
GAUSS 17
™

Language Reference

1

Information in this document is subject to change without notice and does not represent a
commitment on the part of Aptech Systems, Inc. The software described in this doc-
ument is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. The pur-
chaser may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or mech-
anical, including photocopying and recording, for any purpose other than the purchaser’s
personal use without the written permission of Aptech Systems, Inc.

©Copyright Aptech Systems, Inc. Chandler, AZ 1984-2016
All Rights Reserved Worldwide.

SuperLU. ©Copyright 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required approvals
from U.S. Dept. of Energy). All Rights Reserved. See GAUSS Software Product
License for additional terms and conditions.

TAUCS Version 2.0, November 29, 2001. ©Copyright 2001, 2002, 2003 by Sivan
Toledo, Tel-Aviv University, stoledo@tau.ac.il. All Rights Reserved. See GAUSS Soft-
ware License for additional terms and conditions.

Econotron Software, Inc. beta, polygamma, zeta, gammacplx, lngammacplx, erfcplx,er-
fccplx, psi, gradcp, hesscp Functions: ©Copyright 2009 by Econotron Software,Inc. All
Rights Reserved Worldwide.

GAUSS, GAUSS Engine and GAUSS Light are trademarks of Aptech Systems, Inc.

GEM is a trademark of Digital Research, Inc.

Lotus is a trademark of Lotus Development Corp.

HP LaserJet and HP-GL are trademarks of Hewlett-Packard Corp.

PostScript is a trademark of Adobe Systems Inc.IBM is a trademark of International
Business Machines Corporation

GraphiC is a trademark of Scientific Endeavors Corporation

Tektronix is a trademark of Tektronix, Inc.

Windows is a registered trademark of Microsoft Corporation.

Other trademarks are the property of their respective owners.

The Java API for the GAUSS Engine uses the JNA library. The JNA library is covered
under the LGPL license version 3.0 or later at the discretion of the user. A full copy of
this license and the JNA source code have been included with the distribution.

Version 17
Revision Date: 12/7/2016

2

Table of Contents

33 Command Reference Introduction 33-1

33.1 Documentation Conventions 33-2

33.2 Command Components 33-3

33.3 Using This Manual 33-5

33.4 Global Control Variables 33-6

33.4.1 Changing the Default Values 33-6

33.4.2 The Procedure gausset 33-7

34 Commands by Category 34-1

34.1 Mathematical Functions 34-4

34.1.1 Scientific Functions 34-4

34.1.2 Differentiation and Integration 34-6

34.1.3 Linear Algebra 34-8

34.1.4 Eigenvalues 34-13

34.1.5 Polynomial Operations 34-13

34.1.6 Fourier Transforms 34-14

34.1.7 Random Numbers 34-14

34.1.8 Fuzzy Conditional Functions 34-17

TOC-1

34.1.9 Statistical Functions 34-19

34.1.10 Optimization and Solution 34-23

34.1.11 Statistical Distributions 34-25

34.1.12 Series and Sequence Functions 34-29

34.1.13 Precision Control 34-30

34.2 Finance Functions 34-30

34.3 Matrix Manipulation 34-32

34.3.1 Creating Vectors and Matrices 34-32

34.3.2 Loading and Storing Matrices 34-33

34.3.3 Size, Ranking, and Range 34-34

34.3.4 Miscellaneous Matrix Manipulation 34-35

34.4 Sparse Matrix Handling 34-38

34.5 N-Dimensional Array Handling 34-40

34.5.1 Creating Arrays 34-40

34.5.2 Size, Ranking and Range 34-40

34.5.3 Setting and Retrieving Data in an Array 34-41

34.5.4 Miscellaneous Array Functions 34-42

34.6 Structures 34-42

34.7 Data File Reading/Writing 34-44

34.7.1 Spreadsheets 34-44

34.7.2 CSV Files 34-45

TOC-2

GAUSS User Guide

TOC-3

34.7.3 Text Files 34-45

34.7.4 HDF 5 Files 34-46

34.7.5 Database 34-46

34.8 Compiler Control 34-61

34.9 Multi-Threading 34-63

34.10 Program Control 34-64

34.10.1 Execution Control 34-64

34.10.2 Branching 34-64

34.10.3 Looping 34-65

34.10.4 Subroutines 34-66

34.10.5 Procedures, Keywords, and Functions 34-66

34.10.6 Libraries 34-67

34.10.7 Compiling 34-67

34.10.8 Miscellaneous Program Control 34-68

34.11 OS Functions and File Management 34-69

34.12 Workspace Management 34-70

34.13 Error Handling and Debugging 34-70

34.14 String Handling 34-71

34.15 Time and Date Functions 34-75

34.16 Console I/O 34-77

34.17 Output Functions 34-78

Contents

34.17.1 Text Output 34-78

34.17.2 DOS Compatibility Windows 34-79

34.18 GAUSS Graphics 34-80

34.18.1 Graph Types 34-80

34.18.2 Adding Data to Existing Graphs 34-81

34.18.3 Plot Control 34-82

34.18.4 Annotation Control 34-84

34.19 PQG Graphics 34-85

34.19.1 Graph Types 34-85

34.19.2 Axes Control and Scaling 34-86

34.19.3 Text, Labels, Titles, and Fonts 34-87

34.19.4 Main Curve Lines and Symbols 34-87

34.19.5 Extra Lines and Symbols 34-88

34.19.6 Graphic Panel, Page, and Plot Control 34-88

34.19.7 Output Options 34-89

34.19.8 Miscellaneous 34-90

35 Command Reference 35-1

a 35-52

abs 35-52

acf 35-53

aconcat 35-58

TOC-4

GAUSS User Guide

TOC-5

aeye 35-61

amax 35-63

amean 35-65

AmericanBinomCall 35-67

AmericanBinomCall_Greeks 35-69

AmericanBinomCall_ImpVol 35-71

AmericanBinomPut 35-73

AmericanBinomPut_Greeks 35-75

AmericanBinomPut_ImpVol 35-77

AmericanBSCall 35-79

AmericanBSCall_Greeks 35-80

AmericanBSCall_ImpVol 35-82

AmericanBSPut 35-84

AmericanBSPut_Greeks 35-85

AmericanBSPut_ImpVol 35-87

amin 35-89

amult 35-92

annotationGetDefaults 35-94

annotationSetBkd 35-95

annotationSetFont 35-97

annotationSetLineColor 35-99

Contents

annotationSetLineStyle 35-101

annotationSetLineThickness 35-103

annualTradingDays 35-104

arccos 35-106

arcsin 35-107

areshape 35-108

arrayalloc 35-110

arrayindex 35-112

arrayinit 35-114

arraytomat 35-115

asciiload 35-116

asclabel 35-118

astd 35-120

astds 35-122

asum 35-124

atan 35-126

atan2 35-128

atranspose 35-130

axmargin 35-132

b 35-135

balance 35-135

TOC-6

GAUSS User Guide

TOC-7

band 35-136

bandchol 35-138

bandcholsol 35-140

bandltsol 35-141

bandrv 35-143

bandsolpd 35-145

bar 35-146

base10 35-148

begwind 35-149

besselj 35-150

bessely 35-151

beta 35-153

box 35-154

boxcox 35-156

break 35-157

c 35-159

call 35-159

cdfBeta 35-160

cdfBetaInv 35-162

cdfBinomial 35-164

cdfBinomialInv 35-165

Contents

cdfBvn 35-167

cdfBvn2 35-169

cdfBvn2e 35-171

cdfCauchy 35-173

cdfCauchyInv 35-174

cdfChic 35-175

cdfChii 35-177

cdfChinc 35-179

cdfChincInv 35-180

cdfEmpirical 35-182

cdfExp 35-185

cdfExpInv 35-186

cdfFc 35-186

cdfFnc 35-189

cdfFncInv 35-190

cdfGam 35-192

cdfGenPareto 35-194

cdfHyperGeo 35-196

cdfLaplace 35-198

cdfLaplaceInv 35-199

cdfLogistic 35-199

TOC-8

GAUSS User Guide

TOC-9

cdfLogisticInv 35-201

cdfMvn 35-201

cdfMvnce 35-205

cdfMvne 35-210

cdfMvn2e 35-215

cdfMvtce 35-221

cdfMvte 35-227

cdfMvt2e 35-233

cdfN, cdfNc 35-239

cdfNegBinomial 35-243

cdfNegBinomialInv 35-245

cdfN2 35-246

cdfNi 35-248

cdfPoisson 35-250

cdfPoissonInv 35-251

cdfRayleigh 35-252

cdfRayleighInv 35-254

cdfTc 35-255

cdfTci 35-257

cdfTnc 35-258

cdfTvn 35-261

Contents

cdfWeibull 35-263

cdfWeibullInv 35-265

cdir 35-266

ceil 35-267

changeDir 35-269

chdir 35-269

chiBarSquare 35-270

chol 35-272

choldn 35-274

cholsol 35-276

cholup 35-278

chrs 35-279

clear 35-281

clearg 35-282

close 35-283

closeall 35-286

cls 35-289

code 35-290

code (dataloop) 35-293

cols 35-295

colsf 35-296

TOC-10

GAUSS User Guide

TOC-11

combinate 35-297

combinated 35-299

comlog 35-302

compile 35-303

complex 35-305

con 35-306

cond 35-309

conj 35-310

cons 35-311

ConScore 35-312

continue 35-316

contour 35-318

conv 35-319

convertsatostr 35-320

convertstrtosa 35-321

corrm,corrvc,corrx 35-322

corrms,corrxs 35-324

cos 35-327

cosh 35-328

counts 35-329

countwts 35-331

Contents

create 35-333

crossprd 35-340

crout 35-341

croutp 35-343

csrcol,csrlin 35-345

csvReadM 35-346

csvReadSA 35-352

csvWriteM 35-356

cumprodc 35-360

cumsumc 35-362

curve 35-363

cvtos 35-365

cvtosa 35-366

d 35-368

datacreate 35-368

datacreatecomplex 35-370

datalist 35-373

dataload 35-374

dataloop (dataloop) 35-376

dataopen 35-377

datasave 35-381

TOC-12

GAUSS User Guide

TOC-13

date 35-382

datestr 35-383

datestring 35-384

datestrymd 35-385

dayinyr 35-386

dayofweek 35-387

dbAddDatabase 35-389

dbClose 35-391

dbCommit 35-391

dbCreateQuery 35-392

dbExecQuery 35-394

dbGetConnectOptions 35-395

dbGetDatabaseName 35-396

dbGetDriverName 35-396

dbGetDrivers(); 35-397

dbGetHostName 35-398

dbGetLastErrorNum 35-399

dbGetLastErrorText 35-399

dbGetNumericalPrecPolicy 35-400

dbGetPassword 35-401

dbGetPort 35-401

Contents

dbGetPrimaryIndex 35-402

dbGetTableHeaders 35-403

dbGetTables 35-404

dbGetUserName 35-404

dbHasFeature 35-405

dbIsDriverAvailable 35-407

dbIsOpen 35-408

dbIsOpenError 35-408

dbIsValid 35-409

dbNumericalPrecPolicy 35-410

dbOpen 35-410

dbQueryBindValue 35-412

dbQueryClear 35-413

dbQueryCols 35-413

dbQueryExecPrepared 35-414

dbQueryFetchAllM 35-415

dbQueryFetchAllSA 35-417

dbQueryFetchOneM 35-418

dbQueryFetchOneSA 35-420

dbQueryFinish 35-421

dbQueryGetBoundValue 35-422

TOC-14

GAUSS User Guide

TOC-15

dbQueryGetBoundValues 35-423

dbQueryGetField 35-424

dbQueryGetLastErrorNum 35-426

dbQueryGetLastErrorText 35-426

dbQueryGetLastInsertID 35-427

dbQueryGetLastQuery 35-428

dbQueryGetNumRowsAffected 35-429

dbQueryGetPosition 35-430

dbQueryIsActive 35-431

dbQueryIsForwardOnly 35-432

dbQueryIsNull 35-433

dbQueryIsSelect 35-434

dbQueryIsValid 35-435

dbQueryPrepare 35-436

dbQueryRows 35-438

dbQuerySeek 35-439

dbQuerySeekFirst 35-440

dbQuerySeekLast 35-442

dbQuerySeekNext 35-443

dbQuerySeekPrevious 35-445

dbQuerySetForwardOnly 35-446

Contents

dbQuerySetNumericalPrecisionPolicy 35-447

dbRemoveDatabase 35-448

dbRollback 35-448

dbSetConnectOptions 35-449

dbSetDatabaseName 35-452

dbSetHostName 35-453

dbSetPassword 35-454

dbSetPort 35-455

dbSetUserName 35-456

dbTransaction 35-456

debug 35-458

declare 35-458

delete 35-464

delete (dataloop) 35-466

deleteFile 35-467

delif 35-468

delrows 35-473

denseToSp 35-475

denseToSpRE 35-476

denToZero 35-478

design 35-480

TOC-16

GAUSS User Guide

TOC-17

det 35-482

detl 35-484

dfft 35-485

dffti 35-486

diag 35-487

diagrv 35-490

digamma 35-492

dlibrary 35-492

dllcall 35-495

do while,do until 35-497

dos 35-500

doswin 35-503

DOSWinCloseall 35-503

DOSWinOpen 35-504

dot 35-507

dotfeq,dotfge, dotfgt,dotfle,dotflt,dotfne 35-509

dotfeqmt,dotfgemt,dotfgtmt,dotflemt,dotfltmt,dotfnemt 35-511

draw 35-513

drop (dataloop) 35-515

dsCreate 35-515

dstat 35-516

Contents

dstatmt 35-523

dstatmtControlCreate 35-531

dtdate 35-532

dtday 35-534

dttime 35-535

dttodtv 35-536

dttostr 35-537

dttoutc 35-540

dtvnormal 35-542

dtvtodt 35-543

dtvtoutc 35-545

dummy 35-546

dummybr 35-548

dummydn 35-550

e 35-553

ed 35-553

edit 35-554

erfInv,erfCInv 35-555

eig 35-556

eigh 35-558

eighv 35-560

TOC-18

GAUSS User Guide

TOC-19

eigv 35-561

elapsedTradingDays 35-563

end 35-565

endp 35-566

endwind 35-567

envget 35-568

eof 35-569

eqSolve 35-571

eqSolvemt 35-576

eqSolvemtControlCreate 35-584

eqSolvemtOutCreate 35-585

eqSolveSet 35-587

erf,erfc 35-587

erfcplx,erfccplx 35-589

error 35-590

errorlog 35-593

errorlogat 35-593

etdays 35-594

ethsec 35-595

etstr 35-597

EuropeanBinomCall 35-598

Contents

EuropeanBinomCall_Greeks 35-600

EuropeanBinomCall_ImpVol 35-602

EuropeanBinomPut 35-604

EuropeanBinomPut_Greeks 35-605

EuropeanBinomPut_ImpVol 35-608

EuropeanBSCall 35-609

EuropeanBSCall_Greeks 35-611

EuropeanBSCall_ImpVol 35-613

EuropeanBSPut 35-614

EuropeanBSPut_Greeks 35-616

EuropeanBSPut_ImpVol 35-618

exctsmpl 35-619

exec 35-621

execbg 35-622

exp 35-623

extern (dataloop) 35-625

external 35-626

eye 35-627

f 35-629

fcheckerr 35-629

fclearerr 35-630

TOC-20

GAUSS User Guide

TOC-21

feq,fge,fgt,fle,flt,fne 35-631

feqmt,fgemt,fgtmt,flemt,fltmt,fnemt 35-633

fflush 35-635

fft 35-635

ffti 35-636

fftm 35-637

fftmi 35-640

fftn 35-643

fgets 35-645

fgetsa 35-646

fgetsat 35-647

fgetst 35-648

fileinfo 35-649

filesa 35-651

floor 35-652

fmod 35-654

fn 35-656

fonts 35-657

fopen 35-658

for 35-660

format 35-663

Contents

formatcv 35-673

formatnv 35-674

fputs 35-675

fputst 35-678

fseek 35-681

fstrerror 35-683

ftell 35-684

ftocv 35-685

ftos 35-686

ftostrC 35-690

g 35-693

gamma 35-693

gammacplx 35-694

gammaii 35-695

gausset 35-696

gdaAppend 35-697

gdaCreate 35-699

gdaDStat 35-700

gdaDStatMat 35-704

gdaGetIndex 35-709

gdaGetName 35-710

TOC-22

GAUSS User Guide

TOC-23

gdaGetNames 35-711

gdaGetOrders 35-712

gdaGetType 35-714

gdaGetTypes 35-715

gdaGetVarInfo 35-717

gdaIsCplx 35-719

gdaLoad 35-720

gdaPack 35-724

gdaRead 35-726

gdaReadByIndex 35-727

gdaReadSome 35-728

gdaReadSparse 35-731

gdaReadStruct 35-732

gdaReportVarInfo 35-734

gdaSave 35-735

gdaUpdate 35-738

gdaUpdateAndPack 35-740

gdaVars 35-742

gdaWrite 35-743

gdaWrite32 35-744

gdaWriteSome 35-746

Contents

getarray 35-749

getdims 35-750

getf 35-751

getGAUSSHome 35-754

getmatrix 35-755

getmatrix4D 35-757

getname 35-759

getnamef 35-760

getNextTradingDay 35-762

getNextWeekDay 35-763

getnr 35-764

getnrmt 35-765

getorders 35-766

getpath 35-767

getPreviousTradingDay 35-769

getPreviousWeekDay 35-770

getRow 35-770

getscalar3D 35-772

getscalar4D 35-773

getTrRow 35-775

getwind 35-776

TOC-24

GAUSS User Guide

TOC-25

glm 35-777

gosub 35-807

goto 35-810

gradMT 35-811

gradMTm 35-813

gradMTT 35-815

gradMTTm 35-817

gradp, gradcplx 35-818

graphprt 35-820

graphset 35-824

h 35-825

h5create 35-825

h5open 35-828

h5read 35-831

h5readAttribute 35-838

h5write 35-840

h5writeAttribute 35-842

hasimag 35-845

header 35-846

headermt 35-847

hess 35-849

Contents

hessMT 35-850

hessMTg 35-852

hessMTgw 35-854

hessMTm 35-855

hessMTmw 35-857

hessMTT 35-859

hessMTTg 35-861

hessMTTgw 35-863

hessMTTm 35-864

hessMTw 35-866

hessp, hesscplx 35-868

hist 35-870

histf 35-872

histp 35-873

hsec 35-874

i 35-876

if, else, elseif 35-876

imag 35-877

#include 35-878

indcv 35-880

indexcat 35-882

TOC-26

GAUSS User Guide

TOC-27

indices 35-883

indices2 35-885

indicesf 35-886

indicesfn 35-888

indnv 35-889

indsav 35-891

integrate1d 35-892

intgrat2 35-897

intgrat3 35-899

inthp1 35-902

inthp2 35-906

inthp3 35-910

inthp4 35-914

inthpControlCreate 35-918

intquad1 35-919

intquad2 35-922

intquad3 35-926

intrleav 35-930

intrleavsa 35-932

intrsect 35-933

intrsectsa 35-936

Contents

intsimp 35-938

inv, invpd 35-939

invswp 35-941

iscplx 35-942

iscplxf 35-943

isden 35-944

isinfnanmiss 35-945

ismiss 35-946

itos 35-948

k 35-950

keep (dataloop) 35-950

key 35-951

keyav 35-952

keyw 35-953

keyword 35-953

l 35-956

lag (dataloop) 35-956

lag1 35-957

lagn 35-958

lapeighb 35-960

lapeighi 35-962

TOC-28

GAUSS User Guide

TOC-29

lapeighvb 35-964

lapeighvi 35-966

lapgeig 35-968

lapgeigh 35-969

lapgeighv 35-971

lapgeigv 35-973

lapgsvdcst 35-974

lapgsvds 35-977

lapgsvdst 35-979

lapgschur 35-982

lapsvdcusv 35-987

lapsvds 35-989

lapsvdusv 35-990

ldl 35-992

ldlp 35-994

ldlsol 35-996

let 35-997

lib 35-1001

library 35-1005

#lineson, #linesoff 35-1009

linsolve 35-1010

Contents

listwise (dataloop) 35-1012

ln 35-1012

lncdfbvn 35-1013

lncdfbvn2 35-1014

lncdfmvn 35-1016

lncdfn 35-1017

lncdfn2 35-1018

lncdfnc 35-1020

lnfact 35-1021

lngammacplx 35-1023

lnpdfmvn 35-1024

lnpdfmvt 35-1025

lnpdfn 35-1026

lnpdft 35-1027

load, loadf, loadk, loadm, loadp, loads 35-1028

loadarray 35-1033

loadd 35-1035

loadstruct 35-1039

loadwind 35-1040

local 35-1041

locate 35-1041

TOC-30

GAUSS User Guide

TOC-31

loess 35-1042

loessmt 35-1044

loessmtControlCreate 35-1046

log 35-1047

loglog 35-1048

logx 35-1049

logy 35-1050

loopnextindex 35-1051

lower 35-1054

lowmat, lowmat1 35-1056

ltrisol 35-1057

lu 35-1058

lusol 35-1060

m 35-1061

machEpsilon 35-1061

make (dataloop) 35-1061

makevars 35-1062

makewind 35-1064

margin 35-1066

matalloc 35-1067

matinit 35-1068

Contents

mattoarray 35-1069

maxc 35-1070

maxindc 35-1071

maxv 35-1073

maxvec 35-1075

maxbytes 35-1076

mbesseli 35-1077

meanc 35-1080

median 35-1081

mergeby 35-1083

mergevar 35-1084

minc 35-1086

minindc 35-1087

minv 35-1089

miss, missrv 35-1090

missex 35-1093

moment 35-1095

momentd 35-1097

movingave 35-1101

movingaveExpwgt 35-1102

movingaveWgt 35-1103

TOC-32

GAUSS User Guide

TOC-33

msym 35-1104

n 35-1107

new 35-1107

nextindex 35-1108

nextn, nextnevn 35-1110

nextwind 35-1112

ntos 35-1112

null 35-1115

null1 35-1117

numCombinations 35-1118

o 35-1120

ols 35-1120

olsmt 35-1129

olsmtControlCreate 35-1140

olsqr 35-1141

olsqr2 35-1142

olsqrmt 35-1143

ones 35-1145

open 35-1146

optn, optnevn 35-1152

orth 35-1154

Contents

output 35-1156

outtyp (dataloop) 35-1159

outwidth 35-1160

p 35-1162

pacf 35-1162

packedToSp 35-1171

packr 35-1173

parse 35-1175

pause 35-1179

pdfBinomial 35-1179

pdfCauchy 35-1181

pdfexp 35-1182

pdfGenPareto 35-1183

pdfHyperGeo 35-1185

pdfLaplace 35-1187

pdflogistic 35-1188

pdfn 35-1189

pdfPoisson 35-1190

pdfRayleigh 35-1192

pdfWeibull 35-1193

pdfWishartInv 35-1194

TOC-34

GAUSS User Guide

TOC-35

pi 35-1196

pinv 35-1197

pinvmt 35-1199

plotAddArea 35-1200

plotAddArrow 35-1204

plotAddBar 35-1206

plotAddBox 35-1207

plotAddErrorBar 35-1208

plotAddHist 35-1216

plotAddHistF 35-1217

plotAddHistP 35-1218

plotAddPolar 35-1219

plotAddScatter 35-1220

plotAddShape 35-1221

plotAddSurface 35-1223

plotAddTextbox 35-1228

plotAddTS 35-1231

plotAddXY 35-1232

plotArea 35-1233

plotBar 35-1234

plotBox 35-1236

Contents

plotCDFEmpirical 35-1238

plotClearLayout 35-1241

plotContour 35-1243

plotCustomLayout 35-1246

plotGetDefaults 35-1247

plotHist 35-1249

plotHistF 35-1250

plotHistP 35-1250

plotLayout 35-1251

plotLogLog 35-1253

plotLogX 35-1253

plotLogY 35-1254

plotOpenWindow 35-1255

plotPolar 35-1256

plotSave 35-1257

plotScatter 35-1260

plotSetAxesPen 35-1261

plotSetBar 35-1262

plotSetBkdColor 35-1265

plotSetColorMap 35-1267

plotSetContourLabels 35-1270

TOC-36

GAUSS User Guide

TOC-37

plotSetFill 35-1273

plotSetGrid 35-1275

plotSetLegend 35-1276

plotSetLegendFont 35-1278

plotSetLineColor 35-1280

plotSetLineStyle 35-1281

plotSetLineSymbol 35-1282

plotSetLineThickness 35-1285

plotSetNewWindow 35-1286

plotSetTextInterpreter 35-1287

plotSetTitle 35-1292

plotSetWhichYAxis 35-1295

plotSetXLabel 35-1296

plotSetXRange 35-1299

plotSetXTicCount 35-1300

plotSetXTicInterval 35-1303

plotSetXTicLabel 35-1306

plotSetYLabel 35-1311

plotSetYRange 35-1314

plotSetYTicCount 35-1315

plotSetZLabel 35-1319

Contents

plotSetZLevels 35-1321

plotSurface 35-1325

plotTS 35-1327

plotXY 35-1331

polar 35-1332

polychar 35-1333

polyeval 35-1334

polygamma 35-1336

polyint 35-1339

polymake 35-1340

polymat 35-1342

polymroot 35-1343

polymult 35-1345

polyroot 35-1347

pop 35-1348

powerM 35-1349

pqgwin 35-1351

previousindex 35-1352

princomp 35-1353

print 35-1355

printdos 35-1366

TOC-38

GAUSS User Guide

TOC-39

printfm 35-1367

printfmt 35-1370

proc 35-1373

prodc 35-1375

psi 35-1376

putarray 35-1377

putf 35-1379

putvals 35-1380

pvCreate 35-1382

pvGetIndex 35-1383

pvGetParNames 35-1383

pvGetParVector 35-1385

pvLength 35-1387

pvList 35-1388

pvPack 35-1389

pvPacki 35-1390

pvPackm 35-1392

pvPackmi 35-1394

pvPacks 35-1396

pvPacksi 35-1398

pvPacksm 35-1400

Contents

pvPacksmi 35-1402

pvPutParVector 35-1405

pvTest 35-1407

pvUnpack 35-1407

q 35-1409

QNewton 35-1409

QNewtonmt 35-1412

QNewtonmtControlCreate 35-1418

QNewtonmtOutCreate 35-1419

QNewtonSet 35-1420

QProg 35-1420

QProgmt 35-1422

QProgmtInCreate 35-1425

qqr 35-1426

qqre 35-1428

qqrep 35-1431

qr 35-1433

qre 35-1435

qrep 35-1438

qrsol 35-1440

qrtsol 35-1441

TOC-40

GAUSS User Guide

TOC-41

qtyr 35-1443

qtyre 35-1446

qtyrep 35-1449

quantile 35-1451

quantiled 35-1454

qyr 35-1458

qyre 35-1460

qyrep 35-1462

qz 35-1464

r 35-1470

rank 35-1470

rankindx 35-1471

readr 35-1472

real 35-1474

reclassify 35-1475

reclassifyCuts 35-1478

recode 35-1483

recode (dataloop) 35-1486

recserar 35-1488

recsercp 35-1490

recserrc 35-1492

Contents

renamefile 35-1494

rerun 35-1495

rescale 35-1495

reshape 35-1501

retp 35-1503

return 35-1503

rev 35-1504

rfft 35-1506

rffti 35-1507

rfftip 35-1507

rfftn 35-1509

rfftnp 35-1511

rfftp 35-1513

rndBernoulli 35-1514

rndBeta 35-1516

rndCauchy 35-1519

rndChiSquare 35-1520

rndcon, rndmult, rndseed 35-1522

rndCreateState 35-1524

rndExp 35-1527

rndgam 35-1529

TOC-42

GAUSS User Guide

TOC-43

rndGamma 35-1530

rndGeo 35-1532

rndGumbel 35-1534

rndHyperGeo 35-1535

rndi 35-1538

rndKMbeta 35-1541

rndKMgam 35-1543

rndKMi 35-1544

rndKMn 35-1546

rndKMnb 35-1548

rndKMp 35-1550

rndKMu 35-1551

rndKMvm 35-1553

rndLaplace 35-1555

rndLCbeta 35-1557

rndLCgam 35-1559

rndLCi 35-1560

rndLCn 35-1563

rndLCnb 35-1565

rndLCp 35-1567

rndLCu 35-1569

Contents

rndLCvm 35-1572

rndLogNorm 35-1574

rndMVn 35-1575

rndMVt 35-1577

rndn 35-1579

rndnb 35-1581

rndNegBinomial 35-1583

rndp 35-1585

rndPoisson 35-1587

rndStateSkip 35-1588

rndu 35-1590

rndvm 35-1593

rndWeibull 35-1594

rndWishart 35-1595

rndWishartInv 35-1597

rotater 35-1598

round 35-1600

rows 35-1601

rowsf 35-1602

rref 35-1603

run 35-1605

TOC-44

GAUSS User Guide

TOC-45

s 35-1608

sampleData 35-1608

satostrC 35-1610

save 35-1613

saveall 35-1616

saved 35-1617

savestruct 35-1619

savewind 35-1620

scale 35-1621

scale3d 35-1622

scalerr 35-1623

scalinfnanmiss 35-1626

scalmiss 35-1627

schtoc 35-1628

schur 35-1630

screen 35-1633

searchsourcepath 35-1634

seekr 35-1635

select (dataloop) 35-1636

selif 35-1637

seqa, seqm 35-1639

Contents

setarray 35-1640

setdif 35-1642

setdifsa 35-1645

setvars 35-1646

setvwrmode 35-1647

setwind 35-1648

shell 35-1649

shiftr 35-1651

show 35-1653

sin 35-1656

singleindex 35-1657

sinh 35-1659

sleep 35-1660

solpd 35-1661

sortc, sortcc 35-1664

sortd 35-1666

sorthc, sorthcc 35-1667

sortind, sortindc 35-1669

sortmc 35-1670

sortr, sortrc 35-1672

spBiconjGradSol 35-1674

TOC-46

GAUSS User Guide

TOC-47

spChol 35-1677

spConjGradSol 35-1678

spCreate 35-1681

spDenseSubmat 35-1682

spDiagRvMat 35-1684

spEigv 35-1687

spEye 35-1690

spGetNZE 35-1691

spline 35-1693

spLDL 35-1694

spLU 35-1695

spNumNZE 35-1697

spOnes 35-1698

spreadSheetReadM 35-1700

spreadSheetReadSA 35-1702

spreadSheetWrite 35-1704

spScale 35-1707

spSubmat 35-1709

spToDense 35-1711

spTrTDense 35-1712

spTScalar 35-1713

Contents

spZeros 35-1714

sqpSolve 35-1716

sqpSolveMT 35-1723

sqpSolveMTControlCreate 35-1731

sqpSolveMTlagrangeCreate 35-1732

sqpSolveMToutCreate 35-1733

sqpSolveSet 35-1734

sqrt 35-1735

stdc 35-1736

stdsc 35-1738

stocv 35-1739

stof 35-1740

stop 35-1741

strcombine 35-1742

strindx 35-1744

strlen 35-1745

strput 35-1746

strrindx 35-1748

strjoin 35-1749

strsect 35-1751

strsplit 35-1753

TOC-48

GAUSS User Guide

TOC-49

strsplitPad 35-1757

strtodt 35-1758

strtof 35-1760

strtofcplx 35-1762

strtrim 35-1763

strtriml 35-1765

strtrimr 35-1766

strtrunc 35-1767

strtruncl 35-1768

strtruncpad 35-1769

strtruncr 35-1770

submat 35-1770

subscat 35-1772

substute 35-1776

subvec 35-1779

sumc 35-1781

sumr 35-1783

surface 35-1785

svd 35-1788

svd1 35-1790

svd2 35-1792

Contents

svdcusv 35-1795

svds 35-1798

svdusv 35-1801

sylvester 35-1804

sysstate 35-1806

system 35-1828

t 35-1830

tab 35-1830

tan 35-1831

tanh 35-1832

tempname 35-1833

ThreadBegin 35-1834

ThreadEnd 35-1835

threadfor, threadendfor 35-1836

ThreadJoin 35-1839

ThreadStat 35-1840

time 35-1841

timedt 35-1841

timestr 35-1842

timeutc 35-1843

title 35-1844

TOC-50

GAUSS User Guide

TOC-51

tkf2eps 35-1846

tkf2ps 35-1847

tocart 35-1848

todaydt 35-1848

toeplitz 35-1849

token 35-1850

topolar 35-1853

trace 35-1853

trap 35-1855

trapchk 35-1859

trigamma 35-1861

trimr 35-1862

trunc 35-1863

type 35-1865

typecv 35-1867

typef 35-1869

u 35-1871

union 35-1871

unionsa 35-1872

uniqindx 35-1873

uniqindxsa 35-1875

Contents

unique 35-1876

uniquesa 35-1882

upmat, upmat1 35-1883

upper 35-1885

use 35-1886

utctodt 35-1888

utctodtv 35-1889

utrisol 35-1891

v 35-1892

vals 35-1892

varCovM, varCovX 35-1894

varCovMS, varCovXS 35-1896

varget 35-1898

vargetl 35-1900

varmall 35-1902

varmares 35-1903

varput 35-1905

varputl 35-1906

vartypef 35-1908

vcm, vcx 35-1909

vcms, vcxs 35-1910

TOC-52

GAUSS User Guide

TOC-53

vec, vecr 35-1911

vech 35-1913

vector (dataloop) 35-1914

vget 35-1915

view 35-1916

viewxyz 35-1917

vlist 35-1918

vnamecv 35-1919

volume 35-1920

vput 35-1921

vread 35-1922

vtypecv 35-1923

w 35-1924

wait, waitc 35-1924

walkindex 35-1924

window 35-1926

writer 35-1927

x 35-1930

xlabel 35-1930

xlsGetSheetCount 35-1931

xlsGetSheetSize 35-1932

Contents

xlsGetSheetTypes 35-1935

xlsMakeRange 35-1937

xlsReadM 35-1939

xlsReadSA 35-1944

xlsWrite 35-1948

xlsWriteM 35-1952

xlsWriteSA 35-1955

xpnd 35-1958

xtics 35-1960

xy 35-1961

xyz 35-1962

y 35-1964

ylabel 35-1964

ytics 35-1965

z 35-1967

zeros 35-1967

zeta 35-1968

zlabel 35-1969

ztics 35-1970

36 Miscellaneous Topics 36-1

36.1 Change Log 36-1

TOC-54

GAUSS User Guide

TOC-55

36.2 Common Errors 36-8

36.3 Error Messages 36-13

36.4 GAUSS Graphics Colors 36-39

36.5 Obsolete Commands 36-42

36.6 Quick Reference 36-46

36.6.1 Basic functions 36-46

36.6.2 Matrix creation 36-47

36.6.3 Matrix manipulation 36-49

36.6.4 Operators 36-51

36.6.5 String creation 36-54

36.6.6 String array manipulation 36-54

36.6.7 Loading and saving data 36-55

36.7 Reserved Words 36-57

Contents

33 Command Reference Introduction

The GAUSS LANGUAGEREFERENCE describes each of the commands, procedures and
functions available in the GAUSSTM programming language. These functions can be
divided into four categories:

l Mathematical, statistical and scientific functions.
l Data handling routines, including data matrix manipulation and description
routines, and file I/O.

l Programming statements, including branching, looping, display features, error
checking, and shell commands.

l Graphics functions.

The first category contains those functions to be expected in a high level mathematical
language: trigonometric functions and other transcendental functions, distribution func-
tions, random number generators, numerical differentiation and integration routines, Four-
ier transforms, Bessel functions and polynomial evaluation routines. And, as a matrix
programming language, GAUSS includes a variety of routines that perform standard mat-
rix operations. Among these are routines to calculate determinants, matrix inverses,
decompositions, eigenvalues and eigenvectors, and condition numbers.

Data handling routines include functions which return dimensions of matrices, and
information about elements of data matrices, including functions to locate values lying in
specific ranges or with certain values. Also under data handling routines fall all those
functions that create, save, open and read from and write to GAUSS data sets and

33-1

C
om

m
and

R
eference

Introduction

GAUSS Data Archives. A variety of sorting routines which will operate on both
numeric and character data are also available.

Programming statements are all of the commands that make it possible to write complex
programs in GAUSS. These include conditional and unconditional branching, looping,
file I/O, error handling, and system-related commands to execute OS shells and access
directory and environment information.

The graphics functions of GAUSS Publication Quality Graphics (PQG) are a set of
routines built on the graphics functions in GraphiC by Scientific Endeavors Corporation.
GAUSS PQG consists of a set of main graphing procedures and several additional pro-
cedures and global variables for customizing the output.

33.1 Documentation Conventions 33-2

33.2 Command Components 33-3

33.3 Using This Manual 33-5

33.4 Global Control Variables 33-6

33.4.1 Changing the Default Values 33-6

33.4.2 The Procedure gausset 33-7

33.1 Documentation Conventions

The following table describes how text formatting is used to identify GAUSS pro-
gramming elements:

Text Style Use Example
regular text narrative "... text formatting is

used ..."
bold text emphasis "...not supported

under UNIX."

33-2

Command Reference Introduction

C
om

m
an
d
R
ef
er
en
ce

In
tr
od
uc
tio
n

33-3

italics variables "... If vnames is a
string or has fewer
elements than x has
columns, it will be ..."

monospace code example if scalerr(cm);
cm = inv(x);

endif;

monospace filename, path, etc. "...is located in the
examples
subdirectory..."

monospace
bold

reference to a GAUSS
command or other
programming element
within a narrative paragraph

"...as explained under
plotScatter..."

Bold Text reference to section of the
manual

"...see Operator
Precedence, Section 1.1
..."

33.2 Command Components

The following list describes each of the components used in the COMMAND
REFERENCE, CHAPTER 35 .

Purpose

Describes what the command or function does.

Library

Lists the library that needs to be activated to access the function.

Command Reference Introduction

C
om

m
and

R
eference

Introduction

Include

Lists files that need to be included to use the function.

Format

Illustrates the syntax of the command or function.

Input

Describes the input parameters of the function.

Global Input

Describes the global variables that are referenced by the function.

Output

Describes the return values of the function.

Global Output

Describes the global variables that are updated by the function.

Portability

Describes differences under various operating systems.

Remarks

Explanatory material pertinent to the command.

Example

Sample code using the command or function.

33-4

Command Reference Introduction

C
om

m
an
d
R
ef
er
en
ce

In
tr
od
uc
tio
n

33-5

Source

The source file in which the function is defined, if applicable.

Globals

Global variables that are accessed by the command.

See Also

Other related commands.

Technical Notes

Technical discussion and reference source citations.

References

Reference material citations.

33.3 Using This Manual

Users who are new to GAUSS should make sure they have familiarized themselves with
LANGUAGE FUNDAMENTALS, Chapter 9, before proceeding here. That chapter contains
the basics of GAUSS programming.

In all, there are over 800 routines described in this GAUSS LANGUAGEREFERENCE. We
suggest that new GAUSS users skim through COMMANDS BY CATEGORY, CHAPTER 34
, and then browse through COMMAND REFERENCE, CHAPTER 35 , the main part of this
manual. Here, users can familiarize themselves with the kinds of tasks that GAUSS can
handle easily.

Chapter 34 gives a categorical listing of all functions in this GAUSS LANGUAGE
REFERENCE and a short discussion of the functions in each category. Complete syntax,
description of input and output arguments, and general remarks regarding each function
are given in Chapter 35 .

Command Reference Introduction

C
om

m
and

R
eference

Introduction

If a function is an "extrinsic" (that is, part of the Run-Time Library), its source code
can be found on the src subdirectory. The name of the file containing the source code
is given in Chapter 35 under the discussion of that function.

33.4 Global Control Variables

Several GAUSS functions use global variables to control various aspects of their per-
formance. The files gauss.ext, gauss.dec and gauss.lcg contain the
external statements, declare statements, and library references to these globals.
All globals used by the GAUSS Run-Time Library begin with an underscore '_'.

Default values for these common globals can be found in the file gauss.dec, located
on the src subdirectory. The default values can be changed by editing this file.

33.4.1 Changing the Default Values 33-6

33.4.2 The Procedure gausset 33-7

33.4.1 Changing the Default Values

To permanently change the default setting of a common global, two files need to be
edited: gauss.dec and gauss.src.

To change the value of the common global __output from 1 to 0, for example, edit the
file gauss.dec and change the statement

declare matrix __output = 1;

so it reads:

declare matrix __output = 0;

Also, edit the procedure gausset, located in the file gauss.src, and modify the
statement

33-6

Command Reference Introduction

C
om

m
an
d
R
ef
er
en
ce

In
tr
od
uc
tio
n

33-7

__output = 1;

similarly.

33.4.2 The Procedure gausset

The global variables affect your program, even if you have not set them directly in a par-
ticular command file. If you have changed them in a previous run, they will retain their
changed values until you exit GAUSS or execute the new command.

The procedure gausset will reset the Run-Time Library globals to their default val-
ues.

gausset;

If your program changes the values of these globals, you can use gausset to reset
them whenever necessary. gausset resets the globals as a whole; you can write your
own routine to reset specific ones.

Command Reference Introduction

C
om

m
and

R
eference

Introduction

34 Commands by Category

34.1 Mathematical Functions 34-4

34.1.1 Scientific Functions 34-4

34.1.2 Differentiation and Integration 34-6

34.1.3 Linear Algebra 34-8

34.1.4 Eigenvalues 34-13

34.1.5 Polynomial Operations 34-13

34.1.6 Fourier Transforms 34-14

34.1.7 Random Numbers 34-14

34.1.8 Fuzzy Conditional Functions 34-17

34.1.9 Statistical Functions 34-19

34.1.10 Optimization and Solution 34-23

34.1.11 Statistical Distributions 34-25

34.1.12 Series and Sequence Functions 34-29

34.1.13 Precision Control 34-30

34-1

C
om

m
ands

by
C
ategory

34.2 Finance Functions 34-30

34.3 Matrix Manipulation 34-32

34.3.1 Creating Vectors and Matrices 34-32

34.3.2 Loading and Storing Matrices 34-33

34.3.3 Size, Ranking, and Range 34-34

34.3.4 Miscellaneous Matrix Manipulation 34-35

34.4 Sparse Matrix Handling 34-38

34.5 N-Dimensional Array Handling 34-40

34.5.1 Creating Arrays 34-40

34.5.2 Size, Ranking and Range 34-40

34.5.3 Setting and Retrieving Data in an Array 34-41

34.5.4 Miscellaneous Array Functions 34-42

34.6 Structures 34-42

34.7 Data File Reading/Writing 34-44

34.7.1 Spreadsheets 34-44

34.7.2 CSV Files 34-45

34.7.3 Text Files 34-45

34.7.4 HDF 5 Files 34-46

34.7.5 Database 34-46

34.8 Compiler Control 34-61

34.9 Multi-Threading 34-63

34-2

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-3

34.10 Program Control 34-64

34.10.1 Execution Control 34-64

34.10.2 Branching 34-64

34.10.3 Looping 34-65

34.10.4 Subroutines 34-66

34.10.5 Procedures, Keywords, and Functions 34-66

34.10.6 Libraries 34-67

34.10.7 Compiling 34-67

34.10.8 Miscellaneous Program Control 34-68

34.11 OS Functions and File Management 34-69

34.12 Workspace Management 34-70

34.13 Error Handling and Debugging 34-70

34.14 String Handling 34-71

34.15 Time and Date Functions 34-75

34.16 Console I/O 34-77

34.17 Output Functions 34-78

34.17.1 Text Output 34-78

34.17.2 DOS Compatibility Windows 34-79

34.18 GAUSS Graphics 34-80

34.18.1 Graph Types 34-80

34.18.2 Adding Data to Existing Graphs 34-81

Commands by Category

C
om

m
ands

by
C
ategory

34.18.3 Plot Control 34-82

34.18.4 Annotation Control 34-84

34.19 PQG Graphics 34-85

34.19.1 Graph Types 34-85

34.19.2 Axes Control and Scaling 34-86

34.19.3 Text, Labels, Titles, and Fonts 34-87

34.19.4 Main Curve Lines and Symbols 34-87

34.19.5 Extra Lines and Symbols 34-88

34.19.6 Graphic Panel, Page, and Plot Control 34-88

34.19.7 Output Options 34-89

34.19.8 Miscellaneous 34-90

34.1 Mathematical Functions

34.1.1 Scientific Functions

abs Returns absolute value of argument.
arccos Computes inverse cosine.
arcsin Computes inverse sine.
atan Computes inverse tangent.
atan2 Computes angle given a point x,y.
besselj Computes Bessel function, first kind.
bessely Computes Bessel function, second kind.
beta Computes the complete Beta function, also called the

Euler integral.

34-4

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-5

boxcox Computes the Box-Cox function.
cos Computes cosine.
cosh Computes hyperbolic cosine.
curve Computes a one-dimensional smoothing curve.
digamma Computes the digamma function.
exp Computes the exponential function of x.
fmod Computes the floating-point remainder of x/y.
gamma Computes gamma function value.
gammacplx Computes gamma function for complex inputs.
gammaii Compute the inverse incomplete gamma function.
ln Computes the natural log of each element.
lnfact Computes natural log of factorial function.
lngammacplx Computes the natural log of the gamma function for

complex inputs.
log Computes the log of each element.
mbesseli Computes modified and exponentially scaled modified

Bessels of the first kind of the nth order.
nextn,
nextnevn

Returns allowable matrix dimensions for computing
FFT's.

optn,
optnevn

Returns optimal matrix dimensions for computing
FFT's.

pi Returns π.
polar Graphs data using polar coordinates.
polygamma Computes the polygamma function of order n.
psi Computes the psi (or digamma) function.
sin Computes sine.
sinh Computes the hyperbolic sine.
spline Computes a two-dimensional interpolatory spline.

Commands by Category

C
om

m
ands

by
C
ategory

sqrt Computes the square root of each element.
tan Computes tangent.
tanh Computes hyperbolic tangent.
tocart Converts from polar to Cartesian coordinates.
topolar Converts from Cartesian to polar coordinates.
trigamma Computes trigamma function.
zeta Computes the Rieman zeta function.

All trigonometric functions take or return values in radian units.

34.1.2 Differentiation and Integration

gradMT Computes numerical gradient.
gradMTm Computes numerical gradient with mask.
gradMTT Computes numerical gradient using

available threads.
gradMTTm Computes numerical gradient with mask

using available threads.
gradp, gradcplx Computes first derivative of a function;

gradcplx allows for complex arguments.

hessMT Computes numerical Hessian.
hessMTg Computes numerical Hessian using gradient

procedure.
hessMTgw Computes numerical Hessian using gradient

procedure with weights.
hessMTm Computes numerical Hessian with mask.
hessMTmw Computes numerical Hessian with mask

and weights.
hessMTT Computes numerical Hessian using

34-6

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-7

available threads.
hessMTTg Computes numerical Hessian using gradient

procedure with available threads.
hessMTTgw Computes numerical Hessian using gradient

procedure with weights and using available
threads.

hessMTTm Computes numerical Hessian with mask
and available threads.

hessMTw Computes numerical Hessian with weights.
hessp, hesscplx Computes second derivative of a function;

hesscplx allows for complex arguments.

integrate1d Integrates a user-defined function over a
user-defined range, using adaptive
quadrature.

intgrat2 Integrates a 2-dimensional function over an
user-defined region.

intgrat3 Integrates a 3-dimensional function over an
user-defined region.

inthp1 Integrates an user-defined function over an
infinite interval.

inthp2 Integrates an user-defined function over the
[a, +∞) interval.

inthp3 Integrates an user-defined function over the
[a, +∞) interval that is oscillatory.

inthp4 Integrates an user-defined function over the
[a, b] interval.

inthpControlCreate Creates default inthpControl structure.
intquad1 Integrates a 1-dimensional function.

Commands by Category

C
om

m
ands

by
C
ategory

intquad2 Integrates a 2-dimensional function over an
user-defined rectangular region.

intquad3 Integrates a 3-dimensional function over an
user-defined rectangular region.

intsimp Integrates by Simpson's method.

gradp and hessp use a finite difference approximation to compute the first and
second derivatives. Use gradp to calculate a Jacobian.

intquad1, intquad2, and intquad3 use Gaussian quadrature to calculate
the integral of the user-defined function over a rectangular region.

To calculate an integral over a region defined by functions of x and y, use
intgrat2 and intgrat3.

In most cases, integrate1d will provide the greatest accuracy and fastest
performance for 1 dimensional integration. In some cases intquad1 will be
faster, but with a loss of accuracy. intsimp is in between the other two with
regards to speed and accuracy.

34.1.3 Linear Algebra

balance Balances a matrix.
band Extracts bands from a symmetric banded matrix.
bandchol Computes the Cholesky decomposition of a positive

definite banded matrix.
bandcholsol Solves the system of equations Ax = b for x, given the

lower triangle of the Cholesky decomposition of a
positive definite banded matrix A.

bandltsol Solves the system of equations Ax = b for x, where A
is a lower triangular banded matrix

bandrv Creates a symmetric banded matrix, given its compact
form.

34-8

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-9

bandsolpd Solves the system of equations Ax = b for x, where A
is a positive definite banded matrix.

chol Computes Cholesky decomposition, X=Y`Y.
choldn Performs Cholesky downdate on an upper triangular

matrix.
cholsol Solves a system of equations given the Cholesky

factorization of a matrix.
cholup Performs Cholesky update on an upper triangular

matrix.
cond Computes condition number of a matrix.
crout Computes Crout decomposition, X = LU (real matrices

only).
croutp Computes Crout decomposition with row pivoting

(real matrices only).
det Computes determinant of square matrix.
detl Computes determinant of decomposed matrix.
hess Computes upper Hessenberg form of a matrix (real

matrices only).
inv Inverts a matrix.
invpd Inverts a positive definite matrix.
invswp Computes a generalized sweep inverse.
lapeighb Computes eigenvalues only of a real symmetric or

complex Hermitian matrix selected by bounds.
lapeighi Computes eigenvalues only of a real symmetric or

complex Hermitian matrix selected by index.
lapeighvb Computes eigenvalues and eigenvectors of a real

symmetric or complex Hermitian matrix selected by
bounds.

lapeighvi Computes selected eigenvalues and eigenvectors of a

Commands by Category

C
om

m
ands

by
C
ategory

Hermitian matrix.
lapgeig Computes generalized eigenvalues for a pair of real or

complex general matrices.
lapgeigh Computes generalized eigenvalues for a pair of real

symmetric or Hermitian matrices.
lapgeighv Computes generalized eigenvalues and eigenvectors

for a pair of real symmetric or Hermitian matrices.
lapgeigv Computes generalized eigenvalues, left eigenvectors,

and right eigenvectors for a pair of real or complex
general matrices.

lapgschur Computes the generalized Schur form of a pair of real
or complex general matrices.

lapgsvdcst Computes the generalized singular value
decomposition of a pair of real or complex general
matrices.

lapgsvds Computes the generalized singular value
decomposition of a pair of real or complex general
matrices.

lapgsvdst Computes the generalized singular value
decomposition of a pair of real or complex general
matrices.

lapsvdcusv Computes the singular value decomposition a real or
complex rectangular matrix, returns compact u and v.

lapsvds Computes the singular values of a real or complex
rectangular matrix.

lapsvdusv Computes the singular value decomposition a real or
complex rectangular matrix.

ldl Computes the L and D factors of the LDL factorization
of a real symmetric matrix.

ldlp Computes LDL decomposition with row pivoting of a

34-10

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-11

symmetric matrix.
ldlsol Computes Solves the system of equations LDLTx = b

using a matrix factorized by ldlp.
lu Computes LU decomposition with row pivoting (real

and complex matrices).
lusol Computes Solves the system of equations LUx = b.
null Computes orthonormal basis for right null space.
null1 Computes orthonormal basis for right null space.
orth Computes orthonormal basis for column space x.
pinv Generalized pseudo-inverse: Moore-Penrose.
pinvmt Generalized pseudo-inverse: Moore-Penrose.
powerM Computes the power n of a matrix A, as the matrix

product of n copies of A.
qqr QR decomposition: returns Q1 and R.
qqre QR decomposition: returns Q1, R and a permutation

vector, E.
qqrep QR decomposition with pivot control: returns Q1, R,

and E.
qr QR decomposition: returns R.
qre QR decomposition: returns R and E.
qrep QR decomposition with pivot control: returns R and E.
qrsol Solves a system of equations R'x = b given an upper

triangular matrix, typically the R matrix from a QR
decomposition.

qrtsol Solves a system of equations R'x = b given an upper
triangular matrix, typically the R matrix from a QR
decomposition.

qtyr QR decomposition: returns Q'Y and R.
qtyre QR decomposition: returns Q'Y, R and E.

Commands by Category

C
om

m
ands

by
C
ategory

qtyrep QR decomposition with pivot control: returns Q'Y, R
and E.

qyr QR decomposition: returns QY and R.
qyre QR decomposition: returns QY, R and E.
qyrep QR decomposition with pivot control: returns QY, R

and E.
qz Compute the complex QZ, or generalized Schur, form

of a pair of real or complex general matrices with an
option to sort the eigenvalues.

rank Computes rank of a matrix.
rref Computes reduced row echelon form of a matrix.
schtoc Reduces any 2x2 blocks on the diagonal of the real

Schur form of a matrix returned from schur. The
transformation matrix is also updated.

schur Computes real or complex Schur decomposition of a
matrix.

solpd Solves a system of positive definite linear equations.
svd Computes the singular values of a matrix.
svd1 Computes singular value decomposition, X = USV'.
svd2 Computes svd1 with compact U.
svdcusv Computes the singular value decomposition of a matrix

so that: x = u * s * v' (compact u).
svds Computes the singular values of a matrix.
svdusv Computes the singular value decomposition of a matrix

so that: x = u * s * v'.
sylvester Computes the solution to the Sylvester matrix equation,

AX + XB = C.

34-12

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-13

The decomposition routines are chol for Cholesky decomposition, crout and
croutp for Crout decomposition, qqr-qyrep for QR decomposition, and svd-
svdusv for singular value decomposition.

null, null1, and orth calculate orthonormal bases.

inv, invpd, solpd, cholsol, qrsol and the ''/'' operator can all be used
to solve linear systems of equations.

rank and rref will find the rank and reduced row echelon form of a matrix.

det, detl and cond will calculate the determinant and condition number of a
matrix.

34.1.4 Eigenvalues

eig Computes eigenvalues of general matrix.
eigh Computes eigenvalues of complex Hermitian or real symmetric

matrix.
eighv Computes eigenvalues and eigenvectors of complex Hermitian

or real symmetric matrix.
eigv Computes eigenvalues and eigenvectors of general matrix.

There are four eigenvalue-eigenvector routines. Two calculate eigenvalues only,
and two calculate eigenvalues and eigenvectors. The three types of matrices
handled by these routines are:

General: eig, eigv
Symmetric or Hermitian: eigh, eighv

34.1.5 Polynomial Operations

polychar Computes characteristic polynomial of a square matrix.
polyeval Evaluates polynomial with given coefficients.
polyint Calculates Nth order polynomial interpolation given known

point pairs.

Commands by Category

C
om

m
ands

by
C
ategory

polymake Computes polynomial coefficients from roots.
polymat Returns sequence powers of a matrix.
polymult Multiplies two polynomials together.
polyroot Computes roots of polynomial from coefficients.

See also recserrc, recsercp, and conv.

34.1.6 Fourier Transforms

dfft Computes discrete 1-D FFT.
dffti Computes inverse discrete 1-D FFT.
fft Computes 1- or 2-D FFT.
ffti Computes inverse 1- or 2-D FFT.
fftm Computes multi-dimensional FFT.
fftmi Computes inverse multi-dimensional FFT.
fftn Computes 1- or 2-D FFT using prime factor algorithm.
rfft Computes real 1- or 2-D FFT.
rffti Computes inverse real 1- or 2-D FFT.
rfftip Computes inverse real 1- or 2-D FFT from packed format

FFT.
rfftn Computes real 1- or 2-D FFT using prime factor algorithm.
rfftnp Computes real 1- or 2-D FFT using prime factor algorithm,

returns packed format FFT.
rfftp Computes real 1- or 2-D FFT, returns packed format FFT.

34.1.7 Random Numbers

rndBernoulli Computes random numbers with Bernoulli
distribution.

rndBeta Computes random numbers with beta distribution.

34-14

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-15

rndCauchy Computes Cauchy distributed random numbers
with a choice of underlying random number
generator.

rndChiSquare Creates pseudo-random numbers with a chi-
squared distribution, with an optional non-
centrality parameter and a choice of underlying
random number generator.

rndCreateState Creates a new random number stream for a
specified generator type from a seed value.

rndExp Computes exponentially distributed random
numbers with a choice of underlying random
number generator.

rndGamma Computes gamma pseudo-random numbers with a
choice of underlying random number generator.

rndGeo Computes geometric pseudo-random numbers
with a choice of underlying random number
generator.

rndGumbel Computes Gumbel distributed random numbers
with a choice of underlying random number
generator.

rndHyperGeo Computes pseudo-random numbers following a
hypergeometric distribution with a choice of
underlying random number generator.

rndi Returns random integers, 0 <= y < 232.
rndKMbeta Returns uniformly distributed random integers

over a user specified range.
rndKMgam Computes gamma pseudo-random numbers.
rndKMi Returns random integers, 0 <= y < 232.
rndKMn Computes standard normal pseudo-random

numbers.

Commands by Category

C
om

m
ands

by
C
ategory

rndKMnb Computes negative binomial pseudo-random
numbers.

rndKMp Computes Poisson pseudo-random numbers.
rndKMu Computes uniform pseudo-random numbers.
rndKMvm Computes von Mises pseudo-random numbers.
rndLaplace Computes Laplacian pseudo-random numbers

with the choice of underlying random number
generator.

rndLogNorm Computes lognormal pseudo-random numbers
with the choice of underlying random number
generator.

rndMVn Computes multivariate normal random numbers
given a covariance matrix.

rndMVt Computes multivariate Student-t random numbers
given a covariance matrix.

rndn Computes normally distributed pseudo-random
numbers with a choice of underlying random
number generator.

rndNegBinomial Computes negative binomial pseudo-random
numbers with a choice of underlying random
number generator.

rndPoisson Computes Poisson pseudo-random numbers with
a choice of underlying random number generator.

rndseed Changes seed of the LC random number
generator.

rndStateSkip To advance a state vector by a specified number
of values.

rndu Computes uniform random numbers with a choice
of underlying random number generator.

34-16

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-17

rndWeibull Computes Weibull pseudo-random numbers with
the choice of underlying random number
generator.

rndWishart Computes Wishart pseudo-random matrices with
the choice of underlying random number
generator.

rndWishartInv Computes inverse Wishart pseudo-random
matrices with the choice of underlying random
number generator.

The random number generator can be seeded. Set the seed using rndseed. For
example:

rndseed 44435667;
x = rndu(1,1);

34.1.8 Fuzzy Conditional Functions

dot Returns
a scalar
dot
product
of the
columns
of two
matrices.

dotfeq Fuzzy
.==

dotfeqmt Fuzzy
.==

dotfge Fuzzy
.>=

Commands by Category

C
om

m
ands

by
C
ategory

dotfgemt Fuzzy .>
dotfgt Fuzzy .>
dotfgtmt Fuzzy .>
dotfle Fuzzy

.<=
dotflemt Fuzzy

.<=
dotflt Fuzzy .<
dotfltmt Fuzzy .<
dotfne Fuzzy

./=
dotfnemt Fuzzy

./=
feq Fuzzy

==
feqmt Fuzzy

==
fge Fuzzy

>=
fgemt Fuzzy

>=
fgt Fuzzy >
fgtmt Fuzzy >
fle Fuzzy

<=
flemt Fuzzy

<=
flt Fuzzy <

34-18

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-19

fltmt Fuzzy <
fne Fuzzy /=
fnemt Fuzzy /=

The mt commands use an fcmptol argument to control the tolerance used for
comparison.

The non-mt commands use the global variable _fcmptol to control the
tolerance used for comparison. By default, this is 1e-15. The default can be
changed by editing the file fcompare.dec.

34.1.9 Statistical Functions

acf Computes sample autocorrelations.
astd Computes the standard deviation of the

elements across one dimension of an N-
dimensional array.

astds Computes the 'sample' standard
deviation of the elements across one
dimension of an N-dimensional array.

chiBarSquare Computes probability of chi-bar-square
statistic.

combinate Computes combinations of n things
taken k at a time.

combinated Writes combinations of n things taken k
at a time to a GAUSS data set.

conScore Computes constrained score statistic and
its probability.

conv Computes convolution of two vectors.
corrm Computes correlation matrix of a

moment matrix.
corrms Computes sample correlation matrix of a

Commands by Category

C
om

m
ands

by
C
ategory

moment matrix.
corrvc Computes correlation matrix from a

variance- covariance matrix.
corrx Computes correlation matrix.
corrxs Computes sample correlation matrix.
crossprd Computes cross product.
design Creates a design matrix of 0's and 1's.
dstatmt Computes descriptive statistics of a data

set or matrix.
dot Computes a scalar dot product of the

columns of two matrices.
dstatmtControlCreate Creates default dstatmtControl

structure.
gdaDStat Computes descriptive statistics on

multiple Nx1 variables in a GDA.
gdaDStatMat Computes descriptive statistics on a

selection of columns in a variable in a
GDA.

glm Computes generalized linear regression
of a matrix.

loess Computes coefficients of locally
weighted regression.

loessmt Computes coefficients of locally
weighted regression.

loessmtControlCreate Creates default loessmtControl
structure.

meanc Computes mean value of each column of
a matrix.

median Computes medians of the columns of a

34-20

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-21

matrix.
moment Computes moment matrix (x'x) with

special handling of missing values.
momentd Computes moment matrix from a data

set.
movingave Computes moving average of a series.
movingaveExpwgt Computes exponentially weighted

moving average of a series.
movingaveWgt Computes weighted moving average of

a series.
numCombinations Computes number of combinations of

n things taken k at a time.
ols Computes least squares regression of

data set or matrix.
olsmt Computes least squares regression of

data set or matrix.
olsmtControlCreate Creates default olsmtControl structure.
olsqr Computes OLS coefficients using QR

decomposition.
olsqr2 Computes OLS coefficients, residuals,

and predicted values using QR
decomposition.

olsqrmt Computes OLS coefficients using QR
decomposition.

pacf Computes sample partial
autocorrelations.

princomp Computes principal components of a
data matrix.

quantile Computes quantiles from data in a

Commands by Category

C
om

m
ands

by
C
ategory

matrix, given specified probabilities.
quantiled Computes quantiles from data in a data

set, given specified probabilities.
rndvm Computes von Mises pseudo-random

numbers.
stdc Computes standard deviation of the

columns of a matrix.
stdsc Computes the 'sample' standard

deviation of the elements in each column
of a matrix.

toeplitz Computes Toeplitz matrix from column
vector.

varCovM Computes the population variance-
covariance matrix from a moment
matrix.

varCovMS Computes a sample variance-covariance
matrix from a moment matrix.

varCovX Computes the population variance-
covariance matrix from a data matrix.

varCovXS Computes a sample variance-covariance
matrix from a data matrix.

varmall Computes the log-likelihood of a Vector
ARMA model.

varmares Computes the residuals of a Vector
ARMA model.

vcm Computes a variance-covariance matrix
from a moment matrix.

vcms Computes a sample variance-covariance
matrix from a moment matrix.

34-22

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-23

vcx Computes a variance-covariance matrix
from a data matrix.

vcxs Computes a sample variance-covariance
matrix from a data matrix.

Advanced statistics and optimization routines are available in the GAUSS
Applications programs. (Contact Aptech Systems for more information.)

34.1.10 Optimization and Solution

eqSolve Solves a system of nonlinear
equations.

eqSolvemt Solves a system of nonlinear
equations.

eqSolvemtControlCreate Creates default
eqSolvemtControl structure.

eqSolvemtOutCreate Creates default eqSolvemtOut
structure.

eqSolveSet Sets global input used by
eqSolve to default values.

ldlsol Solves LDLTx = b using a matrix
factorized by ldlp.

linsolve Solves Ax = b using the inverse
function.

ltrisol Computes the solution of Lx = b
where L is a lower triangular
matrix.

lusol Computes the solution of LUx = b
where L is a lower triangular
matrix and U is an upper
triangular matrix.

Commands by Category

C
om

m
ands

by
C
ategory

QNewton Optimizes a function using the
BFGS descent algorithm.

QNewtonmt Minimizes an arbitrary function.
QNewtonmtControlCreate Creates default

QNewtonmtControl structure.
QNewtonmtOutCreate Creates defaultQNewtonmtOut

structure.
QProg Solves the quadratic programming

problem.
QProgmt Solves the quadratic programming

problem.
QProgmtInCreate Creates an instance of a structure

of type QProgmtInCreate
with the maxit member set to a
default value.

sqpSolve Solves the nonlinear programming
problem using a sequential
quadratic programming method.

sqpSolveMT Solves the nonlinear programming
problem using a sequential
quadratic programming method.

sqpSolveMTControlCreate Creates an instance of a structure
of type sqpSolveMTcontrol
set to default values.

sqpSolveMTlagrangeCreate Creates an instance of a structure
of type
sqpSolveMTlagrange set to
default values.

sqpSolveMToutCreate Creates an instance of a structure
of type sqpSolveMTout set to

34-24

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-25

default values.
sqpSolveSet Resets global variables used by

sqpSolve to default values.
utrisol Computes the solution of Ux = b

where U is an upper triangular
matrix.

34.1.11 Statistical Distributions

cdfBeta Computes integral of beta function.
cdfBetaInv Computes the quantile or inverse of the beta

cumulative distribution function.
cdfBinomial Computes the binomial cumulative

distribution function.
cdfBinomialInv Computes the binomial quantile or inverse

cumulative distribution function.
cdfBvn Computes lower tail of bivariate Normal cdf.
cdfBvn2 Returns cdfbvn of a bounded rectangle.
cdfBvn2e Returns cdfbvn of a bounded rectangle.
cdfCauchy Computes the cumulative distribution

function for the Cauchy distribution.
cdfCauchyinv Computes the Cauchy inverse cumulative

distribution function.
cdfChic Computes complement of cdf of χ2.
cdfChii Computes χ2 abscissae values given

probability and degrees of freedom.
cdfChinc Computes integral of noncentral χ2.
cdfEmpirical Computes the cumulative distribution

function for the empirical distribution.

Commands by Category

C
om

m
ands

by
C
ategory

cdfExp Computes the cumulative distribution
function for the exponential distribution.

cdfExpInv Computes the exponential inverse cumulative
distribution function.

cdfFc Computes complement of cdf of F.
cdfFnc Computes integral of noncentral F.
cdfFncInv Computes the quantile or inverse of

noncentral F cumulative distribution function.
cdfGam Computes integral of incomplete Γ function.
cdfGenPareto Computes the cumulative distribution

function for the Generalized Pareto
distribution.

cdfHyperGeo Computes the cumulative distribution
function of the hypergeometric distribution.

cdfLaplace Computes the cumulative distribution
function for the Laplace distribution.

cdfLaplaceInv Computes the Laplace inverse cumulative
distribution function.

cdfMvn Computes multivariate Normal cdf.
cdfMvnce Computes the complement of the multivariate

Normal cumulative distribution function with
error management

cdfMvne Computes multivariate Normal cumulative
distribution function with error management

cdfMvn2e Computes the multivariate Normal
cumulative distribution function with error
management over the range [a,b]

cdfMvtce Computes complement of multivariate
Student's t cumulative distribution function

34-26

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-27

with error management
cdfMvte Computes multivariate Student's t cumulative

distribution function with error management
cdfMvt2e Computes multivariate Student's t cumulative

distribution function with error management
over [a,b]

cdfN Computes integral of Normal distribution:
lower tail, or cdf.

cdfN2 Computes interval of Normal cdf.
cdfNc Computes complement of cdf of Normal

distribution (upper tail).
cdfNegBinomial Computes the cumulative distribution

function for the negative binomial
distribution.

cdfNegBinomialInv Computes the quantile or inverse negative
binomial cumulative distribution function.

cdfNi Computes the inverse of the cdf of the
Normal distribution.

cdfPoisson Computes the Poisson cumulative distribution
function.

cdfPoissonInv Computes the quantile or inverse Poisson
cumulative distribution function.

cdfRayleigh Computes the Rayleigh cumulative
distribution function.

cdfRayleighInv Computes the Rayleigh inverse cumulative
distribution function.

cdfTc Computes complement of cdf of t-
distribution.

cdfTci Computes the inverse of the complement of

Commands by Category

C
om

m
ands

by
C
ategory

the Student's t cdf.
cdfTnc Computes integral of noncentral t-

distribution.
cdfTvn Computes lower tail of trivariate Normal cdf.
cdfWeibull Computes the cumulative distribution

function for the Weibull distribution.
cdfWeibullInv Computes the Weibull inverse cumulative

distribution function.
erf Computes Gaussian error function.
erfc Computes complement of Gaussian error

function.
erfccplx Computes complement of Gaussian error

function for complex inputs.
erfcplx Computes Gaussian error function for

complex inputs.
lncdfbvn Computes natural log of bivariate Normal

cdf.
lncdfbvn2 Returns log of cdfbvn of a bounded

rectangle.
lncdfmvn Computes natural log of multivariate Normal

cdf.
lncdfn Computes natural log of Normal cdf.
lncdfn2 Computes natural log of interval of Normal

cdf.
lncdfnc Computes natural log of complement of

Normal cdf.
lnpdfmvn Computes multivariate Normal log-

probabilities.
lnpdfmvt Computes multivariate Student's t log-

34-28

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-29

probabilities.
lnpdfn Computes Normal log-probabilities.
lnpdft Computes Student's t log-probabilities.
pdfBinomial Computes the probability mass function for

the binomial distribution.
pdfCauchy Computes the probability density function for

the Cauchy distribution.
pdfexp Computes the probability density function for

the exponential distribution.
pdfGenPareto Computes the probability density function for

the Generalized Pareto distribution.
pdfHyperGeo Computes the probability mass function for

the hypergeometric distribution.
pdfLaplace Computes the probability density function for

the Laplace distribution.
pdflogistic Computes the probability density function for

the logistic distribution.
pdfn Computes standard Normal probability

density function.
pdfPoisson Computes the probability mass function for

the Poisson distribution.
pdfRayleigh Computes the probability density function of

the Rayleigh distribution.
pdfWeibull Computes the probability density function of

a Weibull random variable.
pdfWishartInv Computes the probability density function of

a inverse Wishart distribution.

34.1.12 Series and Sequence Functions

Commands by Category

C
om

m
ands

by
C
ategory

recserar Computes autoregressive recursive series.
recsercp Computes recursive series involving products.
recserrc Computes recursive series involving division.
seqa Creates an additive sequence.
seqm Creates a multiplicative sequence.

34.1.13 Precision Control

base10 Converts number to x.xxx and a power of 10.
ceil Rounds up towards +∞.
floor Rounds down towards -∞.
machEpsilon Returns the smallest number such that 1+ eps>1.
round Rounds to the nearest integer.
trunc Converts numbers to integers by truncating the

fractional portion.

round, trunc, ceil and floor convert floating point numbers into integers.
The internal representation for the converted integer is double precision (64 bits).

Each matrix element in memory requires 8 bytes of memory.

34.2 Finance Functions

AmericanBinomCall American binomial method Call.
AmericanBinomCall_
Greeks

American binomial method call Delta,
Gamma, Theta, Vega, and Rho.

AmericanBinomCall_
ImpVol

Implied volatilities for American
binomial method calls.

AmericanBinomPut American binomial method Put.
AmericanBinomPut_
Greeks

American binomial method put Delta,
Gamma, Theta, Vega, and Rho.

34-30

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-31

AmericanBinomPut_
ImpVol

Implied volatilities for American
binomial method puts.

AmericanBSCall American Black and Scholes Call.
AmericanBSCall_Greeks American Black and Scholes call

Delta, Gamma, Omega, Theta, and
Vega.

AmericanBSCall_ImpVol Implied volatilities for American
Black and Scholes calls.

AmericanBSPut American Black and Scholes Put.
AmericanBSPut_Greeks American Black and Scholes put

Delta, Gamma, Omega, Theta, and
Vega.

AmericanBSPut_ImpVol Implied volatilities for American
Black and Scholes puts.

annualTradingDays Computes number of trading days in
a given year.

elapsedTradingDays Computes number of trading days
between two dates inclusively.

EuropeanBinomCall European binomial method call.
EuropeanBinomCall_
Greeks

European binomial method call Delta,
Gamma, Theta, Vega and Rho.

EuropeanBinomCall_
ImpVol

Implied volatilities for European
binomial method calls.

EuropeanBinomPut European binomial method Put.
EuropeanBinomPut_
Greeks

European binomial method put Delta,
Gamma, Theta, Vega, and Rho.

EuropeanBinomPut_
ImpVol

Implied volatilities for European
binomial method puts.

EuropeanBSCall European Black and Scholes Call.

Commands by Category

C
om

m
ands

by
C
ategory

EuropeanBSCall_Greeks European Black and Scholes call
Delta, Gamma, Omega, Theta, and
Vega.

EuropeanBSCall_ImpVol Implied volatilities for European
Black and Scholes calls.

EuropeanBSPut European Black and Scholes Put.
EuropeanBSPut_Greeks European Black and Scholes put

Delta, Gamma, Omega, Theta, and
Vega.

EuropeanBSPut_ImpVol Implied volatilities for European
Black and Scholes puts.

getNextTradingDay Returns the next trading day.
getNextWeekDay Returns the next day that is not on a

weekend.
getPreviousTradingDay Returns the previous trading day.
getPreviousWeekDay Returns the previous day that is not

on a weekend.

34.3 Matrix Manipulation

34.3.1 Creating Vectors and Matrices

eye Creates identity matrix.
matalloc Allocates a matrix with unspecified

contents.
matinit Allocates a matrix with specified fill

value.
ones Creates a matrix of ones.
zeros Creates a matrix of zeros.

34-32

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-33

Use zeros, ones, or matinit to create a constant vector or matrix.

Matrices can also be loaded from an ASCII file, from a GAUSS matrix file, or from a
GAUSS data set. (See DATA IMPORT/EXPORT, CHAPTER 1, for more information.)

34.3.2 Loading and Storing Matrices

csvReadM Loads data from an CSV, or other
delimited text file, into a GAUSS
matrix.

dataload Loads matrices, N-dimensional arrays,
strings and string arrays from a disk
file.

datasave Saves matrices, N-dimensional arrays,
strings and string arrays to a disk file.

load, loadm Loads a matrix from a matrix (FMT)
file.

loadd Loads matrix from data set (DAT
file).

loadf Loads function from disk file.
loadk Loads keyword from disk file.
datasave Saves matrices, N-dimensional arrays,

strings and string arrays to a disk file.
load, loadm Loads a matrix from a matrix (FMT)

file.
loadd Loads matrix from data set (DAT

file).
loadf Loads function from disk file.
loadk Loads keyword from disk file.
save Saves symbol to disk file.
saved Saves matrix to data set.

Commands by Category

C
om

m
ands

by
C
ategory

xlsReadM Loads data from an XLS or XLSX
file into a GAUSS matrix.

34.3.3 Size, Ranking, and Range

cols Returns number of columns in a
matrix.

colsf Returns number of columns in an
open data set.

counts Returns number of elements of a
vector falling in specified ranges.

countwts Returns weighted count of elements of
a vector falling in specified ranges.

cumprodc Computes cumulative products of
each column of a matrix.

cumsumc Computes cumulative sums of each
column of a matrix.

indexcat Returns indices of elements falling
within a specified range.

maxc Returns largest element in each
column of a matrix.

maxindc Returns row number of largest
element in each column of a matrix.

minc Returns smallest element in each
column of a matrix.

minindc Returns row number of smallest
element in each column of a matrix.

prodc Computes the product of each column
of a matrix.

rankindx Returns rank index of Nx1 vector.

34-34

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-35

(Rank order of elements in vector).
rows Returns number of rows in a matrix.
rowsf Returns number of rows in an open

data set.
sumc Computes the sum of each column of

a matrix.
sumr Computes the sum of each row of a

matrix.

These functions are used to find the minimum, maximum and frequency counts of ele-
ments in matrices.

Use rows and cols to find the number of rows or columns in a matrix. Use rowsf
and colsf to find the numbers of rows or columns in an open GAUSS data set.

34.3.4 Miscellaneous Matrix Manipulation

complex Creates a complex matrix from two
real matrices.

delif Deletes rows from a matrix using a
logical expression.

delrows Deletes rows from a matrix; the
second argument contains the indices
of the rows to be deleted.

diag Extracts the diagonal of a matrix.
diagrv Puts a column vector into the diagonal

of a matrix.
exctsmpl Creates a random subsample of a data

set, with replacement.
imag Returns the imaginary part of a

complex matrix.

Commands by Category

C
om

m
ands

by
C
ategory

indcv Checks one character vector against
another and returns the indices of the
elements of the first vector in the
second vector.

indnv Checks one numeric vector against
another and returns the indices of the
elements of the first vector in the
second vector.

intrsect Returns the intersection of two
vectors.

lowmat Returns the main diagonal and lower
triangle.

lowmat1 Returns a main diagonal of 1's and the
lower triangle.

putvals Inserts values into a matrix or N-
dimensional array.

real Returns the real part of a complex
matrix.

reshape Reshapes a matrix to new dimensions.
rev Reverses the order of rows of a

matrix.
rotater Rotates the rows of a matrix,

wrapping elements as necessary.
selif Selects rows from a matrix using a

logical expression.
setdif Returns elements of one vector that

are not in another.
shiftr Shifts rows of a matrix, filling in holes

with a specified value.

34-36

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-37

submat Extracts a submatrix from a matrix.
subvec Extracts an Nx1 vector of elements

from an NxK matrix.
trimr Trims rows from top or bottom of a

matrix.
union Returns the union of two vectors.
upmat Returns the main diagonal and upper

triangle.
upmat1 Returns a main diagonal of 1's and the

upper triangle.
vec Stacks columns of a matrix to form a

single column.
vech Reshapes the lower triangular portion

of a symmetric matrix into a column
vector.

vecr Stacks rows of a matrix to form a
single column.

vget Extracts a matrix or string from a data
buffer constructed with vput.

vlist Lists the contents of a data buffer
constructed with vput.

vnamecv Returns the names of the elements of a
data buffer constructed with vput.

vput Inserts a matrix or string into a data
buffer.

vread Reads a string or matrix from a data
buffer constructed with vput.

vtypecv Returns the types of the elements of a
data buffer constructed with vput.

Commands by Category

C
om

m
ands

by
C
ategory

xpnd Expands a column vector into a
symmetric matrix.

vech and xpnd are complementary functions. vech provides an efficient way to store
a symmetric matrix; xpnd expands the stored vector back to its original symmetric mat-
rix.

delif and selif are complementary functions. delif deletes rows of a matrix
based on a logical comparison; selif selects rows based on a logical comparison.

lowmat, lowmat1, upmat, and upmat1 extract triangular portions of a matrix.

To delete rows which contain missing values from a matrix in memory, see packr.

34.4 Sparse Matrix Handling

denseToSp Converts a dense matrix to a sparse
matrix.

denseToSpRE Converts a dense matrix to a sparse
matrix using a relative epsilon.

packedToSp Creates a sparse matrix from a packed
matrix of non-zero values and row
and column indices.

spBiconjGradSol Solves the system of linear equations
Ax=b using the biconjugate gradient
method.

spChol Computes the LL' decomposition of a
sparse matrix.

spConjGradSol Solves the system of linear equations
Ax=b for symmetric matrices using
the conjugate gradient method.

spCreate Creates a sparse matrix from vectors
of non-zero values, row indices, and

34-38

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-39

column indices.
spDenseSubmat Returns a dense submatrix of a sparse

matrix.
spDiagRvMat Inserts submatrices along the diagonal

of a sparse matrix.
spEigv Computes a specified number of

eigenvalues and eigenvectors of a
square, sparse matrix.

spEye Creates a sparse identity matrix.
spGetNZE Returns the non-zero values in a

sparse matrix, as well as their
corresponding row and column
indices.

spGetNumNZE Returns the number of non-zero
elements in a sparse matrix.

spLDL Computes the LDL decomposition of
a symmetric sparse matrix.

spLU Computes the LU decomposition of a
sparse matrix with partial pivoting.

spOnes Generates a sparse matrix containing
only ones and zeros

spSubmat Returns a sparse submatrix of sparse
matrix.

spToDense Converts a sparse matrix to a dense
matrix.

spTrTDense Multiplies a sparse matrix transposed
by a dense matrix.

spTScalar Multiplies a sparse matrix by a scalar.
spZeros Creates a sparse matrix containing no

Commands by Category

C
om

m
ands

by
C
ategory

non-zero values.

34.5 N-Dimensional Array Handling

34.5.1 Creating Arrays

aconcat Concatenates conformable matrices
and arrays in a user-specified
dimension.

aeye Creates an N-dimensional array in
which the planes described by the two
trailing dimensions of the array are
equal to the identity.

areshape Reshapes a scalar, matrix, or array
into an array of user-specified size.

arrayalloc Creates an N-dimensional array with
unspecified contents.

arrayinit Creates an N-dimensional array with a
specified fill value.

mattoarray Converts a matrix to a type array.

34.5.2 Size, Ranking and Range

amax Moves across one dimension of an N-
dimensional array and finds the largest
element.

amin Moves across one dimension of an N-
dimensional array and finds the
smallest element.

asum Computes the sum across one
dimension of an N-dimensional array.

34-40

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-41

getdims Gets the number of dimensions in an
array.

getorders Gets the vector of orders
corresponding to an array.

34.5.3 Setting and Retrieving Data in an Array

aconcat Concatenates conformable matrices
and arrays in a user-specified
dimension.

areshape Reshapes a scalar, matrix, or array
into an array of user-specified size.

arraytomat Changes an array to type matrix.
getarray Gets a contiguous subarray from an

N-dimensional array.
getmatrix Gets a contiguous matrix from an N-

dimensional array.
getmatrix4D Gets a contiguous matrix from a 4-

dimensional array.
getscalar3D Gets a scalar from a 3-dimensional

array.
getscalar4D Gets a scalar from a 4-dimensional

array.
putarray Puts a contiguous subarray into an N-

dimensional array and returns the
resulting array.

setarray Sets a contiguous subarray of an N-
dimensional array.

Commands by Category

C
om

m
ands

by
C
ategory

34.5.4 Miscellaneous Array Functions

amean Computes the mean across one
dimension of an N-dimensional array.

amult Performs matrix multiplication on the
planes described by the two trailing
dimensions of N-dimensional arrays.

arrayindex Saves a matrix of structures to a file
on the disk.

atranspose Transposes an N-dimensional array.
loopnextindex Increments an index vector to the next

logical index and jumps to the
specified label if the index did not
wrap to the beginning.

nextindex Returns the index of the next element
or subarray in an array.

previousindex Returns the index of the previous
element or subarray in an array.

singleindex Converts a vector of indices for an N-
dimensional array to a scalar vector
index.

walkindex Walks the index of an array forward
or backward through a specified
dimension.

34.6 Structures

dsCreate Creates an instance of a structure of
type DS set to default values.

loadstruct Loads a structure into memory from a

34-42

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-43

file on the disk.
pvCreate Returns an initialized an instance of

structure of type PV.
pvGetIndex Gets row indices of a matrix in a

parameter vector.
pvGetParNames Generates names for parameter vector

stored in structure of type PV.
pvGetParVector Retrieves parameter vector from

structure of type PV.
pvLength Returns the length of a parameter

vector.
pvList Retrieves names of packed matrices in

structure of type PV.
pvPack Packs general matrix into a structure

of type PV with matrix name.
pvPacki Packs general matrix or array into a

PV instance with name and index.
pvPackm Packs general matrix into a structure

of type PV with a mask and matrix
name.

pvPackmi Packs general matrix or array into a
PV instance with a mask, name, and
index.

pvPacks Packs symmetric matrix into a
structure of type PV.

pvPacksi Packs symmetric matrix into a PV
instance with matrix name and index.

pvPacksm Packs symmetric matrix into a
structure of type PV with a mask.

Commands by Category

C
om

m
ands

by
C
ategory

pvPacksmi Packs symmetric matrix into a PV
instance with a mask, matrix name,
and index.

pvPutParVector Inserts parameter vector into structure
of type PV.

pvTest Tests an instance of structure of type
PV to determine if it is a proper
structure of type PV.

pvUnpack Unpacks matrices stored in a structure
of type PV.

savestruct Saves a matrix of structures to a file
on the disk.

34.7 Data File Reading/Writing

34.7.1 Spreadsheets

spreadSheetReadM Reads numeric data from an Excel file
into a GAUSS matrix.

spreadSheetReadSA Reads text or string data from an
Excel file into a GAUSS string array.

spreadSheetWrite Writes numeric or string data to an
Excel file.

xlsGetSheetCount Gets the number of sheets in an Excel
spreadsheet.

xlsGetSheetSize Gets the size (rows and columns) of a
specified sheet in an Excel
spreadsheet.

xlsGetSheetTypes Gets the cell format types of a row in
an Excel spreadsheet.

34-44

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-45

xlsMakeRange Builds an Excel range string from a
row/column pair.

xlsReadM Reads from an Excel spreadsheet, into
a GAUSS matrix.

xlsReadSA Reads from an Excel spreadsheet, into
a GAUSS string array or string.

xlsWrite Writes a GAUSS matrix, string, or
string array to an Excel spreadsheet.

xlsWriteM Writes a GAUSS matrix to an Excel
spreadsheet.

xlsWriteSA Writes a GAUSS string or string array
to an Excel spreadsheet.

34.7.2 CSV Files

csvReadM Reads numeric data from a CSV file
into a matrix.

csvReadSA Reads text or string data from a CSV
file into a GAUSS string array.

34.7.3 Text Files

fcheckerr Gets the error status of a file.
fclearerr Gets the error status of a file, then

clears it.
fflush Flushes a file's output buffer.
fgets Reads a line of text from a file.
fgetsa Reads lines of text from a file into a

string array.
fgetsat Reads lines of text from a file into a

string array.

Commands by Category

C
om

m
ands

by
C
ategory

fgetst Reads a line of text from a file.
fopen Opens a file.
fputs Writes strings to a file.
fputst Writes strings to a file.
fseek Positions the file pointer in a file.
fstrerror Returns an error message explaining

the cause of the most recent file I/O
error.

ftell Gets the position of the file pointer in
a file.

34.7.4 HDF 5 Files

h5create Create a HDF5 dataset (.h5).
h5open Open a HDF5 file.
h5read Reads data from a HDF5 file (.h5)

into a GAUSS matrix.
h5readAttribute Read attributes from a HDF5 file into

GAUSS.
h5write Write a GAUSS matrix to a HDF5

file.
h5writeAttribute Write a GAUSS string array as

attributes into a HDF5 file

34.7.5 Database

This section summarizes all procedures within the GAUSS database module. A general
usage description will be found in Databases with GAUSS, Section 1 .

Database Setup

dbAddDatabase Adds a database to the list of database

34-46

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-47

connections using the driver type or a
connection URL.

dbGetDrivers Returns a list of available database
drivers.

dbIsDriverAvailable Returns 1 if a specified database
driver is available.

dbRemoveDatabase Removes a database connection from
the list of open database connections.
Frees all related resources.

Database Properties

dbGetConnectOptions Returns the connection options
string used for a database
connection.

dbGetDatabaseName Returns the name of the database.
dbGetDriverName Returns the name of the

connection's database driver.
dbGetHostName Returns the database connection's

host name.
dbGetPassword Returns a connection's password.
dbGetNumericalPrecPolicy Returns the default numerical

precision policy for a specified
database connection.

dbGetPort Returns the database connection's
port number if it has been set.

dbIsOpen Reports whether a specified
database connection is open.

dbIsValid Reports whether a specified
database connection has a valid
driver.

Commands by Category

C
om

m
ands

by
C
ategory

dbSetConnectOptions Sets database-specific options.
dbSetDatabaseName Sets the connection's database

name to name.
dbSetHostName Sets the specified database

connection's host name.
dbSetNumericalPrecPolicy Sets the default numerical

precision policy used by queries
created on this database
connection.

dbSetPassword Sets the database connection's
password.

dbSetPort Sets the specified database
connection's port number.

Database Information

dbGetPrimaryIndex Returns the primary index for the
specified table.

dbGetTableHeaders Returns a string array populated with
the names of all the fields in a
specified table (or view).

dbGetTables Returns the database's tables, system
tables and views.

dbHasFeature Returns a 1 if the database supports
the specified feature.

Database Errors

dbGetLastErrorNum Returns numerical information
about the last error that occurred on
the database.

34-48

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-49

dbGetLastErrorText Returns text information about the
last error that occurred on the
database.

dbIsOpenError Reports whether an error occurred
while attempting to open the
database connection.

dbQueryGetLastErrorNum Returns numerical error information
about the last error that occurred (if
any) with the last executed query.

dbQueryGetLastErrorText Returns text error information about
the last error that occurred (if any)
with the last executed query.

Database Connect

dbClose Closes a database connection and
destroys any remaining queries.

dbOpen Opens a specified database connection
using the current connection values.

Database Transaction

dbCommit Commits a transaction to the database
if the driver supports transactions and
a dbTransaction() has been
started.

dbCreateQuery Process an SQL statement and prepare
a query.

dbExecQuery Executes an SQL statement and
creates a query.

dbRollback Rolls back a transaction on the
database.

Commands by Category

C
om

m
ands

by
C
ategory

dbTransaction Begins a transaction on the database.

Query Building

dbQueryBindValue Set the placeholder placeholder to be
bound to value val in the prepared
statement.

dbQueryGetBoundValue Returns the value for a placeholder in
a query.

dbQueryGetBoundValues Returns an Nx2 string array
containing the placeholders and their
corresponding values in a query.

dbQueryExecPrepared Executes a previously created and
prepared query.

dbQueryPrepare Prepares a SQL query for execution.

Query Manipulation

dbQueryClear Clears the result set and releases any
resources held by the query. Sets the
query state to inactive.

dbQueryFinish Instructs the database driver that no
more data will be fetched from this
query until it is re-executed.

Query Information

dbQueryCols Returns the number of fields in
the record.

dbQueryGetLastInsertID Returns the object ID of the
most recent inserted row if
supported by the database.

34-50

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-51

dbQueryGetLastQuery Returns the text of the current
query being used.

dbQueryGetNumRowsAffected Reports the number of rows
affected by the result's SQL
statement.

dbQueryIsActive Returns 1 if the query is active.
dbQueryIsForwardOnly Reports whether you can only

scroll forward through a result
set.

dbQueryIsNull Reports whether the current field
pointed at by an active query
positioned on a valid record is
NULL.

dbQueryIsSelect Reports whether the specified
query is a SELECT statement.

dbQueryIsValid Reports whether the specified
query is positioned on a valid
record.

dbQueryRows Returns the size of the result
(number of rows returned), or -1
if the size cannot be determined
or if the database does not
support reporting information
about query sizes.

dbQuerySetForwardOnly Sets forward only mode to
forward. If forward is true, only
dbQuerySeekNext() and
dbQuerySeek() with positive
values, are allowed for
navigating the results.

Commands by Category

C
om

m
ands

by
C
ategory

Query Iteration

dbQueryGetPosition Returns the current internal position
of the query.

dbQuerySeek Retrieves the record at a specified
position, if available, and positions the
query on the retrieved record.

dbQuerySeekFirst Retrieves the first record in the result,
if available, and positions the query
on the retrieved record.

dbQuerySeekLast Retrieves the last record in the result,
if available, and positions the query
on the retrieved record.

dbQuerySeekNext Retrieves the next record in the result,
if available, and positions the query
on the retrieved record.

dbQuerySeekPrevious Retrieves the previous record in the
result, if available, and positions the
query on the retrieved record.

Query Data Retrieval

dbQueryFetchAllM Returns the result set for the current
query as a matrix.

dbQueryFetchAllSA Returns the result set for the current
query as a string array.

dbQueryFetchOneM Returns a single row as an Nx1
matrix where N is the column count
of the SELECT statement.

dbQueryFetchOneSA Returns a single row as a string vector
containing the field information for

34-52

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-53

the current query.
dbQueryGetField Returns the value of a specified field

in the current record.

GAUSS Data Archives

gdaAppend Appends data to a variable in a GDA.

gdaCreate Creates a GDA.
gdaDStat Computes descriptive statistics on

multiple Nx1 variables in a GDA.
gdaDStatMat Computes descriptive statistics on a

selection of columns in a variable in a
GDA.

gdaGetIndex Gets the index of a variable in a
GDA.

gdaGetName Gets the name of a variable in a
GDA.

gdaGetNames Gets the names of all the variables in a
GDA.

gdaGetOrders Gets the orders of a variable in a
GDA.

gdaGetType Gets the type of a variable in a GDA.
gdaGetTypes Gets the types of all the variables in a

GDA.
gdaGetVarInfo Gets information about all of the

variables in a GDA.
gdaIsCplx Checks to see if a variable in a GDA

is complex.
gdaLoad Loads variables in a GDA into the

Commands by Category

C
om

m
ands

by
C
ategory

workspace.
gdaPack Packs the data in a GDA, removing

all empty bytes.
gdaRead Gets a variable from a GDA.
gdaReadByIndex Gets a variable from a GDA, given a

variable index.
gdaReadSome Reads part of a variable from a GDA.
gdaReadSparse Gets a sparse matrix from a GAUSS

Data Archive.
gdaReadStruct Gets a structure from a GAUSS Data

Archive.
gdaReportVarInfo Gets information about all of the

variables in a GAUSS Data Archive
and returns it in a string array
formatted for printing.

gdaSave Writes variables in a workspace to a
GDA.

gdaUpdate Updates a variable in a GDA.
gdaUpdateAndPack Updates a variable in a GDA, leaving

no empty bytes if the updated variable
is smaller or larger than the variable it
is replacing.

gdaWrite Writes a variable to a GDA.
gdaWrite32 Writes a variable to a GDA using 32-

bit system file write commands.
gdaWriteSome Overwrites part of a variable in a

GDA.

These functions all operate on GAUSS Data Archives (GDA's). For more information,
see GAUSS Data Archives, Section 1.0.1.

34-54

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-55

Data Sets

close Closes an open data set (.dat file).
closeall Closes all open data sets.
create Creates and opens a data set.
datacreate Creates a v96 real data set.
datacreatecomplex Creates a v96 complex data set.
datalist Lists selected variables from a data

set.
dataopen Opens a data set.
eof Tests for end of file.
getnr Computes number of rows to read per

iteration for a program that reads data
from a disk file in a loop.

getnrmt Computes number of rows to read per
iteration for a program that reads data
from a disk file in a loop.

iscplxf Returns whether a data set is real or
complex.

loadd Loads a small data set.
open Opens an existing data set.
readr Reads rows from open data set.
saved Creates small data sets.
seekr Moves pointer to specified location in

open data set.
tempname Creates a temporary file with a unique

name.
typef Returns the element size (2, 4 or 8

bytes) of data in open data set.

Commands by Category

C
om

m
ands

by
C
ategory

writer Writes matrix to an open data set.

These functions all operate on GAUSSdata sets (.dat files). For more
information, see DATA IMPORT/EXPORT, CHAPTER 1.

To create a GAUSS data set from a matrix in memory, use saved. To create a
data set from an existing one, use create. To create a data set from a large
ASCII file, use the ATOG utility (see ATOG, CHAPTER 1.)

Data sets can be opened, read from, and written to using open, readr, seekr
and writer. Test for the end of a file using eof, and close the data set using
close or closeall.

The data in data sets may be specified as character or numeric. (See DATA
IMPORT/EXPORT, CHAPTER 1.) See also create and vartypef.

typef returns the element size of the data in an open data set.

Data Set Variable Names

getname Returns column vector of variable
names in a data set.

getnamef Returns string array of variable names
in a data set.

indices Retrieves column numbers and names
from a data set.

indices2 Similar to indices, but matches
columns with names for dependent
and independent variables.

indicesf Retrieves column numbers and names
from a data set.

indicesfn Retrieves column numbers and names
from a data set.

makevars Decomposes matrix to create column
vectors.

34-56

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-57

setvars Creates globals using the names in a
data set.

vartypef Returns column vector of variable
types (numeric/character) in a data set.

Use getnamef to retrieve the variable names associated with the columns of a
GAUSS data set and vartypef to retrieve the variable types. Use makevars
and setvars to create global vectors from those names. Use indices and
indices2 to match names with column numbers in a data set.

Data Coding

code Codes the data in a vector by applying
a logical set of rules to assign each
data value to a category.

code(dataloop) Creates new variables with different
values based on a set of logical
expressions.

dataloop (dataloop) Specifies the beginning of a data loop.

delete (dataloop) Removes specific rows in a data loop
based on a logical expression.

drop (dataloop) Specifies columns to be dropped from
the ouput data set in a data loop.

dummy Creates a dummy matrix, expanding
values in vector to rows with ones in
columns corresponding to true
categories and zeros elsewhere.

dummybr Similar to dummy.
dummydn Similar to dummy.
extern (dataloop) Allows access to matrices or strings in

memory from inside a data loop.

Commands by Category

C
om

m
ands

by
C
ategory

isinfnanmiss Returns true if the argument contains
an infinity, NaN, or missing value.

scalmiss Returns 1 if matrix has any missing
values, 0 otherwise.

keep (dataloop) Specifies columns (variables) to be
saved to the output data set in a data
loop.

lag (dataloop) Lags variables a specified number of
periods.

lag1 Lags a matrix by one time period for
time series analysis.

lagn Lags a matrix a specified number of
time periods for time series analysis.

listwise (dataloop) Controls listwise deletion of missing
values.

make (dataloop) Specifies the creation of a new
variable within a data loop.

miss Changes specified values to missing
value code.

missex Changes elements to missing value
using logical expression.

missrv Changes missing value codes to
specified values.

msym Sets symbol to be interpreted as
missing value.

outtyp (dataloop) Specifies the precision of the output
data set.

packr Delete rows with missing values.
reclassify Replaces specified values of a matrix,

34-58

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-59

array or string array
reclassifyCuts Replaces values of a matrix or array

within specified ranges
recode Changes the values of an existing

vector from a vector of new values.
Used in data transformations.

recode (dataloop) Changes the value of a variable with
different values based on a set of
logical expressions.

scalinfnanmiss Returns true if the argument is a scalar
infinity, NaN, or missing value.

scalmiss Tests whether a scalar is the missing
value code.

select (dataloop) Selects specific rows (observations) in
a data loop based on a logical
expression.

subscat Simpler version of recode, but uses
ascending bins instead of logical
conditions.

substute Similar to recode, but operates on
matrices.

vector (dataloop) Specifies the creation of a new
variable within a data loop.

code, recode, and subscat allow the user to code data variables and
operate on vectors in memory. substute operates on matrices, and dummy,
dummybr and dummydn create matrices.

missex, missrv and miss should be used to recode missing values.

Commands by Category

C
om

m
ands

by
C
ategory

Sorting and Merging

intrleav Produces one large sorted data file
from two smaller sorted files having
the same keys.

intrleavsa Interleaves the rows of two string
arrays that have been sorted on a
common column.

mergeby Produces one large sorted data file
from two smaller sorted files having a
single key column in common.

mergevar Accepts a list of names of global
matrices, and concatenates the
corresponding matrices horizontally to
form a single matrix.

sortc Quick-sorts rows of matrix based on
numeric key.

sortcc Quick-sorts rows of matrix based on
character key.

sortd Sorts data set on a key column.
sorthc Heap-sorts rows of matrix based on

numeric key.
sorthcc Heap-sorts rows of matrix based on

character key.
sortind Returns a sorted index of a numeric

vector.
sortindc Returns a sorted index of a character

vector.
sortmc Sorts rows of matrix on the basis of

multiple columns.

34-60

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-61

sortr Sorts rows of a matrix of numeric
data.

sortrc Sorts rows of a matrix of character
data.

uniqindx Returns a sorted unique index of a
vector.

uniqindxsa Computes the sorted index of a string
vector, omitting duplicate elements.

unique Removes duplicate elements of a
vector.

uniquesa Removes duplicate elements from a
string vector.

sortc, sorthc, and sortind operate on numeric data only. sortcc,
sorthcc, and sortindc operate on character data only.

sortd, sortmc, unique, and uniqindx operate on both numeric and
character data.

Use sortd to sort the rows of a data set on the basis of a key column.

Both intrleav and mergeby operate on data sets.

34.8 Compiler Control

#define Defines a case-insensitive text-
replacement or flag variable.

#definecs Defines a case-sensitive text-
replacement or flag variable.

#else Alternates clause for #if-#else-
#endif code block.

#endif End of #if-#else-#endif code
block.

Commands by Category

C
om

m
ands

by
C
ategory

#ifdef Compiles code block if a variable has
been #define'd.

#iflight Compiles code block if running
GAUSS Light.

#ifndef Compiles code block if a variable has
not been #define'd.

#ifmac Compiles code block if running on
Mac.

#ifos2win Compiles code block if running
Windows.

#ifunix Compiles code block if running
UNIX.

#include Includes code from another file in
program.

#linesoff Compiles program without line
number and file name records.

#lineson Compiles program with line number
and file name records.

#srcfile Inserts source file name record at this
point (currently used when doing data
loop translation).

#srcline Inserts source file line number record
at this point (currently used when
doing data loop translation).

#undef Undefines a text-replacement or flag
variable.

These commands are compiler directives. That is, they do not generate GAUSS
program instructions; rather, they are instructions that tell GAUSS how to process
a program during compilation. They determine what the final compiled form of a

34-62

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-63

program will be. They are not executable statements and have no effect at run-
time. (See COMPILER DIRECTIVES, CHAPTER 1.1, for more information.)

34.9 Multi-Threading

threadBegin Marks beginning of a block of code to
be executed as a thread.

threadEnd Marks end of a block of code to be
executed as a thread.

threadEndFor Marks end of a parallel for loop.
threadFor Marks the start of a parallel for loop.

threadJoin Completes definition of a set of
threads, waits for their work.

threadStat Marks a single statement to be
executed as a thread.

Together, threadBegin/threadEnd and threadStat define a set of
threads that will execute simultaneously. threadJoin completes the definition
of that set. threadJoin waits for the threads in the set to finish their
calculations, the results of which are then available for further use.

threadBegin; // Thread 1
y = x'x;
z = y'y;

threadEnd;
threadBegin; // Thread 2

q = r'r;
r = q'q;

threadEnd;
threadStat n = m'm; // Thread 3
threadStat p = o'o; // Thread 4
threadJoin; // waits for Threads 1-4 to finish

Commands by Category

C
om

m
ands

by
C
ategory

b = z + r + n'p; // Using the results

34.10 Program Control

34.10.1 Execution Control

call Calls function and discards return
values.

end Terminates a program and closes all
files.

pause Pauses for the specified time.
run Runs a program in a text file.
sleep Sleeps for the specified time.
stop Stops a program and leaves files open.
system Quits and returns to the OS.

Both stop and end will terminate the execution of a program; end will close
all open files, and stop will leave those files open. Neither stop nor end is
required in a GAUSS program.

34.10.2 Branching

goto Unconditional branching.
if...endif Conditional branching.
pop Retrieves goto arguments.

if iter > itlim;
goto errout("Iteration limit exceeded");

elseif iter =\,= 1;
j = setup(x,y);

else;

34-64

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-65

j = iterate(x,y);
endif;
.
.
.

errout:

pop errmsg;
print errmsg;
end;

34.10.3 Looping

break Jumps out the bottom of a do or for
loop.

continue Jumps to the top of a do or for loop.
do while...endo Executes a series of statements in a

loop as long as a given expression is
TRUE (or FALSE).

do until...endo Loops if FALSE.
for...endfor Loops with integer counter.

iter = 0;
do while dif > tol;

{ x,x0 } = eval(x,x0);
dif = abs(x-x0);
iter = iter + 1;
if iter > maxits;

break;
endif;
if not prtiter;

continue;
endif;
format /rdn 1,0;

Commands by Category

C
om

m
ands

by
C
ategory

print "Iteration: " iter;;
format /re 16,8;
print ", Error: " maxc(dif);

endo;

for i (1, cols(x), 1);
for j (1, rows(x), 1);

x[i,j] = x[i,j] + 1;
endfor;

endfor;

34.10.4 Subroutines

gosub Branches to subroutine.
pop Retrieves gosub arguments.
return Returns from subroutine.

Arguments can be passed to subroutines in the branch to the subroutine label and
then popped, in first-in-last-out order, immediately following the subroutine label
definition. See gosub.

Arguments can then be returned in an analogous fashion through the return
statement.

34.10.5 Procedures, Keywords, and Functions

endp Terminates a procedure definition.
fn Allows user to create one-line functions.
keyword Begins the definition of a keyword procedure. Keywords are

user-defined functions with local or global variables.
local Declares variables local to a procedure.
proc Begins definition of multi-line procedure.
retp Returns from a procedure.

Here is an example of a GAUSSprocedure:

34-66

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-67

proc (3) = crosprod(x,y);
local r1, r2, r3;
r1 = x[2,.].*y[3,.]-x[3,.].*y[2,.];
r2 = x[3,.].*y[1,.]-x[1,.].*y[3,.];
r3 = x[1,.].*y[2,.]-x[2,.].*y[1,.];

retp(r1,r2,r3);
endp;

The ''(3) = '' indicates that the procedure returns three arguments. All local
variables, except those listed in the argument list, must appear in the local
statement. Procedures may reference global variables. There may be more than
one retp per procedure definition; none is required if the procedure is defined to
return 0 arguments. The endp is always necessary and must appear at the end of
the procedure definition. Procedure definitions cannot be nested. The syntax for
using this example function is

{ a1,a2,a3 } = crosprod(u,v);

See PROCEDURES AND KEYWORDS, CHAPTER 1, and LIBRARIES, CHAPTER 1,
for details.

34.10.6 Libraries

declare Initializes variables at compile time.
external External symbol definitions.
lib Builds or updates a GAUSS library.
library Sets up list of active libraries.

call allows functions to be called when return values are not needed. This is
especially useful if a function produces printed output (dstat, ols for example)
as well as return values.

34.10.7 Compiling

compile Compiles and saves a program to a

Commands by Category

C
om

m
ands

by
C
ategory

.gcg file.
#include Inserts code from another file into a

GAUSS program.
loadp Loads compiled procedure.
save Saves the compiled image of a

procedure to disk.
saveall Saves the contents of the current

workspace to a file.
use Loads previously compiled code.

GAUSS procedures and programs may be compiled to disk files. By then using
this compiled code, the time necessary to compile programs from scratch is
eliminated. Use compile to compile a command file. All procedures, matrices
and strings referenced by that program will be compiled as well.

Stand-alone applications may be created by running compiled code under the
GAUSS Run-Time Module. Contact Aptech Systems for more information on this
product.

To save the compiled images of procedures that do not make any global
references, use save. This will create an .fcg file. To load the compiled
procedure into memory, use loadp. (This is not recommended because of the
restriction on global references and the need to explicitly load the procedure in
each program that references it. It is included here to maintain backward
compatibility with previous versions.)

34.10.8 Miscellaneous Program Control

gausset Resets the global control variables
declared in gauss.dec.

sysstate Gets or sets general system
parameters.

34-68

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-69

34.11 OS Functions and File Management

cdir Returns current directory.
changeDir Changes the working directory in

program.
chdir Changes directory interactively.
deleteFile Deletes files.
dlibrary Dynamically links and unlinks shared

libraries.
dllcall Calls functions located in dynamic

libraries.
dos Provides access to the operating

system from within GAUSS.
envget Gets an environment string.
exec Executes an executable program file.
execbg Provides access to the operating

system from within GAUSS.
fileinfo Takes a file specification, returns

names and information of files that
match.

filesa Takes a file specification, returns
names of files that match.

getGAUSSHome Returns a string with the full path to
the GAUSS home directory.

getpath Returns an expanded filename
including the drive and path.

searchsourcepath Searches the source path and (if
specified) the src subdirectory of the
GAUSS installation directory for a
specified file.

Commands by Category

C
om

m
ands

by
C
ategory

shell Shells to OS.

34.12 Workspace Management

clear Sets matrices equal to 0.
clearg Sets global symbols to 0.
delete Deletes specified global symbols.
hasimag Examines matrix for nonzero

imaginary part.
iscplx Returns whether a matrix is real or

complex.
maxbytes Returns maximum memory to be read

from a dataset at a time inside some
GAUSS functions.

maxvec Returns maximum allowed vector
size.

new Clears current workspace.
show Displays global symbol table.
type Returns type of argument (matrix or

string).
typecv Returns types of symbols (argument

contains the names of the symbols to
be checked).

When working with limited workspace, it is a good idea to clear large
matrices that are no longer needed by your program.

34.13 Error Handling and Debugging

debug Executes a program under the source

34-70

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-71

debugger.
error Creates user-defined error code.
errorlog Sends error message to screen and log

file.
#linesoff Omits line number and file name

records from program.
#lineson Includes line number and file name

records in program.
scalerr Tests for a scalar error code.
trace Traces program execution for

debugging.
trap Controls trapping of program errors.
trapchk Examines the trap flag.

To trace the execution of a program, use trace.

User-defined error codes may be generated using error.

34.14 String Handling

chrs Converts ASCII values to a string.
convertsatostr Converts a 1x1 string array to a string.

convertstrtosa Converts a string to a 1x1 string array.

cvtos Converts a character vector to a string.

cvtosa Converts an NxK character vector to
an NxK string array.

ftocv Converts an NxK matrix to a

Commands by Category

C
om

m
ands

by
C
ategory

character matrix.
ftos Converts a floating point scalar to a

string.
ftostrC Converts a matrix to a string array

using a C language format
specification.

getf Loads ASCII or binary file into string.
indsav Checks one string array against

another and returns
intrsect Returns the intersection of two string

vectors (or matrices), with duplicates
removed.

loads Loads a string file (.fst file).
lower Converts a string to lowercase.
parse Parses a string, returning a character

vector of tokens.
putf Writes a string to disk file.
stocv Converts a string to a character vector.

stof Converts a string to floating point
numbers.

strcombine Converts an NxM string array to an
Nx1 string vector by combining each
element in a column separated by a
user-defined delimiter string.

strindx Finds starting location of one string in
another string.

strjoin Converts an NxM string array to an
Nx1 string vector by combining each

34-72

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-73

element in a column separated by a
user-defined delimiter string.

strlen Returns length of a string.
strput Lays a substring over a string.
strrindx Finds starting location of one string in

another string, searching from the end
to the start of the string.

strsect Extracts a substring of a string.
strsplit Splits an Nx1 string vector into an

NxK string array of the individual
tokens.

strsplitPad Splits an Nx1 string vector into an
NxK string array of the individual
tokens. Pads on the right with null
strings.

strtof Converts a string array to a numeric
matrix.

strtofcplx Converts a string array to a complex
numeric matrix.

strtrim Strips all whitespace characters from
the left and right side of each element
in a string array.

strtriml Strips all whitespace characters from
the left side of each element in a string
array.

strtrimr Strips all whitespace characters from
the right side of each element in a
string array.

strtrunc Truncates all elements of a string
array to not longer than the specified

Commands by Category

C
om

m
ands

by
C
ategory

number of characters.
strtruncl Truncates the left side of all elements

of a string array by a user-specified
number of characters.

strtruncpad Truncates all elements of a string
array to the specified number of
characters, adding spaces on the end
as needed to achieve the exact length.

strtruncr Truncates the right side of all elements
of a string array by a user-specified
number of characters.

token Extracts the leading token from a
string.

upper Changes a string to uppercase.
vals Converts a string to ASCII values.
varget Accesses the global variable named

by a string.
vargetl Accesses the local variable named by

a string.
varput Assigns a global variable named by a

string.
varputl Assigns a local variable named by a

string.

strlen, strindx, strrindx, and strsect can be used together to parse
strings.

Use ftos to print to a string.

34-74

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-75

To create a list of generic variable names (X1,X2,X3,X4,... for example), use
ftocv.

34.15 Time and Date Functions

date Returns current system date.
datestr Formats date as ''mm/dd/yy''.
datestring Formats date as ''mm/dd/yyyy''.
datestrymd Formats date as ''yyyymmdd''.
dayinyr Returns day number of a date.
dayofweek Returns day of week.
dtdate Creates a matrix in DT scalar format.
dtday Creates a matrix in DT scalar format

containing only the year, month, and
day. Time of day information is
zeroed out.

dttime Creates a matrix in DT scalar format
containing only the hour, minute, and
second. The date information is
zeroed out.

dttodtv Converts DT scalar format to DTV
vector format.

dttostr Converts a matrix containing dates in
DT scalar format to a string array.

dttoutc Converts DT scalar format to UTC
scalar format.

dtvnormal Normalizes a date and time (DTV)
vector.

dtvtodt Converts DTV vector format to DT
scalar format.

Commands by Category

C
om

m
ands

by
C
ategory

dtvtoutc Converts DTV vector format to UTC
scalar format.

etdays Difference between two times in days.
ethsec Difference between two times in

hundredths of a second.
etstr Converts elapsed time to string.
hsec Returns elapsed time since midnight in

hundredths of a second.
strtodt Converts a string array of dates to a

matrix in DT scalar format.
time Returns current system time.
timedt Returns system date and time in DT

scalar format.
timestr Formats time as ''hh:mm:ss''.
timeutc Returns the number of seconds since

January 1, 1970 Greenwich Mean
Time.

todaydt Returns system date in DT scalar
format. The time returned is always
midnight (00:00:00), the beginning of
the returned day.

utctodt Converts UTC scalar format to DT
scalar format.

utctodtv Converts UTC scalar format to DTV
vector format.

Use hsec to time segments of code. For example,

34-76

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-77

et = hsec;
x = y*y;
et = hsec - et;

will time the GAUSS multiplication operator.

34.16 Console I/O

con Requests console input, creates
matrix.

cons Requests console input, creates string.
key Gets the next key from the keyboard

buffer. If buffer is empty, returns a 0.
keyav Checks if keystroke is available.
keyw Gets the next key from the keyboard

buffer. If buffer is empty, waits for a
key.

wait Waits for a keystroke.
waitc Flushes buffer, then waits for a

keystroke.

key can be used to trap most keystrokes. For example, the following loop will
trap the ALT-H key combination:

kk = 0;
do until kk == 1035;

kk = key;
endo;

Other key combinations, function keys and cursor key movement can also be
trapped. See key.

Commands by Category

C
om

m
ands

by
C
ategory

cons and con can be used to request information from the console. keyw,
wait, and waitc will wait for a keystroke.

34.17 Output Functions

34.17.1 Text Output

cls Clears the window.
comlog Controls interactive command

logging.
csrcol Gets column position of cursor on

window.
csrlin Gets row position of cursor on

window.
ed Accesses an alternate editor.
edit Edits a file with the GAUSS editor.
format Defines format of matrix printing.
formatcv Sets the character data format used by

printfmt.
formatnv Sets the numeric data format used by

printfmt.
header Prints a header for a report.
headermt Prints a header for a report.
locate Positions the cursor on the window.
output Redirects print statements to

auxiliary output.
outwidth Sets line width of auxiliary output.
print Prints to window.
printdos Prints a string for special handling by

the OS.

34-78

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-79

printfm Prints matrices using a different format
for each column.

printfmt Prints character, numeric, or mixed
matrix using a default format
controlled by the functions
formatcv and formatnv.

satostrC Copies from one string array to
another using a C language format
specifier string for each element.

screen [on | off] Directs/suppresses print statements
to window.

tab Positions the cursor on the current
line.

The results of all printing can be sent to an output file using output. This file
can then be printed or ported as an ASCII file to other software.

To produces boxes, etc. using characters from the extended ASCII set, use
chrs.

34.17.2 DOS Compatibility Windows

doswin Opens the DOS compatibility
window with default settings.

DOSWinCloseall Closes the DOS compatibility
window.

DOSWinOpen Opens the DOS compatibility
window and gives it the specified title
and attributes.

Commands by Category

C
om

m
ands

by
C
ategory

34.18 GAUSS Graphics

This section summarizes all procedures available within the GAUSS graphics system. A
general usage description will be found in GAUSS GRAPHICS, CHAPTER 1.

34.18.1 Graph Types

plotArea Creates a cumulative area plot.
plotBar Creates a bar plot.
plotBox Creates a box plot.
plotCDFEmpirical Creats a cumulative distribution

function (cdf) of the empirical
distribution plot.

plotContour Creates a contour plot.
plotHist Calculates and creates a frequency

histogram plot.
plotHistF Creates a histogram plot from a vector

of frequencies.
plotHistP Calculates and creates a percentage

frequency histogram plot.
plotLogLog Creates a 2-dimensional line plot with

logarithmic scaling of the both the X
and Y axes.

plotLogX Creates a 2-dimensional line plot with
logarithmic scaling of the X axis.

plotLogY Creates a 2-dimensional line plot with
logarithmic scaling of the Y axis.

plotPolar Creates a polar plot.
plotScatter Creates a 2-dimensional scatter plot.
plotSurface Creates a 3-dimensional surface plot.

34-80

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-81

plotTS Creates a graph of time series data.
plotXY Creates a 2-dimensional line plot.

34.18.2 Adding Data to Existing Graphs

plotAddArea Adds a cumulative area plot to an
existing 2-D graph.

plotAddBar Adds a bar or a set of bars to an
existing 2-D graph.

plotAddErrorBar Adds an error bar or a set of bars to an
existing 2-D graph.

plotAddBox Adds a box plot to an existing 2-D
graph.

plotAddHist Adds a histogram to an existing 2-D
graph.

plotAddHistF Adds a frequency histogram to an
existing 2-D graph.

plotAddHistP Adds a percent frequency histogram
to an existing 2-D graph.

plotAddPolar Adds a graph using polar coordinates
to an existing polar graph.

plotAddScatter Adds a set of points to an existing 2-D
graph.

plotAddSurface Adds a surface plot to an existing 3-D
plot.

plotAddTS Adds a curve of time series data to an
existing time series plot.

plotAddXY Adds an XY plot to an existing 2-D
graph.

Commands by Category

C
om

m
ands

by
C
ategory

34.18.3 Plot Control

plotClearLayout Clears any previously set plot
layouts.

plotCustomLayout Plots a graph of user-specified size at
a user-specified location.

plotGetDefaults Gets default settings for graph types.
plotLayout Divides a plot into a grid of subplots

and assigns the cell location in which
to draw the next created graph.

plotOpenWindow Opens a new, empty graph whicow
to be used by the next drawn graph.

plotSave Saves the last created graph to a user
specified file type.

plotSetAxesPen Sets the color for the axes line.
plotSetBar Sets the fill style and format of bars in

a histogram or bar graph.
plotSetBkdColor Sets background color of a graph.
plotSetColorMap Sets the color maps for a surface or

contour plot.
plotSetContourLabels Sets the contour labels for a contour

plot.
plotSetFill Settings for the background grid of a

plot.
plotSetGrid Controls the settings for the

background grid of a plot.
plotSetLegend Adds a legend to a graph.
plotSetLegendFont Set the legend font for a graph.
plotSetLineColor Sets line colors for a graph.

34-82

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-83

plotSetLineStyle Sets line styles for a graph.
plotSetLineSymbol Sets line symbols displayed on the

plotted points of a graph.
plotSetLineThickness Sets line thickness for a graph.
plotSetNewWindow Sets whether or not graph should be

drawn in the same window or a new
window.

plotSetTextInterpreter Controls the text interpreter settings
for a graph.

plotSetTitle Controls the settings for the title for a
graph.

plotSetWhichYAxis Assigns curves to the right or left Y-
axis.

plotSetXLabel Controls the settings for the X-axis
label on a graph.

plotSetXRange Sets the range for the X-axis.
plotSetXTicCount Controls the number of major tics on

the X-axis of a 2-D plot.
plotSetXTicInterval Controls the interval between X-axis

tic labels and also allows the user to
specify the first tic to be labeled for 2-
D time series graphs.

plotSetXTicLabel Controls the formatting and angle of
X-axis tic labels for 2-D time series
graphs.

plotSetYLabel Controls the settings for the Y-axis
label on a graph.

plotSetYRange Sets the range for the y-axis.
plotSetYTicCount Controls the number of major tics on

Commands by Category

C
om

m
ands

by
C
ategory

the y-axis of a 2-D plot.
plotSetZLabel Controls the settings for the Z-axis

label on a graph.
plotSetZLevels Controls the heights at which lines

are drawn on a contour plot.

34.18.4 Annotation Control

annotationGetDefaults Fills in an instance of a
plotAnnotation structure
with default values.

annotationSetBkd Sets the background color
and transparency level for
a textbox, rectangle or
ellipse.

annotationSetFont Sets the font properties of
a plotAnnotation structure
for controlling text boxes
added to a graph.

annotationSetLineColor Sets the line color for
textbox, rectangle or
ellipse borders as well as
the color for lines and
arrows.

annotationSetLineStyle Sets the line style for
textbox, rectangle or
ellipse borders as well as
the style for lines and
arrows.

annotationSetLineThickness Sets the line thickness for
textbox, rectangle or

34-84

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-85

ellipse borders as well as
the color for lines and
arrows.

34.19 PQG Graphics

This section summarizes all procedures and global variables available within the
PUBLICATION QUALITY GRAPHICS (PQG) System. A general usage description will be
found in PQG GRAPHICS COLORS. Note that PUBLICATION QUALITY GRAPHICS (PQG)
graphic functions are included as legacy code and have been replaced with new plot
functions.

34.19.1 Graph Types

bar Generates bar graph.
box Graphs data using the box graph

percentile method.
contour Graphs contour data.
draw Supplies additional graphic elements

to graphs.
hist Computes and graphs frequency

histogram.
histf Graphs a histogram given a vector of

frequency counts.
histp Graphs a percent frequency histogram

of a vector.
loglog Graphs X,Y using logarithmic X and

Y axes.
logx Graphs X,Y using logarithmic X axis.
logy Graphs X,Y using logarithmic Y axis.
surface Graphs a 3-D surface.

Commands by Category

C
om

m
ands

by
C
ategory

xy Graphs X,Y using Cartesian
coordinate system.

xyz Graphs X,Y,Z using 3-D Cartesian
coordinate system.

34.19.2 Axes Control and Scaling

_paxes Turns axes on or off.
_pcross Controls where axes intersect.
_pgrid Controls major and minor grid lines.
_pticout Controls direction of tick marks on

axes.
_pxpmax Controls precision of numbers on X

axis.
_pxsci Controls use of scientific notation on

X axis.
_pypmax Controls precision of numbers on Y

axis.
_pysci Controls use of scientific notation on

Y axis.
_pzpmax Controls precision of numbers on Z

axis.
_pzsci Controls use of scientific notation on

Z axis.
scale Scales X,Y axes for 2-D plots.
scale3d Scales X,Y, and Z axes for 3-D plots.
xtics Scales X axis and controls tick marks.
ytics Scales Y axis and controls tick marks.
ztics Scales Z axis and controls tick marks.

34-86

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-87

34.19.3 Text, Labels, Titles, and Fonts

_paxht Controls size of axes labels.
_pdate Controls date string contents.
_plegctl Sets location and size of plot legend.
_plegstr Specifies legend text entries.
_pmsgctl Controls message position.
_pmsgstr Specifies message text.
_pnum Controls axes numeric labels and

orientation.
_pnumht Controls size of axes numeric labels.
_ptitlht Controls main title size.
asclabel Defines character labels for tick

marks.
fonts Loads fonts for labels, titles,

messages, and legend.
title Specifies main title for graph.
xlabel Specifies X axis label.
ylabel Specifies Y axis label.
zlabel Specifies Z axis label.

34.19.4 Main Curve Lines and Symbols

_pboxctl Controls box plotter.
_pboxlim Outputs percentile matrix from box

plotter.
_pcolor Controls line color for main curves.
_plctrl Controls main curve and frequency of

data symbols.

Commands by Category

C
om

m
ands

by
C
ategory

_pltype Controls line style for main curves.
_plwidth Controls line thickness for main

curves.
_pstype Controls symbol type for main curves.
_psymsiz Controls symbol size for main curves.
_pzclr Z level color control for contour

and surface.

34.19.5 Extra Lines and Symbols

_parrow Creates arrows.
_parrow3 Creates arrows for 3-D graphs.
_perrbar Plots error bars.
_pline Plots extra lines and circles.
_pline3d Plots extra lines for 3-D graphs.
_psym Plots extra symbols.
_psym3d Plots extra symbols for 3-D graphs.

34.19.6 Graphic Panel, Page, and Plot Control

_pageshf Shifts the graph for printer output.
_pagesiz Controls size of graph for printer

output.
_plotshf Controls plot area position.
_plotsiz Controls plot area size.
_protate Rotates the graph 90 degrees.
axmargin Controls axes margins and plot size.
begwind Graphic panel initialization procedure.
endwind Ends graphic panel manipulation;

displays graphs.

34-88

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

34-89

getwind Gets current graphic panel number.
loadwind Loads a graphic panel configuration

from a file.
makewind Creates graphic panel with specified

size and position.
margin Controls graph margins.
nextwind Sets to next available graphic panel

number.
savewind Saves graphic panel configuration to a

file.
setwind Sets to specified graphic panel

number.
window Creates tiled graphic panels of equal

size.

axmargin is preferred to the older _plotsiz and _plotshf globals for
establishing an absolute plot size and position.

34.19.7 Output Options

_pscreen Controls graphics output to window.
_psilent Controls final beep.
_ptek Controls creation and name of

graphics.tkf file.
_pzoom Specifies zoom parameters.
graphprt Generates print, conversion file.
pqgwin Sets the graphics viewer mode.
setvwrmode Sets the graphics viewer mode.
tkf2eps Converts .tkf file to Encapsulated

PostScript file.

Commands by Category

C
om

m
ands

by
C
ategory

tkf2ps Converts .tkf file to PostScript file.

34.19.8 Miscellaneous

_pbox Draws a border around graphic
panel/window.

_pcrop Controls cropping of graphics data
outside axes area.

_pframe Draws a frame around 2-D, 3-D plots.

_pmcolor Controls colors to be used for axes,
title, x and y labels, date, box, and
background.

graphset Resets all PQG globals to default
values.

rerun Displays most recently created graph.
view Sets 3-D observer position in

workbox units.
viewxyz Sets 3-D observer position in plot

coordinates.
volume Sets length, width, and height ratios of

3-D workbox.

34-90

Commands by Category

C
om

m
an
ds

by
C
at
eg
or
y

35-1

35 Command Reference

a 35-52

abs 35-52

acf 35-53

aconcat 35-58

aeye 35-61

amax 35-63

amean 35-65

AmericanBinomCall 35-67

AmericanBinomCall_Greeks 35-69

AmericanBinomCall_ImpVol 35-71

AmericanBinomPut 35-73

AmericanBinomPut_Greeks 35-75

AmericanBinomPut_ImpVol 35-77

AmericanBSCall 35-79

AmericanBSCall_Greeks 35-80

AmericanBSCall_ImpVol 35-82

AmericanBSPut 35-84

AmericanBSPut_Greeks 35-85

AmericanBSPut_ImpVol 35-87

amin 35-89

amult 35-92

annotationGetDefaults 35-94

annotationSetBkd 35-95

annotationSetFont 35-97

annotationSetLineColor 35-99

annotationSetLineStyle 35-101

annotationSetLineThickness 35-103

annualTradingDays 35-104

arccos 35-106

arcsin 35-107

areshape 35-108

arrayalloc 35-110

arrayindex 35-112

arrayinit 35-114

arraytomat 35-115

asciiload 35-116

35-2

35-3

asclabel 35-118

astd 35-120

astds 35-122

asum 35-124

atan 35-126

atan2 35-128

atranspose 35-130

axmargin 35-132

b 35-135

balance 35-135

band 35-136

bandchol 35-138

bandcholsol 35-140

bandltsol 35-141

bandrv 35-143

bandsolpd 35-145

bar 35-146

base10 35-148

begwind 35-149

besselj 35-150

bessely 35-151

beta 35-153

box 35-154

boxcox 35-156

break 35-157

c 35-159

call 35-159

cdfBeta 35-160

cdfBetaInv 35-162

cdfBinomial 35-164

cdfBinomialInv 35-165

cdfBvn 35-167

cdfBvn2 35-169

cdfBvn2e 35-171

cdfCauchy 35-173

cdfCauchyInv 35-174

cdfChic 35-175

cdfChii 35-177

cdfChinc 35-179

cdfChincInv 35-180

cdfEmpirical 35-182

cdfExp 35-185

35-4

35-5

cdfExpInv 35-186

cdfFc 35-186

cdfFnc 35-189

cdfFncInv 35-190

cdfGam 35-192

cdfGenPareto 35-194

cdfHyperGeo 35-196

cdfLaplace 35-198

cdfLaplaceInv 35-199

cdfLogistic 35-199

cdfLogisticInv 35-201

cdfMvn 35-201

cdfMvnce 35-205

cdfMvne 35-210

cdfMvn2e 35-215

cdfMvtce 35-221

cdfMvte 35-227

cdfMvt2e 35-233

cdfN, cdfNc 35-239

cdfNegBinomial 35-243

cdfNegBinomialInv 35-245

cdfN2 35-246

cdfNi 35-248

cdfPoisson 35-250

cdfPoissonInv 35-251

cdfRayleigh 35-252

cdfRayleighInv 35-254

cdfTc 35-255

cdfTci 35-257

cdfTnc 35-258

cdfTvn 35-261

cdfWeibull 35-263

cdfWeibullInv 35-265

cdir 35-266

ceil 35-267

changeDir 35-269

chdir 35-269

chiBarSquare 35-270

chol 35-272

choldn 35-274

cholsol 35-276

cholup 35-278

35-6

35-7

chrs 35-279

clear 35-281

clearg 35-282

close 35-283

closeall 35-286

cls 35-289

code 35-290

code (dataloop) 35-293

cols 35-295

colsf 35-296

combinate 35-297

combinated 35-299

comlog 35-302

compile 35-303

complex 35-305

con 35-306

cond 35-309

conj 35-310

cons 35-311

ConScore 35-312

continue 35-316

contour 35-318

conv 35-319

convertsatostr 35-320

convertstrtosa 35-321

corrm,corrvc,corrx 35-322

corrms,corrxs 35-324

cos 35-327

cosh 35-328

counts 35-329

countwts 35-331

create 35-333

crossprd 35-340

crout 35-341

croutp 35-343

csrcol,csrlin 35-345

csvReadM 35-346

csvReadSA 35-352

csvWriteM 35-356

cumprodc 35-360

cumsumc 35-362

curve 35-363

35-8

35-9

cvtos 35-365

cvtosa 35-366

d 35-368

datacreate 35-368

datacreatecomplex 35-370

datalist 35-373

dataload 35-374

dataloop (dataloop) 35-376

dataopen 35-377

datasave 35-381

date 35-382

datestr 35-383

datestring 35-384

datestrymd 35-385

dayinyr 35-386

dayofweek 35-387

dbAddDatabase 35-389

dbClose 35-391

dbCommit 35-391

dbCreateQuery 35-392

dbExecQuery 35-394

dbGetConnectOptions 35-395

dbGetDatabaseName 35-396

dbGetDriverName 35-396

dbGetDrivers(); 35-397

dbGetHostName 35-398

dbGetLastErrorNum 35-399

dbGetLastErrorText 35-399

dbGetNumericalPrecPolicy 35-400

dbGetPassword 35-401

dbGetPort 35-401

dbGetPrimaryIndex 35-402

dbGetTableHeaders 35-403

dbGetTables 35-404

dbGetUserName 35-404

dbHasFeature 35-405

dbIsDriverAvailable 35-407

dbIsOpen 35-408

dbIsOpenError 35-408

dbIsValid 35-409

dbNumericalPrecPolicy 35-410

dbOpen 35-410

35-10

35-11

dbQueryBindValue 35-412

dbQueryClear 35-413

dbQueryCols 35-413

dbQueryExecPrepared 35-414

dbQueryFetchAllM 35-415

dbQueryFetchAllSA 35-417

dbQueryFetchOneM 35-418

dbQueryFetchOneSA 35-420

dbQueryFinish 35-421

dbQueryGetBoundValue 35-422

dbQueryGetBoundValues 35-423

dbQueryGetField 35-424

dbQueryGetLastErrorNum 35-426

dbQueryGetLastErrorText 35-426

dbQueryGetLastInsertID 35-427

dbQueryGetLastQuery 35-428

dbQueryGetNumRowsAffected 35-429

dbQueryGetPosition 35-430

dbQueryIsActive 35-431

dbQueryIsForwardOnly 35-432

dbQueryIsNull 35-433

dbQueryIsSelect 35-434

dbQueryIsValid 35-435

dbQueryPrepare 35-436

dbQueryRows 35-438

dbQuerySeek 35-439

dbQuerySeekFirst 35-440

dbQuerySeekLast 35-442

dbQuerySeekNext 35-443

dbQuerySeekPrevious 35-445

dbQuerySetForwardOnly 35-446

dbQuerySetNumericalPrecisionPolicy 35-447

dbRemoveDatabase 35-448

dbRollback 35-448

dbSetConnectOptions 35-449

dbSetDatabaseName 35-452

dbSetHostName 35-453

dbSetPassword 35-454

dbSetPort 35-455

dbSetUserName 35-456

dbTransaction 35-456

debug 35-458

35-12

35-13

declare 35-458

delete 35-464

delete (dataloop) 35-466

deleteFile 35-467

delif 35-468

delrows 35-473

denseToSp 35-475

denseToSpRE 35-476

denToZero 35-478

design 35-480

det 35-482

detl 35-484

dfft 35-485

dffti 35-486

diag 35-487

diagrv 35-490

digamma 35-492

dlibrary 35-492

dllcall 35-495

do while,do until 35-497

dos 35-500

doswin 35-503

DOSWinCloseall 35-503

DOSWinOpen 35-504

dot 35-507

dotfeq,dotfge, dotfgt,dotfle,dotflt,dotfne 35-509

dotfeqmt,dotfgemt,dotfgtmt,dotflemt,dotfltmt,dotfnemt 35-511

draw 35-513

drop (dataloop) 35-515

dsCreate 35-515

dstat 35-516

dstatmt 35-523

dstatmtControlCreate 35-531

dtdate 35-532

dtday 35-534

dttime 35-535

dttodtv 35-536

dttostr 35-537

dttoutc 35-540

dtvnormal 35-542

dtvtodt 35-543

dtvtoutc 35-545

35-14

35-15

dummy 35-546

dummybr 35-548

dummydn 35-550

e 35-553

ed 35-553

edit 35-554

erfInv,erfCInv 35-555

eig 35-556

eigh 35-558

eighv 35-560

eigv 35-561

elapsedTradingDays 35-563

end 35-565

endp 35-566

endwind 35-567

envget 35-568

eof 35-569

eqSolve 35-571

eqSolvemt 35-576

eqSolvemtControlCreate 35-584

eqSolvemtOutCreate 35-585

eqSolveSet 35-587

erf,erfc 35-587

erfcplx,erfccplx 35-589

error 35-590

errorlog 35-593

errorlogat 35-593

etdays 35-594

ethsec 35-595

etstr 35-597

EuropeanBinomCall 35-598

EuropeanBinomCall_Greeks 35-600

EuropeanBinomCall_ImpVol 35-602

EuropeanBinomPut 35-604

EuropeanBinomPut_Greeks 35-605

EuropeanBinomPut_ImpVol 35-608

EuropeanBSCall 35-609

EuropeanBSCall_Greeks 35-611

EuropeanBSCall_ImpVol 35-613

EuropeanBSPut 35-614

EuropeanBSPut_Greeks 35-616

EuropeanBSPut_ImpVol 35-618

35-16

35-17

exctsmpl 35-619

exec 35-621

execbg 35-622

exp 35-623

extern (dataloop) 35-625

external 35-626

eye 35-627

f 35-629

fcheckerr 35-629

fclearerr 35-630

feq,fge,fgt,fle,flt,fne 35-631

feqmt,fgemt,fgtmt,flemt,fltmt,fnemt 35-633

fflush 35-635

fft 35-635

ffti 35-636

fftm 35-637

fftmi 35-640

fftn 35-643

fgets 35-645

fgetsa 35-646

fgetsat 35-647

fgetst 35-648

fileinfo 35-649

filesa 35-651

floor 35-652

fmod 35-654

fn 35-656

fonts 35-657

fopen 35-658

for 35-660

format 35-663

formatcv 35-673

formatnv 35-674

fputs 35-675

fputst 35-678

fseek 35-681

fstrerror 35-683

ftell 35-684

ftocv 35-685

ftos 35-686

ftostrC 35-690

g 35-693

35-18

35-19

gamma 35-693

gammacplx 35-694

gammaii 35-695

gausset 35-696

gdaAppend 35-697

gdaCreate 35-699

gdaDStat 35-700

gdaDStatMat 35-704

gdaGetIndex 35-709

gdaGetName 35-710

gdaGetNames 35-711

gdaGetOrders 35-712

gdaGetType 35-714

gdaGetTypes 35-715

gdaGetVarInfo 35-717

gdaIsCplx 35-719

gdaLoad 35-720

gdaPack 35-724

gdaRead 35-726

gdaReadByIndex 35-727

gdaReadSome 35-728

gdaReadSparse 35-731

gdaReadStruct 35-732

gdaReportVarInfo 35-734

gdaSave 35-735

gdaUpdate 35-738

gdaUpdateAndPack 35-740

gdaVars 35-742

gdaWrite 35-743

gdaWrite32 35-744

gdaWriteSome 35-746

getarray 35-749

getdims 35-750

getf 35-751

getGAUSSHome 35-754

getmatrix 35-755

getmatrix4D 35-757

getname 35-759

getnamef 35-760

getNextTradingDay 35-762

getNextWeekDay 35-763

getnr 35-764

35-20

35-21

getnrmt 35-765

getorders 35-766

getpath 35-767

getPreviousTradingDay 35-769

getPreviousWeekDay 35-770

getRow 35-770

getscalar3D 35-772

getscalar4D 35-773

getTrRow 35-775

getwind 35-776

glm 35-777

gosub 35-807

goto 35-810

gradMT 35-811

gradMTm 35-813

gradMTT 35-815

gradMTTm 35-817

gradp, gradcplx 35-818

graphprt 35-820

graphset 35-824

h 35-825

h5create 35-825

h5open 35-828

h5read 35-831

h5readAttribute 35-838

h5write 35-840

h5writeAttribute 35-842

hasimag 35-845

header 35-846

headermt 35-847

hess 35-849

hessMT 35-850

hessMTg 35-852

hessMTgw 35-854

hessMTm 35-855

hessMTmw 35-857

hessMTT 35-859

hessMTTg 35-861

hessMTTgw 35-863

hessMTTm 35-864

hessMTw 35-866

hessp, hesscplx 35-868

35-22

35-23

hist 35-870

histf 35-872

histp 35-873

hsec 35-874

i 35-876

if, else, elseif 35-876

imag 35-877

#include 35-878

indcv 35-880

indexcat 35-882

indices 35-883

indices2 35-885

indicesf 35-886

indicesfn 35-888

indnv 35-889

indsav 35-891

integrate1d 35-892

intgrat2 35-897

intgrat3 35-899

inthp1 35-902

inthp2 35-906

inthp3 35-910

inthp4 35-914

inthpControlCreate 35-918

intquad1 35-919

intquad2 35-922

intquad3 35-926

intrleav 35-930

intrleavsa 35-932

intrsect 35-933

intrsectsa 35-936

intsimp 35-938

inv, invpd 35-939

invswp 35-941

iscplx 35-942

iscplxf 35-943

isden 35-944

isinfnanmiss 35-945

ismiss 35-946

itos 35-948

k 35-950

keep (dataloop) 35-950

35-24

35-25

key 35-951

keyav 35-952

keyw 35-953

keyword 35-953

l 35-956

lag (dataloop) 35-956

lag1 35-957

lagn 35-958

lapeighb 35-960

lapeighi 35-962

lapeighvb 35-964

lapeighvi 35-966

lapgeig 35-968

lapgeigh 35-969

lapgeighv 35-971

lapgeigv 35-973

lapgsvdcst 35-974

lapgsvds 35-977

lapgsvdst 35-979

lapgschur 35-982

lapsvdcusv 35-987

lapsvds 35-989

lapsvdusv 35-990

ldl 35-992

ldlp 35-994

ldlsol 35-996

let 35-997

lib 35-1001

library 35-1005

#lineson, #linesoff 35-1009

linsolve 35-1010

listwise (dataloop) 35-1012

ln 35-1012

lncdfbvn 35-1013

lncdfbvn2 35-1014

lncdfmvn 35-1016

lncdfn 35-1017

lncdfn2 35-1018

lncdfnc 35-1020

lnfact 35-1021

lngammacplx 35-1023

lnpdfmvn 35-1024

35-26

35-27

lnpdfmvt 35-1025

lnpdfn 35-1026

lnpdft 35-1027

load, loadf, loadk, loadm, loadp, loads 35-1028

loadarray 35-1033

loadd 35-1035

loadstruct 35-1039

loadwind 35-1040

local 35-1041

locate 35-1041

loess 35-1042

loessmt 35-1044

loessmtControlCreate 35-1046

log 35-1047

loglog 35-1048

logx 35-1049

logy 35-1050

loopnextindex 35-1051

lower 35-1054

lowmat, lowmat1 35-1056

ltrisol 35-1057

lu 35-1058

lusol 35-1060

m 35-1061

machEpsilon 35-1061

make (dataloop) 35-1061

makevars 35-1062

makewind 35-1064

margin 35-1066

matalloc 35-1067

matinit 35-1068

mattoarray 35-1069

maxc 35-1070

maxindc 35-1071

maxv 35-1073

maxvec 35-1075

maxbytes 35-1076

mbesseli 35-1077

meanc 35-1080

median 35-1081

mergeby 35-1083

mergevar 35-1084

35-28

35-29

minc 35-1086

minindc 35-1087

minv 35-1089

miss, missrv 35-1090

missex 35-1093

moment 35-1095

momentd 35-1097

movingave 35-1101

movingaveExpwgt 35-1102

movingaveWgt 35-1103

msym 35-1104

n 35-1107

new 35-1107

nextindex 35-1108

nextn, nextnevn 35-1110

nextwind 35-1112

ntos 35-1112

null 35-1115

null1 35-1117

numCombinations 35-1118

o 35-1120

ols 35-1120

olsmt 35-1129

olsmtControlCreate 35-1140

olsqr 35-1141

olsqr2 35-1142

olsqrmt 35-1143

ones 35-1145

open 35-1146

optn, optnevn 35-1152

orth 35-1154

output 35-1156

outtyp (dataloop) 35-1159

outwidth 35-1160

p 35-1162

pacf 35-1162

packedToSp 35-1171

packr 35-1173

parse 35-1175

pause 35-1179

pdfBinomial 35-1179

pdfCauchy 35-1181

35-30

35-31

pdfexp 35-1182

pdfGenPareto 35-1183

pdfHyperGeo 35-1185

pdfLaplace 35-1187

pdflogistic 35-1188

pdfn 35-1189

pdfPoisson 35-1190

pdfRayleigh 35-1192

pdfWeibull 35-1193

pdfWishartInv 35-1194

pi 35-1196

pinv 35-1197

pinvmt 35-1199

plotAddArea 35-1200

plotAddArrow 35-1204

plotAddBar 35-1206

plotAddBox 35-1207

plotAddErrorBar 35-1208

plotAddHist 35-1216

plotAddHistF 35-1217

plotAddHistP 35-1218

plotAddPolar 35-1219

plotAddScatter 35-1220

plotAddShape 35-1221

plotAddSurface 35-1223

plotAddTextbox 35-1228

plotAddTS 35-1231

plotAddXY 35-1232

plotArea 35-1233

plotBar 35-1234

plotBox 35-1236

plotCDFEmpirical 35-1238

plotClearLayout 35-1241

plotContour 35-1243

plotCustomLayout 35-1246

plotGetDefaults 35-1247

plotHist 35-1249

plotHistF 35-1250

plotHistP 35-1250

plotLayout 35-1251

plotLogLog 35-1253

plotLogX 35-1253

35-32

35-33

plotLogY 35-1254

plotOpenWindow 35-1255

plotPolar 35-1256

plotSave 35-1257

plotScatter 35-1260

plotSetAxesPen 35-1261

plotSetBar 35-1262

plotSetBkdColor 35-1265

plotSetColorMap 35-1267

plotSetContourLabels 35-1270

plotSetFill 35-1273

plotSetGrid 35-1275

plotSetLegend 35-1276

plotSetLegendFont 35-1278

plotSetLineColor 35-1280

plotSetLineStyle 35-1281

plotSetLineSymbol 35-1282

plotSetLineThickness 35-1285

plotSetNewWindow 35-1286

plotSetTextInterpreter 35-1287

plotSetTitle 35-1292

plotSetWhichYAxis 35-1295

plotSetXLabel 35-1296

plotSetXRange 35-1299

plotSetXTicCount 35-1300

plotSetXTicInterval 35-1303

plotSetXTicLabel 35-1306

plotSetYLabel 35-1311

plotSetYRange 35-1314

plotSetYTicCount 35-1315

plotSetZLabel 35-1319

plotSetZLevels 35-1321

plotSurface 35-1325

plotTS 35-1327

plotXY 35-1331

polar 35-1332

polychar 35-1333

polyeval 35-1334

polygamma 35-1336

polyint 35-1339

polymake 35-1340

polymat 35-1342

35-34

35-35

polymroot 35-1343

polymult 35-1345

polyroot 35-1347

pop 35-1348

powerM 35-1349

pqgwin 35-1351

previousindex 35-1352

princomp 35-1353

print 35-1355

printdos 35-1366

printfm 35-1367

printfmt 35-1370

proc 35-1373

prodc 35-1375

psi 35-1376

putarray 35-1377

putf 35-1379

putvals 35-1380

pvCreate 35-1382

pvGetIndex 35-1383

pvGetParNames 35-1383

pvGetParVector 35-1385

pvLength 35-1387

pvList 35-1388

pvPack 35-1389

pvPacki 35-1390

pvPackm 35-1392

pvPackmi 35-1394

pvPacks 35-1396

pvPacksi 35-1398

pvPacksm 35-1400

pvPacksmi 35-1402

pvPutParVector 35-1405

pvTest 35-1407

pvUnpack 35-1407

q 35-1409

QNewton 35-1409

QNewtonmt 35-1412

QNewtonmtControlCreate 35-1418

QNewtonmtOutCreate 35-1419

QNewtonSet 35-1420

QProg 35-1420

35-36

35-37

QProgmt 35-1422

QProgmtInCreate 35-1425

qqr 35-1426

qqre 35-1428

qqrep 35-1431

qr 35-1433

qre 35-1435

qrep 35-1438

qrsol 35-1440

qrtsol 35-1441

qtyr 35-1443

qtyre 35-1446

qtyrep 35-1449

quantile 35-1451

quantiled 35-1454

qyr 35-1458

qyre 35-1460

qyrep 35-1462

qz 35-1464

r 35-1470

rank 35-1470

rankindx 35-1471

readr 35-1472

real 35-1474

reclassify 35-1475

reclassifyCuts 35-1478

recode 35-1483

recode (dataloop) 35-1486

recserar 35-1488

recsercp 35-1490

recserrc 35-1492

renamefile 35-1494

rerun 35-1495

rescale 35-1495

reshape 35-1501

retp 35-1503

return 35-1503

rev 35-1504

rfft 35-1506

rffti 35-1507

rfftip 35-1507

rfftn 35-1509

35-38

35-39

rfftnp 35-1511

rfftp 35-1513

rndBernoulli 35-1514

rndBeta 35-1516

rndCauchy 35-1519

rndChiSquare 35-1520

rndcon, rndmult, rndseed 35-1522

rndCreateState 35-1524

rndExp 35-1527

rndgam 35-1529

rndGamma 35-1530

rndGeo 35-1532

rndGumbel 35-1534

rndHyperGeo 35-1535

rndi 35-1538

rndKMbeta 35-1541

rndKMgam 35-1543

rndKMi 35-1544

rndKMn 35-1546

rndKMnb 35-1548

rndKMp 35-1550

rndKMu 35-1551

rndKMvm 35-1553

rndLaplace 35-1555

rndLCbeta 35-1557

rndLCgam 35-1559

rndLCi 35-1560

rndLCn 35-1563

rndLCnb 35-1565

rndLCp 35-1567

rndLCu 35-1569

rndLCvm 35-1572

rndLogNorm 35-1574

rndMVn 35-1575

rndMVt 35-1577

rndn 35-1579

rndnb 35-1581

rndNegBinomial 35-1583

rndp 35-1585

rndPoisson 35-1587

rndStateSkip 35-1588

rndu 35-1590

35-40

35-41

rndvm 35-1593

rndWeibull 35-1594

rndWishart 35-1595

rndWishartInv 35-1597

rotater 35-1598

round 35-1600

rows 35-1601

rowsf 35-1602

rref 35-1603

run 35-1605

s 35-1608

sampleData 35-1608

satostrC 35-1610

save 35-1613

saveall 35-1616

saved 35-1617

savestruct 35-1619

savewind 35-1620

scale 35-1621

scale3d 35-1622

scalerr 35-1623

scalinfnanmiss 35-1626

scalmiss 35-1627

schtoc 35-1628

schur 35-1630

screen 35-1633

searchsourcepath 35-1634

seekr 35-1635

select (dataloop) 35-1636

selif 35-1637

seqa, seqm 35-1639

setarray 35-1640

setdif 35-1642

setdifsa 35-1645

setvars 35-1646

setvwrmode 35-1647

setwind 35-1648

shell 35-1649

shiftr 35-1651

show 35-1653

sin 35-1656

singleindex 35-1657

35-42

35-43

sinh 35-1659

sleep 35-1660

solpd 35-1661

sortc, sortcc 35-1664

sortd 35-1666

sorthc, sorthcc 35-1667

sortind, sortindc 35-1669

sortmc 35-1670

sortr, sortrc 35-1672

spBiconjGradSol 35-1674

spChol 35-1677

spConjGradSol 35-1678

spCreate 35-1681

spDenseSubmat 35-1682

spDiagRvMat 35-1684

spEigv 35-1687

spEye 35-1690

spGetNZE 35-1691

spline 35-1693

spLDL 35-1694

spLU 35-1695

spNumNZE 35-1697

spOnes 35-1698

spreadSheetReadM 35-1700

spreadSheetReadSA 35-1702

spreadSheetWrite 35-1704

spScale 35-1707

spSubmat 35-1709

spToDense 35-1711

spTrTDense 35-1712

spTScalar 35-1713

spZeros 35-1714

sqpSolve 35-1716

sqpSolveMT 35-1723

sqpSolveMTControlCreate 35-1731

sqpSolveMTlagrangeCreate 35-1732

sqpSolveMToutCreate 35-1733

sqpSolveSet 35-1734

sqrt 35-1735

stdc 35-1736

stdsc 35-1738

stocv 35-1739

35-44

35-45

stof 35-1740

stop 35-1741

strcombine 35-1742

strindx 35-1744

strlen 35-1745

strput 35-1746

strrindx 35-1748

strjoin 35-1749

strsect 35-1751

strsplit 35-1753

strsplitPad 35-1757

strtodt 35-1758

strtof 35-1760

strtofcplx 35-1762

strtrim 35-1763

strtriml 35-1765

strtrimr 35-1766

strtrunc 35-1767

strtruncl 35-1768

strtruncpad 35-1769

strtruncr 35-1770

submat 35-1770

subscat 35-1772

substute 35-1776

subvec 35-1779

sumc 35-1781

sumr 35-1783

surface 35-1785

svd 35-1788

svd1 35-1790

svd2 35-1792

svdcusv 35-1795

svds 35-1798

svdusv 35-1801

sylvester 35-1804

sysstate 35-1806

system 35-1828

t 35-1830

tab 35-1830

tan 35-1831

tanh 35-1832

tempname 35-1833

35-46

35-47

ThreadBegin 35-1834

ThreadEnd 35-1835

threadfor, threadendfor 35-1836

ThreadJoin 35-1839

ThreadStat 35-1840

time 35-1841

timedt 35-1841

timestr 35-1842

timeutc 35-1843

title 35-1844

tkf2eps 35-1846

tkf2ps 35-1847

tocart 35-1848

todaydt 35-1848

toeplitz 35-1849

token 35-1850

topolar 35-1853

trace 35-1853

trap 35-1855

trapchk 35-1859

trigamma 35-1861

trimr 35-1862

trunc 35-1863

type 35-1865

typecv 35-1867

typef 35-1869

u 35-1871

union 35-1871

unionsa 35-1872

uniqindx 35-1873

uniqindxsa 35-1875

unique 35-1876

uniquesa 35-1882

upmat, upmat1 35-1883

upper 35-1885

use 35-1886

utctodt 35-1888

utctodtv 35-1889

utrisol 35-1891

v 35-1892

vals 35-1892

varCovM, varCovX 35-1894

35-48

35-49

varCovMS, varCovXS 35-1896

varget 35-1898

vargetl 35-1900

varmall 35-1902

varmares 35-1903

varput 35-1905

varputl 35-1906

vartypef 35-1908

vcm, vcx 35-1909

vcms, vcxs 35-1910

vec, vecr 35-1911

vech 35-1913

vector (dataloop) 35-1914

vget 35-1915

view 35-1916

viewxyz 35-1917

vlist 35-1918

vnamecv 35-1919

volume 35-1920

vput 35-1921

vread 35-1922

vtypecv 35-1923

w 35-1924

wait, waitc 35-1924

walkindex 35-1924

window 35-1926

writer 35-1927

x 35-1930

xlabel 35-1930

xlsGetSheetCount 35-1931

xlsGetSheetSize 35-1932

xlsGetSheetTypes 35-1935

xlsMakeRange 35-1937

xlsReadM 35-1939

xlsReadSA 35-1944

xlsWrite 35-1948

xlsWriteM 35-1952

xlsWriteSA 35-1955

xpnd 35-1958

xtics 35-1960

xy 35-1961

xyz 35-1962

35-50

35-51

y 35-1964

ylabel 35-1964

ytics 35-1965

z 35-1967

zeros 35-1967

zeta 35-1968

zlabel 35-1969

ztics 35-1970

a

abs

Purpose

Returns the absolute value or complex modulus of x.

Format

y = abs(x);

Input

x NxK matrix or sparse matrix or N-dimensional array.

Output

y NxK matrix or sparse matrix or N-dimensional array
containing absolute values of x.

Example

//Set random number generator seed for
//repeatable random numbers
rndseed 929212;

x = rndn(2,2);
y = abs(x);

35-52

abs

a

35-53

The code above assigns the variables as follows:

x = -0.23061709 0.054931120
0.88863202 -0.82246522

y = 0.23061709 0.054931120
0.88863202 0.82246522

In this example, a 2x2 matrix of Normal random numbers is generated and the absolute
value of the matrix is computed.

acf

Purpose

Computes sample autocorrelations.

Format

rk = acf(y, k, d);

Input

y Nx1 vector, data.
k scalar, maximum number of autocorrelations to

compute.
d scalar, order of differencing.

acf

a

Output

rk Kx1 vector, sample autocorrelations.

Examples

Example 1

//Short time-series
x = { 12.92,
14.28 ,
13.31 ,
13.34 ,
12.71 ,
13.08 ,
11.86 ,
9.000 ,
8.190 ,
7.970 ,
8.350 ,
8.200 ,
8.120 ,
8.390 ,
8.660 };

//Maximum number of lags
k = 4;

//Order of differencing
d = 1;

//Calculate and print result of autocorrelation function
rk = acf(x, k, d);
print rk;

35-54

acf

a

35-55

The code above produces the following output:

0.15488076
-0.011078336
-0.17367167
0.031921209

Plot the ACF results with plotBar function. The first input 0 means using sequence
numbers to name elements in the rk.

plotBar(0,rk);

You can type the labels for x-axis and y-axis in the graphics window. The plot is
shown below:

acf

a

Example 2

Calculate the autocorrelation function and plot the results for "beef_prices" data.

//Get file name with full path
file = getGAUSSHome() $+ "examples/beef_prices.csv";

//Import data set starting with row 2 and column 2
beef = csvReadM(file, 2, 2);

//Max lags
k = 10;

//Order of differencing
d = 0;

//Call acf function
beef_acf = acf(beef, k, d);

The following code can give the time plot and sample ACF plot based on the beef
and beef_acf:

// Time series plot
//Step 1: Declare a plotControl structure
struct plotControl ctl;
ctl = plotGetDefaults("xy");

//Step 2: the time plot
//Making a 1 by 2 plot, the first plot is the time plot
plotLayout(1,2,1);

//Labels and format setting based on 'beef' matrix

35-56

acf

a

35-57

plotSetYLabel(&ctl, "cents/lb");
plotSetXLabel(&ctl, "Year");
plotSetXTicLabel(&ctl, "YYYY");
plotSetXTicInterval(&ctl, 120, 199501);

//Draw time series plot
plotTS(ctl, 1992, 12, beef);

//Making a 1 by 2 plot, the second plot is the ACF plot
plotLayout(1,2,2);

//Step 3: ACF plot
//Fill 'ctl' structure with bar plot defaults
ctl = plotGetDefaults("bar");

//Set labels and format based on 'beef_acf' matrix
plotSetYLabel(&ctl, "ACF");
plotSetXLabel(&ctl, "Lag");
plotSetXTicInterval(&ctl, 1, 5);

// ACF plot with plotBar function
plotBar(ctl, seqa(1,1,k), beef_acf);

You can use 'Add Text' to type 'Beef Prices' as the title in the graphics window. The
plot is:

acf

a

Source

tsutil.src

See Also

pacf

aconcat

Purpose

Concatenates conformable matrices and arrays in a user-specified dimension.

35-58

aconcat

a

35-59

Format

y = aconcat(a, b, dim);

Input

a matrix or N-dimensional array.
b matrix or K-dimensional array, conformable with a.
dim scalar, dimension in which to concatenate.

Output

y M-dimensional array, the result of the concatenation.

Remarks

a and b are conformable only if all of their dimensions except dim have the same
sizes. If a or b is a matrix, then the size of dimension 1 is the number of columns in
the matrix, and the size of dimension 2 is the number of rows in the matrix.

Example

//Create a 2x3x4 array with each element set to 0
a = arrayinit(2|3|4,0);

//Create a 3x4 matrix with each element set to 3
b = 3*ones(3,4);
y = aconcat(a,b,3);

y will be a 3x3x4 array, where [1,1,1] through [2,3,4] are zeros and [3,1,1] through
[3,2,4] are threes.

aconcat

a

//Create an additive sequence from 1-20 and 'reshape' it
//into a 4x5 matrix
a = reshape(seqa(1,1,20),4,5);

b = zeros(4,5);
y = aconcat(a,b,3);

y will be a 2x4x5 array, where [1,1,1] through [1,4,5] are sequential integers beginning
with 1, and [2,1,1] through [2,4,5] are zeros.

//The pipe operator '|' causes vertical concatenation so
//that the statement 2|3|4 creates a 3x1 column vector
//equal to { 2, 3, 4 }
a = arrayinit(2|3|4,0);
b = seqa(1,1,24);

//'Reshape' the vector 'b' into a 2x3x4 dimensional array
b = areshape(b,2|3|4);
y = aconcat(a,b,5);

y will be a 2x1x2x3x4 array, where [1,1,1,1,1] through [1,1,2,3,4] are zeros, and
[2,1,1,1,1] through [2,1,2,3,4] are sequential integers beginning with 1.

a = arrayinit(2|3|4,0);
b = seqa(1,1,6);
b = areshape(b,2|3|1);
y = aconcat(a,b,1);
print "y = " y;

y will be a 2x3x5 array:

y =

Plane [1,.,.]

35-60

aconcat

a

35-61

0.00 0.00 0.00 0.00 1.0
0.00 0.00 0.00 0.00 2.0
0.00 0.00 0.00 0.00 3.0

Plane [2,.,.]

0.00 0.00 0.00 0.00 4.0
0.00 0.00 0.00 0.00 5.0
0.00 0.00 0.00 0.00 6.0

See Also

areshape

aeye

Purpose

Creates an N-dimensional array in which the planes described by the two trailing
dimensions of the array are equal to the identity.

Format

a = aeye(ord);

Input

ord Nx1 vector of orders, the sizes of the dimensions of a.

aeye

a

Output

a N-dimensional array, containing 2-dimensional identity
arrays.

Remarks

If ord contains numbers that are not integers, they will be truncated to integers.

The planes described by the two trailing dimensions of a will contain 1's down the
diagonal and 0's everywhere else.

Example

v = { 2, 3, 3 };
a = aeye(v);

a will be a 2x3x3 array, such that:

[1,1,1] through [1,3,3] =

1 0 0
0 1 0
0 0 1

[2,1,1] through [2,3,3] =

1 0 0
0 1 0
0 0 1

See Also

eye

35-62

aeye

a

35-63

amax

Purpose

Moves across one dimension of an N-dimensional array and finds the largest ele-
ment.

Format

y = amax(x, dim);

Input

x N-dimensional array.
dim scalar, number of dimension across which to find the

maximum value.

Output

y N-dimensional array.

Remarks

The output y, will have the same sizes of dimensions as x, except that the dimension
indicated by dim will be collapsed to 1.

Example

rndseed 9823432;

//Create random normal numbers with a standard deviation
//of 10 and round them to the nearest integer

amax

a

x = round(10*rndn(24,1));

//Reshape them from a 24x1 vector into 2x3x4 array
x = areshape(x,2|3|4);

// Calculate the max across the second dimension
dim = 2;
y = amax(x,dim);

After this calculation:

x[1,1,1] through x[1,3,4] =

-14.000000 4.0000000 6.0000000 -4.0000000
1.0000000 8.0000000 10.000000 9.0000000

-3.0000000 12.000000 5.0000000 -26.000000

x[2,1,1] through x[2,3,4] =

4.0000000 6.0000000 4.0000000 2.0000000
1.0000000 16.000000 9.0000000 -4.0000000

-4.0000000 -8.0000000 -10.000000 8.0000000

y[1,1,1] through y[1,1,4] =

1.0000000 12.000000 10.000000 9.0000000

y[2,1,1] through y[2,1,4] =

4.0000000 16.000000 9.0000000 8.0000000

Use the same x array and calculate the max across dimension 1:

y2 = amax(x,1);

After this calculation, x remains the same, but y2 is:

35-64

amax

a

35-65

y2[1,1,1] through y2[1,3,1] =

6.0000000
10.000000
12.000000

y2[2,1,1] through y2[2,3,1] =

6.0000000
16.000000
8.0000000

See Also

amin, maxc

amean

Purpose

Computes the mean across one dimension of an N-dimensional array.

Format

y = amean(x, dim);

Input

x N-dimensional array.
dim scalar, number of dimension to compute the mean

across.

amean

a

Output

y [N-1]-dimensional array.

Remarks

The output y, will have the same sizes of dimensions as x, except that the dimension
indicated by dim will be collapsed to 1.

Example

//Create an additive sequence from 1-24
x = seqa(1,1,24);

//'Reshape' this 24x1 vector into a 2x3x4 dimensional array
x = areshape(x,2|3|4);

y = amean(x,3);

x is a 2x3x4 array, such that:

[1,1,1] through [1,3,4] =

1.0000000 2.0000000 3.0000000 4.0000000
5.0000000 6.0000000 7.0000000 8.0000000
9.0000000 10.000000 11.000000 12.000000

[2,1,1] through [2,3,4] =

13.000000 14.000000 15.000000 16.000000
17.000000 18.000000 19.000000 20.000000
21.000000 22.000000 23.000000 24.000000

y will be a 1x3x4 array, such that:

[1,1,1] through [1,3,4] =

35-66

amean

a

35-67

7.0000000 8.0000000 9.0000000 10.000000
11.000000 12.000000 13.000000 14.000000
15.000000 16.000000 17.000000 18.000000

y = amean(x,1);

Using the same array x as the above example, this example computes the mean across
the first dimension. y will be a 2x3x1 array, such that:

[1,1,1] through [1,3,1] =

2.5000000
6.5000000
10.500000

[2,1,1] through [2,3,1] =

14.500000
18.500000
22.500000

See Also

asum

AmericanBinomCall

Purpose

Prices American call options using binomial method.

Format

c = AmericanBinomCall(S0, K, r, div, tau, sigma, N);

AmericanBinomCall

a

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.
N number of time segments.

Output

c Mx1 vector, call premiums.

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified
approach," Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

Example

S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;
sigma = .2493;

t0 = dtday(2001, 1, 30);
t1 = dtday(2001, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

35-68

AmericanBinomCall

a

35-69

c = AmericanBinomCall(S0,K,r,0,tau,sigma,60);
print c;

produces the output:

17.344044
15.058486
12.817427

Source

finprocs.src

AmericanBinomCall_Greeks

Purpose

Computes Delta, Gamma, Theta, Vega, and Rho for American call options using
binomial method.

Format

{ d, g, t, v, rh } = AmericanBinomCall_Greeks(S0, K, r,
div, tau, sigma, N);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.

AmericanBinomCall_Greeks

a

tau scalar, elapsed time to exercise in annualized days of
trading.

sigma scalar, volatility.
N number of time segments.

Global Input

fin
thetaType

scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

fin
epsilon

scalar, finite difference stepsize. Default = 1e-8.

Output

d Mx1 vector, delta.
g Mx1 vector, gamma.
t Mx1 vector, theta.
v Mx1 vector, vega.
rh Mx1 vector, rho.

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified
approach," Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

Example

S0 = 305;
K = 300;

35-70

AmericanBinomCall_Greeks

a

35-71

r = .08;
sigma = .25;
tau = .33;
div = 0;

print AmericanBinomCall_Greeks(S0,K,r,0,tau,sigma,30);

produces:

0.70631204
0.00076381912

-17.400851
68.703851
76.691829

Source

finprocs.src

See Also

AmericanBinomCall_ImpVol, AmericanBinomCall, AmericanBinomPut_Greeks,
AmericanBSCall_Greeks

AmericanBinomCall_ImpVol

Purpose

Computes implied volatilities for American call options using binomial method.

Format

sigma = AmericanBinomCall_ImpVol(c, S0, K, r, div, tau,
N);

AmericanBinomCall_ImpVol

a

Input

c Mx1 vector, call premiums
S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
N number of time segments.

Output

sigma Mx1 vector, volatility.

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified
approach," Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

Example

c = { 13.70, 11.90, 9.10 };
S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;
div = 0;

t0 = dtday(2001, 1, 30);
t1 = dtday(2001, 2, 16);
tau = elapsedTradingDays(t0,t1) /

35-72

AmericanBinomCall_ImpVol

a

35-73

annualTradingDays(2001);

sigma = AmericanBinomCall_ImpVol(c,S0,K,r,0,tau,30);
print sigma;

produces:

0.19629517
0.16991943
0.12874756

Source

finprocs.src

AmericanBinomPut

Purpose

Prices American put options using binomial method.

Format

c = AmericanBinomPut(S0, K, r, div, tau, sigma, N);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

AmericanBinomPut

a

trading.
sigma scalar, volatility.
N number of time segments.

Output

c Mx1 vector, put premiums.

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified
approach," Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

Example

S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;
sigma = .2493;

t0 = dtday(2001, 1, 30);
t1 = dtday(2001, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

c = AmericanBinomPut(S0,K,r,0,tau,sigma,60);
print c;

produces:

35-74

AmericanBinomPut

a

35-75

16.986117
19.729923
22.548538

Source

finprocs.src

AmericanBinomPut_Greeks

Purpose

Computes Delta, Gamma, Theta, Vega, and Rho for American put options using
binomial method.

Format

{ d, g, t, v, rh } = AmericanBinomPut_Greeks(S0, K, r,
div, tau, sigma, N);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.
N number of time segments.

AmericanBinomPut_Greeks

a

Global Input

fin
thetaType

scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

fin
epsilon

scalar, finite difference stepsize. Default = 1e-8.

