable type flags immediately follow the variable names. They are 1-byte binary
integers, one per column, padded to an even 8-byte boundary. A 1 indicates a numeric
variable and a 0 indicates a character variable.

Contents of the data set follow the header and start on an 8-byte boundary. Data is either
2-byte signed integer, 4-byte single precision floating point or 8-byte double precision
floating point.

22.6.12 GAUSS Data Archives

A GAUSS Data Archive consists of a header, followed by the variable data and, finally,
an array of variable descriptors containing information about each variable.

Header

The header for a GAUSS Data Archive is laid out as follows:

Offset Type Description
0-3 32-bit unsigned integer always 0xFFFFFFFF
4-7 32-bit unsigned integer always 0
8-11 32-bit unsigned integer always 0xFFFFFFFF
16-19 32-bit unsigned integer always 0xFFFFFFFF
20-23 32-bit unsigned integer 0xFFFFFFFF for forward byte

File I/O

F
ile

I/O

order,
0 for backward byte order

24-27 32-bit unsigned integer always 0
28-31 32-bit unsigned integer always 0xABCDEF08
32-35 32-bit unsigned integer version, currently 1
36-39 32-bit unsigned integer reserved
40-43 32-bit unsigned integer floating point type, 1 for IEEE

754
44-55 32-bit unsigned integers reserved
56-63 64-bit unsigned integer number of variables
64-67 32-bit unsigned integer header size, 128
68-95 32-bit unsigned integers reserved
96-103 64-bit unsigned integer offset of variable descriptor

table from end of header
104-127 64-bit unsigned integers reserved

Variable Data

After the header comes the variable data. Matrices are laid out in row-major order, and
strings are written with a null-terminating byte.

For string arrays, an array of rowsx columns struct satable's is written out first, fol-
lowed by the string array data in row-major order with each element null terminated. A
struct satable consists of two members:

Member Type Description
off size_t offset of element data from beginning of string

array data
len size_t length of element data, including null-

terminating byte

On a 32-bit machine, a size_t is 4 bytes. On a 64-bit machine, it is 8 bytes.

22-38

GAUSS User Guide

F
ile

I/
O

22-39

Arrays are written with the orders (sizes) of each dimension followed by the array data.
For example, the following 2x3x4 array:

[1,1,1] through [1,3,4] =

[2,1,1] through [2,3,4] =

would be written out like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Variable Structures

The variable data is followed by an array of variable descriptors. For each variable in
the GDA, there is a corresponding variable descriptor in this array. A variable
descriptor is laid out as follows:

Offset Type Description
0-3 32-bit unsigned integer variable type
4-7 32-bit unsigned integer data type, 10 for 8 byte floating

point
8-11 32-bit unsigned integer dimensions, used only for

arrays

File I/O

F
ile

I/O

12-15 32-bit unsigned integer complex flag, 1 for real data, 0
for complex

16-19 32-bit unsigned integer size of pointer, indicates
whether the variable was
written on a 32-bit or 64-bit
platform

20-23 32-bit unsigned integer huge flag, indicates whether
the variable is larger than INT_
MAX

24-31 64-bit unsigned integer rows for matrices and string
arrays

32-39 64-bit unsigned integer columns for matrices and string
arrays, length for strings,
including null-terminating byte

40-47 64-bit unsigned integer index of the variable in the
GDA

48-55 64-bit unsigned integer offset of variable data from end
of header

56-63 64-bit unsigned integer length of variable data in bytes
64-143 string name of variable, null-

terminated

The variable type (bytes 0-3) may be any of the following:

20 array
30 matrix
40 string
50 string array

The size of pointer element (bytes 16-19) is the size of a pointer on the machine on
which the variable was written to the GDA. It will be set to 4 on 32-bit machines and 8

22-40

GAUSS User Guide

F
ile

I/
O

22-41

on 64-bit machines. This element is used only for string array variables. If a GDA con-
taining string arrays is created on a 32-bit machine and then read on a 64-bit machine, or
vice versa, then the size of pointer element indicates how the members of the struct sat-
able's must be converted in order to be read on the current machine.

The huge flag (bytes 20-23) is set to 1 if the variable size is greater than INT_MAX,
which is defined as 2147483647. A variable for which the huge flag is set to 1 may not
be read into GAUSS on a 32-bit machine.

The variable index element (bytes 40-47) contains the index of the variable in the GDA.
Although the variable data is not necessarily ordered by index (see gdaUpdate), the
variable descriptors are. Therefore, the indices are always in ascending order.

File I/O

F
ile

I/O

23 Databases with GAUSS

The database functionality within GAUSS is designed with simplicity in mind. This
chapter assumes a basic knowledge of SQL. You should be able to understand simple
SELECT, INSERT, UPDATE, and DELETE statements.

23.1 Connecting to Databases 23-1

23.2 Executing SQL Statements 23-3

23.2.1 Creating a Query 23-3

23.2.2 Fetching Query Results 23-4

23.2.3 Inserting, Updating, and Deleting Records 23-5

23.2.4 Transactions 23-7

23.1 Connecting to Databases

In order to operate on a database, a connection must first be created and then opened.
Database connections are created using the dbAddDatabase method and identified
by the id number returned. It is possible to have multiple connections to the same data-
base.

23-1

D
atabases

w
ith

G
A
U
S
S

Note that the creation of a connection is different from opening the connection. The data-
base can not be accessed until the connection is opened after it is created. The following
example shows how to create a connection and open it.

id = dbAddDatabase("MYSQL");
dbSetHostName(id, "sql.mycompany.net");
dbSetDatabaseName(id, "testdb");
dbSetUserName(id, "webuser");
dbSetPassword(id, "f2DAf3E");
ret = dbOpen(id);

The first line returns an identifier for a MYSQL connection, and the last line opens the
actual connection. Between those actions we set up the connection properties, such as
the host name, database name, username and password. There is an additional short-
hand method available to initialize the properties, described in the help page for dbAd-
dDatabase.

It is also possible to omit the dbSetUserName and dbSetPassword calls and spe-
cify both in the dbOpen call, as follows:

ret = dbOpen(id, "webuser", "f2DAf3E");

The following example shows how to specify all connection properties in a single string,
as well as how to connect to the same database twice using the same properties.

url =
"mysql://webuser:f2DAf3E@sql.mycompany.net:3306/testdb";

id1 = dbAddDatabase(url);
id2 = dbAddDatabase(url);

id1 and id2 are now separate connections to the same database. Since we've encap-
sulated all of the connection properties in the 'url' string, we can immediately call
dbOpen on either id1 or id2.

23-2

GAUSS User Guide

D
at
ab
as
es

w
ith

G
A
U
S
S

23-3

If dbOpen fails for any reason, it should be visible in the error output view. You can
also call dbGetLastErrorNum or dbGetLastErrorText and pass in the appro-
priate id to get that information programmatically in GAUSS.

Once the connection has been established, it can be removed and all resources freed by
calling dbRemoveDatabase with the corresponding connection id. If you'd like to
only temporarily close the connection, you can also call dbClose, which allows for
subsequent calls to dbOpen to re-open the connection.

23.2 Executing SQL Statements

GAUSS provides an intuitive interface for executing SQL statements and retrieving data
either all at once or iteratively.

23.2.1 Creating a Query

A query can be created through two available methods. The first is direct-execution
using the dbExecQuery method, assuming 'id' is a valid connection id:

qid = dbExecQuery(id, "SELECT symbol,
price FROM stocks");

If you wish for your query to be more selective about the results being returned and the
condition is user supplied, parameter binding is supported by GAUSS and easy to use:

print
"Enter stock symbol: ";;

symbol = cons();
qid = dbExecQuery(id, "SELECT symbol,

price FROM stocks WHERE symbol = ?",
symbol);

The above example will immediately execute the query. If you'd like to set up the query
more carefully, you can prepare it first and execute at your discretion.

Databases with GAUSS

D
atabases

w
ith

G
A
U
S
S

qid = dbCreateQuery(id, "SELECT symbol,
price FROM stocks WHERE symbol = :sym");

print "Enter stock symbol: ";;
symbol = cons();
dbQueryBindValue(qid, ":sym", symbol);
dbQueryExecPrepared(qid);

Note the specific call to dbQueryExecPrepared that is required when using
dbCreateQuery instead of dbExecQuery. dbQueryExecPrepared can also
be used for re-execution of a query created using dbExecQuery.

If the query fails to execute, output should be displayed in the error view but can also be
fetched programatically using either dbQueryGetLastErrorNum or
dbQueryGetLastErrorText.

23.2.2 Fetching Query Results

Once the query has been executed, retrieving the result is trivial.

To fetch all results directly into a matrix:

results = dbQueryFetchAllM(qid);

To store the symbol names into a string array and the price into a matrix:

symbols = dbQueryFetchAllSA(qid, "symbol");
prices = dbQueryFetchAllM(qid, "price");

GAUSS also has methods to provide access to the results one row at a time. Following
the execution of a query, its internal pointer is located one position before the first
record. An initial call to dbQuerySeekNext is required to position on the first row.
Additional calls to dbQuerySeekNext will increment the current row, until the func-
tion returns false and no more rows are available.

A typical iteration of the results is as follows:

23-4

GAUSS User Guide

D
at
ab
as
es

w
ith

G
A
U
S
S

23-5

do while
dbQuerySeekNext(qid);
symbol = dbQueryFetchOneSA(qid, "symbol");
price = dbQueryFetchOneM(qid, "price");

endo;

Multiple functions are available for flexible navigation of the result set. You can iterate
forward and backward with dbQuerySeekNext and dbQuerySeekPrevious.
dbQuerySeekFirst and dbQuerySeekLast will navigate to the first and last
record, respectively. dbQueryGetPosition returns the current row index. The total
number of rows can be retrieved via the dbQueryRows method.

Note that a performance increase can be achieved if you are only using
dbQuerySeekNext, and never navigating backwards. This is most noticeable on
large result sets.

In order to take advantage of the performance improvement, the driver must support it,
and you must call dbQuerySetForwardOnly before executing the query, as such:

qid = dbCreateQuery("SELECT * FROM stocks");
dbQuerySetForwardOnly(qid);
dbQueryExecPrepared(qid);

23.2.3 Inserting, Updating, and Deleting Records

While SELECT statements are quite common, GAUSS is capable of executing any arbit-
rary SQL statement.

To insert a new stock symbol, you could do the following:

qid = dbExecQuery("INSERT INTO stocks (id,
symbol, price) VALUES (100, 'TEST', 30)");

In the event of multiple inserts, this can be improved through usage of parameter bind-
ing:

Databases with GAUSS

D
atabases

w
ith

G
A
U
S
S

string stocks = { "MSFT", "FB", "GOOG" };
prices = { 32.78, 45.95, 897.96 };

qid = dbCreateQuery("INSERT INTO stocks (id,
symbol, price) VALUES (:id, :sym, :price)");

for i(1, rows(stocks), 1);
dbQueryBindValue(qid, ":id", i);
dbQueryBindValue(qid, ":sym", stocks[i]);
dbQueryBindValue(qid, ":price", prices[i]);
dbQueryExecPrepared(qid);

endfor;

The following is an identical example, using the same data, but using different style
placeholders:

qid = dbCreateQuery("INSERT INTO stocks (id,
symbol, price) VALUES (?, ?, ?)");

for i(1, rows(stocks), 1);
dbQueryBindValue(qid, 1, i);
dbQueryBindValue(qid, 2, stocks[i]);
dbQueryBindValue(qid, 3, prices[i]);
dbQueryExecPrepared(qid);

endfor;

This operation is even possible using a short-hand method:

for i(1, rows(stocks), 1);
string args = itos(i) $| stocks[i] $| itos(prices[i]);
qid = dbExecQuery("INSERT INTO stocks (id,

symbol, price) VALUES (?, ?, ?)", args);
endfor;

23-6

GAUSS User Guide

D
at
ab
as
es

w
ith

G
A
U
S
S

23-7

23.2.4 Transactions

If the underlying database engine supports transactions, dbHasFeature(id, DB_
TRANSACTIONS) will return 1. You can use dbTransaction(id) to start a trans-
action, proceeded by SQL commands you wish to execute. At any time within the con-
text of an open transaction, you can dbCommit(id) to finalize the executed commands
or dbRollback(id) to reverse all commands executed since the start of the trans-
action. When using transactions you must start the transaction before you create or
execute a query.

Transactions can be used to ensure that a complicated operation is atomic, meaning
every part of the operation is completed or none at all.

For example, in the context of 1000 separate inserts, dbRollback can be called to
cancel all of them, even if called on the 999th insert:

dbTransaction(id);

for i (1, 1000, 1);
dbExecQuery(id, "INSERT INTO temp (num) VALUES (?)", i);

if i == 999;
dbRollback(id);
break;

endif;
endfor;

Databases with GAUSS

D
atabases

w
ith

G
A
U
S
S

24 Foreign Language Interface

The Foreign Language Interface (FLI) allows users to create functions written in C,
FORTRAN, or other languages, and call them from a GAUSS program. The functions
are placed in dynamic libraries (DLLs, .so's, .dylib's, or shared libraries or shared
objects) and linked in at run-time as needed. The FLI functions are:

dlibrary Link and unlink dynamic libraries at run-time.
dllcall Call functions located in dynamic libraries.

GAUSS recognizes a default dynamic library directory, a directory where it will look
for your dynamic-link libraries when you call dlibrary. You can specify the default
directory in gauss.cfg by setting dlib_path. As it is shipped, gauss.cfg spe-
cifies $(GAUSSDIR)/dlib as the default directory.

24.1 Writing FLI Functions 24-1

24.2 Creating Dynamic Libraries 24-3

24.1 Writing FLI Functions

Your FLI functions should be written to the following specifications:

24-1

F
oreign

Language
Interface

1. Take 0 or more pointers to doubles as arguments.

This does not mean you cannot pass strings to an FLI
function. Just recast
the double pointer to a char pointer inside the func-
tion.

2. Take those arguments either in a list or a vector.

3. Return an integer.

In C syntax, then, your functions would take one of the following forms:

1. int func(void);

2. int func(double *arg1 [, double *arg2,...]);

3. int func(double *arg[]);

Functions can be written to take a list of up to 100 arguments, or a vector (in C terms, a
1-dimensional array) of up to 1000 arguments. This does not affect how the function is
called from GAUSS; the dllcall statement will always appear to pass the arguments
in a list. That is, the dllcall statement will always look as follows:

dllcall func(a,b,c,d[,e...]);

For details on calling your function, passing arguments to it, getting data back, and what
the return value means, see dllcall in the GAUSS LANGUAGEREFERENCE.

24-2

GAUSS User Guide

F
or
ei
gn

La
ng
ua
ge

In
te
rf
ac
e

24-3

24.2 Creating Dynamic Libraries

The following describes how to build a dynamic library called hyp.dll (on Windows)
or libhyp.so (on Linux) from the source file hyp.c.