Output

d Mx1 vector, delta.
g Mx1 vector, gamma.
t Mx1 vector, theta.
v Mx1 vector, vega.
rh Mx1 vector, rho.

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified
approach," Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

Example

S0 = 305;
K = 300;
r = .08;
div = 0;
sigma = .25;
tau = .33;

print AmericanBinomPut_Greeks(S0,K,r,0,tau,sigma,60);

produces

35-76

AmericanBinomPut_Greeks

a

35-77

-0.38324908
0.00076381912
8.1336630

68.337294
-27.585043

Source

finprocs.src

See Also

AmericanBinomPut_ImpVol, AmericanBinomPut, AmericanBinomCall_Greeks,
AmericanBSPut_Greeks

AmericanBinomPut_ImpVol

Purpose

Computes implied volatilities for American put options using binomial method.

Format

sigma = AmericanBinomPut_ImpVol(c, S0, K, r, div, tau, N);

Input

c Mx1 vector, put premiums
S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.

AmericanBinomPut_ImpVol

a

div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
N number of time segments.

Output

sigma Mx1 vector, volatility.

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified
approach," Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

Example

p = { 14.60, 17.10, 20.10 };
S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;
div = 0;

t0 = dtday(2001, 1, 30);
t1 = dtday(2001, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

sigma = AmericanBinomPut_ImpVol(p,S0,K,r,0,tau,30);
print sigma;

produces:

35-78

AmericanBinomPut_ImpVol

a

35-79

0.12466064
0.16583252
0.21203735

Source

finprocs.src

AmericanBSCall

Purpose

Prices American call options using Black, Scholes, and Merton method.

Format

c = AmericanBSCall(S0, K, r, div, tau, sigma);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.

Output

c Mx1 vector, call premiums.

AmericanBSCall

a

Example

S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;
sigma = .2493;

t0 = dtday(2001, 1, 30);
t1 = dtday(2001, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

c = AmericanBSCall(S0,K,r,0,tau,sigma);
print c;

produces:

32.005720
31.083232
30.367548

Source

finprocs.src

AmericanBSCall_Greeks

Purpose

Computes Delta, Gamma, Theta, Vega, and Rho for American call options using
Black, Scholes, and Merton method.

Format

{ d, g, t, v, rh } = AmericanBSCall_Greeks(S0, K, r, div,
tau, sigma);

35-80

AmericanBSCall_Greeks

a

35-81

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.

Global Input

fin
thetaType

scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

fin
epsilon

scalar, finite difference stepsize. Default = 1e-8.

Output

d Mx1 vector, delta.
g Mx1 vector, gamma.
t Mx1 vector, theta.
v Mx1 vector, vega.
rh Mx1 vector, rho.

Example

S0 = 305;

AmericanBSCall_Greeks

a

K = 300;
r = .08;
sigma = .25;
tau = .33;
print AmericanBSCall_Greeks(S0,K,r,0,tau,sigma);

produces:

0.40034039
0.016804021

-55.731079
115.36906
46.374528

Source

finprocs.src

See Also

AmericanBSCall_ImpVol, AmericanBSCall, AmericanBSPut_Greeks,
AmericanBinomCall_Greeks

AmericanBSCall_ImpVol

Purpose

Computes implied volatilities for American call options using Black, Scholes, and
Merton method.

Format

sigma = AmericanBSCall_ImpVol(c, S0, K, r, div, tau);

35-82

AmericanBSCall_ImpVol

a

35-83

Input

c Mx1 vector, call premiums.
S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.

Output

sigma Mx1 vector, volatility.

Example

c = { 13.70, 11.90, 9.10 };
S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;

t0 = dtday(2001, 1, 30);
t1 = dtday(2001, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

sigma = AmericanBSCall_ImpVol(c,S0,K,r,0,tau);
print sigma;

produces:

AmericanBSCall_ImpVol

a

0.10259888
0.088370361
0.066270752

Source

finprocs.src

AmericanBSPut

Purpose

Prices American put options using Black, Scholes, and Merton method.

Format

c = AmericanBSPut(S0, K, r, div, tau, sigma);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.

Output

c Mx1 vector, put premiums.

35-84

AmericanBSPut

a

35-85

Example

S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;
sigma = .2493;

t0 = dtday(2001, 1, 30);
t1 = dtday(2001, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

c = AmericanBSPut(S0,K,r,0,tau,sigma);
print c;

produces:

16.870783
19.536842
22.435487

Source

finprocs.src

AmericanBSPut_Greeks

Purpose

Computes Delta, Gamma, Theta, Vega, and Rho for American put options using
Black, Scholes, and Merton method.

AmericanBSPut_Greeks

a

Format

{ d, g, t, v, rh } = AmericanBSPut_Greeks(S0, K, r, div,
tau, sigma);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.

Global Input

fin
thetaType

scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

fin
epsilon

scalar, finite difference stepsize. Default = 1e-8.

Output

d Mx1 vector, delta.
g Mx1 vector, gamma.
t Mx1 vector, theta.
v Mx1 vector, vega.
rh Mx1 vector, rho.

35-86

AmericanBSPut_Greeks

a

35-87

Example

S0 = 305;
K = 300;
r = .08;
sigma = .25;
tau = .33;

print AmericanBSPut_Greeks(S0,K,r,0,tau,sigma);

produces:

-0.33296721
0.0091658294

-17.556118
77.614237

-40.575963

Source

finprocs.src

See Also

AmericanBSCall_ImpVol, AmericanBSCall_Greeks, AmericanBSPut_ImpVol

AmericanBSPut_ImpVol

Purpose

Computes implied volatilities for American put options using Black, Scholes, and
Merton method.

AmericanBSPut_ImpVol

a

Format

sigma = AmericanBSPut_ImpVol(c, S0, K, r, div, tau);

Input

c Mx1 vector, put premiums.
S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.

Output

sigma Mx1 vector, volatility.

Example

p = { 14.60, 17.10, 20.10 };
S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;

t0 = dtday(2001, 1, 30);
t1 = dtday(2001, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2001);

sigma = AmericanBSPut_ImpVol(p,S0,K,r,0,tau);
print sigma;

35-88

AmericanBSPut_ImpVol

a

35-89

produces:

0.12753662
0.16780029
0.21396729

Source

finprocs.src

amin

Purpose

Moves across one dimension of an N-dimensional array and finds the smallest ele-
ment.

Format

y = amin(x, dim);

Input

x N-dimensional array.
dim scalar, number of dimension across which to find the

minimum value.

Output

y N-dimensional array.

amin

a

Remarks

The output y, will have the same sizes of dimensions as x, except that the dimension
indicated by dim will be collapsed to 1.

Example

//Setting the rng seed allows for repeatable
//random numbers
rndseed 8237348;

//Create a 24x1 vector of random normal numbers
//with a standard deviation of 10 and then round
//to the nearest integer value
x = round(10*rndn(24,1));

//Reshape the 24x1 vector into a 2x3x4 dimensional array
//NOTE: The pipe operator '|' is for vertical concatenation
x = areshape(x,2|3|4);

dim = 2;
y = amin(x,dim);

x is a 2x3x4 array, such that:

[1,1,1] through [1,3,4] =

1.0000000 -11.000000 9.0000000 -8.0000000
-2.0000000 -10.000000 -6.0000000 -5.0000000
-5.0000000 17.000000 9.0000000 -2.0000000

[2,1,1] through [2,3,4] =

-4.0000000 -2.0000000 7.0000000 -2.0000000
4.0000000 13.000000 -16.000000 11.000000
2.0000000 -1.0000000 12.000000 -16.000000

35-90

amin

a

35-91

y will be a 2x1x4 array, such that:

[1,1,1] through [1,1,4] =

-5.0000000 -11.000000 -6.0000000 -8.0000000

[2,1,1] through [2,1,4] =

-4.0000000 -2.0000000 -16.000000 -16.000000

y = amin(x,1);

Using the same array x as the above example, this example finds the minimum value
across the first dimension.

y will be a 2x3x1 array, such that:

[1,1,1] through [1,3,1] =

-11.000000
-10.000000
-5.0000000

[2,1,1] through [2,3,1] =

-4.0000000
-16.000000
-16.000000

See Also

amax, minc

amin

a

amult

Purpose

Performs matrix multiplication on the planes described by the two trailing dimen-
sions of N-dimensional arrays.

Format

y = amult(a, b);

Input

a N-dimensional array.
b N-dimensional array.

Output

y N-dimensional array, containing the product of the
matrix multiplication of the planes described by the two
trailing dimensions of a and b.

Remarks

All leading dimensions must be strictly conformable, and the two trailing dimensions of
each array must be matrix-product conformable.

Example

//Create an additive sequence from 1-12 and reshape it into
//a 2x3x2 dimensional array
a = areshape(seqa(1,1,12),2|3|2);

35-92

amult

a

35-93

b = areshape(seqa(1,1,16),2|2|4);

//Multiply the two 3x2 matrices in 'a' by the corresponding
//2x4 matrices in 'b'
y = amult(a,b);

a is a 2x3x2 array, such that:

[1,1,1] through [1,3,2] =

1.0000000 2.0000000
3.0000000 4.0000000
5.0000000 6.0000000

[2,1,1] through [2,3,2] =

7.0000000 8.0000000
9.0000000 10.000000
11.000000 12.000000

b is a 2x2x4 array, such that:

[1,1,1] through [1,2,4] =

1.0000000 2.0000000 3.0000000 4.0000000
5.0000000 6.0000000 7.0000000 8.0000000

[2,1,1] through [2,2,4] =

9.0000000 10.000000 11.000000 12.000000
13.000000 14.000000 15.000000 16.000000

y will be a 2x3x4 array, such that:

[1,1,1] through [1,3,4] =

amult

a

11.000000 14.000000 17.000000 20.000000
23.000000 30.000000 37.000000 44.000000
35.000000 46.000000 57.000000 68.000000

[2,1,1] through [2,3,4] =

167.00000 182.00000 197.00000 212.00000
211.00000 230.00000 249.00000 268.00000
255.00000 278.00000 301.00000 324.00000

annotationGetDefaults

Purpose

Fills in an instance of a plotAnnotation structure with default values.

Format

myAnnotation = annotationGetDefaults();

Output

myAnnotation An instance of a plotAnnotation structure with all
members set to defaults.

Remarks

plotAnnotation structures are used with the annotationSet functions to pro-
grammatically control the attributes of the annotations that you add to graphs.

To see a full example of adding an annotation to a graph, see the command reference
page for plotAddLine, plotAddShape or plotAddTextbox

35-94

annotationGetDefaults

a

35-95

Example

//Declare 'myAnnotation' to be an instance of a plotAn-
notation structure
struct plotAnnotation myAnnotation;

//Fill in 'myAnnotation' with default values
myAnnotation = annotationGetDefaults();

See Also

plotAddShape, plotAddTextbox, annotationSetLineColor, annotationSetBkd

annotationSetBkd

Purpose

Sets the background color and transparency level for a textbox, rectangle or
ellipse.

Format

annotationSetBkd(&myAnnotation, color, transparency);

Input

&myAnnotation A pointer to an instance of a plotAnnotation
structure.

color String, color name or hex HTML color code.
transparency Scalar, transparency percentage. Valid range is

between 0 and 1.

annotationSetBkd

a

Examples

Example 1: Using a color string

//Declare 'myAnnotation' to be an instance of a plotAn-
notation structure
//and fill it in with default values
struct plotAnnotation myAnnotation;
myAnnotation = annotationGetDefaults();

//Set background to light gray with 40% opacity
annotationSetBkd(&myAnnotation, "light gray", 0.4);

Example 2: Full example using an HTML color code

//Create and plot some simple data
x = seqa(1, 1, 10);
y = rndu(10, 1);
plotXY(x, y);

//Declare 'myAnnotation' to be an instance of a plotAn-
notation
//structure and fill it in with default values
struct plotAnnotation myAnnotation;
myAnnotation = annotationGetDefaults();

//Set background to white with 80% opacity
annotationSetBkd(&myAnnotation, "#FFFFFF", 0.8);

//Add rectangle to 'xy' plot from above
//using settings from 'myAnnotation'
plotAddShape(myAnnotation, "rectangle", 1, 0.2, 3, 0.5);

See Also

plotAddTextbox, plotAddShape, annotationGetDefaults

35-96

annotationSetBkd

a

35-97

annotationSetFont

Purpose

Sets the font properties of a plotAnnotation structure for controlling text boxes
added to a graph.

Format

annotationSetFont(&myAnnotation, fontname, fontsize,
fontcolor);

Input

&myAnnotation A plotAnnotation structure pointer.

fontname String, the name of the font.
fontsize Scalar, the size of the font in points.
fontcolor String, a color or HTML hexidecimal color code.

Remarks

annotationSetFont does not currently support surface plots.

Examples

Example 1: Basic usage

//Declare an instance of a 'plotAnnotation' structure
//and fill in with default values
struct plotAnnotation myAnnotation;

annotationSetFont

a

myAnnotation = annotationGetDefaults();

annotationSetFont(&myAnnotation, "arial", 14, "black");

Example 2: Customized textbox

//Create a simple plot on which to add a textbox
x = seqa(pi, 0.1, 50);
plotXY(x, sin(x) + rndu(50, 1));

//Declare instance of plotAnnotation structure
//and fill in with default values
struct plotAnnotation myTextbox;
myTextbox = annotationGetDefaults();

//Set font to dark-gray, 14pt times
annotationSetFont(&myTextbox, "times", 14, "dark gray");

//Create text for textbox
box_text = "Trend change in Q2";

//The top-left corner of the text box
//will start at the point (3.5,1.5)
x_start = 3.5;
y_start = 1.5;

//Add textbox to last draw graph
plotAddTextbox(myTextbox, box_text, x_start, y_start);

See Also

plotAddShape, plotAddTextbox, annotationGetDefaults

35-98

annotationSetFont

a

35-99

annotationSetLineColor

Purpose

Sets the line color for textbox, rectangle or ellipse borders as well as the color for
lines and arrows.

Format

annotationSetLineColor(&myAnnotation, color);

Input

&myAnnotation A pointer to an instance of a plotAnnotation
structure.

color String, named color or HTML hexadecimal color
code. Note that HTML color codes must start with
a #.

Examples

Example 1: Basic usage with named color

//Declare 'myAnnotation' to be an instance of a plotAn-
notation structure
//and fill it in with default values
struct plotAnnotation myAnnotation;
myAnnotation = annotationGetDefaults();

//Set line color
annotationSetLineColor(&myAnnotation, "blue");

Example 2: Basic usage with HTML color code

annotationSetLineColor

a

//Declare 'myAnnotation' to be an instance of a plotAn-
notation structure
//and fill it in with default values
struct plotAnnotation myAnnotation;
myAnnotation = annotationGetDefaults();

//Set line color
annotationSetLineColor(&myAnnotation, "#CCCCCC");

Example 3: Full example adding a red arrow to a graph

//Create and plot some simple data
x = seqa(0.1, 0.1, 30);
y = cos(x);
plotXY(x, y);

//Declare 'myAnnotation' to be an instance of a plotAn-
notation
//structure and fill it in with default values
struct plotAnnotation myAnnotation;
myAnnotation = annotationGetDefaults();

//Set line color for arrow
annotationSetLineColor(&myAnnotation, "red");

//Add arrow to 'xy' plot from above
//using settings from 'myAnnotation'
x_start = 0.15;
y_start = 0.2;
x_end = 1;
y_end = 0.5;
head_size = 15;
plotAddArrow(myAnnotation, x_start, y_start, x_end, y_end,
head_size);

35-100

annotationSetLineColor

a

35-101

See Also

plotAddTextbox, plotAddArrow, plotAddShape, annotationGetDefaults

annotationSetLineStyle

Purpose

Sets the line style for textbox, rectangle or ellipse borders as well as the style for
lines and arrows.

Format

annotationSetLineStyle(&myAnnotation, style);

Input

&myAnnotation A pointer to an instance of a plotAnnotation
structure.

style Matrix, line style. Valid options include:

l 1 - solid
l 2 - dash
l 3 - dot
l 4 - dash-dot
l 5 - dash-dot-dot

Examples

Example 1: Basic usage

//Declare 'myAnnotation' to be an instance of a

annotationSetLineStyle

a

plotAnnotation structure
//and fill it in with default values
struct plotAnnotation myAnnotation;
myAnnotation = annotationGetDefaults();

//Set line style to 'dot'
line_style = 3;
annotationSetLineStyle(&myAnnotation,line_style);

Example 2: Full example creating an ellipse with a dash border

//Create and plot some simple data
x = seqa(0.1, 0.2, 10);
y = 3 .* sin(x) + rndu(10, 1);
plotXY(x, y);

//Declare 'myAnnotation' to be an instance of a plotAn-
notation
//structure and fill it in with default values
struct plotAnnotation myAnnotation;
myAnnotation = annotationGetDefaults();

//Set line style to dash (for ellipse border in this case)
annotationSetLineStyle(&myAnnotation, 2);

//Add ellipse to 'xy' plot from above
//using settings from 'myAnnotation'
plotAddShape(myAnnotation, "ellipse", 0.4, 1.5, 1, 2.9);

See Also

plotAddTextbox, plotAddArrow, plotAddShape, annotationGetDefaults

35-102

annotationSetLineStyle

a

35-103

annotationSetLineThickness

Purpose

Sets the line thickness for textbox, rectangle or ellipse borders as well as the
color for lines and arrows.

Format

annotationSetLineThickness(&myAnnotation, thickness);

Input

myAnnotation A pointer to an instance of a plotAnnotation
structure.

thickness Scalar, the thickness of the line in pixels.

Examples

Example 1: Basic usage

//Declare 'myAnnotation' to be an instance of a plotAn-
notation structure
//and fill it in with default values
struct plotAnnotation myAnnotation;
myAnnotation = annotationGetDefaults();

//Set line thickness to 1 pixel
annotationSetLineThickness(&myAnnotation, 1);

Example 2: Full example setting thickness to zero to turn off rectangle border

//Create and plot some simple data

annotationSetLineThickness

a

x = seqa(-1.5, 0.1, 31);
y = cos(x);
plotXY(x, y);

//Declare 'myAnnotation' to be an instance of a plotAn-
notation
//structure and fill it in with default values
struct plotAnnotation myAnnotation;
myAnnotation = annotationGetDefaults();

//Set line thickness to 1 pixel (for rectangle border in
this case)
annotationSetLineThickness(&myAnnotation, 1);

//Add rectangle to 'xy' plot from above
//using settings from 'myAnnotation'
x_start = -pi ./ 4;
y_start = 0.07;
x_end = pi ./ 4;
y_end = 0.71;

plotAddShape(myAnnotation, "rectangle", x_start, y_start,
x_end, y_end);

See Also

plotAddTextbox, plotAddArrow, plotAddShape, annotationGetDefaults

annualTradingDays

Purpose

Computes number of trading days in a given year.

35-104

annualTradingDays

a

35-105

Format

n = annualTradingDays(a);

Input

a scalar, year.

Output

n number of trading days in year.

Remarks

A trading day is a weekday that is not a holiday as defined by the New York Stock
Exchange from 1888 through 2012. Holidays are defined in holidays.asc. You
may edit that file to modify or add holidays.

Source

finutils.src

Globals

_fin_annualTradingDays, _fin_holidays

See Also

eTD, gNTD, gPTD, gNWD, gPWD

annualTradingDays

a

arccos

Purpose

Computes the inverse cosine.

Format

y = arccos(x);

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array containing the
angle in radians whose cosine is x.

Remarks

If x is complex or has any elements whose absolute value is greater than 1, complex
results are returned.

Example

//Format print statements to show 3 digits
//after the decimal point
format /rd 6,3;

x = { -1, -0.5, 0, 0.5, 1 };
y = arccos(x);

print "x = " x;

35-106

arccos

a

35-107

print "y = " y;

The code above, produces the following output:

x =
-1.000
-0.500
0.000
0.500
1.000

y =
3.142
2.094
1.571
1.047
0.000

Source

trig.src

arcsin

Purpose

Computes the inverse sine.

Format

y = arcsin(x);

Input

x NxK matrix or N-dimensional array.

arcsin

a

Output

y NxK matrix or N-dimensional array, the angle in
radians whose sine is x.

Remarks

If x is complex or has any elements whose absolute value is greater than 1, complex
results are returned.

Example

//Set 'x' to be the sequence -1, -0.5, 0, 0.5, 1
x = seqa(-1, 0.5, 5);
y = arcsin(x);

Assigns y to be equal to:

-1.5707963
-0.52359878
0.00000000
0.52359878
1.5707963

Source

trig.src

areshape

Purpose

Reshapes a scalar, matrix, or array into an array of user-specified size.

35-108

areshape

a

35-109

Format

y = areshape(x, o);

Input

x scalar, matrix, or N-dimensional array.
o Mx1 vector of orders, the sizes of the dimensions of the

new array.

Output

y M-dimensional array, created from data in x.

Remarks

If there are more elements in x than in y, the remaining elements are discarded. If
there are not enough elements in x to fill y, then when areshape runs out of ele-
ments, it goes back to the first element of x and starts getting additional elements from
there.

Example

x = 3;
orders = { 2,3,4 };
y = areshape(x,orders);

y will be a 2x3x4 array of threes.

x = reshape(seqa(1,1,90),30,3);
orders = { 2,3,4,5 };
y = areshape(x,orders);

areshape

a

y will be a 2x3x4x5 array. Since y contains 120 elements and x contains only 90, the
first 90 elements of y will be set to the sequence of integers from 1 to 90 that are con-
tained in x, and the last 30 elements of y will be set to the sequence of integers from 1
to 30 contained in the first 30 elements of x.

x = reshape(seqa(1,1,60),20,3);
orders = { 3,2,4 };
y = areshape(x,orders);

y will be a 3x2x4 array. Since y contains 24 elements, and x contains 60, the elements
of y will be set to the sequence of integers from 1 to 24 contained in the first 24 ele-
ments of x.

See Also

aconcat

arrayalloc

Purpose

Creates an N-dimensional array with unspecified contents.

Format

y = arrayalloc(o, cf);

Input

o Nx1 vector of orders, the sizes of the dimensions of the
array.

cf scalar, 0 to allocate real array, or 1 to allocate complex
array.

35-110

arrayalloc

a

35-111

Output

y N-dimensional array.

Remarks

The contents are unspecified. To create a new array with all elements initialized to a
particular scalar value, use arrayinit.

arrayalloc is used to allocate an array that will be written to in sections using
setarray, or indexed assignments. It is much faster to preallocate an array and fill
in sections during a loop rather than adding new sections with concatentaion.

Example

orders = { 2,3,4 };
y = arrayalloc(orders, 1);

y will be a complex 2x3x4 array with unspecified contents.

//Tell GAUSS to replace all instances of 'REAL' with a 0
#define REAL 0
orders = { 7, 5, 3 };

//Create a real 7x5x3 dimensional array; before GAUSS
//interprets this statement it will replace 'REAL' with
//a scalar 0
y = arrayalloc(orders, REAL);

See Also

arrayinit, setarray

arrayalloc

a

arrayindex

Purpose

Converts a scalar vector index to a vector of indices for an N-dimensional array.

Format

i = arrayindex(scalar_idx, orders);

Input

scalar_
idx

scalar, index into vector or 1-dimensional array.

orders Nx1 vector of orders of an N-dimensional array.

Output

i Nx1 vector of indices, index of corresponding element
in N-dimensional array.

Remarks

This function and its opposite, singleindex, allow you to easily convert between
an N-dimensional index and its corresponding location in a 1-dimensional object of the
same size.

Example

//Set the rng seed for repeatable random numbers
rndseed 982348;

35-112

arrayindex

a

35-113

orders = { 2,3,4,5 };

//Create 120x1 vector of uniform random numbers
//(2*3*4*5 = 120)
v = rndu(prodc(orders),1);

//Reshape the 120x1 random vector into a
//2x3x4x5 dimensional array
a = areshape(v,orders);

vi = 50;
ai = arrayindex(vi,orders);

print "vi = " vi;
print "ai = " ai;
print "v[vi] = " v[vi];
print "getarray(a, ai) = "; getarray(a,ai);

The code above, produces the following output:

vi = 50.000
ai =

1.000
3.000
2.000
5.000

v[vi] = 0.047
getarray(a, ai) = 0.047

This example allocates a vector of random numbers and creates a 4-dimensional array
using the same data. The 50th element of the vector v corresponds to the element of
array a that is indexed with ai.

See Also

singleindex

arrayindex

a

arrayinit

Purpose

Creates an N-dimensional array with a specified fill value.

Format

y = arrayinit(orders, value);

Input

orders Nx1 vector of orders, the sizes of the dimensions of the
array.

value scalar, value to initialize. If value is complex the
result will be complex.

Output

y N-dimensional array with each element equal to the
value of value.

Example

val = 3.14;
orders = { 2, 100, 9 };
y = arrayinit(orders, val);

y will be a 2x100x9 array with each element equal to 3.14.

See Also

arrayalloc

35-114

arrayinit

a

35-115

arraytomat

Purpose

Converts an array to type matrix.

Format

y = arraytomat(a);

Input

a N-dimensional array.

Output

y KxL or 1xL matrix or scalar, where L is the size of the
fastest moving dimension of the array and K is the size
of the second fastest moving dimension.

Remarks

arraytomat will take an array of 1 or 2 dimensions or an N-dimensional array, in
which the N-2 slowest moving dimensions each have a size of 1.

Example

//Create 25x1 vector containing the sequence 0.5, 1,
//1.5...12.5
x = seqa(0.5, 0.5, 25);

//Reshape into a 1x6x4 array, discarding the 25th element

arraytomat

a

//of 'x'
a = areshape(x, 1|6|4);

//Set 'y' to be a 6x4 variable of type matrix, with the
//same contents as 'a'
y = arraytomat(a);

The code above sets y equal to:

0.5 1.0 1.5 2.0
2.5 3.0 3.5 4.0
4.5 5.0 5.5 6.0
6.5 7.0 7.5 8.0
8.5 9.0 9.5 10.0

10.5 11.0 11.5 12.0

See Also

mattoarray

asciiload

Purpose

Loads data from a delimited ASCII text file into an Nx1 vector. NOTE: This func-
tion is deprecated. Use csvReadM instead.

Format

y = asciiload(filename);

Input

filename string, name of data file.

35-116

asciiload

a

35-117

Output

y Nx1 vector.

Remarks

NOTE: This function is deprecated. Use csvReadM instead.

The file extension must be included in the file name.

Numbers in ASCII files must be delimited with spaces, commas, tabs, or newlines.

This command loads as many elements as possible from the file into an Nx1 vector.
This allows you to verify if the load was successful by calling rows(y) after ascii-
load to see how many elements were actually loaded. You may then reshape the
Nx1 vector to the desired form. You could, for instance, put the number of rows and
columns of the matrix right in the file as the first and second elements and reshape
the remainder of the vector to the desired form using those values.

Example

To load the file myfile.asc, containing the following data:

2.805 16.568
-4.871 3.399
17.361 -12.725

you may use any of the following commands:

//This statement assumes 'myfile.asc' is in the current
//working directory
y = asciiload("myfile.asc");

asciiload

a

//This code assumes that 'myfile.asc' is
//located in the C:\gauss17 directory
//Note the double backslashes for path separators
fpath = "C:/gauss/myfile.asc";
y = asciiload(fpath);

path = "C:/gauss/";
fname = "myfile.asc";
//The '$+' operator adds two strings together into one
//string
y = asciiload(path$+fname);

All of the above commands will set y to be equal to:

2.805
16.568
-4.871
3.399

17.361
-12.725

See Also

csvReadM, load, dataload

asclabel

Purpose

To set up character labels for the X and Y axes. NOTE: This function is for the
deprecated PQG graphics.

Library

pgraph

35-118

asclabel

a

35-119

Format

asclabel(xl, yl);

Input

xl string or Nx1 character vector, labels for the tick marks
on the X axis. Set to 0 if no character labels for this axis
are desired.

yl string or Mx1 character vector, labels for the tick marks
on the Y axis. Set to 0 if no character labels for this axis
are desired.

Example

This illustrates how to label the X axis with the months of the year:

library pgraph;
let lab = JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC;
asclabel(lab,0);

This will also work:

lab = "JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC";
asclabel(lab,0);

If the string format is used, then escape characters may be embedded in the labels. For
example, the following produces character labels that are multiples of λ. The font Sim-
grma must be previously loaded in a fonts command.

asclabel

a

fonts("simplex simgrma");
lab = "\2010.25\202l \2010.5\202l \2010.75\202l l";
asclabel(lab,0);

Here, the "\202l" produces the "λ" symbol from Simgrma.

Source

pgraph.src

See Also

xtics, ytics, scale, scale3d, fonts

astd

Purpose

Computes the standard deviation of the elements across one dimension of an N-
dimensional array.

Format

y = astd(x, dim);

Input

x N-dimensional array.
dim scalar, number of dimension to sum across.

Output

y N-dimensional array, standard deviation across
specified dimension of x.

35-120

astd

a

35-121

Remarks

The output y, will have the same sizes of dimensions as x, except that the dimension
indicated by dim will be collapsed to 1.

For each column, this function essentially computes sample standard deviation, s:

Thus, the divisor is N-1 rather than N, where N is the number of elements being
summed. See astds for the alternate definition.

Example

//Create a 1e6x1 vector of random normal numbers with a
//standard deviation of 25 and reshape it into a
//2e5x3x2 array
rndseed 456;
a = areshape(25*rndn(2e6,1),2e5|3|2);
y = astd(a,3);

The code above should produce a 3x2 matrix with all elements close to 25 similar to
what we see below.

25.070091 24.994774
24.988263 24.990370
24.956467 24.987882

See Also

astds, stdc

astd

a

astds

Purpose

Computes the biased standard deviation of the elements across one dimension of
an N-dimensional array.

Format

y = astds(x, dim);

Input

x N-dimensional array.
dim scalar, number of dimension to sum across.

Output

y N-dimensional array, standard deviation across
specified dimension of x.

Remarks

The output y, will have the same sizes of dimensions as x, except that the dimension
indicated by dim will be collapsed to 1.

This function essentially computes:

35-122

astds

a

35-123

Thus, the divisor is N rather than N-1, where N is the number of elements being
summed. See astd for the alternate definition.

Example

a = areshape(25*rndn(16,1),4|2|2);
y = astds(a,3);

print "a = " a;
print "y = " y;

The code above produces the following output (due to the use of random data in this
example your answers will be different):

a =

Plane [1,.,.]

12.538 -56.786
-40.283 -58.287

Plane [2,.,.]

4.047 -0.325
17.617 -9.248

Plane [3,.,.]

17.908 40.048
8.916 -37.247

Plane [4,.,.]

-0.977 16.058

astds

a

-38.189 0.984

y =

Plane [1,.,.]

7.321 35.659
26.441 23.333

In this example, 16 standard Normal random variables are generated. They are mul-
tiplied by 25 and areshape'd into a 4x2x2 array, and the standard deviation is com-
puted across the third dimension of the array.

See Also

astd, stdsc

asum

Purpose

Computes the sum across one dimension of an N-dimensional array.

Format

y = asum(x, dim);

Input

x N-dimensional array.
dim scalar, number of dimension to sum across.

35-124

asum

a

35-125

Output

y N-dimensional array.

Remarks

The output y, will have the same sizes of dimensions as x, except that the dimension
indicated by dim will be collapsed to 1.

Example

x = seqa(1,1,24);

dims = { 2, 3, 4 };
x = areshape(x,dims);

y = asum(x,3);

x is a 2x3x4 array, such that:

Plane [1,.,.]

1.000 2.000 3.000 4.000
5.000 6.000 7.000 8.000
9.000 10.000 11.000 12.000

Plane [2,.,.]

13.000 14.000 15.000 16.000
17.000 18.000 19.000 20.000
21.000 22.000 23.000 24.000

and y is equal to:

asum

a

Plane [1,.,.]

14.000 16.000 18.000 20.000
22.000 24.000 26.000 28.000
30.000 32.000 34.000 36.000

y = asum(x,1);

Using the same array x as the above example, this example computes the sum across
the first dimension. y will be a 2x3x1 array, such that:

Plane [1,.,.]

10.000
26.000
42.000

Plane [2,.,.]

58.000
74.000
90.000

See Also

amean

atan

Purpose

Returns the arctangent of its argument.

35-126

atan

a

35-127

Format

y = atan(x);

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array containing the
arctangents of x in radians.

Remarks

y will be the same size as x, containing the arctangents of the corresponding elements
of x.

For real x, the arctangent of x is the angle whose tangent is x. The result is a value in
radians in the range -π/2 to +π/2. To convert radians to degrees, multiply by 180/π.

For complex x, the arctangent is defined everywhere except i and -i. If x is com-
plex, y will be complex.

Example

//Create a sequence with 5 elements starting at -pi and
//increasing by pi/2
x = seqa(-pi, pi/2, 5)
y = atan(x);
print "x = " x;
print "y = " y;

After the code above:

atan

a

-3.142 -1.263
-1.571 -1.004

x = 0.000 y = 0.000
1.571 1.004
3.142 1.263

See Also

atan2, sin, cos, pi, tan

atan2

Purpose

Computes an angle from an x, y coordinate.

Format

z = atan2(y, x);

Input

y NxK matrix or P-dimensional array where the last two
dimensions are NxK, the y coordinate.

x LxM matrix or P-dimensional array where the last two
dimensions are LxM, ExE conformable with y, the x
coordinate.

Output

z max(N,L) by max(K,M) matrix or P-dimensional array
where the last two dimensions are max(N,L) by max
(K,M).

35-128

atan2

a

35-129

Remarks

Given a point x, y in a Cartesian coordinate system, atan2 will give the correct
angle with respect to the positive X axis. The answer will be in radians from -π to +π.

To convert radians to degrees, multiply by 180/π.

atan2 operates only on the real component of x, even if x is complex.

Example

//Create the sequence -π, -π/2, 0, π/2, π
x = seqa(-pi, pi/2, 5);
y = 1;

zpol = atan2(y,x);
zdeg = zpol*(180/pi);
print "x = " x;
print "zpol = " zpol;
print "zdeg = " zdeg;

After the code above:

-3.142 2.833 162.343
-1.571 2.575 147.518

x = 0.000 zpol = 1.571 zdeg = 90.000
1.571 0.567 32.482
3.142 0.308 17.657

See Also

atan, sin, cos, pi, tan, arcsin, arccos

atan2

a

atranspose

Purpose

Transposes an N-dimensional array.

Format

y = atranspose(x, nd);

Input

x N-dimensional array.
nd Nx1 vector of dimension indices, the new order of

dimensions.

Output

y N-dimensional array, transposed according to nd.

Remarks

The vector of dimension indices must be a unique vector of integers, 1-N, where 1 cor-
responds to the first element of the vector of orders.

Example

x = seqa(1,1,24);
x = areshape(x,2|3|4);
nd = { 2,1,3 };
y = atranspose(x,nd);

35-130

atranspose

a

35-131

This example transposes the dimensions of x that correspond to the first and second
elements of the vector of orders. x is a 2x3x4 array, such that:

Plane [1,.,.]

1.000 2.000 3.000 4.000
5.000 6.000 7.000 8.000
9.000 10.000 11.000 12.000

Plane [2,.,.]

13.000 14.000 15.000 16.000
17.000 18.000 19.000 20.000
21.000 22.000 23.000 24.000

y is a 3x2x4 array, such that:

Plane [1,.,.]

1.000 2.000 3.000 4.000
13.000 14.000 15.000 16.000

Plane [2,.,.]

5.000 6.000 7.000 8.000
17.000 18.000 19.000 20.000

Plane [3,.,.]

9.000 10.000 11.000 12.000
21.000 22.000 23.000 24.000

nd = { 2,3,1 };
y = atranspose(x,nd);

atranspose

a

Using the same array x as the example above, this example transposes all three dimen-
sions of x, returning a 3x4x2 array y, such that:

Plane [1,.,.]

1.000 13.000
2.000 14.000
3.000 15.000
4.000 16.000

Plane [2,.,.]

5.000 17.000
6.000 18.000
7.000 19.000
8.000 20.000

Plane [3,.,.]

9.000 21.000
10.000 22.000
11.000 23.000
12.000 24.000

See Also

areshape

axmargin

Purpose

Sets absolute margins for the plot axes which control placement and size of plot.
NOTE: This function is for the deprecated PQG graphics.

35-132

axmargin

a

35-133

Library

pgraph

Format

axmargin(l, r, t, b);

Input

l scalar, the left margin in inches.
r scalar, the right margin in inches.
t scalar, the top margin in inches.
b scalar, the bottom margin in inches.

Remarks

axmargin sets an absolute distance from the axes to the edge of the graphic panel.
Note that the user is responsible for allowing enough space in the margin if axes
labels, numbers and title are used on the graph, since axmargin does not size the
plot automatically as in the case of margin.

All input inch values for this procedure are based on a full size window of 9x6.855
inches. If this procedure is used within a graphic panel, the values will be scaled to
window inches automatically.

If both margin and axmargin are used for a graph, axmargin will override any
sizes specified by margin.

Example

The statement:

axmargin

a

library pgraph;
axmargin(1,1,.5,.855);

will create a plot area of 7 inches horizontally by 5.5 inches vertically, and positioned
1 inch right and .855 up from the lower left corner of the graphic panel/page.

Source

pgraph.src

35-134

axmargin

a

35-135

b

balance

Purpose

Balances a square matrix.

Format

{ b, z } = balance(x);

Input

x KxK matrix or N-dimensional array where the last two
dimensions are KxK.

Output

b KxK matrix or N-dimensional array where the last two
dimensions are KxK, balanced matrix.

z KxK matrix or N-dimensional array where the last two
dimensions are KxK, diagonal scale matrix.

Remarks

balance returns a balanced matrix b and another matrix z with scale factors in
powers of two on its diagonal. b is balanced in the sense that the absolute sums of the
magnitudes of elements in corresponding rows and columns are nearly equal.

balance

b

balance is most often used to scale matrices to improve the numerical stability of
the calculation of their eigenvalues. It is also useful in the solution of matrix equations.

In particular,

balance uses the BALANC function from EISPACK..

Example

let x[3,3] = 100 200 300
40 50 60
7 8 9;

{ b,z } = balance(x);

 b = 100.0 100.0 37.5
80.0 50.0 15.0
56.0 32.0 9.0

 z = 4.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 0.5

band

Purpose

Extracts bands from a symmetric banded matrix.

Format

a = band(y, n);

35-136

band

b

35-137

Input

y KxK symmetric banded matrix.
n scalar, number of subdiagonals.

Output

a Kx(N+1) matrix, 1 subdiagonal per column.

Remarks

y can actually be a rectangular PxQ matrix. K is then defined as min(P,Q). It will be
assumed that a is symmetric about the principal diagonal for y[1:K,1:K].

The subdiagonals of y are stored right to left in a, with the principal diagonal in the
rightmost or (N+1)th column of a. The upper left corner of a is unused; it is set to
0.

This compact form of a banded matrix is what bandchol expects.

Example

x = { 1 2 0 0,
2 8 1 0,
0 1 5 2,
0 0 2 3 };

//Extract only the principal diagonal
b0 = band(x,0);

//Extract the principal diagonal and the first subdiagonal
b1 = band(x,1);

//Extract the principal diagonal and the first two

band

b

subdiagonals
b2 = band(x,2);

After the code above:

1 0 1 0 0 1
b0 = 8 b1 = 2 8 b2 = 0 2 8

5 1 5 0 1 5
3 2 3 0 2 3

See Also

bandchol, bandcholsol, bandltsol, bandrv, bandsolpd

bandchol

Purpose

Computes the Cholesky decomposition of a positive definite banded matrix.

Format

l = bandchol(a);

Input

a KxN compact form matrix.

Output

l KxN compact form matrix, lower triangle of the
Cholesky decomposition of a.

35-138

bandchol

b

35-139

Remarks

Given a positive definite banded matrix A, there exists a matrix L, the lower triangle of
the Cholesky decomposition of A, such that A = LL'. a is the compact form of A; see
band for a description of the format of a.

l is the compact form of L. This is the form of matrix that bandcholsol expects.

Example

x = { 1 2 0 0,
2 8 1 0,
0 1 5 2,
0 0 2 3 };

bx = band(x, 1);
bl = bandchol(bx);

l = chol(x);

After the code above:

0 1 0 1 1 2 0 0
bx = 2 8 bl = 2 2 l = 0 2 1 0

1 5 1 2 0 0 2 1
2 3 1 1 0 0 0 1

See Also

band, bandcholsol, bandltsol, bandrv, bandsolpd

bandchol

b

bandcholsol

Purpose

Solves the system of equations Ax = b for x, given the lower triangle of the
Cholesky decomposition of a positive definite banded matrix A.

Format

x = bandcholsol(b, l);

Input

b KxM matrix.
l KxN compact form matrix.

Output

x KxM matrix.

Remarks

Given a positive definite banded matrix A, there exists a matrix L, the lower triangle of
the Cholesky decomposition of A, such that A = LL'. l is the compact form of L; see
band for a description of the format of l.

b can have more than one column. If so, Ax = b is solved for each column. That is,

A*x[.,i] = b[.,i]

Example

//Create matrix 'A' and right-hand side 'b'

35-140

bandcholsol

b

35-141

A = { 1 2 0 0,
2 8 1 0,
0 1 5 2,
0 0 2 3 };

b = { 1.3, 2.1, 0.7, 1.8 };

//Create banded matrix form of 'A'
Aband = band(A,1);

//Cholesky factorization of the banded 'A'
Lband = bandchol(Aband);

//Solve the system of equations
x = bandcholsol(b, Lband);

After the code above is run:

0.000 1.000 1.495 1.300 1.300
Lband = 2.000 2.000 x = -0.098 b = 2.100 A*x = 2.100

0.500 2.179 -0.110 0.700 0.700
0.918 1.469 0.673 1.800 1.800

See Also

band, bandchol, bandltsol, bandrv, bandsolpd

bandltsol

Purpose

Solves the system of equations Ax = b for x, where A is a lower triangular ban-
ded matrix.

Format

x = bandltsol(b, A);

bandltsol

b

Input

b KxM matrix.
A KxN compact form matrix.

Output

x KxM matrix.

Remarks

A is a lower triangular banded matrix in compact form. See band for a description of
the format of A.

b can have more than one column. If so, Ax = b is solved for each column. That is,

A*x[.,i] = b[.,i];

Example

//Create matrix 'A' and right-hand side 'b'
A = { 1 2 0 0,

2 8 1 0,
0 1 5 2,
0 0 2 3 };

b = { 1.3, 2.1, 0.7, 1.8 };

//Create a matrix containing the lower triangular part
/of 'A'
Alower = lowmat(A);

//Create banded matrix from of 'Alower'
Abandlow = band(Alower, 1);

//Solve the system of equations

35-142

bandltsol

b

35-143

x = bandltsol(b, Abandlow);

After the code above:

1 0 0 0 0 1 1.300 1.3
1.3

Alower = 2 8 0 0 Aband = 2 8 x = -0.063 b = 2.1
Alower*x = 2.1

0 1 5 0 1 5 0.153 0.7
0.7

0 0 2 3 2 3 0.498 1.8
1.8

See Also

band, bandchol, bandcholsol, bandrv, bandsolpd

bandrv

Purpose

Creates a symmetric banded matrix, given its compact form.

Format

y = bandrv(a);

Input

a KxN compact form matrix.

Output

y KxK symmetrix banded matrix.

bandrv

b

Remarks

a is the compact form of a symmetric banded matrix, as generated by band. a
stores subdiagonals right to left, with the principal diagonal in the rightmost (Nth)
column. The upper left corner of a is unused. bandchol expects a matrix of this
form.

y is the fully expanded form of a, a KxK matrix with N-1 subdiagonals.

Example

x = { 1 2 0 0,
2 8 1 0,
0 1 5 2,
0 0 2 3 };

//Create a version of 'x' in band format
xBand = band(x,1);

//Expand the banded version of 'x' back to a full matrix
xNew = bandrv(xBand);

After the code above:

0 1 1 2 0 0 1 2 0 0
xBand = 2 8 x = 2 8 1 0 xNew = 2 8 1 0

1 5 0 1 5 2 0 1 5 2
2 3 0 0 2 3 0 0 2 3

See Also

band, bandchol, bandcholsol, bandltsol, bandsolpd

35-144

bandrv

b

35-145

bandsolpd

Purpose

Solves the system of equations Ax = b for x, where A is a positive definite ban-
ded matrix.

Format

x = bandsolpd(b, A);

Input

b KxM matrix.
A KxN compact form matrix.

Output

x KxM matrix.

Remarks

A is a positive definite banded matrix in compact form. See band for a description of
the format of A.

b can have more than one column. If so, Ax = b is solved for each column. That is,

A*x[.,i] = b[.,i]

See Also

band, bandchol, bandcholsol, bandltsol, bandrv

bandsolpd

b

bar

Purpose

Generates a bar graph. NOTE: This function is for the deprecated PQG graphics,
use plotBar instead.

Library

pgraph

Format

bar(val, ht);

Input

val Nx1 numeric vector, bar labels. If scalar 0, a sequence
from 1 to rows(ht) will be created.

ht NxK numeric vector, bar heights.

Global Input

_pbarwid scalar, width and type of bars in bar graphs and
histograms. The valid range is 0-1. If this is 0, the bars
will be a single pixel wide. If this is 1, the bars will
touch each other.

If this value is positive, the bars will overlap. If negative,
the bars will be plotted side-by-side. The default is 0.5.

_pbartyp Kx2 matrix.

The first column controls the bar shading:
0 no shading.

35-146

bar

b

35-147

1 dots.
2 vertical cross-hatch.
3 diagonal lines with positive slope.
4 diagonal lines with negative slope.
5 diagonal cross-hatch.
6 solid.
The second column controls the bar color.

Remarks

Use scale or ytics to fix the scaling for the bar heights.

Example

In this example, three overlapping sets of bars will be created. The three heights for
the ith bar are stored in x[i,.].

library pgraph;
graphset;

t = seqa(0,1,10);
x =(t^2/2).*(1~0.7~0.3);

_plegctl = { 1 4 };
_plegstr = "Accnt #1\000Accnt #2\000Accnt #3";
title("Theoretical Savings Balance");
xlabel("Years");
ylabel("Dollars x 1000");
_pbartyp = { 1 10 }; /* Set color of the bars */
_pnum = 2;

bar(t,x); /* Use t vector to label X axis. */

bar

b

Source

pbar.src

See Also

asclabel, xy, logx, logy, loglog, scale, hist

base10

Purpose

Breaks number into a number of the form #.####... and a power of 10.

Format

{ M, P } = base10(x);

Input

x scalar, number to break down.

Output

M scalar, in the range -10 < M < 10.
P scalar, integer power such that:

M*10P = x

Example

{ b, e } = base10(4500);

After the code above:

35-148

base10

b

35-149

b = 4.5 e = 3

and

b*10^e = 4.5*10^3 = 4500

Source

base10.src

begwind

Purpose

Initializes global graphic panel variables. NOTE: This function is for the deprec-
ated PQG graphics.

Library

pgraph

Format

begwind;

Remarks

This procedure must be called before any other graphic panel functions are called.

Source

pwindow.src

See Also

endwind, window, makewind, nextwind, getwind

begwind

b

besselj

Purpose

Computes a Bessel function of the first kind, Jn(x).

Format

y = besselj(n, x);

Input

n NxK matrix or P-dimensional array where the last two
dimensions are NxK, the order of the Bessel function.
Nonintegers will be truncated to an integer.

x LxM matrix or P-dimensional array where the last two
dimensions are LxM, ExE conformable with n.

Output

y max(N,L) by max(K,M) matrix or P-dimensional array
where the last two dimensions are max(N,L) by max
(K,M).

Example

//Create the sequence 0.1, 0.2, 0.3,...,19.9
x = seqa(0, 0.1, 200);

//Calculate a first order Bessel function
ord = 1;
y0 = besselj(ord, x);

35-150

besselj

b

35-151

//Calculate the first and second order Bessel function
ord = { 1 2 };
y = besselj(ord, x);

//Plot the output of the first and third order Bessel
//functions
plotXY(x, y);

In the code above, the calculation of both the first and second order Bessel functions
assigns the return from the first order calculation to be the first column of y and the
return from the calculation of the second order function to be the second column of y.

The plotXY function treats each incoming column as a separate line.

See Also

bessely, mbesseli

bessely

Purpose

Computes a Bessel function of the second kind (Weber's function), Yn(x).

Format

y = bessely(n, x);

Input

n NxK matrix or P-dimensional array where the last two
dimensions are NxK, the order of the Bessel function.
Nonintegers will be truncated to an integer.

x LxM matrix or P-dimensional array where the last two
dimensions are LxM, ExE conformable with n.

bessely

b

Output

y max(N,L) by max(K,M) matrix or P-dimensional array
where the last two dimensions are max(N,L) by max
(K,M).

Example

//Create the sequence 0.1, 0.2, 0.3, 0.4, 0.5
x = seqa(0.1, 0.1, 5);

//Create the sequence 1, 1.1, 1.2, 1.3, 1.4
x2 = seqa(1, 0.1, 5);

//Calculate a first order bessel function against 'x' and
//calculate a third order bessel function agains 'x2'
//NOTE: The '~' provides horizontal concatenation
ord = { 1 3 };
y = bessely(ord, x~x2);

After the code above:

-6.459 -5.822 0.100 1.000
-3.324 -4.507 0.200 1.100

y = -2.293 -3.590 x~x2 = 0.300 1.200
-1.781 -2.930 0.400 1.300
-1.471 -2.442 0.500 1.400

See Also

besselj, mbesseli

35-152

bessely

b

35-153

beta

Purpose

Computes the standard Beta function, also called the Euler integral. The beta func-
tion is defined as:

Format

f = beta(x,y);

Input

x scalar or NxK matrix; x may be real or complex.
y LxM matrix, ExE conformable with x.

Output

f NxK matrix.

Technical Notes

The Beta function's relationship with the Gamma function is:

See Also

cdfBeta, gamma, gammacplx, zeta

beta

b

box

Purpose

Graphs data using the box graph percentile method. NOTE: This function uses the
deprecated PQG graphics. Use plotBox instead.

Library

pgraph

Format

box(grp, y);

Input

grp 1xM vector. This contains the group numbers
corresponding to each column of y data. If scalar 0, a
sequence from 1 to cols(y) will be generated
automatically for the X axis.

y NxM matrix. Each column represents the set of y
values for an individual percentiles box symbol.

Global Input

_pboxctl 5x1 vector, controls box style, width, and color.
[1] box width between 0 and 1. If zero, the box

plot is drawn as two vertical lines representing
the quartile ranges with a filled circle
representing the 50th percentile.

[2] box color. If this is set to 0, the colors may be
individually controlled using the global variable

35-154

box

b

35-155

_pcolor.
[3] Min/max style for the box symbol. One of the

following:
1 Minimum and maximum taken from

the actual limits of the data.
Elements 4 and 5 are ignored.

2 Statistical standard with the
minimum and maximum calculated
according to interquartile range as
follows:
intqrange = 75th - 25th
min = 25th - 1.5 intqrange
max = 75th + 1.5 intqrange
Elements 4 and 5 are ignored.

3 Minimum and maximum percentiles
taken from elements 4 and 5.

[4] Minimum percentile value (0-100) if _
pboxctl[3] = 3.

[5] Maximum percentile value (0-100) if _
pboxctl[3] = 3.

_plctrl 1xM vector or scalar as follows:
0 Plot boxes only, no symbols.
1 Plot boxes and plot symbols which lie outside

the min and max box values.
2 Plot boxes and all symbols.
-1 Plot symbols only, no boxes.
These capabilities are in addition to the usual line control
capabilities of _plctrl.

box

b

_pcolor 1xM vector or scalar for symbol colors. If scalar, all
symbols will be one color.

Remarks

If missing values are encountered in the y data, they will be ignored during cal-
culations and will not be plotted.

Source

pbox.src

boxcox

Purpose

Computes the Box-Cox function.

Format

y = boxcox (x, lambda);

Input

x MxN matrix or P-dimensional array where the last two
dimensions are MxN.

lambda KxL matrix or P-dimensional array where the last two
dimensions are KxL, ExE conformable to x.

Output

y max(M,L)xmax(N,K) or P-dimensional array where the
last two dimensions are max(M,L)xmax(N,K).

35-156

boxcox

b

35-157

Remarks

Allowable range for x is: x > 0

The boxcox function computes:

boxcox(x) = (xλ - 1)/λ

Example

x = { .2, .4, .8, 1, 1.2, 1.4 };
lambda = .4;
y = boxcox(x,lambda);

After the code above:

-1.187
-0.767

y = -0.213
0.000
0.189
0.360

break

Purpose

Breaks out of a do or for loop.

Format

break;

break

b

Example

x = rndn(4,4);

//Loop through each row of 'x' using 'r' as the loop
//counter
for r(1, rows(x), 1);

//For each row, loop through its elements
for c(1, cols(x), 1);

if c == r; /* Set the diagonal to 1 */
x[r,c] = 1;

elseif c > r; /* leave upper triangle as it is */
break; /* terminate inner loop */

else;
x[r,c] = 0; /* set lower triangle elements to 0 */

endif;
endfor; /* break jumps to the statement after

this endfor */
endfor;

After running the code above, x should be a lower triangular matrix similar to below.
Due to the use of random data, your matrix will have different non-zero elements
above the diagonal.

1.000 1.288 -0.060 1.801
0.000 1.000 1.609 1.474
0.000 0.000 1.000 -0.768
0.000 0.000 0.000 1.000

Remarks

This command works just like in C.

See Also

continue, do, for

35-158

break

b

35-159

c

call

Purpose

Calls a function or procedure when the returned value is not needed and can be
ignored, or when the procedure is defined to return nothing.

Format

call function_name(argument_list);
call function_name;

Remarks

This is useful when you need to execute a function or procedure and do not need the
value that it returns. It can also be used for calling procedures that have been defined
to return nothing.

function_name can be any intrinsic GAUSS function, a procedure (proc), or any
valid expression.

Example

// Create a positive definte matrix
x = moment(rndn(100,4),0);
// Call chol function
call chol(x);
// y is the determinant

call

c

y = detl;

The above example is the fastest way to compute the determinant of a positive definite
matrix. The result of chol is discarded and detl is used to retrieve the determinant
that was computed during the call to chol.

See Also

proc

cdfBeta

Purpose

Computes the incomplete Beta function (i.e., the cumulative distribution function
of the Beta distribution).

Format

y = cdfBeta(x, a, b);

Input

x NxK matrix.
a LxM matrix, ExE conformable with x.
b PxQ matrix, ExE conformable with x and a.

Output

y max(N,L,P) by max(K,M,Q) matrix.

Remarks

y is the integral from 0 to x of the beta distribution with parameters a and b.

35-160

cdfBeta

c

35-161

Allowable ranges for the arguments are:

0 ≤ x ≤ 1
a > 0
b > 0

A -1 is returned for those elements with invalid inputs.

Example

x = { .1, .2, .3, .4 };
a = 0.5;
b = 0.3;
y = cdfBeta(x,a,b);
print "y = " y;

After running above code,

y =
0.14228251
0.20662575
0.26057158
0.31087052

See Also

cdfChic, cdfFc, cdfN, cdfNc, cdfTc, gamma

Technical Notes

cdfBeta has the following approximate accuracy:

max(a,
b)

<= 500 absolute error is
approx. ±5e-13

500 < max(a, <= 10,000 absolute error is

cdfBeta

c

b) approx. ±5e-11
10,000 < max(a,

b)
<= 200,000 absolute error is

approx. ±1e-9

References

1. Bol'shev, L.N."Asymptotically Perason's Transformations." Teor. Veroyat. Pri-
men. Theory of Probability and its Applications. Vol. 8, No. 2, 1963, 129-55.

2. Boston N.E. and E.L. Battiste. "Remark on Algorithm 179 Incomplete Beta
Ratio." Comm. ACM. Vol. 17, No. 3, March 1974, 156-57.

3. Ludwig, O.G. "Algorithm 179 Incomplete Beta Ratio." Comm. ACM. Vol. 6, No.
6, June 1963, 314.

4. Mardia, K.V. and P.J. Zemroch. Tables of the F- and related distributions with
algorithms. Academic Press, New York, 1978. ISBN 0-12-471140-5.

5. Peizer, D.B. and J.W. Pratt. "A Normal Approximation for Binomial, F, Beta,
and Other Common, Related Tail Probabilities, I." Journal of the American Stat-
istical Association. Vol. 63, Dec. 1968, 1416-56.

6. Pike, M.C. and J.W. Pratt. "Remark on Algorithm 179 Incomplete Beta Ratio."
Comm. ACM. Vol. 10, No. 6, June 1967, 375-76.

cdfBetaInv

Purpose

Computes the quantile or inverse of the Beta cumulative distribution function.

Format

x = cdfBetaInv(p,a,b);

Input

p NxK matrix, Nx1 vector or scalar. 0 < p < 1.
a ExE conformable with p. 0 < a.

35-162

cdfBetaInv

c

35-163

b ExE conformable with p. 0 < b.

Output

x NxK matrix, Nx1 vector or scalar.

Remarks

For invalid inputs, cdfBetaInv will return a scalar error code which, when its value
is assessed by function scalerr, corresponds to the invalid input. If the first input is
out of range, scalerr will return a 1; if the second is out of range, scalerr will
return a 2; etc.

Example

y = { 0.14228251, 0.20662575, 0.26057158, 0.31087052 };
a = 0.5;
b = 0.3;
p = cdfBeta(y,a,b);
print "p = " p;

After running above code,

p =
0.1
0.2
0.3
0.4

See Also

cdfBeta, cdfBinomial, cdfNegBinomial

cdfBetaInv

c

cdfBinomial

Purpose

Computes the binomial cumulative distribution function.

Format

p = cdfBinomial(successes,trials,prob);

Input

successes NxK matrix, Nx1 vector or scalar. successes must
be a positive number and < trials

trials ExE conformable with successes. trials must be >
successes.

prob The probability of success on any given trial. ExE
conformable with successes. 0 < prob < 1.

Output

p NxK matrix, Nx1 vector or scalar.

Example

What are the chances that a baseball player with a long-term batting average of .317
could break Ichiro Suzuki's record of 270 hits in a season if he had as many at bats as
Ichiro had that year, 704?

// The cumulative probability of our player
//getting 270 or fewer hits in the season

35-164

cdfBinomial

c

35-165

p = cdfBinomial(270,704,.317);
p = 0.9999199430052614

Therefore the odds of this player breaking Ichiro's record:

1-p = 0.0000000000037863 or 0.0000000003786305%

Remarks

For invalid inputs, cdfBinomial will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the first
input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

See Also

cdfBinomialInv, cdfNegBinomial, pdfBinomial

cdfBinomialInv

Purpose

Computes the binomial quantile or inverse cumulative distribution function.

Format

s = cdfBinomialInv(p,trials,prob);

cdfBinomialInv

c

Input

p NxK matrix, Nx1 vector or scalar. 0 < p < 1.
trials ExE conformable with p. trials > 0.
prob The probability of success on any given trial. ExE

conformable with p. 0 < prob < 1.

Output

s The number of successes. NxK matrix, Nx1 vector or
scalar.

Example

What is a reasonable range of wins for a basketball team playing 82 games in a sea-
son, with a 60% chance of winning any game?

For our example we will define a reasonable range as falling between the top and bot-
tom deciles.

range = { .10, .9 };
s = cdfBinomialInv(range, 82,.6);
print "s = " s;

After above code,

s =
43
55

This means that a team with a 60% chance of winning any one game would win
between 43 and 55 games in 80% of seasons.

35-166

cdfBinomialInv

c

35-167

Remarks

For invalid inputs, cdfBinomialInv will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the first
input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

See Also

cdfBinomial, pdfBinomial, cdfNegBinomial, cdfNegBinomialInv

cdfBvn

Purpose

Computes the cumulative distribution function of the standardized bivariate
Normal density (lower tail).

Format

c = cdfBvn(h, k, r);

Input

h NxK matrix, the upper limits of integration for variable
1.

k LxM matrix, ExE conformable with h, the upper
limits of integration for variable 2.

r PxQ matrix, ExE conformable with h and k, the
correlation coefficients between the two variables.

cdfBvn

c

Output

c max(N,L,P) by max(K,M,Q) matrix, the result of the
double integral from -∞ to h and -∞ to k of the
standardized bivariate Normal density f (x, y, r).

Remarks

The function integrated is:

with

Thus, x and y have 0 means, unit variances, and correlation = r.

Allowable ranges for the arguments are:

-∞ ≤ h ≤ +∞
-∞ ≤ k ≤ +∞
-1 < r < 1

A -1 is returned for those elements with invalid inputs.

To find the integral under a general bivariate density, with x and y having nonzero
means and any positive standard deviations, use the transformation equations:

h = (ht - ux) ./ sx;
k = (kt - uy)

where ux and uy are the (vectors of) means of x and y, sx and sy are the (vec-
tors of) standard deviations of x and y, and ht and kt are the (vectors of) upper
integration limits for the untransformed variables, respectively.

35-168

cdfBvn

c

35-169

See Also

cdfN, cdfTvn

Technical Notes

The absolute error for cdfBvn is approximately ±5.0e-9 for the entire range of argu-
ments.

References

1. Daley, D.J. ''Computation of Bi- and Tri-variate Normal Integral.'' Appl. Statist.
Vol. 23, No. 3, 1974, 435-38.

2. Owen, D.B. ''A Table of Normal Integrals.'' Commun. Statist.-Simula.
Computa., B9(4). 1980, 389-419.

cdfBvn2

Purpose

Returns the bivariate Normal cumulative distribution function of a bounded rect-
angle.

Format

y = cdfBvn2(h, dh, k, dk, r);

Input

h Nx1 vector, starting points of integration for variable 1.
dh Nx1 vector, increments for variable 1.
k Nx1 vector, starting points of integration for variable 2.
dk Nx1 vector, increments for variable 2.

cdfBvn2

c

r Nx1 vector, correlation coefficients between the two
variables.

Output

y Nx1 vector, the integral over the rectangle bounded by
h, h + dh, k, and k + dk of the standardized bivariate
Normal distribution.

Remarks

Scalar input arguments are okay; they will be expanded to Nx1 vectors.

cdfBvn2 computes:

cdfBvn(h + dh, k+ dk, r) + cdfBvn(h, k, r) - cdfBvn(h, k
+ dk, r) - cdfBvn(h + dh, k, r)

cdfBvn2 computes an error estimate for each set of inputs. The size of the error
depends on the input arguments. If trap 2 is set, a warning message is displayed when
the error reaches 0.01*abs(y). For an estimate of the actual error, see cdfBvn2e.

Example

Example 1

print cdfBvn2(1,-1,1,-1,0.5);
1.4105101488974692e-001

Example 2

print cdfBvn2(1,-1e-15,1,-1e-15,0.5);
4.9303806576313238e-32

Example 3

35-170

cdfBvn2

c

35-171

print cdfBvn2(1,-1e-45,1,-1e-45,0.5);
0.0000000000000000e+000

Example 4

trap 2,2;
print cdfBvn2(1,-1e-45,1,1e-45,0.5);

WARNING: Dubious accuracy from cdfBvn2:
0.000e+000 +/- 2.8e-060
0.0000000000000000e+000

Source

lncdfn.src

See Also

cdfBvn2e, lncdfbvn2

cdfBvn2e

Purpose

Returns the bivariate Normal cumulative distribution function of a bounded rect-
angle.

Format

{ y, e } = cdfBvn2e(h, dh, k, dk, r);

Input

h Nx1 vector, starting points of integration for variable 1.

cdfBvn2e

c

dh Nx1 vector, increments for variable 1.
k Nx1 vector, starting points of integration for variable 2.
dk Nx1 vector, increments for variable 2.
r Nx1 vector, correlation coefficients between the two

variables.

Output

y Nx1 vector, the integral over the rectangle bounded by
h, h + dh, k, and k + dk of the standardized
bivariate Normal distribution.

e Nx1 vector, an error estimate.

Remarks

Scalar input arguments are okay; they will be expanded to Nx1 vectors. cdfBvn2e
computes:

cdfBvn(h + dh, k + dk, r) + cdfBvn(h, k, r) - cdfBvn(h,
k + dk, r) - cdfBvn(h + dh, k, r)

The real answer is y ± e. The size of the error depends on the input arguments.

Example

Example 1

print
cdfBvn2e(1,-1,1,-1,0.5);

1.4105101488974692e-001
1.9927918166193113e-014

35-172

cdfBvn2e

c

35-173

Example 2

print
cdfBvn2e(1,-1e-15,1,-1e-15,0.5);

7.3955709864469857e-032
2.8306169312687801e-030

Example 3

print
cdfBvn2e(1,-1e-45,1,-1e-45,0.5);

0.0000000000000000e+000
2.8306169312687770e-060

See Also

cdfBvn2, lncdfbvn2

cdfCauchy

Purpose

Computes the cumulative distribution function for the Cauchy distribution.

Format

y = cdfCauchy(x,a,b);

Input

x NxK matrix, an Nx1 vector or scalar.
a Location parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x.

cdfCauchy

c

b Scale parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with x. b must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

Remarks

The cumulative distribution function for the Cauchy distribution is defined as:

See Also

pdfCauchy

cdfCauchyInv

Purpose

Computes the Cauchy inverse cumulative distribution function.

Format

y = cdfCauchyInv(p,a,b);

Input

p NxK matrix, Nx1 vector or scalar. p must be greater
than zero and less than 1.

a Location parameter; NxK matrix, Nx1 vector or scalar,

35-174

cdfCauchyInv

c

35-175

ExE conformable with p.
b Scale parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with p. b must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

See Also

pdfCauchy, cdfCauchy

cdfChic

Purpose

Computes the complement of the cdf of the chi-square distribution.

Format

y = cdfChic(x, n);

Input

x NxK matrix.
n LxM matrix, ExE conformable with x.

Output

y max(N,L) by max(K,M) matrix.

cdfChic

c

Remarks

y is the integral from x to ∞ of the chi-square distribution with n degrees of freedom.

The elements of n must all be positive integers. The allowable ranges for the argu-
ments are:

x > 0
n > 0

A -1 is returned for those elements with invalid inputs.

This equals 1 - Χn2(x), Thus, to get the chi-squared cdf, subtract cdfChic(x, n)
from 1. The complement of the cdf is computed because this is what is most commonly
needed in statistical applications, and because it can be computed with fewer problems
of roundoff error.

Example

x = { .1, .2, .3, .4 };
n = 3;
y = cdfChic(x,n);
print "y = " y;

After running above code

0.991837
y = 0.977589

0.960028
0.940242

See Also

cdfBeta, cdfFc, cdfNc, cdfTc, gamma

35-176

cdfChic

c

35-177

Technical Notes

For n <= 1000, the incomplete gamma function is used and the absolute error is approx.
±6e-13.

For n > 1000, a Normal approximation is used and the absolute error is ±2e-8.

For higher accuracy when n > 1000, use:

1 - cdfGam(0.5*x, 0.5*n);

References

1. Bhattacharjee, G.P. "Algorithm AS 32, the Incomplete Gamma Integral." Applied
Statistics. Vol. 19, 1970, 285-87.

2. Mardia K.V. and P.J. Zemroch. Tables of the F- and related distributions with
algorithms. Academic Press, New York, 1978. ISBN 0-12-471140-5.

3. Peizer, D.B. and J.W. Pratt. "A Normal Approximation for Binomial, F, Beta,
and other Common, Related Tail Probabilities, I." Journal of the American
Statistical Association. Vol. 63, Dec. 1968, 1416-56.

cdfChii

Purpose

Compute chi-square abscissae values given probability and degrees of freedom.

Format

c = cdfChii(p, n);

Input

p MxN matrix, probabilities.
n LxK matrix, ExE conformable with p, degrees of

cdfChii

c

freedom.

Output

c max(M,L) by max(N,K) matrix, abscissae values for
chi-squared distribution.

Example

The following generates a 3x3 matrix of pseudo-random numbers with a chi-squared
distribution with expected value of 4:

//Set the rng seed for repeatable random numbers
rndseed 464578;

//Set the 'probabilities' input equal to a 3x3 matrix of
//uniform random numbers and the degrees of freedom' input
//to be a 3x3 matrix with each element equal to '4'
x = cdfChii(rndu(3,3),4+zeros(3,3));

After the code above:

0.934227 6.231914 4.227479
x = 2.647158 1.203957 10.559593

5.868060 1.368600 1.963283

Source

cdfchii.src

See Also

gammaii

35-178

cdfChii

c

35-179

cdfChinc

Purpose

Computes the cumulative distribution function for the noncentral chi-square dis-
tribution.

Format

y = cdfChinc(x, v, d);

Input

x Nx1 vector, values of upper limits of integrals, must be
greater than 0.

v scalar, degrees of freedom, v> 0.
d scalar, noncentrality parameter, d> 0.

This is the square root of the noncentrality parameter that
sometimes goes under the symbol lambda. (See Scheffe,
The Analysis of Variance, App. IV, 1959.)

Output

y Nx1 vector.

Remarks

y is the integral from 0 to x of the noncentral chi-square distribution with v degrees
of freedom and noncentrality d.

cdfChinc can return a vector of values, but the degrees of freedom and non-
centrality parameter must be the same for all values of x.

cdfChinc

c

For invalid inputs, cdfChinc will return a scalar error code which, when its value is
assessed by function scalerr, corresponds to the invalid input. If the first input is
out of range, scalerr will return a 1; if the second is out of range, scalerr will
return a 2; etc.

Relation to cdfChic:

cdfChic(x, v) = 1 - cdfChinc(x, v, 0);

Example

x = { .5, 1, 5, 25 };
print cdfChinc(x,4,2);

The code above returns:

0.0042086234
0.016608592
0.30954232
0.99441140

See Also

cdfFnc, cdfTnc

cdfChincInv

Purpose

Computes the quantile or inverse of noncentral chi-square cumulative distribution
function.

35-180

cdfChincInv

c

35-181

Format

x = cdfChincInv(y, df, nonc);

Input

y NxK matrix, Nx1 vector or scalar. The integral from 0
to x.

df ExE conformable with y. The degrees of freedom. df
> 0.

nonc ExE conformable with y. The noncentrality parameter.
Note: This is the square root of the noncentrality
parameter that sometimes goes under the symbol
lambda. nonc > 0.

Output

x NxK matrix, Nx1 vector or scalar. The upper limit of
the integrals of the noncentral chi-square distribution
with df degrees of freedom and noncentrality nonc.

Remarks

Note: Input nonc is the square root of the noncentrality parameter that sometimes
goes under the symbol lambda.

For invalid inputs, cdfChincinv will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the first
input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

See Also

cdfChinc, cdfChic, cdfFnc, cdfTnc

cdfChincInv

c

cdfEmpirical

Purpose

Computes the cumulative distribution function (cdf) of an empirical distribution.

Format

f = cdfEmpirical(x);

Input

x N x 1 vector.

Output

f (N+1) x1 vector.

Remarks

f is the integral from -∞ to x of the empirical distribution function.

Example

new ;
cls ;
rndseed 2223;

// Create a random vector
x = rndn(30,1);

// Sort x for the first column
x = sortc(x,1);

// Get empirical cdf of x

35-182

cdfEmpirical

c

35-183

f = cdfEmpirical(x);

// Add negative infinity (__INFN) for probability equal to
0.
print (__INFN|x)~f;

// Plot empirical distribution
plotCDFEmpirical(x);

// Get normal cdf of x
fnormal = cdfN(x);

// Plot theoretical distribution
plotAddXY(x, fnormal);

After above code,

-INF 0.00000000
-2.3124206 0.033333333
-1.6240227 0.066666667
-1.2763153 0.10000000

-0.82532512 0.13333333
-0.81574278 0.16666667
-0.64338729 0.20000000
-0.59625173 0.23333333
-0.49725006 0.26666667
-0.47855430 0.30000000
-0.39340284 0.33333333
-0.36201638 0.36666667

-0.063830011 0.40000000
-0.0064523646 0.43333333

0.23570074 0.46666667
0.32355136 0.50000000
0.37501508 0.53333333

cdfEmpirical

c

0.39847826 0.56666667
0.50039685 0.60000000
0.68900341 0.63333333
0.69132515 0.66666667
0.72246796 0.70000000
0.76893134 0.73333333
1.0221019 0.76666667
1.0638924 0.80000000
1.1274880 0.83333333
1.2610791 0.86666667
1.4445086 0.90000000
2.0295113 0.93333333
2.1240430 0.96666667
3.1784008 1.0000000

The plot is

See Also

plotCDFEmpirical

35-184

cdfEmpirical

c

35-185

cdfExp

Purpose

Computes the cumulative distribution function for the exponential distribution.

Format

y = cdfExp(x,a,m);

Input

x NxK matrix, an Nx1 vector or scalar.
a Location parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x. a must be less than x.
m Mean parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x. m must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

Remarks

The cumulative distribution function for the exponential distribution is defined as

See Also

pdfExp

cdfExp

c

cdfExpInv

Purpose

Computes the exponential inverse cumulative distribution function.

Format

y = cdfExpInv(p,a,b);

Input

p NxK matrix, Nx1 vector or scalar. p must be greater
than zero and less than 1.

a Location parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with p.

b Scale parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with p. b must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

See Also

pdfExp, cdfExp

cdfFc

Purpose

Computes the complement of the cumulative distribution function of the F dis-
tribution.

35-186

cdfExpInv

c

35-187

Format

y = cdfFc(x, n1, n2);

Input

x NxK matrix.
n1 LxM matrix, ExE conformable with x.
n2 PxQ matrix, ExE conformable with x and n1.

Output

y max(N,L,P) by max(K,M,Q) matrix

Example

cdffc can be used to calculate a p-value from an F-statistic.

n_obs = 100;
n_vars = 5;
f_stat = 2.4;
p_value = cdfFc(f_stat, n_vars, n_obs - n_vars - 1);
print p_value;

will return:

0.042803132

Remarks

y is the integral from x to ∞ of the F distribution with n1 and n2 degrees of free-
dom.

cdfFc

c

This equals

1 - G(x, n1, n2)

where G is the F cdf with n1 and n2 degrees of freedom. Thus, to get the F cdf, use:

1 - cdfFc(x, n1, n2);

The complement of the cdf is computed because this is what is most commonly needed
in statistical applications, and because it can be computed with fewer problems of roun-
doff error.

Allowable ranges for the arguments are:

x > 0
n1 > 0
n2 > 0

A -1 is returned for those elements with invalid inputs.

For max(n1,n2) <= 1000, the absolute error is approx. ±5e-13. For max(n1,n2) > 1000,
Normal approximations are used and the absolute error is approx. ±2e-6.

For higher accuracy when max(n1,n2) > 1000, use

cdfBeta(n2/(n2 + n1*x), n2/2, n1/2);

See Also
cdfBeta, cdfChic, cdfN, cdfNc, cdfTc, gamma

References

1. Bol'shev, L.N. "Asymptotically Perason's Transformations." Teor. Veroyat. Pri-
men. Theory of Probability and its Applications. Vol. 8, No. 2, 1963, 129-55.

2. Bosten, N.E. and E.L. Battiste. "Remark on Algorithm 179 Incomplete Beta

35-188

cdfFc

c

35-189

Ratio." Comm. ACM. Vol. 17, No. 3, March 1974, 156-57.

3. Kennedy, W.J., Jr. and J.E. Gentle. Statistical Computing. Marcel Dekker, Inc.,
New York, 1980.

4. Ludwig, O.G. "Algorithm 179 Incomplete Beta Ratio." Comm. ACM. Vol. 6, No.
6, June 1963, 314.

5. Mardia, K.V. and P.J. Zemroch. Tables of the F- and related distributions with
algorithms. Academic Press, New York, 1978. ISBN 0-12-471140-5.

6. Peizer, D.B. and J.W. Pratt. "A Normal Approximation for Binomial, F, Beta,
and other Common, Related Tail Probabilities, I." Journal of the American Stat-
istical Association. Vol. 63, Dec. 1968, 1416-56.

7. Pike, M.C. and I.D. Hill, "Remark on Algorithm 179 Incomplete Beta Ratio."
Comm. ACM. Vol. 10, No. 6, June 1967, 375-76.

cdfFnc

Purpose

Computes the cumulative distribution function of the noncentral F distribution.

Format

y = cdfFnc(x, n1, n2, d);

Input

x Nx1 vector, values of upper limits of integrals, x > 0.
v1 scalar, degrees of freedom of numerator, n1 > 0.
v2 scalar, degrees of freedom of denominator, n2 > 0.
d scalar, noncentrality parameter, d > 0.

This is the square root of the noncentrality parameter that

cdfFnc

c

sometimes goes under the symbol lambda. (See Scheffe,
The Analysis of Variance, App. IV, 1959.)

Output

y Nx1 vector.

Remarks

For invalid inputs, cdfFnc will return a scalar error code which, when its value is
assessed by function scalerr, corresponds to the invalid input. If the first input is
out of range, scalerr will return a 1; if the second is out of range, scalerr will
return a 2; etc.

Technical Notes

Relation to cdfFc:

cdfFc(x, n1, n2) = 1 - cdfFnc(x, n1, n2,0);

See Also

cdfTnc, cdfChinc

cdfFncInv

Purpose

Computes the quantile or inverse of noncentral F cumulative distribution function.

Format

x = cdfFncInv(y, dfn, dfd, nonc);

35-190

cdfFncInv

c

35-191

Input

y NxK matrix, Nx1 vector or scalar.
dfn ExE conformable with y. The degrees of freedom

numerator. dfn > 0.
dfd ExE conformable with y. The degrees of freedom

denominator. dfd > 0.
nonc ExE conformable with y. The noncentrality parameter.

Note: This is the square root of the noncentrality
parameter that sometimes goes under the symbol
lambda. nonc > 0.

Output

x NxK matrix, Nx1 vector or scalar. The upper limit of
the integrals of the noncentral F distribution.

Remarks

Note: Input nonc is the square root of the noncentrality parameter that sometimes
goes under the symbol lambda.

For invalid inputs, cdfFncInv will return a scalar error code which, when its value
is assessed by function scalerr, corresponds to the invalid input. If the first input is
out of range, scalerr will return a 1; if the second is out of range, scalerr will
return a 2; etc.

See Also

cdfFnc, cdfChinc, cdfChic, cdfTnc

cdfFncInv

c

cdfGam

Purpose

Computes the incomplete gamma function.

Format

g = cdfGam(x, intlim);

Input

x NxK matrix of data.
intlim LxM matrix, ExE compatible with x, containing the

integration limit.

Output

g max(N,L) by max(K,M) matrix.

Remarks

The incomplete gamma function returns the integral

The allowable ranges for the arguments are:

x > 0
intlim > 0

35-192

cdfGam

c

35-193

A -1 is returned for those elements with invalid inputs.

Example

x = { 0.5 1 3 10 };
intlim = seqa(0,.2,6);
g = cdfGam(x,intlim);
print "intlim = " intlim;
print "g = " g;

After the code above:

intlim =
0.00000000
0.20000000
0.40000000
0.60000000
0.80000000
1.0000000

g =
0.00000000 0.00000000 0.00000000
0.00000000
0.47291074 0.18126925 0.0011484812 2.3530688e-
014
0.62890663 0.32967995 0.0079263319 2.0098099e-
011
0.72667832 0.45118836 0.023115288 9.6697183e-
010
0.79409679 0.55067104 0.047422596 1.4331002e-
008
0.84270079 0.63212056 0.080301397 1.1142548e-
007

cdfGam

c

This computes the integrals over the range from 0 to 1, in increments of 0.2, at the para-
meter values 0.5, 1, 3, 10.

Technical Notes

cdfGam has the following approximate accuracy:

x < 500 : the absolute error is approx. ±6e-
13

500 <= x <= 10,000 : the absolute error is approx. ±3e-
11
10,000 < x : a Normal approximation is used and

the absolute error is approx. ±3e-
10

References

1. Bhattacharjee, G.P. ''Algorithm AS 32, the Incomplete Gamma Integral.''
Applied Statistics. Vol. 19, 1970, 285-87.

2. Mardia, K.V. and P.J. Zemroch. Tables of the F- and Related Distributions with
Algorithms. Academic Press, New York, 1978. ISBN 0-12-471140-5.

3. Peizer, D.B. and J.W. Pratt. ''A Normal Approximation for Binomial, F, Beta,
and other Common, Related Tail Probabilities, I.'' Journal of the American Stat-
istical Association. Vol. 63, Dec. 1968, 1416-56.

cdfGenPareto

Purpose

Computes the cumulative distribution function for the Generalized Pareto dis-
tribution.

35-194

cdfGenPareto

c

35-195

Format

y = cdfGenPareto(x,a,o,k);

Input

x NxK matrix, an Nx1 vector or scalar.
a Location parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x.
o Scale parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x. o must be greater than 0.
k Shape parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x.

Output

y NxK matrix, Nx1 vector or scalar.

Remarks

The cumulative distribution function for the Generalized Pareto distribution is defined
as:

See Also

pdfGenPareto

cdfGenPareto

c

cdfHyperGeo

Purpose

Computes the cumulative distribution function for the hypergeometric distribution.

Format

p = cdfHyperGeo(x, m, k, n);

Input

x class="BodyD-Column2-Body1">NxK matrix, Nx1
vector or scalar. x must be a positive number and < m

m The size of the population from which draws will be
made. ExE conformable with x. m must be > x, k and
n.

k The number of marked items. ExE conformable with x.
0 < prob < 1.

n The number of items drawn from the population. ExE
conformable with x. 0 < k < m.

Output

p The probability of drawing x or fewer marked items.
NxK matrix, Nx1 vector or scalar.

Example

You are given 120 hard drives, 14 of which are known to be bad. What is the prob-
ability of drawing 2 or fewer bad hard drive if you randomly select 12 drives?

35-196

cdfHyperGeo

c

35-197

p = cdfHyperGeo(2, 120, 14, 12);

After running the code above, p is equal to:

0.85284036

Continuing with the example above, what are the probabilities of drawing 4 or fewer
bad hard drives if you draw 20 or 40 hard drives?

x = 4;
n_total = 120;
n_bad = 14;
n_draw = { 20, 40 };
p = cdfHyperGeo(x, n_total, n_bad, n_draw);
print p;

After running the code above, p is equal to:

0.94307042
0.47070798

Remarks

For invalid inputs, cdfHyperGeo will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the first
input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

See Also

pdfHyperGeo, rndHyperGeo, cdfBinomial

cdfHyperGeo

c

cdfLaplace

Purpose

Computes the cumulative distribution function for the Laplace distribution.

Format

y = cdfLaplace(x,a,b);

Input

x NxK matrix, an Nx1 vector or scalar.
a Location parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x.
b Scale parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x. b must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

Remarks

The cumulative distribution function for the Laplace distribution is defined as

See Also

cdfLaplaceInv

35-198

cdfLaplace

c

35-199

cdfLaplaceInv

Purpose

Computes the Laplace inverse cumulative distribution function.

Format

y = cdfLaplaceInv(p,a,b);

Input

p NxK matrix, Nx1 vector or scalar. p must be greater
than 0 and less than 1.

a Location parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with p.

b Scale parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with p. b must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

See Also

cdfLaplace

cdfLogistic

Purpose

Computes the cumulative distribution function for the logistic distribution.

cdfLaplaceInv

c

Format

y = cdfLogistic(x,a,b);

Input

x NxK matrix, an Nx1 vector or scalar.
a Location parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x.
b Scale parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x. b must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

Remarks

The cumulative distribution function for the logistic distribution is defined as:

where

See Also

pdfLogistic

35-200

cdfLogistic

c

35-201

cdfLogisticInv

Purpose

Computes the logistic inverse cumulative distribution function.

Format

y = cdfLogisticInv(p,a,b);

Input

p NxK matrix, Nx1 vector or scalar. p must be greater
than 0 and less than 1.

a Location parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with p.

b Scale parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with p. b must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

See Also

pdfLogistic, cdfLogistic

cdfMvn

Purpose

Computes multivariate Normal cumulative distribution function.

cdfLogisticInv

c

Format

p = cdfMvn(ulim, corr);

Input

ulim K x 1 vector or K x N matrix, abscissae. If ulim has
more than one column, each column will be treated as a
separate set of upper limits.

corr K x K matrix, correlation matrix.

Output

p N x 1 vector, . p will have as
many elements as the input, ulim, has columns.

Examples

Example 1: Uncorrelated variables

//Upper limits of integration
ulim = { 0, 0 };

//Identity matrix, indicates
//zero correlation between variables
corr = { 1 0,

0 1 };

//Calculate cumulative probability of
//both variables being ≤ 0
p = cdfmvn(ulim, corr);

//Calculate joint probablity of two
//variables with zero correlation,

35-202

cdfMvn

c

35-203

//both, being ≤ 0
p2 = cdfn(0) .* cdfn(0);

After the above code, both p and p2 should be equal to 0.25.
Example 2

//Upper limits of integration
ulim = { -0.5, 1 };

//Correlation matrix
corr = { 1 0.26,

0.26 1 };

//Calculate cumulative probability of
//the first variable being ≤ -0.5
//and the second variable being ≤ 1
p = cdfmvn(ulim, corr);

After the above code, p should equal: 0.28025. It means :

when the cor-
relation between two variables is 0.26.

Example 3: Compute the cdf at 3 separate pairs of points

//Upper limits of integration
//x1 ≤ -1 and x2 ≤ -1.1
//x1 ≤ 0 and x2 ≤ 0.1
//x1 ≤ 1 and x2 ≤ 1.1
ulim = { -1 0 1,

-1.1 0.1 1.1 };

//Correlation matrix
corr = { 1 0.31,

0.31 1 };

cdfMvn

c

//Calculate cumulative probability of
//each pair of upper limits
p = cdfmvn(ulim, corr);

After the above code, p should equal:

0.040741382 0.31981965 0.74642007

which means that:

Remarks

l cdfMvn evaluates the MVN integral with i-th row of (upper limits), where

where denotes K-dimensional multivariate normal distribution.

l The correlation matrix is defined by , where denotes the
diagonal matrix which has the square roots of the diagonal entries for
covariance matrix on its diagonal.

Source

lncdfn.src

See Also

cdfBvn, cdfN, lncdfmvn

35-204

cdfMvn

c

35-205

cdfMvnce

Purpose

Computes the upper tail of the multivariate Normal cumulative distribution func-
tion with error management.

Format

{y, err, retcode} = cdfMvnce(ctl, x, R, m);

Input

ctl instance of a cdfmControl structure with members.
ctl.maxEvaluations scalar, maximum

number of evaluations.
ctl.absErrorTolerance scalar absolute error

tolerance.
ctl.relative error tolerance.

x NxK matrix, abscissae.
R KxK matrix, correlation matrix.
m Kx1 vector, non-centrality vector.

Output

y Nx1 vector, Pr(X ≥ x|R,m).
err Nx1 vector, estimates of absolute error.
retcode Nx1 vector, return codes,

0 normal completion with err <
ctl.absErrorTolerance.

1 err > ctl.absErrorTolerance

cdfMvnce

c

and ctl.maxEvaluations exceeded;
increase ctl.maxEvaluations to
decrease error.

2 K > 100 or K < 1.
3 R not positive semi-definite.
missing R not properly defined.

Examples

Example 1: Uncorrelated variables

//Lower limits of integration for K dimensional multivariate
distribution
x = { 0 0 };

//Identity matrix, indicates
//zero correlation between variables
R = { 1 0,

0 1 };
//Define non-centrality vector
m = { 0, 0};

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//both variables being ≥ 0
{p, err, retcode} = cdfMvnce(ctl, x, R, m);

//Calculate joint probablity of two
//variables with zero correlation,
//both, being ≥ 0
p2 = cdfnc(0) .* cdfnc(0);

35-206

cdfMvnce

c

35-207

After the above code, both p and p2 should be equal to 0.25.

.

Example 2: Compute the upper tail of multivariate normal cdf at 3 separate pairs
of lower limits

//Lower limits of integration
// x1 ≥ -1 and x2 ≥ -1.1
// x1 ≥ 0 and x2 ≥ 0.1
// x1 ≥ 1 and x2 ≥ 1.1
x = { -1 -1.1,

0 0.1,
1 1.1 };

//Correlation matrix
R = { 1 0.31,

0.31 1 };

//Define non-centrality vector
m = { 0, 0 };

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//each pair of lower limits
{p, err, retcode} = cdfMvnce(ctl, x, R, m);

After the above code, p should equal:

0.74642007
0.27999181
0.04074138

which means that:

cdfMvnce

c

Example 3: Compute the upper tail of non central multivariate normal cdf

//Lower limits of integration
// x1 ≥ -1 and x2 ≥ -1.1
// x1 ≥ 0 and x2 ≥ 0.1
// x1 ≥ 1 and x2 ≥ 1.1
x = { -1 -1.1,

0 0.1,
1 1.1 };

//Correlation matrix
R = { 1 0.31,

0.31 1 };

//Define non-centrality vector , Kx1
m = { 1,

-2.5 };

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//each pair of lower limits
{p, err, retcode} = cdfMvnce(ctl, x, R, m);

After the above code, p should equal:

0.08046686
0.00455354
0.00014231

35-208

cdfMvnce

c

35-209

which means with non-central vector, the multivariate normal cdf are:

Remarks

l The cdfMvnce evaluates the upper tail of MVN integral, where

For the non-central MVN, we have

where denotes -dimensional multivariate normal distribution, denotes the
non-centrality vector with .

l The correlation matrix is defined by , where denotes the
diagonal matrix which has the square roots of the diagonal entries for
covariance matrix on its diagonal.

Source

cdfm.src

See Also

cdfMvn2e, cdfMvnce, cdfMvte

cdfMvnce

c

References

1. Genz, A. and F. Bretz,''Numerical computation of multivariate t-probabilities with
application to power calculation of multiple contrasts'', Journal of Statistical Com-
putation and Simulation, 63:361-378, 1999.

2. Genz, A., ''Numerical computation of multivariate normal probabilities'', Journal of Com-
putational and Graphical Statistics, 1:141-149, 1992.

cdfMvne

Purpose

Computes multivariate Normal cumulative distribution function with error man-
agement.

Format

{y, err, retcode} = cdfMvne(ctl, x, R, m);

Input

ctl instance of a cdfmControl structure with members.
ctl.maxEvaluations scalar, maximum

number of evaluations.
ctl.absErrorTolerance scalar absolute error

tolerance.
ctl.relative error tolerance.

x NxK matrix, abscissae.
R KxK matrix, correlation matrix.
m Kx1 vector, non-centrality vector.

35-210

cdfMvne

c

35-211

Output

y Nx1 vector, Pr(X ≤ x|R,m).
err Nx1 vector, estimates of absolute error.
retcode Nx1 vector, return codes.

0 normal completion with err <
ctl.absErrorTolerance.

1 err > ctl.absErrorTolerance
and ctl.maxEvaluations exceeded;
increase ctl.maxEvaluations to
decrease error

2 K > 100 or K < 1
3 R not positive semi-definite
missing R not properly defined

Examples

Example 1: Uncorrelated variables

//Upper limits of integration for K dimensional multivariate
distribution
x = { 0 0 };

//Identity matrix, indicates
//zero correlation between variables
R = { 1 0,

0 1 };

//Define non-centrality vector
m = { 0, 0 };

//Define control structure
struct cdfmControl ctl;

cdfMvne

c

ctl = cdfmControlCreate();

//Calculate cumulative probability of
//both variables being ≤ 0
{p, err, retcode} = cdfMvne(ctl, x, R, m);

//Calculate joint probablity of two
//variables with zero correlation,
//both, being ≤ 0
p2 = cdfn(0) .* cdfn(0);

After the above code, both p and p2 should be equal to 0.25.

.

Example 2: Compute the multivariate normal cdf at 3 separate pairs of upper lim-
its

//Upper limits of integration
//x1 ≤ -1 and x2 ≤ -1.1
//x1 ≤ 0 and x2 ≤ 0.1
//x1 ≤ 1 and x2 ≤ 1.1
x = { -1 -1.1,

0 0.1,
1 1.1 };

//Correlation matrix
R = { 1 0.31,

0.31 1 };

//Define non-centrality vector
m = { 0, 0 };

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

35-212

cdfMvne

c

35-213

//Calculate cumulative probability of
//each pair of upper limits
{ p, err, retcode } = cdfMvne(ctl, x, R, m);

After the above code, p should equal:

0.040741382
0.31981965
0.74642007

which means that:

Example 3: Compute the non central multivariate normal cdf

//Upper limits of integration
//x1 ≤ -1 and x2 ≤ -1.1
//x1 ≤ 0 and x2 ≤ 0.1
//x1 ≤ 1 and x2 ≤ 1.1
x = { -1 -1.1,

0 0.1,
1 1.1 };

//Correlation matrix
R = { 1 0.31,

0.31 1 };

//Define non-centrality vector , Kx1
m = { 1,

-2.5 };

//Define control structure

cdfMvne

c

struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//each pair of upper limits
{p, err, retcode} = cdfMvne(ctl, x, R, m);

After the above code, p should equal:

0.02246034
0.15854761
0.49998320

which means with non-central vector, the multivariate normal cdf are:

Remarks

l cdfMvne evaluates the MVN integral, where

For the non-central MVN we have

35-214

cdfMvne

c

35-215

where denotes -dimensional multivariate normal distribution, denotes the
non-centrality vector with .

l The correlation matrix is defined by , where denotes the
diagonal matrix which has the square roots of the diagonal entries for
covariance matrix on its diagonal.

Source

cdfm.src

See Also

cdfMvne, cdfMvn2e, cdfMvte

References

1. Genz, A. and F. Bretz,''Numerical computation of multivariate t-probabilities
with application to power calculation of multiple contrasts,'' Journal of Statistical
Computation and Simulation, 63:361-378, 1999.

2. Genz, A., ''Numerical computation of multivariate normal probabilities,'' Journal
of Computational and Graphical Statistics, 1:141-149, 1992.

cdfMvn2e

Purpose

Computes the multivariate Normal cumulative distribution function with error man-
agement over the range [a,b].

Format

{y, err, retcode} = cdfMvn2e(ctl, a, b, R, m);

cdfMvn2e

c

Input

ctl instance of a cdfmControl structure with members.
ctl.maxEvaluations scalar, maximum

number of evaluations.
ctl.absErrorTolerance scalar absolute error

tolerance.
ctl.relative error tolerance.

a NxK matrix, lower limits.
b NxK matrix, upper limits.
R KxK matrix, correlation matrix.
m Kx1 vector, non-centrality vector.

Output

y Nx1 vector, Pr(X ≥ a and X ≤ b|R,m).
err Nx1 vector, estimates of absolute error.
retcode Nx1 vector, return codes.

0 normal completion with err <
ctl.absErrorTolerance.

1 err > ctl.absErrorTolerance
and ctl.maxEvaluations exceeded;
increase ctl.maxEvaluations to
decrease error.

2 K > 100 or K < 1.
3 R not positive semi-definite.
missing R not properly defined.

Examples

Example 1: Uncorrelated variables

35-216

cdfMvn2e

c

35-217

//Lower limits of integration for K dimensional multivariate
distribution
a = {-1e4 -1e4};

//Upper limits of integration for K dimensional multivariate
distribution
b = {0 0};

//Identity matrix, indicates
//zero correlation between variables
R = { 1 0,

0 1 };

//Define non-centrality vector
m = {0, 0};

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//both variables being from -1e4 to 0
{p, err, retcode} = cdfMvn2e(ctl, a, b, R, m);

After the above code, both p equal to 0.25.

.

Example 2: Compute the multivariate normal cdf at 3 separate pairs of upper lim-
its

//Limits of integration
//-5 ≤ x1 ≤ -1 and -8 ≤ x2 ≤ -1.1
//-10 ≤ x1 ≤ 0 and -10 ≤ x2 ≤ 0.1
//0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1.1
a = { -5 -8,

cdfMvn2e

c

-20 -10,
0 0 };

b = { -1 -1.1,
0 0.1,
1 1.1 };

//Correlation matrix
R = { 1 0.31,

0.31 1};

//Define non-centrality vector
m = {0, 0};

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//each pair of limits
{p, err, retcode} = cdfMvn2e(ctl, a, b, R, m);

After the above code, p should equal:

0.04074118
0.31981965
0.13700266

which means that:

Example 3: Compute the non central multivariate normal cdf

35-218

cdfMvn2e

c

35-219

//Limits of integration
//-5 ≤ x1 ≤ -1 and -8 ≤ x2 ≤ -1.1
//-10 ≤ x1 ≤ 0 and -10 ≤ x2 ≤ 0.1
//0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1.1
a = { -5 -8,

-20 -10,
0 0 };

b = { -1 -1.1,
0 0.1,
1 1.1 };

//Correlation matrix
R = { 1 0.31,

0.31 1 };

//Define non-centrality vector , Kx1
m = { 1,

-2.5 };

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//each pair of upper limits
{p, err, retcode} = cdfMvn2e(ctl, a, b, R, m);

After the above code, p should equal:

0.02246034
0.15854761
0.00094761

which means with non-central vector, the multivariate normal cdf are:

cdfMvn2e

c

Remarks

l cdfMvn2e evaluates the following non-central MVN integral, where

where denotes -dimensional multivariate normal distribution, denotes the
non-centrality vector with .

l The correlation matrix is defined by , where denotes the
diagonal matrix which has the square roots of the diagonal entries for
covariance matrix on its diagonal.

Source

cdfm.src

See Also

cdfMvne, cdfMvnce, cdfMvt2e

References

1. Genz, A. and F. Bretz,''Numerical computation of multivariate t-probabilities with
application to power calculation of multiple contrasts,'' Journal of Statistical Com-
putation and Simulation, 63:361-378, 1999.

2. Genz, A., ''Numerical computation of multivariate normal probabilities,'' Journal of

35-220

cdfMvn2e

c

35-221

Computational and Graphical Statistics, 1:141-149, 1992.

cdfMvtce

Purpose

Computes complement (upper tail) of multivariate Student's t cumulative dis-
tribution function with error management.

Format

{y, err, retcode} = cdfMvtce(ctl, x, R, m, v);

Input

ctl instance of a cdfmControl structure with members.
ctl.maxEvaluations scalar, maximum

number of evaluations.
ctl.absErrorTolerance scalar absolute error

tolerance.
ctl.relErrorTolerance tolerance.

x NxK matrix, abscissae. K is the dimension of multivariate
Student's t distribution. N is the number ofMVT cdf integrals

R KxK matrix, correlation matrix.
m Kx1 vector, noncentralities.
v scalar, degrees of freedom.

Output

y Nx1 vector, Pr(X ≥ x|R,m).
err Nx1 vector, estimates of absolute error.

cdfMvtce

c

retcode Nx1 vector, return codes.
0 normal completion with err <

ctl.absErrorTolerance.
1 err > ctl.absErrorTolerance

and ctl.maxEvaluations exceeded;
increase ctl.maxEvaluations to
decrease error.

2 K > 100 or K < 1.
3 R not positive semi-definite.
missing R not properly defined.

Examples

Example 1: Uncorrelated variables

//Lower limits of integration for K dimensional multivariate
Student's t distribution
x = { 0 0 };

//Identity matrix, indicates
//zero correlation between variables
R = { 1 0,

0 1 };

//Define non-centrality vector
m = {0, 0};

//Define degree of freedom
v = 3;

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

35-222

cdfMvtce

c

35-223

//Calculate cumulative probability of
//both variables being ≥ 0
{ p, err, retcode } = cdfMvtce(ctl, x, R, m, v);

//Calculate joint probablity of two
//variables with zero correlation,
//both, being ≥ 0
p2 = cdftc(0, v) .* cdftc(0, v);

After the above code, both p and p2 should be equal to 0.25.

.

Example 2: Compute the upper tail of multivariate student's t cdf at 3 separate
pairs of lower limits

//Lower limits of integration
//x1 ≥ -1 and x2 ≥ -1.1
//x1 ≥ 0 and x2 ≥ 0.1
//x1 ≥ 1 and x2 ≥ 1.1
x = { -1 -1.1,

0 0.1,
1 1.1 };

//Correlation matrix
R = { 1 0.31,

0.31 1};

//Define non-centrality vector
m = { 0, 0 };

//Define degree of freedom
v = 3;

//Define control structure

cdfMvtce

c

struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//each pair of lower limits
{ p, err, retcode } = cdfMvtce(ctl, x, R, m, v);

After the above code, p should equal:

0.69617932
0.28156926
0.06752203

which means that:

Example 3: Compute the upper tail of non central multivariate student's t cdf

//Lower limits of integration
//x1 ≥ -1 and x2 ≥ -1.1
//x1 ≥ 0 and x2 ≥ 0.1
//x1 ≥ 1 and x2 ≥ 1.1
x = { -1 -1.1,

0 0.1,
1 1.1 };

//Correlation matrix
R = { 1 0.31,

0.31 1 };

//Define non-centrality vector, Kx1
m = { 1,

35-224

cdfMvtce

c

35-225

-2.5 };

//Define degree of freedom
v = 3;

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//each pair of lower limits
{ p, err, retcode } = cdfMvtce(ctl, x, R, m, v);

After the above code, p should equal:

0.08623943
0.00468427
0.00049538

which means with non-central vector, the multivariate student's t cdf are:

Remarks

l The central multivariate Student's t upper tail cdf for the i-th row of x is defined
by

cdfMvtce

c

where is a scale (or degree of freedom) parameter, is a K-
dimensional Student's t multivariate distribution, and

For the non-central multivariate Student's t distribution cdf, we have

where denotes the non-centrality vector with .

Another form of non-central multivariate Student's t distribution cdf is

l The correlation matrix is defined by covariance matrix , ,
where denotes the diagonal matrix which has the square roots of the diagonal
entries for on its diagonal.

Source

cdfm.src

35-226

cdfMvtce

c

35-227

See Also

cdfMvt2e, cdfMvte, cdfMvne

1. Genz, A. and F. Bretz,''Numerical computation of multivariate t-probabilities with
application to power calculation of multiple contrasts,'' Journal of Statistical Com-
putation and Simulation, 63:361-378, 1999.

2. Genz, A., ''Numerical computation of multivariate normal probabilities,'' Journal of Com-
putational and Graphical Statistics, 1:141-149, 1992.

cdfMvte

Purpose

Computes multivariate Student's t cumulative distribution function with error man-
agement.

Format

{y, err, retcode} = cdfMvte(ctl, x, R, m, v);

Input

ctl instance of a cdfmControl structure with members.
ctl.maxEvaluations scalar, maximum

number of evaluations.
ctl.absErrorTolerance scalar absolute error

tolerance.
ctl.relErrorTolerance tolerance.

x NxK matrix, abscissae. K is the dimension of multivariate
Student's t distribution. N is the number ofMVT cdf integrals

R KxK matrix, correlation matrix.
m Kx1 vector, noncentralities.

cdfMvte

c

v scalar, degrees of freedom.

Output

y Nx1 vector, Pr(X ≤ x|R,m).
err Nx1 vector, estimates of absolute error.
retcode Nx1 vector, return codes.

0 normal completion with err <
ctl.absErrorTolerance.

1 err > ctl.absErrorTolerance
and ctl.maxEvaluations exceeded;
increase ctl.maxEvaluations to
decrease error.

2 K > 100 or K < 1.
3 R not positive semi-definite.
missing R not properly defined.

Examples

Example 1: Uncorrelated variables

//Upper limits of integration for K dimensional multivariate
Student's t distribution
x = { 0 0 };

//Identity matrix, indicates
//zero correlation between variables
R = { 1 0,

0 1 };

//Define non-centrality vector
m = { 0, 0 };

35-228

cdfMvte

c

35-229

//Define degree of freedom
v = 3;

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//both variables being ≤ 0
{ p, err, retcode } = cdfMvte(ctl, x, R, m, v);

//Calculate joint probablity of two
//variables with zero correlation,
//both, being ≤ 0
p2 = (1 - cdftc(0, v)) .*(1- cdftc(0, v));

After the above code, both p and p2 should be equal to 0.25.

.

Example 2: Compute the multivariate student's t cdf at 3 separate pairs of upper
limits

//Upper limits of integration
//x1 ≤ -1 and x2 ≤ -1.1
//x1 ≤ 0 and x2 ≤ 0.1
//x1 ≤ 1 and x2 ≤ 1.1
x = { -1 -1.1,

0 0.1,
1 1.1 };

//Correlation matrix
R = { 1 0.31,

0.31 1};

cdfMvte

c

//Define non-centrality vector
m = {0, 0};

//Define degree of freedom
v = 3;

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//each pair of upper limits
{p, err, retcode} = cdfMvte(ctl, x, R, m, v);

After the above code, p should equal:

0.06752203
0.31824308
0.69617932

which means that:

Example 3: Compute the non central multivariate student's t cdf

//Upper limits of integration
//x1 ≤ -1 and x2 ≤ -1.1
//x1 ≤ 0 and x2 ≤ 0.1
//x1 ≤ 1 and x2 ≤ 1.1
x = { -1 -1.1,

0 0.1,
1 1.1 };

35-230

cdfMvte

c

35-231

//Correlation matrix
R = { 1 0.31,

0.31 1};

//Define non-centrality vector , Kx1
m = { 1,

-2.5 };

//Define degree of freedom
v = 3;

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//each pair of upper limits
{ p, err, retcode } = cdfMvte(ctl, x, R, m, v);

After the above code, p should equal:

0.03571301
0.15854358
0.46919524

which means with non-central vector, the multivariate student's t cdf are:

Remarks

l The central multivariate Student's t cdf for the i-th row of x is defined by

cdfMvte

c

where is a scale (or degree of freedom) parameter, is a K-
dimensional Student's t multivariate distribution, and

For the non-central multivariate Student's t distribution cdf, we have

where denotes the non-centrality vector with .

Another form of non-central multivariate Student's t distribution cdf is

l The correlation matrix is defined by covariance matrix , ,
where denotes the diagonal matrix which has the square roots of the diagonal
entries for on its diagonal.

Source

cdfm.src

35-232

cdfMvte

c

35-233

See Also

cdfMvte, cdfMvt2e, cdfMvnce
1. Genz, A. and F. Bretz,''Numerical computation of multivariate t-probabilities with

application to power calculation of multiple contrasts,'' Journal of Statistical Com-
putation and Simulation, 63:361-378, 1999.

2. Genz, A., ''Numerical computation of multivariate normal probabilities,'' Journal of Com-
putational and Graphical Statistics, 1:141-149, 1992.

cdfMvt2e

Purpose

Computes multivariate Student's t cumulative distribution function with error man-
agement over [a,b].

Format

{y, err, retcode} = cdfMvt2e(ctl, a, b, R, m, v);

Input

ctl instance of a cdfmControl structure with members.
ctl.maxEvaluations scalar, maximum

number of evaluations.
ctl.absErrorTolerance scalar absolute error

tolerance.
ctl.relErrorTolerance tolerance.

a NxK matrix, lower limits. K is the dimension of multivariate
Student's t distribution. N is the number ofMVT cdf integrals.

b NxK matrix, upper limits.
R KxK matrix, correlation matrix.

cdfMvt2e

c

m Kx1 vector, noncentralities.
v scalar, degrees of freedom.

Output

y Nx1 vector, a Pr(X ≥ a and X ≤ b|R,m).
err Nx1 vector, estimates of absolute error.
retcode Nx1 vector, return codes.

0 normal completion with err <
ctl.absErrorTolerance.

1 err > ctl.absErrorTolerance
and ctl.maxEvaluations exceeded;
increase ctl.maxEvaluations to
decrease error.

2 K > 100 or K < 1.
3 R not positive semi-definite.
missing R not properly defined.

Examples

Example 1: Uncorrelated variables

//Lower limits of integration for K dimensional multivariate
distribution
a = { -1e4 -1e4 };

//Upper limits of integration for K dimensional multivariate
distribution
b = { 0 0 };

//Identity matrix, indicates
//zero correlation between variables

35-234

cdfMvt2e

c

35-235

R = { 1 0,
0 1 };

//Define non-centrality vector
m = { 0, 0 };

//Define degree of freedom
v = 3;

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//both variables being from -1e4 to 0
{ p, err, retcode } = cdfMvt2e(ctl, a, b, R, m, v);

After the above code, both p equal to 0.25.

.

Example 2: Compute the multivariate student's t cdf at 3 separate pairs of upper
limits

//Limits of integration
//-5 ≤ x1 ≤ -1 and -8 ≤ x2 ≤ -1.1
//-20 ≤ x1 ≤ 0 and -10 ≤ x2 ≤ 0.1
//0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1.1
a = { -5 -8,

-20 -10,
0 0 };

b = { -1 -1.1,
0 0.1,
1 1.1 };

cdfMvt2e

c

//Correlation matrix
R = { 1 0.31,

0.31 1};

//Define non-centrality vector
m = { 0, 0 };

//Define degree of freedom
v = 3;

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//each pair of limits
{ p, err, retcode } = cdfMvt2e(ctl, a, b, R, m, v);

After the above code, p should equal:

0.06226091
0.31743546
0.12010880

which means that:

Example 3: Compute the non central multivariate student's t cdf

//Limits of integration
//-5 ≤ x1 ≤ -1 and -8 ≤ x2 ≤ -1.1
//-20 ≤ x1 ≤ 0 and -10 ≤ x2 ≤ 0.1
//0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1.1

35-236

cdfMvt2e

c

35-237

a = { -5 -8,
-20 -10,

0 0 };
b = { -1 -1.1,

0 0.1,
1 1.1 };

//Correlation matrix
R = { 1 0.31,

0.31 1 };

//Define non-centrality vector , Kx1
m = { 1,

-2.5 };

//Define degree of freedom
v = 3;

//Define control structure
struct cdfmControl ctl;
ctl = cdfmControlCreate();

//Calculate cumulative probability of
//each pair of limits
{ p, err, retcode } = cdfMvt2e(ctl, a, b, R, m, v);

After the above code, p should equal:

0.02810292
0.15190018
0.00092484

which means with non-central vector, the multivariate student's t cdf are:

cdfMvt2e

c

Remarks

l The central multivariate Student's t cdf for the i-th row of a and b is defined by

where is a scale (or degree of freedom) parameter, is a K-
dimensional Student's t multivariate distribution, and

For the non-central Student's t multivariate distribution cdf, we have

where denotes the non-centrality vector with .

Another form of non-central multivariate Student's t distribution cdf is

35-238

cdfMvt2e

c

35-239

l The correlation matrix is defined by covariance matrix , ,
where denotes the diagonal matrix which has the square roots of the diagonal
entries for on its diagonal.

See Also

cdfMvte, cdfMvtce, cdfMvn2e

Source

cdfm.src

1. Genz, A. and F. Bretz,''Numerical computation of multivariate t-probabilities
with application to power calculation of multiple contrasts,'' Journal of Statistical
Computation and Simulation, 63:361-378, 1999.

2. Genz, A., ''Numerical computation of multivariate normal probabilities,'' Journal
of Computational and Graphical Statistics, 1:141-149, 1992.

cdfN, cdfNc

Purpose

cdfN computes the cumulative distribution function (cdf) of the Normal dis-
tribution. cdfNc computes 1 minus the cdf of the Normal distribution.

Format

n = cdfN(x);
nc = cdfNc(x);

cdfN, cdfNc

c

Input

x NxK matrix.

Output

n NxK matrix.
nc NxK matrix.

Remarks

n is the integral from -∞ to x of the Normal density function, and nc is the integral
from x to +∞.

Note that:

cdfN(x) + cdfNc(x) = 1

However, many applications expect cdfN(x) to approach 1, but never actually reach
it. Because of this, we have capped the return value of cdfN at 1 - machine epsilon,
or approximately 1 - 1.11e-16. As the relative error of cdfN is about ±5e-15 for cdfN
(x) around 1, this does not invalidate the result. What it does mean is that for abs
(x) > (approx.) 8.2924, the identity does not hold true. If you have a need for the
uncapped value of cdfN, the following code will return it:

n = cdfN(x);
if n >= 1-eps;

n = 1;
endif;

where the value of machine epsilon is obtained as follows:

x = 1;
do while 1-x /= 1;

35-240

cdfN, cdfNc

c

35-241

eps = x;
x = x/2;

endo;

Note that this is an alternate definition of machine epsilon. Machine epsilon is usually
defined as the smallest number such that 1 + machine epsilon > 1, which is about
2.23e-16. This defines machine epsilon as the smallest number such that 1 -
machine epsilon < 1, or about 1.11e-16.

The erf and erfc functions are also provided, and may sometimes be more useful
than cdfN and cdfNc.

Example

x = { -2 -1 0 1 2 };
n = cdfN(x);
nc = cdfNc(x);

After above code,

x = -2.0000000 -1.0000000 0.0000000 1.0000000 2.0000000
n = 0.0227501 0.15865525 0.5000000 0.8413447 0.9772498
nc = 0.9772498 0.84134475 0.5000000 0.1586552 0.0227501

See Also

erf, erfc, cdfBeta, cdfChic, cdfTc, cdfFc, gamma

Technical Notes

For the integral from ∞ to x:

x <= -37 cdfN
underflows
and 0.0 is
returned

cdfN, cdfNc

c

-36 < x < -10 cdfN has
a relative
error of
approx.
±5e-12

-10 < x < 0 cdfN has
a relative
error of
approx.
±1e-13

0 < x cdfN has
a relative
error of
approx.
±5e-15

For cdfNc, i.e., the integral from x to +∞, use the above accuracies but change x to -x.

References

1. Adams, A.G. ''Remark on Algorithm 304 Normal Curve Integral.'' Comm. ACM.
Vol. 12, No. 10, Oct. 1969, 565-66.

2. Hill, I.D. and S.A. Joyce. ''Algorithm 304 Normal Curve Integral.'' Comm. ACM.
Vol. 10, No. 6, June 1967, 374-75.

3. Holmgren, B. ''Remark on Algorithm 304 Normal Curve Integral.'' Comm. ACM.
Vol. 13, No. 10, Oct. 1970.

4. Mardia, K.V. and P.J. Zemroch. Tables of the F- and Related Distributions with
Algorithms. Academic Press, New York, 1978, ISBN 0-12-471140-5.

35-242

cdfN, cdfNc

c

35-243

cdfNegBinomial

Purpose

Computes the cumulative distribution function for the negative binomial dis-
tribution.

Format

p = cdfNegBinomial(f,s,prob);

Input

f NxK matrix, Nx1 vector or scalar. 0 < f.
s ExE conformable with f. 0 < s.
prob The probability of success on any given trial. ExE

conformable with f. 0 < prob < 1.

Output

p NxK matrix, Nx1 vector or scalar. The probability of
observing f failures before observing s .

Example

Pat is required to sell candy bars to raise money for the 6th grade field trip. There are
thirty houses in the neighborhood, and Pat is not supposed to return home until five
candy bars have been sold. So the child goes door to door, selling candy bars. At each
house, there is a 0.4 probability of selling one candy bar and a 0.6 probability of selling
nothing.

What's the probability that Pat finishes on or before reaching the eighth house?

cdfNegBinomial

c

// f is number of failure times, f = 0, 1, 2, 3
f = seqa(0,1,4);

// p is the probability of selling the last candy bar

// the probability of selling each candy bar is 0.4, suc-
cess number = 5
p = cdfNegBinomial(f, 5, 0.4);

// since the success number is 5, so the total number is f
+ 5
f = f + 5;

print "After nth try, the probability =";
print f~p;

After running above code, the probability that Pat finishes on or before reaching the
eighth house is 0.1736704 or 17.36704%.

After nth try, the probability =

5.0000000 0.010240000
6.0000000 0.040960000
7.0000000 0.096256000
8.0000000 0.17367040

Remarks

For invalid inputs, cdfNegBinomial will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the first
input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

See Also

cdfBinomial, cdfBinomialInv, cdfNegBinomialInv

35-244

cdfNegBinomial

c

35-245

cdfNegBinomialInv

Purpose

Computes the quantile or inverse negative binomial cumulative distribution func-
tion.

Format

f = cdfNegBinomialInv(p, s, prob);

Input

p NxK matrix, Nx1 vector or scalar. 0 < f < 1.
s ExE conformable with p. 0 < s.
prob The probability of success on any given trial. ExE

conformable with p. 0 < prob < 1.

Output

f NxK matrix, Nx1 vector or scalar.

Example

Pat is required to sell candy bars to raise money for the 6th grade field trip. There are
thirty houses in the neighborhood, and Pat is not supposed to return home until five
candy bars have been sold. So the child goes door to door, selling candy bars. At each
house, there is a 0.4 probability of selling one candy bar and a 0.6 probability of selling
nothing.

If we know the probability that Pat finishes selling the last candy bar is 17.36704%,
then how many times of selling nothing?

cdfNegBinomialInv

c

// p is the probability of selling the last candy bar
p = 0.1736704;

// f is number of failure times
f = cdfNegBinomialInv(p, 5, 0.4);

print "selling nothing times =";
print f;

After running above code, the number of failure times is

selling nothing times =
3.0000000

Remarks

For invalid inputs, cdfNegBinomialInv will return a scalar error code which,
when its value is assessed by function scalerr, corresponds to the invalid input. If
the first input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

See Also

cdfBinomial, cdfBinomialInv, cdfNegBinomial

cdfN2

Purpose

Computes interval of Normal cumulative distribution function.

35-246

cdfN2

c

35-247

Format

y = cdfN2(x, dx);

Input

x MxN matrix, abscissae.
dx KxL matrix, ExE conformable to x, intervals.

Output

y max(M,K) by max(N,L) matrix,
the integral from x to x + dx of
the Normal distribution, i.e., Pr
(x < X < x + dx)

Remarks

The relative error is:

an
d
an
d
an
d or better

A relative error of ±1e-14 implies that the answer is accurate to better than ±1 in the
14th digit.

Example

print cdfN2(0,1.96);

cdfN2

c

0.4750021048517795

print cdfN2(1,0.5);

9.1848052662599017e-02

print cdfN2(20,1e-2);

5.0038115018684521e-90

print cdfN2(-5,2);

1.3496113800582164e-03

print cdfN2(-5,0.15);

3.3065580013000255e-07

Source

lncdfn.src

See Also

lncdfn2

cdfNi

Purpose

Computes the inverse of the cdf of the Normal distribution.

Format

x = cdfNi(p);

35-248

cdfNi

c

35-249

Input

p NxK real matrix, Normal probability levels, 0 <= p
<= 1.

Output

x NxK real matrix, Normal deviates, such that:

cdfN(x) = p.

Remarks

cdfN(cdfNi(p)) = p to within the errors given below:

p
<= 4.6e-308 -37.5 is returned

4.6e-
308

<
p

< 5e-24 accurate to ±5 in
12th digit

5e-24 <
p

< 0.5 accurate to ±1 in
13th digit

0.5 <
p

< 1 - 2.22045e-16 accurate to ±5 in
15th digit

p
≥ 1 - 2.22045e-16 8.12589 is returned

See Also

cdfN

cdfNi

c

cdfPoisson

Purpose

Computes the Poisson cumulative distribution function.

Format

p = cdfPoisson(x, lambda);

Input

x NxK matrix, Nx1 vector or scalar. x must be a positive
whole number.

lambda ExE conformable with x. The mean parameter.

Output

p NxK matrix, Nx1 vector or scalar.

Remarks

For invalid inputs, cdfPoisson will return a scalar error code which, when its value
is assessed by function scalerr, corresponds to the invalid input. If the first input is
out of range, scalerr will return a 1; if the second is out of range, scalerr will
return a 2; etc.

Example

Suppose that a hospital emergency department sees and average of 200 patients during
the Friday evening shift. What is the probability that they will see fewer than 250
patients during any one Friday evening shift.

p = cdfPoisson(250,200);

35-250

cdfPoisson

c

35-251

After running above code,

p = 0.99971538 or 99.715%

See Also

cdfPoissonInv, pdfPoisson, cdfBinomial, cdfNegBinomial

cdfPoissonInv

Purpose

Computes the quantile or inverse Poisson cumulative distribution function.

Format

x = cdfPoissonInv(p, lambda);

Input

p NxK matrix, Nx1 vector or scalar. 0 < p < 1.
lambda ExE conformable with p. The mean parameter.

Output

x NxK matrix, Nx1 vector or scalar.

Example

Suppose that a hospital emergency department sees an average of 200 patients during
the Friday evening shift. If the hospital wants to have enough staff on hand to handle
the patient load on 95% of Friday evenings, how many patients do they need staff on
hand for?

cdfPoissonInv

c

x = cdfPoissonInv(.95,200);

After running above code, the hospital should expect to see 224 or few patients on 95%
of Friday evenings.

x = 224

Remarks

For invalid inputs, cdfPoissoninv will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the first
input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

See Also

cdfPoisson, pdfPoisson, cdfBinomial, cdfNegBinomial,

cdfRayleigh

Purpose

Computes the Rayleigh cumulative distribution function.

Format

y = cdfRayleigh(x,b);

Input

x NxK matrix, an Nx1 vector or scalar. x must be greater
than or equal to 0.

b Scale parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with x. b must be greater than 0.

35-252

cdfRayleigh

c

35-253

Output

y NxK matrix, Nx1 vector or scalar.

Example

Here is an example show the Rayleigh cumulative distribution plot with different scale
parameters.

x = seqa(0,0.1,100);
b = 0.5~1~2~3~4;
y = cdfRayleigh(x,b);
plotxy(x,y);

After running above code,

Remarks

The Rayleigh cumulative distribution function is defined as

cdfRayleigh

c

See Also

cdfRayleighInv, pdfRayleigh

cdfRayleighInv

Purpose

Computes the Rayleigh inverse cumulative distribution function.

Format

x = cdfRayleighInv(p,b);

Input

p NxK matrix, Nx1 vector or scalar. p must be greater
than 0 and less than 1.

b Shape parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with p. b must be greater than 0.

Output

x NxK matrix, Nx1 vector or scalar.

Remarks

cdfRayleighInv(cdfRayleigh(x,b), b) = x

35-254

cdfRayleighInv

c

35-255

See Also

pdfRayleigh, cdfRayleigh

cdfTc

Purpose

Computes the complement of the cdf of the Student's t distribution.

Format

y = cdfTc(x, n);

Input

x NxK matrix.
n LxM matrix, ExE conformable with x.

Output

y max(N,L) by max(K,M) matrix.

Remarks

y is the integral from x to ∞ of the t distribution with n degrees of freedom.

Allowable ranges for the arguments are:

A -1 is returned for those elements with invalid inputs.

cdfTc

c

This equals:

where F is the t cdf with n degrees of freedom. Thus, to get the t cdf, subtract
cdfTc(x, n) from 1. The complement of the cdf is computed because this is what is
most commonly needed in statistical applications, and because it can be computed with
fewer problems of roundoff error.

Example

x = { .1, .2, .3, .4 };
n = 3;
y = cdfTc(x,n);

After running above code,

y =
0.46332617
0.42713516
0.39188165
0.35796758

See Also

cdfTci

Technical Notes

For results greater than 0.5e-30, the absolute error is approx. ±1e-14 and the relative
error is approx. ±1e-12. If you multiply the relative error by the result, then take the min-
imum of that and the absolute error, you have the maximum actual error for any result.
Thus, the actual error is approx. ±1e-14 for results greater than 0.01. For results less
than 0.01, the actual error will be less. For example, for a result of 0.5e-30, the actual
error is only ±0.5e-42.

35-256

cdfTc

c

35-257

References

1. Abramowitz, M. and I.A. Stegun, eds. Handbook of Mathematical Functions. 7th ed.
Dover, New York, 1970. ISBN 0-486-61272-4.

2. Hill, G.W. ''Algorithm 395 Student's t-Distribution.'' Comm. ACM. Vol. 13, No. 10,
Oct. 1970.

3. Hill, G.W. ''Reference Table: Student's t-Distribution Quantiles to 20D.'' Division of
Mathematical Statistics Technical Paper No. 35. Commonwealth Scientific and Indus-
trial Research Organization, Australia, 1972.

cdfTci

Purpose

Computes the inverse of the complement of the Student's t cdf.

Format

x = cdfTci(p, n);

Input

p NxK real matrix, complementary Student's t
probability levels, 0 <= p <= 1.

n LxM real matrix, degrees of freedom, n > 1, n
need not be integral. ExE conformable with p.

Output

x max(N,L) by max(K,M) real matrix, Student's t
deviates, such that cdfTc(x, n) = p.

cdfTci

c

Remarks

cdfTc(cdfTci(p, n)) = p to within the errors given below:

0.5e-30 < p < 0.01 accurate to ±1 in 12th
digit

0.01 < p accurate to ±1e-14

Extreme values of arguments can give rise to underflows, but no overflows are gen-
erated.

See Also

cdfTc

cdfTnc

Purpose

The integral under noncentral Student's t distribution, from -∞ to x. It can return
a vector of values, but the degrees of freedom and noncentrality parameter must
be the same for all values of x.

Format

y = cdfTnc(x, v, d);

Input

x Nx1 vector, values of upper limits of integrals.
v scalar, degrees of freedom, v > 0.
d scalar, noncentrality parameter.

This is the square root of the noncentrality parameter that

35-258

cdfTnc

c

35-259

sometimes goes under the symbol lambda. (See Scheffe,
The Analysis of Variance, App. IV, 1959.)

Output

y Nx1 vector, integrals from -∞ to x of noncentral t.

Examples

Example 1 noncentral t distributions with different parameters.

// sigma = 5
x = seqa(0,0.2,101);
sigma = 5;
df = 1~2~5~10~100;
y = cdfTnc(x, df, sigma');
plotxy(x, y);

After running above code,

cdfTnc

c

Example 2 noncentral t distributions with different degree of freedoms.

// df = 10
x = seqa(-5,0.5,41);
sigma = seqa(0, 0.5, 7);
df = 10;
y = cdfTnc(x, df, sigma');
plotxy(x, y);

After running above code,

35-260

cdfTnc

c

35-261

Remarks

cdfTc(x, v) = 1 - cdfTnc(x, v,0).

See Also

cdfFnc, cdfChinc

cdfTvn

Purpose

Computes the cumulative distribution function of the standardized trivariate
Normal density (lower tail).

Format

c = cdfTvn(x1, x2, x3, rho12, rho23, rho13);

cdfTvn

c

Input

x1 Nx1 vector of upper limits of integration for variable 1.
x2 Nx1 vector of upper limits of integration for variable 2.
x3 Nx1 vector of upper limits of integration for variable 3.
rho12 scalar or Nx1 vector of correlation coefficients between

the two variables x1 and x2.
rho23 scalar or Nx1 vector of correlation coefficients between

the two variables x2 and x3.
rho13 scalar or Nx1 vector of correlation coefficients between

the two variables x1 and x3.

Output

c Nx1 vector containing the result of the triple integral
from -∞ to x1, -∞ to x2, and -∞ to x3 of the
standardized trivariate Normal density.

Remarks

Allowable ranges for the arguments are:

35-262

cdfTvn

c

35-263

In addition, rho12, rho23 and rho13 must come from a legitimate positive definite
matrix. A -1 is returned for those rows with invalid inputs.

A separate integral is computed for each row of the inputs.

The first 3 arguments (x1, x2, x3) must be the same length, N. The second 3 argu-
ments (rho12, rho23, rho13) must also be the same length, and this length must
be N or 1. If it is 1, then these values will be expanded to apply to all values of x1,
x2, x3. All inputs must be column vectors.

To find the integral under a general trivariate density, with x1, x2, and x3 having
nonzero means and any positive standard deviations, transform by subtracting the mean
and dividing by the standard deviation. For example:

The absolute error for cdfTvn is approximately ±2.5e-8 for the entire range of argu-
ments.

See Also

cdfN, cdfBvn

References

1. Daley, D.J. ''Computation of Bi- and Tri-variate Normal Integral.'' Appl. Statist. Vol. 23,
No. 3, 1974, 435-38.

2. Steck, G.P. ''A Table for Computing Trivariate Normal Probabilities.'' Ann. Math. Stat-
ist. Vol. 29, 780-800.

cdfWeibull

Purpose

Computes the cumulative distribution function for the Weibull distribution.

cdfWeibull

c

Format

y = cdfWeibull(x,k,lambda);

Input

x NxK matrix, Nx1 vector or scalar. x must be greater
than 0.

k Shape parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with x. k must be greater than 0.

lambda Scale parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with x. lambda must be greater
than 0.

Output

y NxK matrix, Nx1 vector or scalar.

Example

Calculate the cdf for the Weibull distribution with different shape parameters.

// lambda = 1
x = seqa(0,0.01,301);
k = 0.5~1~1.5~5;
lambda = 1;
y = cdfWeibull(x, k, lambda);
plotxy(x, y);

After running above code,

35-264

cdfWeibull

c

35-265

Remarks

The Weibull cumulative distribution function is defined as:

f(x;k,λ) = 1 - e-(x/λ)k

See Also

pdfWeibull, cdfWeibullInv

cdfWeibullInv

Purpose

Computes the Weibull inverse cumulative distribution function.

Format

y = cdfWeibullInv(p,k,lambda);

cdfWeibullInv

c

Input

p NxK matrix, Nx1 vector or scalar. p must be greater
than 0 and less than 1.

k Shape parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with x. k must be greater than 0.

lambda Scale parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with x. lambda must be greater
than 0.

Output

y NxK matrix, Nx1 vector or scalar.

See Also

pdfWeibull, cdfWeibull

cdir

Purpose

Returns the current directory.

Format

y = cdir(s);

Input

s string, if the first character is 'A'-'Z' and the second
character is a colon ':' then that drive will be used. If
not, the current default drive will be used.

35-266

cdir

c

35-267

Output

y string containing the drive and full path name of the
current directory on the specified drive.

Remarks

If the current directory is the root directory, the returned string will end with a back-
slash, otherwise it will not.

A null string or scalar zero can be passed in as an argument to obtain the current drive
and path name.

Example

If the current working directory is C:\gauss:

x = cdir(0);
y = cdir("d:");
print x;
print y;

The code above will return:

C:\gauss
d:

ceil

Purpose

Round up toward +∞.

ceil

c

Format

y = ceil(x);

Input

x NxK matrix.

Output

y NxK matrix.

Remarks

This rounds every element in the matrix x to an integer. The elements are rounded up
toward +∞.

Example

x = 10*rndn(2,2);
y = ceil(x);

After the code above, the matrices x and y should hold values similar to below.
Answers will vary due to the use of random numbers as the input to the ceil func-
tion.

x = 8.73383 -0.783488 y = 9.0000000 0.0000000
13.1106 7.155113 14.000000 8.0000000

See Also

floor, trunc

35-268

ceil

c

35-269

changeDir

Purpose

Changes the working directory within a program.

Format

d = changeDir(s);

Input

s string, directory to change to.

Output

d string, new working directory, or null string if change
failed.

See Also

chdir, cdir

chdir

Purpose

Changes working directory in interactive mode.

Format

chdir dirstr;

changeDir

c

Input

dirstr literal or ^string, directory to change to.

Remarks

This is for interactive use. Use ChangeDir in a program.

If the directory change fails, chdir prints an error message.

See Also

changedir, cdir

chiBarSquare

Purpose

Compute compute the probability for a chi-bar square statistic from an hypothesis
involving parameters under constraints.

Format

SLprob = chiBarSquare(SL, H, a, b, c, d, bounds);

Input

SL scalar, chi-bar square statistic
H KxK matrix, positive covariance matrix
a MxK matrix, linear equality constraint coefficients
b Mx1 vector, linear equality constraint constants

These arguments specify the linear equality constraints of
the following type:

35-270

chiBarSquare

c

35-271

a * X = b

where x is the Kx1 parameter vector.
c MxK matrix, linear inequality constraint coefficients.
d Mx1 vector, linear inequality constraint constants.

These arguments specify the linear inequality constraints
of the following type:

c * X >= d

where x is the Kx1 parameter vector.
bounds Kx2 matrix, bounds on parameters. The first column

contains the lower bounds, and the second column the
upper bounds.

Output

SLprob scalar, probability of SL.

Remarks

See Silvapulle and Sen, Constrained Statistical Inference, page 75 for further details
about this function. Let

Zpx1 N(0,V)

where V is a positive definite covariance matrix. Define

chiBarSquare

c

C is a closed convex cone describing a set of constraints. ChiBarSquare computes
the probability of this statistic given V and C.

Example

V = { 0.0005255598 -0.0006871606 -0.0003191342,
-0.0006871606 0.0037466205 0.0012285813,
-0.0003191342 0.0012285813 0.0009081412 };

SL = 3.860509;

Bounds = { 0 200, 0 200, 0 200 };

vi = invpd(v);

SLprob = chiBarSquare(SL,Vi,0,0,0,0,bounds);

After running above code,

SLprob = 0.10885000

Source

hypotest.src

chol

Purpose

Computes the Cholesky decomposition of a symmetric, positive definite square
matrix.

35-272

chol

c

35-273

Format

y = chol(x);

Input

x NxN matrix.

Output

y NxN matrix containing the Cholesky decomposition of
x.

Remarks

y is the "square root" matrix of x. That is, it is an upper triangular matrix such that x =
y'y.

chol does not check to see that the matrix is symmetric. chol will look only at the
upper half of the matrix including the principal diagonal.

If the matrix x is symmetric but not positive definite, either an error message or an
error code will be generated, depending on the lowest order bit of the trap flag:

trap 0 Print error message and terminate program.
trap 1 Return scalar error code 10.

See scalerr and trap for more details about error codes.

Example

//'moment' calculates x'*x with options for handling missing data
x = moment (rndn(100,4),0);
y = chol(x);

chol

c

//y'y is equivalent to y'*y
ypy = y'y;

95.2801 8.6983 3.7248 1.5449 9.7612 0.8911 0.3816 0.1583
x = 8.6983 83.4547 -6.1455 -12.5551 y = 0.0000 9.0918 -0.7133 -1.3964

3.7248 -6.1455 87.6666 -3.0284 0.0000 0.0000 9.3280 -0.4379
1.5449 -12.5551 -3.0284 90.8311 0.0000 0.0000 0.0000 9.4162

95.2801 8.6983 3.7248 1.5449
ypy = 8.6983 83.4547 -6.1455 -12.5551

3.7248 -6.1455 87.6666 -3.0284
1.5449 -12.5551 -3.0284 90.8311

See Also

crout, solpd

choldn

Purpose

Performs a Cholesky downdate of one or more rows on an upper triangular mat-
rix.

Format

r = choldn(C, x);

Input

C KxK upper triangular matrix.
x NxK matrix, the rows to downdate C with.

35-274

choldn

c

35-275

Output

r KxK upper triangular matrix, the downdated matrix.

Remarks

If trap 1 is set, choldn returns scalar error code 60, otherwise it terminates the pro-
gram with an error message.

C should be a Cholesky factorization.

choldn(C, x);

is equivalent to

chol(C'C - x'x);

but choldn is numerically much more stable.

WARNING: it is possible to render a Cholesky factorization non-positive definite with
choldn. You should keep an eye on the ratio of the largest diagonal element of r to
the smallest--if it gets very large, r may no longer be positive definite. This ratio is a
rough estimate of the condition number of the matrix.

Example

let C[3,3] = 20.16210005 16.50544413 9.86676135
0 11.16601462 2.97761666
0 0 11.65496052;

let x[2,3] = 1.76644971 7.49445820 9.79114666
6.87691156 4.41961438 4.32476921;

r = choldn(C,x);

18.8706 15.3229 8.0495
r = 0.0000 9.3068 -2.1201

0.0000 0.0000 7.6288

choldn

c

See Also

cholup, chol

cholsol

Purpose

Solves a system of linear equations given the Cholesky factorization of the sys-
tem.

Format

x = cholsol(b, C);

Input

b NxK matrix.
C NxN matrix.

Output

x NxK matrix.

Remarks

C is the Cholesky factorization of a linear system of equations A. x is the solution for
Ax = b. b can have more than one column. If so, the system is solved for each
column, i.e., A*x[., i] = b[., i].

Since A-1 = I/A and eye(N) creates an identity matrix of size N:

cholsol(eye(N), C);

is equivalent to:

35-276

cholsol

c

35-277

invpd(A);

Thus, if you have the Cholesky factorization of A, cholsol is the most efficient way
to obtain the inverse of A.

Example

//Assign the right-hand side 'b' and the Cholesky
//factorization 'C'
b = { 0.03177513, 0.41823100, 1.70129375 };
C = { 1.73351215 1.53201723 1.78102499,

0 1.09926365 0.63230050,
0 0 0.67015361 };

//Solve the system of equations
x = cholsol(b,C);

//Note: C'C is equivalent to C'*C
A = C'C;

//Solve the system of equations
x2 = b/A;

-1.9440 -1.9440
x = -1.5269 x2 = -1.5269

3.2158 3.2158

See Also

chol

cholsol

c

cholup

Purpose

Performs a Cholesky update of one or more rows on an upper triangular matrix.

Format

r = cholup(C, x);

Input

C KxK upper triangular matrix.
x NxK matrix, the rows to update C with.

Output

r KxK upper triangular matrix, the updated matrix.

Remarks

C should be a Cholesky factorization.

cholup(C, x) is equivalent to chol(C'C + x'x), but cholup is numerically much
more stable.

Example

let C[3,3] = 18.87055964 15.3229443 8.04947012
0 9.30682813 -2.12009339
0 0 7.62878355;

let x[2,3] = 1.76644971 7.49445820 9.79114666
6.87691156 4.41961438 4.32476921;

r = cholup(C,x);

35-278

cholup

c

35-279

20.162100 16.505444 9.8667614
r = 0.0000000 11.166015 2.9776167

0.0000000 0.0000000 11.654961

See Also

choldn

chrs

Purpose

Converts a matrix of ASCII values into a string containing the appropriate char-
acters.

Format

y = chrs(x);

Input

x NxK matrix.

Output

y string of length N*K containing the characters whose
ASCII values are equal to the values in the elements of
x.

Remarks

This function is useful for embedding control codes in strings and for creating variable

chrs

c

length strings when formatting printouts, reports, etc.

Example

//42 is the ascii value for an asterisk '*'
print chrs(42);

The code above returns:

*

chrs can be used to create an interactive program in which the user is prompted for
keyboard input which the code uses to make decisions.

//Print a string to prompt the user for input
print "Choose a parameter: Enter [a,b,c]";

//Wait for the user to enter a keystroke and assign the
//ASCII value of that key to 'param'
param = keyw;

//Convert the ASCII value to a string
paramString = chrs(param);

if paramString == "a";
print "You have chosen:" "a";
//execute code for this choice

elseif paramString == "b";
print "You have chosen:" "b";
//execute code for this choice

elseif paramString == "c";
print "You have chosen:" "c";
//execute code for this choice

endif;

35-280

chrs

c

35-281

See Also

vals, ftos, stof

clear

Purpose

Clears space in memory by setting matrices equal to scalar zero.

Format

clear x, y;

Remarks

If your program is running out of memory, or uses considerable system resources,
using clear to deallocate large matrices after they are no longer needed may allow it
to run more efficiently.

clear x;

is equivalent to

x = 0;

Matrix names are retained in the symbol table after they are cleared.

Matrices can be clear'ed even though they have not previously been defined. clear
can be used to initialize matrices to scalar 0.

Example

A = rndn(1000, 1000);
//Code that uses 'A' would be here
//Free memory holding 'A'

clear

c

clear A;

See Also

clearg, new, show, delete

clearg

Purpose

Clears global symbols by setting them equal to scalar zero.

Format

clearg a, b, c;

Output

a,b,c scalar global matrices containing 0.

Remarks

It is considered a best practice to avoid using global variables inside of procedures
when possible.

clearg x;

is equivalent to

x = 0;

where x is understood to be a global symbol. clearg can be used to initialize sym-
bols not previously referenced. This command can be used inside of procedures to
clear global matrices. It will ignore any locals by the same name.

35-282

clearg

c

35-283

See Also

clear, delete, new, show, local

close

Purpose

Closes a GAUSS file.

Format

y = close(handle);

Input

handle scalar, the file handle given to the file when it was
opened with the open, create, or fopen
command.

Output

y scalar, 0 if successful, -1 if unsuccessful.

Remarks

handle is the scalar file handle created when the file was opened. It will contain an
integer which can be used to refer to the file.

close will close the file specified by handle, and will return a 0 if successful and a -
1 if not successful. The handle itself is not affected by close unless the return value
of close is assigned to it.

If f1 is a file handle and it contains the value 7, then after:

close

c

call close(f1);

the file will be closed but f1 will still have the value 7. The best procedure is to do the
following:

f1 = close(f1);

This will set f1 to 0 upon a successful close.

It is important to set unused file handles to zero because both open and create
check the value that is in a file handle before they proceed with the process of opening
a file. During open or create, if the value that is in the file handle matches that of
an already open file, the process will be aborted and a File already open error message
will be given. This gives you some protection against opening a second file with the
same handle as a currently open file. If this happened, you would no longer be able to
access the first file.

An advantage of the close function is that it returns a result which can be tested to
see if there were problems in closing a file. The most common reason for having a
problem in closing a file is that the disk on which the file is located is no longer in the
disk drive--or the handle was invalid. In both of these cases, close will return a -1.

Files are not automatically closed when a program terminates. This allows users to run
a program that opens files, and then access the files from interactive mode after the
program has been run. Files are automatically closed when GAUSS exits to the oper-
ating system or when a program is terminated with the end statement. stop will ter-
minate a program but not close files.

As a rule it is good practice to make end the last statement in a program, unless fur-
ther access to the open files is desired from interactive mode. You should close files
as soon as you are done writing to them to protect against data loss in the case of abnor-
mal termination of the program due to a power or equipment failure.

35-284

close

c

35-285

The danger in not closing files is that anything written to the files may be lost. The disk
directory will not reflect changes in the size of a file until the file is closed and sys-
tem buffers may not be flushed.

Example

new;
cls;

// Create 'mydata' matrix
mydata = seqa(1,1,3);

// Using saved function to save mydata matrix into
'mydata.dat' file
saved(mydata,"mydata.dat","x");

// Set a random seed
rndseed 855;

// Open 'mydata.dat' file
open f1 = mydata for append;

// Create an appended data set 'x'
x = rndu(3,1);

y = writer(f1,x);
f1 = close(f1);

data_new = loadd("mydata.dat");

print "mydata = " mydata;
print "x = " x;
print "data_new = " data_new;

After running above code,

close

c

1.0000000
mydata =

1.0000000
2.0000000
3.0000000

x =
0.33589398
0.62804541
0.017829664

data_new =
1.0000000
2.0000000
3.0000000
0.33589398
0.62804541
0.017829664

The first 1 means the "mydata.dat" file is closed.

See Also

closeall

closeall

Purpose

Closes all currently open GAUSS files.

Format

closeall;
closeall list_of_handles;

35-286

closeall

c

35-287

Remarks

list_of_handles is a comma-delimited list of file handles.

closeall with no specified list of handles will close all files. The file handles will
not be affected. The main advantage of using closeall is ease of use; the file
handles do not have to be specified, and one statement will close all files.

When a list of handles follows closeall, all files are closed and the file handles lis-
ted are set to scalar 0. This is safer than closeall without a list of handles because
the handles are cleared.

It is important to set unused file handles to zero because both open and create
check the value that is in a file handle before they proceed with the process of opening
a file. During open or create, if the value that is in the file handle matches that of
an already open file, the process will be aborted and a File already open error message
will be given. This gives you some protection against opening a second file with the
same handle as a currently open file. If this happened, you would no longer be able to
access the first file.

Files are not automatically closed when a program terminates. This allows users to run
a program that opens files, and then access the files from interactive mode after the
program has been run. Files are automatically closed when GAUSS exits to the oper-
ating system or when a program is terminated with the end statement. stop will ter-
minate a program but not close files.

As a rule it is good practice to make end the last statement in a program, unless fur-
ther access to the open files is desired from interactive mode. You should close files
as soon as you are done writing to them to protect against data loss in the case of abnor-
mal termination of the program due to a power or equipment failure.

The danger in not closing files is that anything written to the files may be lost. The disk
directory will not reflect changes in the size of a file until the file is closed and system
buffers may not be flushed.

closeall

c

Example

new;
cls;

// Create 'mydata' matrix
mydata = seqa(1,1,3);

// Using saved function to save mydata matrix into
'mydata.dat' file
saved(mydata,"mydata.dat","x");
open f1 = dat1 for read;
open f2 = dat1 for update;
x = readr(f1,rowsf(f1));
x = sqrt(x);
call writer(f2,x);
closeall f1,f2;

// Check the new data file
mydata_new = loadd("mydata.dat");
print "mydata = " mydata;
print "x = " x;
print "mydata_new = " mydata_new;

After running the above code,

1.0000000
mydata =

1.0000000
2.0000000
3.0000000

x =
1.0000000
1.4142136

35-288

closeall

c

35-289

1.7320508
mydata_new =

1.0000000
1.4142136
1.7320508

The first 1 means the "mydata.dat" file is closed.

See Also

close, open

cls

Purpose

Clears the program input/output window.

Format

cls;

Remarks

This command clears the window and locates the cursor at the upper left hand corner
of the window. It is sometimes useful to put a cls statement at the beginning of a pro-
gram that prints a report to the screen so that you have fewer lines of data to look at.

See Also

locate

cls

c

code

Purpose

Allows a new variable to be created (coded) with different values depending upon
which one of a set of logical expressions is true.

Format

y = code(logical, new_vals);

Input

logical NxK matrix of 1's and 0's. Each column of this matrix
is created by a logical expression using ''dot''
conditional and boolean operators. Each of these
expressions should return a column vector result. The
columns are horizontally concatenated to produce
logical. If more than one of these vectors contains a
1 in any given row, the code function will terminate
with an error message.

new_vals (K+1)x1 vector containing the values to be assigned to
the new variable.

Output

y Nx1 vector containing the new values.

35-290

code

c

35-291

Example

Example 1

Suppose we have a vector of blood pressure data that we want to separate into two
classes. Class 1 will contain the observations with a blood pressure value below 120.
The others will belong to class 2.

//Blood pressure data
x = { 91,

121,
99,

135,
110,
155 };

//Values for the classes
new_val = { 1,

2 };

//Create a vector containing a 1 for every element
//which is less than 120, or a 0 otherwise
logical = x .< 120;

//Create a new vector which contains the class
//assignment for each element in 'x'
x_class = code(logical, new_val);

After the code above:

x = 91 logical = 1 x_class = 1
121 0 2
99 1 1

135 0 2
110 1 1
155 0 2

code

c

Example 2

Continuing with the blood pressure example from above, we will now create a new cat-
egorical variable with 3 levels. Level 1 will contain observations less than or equal to
100. Level 2 will contain observations greater than 100 and less than or equal to 120.
Level 3 will contain observations greater than 120.

//Blood pressure data
x = { 91,

121,
99,

135,
110,
155 };

//Values for the classes
new_val = { 1,

2,
3 };

//Create a vector containing a 1 for every element
//which is 100 or less, or a 0 otherwise
logical_1 = x .<= 100;

//Create a vector containing a 1 for every element
//which is between 100 and 120, or a 0 otherwise
logical_2 = x .> 100 .and x .<= 120;

//Form a 2 column logical vector using
//horizontal concatenation
logical = logical_1 ~ logical_2;

//Create a new vector which contains the class

35-292

code

c

35-293

//assignment for each element in 'x'
x_class = code(logical, new_val);

After the code above:

x = 91 logical = 1 0 x_class = 1
121 0 0 3
99 1 0 1

135 0 0 3
110 0 1 2
155 0 0 3

Remarks

For every row in logical, if a 1 is in the first column, the first element of new_
vals is used. If a 1 is in the second column, the second element of new_vals is
used, and so on. If there are only zeros in the row, the last element of new_vals is
used. This is the default value.

If there is more than one 1 in any row of logical, the function will terminate with
an error message.

Source

datatran.src

See Also

recode, reclassifyCuts, reclassify, substute, rescale, dummy

code (dataloop)

Purpose

Creates new variables with different values based on a set of logical expressions.

code (dataloop)

c

Format

code [[#]] [[$]] var [[default defval]] with
val_1 for expression_1,
val_2 for expression_2,

.

.

.
val_n for expression_n;

Input

var literal, the new variable name.
defval scalar, the default value if none of the expressions are

TRUE.
val scalar, value to be used if corresponding expression is

TRUE.
expression logical scalar-returning expression that returns nonzero

TRUE or zero FALSE.

Remarks

If '$' is specified, the new variable will be considered a character variable. If '#' or
nothing is specified, the new variable will be considered numeric.

The logical expressions must be mutually exclusive, i.e., only one may return TRUE
for a given row (observation).

Any variables referenced must already exist, either as elements of the source data set,
as externs, or as the result of a previous make, vector, or code statement.

If no default value is specified, 999 is used.

35-294

code (dataloop)

c

35-295

Example

code agecat default 5 with
1 for age < 21,
2 for age >= 21 and age < 35,
3 for age >= 35 and age < 50,
4 for age >= 50 and age < 65;

code $ sex with
"MALE" for gender == 1,
"FEMALE" for gender == 0;

See Also

recode (dataloop)

cols

Purpose

Returns the number of columns in a matrix.

Format

p = cols(x);

Input

x NxK matrix or sparse matrix.

Output

p number of columns in x.

cols

c

Remarks

Use getorders to return both the number of rows and columns in one call. If x is an
empty matrix, rows(x) and cols(x) both return 0.

Example

//Create a 100x3 matrix of uniform random numbers
x = rndu(100,3);

//Find out how many columns are in 'x'
p = cols(x);

After the code above:

p = 3

See Also

rows, colsf, getorders, show

colsf

Purpose

Returns the number of columns in a GAUSS data (.dat) file or GAUSS matrix
(.fmt) file.

Format

yf = colsf(fh);

Input

fh file handle of an open file.

35-296

colsf

c

35-297

Output

yf number of columns in the file that has the handle fh.

Remarks

In order to call colsf on a file, the file must be open.

Example

//Create a file with 10 columns
create fp = myfile with x,10,4;

//Calculate the number of rows of the file created above
nCols = colsf(fp);

The result will be

nCols = 10

See Also

rowsf, cols, show

combinate

Purpose

Computes combinations of N things taken K at a time.

Format

y = combinate(N, K);

combinate

c

Input

N scalar.
K scalar.

Output

y MxK matrix, where M is the number of combinations
of N things taken K at a time.

Remarks

"Things" are represented by a sequence of integers from 1 to N, and the integers in
each row of y are the combinations of those integers taken K at a time.

Example

//Calculate all combinations of 4 items chosen 2 at a time
n = 4;
k = 2;
y = combinate(n,k);

print y;

The code above will create the following output:

1.0000 2.0000
1.0000 3.0000
1.0000 4.0000
2.0000 3.0000
2.0000 4.0000
3.0000 4.0000

35-298

combinate

c

35-299

See Also

combinated, numCombinations

combinated

Purpose

Writes combinations of N things taken K at a time to a GAUSS data set.

Format

ret = combinated(fname, vnames, N, K);

Input

fname string, file name.
vname 1x1 or Kx1 string array, names of columns in data set.

If 1x1 string, names will have column number
appended. If null string, names will be X1, X2, ...

N scalar.
K scalar.

Output

ret scalar, if data set was successfully written, ret =
number of rows written to data set. Otherwise, one of the
following:
 0 file already exists.
-1 data set couldn't be created.
-n the (n-1)th write to the data set failed.

combinated

c

Remarks

The rows of the data set in fname contain sequences of the integers from 1 to N in
combinations taken K at a time.

Example

//Note: The '$|' operator vertically concatenates strings
vnames = "Jim"$|"Harry"$|"Susan"$|"Wendy";

//Create a dataset file named 'couples', containing all
//combinations of the names in 'vnames' taken 2 at a time
k = 2;
m = combinated("couples","Spouse 1"$|"Spouse 2", rows
(vnames),k);

print m "rows were written to the dataset";

After the above code,

6.0000 rows were written to the dataset

Continuing from the code above:

//Open the file written above
open f0 = "couples";

//Read in m=6 rows of the dataset into 'y'
y = readr(f0,m);
print "y = " y;

//Get the variable names from the dataset and assign them
//to 'names'
names = getnamef(f0);
f0=close(f0);
print $names ;

35-300

combinated

c

35-301

for i(1, rows(y),1);
print vnames[y[i,.]]';

endfor;

will produce the following output:

y =
1.0000000 2.0000000
1.0000000 3.0000000
1.0000000 4.0000000
2.0000000 3.0000000
2.0000000 4.0000000
3.0000000 4.0000000

Spouse 1 Spouse 2
Jim Harry
Jim Susan
Jim Wendy

Harry Susan
Harry Wendy
Susan Wendy

The first row of the print output 'Jim Harry' is the first and second element of
vnames, because the first row of y is equal to '1 2'. The fourth row of the print out-
put is 'Harry Susan', because the fourth row of y is '2 3' and 'Harry' is the second ele-
ment of vnames while 'Susan' is the third element.

See Also

combinate, numCombinations

combinated

c

comlog

Purpose

Controls logging of interactive mode commands to a disk file.

Format

comlog [[file=filename]] [[on|off|reset]];

Input

filename literal or ^string.

Remarks

comlog on turns on command logging to the current file. If the file already exists, sub-
sequent commands will be appended.

comlog off closes the log file and turns off command logging.

comlog reset turns on command logging to the current log file, resetting the log file
by deleting any previous commands.

Interactive mode statements are always logged into the file specified in the log_
file configuration variable, regardless of the state of comlog.

The command comlogfile= filename selects the file but does not turn on log-
ging.

The command comlog off will turn off logging. The filename will remain the same.
A subsequent comlog on will cause logging to resume. A subsequent comlog reset
will cause the existing contents of the log file to be destroyed and a new file created.

The command comlog by itself will cause the name and status of the current log file
to be printed in the window.

35-302

comlog

c

35-303

compile

Purpose

Compiles a source file to a compiled code file. See also COMPILER, CHAPTER
1.

Format

compile source fname;

Input

source literal or ^string, the name of the file to be compiled.
fname literal or ^string, optional, the name of the file to be

created. If not given, the file will have the same
filename and path as source. It will have a .gcg
extension.

Remarks

l The source file will be searched for in the src_path if the full path is not
specified and it is not present in the current directory.

l The source file is a regular text file containing a GAUSS program. There can
be references to global symbols, Run-Time Library references, etc.

l If there are library statements in source, they will be used during the
compilation to locate various procedures and symbols used in the program.
Since all of these library references are resolved at compile time, the
library statements are not transferred to the compiled file. The compiled file
can be run without activating any libraries.

l If you do not want extraneous stuff saved in the compiled image, put a new at

compile

c

the top of the source file or execute a new in interactive mode before
compiling.

l The program saved in the compiled file can be run with the run command. If
no extension is given, the run command will look for a file with the correct
extension for the version of GAUSS. The src_path will be used to locate the
file if the full path name is not given and it is not located on the current
directory.

l When the compiled file is run, all previous symbols and procedures are deleted
before the program is loaded. It is therefore unnecessary to execute a new
before run'ning a compiled file.

l If you want line number records in the compiled file you can put a #lineson
statement in the source file or turn line tracking on from the main GAUSS
menu, Tools->Preferences->Advanced.

l Don't try to include compiled files with #include.

l GAUSS compiled files are platform and bit-size specific. For example, a file
compiled with GAUSS for Windows 64-bit will not run under GAUSS for
Windows 32-bit or on Linux 64-bit

Example

compile qxy.e;

In this example, the src_path would be searched for qxy.e, which would be com-
piled to a file called qxy.gcg on the same subdirectory qxy.e was found.

compile qxy.e xy;

In this example, the src_path would be searched for qxy.e which would be com-
piled to a file called xy.gcg on the current subdirectory.

See Also

run, use, saveall

35-304

compile

c

35-305

complex

Purpose

Converts a pair of real matrices to a complex matrix.

Format

z = complex(xr, xi);

Input

xr NxK real matrix, the real elements of z.
xi NxK real matrix or scalar, the imaginary elements of

z.

Output

z NxK complex matrix.

Example

x = { 4 6,
9 8 };

y = { 3 5,
1 7 };

t = complex(x,y);

After the code above, t will be equal to:

complex

c

4 + 3i 6 + 5i
9 + 1i 8 + 7i

See Also

imag, real

con

Purpose

Requests input from the keyboard (console), and returns it in a matrix.

Format

x = con(r, c);

Input

r scalar, row dimension of matrix.
c scalar, column dimension of matrix.

Output

x r x c matrix.

Remarks

con gets input from the active window. GAUSS will not ''see'' any input until you
press ENTER, so follow each entry with an ENTER.

r and c may be any scalar-valued expressions. Nonintegers will be truncated to an
integer.

35-306

con

c

35-307

If r and c are both set to 1, con will cause a question mark to appear in the window,
indicating that it is waiting for a scalar input.

Otherwise, con will cause the following prompt to appear in the window:

- [1,1]

indicating that it is waiting for the [1,1] element of the matrix to be inputted. The -
means that con will move horizontally through the matrix as you input the matrix ele-
ments. To change this or other options, or to move to another part of the matrix, use the
following commands:

u up one row U first
row

d down one row D last
row

l left one column L first
column

r right one column R last
column

t first element
b last element
g #, # goto element
g # goto element of vector

h move horizontally,
default

v move vertically, default
exttt\ move diagonally, default
s show size of matrix

con

c

n display element as
numeric, default

c display element as
character

e exp(1)
p pi
. missing value

? show help screen
x exit

If the desired matrix is 1xN or Nx1, then con will automatically exit after the last ele-
ment has been entered, allowing you to input the vector quickly.

If the desired matrix is NxK, you will need to type 'x' to exit when you have finished
entering the matrix data. If you exit before all elements have been entered, unspecified
elements will be zeroed out.

Use a leading single quote for character input.

Example

n = con(1,1);
print rndn(n,n);

If you enter 2 at the con generated prompt:

? 2

the code above will return a 2x2 random matrix, similar to:

-1.2505596 1.6322417
-1.0894098 0.74763307

35-308

con

c

35-309

In this example, the con function is used to obtain the size of a square matrix of
Normal random variables which is to be printed out.

See Also

cons, let, load

cond

Purpose

Computes the condition number of a matrix using the singular value decom-
position.

Format

c = cond(x);

Input

x NxK matrix.

Output

c scalar, an estimate of the condition number of x. This
equals the ratio of the largest singular value to the
smallest. If the smallest singular value is zero or not all
of the singular values can be computed, the return value
is 10300.

cond

c

Example

x = { 4 2 6,
8 5 7,
3 8 9 };

y = cond(x);

will assign y to equal:

y = 9.8436943

Source

svd.src

conj

Purpose

Returns the complex conjugate of a matrix.

Format

y = conj(x);

Input

x NxK matrix.

Output

y NxK matrix, the complex conjugate of x.

35-310

conj

c

35-311

Remarks

Compare conj with the transpose (') operator.

Example

x = { 1+9i 2,
4+4i 5i,

7i 8-2i };
y = conj(x);

1 + 9i 2 1 - 9i 2
x = 4 + 4i 0 + 5i y = 4 - 4i 0 - 5i

0 + 7i 8 - 2i 0 - 7i 8 + 2i

cons

Purpose

Retrieves a character string from the keyboard.

Format

x = cons();

Output

x string, the characters entered from the keyboard

Remarks

x is assigned the value of a character string typed in at the keyboard. The program will
pause to accept keyboard input. The maximum length of the string that can be entered

cons

c

is 254 characters. The program will resume execution when the ENTER key is
pressed.

Example

x = cons();

At the cursor enter:

probability

Now x will be equal to:

x = "probability";

See Also

con

ConScore

Purpose

Compute local score statistic and its probability for hypotheses involving para-
meters under constraints

Format

{ SL, SLprob } = ConScore(H, G, grad, a, b, c, d, bounds,
psi);

Input

H KxK matrix, Hessian of loglikelihood with respect to

35-312

ConScore

c

35-313

parameters.
G KxK matrix, cross-product matrix of the first

derivatives by observation. If not available set to H.
grad Kx1 vector, gradient of loglikelihood with respect to

parameters.
a MxK matrix, linear equality constraint coefficients.
b Mx1 vector, linear equality constraint constants.

These arguments specify the linear equality constraints of
the following type:

a * X = b

where X is the Kx1 parameter vector.
c MxK matrix, linear inequality constraint coefficients.
d Mx1 vector, linear inequality constraint constants.

These arguments specify the linear inequality constraints
of the following type:

c * X >= d

where X is the Kx1 parameter vector.
bounds Kx2 matrix, bounds on parameters. The first column

contains the lower bounds, and the second column the
upper bounds.

psi indices of the set of parameters in the hypothesis.

Output

SL scalar, local score statistic of hypothesis.
SLprob scalar, probability of SL.

ConScore

c

Remarks

ConScore computes the local score statistic for the hypothesis H(Θ) = 0 vs. H(Θ) ≥
0, where Θ is the vector of estimated parameters, and H() is a constraint function of
the parameters.

First, the model with H(Θ) = 0 is estimated, and the Hessian and optionally the cross-
product of the derivatives is computed. Also, the gradient vector is computed.

Next, the constraint arguments are set to H(Θ) ≥ 0.

Example

This example is from Silvapulle and Sen, Constrained Statistical Inference, page 181-
3. It computes the local score statistic and probability for an ARCH model. It tests the
null hypothesis of no arch effects against the alternative of arch effects subject to their
being constrained to be positive.

The Hessian, H, cross-product matrix, G, and the gradient vector, grad, are generated
by an estimation using sqpSolvemt where the model is an ARCH model with the
arch parameters constrained to be zero.

#include sqpsolvemt.sdf
/* data */
struct DS d0;
d0 = reshape(dsCreate,2,1);

load z0[] = aoi.asc;
z = packr(lagn(251*ln(trimr(z0,1,0)./trimr
(z0,0,1)),0|1|2|3|4));
d0[1].dataMatrix = z[.,1];
d0[2].dataMatrix = z[.,2:5];

/* control structure */
struct sqpsolvemtControl c0;
c0 = sqpSolveMTcontrolCreate;

35-314

ConScore

c

35-315

/* constraints setting arch parameter equal
to zero for H(theta) = 0 */

c0.A = zeros(3,6) ~ eye(3);
c0.B = zeros(3,1);

c0.covType = 2; /* causes cross-product of
Jacobian to be computed which
is needed for ConScore */

struct PV p0;
p0 = pvPack(pvCreate,.08999, "constant");
p0 = pvPack(p0,.25167|-.12599|.09164|.07517,

"phi");
p0 = pvPack(p0,3.22713, "omega");
p0 = pvPack(p0,0|0|0, "arch");

struct sqpsolvemtOut out0;
out0 = sqpsolvemt(&lpr,p0,d0,c0);

/* set up constraints for H(theta) >= 0 */
bounds = { -1e256 1e256,

-1e256 1e256,
-1e256 1e256,
-1e256 1e256,
-1e256 1e256,
-1e256 1e256,

0 1e256,
0 1e256,
0 1e256 };

H = out0.hessian;
G = out0.xproduct;
// minus because -logl in log-likelihood

ConScore

c

grad = -out0.gradient;

psi = { 7, 8, 9 };

{ SL, SLprob } = ConScore(H,G,grad,0,0,0,0,bounds,psi);

will assign the variables SL and SLprob as follows:

SL = 3.8605086

SLprob = 0.10410000

Source

hypotest.src

continue

Purpose

Jumps to the top of a do or for loop.

Format

continue;

Example

rndseed 8989;
x = rndn(4,4);
//Loop through each row of 'x' using 'r' as the loop
//counter
for r(1, rows(x), 1);

35-316

continue

c

35-317

//Loop through each element in our current row
for c(1, cols(x), 1); /* continue jumps here */

//If we are on the diagonal skip the rest of the
//inner loop
if c == r;

continue;
endif;

//Set the non-diagonal elements to 0
x[r,c] = 0;

endfor;
endfor;

Before the loops, x looks like:

0.010555555 -0.045969063 0.12701699
1.6454828
1.2380373 0.53988699 1.1556776 -
0.53575797
0.14056238 0.11221419 0.91500922 -
2.2910169
1.4278412 -0.96476892 0.22852569 -
1.6014053

After the loops above, x looks like:

0.010555555 0.00000000 0.00000000
0.00000000
0.00000000 0.53988699 0.00000000
0.00000000
0.00000000 0.00000000 0.91500922
0.00000000
0.00000000 0.00000000 0.00000000 -
1.6014053

continue

c

Remarks

This command works just as in C.

contour

Purpose

Graphs a matrix of contour data. Note: This function is for the deprecated PQG
graphics.

Library

pgraph

Format

contour(x, y, z);

Input

x 1xK vector, the X axis data. K must be odd.
y Nx1 vector, the Y axis data. N must be odd.
z NxK matrix, the matrix of height data to be plotted.

Global Input

_plev Kx1 vector, user-defined contour levels for contour.
Default 0.

_pzclr Nx1 or Nx2 vector. This controls the Z level colors.
See surface for a complete description of how to set
this global.

35-318

contour

c

35-319

Remarks

A vector of evenly spaced contour levels will be generated automatically from the z
matrix data. Each contour level will be labeled. For unlabeled contours, use ztics.

To specify a vector of your own unequal contour levels, set the vector _plev before
calling contour.

To specify your own evenly spaced contour levels, see ztics.

Source

pcontour.src

See Also

surface

conv

Purpose

Computes the convolution of two vectors.

Format

c = conv(b, x, f, l);

Input

b Nx1 vector.
x Lx1 vector.
f scalar, the first convolution to compute.
l scalar, the last convolution to compute.

conv

c

Output

c Qx1 result, where: Q = (l - f + 1)

If f is 0, the first to the l'th convolutions are computed. If
l is 0, the f'th to the last convolutions are computed. If f
and l are both zero, all the convolutions are computed.

Remarks

If x and b are vectors of polynomial coefficients, this is the same as multiplying the
two polynomials.

See Also

polymult

convertsatostr

Purpose

Converts a 1x1 string array to a string.

Format

str = convertsatostr(sa);

Input

sa 1x1 string array.

Output

str string, sa converted to a string.

35-320

convertsatostr

c

35-321

See Also

convertstrtosa

convertstrtosa

Purpose

Converts a string to a 1x1 string array.

Format

sa = convertstrtosa(str);

Input

str string.

Output

sa 1x1 string array, str converted to a string array.

Example

str = "This is a string";
z = convertstrtosa(str);

You can check the types of your variables by viewing them on the GAUSS data page,
or by using the show command. If the code above was executed at startup, running the
show command would return:

24 bytes str STRING
16 char

convertstrtosa

c

40 bytes z STRING ARRAY
1,1

See Also

convertsatostr

corrm,corrvc,corrx

Purpose

Computes an unbiased estimate of a correlation matrix.

Format

cx = corrm(m);
cx = corrvc(vc);
cx = corrx(x);

Input

m KxK moment (x'x) matrix. A constant term MUST
have been the first variable when the moment matrix
was computed.

vc KxK variance-covariance matrix (of data or
parameters).

x NxK matrix of data.

Output

cx PxP correlation matrix. For corrm, P = K-1. For
corrvc and corrx, P = K.

35-322

corrm,corrvc,corrx

c

35-323

Example

rndseed 8989;
x1 = rndn(3,3);
x2 = ones(3,1)~x1;
print "x1 :" x1 ;
print "x2 :" x2;

After the above code, x1 and x2 look like:

x1 :
0.010555555 -0.045969063 0.12701699
1.6454828 1.2380373 0.53988699
1.1556776 -0.53575797 0.14056238

x2 :
1.0000000 0.010555555 -0.045969063

0.12701699
1.0000000 1.6454828 1.2380373

0.53988699
1.0000000 1.1556776 -0.53575797

0.14056238

Continuing from above code,

print "corrx(x1) :" corrx(x1);
print "corrm(x2'x2) :" corrm(x2'x2);
print "corrvc(varCovMS(x2'x2)):" corrvc(varCovMS(x2'x2));

After the above code,

corrx(x1) :
1.0000000 0.52196856 0.75039768

corrm,corrvc,corrx

c

0.52196856 1.0000000 0.95548228
0.75039768 0.95548228 1.0000000

corrm(x2'x2) :
1.0000000 0.52196856 0.75039768

0.52196856 1.0000000 0.95548228
0.75039768 0.95548228 1.0000000

corrvc(varCovMS(x2'x2)):
1.0000000 0.52196856 0.75039768

0.52196856 1.0000000 0.95548228
0.75039768 0.95548228 1.0000000

Remarks

The correlation matrix is the standardized version of the unbiased estimator of the pop-
ulation variance-covariance matrix. It is computed using the moment matrix of devi-
ations about the mean divided by the number of observations minus one N - 1. For
the observed correlation/covariance matrix which uses N rather than N - 1, see cor-
rms and corrxs.