As mentioned in the previous section, your FLI functions may take only pointers to
doubles as arguments. Therefore, you should define your FLI functions to be merely
wrapper functions that cast their arguments as necessary and then call the functions that
actually do the work. This is demonstrated in the source file hyp.c:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// This code is not meant to be efficient. It is meant
// to demonstrate the use of the FLI.
// This does all the work, not exported
static int hypo(double *x, double *y, double *h, int r,
int c)
{

double *wx;
double *wy;
double *dp;
double *sp1;
double *sp2;
int i, elems;

elems = r*c;

// malloc work arrays
if ((wx =(double *)malloc(elems*sizeof(double))) ==
NULL)

return 30; // out of memory

if ((wy =(double *)malloc(elems*sizeof(double))) ==
NULL)
{

Foreign Language
Interface

F
oreign

Language
Interface

free(wx);
return 30; // out of memory

}

dp = wx;
sp1 = x;

// square x into work area wx
for (i=0; i<elems; i++)
{

*dp = *sp1 * *sp1;
++sp1;
++dp;

}

dp = wy;
sp2 = y;

// square y into work area wy
for (i=0; i<elems; i++)
{

*dp = *sp2 * *sp2;
++sp2;
++dp;

}

dp = h;
sp1 = wx;
sp2 = wy;

// compute hypotenuse into h which was allocated by GAUSS
for (i=0; i<elems; i++)
{

*dp = sqrt(*sp1 + *sp2);
++sp1;
++sp2;

24-4

GAUSS User Guide

F
or
ei
gn

La
ng
ua
ge

In
te
rf
ac
e

24-5

++dp;
}

// free whatever you malloc
free(wx);
free(wy);

return 0;
}

/* exported wrapper, all double * arguments, calls the real
** function with whatever data types it expects
*/
int hypotenuse(double *x, double *y, double *h, double *r,
double *c)
{

return hypo(x, y, h, (int)*r, (int)*c);
}

The following Makefiles contain the compile and link commands you would use to build
the dynamic library on various platforms. For explanations of the various flags used, see
the documentation for your compiler and linker.

Windows

hyp.dll: hyp.obj
link /dll /out:hyp.dll hyp.obj

hyp.obj: hyp.c
cl -c -MD -GX hyp.c

Linux

$(CCOPTS) indicates any optional compilation flags you might add.

CCOPTIONS = -g -O2 -fpic -lm -lc -shared
CC = gcc

Foreign Language
Interface

F
oreign

Language
Interface

libhyp.so: hyp.cpp
$(CC) $(CCOPTIONS) -o $@ hyp.c

For details on linking your dynamic library, see dlibrary in the GAUSS LANGUAGE
REFERENCE.

24-6

GAUSS User Guide

F
or
ei
gn

La
ng
ua
ge

In
te
rf
ac
e

25 Data Transformations

GAUSS allows expressions that directly reference variables (columns) of a data set.
This is done within the context of a data loop:

dataloop infile outfile;
drop wages interest_rate;
csed = ln(sqrt(csed));
select exports > 3.35 and married $== "y";
make chfac = hcfac + wcfac;
keep unemployment chfac exports;

endata;

GAUSS translates the data loop into a procedure that performs the required operations,
and then calls the procedure automatically at the location (in your program) of the data
loop. It does this by translating your main program file into a temporary file and then
executing the temporary file.

A data loop may be placed only in the main program file. Data loops in files that are
#include'd or autoloaded are not recognized.

25.1 Data Loop Statements 25-2

25.2 Using Other Statements 25-3

25.3 Debugging Data Loops 25-3

25-1

D
ata

T
ransform

ations

25.3.1 Translation Phase 25-3

25.3.2 Compilation Phase 25-4

25.3.3 Execution Phase 25-4

25.4 Reserved Variables 25-4

25.1 Data Loop Statements

A data loop begins with a dataloop statement and ends with an endata statement.
Inside a data loop, the following statements are supported:

code Create variable based on a set of logical expressions.

delete Delete rows (observations) based on a logical
expression.

drop Specify variables NOT to be written to data set.
extern Allow access to matrices and strings in memory.
keep Specify variables to be written to output data set.
lag Lag variables a number of periods.
listwise Control deletion of missing values.
make Create new variable.
outtyp Specify output file precision.
recode Change variable based on a set of logical

expressions.
select Select rows (observations) based on a logical

expression.
vector Create new variable from a scalar returning

expression.

25-2

GAUSS User Guide

D
at
a
Tr
an
sf
or
m
at
io
ns

25-3

In any expression inside a data loop, all text symbols not immediately followed by a left
parenthesis '(' are assumed to be data set variable (column) names. Text symbols fol-
lowed by a left parenthesis are assumed to be procedure names. Any symbol listed in an
extern statement is assumed to be a matrix or string already in memory.

25.2 Using Other Statements

All program statements in the main file and not inside a data loop are passed through to
the temporary file without modification. Program statements within a data loop that are
preceded by a '#' are passed through to the temporary file without modification. The user
familiar with the code generated in the temporary file can use this to do out-of-the-ordin-
ary operations inside the data loop.

25.3 Debugging Data Loops

The translator that processes data loops can be turned on and off. When the translator is
on, there are three distinct phases in running a program:

Translation Translation of main program file to temporary file.
Compilation Compilation of temporary file.
Execution Execution of compiled code.

25.3.1 Translation Phase 25-3

25.3.2 Compilation Phase 25-4

25.3.3 Execution Phase 25-4

25.3.1 Translation Phase

In the translation phase, the main program file is translated into a temporary file. Each
data loop is translated into a procedure and a call to this procedure is placed in the tem-
porary file at the same location as the original data loop. The data loop itself is com-

Data Transformations

D
ata

T
ransform

ations

mented out in the temporary file. All the data loop procedures are placed at the end of
the temporary file.

Depending upon the status of line number tracking, error messages encountered in this
phase will be printed with the file name and line numbers corresponding to the main file.

25.3.2 Compilation Phase

In the compilation phase, the temporary file is compiled. Depending upon the status of
line number tracking, error messages encountered in this phase will be printed with the
file name and line numbers corresponding to both the main file and the temporary file.

25.3.3 Execution Phase

In the execution phase, the compiled program is executed. Depending on the status of
line number tracking, error messages will include line number references from both the
main file and the temporary file.

25.4 Reserved Variables

The following local variables are created by the translator and used in the produced
code:

x_cv x_iptr x_ncol x_plag

x_drop x_keep x_nlag x_ptrim

x_fpin x_lval x_nrow x_shft

x_fpout x_lvar x_ntrim x_tname

x_i x_n x_out x_vname

x_in x_name x_outtyp x_x

These variables are reserved, and should not be used within a dataloop... endata
section.

25-4

GAUSS User Guide

D
at
a
Tr
an
sf
or
m
at
io
ns

26 The GAUSS Profiler

GAUSS includes a profiler, which enables you to determine exactly how much time
your programs are spending on each line and in each called procedure, thereby providing
you with the information you need to increase the efficiency of your programs. The
GAUSS Profiler (gaussprof)and tcollect are both run from a command prompt
window, not at a GAUSS prompt.

26.1 Using the GAUSS Profiler 26-1

26.1.1 Collection 26-2

26.1.2 Analysis 26-2

26.1 Using the GAUSS Profiler

There are two steps to using the GAUSS Profiler: collection and analysis.

26.1.1 Collection 26-2

26.1.2 Analysis 26-2

26-1

T
he

G
A
U
S
S
P
rofiler

26.1.1 Collection

To collect profiling information, you must run your GAUSS program in tcollect, an
executable shipped with GAUSS that is identical to tgauss except that it generates a
file containing profiling information each time it is run:

tcollect -b myfile.e

The output displayed by tcollect includes the name of the output file containing the
profiling information. tcollect output files have a gaussprof prefix and a .gco extension.

Note that running tcollect on long programs may generate a very large .gco out-
put file. Thus you may want to delete the .gco files on your machine regularly.

26.1.2 Analysis

To analyze the information stored in the tcollect output file, you must run the
gaussprof executable, which is also shipped with GAUSS, on that file. gauss-
prof produces an organized report, displaying the time usage by procedure and by
line.

Assuming that running myfile.e in tcollect produced an output file called
gaussprof_001.gco, you could analyze the results in that file as follows:

gaussprof gaussprof_001.gco

The syntax for gaussprof is:

gaussprof [flags] profile_data_file ...

where [flags] may be any of the following:

-p profile procedure calls
-l profile line numbers
-h suppress headers

26-2

GAUSS User Guide

T
he

G
A
U
S
S
P
ro
fil
er

26-3

-sp order procedure call sort order where order contains one
or more of the following:
e exclusive time
t total time
c number of times called
p procedure name
a ascending order
d descending order (default)
Columns are sorted all ascending or all descending.

-sl order line number sort order where order contains one or
more of the following:
t time spent on line
c number of times line was executed
f file name
l line number
a ascending order
d descending order (default)
Columns are sorted all ascending or all descending.

The default, with no flags, is: -pl -sp dep -sl dtf.

The GAUSS Profiler

T
he

G
A
U
S
S
P
rofiler

27 Time and Date

GAUSS offers a comprehensive set of time and date functions. These functions afford
the user the ability to return the current time and date, to carry out most related cal-
culations and format the results for output. GAUSS also allows the user to perform
timed iterations.

In the year 1 AD the calendar in general use was the Julian calendar. The Gregorian cal-
endar that we use today was not invented until the late 1500's. This new calendar
changed the method of calculating leap years on century marks. With the Julian system
simply every fourth year was a leap year. The Gregorian system made every fourth year
a leap year with the exception of century marks which are only leap years if divisible by
400. The British adoption of this calendar, which the GAUSS date functions are based
on, did not happen until the year 1752. In that year eleven days were removed; Septem-
ber 2, 1752 was followed by September 14, 1752.

dtvnormal and utctodtv are accurate back to 1 AD. The rest of the GAUSS date
functions assume a normal Gregorian system regardless of year. Thus, they will not
account for the days taken out in September of 1752, nor will they account for all cen-
tury marks being leap years before the adoption of the Gregorian system in 1752.

The time is given by your operating system, daylight savings time is not automatically
accounted for by GAUSS in calculations.

27.1 Time and Date Formats 27-2

27-1

T
im
e
and

D
ate

27.2 Time and Date Functions 27-4

27.2.1 Timed Iterations 27-6

27.1 Time and Date Formats

The Time and Date formats in GAUSS fall into one of two major categories, mat-
rix/vector and string. The matrix/vector formats can be used for either calculations or if
desired for output. The string formats are, however, mostly for use as ouput. Some
manipulation of strings is possible with the use of the stof function.

A 4x1 vector is returned by both the date and time functions.

d = date;
d;
1997.00 // Year
5.00000 // Month
29.0000 // Day
56.4700 // Hundredths of a second since midnight

t = time;
t;
10.00 // Hours since midnight
17.00 // Minutes
33.00 // Seconds
13.81 // Hundredths of a second

These vectors can be written to a string of the desired form by passing them through the
corresponding function.

d = { 1997, 5, 29, 56.47 };
datestr(d);
5/29/97
datestrymd(d);
19970529

27-2

GAUSS User Guide

T
im
e
an
d
D
at
e

27-3

t = { 10, 17, 33, 13.81 };
timestr(t);
10:17:33

A list and brief description of these, and other related functions is provided in the table
in Section 25.2 .

Another major matrix/vector format is the dtv, or date and time vector. The dtv vector is
a 1x8 vector used with the dtvnormal and utctodtv functions. The format for the
dtv vector is:

Where:

Year Year, four digit integer.
Month 1-12, Month in year.
Day 1-31, Day of month.
Hour 0-23, Hours since midnight.
Min 0-59, Minutes.
Sec 0-59, Seconds.
DoW 0-6, Day of week, 0=Sunday.
DiY 0-365, Days since Jan 1 of current year.

dtvnormal normalizes a date. The last two elements are ignored for input, as shown
in the following example. They are set to the correct values on output. The input can be
1x8 or Nx8.

dtv = { 1954 3 17 4 16 0 0 0 };
dtv = dtvnormal(dtv);

Time and Date

T
im
e
and

D
ate

dtv[3] = dtv[3] + 400;
print dtv;

dtv = dtvnormal(dtv);
print dtv;

27.2 Time and Date Functions

Following is a partial listing of the time and date functions available in GAUSS.

datestr Formats a Date vector to a string (mo/dy/yr).
datestrymd Formats a Date vector to an eight character string of

the type yyyymmdd.
dayinyr Returns day number in the year of a given date.
_daypryr Returns the number of days in the years given as

input.
dtvnormal Normalizes a 1x8 dtv vector.
etdays Computes the difference in days between two dates.
ethsec Computes the difference between two times in

hundredths of a second.
etstr Formats a time difference measured in hundreths of

a second to a string.
_isleap Returns a vector of ones and zeros, 1 if leap year 0 if

not.

27-4

GAUSS User Guide

T
im
e
an
d
D
at
e

27-5

timestr Formats a Time vector to a string hr:mn:sc.
timeutc Universal time coordinate, number of seconds since

January 1, 1970 Greenwich Mean Time.
utctodtv Converts a scalar, number of seconds since, or

before, Jan 1 1970 Greenwich mean time, to a dtv
vector.

Below is an example of two ways to calculate a time difference.

d1 = { 1996, 12, 19, 82 };
d2 = { 1997, 4, 28, 4248879.3 };
dif = ethsec(d1,d2);
ds = etstr(dif);

If only the number of days is needed use etdays.

d1 = { 1996, 12, 19, 82 };
d2 = { 1997, 4, 28, 4248879.3 };
dif = etdays(d1,d2);

The last element of d1 is optional when used as an input for etdays. _isleap
returns a matrix of ones and zeros, ones when the corresponding year is a leap year.

x = seqa(1970,1,20);
y = _isleap(x);
delif(x,abs(y-1));
1972.0000 // Vector containing all leap years

Time and Date

T
im
e
and

D
ate

1976.0000 // between 1970 - 1989
1980.0000
1984.0000
1988.0000

To calculate the days of a number of consecutive years:

x = seqa(1983,1,3);
y = _daypryr(x);
sumc(y);
1096.0000

To add a portion of the following year:

g = { 1986, 2, 23, 0 };
dy = dayinyr(g);
sumc(y)+dy;
1150.0000

For more information on any of these functions see their respective pages in the com-
mand reference.

27.2.1 Timed Iterations

Iterations of a program can be timed with the use of the hsec function in the following
manner.

et = hsec; // Start timer

/* Segment of code to be timed */

et =(hsec-et)/100; // Stop timer, convert to seconds

In the case of a program running from one day into the next you would need to replace
the hsec function with the date function. The ethsec function should be used to

27-6

GAUSS User Guide

T
im
e
an
d
D
at
e

27-7

compute the time difference; a straight subtraction as in the previous example will not
give the desired result.

dstart = date; // Start timer

/* Segment of code to be timed */

dend = date; // Stop timer

// Convert time difference to seconds
dif = ethsec(dstart,dend)/100;

Time and Date

T
im
e
and

D
ate

28 ATOG

ATOG is a stand-alone conversion utility that converts ASCII files into GAUSS data
sets. ATOG can convert delimited and packed ASCII files into GAUSS data sets.
ATOG can be run from a batch file or the command line; it is not run from a GAUSS
prompt but rather from a command prompt window.

The syntax is:

atog cmdfile

where cmdfile is the name of the command file. If no extension is given, .cmd will
be assumed. If no command file is specified, a command summary will be displayed.

28.1 Command Summary 28-1

28.2 Commands 28-3

28.3 Examples 28-12

28.4 Error Messages 28-14

28.1 Command Summary

The following commands are supported in ATOG:

append Append data to an existing file.

28-1

A
T
O
G

complex Treat data as complex variables.
input The name of the ASCII input file.
invar Input file variables (column names).
msym Specify missing value character.
nocheck Don't check data type or record length.
output The name of the GAUSS data set to be created.
outtyp Output data type.
outvar List of variables to be included in output file.
preservecase Preserve case of variable names in output file.