Source

corr.src

See Also

momentd, corrms, corrxs,varCovX, varCovM

corrms,corrxs

Purpose

Computes the observed correlation matrix.

35-324

corrms,corrxs

c

35-325

Format

cx = corrms(m);
cx = corrxs(x);

Input

m KxK moment (x'x) matrix. A constant term MUST
have been the first variable when the moment matrix
was computed.

x NxK matrix of data.

Output

cx PxP correlation matrix. For corrms, P = K-1. For
corrxs, P = K.

Example

rndseed 8989;
x1 = rndn(3,3);
x2 = ones(3,1)~x1;
print "x1 :" x1 ;
print "x2 :" x2;

After the above code, x1 and x2 look like:

x1 :
0.010555555 -0.045969063 0.12701699
1.6454828 1.2380373 0.53988699
1.1556776 -0.53575797 0.14056238

x2 :

corrms,corrxs

c

1.0000000 0.010555555 -0.045969063
0.12701699

1.0000000 1.6454828 1.2380373
0.53988699

1.0000000 1.1556776 -0.53575797
0.14056238

Continuing from above code,

print "corrxs(x1) :" corrxs(x1) ;
print "corrms(x2'x2) :" corrms(x2'x2);

After the above code,

corrxs(x1) :
1.0000000 0.52196856 0.75039768

0.52196856 1.0000000 0.95548228
0.75039768 0.95548228 1.0000000

corrms(x2'x2) :
1.0000000 0.52196856 0.75039768

0.52196856 1.0000000 0.95548228
0.75039768 0.95548228 1.0000000

Remarks

The correlation matrix is the standardized version of the correlation/covariance matrix
computed from the input data, that is, it divides the sample size, N, rather than N - 1.
For an unbiased estimate correlation/covariance matrix which uses N - 1, use
corrm or corrx.

Source

corrs.src

35-326

corrms,corrxs

c

35-327

See Also

momentd, corrm, corrx,varCovX, varCovM

cos

Purpose

Returns the cosine of its argument.

Format

y = cos(x);

Input

x NxK matrix.

Output

y NxK matrix containing the cosines of the elements of
x.

Remarks

For real matrices, x should contain angles measured in radians.

To convert degrees to radians, multiply the degrees by π/180.

Example

//Create a sequence starting at 0 and increasing by pi/4
x = seqa(0, pi/4, 5);

cos

c

y = cos(x);

0.0000 1.0000
0.7854 0.7071

x = 1.5708 y = 0.0000
2.3562 -0.7071
3.1416 -1.0000

See Also

atan, atan2, pi

cosh

Purpose

Computes the hyperbolic cosine.

Format

y = cosh(x);

Input

x NxK matrix.

Output

y NxK matrix containing the hyperbolic cosines of the
elements of x.

35-328

cosh

c

35-329

Example

x = { -0.5, -0.25, 0, 0.25, 0.5, 1 };
x = x * pi;
y = cosh(x);

-1.5708 2.5092
-0.7854 1.3246

x = 0.0000 y = 1.0000
0.7854 1.3246
1.5708 2.5092
3.1416 11.5920

Source

trig.src

counts

Purpose

Counts the numbers of elements of a vector that fall into specified ranges.

Format

c = counts(x, v);

Input

x Nx1 vector containing the numbers to be counted.
v Px1 vector containing breakpoints specifying the ranges

within which counts are to be made. The vector v
MUST be sorted in ascending order.

counts

c

Output

c Px1 vector, the counts of the elements of x that fall into
the regions:

x <= v[1],
v[1] < x <= v[2],

.

.

.
v[p-1] < x <= v[p]

Remarks

If the maximum value of x is greater than the last element (the maximum value) of v,
the sum of the elements of the result, c, will be less than N, the total number of ele-
ments in x.

If

1
2
3
4 4

x = 5 v = 5
6 8
7
8
9

then

4
c = 1

3

35-330

counts

c

35-331

The first category can be a missing value if you need to count missings directly. Also
+∞ or -∞ are allowed as breakpoints. The missing value must be the first breakpoint if
it is included as a breakpoint and infinities must be in the proper location depending on
their sign. -∞ must be in the [2,1] element of the breakpoint vector if there is a missing
value as a category as well, otherwise it has to be in the [1,1] element. If +∞ is
included, it must be the last element of the breakpoint vector.

Example

x = { 1.5, 3, 5, 4, 1, 3 };
v = { 0, 2, 4 };
c = counts(x,v);

1.5
3 0 0

x = 2 v = 2 c = 2
4 4 3
1
3

countwts

Purpose

Returns a weighted count of the numbers of elements of a vector that fall into spe-
cified ranges.

Format

c = countwts(x, v, w);

countwts

c

Input

x Nx1 vector, the numbers to be counted.
v Px1 vector, the breakpoints specifying the ranges

within which counts are to be made. This MUST be
sorted in ascending order (lowest to highest).

w Nx1 vector, containing weights.

Output

c Px1 vector containing the weighted counts of the
elements of x that fall into the regions:

x < v[1],
v[1] ≤ x < v[2],

.

.

.
v[p-1] ≤ x < v[p]

That is, when x[i] falls into region j, the weight w[i] is
added to the jth counter.

Remarks

If any elements of x are greater than the last element of v, they will not be counted.

Missing values are not counted unless there is a missing in v. A missing value in v
MUST be the first element in v.

Example

x = { 1, 3, 2, 4, 1, 3 };

35-332

countwts

c

35-333

w = { .25, 1, .333, .1, .25, 1 };
v = { 0, 1, 2, 3, 4 };
c = countwts(x,v,w);

0.0000000
0.5000000

c = 0.3330000
2.0000000
0.1000000

create

Purpose

Creates and opens a GAUSS data set for subsequent writing.

Format

create [[vflag]] [[-w32]] [[complex]] fh = filename with
vnames, col, dtyp, vtyp;
create [[vflag]] [[-w32]] [[complex]] fh = filename using comfile;

Input

vflag literal, version flag.
-v89 obsoleted, use -v96.
-v92 obsoleted, use-v96.
-v96 supported on all platforms.
For details on the various versions, see FOREIGN
LANGUAGE INTERFACE, CHAPTER 1. The default
format can be specified in gauss.cfg by setting the
dat_fmt_version configuration variable. The

create

c

default, v96, should be used.
filename literal or ^string

filename is the name to be given to the file on the disk.
The name can include a path if the directory to be used is
not the current directory. This file will automatically be
given the extension .dat. If an extension is specified, the
.dat will be overridden. If the name of the file is to be
taken from a string variable, the name of the string must be
preceded by the ^ (caret) operator.

create... with...

vnames literal or ^string or ^character matrix.

vnames controls the names to be given to the columns of
the data file. If the names are to be taken from a string or
character matrix, the ^ (caret) operator must be placed
before the name of the string or character matrix. The
number of columns parameter, col, also has an effect on
the way the names will be created. See below and see the
examples for details on the ways names are assigned to a
data file.

col scalar expression.

col is a scalar expression containing the number of
columns in the data file. If col is 0, the number of
columns will be controlled by the contents of vnames. If
col is positive, the file will contain col columns and

the names to be given each column will be created as
necessary depending on the vnames parameter. See the
examples.

dtyp scalar expression.

dtyp is the precision used to store the data. This is a
scalar expression containing 2, 4, or 8, which is the number
of bytes per element.

35-334

create

c

35-335

2 signed integer
4 single precision
8 double precision

Data
Type Digits Range
integer 4 -32768 < X < 32768
single 6-7 8.43 x 10-

37
< |X| < 3.37 x

10+38

double 15-16 4.19 x 10-
307

< |X| < 1.67 x
10308

If the integer type is specified, numbers will be rounded
to the nearest integer as they are written to the data set.
If the data to be written to the file contains character
data, the precision must be 8 or the character
information will be lost.

vtyp matrix, types of variables.

The types of the variables in the data set. If rows
(vtyp)*cols(vtyp) < col, only the first element is
used. Otherwise nonzero elements indicate a numeric
variable and zero elements indicate character variables.

create... using...

comfile literal or ^string.

comfile is the name of a command file that contains the
information needed to create the file. The default extension
for the command file is .gcf, which can be overridden.

There are three possible commands in this file:

numvar n str;

create

c

outvar varlist;
outtyp dtyp;

numvar and outvar are alternate ways of specifying the
number and names of the variables in the data set to be
created.

When numvar is used, n is a constant which specifies
the number of variables (columns) in the data file and
str is a string literal specifying the prefix to be given to
all the variables. Thus:

numvar 10 xx;

says that there are 10 variables and that they are to be
named xx01 through xx10. The numeric part of the
names will be padded on the left with zeros as necessary
so the names will sort correctly:

xx1, ... xx9 1-9 names
xx01, ... xx10 10-99

names
xx001, ... xx100 100-999

names
xx0001, ... xx1000 1000-8100

names
If str is omitted, the variable prefix will be "X".

When outvar is used, varlist is a list of variable
names, separated by spaces or commas. For instance:

outvar x1, x2, zed;

specifies that there are to be 3 variables per row of the
data set, and that they are to be named X1, X2, ZED, in

35-336

create

c

35-337

that order.

outtyp specifies the precision. It can be a constant: 2, 4,
or 8, or it can be a literal: I, F, or D. For an explanation of
the available data types, see dtyp in create...
with... previously.

The outtyp statement does not have to be included. If it
is not, then all data will be stored in 4 bytes as single
precision floating point numbers.

Output

fh scalar.

fh is the file handle which will be used by most
commands to refer to the file within GAUSS. This file
handle is actually a scalar containing an integer value that
uniquely identifies each file. This value is assigned by
GAUSS when the create (or open) command is
executed.

Remarks

If the complex flag is included, the new data set will be initialized to store complex
number data. Complex data is stored a row at a time, with the real and imaginary
halves interleaved, element by element.

The -w32 flag is an optimization for Windows. It is ignored on all other platforms.
GAUSS 7.0 and later use Windows system file write commands that support 64-bit file
sizes. These commands are slower on Windows XP than the 32-bit file write com-
mands that were used in GAUSS 6.0 and earlier. If you include the -w32 flag, suc-
cessive writes to the file indicated by fh will use 32-bit Windows write commands,
which will be faster on Windows XP. Note, however, that the -w32 flag does not sup-
port 64-bit file sizes.

create

c

Example

let vnames = age sex educat wage occ;
create f1 = simdat with ^vnames,0,8;

obs = 0; nr = 1000;
do while obs < 10000;

data = rndn(nr,colsf(f1));
if writer(f1,data) /= nr;

print "Disk Full";
end;

endif;
obs = obs+nr;

endo;

closeall f1;

This example uses create... with... to create a double precision data file
called simdat.dat on the default drive with 5 columns. The writer command is
used to write 10000 rows of Normal random numbers into the file. The variables
(columns) will be named: AGE, SEX, EDUCAT, WAGE, OCC.

Here are some examples of the variable names that will result when using a character
vector of names in the argument to the create function.

vnames = { AGE PAY SEX JOB };
typ = { 1, 1, 0, 0 };
create fp = mydata with ^vnames,0,8,typ;

The names in the this example will be: AGE, PAY, SEX, JOB.

AGE and PAY are numeric variables, SEX and JOB are character variables.

create fp = mydata with ^vnames,3,2;

The names will be: AGE, PAY, SEX.

35-338

create

c

35-339

create fp = mydata with ^vnames,8,2;

The names will now be: AGE, PAY, SEX, JOB1, JOB2, JOB3, JOB4, JOB5.

If a literal is used for the vnames parameter, the number of columns should be expli-
citly given in the col parameter and the names will be created as follows:

create fp = mydata with var,4,2;

Giving the names: VAR1, VAR2, VAR3, VAR4.

The next example assumes a command file called comd.gcf containing the fol-
lowing lines, created using a text editor:

outvar age, pay, sex;
outtyp i;

Then the following program could be used to write 100 rows of random integers into a
file called smpl.dat in the subdirectory called /gauss/data:

filename = "/gauss/data/smpl";
create fh = ^filename using comd;
x = rndn(100,3)*10;
if writer(fh,x) /= rows(x);

print "Disk Full";
end;

endif;
closeall fh;

For platforms using the backslash as a path separator, remember that two backslashes
(''\\'') are required to enter one backslash inside of double quotes. This is because a
backslash is the escape character used to embed special characters in strings.

See Also

datacreate, datacreatecomplex, open, readr, writer, eof, close, output, iscplxf

create

c

crossprd

Purpose

Computes the cross-products (vector products) of sets of 3x1 vectors.

Format

z = crossprd(x, y);

Input

x 3xK matrix, each column is treated as a 3x1 vector.
y 3xK matrix, each column is treated as a 3x1 vector.

Output

z 3xK matrix, each column is the cross-product
(sometimes called vector product) of the corresponding
columns of x and y.

Remarks

The cross-product vector z is orthogonal to both x and y. sumc(x .* z) and sumc(y
.* z) will be Kx1 vectors, all of whose elements are 0 (except for rounding error).

Example

x = { 10 4,
11 13,

14 13 };
y = { 3 11,

5 12,

35-340

crossprd

c

35-341

7 9 };
z = crossprd(x,y);

After the above code,

7 -39
z = -28 107

17 -95

Source

crossprd.src

crout

Purpose

Computes the Crout decomposition of a square matrix without row pivoting, such
that: X = LU.

Format

y = crout(x);

Input

x NxN square nonsingular matrix.

Output

y NxN matrix containing the lower (L) and upper (U)
matrices of the Crout decomposition of x. The main
diagonal of y is the main diagonal of the lower matrix
L. The upper matrix has an implicit main diagonal of

crout

c

ones. Use lowmat and upmat1 to extract the L
and U matrices from y.

Remarks

Since it does not do row pivoting, it is intended primarily for teaching purposes. See
croutp for a decomposition with pivoting.

Example

X = { 1 2 -1,
2 3 -2,
1 -2 1 };

//Perform crout decomposition
y = crout(x);

//Extract lower triangle of 'y' and assign it to 'L'
L = lowmat(y);

//Extract upper triangle of 'y', fill the diagonal with
//ones and assign it to 'L'
U = upmat1(y);

After the code above:

1.0 2.0 -1.0 1.0 0.0 0.0 1.0 2.0 -1.0
y = 2.0 -1.0 0.0 L = 2.0 -1.0 0.0 U = 0.0 1.0 0.0

1.0 -4.0 2.0 1.0 -4.0 2.0 0.0 0.0 1.0

See Also

croutp, chol, lowmat, lowmat1, lu, upmat, upmat1

35-342

crout

c

35-343

croutp

Purpose

Computes the Crout decomposition of a square matrix with partial (row) pivoting.

Format

y = croutp(x);

Input

x NxN square nonsingular matrix.

Output

y (N+1)xN matrix containing the lower (L) and upper (U)
matrices of the Crout decomposition of a permuted x.
The N+1 row of the matrix y gives the row order of the
y matrix. The matrix must be reordered prior to
extracting the L and U matrices. Use lowmat and
upmat1 to extract the L and U matrices from the
reordered y matrix.

Example

This example illustrates a procedure for extracting L and U of the permuted x matrix.
It continues by sorting the result of LU to compare with the original matrix x.

X = { 1 2 -1,
2 3 -2,
1 -2 1 };

croutp

c

y = croutp(x);

If we view 'y', we will see:

1.0000 0.50000 0.28571
y = 2.0000 1.5000 -1.0000

1.0000 -3.5000 -0.57142
2.0000 3.0000 1.0000

//This bottom row is the permutation index vector
//Calculate how many rows in 'y'
r = rows(y);

//Extract the index row and transpose it into a column
//vector
index = y[r,.]';

Viewing 'indx' will reveal:

2
index = 3

1

//Rearrange the rows of 'y' based upon the index vector
z = y[index,.];

// obtain L and U of permuted matrix X
L = lowmat(z);
U = upmat1(z);

//Horizontally concatenate the index vector and the product
//of L*U then pass that result into the 'sortc' function
//which will sort this result based upon the first column
//(which is the index vector)

35-344

croutp

c

35-345

q = sortc(index~(L*U),1);

//Remove the index vector, which we added by way of
//horizontal concatenation in the statement just above
x2 = q[.,2:cols(q)];

Now at the end of this example, x2 is equal to x.

See Also

crout, chol, lowmat, lowmat1, upmat, upmat1

csrcol,csrlin

Purpose

Returns the position of the cursor.

Format

y = csrcol;
y = csrlin;

Output

y scalar, row or column value.

Remarks

y will contain the current column or row position of the cursor on the screen. The
upper left corner is (1,1).

csrcol returns the column position of the cursor. csrlin returns the row position.

csrcol,csrlin

c

The locate commmand allows the cursor to be positioned at a specific row and
column.

csrcol returns the cursor column with respect to the current output line, i.e., it will
return the same value whether the text is wrapped or not. csrlin returns the cursor
line with respect to the top line in the window.

Example

r = csrlin;
c = csrcol;

//Clear the program input/output window
cls;

//Re-position the cursor to its location before the program
//input/output window was cleared
locate r,c;

In this example the screen is cleared without affecting the cursor position.

See Also

cls, locate

csvReadM

Purpose

Reads data from CSV file into a GAUSS matrix.

35-346

csvReadM

c

35-347

Format

mat = csvReadM(file);
mat = csvReadM(file, row_range);
mat = csvReadM(file, row_range, col_range);
mat = csvReadM(file, row_range, col_range, delimiter);

Input

file string, name of CSV file.

row_range Optional input: scalar, or 2x1 matrix. The first element
of row_range will specify the first row of the file to
read. If there is a second element in row_range, it
will specify the last row to read from the file. If there is
no second element in row_range, GAUSS will read
to the end of the file. If row_range is not passed in,
all rows will be read from the file. Default = 1.

col_range Optional input: scalar, or 2x1 matrix. The first element
of col_range will specify the first column of the file
to read. If there is a second element in col_range, it
will specify the last column to read from the file. If
there is no second element in col_range, GAUSS
will read to the end of the file. If col_range is not
passed in, all columns will be read from the file. Default
= 1.

delimiter Optional input: string. The character used to separate
elements in the file. Examples include:

l space " "

csvReadM

c

l tab "\t"
l semi-colon ";"
l comma "," (Default)

Output

mat matrix, data read from the CSV file.

Examples

Example 1: Basic Example

Read all contents from the file housing.csv located in your GAUSS examples dir-
ectory.

//Get file name with full path
file = getGAUSSHome() $+ "examples/housing.csv";

//Read entire contents of 'housing.csv'
housing = csvReadM(file);

//Print the first 5 rows of all columns
print housing[1:5,.];

The code above will produce the following output. Notice that the first row contains all
missing values. This is because the first row of the file housing.csv contains a
header. csvReadM reads in textual data as missing values by default. You can easily
remove any rows that contain all missing values with the function packr (which
stands for "pack rows").

.
.

3104.00 4.00 2.00 0.00 279.90
2048.00

35-348

csvReadM

c

35-349

1173.00 2.00 1.00 0.00 146.50
912.00
3076.00 4.00 2.00 0.00 237.70
1654.00
1608.00 3.00 2.00 0.00 200.00
2068.00

Example 2: Skip the header

In the previous example, we read the header in as numeric data and got missing val-
ues. In this example, we will skip the first row to avoid reading the header as numeric
data.

//Create file name with full path
file = getGAUSSHome() $+ "examples/housing.csv";

//Row range will be from line 2 to the end of the file
//If no end to the range is specified, GAUSS will read to
the end of the file
row_range = 2;

//Load the data from row 2 to the end of the file into
'housing'
housing = csvReadM(file, row_range);

//Print the first 5 rows of all columns
print housing[1:5,.];

After the code above, housing should equal:

3104.00 4.00 2.00 0.00 279.90
2048.00
1173.00 2.00 1.00 0.00 146.50
912.00
3076.00 4.00 2.00 0.00 237.70

csvReadM

c

1654.00
1608.00 3.00 2.00 0.00 200.00
2068.00
1454.00 3.00 3.00 0.00 159.90
1477.00

Example 3: Read from a row range

//Create file name with full path
file = getGAUSSHome() $+ "examples/housing.csv";

//Row range will be from line 3 to line 5
row_range = { 3, 5 };

//Load the data from rows 3 to 5 of the file into 'housing'
housing = csvReadM(file, row_range);

//Print the entire contents of the variable 'housing'
print housing;

After the code above, housing should equal:

1173.00 2.00 1.00 0.00 146.50
912.00
3076.00 4.00 2.00 0.00 237.70
1654.00
1608.00 3.00 2.00 0.00 200.00
2068.00

Example 4: Read all rows of a range of columns

//Create file name with full path

35-350

csvReadM

c

35-351

file = getGAUSSHome() $+ "examples/housing.csv";

//Row range from the first line to the end of the file
row_range = 1;

//Read only columns 2 through 4
col_range = { 2, 4 };

//Load the data from columns 2 through 4 into 'x'
x = csvReadM(file, row_range, col_range);

Example 5: Read all rows of one specific column

//Create file name with full path
file = getGAUSSHome() $+ "examples/housing.csv";

//Row range from the first line to the end of the file
row_range = 1;

//Read only the 3rd column
col_range = { 3, 3 };

//Load the data from the 3rd column into 'x'
x = csvReadM(file, row_range, col_range);

Example 6: Read all rows and all cols, with specified delimiter

Enter 1 for the row_range and col_range if you want to read all contents of a
file, but need to specify the field delimiter.

x = csvReadM("myfile.csv", 1, 1, ";");

Example 7: Specify full path to file

Windows: Notice that double backslashes are needed inside of a string.

csvReadM

c

x = csvReadM("C:\\mydata\\myfile.csv");

Mac

x = csvReadM("/Users/MyUserName/myfile.csv");

Linux

x = csvReadM("/home/my_user/myfile.csv");

Remarks

The standard input stream (stdin) can be read with csvReadM by passing in __STDIN
as the filename input. Note that __STDIN should not be passed as a string, surrounded
by quotes. Correct usage is shown below:

x = csvReadM(__STDIN);

See Also

csvReadSA, xlsWrite, xlsWriteM, xlsWriteSA, xlsGetSheetCount, xlsGetSheetSize,
xlsGetSheetTypes, xlsMakeRange

csvReadSA

Purpose

Reads data from CSV file into a GAUSS string array.

Format

s = csvReadSA(file);
s = csvReadSA(file, row_range);
s = csvReadSA(file, row_range, col_range);
s = csvReadSA(file, row_range, col_range, delimiter);

35-352

csvReadSA

c

35-353

Input

file string, name of CSV file.

row_range Optional input: scalar, or 2x1 matrix. The first element
of row_range will specify the first row of the file to
read. If there is a second element in row_range, it
will specify the last row to read from the file. If there is
no second element in row_range, GAUSS will read
to the end of the file. If row_range is not passed in,
all rows will be read from the file. Default = 1.

col_range Optional input: scalar, or 2x1 matrix. The first element
of col_range will specify the first column of the file
to read. If there is a second element in col_range, it
will specify the last column to read from the file. If
there is no second element in col_range, GAUSS
will read to the end of the file. If col_range is not
passed in, all columns will be read from the file. Default
= 1.

delimiter Optional input: string. The character used to separate
elements in the file. Examples include:

l space " "
l tab "\t"
l semi-colon ";"
l comma "," (Default)

csvReadSA

c

Output

s string array, data read from the CSV file.

row_range Optional input: scalar, or 2x1 matrix. The first element
of row_range will specify the first row of the file to
read. If there is a second element in row_range, it
will specify the last row to read from the file. If there is
no second element in row_range, GAUSS will read
to the end of the file. If row_range is not passed in,
all rows will be read from the file. Default = 1.

col_range Optional input: scalar, or 2x1 matrix. The first element
of col_range will specify the first column of the file
to read. If there is a second element in col_range, it
will specify the last column to read from the file. If
there is no second element in col_range, GAUSS
will read to the end of the file. If col_range is not
passed in, all columns will be read from the file. Default
= 1.

delimiter Optional input: string. The character used to separate
elements in the file. Examples include:

l space "
l tab "\t"
l semi-colon ";"
l comma "," (Default)

35-354

csvReadSA

c

35-355

Examples

Example 1: Basic Example

Read all contents from the file myfile.csv located in your current GAUSS working
directory.

s = csvReadSA("myfile.csv");

Example 2: Read From a Row Range

//Row range will be from line 1 to line 25
row_range = { 1, 25 };

//Load the data from rows 1 to 25 into 's'
s = csvReadSA("myfile.csv", row_range);

Example 3: Read all rows from a range of columns

//Row range from the first line to the end of the file
row_range = 1;

//Read only columns 2 though 7
col_range = { 2, 7 };

//Load the data from columns 2 through 7 into 's'
s = csvReadSA("myfile.csv", row_range, col_range);

Example 4: Read all rows from one column

//Row range from the first line to the end of the file
row_range = 1;

//Read only column 4
col_range = { 4, 4 };

csvReadSA

c

//Load the data from column 4 into 's'
s = csvReadSA("myfile.csv", row_range, col_range);

Example 5: Specify full path to file

Windows: Notice that double backslashes are needed inside of a string.

s = csvReadSA("C:\\mydata\\myfile.csv");

Mac

s = csvReadSA("/Users/MyUserName/myfile.csv");

Linux

s = csvReadSA("/home/my_user/myfile.csv");

Remarks

The standard input stream (stdin) can be read with csvReadSA by passing in __
STDIN as the filename input. Note that __STDIN should not be passed in as a string.
Corrrect usage is shown below:

x = csvReadSA(__STDIN);

See Also

csvReadM, xlsReadM, xlsWrite, xlsReadSA

csvWriteM

Purpose

Write the contents of a GAUSS matrix to a CSV file.

35-356

csvWriteM

c

35-357

Format

ret = csvWriteM(data, filename);
ret = csvWriteM(data, filename, sep);
ret = csvWriteM(data, filename, sep, prec);
ret = csvWriteM(data, filename, sep, prec, append);
ret = csvWriteM(data, filename, sep, prec, append, newline);

Input

data Matrix, containing the data to be written
filename string, valid filespec, name of CSV file to write.
sep optional string, the character to separate the data.

Default = ",".
prec optional scalar, the number of digits of precision to

retain. Default = 15.
append optional scalar, 0 to overwrite entire file or 1 to append

to file. Default = 0.
newline optional string specifying the character(s) to end a line

in the file. Default = "\n".

Output

ret Scalar return code. 0 for success, or non-zero if an error
occurred.

Examples

Example 1: Basic Example

Write the contents from a matrix to a new file named mydata.csv located in your
current working directory.

csvWriteM

c

//Create a simple matrix
x = { 1 2,

3 4,
5 6 };

//Write the contents of 'x' to a file named 'myfile.csv'
ret = csvWriteM(x, "myfile.csv");

Example 2: Create a tab separated text file

//Create a simple matrix
x = { 1 2,

3 4,
5 6 };

//Specify the optional separator input to be a tab char-
acter
sep = "\t";

//Write the data to the file 'mytabdata.csv'
ret = csvWriteM(x, "mytabdata.csv", sep);

Example 3: Specify the precision with which to write the data

//Create a simple matrix
x = { 1.102 2.001,

3.041 4.232,
5.113 6.523 };

//Specify the optional separator input to be a commar
sep = ",";

//Specify the number of significant digits to print

35-358

csvWriteM

c

35-359

prec = 2;

//Write the data to the file 'mydata.csv'
ret = csvWriteM(x, "mydata.csv", sep, prec);

Example 4: Append to an existing file

//Create a simple matrix
x = { 9.008 1.005,

1.445 4.247,
2.913 1.020 };

//1 for append
append_flag = 1;

//Append the data to the file 'mydata.csv'
ret = csvWriteM(x, "mydata.csv", ",", 2, append_flag);

Example 5: Specify Windows style CRLF line endings

//Create a simple matrix
x = { 9.008 1.005,

1.445 4.247,
2.913 1.020 };

//'\c\r' indicates carriage return followed by a line feed
line_feed= "\c\r";

//Append the data to the file 'mydata.csv'
ret = csvWriteM(x, "mydata.csv", ",", 2, 0, line_feed);

Example 6: Specify full path to file

Windows: Notice that double backslashes are needed inside of a string.

csvWriteM

c

ret = csvWriteM(x, "C:\\mydata\\myfile.csv");

Mac

ret = csvWriteM(x, "/Users/MyUserName/myfile.csv");

Linux

ret = csvWriteM(x, "/home/my_user/myfile.csv");

Remarks

The standard output and standard error streams (stdin, stderr) can be written to with
csvWriteM by passing in the variable __STDOUT, or __STDERR as the filename
input. Note that __STDOUT, or __STDERR should not be passed in as a string. The
following example shows correct usage:

x = csvWriteM(__STDOUT);

See Also

csvReadSA, xlsWrite, xlsWriteM, xlsWriteSA, xlsGetSheetCount, xlsGetSheetSize,
xlsGetSheetTypes, xlsMakeRange

cumprodc

Purpose

Computes the cumulative products of the columns of a matrix.

Format

y = cumprodc(x);

35-360

cumprodc

c

35-361

Input

x NxK matrix.

Output

y NxK matrix containing the cumulative products of the
columns of x.

Remarks

This is based on the recursive series recsercp. recsercp could be called directly
as follows:

recsercp(x, zeros(1,cols(x)));

to accomplish the same thing.

Example

x = { 1 -3,
2 2,
3 -1 };

y = cumprodc(x);

Now if you view y, you will see:

1.000 -3.000
y = 2.000 -6.000

6.000 6.000

Source

cumprodc.src

cumprodc

c

See Also

cumsumc, recsercp, recserar

cumsumc

Purpose

Computes the cumulative sums of the columns of a matrix.

Format

y = cumsumc(x);

Input

x NxK matrix.

Output

y NxK matrix containing the cumulative sums of the
columns of x.

Remarks

This is based on the recursive series function recserar. recserar could be called
directly as follows:

recserar(x, x[1,.],ones(1,cols(x)))

to accomplish the same thing.

35-362

cumsumc

c

35-363

Example

x = { 1 -3,
2 2,
3 -1 };

y = cumsumc(x);

Now if you view y, you will see:

1.000 -3.000
y = 3.000 -1.000

6.000 -2.000

Source

cumsumc.src

See Also

cumprodc, recsercp, recserar

curve

Purpose

Computes a one-dimensional smoothing curve.

Format

{ u, v } = curve(x, y, d, s, sigma, G);

curve

c

Input

x Kx1 vector, x-abscissae (X-axis values).
y Kx1 vector, y-ordinates (Y-axis values).
d Kx1 vector or scalar, observation weights.
s scalar, smoothing parameter. If s = 0, curve performs

an interpolation. If d contains standard deviation
estimates, a reasonable value for s is K.

sigma scalar, tension factor.
G scalar, grid size factor.

Output

u (K*G)x1 vector, x-abscissae, regularly spaced.
v (K*G)x1 vector, y-ordinates, regularly spaced.

Remarks

sigma contains the tension factor. This value indicates the curviness desired. If
sigma is nearly zero (e.g. .001), the resulting curve is approximately the tensor
product of cubic curves. If sigma is large, (e.g. 50.0) the resulting curve is approx-
imately bi-linear. If sigma equals zero, tensor products of cubic curves result. A
standard value for sigma is approximately 1.

G is the grid size factor. It determines the fineness of the output grid. For G = 1, the
input and output vectors will be the same size. For G = 2, the output grid is twice as
fine as the input grid, i.e., u and v will have twice as many rows as x and y.

Source

spline.src

35-364

curve

c

35-365

cvtos

Purpose

Converts a character vector to a string.

Format

s = cvtos(v);

Input

v Nx1 character vector, to be converted to a string.

Output

s string, contains the contents of v.

Remarks

cvtos in effect appends the elements of v together into a single string.

cvtos was written to operate in conjunction with stocv. If you pass it a character
vector that does not conform to the output of stocv, you may get unexpected results.
For example, cvtos does NOT look for 0 terminating bytes in the elements of v; it
assumes every element except the last is 8 characters long. If this is not true, there
will be 0's in the middle of s.

If the last element of v does not have a terminating 0 byte, cvtos supplies one for
s.

Example

let v = { "Now is t" "he time " "for all " "good men" };

cvtos

c

s = cvtos(v);

Now the variable s is a string with the following contents.

s = "Now is the time for all good men"

See Also

stocv, vget, vlist, vput, vread

cvtosa

Purpose

Converts an NxK character vector to an NxK string array.

Format

sa = cvtosa(cv);

Input

cv NxK character vector, to be converted to a string array.

Output

sa NxK string array, contains the contents of cv.

Example

cv = { MEAN MEDIAN MODE, MAX MIN QUARTILE };
sa = cvtosa(cv);
print sa;

35-366

cvtosa

c

35-367

Now the variable sa is a string array with the same contents as cv as we can see
from the output below:.

MEAN MEDIAN MODE
MAX MIN QUARTILE

See Also

stocv, vget, vlist, vput, vread

cvtosa

c

d

datacreate

Purpose

Creates a real data set.

Format

fh = datacreate(filename, vnames, col, dtyp, vtyp);

Input

filename string, name of data file.
vnames string or Nx1 string array, names of variables.
col scalar, number of variables.
dtyp scalar, data precision, one of the following:

2 2-byte, signed integer.
4 4-byte, single precision.
8 8-byte, double precision.

vtyp scalar or Nx1 vector, types of variables, may contain
one or both of the following:
0 character variable.
1 numeric variable.

Output

fh scalar, file handle.

35-368

datacreate

d

35-369

Remarks

The file handle returned by datacreate is a scalar containing a positive integer
value that uniquely identifies each file. This value is assigned by GAUSS when the
create, datacreate, datacreatecomplex, open or dataopen commands
are executed. The file handle is used to reference the file in the commands readr
and writer. If datacreate fails, it returns a -1.

If filename does not include a path, then the file is placed on the current directory.
The file is given a .dat extension if no extension is specified.

If col is set to 0, then the number of columns in the data set is controlled by the con-
tents of vnames. If col is positive, then the file will contain col columns.

If vnames contains col elements, then each column is given the name contained in
the corresponding row of vnames. If col is positive and vnames is a string,
then the columns are given the names vnames1, vnames2, ..., vnamesN (or
vnames01, vnames02, ..., vnamesN), where N = col. The numbers appended
to vnames are padded on the left with zeros to the same length as N.

The dtyp argument allows you to specify the precision to use when storing your
data. Keep in mind the following range restrictions when selecting a value for dtyp:

Data Type Digits Range
integer 4 -32768 < X < 32767
single 6-7 8.43 x 10-37 < |X| ≤ 3.37 x 10+38

double 15-16 4.19 x 10-307 < |X| < 1.67 x 10+308

If the integer type is specified, numbers are rounded to the nearest integer as they are
written to the data set. If the data to be written to the file contains character data, the
precision must be 8 or the character information will be lost.

datacreate

d

If vtyp is a scalar, then the value in vtyp controls the types of all of the columns
in the data set. If it is an Nx1 vector, then the type of each column is controlled by the
value in the corresponding row of vtyp.

Example

fh = datacreate("myfile.dat", "V",100,8,1);
x = rndn(500,100);
r = writer(fh,x);
ret = close(fh);

This example creates a double precision data file called myfile.dat, which is
placed in the current directory. The file contains 100 columns with 500 observations
(rows), and the columns are given the names 'V001', 'V002', ..., 'V100'.

Source

datafile.src

See Also

datacreatecomplex, create, dataopen, writer

datacreatecomplex

Purpose

Creates a complex data set.

Format

fh = datacreatecomplex(filename, vnames, col, dtyp,
vtyp);

35-370

datacreatecomplex

d

35-371

Input

filename string, name of data file.
vnames string or Nx1 string array, names of variables.
col scalar, number of variables.
dtyp scalar, data precision, one of the following:

2 2-byte, signed integer.
4 4-byte, single precision.
8 8-byte, double precision.

vtyp scalar or Nx1 vector, types of variables, may contain
one or both of the following:
0 character variable.
1 numeric variable.

Output

fh scalar, file handle.

Remarks

The file handle returned by datacreatecomplex is a scalar containing a positive
integer value that uniquely identifies each file. This value is assigned by GAUSS when
the create, datacreate, datacreatecomplex, open or dataopen com-
mands are executed. The file handle is used to reference the file in the commands
readr and writer. If datacreatecomplex fails, it returns a -1.

Complex data is stored a row at a time, with the real and imaginary halves interleaved,
element by element. For columns containing character data, the imaginary parts are
zeroed out.

datacreatecomplex

d

If filename does not include a path, then the file is placed on the current directory.
The file is given a .dat extension if no extension is specified.

If col is set to 0, then the number of columns in the data set is controlled by the con-
tents of vnames. If col is positive, then the file will contain col columns.

If vnames contains col elements, then each column is given the name contained
in the corresponding row of vnames. If col is positive and vnames is a string,
then the columns are given the names vnames1, vnames2, ..., vnamesN (or
vnames01, vnames02, ..., vnamesN), where N = col. The numbers appended
to vnames are padded on the left with zeros to the same length as N.

The dtyp argument allows you to specify the precision to use when storing your
data. Keep in mind the following range restrictions when selecting a value for dtyp:

Data Type Digits Range
integer 4 -32768 < X < 32767
single 6-7 8.43 x 10-37 < |X| ≤ 3.37 x 10+38

double 15-16 4.19 x 10-307 < |X| < 1.67 x 10+308

If the integer type is specified, numbers are rounded to the nearest integer as they are
written to the data set. If the data to be written to the file contains character data, the
precision must be 8 or the character information will be lost.

If vtyp is a scalar, then the value in vtyp controls the types of all of the columns
in the data set. If it is an Nx1 vector, then the type of each column is controlled by the
value in the corresponding row of vtyp.

Example

string vnames = { "random1", "random2" };
fh = datacreatecomplex("myfilecplx.dat",vnames,2,8,1);
x = complex(rndn(1000,2),rndn(1000,2));
r = writer(fh,x);

35-372

datacreatecomplex

d

35-373

ret = close(fh);

This example creates a complex double precision data file called
myfilecplx.dat, which is placed in the current directory. The file contains 2
columns with 1000 observations (rows), and the columns are given the names 'ran-
dom1' and 'random2'.

Source

datafile.src

See Also

datacreate, create, dataopen, writer

datalist

Purpose

List selected variables from a data set.

Format

datalist dataset [[var 1 [[var 2 ...]]]];

Input

dataset literal, name of the data set.
var# literal, the names of the variables to list.

Global Input

__range scalar, the range of rows to list. The default is all rows.
__miss scalar, controls handling of missing values.

datalist

d

0 display rows with missing values.
1 do not display rows with missing

values.
The default is 0.
__prec scalar, the number of digits to the right of the decimal

point to display. The default is 3.

Remarks

The variables are listed in an interactive mode. As many rows and columns as will fit
on the screen are displayed. You can use the cursor keys to pan and scroll around in
the listing.

Example

datalist freq age sex pay;

This command will display the variables age, sex, and pay from the data set fre-
q.dat.

Source

datalist.src

dataload

Purpose

Loads matrices, N-dimensional arrays, strings and string arrays from a disk file.

Format

y = dataload(filename);

35-374

dataload

d

35-375

Input

filename string, name of data file.

Output

y matrix, array, string or string array, data retrieved from
the file.

Remarks

The proper extension must be included in the file name. Valid extensions are as
follows:

.fmt matrix file
array file

.fst string file
string array file

See FOREIGN LANGUAGE INTERFACE, CHAPTER 1, for details on these file types.

Example

y = dataload("myfile.fmt");

See Also

load, datasave

dataload

d

dataloop (dataloop)

Purpose

Specifies the beginning of a data loop.

Format

dataloop infile outfile;

Input

infile string variable or literal, the name of the source data set.

Output

outfile string variable or literal, the name of the output data set.

Remarks

The statements between the dataloop... endata commands are assumed to be
metacode to be translated at compile time. The data from infile is manipulated by
the specified statements, and stored to the data set outfile. Case is not significant
within the dataloop... endata section, except for within quoted strings. Comments
can be used as in any GAUSS code.

Example

src = "source";
dataloop ^src dest;
make newvar = x1 + x2 + log(x3);
x6 = sqrt(x4);
keep x6, x5, newvar;

35-376

dataloop (dataloop)

d

35-377

endata;

Here, src is a string variable requiring the caret (^) operator, while dest is a string
literal.

dataopen

Purpose

Opens a data set.

Format

fh = dataopen(filename, mode);

Input

filename string, name of data file.
mode string containing one of the following:

"read" Open file for read only.
"append" Open file for append. The file

pointer will start at the end of the
file to add new rows.

"update" Open file for update. Allows
reading and writing. The file
pointer will start at the first row.

Output

fh scalar, file handle.

dataopen

d

Examples

Example 1: Read from a GAUSS dataset

This example opens the data file credit.dat from the GAUSS examples directory
and reads 100 observations (rows) from the file into the global variable y.

//Create a file name with full path
file_name = getGAUSSHome() $+ "examples/credit.dat";

//Open file handle to dataset and assign it to 'fh'
fh = dataopen(file_name,"read");

//Read 100 rows from the dataset into the variable 'y'
y = readr(fh,100);

//Close file handle
ret = close(fh);

Example 2: Write to a GAUSS dataset

//Create variable names for dataset
var_names = "alpha" $| "beta";

//Create dataset containing 2 variables with 5 observations
all equal to 1
x = ones(5, 2);
call saved(x, "my_ones.dat", var_names);

//Open file handle to dataset and assign it to 'fh'
fh = dataopen("my_ones.dat","update");

//Write to the first row
y = { 17 21 };
call writer(fh,y);

35-378

dataopen

d

35-379

//Close file handle
ret = close(fh);

//Load all contents of dataset
new_x = loadd("my_ones.dat");

After the code above, new_x should be equal to:

17 21
1 1
1 1
1 1
1 1

Remarks

1. The file must exist before it can be opened with the dataopen command (to cre-
ate a new file, see datacreate or datasave).

2. The file handle returned by dataopen is a scalar containing a positive integer
value that uniquely identifies each file. This value is assigned by GAUSS when the
create, datacreate, datacreatecomplex, open or dataopen commands
are executed. The file handle is used to reference the file in the commands readr
and writer. If dataopen fails, it returns a -1.

3. A file can be opened simultaneously under more than one handle. If the value that is
in the file handle when the dataopen command begins to execute matches that of an
already open file, the process will be aborted and a File already open error message
will be given. This gives you some protection against opening a second file with the
same handle as a currently open file. If this happens, you would no longer be able to
access the first file.

4. It is important to set unused file handles to zero because both dataopen and
datacreate check the value that is in a file handle to see if it matches that of an

dataopen

d

open file before they proceed with the process of opening a file. You may set unused
file handles to zero with the close or closeall commands.

5. If filename does not have an extension, dataopen appends a .dat extension
before searching for the file. If the file is an .fmt matrix file, the extension must be
explicitly given. If no path information is included, then dataopen searches for the
file in the current directory.

6. Files opened in read mode cannot be written to. The pointer is set to the beginning
of the file and the writer function is disabled for files opened in this way. This is the
only mode available for matrix files (.fmt), which are always written in one piece
with the save command.

7. Files opened in append mode cannot be read. The pointer is set to the end of the
file so that a subsequent write to the file with the writer function will add data to
the end of the file without overwriting any of the existing data in the file. The readr
function is disabled for files opened in this way. This mode is used to add additional
rows to the end of a file.

8. Files opened in update mode can be read from and written to. The pointer is set to
the beginning of the file. This mode is used to make changes in a file.

9. The supported data set types are "*.dat", "*.h5", "*.fmt".

For HDF5 file, the dataset must include schema and both file name and data set
name must be provided, e.g. glm("h5://C:/gauss17/examples/testdata.h5/mydata").

Source

datafile.src

See Also

open, datacreate, writer, readr

35-380

dataopen

d

35-381

datasave

Purpose

Saves matrices, N-dimensional arrays, strings and string arrays to a disk file.

Format

ret = datasave(filename, x);

Input

filename string, name of data file.
x matrix, array, string or string array, data to write to disk.

Output

ret scalar, return code, 0 if successful, or -1 if it is unable to
write the file.

Remarks

datasave can be used to save matrices, N-dimensional arrays, strings and string
arrays. The following extensions are given to files that are saved with datasave:

matrix .fmt

array .fmt

string .fst

string array .fst

See FOREIGN LANGUAGE INTERFACE, CHAPTER 1, for details on these file types.

datasave

d

Use dataload to load a data file created with datasave.

Example

x = rndn(1000,100);
ret = datasave("myfile.fmt",x);

See Also

save, dataload

date

Purpose

Returns the current date in a 4-element column vector, in the order: year, month,
day, and hundredths of a second since midnight.

Format

y = date;

Remarks

The hundredths of a second since midnight can be accessed using hsec.

Example

print date;

2015.0
7.0

35-382

date

d

35-383

16.0
4571524.7

See Also

time, timestr, ethsec, hsec, etstr

datestr

Purpose

Returns a date in a string.

Format

str = datestr(d);

Input

d 4x1 vector, like the date function returns. If this is 0,
the date function will be called for the current system
date.

Output

str 8 character string containing current date in the form:
mo/dy/yr

Example

d = { 2015, 10, 09, 0 };
y = datestr(d);
print y;

datestr

d

produces the following output:

10/09/15

Source

time.src

See Also

date, datestring, datestrymd, time, timestr, ethsec

datestring

Purpose

Returns a date in a string with a 4-digit year.

Format

str = datestring(d);

Input

d 4x1 vector, like the date function returns. If this is 0,
the date function will be called for the current system
date.

Output

str 10 character string containing current date in the form:
mm/dd/yyyy

35-384

datestring

d

35-385

Example

dt = { 2015, 12, 18, 0 };
y = datestring(dt);
print y;

produces the following output:

12/18/2015

Source

time.src

See Also

date, datestr, datestrymd, time, timestr, ethsec

datestrymd

Purpose

Returns a date in a string in the form yyyymmdd.

Format

str = datestrymd(d);

Input

d 4x1 vector, like the date function returns. If this is 0,
the date function will be called for the current system
date.

datestrymd

d

Output

str 8 character string containing current date in the form:
yyyymmdd

Example

d = { 2015, 10, 16, 0 };
y = datestrymd(d);
print y;

returns:

20151016

Source

time.src

See Also

date, datestr, datestring, time, timestr, ethsec

dayinyr

Purpose

Returns day number in the year of a given date.

Format

daynum = dayinyr(dt);

35-386

dayinyr

d

35-387

Input

dt 3x1 or 4x1 vector, date to check. The date should be in
the form returned by date.

Output

daynum scalar, the day number of that date in that year.

Example

x = { 1973, 8, 31, 0 };
y = dayinyr(x);
print y;

produces:

y = 243.00000

Source

time.src

Globals

_isleap

dayofweek

Purpose

Returns day of week.

dayofweek

d

Format

d = dayofweek(a);

Input

a Nx1 vector, dates in DT format.

Output

d Nx1 vector, integers indicating day of week of each
date:
1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday

Remarks

The DT scalar format is a double precision representation of the date and time. In the
DT scalar format, the number

a = 20150415183207;

represents 18:32:07 or 6:32:07 PM on April 4, 2015.

d = dayofweek(a);

After running above code, d is 4 which means Wednesday.

35-388

dayofweek

d

35-389

Source

time.src

See Also

dtday, dttime, dtdate, dttostr

dbAddDatabase

Purpose

Adds a database to the list of database connections using the driver type or a
connection URL.

Format

db_id = dbAddDatabase(driver_type);
db_id = dbAddDatabase(connection_url);

Input

driver_type string, supported options include:

DB2,

IBASE,

MYSQL,

OCI,

ODBC,

PSQL,

SQLITE,

SQLITE2,

dbAddDatabase

d

TDS.
connection_
url

string, with the following format:

driver://username:password@hostname:port/database_
name

Output

db_id scalar, index into a table of all opened database
connections, or 0 on failure.

Example

db_id = dbAddDatabase("MYSQL");

url = "mysql://webuser:pswd@localhost:3306/dev";
db_id = dbAddDatabase(url);

Remarks

Before using the connection, it must be initialized. e.g., call some or all of
dbSetDatabaseName(), dbSetUserName(), dbSetPassword(),
dbSetHostName(), dbSetPort(), and dbSetConnectOptions(), and,
finally, dbOpen().

The exception to this is using a connection URL, since this performs the above men-
tioned steps. Omitting portions of the connection URL is allowed, but the syntax must
remain the same. For example:

id = dbAddDatabase("oci://root:@localhost:/testing");

is a valid connection URL, but will not set the password or port number fields.

35-390

dbAddDatabase

d

35-391

dbClose

Purpose

Closes a database connection and destroys any remaining queries.

Format

dbClose(db_id);

Input

db_id scalar, database connection index number.

Remarks

dbClose() does not remove the database connection from the list of available
database connections. The connection can be opened again without repeating the
database initialization and setup steps.

dbCommit

Purpose

Commits a transaction to the database if the driver supports transactions and a
dbTransaction() has been started.

Format

ret = dbCommit(db_id);

Input

db_id scalar, database connection index number.

dbClose

d

Output

ret scalar, 1 for success or 0 for failure.

Example

db_id = dbAddDatabase("SQLITE");
dbExecQuery(db_id, "INSERT INTO PEOPLE

(first, last) VALUES ('John', 'Doe');");
dbCommit(db_id);
dbClose(db_id);

Remarks

Note: For some databases, the commit will fail and return 0 if there is an active query
using the database for a SELECT statement. Make the query inactive before doing the
commit to resolve this problem.

Call dbGetLastError() to get information about errors.

dbCreateQuery

Purpose

Process an SQL statement and prepare a query. If placeholders is present,
these values are bound sequentially to ODBC style parameters.

Format

qid = dbCreateQuery(db_id);
qid = dbCreateQuery(db_id, query);
qid = dbCreateQuery(db_id, query, placeholders);

35-392

dbCreateQuery

d

35-393

Input

db_id scalar, database connection index number.
query string, database query to construct.
placeholders string, or string array containing bind value(s).

Output

qid scalar, query id to be used for result retrieval.

Example

Example 1

qid = dbCreateQuery("SELECT * FROM GDP
WHERE COUNTRY = ?", "USA");

dbQueryExecPrepared(qid);

// Results as a matrix
results = dbQueryFetchAllM(qid);

Example 2

qid = dbCreateQuery("INSERT INTO
PEOPLE(id, fname, lname) VALUES
(NULL, ?, ?);");

dbQueryBindValue(qid, "Joe");
dbQueryBindValue(qid, "Smith");
dbQueryExecPrepared(qid);

Remarks

If the placeholders parameter is passed in, the values are bound sequentially to
ODBC style parameters.

See also
dbQueryPrepare

dbCreateQuery

d

dbExecQuery

Purpose

Executes an SQL statement and creates a query.

Format

qid = dbExecQuery(db_id, sql_statement);
qid = dbExecQuery(db_id, sql_statement,placeholders);

Input

db_id scalar, database connection index number.
sql_
statement

string containing a valid SQL statement.

placeholders string (array) containing bind value(s).

Output

qid scalar, query id to be used for result retrieval.

Example

In the examples below, db_id is a previously created database id.
Example 1

qid = dbExecQuery(db_id, "SELECT * FROM GDP
WHERE COUNTRY = ?", "USA");

// Results as a matrix
results = dbQueryFetchAllM(qid);

Example 2

35-394

dbExecQuery

d

35-395

bd_vals = "Joe"$|"Smith";
qid = dbExecQuery(db_id, "INSERT INTO PEOPLE(id,

fname, lname); VALUES (NULL, ?, ?);",bd_vals);

Example 3

qid = dbExecQuery("SELECT * FROM PEOPLE
p WHERE p.FNAME = ?", "Joe");

// Results as a string array
results = dbQueryFetchAllSA(qid);

dbGetConnectOptions

Purpose

Returns the connection options string used for a database connection.

Format

options = dbGetConnectOptions(db_id);

Input

db_id scalar, database connection index number.

Output

options string, containing the connection options for the
specified database connection.

See Also

dbSetConnectOptions

dbGetConnectOptions

d

Remarks

If you have not set any connection options with dbSetConnectOptions, then this
function will return an empty string. For a full list of options see dbSetCon-
nectOptions.

dbGetDatabaseName

Purpose

Returns the name of the database.

Format

db_name = dbGetDatabaseName(db_id);

Input

db_id scalar, database connection index number.

Output

db_name string, name of the database.

dbGetDriverName

Purpose

Returns the name of the connection's database driver.

Format

driver_name = dbGetDriverName(db_id);

35-396

dbGetDatabaseName

d

35-397

Input

db_id scalar, database connection index number.

Output

driver_
name

string, name of the database driver.

Example

db_id = dbAddDatabase("SQLITE");
print "Driver = " dbGetDriverName(db_id);

will print the following output

Driver = SQLITE

dbGetDrivers();

Purpose

Returns a list of available database drivers.

Format

drivers = dbGetDrivers();

Output

drivers Nx1 string array, list of available database drivers.

dbGetDrivers();

d

Example

print
dbGetDrivers();

DB2
MYSQL
OCI
ODBC
PSQL
SQLITE

dbGetHostName

Purpose

Returns the database connection's host name

Format

host_name = dbGetHostName(db_id);

Input

db_id scalar, database connection index number.

Output

host_name string, name of database connection.

35-398

dbGetHostName

d

35-399

dbGetLastErrorNum

Purpose

Returns information about the last error that occurred on the database.

Format

last_error = dbGetLastErrorNum(db_id);

Input

db_id scalar, database connection index number.

Output

last_
error

scalar, number of last error on the specified database.

dbGetLastErrorText

Purpose

Returns information about the last error that occurred on the database.

Format

last_error = dbGetLastErrorText(db_id);

Input

db_id scalar, database connection index number.

dbGetLastErrorNum

d

Output

last_
error

string, details of last error on the specified database.

dbGetNumericalPrecPolicy

Purpose

Returns the default numerical precision policy for a specified database
connection.

Format

prec_policy = dbGetNumericalPrecPolicy(db_id);

Input

db_id scalar, database connection index number.

Output

prec_
policy

scalar:

DB_HIGH_
PRECISION

strings will be used to preserve
precision

DB_LOW_
PRECISION_
INT32

Force 32-bit integer values

DB_LOW_
PRECISION_
INT64

Force 64-bit integer values

35-400

dbGetNumericalPrecPolicy

d

35-401

DB_LOW_
PRECISION_
DOUBLE

Force double values. This is the
default policy.

dbGetPassword

Purpose

Returns a connection's password.

Format

db_password = dbGetPassword(db_id);

Input

db_id scalar, database connection index number.

Output

db_
password

string containing the password for the specified
database connection or a null string.

Remarks

dbGetPassword() will only return passwords set with dbSetPassword().

dbGetPort

Purpose

Returns the database connection's port number if it has been set.

dbGetPassword

d

Format

db_port = dbGetPort(db_id);

Input

db_id scalar, database connection index number.

Output

db_port scalar, the port number of the specified database
connection.

Remarks

dbGetPort() will only return the port number if it was previously set with
dbSetPort().

dbGetPrimaryIndex

Purpose

Returns the primary index for the specified table.

Format

primary_index = dbGetPrimaryIndex(db_id, table_name);

Input

db_id scalar, database connection index number.
table_
name

string, name of the table to reference.

35-402

dbGetPrimaryIndex

d

35-403

Output

primary_
index

2x1 string array; the [1,1] element is the cursor name
and the [2,1] element is the index name

dbGetTableHeaders

Purpose

Returns a string array populated with the names of all the fields in a specified
table (or view).

Format

field_names = dbGetTableHeaders(db_id, table_name);

Input

db_id scalar, database connection index number.
table_
name

string, name of table or view.

Output

field_
names

string array containing the column names for the
specified table or view.

Remarks

The order in which the fields appear in the record is undefined.

dbGetTableHeaders

d

dbGetTables

Purpose

Returns the database's tables, system tables and views.

Format

tables = dbGetTables(db_id, type);
tables = dbGetTables(db_id);

Input

db_id scalar, database connection index number.
type string:

"Tables" All tables visible to the user.
This is the default value.

"System Tables" Internal tables used by the
database.

"Views" All views visible to the user.
"All" All of the above.

Output

tables Nx1 string array containing the information specified
by the 'type' parameter.

dbGetUserName

Purpose

Returns the database connection's user name.

35-404

dbGetTables

d

35-405

Format

user_name = dbGetUserName(db_id);

Input

db_id scalar, database connection index number.

Output

user_name string containing the user name associated with the
specified database connection.

See Also

dbSetUserName

dbHasFeature

Purpose

Returns a 1 if the database supports the specified feature.

Format

ret = dbHasFeature(db_id, feature);

Input

db_id scalar, database connection index number.
feature string:

DB_TRANSACTIONS
DB_QUERY_SIZE

dbHasFeature

d

DB_BLOB
DB_UNICODE
DB_PREPARED_QUERIES
DB_NAMED_PLACEHOLDERS
DB_POSITIONAL_PLACEHOLDERS
DB_LAST_INSERT_ID
DB_BATCH_OPERATIONS
DB_SIMPLE_LOCKING
DB_LOW_PRECISION_NUMBERS
DB_EVENT_NOTIFICATIONS
DB_FINISH_QUERY
DB_MULTIPLE_RESULT_SETS

Output

ret scalar, 1 if the database supports the specified feature,
or 0 if not.

Example

db_id = dbAddDatabase("MYSQL");

// Create empty query
qid = dbCreateQuery(db_id);

if dbHasFeature(db_id, "NamedPlaceholders");
dbQueryPrepare(qid, "SELECT * FROM GDP
WHERE COUNTRY = :country");
dbQueryBindValue(qid, ":country", "USA");

else;
dbQueryPrepare(qid, "SELECT * FROM GDP
WHERE COUNTRY = ?");

35-406

dbHasFeature

d

35-407

dbQueryAddBindValue(qid, "USA");
endif;

dbQueryExecPrepared(qid);

Remarks

Note that some databases need to be opened with dbOpen() before this can be
determined.

dbIsDriverAvailable

Purpose

Returns 1 if a specified database driver is available.

Format

ret = dbIsDriverAvailable(name);

Input

name string, name of driver to check

Output

ret scalar, 1 if the specified driver is available, or 0 if not.

dbIsDriverAvailable

d

dbIsOpen

Purpose

Reports whether a specified database connection is open.

Format

ret = dbIsOpen(db_id);

Input

db_id scalar, database connection index number.

Output

ret scalar, 1 if the connection is open or 0 if it is closed.

dbIsOpenError

Purpose

Reports whether an error occurred while attempting to open the database con-
nection.

Format

ret = dbIsOpenError(db_id);

Input

db_id scalar, database connection index number.

35-408

dbIsOpen

d

35-409

Output

ret scalar, 1 if there was an error or 0 if not.

dbIsValid

Purpose

Reports whether a specified database connection has a valid driver.

Format

ret = dbIsValid(db_id);

Input

db_id scalar, database connection index number.

Output

ret scalar, 1 if the database connection has a valid driver or
0 if not.

Example

// Use default connection
db_id = dbAddDatabase("SQLITE");
ret = dbIsValid(db_id); // Returns 1 for 'true'

db_id = dbAddDatabase("BAD_DRIVER_NAME");
ret = dbIsValid(db_id); // Returns 0 for 'false'

dbIsValid

d

dbNumericalPrecPolicy

Purpose

Returns the default numerical precision policy for a specified database
connection.

Format

prec_policy = dbNumericalPrecPolicy(db_id);

Input

db_id scalar, database connection index number.

Output

prec_
policy

scalar:

0 strings will be used to preserve precision
1 Force 32-bit integer values
2 Force 64-bit integer values
4 Force double values. This is the default policy.

dbOpen

Purpose

Opens a specified database connection using the current connection values.

35-410

dbNumericalPrecPolicy

d

35-411

Format

ret = dbOpen(db_id, user_name, password);
ret = dbOpen(db_id);

Input

db_id scalar, database connection index number.
user_name string, user name for the database being connected to.
password string, password associated with the specified user

name for this database.

Output

ret scalar, 1 for success.

Example

Set driver and host

db_id = dbAddDatabase("MYSQL");
dbSetHostName(db_id, "localhost");

then, either

dbSetUserName(db_id, "test");
dbSetPassword(db_id, "secret_passw0rd");
ret = dbOpen(db_id);

or

ret = dbOpen(db_id, "test",
"secret_passw0rd");

dbOpen

d

dbQueryBindValue

Purpose

Set the placeholder placeholder to be bound to value val in the prepared state-
ment. Note that the placeholder mark (e.g :) must be included when specifying the
placeholder name.

Format

dbQueryBindValue(qid, placeholder, val);

Input

qid scalar, query number.
placeholder string, Oracle style (:value_name) or index of ODBC

style (?) placeholder.
val valid type, the value to be bound.

Remarks

Values cannot be bound to multiple locations in the query.

Example

db_id = dbAddDatabase("MYSQL");
qid = dbCreateQuery(db_id);
dbQueryPrepare(qid, "SELECT * FROM

PEOPLE WHERE FIRST = :fname AND
LAST = :lname");

dbQueryBindValue(qid, ":fname", "John");
dbQueryBindValue(qid, ":lname", "Doe");
dbQueryExecPrepared(qid);

35-412

dbQueryBindValue

d

35-413

dbQueryClear

Purpose

Clears the result set and releases any resources held by the query. Sets the query
state to inactive.

Format

dbQueryClear(qid);

Input

qid scalar, query number.

Remarks

You should rarely if ever need to call this function.

dbQueryCols

Purpose

Returns the number of fields in the record.

Format

num_fields = dbQueryCols(qid);

Input

qid scalar, query number.

dbQueryClear

d

Output

num_
fields

scalar, number of fields.

dbQueryExecPrepared

Purpose

Executes a previously created and prepared query.

Format

ret = dbQueryExecPrepared(qid);

Input

qid scalar, query number.

Output

ret scalar, 1 for success and 0 for failure.

Example

qid = dbCreateQuery(db_id);
dbQueryPrepare(qid, "SELECT * FROM

USERS WHERE ID = :id");
dbQueryBindValue(qid, ":id", "5");
dbQueryExecPrepared(qid);

results = dbQueryFetchAllSA(qid);

35-414

dbQueryExecPrepared

d

35-415

dbQueryBindValue(qid, ":id", "10");

// Re-execute the query with new value
dbQueryExecPrepared(qid);

results = dbQueryFetchAllSA(qid);

dbQueryFetchAllM

Purpose

Returns the result set for the current query as a matrix.

Format

result = dbQueryFetchAllM(qid);
result = dbQueryFetchAllM(qid, columns);

Input

qid scalar, query number.
columns string or string array, specific columns to pull out from

result matrix. Must be a subset of fields from
SELECT statement.

Output

result matrix, the result set; or if the result set is empty, a
scalar error code.

dbQueryFetchAllM

d

Remarks

For string results, or to treat numerical results as strings, use dbQueryFetchAllSA
() to return a string array.
This function retrieves all rows at once. You can process rows in an iterative manner
by using the dbQueryFetchOneM() and dbQueryFetchOneSA()functions.

Example

Example 1

qid = dbExecQuery(db_id, "SELECT * FROM GDP");

gdp = dbQueryFetchAllM(qid);

// If 'gdp' is a scalar error code
if scalmiss(gdp);

print "No results";
else;

// do something with gdp
endif;

Example 2

qid = dbExecQuery(db_id, "SELECT * FROM
PEOPLE WHERE COUNTRY = ?", "USA");

// specify zipcode as column of interest
zipcodes = dbQueryFetchAllM(qid, "ZIPCODE");

if not scalmiss(zipcodes);
print "zip codes = " zipcodes;

endif;

See Also

dbQueryFetchAllSA, dbQueryFetchOneM, dbQueryFetchOneSA

35-416

dbQueryFetchAllM

d

35-417

dbQueryFetchAllSA

Purpose

Returns the result set for the current query as a string array.

Format

result = dbQueryFetchAllSA(qid);
result = dbQueryFetchAllSA(qid, columns);

Input

qid scalar, query number.
columns string or string array, specific columns to pull out from

result matrix. Must be a subset of fields from
SELECT statement.

Output

result string array, containing the result set for the current
query. If the result set is empty, a scalar error code is
returned.

Remarks

For numerical only results, use dbQueryFetchAllM() to return a matrix.
This function retrieves all rows at once. You can process rows in an iterative manner
by using the dbQueryFetchNextM() and dbQueryFetchNextSA()functions.

Example

qid = dbExecQuery(db_id, "SELECT * FROM

dbQueryFetchAllSA

d

PEOPLE WHERE COUNTRY = ?", "USA");

// specify names as columns of interest
names = dbQueryFetchAllSA(qid,

"FIRST_NAME"$|"LAST_NAME");

// If 'names' is not a scalar error code
if not scalmiss(names);

print "People in the USA = " names;
endif;

See Also

dbQueryFetchAllM, dbQueryFetchNextSA, dbQueryFetchNextM

dbQueryFetchOneM

Purpose

Returns a single row as an Nx1 matrix where N is the column count of the
SELECT statement containing the field information for the current query.

Format

record = dbQueryFetchOneM(qid);
record = dbQueryFetchOneM(qid, columns);

Input

qid scalar, query number.
columns string or string array, specific columns to pull from the

result matrix. Must be a subset of fields from the
SELECT statement.

35-418

dbQueryFetchOneM

d

35-419

Output

record matrix, if the query points to a valid row
(dbQueryIsValid() returns true), the record is
populated with the row's values. An empty record
(scalmiss(record) is true) is returned when
there is no active query (dbQueryIsActive()
returns false).

Remarks

This function is only useful in an iterative context. You can easily retrieve all the
results at once by using the dbQueryFetchAllM() and dbQueryFetchAllSA
() functions.

For string results, or to treat numerical results as a string, using
dbQueryFetchOneSA() will return a string array.

Example

qid = dbExecQuery(db_id, "SELECT YTD,
TOTAL FROM GDP");

do while dbQuerySeekNext(qid);
record = dbQueryFetchOneM(qid);
ytd = record[1];
total = record[2];

endo;

See Also

dbQueryFetchOneSA, dbQueryFetchAllM, dbQueryFetchAllSA, dbQueryGetField

dbQueryFetchOneM

d

dbQueryFetchOneSA

Purpose

Returns a single row as a string vector containing the field information for the cur-
rent query.

Format

record = dbQueryFetchOneSA(qid);
record = dbQueryFetchOneSA(qid, columns);

Input

qid scalar, query number.
columns string or string array, specific columns to pull from the

result matrix. Must be a subset of fields from the
SELECT statement.

Output

record string array, if the query points to a valid row
(dbQueryIsValid() returns true), the record is
populated with the row's values. An empty record
(scalmiss(record) is true) is returned when
there is no active query dbQueryIsActive()
returns false).

Remarks

This function is only useful in an iterative context. You can easily retrieve all the
results at once by using the dbQueryFetchAllM() and dbQueryFetchAllSA

35-420

dbQueryFetchOneSA

d

35-421

() functions.

For numerical only results, using dbQueryFetchOneM() will return a matrix
instead of a string array.

Example

qid = dbExecQuery(db_id, "SELECT COUNTRY,
TOTAL FROM GDP");

do while dbQuerySeekNext(qid);
record = dbQueryFetchOneSA(qid);
country = record[1];
total = record[2];

endo;

See Also

dbQueryFetchOneM, dbQueryFetchAllM, dbQueryFetchAllSA, dbQueryGetField

dbQueryFinish

Purpose

Instructs the database driver that no more data will be fetched from this query
until it is re-executed.

Format

dbQueryFinish(qid);

Input

qid scalar, query number.

dbQueryFinish

d

Remarks

There is normally no need to call this function, but it may be helpful in order to free
resources such as locks or cursors if you intend to re-use the query at a later time.

Sets the query to inactive. Bound values retain their values.

dbQueryGetBoundValue

Purpose

Returns the value for a placeholder in a query.

Format

val = dbQueryGetBoundValue(qid, placeholder);

Input

qid scalar, query number.
placeholder string, Oracle style (:value_name) or index of ODBC

style (?) placeholder.

Output

val string, bound value if previously set.

Example

db_id = dbAddDatabase("MYSQL");
qid = dbCreateQuery(db_id);
dbQueryPrepare(qid, "SELECT * FROM

35-422

dbQueryGetBoundValue

d

35-423

PEOPLE WHERE FIRST = :fname AND
LAST = :lname");

dbQueryBindValue(qid, ":fname", "John");
dbQueryBindValue(qid, ":lname", "Doe");

print "Name = ";;
print dbQueryGetBoundValue(qid, ":fname");;
print dbQueryGetBoundValue(qid, ":lname");

or

db_id = dbAddDatabase("MYSQL");
string args = { "John", "Doe" };
qid = dbCreateQuery(db_id, "SELECT * FROM

PEOPLE WHERE FIRST = ? AND LAST = ?", args);

print "Name = ";;
print dbQueryGetBoundValue(qid, 1);;
print dbQueryGetBoundValue(qid, 2);

results in

Name = John Doe

dbQueryGetBoundValues

Purpose

Returns an Nx2 string array containing the placeholders and their corresponding
values in a query.

Format

bound_values = dbQueryGetBoundValues(qid);

dbQueryGetBoundValues

d

Input

qid scalar, query number.

Output

bound_
values

Nx2 string array. The first column contains the
placeholders and the second column contains the
corresponding values.

Example

db_id = dbAddDatabase("MYSQL");
qid = dbCreateQuery(db_id);
dbQueryPrepare(qid, "SELECT * FROM

PEOPLE WHERE FIRST = :fname AND
LAST = :lname");

dbQueryBindValue(qid, ":fname", "John");
dbQueryBindValue(qid, ":lname", "Doe");

print "Vars = " dbQueryGetBoundValues(qid);

will print

Vars =
:fname John
:lname Doe

dbQueryGetField

Purpose

Returns the value of a specified field in the current record. An overloaded version
that accepts a column name as input is available, but not as efficient.

35-424

dbQueryGetField

d

35-425

Format

field_value = dbQueryGetField(qid, idx);
field_value = dbQueryGetField(qid, name);

Input

qid scalar, query number.
idx scalar, index of the field whose value should be

returned.

Remarks

The fields are numbered from left to right using the text of the SELECT statement, e.g.
in

qid = dbExecQuery("SELECT forename, surname FROM people");

do while dbQuerySeekNext(qid);
forename = dbQueryGetField(qid, 1);
// Using field index
surname = dbQueryGetField(qid, 2);
// Using field index
forename = dbQueryGetField(qid, "forename");
// Using field name
surname = dbQueryGetField(qid, "surname");
// Using field name

endo;

Field 1 is forename and field 2 is surname. Using SELECT * is not recom-
mended because the order of the fields in the query is undefined.

See Also

dbQueryFetchOneM, dbQueryFetchOneSA

dbQueryGetField

d

dbQueryGetLastErrorNum

Purpose

Returns error information about the last error that occurred (if any) with the last
executed query.

Format

err_num = dbQueryGetLastErrorNum();

Output

err_num scalar, number of last error.

Remarks

Because a failed query will not have a valid handle (id), this function retrieves stored
error information about the last executed query.

See also

dbQueryGetLastErrorText

dbQueryGetLastErrorText

Purpose

Returns error information about the last error that occurred (if any) with the last
executed query.

Format

err_txt = dbQueryGetLastErrorText();

35-426

dbQueryGetLastErrorNum

d

35-427

Output

err_txt 2x1 string array, database and driver text of last error.

Remarks

Because a failed query will not have a valid handle (id), this function retrieves stored
error information about the last executed query.

See also

dbQueryGetLastErrorNum

dbQueryGetLastInsertID

Purpose

Returns the object ID of the most recent inserted row if supported by the
database.

Format

last_insert = dbQueryGetLastInsertID(qid);

Input

qid scalar, query number.

Output

last_
insert

scalar, object id

dbQueryGetLastInsertID

d

Remarks

If more than one row was touched by the insert, the behavior is undefined.

For MySQL databases the row's auto-increment field will be returned.

With a PSQL database, the table must contain OID's which were not created by
default. Check the default_with_oids configuration variable to be sure.

Example

// Given NAMES is an empty MySQL
// table with the *id* column
// auto-incrementing.
db_id = dbAddDatabase("MYSQL");
qid = dbCreateQuery(db_id, "INSERT

INTO NAMES (first, last) VALUES
('John', 'Doe');");

if dbHasFeature(db_id, "LastInsertId");
last_id = dbQueryGetLastInsertID(qid);

endif;

See Also

dbHasFeature

dbQueryGetLastQuery

Purpose

Returns the text of the current query being used.

35-428

dbQueryGetLastQuery

d

35-429

Format

query_string = dbQueryGetLastQuery(qid);

Input

qid scalar, query number.

Output

query_
string

string, text of the current query, or empty string if there
is no current query.

dbQueryGetNumRowsAffected

Purpose

Reports the number of rows affected by the result's SQL statement.

Format

num_rows = dbQueryGetNumRowsAffected(qid);

Input

qid scalar, query number.

Output

num_rows scalar, the number of rows affected by the result's SQL
statement, or a -1 if it cannot be determined or the query
is not active.

dbQueryGetNumRowsAffected

d

Remarks

Note that for SELECT statements, the value is undefined; use dbQueryRows()
instead.

Example

qid = dbCreateQuery(db_id, "INSERT INTO
PEOPLE (fname, lname) VALUES
('John', 'Doe');");

print dbQueryGetNumRowsAffected(qid) " row(s) were
affected";

results in

1 row(s) were affected

See Also

dbQueryRows, dbHasFeature

dbQueryGetPosition

Purpose

Returns the current internal position of the query.

Format

index = dbQueryGetPosition(qid)

Input

qid scalar, query number.

35-430

dbQueryGetPosition

d

35-431

Output

index scalar, query position

Remarks

The first record is at position zero. If the position is invalid, the function returns
QSql::BeforeFirstRow or QSql::AfterLastRow, which are special negative values.

Example

qid = dbCreateQuery(db_id, "SELECT *
FROM PEOPLE");

do while dbQuerySeekNext(qid);
print "Current index = "
dbQueryGetPosition(qid);

endo;

dbQueryIsActive

Purpose

Returns 1 if the query is active.

Format

ret = dbQueryIsActive(qid);

Input

qid scalar, query number.

dbQueryIsActive

d

Output

ret scalar, 1 if the query is active or 0 if not.

Remarks

An active query is one that has been dbQueryExecPrepared()'d successfully, but
not yet finished with. When you are finished with an active query, you can make the
query inactive by calling dbQueryFinish() or dbQueryClear().

Note: Of particular interest is an active query that is a SELECT statement. For some
databases that support transactions, an active query that is a SELECT statement can
cause a dbCommit() or a dbRollback() to fail, so before committing or rolling
back, you should make your active SELECT statement query inactive using one of the
methods listed above.

Example

qid = dbCreateQuery(db_id);

dbQueryIsActive(qid); // False dbQueryPrepare(qid, "INSERT
INTO TEST

(foo, bar) VALUES (1, 2);");

dbQueryIsActive(qid); // False dbQueryExecPrepared(qid);

dbQueryIsActive(qid); // True dbQueryFinish(qid);

dbQueryIsActive(qid); // False

dbQueryIsForwardOnly

Purpose

Reports whether you can only scroll forward through a result set.

35-432

dbQueryIsForwardOnly

d

35-433

Format

ret = dbQueryIsForwardOnly(qid);

Input

qid scalar, query number.

Output

ret scalar, 1 if the result set can only be scrolled through
forward, otherwise a 0.

Remarks

Setting a query to "forward only" will usually improve performance. By default, quer-
ies are created with "forward only" off.

See Also

dbQuerySetForwardOnly, dbQuerySeekNext

dbQueryIsNull

Purpose

Returns 1 if the query is active, positioned on a valid record and the field is
NULL; otherwise returns 0. Reports whether the current field pointed at by an act-
ive query positioned on a valid record is NULL.

Format

ret = dbQueryIsNull(qid, field);

dbQueryIsNull

d

Input

qid scalar, query number.
field scalar, index into result set.

Output

ret scalar, 1 if the field is NULL or 0 otherwise.

Remarks

Note that for some drivers, dbQueryIsNull() will not return accurate information
until after an attempt is made to retrieve data.

See Also

dbQueryIsActive, dbQueryIsValid

dbQueryIsSelect

Purpose

Reports whether the specified query is a SELECT statement.

Format

ret = dbQueryIsSelect(qid);

Input

qid scalar, query number.

35-434

dbQueryIsSelect

d

35-435

Output

ret scalar, 1 if the query is a SELECT statement or 0
otherwise.

Example

qid = dbExecQuery(db_id, "SELECT *
FROM PEOPLE");

dbQueryIsSelect(qid); // True

qid = dbExecQuery(db_id, "INSERT INTO
PEOPLE (fname, lname) VALUES
('John', 'Doe');");

dbQueryIsSelect(qid); // False

dbQueryIsValid

Purpose

Reports whether the specified query is positioned on a valid record.

Format

ret = dbQueryIsValid(qid);

Input

qid scalar, query number.

dbQueryIsValid

d

Output

ret scalar, 1 if the query is positioned on a valid record or 0
otherwise.

Example

qid = dbExecQuery(db_id, "SELECT * FROM
PEOPLE");

dbQueryIsValid(qid); // False
// Give it a valid position
dbQuerySeekFirst(qid);

// Iterate until no longer valid.
do while dbQueryIsValid(qid);

// dbQueryIsValid = True
dbQuerySeekNext(qid);

endo;

dbQueryIsValid(qid); // False

dbQueryPrepare

Purpose

Prepares a SQL query for execution.

Format

ret = dbQueryPrepare(qid, query);

35-436

dbQueryPrepare

d

35-437

Input

qid scalar, query index number.
query string, database query to prepare.

Output

ret scalar, 1 for success and 0 for failure.

Example

db_id = dbAddDatabase("MYSQL");
qid = dbCreateQuery(db_id);
ret = dbQueryPrepare(qid, "SELECT *

FROM STOCKS WHERE SYMBOL = :sym");
dbQueryBindValue(qid, ":sym", "GOOG");
ret = dbQueryExecPrepared(qid);

Remarks

The query may contain placeholders for binding values. Both Oracle style colon-name
(e.g., :surname), and ODBC style (?) placeholders are supported; but they cannot be
mixed in the same query.

Portability note: Some databases choose to delay preparing a query until it is executed
the first time. In this case, preparing a syntactically incorrect query succeeds, but
every consecutive dbQueryExecPrepared() will fail.

For SQLite, the query string can contain only one statement at a time. If more than one
statement is given, the function returns 0.

See also

dbQueryBindValue

dbQueryPrepare

d

dbQueryRows

Purpose

Returns the size of the result (number of rows returned), or -1 if the size cannot
be determined or if the database does not support reporting information about
query sizes.

Format

result_size = dbQueryRows(qid);

Input

qid scalar, query number.

Output

result_
size

scalar, number of rows in the current result set of the
active query. If the number of rows cannot be
determined a -1 is returned.

Remarks

Note that if the query is not active or if the query is not a SELECT statement, a -1 is
returned. These properties can be checked with dbQueryIsActive() or
dbQueryIsSelect().

Example

// Given a table with US States.
qid = dbCreateQuery(db_id, "SELECT *

FROM STATES");

35-438

dbQueryRows

d

35-439

count = dbQueryRows(qid); // count = 50

dbQuerySeek

Purpose

Retrieves the record at a specified position, if available, and positions the query
on the retrieved record.

Format

ret = dbQuerySeek(qid, idx, idx_type);
ret = dbQuerySeek(qid, idx);

Input

qid scalar, query number.
idx scalar, the index at which to place the cursor.
idx_type scalar, 1 for relative position or 0 for absolute

positioning. If not specified, absolute positioning is
used.

Output

ret scalar, 1 if successful.

Remarks

The first record is at position 1. Note that the query must be in an active state before
calling this function. The state of the query may be verified with the function

dbQuerySeek

d

dbQueryIsSelect().

If idx_type is 0 (the default), the following rules apply:

If idx is negative, the result is positioned before the first record and 0 is returned.
Otherwise, an attempt is made to move to the record at position idx. If the record at
position idx could not be retrieved, the result is positioned after the last record and 0
is returned. If the record is successfully retrieved, 1 is returned.

If idx_type is 1, the following rules apply:

If the result is currently positioned before the first record or on the first record, and
idx is negative, there is no change, and 0 is returned.

If the result is currently located after the last record, and idx is positive, there is no
change, and 0 is returned. If the result is currently located somewhere in the middle,
and the relative offset idx moves the result below zero, the result is positioned before
the first record and 0 is returned.

Otherwise, an attempt is made to move to the record idx records ahead of the current
record (or idx records behind the current record if idx is negative).

If the record at offset idx could not be retrieved, the result is positioned after the last
record if idx >= 0, (or before the first record if idx is negative), and 0 is returned. If
the record is successfully retrieved, 1 is returned.

See Also

dbQuerySeekFirst, dbQuerySeekLast, dbQuerySeekNext, dbQuerySeekPrevious

dbQuerySeekFirst

Purpose

Retrieves the first record in the result, if available, and positions the query on the
retrieved record.

35-440

dbQuerySeekFirst

d

35-441

Format

ret = dbQuerySeekFirst(qid);

Input

qid scalar, query number.

Output

ret 1 if successful. If unsuccessful the query position is set
to an invalid position and 0 is returned.

Remarks

Note that the result must be in the active state or it will do nothing and return. This can
be verified by calling the dbQueryIsSelect() function.

Example

qid = dbCreateQuery(db_id, "SELECT *
FROM PEOPLE");

do while dbQuerySeekNext(qid);
// iterate over results

endo;

// set back to start
dbQuerySeekFirst(qid);

do while dbQuerySeekNext(qid);
// iterate over results AGAIN

endo;

dbQuerySeekFirst

d

dbQuerySeekLast

Purpose

Retrieves the last record in the result, if available, and positions the query on the
retrieved record.

Format

ret = dbQuerySeekLast(qid);

Input

qid scalar, query number.

Output

ret scalar, returns 1 if successful. If unsuccessful the query
position is set to an invalid position and 0 is returned.

Remarks

Note that the result must be in the active state and dbQueryIsSelect() must return 1
before calling this function or it will do nothing and return 0.

Example

// Given STATES is a table with all
// 50 states listed alphabetically
qid = dbExecQuery(db_id, "SELECT name

FROM STATES");

// Move to last state

35-442

dbQuerySeekLast

d

35-443

ret = dbQuerySeekLast(qid);

//If 'ret' is equal to 0
if not ret;

print "dbQuerySeekLast failed";
else;

// Print last state: Wyoming
print dbQueryFetchOneSA(qid);
endif;

See also

dbQuerySeekNext, dbQuerySeekPrevious, dbQuerySeekFirst, dbQuerySeek,
dbQueryGetPosition

dbQuerySeekNext

Purpose

Retrieves the next record in the result, if available, and positions the query on the
retrieved record.

Format

ret = dbQuerySeekNext(qid);

Input

qid scalar, query number.

Output

ret scalar, if the record could not be retrieved, the result is
positioned after the last record and 0 is returned. If the

dbQuerySeekNext

d

record is successfully retrieved, 1 is returned.

Remarks

Note that the result must be in the active state before calling this function or it will do
nothing and return 0. You can verify the status of the query with
dbQueryIsSelect().

The following rules apply:

If the result is currently located before the first record, e.g., immediately after a query
is executed, an attempt is made to retrieve the first record.

If the result is currently located after the last record, there is no change and 0 is
returned.

If the result is located somewhere in the middle, an attempt is made to retrieve the
next record.

Example

qid = dbCreateQuery(db_id, "SELECT *
FROM PEOPLE");

do while dbQuerySeekNext(qid);
row = dbQueryFetchOneSA(qid);
// Or dbQueryFetchOneM(qid) if data
// is numeric

endo;

See Also

dbQuerySeekFirst, dbQuerySeekLast, dbQuerySeekPrevious, dbQuerySeek,
dbQueryGetPosition

35-444

dbQuerySeekNext

d

35-445

dbQuerySeekPrevious

Purpose

Retrieves the previous record in the result, if available, and positions the query on
the retrieved record.

Format

ret = dbQuerySeekPrevious(qid);

Input

qid scalar, query number.

Output

ret scalar, 1 if the record is successfully retrieved. If the
record could not be retrieved, the result is positioned
before the first record and 0 is returned.

Remarks

Note that the result must be in the active state before calling this function or it will do
nothing and return false. The state of the query can be verified with
dbQueryIsSelect().

The following rules apply:

If the result is currently located before the first record, there is no change and 0 is
returned.

If the result is currently located after the last record, an attempt is made to retrieve the
last record.

dbQuerySeekPrevious

d

If the result is somewhere in the middle, an attempt is made to retrieve the previous
record.

See Also

dbQuerySeekFirst, dbQuerySeekLast, dbQuerySeekNext, dbQuerySeek, dbQueryGetPos-
itino

dbQuerySetForwardOnly

Purpose

Sets forward only mode to forward. If forward is true, only
dbQuerySeekNext() and dbQuerySeek() with positive values, are allowed
for navigating the results.

Format

dbQuerySetForwardOnly(qid, forward);

Input

qid scalar, query number.
forward scalar, 1 to set forward only or 0 to allow seeking in

either direction.

Remarks

Forward only mode can be (depending on the driver) more memory efficient since res-
ults do not need to be cached. It will also improve performance on some databases. For
this to be true, you must call dbQuerySetForwardOnly() before the query is pre-
pared or executed.

Forward only mode is enabled by default.

35-446

dbQuerySetForwardOnly

d

35-447

Setting forward only to false is a suggestion to the database engine, which has the final
say on whether a result set is forward only or scrollable.

dbQueryIsForwardOnly() will always return the correct status of the result set.

See Also

dbQueryIsForwardOnly

dbQuerySetNumericalPrecisionPolicy

Purpose

Sets the current precision policy for a query.

Format

dbQuerySetNumericalPrecisionPolicy(query_num, prec_
policy);

Input

query_num scalar, query number.
prec_
policy

scalar:

0 Strings will be used to preserve precision.
1 Force 32-bit integer values.
2 Force 64-bit integer values.
4 Force double values. This is the default

policy.

dbQuerySetNumericalPrecisionPolicy

d

dbRemoveDatabase

Purpose

Removes a database connection from the list of open database connections. Frees
all related resources.

Format

dbRemoveDatabase(db_id);

Input

db_id scalar, database connection index number.

dbRollback

Purpose

Rolls back a transaction on the database.

Format

ret = dbRollback(db_id);

Input

db_id scalar, database connection index number.

Output

ret scalar, 1 to indicate success and a 0 if the rollback fails.

35-448

dbRemoveDatabase

d

35-449

Remarks

A rollback is only possible if the SQL driver supports transactions and a
dbTransaction() has been started.

Note: For some databases, the rollback will fail and return 0 if there is an active query
using the database for a SELECT. Make the query inactive before doing the rollback.

Call dbGetLastError() to get information about errors.

dbSetConnectOptions

Purpose

Sets database-specific options.

Format

dbSetConnectOptions(db_id, db_options);

Input

db_id scalar, database connection index number.
db_
options

string, a semi-colon separated list of option names or
option=value pairs. Available options will depend
upon the database being used.

dbSetConnectOptions

d

Remarks

This must be done before the connection is opened or it has no effect (or you can
dbClose() the connection, call this function and dbOpen() the connection again).
The format of the options string is a semicolon separated list of option names or
option=value pairs. The options depend on the database client used:

ODBC
SQL_ATTR_ACCESS_MODE
SQL_ATTR_LOGIN_TIMEOUT
SQL_ATTR_CONNECTION_TIMEOUT
SQL_ATTR_CURRENT_CATALOG
SQL_ATTR_METADATA_ID
SQL_ATTR_PACKET_SIZE
SQL_ATTR_TRACEFILE
SQL_ATTR_TRACE
SQL_ATTR_CONNECTION_POOLING
SQL_ATTR_ODBC_VERSION

MySQL
CLIENT_COMPRESS
CLIENT_FOUND_ROWS
CLIENT_IGNORE_SPACE
CLIENT_SSL
CLIENT_ODBC
CLIENT_NO_SCHEMA
CLIENT_INTERACTIVE
UNIX_SOCKET
MYSQL_OPT_RECONNECT

PostgreSQL
connect_timeout
options
tty
requiressl
service

35-450

dbSetConnectOptions

d

35-451

DB2
SQL_ATTR_ACCESS_MODE
SQL_ATTR_LOGIN_TIMEOUT

OCI
OCI_ATTR_PREFETCH_ROWS
OCI_ATTR_PREFETCH_MEMORY

TDS
none

SQLite
QSQLITE_BUSY_TIMEOUT
QSQLITE_OPEN_READONLY
QSQLITE_ENABLE_SHARED_CACHE

Interbase
ISC_DPB_LC_CTYPE
ISC_DPB_SQL_ROLE_NAME

Example

// MySQL connection
// use an SSL connection to the server
dbSetConnectOptions(db_id, "CLIENT_SSL=1;

CLIENT_IGNORE_SPACE=1");

if not dbOpen();
// clears the connect option string
dbSetConnectOptions(db_id, "");
...

endif;

...

dbSetConnectOptions

d

// PostgreSQL connection
// enable PostgreSQL SSL connections
dbSetConnectOptions(db_id, "requiressl=1");
if not dbOpen();

// clear options
dbSetConnectOptions(db_id, "");
...

endif;

...

// ODBC connection
dbSetConnectOptions(db_id, "SQL_ATTR_ACCESS_MODE=

SQL_MODE_READ_ONLY;
SQL_ATTR_TRACE=
SQL_OPT_TRACE_ON");

// set ODBC options
if not dbOpen();

// don't try to set this option
dbSetConnectOptions(db_id, "");
...

endif;

dbSetDatabaseName

Purpose

Sets the connection's database name to name. To have effect, the database name
must be set before the connection is opened. Alternatively, you can dbClose()
the connection, set the database name, and call dbOpen() again.

Format

dbSetDatabaseName(db_id, database_name);

35-452

dbSetDatabaseName

d

35-453

Input

db_id scalar, database connection index number.
database_
name

string, database name to apply to specified database
connection.

Remarks

For the OCI (Oracle) driver, the database name is the TNS Service Name.

For the ODBC driver, the name can either be a DSN, a DSN filename (in which case
the file must have a .dsn extension), or a connection string.

For example, Microsoft Access users can use the following connection string to open
an .mdb file directly, instead of having to create a DSN entry in the ODBC manager:

...
db_id = dbAddDatabase("ODBC");
dbSetDatabaseName(db_id, "DRIVER=

{Microsoft Access Driver (*.mdb)};
FIL={MS Access};
DBQ=myaccessfile.mdb");

dbOpen(db_id);
...

See Also

dbGetDatabaseName

dbSetHostName

Purpose

Sets the specified database connection's host name.

dbSetHostName

d

Format

dbSetHostName(db_id, host_name);

Input

db_id scalar, database connection index number.
host_name string, the name to which the specified connection's

host name should be assigned.

Remarks

For this function to have an effect, it must be called before the database connection is
opened with dbOpen().

dbSetPassword

Purpose

Sets the database connection's password.

Format

dbSetPassword(db_id, pswd);

Input

db_id scalar, database connection index number.
pswd string, password for database.

35-454

dbSetPassword

d

35-455

Remarks

This function must be called before the connection is opened with dbOpen() to have
an effect.

See Also

dbGetPassword

dbSetPort

Purpose

Sets the specified database connection's port number.

Format

dbSetPort(db_id, port_num);

Input

db_id scalar, database connection index number.
port_num scalar, port number for database connection to use.

Remarks

This function must be called before the connection is opened with dbOpen() to have
an effect.

See Also

dbGetPort

dbSetPort

d

dbSetUserName

Purpose

Sets the specified database connection's user name.

Format

dbSetUserName(db_id, user_name);

Input

db_id scalar, database connection index number.
user_name string, user name to apply to specified database

connection.

Remarks

This function must be called before the connection is opened with dbOpen() to have
an effect.

See Also

dbGetUserName

dbTransaction

Purpose

Begins a transaction on the database.

Format

ret = dbTransaction(db_id);

35-456

dbSetUserName

d

35-457

Input

db_id scalar, database connection index number.

Output

ret scalar, 1 to indicate success and a 0 if the transaction
fails.

Example

//If 'dbTransaction' succeeds
if dbTransaction(db_id);

// All queries must succeed, or all fail.
if not dbExecQuery(db_id,

"INSERT INTO TEST...");
dbRollback(db_id);
errorlog("Query 1 failed");
end;

endif;

if not dbExecQuery(db_id,
"INSERT INTO TEST...");
dbRollback(db_id);
errorlog("Query 2 failed");
end;

endif;

dbCommit(db_id);
endif;

Remarks

This function can only be used with databases that support transactions.

dbTransaction

d

See Also

dbCommit, dbRollback

debug

Purpose

Runs a program under the source level debugger.

Format

debug filename;

Input

filename Literal, name of file to debug.

Remarks

See Debugging, Section 1.1.

declare

Purpose

Initializes global variables at compile time.

Format

declare [[type]] symbol [[aop clist]];

35-458

debug

d

35-459

Input

type optional literal, specifying the type of the symbol.
matrix

string

array

sparse matrix

struct structure_type

if type is not specified, matrix is assumed. Set
type to string to initialize a string or string array
variable.

symbol the name of the symbol being declared.
aop the type of assignment to be made.

= if not initialized, initialize. If already
initialized, reinitialize.

!= if not initialized, initialize. If already
initialized, reinitialize.

:= if not initialized, initialize. If already
initialized, redefinition error.

?= if not initialized, initialize. If already
initialized, leave as is.

If aop is specified, clist must be also.
clist a list of constants to assign to symbol.

If aop clist is not specified, symbol is initialized
as a scalar 0 or a null string.

Remarks

The declare syntax is similar to the let statement.

declare

d

declare generates no executable code. This is strictly for compile time ini-
tialization. The data on the right-hand side of the equal sign must be constants. No
expressions or variables are allowed.

declare statements are intended for initialization of global variables that are used by
procedures in a library system.

It is best to place declare statements in a separate file from procedure definitions.
This will prevent redefinition errors when rerunning the same program without clearing
your workspace.

The optional aop and clist arguments are allowed only for declaring matrices,
strings, and string arrays. When you declare an N-dimensional array, sparse matrix,
or structure, they will be initialized as follows:

Variable Type Initializes To
N-dimensional array 1-dimensional array of 1 containing 0
sparse matrix empty sparse matrix
structure structure containing empty and/or zeroed

out members

Complex numbers can be entered by joining the real and imaginary parts with a sign
(+ or -); there should be no spaces between the numbers and the sign. Numbers with no
real part can be entered by appending an 'i' to the number.

There should be only one declaration for any symbol in a program. Multiple declar-
ations of the same symbol should be considered a programming error. When GAUSS is
looking through the library to reconcile a reference to a matrix or a string, it will quit
looking as soon as a symbol with the correct name is found. If another symbol with the
same name existed in another file, it would never be found. Only the first one in the
search path would be available to programs.

Here are some of the possible uses of the three forms of declaration:

!=, Interactive programming or any situation where a global by the

35-460

declare

d

35-461

= same name will probably be sitting in the symbol table when the
file containing the declare statement is compiled. The symbol
will be reset.

:= Redefinition is treated as an error because you have probably just
outsmarted yourself. This will keep you out of trouble because it
won't allow you to zap one symbol with another value that you
didn't know was getting mixed up in your program. You probably
need to rename one of them.

?= Interactive programming where some global defaults were set
when you started and you don't want them reset for each
successive run even if the file containing the declare's gets
recompiled. This can get you into trouble if you are not careful.

The declare statement warning level is a compile option. Call config in the com-
mand line version of GAUSS or select Preferences from the Configure menu in the
graphical user interface to edit this option. If declare warnings are on, you will be
warned whenever a declare statement encounters a symbol that is already ini-
tialized. Here's what happens when you declare a symbol that is already initialized
when declare warnings are turned on:

declare != Reinitialize and warn.
declare := End program with fatal error.
declare ?= Leave as is and warn.

If declare warnings are off, no warnings are given for the != and ?= cases.

Example

declare matrix x,y,z;

x = 0 y = 0 z = 0
declare string x = "This string.";

declare

d

x = "This string."

declare matrix x;

x = 0

//Initialize 'x' with the specified values and
//return a warning if 'x'already exists AND
//the 'Compile Options: declare warnings' is
//selected
declare matrix x != { 1 2 3, 4 5 6, 7 8 9 };

1 2 3
x = 4 5 6

7 8 9

declare matrix x[3,3] = 1 2 3 4 5 6 7 8 9;

1 2 3
x = 4 5 6

7 8 9

declare matrix x[3,3] = 1;

1 1 1
x = 1 1 1

1 1 1

declare matrix x[3,3];

0 0 0
x = 0 0 0

0 0 0

declare matrix x = 1 2 3 4 5 6 7 8 9;

35-462

declare

d

35-463

1
2
3

x = 4
5
6
7
8
9

//Create a 2x1 character matrix
declare matrix x = alpha beta;

//To print character matrices, the '$' operator must
//be prepended to the variable name
print $x;

The code snippet directly above, produces:

ALPHA
BETA

//Since this is declared as a matrix, the text in
//quotes will create a character vector, rather
//than a string array
declare matrix x = "mean" "variance";

print $x;

produces:

mean variance
declare array a;

a is a 1-dimensional array of 1 containing 0.

declare

d

declare sparse matrix sm;

sm is an empty sparse matrix.

struct mystruct {
matrix m;
string s;
string array sa;
array a;
sparse matrix sm;

};

declare struct mystruct ms;

ms is a mystruct structure, with its members set as follows:

ms.m empty matrix
ms.s null string
ms.sa 1x1 string array containing a null string
ms.a 1-dimensional array of 1 containing 0
ms.sm empty sparse matrix

See Also

let, external

delete

Purpose

Deletes global symbols from the symbol table.

35-464

delete

d

35-465

Format

delete -flags symbol_list;
delete symbol_list;

Input

flags specify the type(s) of symbols to be deleted
p procedures
k keywords
f fn functions
m matrices
s strings
g only procedures with global references
l only procedures with all local references
n no pause for confirmation

symbol literal, name of symbol to be deleted. If symbol ends in an
asterisk, all symbols matching the leading characters will be
deleted.

Remarks

This completely and irrevocably deletes a symbol from GAUSS's memory and work-
space.

Flags must be preceded by a dash (e.g. -pfk). If the n (no pause) flag is used, you
will not be asked for confirmation for each symbol.

This command is supported only from interactive level. Since the interpreter executes
a compiled pseudo-code, this command would invalidate a previously compiled code
image and therefore would destroy any program it was a part of. If any symbols are

delete

d

deleted, all procedures, keywords and functions with global references to those sym-
bols will be deleted as well.

Example

//Create a matrix 'x'
x = { 1, 2, 3, 4 };

//'show' returns information about active symbols
show x;

This should return:

32 bytes x MATRIX 4,1

delete -m x;

At the Delete?[Yes No Previous Quit] prompt, enter y.

show x;

x no longer exists.

delete (dataloop)

Purpose

Removes specific rows in a data loop based on a logical expression.

Format

deletelogical_expression;

35-466

delete (dataloop)

d

35-467

Remarks

Deletes only those rows for which logical_expression is TRUE. Any vari-
ables referenced must already exist, either as elements of the source data set, as
extern's, or as the result of a previous make, vector, or code statement.

GAUSS expects logical_expression to return a row vector of 1's and 0's. The
relational and other operators (e.g. <) are already interpreted in terms of their dot equi-
valents (.<), but it is up to the user to make sure that function calls within
logical_expression result in a vector.

Example

delete age < 40 or sex == 'FEMALE';

See Also

select (dataloop)

deleteFile

Purpose

Deletes files.

Format

ret = deleteFile(name);

Input

name string or NxK string array, name of file or files to
delete.

deleteFile

d

Output

ret scalar or NxK matrix, 0 if successful.

Remarks

The return value, ret, is scalar if name is a string. If name is an NxK string
array, ret will be an NxK matrix reflecting the success or failure of each separate
file deletion.

deleteFile calls the C library unlink function for each file. If unlink fails it
sets the C library errno value. deleteFile returns the value of errno if unlink
fails, otherwise it returns zero. If you want detailed information about the reason for
failure, consult the C library unlink documentation for your platform for details.

delif

Purpose

Deletes rows from a matrix. The rows deleted are those for which there is a 1 in
the corresponding row of e.

Format

y = delif(x, e);

Input

x NxK data matrix.
e Nx1 logical vector (vector of 0's and 1's).

35-468

delif

d

35-469

Output

y MxK data matrix consisting of the rows of y for which
there is a 0 in the corresponding row of e. If no rows
remain, delif will return a scalar missing.

Example

Example 1: Basic usage with column vector

//Create column vector
x = { 1.5,

0.8,
0.7,
1.2,
1.9,
0.2,
2.0 };

//Create logical vector of 1's and 0's
e = x .> 1;

//Assign 'new_x' to be equal to 'x'
//with the rows removed in which 'e' equals 1
new_x = delif(x, e);

After the code above, new_x should equal:

0.8
0.7
0.2

Example 2: Matrix case

In this example, we will remove all observations in which the value of the third column
is 3.

delif

d

//Create a matrix with 3 columns
x = { 20 10 2,

33 13 3,
37 12 2,
34 12 3,
35 8 1,
25 15 2,
34 8 2,
37 8 1,
37 3 1,
31 4 1 };

//Create logical vector of 1's and 0's
e = x[.,3] .== 3;

//Assign 'new_x' to be equal to 'x' without
//the rows in which the third column equals 3
new_x = delif(x, e);

After the code above, new_x should be equal to:

20 10 2
37 12 2
35 8 1
25 15 2
34 8 2
37 8 1
37 3 1
31 4 1

Example 3: Create new 'x' and 'y' based on 'y'

35-470

delif

d

35-471

In this example, we will remove all observations from x and y in which the value of
the third column is 3.

//Create 'y' matrix
y = { 1,

1,
0,
2,
0,
1,
1,
0,
0,
2 };

//Create 'x' matrix
x = { 1.6841 -0.1203,

-1.0433 0.2564,
1.2207 -1.4388,
0.7423 0.2133,
0.7288 1.0434,
0.8115 1.8166,

-0.3230 1.4763,
1.2944 0.7635,
1.3839 0.6648,

-0.6330 0.4845 };

//Create logical vector of 1's and 0's
e = y .== 2;

//Assign 'x' to be equal to 'x' without
//the rows in which 'y' equals 2
x = delif(x, e);

delif

d

//Remove all observations in which 'y' equals 2
y = delif(y, e);

After the code above, y and x should equal:

y = 1 x = 1.6841 -0.1203
1 -1.0433 0.2564
0 1.2207 -1.4388
0 0.7288 1.0434
1 0.8115 1.8166
1 -0.3230 1.4763
0 1.2944 0.7635
0 1.3839 0.6648

Example 4: Logical comparison of multiple columns

x = { 0 10 20,
30 40 50,
60 70 80 };

//Logical vector, comparing two columns
e =(x[.,1] .gt 0) .and (x[.,3] .lt 100);

y = delif(x,e);

After the code above:

y = 0 10 20

All rows for which the elements in column 1 are greater than 0 and the elements in
column 3 are less than 100 are deleted.

Remarks

The input e will usually be generated by a logical expression using dot operators. For
instance:

35-472

delif

d

35-473

//Create a vector 'e' with a 1 for each row in which the
//value in the second column of 'x' is less than 100,
//otherwise a 0
e = x[.,2] .> 100;

y = delif(x, e);

Or the equivalent statement:

y = delif(x, x[.,2] .> 100);

will delete all rows of x whose second element is greater than 100. The remaining
rows of x will be assigned to y.

See Also

selif

delrows

Purpose

Deletes rows from a matrix. The second argument contains the indices of the
rows to be deleted.

Format

y = delrows(x, r);

Input

x NxK data matrix.
r Mx1 vector, indices of rows to delete.

delrows

d

Output

y PxK matrix contaning the remaining rows of x. If no
rows remain, y will be an empty matrix.

Remarks

If r is an empty matrix, the result will be unchanged. Negative values of r are counted
from the end of the matrix, therefore:

r = -1;

y = delrows(x, r);

will delete last row of x . The remaining rows of x will be assigned to y.

Example

x = { 0 10 20,
30 40 50,
32 42 52,
35 45 55,
60 70 80 };

r = { 2,
4 };

y = delrows(x,r);

After the code above:

y = 0 10 20
32 42 52
60 70 80

Rows 2 and 4 are deleted.

35-474

delrows

d

35-475

See Also

delif

denseToSp

Purpose

Converts a dense matrix to a sparse matrix.

Format

y = denseToSp(x, eps);

Input

x MxN dense matrix.
eps scalar, elements of x whose absolute values are less

than or equal to eps will be treated as zero.

Output

y MxN sparse matrix.

Remarks

A dense matrix is just a normal format matrix.

Since sparse matrices are strongly typed in GAUSS, y must be defined as a sparse
matrix before the call to denseToSp.

denseToSp

d

Example

//Declare 'y' as a sparse matrix
sparse matrix y;

x = { 0.01 0.00 0.01 1.00,
0.00 4.00 0.02 0.00,
0.00 0.01 0.00 0.00,
0.02 0.00 -2 0.00 };

//Create a sparse matrix 'y' from 'x' and set all elements
//less than 0.04 equal to 0
y = denseToSp(x,0.04);

After the code above, y is equal to:

0.00 0.00 0.00 1.00
0.00 4.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 -2.00 0.00

See Also

spCreate, spDenseSubmat, spToDense

denseToSpRE

Purpose

Converts a dense matrix to a sparse matrix, using a relative epsilon.

Format

y = denseToSpRE(x, reps);

35-476

denseToSpRE

d

35-477

Input

x MxN dense matrix.
reps scalar, relative epsilon. Elements of x will be treated as

zero if their absolute values are less than or equal to
reps multiplied by the mean of the absolute values of
the non-zero values in x.

Output

y MxN sparse matrix.

Remarks

A dense matrix is just a normal format matrix.

Since sparse matrices are strongly typed in GAUSS, y must be defined as a sparse
matrix before the call to denseToSpRE.

Example

sparse matrix y;
x = { -9 0 0 1,

0 4 0 0,
5 0 0 7,
0 0 -2 2.2 };

y = denseToSpRE(x,0.5);
d = spToDense(y);

After the code above, d is equal to:

denseToSpRE

d

-9.00 0.00 0.00 0.00
0.00 4.00 0.00 0.00
5.00 0.00 0.00 7.00
0.00 0.00 0.00 2.20

You can calculate the mean of the non-zero elements of x like this:

//Create a matrix of 1's and 0's with a 1 where the
//corresponding element in 'x' is not equal to 0
mask = x ./= 0;

//Calculate the sum of 'mask', this is the number of
//non-zeros in 'x'
nnz = sumc(sumc(mask));

//Divide the sum of the absolute value of 'x' by the number
//of non-zeros
nzmean = sumc(sumc(abs(x)))/nnz;

nnz = 7
nzmean = 4.31

The call to denseToSpRE towards the start of this example, removed all non-zeros
less than 0.5*nzmean, or approximately 2.16.

See Also

denseToSp, spCreate, spToDense

denToZero

Purpose

Converts every denormal to a 0 in a matrix or array.

35-478

denToZero

d

35-479

Format

y = denToZero(x);

Input

x A matrix or an N-dimensional array.

Output

y A matrix or an N-dimensional array with the same
orders as the input. Every denormal in the input will be
converted to 0 in the output.

Example

x = { 1, exp(-724.5), 3 };

//If 'x' contains any denormals set them to 0
if isden(x);

x2 = denToZero(x);
endif;

After the first line above, x is equal to:

1.000e+000
2.902e-057
3.000e+000

At the end of the example, x is equal to:

1.000e+000
0.000e+000
3.000e+000

denToZero

d

design

Purpose

Creates a design matrix of 0's and 1's from a column vector of numbers specifying
the columns in which the 1's should be placed.

Format

y = design(x);

Input

x Nx1 vector.

Output

y NxK matrix, where K = maxc(x); each row of y will
contain a single 1, and the rest 0's. The one in the ith
row will be in the round(x[i,1]) column.

Remarks

Note that x does not have to contain integers: it will be rounded to nearest if neces-
sary.

Example

This example uses design to interchange the rows of a matrix.

//Suppress printing of digits after the decimal place
format /rd 6,0;

//Set the rng seed for repeatable random numbers

35-480

design

d

35-481

rndseed 345425235;

//Create a 4x4 matrix of random integers with a standard
//deviation of 10
x = round(10*rndn(4,4));
print x;

The code above returns:

4 12 -1 -10
5 -3 12 8

12 -2 21 -21
-7 -13 0 -1

Contintuing on with the example:

//The order of the rows we want
rowOrder = { 3, 1, 4, 2 };

//Create a permutation matrix from 'rowOrder'
p = design(rowOrder);
print p;

This section returns:

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

//Create a permuted version of 'x' with our preferred row
//order
x2 = p*x;
print x2;

This final section returns:

design

d

12 -2 21 -21
4 12 -1 -10

-7 -13 0 -1
5 -3 12 8

This last print statement shows us that we have indeed changed the order of the rows.
In x the row order is 1, 2, 3, 4. However, in x2, the row order is 3, 1, 4, 2 (i.e. the
third row is now first, the first row is now second, etc.)

Source

design.src

See Also

cumprodc, cumsumc, recserrc

det

Purpose

Returns the determinant of a square matrix.

Format

y = det(x);

Input

x NxN square matrix or K-dimensional array where the
last two dimensions are NxN .

Output

y scalar or [K-2]-dimensional array, the determinant(s) of

35-482

det

d

35-483

x.

Remarks

x may be any valid expression that returns a square matrix (number of rows equals
number of columns) or a K-dimensional array where the last two dimensions are of
equal size.

If x is a K-dimensional array, the result will be a [K-2]-dimensional array containing
the determinants of each 2-dimensional array described by the two trailing dimensions
of x. In other words, for a 10x4x4 array, the result will be a 1-dimensional array of 10
elements containing the determinants of each of the 10 4x4 arrays contained in x.

det computes an LU decomposition.

detl can be much faster in many applications.

Example

x = { 3 2 1,
0 1 -2,
1 3 4 };

y = det(x);

format /rd 3,0;
print "The determinant of y =" y;

The code above, produces:

The determinant of y = 25

See Also

detl

det

d

detl

Purpose

Returns the determinant of the last matrix that was passed to one of the intrinsic
matrix decomposition routines.

Format

y = detl;

Remarks

Whenever one of the intrinsic matrix decomposition routines is executed, the determ-
inant of the matrix is also computed and stored in a system variable. This function will
return the value of that determinant and, because the value has been computed in a pre-
vious instruction, this will require no computation.

The following functions will set the system variable used by detl:

chol(x)
crout(x)
croutp(x)
det(x)
inv(x)
invpd(x)
solpd(y, x) determinant of x

Example

If both the inverse and the determinant of the matrix are needed, the following two
commands will return both with the minimum amount of computation:

35-484

detl

d

35-485

xi = inv(x);
xd = detl;

The function det(x) returns the determinant of a matrix using the Crout decom-
position. If you only want the determinant of a positive definite matrix, the following
code will be the fastest for matrices larger than 10x10:

//The 'call' keyword tells GAUSS to ignore the values
//returned from chol
call chol(x);
xd = detl;

The Cholesky decomposition is computed and the result from that is discarded. The
determinant saved during that instruction is retrieved using detl. This can execute up
to 2.5 times faster than det(x) for large positive definite matrices.

See Also

det

dfft

Purpose

Computes a discrete Fourier transform.

Format

y = dfft(x);

Input

x Nx1 vector.

dfft

d

Output

y Nx1 vector.

Remarks

The transform is divided by N.

This uses a second-order Goertzel algorithm. It is considerably slower than fft, but it
may have some advantages in some circumstances. For one thing, N does not have to
be an even power of 2.

Source

dfft.src

See Also

dffti, fft, ffti

dffti

Purpose

Computes inverse discrete Fourier transform.

Format

y = dffti(x);

Input

x Nx1 vector.

35-486

dffti

d

35-487

Output

y Nx1 vector.

Remarks

The transform is divided by N.

This uses a second-order Goertzel algorithm. It is considerably slower than ffti, but
it may have some advantages in some circumstances. For one thing, N does not have to
be an even power of 2.

Source

dffti.src

See Also

fft, dffti, ffti

diag

Purpose

Creates a column vector from the diagonal of a matrix.

Format

y = diag(x);

Input

x NxK matrix or L-dimensional array where the last two
dimensions are NxK.

diag

d

Output

y min(N,K)x1 vector or L-dimensional array where the
last two dimensions are min(N,K)x1.

Remarks

If x is a matrix, it need not be square. Otherwise, if x is an array, the last two dimen-
sions need not be equal.

If x is an array, the result will be an array containing the diagonals of each 2-dimen-
sional array described by the two trailing dimensions of x. In other words, for a 10x4x4
array, the result will be a 10x4x1 array containing the diagonals of each of the 10 4x4
arrays contained in x.

diagrv reverses the procedure and puts a vector into the diagonal of a matrix.

Example

Get the diagonal from a matrix.

rndseed 458716;
x = rndu(3,3);
y = diag(x);
print "x = " x;
print "y = " y;

After the above code,

x =
0.96748215 0.31791692 0.46520760
0.04558545 0.78613263 0.20528802
0.73825699 0.30528745 0.73350290
y =

35-488

diag

d

35-489

0.96748215
0.78613263
0.73350290

Using diag function for a 3x4x4 dimensional array.

x = rndn(48,1);

//Reshape the 48x1 vector into a 3x4x4 dimensional array
x = areshape(x, 3|4|4);
d = diag(x);

Now x is equal to:

Plane [1,.,.]

0.082720153 -0.49502230 -0.40613944 1.9283280
0.23583965 -0.24230946 -0.66047073 -0.73098141
-1.1187279 -0.27867822 -1.7846293 -0.44603382

0.030071777 -1.0387861 0.23768949 0.019151917

Plane [2,.,.]

-1.7238416 0.17660645 -0.14798006 0.072065419
1.3685721 -0.11216325 -0.12985589 1.1816008

0.63154571 -1.4945397 -1.7276380 -0.28275797
-0.71832623 -1.3193506 -0.53934998 -0.78348484

Plane [3,.,.]

-0.71111209 -0.30818842 -0.38982318 -2.7205066
-1.5455077 -0.27131853 0.98686691 0.10870999
0.57916876 1.8180884 0.76104693 1.1237605
1.0727710 -1.1071168 1.7443178 -1.0684433

and d is a 3x4x1 array containing the diagonals from x above.

diag

d

Plane [1,.,.]

0.082720153
-0.24230946
-1.7846293

0.019151917

Plane [2,.,.]

-1.7238416
-0.11216325
-1.7276380

-0.78348484

Plane [3,.,.]

-0.71111209
-0.27131853
0.76104693
-1.0684433

See Also

diagrv

diagrv

Purpose

Inserts a vector into the diagonal of a matrix.

Format

y = diagrv(x, v);

35-490

diagrv

d

35-491

Input

x NxK matrix.
v min(N,K)x1 vector.

Output

y NxK matrix equal to x with its principal diagonal
elements equal to those of v.

Remarks

diag reverses the procedure and pulls the diagonal out of a matrix.

Example

x = rndu(3,3);
v = ones(3,1);
y = diagrv(x,v);

After the code above:

0.614 0.686 0.633 1.000 1.000 0.686 0.633
x = 0.802 0.185 0.707 v = 1.000 y = 0.802 1.000 0.707

0.551 0.761 0.418 1.000 0.551 0.761 1.000

See Also

diag

diagrv

d

digamma

Purpose

Computes the digamma function.

Format

y = digamma(x);

Input

x MxN matrix or N-dimensional array.

Output

y MxN matrix or N-dimensional array, digamma.

Remarks

The digamma function is the first derivative of the log of the gamma function with
respect to its argument.

dlibrary

Purpose

Dynamically links and unlinks shared libraries.

35-492

digamma

d

35-493

Format

dlibrary lib1 [[lib2]]...;
dlibrary -a lib1 [[lib2]]...;
dlibrary -d;
dlibrary;

Input

lib1
lib2...

literal, the base name of the library or the pathed name
of the library.

dlibrary takes two types of arguments, ''base'' names
and file names. Arguments without any "/" path separators
are assumed to be library base names, and are expanded
by adding the suffix .so, .dll or .dylib, depending on
the platform. They are searched for in the default dynamic
library directory. Arguments that include "/" path
separators are assumed to be file names, and are not
expanded. Relatively pathed file names are assumed to be
specified relative to the current working directory, not
relative to the dynamic library directory.

-a append flag, the shared libraries listed are added to the
current set of shared libraries rather than replacing
them. For search purposes, the new shared libraries
follow the already active ones. Without the -a flag,
any previously linked libraries are dumped.

-d dump flag, ALL shared libraries are unlinked and the
functions they contain are no longer available to your
programs. If you use dllcall to call one of your
functions after executing a

dlibrary -d

dlibrary

d

your program will terminate with an error.

Remarks

l If no flags are used, the shared libraries listed are linked into GAUSS and any
previously linked libraries are dumped. When you call dllcall, the shared
libraries will be searched in the order listed for the specified function. The first
instance of the function found will be called.

l dlibrary with no arguments prints out a list of the currently linked shared
libraries. The order in which they are listed is the order in which they are
searched for functions.

l dlibrary recognizes a default directory in which to look for dynamic
libraries. You can specify this by setting the variable dlib_path in
gauss.cfg. Set it to point to a single directory, not a sequence of directories.
sysstate, case 24, may also be used to get and set this default.

l GAUSS maintains its own shared libraries which are listed when you execute
dlibrary with no arguments, and searched when you call dllcall. The
default shared library or libraries are searched last. You can force them to be
searched earlier by listing them explicitly in a dlibrary statement. They are
always active and are not unlinked when you execute

dlibrary -d

For more information, see FOREIGN LANGUAGE INTERFACE, CHAPTER 1.

Examples

Example 1: Loading a shared library and unloading previously loaded shared lib-
raries

dlibrary mylib;

35-494

dlibrary

d

35-495

The above command passes the base name of the shared library to load. GAUSS will
expand this base name to a platform specific shared library name. The expanded name
on Windows ismylib.dll. On Linux it is libmylib.so and on Mac,
libmylib.dylib. Since we did not pass the -a flag, GAUSS, will unload any shared
libraries that were previously loaded with the dlibrary command.
Example 2: Loading a shared library and keeping previously loaded shared lib-
raries

dlibrary -a mylib;

Since we passed the -a flag, GAUSS will not unload any libraries when it loads
mylib.

See Also

dllcall, sysstate

dllcall

Purpose

Calls functions located in dynamic libraries.

Format

dllcall [-r] [-v] func(arg1...argN);

dllcall works in conjunction with dlibrary. dlibrary is used to link
shared libraries into GAUSS; dllcall is used to access the functions con-
tained in those shared libraries. dllcall searches the shared libraries (see
dlibrary for an explanation of the search order) for a function named func,
and calls the first instance it finds. The default shared libraries are searched last.

dllcall

d

Input

func the name of a function contained in a shared library
(linked into GAUSS with dlibrary). If func is
not specified or cannot be located in a shared library,
dllcall will fail.

arg# arguments to be passed to func, optional. These
must be simple variable references; they cannot be
expressions.

-r optional flag. If -r is specified, dllcall examines
the value returned by func, and fails if it is nonzero.

-v optional flag. Normally, dllcall passes parameters
to func in a list. If -v is specified, dllcall passes
them in a vector. See below for more details.

Remarks

func should be written to:

1. Take 0 or more pointers to doubles as arguments.
2. Take arguments either in a list or a vector.
3. Return an integer.

In C syntax, func should take one of the following forms:

1. int func(void);
2. int func(double *arg1 [, arg2...argN]);

3. int func(double *arg[]);

dllcall can pass a list of up to 100 arguments to func; if it requires more argu-
ments than that, you MUST write it to take a vector of arguments, and you MUST

35-496

dllcall

d

35-497

specify the -v flag when calling it. dllcall can pass up to 1000 arguments in vector
format. In addition, in vector format dllcall appends a null pointer to the vector, so
you can write func to take a variable number of arguments and just test for the null
pointer.

Arguments are passed to func by reference. This means you can send back more than
just the return value, which is usually just a success/failure code. (It also means that
you need to be careful not to overwrite the contents of matrices or strings you want to
preserve.) To return data from func, simply set up one or more of its arguments as
return matrices (basically, by making them the size of what you intend to return), and
inside func assign the results to them before returning.

For more information, see FOREIGN LANGUAGE INTERFACE, CHAPTER 1.

See Also

dlibrary, sysstate

do while,do until

Purpose

Executes a series of statements in a loop as long as a given expression is true (or
false).

do while,do until

d

Format

do while expression;
or
do until expression;
.
.
.
statements in loop
.
.
.
endo;

Remarks

expression is any expression that returns a scalar. It is TRUE if it is nonzero and
FALSE if it is zero.

In a do while loop, execution of the loop will continue as long as the expression is
TRUE.

In a do until loop, execution of the loop will continue as long as the expression is
FALSE.

The condition is checked at the top of the loop. If execution can continue, the state-
ments of the loop are executed until the endo is encountered. Then GAUSS returns to
the top of the loop and checks the condition again.

The do loop does not automatically increment a counter. See the first example below.

do loops may be nested.

It is often possible to avoid using loops in GAUSS by using the appropriate matrix oper-
ator or function. It is almost always preferable to avoid loops when possible, since the
corresponding matrix operations can be much faster.

35-498

do while,do until

d

35-499

Example

format /rdn 1,0;
space = " ";
comma = ",";
i = 1;
do while i <= 4;

j = 1;
do while j <= 3;

print space i comma j;;
j = j+1;

endo;
i = i+1;
print;

endo;

The code above prints the following output:

1,1 1,2 1,3
2,1 2,2 2,3
3,1 3,2 3,3
4,1 4,2 4,3

In the example above, two nested loops are executed and the loop counter values are
printed out. Note that the inner loop counter must be reset inside of the outer loop
before entering the inner loop. An empty print statement is used to print a carriage
return/line feed sequence after the inner loop finishes.

The following are examples of simple loops that execute a predetermined number of
times. These loops will both have the result shown.

First loop:

format /rd 1,0;
i = 1;
do while i <= 10;

do while,do until

d

print i;;
i = i+1;

endo;

produces:

1 2 3 4 5 6 7 8 9 10

Second loop:

format /rd 1,0;
i = 1;
do until i > 10;

print i;;
i = i+1;

endo;

produces:

1 2 3 4 5 6 7 8 9 10

See Also

continue, break

dos

Purpose

Provides access to the operating system from within GAUSS.

Format

dos commd;

35-500

dos

d

35-501

Input

commd literal or ^string, the OS command to be executed.

Portability

Linux

Control and output go to the controlling terminal, if there is one.

This function may be used in terminal mode.

Windows

The dos function opens a new terminal.

Running programs in the background is allowed on both of the aforementioned platforms.

Remarks

This allows all operating system commands to be used from within GAUSS. It allows
other programs to be run even though GAUSS is still resident in memory.

If no operating system command (for instance, dir or copy) or program name is spe-
cified, then a shell of the operating system will be entered which can be used just like
the base level OS. The exit command must be given from the shell to get back into
GAUSS. If a command or program name is included, the return to GAUSS is auto-
matic after the OS command has been executed.

All matrices are retained in memory when the OS is accessed in this way. This com-
mand allows the use of word processing, communications, and other programs from
within GAUSS.

Do not execute programs that terminate and remain resident because they will be left
resident inside of GAUSS's workspace. Some examples are programs that create
RAM disks or print spoolers.

dos

d

If the command is to be taken from a string variable, the ^ (caret) must precede the
string.

The shorthand ">" can be used in place of "dos".

Example

cmdstr = "atog mycfile";
dos ^cmdstr;

This will run the ATOG utility, using mycfile.cmd as the ATOG command file.
For more information, see ATOG, CHAPTER 1.

> dir *.prg;

This will use the DOS dir command to print a directory listing of all files with a
.prg extension on Windows. When the listing is finished, control will be returned to
GAUSS.

> ls *.prg

This will perform the same operation on Linux.

dos;

This will cause a second level OS shell to be entered. The OS prompt will appear and
OS commands or other programs can be executed. To return to GAUSS, type exit.

See Also

exec

35-502

dos

d

35-503

doswin

Purpose

Opens the DOS compatibility window with default settings. NOTE: This function
is no longer supported. This documentation is provided as a reference for under-
standing legacy code. In many cases, you may simply comment out calls to
doswin and the program will run successfully in the program input/output win-
dow.

Format

doswin;

Portability

Windows only

Remarks

Calling doswin is equivalent to:

call
DOSWinOpen("", error(0));

Source

gauss.src

DOSWinCloseall

Purpose

Closes the DOS compatibility window. NOTE: The DOS compatibility window is
no longer supported. This documenation is provided as a reference for

doswin

d

understanding legacy code.

Format

DOSWinCloseall;

Portability

Windows only

Remarks

Calling DOSWinCloseall closes the DOS window immediately, without asking for
confirmation. If a program is running, its I/O reverts to the Command window.

Example

let attr = 50 50 7 0 7;
if not DOSWinOpen("Legacy Window", attr);

errorlog "Failed to open DOS window, aborting";
stop;

endif;
.
.
.

DOSWinCloseall;

DOSWinOpen

Purpose

Opens the DOS compatibility window and gives it the specified title and attrib-
utes. NOTE: This function is no longer supported. This documentation is provided
as a reference for understanding legacy code. In many cases, you may simply

35-504

DOSWinOpen

d

35-505

comment out calls to DOSWinOpen and the program will run successfully in the
program input/output window.

Format

ret = DOSWinOpen(title, attr);

Input

title string, window title.
attr 5x1 vector or scalar missing, window attributes.

[1] window x position
[2] window y position
[3] text foreground color
[4] text background color
[5] close action bit flags

bit 0 (1's
bit)

issue dialog

bit 1 (2's
bit)

close window

bit 2 (4's
bit)

stop program

Output

ret scalar, success flag, 1 if successful, 0 if not.

Portability

Windows only

DOSWinOpen

d

Remarks

If title is a null string (''''), the window will be titled ''GAUSS-DOS''.

Defaults are defined for the elements of attr. To use the default, set an element to
a missing value. Set attr to a scalar missing to use all defaults. The defaults are
defined as follows:

[1] varies use x position of previous DOS window
[2] varies use y position of previous DOS window
[3] 7 white foreground
[4] 0 black background

[5] 6 4+2: stop program and close window without
confirming

If the DOS window is already open, the new title and attr will be applied to it.
Elements of attr that are missing are not reset to the default values, but are left as
is.

To set the close action flags value (attr[5]), just sum the desired bit values. For
example:

stop program (4) + close window (2) + confirm close (1) = 7

The close action flags are only relevant when a user attempts to interactively close the
DOS window while a program is running. If GAUSS is idle, the window will be
closed immediately. Likewise, if a program calls DOSWinCloseall, the window is
closed, but the program does not get terminated.

Example

let attr = 50 50 7 0 7;

if not DOSWinOpen("Legacy Window", attr);
errorlog "Failed to open DOS window, aborting";

35-506

DOSWinOpen

d

35-507

stop;
endif;

This example opens the DOS window at screen location (50,50), with white text on a
black background. The close action flags are 4 + 2 + 1 (stop program + close window
+ issue confirm dialog) = 7. Thus, if the user attempts to close the window while a pro-
gram is running, he/she will be asked for confirmation. Upon confirmation, the window
will be closed and the program terminated.

dot

Purpose

Returns a scalar dot product of the columns of two matrices.

Format

z = dot(x, y);

Input

x Nx1 vector or NxK matrix.
y Nx1 vector or NxK matrix.

Output

z scalar or Kx1 dot product

Examples

Example 1: Basic usage

dot

d

//Create two 4x1 column vectors
x = { 5,

9,
3,
4 };

y = { 9,
-6,
8,
1 };

//Compute dot product
z = dot(x,y);

print "z = " z;

After the code above:

z = 19

Example 2: Dot product of the corresponding columns of two matrices

//Create two 4x2 matrices
x = { 5 1,

9 3,
3 8,
4 2 };

y = { 9 8,
-6 4,
8 3,
1 -2 };

//Compute dot product
z = dot(x, y);

35-508

dot

d

35-509

print "z = " z;

After the code above:

z = 19
40

Remarks

Inputs x and y should have the same columns.

See Also

crossprd

dotfeq,dotfge, dotfgt,dotfle,dotflt,dotfne

Purpose

Fuzzy comparison functions. These functions use _fcmptol to fuzz the com-
parison operations to allow for roundoff error.

Format

y = dotfeq(a, b);
y = dotfge(a, b);
y = dotfgt(a, b);
y = dotfle(a, b);
y = dotflt(a, b);
y = dotfne(a, b);

dotfeq,dotfge, dotfgt,dotfle,dotflt,dotfne

d

Input

a NxK matrix, first matrix.
b LxM matrix, second matrix, ExE compatible with a.

Global Input

_fcmptol scalar, comparison tolerance. The default value is 1.0e-
15.

Output

y max(N,L) by max(K,M) matrix of 1's and 0's.

Remarks

The return value is 1 if TRUE and 0 if FALSE.

The statement:

y = dotfeq(a,b);

is equivalent to:

y = a .eq b;

The calling program can reset _fcmptol before calling these procedures:

_fcmptol = 1e-12;

Example

x = pi*ones(2,2);

35-510

dotfeq,dotfge, dotfgt,dotfle,dotflt,dotfne

d

35-511

y = x;
y[1,1] = 2*pi;

//Test for elements where 'x' is > 'y'
t = dotfge(x,y);

x = 3.14 3.14 y = 6.28 3.14 t = 0.00 1.00
3.14 3.14 3.14 3.14 1.00 1.00

Continuing with the data above:

//Test for elements where 'x' is < 'y '
t = dotflt(x,y);

t = 1.00 0.00
0.00 0.00

Source

fcompare.src

Globals

_fcmptol

See Also

feq-fne

dotfeqmt,dotfgemt,dotfgtmt,dotflemt,dotfltmt,dotfnemt

Purpose

Fuzzy comparison functions. These functions use the fcmptol argument to
fuzz the comparison operations to allow for roundoff error.

dotfeqmt,dotfgemt,dotfgtmt,dotflemt,dotfltmt,dotfnemt

d

Format

y = dotfeqmt(a, b, fcmptol);
y = dotfgemt(a, b, fcmptol);
y = dotfgtmt(a, b, fcmptol);
y = dotflemt(a, b, fcmptol);
y = dotfltmt(a, b, fcmptol);
y = dotfnemt(a, b, fcmptol);

Input

a NxK matrix, first matrix.
b LxM matrix, second matrix, ExE compatible with a.
fcmptol scalar, comparison tolerance.

Output

y max(N,L) by max(K,M) matrix of 1's and 0's.

Remarks

The return value is 1 if TRUE and 0 if FALSE.

The statement:

y = dotfeqmt(a,b,1e-13);

is equivalent to:

y = a .eq b;

Example

x = rndu(2,2);

35-512

dotfeqmt,dotfgemt,dotfgtmt,dotflemt,dotfltmt,dotfnemt

d

35-513

y = x;
y[1,1] = y[1,1] + 0.00000002;
t = dotfgemt(x,y,1e-15);

t = 0 1 x-y = -2e-8 0
1 1 0 0

Source

fcomparemt.src

See Also

feqmt-fnemt

draw

Purpose

Graphs lines, symbols, and text using the PQG global variables. This procedure
does not require actual X, Y, or Z data since its main purpose is to manually build
graphs using _pline,_pmsgctl, _psym, _paxes, _parrow and other glob-
als.

NOTE: This function is for the deprecated PQG graphics.

Library

pgraph

Format

draw;

draw

d

Remarks

draw is especially useful when used in conjunction with transparent windows.

Example

library pgraph;
graphset;

begwind;
makewind(9,6.855,0,0,0); /* make full size window for

plot */
makewind(3,1,3,3,0); /* make small overlapping window

for text */
setwind(1);

x = seqa(.1,.1,100);
y = sin(x);
xy(x,y); /* plot data in first window */

nextwind;
_pbox = 15;
_paxes = 0;
_pnum = 0;
_ptitlht = 1;
margin(0,0,2,0);
title("This is a text window.");
draw; /* add a smaller text window */

endwind; /* create graph */

Source

pdraw.src

See Also

window, makewind

35-514

draw

d

35-515

drop (dataloop)

Purpose

Specifies columns to be dropped from the output data set in a data loop.

Format

drop variable_list;

Remarks

Commas are optional in variable_list.

Deletes the specified variables from the output data set. Any variables referenced
must already exist, either as elements of the source data set, or as the result of a pre-
vious make, vector, or code statement.

If neither keep nor drop is used, the output data set will contain all variables from
the source data set, as well as any defined variables. The effects of multiple keep
and drop statements are cumulative.

Example

drop age, pay, sex;

See Also

keep (dataloop)

dsCreate

Purpose

Creates an instance of a structure of type DS set to default values.

drop (dataloop)

d

Include

ds.sdf

Format

s = dsCreate();

Output

s instance of structure of type DS.

Example

//Declare 'myData' as instance of 'DS' structure
struct DS myData;

//Apply default settings
myData = dsCreate();

Source

ds.src

dstat

Purpose

Computes descriptive statistics.

Format

{ vnam, mean, var, std, min, max, valid, mis } = dstat(dataset,
vars);

35-516

dstat

d

35-517

Input

dataset string, name of data set.

If dataset is null or 0, vars will be assumed to be a
matrix containing the data.

vars the variables.

If dataset contains the name of a data set,vars will be
interpreted as:
 Kx1 character vector, names of
variables.
 - or -
 Kx1 numeric vector, indices of
variables.
 - or -
formula string. e.g. "PAY +

WT" or ". - sex"
These can be any size subset of the variables in the data
set and can be in any order. If a scalar 0 is passed, all
columns of the data set will be used.

If dataset is null or 0, vars will be interpreted as:
 NxK matrix, the data on which
to compute the descriptive
statistics.

Global Input

__altnam matrix, default 0.

This can be a Kx1 character vector of alternate variable
names for the output.

dstat

d

__
maxbytes

scalar, the maximum number of bytes to be read per
iteration of the read loop. Default = 1e9.

__maxvec scalar, the largest number of elements allowed in any
one matrix. Default = 20000.

__miss scalar, default 0.
0 there are no missing values (fastest).
1 listwise deletion, drop a row if any

missings occur in it.
2 pairwise deletion.

__row scalar, the number of rows to read per iteration of the
read loop.

if 0, (default) the number of rows will be calculated using
__maxbytes and __maxvec.

__output scalar, controls output, default 1.
1 print output table.
0 do not print output.

Output

vnam Kx1 character vector, the names of the variables used in
the statistics.

mean Kx1 vector, means.
var Kx1 vector, variance.
std Kx1 vector, standard deviation.
min Kx1 vector, minima.
max Kx1 vector, maxima.
valid Kx1 vector, the number of valid cases.
mis Kx1 vector, the number of missing cases.

35-518

dstat

d

35-519

Example

Example 1

Calculate statistics on all variables in dataset

file = getGAUSShome() $+ "examples/freqdata.dat";
//Calculate statistics on all variables in dataset: AGE,
PAY, sex and WT
vars = 0;
{ vnam, mean, var, std, min, max, valid, mis } = dstat
(file, vars);

After the above code,

Variable Mean Std Dev Variance Minimum Max-
imum Valid Missing

AGE ----- ----- ----- 1.0000
10.0000 400 0
PAY 1.9675 0.8019 0.6431 1.0000
3.0000 400 0
sex ----- ----- ----- ----- ---
-- 400 0
WT 1.4699 0.3007 0.0904 1.0000
1.9900 400 0

Example 2

//Calculate statistics on just AGE and PAY
vars = { AGE, PAY };

dstat

d

{ vnam, mean, var, std, min, max, valid, mis } = dstat
(file, vars);

After the above code,

Variable Mean Std Dev Variance Minimum Max-
imum Valid Missing

AGE ----- ----- ----- 1.0000
10.0000 400 0
PAY 1.9675 0.8019 0.6431 1.0000
3.0000 400 0

Example 3

//Calculate statistics on just AGE and PAY using numerical
indices
vars = { 1, 2 };
{ vnam, mean, var, std, min, max, valid, mis } = dstat
(file, vars);

After the above code,

Variable Mean Std Dev Variance Minimum Max-
imum Valid Missing

35-520

dstat

d

35-521

AGE ----- ----- ----- 1.0000
10.0000 400 0
PAY 1.9675 0.8019 0.6431 1.0000
3.0000 400 0

Example 4

//Calculate statistics on just AGE and PAY using __miss
vars = { 1, 2 };
//Drop rows with missing values
__miss = 1;
{ vnam, mean, var, std, min, max, valid, mis } = dstat
(file, vars);

After the above code,

Variable Mean Std Dev Variance Minimum Max-
imum Valid Missing

AGE 5.6784 2.9932 8.9593 1.0000
10.0000 398 2
PAY 1.9623 0.8006 0.6409 1.0000
3.0000 398 2

Example 5

//Calculate statistics using formula string and __miss
//Set up a formula string with all variables exclude "sex"
vars = ". - sex";
//Drop rows with missing values

dstat

d

__miss = 1;
{ vnam, mean, var, std, min, max, valid, mis } = dstat
(file, vars);

After the above code,

Variable Mean Std Dev Variance Minimum Max-
imum Valid Missing

AGE 5.6784 2.9932 8.9593 1.0000
10.0000 398 2
PAY 1.9623 0.8006 0.6409 1.0000
3.0000 398 2
WT 1.4713 0.3009 0.0906 1.0000
1.9900 398 2

Remarks

1. If pairwise deletion is used, the minima and maxima will be the true values for the
valid data. The means and standard deviations will be computed using the correct num-
ber of valid observations for each variable.

2. The supported data set types are CSV, XLS, XLSX, HDF5, FMT, DAT.

For HDF5 file, the dataset must include file schema and both file name and data
set name must be provided, e.g. dstat
("h5://C:/gauss17/examples/testdata.h5/mydata", formula).

See also

Formula String

35-522

dstat

d

35-523

Source

dstat.src

dstatmt

Purpose

Compute descriptive statistics.

Format

dout = dstatmt(dataset);
dout = dstatmt(dataset, vars);
dout = dstatmt(dataset, vars, ctl);

Input

dataset string, name of data set. If dataset is null or 0, vars
will be assumed to be a matrix containing the data.

vars Optional input, the variables.

If dataset contains the name of a data set, vars will be
interpreted as:

If dataset is null or 0, vars will be interpreted as:
 Kx1 string array, names of variables.
 - or -
 Kx1 numeric vector, indices of variables.
 - or -
formula string. e.g. "PAY + WT" or ". - sex"

ctl Optional input, instance of a dstatmtControl structure
containing the following members:

dstatmt

d

ctl.altnames Kx1 string array of alternate
variable names to be used if a
matrix in memory is analyzed (i.e.,
dataset is a null string or 0).
Default = "".

ctl.maxbytes scalar, the maximum number of
bytes to be read per iteration of the
read loop. Default = 1e9.

ctl.vartype Scalar, unused in dstatmt.
ctl.miss scalar, default 0.

0 there are no missing
values (fastest).

1 listwise deletion,
drop a row if any
missings occur in it.

2 pairwise deletion.
ctl.row scalar, the number of rows to read

per iteration of the read loop.

If 0, (default) the number of rows
will be calculated using
ctl.maxbytes and maxvec.

ctl.output scalar, controls output, default 1.
1 print output table.
0 do not print output.

These can be any size subset of the variables in the data set
and can be in any order. If a scalar 0 is passed, all columns of
the data set will be used.
 NxK matrix, the data on which to compute the descriptive
 statistics.

35-524

dstatmt

d

35-525

Output

dout instance of a dstatmtOut structure containing the following
members:
dout.vnames Kx1 string array, the names of the

variables used in the statistics.
dout.mean Kx1 vector, means.
dout.var Kx1 vector, variance.
dout.std Kx1 vector, standard deviation.
dout.min Kx1 vector, minima.
dout.max Kx1 vector, maxima.
dout.valid Kx1 vector, the number of valid

cases.
dout.missing Kx1 vector, the number of missing

cases.
dout.errcode scalar, error code, 0 if successful;

otherwise, one of the following:
 2 Can't open file.
 7 Too many missings - no

data left after packing.
 9 altnames member of

dstatmtControl structure
wrong size.

10 vartype member of
dstatmtControl structure
wrong size.

Examples

Example 1: Computing statistics on a GAUSS dataset

dstatmt

d

//Create file name with full path
file_name = getGAUSSHome() $+ "examples/fueleconomy.dat";

//Compute statistics for all variables in the dataset
//The 'call' keyword disregards return values from the func-
tion
call dstatmt(file_name);

The above example will print the following report to the program input/output window:

Variable Mean Std Dev Variance
Minimum Maximum Valid Missing

annual_fuel_cost 2.5371 0.6533 0.4267
1.0500 5.7000 978 0
engine_displacement 3.2333 1.3757 1.8925
1.0000 8.4000 978 0

The code below uses the second input, vars, to compute only the descriptive statistics
for the second variable.

//Create file name with full path
file_name = getGAUSSHome() $+ "examples/fueleconomy.dat";

//Only calculate statistics on the second variable
vars = 2;

//Compute statistics for only the second variable in the
dataset
call dstatmt(file_name, vars);

35-526

dstatmt

d

35-527

The following report is printed to the program input/output window.

Variable Mean Std Dev Variance
Minimum Maximum Valid Missing

engine_displacement 3.2333 1.3757 1.8925
1.0000 8.4000 978 0

Example 2: Computing statistics on a csv dataset with formula string

//Create file name with full path
file_name = getGAUSSHome() $+ "examples/binary.csv";

//Set up a formula string with variables "gre" and "gpa"
vars = "gre + gpa";

//Compute statistics for all variables in the dataset
//The 'call' keyword disregards return values from the func-
tion
call dstatmt(file_name, vars);

The above example will print the following report to the program input/output window:

Variable Mean Std Dev Variance Minimum

Maximum Valid Missing

dstatmt

d

gre 587.7000 115.5165 13344.0702 220.0000
800.0000 400 0
gpa 3.3899 0.3806 0.1448 2.2600
4.0000 400 0

Example 3: Using control and out structures

//Create file name with full path
file_name = getGAUSSHome() $+ "examples/credit.dat";

//Declare control structure and fill in with defaults
struct dstatmtControl dctl;
dctl = dstatmtControlCreate();

//Do not print output to the screen
dctl.output = 0;

//Declare output structure
struct dstatmtOut dout;

//Calculate statistics on the 1st, 3rd and 6th variables
vars = { 1, 3, 6 };

//Calculate statistics, and place output in 'dout'
dout = dstatmt(file_name, vars, dctl);

//Print calculated means and variable names
print dout.mean;
print dout.vnames;

The code above should print the following output:

35-528

dstatmt

d

35-529

45.218885
354.94000
13.450000

Income
Rating

Education

Example 4: Computing statistics on a matrix

//Set random number seed for repeatable random numbers
rndseed 32452;

//Create a random matrix on which to compute statistics
X = rndn(10,3);

//The empty string as the second input tells GAUSS to
//compute statistics on a matrix rather than a dataset
call dstatmt("", X);

The code above will print out the following report:

Variable Mean Std Dev Variance Minimum
Maximum Valid Missing

X1 0.2348 0.8164 0.6664 -1.0736
1.4604 10 0

X2 -0.5062 1.1256 1.2669 -2.2231
1.2695 10 0

dstatmt

d

X3 0.5011 0.7758 0.6018 -0.6119
1.8235 10 0

Example 5: Computing statistics on a matrix, using structures

//Set random number seed for repeatable random numbers
rndseed 32452;

//Declare control structure and fill with default values
struct dstatmtControl dctl;
dctl = dstatmtControlCreate();

//Variable names for printed output
dctl.altnames = "Alpha"$|"Beta"$|"Gamma";

//Declare structure to hold output values
struct dstatmtOut dout;

//Create a random matrix on which to compute statistics
X = rndn(10,3);

//The empty string as the second input tells GAUSS to
//compute statistics on a matrix rather than a dataset
dout = dstatmt("", X, dctl);

This time, the following output will be printed to the screen:

Variable Mean Std Dev Variance Minimum
Maximum Valid Missing

35-530

dstatmt

d

35-531

Alpha 0.2348 0.8164 0.6664 -1.0736
1.4604 10 0

Beta -0.5062 1.1256 1.2669 -2.2231
1.2695 10 0

Gamma 0.5011 0.7758 0.6018 -0.6119
1.8235 10 0

Remarks

l If pairwise deletion is used, the minima and maxima will be the true values for
the valid data. The means and standard deviations will be computed using the
correct number of valid observations for each variable.

l For backwards compatiblitity, the following format is still supported:

dout = dstatmt(dctl, dataset, vars);

However, all new code should use one of the formats listed at the top of this
document.

l The supported data set types are CSV, XLS, XLSX, HDF5, FMT, DAT.
l For HDF5 files, the dataset must include a file schema and both file name
and data set name must be provided, e.g. dstatmt("h5://testdata.h5/mydata").

Source

dstatmt.src

See Also

dstatmtControlCreate, Formula String

dstatmtControlCreate

Purpose

Creates default dstatmtControl structure.

dstatmtControlCreate

d

Include

dstatmt.sdf

Format

c = dstatmtControlCreate();

Output

c instance of dstatmtControl structure with members set
to default values.

Example

//Declare 'dsm' as an instance of a
//'dstatmtControl' structure
struct dstatmtControl dsm;

//Apply default values to 'dsm'
dsm = dstatmtControlCreate();

Source

dstatmt.src

See Also

dstatmt

dtdate

Purpose

Creates a matrix in DT scalar format.

35-532

dtdate

d

35-533

Format

dt = dtdate(year, month, day, hour, minute, second);

Input

year NxK matrix of years.
month NxK matrix of months, 1-12.
day NxK matrix of days, 1-31.
hour NxK matrix of hours, 0-23.
minute NxK matrix of minutes, 0-59.
second NxK matrix of seconds, 0-59.

Output

dt NxK matrix of DT scalar format dates.

Remarks

The arguments must be ExE conformable.

Source

time.src

See Also

dtday, dttime, utctodt, dttostr, dayofweek

dtdate

d

dtday

Purpose

Creates a matrix in DT scalar format containing only the year, month and day.
Time of day information is zeroed out.

Format

dt = dtday(year, month, day);

Input

year NxK matrix of years.
month NxK matrix of months, 1-12.
day NxK matrix of days, 1-31.

Output

dt NxK matrix of DT scalar format dates.

Remarks

This amounts to 00:00:00 or midnight on the given day. The arguments must be ExE
conformable.

Source

time.src

See Also

dttime, dtdate, utctodt, dttostr

35-534

dtday

d

35-535

dttime

Purpose

Creates a matrix in DT scalar format containing only the hour, minute and
second. The date information is zeroed out.

Format

dt = dttime(hour, minute, second);

Input

hour NxK matrix of hours, 0-23.
minute NxK matrix of minutes, 0-59.
second NxK matrix of seconds, 0-59.

Output

dt NxK matrix of DT scalar format times.

Remarks

The arguments must be ExE conformable.

Source

time.src

See Also

dtday, dtdate, utctodt, dttostr

dttime

d

dttodtv

Purpose

Converts DT scalar format to DTV vector format.

Format

dtv = dttodtv(dt);

Input

dt Nx1 vector, DT scalar format.

Output

dtv Nx8 matrix, DTV vector format.

Remarks

In DT scalar format, 15:10:55 on July 3, 2005 is 20050703151055.

Each row of dtv, in DTV vector format, contains:

[N,1] Year
[N,2] Month in Year, 1-12
[N,3] Day of month, 1-31
[N,4] Hours since midnight, 0-23
[N,5] Minutes, 0-59
[N,6] Seconds, 0-59
[N,7] Day of week, 0-6, 0 = Sunday
[N,8] Days since Jan 1 of current year, 0-365

35-536

dttodtv

d

35-537

Example

dt = 20100326110722;
print "dt = " dt;

20100326110722

dtv = dttodtv(dt);
print "dtv = " dtv;

2010 3 26 11 7 22 1 84

Source

time.src

See Also

dtvnormal, timeutc, utctodtv, dtvtodt, dttoutc, dtvtodt, strtodt, dttostr

dttostr

Purpose

Converts a matrix containing dates in DT scalar format to a string array.

Format

sa = dttostr(x, fmt);

Input

x NxK matrix containing dates in DT scalar format.
fmt string, or ExE conformable string array containing

date/time format characters.

dttostr

d

Output

sa NxK string array.

Remarks

The DT scalar format is a double precision representation of the date and time. In the
DT scalar format, the number

20120703105031

represents 10:50:31 or 10:50:31 AM on July 3, 2012. dttostr converts a date in DT
scalar format to a character string using the format string in fmt.

The following formats are supported:

 YYYY 4 digit year
 YR Last two digits of year
 QQ Quarter of the year. This is calculated from the month

number.
 MO Number of month, 01-12
 DD Day of month, 01-31
 HH Hour of day, 00-23
 MI Minute of hour, 00-59
 SS Second of minute, 00-59

A complete DT scalar format number will have 14 digits all to the left of the decimal
point. However, dttostr will accept numbers with fewer digits. It will assume that
the first four digits are the year, the next two the month and so on.

35-538

dttostr

d

35-539

Example

Example 1

dt = 201202;
print dttostr(dt, "QQ-YYYY");

produces the output:

Q1-2012

Example 2

S0 = dttostr(utctodt(timeutc), "YYYY-MO-DD HH:MI:SS");
print ("Date and Time are: " $+ s0);

produces the output:

Date and time are: 2012-09-14 11:49:10

Example 3

print
dttostr(utctodt(timeutc), "Today is DD-MO-YR");

produces the output:

Today is 14-09-12

Example 4

x = { 19120317060424, 19370904010928, 19510221031129 };
s = dttostr(x, "YYYY-MO-DD");

produces s equal to:

1912-03-17
1937-09-04
1951-02-21

dttostr

d

Using the same x from above:

s = dttostr(x, "DD/MO/YYYY");

produces s equal to:

03/17/1912
09/04/1937
02/21/1951

Continuing with the same x from above:

string fmt = { "YYYY-QQ", "YYYY-QQ-DD", "DD/MO/YYYY" };
s = dttostr(x, fmt);

produces s equal to:

1912-Q1
1937-Q3-04
21/02/1951

See Also

strtodt, dttoutc, utctodt

dttoutc

Purpose

Converts DT scalar format to UTC scalar format.

Format

utc = dttoutc(dt);

35-540

dttoutc

d

35-541

Input

dt Nx1 vector, DT scalar format.

Output

utc Nx1 vector, UTC scalar format.

Remarks

In DT scalar format, 10:50:31 on July 15, 2010 is 20100703105031. A UTC scalar
gives the number of seconds since or before January 1, 1970 Greenwich Mean Time.

Example

dt = 20010326085118;
tc = dttoutc(dt);

print "tc = " tc;

The above code produces the following output:

tc = 985633642;

Source

time.src

See Also

dtvnormal, timeutc, utctodtv, dttodtv, dtvtodt, dtvtoutc, dtvtodt, strtodt, dttostr

dttoutc

d

dtvnormal

Purpose

Normalizes a date and time (DTV) vector.

Format

d = dtvnormal(t);

Input

t 1x8 date and time vector that has one or more elements
outside the normal range.

Output

d Normalized 1x8 date and time vector.

Remarks

The date and time vector is a 1x8 vector whose elements consist of:

 Year Year, four digit integer.
 Month 1-12, Month in year.
 Day 1-31, Day of month.
 Hour 0-23, Hours since midnight.
 Min 0-59, Minutes.
 Sec 0-59, Seconds.
 DoW 0-6, Day of week, 0 = Sunday.
 DiY 0-365, Days since Jan 1 of year.

35-542

dtvnormal

d

35-543

On input missing values are treated as zeros and the last two elements are ignored.

Example

format /rd 4,0;

dStart = { 2011 08 21 6 21 37 0 0 };
mnth = { 0 1 0 0 0 0 0 0 };

//Add 6 months to 'dStart' which will give a 14 for the
//month
dEnd = dStart + 6*mnth;

//Normalize the date vector
dEnd2 = dtvnormal(dEnd);

After the code above:

dEnd = 2011 14 21 6 21 37 0 0
dEnd2 = 2012 2 21 6 21 37 2 51

See Also

date, ethsec, etstr, time, timestr, timeutc, utctodtv

dtvtodt

Purpose

Converts DT vector format to DT scalar format.

Format

dt = dtvtodt(dtv);

dtvtodt

d

Input

dtv Nx8 matrix, DTV vector format.

Output

dt Nx1 vector, DT scalar format.

Remarks

In DT scalar format, 11:06:47 on March 15, 2012 is 20120315110647.

Each row of dtv, in DTV vector format, contains:

[N,1] Year
[N,2] Month in Year, 1-12
[N,3] Day of month, 1-31
[N,4] Hours since midnight, 0-23
[N,5] Minutes, 0-59
[N,6] Seconds, 0-59
[N,7] Day of week, 0-6, 0 = Sunday
[N,8] Days since Jan 1 of current year, 0-365

Example

let dtv = { 2012 9 16 11 7 22 1 84 };
dt = dtvtodt(dtv);

The code above assigns dt as follows:

20120916110722

35-544

dtvtodt

d

35-545

Source

time.src

See Also

dtvnormal, timeutc, utctodtv, dttodtv, dttoutc, strtodt, dttostr

dtvtoutc

Purpose

Converts DTV vector format to UTC scalar format.

Format

utc = dtvtoutc(dtv);

Input

dtv Nx8 matrix, DTV vector format.

Output

utc Nx1 vector, UTC scalar format.

Remarks

A UTC scalar gives the number of seconds since or before January 1, 1970 Greenwich
Mean Time.

Each row of dtv, in DTV vector format, contains:

[N,1] Year
[N,2] Month in Year, 1-12

dtvtoutc

d

[N,3] Day of month, 1-31
[N,4] Hours since midnight, 0-23
[N,5] Minutes, 0-59
[N,6] Seconds, 0-59
[N,7] Day of week, 0-6, 0 = Sunday
[N,8] Days since Jan 1 of current year, 0-365

Example

dtv = utctodtv(timeutc);
utc = dtvtoutc(dtv);

dtv = 2012 7 17 10 13 48 2 198
utc = 1342545228

See Also

dtvnormal, timeutc, utctodt, dttodtv, dttoutc, dtvtodt, dtvtoutc, strtodt, dttostr

dummy

Purpose

Creates a set of dummy (0/1) variables by breaking up a variable into specified
categories. The highest (rightmost) category is unbounded on the right.

Format

y = dummy(x, v);

35-546

dummy

d

35-547

Input

x Nx1 vector of data that is to be broken up into dummy
variables.

v (K-1)x1 vector specifying the K-1 breakpoints (these
must be in ascending order) that determine the K
categories to be used. These categories should not
overlap.

Output

y NxK matrix containing the K dummy variables.

Remarks

Missings are deleted before the dummy variables are created.

All categories are open on the left (i.e., do not contain their left boundaries) and all but
the highest are closed on the right (i.e., do contain their right boundaries). The highest
(rightmost) category is unbounded on the right. Thus, only K-1 breakpoints are required
to specify K dummy variables.

The function dummybr is similar to dummy, but in that function the highest category
is bounded on the right. The function dummydn is also similar to dummy, but in that
function a specified column of dummies is dropped.

Example

//Set seed for repeatable random numbers
rndseed 135345;

//Create uniform random integers between 1 and 9
x = ceil(9*rndu(5,1));

dummy

d

//Set the breakpoints
v = { 1, 5, 7 };

dm = dummy(x,v);

The code above produces four dummies based upon the breakpoints in the vector v:

x < 1
1 < x < 5
5 < x < 7
7 < x

which look like:

0 1 0 0 2
0 0 0 1 9

dm = 0 1 0 0 x = 4
0 0 1 0 7
1 0 0 0 1

Source

datatran.src

See Also

dummybr, dummydn, code,recode,reclassifyCuts, substute, rescale, reclassify

dummybr

Purpose

Creates a set of dummy (0/1) variables. The highest (rightmost) category is
bounded on the right.

35-548

dummybr

d

35-549

Format

y = dummybr(x, v);

Input

x Nx1 vector of data that is to be broken up into dummy
variables.

v Kx1 vector specifying the K breakpoints (these must be
in ascending order) that determine the K categories to
be used. These categories should not overlap.

Output

y NxK matrix containing the K dummy variables. Each
row will have a maximum of one 1.

Remarks

Missings are deleted before the dummy variables are created.

All categories are open on the left (i.e., do not contain their left boundaries) and are
closed on the right (i.e., do contain their right boundaries). Thus, K breakpoints are
required to specify K dummy variables.

The function dummy is similar to dummybr, but in that function the highest category
is unbounded on the right.

Example

//Set seed for repeatable random numbers
rndseed 135345;

//Create uniform random integers between 1 and 9

dummybr

d

x = ceil(9*rndu(5,1));

//Set the breakpoints
v = { 1, 5, 7 };

dm = dummybr(x,v);

The code above produces three dummies based upon the breakpoints in the vector v:

x < 1
1 < x < 5
5 < x < 7

which look like:

0 1 0 2
0 0 0 9

dm = 0 1 0 x = 4
0 0 1 7
1 0 0 1

Source

datatran.src

See Also

dummydn, dummy, code,recode,reclassifyCuts, substute, rescale, reclassify

dummydn

Purpose

Creates a set of dummy (0/1) variables by breaking up a variable into specified
categories. The highest (rightmost) category is unbounded on the right, and a spe-
cified column of dummies is dropped.

35-550

dummydn

d

35-551

Format

y = dummydn(x, v, p);

Input

x Nx1 vector of data to be broken up into dummy
variables.

v (K-1)x1 vector specifying the K-1 breakpoints (these
must be in ascending order) that determine the K
categories to be used. These categories should not
overlap.

p positive integer in the range [1,K], specifying which
column should be dropped in the matrix of dummy
variables.

Output

y Nx(K-1) matrix containing the K-1 dummy variables.

Remarks

This is just like the function dummy, except that the pth column of the matrix of dum-
mies is dropped. This ensures that the columns of the matrix of dummies do not sum to
1, and so these variables will not be collinear with a vector of ones.

Missings are deleted before the dummy variables are created.

All categories are open on the left (i.e., do not contain their left boundaries) and all but
the highest are closed on the right (i.e., do contain their right boundaries). The highest
(rightmost) category is unbounded on the right. Thus, only K-1 breakpoints are required
to specify K dummy variables.

dummydn

d

Example

//Set seed for repeatable random numbers
rndseed 135345;

//Create uniform random integers between 1 and 9
x = ceil(9*rndu(5,1));

//Set the breakpoints
v = { 1, 5, 7 };

//Column to drop
p = 2;

dm = dummydn(x,v,p);

The code above produces four dummies based upon the breakpoints in the vector v:

x < 1
1 < x < 5
5 < x < 7
7 < x

and then remove the pth column which will result in:

0 0 0 2
0 0 1 9

dm = 0 0 0 x = 4
0 1 0 7
1 0 0 1

Source

datatran.src

See Also

dummy, dummybr, code,recode,reclassifyCuts, substute, rescale, reclassify

35-552

dummydn

d

35-553

e

ed

Purpose

Accesses an alternate editor.

Format

ed filename;

Input

filename literal, the name of the file to be edited.

Remarks

The default name of the editor is set in gauss.cfg. To change the name of the
editor used from within a GAUSS session, enter:

ed = editor_name flags;

or

ed = "editor_nameflags";

The flags are any command line flags you may want between the name of the editor
and the filename when your editor is invoked. The quoted version will prevent the
flags, if any, from being forced to uppercase.

ed e

This command can be placed in the startup file, so it will be set for you automatically
when you start GAUSS.

See the edit command to open a file in the GAUSS editor from the command line.

edit

Purpose

Edits a disk file.

Format

edit filename;

Input

filename literal, the name of the file to be edited.

This command loads a disk file in a GAUSS edit window. It is available only in the
GAUSS graphical user interface.

Remarks

The edit command does not follow the src_path to locate files. You must specify
the location in the filename. The default location is the current directory.

To edit the last run file, use F7 or the Action List toolbar.

Example

edit test1.e;

35-554

edit

e

35-555

See Also

run

erfInv,erfCInv

Purpose

Computes the inverse of the Gaussian error function (erfInv) and its com-
plement (erfcInv).

Format

x = erfInv(y);
x = erfCInv(y);

Input

y scalar or NxK matrix. -1 < y < 1.

Output

x scalar or NxK matrix.

Example

x = seqa(.1,.1,10);
y = erf(x);

0.1000 0.1125
0.2000 0.2227
0.3000 0.3286
0.4000 0.4284

erfInv,erfCInv e

x = 0.5000 y = 0.5205
0.6000 0.6039
0.7000 0.6778
0.8000 0.7421
0.9000 0.7969
1.0000 0.8427

print erfInv(y);

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

See Also

erf, erfc, cdfN, cdfNC, cdfNi

eig

Purpose

Computes the eigenvalues of a general matrix.

Format

lambda = eig(A);

35-556

eig

e

35-557

Input

A NxN matrix or K-dimensional array where the last two
dimensions are NxN.

Output

lambda Nx1 vector or K-dimensional array where the last two
dimensions are Nx1, the eigenvalues of A.

Example

A = { 0.5 1.2 0.3,
0.6 0.9 0.2,
0.8 1.5 0.0 };

lambda = eig(A);

After the above code, lambda will equal:

1.8626
-0.1871
-0.2754

To calculate eigenvalues and eigenvectors see eigv. To calculate generalized eigen-
values and eigenvectors, see lapgeig, or lapgeigv.

Remarks

If A is an array, the result will be an array containing the eigenvalues of each 2-dimen-
sional array described by the two trailing dimensions of A. In other words, for a 10x4x4
array, the result will be a 10x4x1 array containing the eigenvalues of each of the 10
4x4 arrays contained in A.

Errors

eig e

If the eigenvalues cannot all be determined, lambda[1] is set to an error code.
Passing lambda[1] to the scalerr function will return the index of the eigenvalue
that failed. The eigenvalues for indices scalerr(lambda[1])+1 to N should be cor-
rect.

Error handling is controlled with the low bit of the trap flag.

trap 0 set lambda[1] and terminate with message
trap 1 set lambda[1] and continue execution

Invalid inputs, such as an infinity, missing value or Nan will cause an error. If the trap
is set to 1, lambda will be set to a scalar error code and program execution will con-
tinue. Passing this scalar error code to the scalerr function will return -1.

Eigenvalue ordering

The eigenvalues are unordered except that complex conjugate pairs of eigenvalues will
appear consecutively with the eigenvalue having the positive imaginary part first.

See Also

eigh, eighv, eigv

eigh

Purpose

Computes the eigenvalues of a complex hermitian or real symmetric matrix.

Format

va = eigh(x);

Input

x NxN matrix or K-dimensional array where the last two

35-558

eigh

e

35-559

dimensions are NxN.

Output

va Nx1 vector or K-dimensional array where the last two
dimensions are Nx1, the eigenvalues of x.

Remarks

If x is an array, the result will be an array containing the eigenvalues of each 2-dimen-
sional array described by the two trailing dimensions of x. In other words, for a 10x4x4
array, the result will be a 10x4x1 array containing the eigenvalues of each of the 10
4x4 arrays contained in x.
Errors

If the eigenvalues cannot all be determined, va[1] is set to an error code. Passing va
[1] to the scalerr function will return the index of the eigenvalue that failed. The
eigenvalues for indices 1 to scalerr(va[1])-1 should be correct.

Error handling is controlled with the low bit of the trap flag.

trap 0 set va[1] and terminate with message
trap 1 set va[1] and continue execution

Invalid inputs, such as an infinity, missing value or Nan will cause an error. If the trap
is set to 1, va will be set to a scalar error code and program execution will continue.
Passing this scalar error code to the scalerr function will return -1.
Eigenvalue ordering

The eigenvalues are in ascending order.

The eigenvalues of a complex hermitian or real symmetric matrix are always real.

See Also

eig, eighv, eigv

eigh e

eighv

Purpose

Computes eigenvalues and eigenvectors of a complex hermitian or real symmetric
matrix.

Format

{ va, ve } = eighv(x);

Input

x NxN matrix or K-dimensional array where the last two
dimensions are NxN.

Output

va Nx1 vector or K-dimensional array where the last two
dimensions are Nx1, the eigenvalues of x.

ve NxN matrix or K-dimensional array where the last two
dimensions are NxN, the eigenvectors of x.

Remarks

If x is an array, va will be an array containing the eigenvalues of each 2-dimen-
sional array described by the two trailing dimensions of x, and ve will be an array
containing the corresponding eigenvectors. In other words, for a 10x4x4 array, va
will be a 10x4x1 array containing the eigenvalues and ve a 10x4x4 array containing
the eigenvectors of each of the 10 4x4 arrays contained in x.
Errors

35-560

eighv

e

35-561

If the eigenvalues cannot all be determined, va[1] is set to an error code. Passing
va[1] to the scalerr function will return the index of the eigenvalue that failed. The
eigenvalues for indices 1 to scalerr(va[1])-1 should be correct. The eigenvectors
are not computed.

Error handling is controlled with the low bit of the trap flag.

trap 0 set va[1] and terminate with message
trap 1 set va[1] and continue execution

Invalid inputs, such as an infinity, missing value or Nan will cause an error. If the trap
is set to 1, va will be set to a scalar error code and program execution will continue.
Passing this scalar error code to the scalerr function will return -1.
Eigenvalue ordering

The eigenvalues are in ascending order. The columns of ve contain the eigenvectors
of x in the same order as the eigenvalues. The eigenvectors are orthonormal.

The eigenvalues of a complex hermitian or real symmetric matrix are always real.

See Also

eig, eigh, eigv

eigv

Purpose

Computes eigenvalues and eigenvectors of a general matrix.

Format

{ lambda, v } = eigv(x);

eigv e

Input

x NxN matrix or K-dimensional array where the last two
dimensions are NxN.

Output

lambda Nx1 vector or K-dimensional array where the last two
dimensions are Nx1, the eigenvalues of x.

v NxN matrix or K-dimensional array where the last two
dimensions are NxN, the eigenvectors of x.

Example

x = { 0.5 1.2 0.3,
0.6 0.9 0.2,
0.8 1.5 0.0 };

{ lambda, v } = eigv(x);

After the above code:

1.8626 0.5044 -0.7122 -0.6152

lambda = -0.1871 v = 0.4317 0.3520 0.1361

-0.2754 0.5643 0.2234 1.0458

Remarks

If x is an array, lambda will be an array containing the eigenvalues of each 2-dimen-
sional array described by the two trailing dimensions of x, and v will be an array con-
taining the corresponding eigenvectors. In other words, for a 10x4x4 array, lambda

35-562

eigv

e

35-563

will be a 10x4x1 array containing the eigenvalues and v a 10x4x4 array containing the
eigenvectors of each of the 10 4x4 arrays contained in x.
Errors

If the eigenvalues cannot all be determined, lambda[1] is set to an error code.
Passing lambda[1] to the scalerr function will return the index of the eigenvalue
that failed. The eigenvalues for indices scalerr(lambda[1])+1 to N should be cor-
rect. The eigenvectors are not computed.