The principle commands for converting an ASCII file that is delimited with spaces or
commas are given in the following example:

input agex.asc;
output agex;
invar $ race # age pay $ sex region;
outvar region age sex pay;
outtyp d;

In this example, a delimited ASCII file agex.asc is converted to a double precision
GAUSS data file agex.dat. The input file has five variables. The file will be inter-
preted as having five columns:

column name data type
1 race character
2 AGE numeric
3 PAY numeric
4 sex character
5 region character

The output file will have four columns since the first column of the input file (race) is
not included in the output variables. The columns of the output file are:

28-2

GAUSS User Guide

A
T
O
G

28-3

column name data type
1 region character
2 AGE numeric
3 sex character
4 PAY numeric

The variable names are saved in the file header. Unless preservecase has been spe-
cified, the names of character variables will be saved in lowercase, and the names of
numeric variables will be saved in uppercase. The $ in the invar statement specifies
that the variables that follow are character type. The # specifies numeric. If $ and # are
not used in an invar statement, the default is numeric.

Comments in command files must be enclosed between '@' characters.

28.2 Commands

A detailed explanation of each command follows.

append

Instructs ATOG to append the converted data to an existing data set:

append;

No assumptions are made regarding the format of the existing file. Make certain that
the number, order, and type of data converted match the existing file. ATOG creates v96
format data files, so will only append to v96 format data files.

complex

Instructs ATOG to convert the ASCII file into a complex GAUSS data set:

complex;

ATOG

A
T
O
G

Complex GAUSS data sets are stored by rows, with the real and imaginary parts inter-
leaved, element by element. ATOG assumes the same structure for the ASCII input file,
and will thus read TWO numbers out for EACH variable specified.

complex cannot be used with packed ASCII files.

input

Specifies the file name of the ASCII file to be converted. The full path name can be
used in the file specification.

For example, the command:

input data.raw;

will expect an ASCII data file in the current working directory.

The command:

input /research/data/myfile.asc;

specifies a file to be located in the /research/data subdirectory.

invar

Soft Delimited ASCII Files

Soft delimited files may have spaces, commas, or cr/lf as delimiters between elements.
Two or more consecutive delimiters with no data between them are treated as one delim-
iter. For example:

invar age $ name sex # pay var[1:10] x[005];

The invar command above specifies the following variables:

column name data type
1 AGE numeric
2 name character

28-4

GAUSS User Guide

A
T
O
G

28-5

3 sex character
4 PAY numeric
5 VAR01 numeric
6 VAR02 numeric
7 VAR03 numeric
8 VAR04 numeric
9 VAR05 numeric
10 VAR06 numeric
11 VAR07 numeric
12 VAR08 numeric
13 VAR09 numeric
14 VAR10 numeric
15 X001 numeric
16 X002 numeric
17 X003 numeric
18 X004 numeric
19 X005 numeric

As the input file is translated, the first 19 elements will be interpreted as the first row
(observation), the next 19 will be interpreted as the second row, and so on. If the number
of elements in the file is not evenly divisible by 19, the final incomplete row will be
dropped and a warning message will be given.

Hard Delimited ASCII Files

Hard delimited files have a printable character as a delimiter between elements. Two
delimiters without intervening data between them will be interpreted as a missing. If \n
is specified as a delimiter, the file should have one element per line and blank lines will
be considered missings. Otherwise, delimiters must be printable characters. The dot '.'
is illegal and will always be interpreted as a missing value. To specify the backslash as
a delimiter, use \\. If \r is specified as a delimiter, the file will be assumed to contain

ATOG

A
T
O
G

one case or record per line with commas between elements and no comma at the end of
the line.

For hard delimited files the delimit subcommand is used with the invar command.
The delimit subcommand has two optional parameters. The first parameter is the
delimiter. The default is a comma. The second parameter is an 'N'. If the second para-
meter is present, ATOG will expect N delimiters. If it is not present, ATOG will expect
N-1 delimiters.

This example:

invar delimit(, N) $ name # var[5];

will expect a file like this:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,
STEVE, 624.3, 340.3, , 624.3, 639.5,
TOM , 244.2, 834.3, 602.3, 333.4, 822.5,

while

invar delimit(,) $ name # var[5];

or

invar delimit $ name # var[5];

will expect a file like this:

BILL , 222.3, 123.2, 456.4, 345.2, 533.2,
STEVE, 624.3, 340.3, , 624.3, 639.5,
TOM , 244.2, 834.3, 602.3, 333.4, 822.5

The difference between specifying N or N-1 delimiters can be seen here:

28-6

GAUSS User Guide

A
T
O
G

28-7

456.4, 345.2, 533.2,
, 624.3, 639.5,

602.3, 333.4,

If the invar statement specified three variables and N-1 delimiters, this file would be
interpreted as having three rows containing a missing in the [2,1] element and the [3,3]
element like this:

If N delimiters had been specified, this file would be interpreted as having two rows,
and a final incomplete row that is dropped:

The spaces were shown only for clarity and are not significant in delimited files so:

BILL,222.3,123.2,456.4,345.2,533.2,
STEVE,624.3,340.3,,624.3,639.5,
TOM,244.2,834.3,602.3,333.4,822.5

would work just as well.

Linefeeds are significant only if \n is specified as the delimiter, or when using \r. This
example:

invar delimit(\r) $ name # var[5];

will expect a file with no comma after the final element in each row:

ATOG

A
T
O
G

BILL , 222.3, 123.2, 456.4, 345.2, 533.2
STEVE, 624.3, 340.3, 245.3, 624.3, 639.5
TOM , 244.2, 834.3, 602.3, 333.4, 822.5

Packed ASCII Files

Packed ASCII files must have fixed length records. The record subcommand is used
to specify the record length, and variables are specified by giving their type, starting pos-
ition, length, and the position of an implicit decimal point if necessary.

outvar is not used with packed ASCII files. Instead, invar is used to specify only
those variables to be included in the output file.

For packed ASCII files the syntax of the invar command is as follows:

invar record = reclen (format) variables (format)
variables;

where,

reclen the total record length in bytes, including the final
carriage return/line feed if applicable. Records must be
fixed length.

format (start,length.prec) where:
start starting position of the field in the record, 1 is
the first position. The default is 1.
length the length of the field in bytes. The default is
8.
precoptional; a decimal point will be inserted
automatically prec places in from the RIGHT edge of
the field.

If several variables are listed after a format definition, each succeeding field will be
assumed to start immediately after the preceding field. If an asterisk is used to specify
the starting position, the current logical default will be assumed. An asterisk in the

28-8

GAUSS User Guide

A
T
O
G

28-9

length position will select the current default for both length and prec. This is
illegal: (3,8.*).

The type change characters $ and # are used to toggle between character and numeric
data type.

Any data in the record that is not defined in a format is ignored.

The examples below assume a 32-byte record with a carriage return/line feed occupying
the last 2 bytes of each record. The data below can be interpreted in different ways
using different invar statements:

ABCDEFGHIJ12345678901234567890<CR><LF>
| | | | | |

position 1 10 20 30 31 32

This example:

invar record=32 $(1,3) group dept #(11,4.2) x[3] (*,5)
y;

will result in:

variable value type
group ABC character
dept DEF character
X1 12.34 numeric
X2 56.78 numeric
X3 90.12 numeric
Y 34567 numeric

This example:

invar record=32 $ dept (*,2) id # (*,5) wage (*,2) area

will result in:

ATOG

A
T
O
G

variable value type
dept ABCDEFGH character
id IJ character
WAGE 12345 numeric
AREA 67 numeric

msym

Specifies the character in the input file that is to be interpreted as a missing value. This
example:

msym &;

defines the character '&' as the missing value character. The default '.' (dot) will always
be interpreted as a missing value unless it is part of a numeric value.

nocheck

Optional; suppresses automatic checking of packed ASCII record length and output data
type. The default is to increase the record length by 2 bytes if the second record in a
packed file starts with cr/lf, and any files that have explicitly defined character data will
be output in double precision regardless of the type specified.

output

The name of the GAUSS data set. A file will be created with the extension .dat. For
example:

output /gauss/dat/test;

creates the file test.dat on the /gauss/dat directory.

outtyp

Selects the numerical accuracy of the output file. Use of this command should be dic-
tated by the accuracy of the input data and storage space limitations. The format is:

28-10

GAUSS User Guide

A
T
O
G

28-11

outtyp fmt;

where fmt is:

 D or 8 double precision
F or 4 single precision (default)
I or 2 integer

The ranges of the different formats are:

Bytes Type Significant
Digits Range

2 integer 4
4 single 6-7

8 double 15-16

If the output type is integer, the input numbers will be truncated to integers. If your data
has more than 6 or 7 significant digits, specify outtyp as double.

Character data require outtyp d. ATOG automatically selects double precision when
character data is specified in the invar statement, unless you have specified
nocheck.

The precision of the storage selected does not affect the accuracy of GAUSS cal-
culations using the data. GAUSS converts all data to double precision when the file is
read.

outvar

Selects the variables to be placed in the GAUSS data set. The outvar command needs
only the list of variables to be included in the output data set. They can be in any order.
In this example:

invar $name #age pay $sex #var[1:10] x[005];
outvar sex age x001 x003 var[1:8];

the outvar statement selects the following variables:

ATOG

A
T
O
G

column name data type
1 sex character
2 AGE numeric
3 X001 numeric
4 X003 numeric
5 VAR01 numeric
6 VAR02 numeric
7 VAR03 numeric
8 VAR04 numeric
9 VAR05 numeric
10 VAR06 numeric
11 VAR07 numeric
12 VAR08 numeric

outvar is not used with packed ASCII files.

preservecase

Optional; preserves the case of variable names. The default is nopreservcase,
which will force variable names for numeric variables to upper case and character vari-
ables to lower case.

28.3 Examples

Example 1 The first example is a soft delimited ASCII file called agex1.asc. The
file contains seven columns of ASCII data:

Jan 167.3 822.4 6.34E06 yes 84.3 100.4
Feb 165.8 987.3 5.63E06 no 22.4 65.6
Mar 165.3 842.3 7.34E06 yes 65.4 78.3

The ATOG command file is agex1.cmd:

28-12

GAUSS User Guide

A
T
O
G

28-13

input /gauss/agex1.asc;
output agex1;
invar $month #temp pres vol $true var[02];
outvar month true temp pres vol;

The output data set will contain the following information:

name month true TEMP PRES VOL
case 1 Jan yes 167.3 822.4 6.34e+6
case 2 Feb no 165.8 987.3 5.63e+6
case 3 Mar yes 165.3 842.3 7.34e+6
type char char numeric numeric numeric

The data set is double precision since character data is explicitly specified.

Example 2 The second example is a packed ASCII file xlod.asc The file contains
32-character records:

AEGDRFCSTy02345678960631567890<CR><LF>
EDJTAJPSTn12395863998064839561<CR><LF>
GWDNADMSTy19827845659725234451<CR><LF>
| | | | | |

position 1 10 20 30 31 32

The ATOG command file is xlod.cmd:

input /gauss/dat/xlod.asc;
output xlod2;
invar record=32 $(1,3) client[2] zone (*,1) reg #(20,5) zip;

The output data set will contain the following information:

name client1 client2 zone reg ZIP
case 1 AEG DRF CST y 60631
case 2 EDJ TAJ PST n 98064

ATOG

A
T
O
G

case 3 GWD NAD MST y 59725
type char char char char numeric

The data set is double precision since character data is explicitly specified.

Example 3 The third example is a hard delimited ASCII file called cplx.asc. The
file contains six columns of ASCII data:

456.4, 345.2, 533.2, -345.5, 524.5, 935.3,
-257.6, 624.3, 639.5, 826.5, 331.4, 376.4,
602.3, -333.4, 342.1, 816.7, -452.6, -690.8

The ATOG command file is cplx.cmd:

input /gauss/cplx.asc;
output cplx;
invar delimit #cvar[3];
complex;

The output data set will contain the following information:

name cvar1 cvar2 cvar3
case 1 456.4 + 345.2i 533.2 - 345.5i 524.5 + 935.3i
case 2 -257.6 + 624.3i 639.5 + 826.5i 331.4 + 376.4i
case 3 602.3 - 333.4i 342.1 + 816.7i -452.6 - 690.8i
type numeric numeric numeric

The data set defaults to single precision, since no character data is present, and no
outtyp command is specified.

28.4 Error Messages

atog - Can't find input file

The ASCII input file could not be opened.

28-14

GAUSS User Guide

A
T
O
G

28-15

atog - Can't open output file

The output file could not be opened.

atog - Can't open temporary file

Notify Aptech Systems.

atog - Can't read temporary file

Notify Aptech Systems.

atog - Character data in output file
 Setting output file to double precision

The output file contains character data. The type was set to double precision
automatically.

atog - Character data longer than 8 bytes were
truncated

The input file contained character elements longer than 8 bytes. The
conversion continued and the character elements were truncated to 8 bytes.

atog - Disk Full

The output disk is full. The output file is incomplete.

atog - Found character data in numeric field

This is a warning that character data was found in a variable that was
specified as numeric. The conversion will continue.

atog - Illegal command

An unrecognizable command was found in a command file.

atog - Internal error

Notify Aptech Systems.

ATOG

A
T
O
G

atog - Invalid delimiter

The delimiter following the backslash is not supported.

atog - Invalid output type

Output type must be I, F, or D.

atog - Missing value symbol not found

No missing value was specified in an msym statement.

atog - No Input file

No ASCII input file was specified. The input command may be missing.

atog - No input variables

No input variable names were specified. The invar statement may be
missing.

atog - No output file

No output file was specified. The output command may be missing.

atog - output type d required for character data
 Character data in output file will be lost

Output file contains character data and is not double precision.

atog - Open comment

The command file has a comment that is not closed. Comments must be
enclosed in @'s:

@ comment @

atog - Out of memory

28-16

GAUSS User Guide

A
T
O
G

28-17

Notify Aptech Systems.

atog - read error

A read error has occurred while converting a packed ASCII file.

atog - Record length must be 1-16384 bytes

The record subcommand has an out of range record length.

atog - Statement too long

Command file statements must be less than 16384 bytes.

atog - Syntax error at:

There is unrecognizable syntax in a command file.

atog - Too many input variables

More input variables were specified than available memory permitted.

atog - Too many output variables

More output variables were specified than available memory permitted.

atog - Too many variables

More variables were specified than available memory permitted.

atog - Undefined variable

A variable requested in an outvar statement was not listed in an invar
statement.

atog WARNING: missing ')' at:

The parentheses in the delimit subcommand were not closed.

atog WARNING: some records begin with cr/lf

ATOG

A
T
O
G

A packed ASCII file has some records that begin with a carriage
return/linefeed. The record length may be wrong.

atog - complex illegal for packed ASCII file.

A complex command was encountered following an invar command
with record specified.

atog - Cannot read packed ASCII. (complex specified)

An invar command with record specified was encountered following a
complex command.

28-18

GAUSS User Guide

A
T
O
G

29 Maximizing Performance

These hints will help you maximize the performance of your new GAUSS System.

29.1 Library System 29-1

29.2 Loops 29-2

29.3 Memory Usage 29-4

29.3.1 Hard Disk Maintenance 29-6

29.3.2 CPU Cache 29-6

29.1 Library System

Some temporary files are created during the autoloading process. If you have a tmp_
path configuration variable or a tmp environment string that defines a path on a RAM
disk, the temporary files will be placed on the RAM disk.

For example:

set tmp=f:\tmp

tmp_path takes precedence over the tmp environment variable.

29-1

M
axim

izing
P
erform

ance

A disk cache will also help, as well as having your frequently used files in the first path
in the src_path.

You can optimize your library .lcg files by putting the correct drive and path on each
file name listed in the library. The lib command will do this for you.