Error handling is controlled with the low bit of the trap flag.

trap 0 set lambda[1] and terminate with message
trap 1 set lambda[1] and continue execution

Invalid inputs, such as an infinity, missing value or Nan will cause an error. If the trap
is set to 1, lambda will be set to a scalar error code and program execution will con-
tinue. Passing this scalar error code to the scalerr function will return -1.
Eigenvalue ordering

The eigenvalues are unordered except that complex conjugate pairs of eigenvalues will
appear consecutively with the eigenvalue having the positive imaginary part first. The
columns of v contain the eigenvectors of x in the same order as the eigenvalues. The
eigenvectors are not normalized.

See Also

eig, eigh, eighv

elapsedTradingDays

Purpose

Computes number of trading days between two dates inclusively.

elapsedTradingDays e

Format

n = elapsedTradingDays(a, b);

Input

a scalar, date in DT scalar format.
b scalar, date in DT scalar format.

Output

n number of trading days between dates inclusively, that
is, elapsed time includes the dates a and b.

Remarks

A trading day is a weekday that is not a holiday as defined by the New York Stock
Exchange from 1888 through 2013. Holidays are defined in holidays.asc. You
may edit that file to modify or add holidays.

Example

//September 10, 2015
tStart = 20150910110231;

//September 28, 2015
tEnd = 20150928080722;

nDays = elapsedTradingDays(tStart, tEnd);

nDays = 12

Source

finutils.src

35-564

elapsedTradingDays

e

35-565

Globals

_fin_holidays

See Also

getNextTradingDay, getPreviousTradingDay, getNextWeekDay, getPreviousWeekDay

end

Purpose

Terminates a program.

Format

end;

Remarks

end causes GAUSS to revert to interactive mode, and closes all open files. end also
closes the auxiliary output file and turns the window on. It is not necessary to put an
end statement at the end of a program.

An end command can be placed above a label which begins a subroutine to make sure
that a program does not enter a subroutine without a gosub.

stop also terminates a program but closes no files and leaves the window setting as it
is.

Example

output on;
screen off;
print x;
end;

end e

In this example, a matrix x is printed to the auxiliary output. The output to the window
is turned off to speed up the printing. The end statement is used to terminate the pro-
gram, so the output file will be closed and the window turned back on.

See Also

new, stop, system

endp

Purpose

Closes a procedure or keyword definition.

Format

endp;

Remarks

endp marks the end of a procedure definition that began with a proc or keyword
statement. (For details on writing and using procedures, see PROCEDURES AND
KEYWORDS, CHAPTER 1.)

Example

proc regress(y,x);
retp(inv(x'x)*x'y);

endp;

x = { 1 3 2, 7 4 9, 1 1 6, 3 3 2 };

35-566

endp

e

35-567

y = { 3, 5, 2, 7 };

b = regress(y,x);

After executing the above code:

0.1546
b = 1.5028

-0.1284

See Also

proc, keyword, retp

endwind

Purpose

Ends graphic panel manipulation; displays graphs with rerun. Note: This func-
tion is for use with the deprecated PQG graphics.

Library

pgraph

Format

endwind;

Remarks

This function uses rerun to display the most recently created .tkf file.

Source

pwindow.src

endwind e

See Also

begwind, window, makewind, setwind, nextwind, getwind

envget

Purpose

Searches the environment table for a defined name.

Format

y = envget(s);

Input

s string, the name to be searched for.

Output

y string, the string that corresponds to that name in the
environment table or a null string if it is not found.

Example

Example 1

//%USERPROFILE% is the user's home
//directory on most Windows systems
hm_dir = envget("USERPROFILE");

Example 2

35-568

envget

e

35-569

Below is an example of a procedure that will open a data file using a path stored in an
environment string called DPATH.

proc dopen(file);
local fname,fp;
fname = envget("DPATH");
//Check to see if DPATH is set or empty
if fname $== "";

fname = file;
else;

//Check to see if 'fname' ends with
//a path separator
if strsect(fname,strlen(fname),1) $== "\\";

fname = fname $+ file;
else;

fname = fname $+ "\\" $+ file;
endif;

endif;
open fp = ^fname;
retp(fp);

endp;

The procedure returns the file handle and is called as follows:

fp = dopen("myfile");

See Also

cdir

eof

Purpose

Tests if the end of a file has been reached.

eof e

Format

y = eof(fh);

Input

fh scalar, file handle.

Output

y scalar, 1 if end of file has been reached, else 0.

Remarks

This function is used with readr and the fgets xxx commands to test for the end
of a file.

The seekr function can be used to set the pointer to a specific row position in a data
set; the fseek function can be used to set the pointer to a specific byte offset in a file
opened with fopen.

Example

open f1 = dat1;
xx = 0;
do until eof(f1);

xx = xx + moment(readr(f1,100),0);
endo;

In this example, the data file dat1.dat is opened and given the handle f1. Then the
data are read from this data set and are used to create the moment matrix (x'x) of the
data. On each iteration of the loop, 100 additional rows of data are read in, and the
moment matrix for this set of rows is computed and added to the matrix xx. When all
the data have been read, xx will contain the entire moment matrix for the data set.

35-570

eof

e

35-571

GAUSS will keep reading until eof(f1) returns the value 1, which it will when the
end of the data set has been reached. On the last iteration of the loop, all remaining
observations are read in if there are 100 or fewer left.

See Also

open, readr, seekr

eqSolve

Purpose

Solves a system of nonlinear equations.

Format

{ x, retcode } = eqSolve(&F, start);

Input

&F scalar, a pointer to a procedure which computes the
value at x of the equations to be solved.

start Kx1 vector, starting values.

Global Input

The following are set by eqSolveSet:

eqs
JacobianProc

pointer to a procedure which computes the analytical
Jacobian. By default, eqSolve will compute the
Jacobian numerically.

_eqs_MaxIters scalar, the maximum number of iterations. Default =
100.

eqSolve e

_eqs_StepTol scalar, the step tolerance. Default = __macheps2/3.
_eqs_TypicalF Kx1 vector of the typical F(x) values at a point not near

a root, used for scaling. This becomes important when
the magnitudes of the components of F(x) are expected
to be very different. By default, function values are not
scaled.

_eqs_TypicalX Kx1 vector of the typical magnitude of x, used for
scaling. This becomes important when the magnitudes
of the components of x are expected to be very
different. By default, variable values are not scaled.

_eqs_IterInfo scalar, if nonzero, iteration information is printed.
Default = 0.

The following are set by gausset:

__Tol scalar, the tolerance of the scalar function f = 0.5*||F(x)||2
required to terminate the algorithm. Default = 1e-5.

__altnam Kx1 character vector of alternate names to be used by the
printed output. By default, the names "X1, X2,X3..." or
"X01,X02,X03..." (depending on how __vpad is set)
will be used.

__output scalar. If non-zero, final results are printed.
__title string, a custom title to be printed at the top of the

iterations report. By default, only a generic title will be
printed.

__vpad scalar. If __altnam is not set, variable names are
automatically created. Two types of names can be
created:
0 Variable names are not padded to give

them equal length. For example, X1,
X2,...,X10,...

35-572

eqSolve

e

35-573

1 Variable names are padded with zeros to
give them an equal number of characters.
For example,
X01,X02,...,X10,... This is
useful if you want the variable names to
sort properly.

Output

x Kx1 vector, solution.
retcode scalar, the return code:

1 Norm of the scaled function
value is less than __Tol. x
given is an approximate root of
F(x) (unless __Tol is too
large).

2 The scaled distance between
the last two steps is less than the
step-tolerance (_eqs_
StepTol). x may be an
approximate root of F(x), but it
is also possible that the
algorithm is making very slow
progress and is not near a root,
or the step-tolerance is too
large.

3 The last global step failed to
decrease norm2(F(x))
sufficiently; either x is close to
a root of F(x) and no more

eqSolve e

accuracy is possible, or an
incorrectly coded analytic
Jacobian is being used, or the
secant approximation to the
Jacobian is inaccurate, or the
step-tolerance is too large.

4 Iteration limit exceeded.
5 Five consecutive steps of

maximum step length have
been taken; either norm2(F
(x)) asymptotes from above to a
finite value in some direction or
the maximum step length is too
small.

6 x seems to be an approximate
local minimizer of norm2(F
(x)) that is not a root of F(x).
To find a root of F(x), restart
eqSolve from a different
region.

Remarks

The equation procedure should return a column vector containing the result for each
equation. For example:

Equation 1: x12 + x22 - 2 = 0
Equation 2: exp(x1-1) + x23 - 2 = 0

proc (1) = f(var);
local x1,x2,eqns;

35-574

eqSolve

e

35-575

x1 = var[1];
x2 = var[2];
eqns[1] = x1^2 + x2^2 - 2; /* Equation 1 */
eqns[2] = exp(x1-1) + x2^3 - 2; /* Equation 2 */
retp(eqns);

endp;

Example

eqSolveSet();

proc (1) = f(x);
local f1,f2,f3;
f1 = 3*x[1]^3 + 2*x[2]^2 + 5*x[3] - 10;
f2 = -x[1]^3 - 3*x[2]^2 + x[3] + 5;
f3 = 3*x[1]^3 + 2*x[2]^2 - 4*x[3];
retp(f1|f2|f3);

endp;

proc (1) = fjc(x);
local fjc1,fjc2, fjc3;
fjc1 = 9*x[1]^2 ~ 4*x[2] ~ 5;
fjc2 = -3*x[1]^2 ~ -6*x[2] ~ 1;
fjc3 = 9*x[1]^2 ~ 4*x[2] ~ -4;
retp(fjc1|fjc2|fjc3);

endp;

start = { -1, 12, -1 };

_eqs_JacobianProc = &fjc;

{ x,tcode } = eqSolve(&f,start);

produces:

eqSolve e

===
EqSolve Version 11.0.5 7/17/2015 5:47 pm

===

||F(X)|| at final solution: 0.93699762

Termination Code = 1:

Norm of the scaled function value is less than __Tol;

VARIABLE START ROOTS F(ROOTS)

X1 -1.00000 0.54144351 4.4175402e-006
X2 12.00000 1.4085912 -6.6263102e-006
X3 -1.00000 1.1111111 4.4175402e-006

Source

eqsolve.src

eqSolvemt

Purpose

Solves a system of nonlinear equations.

Format

out = eqSolvemt(&fct, par);
out = eqSolvemt(&fct, par, ...);
out = eqSolvemt(&fct, par, c);
out = eqSolvemt(&fct, par, ..., c);

35-576

eqSolvemt

e

35-577

Input

&fct pointer to a procedure that computes the function to be
minimized. This procedure must have two input
arguments, an instance of a PV structure containing the
parameters, and an instance of a DS structure containing
data, if any. And, one output argument, a column vector
containing the result of each equation.

par an instance of a PV structure. The par instance is
passed to the user-provided procedure pointed to by
&fct. par is constructed using the pvPack
functions.

... Optional extra arguments. These arguments are passed
untouched to the user-provided objective function, by
sqpSolveMT.

c Optional, an instance of an eqSolvemtControl structure.
Normally an instance is initialized by calling
eqSolvemtControlCreate and members of this
instance can be set to other values by the user. For an
instance named c, the members are:
c.jacobianProc pointer to a procedure which

computes the analytical Jacobian.
By default, eqSolvemt will
compute the Jacobian numerically.

c.maxIters scalar, the maximum number of
iterations. Default = 100.

c.stepTolerance scalar, the step tolerance. Default =
macheps2/3.

c.typicalF Kx1 vector of the typical fct(x)
values at a point not near a root,

eqSolvemt e

used for scaling. This becomes
important when the magnitudes of
the components of fct(x) are
expected to be very different. By
default, function values are not
scaled.

c.typicalX Kx1 vector of the typical
magnitude of x, used for scaling.
This becomes important when the
magnitudes of the components of
x are expected to be very different.
By default, variable values are not
scaled.

c.printIters scalar, if nonzero, iteration
information is printed. Default = 0.

c.tolerance scalar, the tolerance of the scalar
function f = 0.5*||fct
(X)||2 required to terminate the
algorithm. That is, the condition
that |f(x)| <=
c.tolerance must be met
before that algorithm can terminate
successfully. Default = 1e-5.

c.altNames Kx1 string array of alternate names
to be used by the printed output.
By default, the names
''X1,X2,X3...'' will be used.

c.title string, printed as a title in output.
c.output scalar. If non-zero, final results are

35-578

eqSolvemt

e

35-579

printed.

Output

out an instance of an eqSolvemtOut structure. For an instance
named out, the members are:
out.par an instance of a PV structure containing

the parameter estimates.
out.fct scalar, function evaluated at x
out.retcode scalar, return code:

-1 Jacobian is singular.
 1 Norm of the scaled function

value is less than
c.tolerance. x given is an
approximate root of fct(x)
(unless c.tolerance is too
large).

2 The scaled distance between the
last two steps is less than the
step-tolerance
(c.stepTolerance). x
may be an approximate root of
fct(x), but it is also possible
that the algorithm is making
very slow progress and is not
near a root, or the step-tolerance
is too large.

 3 The last global step failed to
decrease norm2(fct(x))
sufficiently; either x is close to a

eqSolvemt e

root of fct(x) and no more
accuracy is possible, or an
incorrectly coded analytic
Jacobian is being used, or the
secant approximation to the
Jacobian is inaccurate, or the
step-tolerance is too large.

 4 Iteration limit exceeded.
 5 Five consecutive steps of

maximum step length have been
taken; either norm2(fct(x))
asymptotes from above to a
finite value in some direction or
the maximum step length is too
small.

 6 x seems to be an approximate
local minimizer of norm2(
fct(x)) that is not a root of
fct(x). To find a root of fct
(x), restart eqSolvemt from
a different region.

Remarks

The equation procedure should return a column vector containing the result for each
equation.

35-580

eqSolvemt

e

35-581

Examples

Example 1: Basic usage

Equation 1: x12 + x22 - 5 = 0
Equation 2: exp(x1-1) + x23 - 5 = 0

//Declare 'par' to be an instance of a PV vector
struct PV par;

//Create default PV struct and add a parameter
//named 'x1' with a starting value of 1
par = pvPack(pvCreate(),1, "x1");

//Add a parameter named 'x2' to 'par'
//with a starting value of 1
par = pvPack(par,1, "x2");

//Solve the system of equations
//and print the output to the screen
call eqSolvemt(&fct,par);

//The definition of the function to be minimized
proc fct(struct PV p);

local x1, x2, z;
x1 = pvUnpack(p, "x1");
x2 = pvUnpack(p, "x2");
z = (x1^2 + x2^2 - 5) | (exp(x1 - 1) + x2^3 - 5);
retp(z);

endp;

After the code above, a short report will be printed to the program input/output win-
dow. Part of the output is displayed below:

eqSolvemt e

VARIABLE START ROOTS F
(ROOTS)

X1 1.00000 1.7146639625
0.0000000001
X2 1.00000 1.4352447511
0.0000000002

Example 2: Using control and output structures

Equation 1: x12 + x22 - 5 = 0
Equation 2: exp(x1-1) + x23 - 5 = 0

//Declare control structure and fill with defaults
struct eqSolvemtControl c;
c = eqSolvemtControlCreate();

//Turn on printing of iteration information
c.printIters = 1;

//Assign variable names printed output
c.altNames = "alpha" $| "beta";

//Declare 'par' to be an instance of a PV vector
struct PV par;

//Create default PV struct and add a parameter
//named 'x1' with a starting value of 1
par = pvPack(pvCreate(),1, "x1");

35-582

eqSolvemt

e

35-583

//Add a parameter named 'x2' to 'par'
//with a starting value of 1
par = pvPack(par,1, "x2");

//Declare output structure to hold results
struct eqSolvemtOut out;

//Solve the system of equations
out = eqSolvemt(&fct,par,c);

//The definition of the function to be minimized
proc fct(struct PV p);

local x1, x2, z;
x1 = pvUnpack(p, "x1");
x2 = pvUnpack(p, "x2");
z = (x1^2 + x2^2 - 5) | (exp(x1 - 1) + x2^3 - 5);
retp(z);

endp;

The code above will print out a report similar to the previous example. Notice that the
variable names in the report are what we assigned to the altNames member of the
control structure.

VARIABLE START ROOTS

F(ROOTS)

alpha 1.00000 1.7146639625
0.0000000001

beta 1.00000 1.4352447511
0.0000000002

eqSolvemt e

The parameter values returned by eqSolveMT are located in the par member of the
eqsolveMTOut struct. They can be accessed with pvGetParVector or pvUn-
pack like this:

//Return the values of 'x1' and 'x2' as a 2x1 vector
x_all = pvGetParVector(out.par);

//Return the value of 'x1'
x1 = pvUnpack(out.par, "x1");

//Return the value of 'x2'
x2 = pvUnpack(out.par, "x2");

Source

eqsolvemt.src

See Also

eqSolvemtControlCreate, eqSolvemtOutCreate

eqSolvemtControlCreate

Purpose

Creates default eqSolvemtControl structure.

Format

c = eqSolvemtControlCreate();

35-584

eqSolvemtControlCreate

e

35-585

Output

c instance of eqSolvemtControl structure with members
set to default values.

Example

Since structures are strongly typed in GAUSS, each structure must be declared before
it can be used.

//declare 'c' as an
//eqSolvemtControl structure
struct eqSolvemtControl c;

//initialize structure c
c = eqSolvemtControlCreate();

The members of an eqSolvemtControl structure and default values are described in
the manual entry for eqSolvemt.

Source

eqsolvemt.src

See Also

eqSolvemt

eqSolvemtOutCreate

Purpose

Creates default eqSolvemtOut structure.

eqSolvemtOutCreate e

Include

eqsolvemt.sdf

Format

c = eqSolvemtOutCreate();

Output

c instance of eqSolvemtOut structure with members set
to default values.

Example

Since structures are strongly typed in GAUSS, each structure must be declared before
it can be used.

//declare structure
struct eqSolvemtOut c;

//Initialize structure
c = eqSolvemtOutCreate();

The members of an eqSolvemtOut structure and default values are described in the
manual entry for eqSolvemt.

Source

eqsolvemt.src

See Also

eqSolvemt

35-586

eqSolvemtOutCreate

e

35-587

eqSolveSet

Purpose

Sets global input used by eqSolve to default values.

Format

eqSolveset;

Global Output

__eqs_
TypicalX

Set to 0.

__eqs_
TypicalF

Set to 0.

__eqs_
IterInfo

Set to 0.

__eqs_
JacobianProc

Set to 0.

__eqs_
MaxIters

Set to 100.

__eqs_StepTol Set to __macheps2/3

erf,erfc

Purpose

Computes the Gaussian error function (erf) and its complement (erfc).

Format

y = erf(x);
y = erfc(x);

eqSolveSet e

Input

x NxK matrix.

Output

y NxK matrix.

Remarks

The erf and erfc functions are closely related to the Normal distribution:

if x > 0
cdfn(x) = 0.5 * (1 + erf(x / sqrt(2));

if x ≤ 0
cdfn(x) = 0.5 * erfc(-x / sqrt(2));

Example

//Print 3 digits after the decimal point
format /rd 5,3;

x = { .5 .4 .3,
.6 .8 .3 };

y = erf(x);
yc = erfc(x);

//The '~' operator performs horizontal concatenation
//and causes this print statement to format 'x',
//'y' and 'yc' as if they were one 2x9 matrix rather
//than 3 2x3 matrices
//This does not change the variable values, only
//their appearance for this print statement
print x~y~yc;

35-588

erf,erfc

e

35-589

produces the following output:

0.500 0.400 0.300 0.520 0.428 0.329 0.480 0.572 0.671
0.600 0.800 0.300 0.604 0.742 0.329 0.396 0.258 0.671

See Also

cdfN, cdfNc

Technical Notes

erf and erfc are computed by summing the appropriate series and continued frac-
tions. They are accurate to about 12 or more digits.

erfcplx,erfccplx

Purpose

Computes the Gaussian error function (erfcplx) and its complement (erfc-
cplx) for complex inputs.

Format

f = erfcplx(z);
f = erfccplx(z);

Input

z NxK complex matrix; z must be > 0.

Output

f NxK complex matrix.

erfcplx,erfccplx e

Technical Notes

Accuracy is better than 12 significant digits.

References

1. Abramowitz & Stegun, section 7.1, equations 7.1.9, 7.1.23, and 7.1.29

2. Main author Paul Godfrey

3. Small changes by Peter J. Acklam

error

Purpose

Allows the user to generate a user-defined error code which can be tested quickly
with the scalerr function.

Format

y = error(x);

Input

x scalar, in the range 0-65535.

Output

y scalar error code which can be interpreted as an integer
with the scalerr function.

Remarks

The user may assign any number in the range 0-65535 to denote particular error

35-590

error

e

35-591

conditions. This number may be tested for as an error code by scalerr.

The scalerr function will return the value of the error code and so is the reverse of
error. These user-generated error codes work in the same way as the intrinsic
GAUSS error codes which are generated automatically when trap 1 is on and certain
GAUSS functions detect a numerical error such as a singular matrix.

error(0);

is equal to the missing value code.

Example

Example 1: Basic usage

//Set 'err_code' to contain a scalar error
//code, holding the value 28
err_code = error(28);

//Decode error code
err_num = scalerr(err_code);

print err_num;

The above code will print out the value:

28

Example 2

The procedure syminv, below, returns error code 99 if the matrix is not symmetric. If
invpd fails, it returns error code 20. If inv fails, it returns error code 50. The ori-
ginal trap state is restored before the procedure returns.

proc syminv(x);

error e

local oldtrap,y;

//Check to see if 'x' is symmetric
if not x == x';

retp(error(99));
endif;

//Store current error trap state
oldtrap = trapchk(0xffff);

//Turn on trapping of errors
trap 1;

//Attempt matrix inversion with 'invpd'
y = invpd(x);

//Attempt inversion with 'inv' if
//'invpd' returned an error code
if scalerr(y);

y = inv(x);
endif;

//Reset trap state
trap oldtrap,0xffff;

retp(y);
endp;

See Also

scalerr, trap, trapchk

35-592

error

e

35-593

errorlog

Purpose

Prints an error message to the window and error log file.

Format

errorlog str;

Input

str string, the error message to print.

Remarks

This command enables you to do your own error handling in your GAUSS programs.
To print an error message to the window and error log file along with file name and
line number information, use errorlogat.

See Also

errorlogat

errorlogat

Purpose

Prints an error message to the window and error log file, along with the file name
and line number at which the error occurred.

Format

errorlogat str;

errorlog e

Input

str string, the error message to print.

Remarks

This command enables you to do your own error handling in your GAUSS programs.
To print an error message to the window and error log file without file name and line
number information, use errorlog.

See Also

errorlog

etdays

Purpose

Computes the difference between two times, as generated by the date com-
mand, in days.

Format

days = etdays(tstart, tend);

Input

tstart 3x1 or 4x1 vector, starting date, in the order: yr, mo,
day. (Only the first 3 elements are used.)

tend 3x1 or 4x1 vector, ending date, in the order: yr, mo,
day. (Only the first 3 elements are used.) MUST be
later than tstart.

35-594

etdays

e

35-595

Output

days scalar, elapsed time measured in days.

Remarks

This will work correctly across leap years and centuries. The assumptions are a
Gregorian calendar with leap years on the years evenly divisible by 4 and not evenly
divisible by 100, unless divisible by 400.

Example

let date1 = 2008 1 2;
let date2 = 2009 9 14;
d = etdays(date1,date2);

After the code above, d is equal to:

621

Source

time.src

See Also

dayinyr

ethsec

Purpose

Computes the difference between two times, as generated by the date com-
mand, in hundredths of a second.

ethsec e

Format

hs = ethsec(tstart, tend);

Input

tstart 4x1 vector, starting date, in the order: yr, mo, day,
hundredths of a second.

tend 4x1 vector, ending date, in the order: yr, mo, day,
hundredths of a second. MUST be later date than
tstart.

Output

hs scalar, elapsed time measured in hundredths of a
second.

Remarks

This will work correctly across leap years and centuries. The assumptions are a
Gregorian calendar with leap years on the years evenly divisible by 4 and not evenly
divisible by 100, unless divisible by 400.

Example

let date1 = 2008 1 2 0;
let date2 = 2009 9 14 0;
t = ethsec(date1,date2);

After the code above, t is equal to:

5365440000

35-596

ethsec

e

35-597

Source

time.src

See Also

dayinyr

etstr

Purpose

Formats an elapsed time measured in hundredths of a second to a string.

Format

str = etstr(tothsecs);

Input

tothsecs scalar, an elapsed time measured in hundredths of a
second, as given, for instance, by the ethsec
function.

Output

str string containing the elapsed time in the form:
 #
days

#
hours

#
minutes

#,## seconds

Example

d1 = { 2012, 1, 2, 0 };

etstr e

d2 = { 2012, 1, 14, 815642 };
t = ethsec(d1,d2);
str = etstr(t);

print "t = " t;
print "str = " str;

Output:

t = 104495642.000
str = 12 days 2 hours 15 minutes 56.42 seconds

Source

time.src

See Also

ethsec

EuropeanBinomCall

Purpose

Prices European call options using binomial method.

Format

c = EuropeanBinomCall(S0, K, r, div, tau, sigma, N);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.

35-598

EuropeanBinomCall

e

35-599

r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.
N number of time segments.

Output

c Mx1 vector, call premiums.

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified
approach", Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

Example

S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;
sigma = .2493;
t0 = dtday(2001, 1, 30);
t1 = dtday(2001, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2012);
c = EuropeanBinomCall(S0,K,r,0,tau,sigma,60);
print c;

produces:

EuropeanBinomCall e

17.1325
14.8599
12.6383

Source

finprocs.src

EuropeanBinomCall_Greeks

Purpose

Computes Delta, Gamma, Theta, Vega, and Rho for European call options using
binomial method.

Format

{ d, g, t, v, rh } = EuropeanBinomCall_Greeks(S0, K, r,
div, tau, sigma, N);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.
N number of time segments.

35-600

EuropeanBinomCall_Greeks

e

35-601

Global Input

fin
thetaType

scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

fin
epsilon

scalar, finite difference stepsize. Default = 1e-8.

Output

d Mx1 vector, delta.
g Mx1 vector, gamma.
t Mx1 vector, theta.
v Mx1 vector, vega.
rh Mx1 vector, rho.

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified
approach", Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

Example

S0 = 305;
K = 300;
r = .08;
sigma = .25;
tau = .33;
div = 0;
print EuropeanBinomcall_Greeks(S0,K,r,0,tau,sigma,30);

produces:

EuropeanBinomCall_Greeks e

0.670
0.000

-38.426
65.170
56.677

Source

finprocs.src

See Also

EuropeanBinomCall_ImpVol, EuropeanBinomCall, EuropeanBinomPut_Greeks,
EuropeanBSCall_Greeks

EuropeanBinomCall_ImpVol

Purpose

Computes implied volatilities for European call options using binomial method.

Format

sigma = EuropeanBinomCall_ImpVol(c, S0, K, r, div, tau,
N);

Input

c Mx1 vector, call premiums.
S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.

35-602

EuropeanBinomCall_ImpVol

e

35-603

tau scalar, elapsed time to exercise in annualized days of
trading.

N number of time segments.

Output

sigma Mx1 vector, volatility.

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified
approach", Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

Example

c = { 13.70, 11.90, 9.10 };
S0 = 718.46;
K = { 720, 725, 730 };
r = .0368;
div = 0;
t0 = dtday(2012, 1, 30);
t1 = dtday(2012, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2012);
sigma = EuropeanBinomCall_ImpVol(c,S0,K,r,0,tau,30);
print sigma;

produces:

0.2027
0.2081
0.1989

EuropeanBinomCall_ImpVol e

Source

finprocs.src

EuropeanBinomPut

Purpose

Prices European put options using binomial method.

Format

c = EuropeanBinomPut(S0, K, r, div, tau, sigma, N);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.
N number of time segments.

Output

c Mx1 vector, put premiums.

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified

35-604

EuropeanBinomPut

e

35-605

approach", Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

Example

S0 = 718.46;
K = { 720, 725, 730 };
r = .0398;
sigma = .2493;
t0 = dtday(2012, 1, 30);
t1 = dtday(2012, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2012);
c = EuropeanBinomPut(S0,K,r,0,tau,sigma,60);print c;

produces:

16.872213
19.606098
22.390831

Source

finprocs.src

EuropeanBinomPut_Greeks

Purpose

Computes Delta, Gamma, Theta, Vega, and Rho for European put options using
binomial method.

EuropeanBinomPut_Greeks e

Format

{ d, g, t, v, rh } = EuropeanBinomPut_Greeks(S0, K, r,
div, tau, sigma, N);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.
N number of time segments.

Global Input

fin
thetaType

scalar, if 1, one day look ahead, else, infinitesimal.
Default = 0.

fin
epsilon

scalar, finite difference stepsize. Default = 1e-8.

Output

d Mx1 vector, delta.
g Mx1 vector, gamma.
t Mx1 vector, theta.
v Mx1 vector, vega.
rh Mx1 vector, rho.

35-606

EuropeanBinomPut_Greeks

e

35-607

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified
approach", Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

Example

S0 = 305;
K = 300;
r = .08;
div = 0;
sigma = .25;
tau = .33;
print EuropeanBinomPut_Greeks(S0,K,r,0,tau,sigma,60);

produces:

-0.350
0.001
7.237

65.432
-39.652

Source

finprocs.src

See Also

EuropeanBinomPut_ImpVol, EuropeanBinomPut, EuropeanBinomCall_Greeks,
EuropeanBSPut_Greeks

EuropeanBinomPut_Greeks e

EuropeanBinomPut_ImpVol

Purpose

Computes implied volatilities for European put options using binomial method.

Format

sigma = EuropeanBinomPut_ImpVol(c, S0, K, r, div, tau, N);

Input

c Mx1 vector, put premiums.
S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
N number of time segments.

Output

sigma Mx1 vector, volatility.

Remarks

The binomial method of Cox, Ross, and Rubinstein ("Option pricing: a simplified
approach", Journal of Financial Economics, 7:229:264) as described in Options,
Futures, and other Derivatives by John C. Hull is the basis of this procedure.

35-608

EuropeanBinomPut_ImpVol

e

35-609

Example

p = { 14.60, 17.10, 20.10 };
S0 = 718.46;
K = { 720, 725, 730 };
r = .0398;
div = 0;
t0 = dtday(2012, 1, 30);
t1 = dtday(2012, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2012);
sigma = EuropeanBinomPut_ImpVol(p,S0,K,r,0,tau,30);
print sigma;

produces:

0.21609253
0.21139494
0.21407512

Source

finprocs.src

EuropeanBSCall

Purpose

Prices European call options using Black, Scholes and Merton method.

Format

c = EuropeanBSCall(S0, K, r, div, tau, sigma);

EuropeanBSCall e

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.

Output

c Mx1 vector, call premiums.

Example

S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;
sigma = .2493;
t0 = dtday(2012, 1, 30);
t1 = dtday(2012, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2012);
c = EuropeanBSCall(S0,K,r,0,tau,sigma);
print c;

produces:

17.1351
14.7955
12.6860

35-610

EuropeanBSCall

e

35-611

Source

finprocs.src

EuropeanBSCall_Greeks

Purpose

Computes Delta, Gamma, Theta, Vega, and Rho for European call options using
Black, Scholes, and Merton method.

Format

{ d, g, t, v, rh } = EuropeanBSCall_Greeks(S0, K, r, div,
tau, sigma);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.

Global Input

fin
thetaType

scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

fin
epsilon

scalar, finite difference stepsize. Default = 1e-8.

EuropeanBSCall_Greeks e

Output

d Mx1 vector, delta.
g Mx1 vector, gamma.
t Mx1 vector, theta.
v Mx1 vector, vega.
rh Mx1 vector, rho.

Example

S0 = 305;
K = 300;
r = .08;
sigma = .25;
tau = .33;
print EuropeanBSCall_Greeks(S0,K,r,0,tau,sigma);

produce:

0.6446
0.0085

-38.5054
65.2563
56.8720

Source

finprocs.src

See Also

EuropeanBSCall_ImpVol, EuropeanBSCall, EuropeanBSPut_Greeks,
EuropeanBinomCall_Greeks

35-612

EuropeanBSCall_Greeks

e

35-613

EuropeanBSCall_ImpVol

Purpose

Computes implied volatilities for European call options using Black, Scholes, and
Merton method.

Format

sigma = EuropeanBSCall_ImpVol(c, S0, K, r, div, tau);

Input

c Mx1 vector, call premiums.
S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.

Output

sigma Mx1 vector, volatility.

Example

c = { 13.70, 11.90, 9.10 };
S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;
t0 = dtday(2012, 1, 30);

EuropeanBSCall_ImpVol e

t1 = dtday(2012, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2012);
sigma = EuropeanBSCall_ImpVol(c,S0,K,r,0,tau);
print sigma;

produces:

0.1986
0.2064
0.1951

Source

finprocs.src

EuropeanBSPut

Purpose

Prices European put options using Black, Scholes, and Merton method.

Format

c = EuropeanBSPut(S0, K, r, div, tau, sigma);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

35-614

EuropeanBSPut

e

35-615

trading.
sigma scalar, volatility.

Output

c Mx1 vector, put premiums.

Example

S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;
sigma = .2493;
t0 = dtday(2012, 1, 30);
t1 = dtday(2012, 2, 16);
tau = elapsedTradingDays(t0,t1) /

annualTradingDays(2012);
c = EuropeanBSPut(S0,K,r,0,tau,sigma);
print c;

produces:

16.6700
19.3164
22.1930

Source

finprocs.src

EuropeanBSPut e

EuropeanBSPut_Greeks

Purpose

Computes Delta, Gamma, Theta, Vega, and Rho for European put options using
Black, Scholes, and Merton method.

Format

{ d, g, t, v, rh } = EuropeanBSPut_Greeks(S0, K, r, div,
tau, sigma);

Input

S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.
sigma scalar, volatility.

Global Input

fin
thetaType

scalar, if 1, one day look ahead, else, infinitesmal.
Default = 0.

fin
epsilon

scalar, finite difference stepsize. Default = 1e-8.

Output

d Mx1 vector, delta.

35-616

EuropeanBSPut_Greeks

e

35-617

g Mx1 vector, gamma.
t Mx1 vector, theta.
v Mx1 vector, vega.
rh Mx1 vector, rho.

Example

S0 = 305;
K = 300;
r = .08;
sigma = .25;
tau = .33;
print EuropeanBSPut_Greeks(S0,K,r,0,tau,sigma);

produces:

-0.3554
0.0085

-15.1307
65.2563

-39.54861

Source

finprocs.src

See Also

EuropeanBSPut_ImpVol, EuropeanBSPut, EuropeanBSCall_Greeks,
EuropeanBinomPut_Greeks

EuropeanBSPut_Greeks e

EuropeanBSPut_ImpVol

Purpose

Computes implied volatilities for European put options using Black, Scholes, and
Merton method.

Format

sigma = EuropeanBSPut_ImpVol(c, S0, K, r, div, tau);

Input

c Mx1 vector, put premiums
S0 scalar, current price.
K Mx1 vector, strike prices.
r scalar, risk free rate.
div continuous dividend yield.
tau scalar, elapsed time to exercise in annualized days of

trading.

Output

sigma Mx1 vector, volatility.

Example

p = { 14.60, 17.10, 20.10 };
S0 = 718.46;
K = { 720, 725, 730 };
r = .0498;
t0 = dtday(2012, 1, 30);

35-618

EuropeanBSPut_ImpVol

e

35-619

t1 = dtday(2012, 2, 16);
tau = elapsedTradingDays(t0,t1) / annualTradingDays(2012);
sigma = EuropeanBSPut_ImpVol(p,S0,K,r,0,tau);
print sigma;

produce:

0.2188
0.2165
0.2177

Source

finprocs.src

exctsmpl

Purpose

Computes a random subsample of a data set.

Format

n = exctsmpl(infile, outfile, percent);

Input

infile string, the name of the original data set.
outfile string, the name of the data set to be created.
percent scalar, the percentage random sample to take. This must

be in the range 0-100.

exctsmpl e

Output

n scalar, number of rows in output data set.

Error returns are controlled by the low bit of the trap flag:
trap 0 terminate with error message
trap 1 return scalar negative integer

-1 can't open input file
-2 can't open output file
-3 disk full

Remarks

Random sampling is done with replacement. Thus, an observation may be in the res-
ulting sample more than once. If percent is 100, the resulting sample will not be
identical to the original sample, though it will be the same size.

Example

n = exctsmpl(getGAUSSHome()$+
"examples/freqdata.dat","rout",30);

freqdata.dat is an example data set provided with GAUSS. Switching to the
examples subdirectory of your GAUSS installation directory will make it possible to
do the above example as shown. Otherwise you will need to substitute another data set
name for "freqdata.dat".

Source

exctsmpl.src

35-620

exctsmpl

e

35-621

exec

Purpose

Executes an executable program and returns the exit code to GAUSS.

Format

y = exec(program, comline);

Input

program string, the name of the program, including the
extension, to be executed.

comline string, the arguments to be placed on the command line
of the program being executed.

Output

y scalar, the exit code returned by program.

If exec can't execute program, the error returns will be
negative:
-1 file not found
-2 the file is not an executable file
-3 not enough memory
-4 command line too long

Example

y = exec("atog","comd1.cmd");

//If 'y' is nonzero

exec e

if y;
errorlog"atog failed";
end;

endif;

In this example the ATOG ASCII conversion utility is executed under the exec func-
tion. The name of the command file to be used, comd1.cmd, is passed to ATOG on
its command line. The exit code y returned by exec is tested to see if ATOG was suc-
cessful; if not, the program will be terminated after printing an error message. See
ATOG, Section 1.

execbg

Purpose

Executes an executable program in the background and returns the process id to
GAUSS.

Format

pid = execbg(program, comline);

Input

program string, the name of the program, including the
extension, to be executed.

comline string, the arguments to be placed on the command line
of the program being executed.

Output

pid scalar, the process id of the executable returned by
program.

35-622

execbg

e

35-623

If execbg cannot execute program, the error returns will
be negative:
-1 file not found
-2 the file is not an executable file
-3 not enough memory
-4 command line too long

Example

y = execbg("atog.exe","comd1.cmd");
if (y < 0);

errorlog"atog failed";
end;

endif;

In this example, the ATOG ASCII conversion utility is executed under the execbg
function. The name of the command file to be used, comd1.cmd, is passed to ATOG
on its command line. The returned value, y, is tested to see whether ATOG was suc-
cessful. If not successful the program terminates after printing an error message. See
ATOG, CHAPTER 1.

exp

Purpose

Calculates the exponential function.

Format

y = exp(x);

exp e

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array containing e, the
base of natural logs, raised to the powers given by the
elements of x.

Example

x = eye(3);
y = exp(x);

1.000000 0.000000 0.000000
x = 0.000000 1.000000 0.000000

0.000000 0.000000 1.000000

2.718282 1.000000 1.000000
y = 1.000000 2.718282 1.000000

1.000000 1.000000 2.718282

This example creates a 3x3 identity matrix and computes the exponential function for
each one of its elements. Note that exp(1) returns e, the base of natural logs.

See Also

ln

35-624

exp

e

35-625

extern (dataloop)

Purpose

Allows access to matrices or strings in memory from inside a data loop.

Format

extern variable_list;

Remarks

Commas in variable_list are optional.

extern tells the translator not to generate local code for the listed variables, and not
to assume that they are elements of the input data set.

extern statements should be placed before any reference to the symbols listed. The
specified names should not exist in the input data set, or be used in a make statement.

Example

This example shows how to assign the contents of an external vector to a new variable
in the data set, by iteratively assigning a range of elements to the variable. The
reserved variable x_x contains the data read from the input data set on each iteration.
The external vector must have at least as many rows as the data set.

base = 1; /* used to index a range of */
/* elements from exvec */

dataloop oldata newdata;
extern base, exvec;
make ndvar = exvec[seqa(base,1, rows(x_x))];
base = base + rows(x_x); /* execute command */

/* literally */
endata;

extern (dataloop) e

external

Purpose

Lets the compiler know about symbols that are referenced above or in a separate
file from their definitions.

Format

external proc dog, cat;
external keyword dog;
external fn dog;
external matrixx, y, z;
external string mstr, cstr;
external array a, b;
external sparse matrix sma, smb;
external struct structure_type sta, stb;

Remarks

See PROCEDURES AND KEYWORDS, CHAPTER 1.

You may have several procedures in different files that reference the same global vari-
able. By placing an external statement at the top of each file, you can let the com-
piler know what the type of the symbol is. If the symbol is listed and strongly typed in
an active library, no external statement is needed.

If a matrix, string, N-dimensional array, sparse matrix, or structure appears in an
external statement, it needs to appear once in a declare statement. If no declar-
ation is found, an Undefined symbol error message will result.

Example

Let us suppose that you created a set of procedures defined in different files, which all
set a global matrix _errcode to some scalar error code if errors were encountered.

35-626

external

e

35-627

You could use the following code to call one of the procedures in the set and check
whether it succeeded:

external matrix _errcode;
x = rndn(10,5);
y = myproc1(x);
if _errcode;

print "myproc1 failed";
end;

endif;

Without the external statement, the compiler would assume that _errcode was
a procedure and incorrectly compile this program. The file containing the myproc1
procedure must also contain an external statement that defines _errcode as a
matrix, but this would not be encountered by the compiler until the if statement con-
taining the reference to _errcode in the main program file had already been incor-
rectly compiled.

See Also

declare

eye

Purpose

Creates an identity matrix.

Format

y = eye(n);

Input

n scalar, size of identity matrix to be created.

eye e

Output

y nxn identity matrix.

Remarks

If n is not an integer, it will be truncated to an integer.

The matrix created will contain 1's down the diagonal and 0's everywhere else.

Example

x = eye(3);

The code above assigns x to be equal to:

1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

See Also

zeros, ones

35-628

eye

e

35-629

f

fcheckerr

Purpose

Gets the error status of a file.

Format

err = fcheckerr(f);

Input

f scalar, file handle of a file opened with fopen.

Output

err scalar, error status.

Remarks

If there has been a read or write error on a file, fcheckerr returns 1, otherwise 0.

If you pass fcheckerr the handle of a file opened with open (i.e., a data set or mat-
rix file), your program will terminate with a fatal error.

fcheckerr

f

fclearerr

Purpose

Gets the error status of a file, then clears it.

Format

err = fclearerr(f);

Input

f scalar, file handle of a file opened with fopen.

Output

err scalar, error status.

Remarks

Each file has an error flag that gets set when there is an I/O error on the file. Typ-
ically, once this flag is set, you can no longer do I/O on the file, even if the error is a
recoverable one. fclearerr clears the file's error flag, so you can attempt to con-
tinue using it.

If there has been a read or write error on a file, fclearerr returns 1, otherwise 0.

If you pass fclearerr the handle of a file opened with open (i.e., a data set or mat-
rix file), your program will terminate with a fatal error.

The flag accessed by fclearerr is not the same as that accessed by fstrerror.

35-630

fclearerr

f

35-631

feq,fge,fgt,fle,flt,fne

Purpose

Fuzzy comparison functions. These functions use _fcmptol to fuzz the com-
parison operations to allow for roundoff error.

Format

y = feq(a, b);
y = fge(a, b);
y = fgt(a, b);
y = fle(a, b);
y = flt(a, b);
y = fne(a, b);

Input

a NxK matrix, first matrix.
b LxM matrix, second matrix, ExE compatible with a.

Global Input

_fcmptol scalar, comparison tolerance. The default value is 1.0e-
15.

Output

y scalar, 1 (TRUE) or 0 (FALSE).

Remarks

The return value is TRUE if every comparison is TRUE.

feq,fge,fgt,fle,flt,fne

f

The statement:

y = feq(a,b);

is equivalent to:

y = a eq b;

For the sake of efficiency, these functions are not written to handle missing values. If
a and b contain missing values, use missrv to convert the missing values to some-
thing appropriate before calling a fuzzy comparison function.

The calling program can reset _fcmptol before calling these procedures:

_fcmptol = 1e-12;

Example

_fcmptol = 1e-12;

x = rndu(2,2);

y = x + 0.5*(_fcmptol);

if fge(x,y);
print "each element of x is greater than";
print "or equal to each element of y";

else;
print "at least one element of x is less";
print "its corresponding element in y";

endif;

Source

fcompare.src

35-632

feq,fge,fgt,fle,flt,fne

f

35-633

See Also

dotfeq-dotfne

feqmt,fgemt,fgtmt,flemt,fltmt,fnemt

Purpose

Fuzzy comparison functions. These functions use the fcmptol argument to
fuzz the comparison operations to allow for roundoff error.

Format

y = feqmt(a, b, fcmptol);
y = fgemt(a, b, fcmptol);
y = fgtmt(a, b, fcmptol);
y = flemt(a, b, fcmptol);
y = fltmt(a, b, fcmptol);
y = fnemt(a, b, fcmptol);

Input

a NxK matrix, first matrix.
b LxM matrix, second matrix, ExE compatible with a.
fcmptol scalar, comparison tolerance.

Output

y scalar, 1 (TRUE) or 0 (FALSE).

Remarks

The return value is TRUE if every comparison is TRUE.

feqmt,fgemt,fgtmt,flemt,fltmt,fnemt

f

The statement:

y = feqmt(a,b,1e-15);

is equivalent to:

y = a eq b;

For the sake of efficiency, these functions are not written to handle missing values. If
a and b contain missing values, use missrv to convert the missing values to some-
thing appropriate before calling a fuzzy comparison function.

Example

tol = 1e-12;

x = rndu(2,2);

y = x + 0.5*(tol);

if fgemt(x,y,tol);
print "each element of x is greater than";
print "or equal to each element of y";

else;
print "at least one element of x is less";
print "its corresponding element in y";

endif;

Source

fcomparemt.src

See Also

dotfeqmt-dotfnemt

35-634

feqmt,fgemt,fgtmt,flemt,fltmt,fnemt

f

35-635

fflush

Purpose

Flushes a file's output buffer.

Format

ret = fflush(f);

Input

f scalar, file handle of a file opened with fopen.

Output

ret scalar, 0 if successful, -1 if not.

Remarks

If fflush fails, you can call fstrerror to find out why.

If you pass fflush the handle of a file opened with open (i.e., a data set or matrix
file), your program will terminate with a fatal error.

fft

Purpose

Computes a 1- or 2-D Fast Fourier transform.

Format

y = fft(x);

fflush

f

Input

x NxK matrix.

Output

y LxM matrix, where L and M are the smallest powers of
2 greater than or equal to N and K, respectively.

Remarks

This computes the FFT of x, scaled by 1/N.

This uses a Temperton Fast Fourier algorithm.

If N or K is not a power of 2, x will be padded out with zeros before computing the
transform.

See Also

ffti, rfft, rffti

ffti

Purpose

Computes an inverse 1- or 2-D Fast Fourier transform.

Format

y = ffti(x);

Input

x NxK matrix.

35-636

ffti

f

35-637

Output

y LxM matrix, where L and M are the smallest prime
factor products greater than or equal to N and K,
respectively.

Remarks

Computes the inverse FFT of x, scaled by 1/N.

This uses a Temperton prime factor Fast Fourier algorithm.

See Also

fft, rfft, rffti

fftm

Purpose

Computes a multi-dimensional FFT.

Format

y = fftm(x, dim);

Input

x Mx1 vector, data.
dim Kx1 vector, size of each dimension.

Output

y Lx1 vector, FFT of x.

fftm

f

Remarks

The multi-dimensional data are laid out in a recursive or heirarchical fashion in the vec-
tor x. That is to say, the elements of any given dimension are stored in sequence left to
right within the vector, with each element containing a sequence of elements of the
next smaller dimension. In abstract terms, a 4-dimensional 2x2x2x2 hypercubic x
would consist of two cubes in sequence, each cube containing two matrices in
sequence, each matrix containing two rows in sequence, and each row containing two
columns in sequence. Visually, x would look something like this:

Xhyper = Xcube1|Xcube2

Xcube1 = Xmat1|Xmat2

Xmat1 = Xrow1|Xrow2

Or, in an extended GAUSS notation, x would be:

Xhyper = x[1,.,.,.] | x[2,.,.,.];
Xcube1 = x[1,1,.,.] | x[1,2,.,.];
Xmat1 = x[1,1,1,.] | x[1,1,2,.];
Xrow1 = x[1,1,1,1] | x[1,1,1,2];

To be explicit, x would be laid out like this:

x[1,1,1,1] x[1,1,1,2] x[1,1,2,1] x[1,1,2,2]
x[1,2,1,1] x[1,2,1,2] x[1,2,2,1] x[1,2,2,2]
x[2,1,1,1] x[2,1,1,2] x[2,1,2,1] x[2,1,2,2]
x[2,2,1,1] x[2,2,1,2] x[2,2,2,1] x[2,2,2,2]

If you look at the last diagram for the layout of x, you'll notice that each line actually
constitutes the elements of an ordinary matrix in normal row-major order. This is easy
to achieve with vecr. Further, each pair of lines or ''matrices'' constitutes one of the

35-638

fftm

f

35-639

desired cubes, again with all the elements in the correct order. And finally, the two
cubes combine to form the hypercube. So, the process of construction is simply a
sequence of concatenations of column vectors, with a vecr step if necessary to get
started.

Here's an example, this time working with a 2x3x2x3 hypercube.

let dim = 2 3 2 3;
let x1[2,3] = 1 2 3 4 5 6;
let x2[2,3] = 6 5 4 3 2 1;
let x3[2,3] = 1 2 3 5 7 11;
xc1 = vecr(x1)|vecr(x2)|vecr(x3); /* cube 1 */
let x1 = 1 1 2 3 5 8;
let x2 = 1 2 6 24 120 720;
let x3 = 13 17 19 23 29 31;
xc2 = x1|x2|x3; /* cube 2 */

xh = xc1|xc2; /* hypercube */
xhfft = fftm(xh,dim);

let dimi = 2 4 2 4;
xhffti = fftmi(xhfft,dimi);

We left out the vecr step for the 2nd cube. It's not really necessary when you're con-
structing the matrices with let statements.

dim contains the dimensions of x, beginning with the highest dimension. The last ele-
ment of dim is the number of columns, the next to the last element of dim is the num-
ber of rows, and so on. Thus

dim = { 2, 3, 3 };

indicates that the data in x is a 2x3x3 three-dimensional array, i.e., two 3x3 matrices
of data. Suppose that x1 is the first 3x3 matrix and x2 the second 3x3 matrix, then:

fftm

f

x = vecr(x1)|vecr(x2)

The size of dim tells you how many dimensions x has.

The arrays have to be padded in each dimension to the nearest power of two. Thus the
output array can be larger than the input array. In the 2x3x2x3 hypercube example, x
would be padded from 2x3x2x3 out to 2x4x2x4. The input vector would contain 36 ele-
ments, while the output vector would contain 64 elements. You may have noticed that
we used a dimi with padded values at the end of the example to check our answer.

Source

fftm.src

See Also

fftmi, fft, ffti, fftn

fftmi

Purpose

Computes a multi-dimensional inverse FFT.

Format

y = fftmi(x, dim);

Input

x Mx1 vector, data.
dim Kx1 vector, size of each dimension.

35-640

fftmi

f

35-641

Output

y Lx1 vector, inverse FFT of x.

Remarks

The multi-dimensional data are laid out in a recursive or heirarchical fashion in the vec-
tor x. That is to say, the elements of any given dimension are stored in sequence left to
right within the vector, with each element containing a sequence of elements of the
next smaller dimension. In abstract terms, a 4-dimensional 2x2x2x2 hypercubic x
would consist of two cubes in sequence, each cube containing two matrices in
sequence, each matrix containing two rows in sequence, and each row containing two
columns in sequence. Visually, x would look something like this:

Xhyper = Xcube1|Xcube2

Xcube1 = Xmat1|Xmat2

Xmat1 = Xrow1|Xrow2

Or, in an extended GAUSS notation, x would be:

Xhyper = x[1,.,.,.] | x[2,.,.,.];
Xcube1 = x[1,1,.,.] | x[1,2,.,.];
Xmat1 = x[1,1,1,.] | x[1,1,2,.];
Xrow1 = x[1,1,1,1] | x[1,1,1,2];

To be explicit, x would be laid out like this:

x[1,1,1,1] x[1,1,1,2] x[1,1,2,1] x[1,1,2,2]
x[1,2,1,1] x[1,2,1,2] x[1,2,2,1] x[1,2,2,2]
x[2,1,1,1] x[2,1,1,2] x[2,1,2,1] x[2,1,2,2]
x[2,2,1,1] x[2,2,1,2] x[2,2,2,1] x[2,2,2,2]

fftmi

f

If you look at the last diagram for the layout of x, you'll notice that each line actually
constitutes the elements of an ordinary matrix in normal row-major order. This is easy
to achieve with vecr. Further, each pair of lines or ''matrices'' constitutes one of the
desired cubes, again with all the elements in the correct order. And finally, the two
cubes combine to form the hypercube. So, the process of construction is simply a
sequence of concatenations of column vectors, with a vecr step if necessary to get
started.

Here's an example, this time working with a 2x3x2x3 hypercube.

let dim = 2 3 2 3;
let x1[2,3] = 1 2 3 4 5 6;
let x2[2,3] = 6 5 4 3 2 1;
let x3[2,3] = 1 2 3 5 7 11;
xc1 = vecr(x1)|vecr(x2)|vecr(x3); /* cube 1 */
let x1 = 1 1 2 3 5 8;
let x2 = 1 2 6 24 120 720;
let x3 = 13 17 19 23 29 31;
xc2 = x1|x2|x3; /* cube 2 */

xh = xc1|xc2; /* hypercube */
xhffti = fftmi(xh,dim);

We left out the vecr step for the 2nd cube. It's not really necessary when you're con-
structing the matrices with let statements.

dim contains the dimensions of x, beginning with the highest dimension. The last ele-
ment of dim is the number of columns, the next to the last element of dim is the num-
ber of rows, and so on. Thus

dim = { 2, 3, 3 };

indicates that the data in x is a 2x3x3 three-dimensional array, i.e., two 3x3 matrices
of data. Suppose that x1 is the first 3x3 matrix and x2 the second 3x3 matrix, then

35-642

fftmi

f

35-643

x = vecr(x1)|vecr(x2)

The size of dim tells you how many dimensions x has.

The arrays have to be padded in each dimension to the nearest power of two. Thus the
output array can be larger than the input array. In the 2x3x2x3 hypercube example, x
would be padded from 2x3x2x3 out to 2x4x2x4. The input vector would contain 36 ele-
ments, while the output vector would contain 64 elements.

Source

fftm.src

See Also

fft, ffti, fftn

fftn

Purpose

Computes a complex 1- or 2-D FFT.

Format

y = fftn(x);

Input

x NxK matrix.

Output

y LxM matrix, where L and M are the smallest prime
factor products greater than or equal to N and K,

fftn

f

respectively.

Remarks

fftn uses the Temperton prime factor FFT algorithm. This algorithm can compute the
FFT of any vector or matrix whose dimensions can be expressed as the product of
selected prime number factors. GAUSS implements the Temperton algorithm for any
power of 2, 3, and 5, and one factor of 7. Thus, fftn can handle any matrix whose
dimensions can be expressed as

2p x 3q x 5r x 7s

where p, q and r are nonnegative integers and s is equal to 0 or 1.

If a dimension of x does not meet this requirement, it will be padded with zeros to the
next allowable size before the FFT is computed.

fftn pads matrices to the next allowable dimensions; however, it generally runs
faster for matrices whose dimensions are highly composite numbers, i.e., products of
several factors (to various powers), rather than powers of a single factor. For example,
even though it is bigger, a 33600x1 vector can compute as much as 20% faster than a
32768x1 vector, because 33600 is a highly composite number, 26x3x52x7, whereas
32768 is a simple power of 2, 215. For this reason, you may want to hand-pad matrices
to optimum dimensions before passing them to fftn. The Run-Time Library
includes a routine, optn, for determining optimum dimensions.

The Run-Time Library also includes the nextn routine, for determining allowable
dimensions for a matrix. (You can use this to see the dimensions to which fftn would
pad a matrix.)

fftn scales the computed FFT by 1/(L*M).

See Also

fft, ffti, fftm, fftmi, rfft, rffti, rfftip, rfftn, rfftnp, rfftp

35-644

fftn

f

35-645

fgets

Purpose

Reads a line of text from a file.

Format

str = fgets(f, maxsize);

Input

f scalar, file handle of a file opened with fopen.
maxsize scalar, maximum size of string to read in, including the

terminating null byte.

Output

str string.

Remarks

fgets reads text from a file into a string. It reads up to a newline, the end of the file,
or maxsize-1 characters. The result is placed in str, which is then terminated
with a null byte. The newline, if present, is retained.

If the file is already at end-of-file when you call fgets, your program will terminate
with an error. Use eof in conjunction with fgets to avoid this.

If the file was opened for update (see fopen) and you are switching from writing to
reading, don't forget to call fseek or fflush first, to flush the file's buffer.

If you pass fgets the handle of a file opened with open (i.e., a data set or matrix
file), your program will terminate with a fatal error.

fgets

f

See Also

fgetst, fgetsa, fopen

fgetsa

Purpose

Reads lines of text from a file into a string array.

Format

sa = fgetsa(f, numl);

Input

f scalar, file handle of a file opened with fopen.
numl scalar, number of lines to read.

Output

sa Nx1 string array, N <= numl.

Remarks

fgetsa reads up to numl lines of text. If fgetsa reaches the end of the file
before reading numl lines, sa will be shortened. Lines are read in the same man-
ner as fgets, except that no limit is placed on the size of a line. Thus, fgetsa
always returns complete lines of text. Newlines are retained. If numl is 1, fgetsa
returns a string. (This is one way to read a line from a file without placing a limit on
the length of the line.)

35-646

fgetsa

f

35-647

If the file is already at end-of-file when you call fgetsa, your program will ter-
minate with an error. Use eof in conjunction with fgetsa to avoid this. If the file
was opened for update (see fopen) and you are switching from writing to reading,
don't forget to call fseek or fflush first, to flush the file's buffer.

If you pass fgetsa the handle of a file opened with open (i.e., a data set or matrix
file), your program will terminate with a fatal error.

See Also

fgetsat, fgets, fopen

fgetsat

Purpose

Reads lines of text from a file into a string array.

Format

sa = fgetsat(f, numl);

Input

f scalar, file handle of a file opened with fopen.
numl scalar, number of lines to read.

Output

sa Nx1 string array, N <= numl.

Remarks

fgetsat operates identically to fgetsa, except that newlines are not retained as

fgetsat

f

text is read into sa.

In general, you don't want to use fgetsat on files opened in binary mode (see
fopen). fgetsat drops the newlines, but it does NOT drop the carriage returns that
precede them on some platforms. Printing out such a string array can produce unex-
pected results.

See Also

fgetsa, fgetst, fopen

fgetst

Purpose

Reads a line of text from a file.

Format

str = fgetst(f, maxsize);

Input

f scalar, file handle of a file opened with fopen.
maxsize scalar, maximum size of string to read in, including the

null terminating byte.

Output

str string.

Remarks

fgetst operates identically to fgets, except that the newline is not retained in the

35-648

fgetst

f

35-649

string.

In general, you don't want to use fgetst on files opened in binary mode (see
fopen). fgetst drops the newline, but it does NOT drop the preceding carriage
return used on some platforms. Printing out such a string can produce unexpected res-
ults.

See Also

fgets, fgetsat, fopen

fileinfo

Purpose

Returns names and information for files that match a specification.

Format

{ fnames, finfo } = fileinfo(fspec);

Input

fspec string, file specification. Can include path. Wildcards
are allowed in fspec.

Output

fnames Nx1 string array of all file names that match, null string
if none are found.

finfo Nx13 matrix, information about matching files.

Linux
[N, 1] filesystem ID

fileinfo

f

[N, 2] inode number
[N, 3] mode bit mask
[N, 4] number of links
[N, 5] user ID
[N, 6] group ID
[N, 7] device ID (char/block special files only)
[N, 8] size in bytes
[N, 9] last access time
[N,10] last data modification time
[N,11] last file status change time
[N,12] preferred I/O block size
[N,13] number of 512-byte blocks allocated
Windows
[N, 1] drive number (A = 0, B = 1, etc.)
[N, 2] n/a, 0
[N, 3] mode bit mask
[N, 4] number of links, always 1
[N, 5] n/a, 0
[N, 6] n/a, 0
[N, 7] n/a, 0
[N, 8] size in bytes
[N, 9] last access time
[N,10] last data modification time
[N,11] creation time
[N,12] n/a, 0
[N,13] n/a, 0
finfo will be a scalar zero if no matches are found.

35-650

fileinfo

f

35-651

Remarks

fnames will contain file names only; any path information that was passed is
dropped.

The time stamp fields (finfo[N,9:11]) are expressed as the number of seconds since
midnight, Jan. 1, 1970, Coordinated Universal Time (UTC).

See Also

filesa

filesa

Purpose

Returns a string array of file names.

Format

y = filesa(n);

Input

n string, file specification to search for. Can include path.
Wildcards are allowed in n.

Output

y Nx1 string array of all file names that match, or null
string if none are found.

Remarks

y will contain file names only; any path information that was passed is dropped.

filesa

f

Example

y = filesa("ch*");

In this example all files listed in the current directory that begin with "ch" will be
returned.

proc
exist(filename);
retp(not filesa(filename) $== "");

endp;

This procedure will return 1 if the file exists or 0 if not.

See Also

fileinfo, shell

floor

Purpose

Round down toward -∞.

Format

y = floor(x);

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array containing the

35-652

floor

f

35-653

elements of x rounded down.

Remarks

This rounds every element in x down to the nearest integer.

Example

//Set the seed for repeatable random numbers
rndseed 9072345;

//Create random normal numbers with a standard
//deviation of 100
x = 100*rndn(2,2);

//Round the numbers down
f = floor(x);

//Format so numbers will print in decimal form rather than
//scientific notation) and will show 2 digits after the
//decimal point
format /rd 8,2;

print "************************";
print "After running this code:";
print "************************\n";
print "x = " x;
print "";
print "and, f = " f;

produces:

After running this code:

floor

f

x =
0.11 314.05

-80.87 103.73

and, f =
0.00 314.00

-81.00 103.00

Notice in the code above, how the \n at the end of the statement printing the line of
asterisks, inserts a newline.

See Also

ceil, round, trunc

fmod

Purpose

Computes the floating-point remainder of x/y.

Format

r = fmod(x, y);

Input

x NxK matrix.
y LxM matrix, ExE conformable with x.

Output

r max(N,L) by max(K,M) matrix.

35-654

fmod

f

35-655

Remarks

Returns the floating-point remainder r of x/y such that x = iy + r, where i is an
integer, r has the same sign as x and |r| < |y|.

Compare this with %, the modulo division operator. (See OPERATORS, CHAPTER 1.)

Example

This example extracts all of the years which are evenly divisible by four, from a vector
with all of the years between 1900 and 2000.

//Create a vector with all years from 1900 to 2000
//i.e. 1900, 1901, 1902...2000
yrs = seqa(1900, 1, 101);

//Create an empty matrix into which we can put our output
y4 = {};

//Loop through each element in yrs
for i(1, rows(yrs), 1);

//If the 'i'th element of 'yrs' is evenly divisible by
//4, vertically concatenate it on to the bottom of 'y4'
if not fmod(yrs[i], 4);

y4 = y4|yrs[i];
endif;

endfor;

//No digits after the decimal place
format /rd 8,0;

//Split 'y4' into two columns, each with half of the data
//and print the columns next to each other
print y4[1:13]~y4[14:26];

produces:

fmod

f

1900 1952
1904 1956
1908 1960
1912 1964
1916 1968
1920 1972
1924 1976
1928 1980
1932 1984
1936 1988
1940 1992
1944 1996
1948 2000

fn

Purpose

Allows user to create one-line functions.

Format

fn fn_name(args) = code_for_function;

Remarks

Functions can be called in the same way as other procedures.

Example

fn area(r) = pi*r*r;
a = area(4);

After the code above:

35-656

fn

f

35-657

a = 50.2625

fonts

Purpose

Loads fonts to be used in the graph. Note: this function is for the deprecated PQG
graphics.

Library

pgraph

Format

fonts(str);

Input

str string or character vector containing the names of fonts
to be used in the plot. The following fonts are available:
Simplex standard sans serif font.
Simgrma Simplex greek, math.
Microb bold and boxy.
Complex standard font with serif.

Remarks

The first font specified will be used for the axes numbers.

If str is a null string, or fonts is not called, Simplex is loaded by default.

fonts

f

For more information on how to select fonts within a text string, see PUBLICATION
QUALITY GRAPHICS, CHAPTER 1.

Source

pgraph.src

See Also

title, xlabel, ylabel, zlabel

fopen

Purpose

Opens a file.

Format

f = fopen(filename, omode);

Input

filename string, name of file to open.
omode string, file I/O mode. (See Remarks, below.)

Output

f scalar, file handle.

Portability

Linux/Mac

35-658

fopen

f

35-659

Carriage return-linefeed conversion for files opened in text mode is unnecessary,
because in Linux/Mac a newline is simply a linefeed.

Remarks

filename can contain a path specification.

omode is a sequence of characters that specify the mode in which to open the file.
The first character must be one of:

r Open an existing file for reading. If the file does not
exist, fopen fails.

w Open or create a file for writing. If the file already
exists, its current contents will be destroyed.

a Open or create a file for appending. All output is
appended to the end of the file.

To this can be appended a + and/or a b. The + indicates the file is to opened for read-
ing and writing, or update, as follows:

r+ Open an existing file for update. You can read from or
write to any location in the file. If the file does not exist,
fopen fails.

w+ Open or create a file for update. You can read from or
write to any location in the file. If the file already exists,
its current contents will be destroyed.

a+ Open or create a file for update. You can read from any
location in the file, but all output will be appended to
the end of the file.

Finally, the b indicates whether the file is to be opened in text or binary mode. If the
file is opened in binary mode, the contents of the file are read verbatim; likewise, any-
thing output to the file is written verbatim. In text mode (the default), carriage return-

fopen

f

linefeed sequences are converted on input to linefeeds, or newlines. Likewise on out-
put, newlines are converted to carriage return-linefeeds. Also in text mode, if a
CTRL+Z (char 26) is encountered during a read, it is interpreted as an end-of-file char-
acter, and reading ceases. In binary mode, CTRL+Z is read in uninterpreted.

The order of + and b is not significant; rb+ and r+b mean the same thing.

You can both read from and write to a file opened for update. However, before switch-
ing from one to the other, you must make an fseek or fflush call, to flush the file's
buffer.

If fopen fails, it returns a 0.

Use close and closeall to close files opened with fopen.

See Also

fseek, close, closeall

for

Purpose

Begins a for loop.

Format

for i (start, stop, step);
.
.
.
endfor;

Input

i literal, the name of the counter variable.

35-660

for

f

35-661

start scalar expression, the initial value of the counter.
stop scalar expression, the final value of the counter.
step scalar expression, the increment value.

Remarks

The counter is strictly local to the loop. The expressions, start, stop and
step are evaluated only once when the loop initializes and are stored local to the
loop.

The for loop is optimized for speed and much faster than a do loop.

The commands break and continue are supported. The continue command
steps the counter and jumps to the top of the loop. The break command terminates
the current loop.

The loop terminates when the value of i exceeds stop. If break is used to ter-
minate the loop and you want the final value of the counter, you need to assign it to a
variable before the break statement (see the third example, following).

Example

Example 1

//A basic 'for' loop
for i (1, 4, 1);

print i;
endfor;

The code above, will print out:

1.000
2.000
3.000
4.000

Example 2

for

f

x = zeros(10,5);
for i (1, rows(x), 1);

for j (1, cols(x), 1);
x[i,j] = i*j;

endfor;
endfor;

Example 3

x = rndn(3,3);
y = rndn(3,3);

for i (1, rows(x), 1);
for j (1, cols(x), 1);

if x[i,j] >= y[i,j];
continue;

endif;
temp = x[i,j];
x[i,j] = y[i,j];
y[i,j] = temp;

endfor;
endfor;

Example 4

li = 0;
x = rndn(100,1);
y = rndn(100,1);

for i (1, rows(x), 1);
if x[i] != y[i];

li = i;
break;

endif;
endfor;

if li;

35-662

for

f

35-663

print "Compare failed on row " li;
endif;

format

Purpose

Controls the format of matrices and numbers printed out with print statements.

Format

format [[/typ]] [[/fmted]] [[/mf]] [[/jnt]] [[f,p]]

Input

/typ literal, symbol type flag(s). Indicate which symbol types you
are setting the output format for.
/mat, /sa, /str Formatting parameters are

maintained separately for
matrices and arrays (/mat),
string arrays (/sa), and
strings (/str). You can
specify more than one /typ
flag; the format will be set
for all types indicated. If no
/typ flag is listed,
format assumes /mat.

/
fmted

literal, enable formatting flag.

/on, /off Enable/disable formatting.

format

f

When formatting is disabled,
the contents of a variable are
dumped to the screen in a
"raw" format. /off is
currently supported only for
strings. "Raw" format for
strings means that the entire
string is printed, starting at
the current cursor position.
When formatting is enabled
for strings, they are handled
the same as string arrays.
This shouldn't be too
surprising, since a string is
actually a 1x1 string array.

/mf literal, matrix row format flag.
/m0 no delimiters before or after

rows when printing out
matrices.

/m1 or /mb1 print 1 carriage return/line
feed pair before each row of
a matrix with more than 1
row.

/m2 or /mb2 print 2 carriage return/line
feed pairs before each row of
a matrix with more than 1
row.

/m3 or /mb3 print ''Row 1'', ''Row 2''...
before each row of a matrix
with more than one row.

35-664

format

f

35-665

/ma1 print 1 carriage return/line
feed pair after each row of a
matrix with more than 1 row.

/ma2 print 2 carriage return/line
feed pairs after each row of a
matrix with more than 1 row.

/a1 print 1 carriage return/line
feed pair after each row of a
matrix.

/a2 print 2 carriage return/line
feed pairs after each row of a
matrix.

/b1 print 1 carriage return/line
feed pair before each row of
a matrix.

/b2 print 2 carriage return/line
feed pairs before each row of
a matrix.

/b3 print ''Row 1'', ''Row 2''...
before each row of a matrix.

/jnt literal, matrix element format flag - controls justification,
notation and trailing character.
Right-Justified
/rd Signed decimal number in

the form ####.####,
where #### is one or more
decimal digits. The number
of digits before the decimal
point depends on the

format

f

magnitude of the number,
and the number of digits
after the decimal point
depends on the precision. If
the precision is 0, no decimal
point will be printed.

/re Signed number in the form
#.##E±###, where # is
one decimal digit, ## is one
or more decimal digits
depending on the precision,
and ### is three decimal
digits. If precision is 0, the
form will be [-]#E±###
with no decimal point
printed.

/ro This will give a format like
/rd or /re depending on
which is most compact for
the number being printed. A
format like /re will be used
only if the exponent value is
less than -4 or greater than
the precision. If a /re
format is used, a decimal
point will always appear.
The precision signifies the
number of significant digits
displayed.

/rz This will give a format like

35-666

format

f

35-667

/rd or /re depending on
which is most compact for
the number being printed. A
format like /re will be used
only if the exponent value is
less than -4 or greater than
the precision. If a /re
format is used, trailing zeros
will be supressed and a
decimal point will appear
only if one or more digits
follow it. The precision
signifies the number of
significant digits displayed.

Left-Justified
/ld Signed decimal number in

the form [-]####.####,
where #### is one or more
decimal digits. The number
of digits before the decimal
point depends on the
magnitude of the number,
and the number of digits
after the decimal point
depends on the precision. If
the precision is 0, no decimal
point will be printed. If the
number is positive, a space
character will replace the
leading minus sign.

format

f

/le Signed number in the form
[-]#.##E±###, where #
is one decimal digit, ## is
one or more decimal digits
depending on the precision,
and ### is three decimal
digits. If precision is 0, the
form will be [-]#E±###
with no decimal point
printed. If the number is
positive, a space character
will replace the leading
minus sign.

/lo This will give a format like
/ld or /le depending on
which is most compact for
the number being printed. A
format like /le will be used
only if the exponent value is
less than -4 or greater than
the precision. If a /le
format is used, a decimal
point will always appear. If
the number is positive, a
space character will replace
the leading minus sign. The
precision specifies the
number of significant digits
displayed.

/lz This will give a format like

35-668

format

f

35-669

/ld or /le depending on
which is most compact for
the number being printed. A
format like /le will be used
only if the exponent value is
less than -4 or greater than
the precision. If a /le
format is used, trailing zeros
will be supressed and a
decimal point will appear
only if one or more digits
follow it. If the number is
positive, a space character
will replace the leading
minus sign. The precision
specifies the number of
significant digits displayed.

Trailing Character

The following characters can be added to the /jnt parameters
above to control the trailing character if any:

format /rdn 1,3;

s The number will be followed
immediately by a space
character. This is the default.

c The number will be followed
immediately by a comma.

t The number will be followed
immediately by a tab
character.

format

f

n No trailing character.
f scalar expression, controls

the field width.
p scalar expression, controls

the precision.

Remarks

If character elements are to be printed, the precision should be at least 8 or the ele-
ments will be truncated. This does not affect the string data type.

For numeric values in matrices, p sets the number of significant digits to be printed.
For string arrays, strings, and character elements in matrices, p sets the number of
characters to be printed. If a string is shorter than the specified precision, the entire
string is printed. For string arrays and strings, p = -1 means print the entire string,
regardless of its length p = -1 is illegal for matrices; setting p>= 8 means the same
thing for character elements.

The /xxx slash parameters are optional. Field and precision are optional also, but if
one is included, then both must be included.

Slash parameters, if present, must precede the field and precision parameters.

A format statement stays in effect until it is overridden by a new format state-
ment. The slash parameters may be used in a print statement to override the current
default.

f and p may be any legal expressions that return scalars. Nonintegers will be trun-
cated to integers.

The total width of field will be overridden if the number is too big to fit into the space
allotted. For instance, format /rds 1,0 can be used to print integers with a
single space between them, regardless of the magnitudes of the integers.

35-670

format

f

35-671

Complex numbers are printed with the sign of the imaginary half separating them and
an "i" appended to the imaginary half. Also, the field parameter refers to the width of
field for each half of the number, so a complex number printed with a field of 8 will
actually take (at least) 20 spaces to print. The character printed after the imaginary
part can be changed (for example, to a "j") with the sysstate function, case 9.

The default when GAUSS is first started is:

format /mb1 /ros 16,8;

Example

This code:

x = rndn(3,3);

format /m1 /rd 16,8;
print x;

produces:

2.25240104 0.53724423 -0.67744907
-0.16183998 1.57152099 1.33836836
0.00666162 -1.24948147 -0.77987532

This code:

format /m1 /rzs 1,10;
print x;

produces:

2.252401038 0.5372442301 -0.6774490661
-0.1618399808 1.571520994 1.338368355
0.00666161784 -1.24948147 -0.7798753222

This code:

format /m3 /rdn 16,4;
print x;

format

f

produces:

print x;

Row 1
2.2524 0.5372 -0.6774

Row 2
-0.1618 1.5715 1.3384

Row 3
0.0067 -1.2495 -0.7799

This code:

format /m1 /ldn 16,4;
print x;

produces:

2.2524 0.5372 -0.6774
-0.1618 1.5715 1.3384
0.0067 -1.2495 -0.7799

This code:

format /m1 /res 12,4;
print x;

produces:

2.2524e+000 5.3724e-001 -6.7745e-001
-1.6184e-001 1.5715e+000 1.3384e+000
6.6616e-003 -1.2495e+000 -7.7988e-001

See Also

formatcv, formatnv, print, output

35-672

format

f

35-673

formatcv

Purpose

Sets the character data format used by printfmt.

Format

oldfmt = formatcv(newfmt);

Input

newfmt 1x3 vector, the new format specification.

Output

oldfmt 1x3 vector, the old format specification.

Remarks

See printfm for details on the format vector.

Example

This example saves the old format, sets the format desired for printing x, prints x, then
restores the old format. This code:

x = { A 1, B 2, C 3 };
oldfmt = formatcv("*.*s" ~ 3 ~ 3);
call printfmt(x,0~1);
call formatcv(oldfmt);

produces:

formatcv

f

A 1
B 2
C 3

Source

gauss.src

Globals

__fmtcv

See Also

formatnv, printfm, printfmt

formatnv

Purpose

Sets the numeric data format used by printfmt.

Format

oldfmt = formatnv(newfmt);

Input

newfmt 1x3 vector, the new format specification.

Output

oldfmt 1x3 vector, the old format specification.

35-674

formatnv

f

35-675

Remarks

See printfm for details on the format vector.

Example

This example saves the old format, sets the format desired for printing x, prints x, then
restores the old format. This code:

x = { A 1, B 2, C 3 };
oldfmt = formatnv("*.*lf" ~ 8 ~ 4);
call printfmt(x,0~1);
call formatnv(oldfmt);

produces:

A 1.0000
B 2.0000
C 3.0000

Source

gauss.src

Globals

__fmtnv

See Also

formatcv, printfm, printfmt

fputs

Purpose

Writes strings to a file.

fputs

f

Format

numl = fputs(f, sa);

Input

f scalar, file handle of a file opened with fopen.
sa string or string array.

Output

numl scalar, the number of lines written to the file.

Examples

Example 1: Write string to text file

//Create string
quote = "There is nothing either good or bad, but thinking
makes it so.";

//Open file for writing
fh = fopen("hamlet.txt", "w");

//Write the string to the first line of the file
call fputs(fh, quote);

//Close the file
call close(fh);

After the code above, you should have a file named hamlet.txt in your current work-
ing directory, containing the contents of the quote string.

Example 2: Write CSV data to text file

35-676

fputs

f

35-677

//Create string containing a comma separated list
//of variable names and an ending newline
text = "alpha,beta,gamma,delta\n";

fh = fopen("temp.csv", "w");

//Write the string to the first line of the file
call fputs(fh, text);

//Create some numeric data
x = { 1 2 3 4,

5 6 7 8 };

//Convert numeric data to 2x4 string array
x_str = ntos(x);

//Combine each row of 'x_str' into
//a single comma separated string
x_str = strjoin(x_str, ",");

//Add newlines to the end of each line
x_str = x_str $+ "\n";

//Write the comma separated data to the file
call fputs(fh, x_str);

//Close the file
call close(fh);

After the above code, you should have a file named temp.csv with the following con-
tents:

alpha,beta,gamma,delta
1,2,3,4
5,6,7,8

fputs

f

Remarks

l To write to the standard output stream or the standard error stream, pass in __
STDOUT or __STDERR as the file handle argument.

str = "sample string";
num = fputs(__STDOUT, str);

l fputs writes the contents of each string in sa, minus the null terminating
byte, to the file specified. If the file was opened in text mode (see fopen), any
newlines present in the strings are converted to carriage return-linefeed
sequences on output. If numl is not equal to the number of elements in sa,
there may have been an I/O error while writing the file. You can use
fcheckerr or fclearerr to check this. If there was an error, you can call
fstrerror to find out what it was. If the file was opened for update (see
fopen) and you are switching from reading to writing, don't forget to call
fseek or fflush first, to flush the file's buffer. If you pass fputs the
handle of a file opened with open (i.e., a data set or matrix file), your program
will terminate with a fatal error.

Portability

Linux/Mac

Carriage return-linefeed conversion for files opened in text mode is unnecessary,
because in Linux/Mac a newline is simply a linefeed.

See Also

fputst, fopen

fputst

Purpose

Writes strings followed by a newline to a file.

35-678

fputst

f

35-679

Format

numl = fputst(f, sa);

Input

f scalar, file handle of a file opened with fopen.
sa string or string array.

Output

numl scalar, the number of lines written to the file.

Examples

Example 1: Write string to text file

//Create string
quote = "A horse! a horse! my kingdom for a horse!.";

//Open file for writing
fh = fopen("king_richard_III.txt", "w");

//Write the string to the first line of the file
call fputst(fh, quote);

//Close the file
call close(fh);

After the code above, you should have a file named king_richard_III.txt in
your current working directory, containing the contents of the quote string followed by an
empty line. To avoid the final empty line, use fputs.
Example 2: Write CSV data to text file

fputst

f

//Create string containing a comma separated list
//of variable names (fputst will add an ending newline)
text = "alpha,beta,gamma,delta";

fh = fopen("temp.csv", "w");

//Write the string to the first line of the file
call fputst(fh, text);

//Create some numeric data
x = { 1 2 3 4,

5 6 7 8 };

//Convert numeric data to 2x4 string array
x_str = ntos(x);

//Combine each row of 'x_str' into
//a single comma separated string
x_str = strjoin(x_str, ",");

//Write the comma separated data to the file
call fputst(fh, x_str);

//Close the file
call close(fh);

After the above code, you should have a file named temp.csv with the following con-
tents:

alpha,beta,gamma,delta
1,2,3,4
5,6,7,8

Portability

Linux/Mac

35-680

fputst

f

35-681

Carriage return-linefeed conversion for files opened in text mode is unnecessary,
because in Linux/Mac a newline is simply a linefeed.

Remarks

l To write to the standard output stream or the standard error stream, pass in __
STDOUT or __STDERR as the file handle argument.

str = "sample string";
num = fputst(__STDOUT, str);

l fputst works identically to fputs, except that a newline is appended to
each string that is written to the file. If the file was opened in text mode (see
fopen), these newlines are also converted to carriage return-linefeed
sequences on output.

See Also

fputs, fopen

fseek

Purpose

Positions the file pointer in a file.

Format

ret = fseek(f, offs, base);

Input

f scalar, file handle of a file opened with fopen.
offs scalar, offset (in bytes).
base scalar, base position.

fseek

f

0 beginning of file.
1 current position of file pointer.
2 end of file.

Output

ret scalar, 0 if successful, 1 if not.

Portability

Linux/Mac

Carriage return-linefeed conversion for files opened in text mode is unnecessary,
because in Linux/Mac a newline is simply a linefeed.

Remarks

fseek moves the file pointer offs bytes from the specified base position. offs
can be positive or negative. The call may fail if the file buffer needs to be flushed (see
fflush).

If fseek fails, you can call fstrerror to find out why.

For files opened for update (see fopen), the next operation can be a read or a write.

fseek is not reliable when used on files opened in text mode (see fopen). This has
to do with the conversion of carriage return-linefeed sequences to newlines. In par-
ticular, an fseek that follows one of the fgetxxx or fputxxx commands may not
produce the expected result. For example:

p = ftell(f);
s = fgetsa(f,7);
call fseek(f,p,0);

is not reliable. We have found that the best results are obtained by fseek'ing to the
beginning of the file and then fseek'ing to the desired location, as in

35-682

fseek

f

35-683

p = ftell(f);
s = fgetsa(f,7);
call fseek(f,0,0);
call fseek(f,p,0);

If you pass fseek the handle of a file opened with open (i.e., a data set or matrix
file), your program will terminate with a fatal error.

See Also

fopen

fstrerror

Purpose

Returns an error message explaining the cause of the most recent file I/O error.

Format

s = fstrerror;

Output

s string, error message.

Remarks

Any time an I/O error occurs on a file opened with fopen, an internal error flag is
updated. (This flag, unlike those accessed by fcheckerr and fclearerr, is not
specific to a given file; rather, it is system-wide.) fstrerror returns an error mes-
sage based on the value of this flag, clearing it in the process. If no error has occurred,
a null string is returned.

fstrerror

f

Since fstrerror clears the error flag, if you call it twice in a row, it will always
return a null string the second time.

The Windows system command called by ftell does not set the internal error flag
accessed by fstrerror. Therefore, calling fstrerror after ftell on Windows
will not produce any error information.

See Also

fopen, ftell

ftell

Purpose

Gets the position of the file pointer in a file.

Format

pos = ftell(f);

Input

f scalar, file handle of a file opened with fopen.

Output

pos scalar, current position of the file pointer in a file.

Remarks

ftell returns the position of the file pointer in terms of bytes from the beginning of
the file. The call may fail if the file buffer needs to be flushed (see fflush).

35-684

ftell

f

35-685

If an error occurs, ftell returns -1. You can call fstrerror to find out what the
error was.

If you pass ftell the handle of a file opened with open (i.e., a data set or matrix
file), your program will terminate with a fatal error.

See Also

fopen, fseek

ftocv

Purpose

Converts a matrix containing floating point numbers into a matrix containing the
decimal character representation of each element.

Format

y = ftocv(x, field, prec);

Input

x NxK matrix containing numeric data to be converted.
field scalar, minimum field width.
prec scalar, the numbers created will have prec places

after the decimal point.

Output

y NxK matrix containing the decimal character equivalent
of the corresponding elements in x in the format
defined by field and prec.

ftocv

f

Remarks

If a number is narrower than field, it will be padded on the left with zeros.

If prec = 0, the decimal point will be suppressed.

Example

y = seqa(6,1,5);
x = 0 $+ "beta" $+ ftocv(y,2,0);
print $x;

results in the following output:

beta06
beta07
beta08
beta09
beta10

Notice that the (0 $+) above was necessary to force the type of the result to matrix
because the string constant ''beta'' would be of type string. The left operand in an
expression containing a $+ operator controls the type of the result.

See Also

ftos

ftos

Purpose

Converts a scalar into a string containing the decimal character representation of
that number.

35-686

ftos

f

35-687

Format

y = ftos(x, fmat, field, prec);

Input

x scalar, the number to be converted.
fmat string, the format string to control the

conversion.
field scalar or 2x1 vector, the minimum field

width. If field is 2x1, it specifies
separate field widths for the real and
imaginary parts of x.

prec scalar or 2x1 vector, the number of places
following the decimal point. If prec is
2x1, it specifies separate precisions for the
real and imaginary parts of x.

Output

y string containing the decimal character equivalent of x
in the format specified.

Remarks

The format string corresponds to the format/jnt (justification, notation, trailing
character)slash parameter as follows:

/rdn "%*.*lf"

/ren "%*.*lE"

/ron "%#*.*lG"

ftos

f

/rzn "%*.*lG"

/ldn "%- *.*lf"

/len "%- *.*lE"

/lon "%-# *.*lG"

/lzn "%- *.*lG"

If x is complex, you can specify separate formats for the real and imaginary parts by
putting two format specifications in the format string. You can also specify separate
fields and precisions. You can position the sign of the imaginary part by placing a "+"
between the two format specifications. If you use two formats, no "i" is appended to
the imaginary part. This is so you can use an alternate format if you prefer, for
example, prefacing the imaginary part with a "j".

The format string can be a maximum of 80 characters.

If you want special characters to be printed after x, include them as the last characters
of the format string. For example:

"%*.*lf," right-justified decimal followed by a comma.
"%-*.*s " left-justified string followed by a space.
"%*.*lf" right-justified decimal followed by nothing.

You can embed the format specification in the middle
of other text:

"Time: %*.*lf seconds."

If you want the beginning of the field padded with zeros,
then put a "0" before the first "*" in the format string:

"%0*.*lf" right-justified decimal.
If prec = 0, the decimal point will be suppressed.

35-688

ftos

f

35-689

Example

You can create custom formats for complex numbers with ftos. For example,

let c = 24.56124+6.3224e-2i;

field = 1;
prec = 3|5;
fmat = "%lf + j%le is a complex number.";
cc = ftos(c,fmat,field,prec);

results in

cc = "24.561 + j6.32240e-02 is a complex number."

Some other things you can do with ftos:

let x = 929.857435324123;
let y = 5.46;
let z = 5;

field = 1;
prec = 0;
fmat = "%*.*lf";
zz = ftos(z,fmat,field,prec);

field = 1;
prec = 10;
fmat = "%*.*lE";
xx = ftos(x,fmat,field,prec);

field = 7;
prec = 2;
fmat = "%*.*lf seconds";
s1 = ftos(x,fmat,field,prec);
s2 = ftos(y,fmat,field,prec);

ftos

f

field = 1;
prec = 2;
fmat = "The maximum resistance is %*.*lf ohms.";
om = ftos(x,fmat,field,prec);

The results:

zz = "5"

xx = "9.2985743532E+002"

s1 = "929.86 seconds"

s2 = "5.46 seconds"

om = "The maximum resistance is 929.86 ohms."

See Also

ftocv, stof, format

ftostrC

Purpose

Converts a matrix to a string array using a C language format specification.

Format

sa = ftostrC(x, fmt);

35-690

ftostrC

f

35-691

Input

x NxK matrix, real or complex.
fmt Kx1, 1xK or 1x1 string array containing format

information.

Output

sa NxK string array.

Remarks

If fmt has K elements, each column of sa can be formatted separately. If x is
complex, there must be two format specifications in each element of fmt.

Example

declare string fmtr = { "%6.3lf",
"%11.8lf" };

declare string fmtc = { "(%6.3lf, %6.3lf)",
"(%11.8lf, %11.8lf)" };

xr = rndn(4, 2);
xc = sqrt(xr')';

sar = ftostrC(xr, fmtr);
sac = ftostrC(xc, fmtc);

print sar;
print sac;

produces:

ftostrC

f

-0.166 1.05565441
-1.590 -0.79283296
0.130 -1.84886957
0.789 0.86089687

(0.000, -0.407) (1.02745044, 0.00000000)
(0.000, -1.261) (0.00000000, -0.89041168)
(0.361, 0.000) (0.00000000, -1.35973143)
(0.888, 0.000) (0.92784529, 0.00000000)

See Also

strtof, strtofcplx

35-692

ftostrC

f

35-693

g

gamma

Purpose

Returns the value of the gamma function.

Format

y = gamma(x);

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array.

Remarks

For each element of x this function returns the integral

gamma

g

All elements of x must be positive and less than or equal to 169. Values of x greater
than 169 will cause an overflow.

The natural log of gamma is often what is required and it can be computed without the
overflow problems of gamma using lnfact.

Example

y = gamma(2.5);

After the code above:

y = 1.329340

See Also

cdfchic, cdfbeta, cdffc, cdfnc, cdftc, erf, erfc, lnfact

gammacplx

Purpose

Computes the Gamma function for complex inputs.

Format

f = gammacplx(z);

Input

z NxK matrix; z may be complex.

35-694

gammacplx

g

35-695

Output

f NxK matrix; f may be complex.

Technical Notes

Accuracy is 15 significant digits along the real axis and 13 significant digits elsewhere.
This routine uses the Lanczos series approximation for the complex Gamma function.

References

1. C. Lanczos, SIAM JNA 1, 1964, pp. 86-96.

2. Y. Luke, ''The Special ... approximations,'' 1969, pp. 29-31.

3. Y. Luke, ''Algorithms ... functions,'' 1977.

4. J. Spouge, SIAM JNA 31, 1994, pp. 931-944.

5. W. Press, ''Numerical Recipes.''

6. S. Chang, ''Computation of special functions,'' 1996.

7. W. J. Cody ''An Overview of Software Development for Special Functions,''
1975.

8. P. Godfrey ''A note on the computation of the convergent Lanczos complex
Gamma approximation.''

9. Original code by Paul Godfrey

gammaii

Purpose

Computes the inverse incomplete gamma function.

gammaii

g

Format

x = gammaii(a, p);

Input

a MxN matrix, exponents.
p KxL matrix, ExE conformable with a, incomplete

gamma values.

Output

x max(M,K) by max(N,L) matrix, abscissae.

Source

cdfchii.src

Globals

_ginvinc, __macheps

gausset

Purpose

Resets the global control variables declared in gauss.dec.

Format

gausset;

Source

gauss.src

35-696

gausset

g

35-697

Globals

__altnam, __con, __ff, __fmtcv, __fmtnv, __header, __miss, __out-
put, __row, __rowfac, __sort, __title, __tol, __vpad, __vtype, __
weight

gdaAppend

Purpose

Appends data to a variable in a GAUSS Data Archive.

Format

ret = gdaAppend(filename, x, varname);

Input

filename string, name of data file.
x matrix, array, string or string array, data to append.
varname string, variable name.

Output

ret scalar, return code, 0 if successful, otherwise one of the
following error codes:
1 Null file name.
2 File open error.
3 File write error.
4 File read error.

gdaAppend

g

5 Invalid data file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.
17 Type mismatch.
18 Argument wrong size.
19 Data must be real.
20 Data must be complex.

Remarks

This command appends the data contained in x to the variable varname in file-
name. Both x and the variable referenced by varname must be the same data type,
and they must both contain the same number of columns.

Because gdaAppend increases the size of the variable, it moves the variable to just
after the last variable in the data file to make room for the added data, leaving empty
bytes in the variable's old location. It also moves the variable descriptor table, so it is
not overwritten by the variable data. This does not change the index of the variable
because variable indices are determined NOT by the order of the variable data in a
GDA, but by the order of the variable descriptors. Call gdaPack to pack the data in a
GDA, so it contains no empty bytes.

Example

x = rndn(100,50);
ret = gdaCreate("myfile.gda",1);
ret = gdaWrite("myfile.gda",x,"x1");

y = rndn(25,50);
ret = gdaAppend("myfile.gda",y,"x1");

This example adds 25*50=1250 elements to x1, making it a 125x50 matrix.

35-698

gdaAppend

g

35-699

See Also

gdaWriteSome, gdaUpdate, gdaWrite

gdaCreate

Purpose

Creates a GAUSS Data Archive.

Format

ret = gdaCreate(filename, overwrite);

Input

filename string, name of data file to create.
overwrite scalar, one of the following:

0 error out if file already exists.
1 overwrite file if it already exists.

Output

ret scalar, return code, 0 if successful, otherwise one of the
following error codes:
1 Null file name.
3 File write error.
6 File already exists.
7 Cannot create file.

gdaCreate

g

Remarks

This command creates a GAUSS Data Archive containing only a header. To add data
to the GDA, call gdaWrite.

It is recommended that you include a .gda extension in filename. However,
gdaCreate will not force an extension.

Example

ret = gdaCreate("myfile.gda",1);

See Also

gdaWrite

gdaDStat

Purpose

Computes descriptive statistics on multiple Nx1 variables in a GAUSS Data
Archive.

Format

dout = gdaDStat(dc0, filename, vars);

Input

dc0 an instance of a dstatmtControl structure with the
following members:
dc0.altnames Kx1 string array of alternate variable

names for the output. Default = ''''.
dc0.maxbytes scalar, the maximum number of bytes

35-700

gdaDStat

g

35-701

to be read per iteration of the read
loop. Default = 1e9.

dc0.maxvec scalar, the largest number of elements
allowed in any one matrix. Default =
20000.

dc0.miss scalar, one of the following:
0 There are no missing

values (fastest).
1 Listwise deletion, drop

a row if any missings
occur in it.

2 Pairwise deletion.
Default = 0.

dc0.output scalar, one of the following:
0 Do not print output

table.
1 Print output table.
Default = 1.

dc0.row scalar, the number of rows of var
to be read per iteration of the read
loop.

If 0, (default) the number of rows will
be calculated using dc0.maxbytes
and dc0.maxvec.

filename string, name of data file.
vars Kx1 string array, names of variables

- or -

gdaDStat

g

Kx1 vector, indices of variables.

Output

dout an instance of a dstatmtOut structure with the following
members:
dout.vnames Kx1 string array, the names of the

variables used in the statistics.
dout.mean Kx1 vector, means.
dout.var Kx1 vector, variance.
dout.std Kx1 vector, standard deviation.
dout.min Kx1 vector, minima.
dout.max Kx1 vector, maxima.
dout.valid Kx1 vector, the number of valid cases.
dout.missing Kx1 vector, the number of missing

cases.
dout.errcode scalar, error code, 0 if successful, or

one of the following:
1 No GDA indicated.
4 Not implemented for

complex data.
5 Variable must be type

matrix.
6 Too many variables

specified.
7 Too many missings - no

data left after packing.
8 Name variable wrong size.
9 altnames member of

35-702

gdaDStat

g

35-703

dstatmtControl structure
wrong size.

11 Data read error.

Remarks

The variables referenced by vars must all be Nx1.

The names of the variables in the GDA will be used for the output by default. To use
alternate names, set the altnames member of the dstatmtControl structure.

If pairwise deletion is used, the minima and maxima will be the true values for the
valid data. The means and standard deviations will be computed using the correct num-
ber of valid observations for each variable.

Example

struct dstatmtControl dc0;
struct dstatmtOut dout;

//Set structure to default values
dc0 = dstatmtControlCreate();

vars = { 1,4,5,8 };
dout = gdaDStat(dc0,"myfile.gda",vars);

This example computes descriptive statistics on the first, fourth, fifth and eighth vari-
ables in myfile.gda.

Source

gdadstat.src

gdaDStat

g

See Also

gdaDStatMat, dstatmtControlCreate

gdaDStatMat

Purpose

Computes descriptive statistics on a selection of columns from a matrix located in
a GAUSS Data Archive.

Format

dout = gdaDStatMat(dc0, filename, gmat, colind, vnamevar);

Input

dc0 an instance of a dstatmtControl structure with the
following members:
dc0.altnames Kx1 string array of alternate variable

names for the output. Default = "". If
set, it must have the same number of
rows as colind.

dc0.maxbytes scalar, the maximum number of bytes
to be read per iteration of the read
loop. Default = 1e9.

dc0.maxvec scalar, the largest number of elements
allowed in any one matrix. Default =
20000.

dc0.miss scalar, one of the following:
0 There are no missing

35-704

gdaDStatMat

g

35-705

values (fastest).
1 Listwise deletion, drop

a row if any missings
occur in it.

2 Pairwise deletion.
Default = 0.

dc0.output scalar, one of the following:
0 Do not print output

table.
1 Print output table.
Default = 1.

dc0.row scalar, the number of rows of var
to be read per iteration of the read
loop.

If 0, (default) the number of rows will
be calculated using dc0.maxbytes
and dc0.maxvec.

filename string, name of data file.
gmat string, name of matrix

 - or -

scalar, index of matrix.
colind Kx1 vector, indices of columns in variable to use.
vnamevar string, name of the string containing the variable names

in the matrix

 - or -

scalar, index of the string containing the variable names in

gdaDStatMat

g

the matrix.

Output

dout an instance of a dstatmtOut structure with the following
members:
dout.vnames Kx1 string array, the names of the

variables used in the statistics.
dout.mean Kx1 vector, means.
dout.var Kx1 vector, variance.
dout.std Kx1 vector, standard deviation.
dout.min Kx1 vector, minima.
dout.max Kx1 vector, maxima.
dout.valid Kx1 vector, the number of valid cases.
dout.missing Kx1 vector, the number of missing

cases.
dout.errcode scalar, error code, 0 if successful,

otherwise one of the following:
1 No GDA indicated.
3 Variable must be Nx1.
4 Not implemented for

complex data.
5 Variable must be type

matrix.
7 Too many missings, no data

left after packing.
9 altnames member of

dstatmtControl structure
wrong size.

35-706

gdaDStatMat

g

35-707

11 Data read error.

Remarks

Set colind to a scalar 0 to use all of the columns in var.

vnamevar must either reference an Mx1 string array variable containing variable
names, where M is the number of columns in the data set variable, or be set to a scalar
0. If vnamevar references an Mx1 string array variable, then only the elements
indicated by colind will be used. Otherwise, if vnamevar is set to a scalar 0,
then the variable names for the output will be generated automatically
(''X1,X2,...,XK'') unless the alternate variable names are set explicitly in the alt-
names member of the dstatmtControl structure.

If pairwise deletion is used, the minima and maxima will be the true values for the
valid data. The means and standard deviations will be computed using the correct num-
ber of valid observations for each variable.

Example

In order to create a real, working example that you can use, you must first create a
sample GAUSS Data Archive with the code below.

//Create an example GAUSS Data Archive
ret = gdaCreate("myfile.gda",1);

//Add a variable 'A' which is a 10x5 random normal matrix
ret = gdaWrite("myfile.gda",rndn(10,5),"A");

//Add a variable 'COLS' which is a 5x1 string array
string vnames = { "X1", "X2", "X3", "X4", "X5" };
ret = gdaWrite("myfile.gda", vnames, "COLS");

gdaDStatMat

g

This code above will create a GAUSS Data Archive containing two variables, the
GAUSS matrix A containing the data and COLS which contains the names for the
columns of the matrix A which are the model variables (X1, X2,...).

The code below computes the statistics on each of the columns of the matrix A.

#include dstatmt.sdf
struct dstatmtControl dc0;
struct dstatmtout dout;

dc0 = dstatmtControlCreate;
colind = { 1, 2, 3, 4, 5 };
dout = gdaDStatMat(dc0, "myfile.gda", "A", colind, "COLS"
);

The final input to gdaDStatMat above tells the function the names to use for the
columns of A. In this example, you can reference the COLS variable by name as you
see in the example below. Alternatively, you can access this variable by index. Since
COLS is the second variable in the GAUSS Data Archive created at the start of this
example, the following is equivalent to the last line above:

dout = gdaDStatMat(dc0, "myfile.gda", "A", colind, 2);

If you wanted to calculate the statistics on just the first, third and fifth columns of A:

colind = { 1, 3, 5 };
dout = gdaDStatMat(dc0, "myfile.gda", "A", colind, "COLS"
);

Notice in these lines above that COLS still contains all of the variable names i.e. X1,
X2, X3, X4 and X5. COLS should always contain the full list of all variables in the
matrix A.

Source

gdadstat.src

35-708

gdaDStatMat

g

35-709

See Also

gdaDStat, dstatmtControlCreate

gdaGetIndex

Purpose

Gets the index of a variable in a GAUSS Data Archive.

Format

ind = gdaGetIndex(filename, varname);

Input

filename string, name of data file.
varname string, name of variable in the GDA.

Output

ind scalar, index of variable in the GDA.

Remarks

If gdaGetIndex fails, it will return a scalar error code. Call scalerr to get the
value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.

gdaGetIndex

g

5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

Example

ind = gdaGetIndex("myfile.gda","observed");

See Also

gdaGetName, gdaReadByIndex

gdaGetName

Purpose

Gets the name of a variable in a GAUSS Data Archive.

Format

varname = gdaGetName(filename, varind);

Input

filename string, name of data file.
varind scalar, index of variable in the GDA.

Output

varname string, name of variable in the GDA.

35-710

gdaGetName

g

35-711

Remarks

If gdaGetName fails, it will return a scalar error code. Call scalerr to get the
value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.

Example

varname = gdaGetName("myfile.gda",5);

See Also

gdaGetIndex, gdaRead, gdaGetNames

gdaGetNames

Purpose

Gets the names of all the variables in a GAUSS Data Archive.

Format

varnames = gdaGetNames(filename);

Input

filename string, name of data file.

gdaGetNames

g

Output

varnames Nx1 string array, names of all the variables in the
GDA.

Remarks

If gdaGetNames fails, it will return a scalar error code. Call scalerr to get the
value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
10 File contains no variables.
13 Result too large for current platform.
14 File too large to be read on current platform.

Example

varnames = gdaGetNames("myfile.gda");

See Also

gdaGetTypes, gdaGetName

gdaGetOrders

Purpose

Gets the orders of a variable in a GAUSS Data Archive.

35-712

gdaGetOrders

g

35-713

Format

ord = gdaGetOrders(filename, varname);

Input

filename string, name of data file.
varname string, name of variable in the GDA.

Output

ord Mx1 vector, orders of the variable in the GDA.

Remarks

If the specified variable is a matrix or string array, then ord will be a 2x1 vector con-
taining the rows and columns of the variable respectively. If the variable is a string,
then ord will be a scalar containing the length of the string. If the variable is an N-
dimensional array, then ord will be an Nx1 vector containing the sizes of each
dimension.

If gdaGetOrders fails, it will return a scalar error code. Call scalerr to get the
value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

gdaGetOrders

g

Example

ord = gdaGetOrders("myfile.gda","x5");

See Also

gdaGetName, gdaGetIndex

gdaGetType

Purpose

Gets the type of a variable in a GAUSS Data Archive.

Format

vartype = gdaGetType(filename, varname);

Input

filename string, name of data file.
varname string, name of variable in the GDA.

Output

vartype scalar, type of the variable in the GDA.

Remarks

vartype may contain any of the following:

6 Matrix

35-714

gdaGetType

g

35-715

13 String
15 String array
21 Array

If gdaGetType fails, it will return a scalar error code. Call scalerr to get the
value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

Example

vartype = gdaGetType("myfile.gda","x1");

See Also

gdaGetTypes

gdaGetTypes

Purpose

Gets the types of all the variables in a GAUSS Data Archive.

gdaGetTypes

g

Format

vartypes = gdaGetTypes(filename);

Input

filename string, name of data file.

Output

vartypes Nx1 vector, types of all the variables in the GDA.

Remarks

vartypes may contain any of the following:

6 Matrix
13 String
15 String array
21 Array

If gdaGetTypes fails, it will return a scalar error code. Call scalerr to get the
value of the error code. Valid error codes for this command include:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
10 File contains no variables.
14 File too large to be read on current platform.

35-716

gdaGetTypes

g

35-717

Example

vartypes = gdaGetTypes("myfile.gda");

See Also

gdaGetNames, gdaRead

gdaGetVarInfo

Purpose

Gets information about all of the variables in a GAUSS Data Archive and returns
it in an array of gdavartable structures.

Include

gdafns.sdf

Format

vtab = gdaGetVarInfo(filename);

Input

filename string, name of data file.

Output

vtab Nx1 array of gdavartable structures, where N is the
number of variables in filename, containing the
following members:
vtab string, name of variable.

gdaGetVarInfo

g

[i].name

vtab
[i].type

scalar, type of variable.

vtab
[i].orders

Mx1 vector or scalar, orders of the
variable.

Remarks

The size of vtab.orders is dependent on the type of the variable as follows:

Variable Type vtab.orders

array Mx1 vector, where M is the number of
dimensions in the
array, containing the sizes of each dimension,
from the
slowest-moving dimension to the fastest-
moving dimension.

matrix 2x1 vector containing the rows and columns of
the matrix,
respectively.

string scalar containing the length of string, excluding
the null
terminating byte.

string array 2x1 vector containing the rows and columns of
the string
array, respectively.

vtab.type may contain any of the following:

6 matrix

35-718

gdaGetVarInfo

g

35-719

13 string
15 string array
21 array

Example

//Execute structure definition
#include gdafns.sdf
struct gdavartable vtab;

vtab = gdaGetVarInfo("myfile.gda");

Source

gdafns.src

See Also

gdaReportVarInfo, gdaGetNames, gdaGetTypes, gdaGetOrders

gdaIsCplx

Purpose

Checks to see if a variable in a GAUSS Data Archive is complex.

Format

y = gdaIsCplx(filename, varname);

gdaIsCplx

g

Input

filename string, name of data file.
varname string, name of variable in the GDA.

Output

y scalar, 1 if variable is complex; 0 if real.

Remarks

If gdaIsCplx fails, it will return a scalar error code. Call scalerr to get the value
of the error code. Valid error codes for this command include:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

Example

cplx = gdaIsCplx("myfile.gda","x1");

gdaLoad

Purpose

Loads variables in a GDA into the workspace.

35-720

gdaLoad

g

35-721

Format

ret = gdaLoad(filename, create, modify, rename, ftypes,
errh, report);

Input

filename string, name of data file.
create scalar, create flag:

0 do not create any new variables in the
workspace.

1 create new variables in the workspace.
modify scalar, modify flag:

0 do not modify any variables in the
workspace.

1 if the name of a variable in the data file
matches the name of a variable already
in the workspace, modify that variable.

rename scalar, rename flag:
0 do not rename a variable retrieved from

the data file when copying it into the
workspace.

1 rename variables retrieved from the
data file when copying them into the
workspace if there are name conflicts
with existing variables, which may not
be modified.

ftypes scalar, type force flag:
0 do not force a type change on any

gdaLoad

g

variables in the workspace when
modifying.

1 force a type change on a variable in the
workspace when modifying it with the
data in a variable of the same name in
the data file. Note that if ftypes is
set to 1, gdaLoad will follow regular
type change rules. The types of sparse
matrix and structure variables will
NOT be changed.

errh scalar, controls the error handling of gdaLoad:
0 skip operations that cannot be

performed, without setting an error
return.

1 return an error code if operations are
skipped.

2 terminate program if operations are
skipped.

report scalar, controls reporting:
0 no reporting.
1 report only name changes and

operations that could not be performed.
2 report type changes, name changes,

and operations that could not be
performed.

3 report everything.

Output

ret scalar, return code, 0 if successful, otherwise one

35-722

gdaLoad

g

35-723

of the following error codes:
4 File read error.
5 Invalid file type.
10 File contains no variables.
14 File too large to be read on current

platform.
24 Variables skipped.
26 Cannot add structure definition.
27 Structure definition does not match.

Remarks

For each variable in filename, gdaLoad will first compare the name of the vari-
able against the names of the variables already resident in the GAUSS workspace to
see if there is a match. If there is not a match, and create is set to 1, it will create
a new variable. Otherwise if create is set to 0, it will skip that variable.

If the variable name does match that of a variable already resident in the GAUSS
workspace, and modify is set to 1, it will attempt to modify that variable. If the
types of the two variables are different, and ftype is set to 1, it will force the type
change if possible and modify the existing variable.

If it cannot modify the variable or modify is set to 0, it will check to see if
rename is set to 1, and if so, attempt to rename the variable, appending an _ num to
the variable name, beginning with num = 1 and counting upward until it finds a name
with which there are no conflicts. If the variable cannot be modified and rename is
set to 0, then the variable will be skipped.

The rename argument also controls the handling of structure definitions. If a struc-
ture variable is encountered in the GDA file, and no variable of the same name exists
in the workspace (or the variable is renamed), gdaLoad will attempt to find a

gdaLoad

g

structure definition in the workspace that matches the one in the GDA. Note that in
order for structure definitions to match, the structure definition names must be the
same as well as the number, order, names, and types of their members.

If no matching structure definition is found, the definition in the file will be loaded into
the workspace. If there is already a non-matching structure definition with the same
name in the workspace and rename is set to 1, then gdaLoad will attempt to
rename the structure definition, using the same method as it does for variable names.

If a structure variable is encountered in the GDA file, a structure variable of the same
name already exists in the workspace, and modify is set to 1, then gdaLoad will
modify the existing variable, providing that the structure definitions of the two vari-
ables match.

Example

ret = gdaLoad("myfile.gda",1,1,1,1,1,3);

This example loads the variables in myfile.gda into the workspace, creating a new
variable if a variable of the same name does not already exist, modifying an existing
variable if a variable of the same name does already exist and the modification does
not result in an impossible type change, and renaming the variable if none of the above
is possible. The example returns an error code if any variables in myfile.gda are
skipped and reports all activity.

See Also

gdaSave

gdaPack

Purpose

Packs the data in a GAUSS Data Archive, removing all empty bytes and trun-
cating the file.

35-724

gdaPack

g

35-725

Format

ret = gdaPack(filename);

Input

filename string, name of data file.

Output

ret scalar, return code, 0 if successful, otherwise one
of the following error codes:
1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
10 File contains no variables.
12 File truncate error.
14 File too large to be read on current

platform.

Remarks

You may want to call gdaPack after several calls to gdaUpdate to remove all of
the empty bytes from a GDA.

Example

ret = gdaPack("myfile.gda");

gdaPack

g

See Also

gdaUpdate, gdaWrite

gdaRead

Purpose

Gets a variable from a GAUSS Data Archive.

Format

y = gdaRead(filename, varname);

Input

filename string, name of data file.
varname string, name of variable in the GDA.

Output

y matrix, array, string or string array, variable data.

Remarks

If gdaRead fails, it will return a scalar error code. Call scalerr to get the value of
the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.

35-726

gdaRead

g

35-727

8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

Example

y = gdaRead("myfile.gda","x1");

See Also

gdaReadByIndex, gdaGetName

gdaReadByIndex

Purpose

Gets a variable from a GAUSS Data Archive given a variable index.

Format

y = gdaReadByIndex(filename, varind);

Input

filename string, name of data file.
varind scalar, index of variable in the GDA.

Output

y matrix, array, string or string array, variable data.

gdaReadByIndex

g

Remarks

If gdaReadByIndex fails, it will return a scalar error code. Call scalerr to get
the value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.

Example

y = gdaReadByIndex("myfile.gda",3);

See Also

gdaRead, gdaGetIndex

gdaReadSome

Purpose

Reads part of a variable from a GAUSS Data Archive.

Format

y = gdaReadSome(filename, varname, index, orders);

35-728

gdaReadSome

g

35-729

Input

filename string, name of data file.
varname string, name of variable in the GDA.
index scalar or Nx1 vector, index into variable where read is

to begin.
orders scalar or Kx1 vector, orders of object to output.

Output

y matrix, array, string or string array, variable data.

Remarks

This command reads part of the variable varname in filename, beginning at the
position indicated by index. The orders argument determines the size and
shape of the object outputted by gdaReadSome. The number of elements read equals
the product of all of the elements in orders.

If index is a scalar, it will be interpreted as the indexth element of the variable.
Thus if varname references a 10x5 matrix, an index of 42 would indicate the
42nd element, which is equivalent to the [8,2] element of the matrix (remember that
GAUSS matrices are stored in row major order). If index is an Nx1 vector, then N
must equal the number of dimensions in the variable referenced by varname.

If orders is a Kx1 vector, then y will be a K-dimensional object. If orders is a
scalar r, then y will be an rx1 column vector. To specify a 1xr row vector, set out-
put = { 1, r }.

If the variable referenced by varname is numeric (a matrix or array) and orders
is a scalar or 2x1 vector, then y will of type matrix. If the variable is numeric and
orders is an Nx1 vector where N>2, then y will be of type array.

gdaReadSome

g

If varname references a string, then both index and orders must be scalars,
and index must contain an index into the string in characters.

If gdaReadSome fails, it will return a scalar error code. Call scalerr to get the
value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
13 Result too large for current platform.
14 File too large to be read on current platform.
15 Argument out of range.
18 Argument wrong size.

Example

x = rndn(100,50);
ret = gdaCreate("myfile.gda",1);
ret = gdaWrite("myfile.gda",x,"x1");

index = { 35,20 };
orders = { 25,5 };
y = gdaReadSome("myfile.gda","x1",index,orders);

This example reads 25*5=125 elements from x1, beginning with the [35,20] element.
The 125 elements are returned as a 25x5 matrix, y.

See Also

gdaWriteSome, gdaRead

35-730

gdaReadSome

g

35-731

gdaReadSparse

Purpose

Gets a sparse matrix from a GAUSS Data Archive.

Format

sm = gdaReadSparse(filename, varname);

Input

filename string, name of data file.
varname string, name of sparse matrix variable in the GDA.

Output

sm sparse matrix.

Remarks

If gdaReadSparse fails, it will return a sparse scalar error code. Call scalerr to
get the value of the error code. The error code may be any of the following:

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.

gdaReadSparse

g

Example

sparse matrix sm1;
sm1 = gdaReadSparse("myfile.gda","sm");

See Also

gdaRead, gdaReadStruct, gdaWrite

gdaReadStruct

Purpose

Gets a structure from a GAUSS Data Archive.

Format

{ instance, retcode } = gdaReadStruct(filename, varname,
structure_type);

Input

filename string, name of data file.
varname string, name of structure instance in the GDA.
structure_
type

string, structure type.

Output

instance instance of the structure.
retcode scalar, 0 if successful, otherwise, any of the

following error codes:

35-732

gdaReadStruct

g

35-733

1 Null file name.
2 File open error.
4 File read error.
5 Invalid file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current

platform.

Remarks

instance can be an array of structures.

Example

struct mystruct {
matrix x;
array a;

};

struct mystruct msw;
msw.x = rndn(500,25);
msw.a = areshape(rndn(5000,100),10|500|100);
ret = gdaCreate("myfile.gda",1);
ret = gdaWrite("myfile.gda",msw,"ms");
struct mystruct msr;
{ msr, ret } = gdaReadStruct("myfile.gda","ms","mystruct");

See Also

gdaRead, gdaReadSparse, gdaWrite

gdaReadStruct

g

gdaReportVarInfo

Purpose

Gets information about all of the variables in a GAUSS Data Archive and returns
it in a string array formatted for printing.

Format

vinfo = gdaReportVarInfo(filename);

Input

filename string, name of data file.

Output

vinfo Nx1 string array containing variable information.

Remarks

If you just want to print the information to the window, call gdaReportVarInfo
without assigning the output to a symbol name:

gdaReportVarInfo(filename);

Example

x1 = rndn(100,50);
x2 = rndn(75,5);
a = areshape(rndn(10000,1),10|100|10);
fname = "myfile.gda";
ret = gdaCreate(fname,1);

35-734

gdaReportVarInfo

g

35-735

ret = gdaWrite(fname,x1,"x1");
ret = gdaWrite(fname,x2,"x2");
ret = gdaWrite(fname,a,"a1");
gdaReportVarInfo(fname);

produces:

Index Name Type cOrders
1 x1 matrix 100x50
2 x2 matrix 75x5
3 a1 array 10x100x10

Source

gdafns.src

See Also

gdaGetVarInfo, gdaGetNames, gdaGetTypes, gdaGetOrders

gdaSave

Purpose

Writes variables in a workspace to a GDA.

Format

ret = gdaSave(filename, varnames, exclude, overwrite,
report);

gdaSave

g

Input

filename string, name of data file.
varnames string or NxK string array, names of variables in the

workspace to include or exclude.
exclude scalar, include/exclude flag:

0 include all variables contained in
varnames.

1 exclude all variables contained in
varnames.

overwrite scalar, controls the overwriting of the file and
variables in the file:
0 if file exists, return with an error code.
1 if file exists, overwrite completely.
2 if file exists, append to file, appending

to variable names if necessary to avoid
name conflicts.

3 if file exists, update file. When a name
confict occurs, update the existing
variable in the file with the new
variable.

report scalar, controls reporting:
0 no reporting.
1 report only name changes (note that

name changes occur only when
overwrite is set to 2).

3 report everything.

35-736

gdaSave

g

35-737

Output

ret scalar, return code, 0 if successful, otherwise one
of the following error codes:
1 Null file name.
3 File write error.
4 File read error.
5 Invalid file type.
6 File exists and overwrite set to 0.
7 Cannot create file.
14 File too large to be read on current

platform.
16 Cannot write to GDA - version

outdated.
17 Type mismatch.

Remarks

Only initialized variables are written to the GDA with gdaSave.

If varnames is a null string and exclude is set to 0, it will be interpreted as
indicating all of the variables in the workspace.

You may add an asterisk (*) to the end of a variable name in varnames to indicate
that all variables beginning with the specified text are to be selected. For example, set-
ting varnames to the string ''_*'' and setting exclude to 1 indicates that all vari-
ables EXCEPT those starting with an underscore should be written to the GDA.

The names of the variables in the workspace are the names that are given to the vari-
ables when they are written to the GDA, with the exception of names that are changed
to avoid conflicts.

gdaSave

g

If you set overwrite to 2, and variable name conflicts are encountered, gdaSave
will append an underscore and a number to the name of the variable it is adding. It will
first try changing the name to name_1. If there is a conflict with that name, it will
change it to name_2, and so on until it finds a name that does not conflict with any of
the variables already in the GDA.

Example

run -r myfile.gau;
ret = gdaSave("myfile.gda","x*",0,2,3);

This example runs a GAUSS program called myfile.gau and then writes all ini-
tialized variables in the workspace beginning with 'x' to the file myfile.gda. If
myfile.gda already exists, this example appends to it, changing the names of the
variables that it writes to the file if necessary to avoid name conficts. All writing and
variable name changing is reported.

See Also

gdaLoad

gdaUpdate

Purpose

Updates a variable in a GAUSS Data Archive.

Format

ret = gdaUpdate(filename, x, varname);

Input

filename string, name of data file.

35-738

gdaUpdate

g

35-739

x matrix, array, string or string array, data.
varname string, variable name.

Output

ret scalar, return code, 0 if successful, otherwise one
of the following error codes:
1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current

platform.

Remarks

This command updates the variable varname in filename with the data con-
tained in x.

If x is larger than the specified variable in the file, then gdaUpdate writes the new
variable data after the last variable in the data file, moving the variable descriptor
table to make room for the data and leaving empty bytes in the place of the old vari-
able. This does not change the index of the variable because variable indices are
determined NOT by the order of the variable data in a GDA, but by the order of the
variable descriptors.

gdaUpdate

g

If x is the same size or smaller than the specified variable in the file, then gdaUp-
date writes the data in x over the specified variable. If x is smaller, then gdaUp-
date leaves empty bytes between the end of the updated variable and the beginning of
the next variable in the data file.

This command updates variables quickly by not moving data in the file unnecessarily.
However, calling gdaUpdate several times for one file may result in a file with a
large number of empty bytes. To pack the data in a GDA, so it contains no empty
bytes, call gdaPack. Or to update a variable without leaving empty bytes in the file,
call gdaUpdateAndPack.

Example

x = rndn(100,50);
ret = gdaCreate("myfile.gda",1);
ret = gdaWrite("myfile.gda",x,"x1");

y = rndn(75,5);
ret = gdaUpdate("myfile.gda",y,"x1");

See Also

gdaUpdateAndPack, gdaPack, gdaWrite

gdaUpdateAndPack

Purpose

Updates a variable in a GAUSS Data Archive, leaving no empty bytes if the
updated variable is smaller or larger than the variable it is replacing.

Format

ret = gdaUpdateAndPack(filename, x, varname);

35-740

gdaUpdateAndPack

g

35-741

Input

filename string, name of data file.
x matrix, array, string or string array, data.
varname string, variable name.

Output

ret scalar, return code, 0 if successful, otherwise one
of the following error codes:
1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
8 Variable not found.
10 File contains no variables.
12 File truncate error.
14 File too large to be read on current

platform.

Remarks

This command updates the variable varname in filename with the data con-
tained in x. gdaUpdateAndPack always writes the data in x over the specified
variable in the file. If x is larger than the specified variable, then it first moves all sub-
sequent data in the file to make room for the new data. If x is smaller, then gdaUp-
dateAndPack writes the data, packs all of the subsequent data, leaving no empty
bytes after the updated variable, and truncates the file.

gdaUpdateAndPack

g

This command uses disk space efficiently; however, it may be slow for large files
(especially if the variable to be updated is one of the first variables in the file). If
speed is a concern, you may want to use gdaUpdate instead.

Example

x = rndn(100,50);
ret = gdaCreate("myfile.gda",1);
ret = gdaWrite("myfile.gda",x,"x1");

y = rndn(75,5);
ret = gdaUpdateAndPack("myfile.gda",y,"x1");

See Also

gdaUpdate, gdaWrite

gdaVars

Purpose

Gets the number of variables in a GAUSS Data Archive.

Format

nvars = gdaVars(filename);

Input

filename string, name of data file.

Output

nvars scalar, the number of variables in filename.

35-742

gdaVars

g

35-743

Example

nvars = gdaVars("myfile.gda");

Source

gdafns.src

See Also

gdaReportVarInfo, gdaGetNames

gdaWrite

Purpose

Writes a variable to a GAUSS Data Archive.

Format

ret = gdaWrite(filename, x, varname);

Input

filename string, name of data file.
x matrix, array, string or string array, data to write to the

GDA.
varname string, variable name.

Output

ret scalar, return code, 0 if successful, otherwise one of the
following error codes:

gdaWrite

g

1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
9 Variable name too long.
11 Variable name must be unique.
14 File too large to be read on current platform.

Remarks

gdaWrite adds the data in x to the end of the variable data in filename, and
gives the variable the name contained in varname.

Example

x = rndn(100,50);
ret = gdaCreate("myfile.gda",1);
ret = gdaWrite("myfile.gda",x,"x1");

See Also

gdaWrite32, gdaCreate

gdaWrite32

Purpose

Writes a variable to a GAUSS Data Archive using 32-bit system file write com-
mands.

35-744

gdaWrite32

g

35-745

Format

ret = gdaWrite32(filename, x, varname);

Input

filename string, name of data file.
x matrix, array, string or string array, data to write to the

GDA.
varname string, variable name.

Output

ret scalar, return code, 0 if successful, otherwise one of the
following error codes:
1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
9 Variable name too long.
11 Variable name must be unique.
14 File too large to be read on current platform.
25 Not supported for use with a file created on a

machine with a different byte order.

Remarks

gdaWrite32 adds the data in x to the end of the variable data in filename, and

gdaWrite32

g

gives the variable the name contained in varname.

This command is a speed optimization command for Windows. On all other platforms,
this function is identical to gdaWrite. gdaWrite uses system file write commands
that support 64-bit file sizes. These commands are slower on Windows XP than the 32-
bit file write commands that were used for binary writes in GAUSS 6.0 and earlier.
gdaWrite32 uses the 32-bit Windows system write commands, which will be faster
on Windows XP. Note, however, that gdaWrite32 does not support 64-bit file sizes.

This command does not support writing to a GDA that was created on a platform with
a different byte order than the current machine. gdaWrite supports full cross-
platform writing to GDA's.

Example

x = rndn(100,50);
ret = gdaCreate("myfile.gda",1);
ret = gdaWrite32("myfile.gda",x,"x1");

See Also

gdaWrite, gdaCreate

gdaWriteSome

Purpose

Overwrites part of a variable in a GAUSS Data Archive.

Format

ret = gdaWriteSome(filename, x, varname, index);

35-746

gdaWriteSome

g

35-747

Input

filename string, name of data file.
x matrix, array, string or string array, data.
varname string, variable name.
index scalar or Nx1 vector, index into variable where new

data is to be written.

Output

ret scalar, return code, 0 if successful, otherwise one of the
following error codes:
1 Null file name.
2 File open error.
3 File write error.
4 File read error.
5 Invalid data file type.
8 Variable not found.
10 File contains no variables.
14 File too large to be read on current platform.
15 Argument out of range.
17 Type mismatch.
18 Argument wrong size.
19 Data must be real.
20 Data must be complex.

Remarks

This command overwrites part of the variable varname in filename with the

gdaWriteSome

g

data contained in x. The new data is written to varname beginning at the position
indicated by index.

If index is a scalar, it will be interpreted as the indexth element of the variable.
Thus if varname references a 10x5 matrix, an index of 42 would indicate the
42nd element, which is equivalent to the [8,2] element of the matrix (remember that
GAUSS matrices are stored in row major order). If index is an Nx1 vector, then N
must equal the number of dimensions in the variable referenced by varname.

If varname references a string, then index must be a scalar containing an index
into the string in characters.

gdaWriteSome may not be used to extend the size of a variable in a GDA. If there
are more elements (or characters for strings) in x than there are from the indexed pos-
ition of the specified variable to the end of that variable, then gdaWriteSome will
fail. Call gdaAppend to append data to an existing variable.

The shape of x need not match the shape of the variable referenced by varname. If
varnum references an NxK matrix, then x may be any LxM matrix (or P-dimensional
array) that satisfies the size limitations described above. If x contains R elements,
then the elements in x will simply replace the indexed element of the specified vari-
able and the subsequent R-1 elements (as they are laid out in memory).

If varname references a string array, then the size of the overall variable will
change if the sum of the length of the string array elements in x is different than the
sum of the length of the elements that they are replacing.

In this case, if the variable increases in size, then the variable data will be rewritten
after the last variable in the data file, moving the variable descriptor table to make
room for the data and leaving empty bytes in its old location. This does not change the
index of the variable because variable indices are determined NOTby the order of the
variable data in a GDA, but by the order of the variable descriptors. If the variable
decreases in size, then gdaWriteSome leaves empty bytes between the end of the
variable and the beginning of the next variable in the data file. Call gdaPack to pack
the data in a GDA, so it contains no empty bytes.

35-748

gdaWriteSome

g

35-749

Example

x = rndn(100,50);
ret = gdaCreate("myfile.gda",1);
ret = gdaWrite("myfile.gda",x,"x1");

y = rndn(75,5);
index = { 52, 4 };
ret = gdaWriteSome("myfile.gda",y,"x1",index);

This example replaces 75*5=375 elements in x1, beginning with the [52,4] element,
with the elements in y.

See Also

gdaReadSome, gdaUpdate, gdaWrite

getarray

Purpose

Gets a contiguous subarray from an N-dimensional array.

Format

y = getarray(a, loc);

Input

a N-dimensional array.
loc Mx1 vector of indices into the array to locate the

subarray of interest, where 1 <= M <= N.

getarray

g

Output

y [N-M]-dimensional subarray or scalar.

Remarks

If N-M>0, getarray will return an array of [N-M] dimensions, otherwise, if N-
M=0, it will return a scalar.

Example

a = seqa(1,1,720);
a = areshape(a,2|3|4|5|6);
loc = { 2,1 };
y = getarray(a,loc);

y will be a 4x5x6 array of sequential values, beginning at [1,1,1] with 361, and ending
at [4,5,6] with 480.

See Also

getmatrix

getdims

Purpose

Gets the number of dimensions in an array, matrix, string array or other symbol.

Format

ndims = getdims(a);

35-750

getdims

g

35-751

Input

a N-dimensional array, matrix, string, string array or
sparse matrix.

Output

ndims scalar, the number of dimensions in the symbol.

Example

//Create a 2x120x12 random normal array
nelems = 2 * 120 * 12;
a = areshape(rndn(nelems, 1), 2|120|12);

//Find ut the number of dimensions in 'a'
ndims = getdims(a);

The code above, assigns ndims to be equal to 3.

See Also

getorders

getf

Purpose

Loads an ASCII or binary file into a string.

getf

g

Format

y = getf(filename, mode);

Input

filename string, any valid file name.
mode scalar 1 or 0 which determines if the file is to be loaded

in ASCII mode (0) or binary mode (1).

Output

y string containing the file.

Remarks

If the file is loaded in ASCII mode, it will be tested to see if it contains any end of file
characters. These are ^Z (ASCII 26). The file will be truncated before the first ^Z,
and there will be no ^Z's in the string. This is the correct way to load most text files
because the ^Z's can cause problems when trying to print the string to a printer.

If the file is loaded in binary mode, it will be loaded just like it is with no changes.

Example

Suppose you have a file which writes the results of its calculations to a file in a report
format. For this example, we will use the code snippet below:

x1 = rndn(100,5);
y1 = rndu(100,1);

output file = regression_results.txt reset;
call ols("", y1, x1);
output off;

35-752

getf

g

35-753

x2 = rndn(100,5);
y2 = rndu(100,1);

output file = ols_results.txt reset;
call ols("", y2, x2);
output off;

Running the code above will create a file named "regression_results.txt" and a file
named "ols_results.txt" in your current working directory. You can retrieve the output
from either of these files with the getf command.

str = getf("regression_results.txt",1);
print str;

You can take this further and create a procedure that will load a list of output files for
you. It can then print the output from each file as you are ready to read it.

declare string array fileList = { "regression_results.txt",
"ols_results.txt" };
showOutput(fileList);

proc (0) = showOutput(fileList);
local k;
for i(1, rows(fileList), 1);

print "Press any key to view the next file:";
//wait for user input and assign the first key stroke
//to 'k'
k = keyw;
print getf(fileList[i],1);

endfor;
endp;

getf

g

See Also

load, save, let, con

getGAUSSHome

Purpose

Returns the full path to the GAUSS home directory..

Format

g_home = getGAUSSHome();

Output

g_home string, full path to GAUSS home directory.

Remarks

getGAUSSHome can be used to load and save files in directories that are relative to
the GAUSS installation directory without knowing its exact location ahead of time.
This can help to make programs that will run on multiple computers, using different
paths without any changes to the code.

Example

Example 1: locate the GAUSS home directory

If you installed GAUSS in the directory, C:\gauss:

g_home = getGAUSSHome();
print g_home;

produces:

35-754

getGAUSSHome

g

35-755

C:\gauss

Example 2: loading a file from the GAUSS examples directory

//Create full path to dataset
f_name = getGAUSSHome() $+ "examples/fueleconomy.dat";

//Load the dataset
fuel_economy = loadd(f_name);

getmatrix

Purpose

Gets a contiguous matrix from an N-dimensional array.

Format

y = getmatrix(a, loc);

Input

a N-dimensional array.
loc Mx1 vector of indices into the array to locate the matrix

of interest, where M equals N, N-1 or N-2.

Output

y KxL or 1xL matrix or scalar, where L is the size of the
fastest moving dimension of the array and K is the size
of the second fastest moving dimension.

getmatrix

g

Remarks

Inputting an Nx1 locator vector will return a scalar, an (N-1)x1 locator vector will
return a 1xL matrix, and an (N-2)x1 locator vector will return a KxL matrix.

Example

//Create the sequence 1, 2, 3...20
a = seqa(1, 1, 20);

//Reshape the column vector 'a' into a 3x3x2 dimensional
//array
a = areshape(a, 3|3|2);

//Extract the second 3x2 array
mat = getmatrix(a, 2);

After code above a is equal to:

Plane [1,.,.]

1.0000000 2.0000000
3.0000000 4.0000000
5.0000000 6.0000000

Plane [2,.,.]

7.0000000 8.0000000
9.0000000 10.000000
11.000000 12.000000

Plane [3,.,.]

13.000000 14.000000

35-756

getmatrix

g

35-757

15.000000 16.000000
17.000000 18.000000

and mat is equal to:

7.0000000 8.0000000
9.0000000 10.000000
11.000000 12.000000

See Also

getarray, getmatrix4D

getmatrix4D

Purpose

Gets a contiguous matrix from a 4-dimensional array.

Format

y = getmatrix4D(a, i1, i2);

Input

a 4-dimensional array.
i1 scalar, index into the slowest moving dimension of the

array.
i2 scalar, index into the second slowest moving dimension

of the array.

getmatrix4D

g

Output

y KxL matrix, where L is the size of the fastest moving
dimension of the array and K is the size of the second
fastest moving dimension.

Remarks

getmatrix4D returns the contiguous matrix that begins at the [i1,i2,1,1] position
in array a and ends at the [i1, i2,K,L] position.

A call to getmatrix4D is faster than using the more general getmatrix function
to get a matrix from a 4-dimensional array, especially when i1 and i2 are the coun-
ters from nested for loops.

Example

//Create a column vector 1, 2, 3...120
a = seqa(1,1,120);

//Reshape the column vector into a 2x3x4x5 dimensional
//array
a = areshape(a,2|3|4|5);

//Extract a submatrix
y = getmatrix4D(a,2,3);

After the code above:

101 102 103 104 105
y = 106 107 108 109 110

111 112 113 114 115
116 117 118 119 120

35-758

getmatrix4D

g

35-759

See Also

getmatrix, getscalar4D, getarray

getname

Purpose

Returns a column vector containing the names of the variables in a GAUSS data
set.

Format

y = getname(dset);

Input

dset string specifying the name of the data set from which
the function will obtain the variable names.

Output

y Nx1 vector containing the names of all of the variables
in the specified data set.

Remarks

The output, y, will have as many rows as there are variables in the data set.

Example

y = getname(getGaussHome $+ "examples/freqdata.dat");

getname

g

format 8,8;
print $y;

produces:

AGE
PAY
sex
WT

The above example assumes that the data set olsdat contains the variables: TIME,
DIST, TEMP, FRICT.

Note that the extension is not included in the filename passed to the getname func-
tion.

See Also

getnamef, indcv

getnamef

Purpose

Returns a string array containing the names of the variables in a GAUSS data set.

Format

y = getnamef(f);

Input

f scalar, file handle of an open data set

35-760

getnamef

g

35-761

Output

y Nx1 string array containing the names of all of the
variables in the specified data set.

Remarks

The output, y, will have as many rows as there are variables in the data set.

Example

file = getgausshome()$+ "examples/freqdata.dat";
//Open the dataset
open f = ^file for read;

//Create a string array with the variable names from the
//dataset
y = getnamef(f);

//Check which variables are character and which are numeric
t = vartypef(f);

print y;

produces:

AGE
PAY
sex
WT

getnamef

g

The above example assumes that the data set freqdata contains the variables: AGE,
PAY, sex, WT.

Note the use of vartypef to determine the types of these variables.

See Also

getname, indcv, vartypef

getNextTradingDay

Purpose

Returns the next trading day.

Format

n = getNextTradingDay(a);

Input

a scalar, date in DT scalar format.

Output

n scalar, next trading day in DT scalar format.

Remarks

A trading day is a weekday that is not a holiday as defined by the New York Stock
Exchange from 1888 through 2006. Holidays are defined in holidays.asc. You
may edit that file to modify or add holidays.

35-762

getNextTradingDay

g

35-763

Source

finutils.src

Globals

_fin_holidays

See Also

getPreviousTradingDay, annualTradingDays

getNextWeekDay

Purpose

Returns the next day that is not on a weekend.

Format

n = getNextWeekDay(a);

Input

a scalar, date in DT scalar format.

Output

n scalar, next week day in DT scalar format.

Source

finutils.src

getNextWeekDay

g

See Also

getPreviousWeekDay

getnr

Purpose

Computes number of rows to read per iteration for a program that reads data from
a disk file in a loop.

Format

nr = getnr(nsets, ncols);

Input

nsets scalar, estimate of the maximum number of duplicate
copies of the data matrix read by readr to be kept in
memory during each iteration of the loop.

ncols scalar, columns in the data file.

Output

nr scalar, number of rows readr should read per
iteration of the read loop.

Remarks

If __row is greater than 0, nr will be set to __row.

If an insufficient memory error is encountered, change __rowfac to a number less
than 1.0 (e.g., 0.75). The number of rows read will be reduced in size by this factor.

35-764

getnr

g

35-765

Source

gauss.src

Globals

__row, __rowfac, __maxvec

getnrmt

Purpose

Computes number of rows to read per iteration for a program that reads data from
a disk file in a loop.

Format

nr = getnr(nsets, ncols, row, rowfac, maxv);

Input

nsets scalar, estimate of the maximum number of duplicate
copies of the data matrix read by readr to be kept in
memory during each iteration of the loop.

ncols scalar, columns in the data file.
row scalar, if row is greater than 0, nr will be set to

row.
rowfac scalar, nr will be reduced in size by this factor. If

insufficient memory error is encounted, change this to a
number less than one (e.g., 0.9).

maxv scalar, the largest number of elements allowed in any
one matrix.

getnrmt

g

Output

nr scalar, number of rows readr should read per
iteration of the read loop.

Source

gaussmt.src

getorders

Purpose

Returns a vector containing the size of the dimensions of an array, matrix, or
other symbol. sss

Format

orders = getorders(a);

Input

a N-dimensional array, matrix, sparse matrix, string or
string array.

Output

orders Nx1 vector of orders, the sizes of the dimensions of the
array.

Example
Example 1

//Allocate a 5x100x3 dimensional array with each element

35-766

getorders

g

35-767

equal to 0.
a = arrayinit(5|100|3,0);

//Find the size of the dimensions in 'a'
orders = getorders(a);

After the code above:

orders = 5
100

3

Example 2

//Create 121x4 random matrix
x = rndn(121, 4);

//Get the number of rows and columns of the matrix
dims = getorders(x);

After the above code, dims should equal:

121
4

See Also

getdims, rows, cols

getpath

Purpose

Returns an expanded filename including the drive and path.

getpath

g

Format

fname = getpath(pfname);

Input

pfname string, partial filename with only partial or missing path
information.

Output

fname string, filename with full drive and path.

Remarks

This function handles relative path references.

Example

y = getpath("temp.e");
print y;

produces:

C:\gauss\temp.e

assuming that C:\gauss is the current directory.

Source

getpath.src

35-768

getpath

g

35-769

getPreviousTradingDay

Purpose

Returns the previous trading day.

Format

n = getPreviousTradingDay(a);

Input

a scalar, date in DT scalar format.

Output

n scalar, previous trading day in DT scalar format.

Remarks

A trading day is a weekday that is not a holiday as defined by the New York Stock
Exchange from 1888 through 2006. Holidays are defined in holidays.asc. You
may edit that file to modify or add holidays.

Source

finutils.src

Globals

_fin_holidays

See Also

getNextTradingDay

getPreviousTradingDay

g

getPreviousWeekDay

Purpose

Returns the previous day that is not on a weekend.

Format

n = getPreviousWeekDay(a);

Input

a scalar, date in DT scalar format.

Output

n scalar, previous week day in DT scalar format.

Source

finutils.src

See Also

getNextWeekDay

getRow

Purpose

Returns a specified row from a matrix.

Format

y = getRow(a, row);

35-770

getPreviousWeekDay

g

35-771

Input

a NxK matrix
row The row of the matrix to extract.

Output

y A 1xK row vector.

Remarks

getRow is designed to give an alternative access to rows in a matrix than indexing the
matrix by brackets.

Example

First create a matrix, a:

a = rndn(10,10);

Now you can assign a variable y to be equal the third row of a with either of the fol-
lowing statements.

y = getRow(a,3);

or

y = a[3,.];

While both statements will produce the same result, the first may make for code that is
easier to read and interpret.

getRow

g

See Also

CR-getTrRow

getscalar3D

Purpose

Gets a scalar from a 3-dimensional array.

Format

y = getscalar3D(a, i1, i2, i3);

Input

a 3-dimensional array.
i1 scalar, index into the slowest moving dimension of the

array.
i2 scalar, index into the second slowest moving dimension

of the array.
i3 scalar, index into the fastest moving dimension of the

array.

Output

y scalar, the element of the array indicated by the indices.

Remarks

getscalar3D returns the scalar that is located in the [i1, i2, i3] position of array
a.

35-772

getscalar3D

g

35-773

A call to getscalar3D is faster than using the more general getmatrix function
to get a scalar from a 3-dimensional array.

Example

//Create a column vector 1, 2, 3,...24
a = seqa(1,1,24);

//Reshape the column vector into a 2x3x4 dimensional array
a = areshape(a,2|3|4);

y = getscalar3D(a,1,3,2);

A 2x3x4 dimensional array can be thought of as two 3x4 dimensional matrices. The
call to getScalar3D above, returns the [3,2] element of the first of these matrices.
The value of which is:

y = 10

See Also

getmatrix, getscalar4D, getarray

getscalar4D

Purpose

Gets a scalar from a 4-dimensional array.

Format

y = getscalar4D(a, i1, i2, i3, i4);

getscalar4D

g

Input

a 4-dimensional array.
i1 scalar, index into the slowest moving dimension of the

array.
i2 scalar, index into the second slowest moving dimension

of the array.
i3 scalar, index into the second fastest moving dimension

of the array.
i4 scalar, index into the fastest moving dimension of the

array.

Output

y scalar, the element of the array indicated by the indices.

Remarks

getscalar4D returns the scalar that is located in the [i1, i2, i3, i4] position of
array a.

A call to getscalar4D is faster than using the more general getmatrix function
to get a scalar from a 4-dimensional array.

Example

a = seqa(1,1,120);
a = areshape(a,2|3|4|5);
y = getscalar4D(a,1,3,2,5);

The code above assigns y equal to 50.

35-774

getscalar4D

g

35-775

See Also

getmatrix, getscalar3D, getarray

getTrRow

Purpose

Transposes a matrix and then returns a single row from it.

Format

y = getTrRow(a, row);

Input

a NxK matrix
row The row of the matrix to extract.

Output

y A 1xK row vector.

Remarks

getRow is designed to give an alternative access to rows in a matrix than indexing the
matrix by brackets.

Example

a = rndn(10,10);

getTrRow

g

y = getTrRow(a,3);

See Also

getRow

getwind

Purpose

Retrieve the current graphic panel number. Note: This function is for use with the
deprecated PQG graphics.

Library

pgraph

Format

n = getwind;

Output

n scalar, graphic panel number of current graphic panel.

Remarks

The current graphic panel is the graphic panel in which the next graph will be drawn.

Source

pwindow.src

See Also

endwind, begwind, window, setwind, nextwind

35-776

getwind

g

35-777

glm

Purpose

Solves the generalized linear model problems

Format

out = glm(y, x, family);
out = glm(y, x, family, var_names);
out = glm(y, x, family, var_names, categoryIdx);
out = glm(y, x, family, var_names, categoryIdx, link);
out = glm(y, x, family, ctl);
or
out = glm(dataset_name, formula, family);
out = glm(dataset_name, formula, family, ctl);

Input

y vector, the dependent, or response, variable.
is the number of the observations used in the

analysis.

x matrix, the independent, or explanatory,
variables. is the number of the independent
variables.

dataset_
name

String, the name of data set. E.g. "credit.dat" or
"example.fmt".

formula String, formula string of the model.

E.g "y ~ X1 + X2", 'y' is the name of dependent

glm

g

variable, 'X1' and 'X2' are names of independent
variables;

E.g. "y ~ ." , '.' means including all variables except
dependent variable 'y';

E.g "y ~ -1 + X1 + X2", '-1' means no intercept model.
family String, the distribution of the dependent variable.

Options include:

l "binomial"
l "gamma"
l "normal"
l "poisson"
l "inverse gaussian"

var_names Optional argument, string array or
character matrix, the names of the variables. The first
element must be the name of the dependent variable.

e.g., var_names = "admit" $| "gre" $| "gpa" $|
"rank", then "admit" will be the label of the response
variable, "gre", "gpa", "rank" are the labels of the
independent variables corresponding to the order in
the X matrix.

categoryIdx Optional argument, matrix, . is
the categorical variable index of X matrix.
categoryIdx specifies the categorical variable
columns to be used in the analysis.
e.g. If categoryIdx = 0, then it means the
independent variable does not contain any categorical

35-778

glm

g

35-779

variables;
if categoryIdx = { 1 4 }, then it means that
column 1 and column 4 in the X matrix are
categorical variables.

Note: The function glm uses the smallest number as
the reference category in each categorical variable.

link String, the link function. Options include:

l "identity"
l "inverse"
l "inverse squared"
l "ln"
l "logit"
l "probit"
l "cloglog"
l "canonical"

The default link of each distribution is the canonical
link function: Normal -- identity; Binomial -- logit;
Gamma -- inverse; Possion -- nature log.

ctl An instance of a glmControl structure. For an
instance named ct1, the members are:

ctl.varNames

string array or
character matrix,
the names of the
variables. The first

glm

g

element must be
the name of the
dependent
variable.

ctl.categoryIdx matrix,
.

ctl.categoryIdx

specifies the
categorical
variable columns
to be used in the
analysis.
e.g. If
ctl.categoryIdx =
0, then it means no
categorical
variable; if
ctl.categoryIdx =
{ 1 4}, then it
means that column
1 and column 4 in
x matrix are
categorical
variables.

Note: glm
function uses the
smallest number as
the reference

35-780

glm

g

35-781

category in each
categorical
variable.

ctl.link String, the link
function. Options
include:

l "identity"
l "inverse"
l "inverse
squared"

l "ln"
l "logit"
l "probit"
l "cloglog"
l "canonical"

The default link is
the canonical link
for each
distribution.

ctl.constantFlag Scalar, flag of
constant term. The
negative number
means no intercept
model, e.g. "-1".
This member will
be ignored if a
formula string is

glm

g

used.
ctl.printFlag String, "Y" or

"N", flag of print
to screen. The "N"
means no printing.

ctl.maxIters Scalar, maximum
iterations. The
default
ctl.maxIters is
25.

ctl.eps Scalar,
convergence
precision. The
default is 1e-8.

Output

ou
t

An instance of a glmOut structure. For an instance named out,
the members are:

out.modelInfo An instance of a glmModelInfo structure.
The members are:

out.modelInfo.distributi
on

string, the
distribution
of
dependent
variable

out.modelInfo.link string, the

35-782

glm

g

35-783

link
function
used in the
procedure

out.modelInfo.yName string, the
label of
dependent
variable

out.modelInfo.xNames string
array, the
label of
independe
nt variables
with
intercept
and
dummy
variables
for each
categorical
variable

out.modelInfo.varNames string
array, the
label of
variables

glm

g

out.modelInfo.n scalar, the
number of
valid cases
used in the
analysis

out.modelInfo.df scalar,
degree of
freedom

out.modelSelect An instance of a glmModelSelection
structure. The members are:

out.modelSelect.deviance scalar, the
residual
deviance
from the fit
model. The
greater the
deviance,
the poorer
the fit.

out.modelSelect.pearson scalar, the
Pearson
Chi-square
Statistics.
Pearson
statistic is
an

35-784

glm

g

35-785

alternative
to the
deviance
for testing
the fit of
certain
GLMs.

out.modelSelect.LL scalar, the
log
likelihood
of the fit
model

out.modelSelect.dispersi
on

scalar, the
estimate of
the
dispersion
parameter
by Pearson
statistic and
degree of
freedom. It
is fixed at 1
when the
distribution
is
"poisson"
or

glm

g

"binomial".

out.modelSelect.aic scalar,
Akaike
information
criterion
(AIC)

out.modelSelect.bic scalar,
Bayesian
information
criterion
(BIC)

out.coef An instance of a glmParameters structure.
The members are:

out.coef.estimates matrix, the
estimate
value of
parameters

out.coef.se matrix, the
standard
error of
parameters

out.coef.testStat matrix, the
statistic

35-786

glm

g

35-787

value of
parameters

out.coef.testStatName string, the
name of
test statistic

out.coef.pvalue scalar, the
p_value of
parameters

out.yhat scalar, the fitted mean values for response
variable

out.residuals matrix, residuals on the linear predictor
scale, equal to the adjusted response value
minus the fitted linear predictors

out.covmat matrix, the covariance matrix for the
parameters

out.corrmat matrix, the correlation matrix for the
parameters

out.constantFla
g

String, flag of constant term.

out.iteration scalar, the number of iterations of IWLS
used

glm

g

out.maxIters scalar, the maximum iterations

out.eps scalar, convergence precision

Examples

Example 1

Ordinary linear regression with simulated data sets.

new;
cls;

//Set random number seed for repeatable random numbers
rndseed 86;

//Simulate data using rndn function
x = rndn(100,4);
y = rndn(100,1);

//Call glm function with the minimum inputs
call glm(y, x, "normal");

This example will compute a least squares regression of y on x. The results will be
shown in the program input / output window. The return values are discarded by using
a call statement.

Generalized Linear Model

Valid cases: 100 Dependent Variable:
y

Degrees of freedom: 95 Distribution:

35-788

glm

g

35-789

normal
Deviance: 99.37 Link function:

identity
Pearson Chi-square: 99.37 AIC:

295.2
Log likelihood: -141.6 BIC:

310.8
Dispersion: 1.046 Iterations:

2

Standard Prob
Variable Estimate Error
t-value >|t|
---------------- ------------ ------------ ----
-------- ------------
CONSTANT 0.067084 0.10233
0.65556 0.513692
x1 -0.027278 0.097162
-0.28074 0.779517
x2 -0.10747 0.090888
-1.1825 0.239963
x3 0.27659 0.093397
2.9615 0.00386701

x4 0.067915 0.11099
0.6119 0.542062

Example 2

Ordinary linear regression with categorical variables.

new;
cls;

//Create filename with full path

glm

g

dataset = getGAUSSHome() $+ "examples/credit.dat";

//Import data
data = loadd(dataset);

//Select the independent variables by index
x = data[., 1 7 9] ;

//Select the dependent variable by index
y = data[., 11];

//Get the labels of the variables with getname function
vnames = getname(dataset);
label = vnames[11 1 7 9, 1];

//Categorical variable index
categoryIdx = { 2 3 };

//Call glm function with three necessary inputs and two
optional inputs
call glm(y, x, "normal", label, categoryIdx);

In this example, the data set "credit.dat" is used to compute a ordinary linear regres-
sion.

The dependent variable is "Balance". The independent variables are: "Married"
,"Gender" and "Income".

vnames is a character vector from the "credit.dat" by using getname function.
label is the labels used in the regression, the first element must be the label of
dependent variable, the rest members are the labels for the independent variables cor-
responding to the order in the x matrix.

"Gender" and "Married" are categorical variables. The glm choose the smallest num-
ber(1) as the base category in each categorical variable. The following shows the out-
put:

35-790

glm

g

35-791

Generalized Linear Model

Valid cases: 400 Dependent Variable:
Balance

Degrees of freedom: 396 Distribution:
normal

Deviance: 6.611e+007 Link function:
identity

Pearson Chi-square: 6.611e+007 AIC:
5951

Log likelihood: -2971 BIC:
5971

Dispersion: 1.669e+005 Iterations:
2

Standard Prob
Variable Estimate Error
t-value >|t|
---------------- ------------ ------------ ----
-------- ------------
CONSTANT 246.19 46.535
5.2903 < 0.0001

Gender 2 24.577 40.889
0.60108 0.548134
Married 2 -21.279 41.963
-0.50708 0.612383
Income 6.0626 0.58077
10.439 < 0.0001

Example 3

Logistic regression with categorical variables.

new;
cls;

glm

g

// Import data with csvReadM and csvReadSA functions
// The second input, '2', means that read the data from the
second row
file = getGAUSShome() $+ "examples/binary.csv";
data = csvReadM(file, 2);

// Import labels of variables
// The second input specify the range of rows, '1|1' means
from Row 1 to Row 1, only the first row.
vnames = csvReadSA(file, 1|1) ;

// Row vector -> column vector
vnames = vnames';

// Index dependent variable
y = data[.,1];

// Index independent variables
x = data[.,2:4];

// Index categorical variable in x matrix
categoryIdx = 3;

// Call glm function with three necessary inputs and two
dynamic inputs
call glm(y,x, "binomial",vnames, categoryIdx);

In this example, the data set "binary.csv" is used to compute a logistic regression.

The dependent variable is "admit". The independent variables are: "gre', "gpa" , and
"rank".

data is a numeric matrix from the "binary.csv" by using csvReadM function with
starting at the second row.

35-792

glm

g

35-793

vnames is a string array from the "binary.csv" by using csvReadSA function.
vnames is used in the regression as the labels for all variables, the first element must
be the label of dependent variable, the rest members are the labels for the independent
variables corresponding to the order in the x matrix.

categoryIdx specify the category column in the x matrix, "rank". "rank" is a cat-
egorical variable with 4 levels(1, 2, 3, 4). 1 is chosen as the base category auto-
matically since 1 is the smallest number in "rank".

link specifies the link function to use in the model. If you specify the link = "" or
didn't specify a link function, then the default canonical link function is used cor-
respond to the "binomial" distribution. The followings are the output:

Generalized Linear Model

Valid cases: 400 Dependent Variable:
admit

Degrees of freedom: 394 Distribution:
binomial

Deviance: 458.5 Link function:
logit

Pearson Chi-square: 397.5 AIC:
470.5

Log likelihood: -229.3 BIC:
494.5

Dispersion: 1 Iterations:
4

Standard Prob
Variable Estimate Error
z-value >|z|
---------------- ------------ ------------ ---
--------- ------------
CONSTANT -3.99 1.14

glm

g

-3.5001 0.000465027
rank 2 -0.67544 0.31649
-2.1342 0.0328288

3 -1.3402 0.34531 -3.8812
0.000103942

4 -1.5515 0.41783 -3.7131
0.000204711
gre 0.0022644 0.001094

2.0699 0.0384651
gpa 0.80404 0.33182

2.4231 0.0153879

Note: Dispersion parameter for BINOMIAL distribution taken
to be 1

Example 4

Using glmControl and glmOut structure to run a Logistic regression with categorical
variables.

new;
cls ;
//Create file name with full path
file = getGAUSShome() $+ "examples/binary.csv";

data = csvReadM(file, 2);

// Import labels of variables
// The second input specify the range of rows, '1|1' means
from Row 1 to Row 1, only the first row.
vnames = csvReadSA(file, 1|1) ;

// Index dependent variable
y = data[.,1];

35-794

glm

g

35-795

// Index independent variables
x = data[.,2:4];

// Declare 'binary_ctl' as a glmControl structure
struct glmControl binary_ctl;

// Specify the variable names
binary_ctl.varNames = vnames';

// Index categorical variable in x matrix
binary_ctl.categoryIdx = 3;

// Specify the link function
binary_ctl.link = "probit";

// Save out the results in glmOut structure
struct glmOut out1;
out1 = glm(y, x, "binomial", binary_ctl);

In this example, the data set "binary.csv" is used to compute a logistic regression. The
dependent variable is "admit ". The independent variables are:"gre', "gpa" , and "rank"

binary_ctl is a glmControl structure. binary_ctl.varNames must be a
string array. In this example, the first element is the "insurance", the rest members are
the "gre', "gpa" , and "rank" correspond to the variable order in the x matrix.

binary_ctl.categoryIdx specify the categorical variable in x matrix. "rank"
is a categorical variable with 3 levels(1, 2, 3). The number 1 is chosen as the base
category automatically since 1 is the smallest number in "rank".

binary_ctl.link specifies the link function to use in the model. In this model,
we use "probit" as the link function. If you specify the binary_ctl.link = "" or

glm

g

didn't specify a link function, then the default canonical link function is used cor-
respond to the "binomial" distribution.

out1 is a glmOut structure. All the results are saved in the out1.

After running above code, the output is:

Generalized Linear Model

Valid cases: 400 Dependent Variable:
admit

Degrees of freedom: 394 Distribution:
binomial

Deviance: 458.4 Link function:
probit

Pearson Chi-square: 397.7 AIC:
470.4

Log likelihood: -229.2 BIC:
494.4

Dispersion: 1 Iterations:
4

Standard Prob
Variable Estimate Error
z-value >|z|
---------------- ------------ ------------ ----
-------- ------------
CONSTANT -2.3868 0.67395
-3.5416 0.000397733
rank 2 -0.4154 0.19498
-2.1305 0.0331297

3 -0.81214 0.20836 -
3.8978 < 0.0001

4 -0.9359 0.24527 -
3.8158 0.000135764

35-796

glm

g

35-797

gre 0.0013756 0.00065003
2.1162 0.0343292

gpa 0.47773 0.1972
2.4226 0.0154097

Note: Dispersion parameter for BINOMIAL distribution taken
to be 1

Example 5

A Poisson regression model with categorical variables.

new;
cls;

// Import data with loadm function

fname = getGAUSShome() $+ "examples/poisson_sim.fmt";
loadm data = ^fname;

// Index dependent variable,'num_award'
y = data[.,2];

// Index independent variable,'prog' and 'math'
x = data[., 3 4];

// Specify the variable names
string var_names = {"num_award","prog", "math"};

// Index categorical variable in x matrix
categoryIdx = 1;

// specify the link function, 'ln'

glm

g

link = "ln";

// Declare the glmOut structure
// All the results are saved in the out_poi
struct glmOut out_poi;
out_poi = glm(y, x, "poisson", var_names,categoryIdx ,link)
;

After running above code, the output is:

Generalized Linear Model

Valid cases: 200 Dependent Variable:
num_award

Degrees of freedom: 196 Distribution:
poisson

Deviance: 189.4 Link function:
ln

Pearson Chi-square: 212.1 AIC:
373.5

Log likelihood: -182.8 BIC:
386.7

Dispersion: 1 Iterations:
6

Standard Prob
Variable Estimate Error
z-value >|z|

---------------- ------------ ------------ ---
--------- ------------
CONSTANT -5.2471 0.65845
-7.9689 < 0.0001

prog 2 1.0839 0.35825
3.0254 0.00248303

35-798

glm

g

35-799

3 0.36981 0.44107 0.83844
0.401786

math 0.070152 0.010599
6.6186 < 0.0001

Note: Dispersion parameter for POISSON distribution taken
to be 1

Example 6

Using glmOut structure to save result for a Gamma regression with categorical vari-
ables.

new;
cls;

// File name with full path
file = getGAUSShome() $+ "examples/yarn.xlsx";

//Read 4th column as a numeric matrix
y = xlsReadM(file, "D2:D28");

//Read columns 1, 2 and 3 as character data
x = xlsReadSA(file, "A2:C28");

//Find unique categorical levels
from = uniquesa(x[.,1]);

//Numeric categorical levels
to = {1, -1, 0};

//Reclassify the character to number
x = reclassify(x,from,to);

glm

g

//Declare 'ctl_gamma' as a glmControl struct
struct glmControl ctl_gamma;

//Read variable names and transpose
//to a column vector
ctl_gamma.varNames = xlsReadSA(file,"A1:D1")';

//Specify categorical columns
ctl_gamma.categoryIdx = { 1 2 3 };

//Specify link function
ctl_gamma.link = "ln";

//Declare 'out_gamma' to be a glmOut structure
struct glmOut out_gamma;

//Call 'glm' and fill 'out_gamma' with results
out_gamma = glm(y,x,"gamma",ctl_gamma);

In this example, the data set "yarn.xlsx" is used to perform a Gamma regression.

After running the code above, the output is :

Generalized Linear Model

Valid cases: 27 Dependent Variable:
yarn_length

Degrees of freedom: 20 Distribution:
gamma

Deviance: 0.7089 Link function:
ln

Pearson Chi-square: 0.6917 AIC:
336.5

Log likelihood: -160.3 BIC:

35-800

glm

g

35-801

346.9
Dispersion: 0.03458 Iterations:

5

Standard Prob
Variable Estimate Error
t-value >|t|

---------------- ------------ ------------ ---
--------- ------------
CONSTANT 6.4841 0.09469

68.477 < 0.0001
amplitude 0 0.9136 0.087666

10.421 < 0.0001
1 1.6791 0.087666 19.153

< 0.0001
load 0 -0.64738 0.087666
-7.3846 < 0.0001

1 -1.2654 0.087666 -14.435
< 0.0001

cycles 0 -0.31872 0.087666
-3.6356 0.00164628

1 -0.7701 0.087666 -8.7844
< 0.0001

Example 7

Using a "*.dat" file directly in glm for a Inverse Gaussian distribution.

new;
cls;

// File name with full path
fname = getGAUSShome() $+ "examples/clotting_time.dat";

glm

g

//Declare 'fit_inv' to be a glmOut structure
struct glmOut fit_inv;

//Call 'glm' and fill 'fit_inv' with results
fit_inv = glm(fname, "plasma ~ lot1", "inverse gaussian");

After running the code above, the output is :

Generalized Linear Model

Valid cases: 9 Dependent Variable:
plasma

Degrees of freedom: 7 Distribution:
inverse gaussian

Deviance: 0.03557 Link function:
inverse squared

Pearson Chi-square: 0.03511 AIC:
71.1

Log likelihood: -32.55 BIC:
71.69

Dispersion: 0.005016 Iterations:
6

Standard Prob
Variable Estimate Error
t-value >|t|
---------------- ------------ ------------ ----
-------- ------------
CONSTANT -0.0034177 0.00074729
-4.5735 0.00256355

35-802

glm

g

35-803

lot1 0.00019223 4.0768e-05
4.7154 0.00216923

Example 8

Running a no intercept model.

new;
cls;

// File name with full path
fname = getGAUSShome() $+ "examples/credit.dat";

//Declare 'fit' to be a glmOut structure
struct glmOut fit;

//Call 'glm' with no intercept model
fit = glm(fname, "Balance ~ -1 + Income", "normal");

After running the code above, the output is :

Generalized Linear Model

Valid cases: 400 Dependent Variable:
Balance

Degrees of freedom: 399 Distribution:
normal

Deviance: 7.538e+07 Link function:
identity

Pearson Chi-square: 7.538e+07 AIC:
5998

glm

g

Log likelihood: -2997 BIC:
6006

Dispersion: 1.889e+05 Iterations:
2

Standard Prob
Variable Estimate Error
t-value >|t|
---------------- ------------ ------------ ----
-------- ------------
Income 9.4429 0.37925
24.899 < 0.0001

Example 9

Running a linear regression model with HDF5 file.

new;
cls;

// Give a fully pathed HDF5 file name
file_name = getGAUSShome() $+ "examples/nba_data.h5";

// Given a data set name in above file
dname = "/nba_data";

// Give the name of attributes -- "headers"
// All variable names must be saved as "headers" in the
data set for hdf5 file
attname = "headers";

// Read variable names
vname = h5readAttribute(file_name, dname, attname);

// Print variable names of the "nba_data" data set

35-804

glm

g

35-805

print vname;

// Define the formula for the linear model
formula = "Weight ~ Height + Age";

// Specify data set name with schema "h5://"
datasetname = "h5://" $+ file_name $+ dname;

//Call 'glm'
call glm(datasetname, formula, "normal");

After running the code above, the output is :

Height
Weight
Age

Generalized Linear Model

Valid cases: 505 Dependent Variable:
Weight

Degrees of freedom: 502 Distribution:
normal

Deviance: 1.128e+05 Link function:
identity

Pearson Chi-square: 1.128e+05 AIC:
4173

Log likelihood: -2082 BIC:
4189

Dispersion: 224.7 Iterations:
2

glm

g

Standard Prob
Variable Estimate Error
t-value >|t|
---------------- ------------ ------------ ----
-------- ------------
CONSTANT -296.6 15.804
-18.768 < 0.0001
Height 6.3267 0.1933
32.729 < 0.0001

Age 0.6511 0.15436
4.2181 < 0.0001

Remarks

1. The glmControl structure stores the user defined options.
2. The glmOut structure stores all the results after running glm function.
3. For the categorical variables, glm chooses the smallest value as the base cat-

egory. You can change the base category by using the reclassify or
recode functions to change the base category with the smallest value in the
variable.

4. The dispersion parameter is calculated based on Pearson Chi-square Statistics.
5. The glm function cannot handle missing values. You can use packr function

to delete the rows of a matrix that contain any missing values.
6. The weights for each observation are equal.
7. The supported data set types are CSV, XLS, XLSX, HDF5, FMT, DAT.

For HDF5 file, the dataset must include file schema and both file name and
data set name must be provided, e.g. glm
("h5://C:/gauss17/examples/testdata.h5/mydata", formula, family).

Source

glm.src

35-806

glm

g

35-807

See Also

ols, olsmt, reclassify , packr, Formula String

gosub

Purpose

Causes a branch to a subroutine. Note: This is an advanced function that gives
extra flexibility for sophisticated users in some circumstances. In most cases, it is
prefereable to create a procedure (proc).

Format

gosub label;
.
.
.
label:
.
.
.
return;

Remarks

For multi-line recursive user-defined functions, see PROCEDURES AND KEYWORDS,
CHAPTER 1.

When a gosub statement is encountered, the program will branch to the label and
begin executing from there. When a return statement is encountered, the program
will resume executing at the statement following the gosub statement. Labels are 1-

gosub

g

32 characters long and are followed by a colon. The characters can be A-Z or 0-9, but
they must begin with an alphabetic character. Uppercase or lowercase is allowed.

It is possible to pass parameters to subroutines and receive parameters from them
when they return. See the second example, following.

The only legal way to enter a subroutine is with a gosub statement.

If your subroutines are at the end of your program, you should have an end statement
before the first one to prevent the program from running into a subroutine without using
a gosub. This will result in a Return without gosub error message.

The variables used in subroutines are not local to the subroutine and can be accessed
from other places in your program. (See PROCEDURES AND KEYWORDS, CHAPTER 1.)

Example

In the program below the name mysub is a label. When the gosub statement is
executed, the program will jump to the label mysub and continue executing from
there. When the return statement is executed, the program will resume executing at
the statement following the gosub.

x = rndn(3,3);
z = 0;
gosub mysub;
print z;
end;

/* ------ Subroutines Follow ------ */

mysub:
z = inv(x);

return;

Parameters can be passed to subroutines in the following way (line numbers are added
for clarity):

35-808

gosub

g

35-809

1. gosub mysub(x,y);
2. pop j; /* b will be in j */
3. pop k; /* a will be in k */
4. t = j*k;
5. print t;
6. end;
7.
8. /* ---- Subroutines Follow ----- */
9.
10. mysub:
11. pop b; /* y will be in b */
12. pop a; /* x will be in a */
13.
14. a = inv(b)*b+a;
15. b = a'b;
16. return(a,b);

In the above example, when the gosub statement is executed, the following sequence
of events results (line numbers are included for clarity):

1. x and y are pushed on the stack and the program branches to the
label mysub in line 10.

11. the second argument that was pushed, y, is pop'ped into b.
12. the first argument that was pushed, x, is pop'ped into a.
14. inv(b)*b+a is assigned to a.
15. a'b is assigned to b.
16. a and b are pushed on the stack and the program branches to the

statement following the gosub, which is line 2.
2. the second argument that was pushed, b, is pop'ped into j.
3. the first argument that was pushed, a, is pop'ped into k.
4. j*k is assigned to t.

gosub

g

5. t is printed.
6. the program is terminated with the end statement.

Matrices are pushed on a last-in/first-out stack in the gosub() and return() state-
ments. They must be pop'ped off in the reverse order. No intervening statements are
allowed between the label and the pop or the gosub and the pop. Only one matrix
may be pop'ped per pop statement.

See Also

goto, proc, pop, return

goto

Purpose

Causes a branch to a label.

Format

goto label;
.
.
.
label:

Remarks

Label names can be any legal GAUSS names up to 32 alphanumeric characters, begin-
ning with an alphabetic character or an underscore, not a reserved word.

Labels are always followed immediately by a colon.

35-810

goto

g

35-811

Labels do not have to be declared before they are used. GAUSS knows they are labels
by the fact that they are followed immediately by a colon.

When GAUSS encounters a goto statement, it jumps to the specified label and con-
tinues execution of the program from there.

Parameters can be passed in a goto statement the same way as they can with a
gosub.

Example

x = seqa(.1,.1,5);
n = { 1 2 3 };
goto fip;
print x;
end;

fip:
print n;

produces:

1.0000000 2.0000000 3.0000000

See Also

gosub, if

gradMT

Purpose

Computes numerical gradient.

gradMT

g

Include

optim.sdf

Format

g = gradMT(&fct, par1, data1);

Input

&fct scalar, pointer to procedure returning either Nx1 vector
or 1x1 scalar.

par1 an instance of structure of type PV containing
parameter vector at which gradient is to be evaluated.

data1 structure of type DS containing any data needed by
fct.

Output

g NxK Jacobian or 1xK gradient.

Remarks

par1 must be created using the pvPack procedures.

Example

#include optim.sdf
struct PV p1;
p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;

35-812

gradMT

g

35-813

d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);
local p,y;
p = pvUnpack(p0, "P");
y = p[1] * exp(-p[2] * d0.dataMatrix);
retp(y);

endp;

g = gradMT(&fct,p1,d0);

Source

gradmt.src

gradMTm

Purpose

Computes numerical gradient with mask.

Include

optim.sdf

Format

g = gradMTm(&fct, par1, data1, mask);

Input

&fct scalar, pointer to procedure returning either Nx1 vector
or 1x1 scalar.

gradMTm

g

par1 an instance of structure of type PV containing
parameter vector at which gradient is to be evaluated.

data1 structure of type DS containing any data needed by
fct.

mask Kx1 matrix, elements in g corresponding to elements of
mask set to zero are not computed, otherwise they

are computed.

Output

g NxK Jacobian or 1xK gradient.

Remarks

par1 must be created using the pvPack procedures.

Example

#include optim.sdf
struct PV p1;
p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;
d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);
local p,y;
p = pvUnpack(p0, "P");
y = p[1] * exp(-p[2] * d0.dataMatrix);
retp(y);

endp;

35-814

gradMTm

g

35-815

mask = { 0, 1 };
g = gradMTm(&fct,p1,d0,mask);

Source

gradmt.src

gradMTT

Purpose

Computes numerical gradient using available threads.

Include

optim.sdf

Format

g = gradMTT(&fct,par1,data1);

Input

fct scalar, pointer to procedure returning either Nx1 vector
or 1x1 scalar.

par1 structure of type PV containing parameter vector at
which gradient is to be evaluated

data1 structure of type DS containing any data needed by
fct

gradMTT

g

Output

g NxK Jacobian or 1xK gradient

Remarks

par1 must be created using the pvPack procedures

Example

#include optim.sdf
struct PV p1;
p1 = pvCreate;
p1 = pvPack(p1, 0.1|0.2, "P");

struct DS d0;
d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);
local p,y;
p = pvUnpack(p0, "P");
y = p[1] * exp(-p[2] * d0.dataMatrix);
retp(y);

endp;

g = gradMT(&fct,p1,d0);

Source

gradmtt.src

35-816

gradMTT

g

35-817

gradMTTm

Purpose

Computes numerical gradient with mask using threads.

Include

sqpsolvemt.sdf

Format

g = gradMTTm(&fct, par1, data1, mask);

Input

&fct scalar, pointer to procedure returning either Nx1 vector
or 1x1 scalar

par1 structure of type PV containing parameter vector at
which gradient is to be evaluated

data1 structure of type DS containing any data needed by
fct

mask Kx1 matrix, elements in g corresponding to elements
of mask set to zero are not computed otherwise are
computed.

Output

g NxK Jacobian or 1xK gradient

Remarks

par1 must be created using the pvPack procedures

gradMTTm

g

Example

#include sqpsolvemt.sdf
struct PV p1;
p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2,"P");

struct DS d0;
d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);
local p,y;
p = pvUnpack(p0,"P");
y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);
endp;

mask = { 0, 1 };
g = gradMTTm(&fct,p1,d0,mask);

Source

gradmtt.src

gradp, gradcplx

Purpose

Computes the gradient vector or matrix (Jacobian) of a vector-valued function that
has been defined in a procedure. Single-sided (forward difference) gradients are
computed. gradcplx allows for complex arguments.

35-818

gradp, gradcplx

g

35-819

Format

g = gradp(&f, x0);
g = gradcplx(&f, x0);

Input

&f a pointer to a vector-valued function (f: Kx1 → Nx1)
defined as a procedure. It is acceptable for f(x) to have
been defined in terms of global arguments in addition to
x, and thus f can return an Nx1 vector:

proc f(x);
retp(exp(x.*b));

endp;

x0 Kx1 vector of points at which to compute gradient.

Output

g NxK matrix containing the gradients of f with respect
to the variable x at x0.

Remarks

gradp will return a row for every row that is returned by f. For instance, if f
returns a scalar result, then gradp will return a 1xK row vector. This allows the
same function to be used regardless of N, where N is the number of rows in the result
returned by f. Thus, for instance, gradp can be used to compute the Jacobian matrix
of a set of equations.

gradp, gradcplx

g

Example

proc myfunc(x);
retp(x .* 2 .* exp(x .* x ./ 3));

endp;

x0 = 2.5|3.0|3.5;
y = gradp(&myfunc,x0);

After the code above, y is equal to:

82.989017 0.00000000 0.00000000
0.00000000 281.19753 0.00000000
0.00000000 0.00000000 1087.9541

It is a 3x3 matrix because we are passing it 3 arguments and myfunc returns 3 results
when we do that; the off-diagonals are zeros because the cross-derivatives of 3 argu-
ments are 0.

Source

gradp.src

See Also

hessp, hesscplx

graphprt

Purpose

Controls automatic printer hardcopy and conversion file output. Note: This func-
tion is for use with the deprecated PQG graphics. Use the plotSave function
instead.

35-820

graphprt

g

35-821

Library

pgraph

Format

graphprt(str);

Input

str string, control string.

Portability

UNIX

Not supported.

Remarks

graphprt is used to create hardcopy output automatically without user intervention.
The input string str can have any of the following items, separated by spaces. If
str is a null string, the interactive mode is entered. This is the default.

-p print graph.
-po=c set print orientation:

l landscape.
p portrait.

-c=n convert to another file format:
1 Encapsulated PostScript file.
3 HPGL Plotter file.
5 BMP (Windows Bitmap).

graphprt

g

8 WMF (Windows Enhanced Metafile).
-cf=name set converted output file name.
-i minimize (iconize) the graphics window.
-q close window after processing.
-w=n display graph, wait n seconds, then continue.

If you are not using graphic panels, you can call graphprt anytime before the call to
the graphics routine. If you are using graphic panels, call graphprt just before the
endwind statement.

The print option default values are obtained from the viewer application. Any para-
meters passed through graphprt will override the default values. See
PUBLICATION QUALITY GRAPHICS, CHAPTER 1.

Example

Automatic print using a single graphics call:

library pgraph;
graphset;

load x,y;

graphprt("-p"); /* tell "xy" to print */
xy(x,y); /* create graph and print */

Automatic print using multiple graphic panels. Note graphprt is called once just
before the endwind call:

library pgraph;
graphset;

load x,y;

begwind;

35-822

graphprt

g

35-823

window(1,2,0); /* create two windows */
setwind(1);
xy(x,y); /* first graphics call */
nextwind;
xy(x,y); /* second graphics call */
graphprt("-p");
endwind; /* print page containing all graphs */

The next example shows how to build a string to be used with graphprt:

library pgraph;
graphset;
load x,y;

cvtnam = "mycvt.eps"; /* name of output file */
/* concatenate options into one string */
cmdstr = "-c=1" $+ " -cf=" $+ cvtnam;
cmdstr = cmdstr $+ " -q";

graphprt(cmdstr); /* tell "xy" to convert and */
/* close */
xy(x,y); /* create graph and convert */

The above string cmdstr will read as follows:

"-c=1 -cf=mycvt.eps -q"

Source

pgraph.src

graphprt

g

graphset

Purpose

Reset graphics global variables to default values. Note: This function is for use
with the deprecated PQG graphics.

Library

pgraph

Format

graphset;

Remarks

This procedure is used to reset the defaults between graphs.

graphset may be called between each graphic panel to be displayed.

To change the default values of the global control variables, make the appropriate
changes in the file pgraph.dec and to the procedure graphset.

Source

pgraph.src

35-824

graphset

g

35-825

h

h5create

Purpose

Creates an HDF5 data file, or adds a new dataset to an existing HDF5 file.

Format

ret = h5create(fname, dname, dims);

ret = h5create(fname, dname, dims, datatype);

ret = h5create(fname, dname, dims, datatype, chunk_size);

Input

fname String, name of the HDF5 file. The file extension, .h5
recommended, but not required.

dname String, a name of the data set in HDF5 file. e.g.
"/mydata".

dims Nx1 matrix, where N is the number of dimensions of
the dataset, the size of each of the dimensions of the
dataset.

datatype String, data type. Valid options include:

l "double"

l "float"

h5create

h

l "int64"

l "int32"

l "uint64"

l "uint32"
Default is "double".

chunk_
size

Matrix or array, with the same dimensions as the data
set, specifying the size of the chunks of data that will be
created in the file.

Output

ret Scalar, 0 if successful.

Remarks

l HDF5 files can hold more than one dataset. They are referenced in the same
manner as a Linux or Mac file system. The base or root node is '/'. All datasets
are relative to this root node.

l If a dataset name contains multiple intermediate groups, for example:

"/surveys/household/Washington"

and the intermediate groups, surveys and household in the above string,
do not yet exist, h5create will create them.

l By default, HDF5 datasets may not change size. To make one of the dimensions
expandable, set it to __INFP.

l All columns of an HDF5 dataset must be of the same data type. However,
multiple datasets with different data types may be created in a single HDF5 file.

l Information about a dataset, called an attribute, may be attached to a dataset in
an HDF5 file with the function h5writeAttribute.

35-826

h5create

h

35-827

l Chunk size must be specified when users create a dataset with more than 2
dimensions and one of those dimensions is unlimited (__INFP).

Examples

Example 1: Create a fixed size 2-dimensional dataset

// Define a name of a HDF5 file
fname = "testdata.h5";

// Define a data set name under the HDF5 file
dname = "/mydata";

// Define the size of the data set, 100 rows and 5 columns

r = 100;
c = 5;

// Create a data set under the HDF5 file
call h5create(fname, dname, r|c);

// Fill dataset with random normal data
x = rndn(100, 5);
h5write(fname, dname, x);

Example 2: Create a 2-dimensional dataset with 5 columns and a flexible number
of rows

// Define a size of flexible rows and 5 columns
dims = __INFP|5;

// Create a data set
call h5create("expandable_data.h5", "/data", dims);

Example 3: Create a 3-Dimensional dataset and one intermediate group

h5create

h

// Define a new data set name, including one intermediate
group
dname = "/household/Washington";

// Define a 3-dimensional dataset, containing 3 matrices
with
// 8 columns and an expandable number of rows
dims = 3|__INFP|8;

// Store the data in chunks of 1000x8 elements
chunk_size = { 1, 1000, 8 };

// Store data as 4 byte floating point (about 8 digits of
precision)
dtype = "float";

// Create the data set
call h5create("surveys.h5", dname, dims, dtype, chunk_
size);

// Create another data set of the same type inside the same
file
call h5create("surveys.h5", "/household/Oregon", dims,
dtype, chunk_size);

See Also

h5read, h5write, open, create, writer, seekr, eof

h5open

Purpose

Open an HDF5 dataset and returns a file handle.

35-828

h5open

h

35-829

Format

fh = h5open(fname, dname, mode);

Input

fname string, a name of HDF5 file to open.
dname string, a name of a data set (or group) in HDF5 file. e.g.

"/mydata".
mode string, the mode with which to open the file. Valid options

include:

l "open": open file for read, positioned at the first
row.

l "update": open file for write, positioned at the
first row.

l "append": open file for write, positioned at the
end of the file.

Output

fh scalar, file handle for use with readr, or writer.

Remarks

l The file handle must be closed with either the close function or closeall
when you are finished using it.

l To read or write data to a file opened with h5open, use readr, and writer.
l To read and write data to an HDF5 dataset without opening a file handle, use
h5read and h5write.

l The function dataopen can open file handles for reading and writing to HDF5
datasets and other file types.

h5open

h

Examples

Example 1: Create and write to an HDF5 dataset

rndseed 2344;

// Create a 4 row by 3 column HDF5 data set
call h5create("testdata.h5", "/mydata", 4 | 3);

// Create a 2x3 matrix
x = { 1.1 2.2 3.3,

4.4 5.5 6.6 };

// Open a file handle
fh = h5open("testdata.h5", "/mydata", "update");

// Write the data in 'x' to the the first two rows
call writer(fh, x);

// Create a 2x3 matrix
y = { 10 20 30,

40 50 60 };

// Write the data in 'y' to the the final two rows
call writer(fh, y);

// Close the file handle
close(fh);

Example 2: Read data written in Example 1

// Open a file handle
fh = h5open("testdata.h5", "/mydata", "read");

// Read the first row

35-830

h5open

h

35-831

a = readr(fh,1);

// Read the second, third and fourth rows
b = readr(fh,3);

// Close the file
call close(fh);

After the code above

a = 1.10 2.20 3.30

b = 4.4 5.5 6.6
10.0 20.0 30.0
40.0 50.0 60.0

See Also

h5create, h5read, h5write, open, dataopen, readr, seekr

h5read

Purpose

Reads data from an HDF5 dataset into a GAUSS matrix.

Format

y = h5read(fname, dname);

y = h5read(fname, dname, dims);

y = h5read(fname, dname, dims, offset);

h5read

h

Input

fname String, a name of the HDF5 file.
dname String, a name of the data set in HDF5 file. e.g.

"/mydata".
dims Nx1 vector, where N is the number of dimensions in

the dataset, the dimensions of data to read.
offset Nx1 vector, where N is the number of dimensions in

the dataset, the data to skip.

Output

y Matrix, or multi-dimensional array, the data requested
from the file.

Examples

Example 1: Basic write then read entire contents of an HDF5 file

// Define a name of a HDF5 file
fname = "testdata.h5";

// Define a name of a dataset
dname = "/mydata";

// Create a 3x2 fixed dimension data set in a HDF5 file
call h5create(fname, dname, 3|2);

// Create a 3x2 matrix
x = { 9 4,

2 1,
0 7 };

// Write x to dataset

35-832

h5read

h

35-833

call h5write(fname, dname,x);

// Read all contents from dataset
y = h5read(fname, dname);

After the code above:

x = 9 4 y = 9 4
2 1 2 1
0 7 0 7

Example 2: Read HDF5 first two rows and first two columns

// Size of data to read
dims = 2|2;

// Read data from file created in Example 1, above
y2 = h5read("testdata.h5", "/mydata", dims);

After the code above:

y2 = 9 4
2 1

Example 3: Read HDF5 first two rows and first two columns

// Size of data to read
dims = 2|2;

// Dimensions to skip: 1 row and 0 columns
offset = 1|0;

h5read

h

// Read data from file created in Example 1, above
y3 = h5read("testdata.h5", "/mydata", dims, offset);

After the code above:

y3 = 2 1
0 7

Example 4: Read HDF5 file with offset at more than one dimension

// Define a new data set name
dname = "/highdimension";

// Create 3 dimensions, with __INFP indicating expandable
rows
dims = 3 | __INFP | 4;

// Define data type
datatype = "double";

// Define chunk size since the second dimension is infinite

chunk_size = 1|128|4;

// Create "highdimension" data set, inside file created in
Example 1 (above)
call h5create("testdata.h5", dname, dims, datatype, chunk_
size);

// Set seed for repeatable random numbers
rndseed 7672342;

// Create random normal data array, with dimensions 3x10x4

x = areshape(rndn(3 * 10 * 4, 1), 3 | 10 | 4);

35-834

h5read

h

35-835

// Write it into data set
call h5write("testdata.h5", dname, x);

// Skip first two rows and first column of each
// of the 3 matrices in the 3x10x4 array
offset = 0|2|1;

// Define the read size after removing offset
dims_read = 2|2|2;

// Run h5read function
y4 = h5read("testdata.h5", dname, dims_read, offset);

After the code above, we see that y4 is a 2x2x2 (number of dimensions to read
dims_read) array, containing the contents of the x, after skipping the dimensions {
0, 2, 1 } specified in offset:

y4 = Plane [1,.,.]

-0.61557786 -0.76592868
-0.30976522 0.11296623

Plane [2,.,.]

-0.23144975 -1.1369840
-0.89682110 1.6684102

x = Plane [1,.,.]

-1.2045242 -1.0675179 -0.74403139 -
0.72860218

0.20337032 -0.48451306 -0.0039387096
0.46361645

h5read

h

-0.57448560 -0.61557786 -0.76592868 -
0.032267807

-0.88033211 -0.30976522 0.11296623
1.2724183

-1.4409872 -0.90939666 0.22487451 -
0.37188053

-1.5478724 -0.43944280 0.010049938
1.0196427

1.3352024 1.0734150 -0.98373668 -
0.57590137

-0.32428680 0.53099143 -0.71162764 -
2.1188409

-0.22060808 -0.024172215 0.64942867 -
0.51276843

0.12600180 -0.65155519 -2.2815720
1.4961735

Plane [2,.,.]

-0.78337697 -0.52759501 -1.2322159 -
0.31936828

-0.47552440 -1.0708763 0.43111378
1.5146598

0.54119533 -0.23144975 -1.1369840 -
0.11052318

0.47963176 -0.89682110 1.6684102 -
0.43704128

-0.27511827 -0.65207535 -0.17394561 -
0.84737201

-0.14595989 -0.028056845 0.50018732 -
0.76191566

-0.98846912 1.4389099 1.3716329 -
1.3419693

-0.29630831 -1.2029618 -1.4958204 -
2.0829113

35-836

h5read

h

35-837

-0.56764971 -0.53397186 -0.95002213 -
0.10182348

-1.6156998 -1.5120152 0.013456774 -
0.037790884

Plane [3,.,.]

0.42346079 -0.61879151 0.062894922
0.43245351

0.092322769 0.68876937 -0.61677358
2.8805431

0.33204968 2.1878476 -1.1113500 -
0.38579652

0.35943828 0.32172778 -0.25074937 -
0.34662609

-0.95053031 0.0010335034 -0.12838005 -
1.2333248

0.59991891 0.73834232 -0.23521782 -
0.63566653

-1.5290045 -0.36202638 0.69077565
1.0898312

0.71036599 0.086441099 -0.40250335
0.58997554

-0.55612014 0.084524826 0.60194547
0.26031576

0.49760949 0.070206385 0.65894867
0.73385573

See Also

h5create, h5write, open, create, writer, seekr, eof

h5read

h

h5readAttribute

Purpose

Read attributes from an HDF5 file into GAUSS.

Format

attr_read = h5readAttribute(fname, dname, attr_name);

Input

fname String, a name of HDF5 file.
dname String, a name of the HDF5 data set.
attr_name String, the name of attribute.

Output

attr_read Matrix, multi-dimensional array or string array, entire
contents of the HDF5 dataset attribute.

Remarks

l HDF5 does not support partial read or write of dataset attributes. The entire
contents of the attribute will be read.

l GAUSS functions that accept HDF5 datasets as a datasource, expect the
dataset to have an attribute named "headers", containing the variable names of
the dataset.

35-838

h5readAttribute

h

35-839

Example

Example 1: Create an HDF5 dataset and add headers

//Create an HDF5 dataset with room for 100 observations of
4 variables
call h5create("commodities.h5", "/energy", 100 | 4);

//Variable names for the dataset
attr = "Crude Oil"$|"Gasoline"$|"Heating Oil"$|"Diesel";

//Define a name of the attributes
attr_name = "headers";

//Write attributes to a HDF5 file
call h5writeAttribute("commodities.h5", "/energy", attr_
name, attr);

//Read attributes from a HDF5 file
attr_read = h5readAttribute("commodities.h5", "/energy",
attr_name);

Example 1a: Add data and calculate descriptive statistics

//Set seed for repeatable random data
rndseed 54235;

//Create 100x4 random normal data
x = rndn(100, 4);

//Write data to dataset created in the example above
call h5write("commodities.h5", "/energy", x);

//Calculate descriptive statistics on some of the variables
//using an hdf5 file schema (h5://filename/dataset)
call dstatmt("h5://commodities.h5/energy", "Gasoline + Heat-
ing Oil");

h5readAttribute

h

Variable Mean Std Dev Variance Minimum
Maximum Valid Missing

Gasoline 0.0212 1.0130 1.0261 -2.9943
2.3527 100 0
Heating Oil -0.1120 0.9263 0.8580 -2.7726
3.0910 100 0

See Also

h5create, h5writeAttribute, h5read, h5write

h5write

Purpose

Write a GAUSS matrix or N-dimensional array to an HDF5 dataset.

Format

ret = h5write(fname, dname, x);

Input

fname String, name of the HDF5 file.
dname String, name of the dataset in the HDF5 file.
x Matrix or N-dimensional array, the data to write to the

file.

35-840

h5write

h

35-841

Output

ret Scalar, 0 if successful.

Examples

Example 1: Basic HDF5 file/dataset creation and write

//Create a 3x2 dataset
call h5create("testdata.h5", "/writetest", 3|2);

//Create a data matrix
x = { 1.1 2.2,

3.3 4.4,
5.5 6.6 };

//Write x to HDF5 dataset
call h5write("testdata.h5", "/writetest", x);

//Read data from a data set of a HDF5 file
y = h5read("testdata.h5", "/writetest");

After the code above:

y = 1.1 2.2
3.3 4.4
5.5 6.6

Example 2: Write over first two rows of dataset

x_new = { 1000 2000,
3000 4000 };

//Write x_new over first 2 rows of HDF5 dataset
call h5write("testdata.h5", "/writetest", x_new);

h5write

h

//Read data again
y_new = h5read("testdata.h5", "/writetest");

After the above code:

y_new = 1000 2000
3000 4000
5.5 6.6

Remarks

To write rows of data to an HDF5 dataset in a iterative manner, see writer.

See Also

h5create, h5read, h5writeAttribute, dataopen, writer, seekr

h5writeAttribute

Purpose

Writes a GAUSS matrix, N-dimensional array or string array as an attribute of an
HDF5 dataset.

Format

ret = h5writeAttribute(fname, dname, attr_name, attr);

Input

fname String, a name of the HDF5 file.
dname String, a name of the dataset in the

HDF5 file.

35-842

h5writeAttribute

h

35-843

attr_name String, the name of attribute to
write.

attr Matrix, N-dimensional array or
string array, the contents of the
attribute.

Output

ret Scalar, 0 if successful.

Remarks

l Attributes in an HDF5 file cannot be read or written partially. The entire
contents of the attribute must be read or written in one call.

l GAUSS functions that take in an HDF5 dataset as a datasource (see dstatmt,
glm), expect the dataset to have an attribute called "headers", containing the
variable names of the dataset.

Examples

Example 1: Create an HDF5 dataset and add headers

//Create an HDF5 dataset with room for 100 observations of
4 variables
call h5create("commodities.h5", "/energy", 100 | 4);

//Variable names for the dataset
attr = "Crude Oil"$|"Gasoline"$|"Heating Oil"$|"Diesel";

//Define a name of the attributes
attr_name = "headers";

//Write attributes to a HDF5 file
call h5writeAttribute("commodities.h5", "/energy", attr_

h5writeAttribute

h

name, attr);

//Read attributes from a HDF5 file
attr_read = h5readAttribute("commodities.h5", "/energy",
attr_name);

Example 1a: Add data and calculate descriptive statistics

//Set seed for repeatable random data
rndseed 54235;

//Create 100x4 random normal data
x = rndn(100, 4);

//Write data to dataset created in the example above
call h5write("commodities.h5", "/energy", x);

//Calculate descriptive statistics on some of the variables
//using an hdf5 file schema (h5://filename/dataset)
call dstatmt("h5://commodities.h5/energy", "Gasoline + Heat-
ing Oil");

Variable Mean Std Dev Variance Minimum
Maximum Valid Missing

Gasoline 0.0212 1.0130 1.0261 -2.9943
2.3527 100 0
Heating Oil -0.1120 0.9263 0.8580 -2.7726
3.0910 100 0

See Also

h5readAttribute, h5read, h5write, h5create, h5write

35-844

h5writeAttribute

h

35-845

hasimag

Purpose

Tests whether the imaginary part of a complex matrix is negligible.

Format

y = hasimag(x);

Input

x NxK matrix.

Output

y scalar, 1 if the imaginary part of x has any nonzero
elements, 0 if it consists entirely of 0's.

Remarks

The function iscplx tests whether x is a complex matrix or not, but it does not test
the contents of the imaginary part of x. hasimag tests the contents of the imaginary
part of x to see if it is zero.

hasimag actually tests the imaginary part of x against a tolerance to determine if it
is negligible. The tolerance used is the imaginary tolerance set with the sysstate
command, case 21.

Some functions are not defined for complex matrices. iscplx can be used to determ-
ine whether a matrix has no imaginary part and so can pass through those functions.
hasimag can be used to determine whether a complex matrix has a negligible ima-
ginary part and could thus be converted to a real matrix to pass through those functions.

hasimag

h

iscplx is useful as a preliminary check because for large matrices it is much faster
than hasimag.

Example

x = { 1 2 3i,
4-i 5 6i,
7 8i 9 };

if hasimag(x);
//code path for complex case

else;
//code path for real case

endif;

See Also

iscplx

header

Purpose

Prints a header for a report.

Format

header(prcnm, dataset, ver);

Input

prcnm string, name of procedure that calls header.
dataset string, name of data set.

35-846

header

h

35-847

ver 2x1 numeric vector, the first element is the major
version number of the program, the second element is
the revision number. Normally this argument will be the
version/revision global (__??_ver) associated with
the module within which header is called. This
argument will be ignored if set to 0.

Global Input

__header string, containing one or more of the following letters:
t title is to be printed
l lines are to bracket the title
d a date and time is to be printed
v version number of program is to be

printed
f file name being analyzed is to be

printed
__title string, title for header.

Source

gauss.src

headermt

Purpose

Prints a header for a report.

headermt

h

Format

headermt(prcnm, dataset, ver, header, title);

Input

prcnm string, name of procedure that calls header.
dataset string, name of data set.
ver 2x1 numeric vector, the first element is the major

version number of the program, the second element is
the revision number. Normally this argument will be the
version/revision global (__??_ver) associated with
the module within which header is called. This
argument will be ignored if set to 0.

header string, containing one or more of the following letters:
t title is to be printed
l lines are to bracket the title
d a date and time is to be printed
v version number of program is to be printed
f file name being analyzed is to be printed

title string, title for header.

Source

gaussmt.src

35-848

headermt

h

35-849

hess

Purpose

Computes the Hessenberg form of a square matrix.

Format

{ H, Z } = hess(A);

Input

A KxK real or complex matrix.

Output

H KxK matrix, Hessenberg form.
Z KxK matrix, transformation matrix.

Example

A = { 0.5 0.2 0.33,
1.4 0.5 0.6,
0.7 1.2 0.9 };

{ H, Z } = hess(A);

After the code above:

H = 0.500 -0.326 0.206 Z = 1.000 0.000
0.000

-1.565 1.300 -0.400 0.000 -0.894 -
0.447

hess

h

0.000 -1.000 0.100 0.000 -0.447
0.894

Remarks

hess computes the Hessenberg form of a square matrix. The Hessenberg form is an
intermediate step in computing eigenvalues. It also is useful for solving certain matrix
equations that occur in control theory (see Van Loan, Charles F. "Using the Hessen-
berg Decomposition in Control Theory". Algorithms and Theory in Filtering and Con-
trol. Sorenson, D.C. and R.J. Wets, eds., Mathematical Programming Study No. 18,
North Holland, Amsterdam, 1982, 102-111).

Z is an orthogonal matrix that transforms A into H and vice versa. Thus:

H = Z'*A*Z

and since Z is orthogonal,

A = Z*H*Z'

A is reduced to upper Hessenberg form using orthogonal similiarity transformations.
This preserves the Frobenious norm of the matrix and the condition numbers of the
eigenvalues.

See Also

eig, qz, schur

hessMT

Purpose

Computes numerical Hessian.

35-850

hessMT

h

35-851

Include

optim.sdf

Format

h = hessMT(&fct, par1, data1);

Input

&fct scalar, pointer to procedure returning either Nx1 vector
or 1x1 scalar.

par1 an instance of structure of type PV containing
parameter vector at which Hessian is to be evaluated.

data1 structure of type DS containing any data needed by
fct.

Output

h KxK matrix, Hessian.

Remarks

par1 must be created using the pvPack procedures.

Example

#include optim.sdf
struct PV p1;
struct DS d0;

p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2, "P");

hessMT

h

d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);
local p,y;

p = pvUnpack(p0, "P");
y = p[1] * exp(-p[2] * d0.dataMatrix);
retp(y);

endp;

h = hessMT(&fct,p1,d0);

Source

hessmt.src

hessMTg

Purpose

Computes numerical Hessian using gradient procedure.

Include

optim.sdf

Format

h = hessMTg(&gfct, par1, data1);

Input

&gfct scalar, pointer to procedure computing either 1xK
gradient or NxK Jacobian.

35-852

hessMTg

h

35-853

par1 an instance of structure of type PV containing
parameter vector at which Hessian is to be evaluated.

data1 structure of type DS containing any data needed by
gfct.

Output

h KxK matrix, Hessian.

Remarks

par1 must be created using the pvPack procedures.

Example

#include optim.sdf
struct PV p1;
struct DS d0;
p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2, "P");
d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);

proc gfct(&fct, struct PV p0, struct DS d0);
local p,y,g1,g2;

p = pvUnpack(p0, "P");
g1 = exp(-p[2] * d0.dataMatrix);
y = p[1] * exp(-p[2] * d0.dataMatrix);
g2 = -p[1] * d0.dataMatrix .* g1;

retp(g1~g2);
endp;

hessMTg

h

h = hessMTg(&gfct,p1,d0);

Source

hessmt.src

hessMTgw

Purpose

Computes numerical Hessian using gradient procedure with weights.

Include

optim.sdf

Format

h = hessMTgw(&gfct, par1, data1, wgts);

Input

&gfct scalar, pointer to procedure computing either NxK
Jacobian.

par1 an instance of structure of type PV containing
parameter vector at which Hessian is to be evaluated.

data1 structure of type DS containing any data needed by
gfct.

wgts Nx1 vector.

Output

h KxK matrix, Hessian.

35-854

hessMTgw

h

35-855

Remarks

par1 must be created using the pvPack procedures.

Example

#includeoptim.sdf
struct PV p1;
p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2, "P");
struct DS d0;
d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);
wgts = zeros(5,1) | ones(10,1);

proc gfct(&fct, struct PV p0, struct DS d0);
local p,y,g1,g2;

p = pvUnpack(p0, "P");
g1 = exp(-p[2] * d0.dataMatrix);
y = p[1] * exp(-p[2] * d0.dataMatrix);
g2 = -p[1] * d0.dataMatrix .* g1;
retp(g1~g2);

endp;

h = hessMTgw(&gfct,p1,d0,wgts);

Source

hessmt.src

hessMTm

Purpose

Computes numerical Hessian with mask.

hessMTm

h

Include

optim.sdf

Format

h = hessMTm(&fct, par1, data1, mask);

Input

&fct scalar, pointer to procedure returning either Nx1 vector
or scalar.

par1 an instance of structure of type PV containing
parameter vector at which Hessian is to be evaluated.

data1 structure of type DS containing any data needed by
fct.

mask KxK matrix, elements in h corresponding to elements
of mask set to zero are not computed, otherwise are
computed.

Output

h KxK matrix, Hessian.

Remarks

par1 must be created using the pvPack procedures. Only lower left part of mask
looked at.

Example

#include optim.sdf
struct PV p1;

35-856

hessMTm

h

35-857

p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2, "P");
struct DS d0;
d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);

mask = { 1 1,
1 0 };

proc fct(struct PV p0, struct DS d0);
local p,y;

p = pvUnpack(p0, "P");
y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);
endp;

h = hessMTm(&fct,p1,d0,mask);

Source

hessmt.src

hessMTmw

Purpose

Computes numerical Hessian with mask and weights.

Include

optim.sdf

Format

h = hessMTmw(&fct, par1, data1, mask, wgts);

hessMTmw

h

Input

&fct scalar, pointer to procedure returning Nx1 vector.
par1 an instance of structure of type PV containing

parameter vector at which Hessian is to be evaluated.
data1 structure of type DS containing any data needed by

fct.
mask KxK matrix, elements in h corresponding to elements

of mask set to zero are not computed, otherwise are
computed.

wgts Nx1 vector, weights.

Output

h KxK matrix, Hessian.

Remarks

fct must evaluate to an Nx1 vector conformable to the weight vector. par1 must
be created using the pvPack procedures.

Example

#include optim.sdf

struct PV p1;
p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2, "P");
struct DS d0;
d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);
wgts = zeros(5,1) | ones(10,1);

35-858

hessMTmw

h

35-859

mask = { 1 1,
1 0 };

proc fct(&fct, struct PV p0, struct DS d0, wgts);
local p,y;

p = pvUnpack(p0, "P");
y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);
endp;

h = hessMTmw(&fct,p1,d0,mask,wgt);

Source

hessmt.src

hessMTT

Purpose

Computes numerical Hessian using available threads.

Format

h = hessMTT(&fct,par1,data1);

Include

optim.sdf

Input

fct scalar, pointer to procedure returning either Nx1 vector

hessMTT

h

or 1x1 scalar.
par1 structure of type PV containing parameter vector at

which Hessian is to be evaluated
data1 structure of type DS containing any data needed by

fct

Output

h KxK matrix, Hessian

Remarks

par1 must be created using the pvPack procedures

Example

#include optim.sdf
struct PV p1;
p1 = pvCreate;

p1 = pvPack(p1,0.1|0.2, "P");
struct DS d0;
d0 = dsCreate;

d0.dataMatrix = seqa(1,1,15);

proc fct(struct PV p0, struct DS d0);
local p,y;
p = pvUnpack(p0, "P");
y = p[1] * exp(-p[2] * d0.dataMatrix);
retp(y);

endp;

35-860

hessMTT

h

35-861

h = hessMTT(&fct,p1,d0);

Source

hessmtt.src

hessMTTg

Purpose

Computes numerical Hessian using gradient procedure with available threads.

Include

optim.sdf

Format

h = hessMTTg(&gfct, par1, data1);

Input

&gfct scalar, pointer to procedure computing either 1xK
gradient or NxK Jacobian

par1 structure of type PV containing parameter vector at
which Hessian is to be evaluated

data1 structure of type DS containing any data needed by
fct

Output

h KxK matrix, Hessian

hessMTTg

h

Remarks

par1 must be created using the pvPack procedures.

Example

#include optim.sdf

struct PV p1;
p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2, "P");

struct DS d0;
d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);

proc gfct(&fct, struct PV p0, struct DS d0, wgt);
local p,y,g1,g2;
p = pvUnpack(p0, "P");
g1 = exp(-p[2] * d0.dataMatrix);
y = p[1] * exp(-p[2] * d0.dataMatrix);
g2 = -p[1] * d0.dataMatrix .* g1;
retp(g1~g2);

endp;

h = hessMTTg(&gfct,p1,d0);

Source

hessmtt.src

35-862

hessMTTg

h

35-863

hessMTTgw

Purpose

Computes numerical Hessian using gradient procedure with weights and using
available threads.

Include

optim.sdf

Format

h = hessMTTgw(&gfct, par1, data1, wgts);

Input

gfct scalar, pointer to procedure computing either 1xK
gradient or NxK Jacobian

par1 structure of type PV containing parameter vector at
which Hessian is to be evaluated

data1 structure of type DS containing any data needed by fct
wgts Nx1 vector, weights

Output

h KxK matrix, Hessian

Remarks

par1 must be created using the pvPack procedures.

hessMTTgw

h

Example

#include optim.sdf

struct PV p1;
p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2, "P");

struct DS d0;
d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);
wgts = zeros(5,1) | ones(10,1);

proc gfct(&fct, struct PV p0, struct DS d0);
local p,y,g1,g2;
p = pvUnpack(p0, "P");
g1 = exp(-p[2] * d0.dataMatrix);
y = p[1] * exp(-p[2] * d0.dataMatrix);
g2 = -p[1] * d0.dataMatrix .* g1;
retp(g1~g2);

endp;

h = hessMTTg(&gfct,p1,d0,wgts);

Source

hessmtt.src

hessMTTm

Purpose

Computes numerical Hessian with mask using available threads.

35-864

hessMTTm

h

35-865

Include

optim.sdf

Format

h = hessMTTm(&fct, par1, data1, mask);

Input

fct scalar, pointer to procedure returning either Nx1 vector
or 1x1 scalar.

par1 structure of type PV containing parameter vector at
which Hessian is to be evaluated

data1 structure of type DS containing any data needed by
fct

mask KxK matrix, elements in h corresponding to elements
of mask set to zero are not computed otherwise are
computed

Output

h KxK matrix, Hessian

Remarks

par1 must be created using the pvPack procedures. Only lower left part of mask
looked at.

Example

#include optim.sdf
struct PV p1;

hessMTTm

h

p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2, "P");
struct DS d0;
d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);

mask = { 1 1
1 0 };

proc fct(struct PV p0, struct DS d0);
local p,y;
p = pvUnpack(p0, "P");
y = p[1] * exp(-p[2] * d0.dataMatrix);

retp(y);
endp;

h = hessMTTm(&fct,p1,d0,mask);

Source

hessmtt.src

hessMTw

Purpose

Computes numerical Hessian with weights.

Include

optim.sdf

Format

h = hessMTw(&fct, par1, data1, wgts);

35-866

hessMTw

h

35-867

Input

&fct scalar, pointer to procedure returning Nx1 vector.
par1 an instance of structure of type PV containing

parameter vector at which Hessian is to be evaluated.
data1 structure of type DS containing any data needed by

fct.
wgts Nx1 vector, weights.

Output

h KxK matrix, Hessian.

Remarks

fct must evaluate to an Nx1 vector conformable to the weight vector. par1 must
be created using the pvPack procedures.

Example

#includeoptim.sdf
struct PV p1;
p1 = pvCreate;
p1 = pvPack(p1,0.1|0.2, "P");

struct DS d0;
d0 = dsCreate;
d0.dataMatrix = seqa(1,1,15);
wgt = zeros(5,1) | ones(10,1);

proc fct(&fct, struct PV p0, struct DS d0, wgt);
local p,y;

hessMTw

h

p = pvUnpack(p0, "P");
y = p[1] * exp(-p[2] * d0.dataMatrix);
retp(y);

endp;

h = hessMTw(&fct,p1,d0,wgt);

Source

hessmt.src

hessp, hesscplx

Purpose

Computes the matrix of second partial derivatives (Hessian matrix) of a function
defined as a procedure. hesscplx allows for complex arguments.

Format

h = hessp(&f, x0);

Input

&f pointer to a single-valued function f(x), defined as a
procedure, taking a single Kx1 vector argument (f:
Kx1 → 1x1); f(x) may be defined in terms of global
arguments in addition to x.

x0 Kx1 vector specifying the point at which the Hessian of
f(x) is to be computed.

35-868

hessp, hesscplx

h

35-869

Output

h KxK matrix of second derivatives of f with respect to
x at x0; this matrix will be symmetric.

Remarks

This procedure requires K*(K+1)/2 function evaluations. Thus if K is large, it may
take a long time to compute the Hessian matrix.

No more than 3-4 digit accuracy should be expected from this function, though it is pos-
sible for greater accuracy to be achieved with some functions.

It is important that the function be properly scaled, in order to obtain greatest possible
accuracy. Specifically, scale it so that the first derivatives are approximately the same
size. If these derivatives differ by more than a factor of 100 or so, the results can be
meaningless.

Example

x = { 1, 2, 3 };

proc g(b);
retp(exp(x'b));
endp;

b0 = { 3, 2, 1 };
h = hessp(&g,b0);

The resulting matrix of second partial derivatives of g(b) evaluated at b=b0 is:

22026.865 44053.686 66080.596
h = 44053.686 88107.753 132161.059

66080.596 132161.059 198240.695

hessp, hesscplx

h

Source

hessp.src

See Also

gradp, gradcplx

hist

Purpose

Computes and graphs a frequency histogram for a vector. The actual frequencies
are plotted for each category. Note: this function is for use with the deprecated
PQG graphics. plotHist instead.

Library

pgraph

Format

{ b, m, freq } = hist(x, v);

Input

x Mx1 vector of data.
v Nx1 vector, the breakpoints to be used to compute the

frequencies

 - or -

scalar, the number of categories.

35-870

hist

h

35-871

Output

b Px1 vector, the breakpoints used for each category.
m Px1 vector, the midpoints of each category.
freq Px1 vector of computed frequency counts.

Remarks

If a vector of breakpoints is specified, a final breakpoint equal to the maximum value
of x will be added if the maximum breakpoint value is smaller.

If a number of categories is specified, the data will be divided into v evenly spaced
categories.

Each time an element falls into one of the categories specified in b, the cor-
responding element of freq will be incremented by one. The categories are inter-
preted as follows:

freq[1] = x < b[1]
freq[2] = b[1] < x < b[2]
freq[3] = b[2] < x < b[3]

.

.

.
freq[P] = b[P-1] < x < b[P]

Example

library pgraph;
x = rndn(5000,1);
{ b,m,f } = hist(x,20);

Source

phist.src

hist

h

See Also

histp, histf, bar

histf

Purpose

Graphs a histogram given a vector of frequency counts. Note: This function is for
use with the deprecated PQG graphics. Use plotSetHistF instead.

Library

pgraph

Format

histf(f, c);

Input

f Nx1 vector, frequencies to be graphed.
c Nx1 vector, numeric labels for categories. If this is a

scalar 0, a sequence from 1 to rows(f) will be created.

Remarks

The axes are not automatically labeled. Use xlabel for the category axis and yla-
bel for the frequency axis.

Source

phist.src

35-872

histf

h

35-873

See Also

hist, bar, xlabel, ylabel

histp

Purpose

Computes and graphs a percent frequency histogram of a vector. The percentages
in each category are plotted.

Library

pgraph

Format

{ b, m, freq } = histp(x, v);

Input

x Mx1 vector of data.
v Nx1 vector, the breakpoints to be used to compute the

frequencies

 - or -

scalar, the number of categories.

Output

b Px1 vector, the breakpoints used for each category.
m Px1 vector, the midpoints of each category.
freq Px1 vector of computed frequency counts. This is the

vector of counts, not percentages.

histp

h

Remarks

If a vector of breakpoints is specified, a final breakpoint equal to the maximum value
of x will be added if the maximum breakpoint value is smaller.

If a number of categories is specified, the data will be divided into v evenly spaced cat-
egories.

Each time an element falls into one of the categories specified in b, the corresponding
element of freq will be incremented by one. The categories are interpreted as fol-
lows:

freq[1] = x < b[1]
freq[2] = b[1] < x < b[2]
freq[3] = b[2] < x < b[3]

.

.

.
freq[P] = b[P-1] < x < b[P]

Source

phist.src

See Also

hist, histf, bar

hsec

Purpose

Returns the number of hundredths of a second since midnight.

Format

y = hsec;

35-874

hsec

h

35-875

Output

y scalar, hundredths of a second since midnight.

Remarks

The number of hundredths of a second since midnight can also be accessed as the [4,1]
element of the vector returned by the date function.

Example

x = rndu(1000,1000);
tStart = hsec;

y = x*x;
tTotal = hsec-tEnd;

In this example, hsec is used to time a 1000x1000 multiplication in GAUSS. A
1000x1000 matrix, x, is created, and the current time, in hundredths of a second since
midnight, is stored in the variable tStart. Then the multiplication is carried out. Fin-
ally, tStart is subtracted from hsec to give the time difference which is assigned
to tTotal.

See Also

date, time, timestr, ethsec, etstr

hsec

h

i

if, else, elseif

Purpose

Controls program flow with conditional branching.

Format

if scalar_expression;
list of statements;

elseif scalar_expression;
list of statements;

elseif scalar_expression;
list of statements;

else;
list of statements;

endif;

Remarks

scalar_expression is any expression that returns a scalar. It is TRUE if it is not
zero, and FALSE if it is zero.

A list of statements is any set of GAUSS statements.

GAUSS will test the expression after the if statement. If it is TRUE (nonzero), then
the first list of statements is executed. If it is FALSE (zero), then GAUSS will move
to the expression after the first elseif statement, if there is one, and test it. It will
keep testing expressions and will execute the first list of statements that corresponds to
a TRUE expression. If no expression is TRUE, then the list of statements following

35-876

if, else, elseif

i

35-877

the else statement is executed. After the appropriate list of statements is executed,
the program will go to the statement following the endif and continue on.

if statements can be nested.

One endif is required per if statement. If an else statement is used, there may be
only one per if statement. There may be as many elseif's as are required. There
need not be any elseif's or any else statement within an if statement.

Note the semicolon after the else statement.

Example

if x < 0;
y = -1;

elseif x > 0;
y = 1;

else;
y = 0;

endif;

See Also

do

imag

Purpose

Returns the imaginary part of x.

Format

zi = imag(x);

imag

i

Input

x NxK matrix or N-dimensional array.

Output

zi NxK matrix or N-dimensional array, the imaginary part
of x.

Remarks

If x is real, zi will be an NxK matrix or N-dimensional array of zeros.

Example

x = { 4i 9 3,
2 5-6i 7i };

y = imag(x);

y = 4 0 0
0 -6 7

See Also

complex, real

#include

Purpose

Inserts code from another file into a GAUSS program.

35-878

#include

i

35-879

Format

#include filename
#include "filename"

Remarks

filename can be any legitimate file name.

This command makes it possible to write a section of general-purpose code, and insert
it into other programs.

The code from the #include'd file is inserted literally as if it were merged into that
place in the program with a text editor.

If a path is specified for the file, then no additional searching will be attempted if the
file is not found.

If a path is not specified, the current directory will be searched first, then each dir-
ectory listed in src_path. src_path is defined in gauss.cfg.

#include
/gauss/myprog.prc

No additional search will be
made if the file is not found.

#include myprog.prc The directories listed in src_
path will be searched for
myprog.prc if the file is not
found in the current directory.

Compile time errors will return the line number and the name of the file in which they
occur. For execution time errors, if a program is compiled with #lineson, the line
number and name of the file where the error occurred will be printed. For files that
have been #include'd this reflects the actual line number within the #include'd
file. See #lineson for a more complete discussion of the use of and the validity of
line numbers when debugging.

#include

i

Example

#include
"/gauss/inc/cond.inc"

The command will cause the code in the program cond.inc to be merged into the
current program at the point at which this statement appears.

See Also

run, lineson

indcv

Purpose

Checks one character vector against another and returns the indices of the ele-
ments of the first vector in the second vector.

Format

z = indcv(what, where);

Input

what Nx1 character vector which contains the elements to be
found in vector where.

where Mx1 character vector to be searched for matches to the
elements of what.

Output

z Nx1 vector of integers containing the indices of the

35-880

indcv

i

35-881

corresponding element of what in where.

Remarks

If no matches are found for any of the elements in what, then the corresponding ele-
ments in the returned vector are set to the GAUSS missing value code.

Both arguments will be forced to uppercase before the comparison.

If there are duplicate elements in where, the index of the first match will be
returned.

Example

let newVars = YEARS BONUS GENDER;
let what = AGE PAY SEX;
let where = AGE SEX JOB DATE PAY;

//Return the indices in 'where' of the items in 'what'
z = indcv(what,where);

//Replace AGE, PAY, SEX with YEARS, BONUS, GENDER
where[z] = newVars;

After the code above:

YEARS
GENDER 1

where = JOB z = 5
DATE 2

BONUS

See Also

indnv, indsav

indcv

i

indexcat

Purpose

Returns the indices of the elements of a vector which fall into a specified cat-
egory

Format

y = indexcat(x, v);

Input

x Nx1 vector.
v scalar or 2x1 vector.

If scalar, the function returns the indices of all elements of
x equal to v.

If 2x1, then the function returns the indices of all elements
of x that fall into the range:

v[1] < x <= v[2]

If v is scalar, it can contain a single missing to specify
the missing value as the category.

Output

y Lx1 vector, containing the indices of the elements of x
which fall into the category defined by v. It will
contain error code 13 if there are no elements in this
category.

35-882

indexcat

i

35-883

Remarks

Use a loop to pull out indices of multiple categories.

Example

let x = 1.0 4.0 3.3 4.2 6.0 5.7 8.1 5.5;
let v = 4 6;
indx = indexcat(x,v);

inBds = x[indx]

4 4.20
indx = 5 inBds = 6.00

6 5.70
8 5.50

indices

Purpose

Processes a set of variable names or indices and returns a vector of variable
names and a vector of indices.

Format

{ name, indx } = indices(dataset, vars);

Input

dataset string, the name of the data set.
vars Nx1 vector, a character vector of names or

a numeric vector of column indices.

indices

i

If scalar 0, all variables in the data set will
be selected.

Output

name Nx1 character vector, the names associated
with vars.

indx Nx1 numeric vector, the column indices
associated with vars.

Remarks

If an error occurs, indices will either return a scalar error code or terminate the pro-
gram with an error message, depending on the trap state. If the low order bit of the
trap flag is 0, indices will terminate with an error message. If the low order bit of
the trap flag is 1, indices will return an error code. The value of the trap flag can
be tested with trapchk; the return from indices can be tested with scalerr.
You only need to check one argument; they will both be the same. The following error
codes are possible:

1 Can't open dataset.
2 Index of variable out of range, or undefined data set

variables.

Source

indices.src

35-884

indices

i

35-885

indices2

Purpose

Processes two sets of variable names or indices from a single file. The first is a
single variable and the second is a set of variables. The first must not occur in the
second set and all must be in the file.

Format

{ name1, indx1, name2, indx2 } = indices2(dataset, var1,
var2);

Input

dataset string, the name of the data set.
var1 string or scalar, variable name or index.

This can be either the name of the variable,
or the column index of the variable.

If null or 0, the last variable in the data set
will be used.

var2 Nx1 vector, a character vector of names or
a numeric vector of column indices.

If scalar 0, all variables in the data set
except the one associated with var1 will
be selected.

Output

name1 scalar character matrix containing the
name of the variable associated with
var1.

indices2

i

indx1 scalar, the column index of var1.
name2 Nx1 character vector, the names associated

with var2.
indx2 Nx1 numeric vector, the column indices of

var2.

Remarks

If an error occurs, indices2 will either return a scalar error code or terminate the
program with an error message, depending on the trap state. If the low order bit of
the trap flag is 0, indices2 will terminate with an error message. If the low order
bit of the trap flag is 1, indices2 will return an error code. The value of the trap
flag can be tested with trapchk; the return from indices2 can be tested with
scalerr. You only need to check one argument; they will all be the same. The fol-
lowing error codes are possible:

1 Can't open dataset.
2 Index of variable out of range, or undefined data set

variables.
3 First variable must be a single name or index.
4 First variable contained in second set.

Source

indices2.src

indicesf

Purpose

Processes a set of variable names or indices and returns a vector of variable
names and a vector of indices.

35-886

indicesf

i

35-887

Format

{ name, indx } = indicesf(fp, namein, indxin);

Input

fp scalar, file handle of an open data set.
namein Nx1 string array, names of selected

columns in the data set. If set to a null
string, columns are selected using
indxin

indxin Nx1 vector, indices of selected columns in
the data set. If set to 0, columns are
selected using namein.

Output

name Nx1 string array, the names of the selected
columns.

indx Nx1 vector, the indices of the selected
columns.

Remarks

If namein is a null string and indxin is 0, all columns of the data set will be
selected.

If an error occurs, indx will be set to a scalar error code. The following error codes
are possible:

1 Can't open data file
2 Variable not found

indicesf

i

3 Indices outside of range of columns

Source

indices.src

See Also

indicesfn, indices

indicesfn

Purpose

Processes a set of variable names or indices and returns a vector of variable
names and a vector of indices.

Format

{ name, indx } = indicesfn(dataset, namein, indxin);

Input

dataset string, name of the data set.
namein Nx1 string array, names of selected

columns in the data set. If set to a null
string, columns are selected using
indxin

indxin Nx1 vector, indices of selected columns in
the data set. If set to 0, columns are
selected using namein.

35-888

indicesfn

i

35-889

Output

name Nx1 string array, the names of the selected
columns.

indx Nx1 vector, the indices of the selected
columns.

Remarks

If namein is a null string and indxin is 0, all columns of the data set will be
selected.

If an error occurs, indx will be set to a scalar error code. The following error codes
are possible:

1 Can't open data file
2 Variable not found
3 Indices outside of range of columns

Source

indices.src

See Also

indicesf, indices

indnv

Purpose

Checks one numeric vector against another and returns the indices of the ele-
ments of the first vector in the second vector.

indnv

i

Format

z = indnv(what, where);

Input

what Nx1 numeric vector which contains the values to be
found in vector where.

where Mx1 numeric vector to be searched for matches to the
values in what.

Output

z Nx1 vector of integers, the indices of the corresponding
elements of what in where.

Remarks

If no matches are found for any of the elements in what, then those elements in the
returned vector are set to the GAUSS missing value code.

If there are duplicate elements in where, the index of the first match will be
returned.

Example

what = { 8, 7, 3 };
where = { 2, 7, 8, 4, 3 };
z = indnv(what,where);

3
z = 2

5

35-890

indnv

i

35-891

indsav

Purpose

Checks one string array against another and returns the indices of the first string
array in the second string array.

Format

indx = indsav(what, where);

Input

what Nx1 string array which contains the values to be found
in vector where.

where Mx1 string array to be searched for the corresponding
elements of what.

Output

indx Nx1 vector of indices, the values of what in
where.

Remarks

If no matches are found, those elements in the returned vector are set to the GAUSS
missing value code.

If there are duplicate elements in where, the index of the first match will be
returned.

indsav

i

integrate1d

Purpose

Integrates a user-defined function, using adaptive quadrature, over a user defined
interval

Format

y = integrate1d(&fct, x_min, x_max);
y = integrate1d(&fct, x_min, x_max , ...);
y = integrate1d(&fct, x_min, x_max , ctl);
y = integrate1d(&fct, x_min, x_max, ..., ctl);

Input

&fct scalar, pointer to the procedure containing the function to
be integrated

x_min scalar, starting point for the integration
x_max scalar, ending point for the integration
... Optional input, a variable number of extra arguments to

pass to the user function. These arguments will be passed
to the user function untouched.

ctl Optional input, an instance of an integrateControl
structure with members
ctl.subDivisions scalar, maximum number of

divisions of the region (x_
min, x_max)

ctl.absTol scalar, absolute accuracy
requested.

ctl.relTol scalar, relative accuracy
requested.

35-892

integrate1d

i

35-893

Output

y scalar, the estimated integral of f(x) evaluated over the
interval (x_min, x_max)

Examples

Example 1: Basic Example

Calculate the integral

//Define procedure to be integrated
proc (1) = fct(x);

retp(1 ./ (x + 1));
endp;

//Calculate integral for procedure 'fct', from 0 - 3
ans = integrate1d(&fct, 0, 3);

will result in:

ans = 1.3862943611

Example 2: Passing extra arguments to the user function

Calculate the integral ,

//Define procedure to be integrated
proc (1) = myProc(x, var);

retp(exp(-(x .* x) / (2 .* var)));
endp;

//Define limits of integration
x_min = -1000;

integrate1d

i

x_max = 1000;

//Define extra argument for procedure 'myProc'
a = 3;

ans = integrate1d(&myProc, x_min, x_max, a);

will result in:

ans = 4.3416075273

Example 3: Bound at negative infinity

Calculate the integral

//Define procedure to be integrated
proc (1) = myPdfn(x, mu, sigma);

retp(pdfn((x - mu) ./ sigma) ./ sigma);
endp;

//Set bounds of integration to be (-Inf, 0)
x_min = __INFN;
x_max = 0;

//Extra inputs for user function
mu = 0.33;
sigma = 7;

ans = integrate1d(&myPdfn, x_min, x_max, mu, sigma);

will result in:

ans = 0.481199685115

35-894

integrate1d

i

35-895

Example 4: Using a control structure

Calculate the integral

//Define procedure to be integrated
proc (1) = myPdfn(x, mu, sigma);

retp(pdfn((x - mu) ./ sigma) ./ sigma);
endp;

//Set bounds of integration to be (0, +Inf)
x_min = 0;
x_max = __INFP;

//Extra inputs for user function
mu = 0.33;
sigma = 7;

//Declare instance of 'integrateControl' structure
//and fill with default values
struct integrateControl ctl;
ctl = integrateControlCreate();

//Lower required tolerance for faster return
ctl.absTol = 1e-2;

ans = integrate1d(&myPdfn, x_min, x_max, mu, sigma, ctl);

will result in:

ans = 0.518798668212

Remarks

The user-provided function must be able to accept a vector of scalar values and return

integrate1d

i

a vector of outputs. Make sure to use the element by element operators (.* ./) instead
of the overloaded matrix operators (* /). For example, the following procedure:

proc (1) = myProc(x);
local ret;
ret = x / (x * x);
retp(ret);

endp;

will work as expected for a scalar input. For example:

a = 2;
b = 3;
c = myProc(a);
d = myProc(b);

will assign c to be equal to 0.5 and d to be equal to 0.334. However, if we pass in a
vector like this:

a = { 2,
3 };

c = myProc(a);

we will cause an the errormatrices not conformable when we try to multiply
the incoming 2x1 vector times itself inside of myProc. To avoid this, we simply need
to change the operators * and / to the element-by-element versions by prepending the
operator with a dot like this:

proc (1) = myProc(x);
local ret;
ret = x ./ (x .* x);
retp(ret);

endp;

35-896

integrate1d

i

35-897

Source

integrate.src

See Also

inthpControlCreate, inthp2, inthp3, inthp4

intgrat2

Purpose

Integrates the following double integral, using user-defined functions f, g1 and g2
and scalars a and b:

Format

y = intgrat2(&f, xl, gl);

Input

&f scalar, pointer to the procedure containing the function
to be integrated.

xl 2x1 or 2xN matrix, the limits of x. These must be scalar
limits.

gl 2x1 or 2xN matrix of function pointers, the limits of y.

For xl and gl, the first row is the upper limit and the
second row is the lower limit. N integrations are
computed.

intgrat2

i

Global Input

_intord scalar, the order of the integration. The larger _
intord, the more precise the final result will be. _
intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32,
40.

Default = 12.

Output

y Nx1 vector of the estimated integral(s) of f(x, y),
evaluated between the limits given by xl and gl.

Remarks

The user-defined functions specified by f and gl must either

1. Return a scalar constant

- or -

2. Return a vector of function values. intgrat2 will pass to user-defined func-
tions a vector or matrix for x and y and expect a vector or matrix to be returned.
Use .* and ./ instead of * and /.

Example

proc (1) = f(x,y);
retp(cos(x) + 1).*(sin(y) + 1));

endp;

proc (1) = g1(x);
retp(sqrt(1-x^2));

endp;

35-898

intgrat2

i

35-899

proc (1) = g2(x);
retp(0);

endp;

xl = 1|-1;
g0 = &g1|&g2;
_intord = 40;
y = intgrat2(&f,xl,g0);

This will integrate the function

f(x,y) = (cos(x)+1)(sin(y)+1)

over the upper half of the unit circle. Note the use of the .* operator instead of just *
in the

definition of f(x,y). This allows f to return a vector or matrix of function values.

Source

intgrat.src

Globals

_intord, _intq12, _intq16, _intq2, _intq20, _intq24, _intq3, _
intq32, _intq4, _intq40, _intq6, _intq8

See Also

intgrat3, intquad1, intquad2, intquad3, intsimp

intgrat3

Purpose

Integrates the following triple integral, using user-defined functions and scalars
for bounds:

intgrat3

i

Format

y = intgrat3(&f, xl, gl, hl);

Input

&f scalar, pointer to the procedure containing the function
to be integrated. f is a function of (x, y, z).

xl 2x1 or 2xN matrix, the limits of x. These must be scalar
limits.

gl 2x1 or 2xN matrix of function pointers. These
procedures are functions of x.

hl 2x1 or 2xN matrix of function pointers. These
procedures are functions of x and y.

For xl, gl, and hl, the first row is the upper limit and the second row is the
lower limit. N integrations are computed.

Global Input

_intord scalar, the order of the integration. The larger _
intord, the more precise the final result will be. _
intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32,
40.

Default = 12.

35-900

intgrat3

i

35-901

Output

y Nx1 vector of the estimated integral(s) of f(x,y,z)
evaluated between the limits given by xl, gl and
hl.

Remarks

User-defined functions f, and those used in gl and hl must either:

1. Return a scalar constant

- or -

2. Return a vector of function values. intgrat3 will pass to user-defined func-
tions a vector or matrix for x and y and expect a vector or matrix to be returned.
Use .* and ./ operators instead of just * and /.

Example

proc f(x,y,z);
retp(2);
endp;

proc g1(x);
retp(sqrt(25-x^2));

endp;

proc g2(x);
retp(-g1(x));

endp;

proc h1(x,y);
retp(sqrt(25 - x^2 - y^2));

endp;

intgrat3

i

proc h2(x,y);
retp(-h1(x,y));

endp;

xl = 5|-5;
g0 = &g1|&g2;
h0 = &h1|&h2;

_intord = 40;

y = intgrat3(&f,xl,g0,h0);

This will integrate the function f(x,y,z) over the sphere of radius 5. The result will be
approximately twice the volume of a sphere of radius 5.

Source

intgrat.src

Globals

_intord, _intq12, _intq16, _intq2, _intq20, _intq24, _intq3, _
intq32, _intq4, _intq40, _intq6, _intq8

See Also

intgrat2, intquad1, intquad2, intquad3, intsimp

inthp1

Purpose

Integrates a user-defined function over an infinite interval.

35-902

inthp1

i

35-903

Include

inthp.sdf

Format

y = inthp1(&f, pds, ctl);

Input

&f scalar, pointer to the procedure containing the function to
be integrated.

pds scalar, pointer to instance of a DS structure. The members
of the DS are:
pds->dataMatrix NxK matrix.
pds->dataArray NxKxL... array.
pds->vnames string array.
pds->dsname string.
pds->type scalar.

The contents, if any, are set by the user and are passed by
inthp1 to the user-provided function without
modification.

ctl instance of an inthpControl structure with members
ctl.maxEvaluations scalar, maximum number of

function evaluations, default =
1e5;

ctl.p scalar, termination parameter
0 heuristic

termination,
default.

1 deterministic

inthp1

i

termination
with infinity
norm.

2,... deterministic
termination
with p-th
norm.

ctl.d scalar termination parameter
1 if heuristic

termination
0 < ctl.d <
π/2

if
deterministic
termination

ctl.eps scalar, relative error bound.
Default = 1e-6.

A default ctl can be generated by calling
inthpControlCreate.

Output

y scalar, the estimated integral of f(x) evaluated over the
interval (-∞,+∞).

Remarks

The user-provided function must have the following format

f(struct DS *pds, x)

where

35-904

inthp1

i

35-905

pds scalar, pointer to an instance of a DS structure.
x scalar, value at which integral will be evaluated.

If ctl.d can be specified (see Sikorski and Stenger, 1984), deterministic termination
can be specified and accuracy guaranteed. if not, the heuristic method can be used and
the value of clt.d is disregarded.

The pointer to the instance of the data structure, pds, is passed untouched to the
user-provided procedure computing the function to be integrated. Any information
needed by that function can be put into that data structure.

Example

proc fct(struct DS *pds, x);
local var;

var = pds->dataMatrix;
retp(exp(-(x*x) / (2*var)));
endp;

struct DS d0;
struct DS *pds;
variance = 3;
pds = &d0;
d0.dataMatrix = variance;

struct inthpControl c0;
c0 = inthpControlCreate;

r = inthp1(&fct,pds,c0);

format /ld 16,10;
print r;
print sqrt(2*pi*variance);

results in the following output:

inthp1

i

4.3416075273
4.3416075273

References

1. ''Optimal Quadratures in H_p Spaces'' by K. Sikorski and F. Stenger, ACM Trans-
actions on Mathematical Software, 10(2):140-151, June 1984.

Source

inthp.src

See Also

inthpControlCreate, inthp2, inthp3, inthp4

inthp2

Purpose

Integrates a user-defined function over the [a,+∞) interval.

Include

inthp.sdf

Format

y = inthp2(&f, pds, ctl, a);

Input

&f scalar, pointer to the procedure containing the function to
be integrated.

pds scalar, pointer to instance of a DS structure. The members
of the DS are:

35-906

inthp2

i

35-907

pds->dataMatrix NxK matrix.
pds->dataArray NxKxL... array.
pds->vnames string array.
pds->dsname string.
pds->type scalar.
The contents, if any, are set by the user and are passed by
inthp1 to the user-provided function without modification.

ctl instance of an inthpControl structure with members
ctl.maxEvaluations scalar, maximum number of

function evaluations, default =
1e5;

ctl.p scalar, termination parameter
0 heuristic

termination,
default.

1 deterministic
termination
with infinity
norm.

2,... deterministic
termination
with p-th
norm.

ctl.d scalar termination parameter
1 if heuristic

termination
0 < ctl.d <
π/2

if
deterministic
termination

inthp2

i

ctl.eps scalar, relative error bound.
Default = 1e-6.

A default ctl can be generated by calling
inthpControlCreate.

a 1xN vector, lower limits of integration.

Output

y Nx1 vector, the estimated integrals of f(x) evaluated
over the interval [a,+∞).

Remarks

The user-provided function must have the following format

f(struct DS *pds, x)

where

pds scalar, pointer to an instance of a DS structure.
x scalar, value at which integral will be evaluated.

If ctl.d can be specified (see Sikorski and Stenger, 1984), deterministic termination
can be specified and accuracy guaranteed. If not, the heuristic method can be used and
the value of ctl.d is disregarded.

The pointer to the instance of the data structure, pds, is passed untouched to the user-
provided procedure computing the function to be integrated. Any information needed by
that function can be put into that data structure.

Example

#include inthp.sdf

35-908

inthp2

i

35-909

proc normal(struct DS *pd0, x);
local var;
var = pd0->dataMatrix;
retp((1/sqrt(2*pi*var))*exp(-(x*x) / (2*var)));

endp;

struct DS d0;
struct DS *pd0;

pd0 = &d0;

struct inthpControl c0;
c0 = inthpControlCreate;

lim = 2;

c0.d = pi/4;
c0.p = 2;

var = 1;
d0.dataMatrix = var;

r = inthp2(&normal,pd0,c0,lim);

format /ld 16,10;
print r;
print cdfnc(2);

produces the following output:

0.0227501281
0.0227501319

inthp2

i

References

1. ''Optimal Quadratures in H_p Spaces'' by K. Sikorski and F. Stenger, ACM Trans-
actions on Mathematical Software, 10(2):140-151, June 1984.

Source

inthp.src

See Also

inthpControlCreate, inthp1, inthp3, inthp4

inthp3

Purpose

Integrates a user-defined function over the [a,+∞) interval that is oscillatory.

Include

inthp.sdf

Format

y = inthp3(&f, pds, ctl, a);

Input

&f scalar, pointer to the procedure containing the function to
be integrated.

pds scalar, pointer to instance of a DS structure. The members
of the DS are:
pds->dataMatrix NxK matrix.
pds->dataArray NxKxL... array.

35-910

inthp3

i

35-911

pds->vnames string array.
pds->dsname string.
pds->type scalar.

The contents, if any, are set by the user and are passed by
inthp1 to the user-provided function without modification.

ctl instance of an inthpControl structure with members
ctl.maxEvaluations scalar, maximum number of

function evaluations, default =
1e5;

ctl.p scalar, termination parameter
0 heuristic

termination,
default.

1 deterministic
termination
with infinity
norm.

2,... deterministic
termination
with p-th
norm.

ctl.d scalar termination parameter
1 if heuristic

termination
0 < ctl.d <
π/2

if
deterministic
termination

ctl.eps scalar, relative error bound.
Default = 1e-6.

inthp3

i

A default ctl can be generated by calling
inthpControlCreate.

a 1xN vector, lower limits of integration.

Output

y Nx1 vector, the estimated integrals of f(x)
evaluated over the interval [a,+∞).

Remarks

This procedure is designed especially for oscillatory functions.

The user-provided function must have the following format

f(struct DS *pds, x)

where

pds scalar, pointer to an instance of a DS structure.
x scalar, value at which integral will be evaluated.

If ctl.d can be specified (see Sikorski and Stenger, 1984), deterministic termination
can be specified and accuracy guaranteed. if not, the heuristic method can be used and
the value of ctl.d is disregarded.

The pointer to the instance of the data structure, pds, is passed untouched to the
user-provided procedure computing the function to be integrated. Any information
needed by that function can be put into that data structure.

Example

#include inthp.sdf

35-912

inthp3

i

35-913

proc fct(struct DS *pd0, x);
local m,a;
m = pd0->dataMatrix[1];
a = pd0->dataMatrix[2];
retp(exp(-a*x)*cos(m*x));

endp;

struct DS d0;
struct DS *pd0;

struct inthpControl c0;
c0 = inthpControlCreate;

c0.p = 2;
c0.d = pi/3;

m = 2;
a = 1;
pd0 = &d0;
d0.dataMatrix = m | a;

lim = 0;

r = inthp3(&fct,pd0,c0,lim);

format /ld 16,10;
print r;
print a/(a*a + m*m);

produces the following output:

0.2000000000
0.2000000000

inthp3

i

References

1. ''Optimal Quadratures in H_p Spaces'' by K. Sikorski and F. Stenger, ACM Trans-
actions on Mathematical Software, 10(2):140-151, June 1984.

Source

inthp.src

See Also

inthpControlCreate, inthp1, inthp2, inthp4

inthp4

Purpose

Integrates a user-defined function over the [a, b] interval.

Include

inthp.sdf

Format

y = inthp4(&f, pds, ctl, c);

Input

&f scalar, pointer to the procedure containing the function to be
integrated.

pds scalar, pointer to instance of a DS structure. The members of
the DS are:
pds->dataMatrix NxK matrix.
pds->dataArray NxKxL... array.

35-914

inthp4

i

35-915

pds->vnames string array.
pds->dsname string.
pds->type scalar.

The contents, if any, are set by the user and are passed by
inthp1 to the user-provided function without modification.

ctl instance of an inthpControl structure with members
ctl.maxEvaluations scalar, maximum number of function

evaluations, default = 1e5;
ctl.p scalar, termination parameter

0 heuristic termination,
default.

1 deterministic
termination with
infinity norm.

2,... deterministic
termination with p-th
norm.

ctl.d scalar termination parameter
1 if heuristic

termination
0 <ctl.d
< π/2

if deterministic
termination

ctl.eps scalar, relative error bound. Default
= 1e-6.

A default ctl can be generated by calling
inthpControlCreate.

c 2×N vector, upper and lower limits of integration, the first row
contains upper limits and the second row the lower.

inthp4

i

Output

y Nx1 vector, the estimated integrals of f(x) evaluated
over the interval [a, b].

Remarks

The user-provided function must have the following format

f(struct DS *pds, x)

where

pds scalar, pointer to an instance of a DS structure.
x scalar, value at which integral will be evaluated.

If ctl.d can be specified (see Sikorski and Stenger, 1984), deterministic termination
can be specified and accuracy guaranteed. if not, the heuristic method can be used and
the value of ctl.d is disregarded.

The pointer to the instance of the data structure, pds, is passed untouched to the user-
provided procedure computing the function to be integrated. Any information needed by
that function can be put into that data structure.

Example

#include inthp.sdf

proc fct(struct DS *pd0, x);
local a,b,c;
a = pd0->dataMatrix[1];
b = pd0->dataMatrix[2];
c = pd0->dataMatrix[3];
retp(1/sqrt(a*x*x + b*x + c));

endp;

35-916

inthp4

i

35-917

struct DS d0;
struct DS *pd0;

struct inthpControl c0;
c0 = inthpControlCreate;

c0.p = 2;
c0.d = pi/2;

a = -1;
b = -2;
c = 3;
pd0 = &d0;
d0.dataMatrix = a|b|c;

lim = 1 | -1;

r = inthp4(&fct,pd0,c0,lim);

format /ld 16,10;
print r;
print pi/2;

produces the following output:

1.5707962283
1.5707963268

References

1. "Optimal Quadratures in H_p Spaces" by K. Sikorski and F. Stenger, ACM Trans-
actions on Mathematical Software, 10(2):140-151, June 1984.

Source

inthp.src

inthp4

i

See Also

inthpControlCreate, inthp1, inthp2, inthp3

inthpControlCreate

Purpose

Creates default inthpControl structure.

Include

inthp.sdf

Format

c = inthpControlCreate();

Output

c instance of inthpControl structure with members set to
default values.

Source

inthp.src

See Also

inthp1, inthp2, inthp3, inthp4

35-918

inthpControlCreate

i

35-919

intquad1

Purpose

Integrates a specified function using Gauss-Legendre quadrature. A suite of upper
and lower bounds may be calculated in one procedure call.

Format

y = intquad1(&f, xl);
y = intquad1(&f, xl, ...);

Input

&f scalar, pointer to the procedure
containing the function to be
integrated. This must be a
function of x.

xl 2xN matrix, the limits of x. The
first row is the upper limit and the
second row is the lower limit. N
integrations are computed.

... Optional, a variable number of extra scalar arguments to
pass to the user function. These arguments will be passed to
the user function untouched.

Global Input

_intord scalar, the order of the integration. The larger _
intord, the more precise the final result will be. _
intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32,
40.

intquad1

i

Default = 12.

Output

y Nx1 vector of the estimated integral(s) of f(x)
evaluated between the limits given by xl.

Remarks

The user-defined function f must return a vector of function values. intquad1 will
pass to the user-defined function a vector or matrix for x and expect a vector or matrix
to be returned. Use the .* and ./ instead of * and /.

35-920

intquad1

i

35-921

Example

Example 1: Basic example

This will integrate the function f(x) = x*sin(x) between 0 and 1. Note the use of the .*
instead of *.

//Define function to be integrated
proc f(x);

retp(x.*sin(x));
endp;

//Limits of integration
xlim = { 1, 0 };

//Calculate integral
y = intquad1(&f,xlim);

After the code above, y should equal:

0.30116868

Example 2: Passing in additional arguments

//Define function to be integrated
//with a second input
proc f(x, a);

retp(x.*sin(x .* a));
endp;

//Create additional scalar argument 'a'
a = 3.14;

//Limits of integration
xlim = { 1, 0 };

intquad1

i

//Calculate integral, passing in extra input
//'a' as the final input to 'intquad1'
y = intquad1(&f, xlim, a);

After the code above, y should equal:

0.31863247

Source

integral.src

Globals

_intord, _intq12, _intq16, _intq2, _intq20, _intq24, _intq3, _
intq32, _intq4, _intq40, _intq6, _intq8

See Also

intsimp, intquad2, intquad3, intgrat2, intgrat3

intquad2

Purpose

Integrates a specified function using Gauss-Legendre quadrature. A suite of upper
and lower bounds may be calculated in one procedure call.

Format

y = intquad2(&f, xl, yl);
y = intquad2(&f, xl, yl, ...);

35-922

intquad2

i

35-923

Input

&f scalar, pointer to the procedure
containing the function to be
integrated.

xl 2x1 or 2xN matrix, the limits
of x.

yl 2x1 or 2xN matrix, the limits
of y.

... Optional, a variable number of extra scalar arguments to pass
to the user function. These arguments will be passed to the
user function untouched.

For xl and yl, the first row is the upper limit and the second row is the lower limit. N
integrations are computed.

Global Input

_intord scalar, the order of the integration. The larger _
intord, the more precise the final result will be. _
intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32,
40. Default = 12.

Output

y Nx1 vector of the estimated integral(s) of f(x,y)
evaluated between the limits given by xl and yl.

intquad2

i

Examples

Example 1: Basic example

//Define function to be integrated
proc f(x,y);

retp(x .* sin(x + y));
endp;

//Limits of integration
xlim = { 1, 0 };
ylim = { 1, 0 };

//Calculate integral
ans = intquad2(&f, xlim, ylim);

After the code above, ans should equal:

0.42892501

Example 2: Multiple integration limits

//Define function to be integrated
proc (1) = myProc(x,y);

retp(x .* sin(x + y));
endp;

//Define multiple integration limits
xlim = { 1 0.5,

0.5 0 };

ylim = { 1 0.5,
0.5 0.3 };

35-924

intquad2

i

35-925

//Calculate integrals
ans = intquad2(&myProc, xlim, ylim);

This will integrate the function:

myProc(x) = x.*sin(x+y)

between x = 0 and 0.5, and between y = 0.3 and 0.5 as well as between x = 0.5 and
1, and between y = 0.5 and 1.

The returned variable, ans should be equal to:

0.18352849
0.016593029

Example 3: Extra arguments to function

//Define function to be integrated that takes an additional
argument
proc f(x,y,a);

retp(x .* sin(a .* x + y));
endp;

//Limits of integration
xlim = { 1, 0 };
ylim = { 1, 0 };

//Assign extra scalar argument
a = pi/2;

//Calculate integral
ans = intquad2(&f, xlim, ylim, a);

After the code above, ans should equal:

0.44737953

intquad2

i

Remarks

The user-defined function f must return a vector of function values. intquad2 will
pass to user-defined functions a vector or matrix for x and y and expect a vector or
matrix to be returned. Use .* and ./ instead of * and /.

intquad2 will expand scalars to the appropriate size. This means that functions can
be defined to return a scalar constant. If users write their functions incorrectly (using *
instead of .*, for example), intquad2 may not compute the expected integral, but
the integral of a constant function.

To integrate over a region which is bounded by functions, rather than just scalars, use
intgrat2 or intgrat3.

Source

integral.src

Globals

_intord, _intq12, _intq16, _intq2, _intq20, _intq24, _intq3, _
intq32, _intq4, _intq40, _intq6, _intq8

See Also

intquad1, intquad3, intsimp, intgrat2, intgrat3

intquad3

Purpose

Integrates a specified function using Gauss-Legendre quadrature. A suite of upper
and lower bounds may be calculated in one procedure call.

35-926

intquad3

i

35-927

Format

y = intquad3(&f, xl, yl, zl);
y = intquad3(&f, xl, yl, zl, ...);

Input

&f scalar, pointer to the procedure
containing the function to be
integrated. f is a function of
(x, y, z).

xl 2x1 or 2xN matrix, the limits of
x.

yl 2x1 or 2xN matrix, the limits of
y.

zl 2x1 or 2xN matrix, the limits of
z.

... Optional, a variable number of extra scalar arguments to
pass to the user function. These arguments will be passed to
the user function untouched.

For xl, yl, and zl, the first row is the upper limit and the second row is the
lower limit. N integrations are computed.

Global Input

_intord scalar, the order of the integration. The larger _
intord, the more precise the final result will be. _
intord may be set to 2, 3, 4, 6, 8, 12, 16, 20, 24, 32,
40.

Default = 12.

intquad3

i

Output

y Nx1 vector of the estimated integral(s) of f(x,y,z)
evaluated between the limits given by xl, yl, and
zl.

Example

Example 1: Basic example

//Define function to integrate
proc f(x,y,z);

retp(sqrt(x.^2 + y.^2 + z.^2));
endp;

//Define limits of integration
xlim = { 1, 0 };
ylim = { 1, 0 };
zlim = { 3, 0 };

//Calculate integral
ans = intquad3(&f,xlim, ylim, zlim);

After the code above, ans should equal:

5.2994691

Example 2: Passing extra arguments

//Define function to integrate which takes an additional
argument
proc f(x,y,z,a);

retp(sqrt(a .* x.^2 + y.^2 + z.^2));
endp;

35-928

intquad3

i

35-929

//Define limits of integration
xlim = { 1, 0 };
ylim = { 1, 0 };
zlim = { 3, 0 };

//Define extra scalar argument
a = 3.14;

//Calculate integral, passing in extra scalar argument
ans = intquad3(&f,xlim, ylim, zlim, a);

After the code above, ans should equal:

5.8969356

Example 3: Multiple limits of integration

//Define function to integrate
proc f(x,y,z);

retp(sqrt(x.^2 + y.^2 + z.^2));
endp;

//Define 3 sets of limits of integration
xlim = { 1, 0 };
ylim = { 1, 0 };
zlim = { 1 2 3,

0 0 0 };

//Calculate integrals
ans = intquad3(&f,xlim, ylim, zlim);

This will integrate the function f(x) = x*y*z over 3 sets of limits, since zlim is
defined to be a 2x3 matrix. The value of ans should be:

intquad3

i

0.96059195
2.6692443
5.2994691

Remarks

The user-defined function f must return a vector of function values. intquad3 will
pass to the user-defined function a vector or matrix for x, y and z and expect a vec-
tor or matrix to be returned. Use .* and ./ instead of * and /.

intquad3 will expand scalars to the appropriate size. This means that functions can
be defined to return a scalar constant. If users write their functions incorrectly (using *
instead of .*, for example), intquad3 may not compute the expected integral, but
the integral of a constant function.

To integrate over a region which is bounded by functions, rather than just scalars, use
intgrat2 or intgrat3.

Source

integral.src

Globals

_intord, _intq12, _intq16, _intq2, _intq20, _intq24, _intq3, _
intq32, _intq4, _intq40, _intq6, _intq8

See Also

intquad1, intquad2, intsimp, intgrat2, intgrat3

intrleav

Purpose

Interleaves the rows of two files that have been sorted on a common variable to
produce a single file sorted on that variable.

35-930

intrleav

i

35-931

Format

intrleav(infile1, infile2, outfile, keyvar, keytyp);

Input

infile1 string, name of input file 1.
infile2 string, name of input file 2.
outfile string, name of output file.
keyvar string, name of key variable; this is the column the files

are sorted on.
keytyp scalar, data type of key variable.

 1 numeric key, ascending order
 2 character key, ascending order
-1 numeric key, descending order
-2 character key, descending order

Remarks

The two files MUST have exactly the same variables, that is, the same number of
columns AND the same variable names. They must both already be sorted on the key
column. This procedure will combine them into one large file, sorted by the key vari-
able.

If the inputs are null ("" or 0), the procedure will ask for them.

Source

sortd.src

See Also

intrleavsa

intrleav

i

intrleavsa

Purpose

Interleaves the rows of two string arrays that have been sorted on a common
column.

Format

y = intrleavsa(sa1, sa2, ikey);

Input

sa1 NxK string array 1.
sa2 MxK string array 2.
ikey scalar integer, index of the key column the string arrays

are sorted on.

Output

y LxK interleaved (combined) string array.

Remarks

The two string arrays MUST have exactly the same number of columns AND have
been already sorted on a key column.

This procedure will combine them into one large string array, sorted by the key
column.

Source

sortd.src

35-932

intrleavsa

i

35-933

See Also

intrleav

intrsect

Purpose

Returns the intersection of two vectors, with duplicates removed.

Format

y = intrsect(v1, v2);
y = intrsect(v1, v2, flag);

Input

v1 Nx1 vector, or string array.
v2 Mx1 vector, or string array. NOTE: v2 must be the

same type as v1
flag Optional argument, scalar, if 1, v1 and v2 are

numeric; if 0, character. Default is flag equal to 1
(numeric).

Output

y Lx1 vector containing all unique values that are in both
v1 and v2, sorted in ascending order.

Remarks

1. If not matches are found, intrsect will return a scalar error code that can be

intrsect

i

tested for with scalmiss.
2. Place smaller vector first for fastest operation.
3. If there are a lot of duplicates within a vector, it is faster to remove them with

the function unique before calling intrsect.

Examples

Example 1: Basic usage, numeric

//Subject ID's from study 'a'
id_a = { 3758,

3773,
2615,
2511 };

//Subject ID's from study 'b'
id_b = { 3779,

3773,
2001,
3758,
1585,
2511 };

//Find the ID's that are in both groups
id_common = intrsect(id_a, id_b);

After the code above, id_common is equal to:

2511
3758
3773

Example 2: Basic usage, string array

//Variable names from dataset 'a'
//Create string array with the string

35-934

intrsect

i

35-935

//vertical concatenation operator ($|)
names_a = "oil" $| "copper" $| "silver" $| "cocoa";

//Variable names from dataset 'b'
names_b = "oil" $| "coffee" $| "cocoa" $| "tea";

//Find the variable names that are in both groups
names_common = intrsect(names_a, names_b);

After the code above, names_common is equal to:

cocoa
oil

Example 3: Character vectors

A character vector is different from a string array. A character vector is up to eight
characters inside of the element of a numeric matrix.

//Variable names from dataset 'a'
//Create character vector array with the
//numeric vertical concatenation operator (|)
names_a = "oil" | "copper" | "silver" | "cocoa";

//Variable names from dataset 'b'
names_b = "oil" | "coffee" | "cocoa" | "tea";

//Set flag to tell 'intrsectsa' to treat input as character
data
flag = 0;

//Find the variable names that are in both groups
names_common = intrsect(names_a, names_b, flag);

//Notice the $ in front of 'names_common'

intrsect

i

//tells GAUSS to print as character data
print $names_common;

The code above, will print the following output:

cocoa
oil

Source

intrsect.src

See Also

intrsectsa

intrsectsa

Purpose

Returns the intersection of two string vectors, with duplicates removed. NOTE:
This function is deprecated, use intrsect instead.

Format

y = intrsectsa(sv1, sv2);

Input

sv1 Nx1 or 1xN string vector.
sv2 Mx1 or 1xM string vector.

35-936

intrsectsa

i

35-937

Output

sy Lx1 vector containing all unique strings that are in both
sv1 and sv2, sorted in ascending order.

Remarks

1. This function is deprecated, use intrsect instead.
2. Place smaller vector first for fastest operation.
3. If there are a lot of duplicates it is faster to remove them with unique before call-

ing intrsectsa.

Example

vars_a = "age" $| "weight" $| "bmi";
vars_b = "hdl" $| "ldl" $| "age" $| "bmi" $| "smoking";

shared_vars = intrsectsa(vars_a, vars_b);
print "Both studies reported the following variables:";
print shared_vars;

The code above, returns:

Both studies reported the following variables:
age bmi

Source

intrsect.src

See Also

intrsect

intrsectsa

i

intsimp

Purpose

Integrates a specified function using Simpson's method with end correction. A
single integral is computed in one function call.

Format

y = intsimp(&f, xl, tol);

Input

&f pointer to the procedure containing the function to be
integrated.

xl 2x1 vector, the limits of x.

The first element is the upper limit and the second element
is the lower limit.

tol The tolerance to be used in testing for convergence.

Output

y The estimated integral of f(x) between xl[1] and xl
[2].

Example

proc f(x);
retp(sin(x));

endp;

let xl = { 1, 0 };

35-938

intsimp

i

35-939

y = intsimp(&f,xl,1e-8);
print y;

The code above, returns the following:

0.45969769

This will integrate the function between 0 and 1.

Source

intsimp.src

See Also

intquad1, intquad2, intquad3, intgrat2, intgrat3

inv, invpd

Purpose

inv returns the inverse of an invertible matrix. invpd returns the inverse of a
symmetric, positive definite matrix.

Format

y = inv(x);
y = invpd(x);

Input

x NxN matrix or K-dimensional array where the last two
dimensions are NxN.

inv, invpd

i

Output

y NxN matrix or K-dimensional array where the last two
dimensions are NxN, containing the inverse of x.

Remarks

x can be any legitimate expression that returns a matrix or array that is legal for the
function.

If x is an array, the result will be an array containing the inverses of each 2-dimen-
sional array described by the two trailing dimensions of x. In other words, for a 10x4x4
array, the result will be an array of the same size containing the inverses of each of
the 10 4x4 arrays contained in x

For inv, if x is a matrix, it must be square and invertible. Otherwise, if x is an array,
the 2-dimensional arrays described by the last two dimensions of x must be square and
invertible.

For invpd, if x is a matrix, it must be symmetric and positive definite. Otherwise, if
x is an array, the 2-dimensional arrays described by the last two dimensions of x must
be symmetric and positive definite.

If the input matrix is not invertible by these functions, they will either terminate the pro-
gram with an error message or return an error code which can be tested for with the
scalerr function. This depends on the trap state as follows:

If trap is set to 1, they will return a scalar errorcode:

inv invpd

50 20

If trap is set to 0, they will terminate with an error message:

inv invpd

"Matrix singular" "Matrix not positive definite"

35-940

inv, invpd

i

35-941

If the input to invpd is not symmetric, it is possible that the function will (erro-
neously) appear to operate successfully.

Positive definite matrices can be inverted by inv. However, for symmetric, positive
definite matrices (such as moment matrices), invpd is about twice as fast as inv.

Example

n = 4000;
x1 = rndn(n,1);
x = ones(n,1)~x1;
btrue = { 1, 0.5 };
y = x*btrue + rndn(n,1);
bols = invpd(x'x)*x'y;

After the code above, bols will be equal to:

1.00237215
0.48249445

This example simulates some data and computes the ols coefficient estimator using
the invpd function. First, the number of observations is specified. Second, a vector
x1 of standard Normal random variables is generated and is concatenated with a vec-
tor of ones(to create a constant term). The true coefficients are specified, and the
dependent variable y is created. Then the ols coefficient estimates are computed.

When computing least-squares problems with poorly conditioned matrices, the slash
operator "/" and the function olsqr will provide greater accuracy.

invswp

Purpose

Computes a generalized sweep inverse.

invswp

i

Format

y = invswp(x);

Input

x NxN matrix.

Output

y NxN matrix, the generalized inverse of x.

Remarks

This will invert any general matrix. That is, even matrices which will not invert using
inv because they are singular will invert using invswp.

x and y will satisfy the two conditions:

1. xyx = x
2. yxy = y

invswp returns a row and column with zeros when the pivot fails. This is good for
quadratic forms since it essentially removes rows with redundant information, i.e., the
statistices generated will be "correct" but with reduced degrees of freedom.

The tolerance used to determine if a pivot element is zero is taken from the crout sin-
gularity tolerance. The corresponding row and column are zeroed out. See
SINGULARITY TOLERANCE, CHAPTER 1.

iscplx

Purpose

Returns whether a matrix or N-dimensional array is complex or real.

35-942

iscplx

i

35-943

Format

y = iscplx(x);

Input

x NxK matrix or N-dimensional array.

Output

y scalar, 1 if x is complex, 0 if it is real.

Example

x = { 1, 2i, 3 };
if iscplx(x);

//code path for complex case
else;

//code path for real case
endif;

See Also

hasimag, iscplxf

iscplxf

Purpose

Returns whether a data set is complex or real.

Format

y = iscplxf(fh);

iscplxf

i

Input

fh scalar, file handle of an open file.

Output

y scalar, 1 if the data set is complex, 0 if it is real.

See Also

hasimag, iscplx

isden

Purpose

Returns whether a scalar, matrix or N-dimensional array contains denormals.

Format

y = isden(x);

Input

x NxK matrix or N-dimensional array.

Output

y scalar, 1 if x contains a denormal, 0 if it does not.

Example

Sometimes denormals can unnecessarily slow down calculations and it is best to flush

35-944

isden

i

35-945

them to zero. This example tests whether the vector x contains any denormals and
thensets any values between 0 and 1e-25 to be equal to 0.

tol = 1e-25;

//Create a vector that contains a denormal
x = { 1, exp(-724.5), 3 };

if isden(x);
//Get the index of all elements between 0 and tol
idx = indexcat(x,0|tol);
//Set all elements between 0 and tol equal to 0
x[idx] = 0;

endif;

Before the if block in the code above, the second element of x is equal to approx-
imately 3e-57. After the if block this element is set equal to 0, the other elements of
x are unchanged.

See Also

denToZero

isinfnanmiss

Purpose

Returns true if the argument contains an infinity, NaN, or missing value.

Format

y = isinfnanmiss(x);

isinfnanmiss

i

Input

x NxK matrix.

Output

y scalar, 1 if x contains any infinities, NaNs, or missing
values, else 0.

See Also

scalinfnanmiss, ismiss, scalmiss

ismiss

Purpose

Returns a 1 if its matrix argument contains any missing values, otherwise returns
a 0.

Format

y = ismiss(x);

Input

x NxK matrix.

Output

y scalar, 1 if x contains any missing values, otherwise 0.

35-946

ismiss

i

35-947

Remarks

An element of x is considered to be a missing if and only if it contains a missing value
in the real part. Thus, if x = 1 + .i, ismiss(x) will return a 0.

Example

x = { 1, 2, 3, 4 };

//Set the second element of 'x' to be a missing value
x[2] = miss(0,0);

print "before 'if' block, x = " x;

//If there are any missing values in 'x'
if ismiss(x);

//Remove all rows with missing values from 'x'
x = packr(x);

endif;

print "after 'if' block, x = " x;

before 'if' block, x =
1.0000000

.
3.0000000
4.0000000

after 'if' block, x =
1.0000000
3.0000000
4.0000000

To reset all missing values to a specified value, replace the call to packr above with
a call to missrv.

ismiss

i

See Also

scalmiss, miss, missrv

itos

Purpose

Converts a scalar or matrix to the string representation of an integer.

Format

str = itos(x);

Input

x scalar or NxK matrix.

Output

y string or string array containing the string representation
of the elements of x.

Example

Example 1

x = 4;
str = itos(x);
print "x = " x;
print "str = " str;

x =

35-948

itos

i

35-949

1.000000

str =
1

Example 2

for i(1, 4, 1);
print "iteration "$+itos(i);

endfor;

See Also

ftos, stof

itos

i

k

keep (dataloop)

Purpose

Specifies columns (variables) to be saved to the output data set in a data loop.

Format

keep variable_list;

Remarks

Commas are optional in variable_list.

Retains only the specified variables in the output data set. Any variables referenced
must already exist, either as elements of the source data set, or as the result of a pre-
vious make, vector, or code statement.

If neither keep nor drop is used, the output data set will contain all variables from
the source data set, as well as any newly defined variables. The effects of multiple
keep and drop statements are cumulative.

Example

keep age, pay, sex;

See Also

drop (dataloop)

35-950

keep (dataloop)

k

35-951

key

Purpose

Returns the ASCII value of the next key available in the keyboard buffer.

Format

y = key;

Output

y scalar, ASCII value of next available key in keyboard
buffer.

Remarks

If you are working in terminal mode, key does not "see" any keystrokes until ENTER
is pressed. The value returned will be zero if no key is available in the buffer or it will
equal the ASCII value of the key if one is available. The key is taken from the buffer
at this time and the next call to key will return the next key.

Example

format /rds 1,0;
kk = 0;
do until kk == 113;

kk = key;
if kk == 0;

continue;
elseif kk == vals(" ");

print "space \\" kk;
elseif kk >= vals("0") and kk <= vals("9");

print "digit \\" kk chrs(kk);

key

k

else;
print "\\" kk;

endif;
endo;

This is an example of a loop that processes keyboard input. This loop will continue
until the q key (ASCII 113) is pressed.

See Also

vals, chrs, upper, lower, con, cons

keyav

Purpose

Check if keystroke is available.

Format

x = keyav;

Output

x scalar, value of key or 0 if no key is available.

See Also

keyw, key

35-952

keyav

k

35-953

keyw

Purpose

Waits for and gets a key.

Format

k = keyw;

Output

k scalar, ASCII value of the key pressed.

Remarks

If you are working in terminal mode, GAUSS will not see any input until you press the
ENTER key. keyw gets the next key from the keyboard buffer. If the keyboard buffer
is empty, keyw waits for a keystroke. For normal keys, keyw returns the ASCII value
of the key.

See Also

key

keyword

Purpose

Begins the definition of a keyword procedure. Keywords are user-defined func-
tions with local or global variables.

Format

keyword name(str);

keyw

k

Input

name literal, name of the keyword. This name will be a global
symbol.

str string, a name to be used inside the keyword to refer to
the argument that is passed to the keyword when the
keyword is called. This will always be local to the
keyword, and cannot be accessed from outside the
keyword or from other keywords or procedures.

Remarks

A keyword definition begins with the keyword statement and ends with the endp
statement. See PROCEDURES AND KEYWORDS, CHAPTER 1.

Keywords always have 1 string argument and 0 returns. GAUSS will take everything
past name, excluding leading spaces, and pass it as a string argument to the
keyword. Inside the keyword, the argument is a local string. The user is responsible to
manipulate or parse the string.

An example of a keyword definition is:

keyword add(str);
local tok,sum;
sum = 0;
do until str $== "";

{ tok, str } = token(str);
sum = sum + stof(tok);

endo;
print "Sum is: " sum;

endp;

To use this keyword, type:

add 1 2 3 4 5;

35-954

keyword

k

35-955

This keyword will respond by printing:

Sum is: 15

See Also

proc, local, endp

keyword

k

l

lag (dataloop)

Purpose

Lags variables a specified number of periods.

Format

lag nv1 = var1: p1 [[nv2 = var2:p2...]];

Input

var name of the variable to lag.
p scalar constant, number of periods to lag.

Output

nv name of the new lagged variable.

Remarks

You can specify any number of variables to lag. Each variable can be lagged a dif-
ferent number of periods. Both positive and negative lags are allowed.

Lagging is executed before any other transformations. If the new variable name is dif-
ferent from that of the variable to lag, the new variable is first created and appended to
a temporary data set. This temporary data set becomes the input data set for the data-
loop, and is then automatically deleted.

35-956

lag (dataloop)l

35-957

lag1

Purpose

Lags a matrix by one time period for time series analysis.

Format

y = lag1(x);

Input

x Nx1 column vector or NxK matrix.

Output

y NxK matrix, x lagged 1 period.

Remarks

lag1 lags x by one time period, so the first observations of y are missing. lag1
assumes that each column of the input is a different time series and that each row is an
observation. Therefore if a 1xK row vector is passed to lag1, it will return a 1xK of
missing values.

Example

y = { 1.2,
3.4,
2.5,
4.1,
2.8 };

y_lag = lag1(y);

lag1 l

print y_lag;

will return:

.
1.2000000
3.4000000
2.5000000
4.1000000

Source

lag.src

See Also

lagn, ismiss, packr

lagn

Purpose

Lags a matrix a specified number of time periods for time series analysis.

Format

y = lagn(x, t);

Input

x NxK matrix.
t scalar or Px1 vector, number of time periods.

35-958

lagnl

35-959

Output

y NxK matrix, x lagged t periods.

Example

nlags = 2;
x = { 1.4, 2.7, 3.1, 2.9, 3.2, 2.5, 2.8 };
x_lag2 = lagn(x, nlags);

will assign x_lag2 to equal:

.

.
1.4
2.7
3.1
2.9
3.2

Creating multiple lags

If the number of time periods to lag is a Px1 column vector, then the output matrix with
be an NxP matrix where each column contains one of the lags. For example, changing
the nlags variable from the example above to be a 3x1 column vector like this:

nlags = { 1, 2, 3 };
x = { 1.4, 2.7, 3.1, 2.9, 3.2, 2.5, 2.8 };
lag_mat = lagn(x, nlags);

will assign lag_mat to equal:

. . .
1.4 . .
2.7 1.4 .
3.1 2.7 1.4

lagn l

2.9 3.1 2.7
3.2 2.9 3.1
2.5 3.2 2.9

Remarks

If t is positive, lagn lags x back t time periods, so the first t observations of y are
missing. If t is negative, lagn lags x forward t time periods, so the last t obser-
vations of y are missing.

Source

lag.src

See Also

lag1

lapeighb

Purpose

Computes eigenvalues only of a real symmetric or complex Hermitian matrix
selected by bounds.

Format

ve = lapeighb(x, vl, vu, abstol);

Input

x NxN matrix, real symmetric or complex Hermitian.
vl scalar, lower bound of the interval to be searched for

eigenvalues.

35-960

lapeighbl

35-961

vu scalar, upper bound of the interval to be searched for
eigenvalues; vu must be greater than vl.

abstol scalar, the absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a, b] of
width less than or equal to:

abstol + EPS*max(|a|, |b|)

where EPS is machine precision. If abstol is less than
or equal to zero, then EPS*||T|| will be used in its place,
where T is the tridiagonal matrix obtained by reducing the
input matrix to tridiagonal form.

Output

ve Mx1 vector, eigenvalues, where M is the number of
eigenvalues on the half open interval [vl, vu]. If no
eigenvalues are found then ve is a scalar missing
value.

Remarks

lapeighb computes eigenvalues only which are found on on the half open interval
[vl, vu]. To find eigenvalues within a specified range of indices see lapeighi. For
eigenvectors see lapeighvi, or lapeighvb. lapeighb is based on the
LAPACK drivers DSYEVX and ZHEEVX. Further documentation of these functions
may be found in the LAPACK User's Guide.

Example

x = { 5 2 1,

lapeighb l

2 6 2,
1 2 9 };

vl = 5;
vu = 10;
ve = lapeighb(x,vl,vu,1e-15);
print ve;

The code above returns:

6.0000

See Also

lapeighvi, lapeighvb

lapeighi

Purpose

Computes eigenvalues only of a real symmetric or complex Hermitian matrix
selected by index.

Format

ve = lapeighi(x, il, iu, abstol);

Input

x NxN matrix, real symmetric or complex Hermitian.
il scalar, index of the smallest desired eigenvalue ranking

them from smallest to largest.
iu scalar, index of the largest desired eigenvalue, iu

must be greater than il.

35-962

lapeighil

35-963

abstol scalar, the absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a, b] of
width less than or equal to abstol + EPS*max(|a|,
|b|), where EPS is machine precision. If abstol is
less than or equal to zero, then EPS*||T|| will be used in
its place, where T is the tridiagonal matrix obtained by
reducing the input matrix to tridiagonal form.

Output

ve (iu-il+1)x1 vector, eigenvalues.

Remarks

lapeighi computes iu-il+1 eigenvalues only given a range of indices, i.e., the
ith to jth eigenvalues, ranking them from smallest to largest. To find eigenvalues
within a specified range see lapeighxb. For eigenvectors see lapeighvi, or
lapeighvb. lapeighi is based on the LAPACK drivers DSYEVX and
ZHEEVX. Further documentation of these functions may be found in the LAPACK
User's Guide.

Example

x = { 5 2 1,
2 6 2,
1 2 9 };

il = 2;
iu = 3;
ve = lapeighi(x,il,iu,0);
print ve;

lapeighi l

The code above calculates the second and third eigenvalues and returns:

6.0000
10.6056

To calculate the first, second and third eigenvalues, reusing the same x from above:

ve = lapeighi(x,1,3,0);
print ve;

The output from this code is:

3.3944
6.0000

10.6056

See Also

lapeighb, lapeighvi, lapeighvb

lapeighvb

Purpose

Computes eigenvalues and eigenvectors of a real symmetric or complex Her-
mitian matrix selected by bounds.

Format

{ ve, va } = lapeighvb(x, vl, vu, abstol);

Input

x NxN matrix, real symmetric or complex Hermitian.
vl scalar, lower bound of the interval to be searched for

35-964

lapeighvbl

35-965

eigenvalues.
vu scalar, upper bound of the interval to be searched for

eigenvalues; vu must be greater than vl.
abstol scalar, the absolute error tolerance for the eigenvalues.

An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a, b] of
width less than or equal to abstol + EPS*max(|a|,
|b|), where EPS is machine precision. If abstol is
less than or equal to zero, then EPS*||T|| will be used in
its place, where T is the tridiagonal matrix obtained by
reducing the input matrix to tridiagonal form.

Output

ve Mx1 vector, eigenvalues, where M is the number of
eigenvalues on the half open interval [vl, vu]. If no
eigenvalues are found then s is a scalar missing value.

va NxM matrix, eigenvectors.

Remarks

lapeighvb computes eigenvalues and eigenvectors which are found on the half open
interval [vl, vu]. lapeighvb is based on the LAPACK drivers DSYEVX and
ZHEEVX. Further documentation of these functions may be found in the LAPACK
User's Guide.

Example

x = { 5 2 1,
2 6 2,
1 2 9 };

lapeighvb l

vl = 5;
vu = 10;
{ ve, va } = lapeighvb(x,vl,vu,0);

print "Eigenvalues" ve;
print "Eigenvectors = " va;

Eigenvalues = 6.0000
Eigenvectors =
-0.5774
-0.5774
0.5774

If you increase the value of vu to 12.

{ ve, va } = lapeighvb(x,5,12,0);

print "Eigenvalues" ve;
print "Eigenvectors = " va;

Eigenvalues
6.0000

10.6056
Eigenvectors =
-0.5774 0.3197
-0.5774 0.4908
0.5774 0.8105

lapeighvi

Purpose

Computes selected eigenvalues and eigenvectors of a real symmetric or complex
Hermitian matrix.

35-966

lapeighvil

35-967

Format

{ ve, va } = lapeighvi(x, il, iu, abstol);

Input

x NxN matrix, real symmetric or complex Hermitian.
il scalar, index of the smallest desired eigenvalue ranking

them from smallest to largest.
iu scalar, index of the largest desired eigenvalue, iu

must be greater than il.
abstol scalar, the absolute error tolerance for the eigenvalues.

An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a, b] of
width less than or equal to abstol + EPS*max(|a|,
|b|), where EPS is machine precision. If abstol is
less than or equal to zero, then EPS*||T|| will be used in
its place, where T is the tridiagonal matrix obtained by
reducing the input matrix to tridiagonal form.

Output

ve (iu- il+1)x1 vector, eigenvalues.
va Nx(iu- il+1) matrix, eigenvectors.

Remarks

lapeighvi computes iu-il+1 eigenvalues and eigenvectors given a range of
indices, i.e., the ith to jth eigenvalues, ranking them from smallest to largest. To find
eigenvalues and eigenvectors within a specified range see lapeighvb.
lapeighvi is based on the LAPACK drivers DSYEVX and ZHEEVX. Further

lapeighvi l

documentation of these functions may be found in the LAPACK User's Guide.

Example

x = { 5 2 1,
2 6 2,
1 2 9 };

il = 2;
iu = 3;
{ ve,va } = lapeighvi(x,il,iu,0);
print "ve = " ve;
print "va = " va;

ve =
6.0000
10.6056

va =
-0.5774 0.3197
-0.5774 0.4908
0.5774 0.8105

See Also

lapeighvb, lapeighb

lapgeig

Purpose

Computes generalized eigenvalues for a pair of real or complex general matrices.

35-968

lapgeigl

35-969

Format

{ va1, va2 } = lapgeig(A, B);

Input

A NxN matrix, real or complex general matrix.
B NxN matrix, real or complex general matrix.

Output

va1 Nx1 vector, numerator of eigenvalues.
va2 Nx1 vector, denominator of eigenvalues.

Remarks

va1 and va2 are the vectors of the numerators and denominators respectively of the
eigenvalues of the solution of the generalized symmetric eigenproblem of the form Aw
= eBw where A and B are real or complex general matrices and w = va1./va2.
The generalized eigenvalues are not computed directly because some elements of va2
may be zero, i.e., the eigenvalues may be infinite. This procedure calls the LAPACK
routines DGGEV and ZGGEV.

See Also

lapgeig, lapgeigh

lapgeigh

Purpose

Computes generalized eigenvalues for a pair of real symmetric or Hermitian
matrices.

lapgeigh l

Format

ve = lapgeigh(A, B);

Input

A NxN matrix, real or complex symmetric or Hermitian
matrix.

B NxN matrix, real or complex positive definite
symmetric or Hermitian matrix.

Output

ve Nx1 vector, eigenvalues.

Remarks

ve is the vector of eigenvalues of the solution of the generalized symmetric eigen-
problem of the form Ax = λBx.

Example

A = { 3 4 5,
2 5 2,
3 2 4 };

B = { 4 2 2,
2 6 1,
2 1 8 };

ve = lapgeigh(A,B);
print ve;

The code above returns:

35-970

lapgeighl

35-971

0.1219
0.6787
0.9494

This procedure calls the LAPACK routines DSYGV and ZHEGV.

See Also

lapgeig, lapgeighv

lapgeighv

Purpose

Computes generalized eigenvalues and eigenvectors for a pair of real symmetric
or Hermitian matrices.

Format

{ ve, va } = lapgeighv(A, B);

Input

A NxN matrix, real or complex symmetric or Hermitian
matrix.

B NxN matrix, real or complex positive definite
symmetric or Hermitian matrix.

Output

ve Nx1 vector, eigenvalues.
va NxN matrix, eigenvectors.

lapgeighv l

Remarks

ve and va are the eigenvalues and eigenvectors of the solution of the generalized sym-
metric eigenproblem of the form Ax = λ B. Equivalently, va diagonalizes U'-1 A*U-
1 in the following way

va*U'-1 A*Y-1va' = ve
where B = U'U. This procedure calls the LAPACK routines DSYGV and ZHEGV.

Example

A = { 3 4 5,
2 5 2,
3 2 4 };

B = { 4 2 2,
2 6 1,
2 1 8 };

{ ve, va } = lapgeighv(A,B);

print ve;

-0.0425
0.5082
0.8694

print va;

0.3575 -0.0996 0.9286
-0.2594 0.9446 0.2012
-0.8972 -0.3128 0.3118

See Also

lapgeig, lapgeigh

35-972

lapgeighvl

35-973

lapgeigv

Purpose

Computes generalized eigenvalues, left eigenvectors, and right eigenvectors for a
pair of real or complex general matrices.

Format

{ va1, va2, lve, rve } = lapgeigv(A, B);

Input

A NxN matrix, real or complex general matrix.
B NxN matrix, real or complex general matrix.

Output

va1 Nx1 vector, numerator of eigenvalues.
va2 Nx1 vector, denominator of eigenvalues.
lve NxN left eigenvectors.
rve NxN right eigenvectors.

Remarks

va1 and va2 are the vectors of the numerators and denominators respectively of
the eigenvalues of the solution of the generalized symmetric eigenproblem of the form
Aw = λ Bw where A and B are real or complex general matrices and w =
va1./va2. The generalized eigenvalues are not computed directly because some ele-
ments of va2 may be zero, i.e., the eigenvalues may be infinite.

The left and right eigenvectors diagonalize U'-1*A*U-1 where B = U'*U, that is,

lapgeigv l

lve*U'-1A*U*lve' = w

and

rve'U'-1*A*U-1*rve = w

This procedure calls the LAPACK routines DGGEV and ZGGEV.

See Also

lapgeig, lapgeigh

lapgsvdcst

Purpose

Compute the generalized singular value decomposition of a pair of real or com-
plex general matrices.

Format

{ C, S, R, U, V, Q } = lapgsvdcst(A, B);

Input

A MxN matrix.
B PxN matrix.

Output

C Lx1 vector, singular values for A.
S Lx1 vector, singular values for B.
R (K+L)x(K+L) upper triangular matrix.
U MxM matrix, orthogonal transformation matrix.

35-974

lapgsvdcstl

35-975

V PxP matrix, orthogonal transformation matrix.
Q NxN matrix, orthogonal transformation matrix.

Remarks

(1) The generalized singular value decomposition of A and B is

U'*A*Q = D1*Z

V'*B*Q = D2*Z

where U, V, and Q are orthogonal matrices (see lapgsvdcst and lapgsvdst).
Letting K + L = the rank of A|B then R is a (K+L)x(K+L) upper triangular matrix,
D1 and D2 are Mx(K+L) and Px(K+L) matrices with entries on the diagonal, Z = [0
R], and if M-K-L >= 0

K L
D1 = K [I 0]

L [0 C]
M - K - L [0 0]

K L
D2 = P [0 S]

P - L [0 0]

N-K-L K L
[0 R] = K [0 R11 R12]

L [0 0 R22]

or if M-K-L < 0

K M-K K+L-M
D1 = K [I 0 0]

M-K [0 0 0]

lapgsvdcst l

N-K-L K M-K K+L-M
K [0 R11 R12 R13]

[0 R] = M-K [0 0 R22 R23]
K+L-M [0 0 0 R33]

(2) Form the matrix

X = Q [I 0]
[0 R-1]

then

A = U'-1E1X

B = V'-1E2X-1

where

E1 = [0 D1]

E2 = [0 D2]

(3) The generalized singular value decomposition of A and B implicitly produces the
singular value decomposition of AB-1:

AB-1 = UD1D2-1V'

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

See Also

lapgsvds, lapgsvdst

35-976

lapgsvdcstl

35-977

lapgsvds

Purpose

Compute the generalized singular value decomposition of a pair of real or com-
plex general matrices.

Format

{ C, S, R } = lapgsvds(A, B);

Input

A MxN real or complex matrix.
B PxN real or complex matrix.

Output

C Lx1 vector, singular values for A.
S Lx1 vector, singular values for B.
R (K+L)x(K+L) upper triangular matrix.

Remarks

(1) The generalized singular value decomposition of A and B is

U'AQ = D1Z

V'BQ = D2Z

where U, V, and Q are orthogonal matrices (see lapgsvdcst and lapgsvdst).
Letting K+L = the rank of A|B then R is a (K+L)x(K+L) upper triangular matrix, D1

lapgsvds l

and D2 are Mx(K+L) and Px(K+L) matrices with entries on the diagonal, Z = [0R],
and if M-K-L >= 0

K L
D1 = K [I 0]

L [0 C]
M - K - L [0 0]

K L
D2 = P [0 S]

P - L [0 0]

N-K-L K L
[0 R] = K [0 R11 R12]

L [0 0 R22]

or if M-K-L < 0

K M-K K+L-M
D1 = K [I 0 0]

M-K [0 0 0]

N-K-L K M-K K+L-M
K [0 R11 R12 R13]

[0 R] = M-K [0 0 R22 R23]
K+L-M [0 0 0 R33]

(2) Form the matrix

X = Q [I 0]
[0 R-1]

then

35-978

lapgsvdsl

35-979

A = U'-1E1X

B = V'-1E2X-1

where

E1 = [0 D1]

E2 = [0 D2]

(3) The generalized singular value decomposition of A and B implicitly produces the
singular value decomposition of AB-1:

AB-1 = UD1D2-1V'

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

See Also

lapgsvdcst, lapgsvdst

lapgsvdst

Purpose

Compute the generalized singular value decomposition of a pair of real or com-
plex general matrices.

Format

{ D1, D2, Z, U, V, Q } = lapgsvdst(A, B);

Input

A MxN matrix.

lapgsvdst l

B PxN matrix.

Output

D1 Mx(K+L) matrix, with singular values for A on
diagonal.

D2 Px(K+L) matrix, with singular values for B on
diagonal.

Z (K+L)xN matrix, partitioned matrix composed of a zero
matrix and upper triangular matrix.

U MxM matrix, orthogonal transformation matrix.
V PxP matrix, orthogonal transformation matrix.
Q NxN matrix, orthogonal transformation matrix.

Remarks

(1) The generalized singular value decomposition of A and B is

U'AQ = D1Z

V'BQ = D2Z

where U, V, and Q are orthogonal matrices (see lapgsvdcst and
lapgsvdst). Letting K+L = the rank of A|B then R is a (K+L)x(K+L) upper tri-
angular matrix, D1 and D2 are Mx(K+L) and Px(K+L) matrices with entries on the
diagonal, Z = [0R], and if M-K-L >= 0

K L
D1 = K [I 0]

L [0 C]
M - K - L [0 0]

35-980

lapgsvdstl

35-981

K L
D2 = P [0 S]

P - L [0 0]

N-K-L K L
[0 R] = K [0 R11 R12]

L [0 0 R22]

or if M-K-L < 0

K M-K K+L-M
D1 = K [I 0 0]

M-K [0 0 0]

N-K-L K M-K K+L-M
K [0 R11 R12 R13]

[0 R] = M-K [0 0 R22 R23]
K+L-M [0 0 0 R33]

(2) Form the matrix

X = Q [I 0]
[0 R-1]

then

A = U'-1E1X

B = V'-1E2X-1

where

E1 = [0 D1]

E2 = [0 D2]

lapgsvdst l

(3) The generalized singular value decomposition of A and B implicitly produces the
singular value decomposition of AB-1:

AB-1 = UD1D2-1V'

This procedure calls the LAPACK routines DGGSVD and ZGGSVD.

See Also

lapgsvds, lapgsvdcst

lapgschur

Purpose

Compute the generalized Schur form of a pair of real or complex general
matrices.

Format

{ sa, sb, q, z } = lapgschur(A, B);
{ sa, sb, q, z } = lapgschur(A, B, sort_type);

Input

A NxN matrix, real or complex general matrix.
B NxN matrix, real or complex general matrix.

35-982

lapgschurl

35-983

sort_type Optional input, scalar or string specifying how to sort
the eigenvalues. Options include:

1 "udi" Absolute value of the
eigenvalue less than 1.0. (Unit
disk inside).

2 "udo" Absolute value of the
eigenvalue greater than or equal
to 1.0. (Unit disk outside).

3 "lhp" Value of the real portion of th
eigenvalue less than 0. (Left
hand plane).

4 "rhp" Value of the real portion of th
eigenvalue greater than 0.
(Right hand plane).

5 "ref" Real eigenvalues first.
(Complex portion less than
imagtol).

6 "cef" Complex eigenvalues first.
(Complex portion greater than
imagtol).

Output

sa NxN matrix, Schur form of A, sometimes called S.
sb NxN matrix, Schur form of B, sometimes called T.
q NxN matrix, left Schur vectors.
z NxN matrix, right Schur vectors.

lapgschur l

Examples

Example 1: Basic usage

//For repeatable random numbers
rndseed 23434;

//Matrix dimensions
order = 4;

//Create 2 square, complex matricies
A = complex(rndn(order, order), rndn(order,order));
B = complex(rndn(order, order), rndn(order,order));

//Perform 'QZ' decomposition
{ sa, sb, q, z } = lapgschur(A,B);

//Calculate generalized eigenvalues
eig_vals = diag(sa) ./ diag(sb);

print "Generalized eigenvalues = ";
print eig_vals;

print "Absolute value of the generalized eigenvalues = ";
print abs(eig_vals);

The above code should return the following output:

Generalized eigenvalues =

-0.76631163 - 1.3445924i
0.65409426 - 0.18908938i

-0.012440975 + 0.47626474i
-0.75927986 + 1.6212326i

Absolute value of the generalized eigenvalues =

35-984

lapgschurl

35-985

1.5476312
0.68087745
0.47642721
1.7902237

Example 2: Ordering eigenvalues

You can order the eigenvalues, by passing in the optional third input, sort_type.
The code below uses the same A and B variables made in the example above.

//Perform 'QZ' decomposition and
//reorder generalized eigenvalues, placing
//those with absolute value less than 1
//on the upper left
{ sa, sb, q, z } = lapgschur(A, B, "udi");

//Calculate generalized eigenvalues
eig_vals = diag(sa) ./ diag(sb);

print "Generalized eigenvalues = ";
print (eig_vals);

print "Absolute value of the generalized eigenvalues = ";
print abs(eig_vals);

The code above should print out the sorted eigenvalues as we see below.

Generalized eigenvalues =

0.65409426 - 0.18908938i
-0.012440975 + 0.47626474i
-0.76631163 - 1.3445924i
-0.75927986 + 1.6212326i

lapgschur l

Absolute value of the generalized eigenvalues =

0.68087745
0.47642721
1.5476312
1.7902237

Remarks

l The pair of matrices sa (sometimes called S) and sb (sometimes called T) are
in generalized real Schur form if:

l sb is upper triangular with non-negative diagonal.
l sa is block upper triangular with 1x1 and 2x2 blocks. The 1x1 blocks
correspond to real generalized eigenvalues and the 2x2 blocks to pairs of
complex conjugate eigenvalues.

l The real generalized eigenvalues can be computed by dividing the diagonal
element of sa by the corresponding diagonal element of sb.

l The complex generalized eigenvalues are computed by first constructing two
complex conjugate numbers from 2x2 block where the real parts are on the
diagonal of the block and the imaginary part on the off-diagonal. The
eigenvalues are then computed by dividing the two complex conjugate values by
their corresponding diagonal elements of sb.

l The generalized Schur vectors q and z are orthogonal matrices (q'q = I and z'z
= I) that reduce A and B to Schur form:

sa = q'A*z
sb = q'B*z

A = q*sa*z'
B = q*sb*z'

This procedure calls the LAPACK routine DGGES if both input matrices are
real. If either input A or B are complex, even if the complex portion is zero,
ZGGES is called.

35-986

lapgschurl

35-987

l If only the generalized eigenvalues are needed, you can call lapgeig, or
lapgeigv.

lapsvdcusv

Purpose

Computes the singular value decomposition of a real or complex rectangular mat-
rix, returns compact U and v.

Format

{ u, s, v } = lapsvdcusv(x);

Input

x MxN matrix, real or complex rectangular matrix.

Output

u Mxmin(M,N) matrix, left singular vectors.
s min(M,N)xN matrix, singular values.
v NxN matrix, right singular values.

Remarks

lapsvdcusv computes the singular value decomposition of a real or complex rect-
angular matrix. The SVD is

x = usv'

lapsvdcusv l

where v is the matrix of right singular vectors. lapsvdcusv is based on the
LAPACK drivers DGESVD and ZGESVD. Further documentation of these functions
may be found in the LAPACK User's Guide.

Example

x = { 2.143 4.345 6.124,
1.244 5.124 3.412,
0.235 5.657 8.214 };

{ u,s,v } = lapsvdusv(x);

print u;

-0.55531277 0.049048431 0.83019394
-0.43090168 0.83684123 -0.33766923
-0.71130266 -0.54524400 -0.44357356

print s;

13.895868 0.0000000 0.0000000
0.0000000 2.1893939 0.0000000
0.0000000 0.0000000 1.4344261

print v;

-0.13624432 -0.62209955 -0.77099263
0.46497296 0.64704876 -0.60425826
0.87477862 -0.44081748 0.20110275

35-988

lapsvdcusvl

35-989

See Also

lapsvds, lapsvdusv

lapsvds

Purpose

Computes the singular values of a real or complex rectangular matrix

Format

s = lapsvds(x);

Input

x MxN matrix, real or complex rectangular matrix.

Output

s min(M,N)x1 vector, singular values.

Remarks

lapsvds computes the singular values of a real or complex rectangular matrix. The
SVD is

x = usv'

where v is the matrix of right singular vectors. For the computation of the singular
vectors, see lapsvdcusv and lapsvdusv.

lapsvds is based on the LAPACK drivers DGESVD and ZGESVD. Further doc-
umentation of these functions may be found in the LAPACK User's Guide.

lapsvds l

Example

x = { 2.143 4.345 6.124,
1.244 5.124 3.412,
0.235 5.657 8.214 };

va = lapsvds(x);
print va';

13.895868 2.1893939 1.4344261

xi = { 4+1 3+1 2+2,
1+2 5+3 2+2,
1+1 2+1 6+2 };

ve = lapsvds(xi);
print ve';

10.352877 4.0190557 2.3801546

Note the transpose operator (') at the end of the print statements. This causes the
output of these column vectors to be printed as a row vector.

See Also

lapsvdcusv, lapsvdusv

lapsvdusv

Purpose

Computes the singular value decomposition a real or complex rectangular matrix.

35-990

lapsvdusvl

35-991

Format

{ u, s, v } = lapsvdusv(x);

Input

x MxN matrix, real or complex rectangular matrix.

Output

u MxM matrix, left singular vectors.
s MxN matrix, singular values.
v NxN matrix, right singular values.

Remarks

lapsvdusv computes the singular value decomposition of a real or complex rect-
angular matrix. The SVD is

x = usv'

where v is the matrix of right singular vectors. lapsvdusv is based on the
LAPACK drivers DGESVD and ZGESVD. Further documentation of these functions
may be found in the LAPACK User's Guide.

Example

x = { 2.143 4.345 6.124,
1.244 5.124 3.412,
0.235 5.657 8.214 };

{ u,s,v } = lapsvdusv(x);

print u;

lapsvdusv l

-0.5553 0.0490 0.8302
-0.4309 0.8368 -0.3377
-0.7113 -0.5452 -0.4436

print s;

13.8959 0.0000 0.0000
0.0000 2.1894 0.0000
0.0000 0.0000 1.4344

print v;

-0.1362 0.4650 0.8748
0.6221 0.6470 -0.4408

-0.7710 -0.6043 0.2011

See Also

lapsvds, lapsvdcusv

ldl

Purpose

Returns the L and D factors of the LDL' factorization of a real symmetric matrix.

Format

{L, D} = ldl(A);

35-992

ldll

35-993

Input

A NxN real symmetric matrix.

Output

L NxN scrambled, lower triangular matrix, containing the
factor L.

D NxN block diagonal matrix, containing the factor D.

Remarks

Matrix factorization is the most computationally intense part of solving a system of lin-
ear equations. The factorization can be saved and reused multiple times to prevent the
need to repeat the matrix factorization step. If you only need the LDL' factorization for
this purpose, the combination of ldlp and ldlsol may be a better choice.

Example

A = { 5 9 3 4,
9 -6 8 1,
3 8 2 3,
4 1 3 9 };

//Factorize matrix 'A'
{L, D} = ldl(A);

A_new = L * D * L';

After the code above:

L =
-1.50 1.00 0.00 0.00
1.00 0.00 0.00 0.00

ldl l

-1.33 0.81 1.00 0.00
-0.17 0.30 -0.25 1.00

D =
-6.00 0.00 0.00 0.00
0.00 18.50 0.00 0.00
0.00 0.00 0.50 0.00
0.00 0.00 0.00 7.50

A_new =
5.00 9.00 3.00 4.00
9.00 -6.00 8.00 1.00
3.00 8.00 2.00 3.00
4.00 1.00 3.00 9.00

See Also

ldlp, ldlsol, chol, solpd

ldlp

Purpose

Returns the Bunch-Kaufmann factorization of a real symmetric matrix along with
a permutation vector.

Format

ldl_factor = ldlp(A);

Input

A NxN real symmetric matrix.

35-994

ldlpl

35-995

Output

ldl_factor (N+1)xN matrix, containing the factors L and D as well
as the permutation vector P, which can be passed
directly to ldlsol to solve a system of linear
equations.

Remarks

Matrix factorization is the most computationally intense part of solving a system of lin-
ear equations. The factorization can be saved and reused multiple times to prevent the
need to repeat the matrix factorization step. ldlp uses the LAPACK function
dsytrf to compute the factorization.

Example

A = { 5 9 3 4,
9 -6 8 1,
3 8 2 3,
4 1 3 9 };

b = { 1.4, 4, 0.5, 3 };

//Factorize matrix 'A'
ldl_f = ldlp(A);

//Solve system of equations
x = ldlsol(b, ldl_f);

The above code will solve the system of linear equations Ax = b, assigning x to be
equal to:

0.5729
x = -0.1529

-0.2829
0.1900

ldlp l

See Also

ldlsol, chol, solpd

ldlsol

Purpose

Computes the solution to a system of linear equations given a factorized matrix
returned by the function ldlp and one or more right hand sides.

Format

x = ldlsol(b, ldl_factor);

Input

b Nx1 vector or NxK matrix, the right hand sides of the
system of linear equations.

ldl_
factor

Nx(N+1) matrix, containing the a factorization returned
from the GAUSS function ldlp.

Output

x Nx1 vector or NxK matrix, containing the solution to
LDLTx = b.

Remarks

Matrix factorization is the most computationally intense part of solving a system of lin-
ear equations. The factorization can be saved and reused multiple times to prevent the
need to repeat the matrix factorization step. ldlsol uses the LAPACK function
dsytrs to solve the system of linear equations.

35-996

ldlsoll

35-997

Example

A = { 5 9 3 4,
9 -6 8 1,
3 8 2 3,
4 1 3 9 };

b = { 1.4, 4, 0.5, 3 };

//Factorize matrix 'A'
ldl_f = ldlp(A);

//Solve system of equations
x = ldlsol(b, ldl_f);

The above code will solve the system of linear equations Ax = b, assigning x to be
equal to:

0.5729
x = -0.1529

-0.2829
0.1900

See Also

ldlp, lusol, solpd

let

Purpose

Creates a matrix from a list of numeric or character values. The result is always
of type matrix, string, or string array.

Format

let x = constant_list;

let l

Remarks

Expressions and variable names are not allowed in the let command, expressions
such as this:

let x[2,1] = 3*a b

are illegal. To define matrices by combining matrices and expressions, use an expres-
sion containing the concatenation operators: ~ and |.

Numbers can be entered in scientific notation. The syntax is dE±n, where d is a num-
ber and n is an integer (denoting the power of 10):

let x = 1e+10 1.1e-4 4.019e+2;

Complex numbers can be entered by joining the real and imaginary parts with a sign
(+ or -); there should be no spaces between the numbers and the sign. Numbers with no
real part can be entered by appending an "i" to the number:

let x = 1.2+23 8.56i 3-2.1i -4.2e+6i 1.2e-4-4.5e+3i;

If curly braces are used, the let is optional.

let x = { 1 2 3, 4 5 6, 7 8 9 };

x = { 1 2 3, 4 5 6, 7 8 9 };

If indices are given, a matrix of that size will be created:

let x[2,2] = 1 2 3 4;

x = 1 2
3 4

If indices are not given, a column vector will be created:

35-998

letl

35-999

let x = 1 2 3 4;

1
x = 2

3
4

You can create matrices with no elements, i.e., "empty matrices" . Just use a set of
empty curly braces:

x = {};

Empty matrices are chiefly used as the starting point for building up a matrix, for
example in a do loop. See Matrices, Section 1.0.1, for more information on empty
matrices.

Character elements are allowed in a let statement:

let x = age pay sex;

AGE
x = PAY

SEX

Lowercase elements can be created if quotation marks are used. Note that each ele-
ment must be quoted.

let x = "age""pay""sex";

age
x = pay

sex

Example

let x;

let l

assigns x to be:

x = 0

let x = { 1 2 3, 4 5 6, 7 8 9 };

assigns x to be:

1 2 3
x = 3 4 5

6 7 8

let x[3,3] = 1 2 3 4 5 6 7 8 9;

assigns x to be:

1 2 3
x = 3 4 5

6 7 8

let x[3,3] = 1;

assigns x to be:

1 1 1
x = 1 1 1

1 1 1

let x[3,3];

assigns x to be:

0 0 0
x = 0 0 0

0 0 0

35-1000

letl

35-1001

let x = dog cat;

assigns x to be:

x = DOG
CAT

let x = "dog""cat";

assigns x to be:

x = dog
cat

let string x = { "Median Income", "Country" };

assigns x to be:

x = Median Income
Country

See Also

con, cons, declare, load

lib

Purpose

Builds and updates library files.

lib l

Format

lib library file;
lib library -flag;
lib library file -flag1 -flag2;

Input

library literal, name of library.
file optional literal, name of source file to be updated or

added.
flags optional literal preceded by '-', controls operation of

library update. To control handling of path information
on source filenames:
-addpath add paths to entries without paths

and expand relative paths.
-
gausspath

reset all paths using a normal file
search.

-
leavepath

(default) leave all path information
untouched.

-nopath drop all path information.
To specify a library update or a complete library build:
-update (default) update the symbol

information for the specified file
only.

-build update the symbol information for
every library entry by compiling the
actual source file.

-delete delete a file from the library.
-list list files in a library.

35-1002

libl

35-1003

To control the symbol type information placed in the
library file:
-strong (default) use strongly typed symbol

entries.
-weak save no type information. This

should only be used to build a
library compatible with a previous
version ofGAUSS.

To control location of temporary files for a complete
library build:
-tmp (default) use the directory pointed to

by the tmp_path configuration
variable. If tmp_path is not
defined, lib will look for a tmp
environment variable.

-disk use the same directory listed in the
lib_path configuration variable.

Example

Let us suppose that you have a file named myprocs.gss located in your GAUSS
src directory. Let us further suppose that you would like to create a new library named
mylibrary. You could accomplish that task like this:

lib mylibrary myprocs.gss;

Now that this library has been created, you could add other files in the same manner.
To add a file named mystats.gss would look like this:

lib mylibrary mystats.gss;

lib l

This second command will add the file mystats.gss to the mylibrary which
was created in the first step above. It will not overwrite or replace the library.

You may print the list of files contained in the library by using the -list flag. Enter-
ing the command:

lib mylibrary -list;

at the GAUSS command line will produce the output similar to:

Listing library: mylibrary.lcg
myprocs.gss
mystats.gs

If you add procedures to one of the files in your library, you will need to update the lib-
rary to reflect these new changes. Continuing with the example from above, if you
added some new procedures to the file mystats.gss, you could update the mylib-
rary library with the following command:

lib mylibrary mystats.gss -update;

Note that, as in the command above, the -update flag must be used with a file. To
update, or rebuild the references for all files in the library, use the -build flag.

lib mylibrary -build;

Remarks

The library management functionality offered by the lib command can also be accom-
plished interactively with windows and buttons, using the Library Tool in the user inter-
face. See THE LIBRARY TOOL, CHAPTER 1, for more information on using the Library
Tool.

The flags can be shortened to one or two letters, as long as they remain unique-for
example, -b to -build a library, -li to list files in a library.

35-1004

libl

35-1005

If the filenames include a full path, the compilation process is faster because no unne-
cessary directory searching is needed during the autoloading process. The default path
handling adds a path to each file listed in the library and also expands any relative
paths so the system will work from any drive or subdirectory.

When a path is added to a filename containing no path information, the file is searched
for on the current directory and then on each subdirectory listed in src_path. The
first path encountered that contains the file is added to the filename in the library entry.

See Also

library

library

Purpose

Sets up the list of active libraries.

Format

library lib1 [[,lib2,lib3,lib4...]];
library;

Example

Example 1

If no arguments are given, the list of current libraries will be printed out. For example:

library;

will produce output similar to:

library l

Library path: C:\gauss17\gaussplot\lib
C:\gauss17\lib

Libraries: C:\gauss17\lib\user.lcg
C:\gauss17\lib\gauss.lcg

Example 2

Load multiple libraries by passing a comma-separated list of library names.

library pgraph, cmlmt;

After executing the code above, entering the library command without any argu-
ments will produce output similar to this:

Library path: C:\gauss17\gaussplot\lib
C:\gauss17\lib

Libraries: C:\gauss17\lib\user.lcg
C:\gauss17\lib\pgraph.lcg
C:\gauss17\lib\cmlmt.lcg
C:\gauss17\lib\gauss.lcg

The output from the library command above is printed in the order in which
GAUSS will search. For this particular example, GAUSS will first search the user
library, then the pgraph library, followed by the cmlmt library and finally the
gauss library.
Example 3

Loading a library or list of libraries with the library command will also close any
open libraries other than user and gauss which are always loaded.

Continuing with the last example in which the user, pgraph, cmlmt and gauss
libraries were open, executing the command:

library pgraph, tsmt;

would open tsmt, while closing pgraph and cmlmt.

35-1006

libraryl

35-1007

Remarks

For more information about the library system, see LIBRARIES, CHAPTER 1 .

The required extension for library files is .lcg.
Library searching

If a list of library names is given, they will be the new set of active libraries. The two
default libraries are user.lcg and gauss.lcg. Unless otherwise specified, user-
.lcg will be searched first and gauss.lcg will be searched last. Any other user-
specified libraries will be searched after user.lcg in the order they were entered in
the library statement.

If the statement:

y = myProc(x);

is encountered in a program, myProc will be searched for in the active libraries. If it
is found, it will be compiled. If it cannot be found in a library, the deletion state determ-
ines how it is handled:

autodelete on search for myproc.g
autodelete
off

return Undefined symbol error message

If myProc calls myRegress and myRegress calls myUtil and they are all in
separate files, they will all be found by the autoloader.

The source browser and the help facility will search for myProc in exactly the same
sequence as the autoloader.
Library file contents

Library files are simple ASCII files that you can create with a text editor. Here is an
example:

library l

/*
** This is a GAUSS library file.
*/

eig.src
eig : proc
eigsym : proc
_eigerr : matrix

svd.src
cond : proc
pinv : proc
rank : proc
svd : proc
_svdtol : matrix

The lines not indented are the file names. The lines that are indented are the symbols
defined in that file. As you can see, a GAUSS library is a dictionary of files and the
global symbols they contain.

Any line beginning with /*, **, or */ is considered a comment. Currently, // com-
ments are not supported in library files. Blank lines are okay.

To make the autoloading process more efficient, you can put the full pathname for
each file in the library:

/gauss/src/eig.src
eig : proc
eigsym : proc
_eigerr : matrix

/gauss/src/svd.src
cond : proc
pinv : proc
rank : proc
svd : proc
_svdtol : matrix

35-1008

libraryl

35-1009

Here's a debugging hint. If your program is acting strange and you suspect it is
autoloading the wrong copy of a procedure, use the Library Tool on the Source Page,
or the CTRL+F1 hotkey to locate the suspected function. It will use the same search
path that the autoloader uses.

See Also

declare, external, lib, proc

#lineson, #linesoff

Purpose

The #lineson command causes GAUSS to embed line number and file name
records in a program for the purpose of reporting the location where an error
occurs. The #linesoff command causes GAUSS to stop embedding line and
file records in a program.

Format

#lineson
#linesoff

Remarks

In the "lines on" mode, GAUSS keeps track of line numbers and file names and reports
the location of an error when an execution time error occurs. In the "lines off" mode,
GAUSS does not keep track of lines and files at execution time. During the compile
phase, line numbers and file names will always be given when errors occur in a pro-
gram stored in a disk file.

It is easier to debug a program when the locations of errors are reported, but this slows
down execution. In programs with several scalar operations, the time spent tracking
line numbers and file names is most significant.

#lineson, #linesoff l

These commands have no effect on interactive programs (that is, those typed in the
window and run from the command line), since there are no line numbers in such pro-
grams.

Line number tracking can be turned on and off through the user interface, but the
#lineson and #linesoff commands will override that.

The line numbers and file names given at run-time will reflect the last record
encountered in the code. If you have a mixture of procedures that were compiled
without line and file records and procedures that were compiled with line and file
records, use the trace command to locate exactly where the error occurs.

The Currently active call error message will always be correct. If it states that it was
executing procedure xyz at line number nnn in file ABC and xyz has no line nnn or
is not in file ABC, you know that it just did not encounter any line or file records in
xyz before it crashed.

When using #include'd files, the line number and file name will be correct for the
file the error was in within the limits stated above.

See Also

trace

linsolve

Purpose

Solves Ax = b using the inverse function.

Format

x = linsolve(b, A);

35-1010

linsolvel

35-1011

Input

b NxK matrix.
A NxN matrix.

Output

x NxK matrix, the linear solution of b/A for each
column in b.

Remarks

linsolve solves for x by computing inv(A)*b. If A is square and b contains
more than 1 column, it is much faster to use linsolve than the / operator.
However, while faster, there is some sacrifice in accuracy.

A test shows linsolve to be acccurate to within approximately 1.2e-11, while the
slash operator '/' is accurate to within approximately 4e-13. However, the accuracy
sacrifice can be much greater for poorly conditioned matrices.

Example

b = { 2, 3, 4 };
A = { 10 2 3, 6 14 2, 1 1 9 };
x = linsolve(b,A);
print x

0.04586330
0.13399281
0.42446043

See Also

qrsol, qrtsol, solpd, cholsol

linsolve l

listwise (dataloop)

Purpose

Controls listwise deletion of missing values.

Format

listwise [[read]] [[write]];

Remarks

If read is specified, the deletion of all rows containing missing values happens imme-
diately after reading the input file and before any transformations. If write is spe-
cified, the deletion of missing values happens after any transformations and just before
writing to the output file. If no listwise statement is present, rows with missing val-
ues are not deleted.

The default is read.

ln

Purpose

Computes the natural log of all elements of x.

Format

y = ln(x);

Input

x NxK matrix or N-dimensional array.

35-1012

listwise (dataloop)l

35-1013

Output

y NxK matrix or N-dimensional array containing the
natural log values of the elements of x.

Remarks

ln is defined for x ≠ 0.

If x is negative, complex results are returned.

You can turn the generation of complex numbers for negative inputs on or off in the
GAUSS configuration file, and with the sysstate function, case 8. If you turn it off,
ln will generate an error for negative inputs.

If x is already complex, the complex number state doesn't matter; ln will compute a
complex result.

x can be any expression that returns a matrix.

Example

y = ln(16);

y = 2.7725887

See Also

log

lncdfbvn

Purpose

Computes natural log of bivariate Normal cumulative distribution function.

lncdfbvn l

Format

y = lncdfbvn(x1, x2, r);

Input

x1 NxK matrix, abscissae.
x2 LxM matrix, abscissae.
r PxQ matrix, correlations.

Output

y max(N,L,P) x max(K,M,Q) matrix:

ln Pr(X < x1, X < x2|r)

Remarks

x1, x2, and r must be ExE conformable.

Source

lncdfn.src

See Also

cdfbvn, lncdfmvn

lncdfbvn2

Purpose

Returns natural log of standardized bivariate Normal cumulative distribution func-
tion of a bounded rectangle.

35-1014

lncdfbvn2l

35-1015

Format

y = lncdfbvn2(h, dh, k, dk, r);

Input

h Nx1 vector, upper limits of integration for variable 1.
dh Nx1 vector, increments for variable 1.
k Nx1 vector, upper limits of integration for variable 2.
dk Nx1 vector, increments for variable 2.
r Nx1 vector, correlation coefficients between the two

variables.

Output

y Nx1 vector, the log of the integral from h, k to h+dh,
k+dk of the standardized bivariate Normal

distribution.

Remarks

Scalar input arguments are okay; they will be expanded to Nx1 vectors.

lncdfbvn2 will abort if the computed integral is negative.

lncdfbvn2 computes an error estimate for each set of inputs-the real integral is
exp(y)±err. The size of the error depends on the input arguments. If trap 2 is set, a
warning message is displayed when err >= exp(y)/100.

For an estimate of the actual error, see cdfBvn2e.

lncdfbvn2 l

Example

Example 1

lncdfbvn2(1,1,1,1,0.5);

produces:

-3.2180110258198771e+000

Example 2

trap 0,2;
lncdfbvn2(1,1e-15,1,1e-15,0.5);

produces:

-7.1171016046360151e+001

Example 3

trap 2,2;
lncdfbvn2(1,-1e-45,1,1e-45,0.5);

produces:

WARNING: Dubious accuracy from lncdfbvn2:
0.000e+000 +/- 2.8e-060
-INF

See Also

cdfbvn2, cdfbvn2e

lncdfmvn

Purpose

Computes natural log of multivariate Normal cumulative distribution function.

35-1016

lncdfmvnl

35-1017

Format

y = lncdfmvn(x, r);

Input

x KxL matrix, abscissae.
r KxK matrix, correlation matrix.

Output

y Lx1 vector,

ln Pr(X < x|r)

Remarks

You can pass more than one set of abscissae at a time; each column of x is treated sep-
arately.

Source

lncdfn.src

See Also

cdfmvn, lncdfbvn

lncdfn

Purpose

Computes natural log of Normal cumulative distribution function.

lncdfn l

Format

y = lncdfn(x);

Input

x NxK matrix or N-dimensional array, abscissae.

Output

y NxK matrix or N-dimensional array,

ln Pr(X < x)

Source

lncdfn.src

lncdfn2

Purpose

Computes natural log of interval of Normal cumulative distribution function.

Format

y = lncdfn2(x, r);

Input

x MxN matrix, abscissae.
r KxL matrix, ExE conformable with x, intervals.

35-1018

lncdfn2l

35-1019

Output

y max(M,K)xmax(N,L) matrix, the log of the integral
from x to x+dx of the Normal distribution, i.e.,

ln Pr(x < X < x+dx)

Remarks

The relative error is:

|x| < 1 and dx < 1 ±1e-
14

1 < |x| < 37 and |dx| < 1/|x| ±1e-
13

min(x,x+dx) > -37 and y > -690 ±1e-
11 or
better

A relative error of ±1e-14 implies that the answer is accurate to better than ±1 in the
14th digit after the decimal point.

Example

print
lncdfN2(-10,29);

-7.6198530241605269e-24

print
lncdfN2(0,1);

-1.0748623268620716e+00

lncdfn2 l

print
lncdfN2(5,1);

-1.5068446096529453e+01

Source

lncdfn.src

See Also

cdfn2

lncdfnc

Purpose

Computes natural log of complement of Normal cumulative distribution function.

Format

y = lncdfnc(x);

Input

x NxK matrix, abscissae.

Output

y NxK matrix,

ln (1 - Pr(X < x))

35-1020

lncdfncl

35-1021

Source

lncdfn.src

lnfact

Purpose

Computes the natural log of the factorial function and can be used to compute log
gamma.

Format

y = lnfact(x);

Input

x NxK matrix or N-dimensional array, all elements must
be positive.

Output

y NxK matrix containing the natural log of the factorial of
each of the elements in x.

Remarks

For integer x, this is (approximately) ln(x!). However, the computation is done using
a formula, and the function is defined for noninteger x.

In most formulae in which the factorial operator appears, it is possible to avoid com-
puting the factorial directly, and to use lnfact instead. The advantage of this is that
lnfact does not have the overflow problems that the factorial (!) operator has.

lnfact l

For x > 1, this function has at least 6 digit accuracy, for x > 4 it has at least 9 digit
accuracy, and for x > 10 it has at least 12 digit accuracy. For 0 < x < 1, accuracy is
not known completely but is probably at least 6 digits.

Sometimes log gamma is required instead of log factorial. These functions are related
by:

lngamma(x) = lnfact(x-1);

Example

let x = 100 500 1000;
y = lnfact(x);

363.73938
y = 2611.3305

5912.1282

Source

lnfact.src

See Also

gamma

Technical Notes

For x > 1, Stirling's formula is used.

For 0 < x <= 1, ln(gamma(x+1)) is used.

35-1022

lnfactl

35-1023

lngammacplx

Purpose

Returns the natural log of the Gamma function.

Format

f = lngammacplx(z);

Input

z NxK matrix; z may be complex.

Output

f NxK matrix.

Remarks

Note that lngammacplx(z) may yield a result with a different imaginary part than
ln(gammacplx(z)). This is because lngammacplx(z) returns the value of the log-
arithm of gamma(z) on the corresponding branch of the complex plane, while a call to
ln(z) always returns a function value with an imaginary part within [-π,π]. Hence the
imaginary part of the result can differ by a multiple of 2*π. However, exp(lngam-
macplx(z)) = gammacplx(z). This routine uses a Lanczos series approximation for
the complex ln(gamma) function.

References

1. C. Lanczos, SIAM JNA 1, 1964. pp. 86-96.

2. Y. Luke, ''The Special ... approximations,'' 1969 pp. 29-31.

3. Y. Luke, ''Algorithms ... functions,'' 1977.

lngammacplx l

4. J. Spouge, SIAM JNA 31, 1994. pp. 931.

5. W. Press, ''Numerical Recipes.''

6. S. Chang, ''Computation of special functions,'' 1996.

7. P. Godfrey, ''A note on the computation of the convergent Lanczos complex
Gamma approximation.''

8. Original code by Paul Godfrey

lnpdfmvn

Purpose

Computes multivariate Normal log-probabilities.

Format

z = lnpdfmvn(x, s);

Input

x NxK matrix, data.
s KxK matrix, covariance matrix.

Output

z Nx1 vector, log-probabilities.

Remarks

This computes the multivariate Normal log-probability for each row of x.

35-1024

lnpdfmvnl

35-1025

Source

lnpdfn.src

lnpdfmvt

Purpose

Computes multivariate Student's t log-probabilities.

Format

z = lnpdfmvt(x, s, nu);

Input

x NxK matrix, data.
s KxK matrix, covariance matrix.
nu scalar, degrees of freedom.

Output

z Nx1 vector, log-probabilities.

Source

lnpdfn.src

See Also

lnpdft

lnpdfmvt l

lnpdfn

Purpose

Computes standard Normal log-probabilities.

Format

z = lnpdfn(x);

Input

x NxK matrix or N-dimensional array, data.

Output

z NxK matrix or N-dimensional array, log-probabilities.

Remarks

This computes the log of the scalar Normal density function for each element of x. z
could be computed by the following GAUSS code:

z = -ln(sqrt(2*pi))-x .* x / 2;

For multivariate log-probabilities, see lnpdfmvn.

Example

x = { -2, -1, 0, 1, 2 };
z = lnpdfn(x);

-2.9189385
-1.4189385

35-1026

lnpdfnl

35-1027

z = -0.9189385
-1.4189385
-2.9189385

lnpdft

Purpose

Computes Student's t log-probabilities.

Format

z = lnpdft(x, nu);

Input

x NxK matrix, data.
nu scalar, degrees of freedom.

Output

z NxK matrix, log-probabilities.

Remarks

This does not compute the log of the joint Student's t pdf. Instead, the scalar Normal
density function is computed element-by-element.

For multivariate probabilities with covariance matrix see lnpdfmvt.

See Also

lnpdfmvt

lnpdft l

load, loadf, loadk, loadm, loadp, loads

Purpose

Loads from a disk file.

Format

load [[path=path]]x, y[]=filename, z = filename;

Remarks

All the loadxx commands use the same syntax-they only differ in the types of sym-
bols you use them for:

load,
loadm

matrix

loads string
loadf function (fn)
loadk keyword (keyword)
loadp procedure (proc)

If no filename is given, as with x above, then the symbol name the file is to be loaded
into is used as the filename, and the proper extension is added.

If more than one item is to be loaded in a single statement, the names should be sep-
arated by commas.

The filename can be either a literal or a string. If the filename is in a string variable,
then the ^ (caret) operator must precede the name of the string, as in:

filestr = "mydata/char";
loadm x = ^filestr;

35-1028

load, loadf, loadk, loadm, loadp, loadsl

35-1029

If no extension is supplied, the proper extension for each type of file will be used auto-
matically as follows:

load .fmt - matrix file or delimited ASCII file
loadm .fmt - matrix file or delimited ASCII file
loads .fst - string file
loadf .fcg - user-defined function (fn) file
loadk .fcg - user-defined keyword (keyword) file
loadp .fcg - user-defined procedure (proc) file

These commands also signal to the compiler what type of object the symbol is so that
later references to it will be compiled correctly.

A dummy definition must exist in the program for each symbol that is loaded in using
loadf, loadk, or loadp. This resolves the need to have the symbol initialized at
compile time. When the load executes, the dummy definition will be replaced with the
saved definition:

proc corrmat;
endp;

loadp corrmat;
y = corrmat;

keyword regress(x); endp;
loadk regress;
regress x on y z t from data01;

fn sqrd=;
loadf sqrd;
y = sqrd(4.5);

To load GAUSS files created with the save command, no brackets are used with the
symbol name.

load, loadf, loadk, loadm, loadp, loads l

If you use save to save a scalar error code 65535 (i.e., error(65535)), it will be
interpreted as an empty matrix when you load it again.

ASCII data files

To load ASCII data files, square brackets follow the name of the symbol.

Numbers in ASCII files must be delimited with spaces, commas, tabs, or newlines. If
the size of the matrix to be loaded is not explicitly given, as in:

load x[] = data.asc;

GAUSS will load as many elements as possible from the file and create an Nx1 mat-
rix. This is the preferred method of loading ASCII data from a file, especially when
you want to verify if the load was successful. Your program can then see how many
elements were actually loaded by testing the matrix with the rows command, and if
that is correct, the Nx1 matrix can be reshape'd to the desired form. You could, for
instance, put the number of rows and columns of the matrix right in the file as the first
and second elements and reshape the remainder of the vector to the desired form
using those values.

If the size of the matrix is explicitly given in the load command, then no checking
will be done. If you use:

load x[500,6] = data.asc;

GAUSS will still load as many elements as possible from the file into an Nx1 matrix
and then automatically reshape it using the dimensions given.

If you load data from a file, data.asc, which contains nine numbers (1 2 3 4 5 6 7
8 9), then the resulting matrix will be as follows:

load x[1,9] = data.asc;

x = 1 2 3 4 5 6 7 8 9

load x[3,3] = data.asc;

35-1030

load, loadf, loadk, loadm, loadp, loadsl

35-1031

1 2 3
x = 4 5 6

7 8 9

load x[2,2] = data.asc;

x = 1 2
3 4

load x[2,9] = data.asc;

x = 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

load x[3,5] = data.asc;

1 2 3 4 5
x = 6 7 8 9 1

2 3 4 5 6

load accepts pathnames. The following is legal:

loadm k = /gauss/x;

This will load /gauss/x.fmt into k.

If the path= subcommand is used with load and save, the path string will be
remembered until changed in a subsequent command. This path will be used whenever
none is specified. There are four separate paths for:

 1. load, loadm

2. loadf, loadp

3. loads

4. save

load, loadf, loadk, loadm, loadp, loads l

Setting any of the four paths will not affect the others. The current path settings can be
obtained (and changed) with the sysstate function, cases 4-7.

loadm path = /data;

This will change the loadm path without loading anything.

load path = /gauss x,y,z;

This will load x.fmt, y.fmt, and z.fmt using /gauss as a path. This path will be
used for the next load if none is specified.

The load path or save path can be overridden in any particular load or save by
putting an explicit path on the filename given to load from or save to as follows:

loadm path = /miscdata;
loadm x = /data/mydata1, y, z = hisdata;

In the above program:

/data/mydata1.fmt would be loaded into a matrix called x.

/miscdata/y.fmt would be loaded into a matrix called y.

/miscdata/hisdata.fmt would be loaded into a matrix called z.

oldmpath = sysstate(5,"/data");
load x, y;
call sysstate(5,oldmpath);

This will get the old loadm path, set it to /data, load x.fmt and y.fmt, and reset
the loadm path to its original setting.

See Also

loadd, dataload, save, let, con, cons, sysstate

35-1032

load, loadf, loadk, loadm, loadp, loadsl

35-1033

loadarray

Purpose

Loads an N-dimensional array from a disk file.

Format

loadarray [[path=path]] x, y = filename;

Remarks

If no filename is given, as with x above, then the symbol name the file is to be loaded
into is used as the filename, and the proper extension is added.

If more than one item is to be loaded in a single statement, the names should be sep-
arated by commas.

The filename can be either a literal or a string. If the filename is in a string variable,
then the ^ (caret) operator must precede the name of the string, as in:

filestr = "mydata/adat";
loadarray x = ^filestr;

If no extension is supplied, then an .fmt extension will be assumed.

loadarray accepts pathnames. The following is legal:

loadarray k = /gauss/a;

This will load /gauss/a.fmt into k.

If the path= subcommand is used, the path string will be remembered until changed
in a subsequent command. This path will be used for all loadarray, loadm, and
load calls whenever none is specified.

loadarray l

The current path setting can be obtained (and changed) with the sysstate function,
case 5.

loadarray path = /data;

This will change the loadarray path without loading anything.

loadarray path = /gauss a,b,c;

This will load a.fmt, b.fmt, and c.fmt using /gauss as a path. This path will
be used for the next loadarray, loadm, or load call if none is specified.

The load path or save path can be overridden in any particular load or save by
putting an explicit path on the filename given to load from or save to as follows:

loadarray path = /miscdata;
loadarray a = /data/mydata1, b, c = hisdata;

In the above program:

/data/mydata1.fmt would be loaded into an array called a.

/miscdata/b.fmt would be loaded into an array called b.

/miscdata/hisdata.fmt would be loaded into an array called c.

oldarraypath = sysstate(5,"/data");
loadarray a, b;
call sysstate(5,oldarraypath);

This will get the old loadarray path, set it to /data, load a.fmt and b.fmt,
and reset the loadarray path to its original setting.

See Also

load, loadm, save, let, sysstate

35-1034

loadarrayl

35-1035

loadd

Purpose

Loads specified variables from a GAUSS data set or matrix file.

Format

y = loadd(dataset);

y = loadd(dataset, varnames);

Input

dataset string, name of data set (.dat) or matrix file (.fmt).
varnames Formula string, indicating which variable names to load

from the data set

E.g ".", include all variables;

E.g. "Income + Limit " , include "Income" and "Limit";

E.g ". - Cards", '-' means exclude "Cards".

Output

y NxK matrix of data.

Examples

Example 1

Load all contents of a data set

//Create file name with full path

loadd l

file = getGAUSShome() $+ "examples/credit.dat";

//Load all rows from all columns of the dataset
y = loadd(file);

//Print the first three rows of 'y'
print y[1:3,.];

After the above code, the following ouptut should be printed to the program input/out-
put window.

14.8910 3606.00 283.000 2.00000 34.0000
106.025 6645.00 483.000 3.00000 82.0000
104.593 7075.00 514.000 4.00000 71.0000

Example 2

Load specified variables from a dataset

//Load all variables with a formula string
dat1 = loadd(file, ".");

//Load all observations of 'Balance' and 'Limit'
dat2 = loadd(file, "Balance + Limit");

//Load all variables EXCEPT for 'Cards'
dat3 = loadd(file, ". - Cards");

//Print first three rows of each matrix
print "All variables: " dat1[1:3,.];
print "Balance and Limit: " dat2[1:3,.];
print "All except Cards: " dat3[1:3,.];

After the above code,

35-1036

loaddl

35-1037

All variables:

14.891 3606.00 283.00 2.0000 34.000 11.000
1.0000 1.0000 2.0000 3.0000 333.000

106.03 6645.00 483.00 3.0000 82.000 15.000
2.0000 2.0000 2.0000 2.0000 903.000

104.59 7075.00 514.00 4.0000 71.000 11.000
1.0000 1.0000 1.0000 2.0000 580.000

Balance and Limit:

333.000 3606.00
903.000 6645.00
580.000 7075.00

All except Cards:

14.8910 3606.00 283.00 34.000 11.000 1.0000
1.0000 2.0000 3.0000 333.000

106.025 6645.00 483.00 82.000 15.000 2.0000
2.0000 2.0000 2.0000 903.000

104.593 7075.00 514.00 71.000 11.000 1.0000
1.0000 1.0000 2.0000 580.000

Example 3

Load all columns of a GAUSS matrix file, .fmt. No variable names are stored in
.fmt files. GAUSS allows the use of 'X1, X2, X2...XP' to reference variables in a
.fmt file.

//Create a matrix
x = rndn(10, 4);

//Save to a matrix file, 'x.fmt'
save x;

loadd l

//Load all columns of 'x.fmt'
x_2 = loadd("x.fmt");

Example 4

Load specified columns of a GAUSS matrix file, .fmt.

//Create a matrix
x = rndn(10, 4);

//Save to a matrix file, 'x.fmt'
save x;

//Load columns 2 and 4 from 'x.fmt'
x_2 = loadd("x.fmt", "X2 + X4");

Remarks

l Since loadd will load the entire dataset at once, the data set must be small
enough to fit in memory. To read chunks of a dataset in an iterative manner, use
dataopen and readr.

l If dataset is a null string or 0, the data set temp.dat will be loaded.
l To load a matrix file, use an .fmt extension on dataset.
l The supported data set types are CSV, XLS, XLSX, HDF5, FMT, DAT.
l For HDF5 file, the dataset must include file schema and both file name and
data set name must be provided, e.g. loadd
("h5://C:/gauss17/examples/testdata.h5/mydata").

Source

saveload.src

See also

Formula String, dataopen, readr, saved

Globals

__maxvec

35-1038

loaddl

35-1039

loadstruct

Purpose

Loads a structure into memory from a file on the disk.

Format

{ instance, retcode } = loadstruct(file_name, structure_
type);

Input

file_name string, name of file containing structure.
structure_
type

string, structure type.

Output

instance instance of the structure.
retcode scalar, 0 if successful, otherwise 1.

Remarks

instance can be an array of structures.

Example

#include ds.sdf
struct DS p3;

{ p3, retc } = loadstruct("p2", "ds");

loadstruct l

loadwind

Purpose

Load a previously saved graphic panel configuration. Note: This function is for
use with the deprecated PQG graphics.

Library

pgraph

Format

err = loadwind(namestr);

Input

namestr string, name of file to be loaded.

Output

err scalar, 0 if successful, 1 if graphic panel matrix is
invalid. Note that the current graphic panel
configuration will be overwritten in either case.

Source

pwindow.src

Globals

_pwindmx

See Also

savewind

35-1040

loadwindl

35-1041

local

Purpose

Declare variables that are to exist only inside a procedure.

Format

local x, y, f:proc;

Remarks

The statement above would place the names x, y, and f in the local symbol table for
the current procedure being compiled. This statement is legal only between the proc
statement and the endp statement of a procedure definition.

These symbols cannot be accessed outside of the procedure.

The symbol f in the statement above will be treated as a procedure whenever it is
accessed in the current procedure. What is actually passed in is a pointer to a pro-
cedure.

See PROCEDURES AND KEYWORDS, CHAPTER 1.

See Also

proc

locate

Purpose

Positions the cursor in the window.

local l

Format

locate m, n;

Remarks

locate locates the cursor in the current output window.

m and n denote the row and column, respectively, at which the cursor is to be loc-
ated.

The origin (1,1) is the upper left corner.

m and n may be any expressions that return scalars. Nonintegers will be truncated to
an integer.

Example

r = csrlin;
c = csrcol;
cls;
locate r,c;

In this example the window is cleared without affecting the cursor position.

See Also

csrlin, csrcol

loess

Purpose

Computes coefficients of locally weighted regression.

35-1042

loessl

35-1043

Format

{ yhat, ys, xs } = loess(depvar, indvars);

Input

depvar Nx1 vector, dependent variable.
indvars NxK matrix, independent variables.

Global Input

_loess_Span scalar, degree of smoothing. Must be greater than 2/N.
Default = .67777.

loess
NumEval

scalar, number of points in ys and xs. Default = 50.

loess
Degree

scalar, if 2, quadratic fit, otherwise linear. Default = 1.

loess
WgtType

scalar, type of weights. If 1, robust, symmetric weights,
otherwise Gaussian. Default = 1.

__output scalar, if 1, iteration information and results are printed,
otherwise nothing is printed.

Output

yhat Nx1 vector, predicted depvar given indvars.
ys _loess_numEvalx1 vector, ordinate values given

abscissae values in xs.
xs _loess_numEvalx1 vector, equally spaced

abscissae values.

loess l

Remarks

Based on Cleveland, William S. "Robust Locally Weighted Regression and Smoothing
Scatterplots." JASA, Vol. 74, 1979, 829-836.

Source

loess.src

loessmt

Purpose

Computes coefficients of locally weighted regression.

Include

loessmt.sdf

Format

{ yhat, ys, xs } = loessmt(lc0, depvar, indvars);

Input

lc0 an instance of a loessmtControl structure, containing
the following members:
lc0.Span scalar, degree of smoothing. Must be

greater than 2/N. Default = .67777.
lc0.NumEval scalar, number of points in ys and

xs. Default = 50.
lc0.Degree scalar, if 2, quadratic fit, otherwise

linear. Default = 1.
lc0.WgtType scalar, type of weights. If 1, robust,

35-1044

loessmtl

35-1045

symmetric weights, otherwise
Gaussian. Default = 1.

lc0.output scalar, if 1, iteration information and
results are printed, otherwise nothing
is printed.

depvar Nx1 vector, dependent variable.
indvars NxK matrix, independent variables.

Output

yhat Nx1 vector, predicted depvar given indvars.
ys lc0.numEval x 1 vector, ordinate values given

abscissae values in xs.
xs lc0.numEval x 1 vector, equally spaced abscissae

values.

Remarks

Based on Cleveland, William S. ''Robust Locally Weighted Regression and Smoothing
Scatterplots.'' JASA, Vol. 74, 1979, 829-836.

Source

loessmt.src

See Also

loessmtControlCreate

loessmt l

loessmtControlCreate

Purpose

Creates default loessmtControl structure.

Include

loessmt.sdf

Format

c = loessmtControlCreate();

Output

c instance of a loessmtControl structure with members
set to default values.

Example

struct loessmtControl lc;
lc = loessmtControlCreate();

Source

loessmt.src

See Also

loessmt

35-1046

loessmtControlCreatel

35-1047

log

Purpose

Computes the log of all elements of x.

Format

y = log(x);

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array containing the log
10 values of the elements of x.

Remarks

log is defined for x ≠ 0.

You can turn the generation of complex numbers for negative inputs on or off in the
GAUSS configuration file, and with the sysstate function, case 8. If you turn it off,
log will generate an error for negative inputs.

If x is already complex, the complex number state doesn't matter; log will compute a
complex result.

x can be any expression that returns a matrix.

Example

//Create a 3x3 matrix of random uniform integers from 1

log l

//to 11
x = round(rndu(3,3)*10+1);
y = log(x);

If x is equal to:

4.000 9.000 2.000
5.000 3.000 7.000
2.000 6.000 10.000

Then y will be equal to:

0.602 0.954 0.301
0.699 0.477 0.845
0.301 0.778 1.000

See Also

ln

loglog

Purpose

Graphs X vs. Y using log coordinates. Note: This function is for use with the
deprecated PQG graphics. Use plotLogLog instead.

Library

pgraph

Format

loglog(x, y);

35-1048

loglogl

35-1049

Input

x Nx1 or NxM matrix. Each column contains the X
values for a particular line.

y Nx1 or NxM matrix. Each column contains the Y
values for a particular line.

Source

ploglog.src

See Also

xy, logx, logy

logx

Purpose

Graphs X vs. Y using log coordinates for the X axis. Note: This function is for
use with the deprecated PQG graphics. Use plotLogX instead.

Library

pgraph

Format

logx(x, y);

Input

x Nx1 or NxM matrix. Each column contains the X
values for a particular line.

y Nx1 or NxM matrix. Each column contains the Y

logx l

values for a particular line.

Source

plogx.src

See Also

xy, logy, loglog

logy

Purpose

Graphs X vs. Y using log coordinates for the Y axis. Note: This function is for
use with the deprecated PQG graphics. Use plotLogY instead.

Library

pgraph

Format

logy(x, y);

Input

x Nx1 or NxM matrix. Each column represents the X
values for a particular line.

y Nx1 or NxM matrix. Each column represents the Y
values for a particular line.

Source

plogy.src

35-1050

logyl

35-1051

See Also

xy, logx, loglog

loopnextindex

Purpose

Increments an index vector to the next logical index and jumps to the specified
label if the index did not wrap to the beginning.

Format

loopnextindex lab, i, o [, dim];

Input

lab literal, label to jump to if loopnextindex succeeds.
i Mx1 vector of indices into an array, where M<=N.
o Nx1 vector of orders of an N-dimensional array.
dim scalar [1-M], index into the vector of indices i,

corresponding to the dimension to walk through,
positive to walk the index forward, or negative to walk
backward.

Remarks

If the argument dim is given, loopnextindex will walk through only the dimen-
sion indicated by dim in the specified direction. Otherwise, if dim is not given,
each call to loopnextindex will increment i to index the next element or subar-
ray of the corresponding array.

loopnextindex l

loopnextindex will jump to the label indicated by lab if the index can walk fur-
ther in the specified dimension and direction, otherwise it will fall out of the loop and
continue through the program.

When the index matches the vector of orders, the index will be reset to the beginning
and program execution will resume at the statement following the loopnextindex
statement.

Example

At its essence, loopNextIndex provides a simple way to iterate over the orders of
a multi-dimensional array.