29.2 Loops

1. Use matrix built-in matrix operators rather than loops.

The use of the built-in matrix operators and functions rather than do loops will
ensure that you are utilizing the potential of GAUSS.

Here is an example:

Given the vector x with 8000 normal random numbers,

x = rndn(8000,1);

you could get a count of the elements with an absolute value greater than 1 with a
do loop, like this:

//Count starts at 0
c = 0;

//Loop counter
i = 1;
do while i <= rows(x);

//If absolute value of x[i] > 1, increment counter
if abs(x[i]) > 1;
c = c+1;
endif;

//Increment loop counter
i = i+1;

29-2

GAUSS User Guide

M
ax
im
iz
in
g
P
er
fo
rm
an
ce

29-3

endo;
print c;

Or, you could use:

c = sumc(abs(x) .> 1);
print c;

The do loop takes over 40 times longer.

2. When you must use loops, use for loops rather than do loops.

Both of the following loops are equivalent:

//'do' loop
i = 1;
do while i < 10;
i = i + 1;
endo;

//'for' loop;
for i(1, 10, 1);

endfor;

but the for loop is around 10 times faster and requires less typing!

3. Preallocate results vectors rather than using concatenation in a loop

Many algorithms create a vector or matrix of result for each iteration of the main
loop. For this purpose you can either use concatenation:

//Create an empty matrix
results = {};

Maximizing Performance

M
axim

izing
P
erform

ance

for i(1, 10, 1);
x = rndn(100, 1);

//Append the mean of this iteration's
//'x' to the final results vector
results = results | meanc(x);
endfor;

or you can preallocate a vector to the full size of the final results vector and use
indexing to place the results from each iteration.

iters = 10;

//Create a vector of zeros to hold all results
results = zeros(iters, 1);

for i(1, iters, 1);
x = rndn(100, 1);

//Place the mean from this iteration
//into the results vector
results[i] = meanc(x);
endfor;

The code snippets above are equivalent, but for large matrices the second will run
many times faster. This is because in the first code section, a new, just slightly
larger results vector much be created on each iteration of the loop. The second
code section, however, only needs to update the value of one element of the res-
ults vector in each iteration.

29.3 Memory Usage

Computers today can have large amounts of RAM. This doesn't mean that large data
sets should be read entirely into memory. Many GAUSS procedures and applications are
written to allow for data sets to be read in sections rather than all at once. Even if you

29-4

GAUSS User Guide

M
ax
im
iz
in
g
P
er
fo
rm
an
ce

29-5

have enough RAM to store the data set completely, you should consider taking advant-
age of this feature. The speed-ups using this feature can be significant. For example,
ols is called using a data set stored in a matrix versus stored on the disk in a GAUSS
data set. The computer is a 2.8 Megahertz computer with Windows XP.

y = rndn(250000,1);
x = rndn(250000,100);
xlbl = 0$+"X"+ftocv(seqa(1,1,100),1,0);
lbl = "Y" | xlbl;

call saved(y~x,"test",lbl);
__output = 0;

t0 = date;
call ols("",y,x);
t1 = date;

t2 = date;
call ols("test", "Y",xlbl);
t3 = date;

print ethsec(t2,t3)/100 " seconds";
print;
print ethsec(t0,t1)/100 " seconds";

25.750000 seconds
9.6720000 seconds

This represents more than a 50% speedup by leaving the data on the disk.

maxvec, maxbytes

maxvec is a GAUSS procedure that returns the value of the global variable __
maxvec that determines the amount of data to be read in at a time from a GAUSS data
set. This value can be modified for a particular run by setting __maxvec in your com-
mand file to some other value. The value returned by a call to maxvec can be per-
manently modified by editing system.dec and changing the value of __maxvec.
The value returned when running GAUSS Light is always 8192.

Maximizing Performance

M
axim

izing
P
erform

ance

maxbytes is a GAUSS procedure that returns the value of a scalar global __max-
bytes that sets the amount of available RAM. This value can be modified for a par-
ticular run by setting __maxbytes in your command file to some other value. The
value returned by a call to maxbytes can be permanently modified by editing sys-
tem.dec and changing the value of __maxbytes.

If you wish to force GAUSS procedures and applications to read a GAUSS data set in
its entirety, set __maxvec and __maxbytes to very large values.

29.3.1 Hard Disk Maintenance 29-6

29.3.2 CPU Cache 29-6

29.3.1 Hard Disk Maintenance

The hard disk used for the swap file should be optimized occasionally with a disk optim-
izer. Use a disk maintenance program to ensure that the disk media is in good shape.

29.3.2 CPU Cache

There is a line for cache size in the gauss.cfg file. Set it to the size of the CPU data
cache for your computer.

This affects the choice of algorithms used for matrix multiply functions.

This will not change the results you get, but it can radically affect performance for large
matrices.

29-6

GAUSS User Guide

M
ax
im
iz
in
g
P
er
fo
rm
an
ce

30 Singularity Tolerance

The tolerance used to determine whether or not a matrix is singular can be changed. The
default value is 1.0e-14 for both the LU and the Cholesky decompositions. The tolerance
for each decomposition can be changed separately. The following operators are affected
by a change in the tolerance:

Crout LU Decomposition

crout(x)
croutp(x)
inv(x)
det(x)
y/x when neither x nor y is scalar and x is square.

Cholesky Decomposition

chol(x)
invpd(x)
solpd(y, x)
y/x when neither x nor y is scalar and x is not square.

30-1

S
ingularity

T
olerance

30.1 Reading and Setting the Tolerance 30-2

30.2 Determining Singularity 30-2

30.1 Reading and Setting the Tolerance

The tolerance value may be read or set using the sysstate function, cases 13 and 14.

30.2 Determining Singularity

There is no perfect tolerance for determining singularity. The default is 1.0e-14. You
can adjust this as necessary.

A numerically better method of determining singularity is to use cond to determine the
condition number of the matrix. If the equation

1 / cond(x) + 1 eq 1

is true, then the matrix is usually considered singular to machine precision. (See
LAPACK for a detailed discussion on the relationship between the matrix condition and
the number of significant figures of accuracy to be expected in the result.)

30-2

GAUSS User Guide

S
in
gu
la
rit
y
T
ol
er
an
ce

31 Publication Quality Graphics
GAUSS Publication Quality Graphics (PQG) is a set of routines built on the graphics
functions in GraphiC by Scientific Endeavors Corporation. These routines are deprec-
ated but included for backward compatibility.

The main graphics routines include xy, xyz, surface, polar and log plots, as well as his-
tograms, bar, and box graphs. Users can enhance their graphs by adding legends, chan-
ging fonts, and adding extra lines, arrows, symbols and messages.

The user can create a single full size graph, inset a smaller graph into a larger one, tile a
window with several equally sized graphs or place several overlapping graphs in the win-
dow. Graphic panel size and location are all completely under the user's control.

31.1 General Design 31-2

31.2 Using Publication Quality Graphics 31-3

31.2.1 Getting Started 31-3

31.2.2 Graphics Coordinate System 31-6

31.3 Graphic Panels 31-7

31.3.1 Tiled Graphic Panels 31-8

31.3.2 Overlapping Graphic Panels 31-8

31.3.3 Nontransparent Graphic Panels 31-9

31.3.4 Transparent Graphic Panels 31-9

31.3.5 Using Graphic Panel Functions 31-9

31.3.6 Inch Units in Graphic Panels 31-10

31-1

P
ublication

Q
uality

G
raphics

31.3.7 Saving Graphic Panel Configurations 31-11

31.4 Graphics Text Elements 31-11

31.4.1 Selecting Fonts 31-12

31.4.2 Greek and Mathematical Symbols 31-13

31.5 Colors 31-14

31.6 Global Control Variables 31-15

31.1 General Design

GAUSS PQG consists of a set of main graphing procedures and several additional pro-
cedures and global variables for customizing the output.

All of the actual output to the window happens during the call to these main routines:

bar Bar graphs.
box Box plots.
contour Contour plots.
draw Draw graphs using only global variables.
hist Histogram.
histp Percentage histogram.
histf Histogram from a vector of frequencies.
loglog Log scaling on both axes.
logx Log scaling on X axis.
logy Log scaling on Y axis.
polar Polar plots.
surface 3-D surface with hidden line removal.
xy Cartesian graph.
xyz 3-D Cartesian graph.

31-2

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-3

31.2 Using Publication Quality Graphics

31.2.1 Getting Started 31-3

31.2.2 Graphics Coordinate System 31-6

31.2.1 Getting Started

There are four basic parts to a graphics program. These elements should be in any pro-
gram that uses graphics routines. The four parts are the header, data setup, graphics
format setup, and graphics call.

Header

In order to use the graphics procedures, the pgraph library must be activated. This is
done in the library statement at the top of your program or command file. The next
line in your program will typically be a command to reset the graphics global variables
to their default state. For example:

library mylib, pgraph;
graphset;

Data Setup

The data to be graphed must be in matrices. For example:

x = seqa(1,1,50);
y = sin(x);

Graphics Format Setup

Most of the graphics elements contain defaults that allow the user to generate a plot
without modification. These defaults, however, may be overridden by the user through
the use of global variables and graphics procedures. Some of the elements that may be
configured by the user are axes numbering, labeling, cropping, scaling, line and symbol
sizes and types, legends, and colors.

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

Calling Graphics Routines

The graphics routines take as input the user data and global variables that have pre-
viously been set. It is in these routines where the graphics file is created and displayed.

Following are three PQG examples. The first two programs are different versions of the
same graph. The variables that begin with _p are the global control variables used by
the graphics routines. (For a detailed description of these variables, see Global Control
Variables, Section 31.6 .)

Example 1 The routine being called here is a simple XY plot. The entire window will
be used. Four sets of data will be plotted with the line and symbol attributes auto-
matically selected. This graph will include a legend, title, and a time/date stamp (time
stamp is on by default):

library pgraph; /* activate PGRAPH library */
graphset; /* reset global variables */
x = seqa(.1,.1,100); /* generate data */
y = sin(x);
y = y ~ y*.8 ~ y*.6 ~ y*.4; /* 4 curves plotted against x
*/
_plegctl = 1; /* legend on */
title("Example xy Graph"); /* Main title */
xy(x,y); /* Call to main routine */

Example 2 Here is the same graph with more of the graphics format controlled by the
user. The first two data sets will be plotted using symbols at data points only (observed
data); the data points in the second two sets will be connected with lines (predicted res-
ults):

library pgraph; /* activate PGRAPH library
*/
graphset; /* reset global variables
*/
x = seqa(.1,.1,100); /* generate data */
y = sin(x);
y = y ~ y*.8 ~ y*.6 ~ y*.4; /* 4 curves plotted

31-4

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-5

against x */
_pdate = ""; /* date is not printed */
_plctrl = { 1, 1, 0, 0 }; /* 2 curves w/symbols, 2
without */
_pltype = { 1, 2, 6, 6 }; /* dashed, dotted, solid
lines */
_pstype = { 1, 2, 0, 0 }; /* symbol types circles,
squares */
_plegctl= { 2, 3, 1.7, 4.5 }; /* legend size and loc-
ations */
_plegstr= "Sin wave 1.\0"\ /* 4 lines legend text */
"Sin wave .8\0"\
"Sin wave .6\0"\
"Sin wave .4";

ylabel("Amplitude"); /* Y axis label */
xlabel("X Axis"); /* X axis label */
title("Example xy Graph"); /* main title */
xy(x,y); /* call to main routine */

Example 3 In this example, two graphics panels are drawn. The first is a full-sized sur-
face representation, and the second is a half-sized inset containing a contour of the same
data located in the lower left corner of the window:

library pgraph; /* activate pgraph library
*/
/* Generate data for surface and contour plots */
x = seqa(-10,0.1,71)'; /* note x is a row vector
*/
y = seqa(-10,0.1,71); /* note y is a column vec-
tor */
z = cos(5*sin(x) - y); /* z is a 71x71 matrix */
begwind; /* initialize graphics win-
dows */
makewind(9,6.855,0,0,0); /* first window full size
*/
makewind(9/2,6.855/2,1,1,0); /* second window inset to

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

first */
setwind(1); /* activate first window
*/
graphset; /* reset global variables
*/
_pzclr = { 1, 2, 3, 4 }; /* set Z level colors */
title("cos(5*sin(x) - y)"); /* set main title */
xlabel("X Axis"); /* set X axis label */
ylabel("Y Axis"); /* set Y axis label */
scale3d(miss(0,0),miss(0,0),-5|5); /* scale Z axis */
surface(x,y,z); /* call surface routine */
nextwind; /* activate second window.
*/
graphset; /* reset global variables
*/
_pzclr = { 1, 2, 3, 4 }; /* set Z level colors */
_pbox = 15; /* white border */
contour(x,y,z); /* call contour routine */
endwind; /* Display windows */

While the structure has changed somewhat, the four basic elements of the graphics pro-
gram are all here. The additional routines begwind, endwind, makewind, nex-
twind, and setwind are all used to control the graphic panels.

As Example 3 illustrates, the code between graphic panel functions (that is, setwind
or nextwind) may include assignments to global variables, a call to graphset, or
may set up new data to be passed to the main graphics routines.

You are encouraged to run the example programs supplied with GAUSS. Analyzing
these programs is perhaps the best way to learn how to use the PQG system. The
example programs are located on the examples subdirectory.

31.2.2 Graphics Coordinate System

PQG uses a 4190x3120 pixel resolution grid on a 9.0x6.855-inch printable area. There
are three units of measure supported with most of the graphics global elements:

31-6

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-7

Inch Coordinates

Inch coordinates are based on the dimensions of the full-size 9.0x6.855-inch output page.
The origin is (0,0) at the lower left corner of the page. If the picture is rotated, the origin
is at the upper left. (For more information, see Inch Units in Graphic Panels, Section
31.3.6 .)

Plot Coordinates

Plot coordinates refer to the coordinate system of the graph in the units of the user's X,
Y and Z axes.

Pixel Coordinates

Pixel coordinates refer to the 4096x3120 pixel coordinates of the full-size output page.
The origin is (0,0) at the lower left corner of the page. If the picture is rotated, the origin
is at the upper left.

31.3 Graphic Panels

Multiple graphic panels for graphics are supported. These graphic panels allow the user
to display multiple graphs on one window or page.

A graphic panel is any rectangular subsection of the window or page. Graphc panels
may be any size and position on the window and may be tiled or overlapping, transparent
or nontransparent.

31.3.1 Tiled Graphic Panels 31-8

31.3.2 Overlapping Graphic Panels 31-8

31.3.3 Nontransparent Graphic Panels 31-9

31.3.4 Transparent Graphic Panels 31-9

31.3.5 Using Graphic Panel Functions 31-9

31.3.6 Inch Units in Graphic Panels 31-10

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

31.3.7 Saving Graphic Panel Configurations 31-11

31.3.1 Tiled Graphic Panels

Tiled graphic panels do not overlap. The window can easily be divided into any number
of tiled graphic panels with the window command. window takes three parameters:
number of rows, number of columns, and graphic panel attribute (1=transparent, 0=no-
ontransparent).

This example will divide the window into six equally sized graphic panels. There will be
two rows of three graphic panels-three graphic panels in the upper half of the window
and three in the lower half. The attribute value of 0 is arbitrary since there are no other
graphic panels beneath them.

window(nrows,ncols,attr);
window(2,3,0);

31.3.2 Overlapping Graphic Panels

Overlapping graphic panels are laid on top of one another as they are created, much as if
you were using the cut and paste method to place several graphs together on one page.
An overlapping graphic panel is created with the makewind command.