//The orders of the array
orders = { 2, 3, 4 };

//The starting index of the array
ind = { 1, 1, 1 };

lnilab:
print "ind = " ind;
loopNextIndex lnilab, ind, orders;

Running the code above, returns:

ind =
1.000
1.000
1.000

ind =
1.000
1.000
2.000

ind =
1.000

35-1052

loopnextindexl

35-1053

1.000
3.000

ind =
1.000
1.000
4.000

ind =
1.000
2.000
1.000

ind =
1.000
2.000
2.000

ind =
1.000
2.000
3.000

...continuing on to end with...

ind =
2.000
3.000
4.000

This next example uses the variable ind to iterate over and make assignments to the
array, a.

orders = { 2,3,4,5,6,7 };
a = arrayalloc(orders,0);
ind = { 1,1,1,1 };

loopni:

loopnextindex l

setarray a, ind, rndn(6,7);
loopnextindex loopni, ind, orders;

This example sets each 6x7 subarray of array a, by incrementing the index at each call
of loopnextindex and then going to the label loopni. When ind cannot be
incremented, the program drops out of the loop and continues.

ind = { 1,1,4,5 };

loopni2:

setarray a, ind, rndn(6,7);
loopnextindex loopni2, ind, orders, 2;

Using the array and vector of orders from the example above, this example increments
the second value of the index vector ind during each call to loopnextindex. This
loop will set the 6x7 subarrays of a that begin at [1,1,4,5,1,1], [1,2,4,5,1,1], and
[1,3,4,5,1,1], and then drop out of the loop.

See Also

nextindex, previousindex, walkindex

lower

Purpose

Converts a string or character matrix to lowercase.

Format

y = lower(x);

35-1054

lowerl

35-1055

Input

x string or NxK matrix of character data to be converted
to lowercase.

Output

y string or NxK matrix which contains the lowercase
equivalent of the data in x.

Remarks

If x is a numeric matrix, y will contain garbage. No error message will be generated
since GAUSS does not distinguish between numeric and character data in matrices.

Example

x = "MATH 401";
y = lower(x);
print y;

produces:

math 401

The lower function can be useful when performing case insensitive string com-
parisons. If you have a program that runs different code depending upon the variable
name in a GAUSS dataset or spreadsheet file, you or your colleagues may want to ana-
lyze data with inconsistent use of case.

var1 = "Consumption";

if lower(var1) == "gdp";
//code for gdp branch

else if lower(var1) == "consumption";

lower l

//code for consumption branch
endif;

Using the lower function, the code above will operate correctly whether var1 is
Consumption, CONSUMPTION or consumption.

See Also

upper

lowmat, lowmat1

Purpose

Returns the lower portion of a matrix. lowmat returns the main diagonal and
every element below. lowmat1 is the same except it replaces the main diagonal
with ones.

Format

L = lowmat(x);
L = lowmat1(x);

Input

x NxN matrix.

Output

L NxN matrix containing the lower elements of the
matrix. The upper elements are replaced with zeros.
lowmat returns the main diagonal intact. lowmat1
replaces the main diagonal with ones.

35-1056

lowmat, lowmat1l

35-1057

Remarks

The lowmat function along with upmat1 can be used to extract the LU factors from
the return

Example

x = { 1 2 -1,
2 3 -2,
1 -2 4 };

L = lowmat(x);
L1 = lowmat1(x);

The resulting matrices are

1 0 0 1 0 0
L = 2 3 0 L1 = 2 1 0

1 -2 4 1 -2 1

Source

diag.src

See Also

upmat, upmat1, diag, diagrv, crout, croutp

ltrisol

Purpose

Computes the solution of Lx = b where L is a lower triangular matrix.

ltrisol l

Format

x = ltrisol(b, L);

Input

b PxK matrix.
L PxP lower triangular matrix.

Output

x PxK matrix, soluion of Lx = b.

ltrisol applies a forward solve to Lx = b to solve for x. If b has more than one
column, each column will be solved for separately, i.e., ltrisol will apply a for-
ward solve to L*x[., i] = b[., i].

lu

Purpose

Computes the LU decomposition of a square matrix with partial (row) pivoting,
such that: X = LU.

Format

{ l, u } = lu(x);

Input

x NxN square nonsingular matrix.

35-1058

lul

35-1059

Output

l NxN ''scrambled'' lower triangular matrix. This is a
lower triangular matrix that has been reordered based
on the row pivoting.

u NxN upper triangular matrix.

Example

//Set seed for repeatable random numbers
rndseed 13;

//Print format, display 4 digits after decimal point
format /rd 10,4;

A = rndn(3,3);
{ L, U } = lu(A);
A2 = L*U;

-0.0195 0.4054 -0.0874
A = -1.2948 0.1734 1.9712

0.5408 -0.1294 0.7646

0.0150 1.0000 0.0000
L = 1.0000 0.0000 0.0000

-0.4177 -0.1414 1.0000

-1.2948 0.1734 1.9712
U = 0.0000 0.4028 -0.1170

0.0000 0.0000 1.5714

-0.0195 0.4054 -0.0874
L*U = -1.2948 0.1734 1.9712

0.5408 -0.1294 0.7646

lu l

See Also

crout, croutp, chol

lusol

Purpose

Computes the solution of LUx = b where L is a lower triangular matrix and U is
an upper triangular matrix.

Format

x = lusol(b, L, U);

Input

b PxK matrix.
L PxP lower triangular matrix.
U PxP upper triangular matrix.

Output

x PxK matrix, solution of LUx = b.

Remarks

If b has more than one column, each column is solved for separately, i.e., lusol
solves LUx[., i] = b[., i].

35-1060

lusoll

35-1061

m

machEpsilon

Purpose

Returns the smallest number such that 1+eps > 1.

Format

eps = machEpsilon;

Output

eps scalar, machine epsilon.

Source

machconst.src

make (dataloop)

Purpose

Specifies the creation of a new variable within a data loop.

Format

make [#] numvar = numeric_expression;
make $charvar = character_expression;

machEpsilon

m

Remarks

A numeric_expression is any valid expression returning a numeric vector. A
character_expression is any valid expression returning a character vector. If
neither '$' nor '#' is specified, '#' is assumed.

The expression may contain explicit variable names and/or GAUSS commands. Any
variables referenced must already exist, either as elements of the source data set, as
extern's, or as the result of a previous make, vector, or code statement. The
variable name must be unique. A variable cannot be made more than once, or an error
is generated.

Example

make sqvpt = sqrt(velocity * pressure * temp);
make $ gender = lower(gender);

See Also

vector (dataloop)

makevars

Purpose

Creates separate global vectors from the columns of a matrix.

Format

makevars(x, vnames, xnames);

Input

x NxK matrix whose columns will be converted into
individual vectors.

35-1062

makevars

m

35-1063

vnames string or Mx1 character vector containing names of
global vectors to create. If 0, all names in xnames
will be used.

xnames string or Kx1 character vector containing names to be
associated with the columns of the matrix x.

Remarks

If xnames = 0, the prefix X will be used to create names. Therefore, if there are 9
columns in x, the names will be X1-X9, if there are 10, they will be X01-X10, and so
on.

If xnames or vnames is a string, the individual names must be separated by spaces
or commas:

vnames = "age pay sex";

Since these new vectors are created at execution time, the compiler will not know they
exist until after makevars has executed once. This means that you cannot access
them by name unless you previously clear them or otherwise add them to the symbol
table. (See setvars for a quick interactive solution to this.)

This function is the opposite of mergevar.

Example

let x[3,3] = 101 35 50000
102 29 13000
103 37 18000;

let xnames = id age pay;
let vnames = age pay;
makevars(x,vnames,xnames);

Two global vectors, called age and pay, are created from the columns of x.

makevars

m

let x[3,3] = 101 35 50000
102 29 13000
103 37 18000;

xnames = "id age pay";
vnames = "age pay";
makevars(x,vnames,xnames);

This is the same as the example above, except that strings are used for the variable
names.

Source

vars.src

Globals

__vpad

See Also

mergevar, setvars

makewind

Purpose

Creates a graphic panel of specific size and position and adds it to the list of
graphic panels. Note: This function is for the deprecated PQG graphics. For sim-
ilar functionality, see plotLayout and plotCustomLayout.

Library

pgraph

Format

makewind(xsize, ysize, xshft, yshft, typ);

35-1064

makewind

m

35-1065

Input

xsize scalar, horizontal size of the graphic panel in inches.
ysize scalar, vertical size of the graphic panel in inches.
xshft scalar, horizontal distance from left edge of window in

inches.
yshft scalar, vertical distance from bottom edge of window in

inches.
typ scalar, graphic panel attribute type. If this value is 1, the

graphic panels will be transparent. If 0, the graphic
panels will be nontransparent.

Remarks

Note that if this procedure is used when rotating the page, the passed parameters are
scaled appropriately to the newly oriented page. The size and shift values will not be
true inches when printed, but the graphic panel size to page size ratio will remain the
same. The result of this implementation automates the rotation and eliminates the
required graphic panel recalculations by the user.

See the window command for creating tiled graphic panels. For more information on
using graphic panels, see Tiled Graphic Panels, Section 1.0.1.

Source

pwindow.src

See Also

window, endwind, setwind, getwind, begwind, nextwind

makewind

m

margin

Purpose

Sets the margins for the current graph's graphic panel. Note: This function is for
use with the deprecated PQG graphics. For similar functionality, use plotCus-
tomLayout.

Library

pgraph

Format

margin(l, r, t, b);

Input

l scalar, the left margin in inches.
r scalar, the right margin in inches.
t scalar, the top margin in inches.
b scalar, the bottom margin in inches.

Remarks

By default, the dimensions of the graph are the same as the graphic panel dimensions.
With this function the graph dimensions may be decreased. The result will be a smaller
plot area surrounded by the specified margin. This procedure takes into consideration
the axes labels and numbers for correct placement.

All input inch values for this procedure are based on a full size window of 9x6.855
inches. If this procedure is used with a graphic panel, the values will be scaled to ''win-
dow inches'' automatically.

35-1066

margin

m

35-1067

If the axes must be placed an exact distance from the edge of the page, axmargin
should be used.

Source

pgraph.src

See Also

axmargin

matalloc

Purpose

Allocates a matrix with unspecified contents.

Format

y = matalloc(r, c);

Input

r scalar, rows.
c scalar, columns.

Output

y r x c matrix.

Remarks

The contents are unspecified. This function is used to allocate a matrix that will be

matalloc

m

written to in sections using indexing or used with the Foreign Language Interface as an
output matrix for a function called with dllcall.

See Also

matinit, ones, zeros, eye

matinit

Purpose

Allocates a matrix with a specified fill value.

Format

y = matinit(r, c, v);

Input

r scalar, rows.
c scalar, columns.
v scalar, value to initialize.

Output

y r x c matrix with each element equal to the value of
v.

Example

format /rd 6,2;
print matinit(3, 4, pi);

35-1068

matinit

m

35-1069

3.14 3.14 3.14 3.14
3.14 3.14 3.14 3.14
3.14 3.14 3.14 3.14

See Also

matalloc, ones, zeros, eye

mattoarray

Purpose

Converts a matrix to a type array.

Format

y = mattoarray(x);

Input

x matrix.

Output

y 1-or-2-dimensional array.

Remarks

If the argument x is a scalar, mattoarray will simply return the scalar, without
changing it to a type array.

Example

x = 5*ones(2,3);

mattoarray

m

y = mattoarray(x);

y will be a 2x3 array of fives.

See Also

arraytomat

maxc

Purpose

Returns a column vector containing the largest element in each column of a mat-
rix.

Format

y = maxc(x);

Input

x NxK matrix or sparse matrix.

Output

y Kx1 matrix containing the largest element in each
column of x.

Remarks

If x is complex, maxc uses the complex modulus (abs(x)) to determine the largest
elements.

35-1070

maxc

m

35-1071

To find the maximum elements in each row of a matrix, transpose the matrix before
applying the maxc function.

To find the maximum value in the whole matrix if the matrix has more than one
column, nest two calls to maxc:

y = maxc(maxc(x));

Example

x = rndBeta(4,2,3,1);
y = maxc(x);

If x equals:

0.87174453 0.70281291
0.90393029 0.95919009
0.82960656 0.58022236
0.80910492 0.61975567

then y will equal:

0.90393029
0.95919009

See Also

minc, maxindc, minindc

maxindc

Purpose

Returns a column vector containing the index (i.e., row number) of the maximum
element in each column of a matrix.

maxindc

m

Format

y = maxindc(x);

Input

x NxK matrix.

Output

y Kx1 matrix containing the index of the maximum
element in each column of x.

Remarks

If x is complex, maxindc uses the complex modulus (abs(x)) to determine the
largest elements.

To find the index of the maximum element in each row of a matrix, transpose the mat-
rix before applying maxindc.

To find the indices of the largest element in a matrix x, use:

colInd = maxindc(maxc(x));
rowInd = maxindc(x[.,colInd]);

If there are two or more ''largest'' elements in a column (i.e., two or more elements
equal to each other and greater than all other elements), then maxindc returns the
index of the first one found, which will be the smallest index.

Example

x = round(rndn(4,4)*5);
mx = maxc(x);

35-1072

maxindc

m

35-1073

mxInd = maxindc(x);

If x is equal to:

-2 -8 -1 -2
-1 9 0 7
9 0 4 8

-2 6 6 1

then

9 3
mx = 9 mxInd = 2

6 4
8 3

See Also

maxc, minindc, minc

maxv

Purpose

Performs an element by element comparison of two matrices and returns the max-
imum value for each element.

Format

z = maxv(x, y);

Global Input

x NxK matrix
y NxK matrix

maxv

m

Output

z A NxK matrix whose values are the maximum of each
element from the arguments x and y.

Remarks

maxv works for sparse matrices as well as arrays.

Example

//Create the sequence 1, 2, 3,...10
x = seqa(1, 1, 10);

//Set 'y' equal to the reverse order of 'x'
y = rev(x);

z = maxv(x,y);

1 10 10
2 9 9
3 8 8
4 7 7

x = 5 y = 6 z = 6
6 5 6
7 4 7
8 3 8
9 2 9

10 1 10

See Also

minv

35-1074

maxv

m

35-1075

maxvec

Purpose

Returns maximum vector length allowed.

Format

y = maxvec;

Global Input

__maxvec scalar, maximum vector length allowed.

Output

y scalar, maximum vector length.

Remarks

maxvec returns the value in the global scalar __maxvec, which can be reset in the
calling program.

maxvec is called by Run-Time Library functions and applications when determining
how many rows can be read from a data set in one call to readr.

Using a value that is too large can cause excessive disk thrashing. The trick is to allow
the algorithm making the disk reads to execute entirely in RAM.

Example

y = maxvec;
print y;

maxvec

m

20000.000

Source

system.src

maxbytes

Purpose

Returns maximum memory to be used.

Format

y = maxbytes;

Global Input

__
maxbytes

scalar, maximum memory to be used.

Output

y scalar, maximum memory to be used.

Remarks

maxbytes returns the value in the global scalar __maxbytes, which can be reset
in the calling program.

maxbytes is called by Run-Time Library functions and applications when determ-
ining how many rows can be read from a data set in one call to readr.

35-1076

maxbytes

m

35-1077

maxbytes replaced the obsolete command coreleft. If coreleft returns a
meaningful number for your operating system and if you wish to reference it, set __
maxbytes = 0 and then call maxbytes.

Example

y = maxbytes;
print y;

100000000.000

Source

system.src

mbesseli

Purpose

Computes modified and exponentially scaled modified Bessels of the first kind of
the nth order.

Format

y = mbesseli(x, n, alpha);
y = mbesseli0(x);
y = mbesseli1(x);
y = mbesselei(x, n, alpha);
y = mbesselei0(x);
y = mbesselei1(x);

Input

x Kx1 vector, abscissae.

mbesseli

m

n scalar, highest order.
alpha scalar, 0 <= alpha < 1.

Output

y KxN matrix, evaluations of the modified Bessel or the
exponentially scaled modified Bessel of the first kind of
the nth order.

Remarks

For the functions that permit you to specify the order, the returned matrix contains a
sequence of modified or exponentially scaled modified Bessel values of different
orders. For the ith row of y:

y[i,.] = Iα(x[i]) Iα+1(x[i])...Ialpha+n-1(x[i])

The remaining functions generate modified Bessels of only the specified order.

The exponentially scaled modified Bessels are related to the unscaled modifed Bessels
in the following way:

mbesselei0(x) = exp(-x) * mbesseli0(x)

The use of the scaled versions of the modified Bessel can improve the numerical prop-
erties of some calculations by keeping the intermediate numbers small in size.

Example

This example produces estimates for the "circular" response regression model (Fisher,
N.I. Statistical Analysis of Circular Data. NY: Cambridge University Press, 1993.),
where the dependent variable varies between -π and π in a circular manner. The model
is

35-1078

mbesseli

m

35-1079

y = μ + G(XB)

where B is a vector of regression coefficients, x a matrix of independent variables
with a column of 1's included for a constant, and y a vector of "circular" dependent
variables, and where G() is a function mapping XB onto the [-π, π] interval.

The log-likelihood for this model is from Fisher, N.I. ... 1993, 159:

To generate estimates it is necessary to maximize this function using an iterative
method. QNewton is used here.

κ is required to be nonnegative and therefore in the example below, the exponential of
this parameter is estimated instead. Also, the exponentially scaled modified Bessel is
used to improve numerical properties of the calculations.

The arctan function is used in G() to map XB to the [-π, π] interval as suggested by
Fisher, N.I. ... 1993, 158.

proc G(u);
retp(2*atan(u));

endp;

proc lpr(b);
local dev;
/*
** b[1] - kappa
** b[2] - mu
** b[3] - constant
** b[4:rows(b)] - coefficients
*/
dev = y - b[2]- G(b[3] + x * b[4:rows(b)]);

mbesseli

m

retp(rows(dev)*ln(mbesselei0(exp(b[1])) -
sumc(exp(b[1])*(cos(dev)-1))));

endp;

loadm data;
y0 = data[.,1];
x0 = data[.,2:cols(data)];

b0 = 2*ones(cols(x0),1);

{ b,fct,grd,ret } = QNewton(&lpr,b0);

cov = invpd(hessp(&lpr,b));

print "estimates standard errors";
print;
print b~sqrt(diag(cov));

Source

ribesl.src

meanc

Purpose

Computes the mean of every column of a matrix.

Format

y = meanc(x);

Input

x NxK matrix.

35-1080

meanc

m

35-1081

Output

y Kx1 matrix containing the mean of every column of x.

Example

x = meanc(rndu(1e5,4));

After the code above, x is equal to:

0.5007
0.5004
0.4995
0.5016

In this example, 4 columns of uniform random numbers are generated in a matrix, and
the mean is computed for each column. Due to the use of random input data in this
example, your results may differ slightly.

See Also

stdc

median

Purpose

Computes the medians of the columns of a matrix.

Format

m = median(x);

median

m

Input

x NxK matrix.

Output

m Kx1 vector containing the medians of the respective
columns of x.

Remarks

median will return a missing value for any column that contains a missing value.

Example

//Set the seed for repeatable random data
rndseed 4320993;

//Create uniform random integers between 1 and 10
x = ceil(10*rndu(100,3));

//Calculate the median of each column of 'x'
md = median(x);

After the code above, md is equal to:

5.0000
5.0000
6.0000

Source

median.src

35-1082

median

m

35-1083

mergeby

Purpose

Merges two sorted files by a common variable.

Format

mergeby(infile1, infile2, outfile, keytyp);

Input

infile1 string, name of input file 1.
infile2 string, name of input file 2.
outfile string, name of output file.
keytyp scalar, data type of key variable.

1 numeric
2 character

Remarks

This will combine the variables in the two files to create a single large file. The fol-
lowing assumptions hold:

1. Both files have a single (key) variable in common and it is the first variable.

2. All of the values of the key variable are unique.

3. Each file is already sorted on the key variable.

The output file will contain the key variable in its first column.

It is not necessary for the two files to have the same number of rows. For each row for
which the key variables match, a row will be created in the output file. outfile will

mergeby

m

contain the columns from infile1 followed by the columns from infile2 minus
the key column from the second file.

If the inputs are null ("" or 0), the procedure will ask for them.

Source

sortd.src

mergevar

Purpose

Accepts a list of names of global matrices, and concatenates the corresponding
matrices horizontally to form a single matrix.

Format

x = mergevar(vnames);

Input

vnames string or Kx1 column vector containing the names of K
global matrices.

Output

x NxM matrix that contains the concatenated matrices,
where M is the sum of the columns in the K matrices
specified in vnames.

Remarks

The matrices specified in vnames must be globals and they must all have the same

35-1084

mergevar

m

35-1085

number of rows.

This function is the opposite of makevars.

Example

//Random integers between 1 and 72
age = ceil(72 * rndu(100, 1));

//Random normal numbers with a mean of 70 and a standard
//deviation of 10
income = 10 * rndn(100, 1) + 70;

//Vertically concatenate the strings
vnames = "age"$|"income";

//Merge the variables into 1 matrix
agInc = mergevar(vnames);

The column vectors age and income will be concatenated horizontally to create
agInc. The above call to mergevar is equivalent to:

//Combine the matrices using the horizontal concatenation
//operator
agInc = age~income;

Source

vars.src

See Also

makevars

mergevar

m

minc

Purpose

Returns a column vector containing the smallest element in each column of a mat-
rix.

Format

y = minc(x);

Input

x NxK matrix or sparse matrix.

Output

y Kx1 matrix containing the smallest element in each
column of x.

Remarks

If x is complex, minc uses the complex modulus (abs(x)) to determine the smallest
elements.

To find the minimum element in each row, transpose the matrix before applying the
minc function.

To find the minimum value in the whole matrix, nest two calls to minc:

y = minc(minc(x));

Example

x = rndn(4,2);

35-1086

minc

m

35-1087

y = minc(x);

If x is equal to:

-1.9950 -1.3477
-0.4031 -1.9137
0.8136 -2.3155

-0.9947 1.4061

then y will equal:

-1.9950
-2.3155

See Also

maxc, minindc, maxindc

minindc

Purpose

Returns a column vector containing the index (i.e., row number) of the smallest
element in each column of a matrix.

Format

y = minindc(x);

Input

x NxK matrix.

minindc

m

Output

y Kx1 matrix containing the index of the smallest element
in each column of x.

Remarks

If x is complex, minindc uses the complex modulus (abs(x)) to determine the smal-
lest elements.

To find the index of the smallest element in each row, transpose the matrix before
applying minindc.

To find the index of the smallest element in a matrix x, use:

colInd = minindc(minc(x));
rowInd = minindc(x[.,colInd]);

If there are two or more "smallest" elements in a column (i.e., two or more elements
equal to each other and less than all other elements), then minindc returns the index
of the first one found, which will be the smallest index.

Example

x = round(rndn(5,4)*5);
y = minc(x);
z = minindc(x);

If x is equal to:

-5 4 -4 0
-2 3 4 3

x = -11 5 5 5
1 2 7 4

-2 4 -1 -5

35-1088

minindc

m

35-1089

then y and z are equal to:

-11 3
y = 2 z = 4

-4 1
-5 5

See Also

maxindc, minc, maxc

minv

Purpose

Performs an element by element comparison of two matrices and returns the min-
imum value for each element.

Format

z = minv(x, y);

Global Input

x NxK matrix
y NxK matrix

Output

z A NxK matrix whose values are the minimum of each
element from the arguments x and y.

minv

m

Remarks

minv works for sparse matrices as well as arrays.

Example

//Create the multiplicative sequence 1, 2, 4, 8
x = seqm(1,2,4);

//Reverse the order of the elements in 'x' and assign them
//to 'y'
y = rev(x);

z = minv(x,y);

After the code above:

1 8 1
x = 2 y = 4 z = 2

4 2 2
8 1 1

See Also

maxv

miss, missrv

Purpose

miss converts specified elements in a matrix to GAUSS's missing value code.
missrv is the reverse of this, and converts missing values into specified values.

35-1090

miss, missrv

m

35-1091

Format

y = miss(x, v);
y = missrv(x, v);

Input

x NxK matrix.
v LxM matrix, ExE conformable with x.

Output

y max(N,L) by max(K,M) matrix.

Remarks

For miss, elements in x that are equal to the corresponding elements in v will be
replaced with the GAUSS missing value code.

For missrv, elements in x that are equal to the GAUSS missing value code will be
replaced with the corresponding element of v.

For complex matrices, the missing value code is defined as a missing value entry in the
real part of the matrix. For complex x, then, miss replaces elements with a ''. + 0i''
value, and missrv examines only the real part of x for missing values. If, for
example, an element of x = 1 + .i, missrv will not replace it.

These functions act like element-by-element operators. If v is a scalar, for instance -
1, then all -1's in x are converted to missing. If v is a row (column) vector with the
same number of columns (rows) as x, then each column (row) in x is transformed to
missings according to the corresponding element in v. If v is a matrix of the same
size as x, then the transformation is done corresponding element by corresponding ele-
ment.

miss, missrv

m

Missing values are given special treatment in the following functions and operators:
b/A (matrix division when a is not square and neither a nor b is scalar), counts,
scalmiss, maxc, maxindc, minc, minindc, miss, missex, missrv,
moment, packr, scalmiss, sortc.

As long as you know a matrix contains no missings to begin with, miss and missrv
can be used to convert one set of numbers into another. For example:

y = missrv(miss(x,0),1);

will convert 0's to 1's.

To convert a range of values, such as:

0.5 < x < 1.3

into missing values, use the missex function.

Example

//Create a 3x3 matrix with each element equal to 1
x = ones(3, 3);

//Assign the diagonal of 'x' to be equal to pi
x = diagrv(x, pi);

print "x = " x;

//Change all 1's in 'x' into missing values and assign to
//xmiss
xmiss = miss(x, 1);

print "xmiss = " xmiss;

//Change all missings in 'xmiss' into 2*pi and assign to x2

35-1092

miss, missrv

m

35-1093

x2 = missrv(xmiss, 2*pi);

print "x2 = " x2;

The code above, will return:

x =
3.1415927 1.0000000 1.0000000
1.0000000 3.1415927 1.0000000
1.0000000 1.0000000 3.1415927

xmiss =
3.1415927 . .

. 3.1415927 .

. . 3.1415927
x2 =

3.1415927 6.2831853 6.2831853
6.2831853 3.1415927 6.2831853
6.2831853 6.2831853 3.1415927

See Also

counts, ismiss, maxc, maxindc, minc, minindc, missex, moment, packr, scalmiss, sortc

missex

Purpose

Converts numeric values to the missing value code according to the values given
in a logical expression.

Format

y = missex(x, mask);

missex

m

Input

x NxK matrix.
mask NxK logical matrix (matrix of 0's and 1's) that serves as

a "mask" for x; the 1's in mask correspond to the
values in x that are to be converted into missing values.

Output

y NxK matrix that equals x, but with those elements that
correspond to the 1's in e converted to missing.

Remarks

The matrix e will usually be created by a logical expression. For instance, to convert
all numbers between 10 and 15 in x to missing, the following code could be used:

y = missex(x, (x .> 10) .and (x .< 15));

Note that "dot" operators MUST be used in constructing the logical expressions.

For complex matrices, the missing value code is defined as a missing value entry in the
real part of the matrix. For complex x, then, missex replaces elements with a ". +
0i" value.

This function is like miss, but is more general in that a range of values can be con-
verted into missings.

Example

//Set seed for repeatable random numbers
rndseed 49728424;

x = rndu(3,2);

35-1094

missex

m

35-1095

//Logical expression
mask =(x .> .30) .and (x .< .60);
y = missex(x,mask);

After the code above:

0.525 0.419 1 1 . .
x = 0.869 0.973 mask = 0 0 y = 0.869 0.973

0.021 0.357 0 1 0.021 .

A 3x2 matrix of uniform random numbers is created. All values in the interval (0.30,
0.60) are converted to missing.

Source

datatran.src

See Also

miss, missrv

moment

Purpose

Computes a cross-product matrix. This is the same as x'x.

Format

y = moment(x, d);

Input

x NxK matrix or M-dimensional array where the last two
dimensions are NxK.

moment

m

d scalar, controls handling of missing values.
0 missing values will not be checked for. This

is the fastest option.
1 "listwise deletion" is used. Any row that

contains a missing value in any of its
elements is excluded from the computation of
the moment matrix. If every row in x
contains missing values, then moment
(x,1) will return a scalar zero.

2 "pairwise deletion" is used. Any element of
x that is missing is excluded from the
computation of the moment matrix. Note that
this is seldom a satisfactory method of
handling missing values, and special care
must be taken in computing the relevant
number of observations and degrees of
freedom.

Output

y KxK matrix or M-dimensional array where the last two
dimensions are KxK, the cross-product of x.

Remarks

The fact that the moment matrix is symmetric is taken into account to cut execution
time almost in half.

If x is an array, the result will be an array containing the cross-products of each 2-
dimensional array described by the two trailing dimensions of x. In other words, for a

35-1096

moment

m

35-1097

10x4x4 array x, the resulting array y will contain the cross-products of each fo the 10
4x4 arrays contained in x, so y[n,.,.]=x[n,.,.]'x[n,.,.] for 1 <= n <= 10.

If there is no missing data then d = 0 should be used because it will be faster.

The / operator (matrix division) will automatically form a moment matrix (performing
pairwise deletions if trap 2 is set) and will compute the ols coefficients of a regres-
sion. However, it can only be used for data sets that are small enough to fit into a
single matrix. In addition, the moment matrix and its inverse cannot be recovered if the
/ operator is used.

Example

xx = moment(x,2);
ixx = invpd(xx);
b = ixx*missrv(x,0)'y;

In this example, the regression of y on x is computed. The moment matrix (xx) is
formed using the moment command (with pairwise deletion, since the second para-
meter is 2). Then xx is inverted using the invpd function. Finally, the ols coef-
ficients are computed. missrv is used to emulate pairwise deletion by setting missing
values to 0.

momentd

Purpose

Computes a moment (x'x) matrix from a GAUSS data set.

Format

m = momentd(dataset, vars);

momentd

m

Input

dataset string, name of data set.
vars Kx1 string array, names of variables

- or -

Kx1 numeric vector, indices of columns.

- or -

Formula String. e.g. "PAY + WT" or ". - 1"(include all
variables besides intercept)

These can be any size subset of the variables in the data
set, and can be in any order. If a scalar 0 is passed, all
columns of the data set will be used.

Global Input

__con scalar, default 1.
1 a constant term will be added.
0 no constant term will be added.

__miss scalar, default 0.
0 there are no missing values (fastest).
1 do listwise deletion; drop an observation if

any missings occur in it.
2 do pairwise deletion; this is equivalent to

setting missings to 0 when calculating m.
__row scalar, the number of rows to read per iteration of the

read loop, default 0.

If 0, the number of rows will be calculated internally.

35-1098

momentd

m

35-1099

If you get an Insufficient memory error, or you want the
rounding to be exactly the same between runs, you can set
the number of rows to read before calling momentd.

Output

m MxM matrix, where M = K + __con, the moment
matrix constructed by calculating X'X where X is the
data, with or without a constant vector of ones.

Error handling is controlled by the low order bit of the trap
flag.
trap 0 terminate with error message
trap 1 return scalar error code in m

 33 too many missings
 34 file not found

Examples

Example 1 Using indices of columns

fname = getGAUSShome() $+ "examples/freqdata.dat";

//Calculate statistics on variables in dataset: PAYand WT
//Specify the index of PAYand WT
vars = 2|4;
m = momentd(fname, vars);

print m;

After the above code,

momentd

m

400.00000 787.00000 587.98000
787.00000 1805.0000 1161.1400
587.98000 1161.1400 900.38540

Example 2 Using names of variables

fname = getGAUSShome() $+ "examples/freqdata.dat";
//Calculate statistics on variables in dataset: PAYand WT
//Define the names string array of PAYand WT
string vars = {"PAY", "WT"};
m = momentd(fname, vars);
print m;

After the above code,

400.00000 787.00000 587.98000
787.00000 1805.0000 1161.1400
587.98000 1161.1400 900.38540

Example 3 Using formula string

fname = getGAUSShome() $+ "examples/freqdata.dat";
//Define the formula for PAY and WT, remove the intercept
(use - 1)
formula_str = "-1 + PAY + WT";

//Calculate statistics on variables in dataset: PAYand WT
m = momentd(fname, formula_str);
print m;

After the above code,

1805.0000 1161.1400
1161.1400 900.38540

35-1100

momentd

m

35-1101

Remarks

l The supported data set types are CSV, XLS, XLSX, HDF5, FMT, DAT.

For HDF5 file, the dataset must include file schema and both file name and
data set name must be provided, e.g. momentd
("h5://C:/gauss17/examples/testdata.h5/mydata", vars).

l Character vector is supported for backward comparability, but it have been
deprecated.

See also

Formula String

Source

momentd.src

movingave

Purpose

Computes moving average of a series.

Format

y = movingave(x, d);

Input

x NxK matrix.
d scalar, order of moving average.

movingave

m

Output

y NxK matrix, filtered series. The first d-1 rows of x
are set to missing values.

Remarks

movingave is essentially a smoothing time series filter. The moving average is
performed by column and thus it treats the NxK matrix as K time series of length N.

See Also

movingaveWgt, movingaveExpwgt

movingaveExpwgt

Purpose

Computes exponentially weighted moving average of a series.

Format

y = movingaveExpwgt(x, d, p);

Input

x NxK matrix.
d scalar, order of moving average.
p scalar, smoothing coefficient where 0 > p > 1.

Output

y NxK matrix, filtered series. The first d-1 rows of x are

35-1102

movingaveExpwgt

m

35-1103

set to missing values.

Remarks

movingaveExpwgt is smoothing time series filter using exponential weights. The
moving average as performed by column and thus it treats the NxK matrix as K time
series of length N.

See Also

movingaveWgt, movingave

movingaveWgt

Purpose

Computes weighted moving average of a series

Format

y = movingaveWgt(x, d, w);

Input

x NxK matrix.
d scalar, order of moving average.
w dx1 vector, weights.

Output

y NxK matrix, filtered series. The first d-1 rows of x are
set to missing values.

movingaveWgt

m

Remarks

movingaveWgt is essentially a smoothing time series filter with weights. The mov-
ing average as performed by column and thus it treats the NxK matrix as K time series
of length N.

See Also

movingave, movingaveExpwgt

msym

Purpose

Allows the user to set the symbol that GAUSS uses when missing values are con-
verted to ASCII and vice versa.

Format

msym str;

Input

str literal or ^string (up to 8 letters) which, if not
surrounded by quotes, is forced to uppercase. This is
the string to be printed for missing values. The default
is '.'.

Remarks

The entire string will be printed out when converting to ASCII in print and
printfm statements.

35-1104

msym

m

35-1105

When converting ASCII to binary in loadm and let statements, only the first char-
acter is significant. In other words,

msym HAT;

will cause 'H' to be converted to missing on input.

This does not affect writer, which outputs data in binary format.

Note that msym is a keyword and not a variable being assigned to, so there is no
equals sign between msym and the string that is being passed to it.

Example

In the example below, you first create simulated data. The data represents the scores
that a group of students received on a particular test and also the time that they took.
For your calculations, you only want to consider data from students that completed the
test in less than 80 minutes.

The code below replaces the scores from students that took more than 80 minutes with
missing values. It uses the msym keyword to change the visual representation used for
missing values from a '.' to a 'T'. Though, note that the underlying elements are still
missing values, not character or string elements.

//Set seed for repeatable random numbers
rndseed 543124;

//Random integers with a mean of 70 and range of 20 to
//represent time taken for test
testTime = ceil(30 * rndu(10, 1)) + 60;

//Random integers with a mean of 1000 and a standard
//deviation of 10
score = ceil(10 * rndn(10, 1)) + 1000;

//Maximum allowed time for test

msym

m

maxTime = 80;

//Create a mask for times greater than maxTime
mask = testTime .> maxTime;

//Set scores to be missing values if testTime is greater
//than maxTime
mScores = missex(score, mask);

//Set missing values to print as 'T' to represent that the
//score was invalid because the student took too much time
msym "T";

format /rd 4,0;
print mScores;

The code above will return:

T
1010
997

1002
985
997

1007
995

T
T

See Also

print, printfm

35-1106

msym

m

35-1107

n

new

Purpose

Erases everything in memory including the symbol table; closes all open files as
well as the auxiliary output and turns the window on if it was off; also allows the
size of the new symbol table and the main program space to be specified.

Format

new;
new nos;

Input

nos scalar, optional input which indicates the maximum
number of global symbols allowed.

Remarks

Procedures, user-defined functions, and global matrices, strings, and string arrays are
all global symbols.

If you would like your user-defined procedures to not be cleared after a new
statement, you can either add them to a GAUSS Library or create a file in your
GAUSSHOME directory with the same name as your procedure and a .g file
extension. This file .g file should only contain your procedure.

new

n

This command can be used with arguments as the first statement in a program to clear
the symbol table and to allocate only as much space for program code as your program
actually needs. When used in this manner, the auxiliary output will not be closed. This
will allow you to open the auxiliary output from the command level and run a program
without having to remove the new at the beginning of the program. If this command is
not the first statement in your program, it will cause the program to terminate.

Example

new; /* clear global symbols. */

new 300; /* clear global symbols,set maximum
** number of global symbols to 300,
** and leave program space unchanged.
*/

See Also

clear, delete, output

nextindex

Purpose

Returns the index of the next element or subarray in an array.

Format

ni = nextindex(i, o);

Input

i Mx1 vector of indices into an array, where M<=N.
o Nx1 vector of orders of an N-dimensional array.

35-1108

nextindex

n

35-1109

Output

ni Mx1 vector of indices, the index of the next element or
subarray in the array corresponding to o.

Remarks

nextindex will return a scalar error code if the index cannot be incremented.

Example

//Dimensions of an array
orders = { 3, 4, 5, 6, 7);

//Starting index
ind = { 2, 3, 5 };

//Return the index for the next element
ind = nextindex(ind,orders);

After the code above, ind will be equal to:

2
4
1

In this example, nextindex incremented ind to index the next 6x7 subarray in
array a.

Using the same data from above, a subsequent call to nextindex:

ind = nextindex(ind,orders);

will assign ind to be equal to:

nextindex

n

2
4
2

See Also

previousindex, loopnextindex, walkindex

nextn, nextnevn

Purpose

Returns allowable matrix dimensions for computing FFT's.

Format

n = nextn(n0);
n = nextnevn(n0);

Input

n0 scalar, the length of a vector or the number of rows or
columns in a matrix.

Output

n scalar, the next allowable size for the given dimension
for computing an FFT or RFFT. n > n0.

Remarks

nextn and nextnevn determine allowable matrix dimensions for computing FFT's.

35-1110

nextn, nextnevn

n

35-1111

The Temperton FFT routines (see table below) can handle any matrix whose dimen-
sions can be expressed as:

2px3qx5rx7s

where p, q and r are nonnegative integers and s is equal to 0 or 1.

with one restriction: the vector length or matrix column size must be even (p must be
positive) when computing RFFT's.

fftn, etc., automatically pad matrices (with zeros) to the next allowable dimensions;
nextn and nextnevn are provided in case you want to check or fix matrix sizes your-
self.

Use the following table to determine what to call for a given function and matrix:

FFT Vector Matrix Matrix
Function Length Rows Columns
fftn nextn nextn nextn
rfftn nextnevn nextn nextnevn
rfftnp nextnevn nextn nextnevn

Example

n = nextn(456);

The code above will assign n to be equal to 480.

Source

optim.src

See Also

fftn, optn, optnevn, rfftn, rfftnp

nextn, nextnevn

n

nextwind

Purpose

Set the current graphic panel to the next available graphic panel. Note: This func-
tion is for use with the deprecated PQG graphics. For similar functionality use
plotLayout instead.

Library

pgraph

Format

nextwind;

Remarks

This function selects the next available graphic panel to be the current graphic panel.
This is the graphic panel in which the next graph will be drawn.

See the discussion on using graphic panels in Tiled Graphic Panels, Section 1.0.1.

Source

pwindow.src

See Also

endwind, begwind, setwind, getwind, makewind, window

ntos

Purpose

Converts a floating point number to a string or string array with optionally spe-
cified precision.

35-1112

nextwind

n

35-1113

Format

str = ntos(num);
str = ntos(num, prec);

Input

num scalar or NxK matrix; the numbers to be converted to a
string.

prec Scalar, optional argument; the number of digits to
display. If the precision input is not specified, the
default value is 6. Valid input values are: 1 ≤ prec ≤
15.

Output

str String or NxK string array containing the string
representation of the input.

Examples

Example 1

//Set 'pi_num' equal to the constant 'pi'
pi_num = pi;

//Create a string containing the first 6 digits of pi
pi_str = ntos(pi_num);
print pi_str;

returns:

3.14159

Example 2

ntos

n

roi = 6.725301;

//Convert to string with 3 digits
roi_str = ntos(roi, 3);

//Combine strings
out = "The project had an ROI of " $+ roi_str $+ "%";
print out;

returns:

The project had an ROI of 6.73%

Example 3

parm = { 1982 2.75000,
1983 2.20272,
1984 2.55102 };

//Convert to string array with max of 5 digits per element
parms = ntos(parm, 5);

print parms;

returns:

1982 2.75
1983 2.2027
1984 2.551

Remarks

This function will convert numbers to either decimal representation or scientific nota-
tion, depending upon which is most compact. The behavior is equivalent to the '%g'
format specifier to the 'C' language function printf. The precision of an individual
number will be the smaller of the prec input and the maximum number of significant
digits.

35-1114

ntos

n

35-1115

See Also

ftos, stof

null

Purpose

Computes an orthonormal basis for the (right) null space of a matrix.

Format

b = null(x);

Input

x NxM matrix.

Output

b MxK matrix, where K is the nullity of x, such that:

x * b = 0 //NxK matrix of 0's

and

b'b = I //MxM identity matrix

The error returns are returned in b:
error code reason

1 there is no null space
2 b is too large to return in a single

matrix

null

n

Use scalerr to test for error returns.

Remarks

The orthogonal complement of the column space of x' is computed using the QR
decomposition. This provides an orthonormal basis for the null space of x.

Example

let x[2,4] = 2 1 3 -1
3 5 1 2;

b = null(x);
z = x*b;
i = b'b;

After the code above:

-0.804 0.142
b = 0.331 -0.473 z = 0 0 i = 1 0

0.473 0.331 0 0 0 1
0.142 0.804

Source

null.src

Globals

_qrdc, _qrsl

35-1116

null

n

35-1117

null1

Purpose

Computes an orthonormal basis for the (right) null space of a matrix and writes it
to a GAUSS dataset.

Format

nu = null1(x, dataset);

Input

x NxM matrix.
dataset string, the name of a data set null1 will write.

Output

nu scalar, the nullity of x.

Remarks

null1 computes an MxK matrix b, where K is the nullity of x, such that:

x * b = 0 //NxK matrix of 0's

and

b'b = I //MxM identity matrix

The transpose of b is written to the data set named by dataset, unless the nullity
of x is zero. If nu is zero, the data set is not written.

null1

n

Source

null.src

Globals

_qrdc, _qrsl

numCombinations

Purpose

Computes number of combinations of n things taken k at a time.

Format

y = numCombinations(n, k);

Input

n scalar.
k scalar.

Output

y scalar, number of combinations of n things take k at
a time.

Remarks

To calculate all of the combinations, use the function combinate.

35-1118

numCombinations

n

35-1119

Example

y = numCombinations(25,5);

print y;

The code above, returns:

53130.0000

See Also

combinate, combinated

numCombinations

n

o

ols

Purpose

Computes a least squares regression.

Format

{ vnam, m, b, stb, vc, stderr, sigma, cx, rsq, resid, dwstat } = ols
(dataset, depvar, indvars);
{ vnam, m, b, stb, vc, stderr, sigma, cx, rsq, resid, dwstat } = ols
(dataset, formula);

Input

dataset string, name of data set or null string.

If dataset is a null string, the procedure assumes that
the actual data has been passed in the next two arguments.

depvar If dataset contains a string:
string, name of dependent variable
- or -
scalar, index of dependent variable. If scalar
0, the last column of the data set will be
used.

If dataset is a null string or 0:

Nx1 vector, the dependent variable.
indvars If dataset contains a string:

35-1120

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1121

Kx1 character vector, names of independent
variables
- or -
Kx1 numeric vector, indices of independent
variables.

These can be any size subset of the variables in
the data set and can be in any order. If a scalar
0 is passed, all columns of the data set will be
used except for the one used for the dependent
variable.

If dataset is a null string or 0:
NxK matrix, the independent variables.

formula String, formula string of the model.

E.g "y ~ X1 + X2", 'y' is the name of dependent variable,
'X1' and 'X2' are names of independent variables;

E.g. "y ~ ." , '.' means including all variables except
dependent variable 'y';

E.g "y ~ -1 + X1 + X2", '-1' means no intercept model.

Global Input

Defaults are provided for the following global input variables, so they can be ignored
unless you need control over the other options provided by this procedure.

__altnam character vector, default 0.

This can be a (K+1)x1 or (K+2)x1 character vector of
alternate variable names for the output. If __con is 1, this
must be (K+2)x1. The name of the dependent variable is the
last element.

Command Reference

C
om

m
and

R
eference

__con scalar, default 1.
1 a constant term will be added, D = K+1.
0 no constant term will be added, D = K.
A constant term will always be used in constructing the
moment matrix m.

__miss scalar, default 0.
0 there are no missing values (fastest).
1 listwise deletion, drop any cases in which

missings occur.
2 pairwise deletion, this is equivalent to

setting missings to 0 when calculating m.
The number of cases computed is equal to
the total number of cases in the data set.

__olsalg string, default ''cholup.'' Selects the algorithm used for
computing the parameter estimates. The default
Cholesky update method is more computationally
efficient; however, accuracy can suffer for poorly
conditioned data. For higher accuracy, set __olsalg
to either qr or svd.
qr Solves for the parameter estimates using a

qr decomposition.
svd Solves for the paramer estimates using a

singular value decomposition.
__output scalar, default 1.

1 print the statistics.
0 do not print statistics.

__row scalar, the number of rows to read per iteration of the
read loop. Default 0.

35-1122

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1123

If 0, the number of rows will be calculated internally. If you
get an Insufficient memory error while executing ols, you
can supply a value for __row that works on your system.

The answers may vary slightly due to rounding error
differences when a different number of rows is read per
iteration. You can use __row to control this if you want to
get exactly the same rounding effects between several runs.

_olsres scalar, default 0.
1 compute residuals (resid) and Durbin-

Watson statistic (dwstat).
0 resid = 0, dwstat = 0.

Output

vnam (K+2)x1 or (K+1)x1 character vector, the variable
names used in the regression. If a constant term is used,
this vector will be (K+2)x1, and the first name will be
''CONSTANT''. The last name will be the name of the
dependent variable.

m MxM matrix, where M = K+2, the moment matrix
constructed by calculating x'x where x is a matrix
containing all useable observations and having columns
in the order:
 1.0 indvars depvar
(constant) (independent

 variables)
(dependent
variable)

A constant term is always used in computing m.
b Dx1 vector, the least squares estimates of parameters

Error handling is controlled by the low order bit of the
trap flag.

Command Reference

C
om

m
and

R
eference

trap 0 terminate with error message
trap 1 return scalar error code in b

30 system singular
31 system

underdetermined
32 same number of

columns as rows
33 too many missings
34 file not found
35 no variance in an

independent variable
The system can become underdetermined if you use
listwise deletion and have missing values. In that case, it
is possible to skip so many cases that there are fewer
useable rows than columns in the data set.

stb Kx1 vector, the standardized coefficients.
vc DxD matrix, the variance-covariance matrix of

estimates.
stderr Dx1 vector, the standard errors of the estimated

parameters.
sigma scalar, standard deviation of residual.
cx (K+1)x(K+1) matrix, correlation matrix of variables

with the dependent variable as the last column.
rsq scalar, R square, coefficient of determination.
resid residuals, resid = y - x * b.

If _olsres = 1, the residuals will be computed.

If the data is taken from a data set, a new data set will be
created for the residuals, using the name in the global string

35-1124

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1125

variable _olsrnam. The residuals will be saved in this
data set as an Nx1 column. The resid return value will
be a string containing the name of the new data set
containing the residuals.

If the data is passed in as a matrix, the resid return
value will be the Nx1 vector of residuals.

dwstat scalar, Durbin-Watson statistic.

Remarks

l For poorly conditioned data the default setting for __olsalg, using the
Cholesky update, may produce only four or five digits of accuracy for the
parameter estimates and standard error. For greater accuracy, use either the
qr or singular value decomposition algorithm by setting __olsalg to qr or
svd. If you are unsure of the condition of your data, set __olsalg to qr.

l No output file is modified, opened, or closed by this procedure. If you want
output to be placed in a file, you need to open an output file before calling ols.

l The supported data set types are CSV, XLS, XLSX, HDF5, FMT, DAT.
l For HDF5 file, the dataset must include file schema and both file name and
data set name must be provided, e.g. ols
("h5://C:/gauss17/examples/testdata.h5/mydata", formula).

Examples

Example 1

y = { 2,
3,
1,
7,
5 };

x = { 1 3 2,

Command Reference

C
om

m
and

R
eference

2 3 1,
7 1 7,
5 3 1,
3 5 5 };

output file = ols.out reset;
call ols(0,y,x);
output off;

In this example, the output from ols is put into a file called ols.out as well as
being printed to the window. This example will compute a least squares regression of
y on x. The return values are discarded by using a call statement.

data = "olsdat";
depvar = { score };
indvars = { region, age, marstat };
_olsres = 1;
output file = lpt1 on;
{ nam, m, b, stb, vc, std, sig, cx, rsq, resid, dbw } = ols
(data, depvar, indvars);
output off;

In this example, the data set olsdat.dat is used to compute a regression. The
dependent variable is score. The independent variables are: region, age, and
marstat. The residuals and Durbin-Watson statistic will be computed. The output
will be sent to the printer as well as the window and the returned values are assigned
to variables.

Example 2 Pass in a data set name and variable names

fname = getGAUSShome() $+ "examples/credit.dat";
// Specify the formula, Limit is dependent variable and Bal-
ance, Income and Age are independent variables
dep = "Limit";
string indep = {"Balance", "Income", "Age"};

35-1126

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1127

call ols(fname, dep, indep);

After the above code,

Valid cases: 400 Dependent variable:
Limit

Missing cases: 0 Deletion method:
None

Total SS: 2125784986.000 Degrees of freedom:
396

R-squared: 0.939 Rbar-squared:
0.939

Residual SS: 129727134.947 Std error of est:
572.358

F(3,396): 2031.029 Probability of F:
0.000

Standard Prob Standardized Cor with
Variable Estimate Error t-value >|t|
Estimate Dep Var

CONSTANT 1521.904666 102.228802 14.887240 0.000

--- ---
Balance 3.168467 0.070635 44.856923 0.000
0.631111 0.861697
Income 32.566995 0.935925 34.796581 0.000
0.497271 0.792088
Age 1.677855 1.694288 0.990301 0.323
0.012539 0.100888

Example 3 Pass in a data set name and a formula string

Command Reference

C
om

m
and

R
eference

fname = getGAUSShome() $+ "examples/credit.dat";

// Specify the formula, 'Limit' is dependent variable and
'Balance', 'Income' and 'Age' are independent variables, '-
1' means remove the intercept in the model
formula = "Limit ~ - 1 + Balance + Income + Age ";

call ols(fname, formula);

After the above code,

Valid cases: 400 Dependent variable:
Limit

Missing cases: 0 Deletion method:
None

Total SS: 11096147930.000 Degrees of freedom:
397

R-squared: 0.982 Rbar-squared:
0.982

Residual SS: 202331711.222 Std error of est:
713.899

F(3,397): 7125.008 Probability of F:
0.000

Standard Prob Standardized Cor with
Variable Estimate Error t-value >|t|
Estimate Dep Var

Balance 3.429796 0.085339 40.190438 0.000
0.451757 0.923618
Income 33.447531 1.165041 28.709327 0.000
0.363912 0.922459
Age 23.718127 1.027629 23.080436 0.000
0.262414 0.871984

35-1128

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1129

Source

ols.src

See Also

olsqr, Formula String

olsmt

Purpose

Computes a least squares regression.

Format

oout = olsmt(oc0, dataset, depvar, indvars);
oout = olsmt(oc0, dataset, formula);

Input

oc0 instance of an olsmtControl structure containing the
following members:
oc0.altnam character vector, default 0.

This can be a (K+1)x1 or (K+2)x1
character vector of alternate variable
names for the output. If oc0.con is 1, this
must be (K+2)x1. The name of the
dependent variable is the last element.

oc0.con scalar, default 1.
1 a constant term will be

added, D = K+1.
0 no constant term will be

Command Reference

C
om

m
and

R
eference

added, D = K.
A constant term will always be used in
constructing the moment matrix m.

oc0.miss scalar, default 0.
0 there are no missing

values (fastest).
1 listwise deletion, drop any

cases in which missings
occur.

2 pairwise deletion, this is
equivalent to setting
missings to 0 when
calculating m. The number
of cases computed is equal
to the total number of
cases in the data set.

oc0.row scalar, the number of rows to read per
iteration of the read loop. Default 0.

If 0, the number of rows will be
calculated internally. If you get an
Insufficient memory error message while
executing olsmt, you can supply a value
for oc0.row that works on your system.

The answers may vary slightly due to
rounding error differences when a
different number of rows is read per
iteration. You can use oc0.row to
control this if you want to get exactly the
same rounding effects between several
runs.

35-1130

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1131

oc0.vpad scalar, default 1.

If 0, internally created variable names are
not padded to the same length (e.g. ''X1,
X2,..., X10'').

If 1, they are padded with zeros to the
same length (e.g., ''X01, X02,..., X10'').

oc0.output scalar, default 1.
1 print the statistics.
0 do not print statistics.

oc0.res scalar, default 0.
1 compute residuals

(resid) and Durbin-
Watson statistic
(dwstat.)

0 oout.resid = 0,
oout.dwstat = 0.

oc0.rnam string, default ''_olsmtres''.

If the data is taken from a data set, a new
data set will be created for the residuals,
using the name in oc0.rnam.

oc0.maxvec scalar, default 20000.

The largest number of elements allowed
in any one matrix.

oc0.fcmptol scalar, default 1e-12.

Tolerance used to fuzz the comparison
operations to allow for round off error.

oc0.alg string, default ''cholup''.

Command Reference

C
om

m
and

R
eference

Selects the algorithm used for computing
the parameter estimates. The default
Cholesky update method is more
computationally efficient. However,
accuracy can suffer for poorly
conditioned data. For higher accuracy set
oc0.alg to either qr or svd.
qr Solves for the parameter

estimates using a qr
decomposition.

svd Solves for the paramer
estimates using a singular
value decomposition.

dataset string, name of data set or null string.

If dataset is a null string, the procedure assumes that
the actual data has been passed in the next two arguments.

depvar If dataset contains a string:
string, name of dependent variable
- or -
scalar, index of dependent variable. If scalar 0, the last
column of the data set will be used.
If dataset is a null string or 0:
Nx1 vector, the dependent variable.

indvars If dataset contains a string:
Kx1 character vector, names of independent variables
- or -
Kx1 numeric vector, indices of independent variables.
These can be any size subset of the variables in the data
set and can be in any order. If a scalar 0 is passed, all
columns of the data set will be used except for the one

35-1132

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1133

used for the dependent variable.

If dataset is a null string or 0:
NxK matrix, the independent variables.

formula String, formula string of the model.

E.g "y ~ X1 + X2", 'y' is the name of dependent variable,
'X1' and 'X2' are names of independent variables;

E.g. "y ~ ." , '.' means including all variables except
dependent variable 'y';

E.g "y ~ -1 + X1 + X2", '-1' means no intercept model.

Output

oou
t

instance of an olsmtOut structure containing the following
members:
oout.vnam (K+2)x1 or (K+1)x1 character vector, the

variable names used in the regression. If a
constant term is used, this vector will be
(K+2)x1, and the first name will be
"CONSTANT". The last name will be the
name of the dependent variable.

oout.m MxM matrix, where M = K+2, the moment
matrix constructed by calculating X' X where
X is a matrix containing all useable
observations and having columns in the order:

1.0 indvars depvar
(constan

t)
(independen
t variables)

(dependent
variable)

A constant term is always used in computing m.
oout.b Dx1 vector, the least squares estimates of

Command Reference

C
om

m
and

R
eference

parameters

Error handling is controlled by the low order bit of
the trap flag.
trap 0 terminate with error message
trap 1 return scalar error code in b

30 system singular
31 system

underdetermine
d

32 same number of
columns as
rows

33 too many
missings

34 file not found
35 no variance in

an independent
variable

The system can become underdetermined if you use listwise deletion
and have missing values. In that case, it is possible to skip so many
cases that there are fewer useable rows than columns in the data set.

oout.stb Kx1 vector, the standardized coefficients.
oout.vc DxD matrix, the variance-covariance matrix of

estimates.
oout.stder
r

Dx1 vector, the standard errors of the estimated
parameters.

oout.sigma scalar, standard deviation of residual.
oout.cx (K+1)x(K+1) matrix, correlation matrix of

35-1134

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1135

variables with the dependent variable as the last
column.

oout.rsq scalar, R square, coefficient of determination.
oout.resid residuals, oout.resid = y - x *

oout.b.
If oc0.olsres = 1, the residuals will be
computed.

If the data is taken from a data set, a new data set
will be created for the residuals, using the name in
oc0.rnam. The residuals will be saved in this
data set as an Nx1 column. The oout.resid
return value will be a string containing the name
of the new data set containing the residuals. If the
data is passed in as a matrix, the oout.resid
return value will be the Nx1 vector of residuals.

oout.dwsta
t

scalar, Durbin-Watson statistic.

Remarks

l For poorly conditioned data the default setting for oc0.alg, using the Cholesky
update, may produce only four or five digits of accuracy for the parameter
estimates and standard error. For greater accuracy, use either the qr or
singular value decomposition algorithm by setting oc0.alg to qr or svd. If
you are unsure of the condition of your data, set oc0.alg to qr.

l No output file is modified, opened, or closed by this procedure. If you want
output to be placed in a file, you need to open an output file before calling
olsmt.

l The supported data set types are CSV, XLS, XLSX, HDF5, FMT, DAT.
l For HDF5 file, the dataset must include file schema and both file name and
data set name must be provided, e.g. olsmt("h5://testdata.h5/mydata",
formula).

Command Reference

C
om

m
and

R
eference

Examples

Example 1 Use data matrices

struct olsmtControl oc0;
struct olsmtOut oOut;
oc0 = olsmtControlCreate;

y = { 2,
3,
1,
7,
5 };

x = { 1 3 2,
2 3 1,
7 1 7,
5 3 1,
3 5 5 };

output file = olsmt.out reset;
oOut = olsmt(oc0,0,y,x);
output off;

In this example, the output from olsmt is put into a file called olsmt.out as well
as being printed to the window. This example will compute a least squares regression
of y on x.

Example 2 Use a data set and variable names

struct olsmtControl oc0;
struct olsmtOut oOut;
oc0 = olsmtControlCreate;

data = "credit.dat";
depvar = "Limit";
string indvars = { "Balance", "Income", "Age" };

35-1136

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1137

oc0.res = 1;
output file = lpt1 on;
oOut = olsmt(oc0, data, depvar, indvars);
output off;

In this example, the data set "credit.dat" is used to compute a regression. The depend-
ent variable is Limit. The independent variables are: Balance, Income, and Age.
The residuals and Durbin-Watson statistic will be computed. The output will be sent to
the printer as well as the window and the returned values are assigned to variables.

Example 3 Use a data set and variable indices

struct olsmtControl oc0;
struct olsmtOut oOut;
oc0 = olsmtControlCreate;

data = "credit.dat";
depvar = 2;

indepvar = {11,1, 5};

oc0.res = 1;

oOut = olsmt(oc0, data, depvar, indepvar);

In this example, the data set "credit.dat" is used to compute a regression. The depend-
ent variable is Limit which is the second column in the data set. The independent
variables are: Balance, Income, and Age. They are the 11, 1 and 5 columns in the
data set. The residuals and Durbin-Watson statistic will be computed. The output is :

Valid cases: 400 Dependent variable:
Limit

Missing cases: 0 Deletion method:
None

Total SS: 2125784986.000 Degrees of freedom:

Command Reference

C
om

m
and

R
eference

396
R-squared: 0.939 Rbar-squared:

0.939
Residual SS: 129727134.947 Std error of est:

572.358
F(3,396): 2031.029 Probability of F:

0.000
Durbin-Watson: 1.953

Standard Prob Standardized Cor with
Variable Estimate Error t-value >|t|
Estimate Dep Var

CONSTANT 1521.904666 102.228802 14.887240 0.000

--- ---
Balance 3.168467 0.070635 44.856923 0.000
0.631111 0.861697
Income 32.566995 0.935925 34.796581 0.000
0.497271 0.792088
Age 1.677855 1.694288 0.990301 0.323
0.012539 0.100888

Example 4 Use a data set and a formula string

struct olsmtControl oc0;
struct olsmtOut oOut;
oc0 = olsmtControlCreate;

data = "credit.dat";
formula = "Limit ~ Balance + Income + Age" };
oc0.res = 1;

oOut = olsmt(oc0, data, formula);

35-1138

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1139

In this example, the data set "credit.dat" is used to compute a regression. The depend-
ent variable is Limit. The independent variables are: Balance, Income, and Age.
The residuals and Durbin-Watson statistic will be computed. The output is :

Valid cases: 400 Dependent variable:
Limit

Missing cases: 0 Deletion method:
None

Total SS: 2125784986.000 Degrees of freedom:
396

R-squared: 0.939 Rbar-squared:
0.939

Residual SS: 129727134.947 Std error of est:
572.358

F(3,396): 2031.029 Probability of F:
0.000

Durbin-Watson: 1.953

Standard Prob Standardized Cor with
Variable Estimate Error t-value >|t|
Estimate Dep Var

CONSTANT 1521.904666 102.228802 14.887240 0.000

--- ---
Balance 3.168467 0.070635 44.856923 0.000
0.631111 0.861697
Income 32.566995 0.935925 34.796581 0.000
0.497271 0.792088
Age 1.677855 1.694288 0.990301 0.323
0.012539 0.100888

Source

olsmt.src

Command Reference

C
om

m
and

R
eference

See Also

olsmtControlCreate, olsqrmt, Formula String

olsmtControlCreate

Purpose

Creates default olsmtControl structure.

Include

olsmt.sdf

Format

c = olsmtControlCreate();

Output

c instance of an olsmtControl structure with members set
to default values.

Example

Since structures are strongly typed in GAUSS, each structure must be declared before
it can be used.

// declare 'ctl' as an olsmtControl structure
struct olsmtControl ctl;

// initialize structure 'ctl'
ctl = olsmtControlCreate;

35-1140

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1141

The members of the olsmtControl structure and their default values are described in
the manual entry for olsmt.

Source

olsmt.src

See Also

olsmt

olsqr

Purpose

Computes OLS coefficients using QR decomposition.

Format

b = olsqr(y, x);

Input

y Nx1 vector containing dependent variable.
x NxP matrix containing independent variables.

Output

b Px1 vector of least squares estimates of regression of y
on x. If x does not have full rank, then the coefficients
that cannot be estimated will be zero.

Command Reference

C
om

m
and

R
eference

Remarks

This provides an alternative to y/x for computing least squares coefficients.

This procedure is slower than the / operator. However, for near singular matrices it
may produce better results.

olsqr handles matrices that do not have full rank by returning zeros for the coef-
ficients that cannot be estimated.

Example

A = rndn(4,4);
b = rndn(4,1);
x = olsqr(b,A);

See Also

ols, olsqr2, orth, qqr

olsqr2

Purpose

Computes OLS coefficients, residuals, and predicted values using the QR decom-
position.

Format

{ b, r, p } = olsqr2(y, x);

Input

y Nx1 vector containing dependent variable.
x NxP matrix containing independent variables.

35-1142

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1143

Output

b Px1 vector of least squares estimates of regression of y
on x. If x does not have full rank, then the coefficients
that cannot be estimated will be zero.

r Px1 vector of residuals. (r = y - x*b)
p Px1 vector of predicted values. (p = x*b)

Remarks

This provides an alternative to y/x for computing least squares coefficients.

This procedure is slower than the / operator. However, for near singular matrices, it
may produce better results.

olsqr2 handles matrices that do not have full rank by returning zeros for the coef-
ficients that cannot be estimated.

See Also

olsqr, orth, qqr

olsqrmt

Purpose

Computes OLS coefficients using QR decomposition.

Format

b = olsqrmt(y, x, tol);

Command Reference

C
om

m
and

R
eference

Input

y Nx1 vector containing dependent variable.
x NxP matrix containing independent variables.
tol scalar, the tolerance for testing if diagonal elements are

approaching zero. The default value is 10-14.

Output

b Px1 vector of least squares estimates of regression of y
on x. If x does not have full rank, then the coefficients
that cannot be estimated will be zero.

Remarks

This provides an alternative to y/x for computing least squares coefficients.

This procedure is slower than the / operator. However, for near singular matrices it
may produce better results.

olsqrmt handles matrices that do not have full rank by returning zeros for the coef-
ficients that cannot be estimated.

Source

olsmt.src

See Also

olsmt, olsqr2

35-1144

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1145

ones

Purpose

Creates a matrix of ones.

Format

y = ones(r, c);

Input

r scalar, number of rows.
c scalar, number of columns.

Output

y r x c matrix of ones.

Remarks

Noninteger arguments will be truncated to an integer.

Example

x = ones(3,2);

The code above assigns x to be equal to:

1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000

Command Reference

C
om

m
and

R
eference

See Also

zeros, eye

open

Purpose

Opens an existing GAUSS data file.

Format

open fh = filename;
open fh = filename for mode;
open fh = filename for mode varindxi offs;

Input

filename literal or ^string.

filename is the name of the file on the disk. The name
can include a path if the directory to be used is not the
current directory. This filename will automatically be
given the extension .dat. If an extension is specified, the
.dat will be overridden. If the file is an .fmt matrix
file, the extension must be explicitly given. If the name of
the file is to be taken from a string variable, the name of
the string must be preceded by the ^ (caret) operator.

mode literal, the modes supported with the optional for
subcommand are:
read This is the default file opening mode

and will be the one used if none is
specified. Files opened in this mode
cannot be written to. The pointer is set

35-1146

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1147

to the beginning of the file and the
writer function is disabled for files
opened in this way. This is the only
mode available for matrix files
(.fmt), which are always written in
one piece with the save command.

append Files opened in this mode cannot be
read. The pointer will be set to the end
of the file so that a subsequent write to
the file with the writer function will
add data to the end of the file without
overwriting any of the existing data in
the file. The readr function is
disabled for files opened in this way.
This mode is used to add additional
rows to the end of a file.

update Files opened in this mode can be read
from and written to. The pointer will
be set to the beginning of the file. This
mode is used to make changes in a file.

offs scalar, offset added to ''index variables.''

The optional varindxi subcommand tells GAUSS to
create a set of global scalars that contain the index
(column position) of the variables in a GAUSS data file.
These ''index variables'' will have the same names as the
corresponding variables in the data file but with ''i'' added
as a prefix. They can be used inside index brackets, and
with functions like submat to access specific columns of
a matrix without having to remember the column position.

Command Reference

C
om

m
and

R
eference

The optional offs argument is an offset that will be
added to the index variables. This is useful if data from
multiple files are concatenated horizontally in one matrix.
It can be any scalar expression. The default is 0.

The index variables are useful for creating submatrices of
specific variables without requiring that the positions of the
variables be known. For instance, if there are two
variables, xvar and yvar in the data set, the index
variables will have the names ixvar, iyvar. If xvar is
the first column in the data file, and yvar is the second,
and if no offset, offs, has been specified, then ixvar
and iyvar will equal 1 and 2 respectively. If an offset of
3 had been specified, then these variables would be
assigned the values 4 and 5 respectively.

The varindxi option cannot be used with .fmt matrix
files because no column names are stored with them.

If varindxi is used, GAUSS will ignore the Undefined
symbol error for global symbols that start with ''i''. This
makes it much more convenient to use index variables
because they don't have to be cleared before they are
accessed in the program. Clearing is otherwise necessary
because the index variables do not exist until execution
time when the data file is actually opened and the names
are read in from the header of the file. At compile time a
statement like: y=x[.,ixvar]; will be illegal if the
compiler has never heard of ixvar. If varindxi is
used, this error will be ignored for symbols beginning with
''i''. Any symbols that are accessed before they have been
initialized with a real value will be trapped at execution
time with a Variable not initialized error.

35-1148

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1149

Output

fh scalar, file handle.

fh is the file handle which will be used by most
commands to refer to the file within GAUSS. This file
handle is actually a scalar containing an integer value that
uniquely identifies each file. This value is assigned by
GAUSS when the open command is executed. If the file
was not successfully opened, the file handle will be set to -
1.

Remarks

The file must exist before it can be opened with the open command. To create a new
file, see create or save.

A file can be opened simultaneously under more than one handle. See the second
example following.

If the value that is in the file handle when the open command begins to execute
matches that of an already open file, the process will be aborted and a File already
open message will be given. This gives you some protection against opening a second
file with the same handle as a currently open file. If this happens, you would no longer
be able to access the first file.

It is important to set unused file handles to zero because both open and create
check the value that is in a file handle to see if it matches that of an open file before
they proceed with the process of opening a file. This should be done with close or
closeall.

Example

fname = "/data/rawdat";
open dt = ^fname for append;

Command Reference

C
om

m
and

R
eference

if dt == -1;
print "File not found";
end;

endif;
y = writer(dt,x);
if y /= rows(x);

print "Disk Full";
end;

endif;

dt = close(dt);

In the example above, the existing data set /data/rawdat.dat is opened for
appending new data. The name of the file is in the string variable fname. In this
example the file handle is tested to see if the file was opened successfully. The matrix
x is written to this data set. The number of columns in x must be the same as the num-
ber of columns in the existing data set. The first row in x will be placed after the last
row in the existing data set. The writer function will return the number of rows actu-
ally written. If this does not equal the number of rows that were attempted, then the
disk is probably full.

open fin = mydata for read;
open fout = mydata for update;

do until eof(fin);
x = readr(fin,100);
x[.,1 3] = ln(x[.,1 3];
call writer(fout,x);

endo;

closeall fin,fout;

In the above example, the same file, mydata.dat, is opened twice with two dif-
ferent file handles. It is opened for read with the handle fin, and it is opened for

35-1150

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1151

update with the handle fout. This will allow the file to be transformed in place
without taking up the extra space necessary for a separate output file. Notice that fin
is used as the input handle and fout is used as the output handle. The loop will ter-
minate as soon as the input handle has reached the end of the file. Inside the loop the
file is read into a matrix called x using the input handle, the data are transformed
(columns 1 and 3 are replaced with their natural logs), and the transformed data is writ-
ten back out using the output handle. This type of operation works fine as long as the
total number of rows and columns does not change.

The following example assumes a data file named dat1.dat that has the variables:
visc, temp, lub, and rpm:

open f1 = dat1 varindxi;
dtx = readr(f1,100);
x = dtx[.,irpm ilub ivisc];
y = dtx[.,itemp];
call seekr(f1,1);

In this example, the data set dat1.dat is opened for reading (the .dat and the for
read are implicit). varindxi is specified with no constant. Thus, index variables
are created that give the positions of the variables in the data set. The first 100 rows of
the data set are read into the matrix dtx. Then, specified variables in a specified
order are assigned to the matrices x and y using the index variables. The last line uses
the seekr function to reset the pointer to the beginning of the file.

open q1 = dat1 varindx;
open q2 = dat2 varindx colsf(q1);
nr = 100;
y = readr(q1,nr)~readr(q2,nr);
closeall q1,q2;

In this example, two data sets are opened for reading and index variables are created
for each. A constant is added to the indices for the second data set (q2), equal to the
number of variables (columns) in the first data set (q1). Thus, if there are three vari-
ables x1, x2, x3 in q1, and three variables y1, y2, y3 in q2, the index variables

Command Reference

C
om

m
and

R
eference

that were created when the files were opened would be ix1, ix2, ix3, iy1, iy2,
iy3. The values of these index variables would be 1, 2, 3, 4, 5, 6, respectively. The
first 100 rows of the two data sets are read in and concatenated to produce the matrix
y. The index variables will thus give the correct positions of the variables in y.

open fx = x.fmt;
rf = rowsf(fx);
sampsize = round(rf*0.1);
rndsmpx = zeros(sampsize,colsf(fx));

for(1, sampsize, 1);
r = ceil(rndu(1,1)*rf);
call seekr(fx,r);
rndsmpx[i,.] = readr(fx,1);

endfor;

fx = close(fx);

In this example, a 10% random sample of rows is drawn from the matrix file x.fmt
and put into the matrix rndsmpx. Note that the extension .fmt must be specified
explicitly in the open statement. The rowsf command is used to obtain the number
of rows in x.fmt. This number is multiplied by 0.10 and the result is rounded to the
nearest integer; this yields the desired sample size. Then random integers (r) in the
range 1 to rf are generated. seekr is used to locate to the appropriate row in the mat-
rix, and the row is read with readr and placed in the matrix rndsmpx. This is con-
tinued until the complete sample has been obtained.

See Also

dataopen, create, close, closeall, readr, writer, seekr, eof

optn, optnevn

Purpose

Returns optimal matrix dimensions for computing FFT's.

35-1152

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1153

Format

n = optn(n0);
n = optnevn(n0);

Input

n0 scalar, the length of a vector or the number of rows or
columns in a matrix.

Output

n scalar, the next optimal size for the given dimension for
computing an FFT or RFFT. n > n0.

Remarks

optn and optnevn determine optimal matrix dimensions for computing FFT's. The
Temperton FFT routines (see table following) can handle any matrix whose dimensions
can be expressed as:

2px3qx5rx7s

where p, q and r are nonnegative integers and s is equal to 0 or 1.

with one restriction: the vector length or matrix column size must be even (p must be
positive) when computing RFFT's.

fftn, etc., pad matrices to the next allowable dimensions; however, they generally
run faster for matrices whose dimensions are highly composite numbers, that is,
products of several factors (to various powers), rather than powers of a single factor.
For example, even though it is bigger, a 33600x1 vector can compute as much as 20%
faster than a 32768x1 vector, because 33600 is a highly composite number, 26 * 3 * 52
* 7, whereas 32768 is a simple power of 2, 215. optn and optnevn are provided so

Command Reference

C
om

m
and

R
eference

you can take advantage of this fact by hand-sizing matrices to optimal dimensions
before computing the FFT.

Use the following table to determine what to call for a given function and matrix:

FFT Vector Matrix Matrix
Function Length Rows Columns
fftn optn optn optn
rfftn optnevn optn optnevn
rfftnp optnevn optn optnevn

Example

n = optn(231);

The above code assigns n to be equal to 240.

See Also

fftn, nextn, nextnevn, rfftn, rfftnp

orth

Purpose

Computes an orthonormal basis for the column space of a matrix.

Format

y = orth(x);

Input

x NxK matrix.

35-1154

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1155

Global Input

_
orthtol

scalar, the tolerance for testing if diagonal elements are
approaching zero. The default is 1.0e-14.

Output

y NxL matrix such that y'y = eye(L) and whose
columns span the same space as the columns of x; L is
the rank of x.

Example

x = { 6 5 4,
2 7 5 };

y = orth(x);

After the code above:

y = -0.58123819 -0.81373347 y'y = 1 0
-0.81373347 0.58123819 0 1

Source

qqr.src

See Also

qqr, olsqr

Command Reference

C
om

m
and

R
eference

output

Purpose

This command makes it possible to direct the output of print statements to two
different places simultaneously. One output device is always the window or stand-
ard output. The other can be selected by the user to be any disk file or other suit-
able output device such as a printer.

Format

output file=filename
output file=filename [on|off|reset];

Input

filename literal or ^string.

The file=filename subcommand selects the file or
device to which output is to be sent.

If the name of the file is to be taken from a string variable,
the name of the string must be preceded by the ^ (caret)
operator.

The default file name is output.out.
on, off,
reset

literal, mode flag:

on opens the auxiliary output file or device
and causes the results of all print
statements to be sent to that file or device.
If the file already exists, it will be opened
for appending. If the file does not
already exist, it will be created.

35-1156

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1157

off closes the auxiliary output file and turns
off the auxiliary output.

reset similar to the on subcommand, except
that it always creates a new file. If the file
already exists, it will be destroyed and a
new file by that name will be created. If it
does not exist, it will be created.

Remarks

After you have written to an output file you have to close the file before you can print
it or edit it with the GAUSS editor. Use

output off;

The selection of the auxiliary output file or device remains in effect until a new selec-
tion is made, or until you get out of GAUSS. Thus, if a file is named as the output
device in one program, it will remain the output device in subsequent programs until a
new file=filename subcommand is encountered.

The command

output file=filename;

will select the file or device but will not open it. A subsequent output on or out-
put reset will open it and turn on the auxiliary output.

The command output off will close the file and turn off the auxiliary output. The
filename will remain the same. A subsequent output on will cause the file to be
opened again for appending. A subsequent output reset will cause the existing
file to be destroyed and then recreated and will turn on the auxiliary output.

The command output by itself will cause the name and status (i.e., open or closed)
of the current auxiliary output file to be printed to the window.

Command Reference

C
om

m
and

R
eference

The output to the console can be turned off and on using the screen off and
screen on commands. Output to the auxiliary file or device can be turned off or on
using the output off or output on command. The defaults are screen on
and output off.

The auxiliary file or device can be closed by an explicit output off statement, by
an end statement, or by an interactive new statement. However, a new statement at
the beginning of a program will not close the file. This allows programs with new state-
ments in them to be run without reopening the auxiliary output file.

If a program sends data to a disk file, it will execute much faster if the window is off.

The outwidth command will set the line width of the output file. The default is 80.

Example

output file = out1.out on;

This statement will open the file out1.out and will cause the results of all sub-
sequent print statements to be sent to that file. If out1.out already exists, the
new output will be appended.

output file = out2.out;
output on;

This is equivalent to the previous example.

output reset;

This statement will create a new output file using the current filename. If the file
already exists, any data in it will be lost.

output file = mydata.asc reset;
screen off;
format /m1/rz 1,8;
open fp = mydata;

35-1158

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1159

do until eof(fp);
print readr(fp,200);;

endo;

fp = close(fp);
end;

The program above will write the contents of the GAUSS file mydata.dat into an
ASCII file called mydata.asc. If there had been an existing file by the name of
mydata.asc, it would have been overwritten.

The /m1 parameter in the format statement in combination with the ;; at the end of
the print statement will cause one carriage return/line feed pair to be written at the
beginning of each row of the output file. There will not be an extra line feed added at
the end of each 200 row block.

The end statement above will automatically perform output off and screen
on.

See Also

outwidth, screen, end, new

outtyp (dataloop)

Purpose

Specifies the precision of the output data set.

Format

outtyp num_constant;

Command Reference

C
om

m
and

R
eference

Input

num_
constant

scalar, precision of output data set.

Remarks

num_constant must be 2, 4, or 8, to specify integer, single precision, or double pre-
cision, respectively.

If outtyp is not specified, the precison of the output data set will be that of the input
data set. If character data is present in the data set, the precision will be forced to
double.

Example

outtyp 8;

outwidth

Purpose

Specifies the width of the auxiliary output.

Format

outwidth n;

Input

n scalar, width of auxilary output.

35-1160

Command Reference

C
om

m
an
d
R
ef
er
en
ce

35-1161

Remarks

n specifies the width of the auxiliary output in columns (characters). After printing n
characters on a line, GAUSS will output a line feed.

If a matrix is being printed, the line feed sequence will always be inserted between
separate elements of the matrix rather than being inserted between digits of a single
element.

n may be any scalar-valued expressions in the range of 2-256. Nonintegers will be trun-
cated to an integer. If 256 is used, no additional lines will be inserted.

The default is setting is 256.

Example

outwidth 132;

This statement will change the auxiliary output width to 132 columns.

See Also

output, print

Command Reference

C
om

m
and

R
eference

p

pacf

Purpose

Computes sample partial autocorrelations.

Format

rk = pacf(y, k, d);

Input

y Nx1 vector, data.
k scalar, maximum number of partial autocorrelations to

compute.
d scalar, order of differencing.

Output

rk Kx1 vector, sample partial autocorrelations.

Example

Example 1

A sample partial autocorrelation function example.

//Create short time-series column vector

35-1162

pacf

p

35-1163

x = { 12.92,
14.28,
13.31,
13.34,
12.71,
13.08,
11.86,
9.000,
8.190,
7.970,
8.350,
8.200,
8.120,
8.390,
8.660 };

//Maximum number of lags
k = 4;

//Order of differencing
d = 1;

//Calculate and print result of partial autocorrelation
function
rk = pacf(x,k,d);

print rk;

The code above produces the following output:

0.15488076
-0.035928234
-0.17063786
0.089875096

pacf

p

Plot the PACF results with plotBar. Passing in 0 as the first input tells GAUSS to
create a sequential series from 1 to the number of elements in rk as the x-tic labels.

plotBar(0,rk);

You can add labels for x-axis and y-axis interactively on the Graphics Page by select-
ing "View->Graph Settings" from the main menu. The plot is shown below:

Example 2

Calculate the partial autocorrelation function (PACF) and plot the results for "beef_
prices" data.

//Clear out variables in GAUSS workspace

35-1164

pacf

p

35-1165

new;

//Create file name with full path
file = getGAUSSHome() $+ "examples/beef_prices.csv";

//Import data set starting with row 2 and column 2
beef = csvReadM(file,2,2);

//Max lags
k = 10;

//Order of differencing
d = 0;

//Call pacf function
beef_pacf = pacf(beef, k, d);

Creat a time series plot and sample partial autocorrelation (PACF) plot based on the
beef and beef_pacf variables created above:

//Time series plot
//Declare a plotControl structure
struct plotControl ctl;
ctl = plotGetDefaults("xy");

//Make a 1 by 2 plot with the time series
//plot in the [1,1] location
plotLayout(1,2,1);

//Labels and format settings for 'beef' matrix plot
plotSetYLabel(&ctl, "cents/lb");
plotSetXLabel(&ctl, "Year");
plotSetXTicLabel(&ctl, "YYYY");
plotSetXTicInterval(&ctl, 120, 199501);

pacf

p

//Time plot with plotTS function
plotTS(ctl, 1992, 12, beef);

//Making a 1 by 2 plot, the second plot is the PACF plot
plotLayout(1,2,2);

//ACF plot
//Fill 'ctl' structure with defaults settings for bar plots
ctl = plotGetDefaults("bar");

//Setting labels and format based on 'beef_acf' matrix
plotSetYLabel(&ctl, "PACF");
plotSetXLabel(&ctl, "Lag");
plotSetXTicInterval(&ctl, 1, 5);

//PACF plot with plotBar function
plotBar(ctl, seqa(1,1,k), beef_pacf);

You can use 'Add Text' to type 'Beef Prices' as the title in the graphics window. The
plot is:

35-1166

pacf

p

35-1167

Example 3

Compare ACF and PACF for "cow" data.

new;
cls;

file = getGAUSSHome() $+ "examples/cows.fmt";

//Import '.fmt' data
load data = ^file;

//Max lags
k = 10;

//Order of differencing
d = 0;

//call pacf function

pacf

p

data_pacf = pacf(data, k, d);

//call acf function
data_acf = acf(data, k, d);

In this example, we compute the ACF and PACF for cow's temperature and save them
in data_acf and data_pacf.
The following code plot autpcorrelation (ACF) and sample partial autocorrelation
(PACF) :

//Compare ACF and PACF for cow's temperature data
//Create sequential numbers
years = seqa(1, 1, rows(data));

//Declare a plotControl structure
struct plotControl cow_ctl;
cow_ctl = plotGetDefaults("xy");

//Set plot title for top graph
plotSetTitle(&cow_ctl, "Cow Temperature");

//Labels and format setting based on 'data_acf' matrix
plotSetYLabel(&cow_ctl, "Temp");
plotSetXLabel(&cow_ctl, "Year");

//Making a 2 by 1 plot, the first plot is the time plot
plotLayout(2,1,1);

//Time plot
plotXY(cow_ctl,years, data);

//Change type of plotControl struct
cow_ctl = plotgetdefaults("bar");

//Setting labels and format based on 'data_pacf' matrix

35-1168

pacf

p

35-1169

plotSetYLabel(&cow_ctl, "ACF/PACF");
plotSetXLabel(&cow_ctl, "Lag");

//Place the 2nd plot in the second cell of a 2 by 1 grid
plotLayout(2,1,2);

//ACF plot
plotBar(cow_ctl, seqa(1,1,k), data_acf);

//PACF plot
plotAddBar(seqa(1,1,k), data_pacf);

//Clear 2 by 1 plot layout for next plots
plotClearLayout();

The plot produced by the code above should look like this:

pacf

p

35-1170

pacf

p

35-1171

Source

tsutil.src

See Also

acf

packedToSp

Purpose

Creates a sparse matrix from a packed matrix of non-zero values and row and
column indices.

Format

y = packedToSp(r, c, p);

Input

r scalar, rows of output matrix.
c scalar, columns of output matrix.
p Nx3 or Nx4 matrix, containing non-zero values and

row and column indices.

Output

y r x c sparse matrix.

Remarks

If p is Nx3, y will be a real sparse matrix. Otherwise, if p is Nx4, y will be

packedToSp

p

complex.

The format for p is as follows:

If p is Nx3:

Column 1 Column 2 Column 3
non-zero values row indices column indices

If p is Nx4:

Column 1 Column 2 Column 3 Column 4
real non-zero
values

imaginary non-
zero values

row indices column
indices

Note that spCreate may be faster.

Since sparse matrices are strongly typed in GAUSS, y must be defined as a sparse
matrix before the call to packedToSp.

Example

//Declare 'y' to be a sparse matrx
sparse matrix y;

//Create a 15x10 matrix 'y' in which:
//y[2,4] = 1.1; y[5,1] = 2.3; y[8,9] = 3.4;
//y[13,5] = 4.2
//all other values in 'y' will be zeros
p = { 1.1 2 4, 2.3 5 1, 3.4 8 9, 4.2 13 5 };
y = packedToSp(15,10,p);

After the code above, y is a sparse matrix, containing the following non-zero values:

35-1172

packedToSp

p

35-1173

Non-zero value Index

1.1 (2,4)
2.3 (5,1)
3.4 (8,9)
4.2 (13,5)

See Also

spCreate, denseToSp

packr

Purpose

Deletes the rows of a matrix that contain any missing values.

Format

y = packr(x);

Input

x NxK matrix.

Output

y LxK submatrix of x containing only those rows that do
not have missing values in any of their elements.

Remarks

This function is useful for handling missing values by "listwise deletion," particularly

packr

p

prior to using the / operator to compute least squares coefficients.

If all rows of a matrix contain missing values, packr returns a scalar missing value.
This can be tested for quickly with the scalmiss function.

Example

Example 1

//Set the rng seed for repeatable random numbers
rndseed 7342692;

//Create a 3x3 matrix of random integers between 1 and 10
x = ceil(rndu(3, 3) * 10);

//Turn all elements with a value of 8 into missing values
x2 = miss(ceil(rndu(3,3)*10),8);

//Remove all rows that contain missing values
y = packr(x2);

After the code above:

6 10 3 6 10 3
x = 8 7 8 x2 = . 7 . y = 6 10 3

8 6 7 . 6 7

Example 2

//Open a GAUSS data file for reading
open fp = mydata;
obs = 0;
sum = 0;

//Continue looping until the end of the file has been
//reached

35-1174

packr

p

35-1175

do until eof(fp);
//Read in 100 lines of the data file and remove any rows
//with missing values
x = packr(readr(fp,100));
//Check to see if 'packr' returned a missing value; if
//not, update 'obs' and 'sum'
if not scalmiss(x);

obs = obs + rows(x);
sum = sum + sumc(x);

endif;
endo;
mean = sum/obs;

In this example the sums of each column in a data file are computed as well as a count
of the rows that do not contain any missing values. packr is used to delete rows that
contain missings and scalmiss is used to skip the two sum steps if all the rows are
deleted for a particular iteration of the read loop. Then the sums are divided by the
number of observations to obtain the means.

See Also

scalmiss, miss, missrv

parse

Purpose

Parses a string, returning a character vector of tokens.

Format

tok = parse(str, delim);

parse

p

Input

str string consisting of a series of tokens and/or delimiters.
delim NxK character matrix of delimiters that might be found

in str.

Output

tok Mx1 character vector consisting of the tokens contained
in str. All tokens are returned; any delimiters found
in str are ignored.

Remarks

The tokens in str must be 8 characters or less in size. This is because they are
returned in a character vector in which each element is represented as a double pre-
cision value. If they are longer, the contents of tok is unpredictable. Use string arrays
to create arrays of text with elements longer than 8 characters.

Example

Example 1

names = "GDP;GNP;M1;M2";
namesVec = parse(names, ";");

//The '$' is used when printing character vectors
print $namesVec;

The code above will return:

GDP
GNP

35-1176

parse

p

35-1177

M1
M2

Example 2

obs = 1000;
names = "Age,Weight,Height";

//Create uniform random integers between 1 and 77
data1 = ceil(77 * rndu(obs,1));

//Create normal random integers centered at 100 with a
//standard deviation of 9
data2 = ceil(100 + 9*rndn(obs,1));

//Create uniform random numbers between 0 and 60
data3 = ceil(60 * rndu(obs,1));

//Horizontally concatenate data into 'obs'x3 matrix
data = data1~data2~data3;

//Print the data using the procedure below
printStats(names, data);

//Create procedure to take our data, calculate some basic
//stats and print them
proc (0) = printStats(names, data);

local title, vars, sepVars;

//Set to print with 6 spaces between numbers and 0
//digits after the decimal
format /rd 6,0;

//Create the titles to print for each column
title = parse("var,mean,max,min", ",");

parse

p

//Extract the substrings from 'names' into a character
//array using the comma as a separator between tokens
sepVars = parse(names, ",");
print "-----------------------------------";

//The '$' tells GAUSS to print as character data
print $title';
print "-----------------------------------"
//Loop through as many times as there are rows in
//'sepVars'
for i(1, rows(sepVars), 1);

//Two semi-colons at the end of a print statement
//prevents a new-line after the print
print $sepVars[i];;
print meanc(data[.,i]);;
print maxc(data[.,i]);;
print minc(data[.,i]);

endfor;
print "-----------------------------------";

endp;

The code above will produce output like this:

var mean max min

Age 38 77 1

Weight 101 135 75
Height 31 60 1

See Also

token

35-1178

parse

p

35-1179

pause

Purpose

Pauses for a specified number of seconds.

Format

pause(sec);

Input

sec scalar, seconds to pause.

Remarks

This function can be used to delay a program, allowing users time to view graphics
and/or data printed to the program output window.

Source

pause.src

See Also

wait

pdfBinomial

Purpose

Computes the binomial probability density function.

Format

p = pdfBinomial(successes,trials,prob);

pause

p

Input

successes NxK matrix, Nx1 vector or scalar. successes must
be a positive number and < trials

trials ExE conformable with successes. trials must be >
successes.

prob The probability of success on any given trial. ExE
conformable with successes. 0 < prob < 1.

Output

p The probability of the specified number of successes,
NxK matrix, Nx1 vector or scalar.

Example

A polling company randomly selects 1,024 prospective voters in a region where 55%
support their candidate. What is the probability that exactly 600 of those selected sup-
port their candidate?

p = pdfBinomial(600, 1024,0.55);

After running the code above, p is equal to:

0.0017226334

Continuing with the example above, what would be the probability of selecting the
same number of voters that support their candidate if their candidate's support in the
region was 50% or 60%?

p_support = { 0.5, 0.6 };
p = pdfBinomial(600, 1024, p_support);

After running the code above, p is equal to:

35-1180

pdfBinomial

p

35-1181

6.3351627e-09
0.016621105

Remarks

The probability density function for the binomial distribution is defined as:

where k is the number of successes, n is the number of trials and p is the probability
of success on each trial.

For invalid inputs, pdfBinomial will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the first
input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

See Also

cdfBinomial, cdfBinomialInv

pdfCauchy

Purpose

Computes the probability density function for the Cauchy distribution.

Format

y = pdfCauchy(x,mu,sigma);

pdfCauchy

p

Input

x NxK matrix, an Nx1 vector or scalar.
mu Location parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x.
sigma Scale parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x. sigma must be greater
than 0.

Output

y NxK matrix, Nx1 vector or scalar.

Remarks

The probability density function for the Cauchy distribution is defined as

See Also

cdfCauchy

pdfexp

Purpose

Computes the probability density function for the exponential distribution.

Format

y = pdfexp(x,a,b);

35-1182

pdfexp

p

35-1183

Input

x NxK matrix, Nx1 vector or scalar. x must be greater
than a.

a Location parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with x.

b Scalar, the scale parameter sometimes called beta. b
must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

Remarks

pdfExp calculates the probability density function for the two-parameter exponential
distribution, which is defined as

See Also

cdfexp

pdfGenPareto

Purpose

Computes the probability density function for the Generalized Pareto distribution.

Format

y = pdfGenPareto(x,a,sigma,k);

pdfGenPareto

p

Input

x NxK matrix, an Nx1 vector or scalar.
a Location parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x.
sigma Scale parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x. sigma must be greater
than 0.

k Shape parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with x.

Output

y NxK matrix, Nx1 vector or scalar.

Remarks

The probability density function for the Generalized Pareto distribution is defined as

See Also

cdfGenPareto

35-1184

pdfGenPareto

p

35-1185

pdfHyperGeo

Purpose

Computes the probability mass function for the hypergeometric distribution.

Format

p = pdfHyperGeo(x, m, k, n);

Input

x NxK matrix, Nx1 vector or scalar. x must be a positive
number and < m

m The size of the population from which draws will be
made. ExE conformable with x. m must be > x, k and
n.

k The number of marked items. ExE conformable with
x.

n The number of items drawn from the population. ExE
conformable with x. 0 < k < m.

Output

p The probability of drawing x marked items. NxK
matrix, Nx1 vector or scalar.

Example

You are given 50 hard drives, 4 of which are known to be bad. What is the probability
of drawing exactly 1 bad hard drive if you randomly select 6 drives?

pdfHyperGeo

p

p = pdfHyperGeo(1, 50, 4, 6);

After running the code above, p is equal to:

0.34504559

Continuing with the example above, what are the probabilities of drawing exactly 2 or
exactly 4 bad hard drives?

x = { 2, 4 };
p = pdfHyperGeo(x, 50, 4, 6);

After running the code above, p is equal to:

0.061615284
6.5132436e-05

Remarks

The probability density function for the hypergeometric distribution is defined as:

For invalid inputs, pdfHyperGeo will return a scalar error code which, when its
value is assessed by function scalerr, corresponds to the invalid input. If the first
input is out of range, scalerr will return a 1; if the second is out of range,
scalerr will return a 2; etc.

See Also

cdfHyperGeo, rndHyperGeo, pdfBinomial

35-1186

pdfHyperGeo

p

35-1187

pdfLaplace

Purpose

Computes the probability density function for the Laplace distribution.

Format

y = pdfLaplace(x,a,b);

Input

x NxK matrix, Nx1 vector or scalar.
a Scalar, location parameter.
b Scalar, scale parameter. b must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

Remarks

The probability density function for the Laplace distribution is defined as

See Also

cdfCauchy, pdfCauchy

pdfLaplace

p

pdflogistic

Purpose

Computes the probability density function for the logistic distribution.

Format

y = pdflogistic(x,a,b);

Input

x NxK matrix, an Nx1 vector or scalar.
a Location parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x.
b Scale parameter; NxK matrix, Nx1 vector or scalar,

ExE conformable with x. b must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

Remarks

The probability density function for the logistic distribution is defined as

See Also

cdflogistic

35-1188

pdflogistic

p

35-1189

pdfn

Purpose

Computes the standard Normal (scalar) probability density function.

Format

y = pdfn(x);

Input

x NxK matrix.

Output

y NxK matrix containing the standard Normal probability
density function of x.

Remarks

This does not compute the joint Normal density function. Instead, the scalar Normal
density function is computed element-by-element. y could be computed by the fol-
lowing GAUSS code:

y =(1/sqrt(2*pi))*exp(-(x.*x)/2);

Example

x = { -3, -2, 0, 2, 3 };
y = pdfn(x);

After the code above:

pdfn

p

0.0044318484
0.053990967

y = 0.39894228
0.053990967

0.0044318484

pdfPoisson

Purpose

Computes the Poisson probability mass function.

Format

p = pdfPoisson(x, lambda);

Input

x NxK matrix, Nx1 vector or scalar. x must be a positive
whole number.

lambda ExE conformable with x. The mean parameter.

Output

p NxK matrix, Nx1 vector or scalar.

Remarks

For invalid inputs, pdfPoisson will return a scalar error code which, when its value
is assessed by function scalerr, corresponds to the invalid input. If the first input is
out of range, scalerr will return a 1; if the second is out of range, scalerr will
return a 2; etc.

35-1190

pdfPoisson

p

35-1191

Example

Example 1: Basic example

p = pdfPoisson(190,200);

After the code above, p is equal to:

0.02243

Example 2: Vector input

events = { 170,
180,
190,
200 };

p = pdfPoisson(events,200);

After the code above, p is equal to:

0.00285
0.01056
0.02243
0.02820

Example 3: Vector Inputs

events = { 170,
180,
190,
200 };

lambda = { 180,
190,
200,
210 };

pdfPoisson

p

p = pdfPoisson(events,lambda);

After the code above, p is equal to:

0.02304
0.02274
0.02243
0.02214

See Also

cdfPoisson, cdfPoissonInv, rndPoisson

pdfRayleigh

Purpose

Computes the probability density function of the Rayleigh distribution.

Format

y = pdfRayleigh(x,b);

Input

x NxK matrix, an Nx1 vector or scalar. x must be greater
than 0.

b Scale parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with x. b must be greater than 0.

Output

y NxK matrix, Nx1 vector or scalar.

35-1192

pdfRayleigh

p

35-1193

Remarks

The probability density function of the Rayleigh distribution is defined as

See Also

cdfRayleighinv

pdfWeibull

Purpose

Computes the probability density function of a Weibull random variable.

Format

y = pdfWeibull(x,k,lambda);

Input

x NxK matrix, Nx1 vector or scalar. x must be greater
than 0.

k Shape parameter; NxK matrix, Nx1 vector or scalar,
ExE conformable with x. k must be greater than 0.

lambda Scale parameter; may be matrix, Nx1 vector or scalar,
ExE conformable with x. lambda must be greater
than 0.

pdfWeibull

p

Output

y NxK matrix, Nx1 vector or scalar.

Remarks

The probability density function of a Weibull random variable is defined as

See Also

cdfWeibull, cdfWeibullInv

pdfWishartInv

Purpose

Computes the probability density function of the inverse Wishart distribution.

Format

y = pdfWishartInv(IW, S, df);

Input

IW p x p positive definite matrix.
S p x p positive definite scale matrix.
df Scalar, degree of freedom.

35-1194

pdfWishartInv

p

35-1195

Output

y Scalar, probability density function.

Remarks

pdfWishartInv calculates the probability density function for the inverse Wishart
distribution, which is defined as

Example

new ;
cls ;
rndseed 2223;

x = {9.2517907 7.4283670,
7.4283670 10.503325 };

S = {1 .5, .5 1};

df = 3;

// pdf of inverse Wishart distribution
y = pdfWishartInv(x, S, df);

print y;

After above code,

6.0267322e-007

pdfWishartInv

p

See also

rndWishart, rndWishartInv

pi

Purpose

Returns the mathematical constant π.

Format

y = pi;

Output

y scalar, the value of π.

Example

//Print 14 digits and allow 16 digits worth of space for
//each printed number
format /rdn 16,14;
print pi;

will return:

3.14159265358979

35-1196

pi

p

35-1197

pinv

Purpose

Computes the Moore-Penrose pseudo-inverse of a matrix, using the singular value
decomposition. This pseudo-inverse is one particular type of generalized inverse.

Format

y = pinv(x);

Input

x NxM matrix.

Global Input

_svdtol scalar, any singular values less than _svdtol are
treated as zero in determining the rank of the input
matrix. The default value for _svdtol is 1.0e-13.

Output

y MxN matrix that satisfies the 4 Moore-Penrose
conditions:
 xyx = x
 yxy = y
 xy is symmetric
 yx is symmetric

pinv

p

Global Output

_svderr scalar, if not all of the singular values can be computed
_svderr will be nonzero.

Example

pinv can be used to solve an undertermined least squares problem.

//Create an underdetermined system of equations 'A'
A = rndn(4, 5);

//Create a right hand side
b = rndn(4,1);

if rank(A) < cols(A);
print "A does not have full rank, using pinv to solve";
Api = pinv(A);
x = Api*b;

else;
print "A has full rank, solve with '/' operator";
x = b/A;

endif;

Least squares problems with full rank can also be solved with the GAUSS functions:
ols, olsqr and olsqr2.

Source

svd.src

35-1198

pinv

p

35-1199

pinvmt

Purpose

Computes the Moore-Penrose pseudo-inverse of a matrix, using the singular value
decomposition. This pseudo-inverse is one particular type of generalized inverse.

Format

{ y, err } = pinvmt(x, tol);

Input

x NxM matrix.
tol scalar, any singular values less than tol are treated as

zero in determining the rank of the input matrix.

Output

y MxN matrix that satisfies the 4 Moore-Penrose
conditions:
 xyx = x
 yxy = y
 xy is symmetric
 yx is symmetric

err scalar, if not all of the singular values can be computed
err will be nonzero.

pinvmt can be used to solve an undertermined least squares problem.

tol = 1e-13;

//Create an underdetermined system of equations 'A'

pinvmt

p

A = rndn(4, 5);

//Create a right hand side
b = rndn(4,1);

if rank(A) < cols(A);
print "A does not have full rank, using pinvmt to

solve";
Api = pinvmt(A, tol);
x = Api*b;

else;
print "A has full rank, solve with '/' operator";
x = b/A;

endif;

Least squares problems with full rank can also be solved with the GAUSS functions:
ols, olsqr and olsqr2.

Source

svdmt.src

plotAddArea

Purpose

Adds a cumulative area plot to an existing graph.

Format

plotAddArea(myPlot, x, y);
plotAddArea(x, y);
plotAddArea(myPlot, x, y, base);
plotAddArea(x, y, base);

35-1200

plotAddArea

p

35-1201

Input

myPlot A plotControl structure.
x Nx1 vector containing the X coordinates.
y Nx1 or NxM matrix. Each column contains the height

for the corresponding section of the graph. If y contains
more than one column, each column will be stacked on
top of the previous column.

base Scalar optional argument. The height for the base of the
added area plot. The default value is zero.
plotAddArea does not yet support a vector input
for base.

Remarks

plotAddArea may only add curves to 2-D graphs.

This function will not change any of the current graph's settings other than to resize the
view as necessary to display the new curve.

Example

Creating confidence intervals with plotAddArea

//Create the 'x' and 'y' for the normal
//probability density function
x = seqa(-3.5, 0.1, 71);
y = pdfn(x);

//Create the 'x' and 'y' points
//for the left tail
edge = cdfni(0.05);
x_ci = selif(x, (x .< edge));
y_ci = y[1:rows(x_ci)];

plotAddArea

p

//Draw filled in left tail
plotArea(x_ci, y_ci);

//Create the 'x' and 'y' points
//for the right tail
edge = cdfni(0.95);
x_ci = selif(x, (x .> edge));
y_ci = y[rows(y)-rows(x_ci)+1:rows(y)];

//Add right tail to graph
plotAddArea(x_ci, y_ci);

//Add pdfn line
plotAddXY(x, y);

The code to create the graph below can be found in the file plotaddci.e in your
GAUSS examples directory.

35-1202

plotAddArea

p

35-1203

Figure 35.1: Creating confidence intervals with plotAddArea

See Also

plotAddBar, plotAddHist, plotAddHistF, plotAddHistP, plotAddPolar

plotAddArea

p

plotAddArrow

Purpose

Adds an arrow to an existing graph.

Format

plotAddArrow(myAnnotation, x_start, y_start, x_end, y_
end, head_size);
plotAddArrow(x_start, y_start, x_end, y_end, head_
size);

Input

myAnnotation Optional argument, an instance of a
plotAnnotation structure.

x_start Scalar or Nx1 vector, the X coordinate for the start
of each respective arrow.

y_start Scalar or Nx1 vector, the Y coordinate for the start
of each respective arrow.

x_end Scalar or Nx1 vector, the X coordinate for the end
of each respective arrow.

y_end Scalar or Nx1 vector, the Y coordinate for the end
of each respective arrow.

head_size 2x1 vector, the size of the arrowhead(s) in pixels.
The first element of head_size is the size for
head at the end of the arrow. The second element is
the size of the head at the start of the arrow.

Remarks

Please note that plotAddArrow will add arrows to existing graphs, it will not create

35-1204

plotAddArrow

p

35-1205

a new graph if one does not exist. plotAddArrow is not yet supported for surface
plots.

Examples

Example 1: Basic usage

x_start = 0.2;
y_start = 0.25;
x_end = 0.4;
y_end = 0.5;

//Set arrowhead at the end to 15 px
//No arrowhead at the beginning of the arrow
head_size = { 15, 0 };

//Add an arrow to graph
plotAddArrow(x_start, y_start, x_end, y_end, head_size);

Example 2: Add an arrow between points

//Draw random scatter plot
x = rndu(10,1);
y = rndu(10, 1);
plotScatter(x, y);

//Add arrow from the first point to the ninth point
plotAddArrow(x[1], y[1], x[9], y[9], 12);

See Also

plotAddTextbox, annotationGetDefaults, annotationSetLineColor

plotAddArrow

p

plotAddBar

Purpose

Adds a bar or a set of bars to an existing graph.

Format

plotAddBar(myPlot, val, ht);
plotAddBar(val, ht);

Input

myPlot A plotControl structure.
val Nx1 numeric vector, bar labels. If scalar 0, a sequence

from 1 to rows(ht) will be created.
ht NxK numeric vector, bar heights.

K overlapping or side-by-side sets of N bars will be
graphed.

Remarks

plotAddBar may only add bars to 2-D graphs.

This function will not change any of the current graph's settings other than to resize the
view as necessary to display the new curve.

See Also

plotAddHist, plotAddHistF, plotAddHistP, plotAddPolar, plotAddXY

35-1206

plotAddBar

p

35-1207

plotAddBox

Purpose

Adds a box graph to an existing graph.

Format

plotAddBox(myPlot, grp, y);
plotAddBox(grp, y);

Input

myPlot A plotControl structure.
grp 1xM vector. This contains the group numbers

corresponding to each column of y data. If scalar 0, a
sequence from 1 to cols(y) will be generated
automatically for the X axis.

y NxM matrix. Each column represents the set of y
values for an individual percentiles box symbol.

Remarks

plotAddBox may only add a box graph to 2-D graphs.

This function will not change any of the current graph's settings other than to resize the
view as necessary to display the new curve.

See Also

plotAddHist, plotAddHistF, plotAddHistP, plotAddPolar, plotAddXY

plotAddBox

p

plotAddErrorBar

Purpose

Adds an error bar or a set of bars to an existing 2-D graph.

Format

plotAddErrorBar(myPlot, x, y, err);
plotAddErrorBar(myPlot, x, y, lwr, uppr);
plotAddErrorBar(x, y, err);
plotAddErrorBar(x, y, lwr, uppr);

Input

myPlot Optional input, a
plotControl structure.

x Scalar, Nx1 or NxM
matrix. Each column
contains the X values for a
particular line.

y Scalar, Nx1 or NxM
matrix. Each column
contains the Y values for a
particular line.

err Scalar, Nx1 or NxM
matrix. Each column
contains the error values
for each Y column.

lwr Nx1 or NxM matrix. Each
column contains the lower
bar heights for assymetrical

35-1208

plotAddErrorBar

p

35-1209

error bars.
uppr Nx1 or NxM matrix. Each

column contains the upper
bar heights for assymetrical
error bars.

Examples

Example 1: Basic addition of error bars to scatter plot

new;

//Sequence 1, 2, 3...12
x = seqa(1, 1, 12);

//Create some random normal data, y ~ N(0, 1)
y = rndn(12,1);

//12x1 vector of all 1's
sd = ones(12,1);

//Draw basic scatter plot, using default settings
plotScatter(x, y);

//Add error bars with height of 1
plotAddErrorBar(x, y, sd);

The plot is

plotAddErrorBar

p

Example 2: Assymetrical error bars to plot median and range

new;

//Create the sequence 1, 2, 3...9
x = seqa(1, 1, 9);

//Create 9 gamma distributed column vectors
y = rndGamma(100, 9, 2, 4);

//Calculate medians of each column
med = median(y);

//Draw scatter plot of each median

35-1210

plotAddErrorBar

p

35-1211

plotScatter(x, med);

//Calculate the distance between the median
//and the min and max for each column
err_high = maxc(y) - med;
err_low = (med - minc(y));

//Add assymetrical error bars to span
//the range of each column
plotAddErrorBar(x, med, err_low, err_high);

The plot is

Example 3: Add error bars to XY plot, using plotControl structure

plotAddErrorBar

p

new;

//Create x values
x = seqa(0,1,11);

//Create y values
y = 10*rndn(11,1);

//Define plotControl Structure
struct plotControl myPlot;
myPlot = plotGetDefaults("xy");

//Set color for main line
plotSetLineColor(&myPlot, "steel blue");

//Plot line
plotXY(myPlot, x, y);

//Set error bar values
err = ones(11,1)*2;

//Set error bar color to be different than XY line
plotSetLineColor(&myPlot, "black");

//Add error bars
plotAddErrorBar(myPlot, x,y,err);

The plot is

35-1212

plotAddErrorBar

p

35-1213

Example 4: Add error bars to bar plot

new;

//Load 'Age' and 'Limit' variables
//into a 2 column matrix
file = getGAUSSHome() $+ "/examples/credit.dat";
data = loadd(file, "Age + Limit");

age = data[.,1];
limit = data[.,2];

num_ranges = 4;

plotAddErrorBar

p

age_ranges = { 20 40,
40 60,
60 80,

80 100 };

//Pre-allocate vector to hold means
//and standard deviation of the samples
mu = zeros(num_ranges,1);
s = zeros(num_ranges,1);

for i(1, num_ranges, 1);
// Get the index for different age level
level_idx = indexcat(age, age_ranges[i,.]');

// mean of limit for different age level
mu[i] = meanc(limit[level_idx]);

// Calculate the standard deviation of the sample
s[i] = stdc(limit[level_idx]);

endfor;

// Note: < is '<' in html
// '$|' is string concatenation
labels = "20 < age ≤ 40" $|

"40 < age ≤ 60" $|
"60 < age ≤ 80" $|
"80 < age ≤ 100";

// Declare 'myPlot' to be a plotControl structure
// and fill with default settings for bar plots
struct plotControl myPlot;
myPlot = plotGetDefaults("bar");

//Set bar fill to be: solid, 100% opaque and steel blue
plotSetFill(&myPlot, 1, 1, "steel blue");

35-1214

plotAddErrorBar

p

35-1215

//Set title and axes labels
plotSetTitle(&myPlot, "Credit Limits and Age", "arial",
20);
plotSetYLabel(&myPlot, "Credit Limits", "arial", 18);
plotSetXLabel(&myPlot, "Age", "arial", 18);

//Draw bar plot
plotBar(myPlot, labels, mu);

//File 'myPlot' plotControl structure with
//default settings for 'xy' plots
myPlot = plotGetDefaults("xy");

plotSetLineColor(&myPlot, "black");

//'x' location of error bars
//1 is first bar, 2 is second bar, etc
x = seqa(1, 1, num_ranges);

//Draw error bars on bar plot
plotAddErrorBar(myPlot, x, mu, s);

The plot is

plotAddErrorBar

p

See Also

plotBar

plotAddHist

Purpose

Adds a histogram to an existing graph.

35-1216

plotAddHist

p

35-1217

Format

plotAddHist(myPlot, x, v);
plotAddHist(x, v);

Input

myPlot A plotControl structure.
x Mx1 vector of data.
v Nx1 vector, the breakpoints to be used to compute the

frequencies
 - or -
scalar, the number of categories.

Remarks

plotAddHist may only add a histogram to 2-D graphs.

This function will not change any of the current graph's settings other than to resize the
view as necessary to display the new curve.

See Also

plotAddBar, plotAddHistF, plotAddHistP, plotAddPolar, plotAddXY

plotAddHistF

Purpose

Adds a frequency histogram to an existing graph.

plotAddHistF

p

Format

plotAddHistF(myPlot, f, c);
plotAddHistF(f, c);

Input

myPlot A plotControl structure.
f Nx1 vector, frequencies to be graphed.
c Nx1 vector, numeric labels for categories. If this is a

scalar 0, a sequence from 1 to rows(f) will be created.

Remarks

plotAddHistF may only add a histogram to 2-D graphs.

This function will not change any of the current graph's settings other than to resize the
view as necessary to display the new curve.

See Also

plotAddBar, plotAddHist, plotAddHistP, plotAddPolar, plotAddXY

plotAddHistP

Purpose

Adds a percent histogram to an existing graph.

Format

plotAddHistP(myPlot, x, v);
plotAddHistP(x, v);

35-1218

plotAddHistP

p

35-1219

Input

myPlot A plotControl structure.
x Mx1 vector of data.
v Nx1 vector, the breakpoints to be used to compute the

frequencies
 - or -
scalar, the number of categories.

Remarks

plotAddHistP may only add a histogram to 2-D graphs.

This function will not change any of the current graph's settings other than to resize the
view as necessary to display the new curve.

See Also

plotAddBar, plotAddHist, plotAddHistF, plotAddPolar, plotAddXY

plotAddPolar

Purpose

Adds a graph using polar coordinates to an existing polar graph.

Format

plotAddPolar(myPlot, radius, theta);
plotAddPolar(radius, theta);

Input

myPlot A plotControl structure.

plotAddPolar

p

radius Nx1 or NxM matrix. Each column contains the
magnitude for a particular line.

theta Nx1 or NxM matrix. Each column represents the angle
values for a particular line.

Remarks

plotAddPolar may only add curves to 2-D graphs.

This function will not change any of the current graph's settings other than to resize the
view as necessary to display the new curve.

See Also

plotAddBar, plotAddHist, plotAddHistF, plotAddHistP, plotAddXY

plotAddScatter

Purpose

Adds a 2-dimensional scatter plot to an existing graph.

Format

plotAddScatter(myPlot, x, y);
plotAddScatter(x, y);

Input

myPlot A plotControl structure.
x Nx1 or NxM matrix. Each column contains the X

values for a particular data point.
y Nx1 or NxM matrix. Each column contains the Y

35-1220

plotAddScatter

p

35-1221

values for a particular data point.

Remarks

plotAddScatter may only add a scatter plot to 2-D graphs.

This function will not change any of the current graph's settings other than to resize the
view as necessary to display the new curve.

See Also

plotAddBar, plotAddHist, plotAddHistF, plotAddHistP, plotAddScatter, plotAddXY

plotAddShape

Purpose

Adds an arrow, line, ellipse or rectangle to an existing graph.

Format

plotAddShape(myAnnotation, which_shape, x_start, y_
start, x_end, y_end);
plotAddShape(which_shape, x_start, y_start, x_end, y_
end);

Input

myAnnotation Optional argument, an instance of a
plotAnnotation structure.

which_shape String, indicating which shape to create, options
include:

l ellipse

plotAddShape

p

l line (to which you may add an arrow head)
l rectangle

x_start Scalar or Nx1 vector, the X coordinate for the start
of the bounding box for each respective shape.

y_start Scalar or Nx1 vector, the Y coordinate for the start
of the bounding box for each respective shape.

x_end Scalar or Nx1 vector, the X coordinate for the end
of the bounding box for each respective shape.

y_end Scalar or Nx1 vector, the Y coordinate for the end
of the bounding box for each respective shape.

Remarks

plotAddShape will add shapes to existing graphs. It will not create a new graph,
however, if one does not already exist. Please also note that the top left corner of the
bounding box for the shape will be placed at the coordinates that you specify. The
bounding box is rectangular and will therefore not touch the edge of an ellipse at that
point.

plotAddShape is not yet supported for surface plots.

Examples

Example: Add a rectangle

//Draw simple graph
x = rndu(10, 1);
y = rndu(10, 1);
plotScatter(x, y);

//The rectangle will be drawn between
//third and sixth points on the plot
x_start = x[3];

35-1222

plotAddShape

p

35-1223

y_start = y[3];
x_end = x[6];
y_end = y[6];

//Shape type will be rectangle
annotation_type = "rectangle";

//Add rectangle to graph
plotAddShape(annotation_type, x_start, y_start, x_end, y_
end);

See Also

plotAddTextbox, annotationGetDefaults

plotAddSurface

Purpose

Add a surface plot to an existing plot.

Format

plotAddSurface(myPlot, x, y, z);
plotAddSurface(x, y, z);

Input

myPlot Optional input, a plotControl structure.
x 1xK vector, the X axis data.
y Nx1 vector, the Y axis data.
z NxK matrix, the matrix of height data to be plotted.

plotAddSurface

p

Example

Example 1: Basic case with default settings

new;
cls;

// n: Number of observation
n = 20;

// First Surface
x = seqa(1, 1, n)';
z = ones(n,n);

// Plot surface
plotSurface(x, x', z);

// Second Surface
z2 = reshape(seqa(-8,1,n),n,n);

// Plot the second surface
plotAddSurface(x, x', z2');

The plot is

35-1224

plotAddSurface

p

35-1225

Example 2: With a plotControl structure and color map

new;
cls;

// n: Number of observation
n = 50;

// x: n * 1 vector from -3 to +3
x = seqa(-3, 6/(n-1), n);

// y: 1 * n row vector
y = x';

plotAddSurface

p

// z: Joint probability of 'x' and 'y'
z = pdfn(x) .* pdfn(y);

// Define plotControl structure
struct plotcontrol myPlot;
myPlot = plotGetDefaults("surface");

// Set a color map
plotSetColormap(&myPlot, "viridis");

// Plot bivariate normal distribution
plotSurface(myPlot, y, x, z);

// Add a plane with the following 4 corners: (x,y,z)
// (1, -3, 0), (1, 3, 0)
// (1, -3, 0.2), (1, 3, 0.2)
x_plane = 1 ~ 1;
y_plane = -3 | 3;
z_plane = { 0 0.2,

0 0.2 };

// Add plane
plotAddSurface(x_plane, y_plane, z_plane);

The plot is

35-1226

plotAddSurface

p

35-1227

Remarks

If a plotControl structure is passed in to plotAddSurface, the only settings that
will be checked are:

l The extent of the x, y and z axes (which may be expanded by the plotControl
structure).

l The instructions for turning the wireframe on or off for the surface being added.

See Also

plotSurface

plotAddSurface

p

plotAddTextbox

Purpose

Adds a textbox to an existing graph.

Format

plotAddTextbox(text, x_start, y_start);
plotAddTextbox(myAnnotation, text, x_start, y_start);

Input

myAnnotation Optional input, a plotAnnotation structure.
text String, the text to place in the textbox.
x_start Scalar or Nx1 vector, the X coordinate for the start of

the bounding box for each respective text box.
y_start Scalar or Nx1 vector, the Y coordinate for the start of

the bounding box for each respective text box.

Remarks

plotAddTextbox will only add a textbox to an existing graph. It will not create a
new graph if one does not already exist. You should also note that the top left corner of
the bounding box will be located at the point on the graph that you specify. If the bor-
der is turned off, the text will not touch the exact coordinate that you input. In many
cases this makes is simpler to label a point that is already part of a scatter or line
series without covering it.

Unlike the functions that add data to a plot, if a textbox created by plotAd-
dTextbox lies outside of the current bounds of the X and Y axes, the axes will not
extend further to provide room for the textbox. This gives you the ability to add text to
any part of the scene, or between different subplots.

35-1228

plotAddTextbox

p

35-1229

plotAddTextbox does not currently support surface plots.

Examples

Example 1: Basic textbox

//Create text for textbox
box_text = "Periods of recession are highlighted";

x_start = 4;
y_start = 3;

//Add textbox to the (4,3) location on the last draw graph
plotAddTextbox(box_text, x_start, y_start);

Example 2: Customized textbox

//Simulate and plot simple linear model
b_0 = 2;
b_1 = 1.7;
x = rndn(100, 1);
y = b_0 + b_1 .* x + rndn(100, 1);
plotScatter(x, y);

//Declare instance of plotAnnotation structure
//and fill in with default values
struct plotAnnotation myTextbox;
myTextbox = annotationGetDefaults();

//Set textbox backround to 'light gray' with 20% opacity
annotationSetBkd(&myTextbox, "light gray", 0.2);

//Turn off line surrounding textbox by setting thickness to
0px
annotationSetLineThickness(&myTextbox, 0);

//Create text for textbox, using HTML

plotAddTextbox

p

box_text = "α = 2; β₁ = 1.7";

//The top-left corner of the text box
//will be located at the coordinates (0, -1)
x_start = 0;
y_start = -1;

//Add textbox to last draw graph
plotAddTextbox(myTextbox, box_text, x_start, y_start);

Example 3: Using a procedure to apply your settings

If you use textboxes often and usually want the same styling, instead of going through
the steps above every time you would like to add a text box, you should create a simple
procedure to do the set up for you. Here is an example of a procedure that will return a
customized plotAnnotation structure. You can pass this function in to plotAd-
dTextbox.

//Add the procedure below to your user library
//and you will only need one line for all the settings
plotAddTextbox(grayTextSettings(), "My customized text
box", 0.15, 0.2);

proc (1) = grayTextSettings();
struct plotAnnotation mytextbox;

mytextbox = annotationGetDefaults();
annotationSetBkd(&mytextbox, "#DDDDDD", 0.3);
annotationSetFont(&mytextbox, "times", 18, "#555555");
annotationSetLineThickness(&mytextbox, 2);
annotationSetLineColor(&mytextbox, "#555555");
retp(mytextbox);

endp;

See Also

plotAddShape, annotationGetDefaults

35-1230

plotAddTextbox

p

35-1231

plotAddTS

Purpose

Adds a curve of time series data to an existing time series plot.

Format

plotAddTS(myPlot, dtstart, frequency, y);
plotAddTS(dtstart, frequency, y);

Input

myPlot A plotControl structure.
dtstart Scalar, starting date in DT scalar format.
frequency Scalar, frequency of the data per year. Valid options

include:
1 Yearly
4 Quarterly
12 Monthly

y Nx1 or NxM matrix. Each column contains the Y
values for a particular line.

Examples

Example 1

//Create some data to plot
y = rndn(100, 1);

//The first input starts the series in January of 1982
//The second input specifies the data to be monthly
plotTS(1982, 12, y);

plotAddTS

p

y2 = rndu(28, 1);

//Add the data from 'y2' as quarterly data
//starting in Q2 of 1980
plotAddTS(198004, 4, y2);

Remarks

You may only add time series graphs to other time series graphs. For more information
on time series graphs, see Time Series Plots in GAUSS, Section 1.1.

By default missing values in the y variable will be represented as gaps in the line.

See Also

plotSetXTicLabel, plotSetXTicInterval, plotTS

plotAddXY

Purpose

Adds an XY graph to an existing graph.

Format

plotAddXY(myPlot, x, y);
plotAddXY(x, y);

Input

myPlot A plotControl structure.
x Nx1 or NxM matrix. Each column contains the X

values for a particular line.

35-1232

plotAddXY

p

35-1233

y Nx1 or NxM matrix. Each column contains the Y
values for a particular line.

Remarks

plotAddXY may only add curves to 2-D graphs.

This function will not change any of the current graph's settings other than to resize the
view as necessary to display the new curve.

See Also

plotAddBar, plotAddHist, plotAddHistF, plotAddHistP, plotAddPolar

plotArea

Purpose

Creates a stacked area plot.

Format

plotArea(myPlot, x, y);
plotArea(x, y);
plotArea(myPlot, x, y, base);
plotArea(x, y, base);

Input

myPlot A plotControl structure.
x Nx1 matrix. The X values for a particular line.
y Nx1 or NxM matrix. Each column contains the Y

values for a particular line. If y contains more than one
column, each column will be stacked on top of the

plotArea

p

previous column.
base Scalar optional argument. The height for the base of the

area plot. The default value is zero. plotArea does
not yet support a vector input for base.

Example

x = { 1, 2, 3, 4 };
y = { 1 1.5 0.9,

0.8 1.2 1.8,
1 0.7 2,

1.2 1 1.2 };

//Draw a cumulative area plot of the columns of 'y'
plotArea(x, y);

See Also

plotLogX, plotLogLog, plotScatter

plotBar

Purpose

Generates a bar graph.

Format

plotBar(myPlot, labels, height);
plotBar(labels, height);

Input

myPlot A plotControl structure.

35-1234

plotBar

p

35-1235

labels Nx1 numeric vector, or Nx1 string array containing the
bar labels. If scalar 0, a sequence from 1 to rows
(height) will be created.

height NxK numeric vector, bar heights.

K overlapping or side-by-side sets of N bars will be
graphed.

Example

// Create data and labels
labels = "January" $| "June";
temp = { 68, 105 };

// Draw bar graph
plotBar(labels, temp);

Remarks

To control the color and texture of the bars as well as whether they are stacked or side
by side:

If you are passing a plotControl structure to your graph, you may use the function
plotSetBar.

If you are not passing a plotControl structure, these properties are set in the Prefer-
ences. To access the Graphics Preferences, select Tools->Preferences from the
GAUSS main menu. Select ''Graphics'' on the left side of the preferences and then
select ''Bar'' from the list of graph types.

See Also

plotXY, plotLogX, plotHist

plotBar

p

plotBox

Purpose

Graphs data using the box graph percentile method.

Format

plotBox(myPlot, group_id, y);
plotBox(group_id, y);

Input

myPlot A plotControl structure.
group_id Mx1 vector for numeric labels or Mx1 string array

for text labels. This contains the group numbers or
string labels corresponding to each column of y
data. If scalar 0, a sequence from 1 to cols(y) will
be generated automatically for the X axis.

y NxM matrix. Each column represents the set of y
values for an individual percentiles box symbol.

Examples

Example 1: Using string labels

//Create two columns of random data
nobs = 1e5;
y_1 = rndPoisson(nobs, 1, 10);
y_2 = rndPoisson(nobs, 1, 12);

//Create a 2x1 string array, using the
//horizontal string concatenation operator
labels = "control" $| "experimental";

35-1236

plotBox

p

35-1237

//Draw the two boxes
plotBox(labels, y_1~y_2);

Example 2: Using numeric labels

//Create two columns of random data
nobs = 1e5;
y_1 = rndn(nobs, 1);
y_2 = rndn(nobs, 1);

//Create a 2x1 vector of numeric labels
labels = { 2000, 2010 };

//Draw the two boxes
plotBox(labels, y_1~y_2);

plotBox

p

Remarks

Note that numeric labels added to the X-axis are only labels for the corresponding
boxes. They do not imply any order or denote a particular X-axis location.

If missing values are encountered in the y data, they will be ignored during cal-
culations and will not be plotted.

See Also

plotHistP, plotScatter

plotCDFEmpirical

Purpose

Plots the cumulative distribution function (cdf) of the empirical distribution.

35-1238

plotCDFEmpirical

p

35-1239

Format

plotCDFEmpirical(myPlot, x);

plotCDFEmpirical(x);

Input

myPlot A plotControl structure.
x N x 1 vector.

Example

new ;
cls ;
rndseed 2223;

// Create a random vector
x = rndn(30,1);

// Sort x for the first column
x = sortc(x,1);

// Get empirical cdf of x
f = cdfEmpirical(x);

// Add negative infinity (__INFN) for probability equal to
0.
print (__INFN|x)~f;

// Plot empirical distribution
plotCDFEmpirical(x);

// Get normal cdf of x
f2 = cdfN(x);

plotCDFEmpirical

p

// Plot theoretical distribution
plotADDXY(x, f2);

After above code,

-INF 0.00000000
-2.3124206 0.033333333
-1.6240227 0.066666667
-1.2763153 0.10000000

-0.82532512 0.13333333
-0.81574278 0.16666667
-0.64338729 0.20000000
-0.59625173 0.23333333
-0.49725006 0.26666667
-0.47855430 0.30000000
-0.39340284 0.33333333
-0.36201638 0.36666667

-0.063830011 0.40000000
-0.0064523646 0.43333333

0.23570074 0.46666667
0.32355136 0.50000000
0.37501508 0.53333333
0.39847826 0.56666667
0.50039685 0.60000000
0.68900341 0.63333333
0.69132515 0.66666667
0.72246796 0.70000000
0.76893134 0.73333333
1.0221019 0.76666667
1.0638924 0.80000000
1.1274880 0.83333333
1.2610791 0.86666667
1.4445086 0.90000000
2.0295113 0.93333333

35-1240

plotCDFEmpirical

p

35-1241

2.1240430 0.96666667
3.1784008 1.0000000

The Plot is

See Also

cdfEmpirical

plotClearLayout

Purpose

Clears any previously set plot layouts.

Format

plotClearLayout();

plotClearLayout

p

Example

//Create a 1x2 Plot Layout and insert a percentage
//histogram of some random normal numbers in the first
//cell.
plotLayout(1, 2, 1);
plotHistP(rndn(1000, 1), 30);

//Insert gamma distributed random numbers into the second
//cell.
plotLayout(1, 2, 2);
plotHistP(rndGamma(1000, 1, 3, 2), 30);

//Display the image for 2 seconds
pause(2);

//Clear the 1x2 layout
plotClearLayout();

//Plot percentage histogram of beta distributed random
//numbers. This graph will take up the entire plot window
//since the 1x2 plot layout has been cleared.
plotHistP(rndBeta(1000, 1, 2, 1), 30);

Remarks

After calling this function all subsequent graphs will be drawn to fill the entire graph
window.

See Also

plotSetBar, plotBar, plotLayout, plotCustomLayout

35-1242

plotClearLayout

p

35-1243

plotContour

Purpose

Graphs a matrix of contour data.

Format

plotContour(myPlot, x, y, z);
plotContour(x, y, z);

Input

myPlot Optional input: plotControl structure.
x 1xK vector, the X axis data.
y Nx1 vector, the Y axis data.
z NxK matrix, the matrix of height data to be

plotted.

Examples

//Clear out variables in GAUSS workspace
new;

//Create contour data
x = seqa(-4,.125,161)';
y = seqa(-8,.125,161);
z = sin(x) .* cos(y) * .5;
z = z .* sin(x/3) .* cos(y/3);
z = z .* sin(x/5) + sin(y/2.5)/3 + sin(x/2.5)/3;

//Set up control structure with defaults
//for surface plots
struct plotControl myPlot;

plotContour

p

myPlot = plotGetDefaults("surface");

//Set title and Z axis label
plotSetTitle(&myPlot, "Contour plot example", "Courier
bold", 16, "black");
plotSetZLabel(&myPlot, "Height (m)", "Arial", 18);

//Turn off X and Y axis labels
plotSetXLabel(&myPlot, "");
plotSetYLabel(&myPlot, "");

//Set contour level colors
string rainbow = { "Red", "Orange", "Yellow", "Green",
"Blue", "Purple" };
plotSetLineColor(&myPlot, rainbow);

//Draw graph using plotcontrol structure
plotContour(myPlot, x, y, z);

35-1244

plotContour

p

35-1245

Remarks

A vector of evenly spaced contour levels will be generated automatically from the z
matrix data. Each contour level will be labeled. For unlabeled contours, use ztics.

To specify a vector of your own unequal contour levels, set the vector _plev before
calling contour.

To specify your own evenly spaced contour levels, see ztics.

See Also

plotSurface

plotContour

p

plotCustomLayout

Purpose

Plots a graph of user-specified size at a user-specified location.

Format

plotCustomLayout(xStart, yStart, width, height);

Input

xStart scalar, the distance from the left edge of the canvas to
the left edge of the custom plot expressed as a number
between 0 and 1.

yStart scalar, the distance from the bottom edge of the canvas
to the bottom edge of the custom plot expressed as a
number between 0 and 1.

width scalar, the width of the custom plot expressed as a
number between 0 and 1.

height scalar, the height of the custom plot expressed as a
number between 0 and 1.

Example

//Create an additive sequence starting from -pi and moving
//forward in 0.1 increments
x = seqa(-pi, 0.1, 63);

//Plot the cosine of x
plotXY(x, cos(x));

//Create a custom section for the next graph starting 10%

35-1246

plotCustomLayout

p

35-1247

//from the main graph's left edge, 10% from the bottom of
//the main graph, with a width and height both equalling
//30% of the width of the main graph.
plotCustomLayout(0.1, 0.1, 0.3, 0.3);

//Plot the next graph in the custom layout
plotXY(x[1:20], cos(x[1:20])));

//Prevent the next graph from being drawn in this custom
//region
plotClearLayout();

Remarks

After calling this function all subsequent graphs will be plotted inside of the specified
custom layout until the layout is reset with plotLayout, or the layout is cleared
with plotClearLayout.

See Also

plotSetBar, plotBar, plotHistP, plotGetDefaults

plotGetDefaults

Purpose

Gets default settings for plotting graphs.

Format

myPlot = plotGetDefaults(graph);

Input

graph String, name of graph type: bar, box, hist, polar, scatter,

plotGetDefaults

p

surface or xy.

Output

myPlot A plotControl structure.

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure with defaults for an
//'xy' graph
myPlot = plotGetDefaults("xy");

//Create some data to plot
x = seqa(-5, 0.1, 50);
y = pdfn(x);

//Make a desired change to the plotControl structure
plotSetTitle(&myPlot, "Default XY Settings");

//Plot the data using the plotControl structure
plotXY(myPlot, x, y);

Remarks

The plotGetDefaults function will use the default settings for the specified
graph type. These may be accessed from the main menu bar: Tools->Preferences-
>Graphics.

See Also

plotSetBkdColor, plotSetLineColor, plotSetLineSymbol

35-1248

plotGetDefaults

p

35-1249

plotHist

Purpose

Computes and graphs a frequency histogram for a vector. The actual frequencies
are plotted for each category.

Format

plotHist(myPlot, x, v);
plotHist(x, v);

Input

myPlot A plotControl structure.
x Mx1 vector of data.
v Nx1 vector, the breakpoints to be used to compute the

frequencies
 - or -
scalar, the number of categories

Example

//Create some data to plot
x = rndn(5000, 1);

//Plot the data
plotHist(x, 20);

See Also

plotHistP, plotHistF, plotBar

plotHist

p

plotHistF

Purpose

Graphs a histogram given a vector of frequency counts.

Format

plotHistF(myPlot, f, c);
plotHistF(f, c);

Input

myPlot A plotControl structure.
f Nx1 vector, frequencies to be graphed.
c Nx1 vector, numeric labels for categories. If this is a

scalar 0, a sequence from 1 to rows(f) will be created.

Remarks

The axes are not automatically labeled. Use the functions plotSetXLabel and
plotSetYLabel.

See Also

plotHist, plotBar, plotSetXLabel

plotHistP

Purpose

Computes and graphs a percent frequency histogram of a vector. The percentages
in each category are plotted.

35-1250

plotHistF

p

35-1251

Format

plotHistP(myPlot, x, v);
plotHistP(x, v);

Input

myPlot A plotControl structure.
x Mx1 vector of data.
v Nx1 vector, the breakpoints to be used to compute the

frequencies
- or -
scalar, the number of categories.

See Also

plotHist, plotHistF, plotBar, plotBox, plotScatter

plotLayout

Purpose

Divides a plot into a grid of subplots and assigns the cell location in which to
draw the next created graph.

Format

plotLayout(gRows, gCols, ind);

Input

gRows scalar, number of rows of the graph layout.
gCols scalar, number of columns of the graph layout.

plotLayout

p

ind scalar, cell location in which to place the next created
graph.

Example

//Create 10x4 matrix where each column is an additive
//sequence from 0.1 to 1.0
x = seqa(0.1, 0.1, 10);
y = ones(10, 4).*x;

//Apply a function to each column of 'y'
y[.,1] = cos(x);
y[.,2] = sin(x);
y[.,3] = cdfn(x);
y[.,4] = exp(x);

for i(1, 4, 1);
//Divide plot canvas into a 2x2 grid of subplot
//locations and place each newly created graph in the
//next available cell location.
plotLayout(2, 2, i);

//Plot each column of y in a separate subplot window.
plotXY(x, y[.,i]);

endfor;

//Clear the layout so the next plot will not be inside this
//layout
plotClearLayout();

Remarks

After calling this function all subsequent graphs will be plotted inside of the specified
layout until the layout is reset with plotLayout, or the layout is cleared with

35-1252

plotLayout

p

35-1253

plotClearLayout.

See Also

plotBar, plotClearLayout, plotCustomLayout, plotHist

plotLogLog

Purpose

Graphs X vs. Y using log coordinates.

Format

plotLogLog(myPlot, x, y);
plotLogLog(x, y);

Input

myPlot A plotControl structure.
x Nx1 or NxM matrix. Each column contains the X

values for a particular line.
y Nx1 or NxM matrix. Each column contains the Y

values for a particular line.

See Also

plotXY, plotLogX, plotLogY

plotLogX

Purpose

Graphs X vs. Y using log coordinates for the X axis.

plotLogLog

p

Format

plotLogX(myPlot, x, y);
plotLogX(x, y);

Input

myPlot A plotControl structure.
x Nx1 or NxM matrix. Each column contains the X

values for a particular line.
y Nx1 or NxM matrix. Each column contains the Y

values for a particular line.

See Also

plotXY, plotLogY, plotLogLog

plotLogY

Purpose

Graphs X vs. Y using log coordinates for the Y axis.

Format

plotLogY(myPlot, x, y);
plotLogY(x, y);

Input

myPlot A plotControl structure.
x Nx1 or NxM matrix. Each column represents the X

values for a particular line.

35-1254

plotLogY

p

35-1255

y Nx1 or NxM matrix. Each column represents the Y
values for a particular line.

See Also

plotXY, plotLogX, plotLogLog

plotOpenWindow

Purpose

Opens a new, empty graphic window to be used by the next drawn graph.

Format

plotOpenWindow();

Example

//Create data
x = rndn(10000, 1);
x2 = rndn(10000, 1);
x3 = rndn(10000, 1);

//Plot first vector as a percentage histogram with 30 bins
plotHistP(x, 30);

//Plot second vector, drawing over the previously created
//graph.
plotHistP(x2, 30);

//Create a new graphic window and plot the second vector as
//a percentage histogram with 30 bins inside this new
//window.
plotOpenWindow();

plotOpenWindow

p

//Draw the graph
plotHistP(x3, 30);

Remarks

To automatically open each new graph in a new graph window, use
plotSetNewWindow or set the preference in the main applicaton menu. This may
be found by selecting Tools->Preferences and then clicking on Graphics on the left
side of the preferences window.

If you select the radio button next to "New Window" at the top of the graphics pref-
erences window, each new graph will be automatically drawn in a new graphics win-
dow.

See Also

plotSave, plotCustomLayout, plotSetLegend, plotSetNewWindow

plotPolar

Purpose

Graph data using polar coordinates.

Format

plotPolar(myPlot, radius, theta);
plotPolar(radius, theta);

Input

myPlot A plotControl structure.
radius Nx1 or NxM matrix. Each column contains the

35-1256

plotPolar

p

35-1257

magnitude for a particular line.
theta Nx1 or NxM matrix. Each column represents the angle

values for a particular line.

See Also

plotXY, plotLogX, plotLayout, plotSetXLabel

plotSave

Purpose

Saves the last created graph to a user specified file type.

Format

plotSave(filename);
plotSave(filename, size);
plotSave(filename, size, units);
plotSave(filename, size, units, dpi);

Input

filename String, name of the file to create with a file type
extension. Available file extensions include: .jpg,
.plot, .png, .pdf, .svg, .tiff
(NOTE: Available file types may vary per system. A
list of valid types can be found in the File->Export
Graph file dialog window).

size 2x1 vector, dimensions of the saved graph in specified
units. Default unit is centimeters. size is an optional
input when saving a .plot file, but is required for all
other file types.

plotSave

p

unit Optional input, String, type of units dimension is
specified in. This value is ignored if the filename
extension is '.plot'. Valid options include:

l "cm" Centimeters (Default)
l "mm" Millimeters
l "in" Inches
l "px" Pixels

dpi Optional input, scalar, requested dots per inch when
saving file. Defaults to current system dpi. This value is
ignored if the filename extension is '.plot'. dpi
determines the number of pixels rendered when saving
a file in terms of physical dimensions (cm, mm, in).
Specifying the dpi parameter has no effect if the
specified units are pixels (px).

e.g. if a printing requirement demanded 11"x8.5"
(landscape) with 300 dpi then the plot could be made to fit
those dimensions exactly with the line:

plotSave("file.pdf", 11|8.5, "in",
300);

which would create an output of 3300x2550 pixels with
the PDF page size set in the specified physical dimensions.

35-1258

plotSave

p

35-1259

Examples

Example 1: Basic save in GAUSS .plot format

//Create data
x = seqa(0.1, 0.1, 10);
y = cos(x);

//Plot the data
plotXY(x, y);

//Save the graph as a GAUSS .plot file
plotSave("mygraph.plot");

Example 2: Save as 640x480 PNG

//Create data
x = seqa(0.1, 0.1, 10);
y = cos(x);

//Plot the data
plotXY(x, y);

//Save the graph as a 640 wide by 480 tall PNG file
plotSave("mygraph.png", 640 | 480, "px");

Example 3: Save as 11x8.5 inch PDF at 300 DPI

//Create data
x = seqa(0.1, 0.1, 10);
y = cos(x);

//Plot the data
plotXY(x, y);

plotSave("mygraph.png", 11 | 8.5, "in", 300);

plotSave

p

Technical Notes

The .plot file extension is a JSON file that is the native format used by GAUSS to
save graphs.

Remarks

The font sizes in the graph will not be scaled with the size change. So make sure to set
the font sizes to the correct size for the final graph dimensions.

See Also

plotCustomLayout, plotSetLegend

plotScatter

Purpose

Creates a 2-dimensional scatter plot.

Format

plotScatter(myPlot, x, y);
plotScatter(x, y);

Input

myPlot A plotControl structure.
x Nx1 or NxM matrix. Each column contains the X

values for a particular data point.
y Nx1 or NxM matrix. Each column contains the Y

values for a particular data point.

35-1260

plotScatter

p

35-1261

Example

//Create random normal data
x = rndn(50, 1);

//Reverse the order of 'x' and set it to be the 'y' value
y = rev(x);

//Plot the data
plotScatter(x, y);

See Also

plotXY, plotLogLog, plotBox, plotHistP

plotSetAxesPen

Purpose

Sets the color for the axes line.

Format

plotSetAxesPen(&myPlot, thickness);
plotSetAxesPen(&myPlot, thickness, clr);

Input

&myPlot A plotControl structure pointer
thickness Scalar, the thickness of the axis line in pixels
clr String, name or rgb value of the new color for the axes

plotSetAxesPen

p

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("xy");

//Set axis to be 2 pixeles wide and black
plotSetAxesPen(&myPlot, 2, "black");

//Create data
x = seqa(0.1, 0.1, 50);
y = sin(x)~cos(x);

//Plot the data with the new line colors
plotXY(myPlot, x, y);

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetLineSymbol

plotSetBar

Purpose

Sets the fill style and format of bars in a histogram or bar graph.

35-1262

plotSetBar

p

35-1263

Format

plotSetBar(&myPlot, fillType, barStacked);

Input

&myPlot A plotControl structure pointer.
fillType Nx1 vector, where N is the number of bar styles to set.

0 Solid, beveled edge
1 Solid
2 Dense 1
3 Dense 2
4 Dense 3
5 Dense 4
6 Dense 5
7 Dense 6
8 Horizontal lines
9 Vertical lines
10 Cross pattern
11 B diagonal pattern
12 F diagonal pattern
13 Diagonal Cross

barStacked Scalar, 1 for stacked or 0 for side-by-side bars.

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure

plotSetBar

p

myPlot = plotGetDefaults("bar");

//Set the first set of bars to have a solid-fill, the
//second set to have a fill of horizontal lines, the third
//to have a diagonal cross fill and set the bars to be
//side-by-side.
textures = { 0, 8, 13 };
plotSetBar(&myPlot, textures, 0);

//Create data
x = seqa(1, 1, 5);
y = {
1.5 2 1.8,

2 2.1 3,
3 2.5 3.6,

0.5 0.8 1,
1 1.2 0.8

};

//Draw bar graph
plotBar(myPlot, x, y);

35-1264

plotSetBar

p

35-1265

Remarks

When graphing without the use of a plotControl structure, these settings may be
chosen through the Tools->Preferences->Graphics menu, after selecting the Bar
radio button. See GAUSS GRAPHICS, CHAPTER 1, for more information on the meth-
ods available for customizing your graphs.

See Also

plotBar, plotGetDefaults, plotHist

plotSetBkdColor

Purpose

Sets the background color of a graph.

plotSetBkdColor

p

Format

plotSetBkdColor(&myPlot, color);

Input

&myPlot A plotControl structure pointer.
color String, name or rgb value of the new color.

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("polar");

//Set new background color to light grey
plotSetBkdColor(&myPlot, "light grey");

//Create data
x = seqa(0.1, 0.1, 200);
y = x;

//Create a polar plot of the data with the new background
//color
plotPolar(myPlot, x, y);

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

35-1266

plotSetBkdColor

p

35-1267

See Also

plotGetDefaults, plotSetLineColor, plotSetLineSymbol

plotSetColorMap

Purpose

Sets the color maps for a surface or contour plot.

Format

plotSetColorMap(&myPlot, color_type);

Input

&myPlot A plotControl structure pointer.
color_
type

String, name of color maps: "viridis", "magma",
"inferno", "plasma".

Example

//Clear out variables in GAUSS workspace
new;

//Create data
x = seqa(-4,.125,161)';
y = seqa(-8,.125,161);
z = sin(x) .* cos(y) * .5;
z = z .* sin(x/3) .* cos(y/3);
z = z .* sin(x/5) + sin(y/2.5)/3 + sin(x/2.5)/3;

//Set up control structure with defaults
//for surface plots

plotSetColorMap

p

struct plotControl myPlot;
myPlot = plotGetDefaults("surface");

//Set title and Z axis label
plotSetTitle(&myPlot, "Contour plot example", "arial", 16,
"black");

//Set color map for contour
plotSetColormap(&myplot, "viridis");

//Draw graph using plotcontrol structure
plotContour(myPlot, x, y, z);

The Plot is

35-1268

plotSetColorMap

p

35-1269

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetContourLabels, plotSetZLevels

plotSetColorMap

p

plotSetContourLabels

Purpose

Sets the contour label for a graph.

Format

plotSetContourLabels(&myPlot, show_labels);

plotSetContourLabels(&myPlot, show_labels, label_format);

plotSetContourLabels(&myPlot, show_labels, label_format,
label_precision);

Input

&myPlot A plotControl structure pointer.
show_
labels

Scalar, 0 or 1. The flag of show labels on contours.

label_
format

String, format's option:

"D", e.g. 1.234567;

"E", e.g.1.23E1;

"G". "G" is either "D" or "E", whichever is more compact
label_
precision

Scalar, precision of contour label.

Example

//Clear out variables in GAUSS workspace
new;

35-1270

plotSetContourLabels

p

35-1271

//Create data
x = seqa(-4,.125,161)';
y = seqa(-8,.125,161);
z = sin(x) .* cos(y) * .5;
z = z .* sin(x/3) .* cos(y/3);
z = z .* sin(x/5) + sin(y/2.5)/3 + sin(x/2.5)/3;

//Set up control structure with defaults
//for surface plots
struct plotControl myPlot;
myPlot = plotGetDefaults("surface");

//Set title and Z axis label
plotSetTitle(&myPlot, "Contour plot example", "arial", 16,
"black");

//Set color map for contour
plotSetColorMap(&myplot, "viridis");

//Set up flag of show label for contour
showLabels = 1;

//Set up format for contour label
label_format = "G";

//Set up precision for contour label
label_precision = 5;

//Use function to set up contour labels
plotSetContourLabels(&myplot, showlabels, label_format,
label_precision);

//Draw graph using plotcontrol structure
plotContour(myPlot, x, y, z);

plotSetContourLabels

p

The Plot is

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetColorMap, plotSetZLevels

35-1272

plotSetContourLabels

p

35-1273

plotSetFill

Purpose

Sets the fill style, transparency and color for area plots, histograms and bar
graphs.

Format

plotSetFill(&myPlot, fillType, transparency_pct, colors);
plotSetFill(&myPlot, fillType, transparency_pct);
plotSetFill(&myPlot, fillType);

Input

&myPlot A plotControl structure pointer.
fillType Nx1 vector, where N is the number of bar styles

to set.
0 No fill
1 Solid
2 Dense 1
3 Dense 2
4 Dense 3
5 Dense 4
6 Dense 5
7 Dense 6
8 Horizontal lines
9 Vertical lines
10 Cross pattern
11 B diagonal pattern

plotSetFill

p

12 F diagonal pattern
13 Diagonal Cross

transparency_
pct

Scalar, between 0 and 1. The percent opacity of
the fill.

colors String array, color names or HTML hex value
colors.

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("bar");

//Set all bars to have a solid, blue, fill, with 50% opa-
city
textures = 1;
plotSetFill(&myPlot, textures, 0.5, "blue");

//Create data
x = seqa(1, 1, 5);
y = { 1.5, 2, 3, 0.5, 1 };

//Draw bar graph
plotBar(myPlot, x, y);

Remarks

When graphing without the use of a plotControl structure, these settings may be
chosen through the Tools->Preferences->Graphics menu, after selecting the Bar
radio button. See GAUSS GRAPHICS, CHAPTER 1, for more information on the meth-
ods available for customizing your graphs.

35-1274

plotSetFill

p

35-1275

See Also

plotBar, plotGetDefaults, plotHist

plotSetGrid

Purpose

Controls the settings for the background grid of a plot.

Format

plotSetGrid(&myPlot, ticStyle, color);
plotSetGrid(&myPlot, ticStyle);
plotSetGrid(&myPlot, onOff);

Input

ticStyle String, specifies whether grid marks should be drawn
on major tic marks. Options: "major"

color String, name or rgb value of the new color.
onOff String, turns the grid on or off. Options: "on" or "off."

If used, this must be the only argument passed to the
function besides the plotControl structure pointer.

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("scatter");

//Set grid to be black and on the major tics only

plotSetGrid

p

plotSetGrid(&myPlot, "major", "black");

//Create a scatter plot of random data
plotScatter(myPlot, seqa(1, 1, 10), rndn(10, 1));

//Turn off the grid
plotSetGrid(&myPlot, "off");

See Also

plotCustomLayout, plotSetTitle

plotSetLegend

Purpose

Adds a legend to a graph.

Format

plotSetLegend(&myPlot, label, location, orientation);
plotSetLegend(&myPlot, label, location);
plotSetLegend(&myPlot, label);
plotSetLegend(&myPlot, turn_off);

Input

&myPlot A plotControl structure pointer.
label String array, names of the line labels.
location String, the location to place the legend.

The location string may contain up to three tokens, or
words.

1. Vertical location: top (default), vcenter or bottom.

35-1276

plotSetLegend

p

35-1277

(Note: for backwards compatibilty middle may still be
used for vcenter. However, new programs should use
vcenter).

2. Horizontal location: left, hcenter or right (default).
(Note: for backwards compatibility center may still be
used for hcenter. However, new programs should use
hcenter.

3. Inside/Outside location: inside (default), below or
outside.

orientation scalar, 0 for a horizontal legend or 1 for a vertical
legend.

turn_off string, "off" will disable the legend.

Technical Notes

l The location parameter is a string with up to three tokens or words that are
separated by a space. For example,

location = "top right";
location = "right top";
location = "inside top right";

l Use plotSetLegendFont to control the legend font family, size and color.
l See plotSetTextInterpreter, for instructions on using Latex, or HTML
in the legend labels.

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure

plotSetLegend

p

myPlot = plotGetDefaults("scatter");

//Set labels, location, and orientation of legend
label = "sample A"$|"sample B";
location = "top right";
orientation = 0;
plotSetLegend(&myPlot, label, location, orientation);

//Create data
x = rndn(30, 2);
y = rndn(30, 2);

//Plot the data with the legend settings
plotScatter(myplot, x, y);

See Also

plotSetLegendFont, plotSetTextInterpreter

plotSetLegendFont

Purpose

Controls the settings for the legend on a graph.

Format

plotSetLegendFont(&myPlot, font);

plotSetLegendFont(&myPlot, font, font_size);

plotSetLegendFont(&myPlot, font, font_size, font_color);

Input

myPlot A plotControl structure pointer.

35-1278

plotSetLegendFont

p

35-1279

font String, font or font family name.
font_size Scalar, font size in points.
font_
color

String, named color or RGB value.

Example

new;
cls;

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("scatter");

//Set labels, location, and orientation of legend
label = "sample A"$|"sample B";
location = "top right";
orientation = 0;
plotSetLegend(&myPlot, label, location, orientation);

//Set font of legend
plotSetLegendFont(&myPlot, "arial", 18, "dark grey");

//Create data
x = rndn(30, 2);
y = rndn(30, 2);

//Plot the data with the legend settings
plotScatter(myplot, x, y);

See Also

plotSetLegend

plotSetLegendFont

p

plotSetLineColor

Purpose

Sets the line colors for a graph.

Format

plotSetLineColor(&myPlot, colors);

Input

&myPlot A plotControl structure pointer.
colors String array, name or rgb value of the new colors.

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("xy");

//Set new line colors to aqua and midnight blue
clrs = "aqua"$|"midnight blue";
plotSetLineColor(&myPlot, clrs);

//Create data
x = seqa(0.1, 1, 50);
y = sin(x)~cos(x);

//Plot the data with the new line colors
plotXY(myPlot, x, y);

35-1280

plotSetLineColor

p

35-1281

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetLineSymbol

plotSetLineStyle

Purpose

Sets the line styles for a graph.

Format

plotSetLineStyle(&myPlot, newStyle);

Input

&myPlot A plotControl structure pointer.
newStyle Matrix, new line styles. Options include:

1 Solid line.
2 Dash line.
3 Dot line.
4 Dash-Dot line.
5 Dash-Dot-Dot line.

plotSetLineStyle

p

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("xy");

//Set line 1 as a solid line,
//set line 2 as a dash line, etc.
newStyle = { 1, 2, 3, 4, 5 };
plotSetLineStyle(&myPlot, newStyle);

//Create data
x = seqa(0.1, 1, 50);
y = sin(x)~cos(x);

//Plot the data with the new line styles
plotXY(myPlot, x, y);

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetTitle, plotSetLineSymbol

plotSetLineSymbol

Purpose

Sets the symbols displayed on the plotted points of a graph.

35-1282

plotSetLineSymbol

p

35-1283

Format

plotSetLineSymbol(&myPlot, newSymbol, symbolWidth);
plotSetLineSymbol(&myPlot, newSymbol);

Input

&myPlot A plotControl structure pointer.
newSymbol Matrix, new line symbol settings. Options include:

-1 None.
0 Ellipse.
1 Rectangle.
2 Diamond.
3 Upward pointing triangle.
4 Downward pointing triangle.
5 Triangle.
6 Leftward pointing triangle.
7 Rightward pointing triangle.
8 Cross.
9 Diagonal cross.
10 Horizontal line.
11 Vertical line.
12 Star 1.
13 Star 2.
14 Hexagon.

symbolWidth Scalar, width to draw line symbols.

plotSetLineSymbol

p

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("xy");

//Set line 1 to have no symbol
//Set line 2 to display an ellipse at each plotted point.
newSymbol = { -1, 0 };
symbolWidth = 5;
plotSetLineSymbol(&myPlot, newSymbol, symbolWidth);

//Create data
x = seqa(0.1, 0.1, 50);
y = sin(x)~cos(x);

//Plot the data with the new line symbols
plotXY(myPlot, x, y);

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetXLabel, plotSetLineColor

35-1284

plotSetLineSymbol

p

35-1285

plotSetLineThickness

Purpose

Sets the thickness of the lines on a graph.

Format

plotSetLineThickness(&myPlot, newTh);

Input

&myPlot A plotControl structure pointer.
newTh 1 x N matrix, new line thickness settings.

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("xy");

//Set all lines to have a thickness of 2
newTh = 2;
plotSetLineThickness(&myPlot, newTh);

//Create data
x = seqa(0.1, 1, 50);
y = sin(x)~cos(x);

//Plot the data with the new line thickness settings
plotXY(myPlot, x, y);

plotSetLineThickness

p

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotLayout, plotSetTitle

plotSetNewWindow

Purpose

Determines whether each new graph is drawn in a new graph tab or re-uses a
pre-existing graph tab.

Format

plotSetNewWindow(&myPlot, newW);

Input

&myPlot A plotControl structure pointer.
newW Scalar, 1 to create a new graph tab or 0 to re-use.

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure

35-1286

plotSetNewWindow

p

35-1287

myPlot = plotGetDefaults("xy");

//Set graph to create a new graph tab
newW = 1;
plotSetNewWindow(&myPlot, newW);

//Create data
x = seqa(0.1, 1, 50);
y = sin(x)~cos(x);

//Plot the data in a new graph tab window
plotXY(myPlot, x, y);

Remarks

To open a new graph window once, use plotOpenWindow. This function sets an
attribute in a plotControl structure. It does not affect an existing graph, or a new
graph drawn using the default settings that are accessible in the main application win-
dow from the Tools->Graphics>Preferences menu. See GAUSS GRAPHICS,
CHAPTER 1, for more information on the methods available for customizing your
graphs.

See Also

plotGetDefaults, plotOpenWindow, plotSetTitle, plotSetLineColor

plotSetTextInterpreter

Purpose

Controls the text interpreter settings for a graph.

plotSetTextInterpreter

p

Format

plotSetTextInterpreter(&myPlot, interpreter);
plotSetTextInterpreter(&myPlot, interpreter, location);

Input

&myPlot A plotControl structure pointer.
interpreter String, "html", "plain", "latex".
location String, "all", "legend", "title" or "axes". Default is

"all".

Example

Example 1: Plain interpreter

new;

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("hist");

//Set the interpreter of axes
plotSetTextInterpreter(&myPlot, "plain", "axes");

//Set the X-axis label, using the > character which would
//would fail with the default HTML interpreter.
plotSetXLabel(&myPlot, "Weight > 50 Kg");

//Create data
x = rndn(1e5,1);

//Plot a histogram of the x data spread over 50 bins

35-1288

plotSetTextInterpreter

p

35-1289

plotHist(myPlot, x, 50);

Example 2: HTML interpreter

You may add Greek letters, mathematical symbols, subscript and superscript to your
title, axes and legend using HTML. To add HTML to a label, you can use
plotSetTextInterpreter to set "html" for the text to be interpreted as HTML.

//Set the interpreter of axes
plotSetTextInterpreter(&myPlot, "html", "axes");

label_string = "β";

//Set the X-axis label
plotSetXLabel(&myPlot, label_string);

The code above will add the letter β to the graph title. The HTML 'sup' tag will create
superscript and the 'sub' tag will create subscript. For example:

label_string = "σ²";

//Set the X-axis label
plotSetXLabel(&myPlot, label_string);

will add σ2 to your title. While,

label_string = "Y_{t-1}";

//Set the X-axis label
plotSetXLabel(&myPlot, label_string);

will create Yt-1.

Example 3: Latex Interpreter

plotSetTextInterpreter

p

You can also use Latex to add complex math expression, or non-Latin scripts to your
title, axes, and legend. You can use plotSetTextInterpreter to set "latex"for
the text to be interpreted as Latex.

new;

// Declare plotControl structure
struct plotControl myPlot;

// Initialize plotControl structure
myPlot = plotGetDefaults("xy");

// Set up text interpreter
plotSetTextInterpreter(&myPlot, "latex", "all");

// Set up X-axis label
label_string = "x";
plotSetXLabel(&myPlot, label_string, "arial", 20);

// Set up legend in LateX format
string legend_string = {
"y_1 = \\cos{(x)}",
"y_2 = \\sin{(\\frac{x}{2})} = \\pm \\sqrt{\\frac{1-\\cos
{(x)}}{2}}",
"y_3 = \\cos{(\\frac{x}{2})} = \\pm \\sqrt{\\frac{1+\\cos
{(x)}}{2}}"};

plotSetLegend(&myPlot, legend_string, "bottom",1);
plotSetLegendFont(&myPlot, "arial", 20);

// Set up title
title_string = "Trigonometric\\ Functions";
plotSetTitle(&myPlot, title_string, "arial", 24);

// Create data

35-1290

plotSetTextInterpreter

p

35-1291

n = 50;
x = seqa(0,(2*pi)/(n-1), n);

// Plot
plotXY(myPlot, x, cos(x)~sin(x/2)~cos(x/2));

The plot is

Remarks

When the text interpreter is set to use Latex:

l Since backslashes inside of a string represent the escaping of a character, use
double backslashes to represent a backslash.

plotSetTextInterpreter

p

l The default mode is that of an in-line equation. To add a section of strictly text,
wrap the text only section in \text{}. For example:

"\\text{The formula is } \\alpha + \\beta_1 X +
\\epsilon"

l Text outside of a \text{} section will use the TeX font. Text inside of a \text{}
section will use whatever font was specified for the label.

The 'plain' text interpreter will allow you to pass in characters that would be invalid
HTML, such as the symbols '<' and '>'.

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

LaTeX in graphics labels, plotGetDefaults, plotSetYLabel, plotSetXLabel, plotSetTitle,
plotSetLegend

plotSetTitle

Purpose

Controls the settings for the title for a graph.

Format

plotSetTitle(&myPlot, title, font, fontSize, fontColor);
plotSetTitle(&myPlot, title, font);
plotSetTitle(&myPlot, title);

35-1292

plotSetTitle

p

35-1293

Input

&myPlot A plotControl structure pointer.
title String, the new title. This may contain HTML for the

creation of Greek letters, mathematical symbols and text
formatting.

font String, font or font family name.
fontSize Scalar, font size in points.
fontColor String, named color or RGB value.

Example

Example 1

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("hist");

//Set the title, title font and title font size
plotSetTitle(&myPlot, "GAUSS Example Graph", "verdana",
10);

//Create data
x = rndn(1e5,1);

//Plot a histogram of the x data spread over 50 bins
plotHist(myPlot, x, 50);

Example 2

plotSetTitle

p

You may add Greek letters, mathematical symbols, subscript and superscript to your
title using HTML. To add HTML to a label, you need to wrap the text to be interpreted
as HTML in HTML tags.

label_string = "<html>β</html>";
plotSetTitle(&myPlot, label_string);

The code above will add the letter β to the graph title. The HTML 'sup' tag will create
superscript and the 'sub' tag will create subscript. For example:

label_string = "<html>σ²</html>";
plotSetTitle(&myPlot, label_string);

will add σ2 to your title. While,

label_string = "<html>Y_{t-1}</html>";
plotSetTitle(&myPlot, label_string);

will create Yt-1

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetYLabel, plotSetLineColor, plotSetGrid

35-1294

plotSetTitle

p

35-1295

plotSetWhichYAxis

Purpose

Assigns curves to the right or left Y-axis.

Format

plotSetWhichYAxis(&myPlot, which);

Input

&myPlot A plotControl structure pointer.
which String or Nx1 string array, where each element contains

either "right" or "left".

Example

//Create data
x = seqa(0.1, 0.1, 50);

//Data with y-range of -1 to 1
y1 = sin(x);

//Data with y-range of 0 to 150
y2 = exp(x);

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("xy");

//Set the first curve, 'y1' to the left Y-axis
//Set the second curve 'y2' to the right Y-axis

plotSetWhichYAxis

p

string which = { "left", "right" };
plotSetWhichYAxis(&myPlot, which);

//Plot the data
plotXY(myPlot, x, y1~y2);

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetLineSymbol

plotSetXLabel

Purpose

Controls the settings for the X-axis label on a graph.

Format

plotSetXLabel(&myPlot, label, font, fontSize,
fontColor);
plotSetXLabel(&myPlot, label, font, fontSize);
plotSetXLabel(&myPlot, label, font);
plotSetXLabel(&myPlot, label);

Input

&myPlot A plotControl structure pointer.

35-1296

plotSetXLabel

p

35-1297

label String, the new label. This may contain HTML for the
creation of Greek letters, mathematical symbols and text
formatting.

font String, font or font family name.
fontSize Scalar, font size in points.
fontColor String, named color or RGB value.

Example

Example 1

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("hist");

//Set the X-axis label, label font, label font size, and
//label color
plotSetXLabel(&myPlot, "Time (sec)", "verdana", 10,
"black");

//Create data
x = rndn(1e5,1);

//Plot a histogram of the x data spread over 50 bins
plotHist(myPlot, x, 50);

Example 2

You may add Greek letters, mathematical symbols, subscript and superscript to your
axis labels using HTML. To add HTML to a label, you need to wrap the text to be
interpreted as HTML in HTML tags.

plotSetXLabel

p

label_string = "<html>β</html>";
plotSetXLabel(&myPlot, label_string);

The code above will add the letter β to the x-axis label. The HTML 'sup' tag will cre-
ate superscript and the 'sub' tag will create subscript. For example:

label_string = "<html>σ²</html>";
plotSetXLabel(&myPlot, label_string);

will add σ2 to your x-axis label. While,

label_string = "<html>Y_{t-1}</html>";
plotSetXLabel(&myPlot, label_string);

will create Yt-1

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu.See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetXTicInterval, plotSetXTicLabel, plotSetYLabel, plotSetZLabel,
plotSetLineColor, plotSetGrid

35-1298

plotSetXLabel

p

35-1299

plotSetXRange

Purpose

Sets the range for the X-axis.

Format

plotSetXRange(&myPlot, x_min, x_max);

Input

&myPlot A plotControl structure pointer.
x_min Scalar, minimum limit of the x-axis.
x_max Scalar, maximum limit of the x-axis.

Example

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("scatter");

//Set X-axis to to range from -5 to +5
plotSetXRange(&myPlot, -5, 5);

//Create and plot data using our x-range
x_1 = rndn(100, 1);
x_2 = rndn(100, 1);

plotScatter(myPlot, x_1, x_2);

plotSetXRange

p

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetLineSymbol

plotSetXTicCount

Purpose

Controls the number of major tics on the X-axis of a 2-D plot.

Format

plotSetXTicCount(&myPlot, num_tics);

Input

&myPlot A plotControl structure pointer.
num_tics Scalar, the number of major tics to place on the X-axis.

Example

//Create some data to plot
x = seqa(-3, 0.1, 61);
y = x.^3 + rndn(rows(x), 1);

//Plot the data
plotXY(x, y);

35-1300

plotSetXTicCount

p

35-1301

Figure 35.2: 5 tic marks

will produce a graph that looks similar to the one above, with 5 major tic marks on the
x-axis. If we use 8 tic marks, there will be one major tic for every integer on the x-
axis. We can make that change like this:

//Declare and initialize plotControl structure
struct plotControl myPlot;
myPlot = plotGetDefaults("xy");

//Set the x-axis to have 8 tic marks
plotSetXTicCount(&myPlot, 8);

//Plot the data, using the plotControl structure
plotXY(myPlot, x, y);

plotSetXTicCount

p

Figure 35.3: 8 tic marks

Remarks

Note that plotSetXTicInterval does not provide complete control over the x-
axis tics. If the number of x-tics requested would cause an odd x-tic interval, GAUSS
will create a number of tics that will provide more even spacing. For instance, in the
example above, 8 tics gave a space between tics of 1. If we chose 9 tics, the spacing
between tics would be 0.889. In that case, GAUSS would instead draw 8 tics for a
more even appearance.

For more control over the x-axis of time series plots, use plotSetXTicInterval
instead.

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

35-1302

plotSetXTicCount

p

35-1303

See Also

plotSetXTicInterval, plotSetXLabel

plotSetXTicInterval

Purpose

Controls the interval between X-axis tic labels and also allows the user to specify
the first tic to be labeled for 2-D time series graphs.

Format

plotSetXTicInterval(&myPlot, ticInterval,
firstLabeled);
plotSetXTicInterval(&myPlot, ticInterval);

Input

&myPlot A plotControl structure pointer.
ticInterval Scalar, the number of X-values between X-axis tic

labels.
firstLabeled Scalar, the value of the first X-value on which to

place a tic label.

Example

Time Series Example

//Declare and initialize plotControl structure
struct plotControl myPlot;
myPlot = plotGetDefaults("xy");

//Place one tic label every 4 x-values

plotSetXTicInterval

p

ticInterval = 4;
plotSetXTicInterval(&myPlot, ticInterval);

//Start the time series in April of 2008
dtstart = 200804;

//Specify quarterly data
frequency = 4;

//Create the multiplicative sequence 1, 2, 4, 8...
y = seqm(1, 2, 10);

//Create a time series plot of the data.
plotTS(myPlot, dtstart, frequency, y);

Figure 35.4: Time series plot example

If you would like to change the tic labels so that they start on the first full year, 2009,
continuing with the example from above, execute the following lines:

//Set the optional 'firstLabeled' parameter
plotSetXTicInterval(&myPlot, ticInterval, 2009);
plotTS(myPlot, dtstart, frequency, y);

35-1304

plotSetXTicInterval

p

35-1305

This new plot should now have tic labels only on the first quarters of each year:

Figure 35.5: Revised time series example

Remarks

plotSetXTicInterval is currently only supported for use with time series plots.
It is ignored by other plot types.

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

dttostr, strtodt, plotSetXLabel, plotSetXTicLabel

plotSetXTicInterval

p

plotSetXTicLabel

Purpose

Controls the formatting and angle of X-axis tic labels for 2-D time series graphs.

Format

plotSetXTicLabel(&myPlot, fmt, angle);
plotSetXTicLabel(&myPlot, fmt);

Input

&myPlot A plotControl structure pointer.
fmt String, the desired formatting for the X-axis tic labels.

l Time series graphs use the same formatting type
as function dttostr

l Other graph types use a sprintf style
formatting string.

angle Scalar, the angle in degrees at which to display the X-
axis tic labels.

Example

Example 1: Time series

//Declare and initialize plotControl structure
struct plotControl myPlot;
myPlot = plotGetDefaults("xy");

y = rndn(5, 1);

plotSetXTicLabel(&myPlot, "YYYY-MO");

35-1306

plotSetXTicLabel

p

35-1307

//Start the series in January 1982
dtstart = 198201;

//Specify the data to be monthly
frequency = 12;

//Draw the time series plot
plotTS(myPlot, dtstart, frequency, y);

The code above produces a graph with X-tic labels like the image below:

Figure 35.6: X-tic labels

Changing to format string to "MO/YYYY" will change the labels to appear like this:

plotSetXTicLabel

p

01/1982

Changing to format string to "YYYY-QQ" will change the the labels to appear like
this:

1982-Q1

Example 2: Other than time series

//Declare and initialize plotControl structure
struct plotControl myPlot;
myPlot = plotGetDefaults("xy");

x = seqa(0.015, 0.015, 10);
y = cos(x.^2);

plotSetXTicLabel(&myPlot, "%.3f");

//Draw the graph, using our format specifier
plotXY(myPlot, x, y);

The code above produces a graph with X-tic labels like the image below:

35-1308

plotSetXTicLabel

p

35-1309

Figure 35.7: XY formatted label

Remarks

Time series format specifier

The following format specifiers are supported for the second input to
plotSetXTicLabel, fmt when the plot will be drawn with plotTS:

 YYYY 4 digit year
 YR Last two digits of year
 QQ Quarter of the year. This is calculated from the month

number.
 MO Number of month, 01-12

plotSetXTicLabel

p

 DD Day of month, 01-31
 HH Hour of day, 00-23
 MI Minute of hour, 00-59
 SS Second of minute, 00-59

To learn more about DT scalar format, see Date and Time Formats, Section 1.0.1, or
the functions dttostr and strtodt.
Format specifier for other graph types

Graph types other than time series use a sprintf style format string. The para-
meters of the foramt string are:

l precision - a literal scalar numeral, the number of digits after the decimal point
l format type - one of the following letters:

l d - integer
l e - scientific notation
l f - floating point/decimal
l g - either scientific or decimal, whichever is most compact

The format of the format string is:

"%.<precision><format type>"

Below are some examples of different format strings and how they would represent pi

l "%.2f"- 3.14
l "%.4f" - 3.1415
l "%.2e" - 3.14e+00
l "%.2g" - 3.14
l "%d" - 3

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the

35-1310

plotSetXTicLabel

p

35-1311

Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

dttostr, strtodt, plotSetXLabel, plotSetXTicInterval

plotSetYLabel

Purpose

Controls the settings for the Y-axis label on a graph.

Format

plotSetYLabel(&myPlot, label, font, fontSize,
fontColor);
plotSetYLabel(&myPlot, label, font, fontSize);
plotSetYLabel(&myPlot, label, font);
plotSetYLabel(&myPlot, label);

Input

&myPlot A plotControl structure pointer.
label String or 2x1 string array, the new label or labels. If

you are using more than one Y-axis, the first element of
the 2x1 label string array will set the label for the left Y-
axis and the second element will set the label for the
right Y-axis. This may contain HTML for the creation
of Greek letters, mathematical symbols and text
formatting.

font String, font or font family name.

plotSetYLabel

p

fontSize Scalar, font size in points.
fontColor String, named color or RGB value.

Example

Example 1: Basic usage

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("hist");

//Set the Y-axis label, label font, font size and color
plotSetYLabel(&myPlot, "Time (sec)", "verdana", 10,
"black");

//Create data
x = rndn(1e5,1);

//Plot a histogram of the x data spread over 50 bins
plotHist(myPlot, x, 50);

Example 2: Setting both Y-axes

//Create with different Y-ranges
x = seqa(1,1,5);
y = { 98 1.5,

92 0.9,
97 1.3,
94 2.1,
95 2.4 };

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure

35-1312

plotSetYLabel

p

35-1313

myPlot = plotGetDefaults("xy");

//Set the first curve to use the left Y-axis and the second
curve to use the right
plotSetWhichYAxis(&myPlot, "left" $| "right");

//Set the left and right Y-axis labels
plotSetYLabel(&myPlot, "Number of subjects", "Percent clas-
sified");

//Plot the data
plotXY(myPlot, x, y);

Example 3

You may add Greek letters, mathematical symbols, subscript and superscript to your
axis labels using HTML. To add HTML to a label, you need to wrap the text to be
interpreted as HTML in HTML tags.

label_string = "<html>β</html>";
plotSetYLabel(&myPlot, label_string);

The code above will add the letter β to the y-axis label. The HTML 'sup' tag will cre-
ate superscript and the 'sub' tag will create subscript. For example:

label_string = "<html>σ²</html>";
plotSetYLabel(&myPlot, label_string);

will add σ2 to your y-axis label. While,

label_string = "<html>Y_{t-1}</html>";
plotSetYLabel(&myPlot, label_string);

will create Yt-1

plotSetYLabel

p

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetXLabel, plotSetXTicInterval, plotSetXTicLabel, plotSetZLabel,
plotSetLineColor, plotSetGrid

plotSetYRange

Purpose

Sets the range for the y-axis.

Format

plotSetYRange(&myPlot, y_min, y_max);

Input

&myPlot A plotControl structure pointer.
y_min Scalar, minimum limit of the y-axis.
y_max Scalar, maximum limit of the y-axis.

Example

//Declare plotControl structure
struct plotControl myPlot;

35-1314

plotSetYRange

p

35-1315

//Initialize plotControl structure
myPlot = plotGetDefaults("scatter");

//Set y-axis to to range from 0 to 2
plotSetYRange(&myPlot, 0, 2);

//Create and plot data using our x-range
x = rndu(100, 1);
y = rndu(100, 1);

plotScatter(myPlot, x, y);

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetLineSymbol

plotSetYTicCount

Purpose

Controls the number of major tics on the y-axis of a 2-D plot.

Format

plotSetYTicCount(&myPlot, num_tics);

plotSetYTicCount

p

Input

&myPlot A plotControl structure pointer.
num_tics Scalar, the number of major tics to place on the y-axis.

Example

//Create some data to plot
x = seqa(-3, 0.1, 61);
y = x.^3 + rndn(rows(x), 1);

//Plot the data
plotXY(x, y);

35-1316

plotSetYTicCount

p

35-1317

Figure 35.8: 5 tic marks

will produce a graph that looks similar to the one above, with 5 major tic marks on the
y-axis. If we use 11 tic marks, there will be one major tic for 0.2 on the y-axis. We
can make that change like this:

//Declare and initialize plotControl structure
struct plotControl myPlot;
myPlot = plotGetDefaults("xy");

//Set the y-axis to have 11 tic marks
plotSetYTicCount(&myPlot, 11);

//Plot the data, using the plotControl structure
plotXY(myPlot, x, y);

plotSetYTicCount

p

Figure 35.9: 11 tic marks

Remarks

Note that plotSeTYticCount does not provide complete control over the y-axis
tics. If the number of y-tics requested would cause an odd tic interval, GAUSS will
create a number of tics that will provide more even spacing. For instance, in the
example above, 11 tics gave a space between tics of 0.2. If we chose 10 tics, the spa-
cing between tics would be 0.222. In that case, GAUSS would instead draw 10 tics for
a more even appearance.

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the

35-1318

plotSetYTicCount

p

35-1319

Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotSetXTicInterval, plotSetXLabel

plotSetZLabel

Purpose

Controls the settings for the Z-axis label on a surface plot.

Format

plotSetZLabel(&myPlot, label, font, fontSize,
fontColor);
plotSetZLabel(&myPlot, label, font, fontSize);
plotSetZLabel(&myPlot, label, font);
plotSetZLabel(&myPlot, label);

Input

&myPlot A plotControl structure pointer.
label String, the new label.
font String, font or font family name.
fontSize Scalar, font size in points.
fontColor String, named color or RGB value.

plotSetZLabel

p

Example

Example 1

//Declare plotControl structure
struct plotControl myPlot;

//Initialize plotControl structure
myPlot = plotGetDefaults("surface");

//Set the Z-axis label, label font, font size, and color
plotSetZLabel(&myPlot, "Depth", "verdana", 10, "black");

//Create data
x = seqa(-10.6, .3, 71)';
y = seqa(-12.4, .35, 71);
z = sin(sqrt((x/2)^2+(y/2)^2)) ./ sqrt(x^2+y^4);
z = z .* sin(x/3);

//Plot the data
plotSurface(myPlot, x, y, z);

Remarks

This function sets an attribute in a plotControl structure. It does not affect an existing
graph, or a new graph drawn using the default settings that are accessible from the
Tools->Preferences->Graphics menu. See GAUSS GRAPHICS, CHAPTER 1, for more
information on the methods available for customizing your graphs.

See Also

plotGetDefaults, plotSetXLabel, plotSetXTicInterval, plotSetXTicLabel, plotSetYLabel,
plotSetLineColor, plotSetGrid

35-1320

plotSetZLabel

p

35-1321

plotSetZLevels

Purpose

Controls the heights at which lines are drawn on a contour plot.

Format

plotSetZLevels(&myPlot, zlevels);

Input

&myPlot A plotControl structure pointer.
zlevels Scalar, or Nx1 vector. If zlevels is a scalar,

zlevels represents the number of different heights at
which to draw contour lines (fromMIN(Z) to MAX
(Z)). If zlevels is an Nx1 vector, zlevels
indicates the heights at which to draw the contour lines.

Examples

Example 1: Basic example setting number of lines

//Linear sequence from -3 to +3
y = seqa(-3, 0.1, 61);
x = y';

//Joint probability of 'x' and 'y'
z = pdfn(x) .* pdfn(y);

//Declare plotControl structure
//and fill in with defaults for surface/contour
struct plotControl myPlot;

plotSetZLevels

p

myPlot = plotGetDefaults("surface");

//Set number of lines to be drawn
//MIN(Z) < Line 1 < Line 2 < Line 3 < Line 4 < MAX(Z)
plotSetZLevels(&myPlot, 4);

//Draw contour plot with 4 lines
plotContour(myPlot, x,y,z);

Example 2: Basic example setting heights of lines

Continuing with the data and plotControl structure created in the example above:

//Draw lines at z == 0.05 and when z == 0.1
plotSetZLevels(&myPlot, 0.05 | 0.1);

//Draw contour plot with lines at 0.05 and 0.1
plotContour(myPlot, x,y,z);

Example 3

//Clear out variables in GAUSS workspace
new;

//Create data
x = seqa(-4,.125,161)';
y = seqa(-8,.125,161);
z = sin(x) .* cos(y) * .5;
z = z .* sin(x/3) .* cos(y/3);
z = z .* sin(x/5) + sin(y/2.5)/3 + sin(x/2.5)/3;

//Set up control structure with defaults
//for surface plots
struct plotControl myPlot;
myPlot = plotGetDefaults("surface");

35-1322

plotSetZLevels

p

35-1323

//Set title and Z axis label
plotSetTitle(&myPlot, "Contour plot example");

//Set color map for contour
plotSetColorMap(&myplot, "plasma");

//Set up flag of show label for contour
showLabels = 1;

//Set up format for contour label
labelFormat = "g";

//Set up precision for contour label
labelPrecision = 5;

//Use function to set up contour labels
plotSetContourLabels(&myplot, showlabels, labelFormat,
labelPrecision);

//Use function to set up contour z levels = 3
plotSetZLevels(&myplot, 3);

//Draw graph using plotcontrol structure
plotContour(myPlot, x, y, z);

The Plot is

plotSetZLevels

p

Remarks

l To indicate a single Z-level, pass in a 2x1 vector with the same value for both
elements:

single_level = { 1.5, 1.5 };
plotSetLevels(&myPlot, single_level);

l This function sets an attribute in a plotControl structure. It does not affect an
existing graph, or a new graph drawn using the default settings that are
accessible from the Tools->Preferences->Graphics menu. See GAUSS
GRAPHICS, CHAPTER 1, for more information on the methods available for
customizing your graphs.

35-1324

plotSetZLevels

p

35-1325

See Also

plotGetDefaults, plotSetColorMap, plotSetContourLabels

plotSurface

Purpose

Graphs a 3-D surface.

Format

plotSurface(myPlot, x, y, z);
plotSurface(x, y, z);

Input

myPlot A plotControl structure.
x 1xK vector, the X axis data.
y Nx1 vector, the Y axis data.
z NxK matrix, the matrix of height data to be plotted.

Examples

//Clear out variables in GAUSS workspace
new;

//Create contour data
x = seqa(-4, 0.1, 50)';
y = x';
z = sin(y) .* cos(x) ;

//Set up control structure with defaults
//for surface plots

plotSurface

p

struct plotControl myPlot;
myPlot = plotGetDefaults("surface");

//Set color map
plotSetColormap(&myPlot, "plasma");

//Draw graph using plotcontrol structure
plotSurface(myPlot, x, y, z);

35-1326

plotSurface

p

35-1327

See Also

plotSetColorMap, plotContour, plotSetBkdColor

plotTS

Purpose

Creates a graph of time series data.

Format

plotTS(myPlot, dtstart, frequency, y);
plotTS(dtstart, frequency, y);

Input

myPlot A plotControl structure.
dtstart Scalar, starting date in DT scalar format.
frequency Scalar, frequency of the data per year. Valid options

include:
1 Yearly
4 Quarterly
12 Monthly

y Nx1 or NxM matrix. Each column contains the Y
values for a particular line.

plotTS

p

Examples

Example 1

//Create some data to plot
y = rndn(100, 1);

//The first input starts the series in January of 1982
//The second input specifies the data to be monthly
plotTS(1982, 12, y);

Example 2

//Create file name with full path
file = getGAUSSHome() $+ "examples/tbill_3mo.xlsx";

//Load starting date
date_1 = xlsReadM(file, "A2:A2");

//Load the first 20 observations from the time series
y = xlsReadM(file, "B2:B20");

//Specify the data is monthly
freq = 12;

//Draw the time series plot
plotTS(date_1, freq, y);

Example 3: Time Series Plot With Custom X-tics

//Create file name with full path
file = getGAUSSHome() $+ "examples/tbill_3mo.xlsx";

//Load date of observation 20 (header is row 1)
date_1 = xlsReadM(file, "A21:A21");

35-1328

plotTS

p

35-1329

//Load 28 observations
y = xlsReadM(file, "B21:B49");

//Declare 'myPlot' to be a plotControl structure
//and fill it with 'xy' default settings
struct plotControl myPlot;
myPlot = plotGetDefaults("xy");

//Place first 'X' tic mark at 1984 month 1 and draw one
every 6 months
plotSetXTicInterval(&myPlot, 6, 1984);

//Display only 4 digit year on 'X' tic labels
plotSetXTicLabel(&myPlot, "YYYY-QQ");

//Draw time series plot, using settings in 'myPlot'
plotTS(myPlot, date_1, 12, y);

plotTS

p

Example 4

In DT Scalar format, quarters are represented by supplying the first month of the
quarter for the sixth and seventh leading digits. As we see below, 200504 represents
April of 2005, but it also represents the second quarter of April 2005.

//The first input starts the series in the second quarter
of 2005
//The second input specifies the data to be quarterly
plotTS(200504, 4, y);

35-1330

plotTS

p

35-1331

Remarks

Formatting for the X-tic labels can be set with the function plotSetXTicLabel. If
a plotControl structure is not passed in to plotTS, or the format specifier is not set
with plotSetXTicLabel the default formatting: for annual data is "YYYY", for
quarterly data "YYYY-QQ" and for monthly data is "YYYY-MO".

By default missing values in the y variable will be represented as gaps in the line.

See Also

plotSetXTicLabel, plotSetXTicInterval, plotScatter

plotXY

Purpose

Graphs X vs. Y using Cartesian coordinates.

Format

plotXY(myPlot, x, y);
plotXY(x, y);

Input

myPlot A plotControl structure.
x Nx1 or NxM matrix. Each column contains the X

values for a particular line.
y Nx1 or NxM matrix. Each column contains the Y

values for a particular line.

Remarks

By default missing values in the y variable will be represented as gaps in the line.

plotXY

p

See Also

plotLogX, plotLogLog, plotScatter

polar

Purpose

Graph data using polar coordinates. NOTE: This function is for use only with the
deprecated PQG graphics.

Library

pgraph

Format

polar(radius, theta);

Input

radius Nx1 or NxM matrix. Each column contains the
magnitude for a particular line.

theta Nx1 or NxM matrix. Each column represents the angle
values for a particular line.

Source

polar.src

See Also

xy, logx, logy, loglog, scale, xtics, ytics

35-1332

polar

p

35-1333

polychar

Purpose

Computes the characteristic polynomial of a square matrix.

Format

c = polychar(x);

Input

x NxN matrix.

Output

c (N+1)x1 vector of coefficients of the Nth order characteristic
polynomial of x:

p(x) = c[1]*xn + c[2]*x(n-1) + ... + c[n]*x + c
[n+1];

Remarks

The coefficient of xn is set to unity (c[1]=1).

Source

poly.src

See Also

polymake, polymult, polyroot, polyeval

polychar

p

polyeval

Purpose

Evaluates polynomials. Can either be one or more scalar polynomials or a single
matrix polynomial.

Format

y = polyeval(x, coefs);

Input

x 1xK or NxN; that is, x can either represent K separate
scalar values at which to evaluate the (scalar)
polynomial(s), or it can represent a single NxN matrix.

c (P+1)xK or (P+1)x1 matrix of coefficients of
polynomials to evaluate. If x is 1xK, then c must be
(P+1)xK. If x is NxN, c must be (P+1)x1. That is, if x
is a matrix, it can only be evaluated at a single set of
coefficients.

Output

y Kx1 vector (if c is (P+1)xK) or NxN matrix (if c is (P+1)x1 and
x is NxN):

y =(c[1,.].*xp + c[2,.].*x(p-1) + ... + c
[p+1,.])';

Remarks

In both the scalar and the matrix case, Horner's rule is used to do the evaluation. In the

35-1334

polyeval

p

35-1335

scalar case, the function recsercp is called (this implements an elaboration of
Horner's rule).

Example

Scalar example 1

//Evaluate 2^4 + 2^3 + 2^1 + 2^0
x = 2;
coefs = { 1, 1, 0, 1, 1 };
y = polyeval(x,coefs);

The result is 27. Note that this is the decimal value of the binary number 11011.
Scalar example 2

//Evaluate 7*2^3 + 2^1 + 2^0
x = 2;
coefs = { 7, 0, 1, 1 };
y = polyeval(x,coefs);

The result is 59.
Matrix example 1

//Evaluate A*A*A + 2*A
A = { 2 6,

4 8 };
coefs = { 1, 0, 2, 0 };
A_3 = polyeval(A, coefs);

The above code will set A_3 equal to:

300 660
440 960

Matrix example 2

polyeval

p

//Evaluate A*A*A*A
A = { 1.2 3.1,

1.7 0.8 };
coefs = 1|zeros(4,1);
y = polyeval(A,coefs);

You can raise a matrix to the n'th power with the command:

A_n = polyeval(A, 1|zeros(n,1));

(e.g: A*A*A*A*...*A).

Source

poly.src

See Also

polymake, polychar, polymult, polyroot

polygamma

Purpose

Computes the polygamma function.

Format

f = polygamma(z,n);

Input

z NxK matrix; z may be complex.
n The order of the function. If n is 0 then f will be the

Digamma function. If n = 1,2,3, etc., then f will be the

35-1336

polygamma

p

35-1337

tri-, tetra-, penta-, s-, etc., Gamma function. Real (n)
must be positive.

Output

f NxK matrix; f may be complex.

Examples

Example 1

//Both calls are equivalent
f = digamma(1);
f2 = polygamma(1, 0);

After the code above, both f and f2 should be equal to −γ, where γ represents the
Euler-Mascheroni constant:

-0.57721566

Example 2: Compute the pentagamma function

f = polygamma(1.5, 4);

After the code above, f should be equal to:

-3.47425

Example 3: Complex input

//Set 'z' equal to complex number -45.6-29.4i
z = { -45.6 - 29.4i };
polygamma(z, 101);

12.501909 + 9.0829590i

Example 4

polygamma

p

z = { -11.5 - 0.577007813568142i };
polygamma(z,10);

will return the value:

-4.984e-06 + 8.217e-07i

Remarks

The polygamma function of order n is defined by the equation:

This program uses the partial fraction expansion of the derivative of the log of the
Lanczos series approximation for the Gamma function. Accurate to about 12 digits.

References

1. C. Lanczos, SIAM JNA 1, 1964. pp. 86-96.

2. Y. Luke, "The Special ... approximations," 1969 pp. 29-31.

3. Y. Luke, "Algorithms ... functions," 1977.

4. J. Spouge, SIAM JNA 31, 1994. pp. 931.

5. W. Press, "Numerical Recipes."

6. S. Chang, "Computation of special functions," 1996.

7. Abramowitz & Stegun, section eq 6.4.6

8. Original code by Paul Godfrey

35-1338

polygamma

p

35-1339

polyint

Purpose

Calculates an Nth order polynomial interpolation.

Format

y = polyint(xa, ya, x);

Input

xa Nx1 vector, x values.
ya Nx1 vector, y values.
x scalar, x value to solve for.

Global Input

_poldeg scalar, the degree of polynomial required, default 6.

Output

y result of interpolation or extrapolation.

Global Output

_polerr scalar, interpolation error.

Remarks

Calculates an Nth order polynomial interpolation or extrapolation of x on y given the
vectors xa and ya and the scalar x. The procedure uses Neville's algorithm to

polyint

p

determine an up to Nth order polynomial and an error estimate.

Polynomials above degree 6 are not likely to increase the accuracy for most data. Test
_polerr to determine the required _poldeg for your problem.

Source

polyint.src

Technical Notes

Press, W.P., B.P. Flannery, S.A. Teukolsky, and W.T. Vettering. Numerical Recipes:
The Art of Scientific Computing. NY: Cambridge Press, 1986.

polymake

Purpose

Computes the coefficients of a polynomial given the roots.

Format

c = polymake(r);

Input

r Nx1 vector containing roots of the desired polynomial.

Output

c (N+1)x1 vector containing the coefficients of the Nth order
polynomial with roots r:

p(z)=c[1]*zn + c[2]*z(n-1) + ... c[n]*z + c
[n+1]

35-1340

polymake

p

35-1341

Remarks

The coefficient of zn is set to unity (c[1]=1).

Example

//Assign values for the roots of the polynomial
r = { 2, 1, 3 };

//Calculate the coefficients
c = polymake(r);

//Print 3 spaces for each number and 1 digit after the
//decimal place
format /rd 3,1;

//Iterate through each root in 'r'
for i(1, 3, 1);

rtmp = r[i];
//Calculate the polynomial
rout = c[1]*rtmp^3 + c[2]*rtmp^2 + c[3]*rtmp + c[4];
print "rtmp = " rtmp "rout = " rout;

endfor;

Since the values of r are roots for this polynomial, rout should equal 0. Thus the
code above gives the following output:

rtmp = 2.0 rout = 0.0
rtmp = 1.0 rout = 0.0
rtmp = 3.0 rout = 0.0

This example assigns c to be equal to:

1.0
c = -6.0

polymake

p

11.0
-6.0

This represents the polynomial:

x3 - 6x2 + 11x - 6

Source

poly.src

See Also

polychar, polymult, polyroot, polyeval

polymat

Purpose

Returns a matrix containing the powers of the elements of x from 1 to p.

Format

y = polymat(x, p);

Input

x NxK matrix.
p scalar, positive integer.

Output

y Nx(p*K) matrix containing powers of the elements of

35-1342

polymat

p

35-1343

x from 1 to p. The first K columns will contain first
powers, the second K columns second powers, and so
on.

Remarks

To do polynomial regression use ols:

{ vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat } = ols
(0,y, polymat(x,p));

Source

polymat.src

polymroot

Purpose

Computes the roots of the determinant of a matrix polynomial.

Format

r = polymroot(c);

Input

c (N+1)*KxK matrix of coefficients of an Nth order
polynomial of rank K.

Output

r K*N vector containing the roots of the determinantal

polymroot

p

equation.

Remarks

c is constructed of N+1 KxK coefficient matrices stacked vertically with the coef-
ficient matrix of the tn at the top, t(n-1) next, down to the t0 matrix at the bottom.

Note that this procedure solves the scalar problem as well, that is, the one that
POLYROOT solves.

Example

Solve

det(A2*t2 + A1*t + A0) = 0
where:

A2 = 1 2 A1 = 5 8 A0 = 3 4
2 1 10 7 6 5

a2 = { 1 2, 2 1 };
a1 = { 5 8, 10 7 };
a0 = { 3 4, 6 5 };

//The pipe operator '|' provides vertical concatenation
print polymroot(a2|a1|a0);

-4.3027756
-.69722436
-2.6180340
-.38196601

35-1344

polymroot

p

35-1345

polymult

Purpose

Multiplies polynomials.

Format

c = polymult(c1, c2);

Input

c1 (D1+1)x1 vector containing the coefficients of the first
polynomial.

c2 (D2+1)x1 vector containing the coefficients of the
second polynomial.

Output

c (D1+D2)x1 vector containing the coefficients of the
product of the two polynomials.

Example

This example multiplies the polynomials:

(2x + 1)(2x2 + 1)

and returns the answer:

4x3 + 2x2 + 2x + 1

//Assign c1 to represent 2x + 1
c1 = { 2, 1 };

polymult

p

//Assign c2 to represent 2x2 + 1
c2 = { 2, 0, 1 };
c = polymult(c1,c2);

After the code above:

4
c = 2

2
1

Technical Notes

If the degree of c1 is D1 (e.g., if D1=3, then the polynomial corresponding to c1 is
cubic), then there must be D1+1 elements in c1 (e.g., 4 elements for a cubic). Thus,
for instance the coefficients for the polynomial

5x3 + 6x + 3

would be:

//Using the pipe operator for vertical concatenation
c1 = 5|0|6|3;

or

//Using an array assignment
c1 = { 5, 0, 6, 3 };

(Note that zeros must be explicitly given if there are powers of x missing.)

Source

poly.src

35-1346

polymult

p

35-1347

See Also

polymake, polychar, polyroot, polyeval

polyroot

Purpose

Computes the roots of a polynomial given the coefficients.

Format

y = polyroot(c);

Input

c (N+1)x1 vector of coefficients of an Nth order polynomial:

p(z) = c[1]*zn + c[2]*zn-1 + ... + c[n]*z + c
[n+1]

Output

y Nx1 vector, the roots of c.

Remarks

Zero leading terms will be stripped from c. When that occurs the order of y will be the
order of the polynomial after the leading zeros have been stripped.

c[1] need not be normalized to unity.

Source

poly.src

polyroot

p

See Also

polymake, polychar, polymult, polyeval

pop

Purpose

Provides access to a last-in, first-out stack for matrices.

Format

pop b;
pop a;

Remarks

This is used with gosub, goto, and return statements with parameters. It permits
passing parameters to subroutines or labels, and returning parameters from subroutines.

The gosub syntax allows an implicit push statement. This syntax is almost the same
as that of a standard gosub, except that the matrices to be push'ed "into the sub-
routine" are in parentheses following the label name. The matrices to be push'ed back
to the main body of the program are in parentheses following the return statement.
The only limit on the number of matrices that can be passed to and from subroutines in
this way is the amount of room on the stack.

No matrix expressions can be executed between the (implicit) push and the pop. Exe-
cution of such expressions will alter what is on the stack.

Matrices must be pop'ped in the reverse order that they are push'ed, therefore in the
statements:

35-1348

pop

p

35-1349

goto label(x,y,z);
.
.
.

label:
pop c;
pop b;
pop a;

After the code above:

c = z
b = y
a = x

Note that there must be a separate pop statement for each matrix popped.

See Also

gosub, goto, return

powerM

Purpose

Returns the power n of a matrix A, as the matrix product of n copies of A.

Format

B = powerM(A, n);

Input

A NxN square matrix
n Scalar, the power or exponent.

powerM

p

Output

B NxN square matrix, the power of a matrix A

Remarks

If n = 0, then the function will return an identity matrix.

Example

A = { 1 2,
3 4 };

//Compute power matrix
B = powerM(A, 3);

print "A = " A;
print ;
print "B = " B;

After the code above:

A=
1.0000000 2.0000000
3.0000000 4.0000000

B=
37.000000 54.000000
81.000000 118.00000

See Also

crossprd

35-1350

powerM

p

35-1351

pqgwin

Purpose

Sets the graphics viewer mode. NOTE: This function is for use only with the
deprecated PQG graphics.

Library

pgraph

Format

pqgwin one;
pqgwin many;

Remarks

If you call:

pqgwin one

only a single viewer will be used. If you call

pqgwin many

a new viewer will be used for each graph.

pqgwin manual and pqgwin auto are supported for backwards compatibility,
manual = one, auto = many.

Example

pqgwin many;

Source

pgraph.src

pqgwin

p

See Also

setvwrmode

previousindex

Purpose

Returns the index of the previous element or subarray in an array.

Format

pi = previousindex(i, o);

Input

i Mx1 vector of indices into an array, where M <= N.
o Nx1 vector of orders of an N-dimensional array.

Output

pi Mx1 vector of indices, the index of the previous
element or subarray in the array corresponding to o.

Remarks

previousindex will return a scalar error code if the index cannot be decremented.

Example

orders = {3,4,5,6,7};
a = areshape(1,orders);

35-1352

previousindex

p

35-1353

orders = getorders(a);
ind = { 2,3,1 };
ind = previousindex(ind,orders);

After the code above, ind is equal to:

2
ind = 2

5

In this example, previousindex decremented ind to index the previous 6x7 subar-
ray in array a.

See Also

nextindex, loopnextindex, walkindex

princomp

Purpose

Computes principal components of a data matrix.

Format

{ p, v, a } = princomp(x, j);

Input

x NxK data matrix, N>K, full rank.
j scalar, number of principal components to be computed

(j <= K).

princomp

p

Output

p NxJ matrix of the first j principal components of x in
descending order of amount of variance explained.

v Jx1 vector of fractions of variance explained.
a JxK matrix of factor loadings, such that:

x = p*a + error.

Exampe

//Create matrix with percent return
//of 4 stocks over 11 time periods
pcnt_return = { 0.0646 1.2326 0.0508 -0.0346,

-0.1632 0.1806 0.1104 0.1276,
1.3477 1.3347 0.1424 0.0159,

-0.4465 -0.5691 -0.1524 -0.1719,
1.6232 1.4690 -0.0192 0.0979,
0.3381 0.5307 0.0610 0.0374,

-0.0383 0.2556 0.0370 0.0518,
0.4493 0.3140 0.0177 0.1001,
0.5896 0.0542 0.1991 0.2669,

-0.2218 0.3772 0.1189 0.1234,
1.1778 -0.0464 -0.1282 0.2171 };

//Compute: all 4 principal component vectors,
// percent variance explained
// matrix of factor loadings
{ p, v, a } = princomp(pcnt_return, 4);

After the code above:

p = 0.2662 -0.6077 0.0965 -0.2951 v = 0.8394 a
= 2.4244 2.3264 0.1321 0.2227

35-1354

princomp

p

35-1355

0.0059 -0.1702 -0.3938 -0.1569 0.1436
0.9506 -0.9977 -0.1402 0.1566

0.5631 -0.0350 0.0953 0.6146 0.0144
0.0317 0.0153 -0.2757 -0.3420

-0.2170 0.0709 0.4012 -0.0219 0.0026
0.0208 -0.0188 0.1455 -0.1162

0.6491 0.0491 0.2359 -0.2269
0.1823 -0.1085 -0.0554 0.0444
0.0456 -0.1485 -0.1299 -0.1762
0.1624 0.0654 -0.1032 -0.1584
0.1445 0.2677 -0.6520 0.2598
0.0337 -0.3008 -0.3926 -0.2472
0.2447 0.6267 -0.0115 -0.5214

From the results above, we can see that approximately 83.9% of the variance in the
pcnt_return is included in the first principal component vector and another 14.36%
is included in the second principal component.

Remarks

Adapted from a program written by Mico Loretan.

The algorithm is based on Theil, Henri "Principles of Econometrics." Wiley, NY,
1971, 46-56.

print

Purpose

Prints matrices, arrays, strings and string arrays to the screen and/or auxiliary out-
put.

Format

print list_of_expressions;
print [[/typ]] [[/fmted]] [[/mf]] [[/jnt]] list_of_expressions

print

p

[[;]];

Input

list_
of_
expres
sions

any GAUSS expressions that produce matrices, arrays,
stings, or string arrays and/or names of variables to print,
separated by spaces.

/typ literal, symbol type flag.
/mat,
/sa,
/str

Indicate which symbol types you are
setting the output format for: matrices
and arrays (/mat), string arrays
(/sa), and/or strings (/str). You
can specify more than one / typ
flag; the format will be set for all types
indicated. If no / typ flag is listed,
print assumes /mat.

/fmted literal, enable formatting flag.
/on,
/off

Enable/disable formatting. When
formatting is disabled, the contents of
a variable are dumped to the screen in
a ''raw'' format. /off is currently
supported only for strings. ''Raw''
format for strings means that the entire
string is printed, starting at the current
cursor position. When formatting is
enabled for strings, they are handled
the same as string arrays. This
shouldn't be too surprising, since a
string is actually a 1x1 string array.

/mf literal, matrix format. It controls the way rows of a matrix are

35-1356

print

p

35-1357

separated from one another. The possibilities are:
/m0 no delimiters before or after rows

when printing out matrices.
/m1 or
/mb1

print 1 carriage return/line feed pair
before each row of a matrix with more
than 1 row.

/m2 or
/mb2

print 2 carriage return/line feed pairs
before each row of a matrix with more
than 1 row.

/m3 or
/mb3

print ''Row 1'', ''Row 2''...before each
row of a matrix with more than one
row.

/ma1 print 1 carriage return/line feed pair
after each row of a matrix with more
than 1 row.

/ma2 print 2 carriage return/line feed pairs
after each row of a matrix with more
than 1 row.

/a1 print 1 carriage return/line feed pair
after each row of a matrix.

/a2 print 2 carriage return/line feed pairs
after each row of a matrix.

/b1 print 1 carriage return/line feed pair
before each row of a matrix.

/b2 print 2 carriage return/line feed pairs
before each row of a matrix.

/b3 print ''Row 1'', ''Row 2''... before each
row of a matrix.

/jnt literal, controls justification, notation, and the trailing

print

p

character.
Right-Justified
/rd Signed decimal number in the form

[[-]]####.####, where #### is one or
more decimal digits. The number of
digits before the decimal point
depends on the magnitude of the
number, and the number of digits after
the decimal point depends on the
precision. If the precision is 0, no
decimal point will be printed.

/re Signed number in the form
[[-]]#.##E±###, where # is one
decimal digit, ## is one or more
decimal digits depending on the
precision, and ### is three decimal
digits. If precision is 0, the form will
be [[-]]#E±### with no decimal point
printed.

/ro This will give a format like /rd or
/re depending on which is most
compact for the number being printed.
A format like /re will be used only if
the exponent value is less than -4 or
greater than the precision. If a /re
format is used, a decimal point will
always appear. The precision signifies
the number of significant digits
displayed.

/rz This will give a format like /rd or

35-1358

print

p

35-1359

/re depending on which is most
compact for the number being printed.
A format like /re will be used only if
the exponent value is less than -4 or
greater than the precision. If a /re
format is used, trailing zeros will be
supressed and a decimal point will
appear only if one or more digits
follow it. The precision signifies the
number of significant digits displayed.

Left-Justified
/ld Signed decimal number in the form

[[-]] ####.####, where #### is one or
more decimal digits. The number of
digits before the decimal point
depends on the magnitude of the
number, and the number of digits after
thedecimal point depends on the
precision. If the precision is 0, no
decimal point will be printed. If the
number is positive, a space character
will replace the leading minus sign.

/le Signed number in the form
[[-]]#.##E±###, where # is one
decimal digit, ## is one or more
decimal digits depending on the
precision, and ### is three decimal
digits. If precision is 0, the form will
be [[-]]#E±### with no decimal point
printed. If the number is positive, a
space character will replace the

print

p

leading minus sign.
/lo This will give a format like /ld or

/le depending on which is most
compact for the number being printed.
A format like /le will be used only if
the exponent value is less than -4 or
greater than the precision. If a /le
format is used, a decimal point will
always appear. If the number is
positive, a space character will replace
the leading minus sign. The precision
specifies the number of significant
digits displayed.

/lz This will give a format like /ld or
/le depending on which is most
compact for the number being printed.
A format like /le will be used only if
the exponent value is less than -4 or
greater than the precision. If a /le
format is used, trailing zeros will be
supressed and a decimal point will
appear only if one or more digits
follow it. If the number is positive, a
space character will replace the
leading minus sign. The precision
specifies the number of significant
digits displayed.

Trailing Character
The following characters can be added to the / jnt
parameters above to control the trailing character if any:

35-1360

print

p

35-1361

format /rdn
1,3;

s The number will be followed
immediately by a space character. This
is the default.

c The number will be followed
immediately by a comma.

t The number will be followed
immediately by a tab character.

n No trailing character.

The default when GAUSS is first started
is:

format /m1 /ro 16,8;

;; Double semicolons following a
print statement will suppress the
final carriage return/line feed.

Remarks

The list of expressions MUST be separated by spaces. In print statements, because
a space is the delimiter between expressions, NO SPACES are allowed inside expres-
sions unless they are within index brackets, quotes, or parentheses.

The printing of special characters is accomplished by the use of the backslash (\)
within double quotes. The options are:

\b backspace (ASCII 8)
\e escape (ASCII 27)

print

p

\f form feed (ASCII 12)
\g beep (ASCII 7)
\l line feed (ASCII 10)
\r carriage return (ASCII 13)
\t tab (ASCII 9)
\### the character whose ASCII value is ''###'' (decimal).

Thus, \13\10 is a carriage return/line feed sequence. The first three digits will be
picked up here. So if the character to follow a special character is a digit, be sure to
use three digits in the escape sequence. For example: \0074 will be interpreted as 2
characters (ASCII 7, "4")

An expression with no assignment operator is an implicit print statement.

If output on has been specified, then all subsequent print statements will be dir-
ected to the auxiliary output as well as the window. (See output.) The locate
statement has no effect on what will be sent to the auxiliary output, so all formatting
must be accomplished using tab characters or some other form of serial output.

If the name of the symbol to be printed is prefixed with a $, it is assumed that the sym-
bol is a matrix of characters.

print $x;

Note that GAUSS makes no distinction between matrices containing character data
and those containing numeric data, so it is the responsibility of the user to use functions
which operate on character matrices only on those matrices containing character data.

These matrices of character strings have a maximum of 8 characters per element. A
precision of 8 or more should be set when printing out character matrices or the ele-
ments will be truncated.

Complex numbers are printed with the sign of the imaginary half separating them and
an ''i'' appended to the imaginary half. Also, the current field width setting (see
format) refers to the width of field for each half of the number, so a complex num-
ber printed with a field of 8 will actually take (at least) 20 spaces to print.

35-1362

print

p

35-1363

print'ing a sparse matrix results in a table of the non-zero values contained in the
sparse matrix, followed by their corresponding row and column indices, respectively.

A print statement by itself will cause a blank line to be printed:

print;

print

p

Examples

Example 1: Print a matrix

x = { 1 2,
3 4 };

print x;

returns:

1.0000000 2.0000000
3.0000000 4.0000000

Example 2: Print an expression

x = 3;
print (x + 2);

returns:

5.0000000

Notice the parentheses in the code above. Remember that print statements in
GAUSS take a space separated list of items to print. The parentheses tell GAUSS to
first evaluate the expression and then print the result. Without the parentheses (i.e.
print x + 2;), the statement would tell GAUSS to print a list of three items (first
print x, then print +, and finally print 2. Since the second item in that list is an oper-
ator (the + sign), an error will occur.
Example 3

x = rndn(3,3);
format /rd 16,8;
print x;

returns:

35-1364

print

p

35-1365

0.14357994 -1.39272762 -0.91942414
0.51061645 -0.02332207 -0.02511298

-1.04675893 -1.04988540 0.07992059

Example 4: Scientific notation

format /re 12,2;
print x;

returns:

1.44E-001 -1.39E+000 -9.19E-001
5.11E-001 -2.33E-002 -2.51E-002

-1.55E+000 -1.05E+000 7.99E-002

Example 5: Append commas

x = rndn(3,3);
format /rd 16,8;
print x;

returns:

0.14357994, -1.39272762, -0.91942414,
0.51061645, -0.02332207, -0.02511298,

-1.04675893, -1.04988540, 0.07992059,

Example 6: Add row numbers

print /rd /m3 x;

returns: (NOTE: this example does not specify the precision and spacing, so you may
see more decimal places printed if that is your default setting)

Row 1
0.14 -1.39 -0.92

print

p

Row 2
0.51 -0.02 -0.03

Row 3
-1.55 -1.05 0.08

Example 7: Printing character data

Character data is text inside a GAUSS matrix. To print elements of a matrix as char-
acters, you need to prepend the dollar sign ($) to the name of the variable you want to
print. In most cases, string arrays are recommended over character matrices..

let x = AGE PAY SEX;
format /m1 8,8;
print $x;

AGE
PAY
SEX

See Also

printfm, printdos

printdos

Purpose

Prints a string to the standard output.

Format

printdos s;

Input

s string to be printed to the standard output.

35-1366

printdos

p

35-1367

Remarks

This function is useful for printing messages to the screen when screen off is in
effect. The output of this function will not go to the auxiliary output.

This function was used in the past to send escape sequences to the ansi.sys device
driver on DOS. It still works on some terminals.

Example

printdos "\27[7m"; /* set for reverse video */
printdos "\27[0m"; /* set for normal text */

See Also

print, printfm, screen

printfm

Purpose

Prints a matrix using a different format for each column of the matrix.

Format

y = printfm(x, mask, fmt);

Input

x NxK matrix which is to be printed and which may
contain both character and numeric data.

mask LxM matrix, ExE conformable with x, containing ones
and zeros, which is used to specify whether the
particular row, column, or element is to be printed as a

printfm

p

character (0) or numeric (1) value.
fmt Kx3 or 1x3 matrix where each row specifies the format

for the respective column of x.

Output

y scalar, 1 if the function is successful and 0 if it fails.

Remarks

The mask is applied to the matrix x following the rules of standard element-by-element
operations. If the corresponding element of mask is 0, then that element of x is prin-
ted as a character string of up to 8 characters. If mask contains a 1, then that element
of x is assumed to be a double precision floating point number.

The contents of fmt are as follows:

[K,1] format string, a string 8
characters
maximum.

[K,2] field width, a number
< 80.

[K,3] precision, a number
< 17.

The format strings correspond to the format slash commands as follows:

/rdn "*.*lf"

/ren "*.*lE"

/ron "#*.*lG"

/rzn "*.*lG"

/ldn "- *.*lf"

35-1368

printfm

p

35-1369

/len "- *.*lE"

/lon "-# *.*lG"

/lzn "- *.*lG"

Complex numbers are printed with the sign of the imaginary half separating them and
an "i" appended to the imaginary half. The field width refers to the width of field for
each half of the number, so a complex number printed with a field of 8 will actually
take (at least) 20 spaces to print.

If the precision = 0, the decimal point will be suppressed.

The format string can be a maximum of 8 characters and is appended to a % sign and
passed directly to the fprintf function in the standard C language I/O library. The
lf, etc., are case sensitive. If you know C, you will easily be able to use this.

If you want special characters to be printed after x, then include them as the last char-
acters of the format string. For example:

"*.*lf," right-justified decimal followed by a comma.
"-*.*s " left-justified string followed by a space.
"*.*lf" right-justified decimal followed by nothing.

If you want the beginning of the field padded with zeros, then put a "0" before the first
"*" in the format string:

"0*.*lf" right-justified decimal.

Example

Here is an example of printfm being used to print a mixed numeric and character
matrix:

let x[4,3] = "AGE" 5.12345564 2.23456788

printfm

p

"PAY" 1.23456677 1.23456789
"SEX" 1.14454345 3.44718234
"JOB" 4.11429432 8.55649341;

let mask[1,3] = 0 1 1; /* character numeric numeric */
let fmt[3,3] = "-*.*s " 8 8 /* first column format */
"*.*lf," 10 3 /* second column format */
"*.*le " 12 4; /* third column format */

d = printfm(x,mask,fmt);

The output looks like this:

AGE 5.123, 2.2346E+00
PAY 1.235, 1.2346E+00
SEX 1.145, 3.4471E+00
JOB 4.114, 8.5564E+00

When the column of x to be printed contains all character elements, use a format
string of "*.*s" if you want it right-justified, or "-*.*s" if you want it left-jus-
tified. If the column is mixed character and numeric elements, then use the correct
numeric format and printfm will substitute a default format string for those ele-
ments in the column that are character.

Remember, the mask value controls whether an element will be printed as a number or
a character string.

See Also

print, printdos

printfmt

Purpose

Prints character, numeric, or mixed matrix using a default format controlled by
the functions formatcv and formatnv.

35-1370

printfmt

p

35-1371

Format

y = printfmt(x, mask);

Input

x NxK matrix which is to be printed.
mask scalar, 1 if x is numeric or 0 if x is character.

- or -

1xK vector of 1's and 0's.

The corresponding column of x will be printed as numeric
where mask = 1 and as character where mask = 0.

Output

y scalar, 1 if the function is successful and 0 if it fails.

Remarks

Default format for numeric data is: ''*.*lg '' 16 8

Default format for character data is: ''*.*s '' 8 8

Example

c1 = { "age", "height", "weight" };
c2 = { 31, 70, 160 };

//Horizontally concatenate c1 and c2
c = c1~c2;

//Print 'c' as numeric data

printfmt

p

print c;

//Print 'c' as character data
print $c;

//Print column 1 of 'c' as character data and column 2 as
//numeric data
//Note: call disregards the return value
mask = { 0 1 };
call printfmt(c, mask);

The output from the three different print statements will be:

+DEN 31.000000
+DEN 70.000000
+DEN 160.00000

age
height
weight

age 31
height 70
weight 160

Only the final print statement from printfmt correctly prints both columns.

Source

gauss.src

Globals

__fmtcv, __fmtnv

See Also

formatcv, formatnv

35-1372

printfmt

p

35-1373

proc

Purpose

Begins the definition of a multi-line recursive procedure. Procedures are user-
defined functions with local or global variables.

Format

proc nrets = name(arglist);
proc name(arglist);

Input

nrets constant, number of objects returned by the procedure.
If nrets is not explicitly given, the default is 1.
Legal values are 0 to 1023. The retp statement is
used to return values from a procedure.

name literal, name of the procedure. This name will be a
global symbol.

arglist a list of names, separated by commas, to be used inside
the procedure to refer to the arguments that are passed
to the procedure when the procedure is called. These
will always be local to the procedure, and cannot be
accessed from outside the procedure or from other
procedures.

Remarks

A procedure definition begins with the proc statement and ends with the endp state-
ment.

An example of a procedure definition is:

proc

p

proc dog(x,y,z); /* procedure declaration */
local a,b; /* local variable declarations */

a = x .* x;
b = y .* y;
a = a ./ x;
b = b ./ y;
z = z .* z;
z = inv(z);
retp(a'b*z); /* return with value of a'b*z */

endp; /* end of procedure definition */

Procedures can be used just as if they were functions intrinsic to the language. Below
are the possible variations depending on the number of items the procedure returns.

Returns 1 item:

y = dog(i,j,k);

Returns multiple items:

{ x,y,z } = cat(i,j,k);

Returns no items:

fish(i,j,k);

If the procedure does not return any items or you want to discard the returned items:

call
dog(i,j,k);

Procedure definitions may not be nested.

For more details on writing procedures, see PROCEDURES AND KEYWORDS, CHAPTER
1.

35-1374

proc

p

35-1375

See Also

keyword, call, endp, local, retp

prodc

Purpose

Computes the products of all elements in each column of a matrix.

Format

y = prodc(x);

Input

x NxK matrix.

Output

y Kx1 matrix containing the products of all elements in
each column of x.

Remarks

To find the products of the elements in each row of a matrix, transpose before applying
prodc. If x is complex, use the bookkeeping transpose (.').

To find the products of all of the elements in a matrix, use the vecr function before
applying prodc.

prodc

p

Example

x = { 1 2 3,
4 5 6,
7 8 9 };

y = prodc(x);

The code above assigns y to be equal to:

28
y = 80

162

See Also

sumc, meanc, stdc

psi

Purpose

Computes the Psi (or Digamma) function.

Format

f = psi(z);

Input

z NxK matrix; z may be complex.

Output

f NxK matrix.

35-1376

psi

p

35-1377

Remarks

This program uses the analytical derivative of the log of the Lanczos series approx-
imation for the Gamma function.

References

1. C. Lanczos, SIAM JNA 1, 1964. pp. 86-96.

2. Y. Luke, ''The Special ... approximations,'' 1969 pp. 29-31.

3. Y. Luke, ''Algorithms ... functions,'' 1977.

4. J. Spouge, SIAM JNA 31, 1994. pp. 931.

5. W. Press, ''Numerical Recipes.''

6. S. Chang, ''Computation of special functions,'' 1996.

7. Original code by Paul Godfrey

putarray

Purpose

Puts a contiguous subarray into an N-dimensional array and returns the resulting
array.

Format

y = putarray(a, loc, src);

Input

a N-dimensional array.
loc Mx1 vector of indices into the array to locate the

subarray of interest, where M is a value from 1 to N.

putarray

p

src [N-M]-dimensional array, matrix, or scalar.

Output

y N-dimensional array.

Remarks

If loc is an Nx1 vector, then src must be a scalar. If loc is an [N-1]x1 vector,
then src must be a 1-dimensional array or a 1xL vector, where L is the size of the
fastest moving dimension of the array. If loc is an [N-2]x1 vector, then src must
be a KxL matrix, or a KxL 2-dimensional array, where K is the size of the second fast-
est moving dimension.

Otherwise, if loc is an Mx1 vector, then src must be an [N-M]-dimensional array,
whose dimensions are the same size as the corresponding dimensions of array a.

Example

//Create a 2x3x4x5x6 dimensional array with unspecified
//contents
a = arrayalloc(2|3|4|5|6,0);

//Create a 4x5x6 dimensional array with all elements equal
//to 5
src = arrayinit(4|5|6,5);

loc = { 2,1 };
a = putarray(a,loc,src);

This example sets the contiguous 4x5x6 subarray of a beginning at [2,1,1,1,1] to the
array src, in which each element is set to the specified value 5.

See Also

setarray

35-1378

putarray

p

35-1379

putf

Purpose

Writes the contents of a string to a file.

Format

ret = putf(filename, str, start, len, mode, append);

Input

filename string, name of output file.
str string to be written to filename. All or part of str

may be written out.
start scalar, beginning position in str of output string.
len scalar, length of output string.
mode scalar, output mode, (0) ASCII or (1) binary.
append scalar, file write mode, (0) overwrite or (1) append.

Output

ret scalar, return code.
0 normal return
1 null file name
2 file open error
3 file write error
4 output string too long
5 null output string, or illegal mode value
6 illegal append value
16 (1) append specified but file did not exist; file

putf

p

was created (warning only)

Remarks

If mode is set to (1) binary, a string of length len will be written to filename.
If mode is set to (0) ASCII, the string will be output up to length len or until
putf encounters a ^Z (ASCII 26) in str. The ^Z will not be written to file-
name.

If append is set to (0) overwrite, the current contents of filename will be des-
troyed. If append is set to (1) append, filename will be created if it does not
already exist.

If an error occurs, putf will either return an error code or terminate the program with
an error message, depending on the trap state. If bit 2 (the 4's bit) of the trap flag is
0, putf will terminate with an error message. If bit 2 of the trap flag is 1, putf will
return an error code. The value of the trap flag can be tested with trapchk.

Source

putf.src

See Also

getf

putvals

Purpose

Inserts values into a matrix or N-dimensional array.

Format

y = putvals(x, inds, vals);

35-1380

putvals

p

35-1381

Input

x MxK matrix or N-dimensional array.
inds LxD matrix of indices, specifying where the new

values are to be inserted, where D is the number of
dimensions in x.

vals Lx1 vector, new values to insert.

Output

y MxK matrix or N-dimensional array, copy of x
containing the new values in vals.

Remarks

If x is a vector, inds should be an Lx1 vector. If x is a matrix, inds should be an
Lx2 matrix. Otherwise if x is an N-dimensional array, inds should be an LxN mat-
rix.

putvals allows you to insert multiple values into a matrix or N-dimensional array at
one time. This could also be accomplished using indexing inside a for loop.

Example

x = { -0.8750 0.3616 0.6032 -0.3974,
0.7644 -1.8509 -0.2703 -0.8190,
0.7886 1.2678 -1.4998 -0.5876,
0.6639 -0.7972 1.2713 0.1896,
0.6303 0.7879 -0.7451 -0.5419 };

inds = { 1 1, 2 4, 3 2, 3 4, 5 3 };
v = seqa(1,1,5);
y = putvals(x,inds,v);

After the code above:

putvals

p

1.000 0.362 0.603 -0.397 1.00
0.764 -1.851 -0.270 2.000 2.00

y = 0.789 3.000 -1.500 4.000 v = 3.00
0.664 -0.797 1.271 0.190 4.00
0.630 0.788 5.000 -0.542 5.00

pvCreate

Purpose

Returns an initialized instance of structure of type PV.

Format

p1 = pvCreate();

Output

p1 an instance of structure of type PV

Example

//Declare 'p1' as an instance of a 'PV' structure
struct PV p1;

//Fill in 'p1' with default values
p1 = pvCreate();

Source

pv.src

35-1382

pvCreate

p

35-1383

pvGetIndex

Purpose

Gets row indices of a matrix in a parameter vector.

Format

id = pvGetIndex(p1, nm1);

Input

p1 an instance of structure of type PV.
nm1 name or row number of matrix.

Output

id Kx1 vector, row indices of matrix described by nm1
in parameter vector.

Source

pv.src

pvGetParNames

Purpose

Generates names for parameter vector stored in structure of type PV.

Include

pv.sdf

pvGetIndex

p

Format

s = pvGetParNames(p1);

Input

p1 an instance of structure of type PV.

Output

s Kx1 string array, names of parameters.

Remarks

If the vector in the structure of type PV was generated with matrix names, the para-
meter names will be concatenations of the matrix name with row and column numbers
of the parameters in the matrix. Otherwise the names will have a generic prefix with
concatenated row and column numbers.

Example

//Define PV structure
#include pv.sdf
//Declare 'p1' as an instance of a 'PV' structure
struct PV p1;

//Initialize 'p1' with default values
p1 = pvCreate;

//Data to pack into the 'PV' struct
x = { 1 2,

3 4 };

//1's indicate an element to pack into the structure

35-1384

pvGetParNames

p

35-1385

//0's indicate elements to NOT pack into the structure
mask = { 1 0,

0 1 };

//Pack values of 'x' selected by 'mask' into 'pi' and name
//this resulting vector, 'P'
p1 = pvPackm(p1,x,"P",mask);

print pvGetParNames(p1);

Since mask has ones in the [1,1] and [2,2] locations, the code above, produces:

P[1,1]
P[2,2]

Source

pv.src

pvGetParVector

Purpose

Retrieves parameter vector from structure of type PV.

Include

pv.sdf

Format

p = pvGetParVector(p1);

pvGetParVector

p

Input

p1 an instance of structure of type PV.

Output

p Kx1 vector, parameter vector.

Remarks

Matrices or portions of matrices (stored using a mask) are stored in the structure of
type PV as a vector in the p member.

Example

//Define 'PV' structure
#include pv.sdf
//Declare 'p1' as an instance of a 'PV' structure
struct PV p1;

//Initialize 'p1' with default values
p1 = pvCreate;

x = { 1 2,
3 4 };

//1's indicate elements to pack into 'p1' parameter vector
mask = { 1 1,

0 0 };

p1 = pvPackm(p1,x,"X",mask);

print pvUnpack(p1,"X");

35-1386

pvGetParVector

p

35-1387

pvUnpack returns the entire value of x that was packed in. Therefore, the print state-
ment above, produces:

1.000 2.000
3.000 4.000

print
pvGetParVector(p1);

pvGetParVector returns only those elements indicated by the mask variable and
therefore the print statement above, returns:

1.000
2.000

Source

pv.src

pvLength

Purpose

Returns the length of a parameter vector.

Format

n = pvLength(p1);

Input

p1 an instance of structure of type PV.

pvLength

p

Output

n scalar, length of parameter vector in p1.

Source

pv.src

pvList

Purpose

Retrieves names of packed matrices in structure of type PV.

Format

n = pvList(p1);

Input

p1 an instance of structure of type PV.

Output

n Kx1 string vector, names of packed matrices.

Source

pv.src

35-1388

pvList

p

35-1389

pvPack

Purpose

Packs general matrix into a structure of type PV with matrix name.

Include

pv.sdf

Format

p1 = pvPack(p1, x, nm);

Input

p1 an instance of structure of type PV.
x MxN matrix or N-dimensional array.
nm string, name of matrix/array.

Output

p1 an instance of structure of type PV.

Example

Example 1: Basic usage

//Create starting parameter vector
start_vals = { 0,

1,
1 };

//Declare 'p1' as an instance of a 'PV' structure

pvPack

p

struct PV p1;

//Initialize 'p1' with default settings
p1 = pvCreate();

//Add a variable named 'b' in 'p1' containing the data from
'start_vals'
p1 = pvPack(p1, start_vals, "b");

The data can be extracted using the pvUnpack command:

b_out = pvUnpack(p1,"b");
print b_out;

The code above, should return the following output:

0
1
1

Source

pv.src

See Also

pvPackm, pvPacks, pvUnpack

pvPacki

Purpose

Packs general matrix or array into a PV instance with name and index.

Include

pv.sdf

35-1390

pvPacki

p

35-1391

Format

p1 = pvPacki(p1, x, nm, i);

Input

p1 an instance of structure of type PV.
x MxN matrix or N-dimensional array.
nm string, name of matrix or array, or null string.
i scalar, index of matrix or array in lookup table.

Output

p1 an instance of structure of type PV.

Example

//Define the 'PV' structure
#include pv.sdf

y = rndn(100,1);
x = rndn(100,5);

//Declare 'p1' as an instance of a 'PV' structure
struct PV p1;

//Initialize 'p1' with default values
p1 = pvCreate;

//Pack the variables in with a variable name and an index
p1 = pvPacki(p1,y,"Y",1);
p1 = pvPacki(p1,x,"X",2);

These matrices can be extracted using the pvUnpack command, indicating the vari-
able to unpack either by index or by variable name:

pvPacki

p

//Unpack variables by index
y = pvUnpack(p1,1);
x = pvUnpack(p1,2);

//Unpack variables by variable name
y = pvUnpack(p1,"Y");
x = pvUnpack(p1,"X");

See Also

pvPack, pvUnpack

pvPackm

Purpose

Packs general matrix into a structure of type PV with a mask and matrix name.

Include

pv.sdf

Format

p1 = pvPackm(p1, x, nm, mask);

Input

p1 an instance of structure of type PV.
x MxN matrix or N-dimensional array.
nm string, name of matrix/array or N-dimensional array.
mask MxN matrix, mask matrix of zeros and ones.

35-1392

pvPackm

p

35-1393

Output

p1 an instance of structure of type PV.

Remarks

The mask argument allows storing a selected portion of a matrix into the packed vec-
tor. The ones in mask indicate an element to be stored in the packed matrix. When
the matrix is unpacked (using pvUnpack) the elements corresponding to the zeros are
restored. Elements corresponding to the ones come from the packed vector which may
have been changed.

If the mask is all zeros, the matrix or array is packed with the specified elements in
the second argument but no elements of the matrix or array are entered into the para-
meter vector. When unpacked the matrix or array in the second argment is returned
without modification.

Example

#include pv.sdf
struct PV p1;
p1 = pvCreate;

x = { 1 2,
3 4 };

mask = { 1 0,
0 1 };

p1 = pvPackm(p1,x,"X",mask);

print pvUnpack(p1,1);

pvPackm

p

1.000 2.000
3.000 4.000

p1 = pvPutParVector(p1,5|6);

print pvUnpack(p1,"X");

5.000 2.000
3.000 6.000

Source

pv.src

pvPackmi

Purpose

Packs general matrix or array into a PV instance with a mask, name, and index.

Include

pv.sdf

Format

p1 = pvPackmi(p1, x, nm, mask, i);

Input

p1 an instance of structure of type PV.
x MxN matrix or N-dimensional array.

35-1394

pvPackmi

p

35-1395

nm string, matrix or array name.
mask MxN matrix or N-dimensional array, mask of zeros

and ones.
i scalar, index of matrix or array in lookup table.

Output

p1 an instance of structure of type PV.

Remarks

The mask allows storing a selected portion of a matrix into the parameter vector.
The ones in the mask matrix indicate an element to be stored in the parameter mat-
rix. When the matrix is unpacked (using pvUnpackm) the elements corresponding to
the zeros are restored. Elements corresponding to the ones come from the parameter
vector.

If the mask is all zeros, the matrix or array is packed with the specified elements in
the second argument but no elements of the matrix or array are entered into the para-
meter vector. When unpacked the matrix or array in the second argment is returned
without modification.

Example

#include pv.sdf

struct PV p1;
p1 = pvCreate;

x = { 1 2,
3 4 };

mask = { 1 0,

pvPackmi

p

0 1 };

p1 = pvPackmi(p1,x,"X",mask,1);

print pvUnpack(p1,1);

1.000 2.000
3.000 4.000

p1 = pvPutParVector(p1,5|6);

print pvUnpack(p1,1);

5.000 2.000
3.000 6.000

See Also

pvPackm, pvUnpack

pvPacks

Purpose

Packs symmetric matrix into a structure of type PV.

Include

pv.sdf

Format

p1 = pvPacks(p1, x, nm);

35-1396

pvPacks

p

35-1397

Input

p1 an instance of structure of type PV.
x MxM symmetric matrix.
nm string, matrix name.

Output

p1 an instance of structure of type PV.

Remarks

pvPacks does not support the packing of arrays.

Example

#include pv.sdf

struct PV p1;
p1 = pvCreate;

x = { 1 2,
2 1 };

p1 = pvPacks(p1,x, "A");
p1 = pvPacks(p1, eye(2), "I");

These matrices can be extracted using the pvUnpack command:

print pvUnpack(p1, "A");

1.000 2.000
2.000 1.000

print pvUnpack(p1, "I");

pvPacks

p

1.000 0.000
0.000 1.000

Source

pv.src

See Also

pvPacksm, pvUnpack

pvPacksi

Purpose

Packs symmetric matrix into a PV instance with matrix name and index.

Include

pv.sdf

Format

p1 = pvPacksi(p1, x, nm, i);

Input

p1 an instance of structure of type PV.
x MxM symmetric matrix.
nm string, matrix name.
i scalar, index of matrix in lookup table.

35-1398

pvPacksi

p

35-1399

Output

p1 an instance of structure of type PV.

Remarks

pvPacksi does not support the packing of arrays.

Example

#include pv.sdf

struct PV p1;
p1 = pvCreate;

x = { 1 2, 2 1 };

p1 = pvPacksi(p1,x, "A",1);
p1 = pvPacksi(p1, eye(2), "I",2);

These matrices can be extracted using the pvUnpack command.

print
pvUnpack(p1,1);

1.000 2.000
2.000 1.000

print
pvUnpack(p1,2);

1.000 0.000
0.000 1.000

pvPacksi

p

See Also

pvPacks, pvUnpack

pvPacksm

Purpose

Packs symmetric matrix into a structure of type PV with a mask.

Include

pv.sdf

Format

p1 = pvPacksm(p1, x, nm, mask);

Input

p1 an instance of structure of type PV.
x MxM symmetric matrix.
nm string, matrix name.
mask MxM matrix, mask matrix of zeros and ones.

Output

p1 an instance of structure of type PV.

Remarks

pvPacksm does not support the packing of arrays.

35-1400

pvPacksm

p

35-1401

The mask allows storing a selected portion of a matrix into the packed vector. The
ones in mask indicate an element to be stored in the packed matrix. When the matrix
is unpacked (using pvUnpack) the elements corresponding to the zeros are restored.
Elements corresponding to the ones come from the packed vector which may have
been changed.

Only the lower left portion of the mask matrix is used, and only the lower left por-
tion of the x matrix is stored in the packed vector.

If the mask is all zeros, the matrix is packed with the specified elements in the second
argument but no elements of the matrix are entered into the parameter vector. When
unpacked the matrix in the second argment is returned without modification.

Example

#include pv.sdf

struct PV p1;
p1 = pvCreate;

x = { 1 2 4,
2 3 5,
4 5 6};

mask = { 1 0 1,
0 1 0,
1 0 1 };

p1 = pvPacksm(p1, x, "A", mask);

print pvUnpack(p1, "A");

1.000 2.000 4.000
2.000 3.000 5.000
4.000 5.000 6.000

pvPacksm

p

p2 = pvGetParVector(p1);

print p2;

1.000
3.000
4.000
6.000

p3 = { 10, 11, 12, 13 };
p1 = pvPutParVector(p1,p3);

print pvUnpack(p1, "A");

10.000 2.000 12.000
2.000 11.000 5.000

12.000 5.000 13.000

Source

pv.src

pvPacksmi

Purpose

Packs symmetric matrix into a PV instance with a mask, matrix name, and index.

Include

pv.sdf

Format

p1 = pvPacksmi(p1, x, nm, mask, i);

35-1402

pvPacksmi

p

35-1403

Input

p1 an instance of structure of type PV.
x MxM symmetric matrix.
nm string, matrix name.
mask MxM matrix, symmetric mask matrix of zeros and ones.

i scalar, index of matrix in lookup table.

Output

p1 an instance of structure of type PV.

Remarks

pvPacksmi does not support the packing of arrays.

The mask allows storing a selected portion of a matrix into the parameter vector.
The ones in the mask matrix indicate an element to be stored in the parameter vec-
tor. When the matrix is unpacked (using pvUnpackm) the elements corresponding to
the zeros are restored. Elements corresponding to the ones come from the parameter
vector.

Only the lower left portion of the mask matrix is used, and only the lower left por-
tion of the x matrix is stored in the packed vector.

If the mask is all zeros, the matrix is packed with the specified elements in the second
argument but no elements of the matrix are entered into the parameter vector. When
unpacked the matrix in the second argment is returned without modification.

Example

#include pv.sdf

pvPacksmi

p

struct PV p1;
p1 = pvCreate;

x = { 1 2 4,
2 3 5,
4 5 6};

mask = { 1 0 1,
0 1 0,
1 0 1 };

p1 = pvPacksmi(p1,x, "A",mask,1);

print pvUnpack(p1,1);

1.000 2.000 4.000
2.000 3.000 5.000
4.000 5.000 6.000

p2 = pvGetParVector(p1);

print p2;

1.000
3.000
4.000
6.000

p3 = { 10, 11, 12, 13 };
p1 = pvPutParVector(p1,p3);

print pvUnpack(p1,1);

35-1404

pvPacksmi

p

35-1405

10.000 2.000 12.000
2.000 11.000 5.000

12.000 5.000 13.000

See Also

pvPacksm, pvUnpack

pvPutParVector

Purpose

Inserts parameter vector into structure of type PV.

Include

pv.sdf

Format

p1 = pvPutParVector(p1, p);

Input

p1 an instance of structure of type PV.
p Kx1 vector, parameter vector.

Output

p1 an instance of structure of type PV.

Remarks

Matrices or portions of matrices (stored using a mask) are stored in the structure of

pvPutParVector

p

type PV as a vector in the p member.

Example

#include pv.sdf

struct PV p1;
p1 = pvCreate;

x = { 1 2 4,
2 3 5,
4 5 6};

mask = { 1 0 1,
0 1 0,
1 0 1 };

//Packed as square matrix
p1 = pvPackm(p1,x,"A",mask);

print pvUnpack(p1,"A");

1.000 2.000 4.000
2.000 3.000 5.000
4.000 5.000 6.000

p3 = { 10, 11, 12, 13, 14 };
p1 = pvPutParVector(p1,p3);

print pvUnpack(p1,"A");

10.000 2.000 11.000
2.000 12.000 5.000

13.000 5.000 14.000

35-1406

pvPutParVector

p

35-1407

Source

pv.src

pvTest

Purpose

Tests an instance of structure of type PV to determine if it is a proper structure of
type PV.

Format

i = pvTest(p1);

Input

p1 an instance of structure of type PV.

Output

i scalar, if 0, p1 is a proper structure of type PV, else if
1, an improper or unitialized structure of type PV.

Source

pv.src

pvUnpack

Purpose

Unpacks matrices stored in a structure of type PV.

pvTest

p

Format

x = pvUnpack(p1, m);

Input

p1 an instance of structure of type PV.
m string, name of matrix, or integer, index of matrix.

Output

x MxN general matrix or MxM symmetric matrix or N-
dimensional array.

Source

pv.src

35-1408

pvUnpack

p

35-1409

q

QNewton

Purpose

Optimizes a function using the BFGS descent algorithm.

Format

{ x, f, g, ret } = QNewton(&fct, start);

Input

&fct pointer to a procedure that computes the function to be
minimized. This procedure must have one input
argument, a vector of parameter values, and one output
argument, the value of the function evaluated at the
input vector of parameter values.

start Kx1 vector, start values.

Global Input

qn
RelGradTol

scalar, convergence tolerance for relative gradient
of estimated coefficients. Default = 1e-5.

_qn_GradProc scalar, pointer to a procedure that computes the
gradient of the function with respect to the
parameters. This procedure must have a single input
argument, a Kx1 vector of parameter values, and a
single output argument, a Kx1 vector of gradients

QNewton

q

of the function with respect to the parameters
evaluated at the vector of parameter values. If _
qn_GradProc is 0, QNewton uses gradp.

_qn_MaxIters scalar, maximum number of iterations. Default =
1e+5. Termination can be forced by pressing C on
the keyboard.

qn
PrintIters

scalar, if 1, print iteration information. Default = 0.
Can be toggled during iterations by pressing P on
the keyboard.

_qn_ParNames Kx1 vector, labels for parameters.
qn
PrintResults

scalar, if 1, results are printed.

Output

x Kx1 vector, coefficients at the minimum of the
function.

f scalar, value of function at minimum.
g Kx1 vector, gradient at the minimum of the function.
ret scalar, return code.

0 normal convergence
1 forced termination
2 max iterations exceeded
3 function calculation failed
4 gradient calculation failed
5 step length calculation failed
6 function cannot be evaluated at initial parameter
values

35-1410

QNewton

q

35-1411

Remarks

If you are running in terminal mode, GAUSS will not see any input until you press
ENTER. Pressing C on the keyboard will terminate iterations, and pressing P will
toggle iteration output.

To reset global variables for this function to their default values, call QNewtonSet.

Example

This example computes maximum likelihood coefficients and standard errors for a
Tobit model:

/***qnewton.e - a Tobit model***/
//Get data
z = loadd("tobit");
b0 = { 1, 1, 1, 1 };
{b,f,g,retcode} = qnewton(&lpr,b0);

//Covariance matrix of parameters
h = hessp(&lpr,b);
output file = qnewton.out reset;

print "Tobit Model";
print;
print "coefficients standard errors";
print b~sqrt(diag(invpd(h)));

output off;

//Log-likelihood proc
proc lpr(b);

local s,m,u;
s = b[4];
if s <= 1e-4;

QNewton

q

retp(error(0));
endif;
m = z[.,2:4]*b[1:3,.];
u = z[.,1] ./= 0;
retp(-sumc(u.*lnpdfmvn(z[.,1]-m,s) + (1-u).*(ln(cdfnc

(m/sqrt(s))))));
endp;

produces:

Tobit Model
coefficients standard errors

0.010417884 0.080220019
-0.20805753 0.094551107
-0.099749592 0.080006676
0.65223067 0.099827309

Source

qnewton.src

QNewtonmt

Purpose

Minimize an arbitrary function.

Format

out = QNewtonmt(&fct, par);
out = QNewtonmt(&fct, par, ...);
out = QNewtonmt(&fct, par, c);
out = QNewtonmt(&fct, par, ..., c);

35-1412

QNewtonmt

q

35-1413

Input

&fct pointer to a procedure that computes the function to be
minimized. This procedure must have at least one input
argument, an instance of a PV structure containing the
parameters. And, one output argument, the value of the
function evaluated at the input vector of parameter values.

par Optional, an instance of a PV structure. The par
instance is passed to the user-provided procedure pointed
to by &fct. par is constructed using the pvPack
functions.

... Optional extra arguments. These arguments are passed
untouched to the user-provided objective function, by
QNewtonmt.

c an instance of a QNewtonmtControl structure. Normally
an instance is initialized by calling
QNewtonmtControlCreate and members of this
instance can be set to other values by the user. For an
instance named c, the members are:
c.CovType scalar, if 1, ML covariance matrix,

else if 2, QML covariance matrix
is computed. Default is 0, no
covariance matrix.

c.GradProc scalar, pointer to a procedure that
computes the gradient of the
function with respect to the
parameters. Default = ., i.e., no
gradient procedure has been
provided.

c.MaxIters scalar, maximum number of
iterations. Default = 1e+5.

QNewtonmt

q

c.MaxTries scalar, maximum number of
attemps in random search. Default
= 100.

c.relGradTol scalar, convergence tolerance for
gradient of estimated coefficients.
Default = 1e-5. When this criterion
has been satisifed QNewtonmt
exits the iterations.

c.randRadius scalar, If zero, no random search is
attempted. If nonzero, it is the
radius of the random search.
Default = .001.

c.output scalar, if nonzero, results are
printed. Default = 0.

c.PrintIters scalar, if nonzero, prints iteration
information. Default = 0.

c.disableKey scalar, if nonzero, keyboard input
disabled

Output

out an instance of an QNewtonmtOut structure. For an
instance named out, the members are:
out.par instance of a PV structure containing

the parameter estimates will be placed
in the member matrix out.par.

out.fct scalar, function evaluated at x.
out.retcode scalar, return code:

0 normal convergence.

35-1414

QNewtonmt

q

35-1415

1 forced exit.
2 maximum number of iterations
exceeded.
3 function calculation failed.
4 gradient calculation failed.
5 Hessian calculation failed.
6 line search failed.
7 error with constraints.
8 function complex.

out.moment KxK matrix, covariance matrix of
parameters, if c.covType> 0.

out.hessian KxK matrix, matrix of second
derivatives of objective function with
respect to parameters.

Remarks

There is one required user-provided procedure, the one computing the objective func-
tion to be minimized, and another optional functions, the gradient of the objective func-
tion.

These functions have one input argument that is an instance of type struct PV. On
input to the call to QNewtonmt, the first argument contains starting values for the
parameters. The arguments following the PV structure (except for the optional control
structure) contain any required data.

The PV structures are set up using the PV pack procedures, pvPack, pvPackm,
pvPacks, and pvPacksm. These procedures allow for setting up a parameter vector
in a variety of ways.

QNewtonmt

q

For example, we might have the following objective function for fitting a nonlinear
curve to data:

proc (1) = Micherlitz(struct PV par1, y, x);
local p0,e,s2;
p0 = pvUnpack(par1, "parameters");
e = y - p0[1] - p0[2]*exp(-p0[3] * x);
retp(-lnpdfmvn(e,e'e/rows(e)));

endp;

In this example the dependent and independent variables are passed to the procedure
as the second and third arguments to the procedure.

If the objective function is the negative of a proper log-likelihood, and if c.covType
is set to 1, the covariance matrix of the parameters is computed and returned in out-
.moment, and standard errors, t-statistics and probabilities are printed if c.output
= 1.

If the objective function returns the negative of a vector of log-likelihoods, and if
c.covType is set to 2, the quasi-maximum likelihood (QML) covariance matrix of
the parameters is computed.

Example

//Define function to be minimized
//The first input is a PV structure containing the para-
meters
//The following arguments contain data, other than the para-
meters,
//which is needed by the function
proc (1) = Micherlitz(struct PV par1, y, x);

local p0,e,s2;
p0 = pvUnpack(par1, "parameters");

35-1416

QNewtonmt

q

35-1417

e = y - p0[1] - p0[2]*exp(-p0[3] * x);
retp(-lnpdfmvn(e,e'e/rows(e)));

endp;

//Create extra data needed by objective function
y = { 3.183,

3.059,
2.871,
2.622,
2.541,
2.184,
2.110,
2.075,
2.018,
1.903,
1.770,
1.762,
1.550 };

x = seqa(1,1,13);

//Declare 'par' to be a PV structure
struct PV par;

//Set PV defaults in 'par'
par = pvCreate();

//Add a variable named 'parameters' to par with a 3x1
//vector of starting values
par = pvPack(par, 1|1|0, "parameters");

//Declare 'out' to be a QNewtonmtOut structure
//to hold data returned by QNewtonmt
struct QNewtonmtout out;

//Minimize the 'Micherlitz' function

QNewtonmt

q

out = QNewtonmt(&Micherlitz,par,y,x);

//Get returned parameters from the output structure
parms = pvGetParVector(out.par);

//Print returned parameters
print parms;

The code above should return the following output:

0.96312060
2.5189989
0.10305485

Source

qnewtonmt.src

See Also

QNewtonmtControlCreate, QNewtonmtOutCreate

QNewtonmtControlCreate

Purpose

Creates default QNewtonmtControl structure.

Include

qnewtonmt.sdf

Format

c = QNewtonmtControlCreate();

35-1418

QNewtonmtControlCreate

q

35-1419

Output

c instance ofQNewtonmtControl structure with
members set to default values.

Source

qnewtonmt.src

See Also

QNewtonmt

QNewtonmtOutCreate

Purpose

Creates default QNewtonmtOut structure.

Format

c = QNewtonmtOutCreate();

Output

c instance ofQNewtonmtOut structure with members
set to default values.

Source

qnewtonmt.src

See Also

QNewtonmt

QNewtonmtOutCreate

q

QNewtonSet

Purpose

Resets global variables used by QNewton to default values.

Format

QNewtonSet;

Source

qnewton.src

QProg

Purpose

Solves the quadratic programming problem.

Format

{ x, u1, u2, u3, u4, u5 } = QProg(start, q, r, a, b, c, d, bnds);

Input

start Kx1 vector, start values.
q KxK matrix, symmetric model matrix.
r Kx1 vector, model constant vector.
a MxK matrix, equality constraint coefficient matrix, or

scalar 0, no equality constraints.
b Mx1 vector, equality constraint constant vector, or

scalar 0, will be expanded to Mx1 vector of zeros.

35-1420

QNewtonSet

q

35-1421

c NxK matrix, inequality constraint coefficient matrix, or
scalar 0, no inequality constraints.

d Nx1 vector, inequality constraint constant vector, or
scalar 0, will be expanded to Nx1 vector of zeros.

bnds Kx2 matrix, bounds on x, the first column contains the
lower bounds on x, and the second column the upper
bounds. If scalar 0, the bounds for all elements will
default to ±1e200.

Global Input

qprog
maxit

scalar, maximum number of iterations. Default = 1000.

Output

x Kx1 vector, coefficients at the minimum of the
function.

u1 Mx1 vector, Lagrangian coefficients of equality
constraints.

u2 Nx1 vector, Lagrangian coefficients of inequality
constraints.

u3 Kx1 vector, Lagrangian coefficients of lower bounds.
u4 Kx1 vector, Lagrangian coefficients of upper bounds.
ret scalar, return code.

0 successful termination
1 max iterations exceeded
2 machine accuracy is insufficient to maintain

decreasing function values
3 model matrices not conformable

QProg

q

< 0 active constraints inconsistent

Remarks

QProg solves the standard quadratic programming problem:

min ½x'Qx - x'R

subject to constraints,

Ax = B
Cx ≤ D

and bounds,

xlow ≤ x ≤ xup

Source

qprog.src

QProgmt

Purpose

Solves the quadratic programming problem.

Format

qOut = QProgmt(qIn);

35-1422

QProgmt

q

35-1423

Input

qIn instance of a qprogMTIn structure containing the
following members:
qIn.start Kx1 vector, start values.
qIn.q KxK matrix, symmetric model

matrix.
qIn.r Kx1 vector, model constant vector.
qIn.a MxK matrix, equality constraint

coefficient matrix, or scalar 0, no
equality constraints.

qIn.b Mx1 vector, equality constraint
constant vector, or scalar 0, will be
expanded to Mx1 vector of zeros.

qIn.c NxK matrix, inequality constraint
coefficient matrix, or scalar 0, no
inequality constraints.

qIn.d Nx1 vector, inequality constraint
constant vector, or scalar 0, will be
expanded to Nx1 vector of zeros.

qIn.bounds Kx2 matrix, bounds on qOut.x,
the first column contains the lower
bounds on qOut.x, and the
second column the upper bounds.
If scalar 0, the bounds for all
elements will default to ±1e200.

qIn.maxit scalar, maximum number of
iterations. Default = 1000.

QProgmt

q

Output

qOut instance of a qprogMTOut structure containing the
following members:
qOut.x Kx1 vector, coefficients at the

minimum of the function.
qOut.lagrange instance of a

qprogMTLagrange structure
containing the following
members:

qOut.lagrange.lineq Mx1 vector, Lagrangian
coefficients of equality
constraints.

qOut.lagrange.linineq Nx1 vector, Lagrangian
coefficients of inequality
constraints.

qOut.lagrange.bounds Kx2 matrix, Lagrangian
coefficients of bounds, the
first column contains the
lower bounds and the second
the upper bounds.

qOut.ret scalar, return code.
0 successful termination
1 max iterations exceeded
2 machine accuracy is
insufficient to maintain
decreasing function values
3 model matrices not
conformable
< 0 active constraints

35-1424

QProgmt

q

35-1425

inconsistent

Remarks

QProgmt solves the standard quadratic programming problem:

subject to constraints,

and bounds,

Source

qprogmt.src

See Also

QProgmtInCreate

QProgmtInCreate

Purpose

Creates an instance of a structure of type QProgmtInCreate with the maxit
member set to a default value.

Include

qprogmt.sdf

QProgmtInCreate

q

Format

s = QProgmtInCreate();

Output

s instance of structure of type QProgmtIn.

Source

qprogmt.src

See Also

QProgmt

qqr

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix x, such that:
X = Q1R

Format

{ q1, r } = qqr(x);

Input

x NxP matrix.

Output

q1 NxK unitary matrix, K = min(N,P).
r KxP upper triangular matrix.

35-1426

qqr

q

35-1427

Remarks

Given X, there is an orthogonal matrix Q such that Q'x is zero below its diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X. If X has linearly independent columns, R is also the
Cholesky factorization of the moment matrix of X, i.e., of X'X.

If you want only the R matrix, see the function qr. Not computing Q1 can produce sig-
nificant improvements in computing time and memory usage.

An unpivoted R matrix can also be generated using cholup:

r = cholup(zeros(cols(x), cols(x)), x);

For linear equation or least squares problems, which require Q2 for computing resid-
uals and residual sums of squares, see olsqr and qtyr.

For most problems an explicit copy of Q1 or Q2 is not required. Instead one of the fol-
lowing, Q'Y, QY, Q1'Y, Q1Y, Q2'Y, or Q2Y, for some Y, is required. These cases are all
handled by qtyr and qyr. These functions are available because Q and Q1 are typ-
ically very large matrices while their products with Y are more manageable.

If N < P, the factorization assumes the form:

qqr

q

where R1 is a PxP upper triangular matrix and R2 is Px(N-P). Thus Q is a PxP matrix
and R is a PxN matrix containing R1 and R2. This type of factorization is useful for the
solution of underdetermined systems. However, unless the linearly independent
columns happen to be the initial rows, such an analysis also requires pivoting (see qre
and qrep).

Source

qqr.src

See Also

qre, qrep, qtyr, qtyre, qtyrep, qyr, qyre, qyrep, olsqr

qqre

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix x, such that:
X[.,E] = Q1R

Format

{ q1, r, e } = qqre(x);

Input

x NxP matrix.

35-1428

qqre

q

35-1429

Output

q1 NxK unitary matrix, K = min(N,P).
r KxP upper triangular matrix.
e Px1 permutation vector.

Remarks

Given X[.,E], where E is a permutation vector that permutes the columns of X, there is
an orthogonal matrix Q such that Q'X[.,E] is zero below its diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X[.,E].

If you want only the R matrix, see qre. Not computing Q1 can produce significant
improvements in computing time and memory usage.

If X has rank P, then the columns of X will not be permuted. If X has rank M < P, then
the M linearly independent columns are permuted to the front of X by E. Partition the
permuted X in the following way:

qqre

q

where X is NxM and X2 is Nx(P-M). Further partition R in the following way:

where R11 is MxM and R12 is Mx(P-M). Then

and

that is, A is an Mx(P-N) matrix defining the linear combinations of X2 with respect to
X1.

If N < P, the factorization assumes the form:

where R1 is a PxP upper triangular matrix and R2 is Px(N-P). Thus Q is a PxP matrix
and R is a PxN matrix containing R1 and R2. This type of factorization is useful for the
solution of underdetermined systems. For the solution of

35-1430

qqre

q

35-1431

it can be shown that

b = qrsol(Q'Y, R1)|zeros(N-P,1);

The explicit formation here of Q, which can be a very large matrix, can be avoided by
using the function qtyre.

For further discussion of QR factorizations see the remarks under qqr.

Source

qqr.src

See Also

qqrqqr, qtyre, olsqr

qqrep

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix x, such that:
X[.,E] = Q1R

Format

{ q1, r, e } = qqrep(x, pvt);

Input

x NxP matrix.

qqrep

q

pvt Px1 vector, controls the selection of the pivot columns:
 if pvt[i] > 0, x[i] is an initial column
 if pvt[i] = 0, x[i] is a free column
 if pvt[i] < 0, x[i] is a final column
The initial columns are placed at the beginning of the
matrix and the final columns are placed at the end. Only
the free columns will be moved during the
decomposition.

Output

q1 NxK unitary matrix, K = min(N,P).
r KxP upper triangular matrix.
e Px1 permutation vector.

Remarks

Given X[.,E], where E is a permutation vector that permutes the columns of X, there is
an orthogonal matrix Q such that Q'X[.,E] is zero below its diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

35-1432

qqrep

q

35-1433

is the QR decomposition of X[.,E].

qqrep allows you to control the pivoting. For example, suppose that x is a data set
with a column of ones in the first column. If there are linear dependencies among the
columns of x, the column of ones for the constant may get pivoted away. This column
can be forced to be included among the linearly independent columns using pvt.

If you want only the R matrix, see qrep. Not computing Q1 can produce significant
improvements in computing time and memory usage.

Source

qqr.src

See Also

qqr, qre, olsqr

qr

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix x, such that:
X = Q1R

Format

r = qr(x);

Input

x NxP matrix.

qr

q

Output

r KxP upper triangular matrix, K = min(N,P).

Remarks

qr is the same as qqr but doesn't return the Q1 matrix. If Q1 is not wanted, qr will
save a significant amount of time and memory usage, especially for large problems.

Given X, there is an orthogonal matrix Q such that Q'X is zero below its diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X. If X has linearly independent columns, R is also the
Cholesky factorization of the moment matrix of X, i.e., of X'X.

qr does not return the Q1 matrix because in most cases it is not required and can be
very large. If you need the Q1 matrix, see the function qqr. If you need the entire Q
matrix, call qyr with Y set to a conformable identity matrix.

For most problems Q'Y, Q1'Y, or QY, Q1Y, for some Y, are required. For these cases
see qtyr and qyr.

35-1434

qr

q

35-1435

For linear equation or least squares problems, which require Q2 for computing resid-
uals and residual sums of squares, see olsqr.

If N<P, the factorization assumes the form:

where R1 is a PxP upper triangular matrix and R2 is Px(N-P). Thus Q is a PxP matrix
and R is a PxN matrix containing R1 and R2. This type of factorization is useful for the
solution of underdetermined systems. However, unless the linearly independent
columns happen to be the initial rows, such an analysis also requires pivoting (see qre
and qrep).

Source

qr.src

See Also

qqr, qrep, qtyre

qre

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix x, such that:
X[.,E] = Q1R

Format

{ r, e } = qre(x);

qre

q

Input

x NxP matrix.

Output

r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Remarks

qre is the same as qqre but doesn't return the Q1 matrix. If Q1 is not wanted, qre
will save a significant amount of time and memory usage, especially for large prob-
lems.

Given X[.,E], where E is a permutation vector that permutes the columns of x, there is
an orthogonal matrix Q such that Q'X[.,E] is zero below its diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X[.,E].

35-1436

qre

q

35-1437

qre does not return the Q1 matrix because in most cases it is not required and can be
very large. If you need the Q1 matrix, see the function qqre. If you need the entire Q
matrix, call qyre with Y set to a conformable identity matrix. For most problems Q'Y,
Q1'Y, or QY, Q1Y, for some y, are required. For these cases see qtyre and qyre.

If X has rank P, then the columns of X will not be permuted. If X has rank M<P, then
the M linearly independent columns are permuted to the front of X by E. Partition the
permuted X in the following way:

where X1 is NxM and X2 is Nx(P-M). Further partition R in the following way:

where R11 is MxM and R12 is Mx(P-M). Then

and

that is, A is an Mx(P-N) matrix defining the linear combinations of X2 with respect to
X1

If N<P the factorization assumes the form:

qre

q

where R1 is a PxP upper triangular matrix and R2 is Px(N-P). Thus Q is a PxP matrix
and R is a PxN matrix containing R1 and R2. This type of factorization is useful for the
solution of underdetermined systems. For the solution of

it can be shown that

b = qrsol(Q'Y, R1)|zeros(N-P,1);

The explicit formation here of Q, which can be a very large matrix, can be avoided by
using the function qtyre.

For further discussion of QR factorizations see the remarks under qqr.

Source

qr.src

See Also

qqr, olsqr

qrep

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix X, such that:

X[.,E] = Q1R

Format

{ r, e } = qrep(X, pvt);

35-1438

qrep

q

35-1439

Input

X NxP matrix.
pvt Px1 vector, controls the selection of the pivot columns:

 if pvt[i] > 0, X[i] is an initial column.
 if pvt[i] = 0, X[i] is a free column.
 if pvt[i] < 0, X[i] is a final column.
The initial columns are placed at the beginning of the
matrix and the final columns are placed at the end. Only
the free columns will be moved during the
decomposition.

Output

r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Remarks

qrep is the same as qqrep but doesn't return the Q1 matrix. If Q1 is not wanted,
qrep will save a significant amount of time and memory usage, especially for large
problems.

Given X[.,E], where E is a permutation vector that permutes the columns of X, there is
an orthogonal matrix Q such that Q'X[.,E] is zero below its diagonal, i.e.,

where R is upper triangular. If we partition

qrep

q

where Q1 has P columns, then

is the QR decomposition of X[.,E].

qrep does not return the Q1 matrix because in most cases it is not required and can
be very large. If you need the Q1 matrix, see the function qqrep. If you need the
entire Q matrix, call qyrep with Y set to a conformable identity matrix. For most prob-
lems Q'Y, Q1'Y, or QY, Q1Y, for some Y, are required. For these cases see qtyrep
and qyrep.

qrep allows you to control the pivoting. For example, suppose that X is a data set with
a column of ones in the first column. If there are linear dependencies among the
columns of X, the column of ones for the constant may get pivoted away. This column
can be forced to be included among the linearly independent columns using pvt.

Source

qr.src

See Also

qr, qre, qqrep

qrsol

Purpose

Computes the solution of Rx = b where R is an upper triangular matrix.

35-1440

qrsol

q

35-1441

Format

x = qrsol(b, R);

Input

b PxL matrix.
R PxP upper triangular matrix.

Output

x PxL matrix.

Remarks

qrsol applies a backsolve to Rx = b to solve for x. Generally R will be the R matrix
from a QR factorization. qrsol may be used, however, in any situation where R is
upper triangular.

Source

qrsol.src

See Also

qqr, qr, qtyr, qrtsol

qrtsol

Purpose

Computes the solution of R'x = b where R is an upper triangular matrix.

qrtsol

q

Format

x = qrtsol(b, R);

Input

b PxL matrix.
R PxP upper triangular matrix.

Output

x PxL matrix.

Remarks

qrtsol applies a forward solve to R'x = b to solve for x. Generally R will be the R
matrix from a QR factorization. qrtsol may be used, however, in any situation
where R is upper triangular. If R is lower triangular, transpose before calling
qrtsol.

If R is not transposed, use qrsol.

Source

qrsol.src

See Also

qqr, qr, qtyr, qrsol

35-1442

qrtsol

q

35-1443

qtyr

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix X and returns
Q'Y and R.

Format

{ qty, r } = qtyr(y, X);

Input

y NxL matrix.
X NxP matrix.

Output

qty NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).

Remarks

Given X, there is an orthogonal matrix Q such that Q'X is zero below its diagonal, i.e.,

where R is upper triangular. If we partition

qtyr

q

where Q1 has P columns, then

is the QR decomposition of X. If X has linearly independent columns, R is also the
Cholesky factorization of the moment matrix of X, i.e., of X'X. For most problems Q or
Q1 is not what is required. Rather, we require Q'Y or Q1'Y where Y is an NxL matrix
(if either QY or Q1Y are required, see qyr). Since Q can be a very large matrix,
qtyr has been provided for the calculation of Q'Y which will be a much smaller mat-
rix. Q1'Y will be a submatrix of Q'Y. In particular,

and Q2'Y is the remaining submatrix:

Suppose that X is an NxK data set of independent variables, and Y is an Nx1 vector of
dependent variables. Then it can be shown that

and

35-1444

qtyr

q

35-1445

where b is a PxL matrix of least squares coefficients and s is a 1xL vector of residual
sums of squares. Rather than invert R directly, however, it is better to apply qrsol to

For rank deficient least squares problems, see qtyre and qtyrep.

Example

The QR algorithm is the numerically superior method for the solution of least squares
problems:

loadm x, y;
{ qty, r } = qtyr(y,x);
q1ty = qty[1:rows(r),.];
q2ty = qty[rows(r)+1:rows(qty),.];

//LS coefficients
b = qrsol(q1ty,r);

//Residual sums of squares
s2 = sumc(q2ty^2);

Source

qtyr.src

See Also

qqr, qtyre, qtyrep, olsqr

qtyr

q

qtyre

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix X and returns
Q'Y and R.

Format

{ qty, r, e } = qtyre(y, x);

Input

y NxL matrix.
x NxP matrix.

Output

qty NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Remarks

Given X[.,E], where E is a permutation vector that permutes the columns of X, there is
an orthogonal matrix Q such that Q'X[.,E] is zero below its diagonal, i.e.,

where R is upper triangular. If we partition

35-1446

qtyre

q

35-1447

where Q1 has P columns, then

is the QR decomposition of X[.,E].

If X has rank P, then the columns of X will not be permuted. If X has rank M<P, then
the M linearly independent columns are permuted to the front of X by E. Partition the
permuted X in the following way:

where X1 is NxM and X2 is Nx(P-M). Further partition R in the following way:

where R11 is MxM and R12 is Mx(P-M). Then

and

qtyre

q

that is, A is an Mx(P-N) matrix defining the linear combinations of X2 with respect to
X1.

For most problems Q or Q1 is not it is required. Rather, we require Q'Y or Q1'Y where
Y is an NxL matrix. Since Q can be a very large matrix, qtyre has been provided for
the calculation of Q'Y which will be a much smaller matrix. Q1'Y will be a submatrix
of Q'Y. In particular,

and Q2'Y is the remaining submatrix:

Suppose that X is an NxK data set of independent variables and Y is an Nx1 vector of
dependent variables. Suppose further that X contains linearly dependent columns, i.e.,
X has rank M < P. Then define

and the vector (or matrix of L > 1) of least squares coefficients of the reduced, linearly
independent problem is the solution of

To solve for b use qrsol:

35-1448

qtyre

q

35-1449

b = qrsol(C, A);

If N < P, the factorization assumes the form:

where R1 is a PxP upper triangular matrix and R2 is Px(N-P). Thus Q is a PxP matrix
and R is a PxN matrix containing R1 and R2. This type of factorization is useful for the
solution of underdetermined systems. For the solution of

it can be shown that

b = qrsol(Q'Y, R1)|zeros(N-P,1);

Source

qtyr.src

See Also

qqr, qre, qtyr

qtyrep

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix X using a
pivot vector and returns Q'Y and R.

qtyrep

q

Format

{ qty, r, e } = qtyrep(y, x, pvt);

Input

y NxL matrix.
x NxP matrix.
pvt Px1 vector, controls the selection of the pivot columns:

 if pvt[i] > 0, x[i] is an initial column.
 if pvt[i] = 0, x[i] is a free column.
 if pvt[i] < 0, x[i] is a final column.
The initial columns are placed at the beginning of the
matrix and the final columns are placed at the end. Only
the free columns will be moved during the
decomposition.

Output

qty NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Remarks

Given X[.,E], where E is a permutation vector that permutes the columns of X, there is
an orthogonal matrix Q such that Q'X[.,E] is zero below its diagonal, i.e.,

35-1450

qtyrep

q

35-1451

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X[.,E].

qtyrep allows you to control the pivoting. For example, suppose that X is a data set
with a column of ones in the first column. If there are linear dependencies among the
columns of X, the column of ones for the constant may get pivoted away. This column
can be forced to be included among the linearly independent columns using pvt.

Source

qtyr.src

See Also

qrep, qtyre

quantile

Purpose

Computes quantiles from data in a matrix, given specified probabilities.

quantile

q

Format

y = quantile(x, e);
y = quantile(x, e, tp);

Input

x NxK matrix of data.
e Lx1 vector, quantile levels or probabilities.
tp Scalar, 1, 2, ..., 9. Sample quantile type. Default is 4.

Output

y LxK matrix, quantiles.

Remarks

Let { } denote the order statistics, and let

denotes the sample quantiles, where

The value of is a function of integer
part and fractional part . The is a con-
stant determined by sample quantile type.

Type Definition
1 Discrete sample quantile type 1. Inverse of empirical

distribution function.
2 Discrete sample quantile type 2. Similar to type 1 except

that averaging at discontinuities.
3 Discrete sample quantile type 3. SAS definition, choose the

nearest even order statistics.

35-1452

quantile

q

35-1453

4 Continous sample quantile type 4. Interpolating the step
function of definition 1.

5 Continous sample quantile type 5. This is the value
midway through each step of definition 1.

6 Continous sample quantile type 6. The vertices divide the
sample space into n+1 regions, each with probability 1/
(n+1).

7 Continous sample quantile type 7. The vertices divide the
range into n-1 regions, and 100p% of the intervals lie to the
left and 100(1-p)% lie to the right.

8 Continous sample quantile type 8. The resulting sample
quantile is median unbiased regardless the distribution.

9 Continous sample quantile type 9. The resulting sample
quantile is median unbiased if normal distribution.

Example

//Set the rng seed for repeatable random numbers

rndseed 345567;

//Create a 1000x4 random normal matrix
x = rndn(1000,4);

//Quantile levels
e = { .025, .5, .975 };

y = quantile(x, e);

print "medians";
print y[2,.];
print;

quantile

q

print "95 percentiles";
print y[1,.];
print y[3,.];

Produces the following output:

medians
-0.037801917 0.029923972 -0.010477829 -0.023937160

95 percentiles
-2.0074122 -2.0798579 -1.9982702 -1.9605009
2.0437573 2.0271770 1.9025695 1.9228044

Source

quantile.src

quantiled

Purpose

Computes quantiles from data in a data set, given specified probabilities.

Format

y = quantiled(dataset, e, var);

Input

dataset string, data set name, or NxM matrix of data.
e Lx1 vector, quantile levels or probabilities.
var Kx1 vector, scalar zero, string array, or formula string.

If Kx1, character vector of labels selected for analysis, or
numeric vector of column numbers in data set of variables

35-1454

quantiled

q

35-1455

selected for analysis.

If var is scalar zero, all columns are selected.

If dataset is a matrix var cannot be a character vector.

If dataset includes variable names, then var could be
a string array, e.g. "Height" $| "Weight"or formula string.
e.g. "Height + Weight".

Output

y LxK matrix, quantiles.

Remarks

l quantiled will not succeed if N*minc(e) is less than 1, or N*maxc(e) is
greater than N - 1. In other words, to produce a quantile for a level of .001,
the input matrix must have more than 1000 rows.

l The supported data set types are CSV, XLS, XLSX, HDF5, FMT, DAT.
l For HDF5 file, the dataset must include file schema and both file name and
data set name must be provided, e.g. quantiled
("h5://C:/gauss17/examples/testdata.h5/mydata", 0.5, 0).

Examples

Example 1 Use data set name

//Create file name with full path
file_name = getGAUSSHome() $+ "examples/fueleconomy.dat";
//Set up quantile levels
e = { .025, .5, .975 };
//Choose all variables in the data set

quantiled

q

var = 0;
//Compute quantiles
y = quantiled(file_name, e, var);

print "medians";
print y[2,.];
print;
print "95 percentiles";
print y[1,.];
print y[3,.];

produces:

medians
2.5000000 3.0000000

95 percentiles
1.5500000 1.4000000
4.0500000 6.2550000

Example 2 Use .csv file and variable index

//Create file name with full path
file_name = getGAUSSHome() $+ "examples/binary.csv";
//Set up quantile levels
e = { .025, .5, .975 };
//Set up variable index
var = 2|3;
//Compute quantiles
y = quantiled(file_name,e,var);

print "medians";
print y[2,.];
print;

35-1456

quantiled

q

35-1457

print "95 percentiles";
print y[1,.];
print y[3,.];

After the above code:

medians
580.00000 3.3900000

95 percentiles
360.00000 2.6300000

800.00000 4.0000000

Example 3 Use .xls file and formula string

//Create file name with full path
file_name = getGAUSSHome() $+ "examples/nba_ht_wt.xls";
//Set up quantile levels
e = { .025, .5, .975 };
//Set up formula string
var = "Height + Weight" ;
//Compute quantiles
y = quantiled(file_name,e,var);
print "Height"$~"Weight";
print "medians";
print y[2,.];
print;
print "95 percentiles";
print y[1,.];
print y[3,.];

After the above code:

medians
220.00000 79.500000

quantiled

q

95 percentiles
175.00000 72.000000
270.00000 84.000000

See also

Formula String

Source

quantile.src

qyr

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix X and returns
QY and R.

Format

{ qy, r } = qyr(y, x);

Input

y NxL matrix.
X NxP matrix.

Output

qy NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).

35-1458

qyr

q

35-1459

Remarks

Given X, there is an orthogonal matrix Q such that Q'X is zero below its diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X. If X has linearly independent columns, R is also the
Cholesky factorization of the moment matrix of X, i.e., of X'X.

For most problems Q or Q1 is not what is required. Since Q can be a very large mat-
rix, qyr has been provided for the calculation of QY, where Y is some NxL matrix,
which will be a much smaller matrix.

If either Q'Y or Q1'Y are required, see qtyr.

Source

qyr.src

See Also

qqr, qyre, qyrep, olsqr

qyr

q

qyre

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix x and returns
QY and R.

Format

{ qy, r, e } = qyre(y, x);

Input

y NxL matrix.
x NxP matrix.

Output

qy NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

Remarks

Given X[.,E], where E is a permutation vector that permutes the columns of X, there is
an orthogonal matrix Q such that Q'X[.,E] is zero below its diagonal, i.e.,

where R is upper triangular. If we partition

35-1460

qyre

q

35-1461

where Q1 has P columns, then

is the QR decomposition of X[.,E].

For most problems Q or Q1 is not what is required. Since Q can be a very large mat-
rix, qyre has been provided for the calculation of QY, where Y is some NxL matrix,
which will be a much smaller matrix.

If either Q'Y or Q1'Y are required, see qtyre.

If N <P, the factorization assumes the form:

where R1 is a PxP upper triangular matrix and R2 is Px(N-P). Thus Q is a PxP matrix
and R is a PxN matrix containing R1 and R2.

Source

qyr.src

See Also

qqr, qre, qyr

qyre

q

qyrep

Purpose

Computes the orthogonal-triangular (QR) decomposition of a matrix X using a
pivot vector and returns QY and R.

Format

{ qy, r, e } = qyrep(y, x, pvt);

Input

y NxL matrix.
x NxP matrix.
pvt Px1 vector, controls the selection of the pivot columns:

 if pvt[i] > 0, x[i] is an initial column.
 if pvt[i] = 0, x[i] is a free column.
 if pvt[i] < 0, x[i] is a final column.
The initial columns are placed at the beginning of the
matrix and the final columns are placed at the end. Only
the free columns will be moved during the
decomposition.

Output

qy NxL unitary matrix.
r KxP upper triangular matrix, K = min(N,P).
e Px1 permutation vector.

35-1462

qyrep

q

35-1463

Remarks

Given X[.,E], where E is a permutation vector that permutes the columns of X, there is
an orthogonal matrix Q such that Q'X[.,E] is zero below its diagonal, i.e.,

where R is upper triangular. If we partition

where Q1 has P columns, then

is the QR decomposition of X[.,E].

qyrep allows you to control the pivoting. For example, suppose that X is a data set
with a column of ones in the first column. If there are linear dependencies among the
columns of X, the column of ones for the constant may get pivoted away. This column
can be forced to be included among the linearly independent columns using pvt.

For most problems Q or Q1 is not what is required. Since Q can be a very large matrix,
qyrep has been provided for the calculation of QY, where Y is some NxL matrix,
which will be a much smaller matrix.

If either Q'Y or Q1'Y are required, see qtyrep.

If N<P, the factorization assumes the form:

qyrep

q

where R1 is a PxP upper triangular matrix and R2 is Px(N-P). Thus Q is a PxP matrix
and R is a PxN matrix containing R1 and R2.

Source

qyr.src

See Also

qr, qqrep, qrep, qtyrep

qz

Purpose

Compute the complex QZ, or generalized Schur, form of a pair of real or complex
general matrices with an option to sort the eigenvalues.

Format

{ S, T, Q, Z } = qz(A, B);
{ S, T, Q, Z } = qz(A, B, sort_type);

Input

A NxN matrix, real or complex general matrix
B NxN matrix, real or complex general matrix

35-1464

qz

q

35-1465

sort_type Optional input, scalar or string specifying how to sort
the eigenvalues. Options include:

1 "udi" Absolute value of the
eigenvalue less than 1.0. (Unit
disk inside)

2 "udo" Absolute value of the
eigenvalue greater than or equal
to 1.0. (Unit disk outside)

3 "lhp" Value of the real portion of the
eigenvalue less than 0. (Left
hand plane)

4 "rhp" Value of the real portion of the
eigenvalue greater than 0.
(Right hand plane)

5 "ref" Real eigenvalues first.
(Complex portion less than
imagtol see remarks section)

6 "cef" Complex eigenvalues first.
(Complex portion greater than
imagtol see remarks section)

Output

S NxN matrix, Schur form of A
T NxN matrix, Schur form of B
Q NxN matrix, left Schur vectors
Z NxN matrix, right Schur vectors

qz

q

Examples

Example 1: Basic usage

//For repeatable random numbers
rndseed 23434;

//Matrix dimensions
order = 4;

//Create 2 square, real matricies
A = rndn(order, order);
B = rndn(order, order);

//Perform 'QZ' decomposition
{ S, T, Q, Z } = qz(A,B);

//Calculate generalized eigenvalues
eig_vals = diag(S) ./ diag(T);

print "Generalized eigenvalues = ";
print eig_vals;

print "Absolute value of the generalized eigenvalues = ";
print abs(eig_vals);

The above code should return the following output:

Generalized eigenvalues =

20.703871 - 1.9686543e-16i
0.16170711 - 1.6939178e-17i

-0.83402664 - 0.34681937i
-0.83402664 + 0.34681937i

35-1466

qz

q

35-1467

Absolute value of the generalized eigenvalues =

20.703871
0.16170711
0.90326303
0.90326303

Example 2: Ordering eigenvalues

You can order the eigenvalues, by passing in the optional third input, sort_type.
The code below uses the same A and B variables made in the example above.

//Perform 'QZ' decomposition and
//reorder generalized eigenvalues, placing
//those with absolute value less than 1
//on the upper left
{ S, T, Q, Z } = qz(A, B, "udi");

//Calculate generalized eigenvalues
eig_vals = diag(S) ./ diag(T);

print "Generalized eigenvalues = ";
print (eig_vals);

print "Absolute value of the generalized eigenvalues = ";
print abs(eig_vals);

The code above should print out the sorted eigenvalues as we see below.

Generalized eigenvalues =

0.16170711 - 1.6819697e-17i

qz

q

-0.83402664 - 0.34681937i
-0.83402664 + 0.34681937i

20.703871 - 2.1311282e-14i

Absolute value of the generalized eigenvalues =

0.16170711
0.90326303
0.90326303
20.703871

Remarks

l The pair of matrices S and T are in generalized complex Schur form if S and T
are upper triangular and the diagonal of T contains positive real numbers.

l The real generalized eigenvalues can be computed by dividing the diagonal
element of S by the corresponding diagonal element of T.

l The generalized Schur vectors Q and Z are orthogonal matrices (Q'Q = I and
Z'Z = I) that reduce A and B to Schur form:

S = Q'A*Z
T = Q'B*Z

A = Q*S*Z'
B = Q*T*Z'

l For the real generalized schur decomposition, call lapgschur.

l If only the generalized eigenvalues are needed, you can call lapgeig, or
lapgeigv.

l By default imagtol is set to 2.23e-16. If your program requires imagtol to

35-1468

qz

q

35-1469

be a different value, you may change it using sysstate case 21, like this:

//Set imagtol to 1e-15
imagtol_org = sysstate(21, 1e-15);

Note that while the function qz IS threadsafe, setting imagtol is NOT
threadsafe. Therefore, imagtol should not be changed inside of a
threadStat or threadBegin block.

l This procedure calls the LAPACK routine ZGGES.

qz

q

r

rank

Purpose

Computes the rank of a matrix, using the singular value decomposition.

Format

k = rank(x);

Input

x NxP matrix.

Global Input

_
svdtol

scalar, the tolerance used in determining if any of the
singular values are effectively 0. The default value is
10e-13. This can be changed before calling the
procedure.

Output

k an estimate of the rank of x. This equals the number of
singular values of x that exceed a prespecified tolerance
in absolute value.

35-1470

rank

r

35-1471

Global Output

_
svderr

scalar, if not all of the singular values can be computed
_svderr will be nonzero.

Source

svd.src

rankindx

Purpose

Returns the vector of ranks of a vector.

Format

y = rankindx(x, flag);

Input

x Nx1 vector.
flag scalar, 1 for numeric data or 0 for character data.

Output

y Nx1 vector containing the ranks of x. That is, the rank
of the largest element is N and the rank of the smallest
is 1. (To get ranks in descending order, subtract y from
N+1).

rankindx r

Remarks

rankindx assigns different ranks to elements that have equal values (ties). Missing
values are assigned the lowest ranks.

Example

x = { 12, 4, 15, 7, 8 };
r = rankindx(x,1);

After the code above, r is equal to:

4
1

r = 5
2
3

readr

Purpose

Reads a specified number of rows of data from a GAUSS data set (.dat) file or
a GAUSS matrix (.fmt) file.

Format

y = readr(f1, r);

Input

f1 scalar, file handle of an open file.
r scalar, number of rows to read.

35-1472

readr

r

35-1473

Output

y NxK matrix, the data read from the file.

Remarks

The first time a readr statement is encountered, the first r rows will be read. The
next time it is encountered, the next r rows will be read in, and so on. If the end of the
data set is reached before r rows can be read, then only those rows remaining will be
read.

After the last row has been read, the pointer is placed immediately after the end of the
file. An attempt to read the file in these circumstances will cause an error message.

To move the pointer to a specific place in the file use seekr.

Example

open dt = dat1.dat;
m = 0;

do until eof(dt);
x = readr(dt,400);
m = m + moment(x,0);

endo;

dt = close(dt);

This code reads data from a data set 400 rows at a time. The moment matrix for each
set of rows is computed and added to the sum of the previous moment matrices. The
result is the moment matrix for the entire data set. eof(dt) returns 1 when the end of
the data set is encountered.

See Also

open, create, writer, seekr, eof

readr r

real

Purpose

Returns the real part of x.

Format

zr = real(x);

Input

x NxK matrix or N-dimensional array.

Output

zr NxK matrix or N-dimensional array, the real part of x.

Remarks

If x is not complex, zr will be equal to x.

Example

x = { 1 11+2i,
7i 3,
2+1i 1 };

zr = real(x);

After the code above, x and zr are equal to:

1+0i 11+2i 1 11
x = 0+7i 3+0i zr = 0 3

2+1i 1+0i 2 1

35-1474

real

r

35-1475

See Also

complex, imag

reclassify

Purpose

Replaces specified values of a matrix, array or string array

Format

x_new = reclassify(x, from, to);

Input

x NxK matrix, string array or NxKxP array to be recoded
(changed)

from kx1 vector, or string array of values to change
to kx1 vector, or string array containing the new values to

be assigned to the recoded variable

Output

x_
new

Matrix, multi-dimensional array or string array with the
same dimensions as the input x, containing the recoded
values of x

Examples

Example 1

Change instances of 1, 2 and 3 to 'low', 'medium' and 'high'.

reclassify r

//Vector to be changed
x = { 2,

3,
2,
1,
2,
3 };

from = { 1,
2,
3 };

//Create a 3x1 string array using
//string vertical concatenation operator
to = "low" $| "medium" $| "high";

x_new = reclassify(x, from, to);
print x_new ;

After the code above, x_new is equal to:

medium
high

medium
low

medium
high

Example 2

Change instances of tea types: 'black', 'green', 'oolong' to 9.95, 11.95 and 10.50,
respectively.

string orders = { "green",
"green",

"oolong",

35-1476

reclassify

r

35-1477

"green",
"green",
"green",
"black" };

string tea_types = { "black",
"green",

"oolong" };

price = { 9.95, 11.95, 10.50 };

order_prices = reclassify(orders, tea_types, price);
print order_prices;

After the code above, order_prices is equal to:

11.95
11.95
10.50
11.95
11.95
11.95
9.95

Source

datatran.src

See Also

code,recode,reclassifyCuts, substute, rescale, dummy

reclassify r

reclassifyCuts

Purpose

Replaces values of a matrix or array within specified ranges

Format

x_new = reclassifyCuts(x, cut_pts);
x_new = reclassifyCuts(x, cut_pts, close_right);

Input

x NxK matrix, string array or NxKxP array to be recoded
(changed)

cut_
pts

kx1 vector, bounds of the specified ranges

close_
right

Scalar, optional argument, 1 if the cut_pts should be
the right end-point of the interval, or 0 if the values in
cut_pts should start the next interval

Output

x_
new

Matrix, multi-dimensional array or string array with the
same dimensions as the input x, containing the recoded
values of x

Examples

Example 1: Basic sequence

35-1478

reclassifyCuts

r

35-1479

//Create column vector to place in categories
x = { 0,

0.1,
0.2,
0.3,
0.4,
0.5,
0.6,
0.7 };

//Cut points for data in 'x'
cut_pts = { 0.2,

0.5 };

//Class 0: x <= 0.2
//Class 1: 0.2 < x <= 0.5
//Class 2: 0.5 < x
r_open = reclassifyCuts(x, cut_pts);

//Class 0: x < 0.2
//Class 1: 0.2 < x < 0.5
//Class 2: 0.5 < x
r_closed = reclassifyCuts(x, cut_pts, 1);

print "x = " x;
print;
print "r_open = " r_open;
print;
print "r_closed = " r_closed;
print;
print "cut_pts = " cut_pts;

After the code above:

reclassifyCuts r

x =
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

r_open =
0.00
0.00
0.00
1.0
1.0
1.0
2.0
2.0

r_closed =
0.00
0.00
1.0
1.0
1.0
2.0
2.0
2.0

cut_pts =
0.20
0.50

Example 2: Classifying blood pressure data

35-1480

reclassifyCuts

r

35-1481

//Create a column of blood pressure data
bp = { 87,

154,
127,
112,
159,
90,

151,
109,
125,
107 };

//Assign cut points
cut_pts = { 120, 140 };

//Create categorical variable
bp_category = reclassifyCuts(bp, cut_pts);

print "bp = " bp;
print;
print "bp_category = " bp_category;
print;
print "cut_pts = " cut_pts;

After the code above:

bp =
87.00
154.0
127.0
112.0
159.0
90.00
151.0

reclassifyCuts r

109.0
125.0
107.0

bp_category =
0.0000
2.000
1.000
0.0000
2.000
0.0000
2.000
0.0000
1.000
0.0000

cut_pts =
120.0
140.0

We can take the categorical data output from reclassifyCuts and use the
reclassify function to change the numeric categories to string categories like this:

//Starting categories
from = { 0, 1, 2 };

//New categories
to = "normal" $| "prehypertension" $| "hypertension";

bp_category = reclassify(bp_category, from, to);
print "bp_category = " bp_category;

After the code above:

35-1482

reclassifyCuts

r

35-1483

bp_category =
normal
hypertension
prehypertension
normal
hypertension
normal
hypertension
normal
prehypertension
normal

Source

datatran.src

See Also

code,recode,reclassify, substute, rescale

recode

Purpose

Changes the values of an existing vector from a vector of new values. Used in
data transformations.

Format

y = recode(x, e, v);

Input

x Nx1 vector to be recoded (changed).

recode r

e NxK matrix of 1's and 0's.
v Kx1 vector containing the new values to be assigned to

the recoded variable.

Output

y Nx1 vector containing the recoded values of x.

Remarks

There should be no more than a single 1 in any row of e.

For any given row N of x and e, if the Kth column of e is 1, the Kth element of v
will replace the original element of x.

If every column of e contains a 0, the original value of x will be unchanged.

Example

x = { 20,
45,
32,
63,
29 };

//Create 4 column vectors with a 1 where the statement
//evaluates as 'true'
e1 = (20 .lt x) .and (x .le 30);
e2 = (30 .lt x) .and (x .le 40);
e3 = (40 .lt x) .and (x .le 50);
e4 = (50 .lt x) .and (x .le 60);

//Horizontally concatenate the column vectors into a 5x4
//matrix

35-1484

recode

r

35-1485

e = e1~e2~e3~e4;

v = { 1.2,
2.4,
3.1,
4.6 };

//Replace elements of 'x' with elements from 'v' based upon
//the 0's and 1's in 'e'
y = recode(x,e,v);

The above code assigns e and y as follows:

0 0 0 0
0 0 1 0

e = 0 1 0 0
0 0 0 0
1 0 0 0

//Since the third column of the second row of 'e' is equal
//to 1, the second row of 'y' is set equal to the third
//element of 'v', etc.

20.000000
3.1000000

y = 2.4000000
63.000000
1.2000000

Source

datatran.src

See Also

code, reclassifyCuts, reclassify, substute, rescale, dummy

recode r

recode (dataloop)

Purpose

Changes the value of a variable with different values based on a set of logical
expressions.

Format

recode var with
 or
recode # var with
 or
recode $ var with

val1 for expression_1,

val2 for expression_2,

 .
 .
 .
valn for expression_n;

Input

var literal, the new variable name.
val scalar, value to be used if corresponding expression is

TRUE.
expression logical scalar-returning expression that returns nonzero

TRUE or zero FALSE.

Remarks

If '$' is specified, the variable will be considered a character variable. If '#' is

35-1486

recode (dataloop)

r

35-1487

specified, the variable will be considered numeric. If neither is specified, the type of
the variable will be left unchanged.

The logical expressions must be mutually exclusive, that is only one may return TRUE
for a given row (observation).

If none of the expressions is TRUE for a given row (observation), its value will remain
unchanged.

Any variables referenced must already exist, either as elements of the source data set,
as extern's, or as the result of a previous make, vector, or code statement.

Example

recode age with
1 for age < 21,
2 for age >= 21 and age < 35,
3 for age >= 35 and age < 50,
4 for age >= 50 and age < 65,
5 for age >= 65;

recode $ sex with
"MALE" for sex =\,= 1,
"FEMALE" for sex =\,= 0;

recode # sex with
1 for sex $=\,= "MALE",
0 for sex $=\,= "FEMALE";

See Also

code (dataloop)

recode (dataloop) r

recserar

Purpose

Computes a vector of autoregressive recursive series.

Format

y = recserar(x, y0, a);

Input

x NxK matrix
y0 PxK matrix.
a PxK matrix.

Output

y NxK matrix containing the series.

Remarks

recserar is particularly useful in dealing with time series.

Typically, the result would be thought of as K vectors of length N.

y0 contains the first P values of each of these vectors (thus, these are prespecified).
The remaining elements are constructed by computing a Pth order ''autoregressive''
recursion, with weights given by a, and then by adding the result to the corresponding
elements of x. That is, the tth row of y is given by:

y[t,.] = x[t,.] + a[1,.] * y[t-1,.] +...+ a[P,.] * y[t-
p,.], t = P + 1,...N

and

35-1488

recserar

r

35-1489

y[t,.] = y0[t,.], t = 1,...,P

Note that the first P rows of x are not used.

Example

n = 10;
fn multnorm(n,sigma) = rndn(n, rows(sigma))*chol(sigma);
let sig[2,2] = { 1 -.3, -.3 1 };
rho = 0.5~0.3;
y0 = 0~0;
e = multnorm(n,sig);
x = ones(n,1)~rndn(n,3);
b = 1|2|3|4;
y = recserar(x*b+e,y0,rho);

In this example, two autoregressive series are formed using simulated data. The gen-
eral form of the series can be written:

y[1,t] = rho[1,1]*y[1,t-1] + x[t,.]*b + e[1,t]
y[2,t] = rho[2,1]*y[2,t-1] + x[t,.]*b + e[2,t]

The error terms (e[1,t] and e[2,t]) are not individually serially correlated, but
they are contemporaneously correlated with each other. The variance-covariance mat-
rix is sig.

See Also

recsercp, recserrc

recserar r

recsercp

Purpose

Computes a recursive series involving products. Can be used to compute cumu-
lative products, to evaluate polynomials using Horner's rule, and to convert from
base b representations of numbers to decimal representations among other
things.

Format

y = recsercp(x, z);

Input

x NxK or 1xK matrix
z NxK or 1xK matrix.

Output

y NxK matrix in which each column is a series generated by
a recursion of the form:

y(1) = x(1)
+ z(1)
y(t) = y(t - 1) * x(t) + z(t), t=2,...N

Remarks

The following GAUSS code could be used to emulate recsercp when the number of
rows in x and z is the same:

35-1490

recsercp

r

35-1491

/* assume here that rows(z) is also n */
n = rows(x);
y = zeros(n, 1);
y[1,.] = x[1,.] + z[1,.];

i = 2;
do until i > n;

y[i,.] = y[i-1,.] .* x[i,.] + z[i,.];
i = i +1;

endo;

Note that K series can be computed simultaneously, since x and z can have K
columns (they must both have the same number of columns).

recsercp allows either x or z to have only 1 row.

recsercp(x, 0) will produce the cumulative products of the elements in x.

Example

c1 = c[1,.];
n = rows(c) - 1;
y = recsercp(x, trimr(c ./ c1,1,0));
p = c1 .* y[n,.];

If x is a scalar and c is an (N+1)x1 vector, the result p will contain the value of the
polynomial whose coefficients are given in c. That is:

p = c[1,.].*x^n + c[2,.].*x^(n-1) + ... + c[n+1,.];

Note that both x and c could contain more than 1 column, and then this code would
evaluate the entire set of polynomials at the same time. Note also that if x = 2, and if
c contains the digits of the binary representation of a number, then p will be the
decimal representation of that number.

recsercp r

See Also

recserar, recserrc

recserrc

Purpose

Computes a recursive series involving division.

Format

y = recserrc(x, z);

Input

x 1xK or Kx1 vector.
z NxK matrix.

Output

y NxK matrix in which each column is a series generated by a recursion
of the form:

y[1] = x mod z[1], x =
trunc(x/z[1])

y[2] = x mod z[2], x = trunc(x/z[2])

y[3] = x mod z[3], x = trunc(x/z[3])

 .

 .

35-1492

recserrc

r

35-1493

 .

y[n] = x mod z[n]

Remarks

Can be used to convert from decimal to other number systems (radix conversion).

Example

x = 2|8|10;
b = 2;
n = maxc(log(x)./log(b)) + 1;
z = reshape(b, n, rows(x));
y = rev(recserrc(x, z))';

The result, y, will contain in its rows (note that it is transposed in the last step) the
digits representing the decimal numbers 2, 8, and 10 in base 2:

0 0 1 0
1 0 0 0
1 0 1 0

Source

recserrc.src

See Also

recserar, recsercp

recserrc r

renamefile

Purpose

Changes file name.

Format

ret = renamefile("oldname","newname");

Input

oldname string, existing file name.
newname string, new file name.

Output

ret scalar, 0 if successful.

Example

ret = renamefile("myfile.gss","mynewfile.gss");

In this example, a file in the current working directory with the name
"myfile.gss" will be renamed "mynewfile.gss" in the same directory. Full
path information may also be included:

//On Windows
ret = renamefile("c:\\gauss17\\myfile.gss",

"c:\\gauss17\\mynewfile.gss");

//On Linux/Mac

35-1494

renamefile

r

35-1495

ret = renamefile("/home/user/gauss17/myfile.gss",
"/home/user/gauss17/mynewfile.gss");

rerun

Purpose

Displays the most recently created graphics file.

Library

pgraph

Format

rerun;

Remarks

rerun is used by the endwind function.

Source

pcart.src

Globals

_pcmdlin, _pnotify, _psilent, _ptek, _pzoom

rescale

Purpose

Scales the columns of a matrix

rerun r

Format

{ x_s, location, scale_factor } = rescale(x, method);
x_s = rescale(x, location, scale_factor);

Input

x NxK matrix or NxK array to be rescaled
location 1xK vector, used for column centering
scale_
factor

1xK vector, used for column scaling

method String, name of scaling and centering method:
Method Location scale_

factor
"euclidean" 0 Euclidean

length:

"mad" Median Absolute
deviation
from the
median

"maxabs" 0 Maximum
absolute
value

"midrange"

"range" Minimum Range
"standardize" Mean Standard

deviation

35-1496

rescale

r

35-1497

"sum" 0 Sum
"ustd" 0 Standard

deviation
about the
origin

Output

x_s Matrix or multi-dimensional array, containing the scaled
columns of x

location 1xK vector, containing the values used to center the
columns of the input matrix x

scale_
factor

1xK vector, containing the values used to scale the
columns of the input matrix x

Examples

Example 1: Specifying a scaling method

//Create a column vector
x = { 12.5,

18.2,
10.8,
8.3,
15.4,
21.5,
14.6,
16.7 };

//Standardize 'x' and return the location and scaling
factors
{ x_s, location, scale_factor} = rescale(x, "standardize");

print "x_s = " x_s;

rescale r

print "location = " location;
print "scale_factor = " scale_factor;

After the code above:

x_s =
-0.53463295
0.81977052

-0.93857785
-1.5326145
0.15444952
1.6038989

-0.035642197
0.46334856

location = 14.750000
scale_factor = 4.2084948

Example 2: Specifying a scaling method for multiple columns

//Create a matrix with 2 columns
x = { 12.5 1088.5,

18.2 879.3,
10.8 1232.0,
8.3 1189.8,

15.4 932.1,
21.5 1009.2,
14.6 656.7,
16.7 1251.5 };

//Standardize 'x' and return the location and scaling
factors
{ x_s, location, scale_factor } = rescale(x,

35-1498

rescale

r

35-1499

"standardize");

print"x_s = " x_s;
print"location = " location;
print"scale_factor = " scale_factor;

After the code above:

x_s =
-0.53463295 0.28751716
0.81977052 -0.73869039

-0.93857785 0.99144060
-1.5326145 0.78443315
0.15444952 -0.47968581
1.6038989 -0.10148025

-0.035642197 -1.8306302
0.46334856 1.0870957

location = 14.750000 1029.8875
scale_factor = 4.2084948 203.85740

Example 3: Applying previously created location and scaling factors

Continuing with the variables used in example 2, we can apply the returned location
and scaling factors to standardize additional observations of our two variables.

//Additional observations
x_new = {

9.3 964.1,
10.9 1173.7,
11.1 1232.0,
9.1 1051.2,

14.6 1124.1,
18.4 815.3,

rescale r

20.2 1292.6,
18.5 833.1 };

//Standardize 'x' using the location and scaling factors
print"location = " location;
print"scale_factor = " scale_factor;

//returned in example 2
x_new_s = rescale(x_new, location, scale_factor);

print"x_new_s = " x_new_s;
print"x_new = " x_new;

After the code above:

location = 14.750000 1029.8875
scale_factor = 4.2084948 203.85740

x_new_s =
-1.2949998 -0.32271333

-0.91481638 0.70545637
-0.86729345 0.99144060
-1.3425227 0.10454612

-0.035642197 0.46214904
0.86729345 -1.0526353
1.2949998 1.2887072

0.89105492 -0.96531940

x_new =
9.3000000 964.10000
10.900000 1173.7000
11.100000 1232.0000
9.1000000 1051.2000
14.600000 1124.1000
18.400000 815.30000

35-1500

rescale

r

35-1501

20.200000 1292.6000
18.500000 833.10000

See Also

code, recode, reclassifyCuts, reclassify, rescale, substute

reshape

Purpose

Reshapes a matrix.

Format

y = reshape(x, r, c);

Input

x NxK matrix.
r scalar, new row dimension.
c scalar, new column dimension.

Output

y r x c matrix created from the elements of x.

Remarks

Matrices are stored in row major order.

reshape r

The first c elements are put into the first row of y, the second in the second row, and
so on. If there are more elements in x than in y, the remaining elements are dis-
carded. If there are not enough elements in x to fill y, then when reshape runs
out of elements, it goes back to the first element of x and starts getting additional ele-
ments from there.

Example

y = reshape(x,2,6);

1 2 3 4
if x = 5 6 7 8 then y = 1 2 3 4 5 6

9 10 11 12 7 8 9 10 11 12

1 2 3
if x = 4 5 6 then y = 1 2 3 4 5 6

7 8 9 7 8 9 1 2 3

1 2 3 4 5
if x = 6 7 8 9 10 then y = 1 2 3 4 5 6

11 12 13 14 15 7 8 9 10 11 12

if x = 1 2 then y = 1 2 3 4 1 2
3 4 3 4 1 2 3 4

if x = 1 then y = 1 1 1 1 1 1
1 1 1 1 1 1

See Also

submat, vec

35-1502

reshape

r

35-1503

retp

Purpose

Returns from a procedure or keyword.

Format

retp;
retp(x, y,...);

Remarks

For more details, see PROCEDURES AND KEYWORDS, CHAPTER 1.

In a retp statement 0-1023 items may be returned. The items may be expressions.
Items are separated by commas.

It is legal to return with no arguments, as long as the procedure is defined to return 0
arguments.

See Also

proc, keyword, endp

return

Purpose

Returns from a subroutine.

Format

return;
return(x, y,...);

retp r

Remarks

The number of items that may be returned from a subroutine in a return statement is
limited only by stack space. The items may be expressions. Items are separated by
commas.

It is legal to return with no arguments and therefore return nothing.

See Also

gosub, pop

rev

Purpose

Reverses the order of the rows in a matrix.

Format

y = rev(x);

Input

x NxK matrix.

Output

y NxK matrix containing the reversed rows of x.

Remarks

The first row of y will be where the last row of x was and the last row will be where

35-1504

rev

r

35-1505

the first was and so on. This can be used to put a sorted matrix in descending order.

Example

//Set the rng seed for repeatable results
rndseed 345345;

//Set print formatting to print 4 spaces for each column
//and 0 numbers after the decimal
format /rd 4,0

//Create some random integers
x = round(rndn(5,3)*10);

//Reverse the order of the columns
y = rev(x);

print "x = " x;
print "y = " y;

The code above produces the following output:

x =
10 -14 -7
3 -1 -5

-7 4 2
1 1 1
7 -7 2

y =
7 -7 2
1 1 1

-7 4 2
3 -1 -5

10 -14 -7

rev r

See Also

sortc

rfft

Purpose

Computes a real 1- or 2-D Fast Fourier transform.

Format

y = rfft(x);

Input

x NxK real matrix.

Output

y LxM matrix, where L and M are the smallest powers of
2 greater than or equal to N and K, respectively.

Remarks

Computes the RFFT of x, scaled by 1/(L*M).

This uses a Temperton Fast Fourier algorithm.

If N or K is not a power of 2, x will be padded out with zeros before computing the
transform.

See Also

rffti, fft, ffti, fftm, fftmi

35-1506

rfft

r

35-1507

rffti

Purpose

Computes inverse real 1- or 2-D Fast Fourier transform.

Format

y = rffti(x);

Input

x NxK matrix.

Output

y LxM real matrix, where L and M are the smallest prime
factor products greater than or equal to N and K.

Remarks

It is up to the user to guarantee that the input will return a real result. If in doubt, use
ffti.

See Also

rfft, fft, ffti, fftm, fftmi

rfftip

Purpose

Computes an inverse real 1- or 2-D FFT. Takes a packed format FFT as input.

rffti r

Format

y = rfftip(x);

Input

x NxK matrix or K-length vector.

Output

y LxM real matrix or M-length vector.

Remarks

rfftip assumes that its input is of the same form as that output by rfftp and
rfftnp.

rfftip uses the Temperton prime factor FFT algorithm. This algorithm can compute
the inverse FFT of any vector or matrix whose dimensions can be expressed as the
product of selected prime number factors. GAUSS implements the Temperton
algorithm for any integer power of 2, 3, and 5, and one factor of 7. Thus, rfftip can
handle any matrix whose dimensions can be expressed as:

2p x 3q x 5r x 7s

p, q, r ≥ 0
s = 0 or 1

If a dimension of x does not meet this requirement, it will be padded with zeros to the
next allowable size before the inverse FFT is computed. Note that rfftip assumes
the length (for vectors) or column dimension (for matrices) of x is K-1 rather than K,
since the last element or column does not hold FFT information, but the Nyquist fre-
quencies.

35-1508

rfftip

r

35-1509

The sizes of x and y are related as follows: L will be the smallest prime factor
product greater than or equal to N, and M will be twice the smallest prime factor
product greater than or equal to K-1. This takes into account the fact that x contains
both positive and negative frequencies in the row dimension (matrices only), but only
positive frequencies, and those only in the first K-1 elements or columns, in the length
or column dimension.

It is up to the user to guarantee that the input will return a real result. If in doubt, use
ffti. Note, however, that ffti expects a full FFT, including negative frequency
information, for input.

Do not pass rfftip the output from rfft or rfftn-it will return incorrect results.
Use rffti with those routines.

See Also

fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftn, rfftnp, rfftp

rfftn

Purpose

Computes a real 1- or 2-D FFT.

Format

y = rfftn(x);

Input

x NxK real matrix.

Output

y LxM matrix, where L and M are the smallest prime

rfftn r

factor products greater than or equal to N and K,
respectively.

Remarks

rfftn uses the Temperton prime factor FFT algorithm. This algorithm can compute
the FFT of any vector or matrix whose dimensions can be expressed as the product of
selected prime number factors. GAUSS implements the Temperton algorithm for any
power of 2, 3, and 5, and one factor of 7. Thus, rfftn can handle any matrix whose
dimensions can be expressed as:

2p x 3q x 5r x 7s

p, q, r ≥ 0 -- for rows of matrix

p > 0. q, r ≥ 0 -- for columns of matrix

p > 0. q, r ≥ 0 -- for length of a vector

s = 0 or 1 -- for all dimensions

If a dimension of x does not meet these requirements, it will be padded with zeros to
the next allowable size before the FFT is computed.

rfftn pads matrices to the next allowable size; however, it generally runs faster for
matrices whose dimensions are highly composite numbers, i.e., products of several
factors (to various powers), rather than powers of a single factor. For example, even
though it is bigger, a 33600x1 vector can compute as much as 20 percent faster than a
32768x1 vector, because 33600 is a highly composite number, 26x3x52x7, whereas
32768 is a simple power of 2, 215. For this reason, you may want to hand-pad matrices
to optimum dimensions before passing them to rfftn. The Run-Time Library
includes two routines, optn and optnevn, for determining optimum dimensions. Use
optn to determine optimum rows for matrices, and optnevn to determine optimum
columns for matrices and optimum lengths for vectors.

35-1510

rfftn

r

35-1511

The Run-Time Library also includes the nextn and nextnevn routines, for
determining allowable dimensions for matrices and vectors. (You can use these to see
the dimensions to which rfftn would pad a matrix or vector.)

rfftn scales the computed FFT by 1/(L*M).

See Also

fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftip, rfftnp, rfftp

rfftnp

Purpose

Computes a real 1- or 2-D FFT. Returns the results in a packed format.

Format

y = rfftnp(x);

Input

x NxK real matrix or K-length real vector.

Output

y Lx(M/2+1) matrix or (M/2+1)-length vector, where L
and M are the smallest prime factor products greater
than or equal to N and K, respectively.

Remarks

For 1-D FFT's, rfftnp returns the positive frequencies in ascending order in the first

rfftnp r

M/2 elements, and the Nyquist frequency in the last element. For 2-D FFT's, rfftnp
returns the positive and negative frequencies for the row dimension, and for the column
dimension, it returns the positive frequencies in ascending order in the first M/2
columns, and the Nyquist frequencies in the last column. Usually the FFT of a real
function is calculated to find the power density spectrum or to perform filtering on the
waveform. In both these cases only the positive frequencies are required. (See also
rfft and rfftn for routines that return the negative frequencies as well.)

rfftnp uses the Temperton prime factor FFT algorithm. This algorithm can compute
the FFT of any vector or matrix whose dimensions can be expressed as the product of
selected prime number factors. GAUSS implements the Temperton algorithm for any
power of 2, 3, and 5, and one factor of 7. Thus, rfftnp can handle any matrix whose
dimensions can be expressed as:

2p x 3q x 5r x 7s

p, q, r ≥ 0 -- for rows of matrix

p > 0. q, r ≥ 0 -- for columns of matrix

p > 0. q, r ≥ 0 -- for length of a vector

s = 0 or 1 -- for all dimensions

If a dimension of x does not meet these requirements, it will be padded with zeros to
the next allowable size before the FFT is computed.

rfftnp pads matrices to the next allowable size; however, it generally runs faster for
matrices whose dimensions are highly composite numbers, i.e., products of several
factors (to various powers), rather than powers of a single factor. For example, even
though it is bigger, a 33600x1 vector can compute as much as 20 percent faster than a
32768x1 vector, because 33600 is a highly composite number, 26x3x52x7, whereas
32768 is a simple power of 2, 215. For this reason, you may want to hand-pad matrices
to optimum dimensions before passing them to rfftnp. The Run-Time Library
includes two routines, optn and optnevn, for determining optimum dimensions. Use

35-1512

rfftnp

r

35-1513

optn to determine optimum rows for matrices, and optnevn to determine optimum
columns for matrices and optimum lengths for vectors.

The Run-Time Library also includes the nextn and nextnevn routines, for
determining allowable dimensions for matrices and vectors. (You can use these to see
the dimensions to which rfftnp would pad a matrix or vector.)

rfftnp scales the computed FFT by 1/(L*M).

See Also

fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftip, rfftn, rfftp

rfftp

Purpose

Computes a real 1- or 2-D FFT. Returns the results in a packed format.

Format

y = rfftp(x);

Input

x NxK real matrix or K-length real vector.

Output

y Lx(M/2+1) matrix or (M/2+1)-length vector, where L
and M are the smallest powers of 2 greater than or
equal to N and K, respectively.

rfftp r

Remarks

If a dimension of x is not a power of 2, it will be padded with zeros to the next allow-
able size before the FFT is computed.

For 1-D FFT's, rfftp returns the positive frequencies in ascending order in the first
M/2 elements, and the Nyquist frequency in the last element. For 2-D FFT's, rfftp
returns the positive and negative frequencies for the row dimension, and for the column
dimension, it returns the positive frequencies in ascending order in the first M/2
columns, and the Nyquist frequencies in the last column. Usually the FFT of a real
function is calculated to find the power density spectrum or to perform filtering on the
waveform. In both these cases only the positive frequencies are required. (See also
rfft and rfftn for routines that return the negative frequencies as well.)

rfftp scales the computed FFT by 1/(L*M).

rfftp uses the Temperton FFT algorithm.

See Also

fft, ffti, fftm, fftmi, fftn, rfft, rffti, rfftip, rfftn, rfftnp

rndBernoulli

Purpose

Computes Bernoulli distributed random numbers.

Format

{ r, newstate } = rndBernoulli(r, c, prob, state);
r = rndBernoulli(r, c, prob);

35-1514

rndBernoulli

r

35-1515

Input

r Scalar, number of rows of the output matrix.
c Scalar, number of columns of the output matrix.
prob Scalar, probability parameter.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

Output

r r x c matrix, Bernoulli random numbers.
newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(X) = prob
Var(X) = prob * (1 - prob)

Example

//Bernoulli random numbers can be used to model qualitative
//binary data (i.e., yes/no, true/false), such as marital

rndBernoulli r

//status.

//Set the random seed for repeatable numbers.

rndseed 723940439;

//The percentage of married people in the population we
//would like to model.
prob = 0.7;

//Create 10,000 Bernoulli random numbers
r = rndBernoulli(10000, 1, prob);

//The mean of 'r' should approximately equal 'prob'
mu = meanc(r);
print mu;

0.70270000

See Also

rndMVn, rndCreateState

rndBeta

Purpose

Computes beta pseudo-random numbers with a choice of underlying random num-
ber generator.

Format

{ x, newstate } = rndBeta(r, c, a, b, state);
x = rndBeta(r, c, a, b);

35-1516

rndBeta

r

35-1517

Input

r Scalar, number of rows of resulting matrix.
c Scalar, number of columns of resulting matrix.
a r x c matrix, or r x 1 vector, or 1 x c vector, or scalar,

first shape argument for beta distribution.
b r x c matrix, or r x 1 vector, or 1 x c vector, or scalar,

second shape argument for beta distribution.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

Output

x r x c matrix, beta distributed random numbers.
newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = a/(a+b)

Var(x) = a*b/((a+b+1)*(a+b)2)

rndBeta r

0 < x < 1
a > 0
b > 0

r and c will be truncated to integers if necessary.

Example

Example 1

This example illustrates basic usage of rndBeta, leaving the management of the ran-
dom number state to GAUSS to handle internally.

num_rows = 100;
num_cols = 5;
a = 3;
b = 2;
x = rndBeta(num_rows, num_cols, a, b);

Example 2

//Starting seed for random number generator
seed = 235235;

//If a 'seed' or 'state' vector is passed in,
//then a state vector will be returned
{ x, newstate } = rndBeta(100, 5, 3, 2, seed);

Technical Notes

The default generator for rndBeta is the SFMT Mersenne-Twister 19937. You can
specifiy a different underlying random number generator with the function
rndCreateState.

See Also

rndCreateState, rndStateSkip

35-1518

rndBeta

r

35-1519

rndCauchy

Purpose

Computes Cauchy random numbers with a choice of underlying random number
generator.

Format

{ r, newstate } = rndCauchy(rows, cols, location, scale,
state);
r = rndCauchy(rows, cols, location, scale);

Input

rows Scalar, number of rows of resulting matrix.
cols Scalar, number of columns of resulting matrix.
location Scalar or ExE conformable matrix with rows and

cols.
scale Scalar or ExE conformable matrix with rows and

cols.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the standard random number functions.

rndCauchy r

Output

r rows x cols matrix, Cauchy distributed random
numbers.

newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = undefined
Var(x) = undefined
Median(x) = location

r and c will be truncated to integers if necessary.

See Also

rndCreateState, rndStateSkip

rndChiSquare

Purpose

Creates pseudo-random numbers with a chi-squared distribution, with an optional
non-centrality parameter and a choice of underlying random number generator.

Format

{ x, newstate } = rndChiSquare(r, c, df, s_ncp, state);
x = rndChiSquare(r, c, df, s_ncp);
x = rndChiSquare(r, c, df);

35-1520

rndChiSquare

r

35-1521

Input

r Scalar, number of rows of resulting matrix.
c Scalar, number of columns of resulting matrix.
df Scalar,
degrees of
freedom.
s_ncp Optional argument - scalar, non-centrality parameter.

NOTE: This is the square root of the noncentrality
parameter that sometimes goes under the symbol
lambda.

state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

Output

x r x c matrix, chi-square distributed random numbers.
newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = k + λ
σ2(x) = 2*k + 4*λ

rndChiSquare r

where:

k = df
λ = s_ncp^2

Technical Notes

The default generator for rndChiSquare is the SFMT Mersenne-Twister 19937. You
can specifiy a different underlying random number generator with the function
rndCreateState.

See Also

rndCreateState, rndStateSkip

rndcon, rndmult, rndseed

Purpose

Resets the parameters of the linear congruential random number generator that is
the basis for rndu, rndi and rndn.

Format

rndcon c;
rndmult a;
rndseed seed;

Input

c scalar, constant for the random number generator.
a scalar, multiplier for the random number generator.
seed scalar, initial seed for the random number generator.

35-1522

rndcon, rndmult, rndseed

r

35-1523

Parameter default values and ranges:

seed time(0) 0 < seed < 232a 1664525 0
< a < 232c 1013904223 0 < a < 232

Remarks

A linear congruential uniform random number generator is used by rndu, and is also
called by rndn. These statements allow the parameters of this generator to be
changed.

The procedure used to generate the uniform random numbers is as follows. First, the
current ''seed'' is used to generate a new seed:

new_seed = (((a * seed) % 232)+ c) % 232

(where % is the mod operator). Then a number between 0 and 1 is created by dividing
the new seed by 232:

x = new_seed / 232

rndcon resets c.

rndmult resets a.

rndseed resets seed. This is the initial seed for the generator. The default is that
GAUSS uses the clock to generate an initial seed when GAUSS is invoked.

GAUSS goes to the clock to seed the generator only when it is first started up. There-
fore, if GAUSS is allowed to run for a long time, and if large numbers of random num-
bers are generated, there is a possibility of recycling (that is, the sequence of "random
numbers" will repeat itself). However, the generator used has an extremely long cycle,
so that should not usually be a problem.

The parameters set by these commands remain in effect until new commands are
encountered, or until GAUSS is restarted.

rndcon, rndmult, rndseed r

See Also

rndu, rndn, rndi, rndLCi, rndKMi

rndCreateState

Purpose

Creates a new random number stream for a specified generator type from a seed
value.

Format

state = rndCreateState(brng, seed);

Input

brng String, generator name. Options include:
"mrg32k3a" L'Ecuyer's MRG32K3A
"mt19937" Mersenne-Twister 19937
"sfmt19937" optimized Mersenne-Twister 19937
"mt2203-
01"

Mersenne-Twister 2203

"niederreter" Niederreter quasi-random numbers
"sobol" Sobol quasi-random numbers
"wh-01" Wichmann-Hill

seed Scalar, starting seed value. if -1, GAUSS computes the
starting seed based on the system clock.

NOTE: For the quasi-random number generators, "sobol"
and "niederreiter", this second input is the dimension rather
than a starting seed. For "sobol", 1 ≤ dimension ≤ 40. For
niederreiter, 1 ≤ dimension ≤ 318. See examples below.

35-1524

rndCreateState

r

35-1525

Output

state Opaque vector, the newly created state.

Examples

Example 1: Basic usage

//Starting seed value
seed = 123456;

//Create state for generator 'mrg32k3a'
state = rndCreateState("mrg32k3a", seed);

//Create a 5x1 vector of random normal numbers with
//the state created above
{ r, newstate } = rndn(5, 1, state);

After the code above, r will equal:

0.51489262
0.14053340
r = 1.2128406
0.17112172
-0.18788202

Example 2: creating a state from a numbered stream

Most random number generators have one single stream in which you can think of the
starting state as a bookmark. The "mt2203" and "wh" (or Wichmann-HIll) each have
multiple separate streams. The example below shows how to uses these random num-
ber streams.

seed = 123456;

rndCreateState r

//Create a state from the 1028th substream of the
//Mersenne-Twister 2203 RNG
state_mt = rndCreateState("mt2203-1028", seed);

//Create a state from the 112th substream of the
//Wichmann-Hill RNG
state_wh = rndCreateState("wh-112", seed);

//Generate numbers using the states
{ r1, state_mt } = rndu(4, 1, state_mt);
{ r2, state_wh } = rndu(4, 1, state_wh);

After the code above, r1 and r2 should equal:

r1 = 0.14291687 r2 = 0.0073824407
0.99670199 0.93756896
0.59512065 0.071140446
1.5776604e-06 0.021328991

Example 3: initializing the Sobol quasi-random number generator

//Initialize random seed with a dimension of 2
state = rndCreateState("sobol", 2);

//Create some random numbers using this state
{ r, state } = rndu(10, 2, state);

After the code above, r, should be equal to:

r = 0.5000 0.5000
0.7500 0.2500
0.2500 0.7500
0.3750 0.3750
0.8750 0.8750
0.6250 0.1250

35-1526

rndCreateState

r

35-1527

0.1250 0.6250
0.1875 0.3125
0.6875 0.8125
0.9375 0.0625

Remarks

The states returned from this function may NOT be used with rndMTu or any of the
rndKM or rndLC functions.

See Also

rndStateSkip, rndn, rndu, rndBeta

rndExp

Purpose

Computes exponentially distributed random numbers with a choice of underlying
random number generator.

Format

{ r, newstate } = rndExp(rows, cols, scale, state);
r = rndExp(rows, cols, scale);

Input

rows Scalar, number of rows of resulting matrix.
cols Scalar, number of columns of resulting matrix.
scale Scalar or a matrix that is ExE conformable with the

dimensions of the output. The scale parameter
sometimes called β

rndExp r

state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

Output

r rows x cols matrix, exponentially distributed
random numbers.

newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are specified in terms of the scale
parameter sometimes called β. This is the reciprocal of the rate parameter which is
sometimes called λ:

E(x) = scale = β = 1/rate = 1/λ
Var(x) = scale2 = β2 = 1/rate2 = 1/λ2

See Also

rndCreateState, rndStateSkip

35-1528

rndExp

r

35-1529

rndgam

Purpose

Computes pseudo-random numbers with gamma distribution. NOTE: rndgam is
deprecated and should be replaced with rndGamma.

Format

x = rndgam(r, c, alpha);

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
alpha MxN matrix, ExE conformable with r x c resulting

matrix, shape parameters for gamma distribution.

Output

x r x c matrix, gamma distributed pseudo-random
numbers.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = alphaVar(x) = alphax > 0alpha > 0

Source

random.src

rndgam r

See Also

rndGamma

rndGamma

Purpose

Computes gamma pseudo-random numbers with a choice of underlying random
number generator.

Format

{ x, newstate } = rndGamma(r, c, shape, scale, state);
x = rndGamma(r, c, shape, scale);

Input

r Scalar, number of rows of resulting matrix.
c Scalar, number of columns of resulting matrix.
shape r x c matrix, or r x 1 vector, or 1 x c vector, or scalar,

shape argument for gamma distribution.
scale r x c matrix, or r x 1 vector, or 1 x c vector, or scalar,

scale argument for gamma distribution.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

35-1530

rndGamma

r

35-1531

Output

x r x c matrix, gamma distributed random numbers.
newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = shape*scale
Var(x) = shape*scale2
x > 0
shape > 0
scale > 0

Example

Example 1

num_rows = 5;
num_cols = 1;
shape = 3;
scale = 2;

x = rndGamma(num_rows, num_cols, shape, scale);

Example 2

The gamma distribution is sometimes described in terms of a shape parameter and an
inverse scale parameter, called the rate parameter. The rate parameter is the recip-
rocal of the scale parameter. With this parameterization, the random numbers will
have the following properties:

E(x) = shape/rate
Var(x) = shape/(rate2)

rndGamma r

If you prefer to think about the gamma distribution in these terms, then pass in the
reciprocal of the rate parameter as the fourth argument to rndGamma.

shape = 3;
rate = 2;

x = rndGamma(5, 1, shape, 1/rate);

Technical Notes

The default generator for rndGamma is the SFMT Mersenne-Twister 19937. You can
specifiy a different underlying random number generator with the function
rndCreateState.

See Also

rndCreateState, rndStateSkip

rndGeo

Purpose

Computes geometric pseudo-random numbers with a choice of underlying random
number generator.

Format

{ y, newstate } = rndGeo(r, c, prob, state);
y = rndGeo(r, c, prob);

Input

r Scalar, row dimension.
c Scalar, column dimension.
prob Scalar or matrix: ExE conformatble with r and c

35-1532

rndGeo

r

35-1533

columns.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value. If -1, GAUSS computes the
starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number generators.

Output

y r x c matrix of geometrically distributed random
numbers.

newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in y are:

E(y) = (1 - prob)/prob;

Var(y) = (1 - prob)/prob2

r and c will be truncated to integers if necessary.

See Also

rndCreateState, rndStateSkip

rndGeo r

Technical Notes

The default generator for rndGeo is the SFMT Mersenne-Twister 19937. You can spe-
cifiy a different underlying random number generator with the function
rndCreateState.

rndGumbel

Purpose

Computes Gumbel distributed random numbers with a choice of underlying ran-
dom number generator.

Format

{ r, newstate } = rndGumbel(rows, cols, location, scale,
state);
r = rndGumbel(rows, cols, scale);

Input

rows Scalar, number of rows of resulting matrix.
cols Scalar, number of columns of resulting matrix.
location Scalar or ExE conformable matrix with rows and

cols.
scale Scalar or ExE conformable matrix with rows and

cols.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

35-1534

rndGumbel

r

35-1535

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

Output

r rows x cols matrix, Gumbel distributed random
numbers.

newstate Opaque vector, the updated state.

Remarks

This function uses the definition of the Gumbel distribution corresponding to the min-
imum extreme. The properties of the pseudo-random numbers in y are:

E(y) = location - γ*scale ≈ location - 0.5772*scale
γ = Euler-Mascheroni constant
Var(y) = (π2*scale2)/6

r and c will be truncated to integers if necessary.

See Also

rndCreateState, rndStateSkip

rndHyperGeo

Purpose

Computes the random numbers for the hypergeometric distribution

rndHyperGeo r

Format

x = rndHyperGeo(r, c, m, k, n);
{ x, new_state } = rndHyperGeo(r, c, m, k, n, state);

Input

r Scalar, row dimension of the return matrix x
c Scalar, column dimension of the return matrix x
m The size of the population from which draws will be

made. ExE conformable with the row and column
dimensions of the return matrix, r and c

k The number of items in the population which possess a
specified trait. ExE conformable with row and column
dimensions of the return matrix, r, and c

n The number of items drawn from the population. ExE
conformable with the dimensions of the return matrix, r
and c

state Optional argument - scalar or opaque vector

Scalar case:

state = starting seed value. If -1, GAUSS computes the
starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rndn random number generators

Output

x The probability of drawing x items which possess a
specified trait. NxK matrix, Nx1 vector or scalar

35-1536

rndHyperGeo

r

35-1537

new_state Opaque vector, the updated state

Examples

Example 1: Basic Example

//Population size
m = 100;

//Number of marked items
k = 25;

//Number of items drawn
n = 40;

//Compute 1 random number
x = rndHyperGeo(1, 1, m, k, n);

Example 2

The example below shows how to create a random matrix in which each column has
different parameters.

//Population size
m = 100;

//Number of marked items
k = 25;

//1x2 row vector, number of items drawn
n = { 40 50 };

//Compute a 10 x 2 matrix of random number
x = rndHyperGeo(10, 2, m, k, n);

rndHyperGeo r

Both columns of the variable x created in the code above use the same values for m
and k. However, the first column of x will be calculated using the first element of n,
40. The second column of x will be calculated using the second element of n, 50.

Example 3: Passing in a state vector

//Starting seed value
seed = 23424;

//Population size
m = 100;

//Number of marked items
k = 25;

//Number of items drawn
n = 40;

//Compute 1000x1 vector of random numbers
{ x, state } = rndHyperGeo(1000, 1, m, k, n, seed);

See Also

cdfHyperGeo, pdfHyperGeo

rndi

Purpose

Returns a matrix of random integers from a user defined range.

Format

y = rndi(r, c);
y = rndi(r, c, range);
{ y, newstate } = rndi(r, c, range, state);

35-1538

rndi

r

35-1539

Input

r scalar, row dimension.
c scalar, column dimension.
range Optional argument. 2x1 matrix, the requested range of

the random integers. The first element is the range
minimum and the second element is the range
maximum. If range is not supplied, the default range
is 0 ≤ y < 232.

state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value. If -1, GAUSS computes the
starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number generators.

Output

y r x c matrix of random integers in the specified range.
newstate Opaque vector, the updated state.

rndi r

Examples

Example 1: Basic example

//Create a 10x5 vector of random
//integers between 0 and 2^32 - 1
r_int = rndi(10, 5);

Example 2: Basic range

//Create a 10x1 vector of random
//integers between 1 and 100
range_start = 1;
range_end = 100;
idx = rndi(10, 1, range_start | range_end);

Example 3: Using 'rndi' to sample with replacement from a dataset

//Load data from the 'fueleconomy' dataset
//in the GAUSS examples directory
file_name = getGAUSSHome() $+ "examples/fueleconomy.dat";
fueleconomy = loadd(file_name);

//Create a 100x1 vector of random
//integers between 1 and 100
range_start = 1;
range_end = rows(fueleconomy);
idx = rndi(100, 1, range_start | range_end);

//Draw a 100 observation sample from 'fueleconomy'
fuel_sample = fueleconomy[idx, .];

Example 4: Using a state-vector

//Create a 1050x1 vector of random
//integers between 20 and 150

35-1540

rndi

r

35-1541

seed_start = 5423432;
range = { 20, 150 };
{ idx, state } = rndi(1050, 1, range, seed_start);

Remarks

r and c will be truncated to integers if necessary.

This generator is automatically seeded using the system clock when GAUSS first
starts. However, that can be overridden using the rndseed statement, or passing in a
seed or state as the last input to rndi.

See Also

rndu, rndn, rndseed, rndCreateState

rndKMbeta

Purpose

Computes beta pseudo-random numbers.

Format

{ x, newstate } = rndKMbeta(r, c, a, b, state);

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
a r x c matrix, or rx1 vector, or 1xc vector, or scalar,

first shape argument for beta distribution.
b r x c matrix, or rx1 vector, or 1xc vector, or scalar,

second shape argument for beta distribution.

rndKMbeta r

state scalar or 500x1 vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

500x1 vector case:

state = the state vector returned from a previous call to
one of the rndKM random number functions.

Output

x r x c matrix, beta distributed random numbers.
newstate 500x1 vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = a/(a+b)
Var(x) = a*b/((a+b+1)*(a+b2)
0 < x < 1a > 0b > 0

r and c will be truncated to integers if necessary.

Source

randkm.src

Technical Notes

rndKMbeta uses the recur-with-carry KISS+Monster algorithm described in the
rndKMi Technical Notes.

35-1542

rndKMbeta

r

35-1543

rndKMgam

Purpose

Computes Gamma pseudo-random numbers.

Format

{ x, newstate } = rndKMgam(r, c, alpha, state);

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
alpha r x c matrix, or rx1 vector, or 1xc vector, or scalar,

shape argument for gamma distribution.
state scalar or 500x1 vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

500x1 vector case:

state = the state vector returned from a previous call to
one of the rndKM random number functions.

Output

x r x c matrix, gamma distributed random numbers.
newstate 500x1 vector, the updated state.

rndKMgam r

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = alphaVar(x) = alphax > 0alpha > 0

To generate gamma(alpha, theta) pseudo-random numbers where theta is a
scale parameter, multiply the result of rndKMgam by theta.

Thus

z = theta * rndgam(1,1, alpha);

has the properties

E(z) = alpha * thetaVar(z) = alpha * theta2z > 0alpha > 0theta > 0

r and c will be truncated to integers if necessary.

Source

randkm.src

Technical Notes

rndKMgam uses the recur-with-carry KISS+Monster algorithm described in the
rndKMi Technical Notes.

rndKMi

Purpose

Returns a matrix of random integers, 0 ≤ y < 232, and the state of the random num-
ber generator.

35-1544

rndKMi

r

35-1545

Format

{ y, newstate } = rndKMi(r, c, state);

Input

r scalar, row dimension.
c scalar, column dimension.
state scalar or 500x1 vector.

Scalar case:

state = starting seed value. If -1, GAUSS computes the
starting seed based on the system clock.

500x1 vector case:

state = the state vector returned from a previous call to
one of the rndKM random number generators.

Output

y r x c matrix of random integers between 0 and 232 - 1,
inclusive.

newstate 500x1 vector, the updated state.

Remarks

r and c will be truncated to integers if necessary.

Example

This example generates two thousand vectors of random integers, each with one mil-
lion elements. The state of the random number generator after each iteration is used as

rndKMi r

an input to the next generation of random numbers.

state = 13;
n = 2000;
k = 1000000;
c = 0;
min = 2^32+1;
max = -1;

do while c < n;
{ y,state } = rndKMi(k,1,state);
min = minc(min | minc(y));
max = maxc(max | maxc(y));
c = c + k;

endo;

print "min " min;
print "max " max;

See Also

rndKMn, rndKMu

Technical Notes

rndKMi generates random integers using a KISS+Monster algorithm developed by
George Marsaglia. KISS initializes the sequence used in the recur-with-carry Monster
random number generator. For more information on this generator see
http://www.Aptech.com/random.

rndKMn

Purpose

Returns a matrix of standard normal (pseudo) random variables and the state of
the random number generator.

35-1546

rndKMn

r

35-1547

Format

{ y, newstate } = rndKMn(r, c, state);

Input

r scalar, row dimension.
c scalar, column dimension.
state scalar or 500x1 vector.

Scalar case:

state = starting seed value. If -1, GAUSS computes the
starting seed based on the system clock.

500x1 vector case:

state = the state vector returned from a previous call to
one of the rndKM random number generators.

Output

y r x c matrix of standard normal random numbers.
newstate 500x1 vector, the updated state.

Remarks

r and c will be truncated to integers if necessary.

Example

This example generates two thousand vectors of standard normal random numbers,
each with one million elements. The state of the random number generator after each
iteration is used as an input to the next generation of random numbers.

rndKMn r

state = 13;
n = 2000;
k = 1000000;
c = 0;
submean = {};

do while c < n;
{ y,state } = rndKMn(k,1,state);
submean = submean | meanc(y);
c = c + k;

endo;

mean = meanc(submean);
print mean;

See Also

rndKMu, rndKMi

Technical Notes

rndKMn calls the uniform random number generator that is the basis for rndKMu mul-
tiple times for each normal random number generated. This is the recur-with-carry
KISS+Monster algorithm described in the rndKMi Technical Notes. Potential normal
random numbers are filtered using the fast acceptance-rejection algorithm proposed by
Kinderman, A.J. and J.G. Ramage, "Computer Generation of Normal Random Num-
bers," Journal of the American Statistical Association, December 1976, Volume 71,
Number 356, pp. 893-896. It employs the error correction from Tirler et al. (2004), "An
error in the Kinderman-Ramage method and how to fix it," Computational and Data Ana-
lysis, Vol. 47, 433-40.

rndKMnb

Purpose

Computes negative binomial pseudo-random numbers.

35-1548

rndKMnb

r

35-1549

Format

{ x, newstate } = rndKMnb(r, c, k, p, state);

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
k r x c matrix, or rx1 vector, or 1xc vector, or scalar,

''event'' argument for negative binomial distribution.
p r x c matrix, or rx1 vector, or 1xc vector, or scalar,

''probability'' argument for negative binomial
distribution.

state scalar or 500x1 vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

500x1 vector case:

state = the state vector returned from a previous call to
one of the rndKM random number functions.

Output

x r x c matrix, negative binomial distributed random
numbers.

newstate 500x1 vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

rndKMnb r

E(x) = (k * p)/(1 - p)
Var(x) = (k * p)/(1 - p)2x = 0, 1,....k > 00 < p < 1

r and c will be truncated to integers if necessary.

Source

randkm.src

Technical Notes

rndKMnb uses the recur-with-carry KISS+Monster algorithm described in the rndKMi
Technical Notes.

rndKMp

Purpose

Computes Poisson pseudo-random numbers.

Format

{ x, newstate } = rndKMp(r, c, lambda, state);

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
lambda r x c matrix, or r x 1 vector, or 1 x c vector, or scalar,

shape argument for Poisson distribution.
state scalar or 500x1 vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes

35-1550

rndKMp

r

35-1551

the starting seed based on the system clock.

500x1 vector case:

state = the state vector returned from a previous call to
one of the rndKM random number functions.

Output

x r x c matrix, Poisson distributed random numbers.
newstate 500x1 vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = lambdaVar(x) = lambdax = 0, 1,....lambda > 0

r and c will be truncated to integers if necessary.

Source

randkm.src

Technical Notes

rndKMp uses the recur-with-carry KISS+Monster algorithm described in the rndKMi
Technical Notes.

rndKMu

Purpose

Returns a matrix of uniform (pseudo) random variables and the state of the ran-
dom number generator.

rndKMu r

Format

{ y, newstate } = rndKMu(r, c, state);

Input

r scalar, row dimension.
c scalar, column dimension.
state scalar, 2x1 vector, or 500x1 vector.

Scalar case:

state = starting seed value. If -1, GAUSS computes the
starting seed based on the system clock.

2x1 vector case:
[1] the starting seed, uses the system clock if -1
[2] 0 for 0 ≤ y < 1
 1 for 0 ≤ y ≤ 1
500x1 vector case:

state = the state vector returned from a previous call to
one of the rndKM random number generators.

Output

y r x c matrix of uniform random numbers, 0 ≤ y < 1.
newstate 500x1 vector, the updated state.

Remarks

r and c will be truncated to integers if necessary.