In this example, makewind will create an overlapping graphic panel that is 4 inches
wide by 2.5 inches tall, positioned 1 inch from the left edge of the page and 1.5 inches
from the bottom of the page. It will be nontransparent:

makewind(hsize,vsize,hpos,vpos,attr);
window(2,3,0);
makewind(4,2.5,1,1.5,0);

31-8

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-9

31.3.3 Nontransparent Graphic Panels

A nontransparent graphic panel is one that is blanked before graphics information is writ-
ten to it. Therefore, information in any previously drawn graphic panels that lie under it
will not be visible.

31.3.4 Transparent Graphic Panels

A transparent graphic panel is one that is not blanked, allowing the graphic panel
beneath it to "show through". Lines, symbols, arrows, error bars, and other graphics
objects may extend from one graphic panel to the next by using transparent graphic pan-
els. First, create the desired graphic panel configuration. Then create a full-window,
transparent graphic panel using the makewind or window command. Set the appro-
priate global variables to position the desired object on the transparent graphic panel.
Use the draw procedure to draw it. This graphic panel will act as a transparent "over-
lay" on top of the other graphic panels. Transparent graphic panels can be used to add
text or to superimpose one graphic panel on top of another.

31.3.5 Using Graphic Panel Functions

The following is a summary of the graphic panel functions:

begwind Graphic panel initialization procedure.
endwind End graphic panel manipulations, display graphs.
window Partition window into tiled graphic panels.
makewind Create graphic panel with specified size and

position.
setwind Set to specified graphic panel number.
nextwind Set to next available graphic panel number.
getwind Get current graphic panel number.
savewind Save graphic panel configuration to a file.
loadwind Load graphic panel configuration from a file.

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

This example creates four tiled graphic panels and one graphic panel that overlaps the
other four:

library pgraph;
graphset;
begwind;
window(2,2,0); /* Create four tiled graphic

panels (2 rows, 2 columns) */
xsize = 9/2; /* Create graphic panel that

overlaps the tiled graphic
panels */

ysize = 6.855/2;
makewind(xsize,ysize,xsize/2,ysize/2,0);
x = seqa(1,1,1000); /* Create X data */
y =(sin(x) + 1) * 10.; /* Create Y data */
setwind(1); /* Graph 1, upper left corner */
xy(x,y);
nextwind; /* Graph 2, upper rt. corner */
logx(x,y);
nextwind; /* Graph 3, lower left corner */
logy(x,y);
nextwind; /* Graph 4, lower rt. corner */
loglog(x,y);
nextwind; /* Graph 5, center, overlayed */
bar(x,y);
endwind; /* End graphic panel processing,

display graph */

31.3.6 Inch Units in Graphic Panels

Some global variables allow coordinates to be input in inches. If a coordinate value is in
inches and is being used in a graphic panel, that value will be scaled to "graphic panel
inches" and positioned relative to the lower left corner of the graphic panel. A "graphic
panel inch" is a true inch in size only if the graphic panel is scaled to the full window,

31-10

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-11

otherwise X coordinates will be scaled relative to the horizontal graphic panel size and
Y coordinates will be scaled relative to the vertical graphic panel size.

31.3.7 Saving Graphic Panel Configurations

The functions savewind and loadwind allow the user to save graphic panel con-
figurations. Once graphic panels are created (using makewind and window),
savewind may be called. This will save to disk the global variables containing inform-
ation about the current graphic panel configuration. To load this configuration again, call
loadwind. (See loadwind in the GAUSS LANGUAGEREFERENCE.

31.4 Graphics Text Elements

Graphics text elements, such as titles, messages, axes labels, axes numbering, and
legends, can be modified and enhanced by changing fonts and by adding superscripting,
subscripting, and special mathematical symbols.

To make these modifications and enhancements, the user can embed "escape codes" in
the text strings that are passed to title, xlabel, ylabel and asclabel or
assigned to _pmsgstr and _plegstr.

The escape codes used for graphics text are:

exttt\ 000 String termination character (null byte).
[Enter superscript mode, leave subscript mode.
] Enter subscript mode, leave superscript mode.
@ Interpret next character as literal.
exttt\ 20 n Select font number n. (see SELECTING FONTS,

following).

The escape code \L (or \l) can be embedded into title strings to create a multiple line
title:

title("This is the first line\lthis is the second line");

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

A null byte \000 is used to separate strings in _plegstr and _pmsgstr:

_pmsgstr = "First string\000Second string\000Third string";

or

_plegstr = "Curve 1\000Curve 2";

Use [..] to create the expression :

_pmsgstr = "M(t) = E(e[tx])";

Use @ to generate [and] in an X axis label:

xlabel("Data used for x is: data@[.,1 2 3@]");

31.4.1 Selecting Fonts 31-12

31.4.2 Greek and Mathematical Symbols 31-13

31.4.1 Selecting Fonts

Four fonts are supplied with the Publication Quality Graphics system. They are Sim-
plex, Complex, Simgrma, and Microb. (For a list of the characters available in each
font, see PQG FONTS, CHAPTER 32 .)

Fonts are loaded by passing to the fonts procedure a string containing the names of all
fonts to be loaded. For example, this statement will load all four fonts:

fonts("simplex complex microb simgrma");

The fonts command must be called before any of the fonts can be used in text strings.
A font can then be selected by embedding an escape code of the form "\20 n" in the
string that is to be written in the new font. The n will be 1, 2, 3 or 4, depending on the

31-12

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-13

order in which the fonts were loaded in fonts. If the fonts were loaded as in the pre-
vious example, the escape characters for each would be:

\201 Simplex
\202 Complex
\203 Microb
\204 Simgrma

The following example demonstrates how to select a font for use in a string:

title("\201This is the title using Simplex font");
xlabel("\202This is the label for X using Complex font");
ylabel("\203This is the label for Y using Microb font");

Once a font is selected, all succeeding text will use that font until another font is selec-
ted. If no fonts are selected by the user, a default font (Simplex) is loaded and selected
automatically for all text work.

31.4.2 Greek and Mathematical Symbols

The following examples illustrate the use of the Simgrma font; they assume that Sim-
grma was the fourth font loaded. (For the available Simgrma characters and their num-
bers, see PQG FONTS, CHAPTER 32 .) The Simgrma characters are specified by either:

1. The character number, preceeded by a "\".

2. The regular text character with the same number.

For example, to get an integral sign " " in Simgrma, embed either a "\044" or a "," in
a string that has been set to use the Simgrma font.

To produce the title , the following title string should be used:

title("\201f(x) = sin[2](\204p\201x)");

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

The "p" (character 112) corresponds to " " in Simgrma.

To number the major X axis tick marks with multiples of , the following could be
passed to asclabel:

lab = "\2010 \204p\201/4 \204p\201/2 3\204p\201/4 \204p";
asclabel(lab,0);
xtics(0,pi,pi/4,1);

xtics is used to make sure that major tick marks are placed in the appropriate places.

This example will number the X axis tick marks with the labels , , 1, , and
:

lab = "\204m\201[-2] \204m\201[-1] 1 \204m m\201[2]";
asclabel(lab,0);

This example illustrates the use of several of the special Simgrma symbols:

_pmsgstr = "\2041\2011/2\204p ,\201e[-\204m
[\2012]\201/2]d\204m";

This produces:

31.5 Colors

0 Black 8 Dark Grey
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red

31-14

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-15

5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 Grey 15 White

31.6 Global Control Variables

The following global variables are used to control various graphics elements. Default val-
ues are provided. Any or all of these variables can be set before calling one of the main
graphing routines. The default values can be modified by changing the declarations in
pgraph.dec and the statements in the procedure graphset in pgraph.src.
graphset can be called whenever the user wants to reset these variables to their
default values.

_
pag
esh
f

2x1 vector, the graph will be shifted to the right and up if this is not
0. If this is 0, the graph will be centered on the output page. Default
is 0.

Note: Used internally. (For the same functionality, see makewind
in the GAUSS LANGUAGE REFERENCE.) This is used by the
graphic panel routines. The user must not set this when using the
graphic panel procedures.

_
pag
esi
z

2x1 vector, size of the graph in inches on the printer output.
Maximum size is 9.0x6.855 inches (unrotated) or 6.855x9.0 inches
(rotated). If this is 0, the maximum size will be used. Default is 0.

Note: Used internally. (For the same functionality, see makewind
in the GAUSS LANGUAGE REFERENCE). This is used by the
graphic panel routines. The user must not set this when using the
graphic panel procedures.

_
par

Mx11 matrix, draws one arrow per row of the input matrix (for
total of M arrows). If scalar zero, no arrows will be drawn.

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

row

[M,1] x starting point.
[M,2] y starting point.
[M,3] x ending point.
[M,4] y ending point.
[M,5] ratio of the length of the arrow head to half its width.
[M,6] size of arrow head in inches.
[M,7] type and location of arrow heads. This integer

number will be interpreted as a decimal expansion
mn, for example: if 10, then m = 1, n= 0.
m, type of arrow head:
0 solid
1 empty
2 open
3 closed
n, location of arrow head:

0 none
1 at the final end
2 at both ends

[M,8] color of arrow, see COLORS, CHAPTER 31.5 .
[M,9] coordinate units for location:

1 x,y starting and ending locations in
plot coordinates

2 x,y starting and ending locations in
inches

3 x,y starting and ending locations in
pixels

[M,1 line type:

31-16

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-17

0]

1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

[M,1
1]

controls thickness of lines used to draw arrow. This
value may be zero or greater. A value of zero is
normal line width.

To create two single-headed arrows, located using inches, use

_parrow = { 1 1 2 2 3 0.2 11 10 2 6 0,
3 4 2 2 3 0.2 11 10 2 6 0 };

_
par
row
3

Mx12 matrix, draws one 3-D arrow per row of the input matrix (for
a total of M arrows). If scalar zero, no arrows will be drawn.

[M,1] x starting point in 3-D plot coordinates.
[M,2] y starting point in 3-D plot coordinates.
[M,3] z starting point in 3-D plot coordinates.
[M,4] x ending point in 3-D plot coordinates.
[M,5] y ending point in 3-D plot coordinates.
[M,6] z ending point in 3-D plot coordinates.
[M,7] ratio of the length of the arrow head to half its width.

[M,8] size of arrow head in inches.
[M,9] type and location of arrow heads. This integer

number will be interpreted as a decimal expansion

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

mn. For example: if 10, then m = 1, n = 0.
m, type of arrow head:
0 solid
1 empty
2 open
3 closed
n, location of arrow head:
0 none
1 at the final end
2 at both ends

[M,1
0]

color of arrow, see COLORS, CHAPTER 31.5 .

[M,1
1]

line type:

1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

[M,1
2]

controls thickness of lines used to draw arrow. This
value may be zero or greater. A value of zero is
normal line width.

To create two single-headed arrows, located using plot coordinates,
use

_parrow3 = { 1 1 1 2 2 2 3 0.2 11 10 6 0,
3 4 5 2 2 2 3 0.2 11 10 6 0 };

_ scalar, 2x1, or 3x1 vector for independent control for each axis.

31-18

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-19

pax
es

The first element controls the X axis, the second controls the Y
axis, and the third (if set) controls the Z axis. If 0 the axis will not
be drawn. Default is 1.

If this is a scalar, it will be expanded to that value.

For example:

/* turn X axis on, Y axis off */
_paxes = { 1, 0 };
/* turn all axes off */
_paxes = 0;
/* turn all axes on */
_paxes = 1;

_
pax
ht

scalar, size of axes labels in inches. If 0, a default size will be
computed. Default is 0.

_
pba
rty
p

1x2 or Kx2 matrix. Controls bar shading and colors in bar graphs
and histograms.

The first column controls the bar shading:

0 no shading
1 dots
2 vertical cross-hatch
3 diagonal lines with positive slope
4 diagonal lines with negative slope
5 diagonal cross-hatch
6 solid
The second column controls the bar color, see COLORS, CHAPTER
31.5 .

_
pba

scalar, width of bars in bar graphs and histograms. The valid range
is 0-1. If 0, the bars will be a single pixel wide. If 1, the bars will

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

rwi
d

touch each other. Default is 0.5, so the bars take up about half the
space open to them.

_
pbo
x

scalar, draws a box (border) around the entire graph. Set to desired
color of box to be drawn. Use 0 if no box is desired. Default is 0.

_
pbo
xct
l

5x1 vector, controls box plot style, width, and color. Used by
procedure box only.

[1] box width between 0 and 1. If 0, the box plot is
drawn as two vertical lines representing the quartile
ranges with a filled circle representing the 50th
percentile.

[2] box color, COLORS, CHAPTER 31.5 . If 0, the colors
may be individually controlled using global variable
_pcolor.

[3] min/max style for the box symbol. One of the
following:
1 minimum and maximum taken from

the actual limits of the data. Elements
4 and 5 are ignored.

2 statistical standard with the minimum
and maximum calculated according to
interquartile range as follows:
intqrange = 75th - 25th
min = 25th - 1.5 intqrange
max = 75th + 1.5 intqrange

Elements 4 and 5 are ignored.
3 minimum and maximum percentiles

taken from elements 4 and 5.

31-20

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-21

[4] minimum percentile value (0-100) if _pboxctl
[3] = 3.

[5] maximum percentile value (0-100) if _pboxctl
[3] = 3.

_
pbo
xli
m

5xM output matrix containing computed percentile results from
procedure box. M corresponds to each column of input y data.

[1,M] minimum whisker limit according to _pboxctl
[3].

[2,M] 25th percentile (bottom of box).
[3,M] 50th percentile (median).
[4,M] 75th percentile (top of box).
[5,M] maximum whisker limit according to _pboxctl

[3].
_
pco
lor

scalar or Kx1 vector, colors for main curves in xy, xyz and log
graphs. To use a single color set for all curves set this to a scalar
color value. If 0, use default colors. Default is 0.
The default colors come from a global vector called _pcsel. This
vector can be changed by editing pgraph.dec to change the
default colors, see COLORS, CHAPTER 31.5 (_pcsel is not
documented elsewhere).

_
pcr
op

scalar or 1x5 vector, allows plot cropping for different graphic
elements to be individually controlled. Valid values are 0 (disabled)
or 1 (enabled). If cropping is enabled, any graphical data sent
outside the axes area will not be drawn. If this is a scalar, it is
expanded to a 1x5 vector using the given value for all elements. All
cropping is enabled by default.
[1] crop main curves/symbols.
[2] crop lines generated using _pline.

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

[3] crop arrows generated using _parrow.
[4] crop circles/arcs generated using _pline.
[5] crop symbols generated using _psym.
This example will crop main curves, and lines and circles drawn by
_pline.

_pcrop = { 1 1 0 1 0 };

_
pcr
oss

scalar. If 1, the axes will intersect at the (0,0) X-Y location if it is
visible. Default is 0, meaning the axes will be at the lowest end of
the X-Y coordinates.

_
pda
te

date string. If this contains characters, the date will be appended
and printed.

The default is set as follows (the first character is a font selection
escape code):

_pdate = "\201GAUSS ";

If this is set to a null string, no date will be printed. (For more
information on using fonts within strings, see Graphics Text
Elements, Section 31.4 .

_
per
rba
r

Mx9 matrix, draws one error bar per row of the input matrix. If
scalar 0, no error bars will be drawn. Location values are in plot
coordinates.

[M,1] x location.
[M,2] left end of error bar.
[M,3] right end of error bar.
[M,4] y location.
[M,5] bottom of error bar.
[M,6] top of error bar.

31-22

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-23

[M,7] line type:
1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

[M,8] color, see COLORS, CHAPTER 31.5 .
[M,9] line thickness. This value may be 0 or greater. A

value of 0 is normal line width.
To create one error bar using solid lines, use

_perrbar = { 1 0 2 2 1 3 6 2 0 };

_
pfr
ame

2x1 vector, controls frame around axes area. On 3-D plots this is a
cube surrounding the 3-D workspace.

[1]

1 frame on
0 frame off

[2]

1 tick marks on frame
0 no tick marks

The default is a frame with tick marks.
_
pgr
id

2x1 vector to control grid.

[1] grid through tick marks:
0 no grid
1 dotted grid

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

2 fine dotted grid
3 solid grid

[2] grid subdivisions between major tick marks:
0 no subdivisions
1 dotted lines at subdivisions
2 tick marks only at subdivisions

The default is no grid and tick marks at subdivisions.
_
plc
trl

scalar or Kx1 vector to control whether lines and/or symbols will
be displayed for the main curves. This also controls the frequency
of symbols on main curves. The number of rows (K) is equal to the
number of individual curves to be plotted in the graph. Default is 0.

0 draw line only.
>0 draw line and symbols every _plctrl points.
<0 draw symbols only every _plctrl points.
-1 all of the data points will be plotted with no

connecting lines.
This example draws a line for the first curve, draws a line and plots
a symbol every 10 data points for the second curve, and plots
symbols only every 5 data points for the third curve:

_plctrl = { 0, 10, -5 };

_
ple
gct
l

scalar or 1x4 vector, legend control variable.

If scalar 0, no legend is drawn (default). If nonzero scalar, create
legend in the default location in the lower right of the page.

If 1x4 vector, set as follows:
[1] legend position coordinate units:

1 coordinates are in plot coordinates
2 coordinates are in inches

31-24

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-25

3 coordinates are in pixel
[2] legend text font size, where 1 <= size <= 9. Default

is 5.
[3] x coordinate of lower left corner of legend box.
[4] y coordinate of lower left corner of legend box.
This example puts a legend in the lower right corner:

_plegctl = 1;

This example creates a smaller legend and positions it 2.5 inches
from the left and 1 inch from the bottom.

_plegctl = { 2 3 2.5 1 };

_
ple
gst
r

string, legend entry text. Text for multiple curves is separated by a
null byte (''\000'').

For example:

_plegstr = "Curve 1\000Curve 2\000Curve 3";

_
ple
v

Mx1 vector, user-defined contour levels for contour. Default is
0. (See contour in the GAUSS LANGUAGE REFERENCE.)

_
pli
ne

Mx9 matrix, to draw lines, circles, or radii. Each row controls one
item to be drawn. If this is a scalar zero, nothing will be drawn.
Default is 0.
[M,1] item type and coordinate system:

1 line in plot coordinates
2 line in inch coordinates
3 line in pixel coordinates
4 circle in plot coordinates
5 circle in inch coordinates

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

6 radius in plot coordinates
7 radius in inch coordinates

[M,2] line type:
1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

[M,3-
7]

coordinates and dimensions:

if item type is line (1<=_pline[M,1]<=3):
[M,3] x starting point.
[M,4] y starting point.
[M,5] x ending point.
[M,6] y ending point.
[M,7] 0 if this is a continuation of a curve, 1

if this begins a new curve.
if item type is circle (_pline[M,1] = 4 or _
pline[M,1] = 5):
[M,3] x center of circle.
[M,4] y center of circle.
[M,5] radius.
[M,6] starting point of arc in radians.
[M,7] ending point of arc in radians.

if item type is radius (_pline[M,1] = 6 or _pline[M,1] =
7):

[M,3] x center of circle.

31-26

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-27

[M,4] y center of circle.
[M,5] beginning point of radius, 0 is the

center of the circle.
[M,6] ending point of radius.
[M,7] angle in radians.
[M,8] color, see COLORS, CHAPTER 31.5 .
[M,9] controls line thickness. This value

may be zero or greater. A value of
zero is normal line width.

_
pli
ne3
d

Mx9 matrix. Allows extra lines to be added to an xyz or
surface graph in 3-D plot coordinates.

[M,1] x starting point.
[M,2] y starting point.
[M,3] z starting point.
[M,4] x ending point.
[M,5] y ending point.
[M,6] z ending point.
[M,7] color.
[M,8] line type:

1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid

[M,9] line thickness, 0 = normal width.

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

[M,1
0]

hidden line flag, 1 = obscured by surface, 0 = not
obscured.

_
plo
tsh
f

2x1 vector, distance of plot from lower left corner of output page in
inches.

[1] x distance.
[2] y distance.
If scalar 0, there will be no shift. Default is 0.

Note: Used internally. (For the same functionality, see axmargin in
the GAUSS LANGUAGEREFERENCE.) This is used by the graphic
panel routines. The user must not set this when using the graphic panel
procedures.

_
plo
tsi
z

2x1 vector, size of the axes area in inches. If scalar 0, the maximum
size will be used.

Note: Used internally. (For the same functionality, see axmargin in
the GAUSS LANGUAGEREFERENCE.) This is used by the graphic
panel routines. The user must not set this when using the graphic panel
procedures.

_
plt
ype

scalar or Kx1 vector, line type for the main curves. If this is a
nonzero scalar, all lines will be this type. If scalar 0, line types will
be default styles. Default is 0.
1 dashed
2 dotted
3 short dashes
4 closely spaced dots
5 dots and dashes
6 solid
The default line types come from a global vector called _plsel.

31-28

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-29

This vector can be changed by editing pgraph.dec to change
the default line types (_plsel is not documented elsewhere.)

_
plw
idt
h

scalar or Kx1 vector, line thickness for main curves. This value
may be zero or greater. A value of zero is normal (single pixel) line
width. Default is 0.

_
pmc
olo
r

9x1 vector, color values to use for plot, see COLORS, CHAPTER
31.5 .

[1] axes.
[2] axes numbers.
[3] X axis label.
[4] Y axis label.
[5] Z axis label.
[6] title.
[7] box.
[8] date.
[9] background.
If this is scalar, it will be expanded to a 9x1 vector.

_
pms
gct
l

Lx7 matrix of control information for printing the strings contained
in _pmsgstr.

[L,1] horizontal location of lower left corner of string.
[L,2] vertical location of lower left corner of string.
[L,3] character height in inches.
[L,4] angle in degrees to print string. This may be -180 to

180 relative to the positive X axis.

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

[L,5] location coordinate system.
1 location of string in plot coordinates
2 location of string in inches

[L,6] color.
[L,7] font thickness, may be 0 or greater. If 0 use normal

line width.
_
pms
gst
r

string, contains a set of messages to be printed on the plot. Each
message is separated from the next by a null byte (\000). The
number of messages must correspond to the number of rows in the
_pmsgctl control matrix. This can be created as follows:

_pmsgstr = "Message one.\000Message two.";

_
pno
tif
y

scalar, controls window output during the creation of the graph.
Default is 1.

0 no activity to the window while writing .tkf file.
1 display progress as fonts are loaded, and .tkf file

is being generated.
_
pnu
m

scalar, 2x1 or 3x1 vector for independent control for axes
numbering. The first element controls the X axis numbers, the
second controls the Y axis numbers, and the third (if set) controls
the Z axis numbers. Default is 1.

If this value is scalar, it will be expanded to a vector.
0 no axes numbers displayed
1 axes numbers displayed, vertically oriented on axis
2 axes numbers displayed, horizontally oriented on

axis
For example:

31-30

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-31

_pnum = { 0, 2 }; /* no X axis numbers, *//*
horizontal on Y axis */

_
pnu
mht

scalar, size of axes numbers in inches. If 0, a size of .13 will be
used. Default is 0.

_
pro
tat
e

scalar. If 0, no rotation, if 1, plot will be rotated 90 degrees. Default
is 0.

_
psc
ree
n

scalar. If 1, display graph in window, if 0, do not display graph in
window. Default is 1.

_
psi
len
t

scalar. If 0, a beep will sound when the graph is finished drawing
to the window. Default is 1 (no beep).

_
pst
ype

scalar or Kx1 vector, controls symbol used at data points. To use a
single symbol type for all points, set this to one of the following
scalar values:
1 circle
2 square
3 triangle
4 plus
5 diamond
6 inverted triangle
7 star
8 solid circle

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

9 solid square
10 solid triangle
11 solid plus
12 solid diamond
13 solid inverted triangle
14 solid star

If this is a vector, each line will have a different symbol. Symbols
will repeat if there are more lines than symbol types. Default is 0
(no symbols are shown).

_
psu
rf

2x1 vector, controls 3-D surface characteristics.

[1] if 1, show hidden lines. Default is 0.
[2] color for base, see COLORS, CHAPTER 31.5 . The

base is an outline of the X-Y plane with a line
connecting each corner to the surface. If 0, no base
is drawn. Default is 7.

_
psy
m

Mx7 matrix, M extra symbols will be plotted.

[M,1] x location.
[M,2] y location.
[M,3] symbol type, see _pstype earlier.
[M,4] symbol height. If this is 0, a default height of 5.0 will

be used.
[M,5] symbol color, see COLORS, CHAPTER 31.5 .

31-32

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-33

[M,6] type of coordinates:
1 plot coordinates
2 inch coordinates

[M,7] line thickness. A value of zero is normal line width.
_
psy
m3d

Mx7 matrix for plotting extra symbols on a 3-D (surface or
xyz) graph.

[M,1] x location in plot coordinates.
[M,2] y location in plot coordinates.
[M,3] z location in plot coordinates.
[M,4] symbol type, see _pstype earlier.
[M,5] symbol height. If this is 0, a default height of 5.0 will

be used.
[M,6] symbol color, see COLORS, CHAPTER 31.5 .
[M,7] line thickness. A value of 0 is normal line width.
Use _psym for plotting extra symbols in inch coordinates.

_
psy
msi
z

scalar or Kx1 vector, symbol size for the symbols on the main
curves. This is NOT related to _psym. If 0, a default size of 5.0 is
used.

_
pte
k

string, name of Tektronix format graphics file. This must have a
.tkf extension. If this is set to a null string, the graphics file will
be suppressed. The default is graphic.tkf.

_
pti
cou
t

scalar. If 1, tick marks point outward on graphs. Default is 0.

_
pti

scalar, the height of the title characters in inches. If this is 0, a
default height of approx. 0.13 inch will be used.

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

tlh
t

_
pve
rsn
o

string, the graphics version number.

_
pxp
max

scalar, the maximum number of places to the right of the decimal
point for the X axis numbers. Default is 12.

_
pxs
ci

scalar, the threshold in digits above which the data for the X axis
will be scaled and a power of 10 scaling factor displayed. Default
is 4.

_
pyp
max

scalar, the maximum number of places to the right of the decimal
point for the Y axis numbers. Default is 12.

_
pys
ci

scalar, the threshold in digits above which the data for the Y axis
will be scaled and a power of 10 scaling factor displayed. Default
is 4.

_
pzc
lr

scalar, row vector, or Kx2 matrix, Z level color control for
procedures surface and contour. (See surface in the
GAUSS LANGUAGE REFERENCE.)

_
pzo
om

1x3 row vector, magnifies the graphics display for zooming in on
detailed areas of the graph. If scalar 0, no magnification is
performed. Default is 0.
[1] magnification value. 1 is normal size.
[2] horizontal center of zoomed plot (0-100).
[3] vertical center of zoomed plot (0-100).
To see the upper left quarter of the screen magnified 2 times use:

_pzoom = { 2 25 75 };

31-34

GAUSS User Guide

P
ub
lic
at
io
n
Q
ua
lit
y

G
ra
ph
ic
s

31-35

_
pzp
max

scalar, the maximum number of places to the right of the decimal
point for the Z axis numbers. Default is 3.

_
pzs
ci

scalar, the threshold in digits above which the data for the Z axis
will be scaled and a power of 10 scaling factor displayed. Default
is 4.

Publication Quality
Graphics

P
ublication

Q
uality

G
raphics

32 PQG Fonts

There are four fonts available in the Publication Quality Graphics System:

Simplex standard sans serif font
Simgrma Simplex greek, math
Microb bold and boxy
complex standard font with serif

The following tables show the characters available in each font and their ASCII values.
(For details on selecting fonts for your graph, see Selecting Fonts, Section 31.4.1 .)

32.1 Simplex 32-1

32.2 Simgrma 32-2

32.3 Microb 32-3

32.4 Complex 32-4

32.1 Simplex

32-1

P
Q
G
F
onts

32.2 Simgrma

32-2

GAUSS User Guide

P
Q
G
F
on
ts

32-3

32.3 Microb

PQG Fonts

P
Q
G
F
onts

32.4 Complex

32-4

GAUSS User Guide

P
Q
G
F
on
ts

32-5

PQG Fonts

P
Q
G
F
onts

Index

Index-1

' 10-7

- 10-4, 10-21, 10-21, 13-4

! 10-6

!= 10-9, 10-10, 13-4

28-3, 28-3, 28-9

$ 10-9, 10-9, 28-3, 28-3, 28-9

$!= 10-10

$/= 10-10, 10-21

$| 10-17

$~ 10-17

$+ 10-21

$< 10-10, 10-21

$<= 10-10, 10-21

$== 10-10, 10-21

$> 10-11, 10-21

$>= 10-10, 10-21

% 10-6, 10-21

& 10-16, 28-10

(colon) 10-21

(semicolon) 9-3

* 10-21, 10-21, 13-4

*~ 10-7, 10-21

, (comma) 10-14

.' 10-8, 10-21

. (dot) 10-9, 10-11, 10-14, 10-15, 28-5,
28-10

.!= 10-11, 13-4

.$!= 10-11

.$/= 10-11, 10-21

.$< 10-11, 10-21

.$<= 10-11, 10-21

.$== 10-11, 10-21

.$> 10-12, 10-21

.$>= 10-12, 10-21

.* 10-6, 10-21, 13-4

.*. 10-21

... 13-4

./ 10-6, 10-21, 13-4

./= 10-10, 10-11, 10-21, 13-4

.^ 10-21

.< 10-11, 10-21, 13-4, 13-4

.<= 10-11, 10-21, 13-4

.== 10-10, 10-11, 10-21, 13-4

.> 10-12, 10-21, 13-4

.>= 10-12, 10-21, 13-4

.and 10-14, 10-21

.eq 10-11, 10-21

.eqv 10-14, 10-21

.ge 10-12, 10-21

.gt 10-12, 10-21

.le 10-11, 10-21

.lt 10-11, 10-21

.ne 10-11, 10-21

.not 10-14, 10-21

.or 10-14, 10-21

.xor 10-14, 10-21

/ 10-5, 10-21, 10-21, 13-4

/= 10-9, 10-10, 10-10, 10-21, 13-4

: (colon) 10-15

@ 28-3, 28-16

^ 10-6, 10-21

_pageshf 31-15

_pagesiz 31-15

_parrow 31-15

_parrow3 31-17

_paxes 31-18

_paxht 31-19

_pbartyp 31-19

_pbarwid 31-19

_pbox 31-20

_pboxctl 31-20

_pboxlim 31-21

_pcolor 31-21

_pcrop 31-21

_pcross 31-22

_pctrl 31-24

_pdate 31-22

_perrbar 31-22

_pframe 31-23

_pgrid 31-23

_plegctl 31-24

_plegstr 31-25

_plev 31-25

_pline 31-25

_pline3d 31-27

_plotshf 31-28

_plotsiz 31-28

_pltype 31-28

Index-2

Index

Index-3

_plwidth 31-29

_pmcolor 31-29

_pmsgctl 31-29

_pmsgstr 31-30

_pnotify 31-30

_pnum 31-30

_pnumht 31-31

_protate 31-31

_pscreen 31-31

_psilent 31-31

_pstype 31-31

_psurf 31-32

_psym 31-32

_psym3d 31-33

_psymsiz 31-33

_ptek 31-33

_pticout 31-33

_ptitlht 31-33

_pversno 31-34

_pxpmax 31-34

_pxsci 31-34

_pypmax 31-34

_pysci 31-34

_pzclr 31-34

_pzoom 31-34

_pzpmax 31-35

_pzsci 31-35

| 10-8, 10-21, 13-4

~ 10-21, 13-4

+ 10-4, 10-21, 13-4

< 10-9, 10-10, 10-21, 13-4

<= 10-9, 10-10, 10-21, 13-4

= 10-21

== 10-9, 10-10, 10-10, 10-21, 13-4

> 10-11, 10-21, 13-4

>= 10-9, 10-10, 10-21, 13-4

abs 13-4

aconcat 15-5

action list 3-10

Adding Annotations
Programmatically 6-39

advanced search 3-7

aeye 15-7

amax 15-25

Index

amean 15-25

amin 15-25

ampersand 10-16

amult 15-23

and 10-13, 10-21

annotationSet 6-43

append, ATOG command 28-1

Application Installer 3-7

areshape 15-3

arguments 9-41, 11-4, 11-7

array indexing 9-42

arrayalloc 15-8

arrayinit 15-7

arrays 15-1, 15-2, 15-21, 15-28

arrays of structures 16-6

arraytomat 15-27

arrows 7-4, 31-15

ASCII files 28-1

ASCII files, packed 28-8

ASCII files, writing 22-16

assigning to arrays 15-9

assignment operator 9-41, 10-14

ATOG 22-15, 28-1, 28-1, 28-3, 28-14

atranspose 15-22

autocompletion 3-17, 3-26

autoindenting 3-20

autoloader 19-1, 19-3, 19-3

auxiliary output 22-16

Axes lines 6-10

background color 6-11

backslash 10-5

bar shading 6-11, 31-19

bar width 31-19

basic plotting 6-3

batch mode 8-1

binary files 22-27

blank lines 9-39

block-skipping 12-6

bookmark 3-21

Boolean operators 10-12

breakpoint list 3-42

breakpoints 3-44, 5-3

browse 8-6

call stack window 3-42, 5-6

Index-4

Index

Index-5

calling a procedure 11-7

caret 10-6, 10-21

case 9-39

change font 3-7

change working directory 3-7

Cholesky decomposition 10-5, 30-1

circles 7-5, 31-25

clear action list 3-7

clear breakpoints 3-42, 3-45

clear working directory history 3-7

close 3-14

close all 3-14

code (dataloop) 25-2

code folding 3-19

colon 10-15

color 31-21, 31-29

cols 13-4

colsf 22-25

comma 10-14

command 9-3

command history toolbar 3-9

command history window 3-11

command line 8-1

command line editing 3-12

command line history 3-12

command page 3-5, 3-6

command page layout 3-10

command page toolbar 3-8

comments 9-39

comparison operator 9-41

compilation phase 25-4

compile time 9-5

compiled language 9-1

compiler 21-1

compiler directives 9-7

compiling programs 21-2

complex 22-19, 28-2, 28-4

complex constants 9-15

components and usage 3-42

concatenation, string 10-16, 10-16

conditional branching 9-35

config 8-6

conformability 14-5

connecting to databases 23-1

Index

constants 9-11

constants, complex 9-15

contour levels 31-25

control flow 9-32

control structures 16-23

coordinates 31-6

copy 3-7, 3-8

create 22-18

cropping 31-21

Crout LU decomposition 30-1

csv 22-14

custom regions 6-20

cut 3-7, 3-8

data loop 25-1, 25-3, 25-3, 25-4, 25-4

data sets 22-17, 22-18, 22-18, 22-19, 22-
20, 22-29, 22-31, 22-33, 22-36

data transformations 25-1

data types 9-10

data types, special 9-29

data, writing 22-19

database 23-1

datacreate 22-18

dataloop 25-2

dataloop translator 25-3, 25-4, 25-4, 25-
4

date and time formats 9-27

debug button 3-8, 3-44, 5-1, 5-2

debug page 3-41, 3-42, 5-1, 5-2

debug stop 5-6

debugger 3-44, 5-1, 5-2, 5-4, 5-6

delete (dataloop) 25-2

deleting records 23-5

delimit, ATOG command 28-6, 28-6

delimited 28-1

delimited files 22-15

delimited, hard 28-5

delimited, soft 28-4

DEN 9-29

dimension index 14-6

dimension number 14-2

division 10-5

DLL 24-1

documentation conventions 1-1

dot relational operator 10-11, 10-18

Index-6

Index

Index-7

drop (dataloop) 25-2

DS structure 16-16, 17-7

dstart 6-24

dynamic libraries 24-3

E×E conformable 10-1

edit button 3-8

editor properties 3-25

element-by-element conformability 10-2

element-by-element operators 10-1

empty matrix 9-16

endp 11-6

eq 10-10, 10-21

eqv 10-14, 10-21

error bar 31-22

error output window 3-13, 3-27

escape character 9-22

examine variable 3-42

Excel 22-15

executable code 9-4

executable statement 9-4

execution phase 25-4

execution time 9-1

exit 3-6

exponentiation 10-6

expression 9-3

expression, evaluation order 10-20

expression, scalar 9-33

extern (dataloop) 25-2, 25-3

extraneous spaces 9-40, 10-15, 10-15

factorial 10-6

FALSE 9-36

fetching query results 23-4

file export, graphics 6-35

file formats 22-25

file input/output 22-1

files, binary 22-27

files, string 22-28, 22-29, 22-33

find and replace 3-23

flow control 9-32

Foreign Language Interface 24-1, 24-1,
24-3

format 22-16

forward reference 19-2

function 9-41

Index

function browser 3-19

functions 9-37

GAUSS Data Archives 22-22, 22-22,
22-23, 22-24, 22-37

gaussprof 26-2

gdaCreate 22-22

gdaRead 22-23

gdaReadByIndex 22-23

gdaReadSparse 22-23

gdaReadStruct 22-23

gdaUpdate 22-24

gdaUpdateAndPack 22-24

ge 10-10, 10-21

getarray 15-9, 15-12

getdims 15-27

getmatrix 15-9, 15-13

getmatrix4D 15-9, 15-13

getorders 15-17, 15-27

getscalar3D 15-14

getscalar4D 15-9, 15-14

global control variables 31-15

global variable 19-9

go 3-42

go back 3-15

go forward 3-15

goto help 3-7

graph settings 7-1

graphic panels 31-7, 31-9, 31-11

graphic panels, nontransparent 31-9

graphic panels, overlapping 31-8

graphic panels, tiled 31-8

graphic panels, transparent 31-9

graphical user interface 3-1

Graphics 6-1

graphics editing 7-1, 7-2, 7-4, 7-5, 7-7,
7-8

graphics overview 6-2

graphics page 7-4

graphics text elements 31-11

graphics, publication quality 31-2, 31-3

graphics, relocate 6-32

graphs, saving 6-38

grid 6-11, 31-23

grid subdivisions 31-24

Index-8

Index

Index-9

gt 10-11, 10-21

hard delimited 28-5

hat operator 10-6, 10-21

help page 3-49

help, F1 4-5

hidden lines 31-32

hide curves 6-32

horizontal direct product 10-7

hot keys 3-22, 4-1, 4-1, 4-2, 4-3, 4-3

hot keys, programming editor 3-22

imag 22-19

inch coordinates 31-7, 31-10

indefinite 9-29

index operator 15-9, 15-10

indexing matrices 9-41, 10-15

indexing, array 14-3

indexing, structure 16-7

infinity 9-29

initialize 16-4

inner product 10-5

input, ATOG command 28-2

inserting records 23-5

instruction pointer 9-5

interactive commands 8-5

interpreter 9-1

intrinsic function 9-10

invar, ATOG command 28-2, 28-3, 28-
3, 28-4, 28-6, 28-7, 28-8, 28-8, 28-
9

keep (dataloop) 25-2

keyword, calling 11-9

keyword, defining 11-8

keywords 11-1, 11-8

Kronecker 10-6

label 9-40

lag (dataloop) 25-2

layout 22-18

layout and usage 3-15

le 10-10, 10-21

least squares 10-5

left-hand side 19-2

libraries 19-1, 19-5

libraries, creating new 20-1

libraries, loading 20-4

library 29-1

Index

library tool 20-1

library, user 19-8, 19-13

line colors 6-11

line styles 6-11

line symbols 6-11

line thickness 31-23, 31-27, 31-27, 31-
29, 31-33, 31-33

linear equation solution 10-5

lines 7-4

listwise (dataloop) 25-2

literal 9-23, 10-17

load 22-25

loadd 22-19

loadm 22-25

local variable declaration 11-4

local variable window 3-42

local variables 25-4

locator 14-6

logical operators 10-12

looping 9-32, 29-2

looping with arrays 15-17, 15-19

loopnextindex 15-19

lt 10-10, 10-21

LU decomposition 10-5

magnification 31-34

make (dataloop) 25-2

matrices 9-12

matrices, indexing 9-41

matrix conformability 10-1

matrix files 22-24, 22-27, 22-28, 22-32,
22-34

matrix operators 10-4

matrix, character 9-26

matrix, empty 9-16

mattoarray 15-28

maxc 13-4

maximizing performance 29-1, 29-2, 29-
4, 29-6, 29-6

memory 29-4

menu, edit 3-6

menu, file 3-6, 3-14

menu, help 3-7

menu, tools 3-7

menu, view 3-7

menu, window 3-15

Index-10

Index

Index-11

menus 3-6, 3-14, 3-41

minc 13-4

missing values 10-5

mixed layouts 6-19

modulo division 10-6

msym, ATOG command 28-2, 28-10

multi-threading 18-1, 18-2, 18-4, 18-4,
18-7

multiplication 10-6

N-dimensional arrays 9-20, 14-1

NaN 9-29

NaN, testing for 10-9

navigation 4-3

ne 10-10, 10-21

new 3-6, 3-8

next open document 3-15

nocheck 28-2

not 10-13, 10-21

numeric operators 10-4

open 3-8, 22-19, 22-25

open file 3-6

open folder 3-8

open graph 3-6

open project folder 3-6

operator precedence 9-31, 10-20

operators 9-31, 10-1

operators, dyadic 13-5

operators, element-by-element 10-1

operators, logical 10-12

operators, matrix 10-4

operators, numeric 10-4

operators, relational 10-9

or 10-13, 10-21

outer product 10-6

output 22-16

output, ATOG command 28-2

outtyp (dataloop) 25-2

outtyp, ATOG command 28-2, 28-10,
28-14

outvar, ATOG command 28-2, 28-11,
28-12

outwidth 22-16

overview 1-1

packed ASCII 28-8

page organization 3-3

Index

pairwise deletion 10-5

panel data 15-4

Parallel for Loops 18-11

paste 3-7, 3-8, 3-9, 3-10

period 10-15

pixel coordinates 31-7

plot control structures 6-10

plot coordinate 31-7

plot customization 6-5

plotAddArea 6-14

plotAddBar 6-14

plotAddBox 6-14

plotAddHist 6-14

plotAddHistF 6-14, 6-14

plotAddPolar 6-14

plotAddScatter 6-14

plotAddShape 6-41

plotAddTS 6-14, 6-22

plotAddXY 6-14

plotAnnotation 6-42

plotArea 6-2, 6-39

plotBar 6-2, 6-39

plotBox 6-2, 6-40

plotClearLayout 6-18

plotContour 6-2

plotCustomLayout 6-19, 6-20

plotGetDefaults 6-10

plotHist 6-2

plotHistF 6-2

plotHistP 6-3

plotLayout 6-17

plotLogLog 6-3

plotLogX 6-3

plotLogY 6-3

plotPolar 6-3

plots 6-2, 6-3, 6-31, 6-31, 6-35

plotScatter 6-3

plotSetAxesPen 6-10

plotSetBar 6-11

plotSetBkdColor 6-11

plotSetFill 6-11

plotSetGrid 6-11

plotSetLegend 6-11

plotSetLineColor 6-11

Index-12

Index

Index-13

plotSetLineStyle 6-11

plotSetLineSymbol 6-11

plotSetLineThickness 6-11

plotSetNewWindow 6-11, 6-18

plotSetTitle 6-11

plotSetWhichYAxis 6-11

plotSetXLabel 6-11

plotSetXRange 6-11

plotSetXTicCount 6-11

plotSetXTicInterval 6-11, 6-22, 6-26

plotSetXTicLabel 6-12, 6-22

plotSetYLabel 6-12

plotSetYRange 6-12

plotSetYTicCount 6-12

plotSetZLabel 6-12

plotSurface 6-3

plotTS 6-3, 6-22

plotXY 6-3

pointer 9-44, 11-11, 11-12

pointer, instruction 9-4, 9-5

pointers, structure 16-11, 16-11, 16-12,
16-14

PQG fonts 31-12, 32-1

PQG Graphics Colors 31-14

precedence 10-20

preferences 3-7

preservecase 28-2, 28-3, 28-12

previous open document 3-15

print 3-8, 13-4, 22-16

printfm 22-16

procedure, definitions 9-5, 11-2

procedures 9-10, 11-1, 11-4, 16-14

procedures, indexing 9-44, 11-11

procedures, multiple returns 11-12

procedures, passing to other
procedures 11-10

procedures, saving compiled 11-14

Profiler 26-1, 26-1

program 9-6

programming editor 3-17

Publication Quality Graphics 31-1, 31-2,
31-3

putarray 15-9, 15-16

PV structure 16-17, 17-1

pvGetIndex 16-23

Index

pvGetParNames 16-21

pvGetParVector 16-22

pvLength 16-21

pvList 16-21

pvPutParVector 16-22

query 23-3

radii 31-25

random number generation, parallel 12-
5

random number generators 12-2, 12-4

random numbers 12-1, 12-2

readr 22-19, 22-25

real 22-19

recent files 3-6

recent working directories 3-7

recode (dataloop) 25-2

record, ATOG command 28-8, 28-17

recursion 11-6

redo 3-6

regular expressions 3-30

relational operator, dot 10-11, 10-18

relational operators 10-9

remove buffer split 3-15

remove tab split 3-15

restore curves 6-32

retp 11-6

right-hand side 19-2

rotate, 3-D plots 6-35

rows 13-4

rowsf 22-25

rules of syntax 9-38

run 3-9, 3-10

Run-Time Library structures 17-1

run button 3-8

run to cursor 3-42

save 3-14, 22-24

save as 3-14

saved 22-19

saving graphs 6-38

saving the workspace 21-2

scalerr 13-4

screen 22-16

search 3-7

search and replace, advanced 3-27

Index-14

Index

Index-15

search next 3-9, 3-10

search previous 3-9, 3-10

secondary section 9-6

seekr 22-25

select (dataloop) 25-2

semicolon 9-3

setarray 15-9, 15-16

shared library 24-1

shortcuts 4-1

show 13-4

singularity tolerance 30-1, 30-2

soft delimited 28-4

Source Browser 3-27

source browsing 4-6

source page 3-14

space 10-21

spaces 10-15

spaces, extraneous 9-40, 10-15, 10-15

sparse matrices 9-19, 13-1, 13-2

split file buffer horizontally 3-15

split file buffer vertically 3-15

split tab stack horizontally 3-15

split tab stack vertically 3-15

SQL 23-1

SQL statements 23-3

sqpSolveMT 16-24

sqpSolveMTControl structure 16-26

src_path 19-1

statement 9-3, 9-39

statement, executable 9-4

statement, nonexecutable 9-5

step into 3-42, 3-45

step out 3-42, 3-46

step over 3-42, 3-46

stepping through 3-45

stop 3-42, 3-46

stop program 3-8

string array concatenation 10-17

string arrays 9-24

string concatenation 10-16

string files 22-28, 22-29, 22-33

string variable substitution 10-17

string, long 9-20

strings 9-20

Index

strings, graphics 31-29

structure definition 16-3

structure indexing 16-7

structure instance 16-4

structure pointers 16-11, 16-11, 16-12,
16-14

structures 16-1, 16-2, 16-16

structures, arrays of 16-6

structures, control 16-23

structures, loading 16-10

structures, passing to procedures 16-10

structures, saving an instance 16-9

subplots 6-17

symbol names 9-40

syntax 9-38

syntax highlighting 3-17

table 10-6

tcollect 26-2, 26-2

tensor 10-6

text boxes 7-5

TGAUSS 8-1, 8-5

thickness, line 31-23, 31-27, 31-27, 31-
29, 31-33, 31-33

threads 18-1, 18-4

tick marks 31-33

tilde 10-21, 13-4

time and date formats 27-2

time and date functions 27-1, 27-4

time series 6-22

time series plots 6-22

timed iterations 27-6

toggle breakpoint 3-42

tolerance 30-2

toolbars 3-41

tooltips 3-18

transactions 23-7

translation phase 25-3

transpose, bookkeeping 10-8

troubleshooting, libraries 19-12

TRUE 9-36

type 13-4

unconditional branching 9-36

undo 3-6

UNN 9-29

updating records 23-5

Index-16

Index

Index-17

variable dump window 3-43

variable highlighting 3-20

variables, debugging 3-47, 5-4

variables, viewing 3-47

vector (dataloop) 25-2

vector of indices 14-5

vector of orders 14-5

viewing graphics 8-2

viewpoint change, 3-D plots 6-35

watch window 3-43

working directory toolbar 3-9

X-axis 6-26

xor 10-13, 10-21

zoom, 3-D plots 6-35

zooming graphs 31-34

Index

	 1 Introduction
	1.1 Product Overview
	1.2 Documentation Conventions

	 2 Getting Started with GAUSS
	2.1 Entering Interactive Commands
	2.2 Configuring the User Interface
	2.2.1 Helpful Hints:

	2.3 Running an Example Program

	 3 Introduction to the GAUSS Graphical User Interface
	3.1 Page Organization Concept
	3.2 Command Page
	3.2.1 Command Page Menus
	3.2.2 Command Page Toolbar
	3.2.3 Working Directory Toolbar
	3.2.4 Command History Toolbar
	3.2.5 Action List Toolbar
	3.2.6 Layout and Usage
	3.2.7 Command History Window
	3.2.8 Command Line History and Command Line Editing
	3.2.9 Error Output Window

	3.3 Source Page
	3.3.1 Source Page Menus
	3.3.2 Layout and Usage
	3.3.3 Find and Replace
	3.3.4 Changing Editor Properties
	3.3.5 Error Output Window
	3.3.6 The Source Browser: Advanced Search and Replace
	3.3.7 Project Organizer: Keeping track of files with the Project Window

	3.4 Data Page
	3.4.1 Changing values
	3.4.2 Changing formatting
	3.4.3 Navigating multi-dimensional arrays
	3.4.4 Viewing structure members
	3.4.5 Creating a floating watch window

	3.5 Debug Page
	3.5.1 Menus and Toolbars
	3.5.2 Using Breakpoints
	3.5.3 Stepping Through a Program
	3.5.4 Viewing Variables

	3.6 Help Page

	 4 Hot Keys and Shortcuts
	4.1 Hot Keys and Shortcuts
	4.2 Navigation Hot Keys
	4.3 Focus Program Output on I/O
	4.4 F1 Help
	4.5 CTRL+F1 Source Browsing

	 5 Using the GAUSS Debugger
	5.1 Starting the Debugger
	5.2 Examining Variables
	5.3 The Call Stack Window
	5.4 Ending Your Debug Session

	 6 GAUSS Graphics
	6.1 Overview
	6.2 Basic Plotting
	6.2.1 Plotting multiple curves

	6.3 Plot Customization
	6.3.1 Using the Graphics Preferences Settings Window

	6.4 PlotControl Structures
	Example

	6.5 Adding Data to Existing Plots
	Example
	6.5.1 Styling and the plotAdd functions

	6.6 Creating Subplots
	Example
	6.6.1 Creating Mixed Layouts
	Example

	6.6.2 Creating Custom Regions
	Example

	6.7 Time Series Plots in GAUSS
	Example
	Understanding the dstart parameter
	6.7.1 Quarterly Example
	6.7.2 Controlling Tic Label Locations
	6.7.3 Tic Label Formatting

	6.8 Interacting with Plots in GAUSS
	6.8.1 Interacting with 2-D Plots
	6.8.2 3-D Plots
	6.8.3 File Export
	6.8.4 Saving Graphs

	6.9 Adding Annotations Programmatically in GAUSS
	6.9.1 Basic usage
	6.9.2 Creating multiple annotations with vector inputs
	6.9.3 Customization with a plotAnnotation structure
	6.9.4 Using the annotationSet functions

	 7 Graphics Editing
	7.1 Changing Appearance
	7.2 Adding Items
	7.3 Adding Text to a Text Box
	7.4 Which Object Will Be Edited?
	7.5 Moving and Resizing Objects
	7.5.1 Note on Programmatic Annotations

	 8 Using the Command Line Interface
	8.1 Viewing Graphics
	8.2 Command Line History and Command Line Editing
	8.2.1 Movement
	8.2.2 Editing
	8.2.3 History Retrieval

	8.3 Interactive Commands
	8.3.1 quit
	8.3.2 ed
	8.3.3 browse
	8.3.4 config

	8.4 Debugging
	8.4.1 General Functions
	8.4.2 Listing Functions
	8.4.3 Execution Functions
	8.4.4 View Commands
	8.4.5 Breakpoint Commands

	8.5 Using the Source Browser in TGAUSS

	 9 Language Fundamentals
	9.1 Expressions
	9.2 Statements
	9.2.1 Executable Statements
	9.2.2 Nonexecutable Statements

	9.3 Programs
	9.3.1 Main Section
	9.3.2 Secondary Sections

	9.4 Compiler Directives
	9.5 Procedures
	9.6 Data Types
	9.6.1 Constants
	9.6.2 Matrices
	9.6.3 Sparse Matrices
	9.6.4 N-dimensional Arrays
	9.6.5 Strings
	9.6.6 String Arrays
	9.6.7 Character Matrices
	9.6.8 Date and Time Formats
	9.6.9 Special Data Types

	9.7 Operator Precedence
	9.8 Flow Control
	9.8.1 Looping
	9.8.2 Conditional Branching
	9.8.3 Unconditional Branching

	9.9 Functions
	9.10 Rules of Syntax
	9.10.1 Statements
	9.10.2 Case
	9.10.3 Comments
	9.10.4 Extraneous Spaces
	9.10.5 Symbol Names
	9.10.6 Labels
	9.10.7 Assignment Statements
	9.10.8 Function Arguments
	9.10.9 Indexing Matrices
	9.10.10 Arrays of Matrices and Strings
	9.10.11 Arrays of Procedures

	 10 Operators
	10.1 Element-by-Element Operators
	10.2 Matrix Operators
	10.2.1 Numeric Operators
	10.2.2 Other Matrix Operators

	10.3 Relational Operators
	10.4 Logical Operators
	10.5 Other Operators
	10.6 Using Dot Operators with Constants
	10.7 Operator Precedence

	 11 Procedures and Keywords
	11.1 Defining a Procedure
	11.1.1 Procedure Declaration
	11.1.2 Local Variable Declarations
	11.1.3 Body of Procedure
	11.1.4 Returning from the Procedure
	11.1.5 End of Procedure Definition

	11.2 Calling a Procedure
	11.3 Keywords
	11.3.1 Defining a Keyword
	11.3.2 Calling a Keyword

	11.4 Passing Procedures to Procedures
	11.5 Indexing Procedures
	11.6 Multiple Returns from Procedures
	11.7 Saving Compiled Procedures

	 12 Random Number Generation in GAUSS
	12.1 Available Random Number Generators
	12.1.1 Choosing a Random Number Generator

	12.2 Thread-safe Random Number Generators
	12.3 Parallel Random Number Generation
	12.3.1 Multiple Stream Generators
	12.3.2 Block-skipping

	 13 Sparse Matrices
	13.1 Defining Sparse Matrices
	13.2 Creating and Using Sparse Matrices
	13.3 Sparse Support in Matrix Functions and Operators
	13.3.1 Return Types for Dyadic Operators

	 14 N-Dimensional Arrays
	14.1 Bracketed Indexing
	14.2 ExE Conformability
	14.3 Glossary of Terms

	 15 Working with Arrays
	15.1 Initializing Arrays
	15.1.1 areshape
	15.1.2 aconcat
	15.1.3 aeye
	15.1.4 arrayinit
	15.1.5 arrayalloc

	15.2 Assigning to Arrays
	15.2.1 index operator
	15.2.2 getarray
	15.2.3 getmatrix
	15.2.4 getmatrix4D
	15.2.5 getscalar3D, getscalar4D
	15.2.6 putarray
	15.2.7 setarray

	15.3 Looping with Arrays
	15.3.1 loopnextindex

	15.4 Miscellaneous Array Functions
	15.4.1 atranspose
	15.4.2 amult
	15.4.3 amean, amin, amax
	15.4.4 getdims
	15.4.5 getorders
	15.4.6 arraytomat
	15.4.7 mattoarray

	15.5 Using Arrays with GAUSS functions
	15.6 A Panel Data Model
	15.7 Appendix

	 16 Structures
	16.1 Basic Structures
	16.1.1 Structure Definition
	16.1.2 Declaring an Instance
	16.1.3 Initializing an Instance
	16.1.4 Arrays of Structures
	16.1.5 Structure Indexing
	16.1.6 Saving an Instance to the Disk
	16.1.7 Loading an Instance from the Disk
	16.1.8 Passing Structures to Procedures

	16.2 Structure Pointers
	16.2.1 Creating and Assigning Structure Pointers
	16.2.2 Structure Pointer References
	16.2.3 Using Structure Pointers in Procedures

	16.3 Special Structures
	16.3.1 The DS Structure
	16.3.2 The PV Structure
	16.3.3 Miscellaneous PV Procedures
	16.3.4 Control Structures

	16.4 sqpSolveMT
	16.4.1 Input Arguments
	16.4.2 Output Argument
	16.4.3 Example
	16.4.4 The Command File

	 17 Run-Time Library Structures
	17.1 The PV Parameter Structure
	17.2 Fast Pack Functions
	17.3 The DS Data Structure

	 18 Multi-Threaded Programming in GAUSS
	18.1 The Functions
	18.2 GAUSS Threading Concepts
	18.3 Coding With Threads
	18.4 Coding Restrictions
	18.5 Parallel for Loops
	18.5.1 Basic syntax
	18.5.2 Single threaded example
	18.5.3 threadFor variables
	18.5.4 Temporary variables
	18.5.5 Broadcast variables
	18.5.6 Slice variables
	18.5.7 Reduction variables
	18.5.8 Categorizing the variables in our example

	18.6 Controlling thread count

	 19 Libraries
	19.1 Autoloader
	19.1.1 Forward References
	19.1.2 The Autoloader Search Path
	Example 1
	Example 2

	19.2 Global Declaration Files
	19.3 Troubleshooting
	19.3.1 Using .dec Files

	 20 The Library Tool
	20.1 Creating New Libraries
	20.2 Loading a Library
	20.3 Viewing Procedures
	20.4 Refreshing a Library

	 21 Compiler
	21.1 Compiling Programs
	21.1.1 Compiling a File

	21.2 Saving the Current Workspace
	21.3 Debugging

	 22 Data Import Export
	22.1 Data Import Wizard
	22.2 Programmatic Data Import and Export
	22.3 Data Sets
	22.3.1 Layout
	22.3.2 Creating Data Sets
	22.3.3 Reading and Writing
	22.3.4 Distinguishing Character and Numeric Data

	22.4 GAUSS Data Archives
	22.4.1 Creating and Writing Variables to GDA's
	22.4.2 Reading Variables from GDA's
	22.4.3 Updating Variables in GDA's

	22.5 Matrix Files
	22.6 File Formats
	22.6.1 Small Matrix v89 (Obsolete)
	22.6.2 Extended Matrix v89 (Obsolete)
	22.6.3 Small String v89 (Obsolete)
	22.6.4 Extended String v89 (Obsolete)
	22.6.5 Small Data Set v89 (Obsolete)
	22.6.6 Extended Data Set v89 (Obsolete)
	22.6.7 Matrix v92 (Obsolete)
	22.6.8 String v92 (Obsolete)
	22.6.9 Data Set v92 (Obsolete)
	22.6.10 Matrix v96
	22.6.11 Data Set v96
	22.6.12 GAUSS Data Archives

	 23 Databases with GAUSS
	23.1 Connecting to Databases
	23.2 Executing SQL Statements
	23.2.1 Creating a Query
	23.2.2 Fetching Query Results
	23.2.3 Inserting, Updating, and Deleting Records
	23.2.4 Transactions

	 24 Foreign Language Interface
	24.1 Writing FLI Functions
	24.2 Creating Dynamic Libraries

	 25 Data Transformations
	25.1 Data Loop Statements
	25.2 Using Other Statements
	25.3 Debugging Data Loops
	25.3.1 Translation Phase
	25.3.2 Compilation Phase
	25.3.3 Execution Phase

	25.4 Reserved Variables

	 26 The GAUSS Profiler
	26.1 Using the GAUSS Profiler
	26.1.1 Collection
	26.1.2 Analysis

	 27 Time and Date
	27.1 Time and Date Formats
	27.2 Time and Date Functions
	27.2.1 Timed Iterations

	 28 ATOG
	28.1 Command Summary
	28.2 Commands
	Soft Delimited ASCII Files
	Hard Delimited ASCII Files
	Packed ASCII Files

	28.3 Examples
	28.4 Error Messages

	 29 Maximizing Performance
	29.1 Library System
	29.2 Loops
	29.3 Memory Usage
	29.3.1 Hard Disk Maintenance
	29.3.2 CPU Cache

	 30 Singularity Tolerance
	30.1 Reading and Setting the Tolerance
	30.2 Determining Singularity

	 31 Publication Quality Graphics
	31.1 General Design
	31.2 Using Publication Quality Graphics
	31.2.1 Getting Started
	31.2.2 Graphics Coordinate System

	31.3 Graphic Panels
	31.3.1 Tiled Graphic Panels
	31.3.2 Overlapping Graphic Panels
	31.3.3 Nontransparent Graphic Panels
	31.3.4 Transparent Graphic Panels
	31.3.5 Using Graphic Panel Functions
	31.3.6 Inch Units in Graphic Panels
	31.3.7 Saving Graphic Panel Configurations

	31.4 Graphics Text Elements
	31.4.1 Selecting Fonts
	31.4.2 Greek and Mathematical Symbols

	31.5 Colors
	31.6 Global Control Variables

	 32 PQG Fonts
	32.1 Simplex
	32.2 Simgrma
	32.3 Microb
	32.4 Complex

	Bookmarks
	structtree