35-1552

rndKMu

r

35-1553

Example

This example generates two thousand vectors of uniform random numbers, each with
one million elements. The state of the random number generator after each iteration is
used as an input to the next generation of random numbers.

state = 13;
n = 2000;
k = 1000000;
c = 0;
submean = {};

do while c < n;
{ y,state } = rndKMu(k,1,state);
submean = submean | meanc(y);
c = c + k;

endo;

mean = meanc(submean);
print 0.5-mean;

See Also

rndKMn, rndKMi

Technical Notes

rndKMu uses the recur-with-carry KISS-Monster algorithm described in the rndKMi
Technical Notes. Random integer seeds from 0 to 232-1 are generated. Each integer is
divided by 232 or 232-1.

rndKMvm

Purpose

Computes von Mises pseudo-random numbers.

rndKMvm r

Format

{ x, newstate } = rndKMvm(r, c, m, k, state);

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
m r x c matrix, or rx1 vector, or 1xc vector, or scalar,

means for vm distribution.
k r x c matrix, or rx1 vector, or 1xc vector, or scalar,

shape argument for vm distribution.
state scalar or 500x1 vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

500x1 vector case:

state = the state vector returned from a previous call to
one of the rndKM random number functions.

Output

x r x c matrix, von Mises distributed random numbers.
newstate 500x1 vector, the updated state.

Remarks

r and c will be truncated to integers if necessary.

35-1554

rndKMvm

r

35-1555

Source

randkm.src

Technical Notes

rndKMvm uses the recur-with-carry KISS+Monster algorithm described in the rndKMi
Technical Notes.

rndLaplace

Purpose

Computes Laplacian pseudo-random numbers with the choice of underlying ran-
dom number generator.

Format

{ x, newstate } = rndLaplace(r, c, loc, scale, state);
x = rndLaplace(r, c, loc, scale);

Input

r Scalar, number of rows of resulting matrix.
c Scalar, number of columns of resulting matrix.
loc r x c matrix, or rx1 vector, or 1xc vector, or scalar,

location parameter.
scale r x c matrix, or rx1 vector, or 1xc vector, or scalar,

scale parameter.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

rndLaplace r

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

Output

x r x c matrix, Laplacian distributed random numbers.
newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = location
Var(x) = 2*scale2

r and c will be truncated to integers if necessary.

Technical Notes

The default generator for rndLaplace is the SFMT Mersenne-Twister 19937. You
can specifiy a different underlying random number generator with the function
rndCreateState.

See Also

rndCreateState, rndStateSkip

35-1556

rndLaplace

r

35-1557

rndLCbeta

Purpose

Computes beta pseudo-random numbers. NOTE: This function is deprecated--use
rndBeta--but remains for backward compatibility.

Format

{ x, newstate } = rndLCbeta(r, c, a, b, state);

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
a r x c matrix, or rx1 vector, or 1xc vector, or scalar,

first shape argument for beta distribution.
b r x c matrix, or rx1 vector, or 1xc vector, or scalar,

second shape argument for beta distribution.
state scalar, or 3x1 vector, or 4x1 vector.

Scalar case:

state = starting seed value only. System default values
are used for the additive and multiplicative constants.

The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.

If state = -1, GAUSS computes the starting seed based
on the system clock.

3x1 vector case:
[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant

rndLCbeta r

[3] the additive constant
4x1 vector case:

state = the state vector returned from a previous call to
one of the rndLC random number generators.

Output

x r x c matrix, beta distributed random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

Source

randlc.src

Technical Notes

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr., and
J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147. Each seed is
generated from the preceding seed using the formula

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is the
additive constant.

35-1558

rndLCbeta

r

35-1559

rndLCgam

Purpose

Computes Gamma pseudo-random numbers. NOTE: This function is deprecated--
use rndGamma--but remains for backward compatibility.

Format

{ x, newstate } = rndLCgam(r, c, alpha, state);

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
alpha r x c matrix, or rx1 vector, or 1xc vector, or scalar,

shape argument for gamma distribution.
state scalar, or 3x1 vector, or 4x1 vector.

Scalar case:

state = starting seed value only. System default values
are used for the additive and multiplicative constants.

The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.

If state = -1, GAUSS computes the starting seed based
on the system clock.

3x1 vector case:
[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant
[3] the additive constant
4x1 vector case:

rndLCgam r

state = the state vector returned from a previous call to
one of the rndLC random number generators.

Output

x r x c matrix, gamma distributed random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

Source

randlc.src

Technical Notes

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr., and
J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147. Each seed is
generated from the preceding seed using the formula

new_seed =(((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is the
additive constant.

rndLCi

Purpose

Returns a matrix of random integers, 0 ≤ y < 232, and the state of the random num-
ber generator. NOTE: This function is deprecated but remains for backward

35-1560

rndLCi

r

35-1561

compatibility.

Format

{ y, newstate } = rndLCi(r, c, state);

Input

r scalar, row dimension.
c scalar, column dimension.
state scalar, or 3x1 vector, or 4x1 vector.

Scalar case:

state = starting seed value only. System default values
are used for the additive and multiplicative constants.

The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.

If state < 0, GAUSS computes the starting seed based
on the system clock.

3x1 vector case:
[1] the starting seed, uses the system clock if < 0
[2] the multiplicative constant
[3] the additive constant
4x1 vector case:

state = the state vector returned from a previous call to
one of the rndLC random number generators.

Output

y r x c matrix of random integers between 0 and 232 - 1,

rndLCi r

inclusive.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

Remarks

r and c will be truncated to integers if necessary.

Each seed is generated from the preceding seed, using the formula

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is the
additive constant. The new seeds are the values returned.

Example

state = 13;
n = 2000000000;
k = 1000000;
c = 0;
min = 2^32+1;
max = -1;

do while c < n;
{ y,state } = rndLCi(k,1,state);
min = minc(min | minc(y));
max = maxc(max | maxc(y));
c = c + k;

endo;

35-1562

rndLCi

r

35-1563

print "min " min;
print "max " max;

See Also

rndLCn, rndLCu, rndcon, rndmult

rndLCn

Purpose

Returns a matrix of standard normal (pseudo) random variables and the state of
the random number generator. NOTE: This function is deprecated--use rndn--
but remains for backward compatibility.

Format

{ y, newstate } = rndLCn(r, c, state);

Input

r scalar, row dimension.
c scalar, column dimension.
state scalar, or 3x1 vector, or 4x1 vector.

Scalar case:

state = starting seed value only. System default values
are used for the additive and multiplicative constants.

The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.

3x1 vector case:
[1] the starting seed, uses the system clock if < 0

rndLCn r

If state < 0, GAUSS computes the starting seed based
on the system clock.
[2] the multiplicative constant
[3] the additive constant
4x1 vector case:

state = the state vector returned from a previous call to
one of the rndLC random number generators.

Output

y r x c matrix of standard normal random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

Remarks

r and c will be truncated to integers if necessary.

Example

state = 13;
n = 2000000000;
k = 1000000;
c = 0;
submean = {};

do while c < n;
{ y,state } = rndLCn(k,1,state);

35-1564

rndLCn

r

35-1565

submean = submean | meanc(y);
c = c + k;

endo;

mean = meanc(submean);
print mean;

See Also

rndLCu, rndLCi, rndcon, rndmult

Technical Notes

The normal random number generator is based on the uniform random number generator,
using the fast acceptance-rejection algorithm proposed by Kinderman, A.J. and J.G.
Ramage, "Computer Generation of Normal Random Numbers," Journal of the American
Statistical Association, December 1976, Volume 71, Number 356, pp. 893-896. This
algorithm calls the linear congruential uniform random number generator multiple times
for each normal random number generated. See rndLCu for a description of the uniform
random number generator algorithm.

rndLCnb

Purpose

Computes negative binomial pseudo-random numbers. NOTE: This function is
deprecated--use rndNegBinomial--but remains for backward compatibility.

Format

{ x, newstate } = rndLCnb(r, c, k, p, state);

rndLCnb r

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
k r x c matrix, or rx1 vector, or 1xc vector, or scalar,

"event" argument for negative binomial distribution.
p r x c matrix, or rx1 vector, or 1xc vector, or scalar,

"probability" argument for negative binomial
distribution.

state scalar, or 3x1 vector, or 4x1 vector.

Scalar case:

state = starting seed value only. System default values
are used for the additive and multiplicative constants.

The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.

If state = -1, GAUSS computes the starting seed based
on the system clock.

3x1 vector case:
[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant
[3] the additive constant
4x1 vector case:

state = the state vector returned from a previous call to
one of the rndLC random number generators.

Output

x r x c matrix, negative binomial distributed random

35-1566

rndLCnb

r

35-1567

numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

Source

randlc.src

Technical Notes

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr., and
J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147. Each seed is
generated from the preceding seed using the formula

new_seed = ((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is the addit-
ive constant.

rndLCp

Purpose

Computes Poisson pseudo-random numbers. NOTE: This function is deprecated--
use rndPoisson--but remains for backward compatibility.

Format

{ x, newstate } = rndLCp(r, c, lambda, state);

rndLCp r

Input

r scalar, row dimension.
c scalar, column dimension.
lambda scalar, mean parameter.
state scalar, or 3x1 vector, or 4x1 vector.

Scalar case:

state = starting seed value only. System default values
are used for the additive and multiplicative constants.

The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.

3x1 vector case:
[1] the starting seed, uses the system clock if < 0
If state < 0, GAUSS computes the starting seed based
on the system clock.
[2] the multiplicative constant
[3] the additive constant
4x1 vector case:

state = the state vector returned from a previous call to
one of the rndLC random number generators.

Output

x r x c matrix of Poisson distributed random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant

35-1568

rndLCp

r

35-1569

[4] the original initialization seed

Source

randlc.src

Technical Notes

This function uses a linear congruential method, discussed in Kennedy, W.J. Jr., and
J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147. Each seed is
generated from the preceding seed using the formula

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is the addit-
ive constant.

rndLCu

Purpose

Returns a matrix of uniform (pseudo) random variables and the state of the ran-
dom number generator. NOTE: This function is deprecated but remains for back-
ward compatibility.

Format

{ y, newstate } = rndLCu(r, c, state);

Input

r scalar, row dimension.
c scalar, column dimension.
state scalar, or 3x1 vector, or 4x1 vector.

rndLCu r

Scalar case:

state = starting seed value only. System default values
are used for the additive and multiplicative constants.

The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.

3x1 vector case:
[1] the starting seed, uses the system clock if < 0
If state < 0, GAUSS computes the starting seed based
on the system clock.
[2] the multiplicative constant
[3] the additive constant
4x1 vector case:

state = the state vector returned from a previous call to
one of the rndLC random number generators.

Output

y r x c matrix of uniform (0 < x < 1) random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

Remarks

r and c will be truncated to integers if necessary.

Each seed is generated from the preceding seed, using the formula

35-1570

rndLCu

r

35-1571

new_seed = (((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is the
additive constant. A number between 0 and 1 is created by dividing new_seed by
232.

Example

state = 13;
n = 2000000000;
k = 1000000;
c = 0;
submean = {};

do while c < n;
{ y,state } = rndLCu(k,1,state);
submean = submean | meanc(y);
c = c + k;

endo;

mean = meanc(submean);
print 0.5-mean;

See Also

rndLCn, rndLCi, rndcon, rndmult

Technical Notes

This function uses a linear congruential method, discussed in Kennedy, W. J. Jr., and J.
E. Gentle, Statistical Computing, Marcel Dekker, Inc., 1980, pp. 136-147.

rndLCu r

rndLCvm

Purpose

Computes von Mises pseudo-random numbers. NOTE: This function is deprec-
ated but remains for backward compatibility.

Format

{ x, newstate } = rndLCvm(r, c, m, k, state);

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
m r x c matrix, or rx1 vector, or 1xc vector, or scalar,

means for vm distribution.
k r x c matrix, or rx1 vector, or 1xc vector, or scalar,

shape argument for vm distribution.
state scalar, or 3x1 vector, or 4x1 vector.

Scalar case:

state = starting seed value only. System default values
are used for the additive and multiplicative constants.

The defaults are 1013904223, and 1664525, respectively.
These may be changed with rndcon and rndmult.

If state = -1, GAUSS computes the starting seed based
on the system clock.

3x1 vector case:
[1] the starting seed, uses the system clock if -1
[2] the multiplicative constant

35-1572

rndLCvm

r

35-1573

[3] the additive constant
4x1 vector case:

state = the state vector returned from a previous call to
one of the rndLC random number generators.

Output

x r x c matrix, von Mises distributed random numbers.
newstate 4x1 vector:

[1] the updated seed
[2] the multiplicative constant
[3] the additive constant
[4] the original initialization seed

Remarks

r and c will be truncated to integers if necessary.

Source

randlc.src

Technical Notes
This function uses a linear congruential method, discussed in Kennedy, W.J. Jr., and
J.E. Gentle, Statistical Computing, Marcel Dekker, Inc. 1980, pp. 136-147. Each seed is
generated from the preceding seed using the formula

new_seed =(((a * seed) % 232)+ c) % 232

where % is the mod operator and where a is the multiplicative constant and c is the addit-
ive constant.

rndLCvm r

rndLogNorm

Purpose

Computes lognormal pseudo-random numbers with the choice of underlying ran-
dom number generator.

Format

{ x, newstate } = rndLogNorm(r, c, mu, sigma, state);
x = rndLogNorm(r, c, mu, sigma);

Input

r Scalar, number of rows of resulting matrix.
c Scalar, number of columns of resulting matrix.
mu r x c matrix, or rx1 vector, or 1xc vector, or scalar,

mean.
sigma r x c matrix, or rx1 vector, or 1xc vector, or scalar,

standard deviation.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

Output

x r x c matrix, lognormal distributed random numbers.

35-1574

rndLogNorm

r

35-1575

newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = exp(mu - 0.5*sigma2)
Var(x) = (exp(sigma2) - 1) * exp(2*mu + sigma2)

r and c will be truncated to integers if necessary.

Technical Notes

The default generator for rndLogNorm is the SFMT Mersenne-Twister 19937. You
can specifiy a different underlying random number generator with the function
rndCreateState.

See Also

rndCreateState, rndStateSkip

rndMVn

Purpose

Computes multivariate normal random numbers given a covariance matrix.

Format

{ r, newstate } = rndMVn(num, mu, cov, state);
r = rndMVn(num, mu, cov);

rndMVn r

Input

num Scalar, number of random vectors to create.
mu Nx1 matrix, mean vector.
cov NxN covariance matrix.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

Output

r numxN matrix, multivariate normal random numbers.
newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = mu
Var(x) = cov

Example

//covariance matrix
cov = { 1 0.3,

35-1576

rndMVn

r

35-1577

0.3 1 };

//mean for each column of 'cov'
mu = { 0, 0 };

x = rndMVn(100, mu, cov);

See Also

rndCreateState, rndStateSkip

rndMVt

Purpose

Computes multivariate Student-t distributed random numbers given a covariance
matrix.

Format

{ r, newstate } = rndMVt(num, cov, df, state);
r = rndMVt(num, cov, df);

Input

num Scalar, number of random vectors to create.
cov NxN covariance matrix.
df Scalar, degrees of freedom.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

rndMVt r

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

Output

r num x N matrix, multivariate student-t distributed
random numbers.

newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = 0
Var(x) = (df/(df - 2)) * sigma

Example

//degrees of freedom
df = 8;

//covariance matrix
sigma = { 1 0.3,

0.3 1 };

x = rndMVt(100, sigma, df);

See Also

rndMVn, rndCreateState

35-1578

rndMVt

r

35-1579

rndn

Purpose

Computes normally distributed pseudo-random numbers with a choice of under-
lying random number generator.

Format

{ y, newstate } = rndn(r, c, state);
y = rndn(r, c);

Input

r Scalar, row dimension.
c Scalar, column dimension.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value. If -1, GAUSS computes the
starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rndn random number generators.

Output

y r x c matrix of standard normal random numbers.
newstate Opaque vector, the updated state.

rndn r

Remarks

r and c will be truncated to integers if necessary.

Example

Example 1

//Create a 100 by 1 vector of standard normal numbers
my_var = rndn(100, 1);

Example 2

This example simulates the linear model: y = α + β1*X + ε

num_obs = 100;
alpha = 2.5;
beta_1 = 0.8;

//Simulate error term
err = rndn(num_obs, 1);

//Simulate 'x' variable
x = rndn(num_obs, 1);

//Simulate data generating process
y = alpha + beta_1*x + err;

Example 3

This example generates two thousand vectors of standard normal random numbers,
each with one million elements. The state of the random number generator after each
iteration is used as an input to the next generation of random numbers.

state = 13;
n = 2000;
k = 1000000;

//Create vector to hold 'n' submeans

35-1580

rndn

r

35-1581

submean = zeros(n, 1);

for i(1, n, 1);
//Create a kx1 vector of random normal numbers,
//using the optional 'state' input
{ y,state } = rndn(k,1,state);

submean[i] = meanc(y);
endfor;

mean = meanc(submean);
print mean;

Technical Notes

The default generator for rndn is the SFMT Mersenne-Twister 19937. You can specify
a different underlying random number generator with the function rndCreateState.

See Also

rndCreateState, rndStateSkip

rndnb

Purpose

Computes pseudo-random numbers with negative binomial distribution.

Format

x = rndnb(r, c, k, p);

Input

r scalar, number of rows of resulting matrix.

rndnb r

c scalar, number of columns of resulting matrix.
k MxN matrix, ExE conformable with r x c resulting

matrix, ''event'' parameters for negative binomial
distribution.

p KxL matrix, ExE conformable with r x c resulting
matrix, ''probability'' parameters for negative binomial
distribution.

Output

x r x c matrix, negative binomial distributed pseudo-
random numbers.

Remarks

The properties of the pseudo-random numbers in x are:

Source

random.src
pseudo-random numbers with negative binomial distribution

35-1582

rndnb

r

35-1583

rndNegBinomial

Purpose

Computes negative binomial pseudo-random numbers with a choice of underlying
random number generator.

Format

{ x, newstate } = rndNegBinomial(r, c, ns, prob, state);
x = rndNegBinomial(r, c, ns, prob);

Input

r Scalar, number of rows of resulting matrix.
c Scalar, number of columns of resulting matrix.
ns r x c matrix, or rx1 vector, or 1xc vector, or scalar,

''event'' argument for negative binomial distribution.
prob r x c matrix, or rx1 vector, or 1xc vector, or scalar,

''probability'' argument for negative binomial
distribution.

state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the state returning random number functions.

rndNegBinomial r

Output

x r x c matrix, negative binomial distributed random
numbers.

newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = num_s*(1 - prob)/prob
Var(x) = num_s*(1 - prob)/prob2

num_s > 0
0 < prob < 1

rndNegBinomial has a different parameterization than the deprecated rndnb. To
convert a call to rndnb to an equivalent call to rndNegBinomial, pass in 1 -
prob in place of prob. For example, the following two calls are equivalent.

x_1 = rndnb(1e6, 1, 15, 0.3);
x_2 = rndNegBinomial(1e6, 1, 15, 0.7);

r and c will be truncated to integers if necessary.

Example

Example 1

Simulate the number of failures before 30 successes where each trial has a 70% prob-
ability of success.

num_obs = 100;

num_s = 30;

35-1584

rndNegBinomial

r

35-1585

prob = 0.70;

num_f = rndNegBinomial(num_obs, 1, num_s, prob);

Example 2

An alternative parameterization specifies the negative binomial distribution in terms of
a dispersion parameter (dp) and a mean parameter (mu). If you would prefer to think of
it in those terms, you may do so by passing in the dispersion parameter dp, in place of
num_s and passing in dp/(dp + mu) in place of prob.

//dispersion parameter
dp = 12;

//mean parameter
mu = 3;

x = rndNegBinomial(100, 1, dp, dp./(dp + mu));

Technical Notes

The default generator for rndNegBinomial is the SFMT Mersenne-Twister 19937.
You can specifiy a different underlying random number generator with the function
rndCreateState.

See Also

rndCreateState, rndStateSkip

rndp

Purpose

Computes pseudo-random numbers with Poisson distribution.

rndp r

Format

x = rndp(r, c, lambda);

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
lambda MxN matrix, ExE conformable with r x c resulting

matrix, shape parameters for Poisson distribution.

Output

x r x c matrix, Poisson distributed pseudo-random
numbers.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = lambda
Var(x) = lambda

x = 0,1,2,...
lambda > 0

Source

random.src

35-1586

rndp

r

35-1587

rndPoisson

Purpose

Computes Poisson pseudo-random numbers with a choice of underlying random
number generator.

Format

{ x, newstate } = rndPoisson(r, c, lambda, state);
x = rndPoisson(r, c, lambda);

Input

r Scalar, number of rows of resulting matrix.
c Scalar, number of columns of resulting matrix.
lambda r x c matrix, or rx1 vector, or 1xc vector, or scalar,

mean parameter for Poisson distribution.
state Optional argument, scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rndMT random number functions.

Output

x r x c matrix, Poisson distributed random numbers.
newstate Opaque vector, the updated state.

rndPoisson r

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = lambda
Var(x) = lambda

r and c will be truncated to integers if necessary.

Example

The example below simulates 100 observations of a Poisson process with a mean of
17.

lambda = 17;

x = rndPoisson(100, 1, lambda);

Technical Notes

The default generator for rndPoisson is the SFMT Mersenne-Twister 19937. You
can specifiy a different underlying random number generator with the function
rndCreateState.

See Also

rndCreateState, rndStateSkip

rndStateSkip

Purpose

To advance a state vector by a specified number of values.

35-1588

rndStateSkip

r

35-1589

Format

newState = rndStateSkip(numSkip, state);

Input

numSkip Scalar, the number of values to skip.
state Opaque state vector.

Output

newState Opaque vector, the advanced state.

Example

seed = 9192834;

//Create a state from the 118th substream of the
//Wichmann-Hill RNG
state = rndCreateState(wh-118", seed);

//Create a new state that is advanced by 2 numbers.
newState = rndStateSkip(2, state);

//Create and compare numbers from the two state vectors
{ r, state } = rndu(4, 1, state };
{ r2, newState } = rndu(2, 1, newState);

0.54973563
r = 0.81642451

0.68583300
0.09105558

rndStateSkip r

r2 = 0.68583300
0.09105558

Technical Notes

This function applies ONLY to the MRG32K3A and Wichmann-Hill random number
generators.

See Also

rndCreateState, rndn, rndu, rndBeta, rndGamma

rndu

Purpose

Computes uniform random numbers with a choice of underlying random number
generator.

Format

{ y, newstate } = rndu(r, c, state);
y = rndu(r, c);

Input

r Scalar, row dimension.
c Scalar, column dimension.
state Optional argument - scalar, or opaque vector.

Scalar case:

state = starting seed value. If -1, GAUSS computes the
starting seed based on the system clock.

35-1590

rndu

r

35-1591

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number generators.

Output

y r x c matrix of uniform random numbers, 0 <= y <
1.

newstate Opaque vector, the updated state.

Remarks

r and c will be truncated to integers if necessary.

Example

Example 1

Basic usage. If a state or seed is not passed in, then only the random numbers are
returned.

//Create a 100x1 vector of uniform random numbers
y = rndu(100, 1);

Example 2

rndu can be used to create a vector of random integers in a specified range. The
example below, creates 30 random integers in the range [1, 1000].

//Largest number in integer range
size = 1000;

//Number of integers to calculate

rndu r

num_indices = 30;

idx = ceil(size .* rndu(num_indices, 1));

Example 3

This example generates two thousand vectors of uniform random numbers, each with
one million elements. The state of the random number generator after each iteration is
used as an input to the next generation of random numbers.

//starting seed
state = 13;

//Number of submeans to calculate
n_iters = 2000;

//Number of random numbers to generate
//on each iteration
k = 1000000;

//Pre-allocate 'submean' vector
submean = zeros(n_iters, 1);

for i(1, n_iters, 1);
{ y,state } = rndu(k,1,state);
submean[i] = meanc(y);

endfor;

mean = meanc(submean);
print 0.5-mean;

Technical Notes

The default generator for rndu is the SFMT Mersenne-Twister 19937. You can spe-
cifiy a different underlying random number generator with the function
rndCreateState.

35-1592

rndu

r

35-1593

See Also

rndCreateState, rndStateSkip

rndvm

Purpose

Computes von Mises pseudo-random numbers.

Format

x = rndvm(r, c, m, k);

Input

r scalar, number of rows of resulting matrix.
c scalar, number of columns of resulting matrix.
m NxK matrix, ExE conformable with r x c, means for

von Mises distribution.
k LxM matrix, ExE conformable with r x c, shape

argument for von Mises distribution.

Output

x r x c matrix, von Mises distributed random numbers.

Source

random.src

rndvm r

rndWeibull

Purpose

Computes Weibull pseudo-random numbers with the choice of underlying random
number generator.

Format

{ x, newstate } = rndWeibull(r, c, shape, scale, state);
x = rndWeibull(r, c, shape, scale);

Input

r Scalar, number of rows of resulting matrix.
c Scalar, number of columns of resulting matrix.
shape r x c matrix, or rx1 vector, or 1xc vector, or scalar,

shape parameter.
scale r x c matrix, or rx1 vector, or 1xc vector, or scalar,

scale parameter.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

Output

x r x c matrix, Weibull distributed random numbers.

35-1594

rndWeibull

r

35-1595

newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in x are:

E(x) = scale * gamma(1 + 1/shape)
Var(x) = scale2*(gamma(1 + 2/shape) - (gamma(1 + 1/shape))2

)

r and c will be truncated to integers if necessary.

Technical Notes

The default generator for rndWeibull is the SFMT Mersenne-Twister 19937. You
can specifiy a different underlying random number generator with the function
rndCreateState.

See Also

rndCreateState, rndStateSkip

rndWishart

Purpose

Computes Wishart distributed random numbers given a covariance matrix.

Format

{ r, newstate } = rndWishart(numMats, cov, df, state);
r = rndWishart(numMats, cov, df);

rndWishart r

Input

numMats Scalar, number of Wishart random matrices to create.
cov NxM covariance matrix.
df Scalar, degrees of freedom.
state Optional argument - scalar or opaque vector.

Scalar case:

state = starting seed value only. If -1, GAUSS computes
the starting seed based on the system clock.

Opaque vector case:

state = the state vector returned from a previous call to
one of the rnd random number functions.

Output

r numMats * rows(cov) x N matrix, wishart
random matrices.

newstate Opaque vector, the updated state.

Remarks

The properties of the pseudo-random numbers in X are:

E(X) = df * cov
Var(Xij) = df * (cov2ij + covii*covjj)

Example

//covariance matrix

35-1596

rndWishart

r

35-1597

cov = { 1 0.5,
0.5 1 };

//degrees of freedom
df = 7;

X = rndWishart(1, cov, df);

X = 7.6019339 4.7744799
4.7744799 7.7341260

See Also

rndWishartInv, rndMVn, rndCreateState

rndWishartInv

Purpose

Computes the inverse Wishart distributed random numbers given a covariance
matrix.

Format

y = rndWishartInv(cov, df);

Input

cov p x p positive definite covariance matrix.
df Scalar, degrees of freedom.

rndWishartInv r

Output

y Matrix, a random matrix from inverse Wishart
distribution.

Example

rndseed 223;
cov = {1 .5,

.5 1};
df = 10;

// A random matrix from inverse Wishart distribution
y = rndWishartInv(cov, df);

print y;

After above code,

0.081211791 0.036818644
0.036818644 0.097064472

See also

rndWishart, rndMVn, rndCreateState

rotater

Purpose

Rotates the rows of a matrix.

Format

y = rotater(x, r);

35-1598

rotater

r

35-1599

Input

x NxK matrix to be rotated.
r Nx1 or 1x1 matrix specifying the amount of rotation.

Output

y NxK rotated matrix.

Remarks

The rotation is performed horizontally within each row of the matrix. A positive rota-
tion value will cause the elements to move to the right. A negative rotation value will
cause the elements to move to the left. In either case, the elements that are pushed off
the end of the row will wrap around to the opposite end of the same row.

If the rotation value is greater than or equal to the number of columns in x, then the
rotation value will be calculated using (r % cols(x)).

Example

y = rotater(x,r);

1 2 3 1 3 1 2
If x = and r = Then y =

4 5 6 -1 5 6 4

1 2 3 0 1 2 3

4 5 6 1 6 4 5
If x = and r = Then y =

7 8 9 2 8 9 7

10 11 12 3 10 11 12

rotater r

See Also

shiftr

round

Purpose

Round to the nearest integer.

Format

y = round(x);

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array containing the
rounded elements of x.

Example

let x = { 77.68 -14.10,
4.73 -158.88 };

y = round(x);
print y;

35-1600

round

r

35-1601

78.00 -14.00
5.00 -159.00

See Also

trunc, floor, ceil

rows

Purpose

Returns the number of rows in a matrix.

Format

y = rows(x);

Input

x NxK matrix or sparse matrix.

Output

y scalar, number of rows in the specified matrix.

Remarks

Use getorders to return both the number of rows and columns in one call. If x is an
empty matrix, rows(x) and cols(x) return 0.

Example

x = ones(3,5);

rows r

y = rows(x);
print x;

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00

print y;

3.00

See Also

cols, getorders, show

rowsf

Purpose

Returns the number of rows in a GAUSS data set (.dat) file or GAUSS matrix
(.fmt) file.

Format

y = rowsf(f);

Input

f file handle of an open file.

Output

y scalar, number of rows in the specified file.

35-1602

rowsf

r

35-1603

Example

open fp = wilshire.dat;
r = rowsf(fp);
c = colsf(fp);
print r;

324.00

print c;

7.00

See Also

colsf, open, typef

rref

Purpose

Computes the reduced row echelon form of a matrix.

Format

y = rref(x);

Input

x MxN matrix.

Output

y MxN matrix containing reduced row echelon form of

rref r

x.

Remarks

The tolerance used for zeroing elements is computed inside the procedure using:

tol = maxc(m|n) * eps * maxc(abs(sumc(x')));

where eps = 2.24e-16.

This procedure can be used to find the rank of a matrix. It is not as stable numerically
as the singular value decomposition (which is used in the rank function), but it is
faster for large matrices.

There is some speed advantage in having the number of rows be greater than the num-
ber of columns, so you may want to transpose if all you care about is the rank.

The following code can be used to compute the rank of a matrix:

r = sumc(sumc(abs(y')) .> tol);

where y is the output from rref, and tol is the tolerance used. This finds the num-
ber of rows with any nonzero elements, which gives the rank of the matrix, dis-
regarding numeric problems.

Example

// Since (row 2) = 2*(row 1), we do not expect this
// matrix to have full rank
x[3,3] = 1 2 3

2 4 6
3 5 2;

y = rref(x);

// compute rank of x

35-1604

rref

r

35-1605

r = sumc(sumc(abs(rref(x)')) .> 1e-15);
print "The rank of x = " r;

The rank of x = 2.000

Source

rref.src

run

Purpose

Runs a source code or compiled code program.

Format

run filename;
run -r filename;

Input

filename literal or ^string, name of file to run.
-r flag, returns control to the calling program.

Remarks

The filename can be any legal file name. Filename extensions can be whatever you
want, except for the compiled file extension, .gcg. Pathnames are okay. If the name
is to be taken from a string variable, then the name of the string variable must be pre-
ceded by the ^ (caret) operator.

run r

The run statement can be used both from the command line and within a program. If
used in a program, once control is given to another program through the run state-
ment, there is no return to the original program unless the flag -r is used.

If you specify a filename without an extension, GAUSS will first look for a compiled
code program (i.e., a .gcg file) by that name, then a source code program by that
name. For example, if you enter

run dog;

GAUSS will first look for the compiled code file dog.gcg, and run that if it finds it.
If GAUSS cannot find dog.gcg, it will then look for the source code file dog with
no extension.

If a path is specified for the file, then no additional searching will be attempted if the
file is not found.

If a path is not specified, the current directory will be searched first, then each dir-
ectory listed in src_path. The first instance found is run. src_path is defined in
gauss.cfg.

run
/gauss/myprog.prg;

No additional
search will be
made if the file
is not found.

run myprog.prg; The directories
listed in src_
path will be
searched for
myprog.prg
if the file is not
found in the
current
directory.

35-1606

run

r

35-1607

Programs can also be run by typing the filename on the OS command line when start-
ing GAUSS.

Example

Example 1

run myprog.prg;

Example 2

name = "myprog.prg";
run ^name;

Example 3

x = rndn(3,3);
run -r myprog.prg;
y = inv(x);
e = x*y;

In this case, GAUSS will execute the lines after the run command. If the the -r is
omitted, the lines following the run command will not be executed within a program.

See Also

#include

run r

s

sampleData

Purpose

Returns a sample of the rows of a matrix, chosen with or without replacement

Format

s = sampleData(x, size);
s = sampleData(x, size, replace);

Input

x matrix, population from which to take a sample
size scalar, the requested sample size
replace Optional argument. Scalar, if replace is 0, the

sample is drawn without replacement. If replace is
1, the sample is drawn with replacement. Default is 0.

Output

s size x cols(x) matrix, containing the sample taken
from x.

35-1608

sampleData

s

35-1609

Examples

Example 1: Basic example without replacement

//Set seed for repeatable random draws
rndseed 23423;

//Create a 7x1 vector
x = { 1,

2,
3,
4,
5,
6,
7 };

//Take a sample of 3 elements without replacement
s = sampleData(x, 3);

After running the code above, s is equal to:

5
3
7

Example 2: Basic example with replacement

//Set seed for repeatable random draws
rndseed 23423;

//Create a 7x2 vector
x = { 1.2 1.8,

2.7 2.1,
3.0 3.3,
4.8 4.1,
5.1 5.4,

sampleData

s

6.0 2.8,
7.2 3.9 };

replace = 1;

//Take a sample of 5 rows of 'x' with replacement
sample = sampleData(x, 5, replace);

After running the code above, sample is equal to:

5.1 5.4
3.0 3.3
6.0 2.8
4.8 4.1
3.0 3.3

Remarks

Indices for taking a random sample can be created with GAUSS function rndi.

The random number generator used in sampleData to choose the samples is auto-
matically seeded using the system clock when GAUSS first starts. However, that can
be overridden using the rndseed statement.

See Also

rndi, rndn, rndseed

satostrC

Purpose

Copies from one string array to another using a C language format specifier string
for each element.

35-1610

satostrC

s

35-1611

Format

y = satostrC(sa, fmt);

Input

sa NxM string array.
fmt 1x1, 1xM, or Mx1 format specifier for each element

copy.

Output

y NxM formatted string array.

satostrC

s

Examples

Example 1: Basic example

//Create a 3x1 column vector
length = { 12, 25, 18 };

//Convert numeric data to a string array
length = ntos(length);

//Add '(cm)' after each number
fmt = "%s (cm)";

length_fmt = satostrc(length, fmt);

After the code above, length_fmt will equal:

"12 (cm)"
"25 (cm)"
"18 (cm)"

Example 2: Different formats for each column

//Create numeric matrices
year = { 2012, 2013, 2014 };
beef = { 187.9, 183.6, 224.1 };
fish = { 4.8, 6.8, 6.6 };

//Create a 3x3 matrix using horiztonal concatenation
commodity_prices = year ~ beef ~ fish;

//%s indicates the location of the contents of the original
string
fmt = "Year %s" $~ "%s cts/lb" $~ "%s $/kg";

//Convert the numeric matrix to a string

35-1612

satostrC

s

35-1613

commodity_prices = ntos(commodity_prices);

//Apply formatting
commodity_prices_fmt = satostrC(commodity_prices, fmt);

After the code above, commodity_prices_fmt should be equal to:

"Year 2012" "187.9 cts/lb" "4.8 $/kg"
"Year 2013" "183.6 cts/lb" "6.8 $/kg"
"Year 2014" "224.1 cts/lb" "6.6 $/kg"

Source

strfns.src

See Also

strcombine

save

Purpose

Saves matrices, strings, or procedures to a disk file.

Format

save vflag path=path x, lpath=y;
save path=path x;
save x;

Input

vflag version flag.

save

s

-v89 not supported
-v92 supported on UNIX, Windows
-v96 supported on all platforms

See also FOREIGN LANGUAGE INTERFACE,
CHAPTER 1, for details on the various
versions. The default format can be specified
in gauss.cfg by setting the dat_fmt_
version configuration variable. If dat_
fmt_version is not set, the default is
v96.

path literal or ^string, a default path to use for this and
subsequent save's.

x a symbol name, the name of the file the symbol will be
saved in is the same as this with the proper extension
added for the type of the symbol.

lpath literal or ^string, a local path and filename to be used
for a particular symbol. This path will override the path
previously set and the filename will override the name
of the symbol being saved. The extension cannot be
overridden.

y the symbol to be saved to lpath.

Remarks

save can be used to save matrices, strings, procedures, and functions. Procedures and
functions must be compiled and resident in memory before they can be save'd.

The following extensions will be given to files that are save'd:

 matrix .fmt

35-1614

save

s

35-1615

 string .fst

 procedure .fcg

 function .fcg

 keyword .fcg

If the path= subcommand is used with save, the path string will be remembered
until changed in a subsequent command. This path will be used whenever none is spe-
cified. The save path can be overridden in any particular save by specifying an
explicit path and filename.

Example

spath = "/gauss";
save path = ^spath x,y,z;

Save x, y, and z using /gauss as the path. This path will be used for the next save
if none is specified.

svp = "/gauss/data";
save path = ^svp n, k, /gauss/quad1=quad;

n and k will be saved using /gauss/data as the save path, quad will be saved in
/gauss with the name quad1.fmt. On platforms that use the backslash as the path
separator, the double backslash is required inside double quotes to produce a backslash
because it is the escape character in quoted strings. It is not required when specifying
literals.

save path=/procs;

Change save path to /procs.

save path = /miscdata;
save /data/mydata1 = x, y, hisdata = z;

save

s

In the above program:

x would be saved in /data/mydata1.fmt
y would be saved in /miscdata/y.fmt
z would be saved in /miscdata/hisdata.fmt

See Also

datasave, load, saveall, saved

saveall

Purpose

Saves the current state of the machine to a compiled file. All procedures, global
matrices and strings will be saved.

Format

saveall fname;

Input

fname literal or ^string, the path and filename of the compiled
file to be created.

Remarks

The file extension will be .gcg.

A file will be created containing all your matrices, strings, and procedures. No main
code segment will be saved. This just means it will be a .gcg file with no main pro-
gram code (see compile). The rest of the contents of memory will be saved,

35-1616

saveall

s

35-1617

including all global matrices, strings, functions and procedures. Local variables are not
saved. This can be used inside a program to take a snapshot of the state of your global
variables and procedures. To reload the compiled image, use run or use.

library pgraph;
external proc xy,logx,logy,loglog,hist;
saveall pgraph;

This would create a file called pgraph.gcg, containing all the procedures, strings
and matrices needed to run Publication Quality Graphics programs. Other programs
could be compiled very quickly with the following statement at the top of each:

use pgraph;

See Also

compile, run, use

saved

Purpose

Writes a matrix in memory to a GAUSS data set on disk.

Format

y = saved(x, dataset, vnames);

Input

x NxK matrix to save in .dat file.
dataset string, name of data set.
vnames string or Kx1 character vector, names for the columns

saved

s

of the data set.

Output

y scalar, 1 if successful, otherwise 0.

Remarks

If dataset is null or 0, the data set name will be temp.dat.

If vnames is a null or 0, the variable names will begin with ''X'' and be numbered 1-
K.

If vnames is a string or has fewer elements than x has columns, it will be expanded
as explained under create.

The output data type is double precision.

Example

x = rndn(100,3);
dataset = "mydata";
vnames = { height, weight, age };

if not saved(x,dataset,vnames);
errorlog "Write error";
end;

endif;

Source

saveload.src

See Also

loadd, writer, create

35-1618

saved

s

35-1619

savestruct

Purpose

Saves a matrix of structures to a file on the disk.

Format

retcode = saveStruct(instance, file_name);

Input

instance MxN matrix, instances of a structure.
file_name string, name of file on disk to contain matrix of

structures.

Output

retcode scalar, 0 if successful, otherwise it will be non-zero.

Remarks

The file on the disk will be given a .fsr extension

Example

struct DS p0;
p0 = reshape(dsCreate(), 2, 3);
retc = saveStruct(p2, "p2");

savestruct

s

savewind

Purpose

Save the current graphic panel configuration to a file. Note: This function is for
use with the deprecated PQG graphics.

Library

pgraph

Format

err = savewind(filename);

Input

filename string, name of file.

Output

err scalar, 0 if successful, 1 if graphic panel matrix is
invalid. Note that the file is written in either case.

Remarks

See the discussion on using graphics panels in Tiled Graphic Panels, Section 1.0.1.

Source

pwindow.src

See Also

loadwind

35-1620

savewind

s

35-1621

scale

Purpose

Fixes the scaling for subsequent graphs. The axes endpoints and increments are
computed as a best guess based on the data passed to it. Note: This function is for
use with the deprecated PQG graphics.

Library

pgraph

Format

scale(x, y);

Input

x matrix, the X axis data.
y matrix, the Y axis data.

Remarks

x and y must each have at least 2 elements. Only the minimum and maximum values
are necessary.

This routine fixes the scaling for all subsequent graphs until graphset is called. This
also clears xtics and ytics whenever it is called.

If either of the arguments is a scalar missing, the main graphics function will set the
scaling for that axis using the actual data.

If an argument has 2 elements, the first will be used for the minimum and the last will
be used for the maximum.

scale

s

If an argument has 2 elements, and contains a missing value, that end of the axis will
be scaled from the data by the main graphics function.

If you want direct control over the axes endpoints and tick marks, use xtics or
ytics. If xtics or ytics have been called after scale, they will override
scale.

Source

pscale.src

See Also

xtics, ytics, ztics, scale3d

scale3d

Purpose

Fixes the scaling for subsequent graphs. The axes endpoints and increments are
computed as a best guess based on the data passed to it. Note: This function is for
use with the deprecated PQG graphics.

Library

pgraph

Format

scale3d(x, y, z);

Input

x matrix, the X axis data.
y matrix, the Y axis data.
z matrix, the Z axis data.

35-1622

scale3d

s

35-1623

Remarks

x, y and z must each have at least 2 elements. Only the minimum and maximum val-
ues are necessary.

This routine fixes the scaling for all subsequent graphs until graphset is called. This
also clears xtics, ytics and ztics whenever it is called.

If any of the arguments is a scalar missing, the main graphics function will set the scal-
ing for that axis using the actual data.

If an argument has 2 elements, the first will be used for the minimum and the last will
be used for the maximum.

If an argument has 2 elements, and contains a missing value, that end of the axis will
be scaled from the data by the main graphics function.

If you want direct control over the axes endpoints and tick marks, use xtics,
ytics, or ztics. If one of these functions have been called, they will override
scale3d.

Source

pscale.src

See Also

scale, xtics, ytics, ztics

scalerr

Purpose

Tests for a scalar error code.

Format

y = scalerr(c);

scalerr

s

Input

c NxK matrix or sparse matrix or N-dimensional array,
generally the return argument of a function or
procedure call.

Output

y scalar or [N-2]-dimensional array, 0 if the argument is
not a scalar error code, or the value of the error code as
an integer if the argument is an error code.

Remarks

Error codes in GAUSS are NaN's (Not A Number). These are not just scalar integer
values. They are special floating point encodings that the math chip recognizes as not
representing a valid number. See also error.

scalerr can be used to test for either those error codes that are predefined in
GAUSS or an error code that the user has defined using error.

If c is an N-dimensional array, y will be an [N-2]-dimensional array, where each ele-
ment corresponds to a 2-dimensional array described by the last two dimensions of c.
For each 2-dimensional array in c that does not contain a scalar error code, its cor-
responding element in y will be set to zero. For each 2-dimensional array in c that
does contain a scalar error code, its corresponding element in y will be set to the value
of that error code as an integer. In other words, if c is a 5x5x10x10 array, y will be a
5x5 array, in which each element corresponds to a 10x10 array in c and contains either
a zero or the integer value of a scalar error code.

If c is an empty matrix, scalerr will return 65535.

Certain functions will either return an error code or terminate a program with an error
message, depending on the trap state. The trap command is used to set the trap state.

35-1624

scalerr

s

35-1625

The error code that will be returned will appear to most commands as a missing value
code, but the scalerr function can distinguish between missing values and error
codes and will return the value of the error code.

Following are some of the functions that are affected by the trap state:

trap 1 trap 0
function error code error message
chol 10 Matrix not positive definite
invpd 20 Matrix not positive definite
solpd 30 Matrix not positive definite
/ 40 Matrix not positive definite

(second argument not square)
41 Matrix singular

(second argument is square)
inv 50 Matrix singular

Example

trap 1;
cm = invpd(x);
trap 0;

if scalerr(cm);
cm = inv(x);

endif;

In this example invpd will return a scalar error code if the matrix x is not positive
definite. If scalerr returns with a nonzero value, the program will use the inv func-
tion, which is slower, to compute the inverse. Since the trap state has been turned off,
if inv fails, the program will terminate with a Matrix singular error message.

scalerr

s

See Also

error, trap, trapchk

scalinfnanmiss

Purpose

Returns true if the argument is a scalar infinity, NaN, or missing value.

Format

y = scalinfnanmiss(x);

Input

x NxK matrix.

Output

y scalar, 1 if x is a scalar, infinity, NaN, or missing value,
else 0.

Example

//Create an infinity
x = 1/0;

if scalInfNanMiss(x);
print "x = " x;

else;
print "x is Not: a Nan, Infinity, or Missing";

endif;

35-1626

scalinfnanmiss

s

35-1627

See Also

isinfnanmiss, ismiss, scalmiss

scalmiss

Purpose

Tests to see if its argument is a scalar missing value.

Format

y = scalmiss(x);

Input

x NxK matrix.

Output

y scalar, 1 if argument is a scalar missing value, 0 if not.

Remarks

scalmiss first tests to see if the argument is a scalar. If it is not scalar, scalmiss
returns a 0 without testing any of the elements.

To test whether any element of a matrix is a missing value, use ismiss. scalmiss
will execute much faster if the argument is a large matrix, since it will not test each
element of the matrix but will simply return a 0.

An element of x is considered to be a missing if and only if it contains a missing value
in the real part. Thus, scalmiss and scalmiss would return a 1 for complex x = .
+ 1i, and a 0 for x = 1 + .i.

scalmiss

s

Example

clear s;
do until eof(fp);

y = readr(fp,nr);
y = packr(y);
if scalmiss(y);

continue;
endif;
s = s+sumc(y);

endo;

In this example the packr function will return a scalar missing if every row of its
argument contains missing values, otherwise it will return a matrix that contains no
missing values. scalmiss is used here to test for a scalar missing returned from
packr. If the test returns true, then the sum step will be skipped for that iteration of
the read loop because there were no rows left after the rows containing missings were
packed out.

schtoc

Purpose

Reduces any 2x2 blocks on the diagional of the real Schur matrix returned from
schur. The transformation matrix is also updated.

Format

{ schc, transc } = schtoc(sch, trans);

Input

sch real NxN matrix in Real Schur form, i.e., upper
triangular except for possibly 2x2 blocks on the

35-1628

schtoc

s

35-1629

diagonal.
trans real NxN matrix, the associated transformation matrix.

Output

schc NxN matrix, possibly complex, strictly upper triangular.
The diagonal entries are the eigenvalues.

transc NxN matrix, possibly complex, the associated
transformation matrix.

Remarks

Other than checking that the inputs are strictly real matrices, no other checks are
made. If the input matrix sch is already upper triangular, it is not changed. Small
off-diagonal elements are considered to be zero. See the source code for the test used.

Example

{ schc, transc } = schtoc(schur(a));

This example calculates the complex Schur form for a real matrix a.

Source

schtoc.src

See Also

schur

schtoc

s

schur

Purpose

Computes the real or complex Schur form of a square matrix.

Format

{ S, Z } = schur(A);
{ S, Z } = schur(A, flag);

Input

A KxK matrix.
flag String, to control whether output should be in real or

complex schur form. Valid options include:

l "complex"
l "real"

Output

S KxK matrix, Schur form.
Z KxK matrix, transformation matrix.

Examples

Example 1: Real matrix with all real eigenvalues

//Create a 2 x 2 matrix
A = { 7 -2,

12 -5 };

35-1630

schur

s

35-1631

//Calculate eigenvalues of 'A'
lambda = eig(A);

After the code above, lambda should equal:

4.4641
-2.4641

//Continuing with 'A' from above
{ S, Z } = schur(A);

Now S and Z should equal:

S = 4.4641 -14.000 Z = 0.6193 -0.7852
0 -2.4641 0.7852 0.6193

Example 2: Real matrix with some complex eigenvalues

//Create a 3 x 3 matrix
A = { 1 -4 -1,

3 -1 9,
-9 1 -2 };

//Calculate real schur form, with complex eigenvalues
//stored as 2 x 2 blocks on the diagonal
{ S_r, Z_r } = schur(A, "real");

//Calculate complex schur form
{ S_c, Z_c } = schur(A, "complex");

After the code above:

S_r = -4.1991 10.2489 0.8409 Z_r = -0.2103 -0.6911 -
0.6915

-2.8394 -4.1991 -2.2342 -0.8736 -0.1847
0.4502

0 0 6.3981 0.4389 -0.6988

schur

s

0.5649

S_c = -4.1991+5.3945i -2.5084+6.9720i 1.0168-0.7763i
0+0i -4.1991-5.3945i 1.9825-0.3630i
0+0i 0+0i 6.3981+0i

Z_c = 0.3275 - 0.1759i 0.5326 + 0.3160i -0.6915

0.1102 - 0.7700i 0.0023 + 0.4385i 0.4502

0.3132 + 0.3984i 0.6502 + 0.0373i 0.5649

Remarks

If a real matrix is passed in without a flag variable, the real Schur form will be
returned. If a complex matrix is passed in without a flag variable, GAUSS will check
to see if any of the imaginary elements are greater than imagtol (2.23e-16 by
default). If any imaginary elements are greater than imagtol, the complex Schur
form will be calculated, otherwise the real Schur form will be returned. If a real flag is
passed in with a complex matrix, the flag will be ignored and the complex Schur fac-
torization will be returned.

The real Schur form is an upper quasi-triangular matrix, that is, it is block triangular
where the blocks are 2x2 submatrices which correspond to complex eigenvalues of A.
If A has no complex eigenvalues, S will be strictly upper triangular. To convert the
real Schur form of S to the complex Schur form, use the Run-Time Library function
schtoc.

Z is an orthogonal matrix that transforms A into S and vice versa. Thus

S = Z'*A*Z;

and since Z is orthogonal,

A = Z*S*Z';

35-1632

schur

s

35-1633

See Also

hess, schtoc

screen

Purpose

Controls output to the screen.

Format

screen on;
screen off;
screen;

Remarks

l When this is on, the results of all print statements will be directed to the
window. When this is off, print statements will not be sent to the window.
This is independent of the statement output on, which will cause the results
of all print statements to be routed to the current auxiliary output file.

l If you are sending a lot of output to the auxiliary output file on a disk drive,
turning the window off will speed things up.

l The end statement will automatically perform output off and screen
on.

l screen with no arguments will print "Screen is on" or "Screen is off" on the
console.

l Changing the screen setting is NOT threadsafe and therefore, should not be
done inside of threadbegin, threadstat or threadfor blocks.

Example

output file = mydata.asc reset;
screen off;

screen

s

format /m1/rz 1,8;
open fp = mydata;
do until eof(fp);

print readr(fp,200);;
endo;
fp = close(fp);
end;

The program above will write the contents of the GAUSS file mydata.dat into an
ASCII file called mydata.asc. If mydata.asc already exists, it will be over-
written.

Turning the window off will speed up execution. The end statement above will auto-
matically perform output off and screen on.

See Also

output, end, new

searchsourcepath

Purpose

Searches the source path and (if specified) the src subdirectory of the GAUSS
installation directory for a specified file.

Format

fpath = searchsourcepath(fname, srcdir);

Input

fname string, name of file to search for.

35-1634

searchsourcepath

s

35-1635

srcdir scalar, one of the following:
0 do not search in the src subdirectory of the
GAUSS installation directory.
1 search the src subdirectory first.
2 search the src subdirectory last.

Output

fpath string, the path of fname, or null string if fname
is not found.

Remarks

The source path is set by the src_path configuration variable in your GAUSScon-
figuration file, gauss.cfg.

seekr

Purpose

Moves the pointer in a .dat or .fmt file to a particular row.

Format

y = seekr(fh, r);

Input

fh scalar, file handle of an open file.
r scalar, the row number to which the pointer is to be

moved.

seekr

s

Output

y scalar, the row number to which the pointer has been
moved.

Remarks

If r = -1, the current row number will be returned.

If r = 0, the pointer will be moved to the end of the file, just past the end of the last
row.

rowsf returns the number of rows in a file.

seekr(fh,0) == rowsf(fh) + 1;

Do NOT try to seek beyond the end of a file.

See Also

open, readr, rowsf

select (dataloop)

Purpose

Selects specific rows (observations) in a data loop based on a logical expression.

Format

select logical_expression;

Remarks

Selects only those rows for which logical_expression is TRUE. Any

35-1636

select (dataloop)

s

35-1637

variables referenced must already exist, either as elements of the source data set, as
extern's, or as the result of a previous make, vector, or code statement.

Example

select age > 40 AND sex $== 'MALE';

See Also

delete (dataloop)

selif

Purpose

Selects rows from a matrix. Those selected are the rows for which there is a 1 in
the corresponding row of e.

Format

y = selif(x, e);

Input

x NxK matrix or string array.
e Nx1 vector of 1's and 0's.

Output

y MxK matrix or string array consisting of the rows of x
for which there is a 1 in the corresponding row of e.

selif

s

Remarks

The argument e will usually be generated by a logical expression using ''dot'' oper-
ators.

y will be a scalar missing if no rows are selected.

Example

y = selif(x,x[.,2] .gt 100);

This example selects all rows of x in which the second column is greater than 100.

let x[3,3] = 0 10 20
30 40 50
60 70 80;

e =(x[.,1] .gt 0) .and (x[.,3] .lt 100);
y = selif(x,e);

The resulting matrix y is:

30 40 50
60 70 80

All rows for which the element in column 1 is greater than 0 and the element in
column 3 is less than 100 are placed into the matrix y.

See Also

delif, scalmiss

35-1638

selif

s

35-1639

seqa, seqm

Purpose

seqa creates an additive sequence. seqm creates a multiplicative sequence.

Format

y = seqa(start, inc, n);
y = seqm(start, inc, n);

Input

start scalar specifying the first element.
inc scalar specifying increment.
n scalar specifying the number of elements in the

sequence.

Output

y nx1 vector containing the specified sequence.

Remarks

For seqa, y will contain a first element equal to start, the second equal to
start + inc, and the last equal to start + inc*(n-1).

For instance,

seqa(1,1,10);

will create a column vector containing the numbers 1, 2, ...10.

seqa, seqm

s

For seqm, y will contain a first element equal to start, the second equal to
start * inc, and the last equal to start * incn-1.

For instance,

seqm(10,10,10);

will create a column vector containing the numbers 10, 100,...1010.

Example

a = seqa(2,2,10)';
print a;

2 4 6 8 10 12 14 16 18 20

m = seqm(2,2,10)';
print m;

2 4 8 16 32 64 128 512 1024

Note that the results have been transposed in this example. Both functions return Nx1
(column) vectors.

See Also

recserar, recsercp

setarray

Purpose

Sets a contiguous subarray of an N-dimensional array.

35-1640

setarray

s

35-1641

Format

setarray a, loc, src;

Input

a N-dimensional array.
loc Mx1 vector of indices into the array to locate the

subarray of interest, where M is a value from 1 to N.
src [N-M]-dimensional array, matrix, or scalar.

Remarks

setarray resets the specified subarray of a in place, without making a copy of the
entire array. Therefore, it is faster than putarray.

If loc is an Nx1 vector, then src must be a scalar. If loc is an [N-1]x1 vector, then
src must be a 1-dimensional array or a 1xL vector, where L is the size of the fastest
moving dimension of the array. If loc is an [N-2]x1 vector, then src must be a
KxL matrix, or a KxL 2-dimensional array, where K is the size of the second fastest
moving dimension.

Otherwise, if loc is an Mx1 vector, then src must be an [N-M]-dimensional array,
whose dimensions are the same size as the corresponding dimensions of array a.

Example

a = arrayalloc(2|3|4|5|6,0);
src = arrayinit(4|5|6,5);
loc = { 2,1 };
setarray a,loc,src;

This example sets the contiguous 4x5x6 subarray of a beginning at [2,1,1,1,1] to the
array src, in which each element is set to the specified value 5.

setarray

s

See Also

putarray

setdif

Purpose

Returns the unique elements in one vector that are not present in a second vector.

Format

y = setdif(v1, v2);
y = setdif(v1, v2, typ);

Input

v1 Nx1 vector.
v2 Mx1 vector.
typ Optional input, scalar, type of data.

0 character, case sensitive.
1 numeric (Default).
2 character, case insensitive.

Output

y Lx1 vector containing all unique values that are in v1
and are not in v2, sorted in ascending order.

35-1642

setdif

s

35-1643

Examples

Example 1: Basic example

//Create a vector of years
y1 = { 1980,

1984,
1988,
1992,
1996,
2000,
2004,
2008,
2012,
2016 };

y2 = { 1980,
1988,
1992,
2000,
2008,
2016 };

//Set 'y_diff' equal to years in 'y1' and NOT in 'y2'
y_diff = setdif(y1, y2);

After the code above, y_diff will be equal to:

1984
1996
2004
2012

Example 2: Character data

//Create 2 vectors of character data using the

setdif

s

//numeric concatenation operator
sp500 = "aapl" | "goog" | "msft" | "xom" | "wfc" | "jnj";
nasdaq = "aapl" | "msft" | "amzn" | "goog" | "fb" | "gild";

//Set type to 'character, case insensitive'
typ = 2;

//Find characters in sp500 and NOT in nasdaq
sp_only = setdif(sp500, nasdaq, 2);

//NOTE: The $ in front of the variable name tell
//GAUSS to print the variable as character data
print $sp_only;

The code above will produce the following output:

jnj
wfc
xom

Remarks

Place smaller vector first for fastest operation.

When there are a lot of duplicates, it is faster to remove them first with unique before
calling this function.

Source

setdif.src

See Also

setdifsa, union

35-1644

setdif

s

35-1645

setdifsa

Purpose

Returns the unique elements in one string vector that are not present in a second
string vector.

Format

sy = setdifsa(sv1, sv2);

Input

sv1 Nx1 or 1xN string vector.
sv2 Mx1 or 1xM string vector.

Output

sy Lx1 vector containing all unique values that are in sv1
and are not in sv2, sorted in ascending order.

Remarks

Place smaller vector first for fastest operation.

When there are a lot of duplicates it is faster to remove them first with unique
before calling this function.

Example

string sv1 = { "mary", "jane", "linda", "john" };
string sv2 = { "mary", "sally" };

setdifsa

s

sy = setdifsa(sv1,sv2);

Now sy is equal to:

jane
john
linda

Source

setdif.src

See Also

setdif

setvars

Purpose

Reads the variable names from a data set header and creates global matrices with
the same names.

Format

nvec = setvars(dataset);

Input

dataset string, the name of the GAUSS data set. Do not use a
file extension.

Output

nvec Nx1 character vector, containing the variable names

35-1646

setvars

s

35-1647

defined in the data set.

Remarks

setvars is designed to be used interactively.

Example

nvec = setvars("freq");

Source

vars.src

See Also

makevars

setvwrmode

Purpose

Sets the graphics viewer mode. NOTE: This function is for use with the deprec-
ated PQG graphics.

Library

pgraph

Format

oldmode = setvwrmode(mode);

setvwrmode

s

Input

mode string, new mode or null string.
"one" Use only one viewer.
"many" Use a new viewer for each graph.

Output

oldmode string, previous mode.

Remarks

If mode is a null string, the current mode will be returned with no changes made.

If ''one'' is set, the viewer executable will be vwr.exe.

Example

oldmode = setvwrmode("one");
call setvwrmode(oldmode);

Source

pgraph.src

See Also

pqgwin

setwind

Purpose

Sets the current graphic panel to a previously created graphic panel number.
NOTE: This function is for use with the deprecated PQG graphics. Use

35-1648

setwind

s

35-1649

plotLayout instead.

Library

pgraph

Format

setwind(n);

Input

n scalar, graphic panel number.

Remarks

This function selects the specified graphic panel to be the current graphic panel. This
is the graphic panel in which the next graph will be drawn.

See the discussion on using graphic panels in Graphic Panels, Section 1.1.

Source

pwindow.src

See Also

begwind, endwind, getwind, nextwind, makewind, window

shell

Purpose

Executes an operating system command.

shell

s

Format

shell stmt;

Input

stmt literal or ^string, the command to be executed.

Remarks

shell lets you run shell commands and programs from inside GAUSS. If a command
is specified, it is executed; when it finishes, you automatically return to GAUSS. If no
command is specified, the shell is executed and control passes to it, so you can issue
commands interactively. You have to type exit to get back to GAUSS in that case.

If you specify a command in a string variable, precede it with the ^ (caret) as shown in
the examples below.

Example

comstr = "ls ./src";
shell ^comstr;

This lists the contents of the ./src subdirectory, then returns to GAUSS.

shell cmp n1.fmt n1.fmt.old;

This compares the matrix file n1.fmt to an older version of itself, n1.fmt.old, to see
if it has changed. When cmp finishes, control is returned to GAUSS.

shell;

This executes an interactive shell. The OS prompt will appear and OS commands or
other programs can be executed. To return to GAUSS, type exit.

35-1650

shell

s

35-1651

See Also

exec

shiftr

Purpose

Shifts the rows of a matrix.

Format

y = shiftr(x, s, f);

Input

x NxK matrix to be shifted.
s scalar or Nx1 vector specifying the amount of shift.
f scalar or Nx1 vector specifying the value to fill in.

Output

y NxK shifted matrix.

Remarks

The shift is performed within each row of the matrix, horizontally. If the shift value is
positive, the elements in the row will be moved to the right. A negative shift value
causes the elements to be moved to the left. The elements that are pushed off the end
of the row are lost, and the fill value will be used for the new elements on the other
end.

shiftr

s

Example

x = { 1 2,
3 4 };

s = { 1,
1 };

f = { 99,
999 };

y = shiftr(x,s,f);

Now y is equal to:

99 1
4 999

x = { 1 2 3,
4 5 6,
7 8 9 };

s = { 0,
1,
2 };

f = 0;
y2 = shiftr(x,s,f);

Now y2 is equal to:

1 2 3
0 4 5
0 0 7

See Also

rotater

35-1652

shiftr

s

35-1653

show

Purpose

Displays the global symbol table.

Format

show -flags symbol;
show -flags;
show symbol;
show;

Input

flags flags to specify the symbol type that is shown.
k keywords
p procedures
f fn functions
m matrices
s strings
g show only symbols with global references
l show only symbols with all local references

symbol the name of the symbol to be shown. If the last
character is an asterisk (*), all symbols beginning with
the supplied characters will be shown.

Remarks

If there are no arguments, the entire symbol table will be displayed.

show is directed to the auxiliary output if it is open.

show

s

Here is an example listing with an explanation of the columns. Note that show does
not display the column titles shown here:

Memory used Name Cplx Type References Info
128 bytes a MATRIX 4,4
672 bytes add KEYWORD global refs 0=1
192 bytes area FUNCTION local refs 1=1
256 bytes c C MATRIX 4,4
296 bytes p1 PROCEDURE local refs 1=1
384 bytes p2 PROCEDURE global refs 0=1
8 bytes ps1 STRUCT sdat *
16 bytes s STRING 8 char
312 bytes s1 STRUCT sdat 1,1
40 bytes sa STRING ARRAY 3,1
56 bytes sm SPARSE MATRIX 15,15
2104 bytes token PROCEDURE local refs 2=1
216 bytes y ARRAY 3 dims 2,3,4
672 bytes program space used
12 global symbols, 2000 maximum, 12 shown
0 active locals, 2000 maximum
1 active structure

The 'Memory used' column gives the amount of memory used by each item.

The 'Name' column gives the name of each symbol.

The 'Cplx' column contains a 'C' if the symbol is a complex matrix.

The 'Type' column specifies the type of the symbol. It can be ARRAY, FUNCTION,
KEYWORD, MATRIX, PROCEDURE, STRING, STRING ARRAY, or STRUCT.

If the symbol is a procedure, keyword or function, the 'References' column will show
if it makes any global references. If it makes only local references, the procedure or
function can be saved to disk in an .fcg file with the save command. If the function
or procedure makes any global references, it cannot be saved in an .fcg file.

35-1654

show

s

35-1655

If the symbol is a structure, the 'References' column will contain the structure type. A
structure pointer is indicated by a * following the structure type.

The 'Info' column depends on the type of the symbol. If the symbol is a procedure or a
function, it gives the number of values that the function or procedure returns and the
number of arguments that need to be passed to it when it is called. If the symbol is a
matrix, sparse matrix, string array or array of structures, then the 'Info' column gives
the number of rows and columns. If the symbol is a string, then it gives the number of
characters in the string. If the symbol is an N-dimensional array, then it gives the
orders of each dimension. As follows:

Rets=Args if
procedure,
keyword, or
function

Row,Col if matrix,
sparse
matrix,
string array,
or structure

Length if string
OrdN,...,Ord2,Ord1 if array,

where N is
the slowest
moving
dimension
of the array,
and Ord is
the order
(or size) of
a dimension

show

s

If the symbol is an array of structures, the 'Info' column will display the size of the
array. A scalar structure instance is treated as a 1x1 array of structures. If the symbol
is a structure pointer, the 'Info' column will be blank.

The program space is the area of space reserved for all nonprocedure, nonfunction pro-
gram code. The maximum program space can be controlled by the new command.

The maximum number of global and local symbols is controlled by the maxglobals
and maxlocals configuration variables in gauss.cfg.

Example

show -fpg eig*;

This command will show all functions and procedures that have global references and
begin with eig.

show -m;

This command will show all matrices.

See Also

new, delete

sin

Purpose

Returns the sine of its argument.

Format

y = sin(x);

35-1656

sin

s

35-1657

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array containing the sine
of x.

Remarks

For real data, x should contain angles measured in radians.

To convert degrees to radians, multiply the degrees by π/180.

Example

let x = { 0, .5, 1, 1.5 };
y = sin(x);
print y;

0.000000
0.479426
0.841471
0.997495

See Also

atan, cos, sinh, pi

singleindex

Purpose

Converts a vector of indices for an N-dimensional array to a scalar vector index.

singleindex

s

Format

si = singleindex(i, o);

Input

i Nx1 vector of indices into an N-dimensional array.
o Nx1 vector of orders of an N-dimensional array.

Output

si scalar, index of corresponding element in 1-dimensional
array or vector.

Remarks

This function and its opposite, arrayindex, allow you to convert between an N-
dimensional index and its corresponding location in a 1-dimensional object of the same
size.

Example

orders = { 2,3,4 };

a = arrayalloc(orders,0);
ai = { 2,1,3 };
setarray a, ai, 49;
v = vecr(a);
vi = singleindex(ai,orders);

print "ai = " ai;
print "vi = " vi;
print "getarray(a,ai) = " getarray(a,ai);
print "v[vi] = " v[vi];

35-1658

singleindex

s

35-1659

produces:

ai =
2.0000000
1.0000000
3.0000000

vi = 15.000000
getarray(a,ai) = 49.000000
v[vi] = 49.000000

This example allocates a 3-dimensional array a and sets the element corresponding to
the index vector ai to 49. It then creates a vector, v, with the same data. The element
in the array a that is indexed by ai corresponds to the element of the vector v that is
indexed by vi.

See Also

arrayindex

sinh

Purpose

Computes the hyperbolic sine.

Format

y = sinh(x);

Input

x NxK matrix.

sinh

s

Output

y NxK matrix containing the hyperbolic sines of the
elements of x.

Example

let x = { -0.5, -0.25, 0, 0.25, 0.5, 1 };
x = x * pi;
y = sinh(x);

The above statement produces, y equal to:

-2.301299
-0.868671
0.000000
0.868671
2.301299

11.548739

Source

trig.src

sleep

Purpose

Sleeps for a specified number of seconds.

Format

unslept = sleep(secs);

35-1660

sleep

s

35-1661

Input

secs scalar, number of seconds to sleep.

Output

unslept scalar, number of seconds not slept.

Remarks

secs does not have to be an integer. If your system does not permit sleeping for a frac-
tional number of seconds, secs will be rounded to the nearest integer, with a min-
imum value of 1.

If a program sleeps for the full number of secs specified, sleep returns 0; oth-
erwise, if the program is awakened early (e.g., by a signal), sleep returns the
amount of time not slept.

A program may sleep for longer than secs seconds, due to system scheduling.

solpd

Purpose

Solves a set of positive definite linear equations.

Format

x = solpd(b, A);

Input

b NxK matrix or M-dimensional array where the last two
dimensions are NxK.

solpd

s

A NxN symmetric positive definite matrix or M-
dimensional array where the NxN 2-dimensional arrays
described by the last two dimensions are symmetric and
positive definite.

Output

x NxK matrix or M-dimensional array where the last two
dimensions are NxK, the solutions for the system of
equations, Ax = b.

Remarks

b can have more than one column. If so, the system of equations is solved for each
column, i.e., A*x[., i] = b[., i].

This function uses the Cholesky decomposition to solve the system directly. Therefore
it is more efficient than using inv(A)*b.

If b and A are M-dimensional arrays, the sizes of their corresponding M-2 leading
dimensions must be the same. The resulting array will contain the solutions for the sys-
tem of equations given by each of the corresponding 2-dimensional arrays described by
the two trailing dimensions of b and A. In other words, for a 10x4x2 array b and a
10x4x4 array A, the resulting array x will contain the solutions for each of the 10 cor-
responding 4x2 arrays contained in b and 4x4 arrays contained in A. Therefore, A
[n,.,.]*x[n,.,.] = b[n,.,.], for 1 ≤ n ≤ 10.

solpd does not check to see that the matrix A is symmetric. solpd will look only at
the upper half of the matrix including the principal diagonal.

If the A matrix is not positive definite:

trap 1 return scalar error code 30.
trap 0 terminate with an error message.

35-1662

solpd

s

35-1663

One obvious use for this function is to solve for least squares coefficients. The effect
of this function is thus similar to that of the / operator.

If X is a matrix of independent variables, and Y is a vector containing the dependent
variable, then the following code will compute the least squares coefficients of the
regression of Y on X:

b = solpd(X'Y,X'X);

Example

n = 5;
format /lo 16,8;

A = rndn(n,n);
A = A'A;
x = rndn(n,1);
b = A*x;

x2 = solpd(b,A);

print " X solpd(b,A) Difference";
print x~x2~x-x2;

produces:

X solpd(b,A) Difference

0.32547881 0.32547881 -4.9960036e-16
1.5190182 1.5190182 -1.7763568e-15
0.88099266 0.88099266 1.5543122e-15
1.8192784 1.8192784 -2.2204460e-16

-0.060848175 -0.060848175 -1.4710455e-15

See Also

chol, invpd, trap

solpd

s

sortc, sortcc

Purpose

Sorts a numeric matrix, character matrix or string array.

Format

y = sortc(x, c);
y = sortcc(x, c);

Input

x NxK matrix, or string array.
c scalar specifying one column of x to sort on.

Output

y NxK matrix equal to x and sorted on the column c.

Examples

Example 1: Sort rows of a matrix based upon first column

x = { 4 7 3,
1 3 2,
3 4 8 };

//Sort 'x' based upon the first row
y = sortc(x,1);

The above example code produces, y equal to:

35-1664

sortc, sortcc

s

35-1665

1 3 2
3 4 8
4 7 3

Example 2: Sort rows of a 5x1 string vector

//Create a 5x1 string array, using the string
//vertical concatenation operator '$|'
letters = "epsilon" $|

"gamma" $|
"beta" $|
"alpha" $|
"delta";

//Sort 'letters'
letters_s = sortc(letters,1);

The above example code produces, letters_s equal to:

alpha
beta

delta
epsilon

gamma

Remarks

l These functions will sort the rows of a matrix with respect to a specified
column. That is, they will sort the elements of a column and will arrange all
rows of the matrix in the same order as the sorted column.

l sortc assumes that the column to sort on is numeric. sortcc assumes that
the column to sort on contains character data.

l The matrix may contain both character and numeric data, but the sort column
must be all of one type.

l Missing values will sort as if their value is below -∞.

sortc, sortcc

s

l The sort will be in ascending order.
l This function uses the Quicksort algorithm.
l If you need to obtain the matrix sorted in descending order, you can use:

rev(sortc(x, c))

See Also

rev, sortind, unique

sortd

Purpose

Sorts a data file on disk with respect to a specified variable.

Format

sortd(infile, outfile, keyvar, keytyp);

Input

infile string, name of input file.
outfile string, name of output file, must be different.
keyvar string, name of key variable.
keytyp scalar, type of key variable.

 1 numeric key, ascending order.
 2 character key, ascending order.
-1 numeric key, descending order.
-2 character key, descending order.

35-1666

sortd

s

35-1667

Remarks

The data set infile will be sorted on the variable keyvar, and will be placed in
outfile.

If the inputs are null ("" or 0), the procedure will ask for them.

Source

sortd.src

See Also

sortmc, sortc, sortcc, sorthc, sorthcc

sorthc, sorthcc

Purpose

Sorts a matrix of numeric or character data, or a string array.

Format

y = sorthc(x, c);
y = sorthcc(x, c);

Input

x NxK matrix or string array.
c scalar specifying one column of x to sort on.

Output

y NxK matrix or string array equal to x and sorted on the
column c.

sorthc, sorthcc

s

Remarks

These functions will sort the rows of a matrix or string array with respect to a spe-
cified column. That is, they will sort the elements of a column and will arrange all
rows of the object in the same order as the sorted column.

sorthc assumes that the column to sort on is numeric. sorthcc assumes that the
column to sort on contains character data.

If x is a matrix, it may contain both character and numeric data, but the sort column
must be all of one type. Missing values will sort as if their value is below -∞.

The sort is in ascending order. This function uses the heap sort algorithm.

If you need to obtain the matrix sorted in descending order, you can use:

rev(sorthc(x, c))

Example

let x[3,3]= 4 7 3
1 3 2
3 4 8;

//Sort x based upon the values in the third column
y = sorthc(x,3);

This produces y equal to:

1 3 2
4 7 3
3 4 8

See Also

sortc, rev

35-1668

sorthc, sorthcc

s

35-1669

sortind, sortindc

Purpose

Returns the sorted index of x.

Format

ind = sortind(x);
ind = sortindc(x);

Input

x Nx1 column vector.

Output

ind Nx1 vector representing sorted index of x.

Remarks

sortind assumes that x contains numeric data. sortindc assumes that x contains
character data.

This function can be used to sort several matrices in the same way that some other ref-
erence matrix is sorted. To do this, create the index of the reference matrix, then use
submat to rearrange the other matrices in the same way.

Example

//Create uniform random integers between 0 and 10
x = round(10*rndu(10, 1);

ind = sortind(x);

sortind, sortindc

s

y = x[ind];

After running the above code:

9.00
8.00

x = 0.00
4.00
6.00

3.00
4.00

ind = 5.00
2.00
1.00

0.00
4.00

y = 6.00
8.00
9.00

sortmc

Purpose

Sorts a matrix on multiple columns.

Format

y = sortmc(x, v);

35-1670

sortmc

s

35-1671

Input

x NxK matrix to be sorted.
v Lx1 vector containing integers specifying the columns,

in order, that are to be sorted. If an element is negative,
that column will be interpreted as character data.

Output

y NxK sorted matrix.

Example

sortmc keeps all rows together. After it sorts on the first specified column, it will
continue to sort the rows of the matrix using the other specified columns ONLY when
there is a tie in the first column. For example:

x = { 9 2 5 6,
3 6 1 9,
3 7 4 1,
1 2 8 9 };

s1 = sortc(x,1);

sm = sortmc(x, 1|2);

will return:

1 2 8 9
s1 = 3 7 4 1

3 6 1 9
9 2 5 6

1 2 8 9

sortmc

s

sm = 3 6 1 9
3 7 4 1
9 2 5 6

In the output above, we see that the difference between s1 and sm is that the second
and third rows have been switched. This is because sortmc first sorted the matrix
based upon row one like sortc. Then sortmc sorted the rows in which the first
column was the same (in our example they are both threes), based upon the values in
the second column.

Source

sortmc.src

See Also

sortd, sortc, sortcc, sorthc, sorthcc

sortr, sortrc

Purpose

Sorts the columns of a matrix of numeric or character data, with respect to a spe-
cified row.

Format

y = sortr(x, r);
y = sortrc(x, r);

Input

x NxK matrix.
r scalar, row of x on which to sort.

35-1672

sortr, sortrc

s

35-1673

Output

y NxK matrix equal to x and sorted on row r.

Remarks

These functions sort the columns of a matrix with respect to a specified row. That is,
they sort the elements of a row and arrange all rows of the matrix in the same order as
the sorted column.

sortr assumes the row on which to sort is numeric. sortrc assumes that the row
on which to sort contains character data.

The matrix may contain both character and numeric data, but the sort row must be all
of one type. Missing values will sort as if their value is below -∞.

The sort will be in left to right ascending order. This function uses the Quicksort
algorithm. If you need to obtain the matrix sorted left to right in descending order (i.e.,
ascending right to left), use:

rev(sortr(x, r)')'

Example

//Create a 5 x 3 matrix of random integers
//between 1 and 30
x = ceil(30*rndu(5, 3));

//Sort the columns based upon the first row
y = sortr(x,1);

Examine the variables after the code above. Notice that the columns remain the same,
but their order has changed.

sortr, sortrc

s

10.000 21.000 18.000
11.000 30.000 20.000

x = 10.000 23.000 7.000
6.000 9.000 20.000
7.000 4.000 30.000

10.000 18.000 21.000
11.000 20.000 30.000

y = 10.000 7.000 23.000
6.000 20.000 9.000
7.000 30.000 4.000

If we were to use the same x, but sort on the 5th row:

y2 = sortr(x, 5);

We get the following result:

21.000 10.000 18.000
30.000 11.000 20.000

y2 = 23.000 10.000 7.000
9.000 6.000 20.000
4.000 7.000 30.000

spBiconjGradSol

Purpose

Attempts to solve the system of linear equations Ax = b using the biconjugate
gradient method where A is a sparse matrix.

Format

x = spBiconjGradSol(a, b, epsilon, maxit);

35-1674

spBiconjGradSol

s

35-1675

Input

a NxN, sparse matrix.
b Nx1, dense vector.
epsilon Method tolerance: If epsilon is set to 0, the default

tolerance is set to 1e-6.
maxit Maximum number of iterations. If maxit is set to 0, the

default setting is 300 iterations.

Output

x Nx1 dense vector.

Example

nz = { 33.446 82.641 -12.710 -25.062 0.000,
0.000 -26.386 17.016 21.576 -45.273,
0.000 -42.331 -47.902 0.000 0.000,
0.000 -26.517 -22.135 -76.827 31.920,

10.364 -29.843 -20.277 0.000 65.816 };
b = { 10.349,

-3.117,
4.240,
0.013,
2.115 };

sparse matrix a;
a = densetosp(nz,0);

//Setting the third and fourth arguments to 0 employs the
//default tolerance and maxit settings
x = spBiconjGradSol(a,b,0,0);

spBiconjGradSol

s

//Solve the system of equations using the '/' operator for
//comparison
x2 = b/a;

The output from the above code:

0.135
0.055

x = -0.137
0.018

-0.006

0.135
0.055

x2 = -0.137
0.018

-0.006

Remarks

If convergence is not reached within the maximum number of iterations allowed, the
function will either terminate the program with an error message or return an error
code which can be tested for with the scalerr function. This depends on the trap
state as follows:

trap 1 return error code: 60
trap 0 terminate with error message: Unable

to converge in allowed number of
iterations.

If matrix A is not well conditioned use the / operator to perform the solve. If the mat-
rix is symmetric, spConjGradSol will be approximately twice as fast as spBicon-
jGradSol.

35-1676

spBiconjGradSol

s

35-1677

See Also

spConjGradSol

spChol

Purpose

Computes the LL' decomposition of a sparse matrix A.

Format

l = spChol(a);

Input

a NxN, symmetric, positive definite sparse matrix.

Output

l NxN lower-triangular sparse matrix.

Example

sparse matrix A;
sparse matrix L;

//Create a small, simple positive-definite matrix
let x = { 9.53984224e+001 -5.84272701e+000 1.99970335e+001,

-5.84272701e+000 1.09765831e+002 2.52038945e+000,
1.99970335e+001 2.52038945e+000 4.71834812e+000

};

//Create the sparse matrix A from x, keeping all elements

spChol

s

A = denseToSp(x, 0);

//Create matrix factorization
L = spChol(A);

See Also

spLDL, spLU

Technical Notes

spChol implements functions from the TAUCS library: TAUCS Version 2.2. Copy-
right ©2001, 2002, 2003 by Sivan Toledo, Tel-Aviv University, stoledo@tau.ac.il. All
Rights Reserved.

spConjGradSol

Purpose

Attempts to solve the system of linear equations Ax = b using the conjugate gradi-
ent method where A is a symmetric sparse matrix.

Format

x = spConjGradSol(a, b, epsilon, maxit);

Input

a NxN, symmetric sparse matrix.
b Nx1, dense vector.
epsilon Method tolerance: If epsilon is set to 0, the default

tolerance is set to 1e-6.
maxit Maximum number of iterations. If maxit is set to 0, the

35-1678

spConjGradSol

s

35-1679

default setting is 300 iterations.

Output

x Nx1 dense vector

Example

nz = { 0.000 2845.607 0.000 0.000 0.000,
2845.607 10911.430 0.000 0.000 0.000,

0.000 0.000 3646.798 2736.338 -2674.440,
0.000 0.000 2736.338 7041.526 -3758.528,
0.000 0.000 -2674.440 -3758.528 7457.899 };

sparse matrix a;

//Set 'a' to be a sparse matrix with the same contents as
//the dense matrix 'nz'
a = densetosp(nz,0);

//Create our right-hand-side
b = { 10.349,

-3.117,
4.240,
0.013,
2.115 };

//Setting the third and fourth arguments to 0 employs the
//default tolerance maxit settings
x = spConjGradSol(a,b,0,0);

newb = a*x;

The results from the above code are:

spConjGradSol

s

-0.01504075
0.00363683

x = 0.00203504
-0.00033936
0.00084234

10.34900000
-3.11700000

newb = 4.24000000
0.01300000
2.11500000

Remarks

If convergence is not reached within the maximum number of iterations allowed, the
function will either terminate the program with an error message or return an error
code which can be tested for with the scalerr function. This depends on the trap
state as follows:

trap 1 return error code: 60
trap 0 terminate with error message: Unable to

converge in allowed number of iterations.

If matrix A is not symmetric or well conditioned use the / operator to perform the
solve. For a nonsymmetric, but well conditioned matrix A, use spBiconjGradSol.

See Also

spBiconjGradSol

35-1680

spConjGradSol

s

35-1681

spCreate

Purpose

Creates a sparse matrix from vectors of non-zero values, row indices, and column
indices.

Format

y = spCreate(r, c, vals, rinds, cinds);

Input

r scalar, rows of output matrix.
c scalar, columns of output matrix.
vals Nx1 vector, non-zero values.
rinds Nx1 vector, row indices of corresponding non-zero

values.
cinds Nx1 vector, column indices of corresponding non-zero

values.

Output

y r x c sparse matrix.

Remarks

Since sparse matrices are strongly typed in GAUSS, y must be defined as a sparse
matrix before the call to spCreate.

spCreate

s

Example

//Declare 'y' to be a sparse matrix
sparse matrix y;

//Create the non-zero values to place in the sparse matrix
vals = { 1.7, 2.4, 3.2, 4.5 };

//Set the row and column indices for the location in which
//to place each successive element of 'vals' into the new
//matrix
rinds = { 2,5,8,13 };
cinds = { 4,1,9,5 };

y = spCreate(15,10,vals,rinds,cinds);

This example creates a 15x10 sparse matrix y, containing the following non-zero val-
ues:

Non-zero value Index
1.7 (2,4)
2.4 (5,1)
3.2 (8,9)
4.5 (13,5)

See Also

packedToSp, denseToSp, spEye

spDenseSubmat

Purpose

Returns a dense submatrix of a sparse matrix.

35-1682

spDenseSubmat

s

35-1683

Format

y = spDenseSubmat(x, rinds, cinds);

Input

x MxN sparse matrix.
rinds Kx1 vector, row indices.
cinds Lx1 vector, column indices.

Output

y KxL dense matrix, the intersection of rinds and
cinds.

Remarks

If rinds or cinds are scalar zeros, all rows or columns will be returned.

Example

sparse matrix y;
x = { 0 0 0 10,

0 2 0 0,
0 0 0 0,
5 0 0 0,
0 0 0 3 };

//Set 'y' to be a sparse matrix with the same values as 'x'
y = denseToSp(x,0);

//Extract a submatrix from 'y' with all rows of 'y' and
//columns 1, 3 and 4

spDenseSubmat

s

d = spDenseSubmat(y,0,1|3|4);

Now d is equal to:

0 0 10
0 0 0
0 0 0
5 0 0
0 0 3

See Also

spSubmat

spDiagRvMat

Purpose

Inserts submatrices along the diagonal of a sparse matrix.

Format

y = spDiagRvMat(x, inds, size, a);

Input

x MxN sparse matrix.
inds Kx2 vector or scalar 0, row and column indices into x

at which to place the corresponding submatrices in a.
size Kx2 vector or scalar 0, sizes of the corresponding

submatrices in a.
a KxLxP array, containing the submatrices to insert into

x.

35-1684

spDiagRvMat

s

35-1685

Output

y MxN sparse matrix, a copy of x containing the
specified insertions.

Remarks

Each row of inds must contain the row and column indices, respectively, that form
the starting point for the insertion of the corresponding submatrix in a. If inds is a
scalar 0, the starting point for the insertion of each submatrix will be one row and one
column past the ending point of the previous insertion. The first insertion will begin at
the [1,1] element.

Each row of size must contain the number of rows and columns in the corresponding
submatrix in a. This allows you to insert submatrices of different sizes LixPi by insert-
ing them into the planes of an array that is KxMAX(L)xMAX(P) and padding the sub-
matrices with zeros to MAX(L)xMAX(P). For each plane in a, spDiagRvMat
extracts the submatrix a[i,1:size[i,1], 1:size[i,2]] and inserts that into x at the
location indicated by the corresponding row of inds. If size is a scalar 0, then each
LxP plane of a is inserted into x as is.

Example

declare sparse matrix x,y;

//Create a 10x10 sparse identity matrix
x = spEye(10);

sx1 = { 2 3, 5 8 };
sx2 = { 8 2 3 4, 7 9 5 6, 3 2 8 4 };
sx3 = { 4 7 2, 6 5 3 };
sx4 = { 9, 3 };

//Create a 4x3x4 dimensional array with every element set

spDiagRvMat

s

//to 0
a = arrayinit(4|3|4,0);

//Set some of the array values
a[1,1:2,1:2] = sx1;
a[2,.,.] = sx2;
a[3,1:2,1:3] = sx3;
a[4,1:2,1] = sx4;

The value of a is now:

Plane [1,.,.]

2.00000000 3.00000000 0.00000000 0.00000000
5.00000000 8.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000

Plane [2,.,.]

8.00000000 2.00000000 3.00000000 4.00000000
7.00000000 9.00000000 5.00000000 6.00000000
3.00000000 2.00000000 8.00000000 4.00000000

Plane [3,.,.]

4.00000000 7.00000000 2.00000000 0.00000000
6.00000000 5.00000000 3.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000

Plane [4,.,.]

9.00000000 0.00000000 0.00000000 0.00000000
3.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000

35-1686

spDiagRvMat

s

35-1687

inds = 0;
siz = { 2 2, 3 4, 2 3, 2 1 };

y = spDiagRvMat(x,inds,siz,a);

The output, in variable y, is:

2 3 0 0 0 0 0 0 0 0
5 8 0 0 0 0 0 0 0 0
0 0 8 2 3 4 0 0 0 0
0 0 7 9 5 6 0 0 0 0
0 0 3 2 8 4 0 0 0 0
0 0 0 0 0 1 4 7 2 0
0 0 0 0 0 0 6 5 3 0
0 0 0 0 0 0 0 1 0 9
0 0 0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 0 0 1

spEigv

Purpose

Computes a specified number of eigenvalues and eigenvectors of a square, sparse
matrix a.

Format

{ va, ve } = spEigv(a, nev, which, tol, maxit, ncv);

Input

a NxN square, sparse matrix.
nev Scalar, number of eigenvalues to compute.
which String, may be one of the following: ''LM'' largest

spEigv

s

magnitude, ''LR'' largest real, ''LI'' largest imaginary,
''SR'' smallest real, or ''SI'' smallest imaginary. Default
input 0, sets which to ''LM.''

tol Scalar, tolerance for eigenvalues. Default input 0, sets
tol to 1e-15.

maxit Scalar, maximum number of iterations. Default input 0,
sets maxit to nevx(columns of a)x100.

ncv Scalar, size of Arnoldi factorization. The minimum
setting is the greater of nev+2 and 20. See Remarks
on how to set ncv. Default input 0, sets ncv to 2x
nev+1.

Output

va nevx1 dense vector containing the computed
eigenvalues of input matrix a.

ve Nx nev dense matrix containing the corresponding
eigenvectors of input matrix a.

Example

rndseed 3456;
sparse matrix a;
x = 10*rndn(5,5);
a = densetosp(x,4);

21.276135 5.4078872 -19.817044 9.6771132 -19.211952
0.0000000 -4.4011007 10.445221 -5.1742289 -16.336474

a = 0.0000000 -20.853017 7.6285434 0.0000000 -15.626397
-12.637055 8.1227002 0.0000000 -8.7817892 0.0000000
0.0000000 -7.8181517 15.326816 0.0000000 0.0000000

35-1688

spEigv

s

35-1689

{ va, ve } = spEigv(a,2,0,0,0,0);
/* equivalent to call { va, ve } = spEigv(a,2,"LM",1e-
15,2*5*100,5); */

va = 21.089832
-3.4769986 + 20.141970i

ve = -0.92097057 0.29490584 - 0.38519280i
-0.10091920 -0.18070330 - 0.38405816i
0.061241324 0.24121182 - 0.56419722i
0.36217049 0.017643612 + 0.26254313i

0.081917964 -0.31466284 - 0.19936942i

Below we show that the first eigenvalue times the corresponding eigenvector (1)
equals the input matrix times the first eigenvector (2).

(1) va[1]*ve[.,1] = (2) a*ve[.,1] =
-19.423115 -19.423115
-2.1283690 -2.1283690
1.2915693 1.2915693
7.6381149 7.6381149
1.7276361 1.7276361

Remarks

The ideal setting for input ncv is problem dependent and cannot be easily predicted
ahead of time. Increasing ncv will increase the amount of memory used during com-
putation. For a large, sparse matrix, ncv should be small compared to the order of
input matrix a. spEigv is not thread-safe.

Technical Notes

spEigv implements functions from the ARPACK library.

spEigv

s

spEye

Purpose

Creates a sparse identity matrix.

Format

y = spEye(n);

Input

n scalar, order of identity matrix.

Output

y n x n sparse identity matrix.

Remarks

Since sparse matrices are strongly typed in GAUSS, y must be defined as a sparse
matrix before the call to spEye.

Example

//Declare 'y' a sparse matrix
sparse matrix y;

//Create 3x3 sparse identity matrix
y = spEye(3);

y is now equal to:

35-1690

spEye

s

35-1691

1 0 1
0 1 0
0 0 1

See Also

spCreate, spOnes, denseToSp

spGetNZE

Purpose

Returns the non-zero values in a sparse matrix, as well as their corresponding
row and column indices.

Format

{ vals, rowinds, colinds } = spNumNZE(x);

Input

x MxN sparse matrix.

Output

vals Nx1 vector, non-zero values in x.
rinds Nx1 vector, row indices of corresponding non-zero

values.
cinds Nx1 vector, column indices of corresponding non-zero

values.

spGetNZE

s

Example

sparse matrix y;
x = { 0 0 0 10,

0 2 0 0,
0 0 0 0,
5 0 0 0,
0 0 0 3 };

//Create sparse matrix from 'x'
y = denseToSp(x,0);

//Get non-zero values, row indices and column indices
{ v,r,c } = spGetNZE(y);

v, the non-zero values, is equal to:

10
2
5
3

r, the row indices, is equal to:

1
2
4
5

c, the column indices, is equal to:

4
2
1
4

35-1692

spGetNZE

s

35-1693

See Also

spNumNZE

spline

Purpose

Computes a two-dimensional interpolatory spline.

Format

{ u, v, w } = spline(x, y, z, sigma, g);

Input

x Kx1 vector, x-abscissae (x-axis values).
y Nx1 vector, y-abscissae (y-axis values).
z KxN matrix, ordinates (z-axis values).
sigma scalar, tension factor.
g scalar, grid size factor.

Output

u (K*g)x1 vector, x-abscissae, regularly spaced.
v (N*g)x1 vector, y-abscissae, regularly spaced.
w (K*g)x(N*g) matrix, interpolated ordinates.

Remarks

sigma contains the tension factor. This value indicates the curviness desired. If

spline

s

sigma is nearly zero (e.g., .001), the resulting surface is approximately the tensor
product of cubic splines. If sigma is large (e.g., 50.0), the resulting surface is approx-
imately bi-linear. If sigma equals zero, tensor products of cubic splines result. A
standard value for sigma is approximately 1.

g is the grid size factor. It determines the fineness of the output grid. For g = 1, the
output matrices are identical to the input matrices. For g = 2, the output grid is twice
as fine as the input grid, i.e., u will have twice as many columns as x, v will have
twice as many rows as y, and w will have twice as many rows and columns as z.

Source

spline.src

spLDL

Purpose

Computes the LDL decomposition of a symmetric sparse matrix A.

Format

{ l, d } = spLDL(a);

Input

a N x N, symmetric sparse matrix.

Output

l NxN lower-triangular sparse matrix.
d NxN diagonal sparse matrix.

35-1694

spLDL

s

35-1695

Example

declare sparse matrix a, l, d;
nz = { 142 13 56 57 0,

13 0 0 0 0,
56 0 94 47 0,
57 0 47 35 0,
0 0 0 0 0 };

a = densetosp(nz,0);
{ l, d } = spLDL(a);

Remarks

spLDL will not check to see if the input matrix is symmetric. The function looks only
at the lower triangular portion of the input matrix.

See Also

spLU

Technical Notes

spLDL implements functions from the TAUCS library:

TAUCS Version 2.2 Copyright ©2003, by Sivan Toledo, Tel-Aviv University,
stoledo@tau.ac.il. All Rights Reserved.

spLU

Purpose

Computes the LU decomposition of a sparse matrix A with partial pivoting.

spLU

s

Format

{ l, u } = spLU(a);

Input

a N x N, non-singular sparse matrix.

Output

l NxN ''scrambled'' lower-triangular sparse matrix. This
is a lower triangular matrix that has been reordered
based upon the row pivoting.

u NxN ''scrambled'' upper-triangular sparse matrix. This
is an upper triangular matrix that has been reordered
based upon column pivoting to preserve sparsity.

Example

declare sparse matrix a, l, u;

nz = {-5.974 0 -13.37 6.136 0,
0 5.932 7.712 0 -6.549,
0 -5.728 0 14.227 0,
0 -12.164 9.916 13.902 6.182,

13.425 0 -12.654 -16.534 0 };

a = densetosp(nz,0);
{ l, u } = spLU(a);

Remarks

If the input matrix or either of the factors L and U are singular, the function will either

35-1696

spLU

s

35-1697

terminate the program with an error message or return an error code which can be
tested for with the scalerr function. This depends on the trap state as follows:

trap 1 return error code: 50
trap 0 terminate with error message: Matrix singular

See Also

spLDL

Technical Notes

spLU implements functions from the SuperLU 4.0 library written by James W. Dem-
mel, John R. Gilbert and Xiaoye S. Li.

Copyright ©2003, The Regents of the University of California, through Lawrence Berke-
ley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of
Energy). All rights reserved.

spNumNZE

Purpose

Returns the number of non-zero elements in a sparse matrix.

Format

n = spNumNZE(x);

Input

x MxN sparse matrix.

spNumNZE

s

Output

n scalar, the number of non-zero elements in x.

Example

sparse matrix y;
x = { 0 0 0 10,

0 2 0 0,
0 0 0 0,
5 0 0 0,
0 0 0 3 };

y = denseToSp(x,0);
n = spNumNZE(y);
print "The number of nonzeros is" n;

4.00

See Also

spGetNZE

spOnes

Purpose

Generates a sparse matrix containing only ones and zeros

Format

y = spOnes(r, c, rinds, cinds);

35-1698

spOnes

s

35-1699

Input

r scalar, rows of output matrix.
c scalar, columns of output matrix.
rinds Nx1 vector, row indices of ones.
cinds Nx1 vector, column indices of ones.

Output

y r x c sparse matrix of ones.

Remarks

Since sparse matrices are strongly typed in GAUSS, y must be defined as a sparse
matrix before the call to spOnes.

Example

//declare sparse matrix
sparse matrix y;

//Set row indices and column indices
rinds = { 1, 3, 5 };
cinds = { 2, 1, 3 };

//Create a 5x4 sparse matrix with ones at the intersection
//of the 'rind' and 'cind'
y = spOnes(5,4,rinds,cinds);

The resulting y is equal to:

0 1 0 0
0 0 0 0

spOnes

s

1 0 0 0
0 0 0 0
0 0 1 0

See Also

spCreate, spEye, spZeros, denseToSp

spreadSheetReadM

Purpose

Reads and writes Excel files.

Format

x = spreadSheetReadM(file);
x = spreadSheetReadM(file, range);
x = spreadSheetReadM(file, range, sheet);

Input

file string, name of .xls, or .xlsx file.
range string, range to read or write; e.g., "A1:B20". Default =

"A1".
sheet scalar, sheet number. Default = 1.

Output

x matrix of numbers read from Excel.

35-1700

spreadSheetReadM

s

35-1701

Examples

Example 1: Basic Example

Read all contents from the file myfile.xlsx located in your current GAUSS work-
ing directory.

x = spreadSheetReadM("myfile.xlsx");

Example 2: Read From a Range

x = spreadSheetReadM("myfile.xlsx", "B2:D110");

Example 3: Specify Path and Sheet Number

x = spreadSheetReadM("C:\\mydata\\myfile.xlsx", "A1", 1);

Portability

Windows, Linux andMac

Remarks

1. If range is a null string, then by default the read will begin at cell "A1".

2. If spreadSheetReadM fails, it will either terminate and print an error mes-
sage or return a scalar error code, which can be decoded with scalerr,
depending on the state of the trap flag.

trap 0 Print error message and terminate program.
trap 1 Return scalar error code.

//Will end the program and print an error message
x = spreadSheetReadM("nonexistent_file.xlsx");

spreadSheetReadM

s

//Turn error trapping on
trap 1;
x = spreadSheetReadM("nonexistent_file.xlsx");

//Check to see if 'x' is a scalar error code
if scalmiss(x);

//Code to handle error case here
endif;

//Turn error trapping off
trap 0;

See Also

scalerr, error, SpreadsheetReadSA, SpreadsheetWrite

spreadSheetReadSA

Purpose

Reads and writes Excel files.

Format

sa = spreadSheetReadSA(file);
sa = spreadSheetReadSA(file, range);
sa = spreadSheetReadSA(file, range, sheet);

Input

file string, name of .xls file.
range string, range to read or write; e.g., "A1:B20". Default =

"A1".

35-1702

spreadSheetReadSA

s

35-1703

sheet scalar, sheet number. Default = 1.

Output

sa string array read from Excel.

Examples

Example 1: Basic Example

Read all contents from the file myfile.xlsx located in your current GAUSS work-
ing directory as a string array.

s = spreadSheetReadSA("myfile.xlsx");

Example 2: Read From a Range

s = spreadSheetReadSA("myfile.xlsx", "B2:D110");

Example 3: Specify Path and Sheet Number

s = spreadSheetReadSA("C:\\mydata\\myfile.xlsx", "A1", 1);

Portability

Windows, Linux andMac

Remarks

1. If range is a null string, then by default the read will begin at cell "A1".

2. If spreadSheetReadSA fails, it will either terminate and print an error mes-
sage or return a scalar error code, which can be decoded with scalerr,
depending on the state of the trap flag.

spreadSheetReadSA

s

trap 0 Print error message and terminate program.
trap 1 Return scalar error code.

//Will end the program and print an error message
x = spreadSheetReadSA("nonexistent_file.xlsx");

//Turn error trapping on
trap 1;
x = spreadSheetReadSA("nonexistent_file.xlsx");

//Check to see if 'x' is a scalar error code
if scalmiss(x);

//Code to handle error case here
endif;

//Turn error trapping off
trap 0;

See Also

scalerr, error, spreadSheetReadM, spreadSheetWrite

spreadSheetWrite

Purpose

Reads and writes Excel files.

Format

ret = spreadSheetWrite(data, file);
ret = spreadSheetWrite(data, file, range);
ret = spreadSheetWrite(data, file, range, sheet);

35-1704

spreadSheetWrite

s

35-1705

Input

data matrix, string or string array, data to write.
file string, name of .xls file.
range string, range to read or write; e.g., "A1:B20". Default =

"A1".
sheet scalar, sheet number. Default = 1.

Output

ret success code, 0 if successful, else error code.

spreadSheetWrite

s

Examples

Example 1: Basic Example

x = { 0 1,
1 2,
3 5 };

//Write contents of 'x' to 'myfile.xlsx'
//from cell 'A1' to 'B3'
ret = spreadSheetWrite(x, "myfile.xlsx");

Example 2: Write To a Range

//Create a 1x4 string array of variable names
head = "Real GDP" $~ "Unemployment" $~ "CPI" $~ "PPI";

//Write the variable names to the cells 'C1:F1'
ret = spreadSheetWrite(head, "myfile.xlsx", "C1");

Example 3: Specify Path and Sheet Number

//Create a 10x3 matrix of Bernoulli random variables
x = rndBernoulli(10, 3, 0.6);

//Write the data from 'x' to cells 'B4:D13' on sheet 2 of
'myfile.xlsx'
ret = spreadSheetWrite(x, "C:\\mydata\\myfile.xlsx", "B4",
2);

Portability

Windows, Linux andMac

Remarks

If spreadSheetWrite fails, it will either terminate and print an error message or

35-1706

spreadSheetWrite

s

35-1707

return a scalar error code, which can be detected with scalmiss, depending on the
state of the trap flag.

trap 0 Print error message and terminate program.
trap 1 Return scalar error code.

//If this fails, it will end the program and print an error
message
x = spreadSheetWrite("myfile.xlsx");

//Turn error trapping on
trap 1;
x = spreadSheetWrite("myfile.xlsx");

//Check to see if 'x' is a scalar error code
if scalmiss(x);

//Code to handle error case here
endif;

//Turn error trapping off

See Also

scalerr, error, SpreadsheetReadM, SpreadsheetReadSA

spScale

Purpose

Scales a sparse matrix.

spScale

s

Format

{ a, r, s } = spScale(x);

Input

x MxN sparse matrix.

Output

a MxN scaled sparse matrix.
r Mx1 vector, row scale factors.
s Nx1 vector, column scale factors.

Remarks

spScale scales the elements of the matrix by powers of 10 so that they are all within
(-10,10).

Example

x = { 25 -12 0,
3 0 -11,
8 -100 0 };

declare sparse matrix sm, smsc;
sm = denseToSp(x,0);

{ smsc, r, c } = spScale(sm);

The results:

35-1708

spScale

s

35-1709

2.50 -0.12 0.00
smsc = 0.30 0.00 -0.11

0.80 -1.00 0.00

1.00
c = 0.10

0.10

0.10
r = 0.10

0.10

spSubmat

Purpose

Returns a sparse submatrix of a sparse matrix.

Format

y = spSubmat(x, rinds, cinds);

Input

x MxN sparse matrix.
rinds Kx1 vector, row indices.
cinds Lx1 vector, column indices.

Output

s KxL sparse matrix, the intersection of rinds and
cinds.

spSubmat

s

Remarks

If rinds or cinds are scalar zeros, all rows or columns will be returned.

Since sparse matrices are strongly typed in GAUSS, y must be defined as a sparse
matrix before the call to spSubmat.

Example

sparse matrix y;
sparse matrix z;

x = { 0 0 0 10,
0 2 0 0,
0 0 0 0,
5 0 0 0,
0 0 0 3 };

y = denseToSp(x,0);

//Extract all columns; rows 1, 3 and 4
z = spSubmat(y,1|3|4,0);

//Extract all values from 'z' into a dense matrix 'd'
d = spDenseSubmat(z,0,0);

Now d is equal to:

0.00 0.00 0.00 10.00
0.00 0.00 0.00 0.00
5.00 0.00 0.00 0.00

See Also

spDenseSubmat

35-1710

spSubmat

s

35-1711

spToDense

Purpose

Converts a sparse matrix to a dense matrix.

Format

y = spToDense(x);

Input

x MxN sparse matrix.

Output

y MxN dense matrix.

Remarks

A dense matrix is just a normal format matrix.

Example

sparse matrix y;

//Create a 4x4 sparse identity matrix
y = spEye(4);

//Create a dense matrix with the same values as 'y'
d = spToDense(y);

The dense matrix d is equal to:

spToDense

s

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

See Also

spDenseSubmat, denseToSp

spTrTDense

Purpose

Multiplies a sparse matrix transposed by a dense matrix.

Format

y = spTrTDense(s, d);

Input

s NxM sparse matrix.
d NxL dense matrix.

Output

y MxL dense matrix, the result of s'*d.

Remarks

This may also be accomplished by the following code:

y = s'*d;

35-1712

spTrTDense

s

35-1713

However, spTrTDense will be more efficient.

See Also

spTScalar

spTScalar

Purpose

Multiplies a sparse matrix by a scalar.

Format

y = spTScalar(s, scal, rinds, cinds);

Input

s NxM sparse matrix.
scal scalar.
rinds Kx1 vector of row indices.
cinds Lx1 vector of column indices.

Output

y KxL sparse matrix.

Remarks

Only the elements of s specified by rinds and cinds will be multiplied by
scal. All other elements will be unchanged in the result.

To select all rows or all columns, input a scalar 0 for rinds or cinds.

spTScalar

s

Since sparse matrices are strongly typed in GAUSS, y must be defined as a sparse
matrix before the call to spTScalar.

Example

sparse matrix y;
x = { 3 0 2 1,

0 4 0 0,
5 0 0 3,
0 1 2 0 };

rinds = 0;
cinds = { 2,4 };

//Multiply all elements in the second and fourth column
//by 'scal'
y = spTScalar(x,10,rinds,cinds);
d = spDenseSubmat(y,0,0);

The result, in d is:

3 0 2 1
0 40 0 0
5 0 0 3
0 10 2 0

See Also

spTrTDense

spZeros

Purpose

Creates a sparse matrix containing no non-zero values.

35-1714

spZeros

s

35-1715

Format

y = spZeros(r, c);

Input

r scalar, rows of output matrix.
c scalar, columns of output matrix.

Output

y r x c sparse matrix.

Remarks

Since sparse matrices are strongly typed in GAUSS, y must be defined as a sparse
matrix before the call to spZeros.

Example

sparse matrix y;

//Create a 4x3 sparse matrix with all elements set to 0
y = spZeros(4,3);

//Create a dense matrix with the same values as 'y'
d = spToDense(y);

The contents of d are equal to:

0 0 0
0 0 0
0 0 0
0 0 0

spZeros

s

See Also

spOnes, spEye

sqpSolve

Purpose

Solves the nonlinear programming problem using a sequential quadratic pro-
gramming method.

Format

{ x, f, lagr, retcode } = sqpSolve(&fct, start);

Input

&fct pointer to a procedure that computes the function to be
minimized. This procedure must have one input
argument, a vector of parameter values, and one output
argument, the value of the function evaluated at the
input vector of parameter values.

start Kx1 vector of start values.

Global Input

_sqp_A MxK matrix, linear equality constraint coefficients.
_sqp_B Mx1 vector, linear equality constraint constants.

These globals are used to specify linear equality
constraints of the following type:

_sqp_A * x = _sqp_B

35-1716

sqpSolve

s

35-1717

where x is the Kx1 unknown parameter vector.
_sqp_EqProc scalar, pointer to a procedure that computes the

nonlinear equality constraints. For example, the
statement:

_sqp_EqProc = &eqproc;

tells sqpSolve that nonlinear equality constraints are
to be placed on the parameters and where the
procedure computing them is to be found. The
procedure must have one input argument, the Kx1
vector of parameters, and one output argument, the
Rx1 vector of computed constraints that are to be equal
to zero. For example, suppose that you wish to place
the following constraint:

p[1] * p[2] = p[3]

The procedure for this is:

proc eqproc(p);
retp(p[1]*p[2]-p[3]);

endp;

_sqp_C MxK matrix, linear inequality constraint
coefficients.

_sqp_D Mx1 vector, linear inequality constraint constants.

These globals are used to specify linear inequality
constraints of the following type:

_sqp_C * X >= _sqp_D

where x is the Kx1 unknown parameter vector.
sqp scalar, pointer to a procedure that computes the

sqpSolve

s

IneqProc nonlinear inequality constraints. For example the
statement:

_sqp_EqProc = &ineqproc;

tells sqpSolve that nonlinear equality constraints are
to be placed on the parameters and where the
procedure computing them is to be found. The
procedure must have one input argument, the Kx1
vector of parameters, and one output argument, the
Rx1 vector of computed constraints that are to be equal
to zero. For example, suppose that you wish to place
the following constraint:

p[1] * p[2] >= p[3]

The procedure for this is:

proc ineqproc(p);
retp(p[1]*[2]-p[3]);

endp;

_sqp_Bounds Kx2 matrix, bounds on parameters. The first
column contains the lower bounds, and the second
column the upper bounds. If the bounds for all the
coefficients are the same, a 1x2 matrix may be used.
Default is:

[1] -1e256 [2] 1e256
sqp
GradProc

scalar, pointer to a procedure that computes the
gradient of the function with respect to the
parameters. For example, the statement:

_sqp_GradProc = &gradproc;

35-1718

sqpSolve

s

35-1719

tells sqpSolve that a gradient procedure exists and
where to find it. The user-provided procedure has two
input arguments, a Kx1 vector of parameter values and
an NxP matrix of data. The procedure returns a single
output argument, an NxK matrix of gradients of the
log-likelihood function with respect to the parameters
evaluated at the vector of parameter values.

Default = 0, i.e., no gradient procedure has been
provided.

sqp
HessProc

scalar, pointer to a procedure that computes the
Hessian, i.e., the matrix of second order partial
derivatives of the function with respect to the
parameters. For example, the instruction:

_sqp_HessProc = &hessproc;

will tell sqpSolve that a procedure has been
provided for the computation of the Hessian and where
to find it. The procedure that is provided by the user
must have two input arguments, a Px1 vector of
parameter values and an NxK data matrix. The
procedure returns a single output argument, the PxP
symmetric matrix of second order derivatives of the
function evaluated at the parameter values.

sqp
MaxIters

scalar, maximum number of iterations. Default =
1e+5. Termination can be forced by pressing C on
the keyboard.

_sqp_DirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When this
criterion has been satisifed, sqpSolve will exit
the iterations.

sqp Kx1 character vector, parameter names.

sqpSolve

s

ParNames

sqp
PrintIters

scalar, if nonzero, prints iteration information.
Default = 0. Can be toggled during iterations by
pressing P on the keyboard.

sqp
FeasibleTest

scalar, if nonzero, parameters are tested for
feasibility before computing function in line search.
If function is defined outside inequality boundaries,
then this test can be turned off.

sqp
RandRadius

scalar, if zero, no random search is attempted. If
nonzero it is the radius of random search which is
invoked whenever the usual line search fails.
Default = .01.

__output scalar, if nonzero, results are printed. Default = 0.

Output

x Kx1 vector of parameters at
minimum.

f scalar, function evaluated at x.
lagr vector, created using vput. Contains

the Lagrangean for the constraints.
They may be extracted with the
vread command using the following
strings:
"lineq" Lagrangeans of

linear equality
constraints,

"nlineq" Lagrangeans of
nonlinear
equality

35-1720

sqpSolve

s

35-1721

constraints
"linineq" Lagrangeans of

linear inequality
constraints

"nlinineq" Lagrangeans of
nonlinear
inequality
constraints

"bounds" Lagrangeans of
bounds

Whenever a constraint is active, its
associated Lagrangean will be
nonzero.

retcode return code:
0 normal

convergence
1 forced exit
2 maximum

number of
iterations
exceeded

3 function
calculation failed

4 gradient
calculation failed

5 Hessian
calculation failed

6 line search failed
7 error with

sqpSolve

s

constraints

Remarks

Pressing C on the keyboard will terminate iterations, and pressing P will toggle iter-
ation output.

sqpSolve is recursive, that is, it can call itself with another function and set of
global variables,

Example

//Reset all sqpSolve global variables

sqpSolveSet;

proc fct(x);
retp((x[1] + 3*x[2] + x[3])^2 + 4*(x[1] - x[2])^2);

endp;

proc ineqp(x);
retp(6*x[2] + 4*x[3] - x[1]^3 - 3);

endp;

proc eqp(x);
retp(1-sumc(x));

endp;

_sqp_Bounds = { 0 1e256 };

start = { .1, .7, .2 };

_sqp_IneqProc = &ineqp;
_sqp_EqProc = &eqp;

35-1722

sqpSolve

s

35-1723

{ x,f,lagr,ret } = sqpSolve(&fct,start);

Source

sqpsolve.src

sqpSolveMT

Purpose

Solves the nonlinear programming problem.

Format

out = sqpSolveMT(&fct, par1);
out = sqpSolveMT(&fct, par1, ...);
out = sqpSolveMT(&fct, par1, ..., ctl);
out = sqpSolveMT(&fct, par1, ctl);

Input

&fct pointer to a procedure that computes the function to be
minimized. The first input to this procedure must be an
instance of structure of type PV.

par1 an instance of structure of type PV. The par1 instance
is passed to the user-provided procedure pointed to by
&fct. par1 is constructed using the ''pack''
functions.

... Optional extra arguments. These arguments are passed
untouched to the user-provided objective function, by
sqpSolveMT.

ctl an instance of an sqpSolveMTControl structure.

sqpSolveMT

s

Normally an instance is initialized by calling
sqpSolveMTControlCreate and members of this
instance can be set to other values by the user. For an
instance named ctl, the members are:
ctl.A MxK matrix, linear equality

constraint coefficients: ctl.A *
p = ctl.B where p is a vector
of the parameters.

ctl.B Mx1 vector, linear equality
constraint constants: ctl.A *
p = ctl.B where p is a vector
of the parameters.

ctl.C MxK matrix, linear inequality
constraint coefficients: ctl.C *
p >=ctl.D where p is a vector
of the parameters.

ctl.D Mx1 vector, linear inequality
constraint constants: ctl.C *
p>=ctl.D where p is a vector
of the parameters.

ctl.eqProc scalar, pointer to a procedure that
computes the nonlinear equality
constraints. When such a
procedure has been provided, it
has one input argument, a
structure of type SQPdata, and
one output argument, a vector of
computed equality constraints.
For more details see Remarks
below. Default = ., i.e., no

35-1724

sqpSolveMT

s

35-1725

equality procedure.
ctl.weights vector, weights for objective

function returning a vector.
Default = 1.

ctl.ineqProc scalar, pointer to a procedure that
computes the nonlinear inequality
constraints. When such a
procedure has been provided, it
has one input argument, a
structure of type SQPdata, and
one output argument, a vector of
computed inequality constraints.
For more details see Remarks
below. Default = ., i.e., no
inequality procedure.

ctl.bounds 1x2 or Kx2 matrix, bounds on
parameters. If 1x2 all parameters
have same bounds. Default = -
1e256 1e256 .

ctl.covType scalar, if 2, QML covariance
matrix, else if 0, no covariance
matrix is computed, else ML
covariance matrix is computed.

ctl.gradProc scalar, pointer to a procedure that
computes the gradient of the
function with respect to the
parameters. Default = ., i.e., no
gradient procedure has been
provided.

ctl.hessProc scalar, pointer to a procedure that

sqpSolveMT

s

computes the Hessian, i.e., the
matrix of second order partial
derivatives of the function with
respect to the parameters. Default
= ., i.e., no Hessian procedure has
been provided.

ctl.maxIters scalar, maximum number of
iterations. Default = 1e+5.

ctl.dirTol scalar, convergence tolerance for
gradient of estimated coefficients.
Default = 1e-5. When this
criterion has been satisfied
SQPSolve exits the iterations.

ctl.feasibleTest scalar, if nonzero, parameters are
tested for feasibility before
computing function in line search.
If function is defined outside
inequality boundaries, then this
test can be turned off. Default = 1.

ctl.randRadius scalar, If zero, no random search
is attempted. If nonzero, it is the
radius of random search which is
invoked whenever the usual line
search fails. Default = .01.

ctl.output scalar, if nonzero, results are
printed. Default = 0.

ctl.printIters scalar, if nonzero, prints iteration
information. Default = 0.

35-1726

sqpSolveMT

s

35-1727

Output

out an instance of an sqpSolveMTout structure. For an instance
named out, the members are:
outx.par an instance of structure of type PV

containing the parameter estimates will be
placed in the member matrix out.par.

out.fct scalar, function evaluated at x.
out.lagr an instance of a SQPLagrange structure

containing the Lagrangeans for the
constraints. The members are:
out.lagr.lineq Mx1 vector,

Lagrangeans of
linear equality
constraints.

out.lagr.nlineq Nx1 vector,
Lagrangeans of
nonlinear equality
constraints.

out.lagr.linineq Px1 vector,
Lagrangeans of
linear inequality
constraints.

out.lagr.nlinineq Qx1 vector,
Lagrangeans of
nonlinear inequality
constraints.

out.lagr.bounds Kx2 matrix,
Lagrangeans of
bounds.

sqpSolveMT

s

Whenever a constraint is active, its associated Lagrangean will
be nonzero. For any constraint that is inactive throughout the
iterations as well as at convergence, the corresponding
Lagrangean matrix will be set to a scalar missing value.

out.retcode
return code:

0 normal
convergence.

1 forced exit.
2 maximum number

of iterations
exceeded.

3 function calculation
failed.

4 gradient calculation
failed.

5 Hessian calculation
failed.

6 line search failed.
7 error with

constraints.
8 function complex.

Remarks

There is one required user-provided procedure, the one computing the objective func-
tion to be minimized, and four other optional functions, one each for computing the
equality constraints, the inequality constraints, the gradient of the objective function,
and the Hessian of the objective function.

35-1728

sqpSolveMT

s

35-1729

All of these functions must take exactly the same input arguments. The first input argu-
ment is an instance of a structure of type PV. On input to the call to sqpSolveMT,
this PV structure contains starting values for the parameters.

Both of the structures of type PV are set up using the PV ''pack'' procedures,
pvPack, pvPackm, pvPacks, and pvPacksm. These procedures allow for setting
up a parameter vector in a variety of ways.

For example, we might have the following objective function for fitting a nonlinear
curve to data:

proc (1) = micherlitz(struct PV par1, y, x);
local p0,e,s2,x,y;
p0 = pvUnpack(par1, "parameters");
e = y - p0[1] - p0[2]*exp(-p0[3] * x);
retp(e'*e);

endp;

In this example the dependent and independent variables are passed to the procedure
as the second and third arguments to the procedure.

The other optional procedures must take exactly the same arguments as the objective
function. For example, to constrain the squared sum of the first two parameters to be
greater than one in the above problem, provide the following procedure:

proc (1) = ineqConst(struct PV par1, y, x);
local p0;
p0 = pvUnpack(p0, "parameters");
retp((p0[2]+p0[1])^2 - 1);

endp;

The following is a complete example for estimating the parameters of the Micherlitz
equation in data with bounds constraints on the parameters and where an optional gradi-
ent procedure has been provided:

sqpSolveMT

s

//Create data needed by 'Micherlitz' procedure
y = { 3.183,

3.059,
2.871,
2.622,
2.541,
2.184,
2.110,
2.075,
2.018,
1.903,
1.770,
1.762,
1.550 };

x = seqa(1,1,13);

//Declare control structure
struct sqpSolveMTControl c0;

//Initialize structure to default values
c0 = sqpSolveMTControlCreate();

//Constrain parameters to be positive
c0.bounds = 0~100;

//Declare 'par1' to be a PV structure
struct PV par1;

//Initialize 'par1'
par1 = pvCreate();

//Add 3x1 vector named 'parameters' to 'p1'
par1 = pvPack(par1,.92|2.62|.114, "parameters");

35-1730

sqpSolveMT

s

35-1731

//Declare 'out' to be an sqpsolvemt control structure
//to hold the results from sqpsolvemt
struct sqpSolveMTout out;

//Estimate the model parameters
out = sqpSolveMT(&Micherlitz,par1,y,x,c0);

//Print returned parameter estimates
print "parameter estimates ";
print pvUnPack(out.par, "parameters");

proc Micherlitz(struct PV par1, y, x);
local p0,e,s2;
p0 = pvUnpack(par1, "parameters");
e = y - p0[1] - p0[2]*exp(-p0[3] * x);

retp(e'*e);
endp;

Source

sqpsolvemt.src

See Also

sqpSolveMTControlCreate, sqpSolveMTlagrangeCreate, CR-sqpSolveMToutCreate

sqpSolveMTControlCreate

Purpose

Creates an instance of a structure of type sqpSolveMTcontrol set to default val-
ues.

Include

sqpsolvemt.sdf

sqpSolveMTControlCreate

s

Format

s = sqpSolveMTControlCreate();

Output

s instance of structure of type sqpSolveMTControl.

Example

//Declare instance of structure
struct sqpSolveMTControl s;

//Initialize the structure to default values
s = sqpSolveMTControlCreate();

Source

sqpsolvemt.src

See Also

sqpSolve

sqpSolveMTlagrangeCreate

Purpose

Creates an instance of a structure of type sqpSolveMTlagrange set to default val-
ues.

Include

sqpsolvemt.sdf

35-1732

sqpSolveMTlagrangeCreate

s

35-1733

Format

s = sqpSolveMTlagrangeCreate();

Output

s instance of structure of type sqpSolveMTlagrange.

Example

//Declare instance of structure
struct sqpSolveMTlagrange sla;

//Initialize the structure to default values
sla = sqpSolveMTlagrangeCreate();

Source

sqpsolvemt.src

See Also

sqpSolve

sqpSolveMToutCreate

Purpose

Creates an instance of a structure of type sqpSolveMTout set to default values.

Include

sqpsolvemt.sdf

sqpSolveMToutCreate

s

Format

s = sqpSolveMToutCreate();

Output

s instance of structure of type sqpSolveMTout.

Example

//Declare instance of structure
struct sqpSolveMTout out;

//Initialize the structure to default values
out = sqpSolveMToutCreate();

Source

sqpsolvemt.src

See Also

sqpSolve

sqpSolveSet

Purpose

Resets global variables used by sqpSolve to default values.

Format

sqpSolveSet;

35-1734

sqpSolveSet

s

35-1735

Source

sqpsolve.src

sqrt

Purpose

Computes the square root of every element in x.

Format

y = sqrt(x);

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array, the square roots of
each element of x.

Remarks

If x is negative, complex results are returned by default. You can turn the generation
of complex numbers for negative inputs on or off in the GAUSS configuration file, and
with the sysstate function, case 8. If you turn it off, sqrt will generate an error
for negative inputs.

If x is already complex, the complex number state does not matter; sqrt will com-
pute a complex result.

sqrt

s

Example

let x[2,2] = 1 2 3 4;
y = sqrt(x);

The output, in variable y is equal to:

1.00000000
1.41421356
1.73205081
2.00000000

stdc

Purpose

Computes the standard deviation of the elements in each column of a matrix.

Format

y = stdc(x);

Input

x NxK matrix.

Output

y Kx1 vector, the standard deviation of each column of
x.

Remarks

This function essentially computes sample standard deviation, s:

35-1736

stdc

s

35-1737

Thus, the divisor is N-1 rather than N, where N is the number of elements being
summed.

To convert to the population's standard deviation, multiply by :

Example

//Set the rng seed so that the random numbers produced will
//be repeatable

rndseed 94243524;

//Create a vector of random normal numbers
y = rndn(8100,1);

//Compute the standard deviation of the column vector 'y'
std = stdc(y);

The standard deviation, in variable std, is equal to:

1.00183907

See Also

meanc

stdc

s

stdsc

Purpose

Computes the standard deviation of the elements in each column of a matrix.

Format

y = stdsc(x);

Input

x NxK matrix.

Output

y Kx1 vector, the standard deviation of each column of
x.

Remarks

This function essentially computes:

sqrt(1/(N)*sumc((x-meanc(x)')2))

Thus, the divisor is N rather than N-1, where N is the number of elements being
summed. See stdc for the alternate definition.

Example

//Create 3 columns of random normal numbers
y = rndn(8100,3);

//Calculate the standard deviation of each column

35-1738

stdsc

s

35-1739

std = stdsc(y);

The return, in variable std is equal to:

1.00095980
0.99488832
1.00201375

See Also

stdc, astds, meanc

stocv

Purpose

Converts a string to a character vector.

Format

v = stocv(s);

Input

s string, to be converted to character vector.

Output

v Nx1 character vector, contains the contents of s.

Remarks

stocv breaks s up into a vector of 8-character length matrix elements. Note that the

stocv

s

character information in the vector is not guaranteed to be null-terminated.

Example

s = "Now is the time for all good men";
v = stocv(s);

"Now is t"

"the time "
v =

"for all "

"good men"

See Also

cvtos, vget, vlist, vput, vread

stof

Purpose

Converts a string to floating point.

Format

y = stof(x);

Input

x string or NxK matrix containing character elements to
be converted.

35-1740

stof

s

35-1741

Output

y matrix, the floating point equivalents of the ASCII
numbers in x.

Remarks

If x is a string containing "1 2 3", then stof will return a 3x1 matrix containing the
numbers 1, 2 and 3.

If x is a null string, stof will return a 0.

This uses the same input conversion routine as loadm and let. It will convert char-
acter elements and missing values. stof also converts complex numbers in the same
manner as let.

See Also

ftos, ftocv, chrs

stop

Purpose

Stops a program and returns to the command prompt. Does not close files.

Format

stop;

Remarks

This command has the same effect as end, except it does not close files or the aux-
iliary output.

stop

s

It is not necessary to put a stop or an end statement at the end of a program. If
neither is found, an implicit stop is executed.

See Also

end, new, system

strcombine

Purpose

Converts an NxM string array to an Nx1 string vector by combining each element
in a column separated by a user-defined delimiter string.

Format

y = strcombine(sa, delim, qchar);

Input

sa NxM string array.
delim 1x1, 1xM, or Mx1 delimiter string.
qchar scalar, 2x1, or 1x2 string vector containing quote

characters as required:
scalar: Use this character as quote character.

If this is 0, no quotes are added.
2x1 or 1x2
string
vector:

Contains left and right quote
characters.

35-1742

strcombine

s

35-1743

Output

y Nx1 string vector result.

Examples

Example 1: Basic example

//Create 1x3 string array
sa_dir = "C:" $~ "gauss" $~ "myProject";

//Combine 1x3 string array with '/' at end of each element
path = strcombine(sa_dir, "/", 0);

After the above code, path is equal to:

"C:/gauss/myProject/"

Remarks

Note that strcombine adds a delimiter after the final element. To combine strings
with the delimiter added only between tokens, see strjoin.

Source

strfns.src

See Also

satostrC, strjoin

strcombine

s

strindx

Purpose

Finds the index of one string within another string.

Format

y = strindx(where, what, start);

Input

where string or scalar, the data to be searched.
what string or scalar, the substring to be searched for in

where.
start scalar, the starting point of the search in where for

an occurrence of what. The index of the first
character in a string is 1.

Output

y scalar containing the index of the first occurrence of
what, within where, which is greater than or equal
to start. If no occurrence is found, it will be 0.

Remarks

An example of the use of this function is the location of a name within a string of
names:

35-1744

strindx

s

35-1745

z = "nameagepaysex";
x = "pay";
y = strindx(z,x,1);

The above code will set y equal to:

8.00

This function is used with strsect for extracting substrings.

See Also

strrindx, strlen, strsect, strput

strlen

Purpose

Returns the length of a string.

Format

y = strlen(x);

Input

x string, NxK matrix of character data, or NxK string
array.

Output

y scalar containing the exact length of the string x, or
NxK matrix or string array containing the lengths of the
elements in x.

strlen

s

Remarks

The null character (ASCII 0) is a legal character within strings and so embedded nulls
will be counted in the length of strings. The final terminating null byte is not counted,
though.

For character matrices, the length is computed by counting the characters (maximum
of 8) up to the first null in each element of the matrix. The null character, therefore, is
not a valid character in matrices containing character data and is not counted in the
lengths of the elements of those matrices.

Example

x1 = "How long?";
x2 = "Classification";
len1 = strlen(x1);
len2 = strlen(x2);

After running the code above:

len1 = 9

len2 = 14

See Also

strsect, strindx, strrindx

strput

Purpose

Lays a substring over a string.

35-1746

strput

s

35-1747

Format

y = strput(substr, str, off);

Input

substr string, the substring to be laid over the other string.
str string, the string to receive the substring.
off scalar, the offset in str to place substr. The

offset of the first byte is 1.

Output

y string, the new string.

Example

str = "max";
sub = "imum";
loc = 4;
y = strput(sub,str,loc);
print y;

produces:

maximum

Source

strput.src

strput

s

strrindx

Purpose

Finds the index of one string within another string. Searches from the end of the
string to the beginning.

Format

y = strrindx(where, what, start);

Input

where string or scalar, the data to be searched.
what string or scalar, the substring to be searched for in

where.
start scalar, the starting point of the search in where for

an occurrence of what. where will be searched
from this point backward for what.

Output

y scalar containing the index of the last occurrence of
what, within where, which is less than or equal to
start. If no occurrence is found, it will be 0.

Remarks

A negative value for start causes the search to begin at the end of the string. An
example of the use of strrindx is extracting a file name from a complete path spe-
cification:

35-1748

strrindx

s

35-1749

path = "/gauss/src/ols.src";
ps = "/";
pos = strrindx(path,ps,-1);
if pos;

name = strsect(path,pos+1,strlen(path)-pos);
else;

name = "";
endif;

The above code makes the following assignments:

pos = 11

name = ols.src

See Also

strindx, strlen, strsect, strput

strjoin

Purpose

Converts an NxM string array to an Nx1 string vector by combining each element
in a column separated by a user-defined delimiter string.

Format

y = strjoin(sa, delim);

y = strjoin(sa, delim , qchar);

Input

sa NxM string array.

strjoin

s

delim 1x1, 1xM, or Mx1 delimiter string.
qchar Optional input, scalar, 2x1, or 1x2 string vector containing

quote characters as required:
scalar: Use this character as

quote character.
If this is 0, no quotes
are added.

2x1 or 1x2 string vector: Contains left and right
quote characters.

Default value is 0 (no quotes).

Output

y Nx1 string vector result.

Example

Example 1

//Create a 1x4 string array
s = "alpha" $~ "beta" $~ "gamma" $~ "delta";

//Combine the string array into a single comma-separated
string
varnames = strjoin(s, ",");

After the above code, varnames will be a single string with the following contents:

"alpha,beta,gamma,delta"

Example 2

35-1750

strjoin

s

35-1751

//Create 1x3 string array
s = "GDP" $~ "Gross Exports" $~ "Net Exports";

//Create single string separated by spaces
//with each element surrounded by a single tic '
names = strjoin(s, " ", "'");

After the above code, names should be equal to the string:

"'GDP' 'Gross Exports' 'Net Exports'"

Remarks

l strjoin differs from strcombine by not adding a delimiter after the last
element.

l In the case where the input has only 1 column, the delimiter is ignored.

Source

strfns.src

See Also

strcombine

strsect

Purpose

Extracts a substring of a string.

Format

y = strsect(str, start, len);

strsect

s

Input

str string or scalar from which the segment is to be
obtained.

start scalar, the index of the substring in str. The index of
the first character is 1.

len scalar, the length of the substring.

Output

y string, the extracted substring, or a null string if
start is greater than the length of str.

Remarks

If there are not enough characters in a string for the defined substring to be extracted,
then a short string or a null string will be returned.

If str is a matrix containing character data, it must be scalar.

Example

strng = "This is an example string.";
y = strsect(strng,12,7);

The above code assigns the variable y to be:

example

See Also

strlen, strindx, strrindx

35-1752

strsect

s

35-1753

strsplit

Purpose

Splits a string into individual tokens.

Format

sa = strsplit(str);
sa = strsplit(str, sep);

Input

str String or Nx1 string array to be split.
sep Optional argument, string containing the character used

to separate the input string into individual tokens.

Output

sa 1xK or NxK string array.

Remarks

Case 1: No supplied separator

If strsplit is called with only one input (i.e. a separator is not passed in as the
second argument), each of the following characters are considered delimiters:

space ASCII 32
tab ASCII 9
comma ASCII 44
newline ASCII 10
carriage return ASCII 13

strsplit

s

The input string will be split at each occurence of ANY of the separators listed in the
table above. For example:

sa = "alpha 1,beta 2,gamma 3";
strsplit(s);

will return a 1x6 string array with the following contents:

"alpha" "1" "beta" "2" "gamma" "3"

Tokens containing delimiters must be enclosed in single or double quotes or par-
entheses. Tokens enclosed in single or double quotes will NOT retain the quotes upon
translation. Tokens enclosed in parentheses WILL retain the parentheses after trans-
lation. Parentheses cannot be nested.

Case 2: Supplied separator

If a separator is passed to strsplit, the input string will be split into individual
tokens at each instance of the specified separator. Only the supplied separator will be
used to separate the tokens. Separators may only be 1 character. Any remaining white-
space will be preserved. For example:

strsplit("alpha 1,beta 2,gamma 3", ",");

will return a 1x3 string array with the following contents:

"alpha 1" "beta 2" "gamma 3"

Rows with fewer tokens will be padded on the right. For example:

string s = { "1982-04-19", "1994-06" };
strsplit(s, "-");

will return:

35-1754

strsplit

s

35-1755

"1982" "04" "19"
"1994" "06" ""

Examples

Example 1: Dates

dt = "1977/04/03";
dt_split = strsplit(dt, "/");

After the code above, dt_split will be a 1x3 string array with the following con-
tents:

"1977" "04" "03"

Example 2: Comma-separated list of variables

vars = "CPI,PPI,Employment,Oil:Brent blend,Oil:WTI";
vars = strsplit(vars, ",");

After the code above, vars will be a 1x5 string array with the following contents:

"CPI" "PPI" "Employment" "Oil:Brent blend"
"Oil:WTI"

Example 3: String array with supplied separator

//Create a 3x1 string array
string dow_str = { "apple:technology",

"goldman sachs:finance",
"home depot:retail" };

//Split 'dow_str' into a 3x2 string array
dow_sa = strsplit(dow_str, ":");

The above code sets dow_sa to be equal to:

strsplit

s

"apple" "technology"
"goldman sachs" "finance"
"home depot" "retail"

Example 4: String array without supplied separator

Elements that contain spaces may be grouped with single tics, like this:

ss = "classification 'scientific taxonomy'";
ss2 = strsplit(ss);

print "ss2[1] = " ss2[1];
print "ss2[2] = " ss2[2];

In this program, 'scientific taxonomy' is kept as one token, and thus the output from the
above code is:

ss2[1] = classification
ss2[2] = scientific taxonomy

Example 5: String array with multi-character delimiter

ss = "h5://example.h5";
ss2 = strsplit(ss, "://");

print "ss2[1] = " ss2[1];
print "ss2[2] = " ss2[2];

The output from the above code is:

ss2[1] = h5
ss2[2] = example.h5

See Also

strsplitPad

35-1756

strsplit

s

35-1757

strsplitPad

Purpose

Splits a string vector into a string array of the individual tokens. Pads on the right
with null strings.

Format

sa = strsplitPad(sv, n_cols);

Input

sv Nx1 string array.
n_cols scalar, number of columns of output string array.

Output

sa Nx n_cols string array.

Remarks

Rows containing more than n_cols tokens are truncated and rows containing fewer
than n_cols tokens are padded on the right with null strings. The following char-
acters are considered delimiters between tokens:

space ASCII 32
tab ASCII 9
comma ASCII 44
newline ASCII 10
carriage return ASCII 13

strsplitPad

s

Tokens containing delimiters must be enclosed in single or double quotes or par-
entheses. Tokens enclosed in single or double quotes will NOT retain the quotes upon
translation. Tokens enclosed in parentheses WILL retain the parentheses after trans-
lation. Parentheses cannot be nested.

Example

string sv = {
"alpha beta gamma",
"delta, epsilon, zeta, eta",
"theta iota kappa"

};

sa = strsplitPad(sv, 4);

After the code above, sa will be equal to:

"alpha" "beta" "gamma" ""
"delta" "epsilon" "zeta" "eta"
"theta" "iota" "kappa" ""

See Also

strsplit

strtodt

Purpose

Converts a string array of dates to a matrix in DT scalar format.

Format

x = strtodt(sa, fmt);

35-1758

strtodt

s

35-1759

Input

sa NxK string array containing dates.
fmt string containing date/time format characters.

Output

x NxK matrix of dates in DT scalar format.

Remarks

The DT scalar format is a double precision representation of the date and time. In the
DT scalar format, the number:

20120921223505

represents 22:35:05 or 10:35:05 PM on September 21, 2012.

The following formats are supported:

YYYY Four digit year
YR Last two digits of year
MO Number of month, 01-12
DD Day of month, 01-31
HH Hour of day, 00-23
MI Minute of hour, 00-59
SS Second of minute, 00-59

Example

x = strtodt("2012-07-12 10:18:32", "YYYY-MO-DD HH:MI:SS");
print x;

strtodt

s

produces:

20120712101832.0

x = strtodt("2012-07-12 10:18:32", "YYYY-MO-DD");
print x;

produces:

20120712000000.0

x = strtodt("10:18:32", "HH:MI:SS");
print x;

produces:

101832.0

x = strtodt("05-28-10", "MO-DD-YR");
print x;

produces:

20100528000000.0

See Also

dttostr, dttoutc, utctodt

strtof

Purpose

Converts a string array to a numeric matrix.

35-1760

strtof

s

35-1761

Format

x = strtof(sa);

Input

sa NxK string array containing numeric data.

Output

x NxK matrix.

Remarks

Elements with more than one numerical character separated by a delimiter such as a
comma or a space will be interpreted as complex data. For example, the string:

"1.2 1.9"

will be converted into the number:

1.2 + 1.9i

Parentheses surrounding the numerical elements in the string will be ignored as will be
a following i. The following strings will be interpreted as the same by
strtof.

"(2.31 4.72)""2.31 4.73""2.31,4.73i"

Example

//Create a string array

string sa = { "1.1""2.2""3.3", "4.4""5.5""6.6" };

strtof

s

num = strtof(sa);

After the code above, num is a numeric matrix with the following values:

1.100 2.200 3.300
4.400 5.500 6.600

See Also

strtofcplx, ftostrC

strtofcplx

Purpose

Converts a string array to a complex numeric matrix.

Format

x = strtofcplx(sa);

Input

sa NxK string array containing numeric data.

Output

x NxK complex matrix.

Remarks

strtofcplx supports both real and complex data. It is slower than strtof for real
matrices. strtofcplx requires the presence of the real part. The imaginary part can

35-1762

strtofcplx

s

35-1763

be absent.

See Also

strtof, ftostrC

strtrim

Purpose

Strips all white space characters from the left and right side of each element in a
string array.

Format

y = strtrim(sa);

Input

sa NxM string array.

Output

y NxM string array.

Examples

Example 1: Basic example

//Create a string with leading and trailing spaces
str = " Time Series Estimation ";

strtrim

s

//Remove leading and trailing spaces from string
str_mod = strtrim(str);

After the code above, str should contain:

Time Series Estimation

while str_mod should contain the same characters, but have all spaces on the right
and left removed:

Time Series Estimation

Example 2: Create a string array of variable names

strtrim can be useful when parsing tokens from a text file. For example, you may
read the header row of a CSV file, containing something like the header_vars vari-
able in the example below and want to create a string array in which each variable
name is an element in the string array.

//Create string similar to a messy header row
header_vars = "alpha, beta , gamma";

//Split string into 3x1 string array at comma locations//
(notice the transpose operator ' at the end of the state-
ment
header_sa = strsplit(header_vars, ",")';

After the above code, header_sa will equal (NOTE: the print function will auto-
matically align the string array, so 'print header_sa' will make it appear as if the lead-
ing and trailing spaces are gone. To see the spaces, you will need to print individual
elements i.e. 'print header_sa[1]; print header_sa[2];', etc):

alpha
 beta
 gamma

35-1764

strtrim

s

35-1765

You can remove the leading and trailing spaces with strtrim, like this:

//Remove leading and trailing spaces
header_sa = strtrim(header_sa);

Which will transform header_sa into:

alpha
beta
gamma

Source

strfns.src

See Also

strtriml, strtrimr, strtrunc, strtruncl, strtruncpad, strtruncr

strtriml

Purpose

Strips all whitespace characters from the left side of each element in a string
array.

Format

y = strtriml(sa);

Input

sa NxM string array.

strtriml

s

Output

y NxM string array.

Source

strfns.src

See Also

strtrimr, strtrunc, strtruncl, strtruncpad, strtruncr

strtrimr

Purpose

Strips all whitespace characters from the right side of each element in a string
array.

Format

y = strtrimr(sa);

Input

sa NxM string array.

Output

y NxM string array.

Source

strfns.src

35-1766

strtrimr

s

35-1767

See Also

strtriml, strtrunc, strtruncl, strtruncpad, strtruncr

strtrunc

Purpose

Truncates all elements of a string array to not longer than the specified number of
characters.

Format

y = strtrunc(sa, maxlen);

Input

sa NxK string array.
maxlen 1xK or 1x1 matrix, maximum length.

Output

y NxK string array result.

Example

string s = { "best", "linear", "unbiased", "estimator" };
ss = strtrunc(s, 6);

After the code above, the variables s and ss are equal to:

best
linear

strtrunc

s

s = unbiased
estimator

best
linear

ss = unbias
estima

See Also

strtriml, strtrimr, strtruncl, strtruncpad, strtruncr

strtruncl

Purpose

Truncates the left side of all elements of a string array by a user-specified num-
ber of characters.

Format

y = strtruncl(sa, ntrunc);

Input

sa NxM, Nx1, 1xM, or 1x1 string array.
ntrunc NxM, Nx1, 1xM, or 1x1 matrix containing the number

of characters to strip.

Output

y string array result.

35-1768

strtruncl

s

35-1769

Source

strfns.src

See Also

strtriml, strtrimr, strtrunc, strtruncpad, strtruncr

strtruncpad

Purpose

Truncates all elements of a string array to the specified number of characters,
adding spaces on the end as needed to achieve the exact length.

Format

y = strtruncpad(sa, maxlen);

Input

sa NxK string array.
maxlen 1xK or 1x1 matrix, maximum length.

Output

y NxK string array result.

See Also

strtriml, strtrimr, strtrunc, strtruncl, strtruncr

strtruncpad

s

strtruncr

Purpose

Truncates the right side of all elements of a string array by a user-specified num-
ber of characters.

Format

y = strtruncr(sa, ntrunc);

Input

sa NxM, Nx1, 1xM, or 1x1 string array.
ntrunc NxM, Nx1, 1xM, or 1x1 matrix containing the number

of characters to strip.

Output

y String array result.

Source

strfns.src

See Also

strtriml, strtrimr, strtrunc, strtruncl, strtruncpad

submat

Purpose

Extracts a submatrix of a matrix, with the appropriate rows and columns given by
the elements of vectors.

35-1770

strtruncr

s

35-1771

Format

y = submat(x, r, c);

Input

x NxK matrix.
r LxM matrix of row indices.
c PxQ matrix of column indices.

Output

y (L*M)x(P*Q) submatrix of x, y may be larger than x.

Remarks

If r = 0, then all rows of x will be used. If c = 0, then all columns of x will be used.

Example

//Create 12x1 vector with consecutive numbers
x = seqa(1, 1, 12);

//Reshape the 12x1 vector into a 3x4 matrix
x = reshape(x, 3, 4);

v1 = 1 3;
v2 = 2 4;

//Extract sub-matrices
y = submat(x,v1,v2);
z = submat(x,0,v2);

After the code above, the matrix values are:

submat

s

1 2 3 4
x = 5 6 7 8

9 10 11 12

y = 2 4
10 12

2 4
z = 6 8

10 12

See Also

diag, vec, reshape

subscat

Purpose

Changes the values in a vector depending on the category a particular element
falls in.

Format

y = subscat(x, breaks, levels);

Input

x Nx1 vector.
breaks Px1 numeric vector, containing breakpoints specifying

the ranges within which substitution is to be made. This
MUST be sorted in ascending order.

breaks can contain a missing value as a separate

35-1772

subscat

s

35-1773

category if the missing value is the first element in
breaks.

If breaks is a scalar, all matches must be exact for a
substitution to be made.

levels Px1 vector, containing values to be substituted.

Output

y Nx1 vector, with the elements in levels substituted
for the original elements of x according to which of the
regions the elements of x fall into:

x ≤ breaks[1] → levels[1]
breaks[1] < x ≤ breaks[2] → levels[2]

...
breaks[p - 1] < x ≤ breaks[p] → levels[p]

x > breaks[p] → the original value
of x

If missing is not a category specified in breaks, missings
in x are passed through without change.

Example

Example 1

//BMI Data
bmi = { 36,

19,
24,
38,
34,
16,
26,

subscat

s

37,
20,
34 };

//Set the breakpoints for the new categories
breaks = { 18.5, 25, 30, 40 };

//The categorical levels
levels = { 0, 1, 2, 3 };

bmi_levels = subscat(bmi, breaks, levels);

The above code assigns the following values:

bmi = 36 bmi_levels = 3
19 1
24 1
38 3
34 3
16 0
26 2
37 3
20 1
34 3

Example 2

This example combines 2 levels in a categorical label into one category.

//Create categorical vector with 3 levels
x = { 1,

1,
2,
2,
1,

35-1774

subscat

s

35-1775

1,
2,
0,
2,
0 };

//Assign all instances of 2 to 1, merging the second and
third categories
x = subscat(x, 2, 1);

After the code above, x is equal to:

1
1
1
1
1
1
1
0
1
0

Replacing instances of one particular value with another value can also be accom-
plished with reclassify and substute

Remarks

reclassifyCuts offers functionality similar to subscat, but:

l Also assigns values to data past the final breakpoint.
l Offers the option of whether the breakpoints are open or closed on the right(e.g.,
< or ≤).

l Assigns the input to two categories in the case of a single breakpoint, (e.g.,
level_1 < break < level_2). Whereas, subscat tests for equality
in the case of a single breakpoint.

subscat

s

See Also

reclassify, reclassifyCuts, substute

substute

Purpose

Substitutes new values for old values in a matrix, depending on the outcome of a
logical expression.

Format

y = substute(x, e, v);

Input

x NxK matrix containing the data to be changed.
e LxM matrix, ExE conformable with x containing 1's

and 0's.
v PxQ matrix, ExE conformable with x and e,

containing the values to be substituted for the original
values of x when the corresponding element of e is 1.

Output

y max(N,L,P) by max(K,M,Q) matrix.

Remarks

The e matrix is usually the result of an expression or set of expressions using dot

35-1776

substute

s

35-1777

conditional and boolean operators.

Example

Example 1

Set all elements between 0 and 2.25e-16 equal to 0.

//Create example vector
x = { 3.8e-21,

1.0,
3.5,

2.7e-18,
0.5,
3.0,

1.1e-16,
0.5,
2.2,
4.0 };

//Substitute all values less than 2.2e-16 with a zero
x = substute(x, x .< 2.25e-16, 0);

After the code above, x is equal to:

0.0
1.0
3.5
0.0
0.5
3.0
0.0
0.5

substute

s

2.2
4.0

Example 2

//Create a matrix with character elements
//in the first column
x = { Y 55 30,

N 57 18,
Y 24 3,
N 63 38,
Y 55 32,
N 37 11 };

//Create a rows(x) by 1 vector with a '1' for each row
// that:
// 1) The first element is a Y
// 2) The second element is greater than or equal to 55
// 3) The third element is greater than or equal to 30
//If the row does not meet ALL of these conditions a 0 will
//be returned.
e = (x[.,1] .$== "Y") .and (x[.,2] .>= 55) .and (x[.,3] .>=
30);

//Substitute an 'R' for the first element in every row that
//meets the conditions specified in the assignment to 'e'
x[.,1] = substute(x[.,1],e, "R");

The vector e is equal to:

1
0
0

35-1778

substute

s

35-1779

0
1
0

Here is what x looks like after substitution:

R 55 30
N 57 18
Y 24 3
N 63 38
R 55 32
N 37 11

Source

datatran.src

See Also

code, recode, reclassifyCuts, reclassify, rescale

subvec

Purpose

Extracts an Nx1 vector of elements from an NxK matrix.

Format

y = subvec(x, ci);

subvec

s

Input

x NxK matrix.
ci Nx1 vector of column indices.

Output

y Nx1 vector containing the elements in x indicated by
ci.

Remarks

Each element of y is from the corresponding row of x and the column set by the cor-
responding row of ci. In other words, y[i] = x[i, ci[i]].

Example

//Create an additive sequence from 1-12, i.e. 1, 2, 3,...12
x = seqa(1, 1, 12);

//Reshape the sequential vector 'x' into a 4x3 matrix
x = reshape(x,4,3);

//The column indices (one per row of 'x') indicating which
//values to extract from 'x'
ci = { 2, 3, 1, 3 };

//Extract subvector from 'x' and assign it to 'y'
y = subvec(x,ci);

After the above code, x and y are equal to:

1 2 3
x = 4 5 6

35-1780

subvec

s

35-1781

7 8 9
10 11 12

2
y = 6

7
12

sumc

Purpose

Computes the sum of each column of a matrix or the sum across the second-fast-
est moving dimension of an L-dimensional array.

Format

y = sumc(x);

Input

x NxK matrix or L-dimensional array where the last two
dimensions are NxK.

Output

y Kx1 vector or L-dimensional array where the last two
dimensions are Kx1.

Example

//Create a 12x1 vector containing an additive sequence

sumc

s

//counting by twos, from 0-22, i.e. 2, 4, 6, 8...22
x = seqa(0,2,12);

//Reshape the 12x1 vector 'x' into a 3x4 matrix
x = reshape(x,3,4));

//Sum the columns
y = sumc(x);

After the above code, the variables x and y are equal to:

0 2 4 6
x = 8 10 12 14

16 18 20 22

24
y = 30

36
42

//Create an additive sequence from 1-24 and reshape it into
//a 2x3x4 array
a = areshape(seqa(1,1,24),2|3|4);

//Sum the columns across the second fastest moving
//dimension
z = sumc(a);

a is a 2x3x4 array such that:

Plane [1,.,.]

1.0000000 2.0000000 3.0000000 4.0000000
5.0000000 6.0000000 7.0000000 8.0000000
9.0000000 10.000000 11.000000 12.000000

35-1782

sumc

s

35-1783

Plane [2,.,.]

13.000000 14.000000 15.000000 16.000000
17.000000 18.000000 19.000000 20.000000
21.000000 22.000000 23.000000 24.000000

Variable z is a 2x4x1 array equal to:

Plane [1,.,.]

15.000000
18.000000
21.000000
24.000000

Plane [2,.,.]

51.000000
54.000000
57.000000
60.000000

See Also

cumsumc, meanc, stdc

sumr

Purpose

Computes the sum of each row of a matrix or the sum of the fastest moving dimen-
sion of an L-dimensional array.

sumr

s

Format

y = sumr(x);

Input

x NxK matrix or L-dimensional array where the last two
dimensions are NxK.

Output

y Nx1 vector or L-dimensional array where the last two
dimensions are Nx1.

Example

//Create an additive sequence from 1-12 and reshape it into
//a 3x4 matrix
x = reshape(seqa(1,1,12),3,4);

//Sum the rows
y = sumr(x);

After the above code, the variables x and y will be:

1 2 3 4 10
x = 5 6 7 8 y = 26

9 10 11 12 42

//Reshape an additive sequence from 1-24 into a 2x3x4
//dimensional array
a = areshape(seqa(1,1,24),2|3|4);
z = sumr(a);

a is a 2x3x4 array such that:

35-1784

sumr

s

35-1785

Plane [1,.,.]

1.0000000 2.0000000 3.0000000 4.0000000
5.0000000 6.0000000 7.0000000 8.0000000
9.0000000 10.000000 11.000000 12.000000

Plane [2,.,.]

13.000000 14.000000 15.000000 16.000000
17.000000 18.000000 19.000000 20.000000
21.000000 22.000000 23.000000 24.000000

The variable z is equal to:

Plane [1,.,.]

10.000000
26.000000
42.000000

Plane [2,.,.]

58.000000
74.000000
90.000000

See Also

sumc

surface

Purpose

Graphs a 3-D surface. NOTE: This function is for use with the deprecated PQG
graphics. Use plotSurface instead.

surface

s

Library

pgraph

Format

surface(x, y, z);

Input

x 1xK vector, the X axis data.
y Nx1 vector, the Y axis data.
z NxK matrix, the matrix of height data to be plotted.

Global Input

_psurf 2x1 vector, controls 3-D surface characteristics.
[1] if 1, show hidden lines. Default 0.
[2] color for base (default 7). The base is an

outline of the X-Y plane with a line
connecting each corner to the surface. If 0,
no base is drawn.

_pticout scalar, if 0 (default), tick marks point inward, if 1, tick
marks point outward.

_pzclr Z level color control.
There are 3 ways to set colors for the Z levels of a
surface graph.
1. To specify a single color for the entire

surface plot, set the color control variable to
a scalar value 1-15. For example:

_pzclr = 15;

35-1786

surface

s

35-1787

2. To specify multiple colors distributed
evenly over the entire Z range, set the color
control variable to a vector containing the
desired colors only. GAUSS will
automatically calculate the required
corresponding Z values for you. The
following example will produce a three
color surface plot, the Z ranges being
lowest=blue, middle=light blue,
highest=white:

_pzclr = { 1, 10, 15 };

3. To specify multiple colors distributed over
selected ranges, the Z ranges as well as the
colors must be manually input by the user.
The following example assumes -0.2 to be
the minimum value in the z matrix:

_pzclr = { -0.2 1,
/* z >= -0.2 blue */
0.0 10,

/* z >= 0.0 light blue */
0.2 15 };

/* z >= 0.2 white */

Since a Z level is required for each selected
color, the user must be responsible to compute
the minimum value of the z matrix as the
first Z range element. This may be most easily
accomplished by setting the _pzclr matrix
as shown above (the first element being an
arbitrary value), then resetting the first
element to the minimum z value as follows:

surface

s

_pzclr = { 0.0 1,
0.0 10,
0.2 15 };

_pzclr[1,1] = minc(minc(z));

See PQG Graphics Colors, for the list of available colors.

Remarks

surface uses only the minimum and maximum of the X axis data in generating the
graph and tick marks.

Source

psurface.src

See Also

volume, view

svd

Purpose

Computes the singular values of a matrix.

Format

s = svd(x);

Input

x NxP matrix whose singular values are to be computed.

35-1788

svd

s

35-1789

Output

s Mx1 vector, where M = min(N,P), containing the
singular values of x arranged in descending order.

Global Input

_
svderr

scalar, if the singular values cannot be computed, _
svderr will be nonzero.

Examples

//Create a 10x3 matrix
x = { -0.60 3.50 0.47,

8.40 16.50 0.27,
11.40 6.50 0.17,
7.40 -0.50 -2.43,

-9.60 -10.50 0.57,
-17.60 -5.50 0.67,
-12.60 -14.50 0.87,
18.40 12.50 -1.43,

-11.60 -19.50 0.77,
6.40 11.50 0.07 };

//Calculate the singular values
s = svd(x);

After the code above, s will be equal to:

49.58
14.96
2.24

svd

s

Remarks

1. svd is not threadsafe. New code should use svds instead.

2. Error handling is controlled with the low bit of the trap flag.

trap
0

set _svderr to a non-zero value and terminate with
message

trap
1

set _svderr to a non-zero value and continue execution

Source

svd.src

See Also

svd2, svds

svd1

Purpose

Computes the singular value decomposition of a matrix so that: x = u * s * v'.

Format

{ u, s, v } = svd1(x);

Input

x NxP matrix whose singular values are to be computed.

35-1790

svd1

s

35-1791

Output

u NxN matrix, the left singular vectors of x.
s NxP diagonal matrix, containing the singular values of

x arranged in descending order on the principal
diagonal.

v PxP matrix, the right singular vectors of x.

Global Output

_svderr scalar, if the singular values cannot be computed, _
svderr will be non-zero.

Example

//Create 6x3 matrix
x = { -9.35 15.67 -41.75,

-13.55 40.97 15.55,
-0.95 -17.03 40.15,
8.15 -9.73 13.15,
2.35 -36.73 -43.55,

13.35 6.87 16.45 };

//Perform matrix decomposition
{ u, s, v } = svd1(x);

After the code above, the outputs will have the following values;

u = 0.44 -0.49 -0.06 0.36 -0.24 0.61
-0.35 -0.60 -0.28 0.12 0.65 -0.08
-0.41 0.46 -0.53 0.07 0.03 0.58
-0.12 0.25 0.24 0.91 0.08 -0.18
0.67 0.35 -0.13 -0.02 0.64 0.05

svd1

s

-0.23 0.04 0.75 -0.17 0.33 0.50

s = 79.03 0.00 0.00
0.00 60.19 0.00
0.00 0.00 17.16
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

v = -0.02 0.26 0.97
-0.32 -0.91 0.24
-0.95 0.31 -0.10

Remarks

1. svd1 is not threadsafe. New code should use svdusv instead.

2. Error handling is controlled with the low bit of the trap flag.

trap 0 set _svderr to a non-zero value and terminate with message
trap 1 set _svderr to a non-zero value and continue execution

Source

svd.src

See Also

svd, svd2, svdusv

svd2

Purpose

Computes the singular value decomposition of a matrix so that: x = u * s * v'
(compact u).

35-1792

svd2

s

35-1793

Format

{ u, s, v } = svd2(x);

Input

x NxP matrix whose singular values are to be computed.

Output

u NxN or NxP matrix, the left singular vectors of x. If
N > P, then u will be NxP, containing only the P left
singular vectors of x.

s NxP or PxP diagonal matrix, containing the singular
values of x arranged in descending order on the
principal diagonal. If N > P, then s will be PxP.

v PxP matrix, the right singular vectors of x.

Global Output

_svderr scalar, if all of the singular values are correct, _svderr
is 0. If the singular values cannot be computed, _
svderr is set to a non-zero value.

Examples

//Create a 10x3 matrix
x = { -0.60 3.50 0.47,

8.40 16.50 0.27,
11.40 6.50 0.17,
7.40 -0.50 -2.43,

svd2

s

-9.60 -10.50 0.57,
-17.60 -5.50 0.67,
-12.60 -14.50 0.87,
18.40 12.50 -1.43,

-11.60 -19.50 0.77,
6.40 11.50 0.07 };

//Calculate the singular values
{ u, s, v } = svd2(x);

After the code above, u, s and v will be equal to:

u = 0.04 0.20 -0.11
0.36 0.38 -0.14
0.25 -0.23 -0.44
0.10 -0.39 0.75

-0.29 -0.04 -0.06
-0.33 0.57 0.35
-0.39 -0.08 -0.14
0.44 -0.29 0.10

-0.44 -0.37 -0.25
0.26 0.24 -0.07

s = 49.58 0.00 0.00
0.00 14.96 0.00
0.00 0.00 2.24

v = 0.70 -0.70 -0.10
0.71 0.70 0.05

-0.04 0.10 -0.99

Remarks

1. svd2 is not threadsafe. New code should use svdcusv instead.

2. Error handling is controlled with the low bit of the trap flag. If the singular

35-1794

svd2

s

35-1795

values cannot be computed, _svderr will be set to a non-zero value.

trap
0

set _svderr to a non-zero value and terminate with
message

trap
1

set _svderr to a non-zero value and continue execution

Source

svd.src

See Also

svd, svd1, svdcusv

svdcusv

Purpose

Computes the singular value decomposition of x so that: x = u * s * v' (compact
u).

Format

{ u, s, v } = svdcusv(x);

Input

x NxP matrix or K-dimensional array where the last two
dimensions are NxP, whose singular values are to be
computed.

svdcusv

s

Output

u NxN or NxP matrix or K-dimensional array where the
last two dimensions are NxN or NxP, the left singular
vectors of x. If N > P, u is NxP, containing only the
P left singular vectors of x.

s NxP or PxP diagonal matrix or K-dimensional array
where the last two dimensions describe NxP or PxP
diagonal arrays, the singular values of x arranged in
descending order on the principal diagonal. If N > P,
s is PxP.

v PxP matrix or K-dimensional array where the last two
dimensions are PxP, the right singular vectors of x.

Examples

//Create a 10x3 matrix
x = { -0.60 3.50 0.47,

8.40 16.50 0.27,
11.40 6.50 0.17,
7.40 -0.50 -2.43,

-9.60 -10.50 0.57,
-17.60 -5.50 0.67,
-12.60 -14.50 0.87,
18.40 12.50 -1.43,

-11.60 -19.50 0.77,
6.40 11.50 0.07 };

//Calculate the singular values
{ u, s, v } = svdcusv(x);

After the code above, u, s and v will be equal to:

35-1796

svdcusv

s

35-1797

u = 0.04 0.20 -0.11
0.36 0.38 -0.14
0.25 -0.23 -0.44
0.10 -0.39 0.75

-0.29 -0.04 -0.06
-0.33 0.57 0.35
-0.39 -0.08 -0.14
0.44 -0.29 0.10

-0.44 -0.37 -0.25
0.26 0.24 -0.07

s = 49.58 0.00 0.00
0.00 14.96 0.00
0.00 0.00 2.24

v = 0.70 -0.70 -0.10
0.71 0.70 0.05

-0.04 0.10 -0.99

Remarks

1. If x is an array, the resulting arrays u, s and v will contain their respective
results for each of the corresponding 2-dimensional arrays described by the two
trailing dimensions of x. In other words, for a 10x4x5 array x:

l u will be a 10x4x4 array containing the left singular vectors of each of
the 10 corresponding 4x5 arrays contained in x.

l s will be a 10x4x5 array containing the singular values.
l v will be a 10x5x5 array containing the right singular vectors

2. Error handling is controlled by the trap command. If not all of the singular val-
ues can be computed:

trap
0

terminate with an error message

svdcusv

s

trap
1

set the first element of s to a scalar missing value and
continue execution

//Turn on error trapping
trap 1;

//Compute singular value decomposition
{ u, s, v } = svdcusv(x);

//Check for failure or success
if scalmiss(s[1,1]);

//Code for failure case
endif;

Note that in the trap 1 case, if the input to svdcusv is a multi-dimensional
array and the singular values for a submatrix fail to compute, only the first value
of that s submatrix will be set to a missing value. For a 3 dimensional array,
you could change the if check in the above example to:

//Check for success or failure of each submatrix
if ismiss(s[.,1,1]);

See Also

svd2, svds, svdusv

svds

Purpose

Computes the singular values of a x.

35-1798

svds

s

35-1799

Format

s = svds(x);

Input

x NxP matrix or K-dimensional array where the last two
dimensions are NxP, whose singular values are to be
computed.

Output

s min(N,P)x1 vector or K-dimensional array where the
last two dimensions are min(N,P)x1, the singular values
of x arranged in descending order.

Examples

//Create a 10x3 matrix
x = { -0.60 3.50 0.47,

8.40 16.50 0.27,
11.40 6.50 0.17,
7.40 -0.50 -2.43,

-9.60 -10.50 0.57,
-17.60 -5.50 0.67,
-12.60 -14.50 0.87,
18.40 12.50 -1.43,

-11.60 -19.50 0.77,
6.40 11.50 0.07 };

//Calculate the singular values
s = svds(x);

After the code above, s will be equal to:

svds

s

49.58
14.96
2.24

Remarks

1. If x is an array, the result will be an array containing the singular values of
each of the 2-dimensional arrays described by the two trailing dimensions of x.
In other words, for a 10x4x5 array x, s will be a 10x4x1 array containing the sin-
gular values of each of the 10 4x5 arrays contained in x.

2. If the singular values cannot be computed, either the program will be terminated
with an error message, or the first element of the return, s[1], is set to a miss-
ing value. This behavior is controlled by the trap command. Below is an
example with error trapping:

//Turn on error trapping
trap 1;

//Calculate singular values
s = svds(x);

//Check for success or failure
if ismiss(s);
//Code to handle failure case
endif;

Note that in the trap 1 case, if the input to svds is a multi-dimensional array
and the singular values for a submatrix fail to compute, only the first value of
that s submatrix will be set to a missing value. For a 3 dimensional array, you
could change the if check in the above example to:

//Check for success or failure of each submatrix
if ismiss(s[.,1,1]);

35-1800

svds

s

35-1801

3. Call either svdcusv or svdusv, to also calculate the right and left singular
vectors

See Also

svd, svdcusv, svdusv

svdusv

Purpose

Computes the singular value decomposition of x so that: x = u * s * v'.

Format

{ u, s, v } = svdusv(x);

Input

x NxP matrix or K-dimensional array where the last two
dimensions are NxP, whose singular values are to be
computed.

Output

u NxN matrix or K-dimensional array where the last two
dimensions are NxN, the left singular vectors of x.

s NxP diagonal matrix or K-dimensional array where the
last two dimensions describe NxP diagonal arrays, the
singular values of x arranged in descending order on
the principal diagonal.

v PxP matrix or K-dimensional array where the last two
dimensions are PxP, the right singular vectors of x.

svdusv

s

Example

//Create 6x3 matrix
x = { -9.35 15.67 -41.75,

-13.55 40.97 15.55,
-0.95 -17.03 40.15,
8.15 -9.73 13.15,
2.35 -36.73 -43.55,

13.35 6.87 16.45 };

//Perform matrix decomposition
{ u, s, v } = svdusv(x);

After the code above, the outputs will have the following values;

u = 0.44 -0.49 -0.06 0.36 -0.24 0.61
-0.35 -0.60 -0.28 0.12 0.65 -0.08
-0.41 0.46 -0.53 0.07 0.03 0.58
-0.12 0.25 0.24 0.91 0.08 -0.18
0.67 0.35 -0.13 -0.02 0.64 0.05

-0.23 0.04 0.75 -0.17 0.33 0.50

s = 79.03 0.00 0.00
0.00 60.19 0.00
0.00 0.00 17.16
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

v = -0.02 0.26 0.97
-0.32 -0.91 0.24
-0.95 0.31 -0.10

35-1802

svdusv

s

35-1803

Remarks

1.

If x is an array, the resulting arrays u, s and v will contain their respective res-
ults for each of the corresponding 2-dimensional arrays described by the two
trailing dimensions of x. In other words, for a 10x4x5 array x:

l u will be a 10x4x4 array, containing the left singular vectors of each of
the 10 corresponding 4x5 arrays contained in x.

l s will be a 10x4x5 array, containing the singular values.
l v will be a 10x5x5 array containing, the right singular vectors.

2. Error handling is controlled by the trap command. If not all of the singular val-
ues can be computed:

trap
0

terminate with an error message

trap
1

set the first element of s to a scalar missing value and
continue execution

//Turn on error trapping
trap 1;

//Compute singular value decomposition
{ u, s, v } = svdusv(x);

//Check for failure or success
if scalmiss(s[1,1]);

//Code for failure case
endif;

Note that in the trap 1 case, if the input to svdusv is a multi-dimensional
array and the singular values for a submatrix fail to compute, only the first value

svdusv

s

of that s submatrix will be set to a missing value. For a 3 dimensional array,
you could change the if check in the above example to:

//Check for success or failure of each submatrix
if ismiss(s[.,1,1]);

See Also

svd1, svdcusv, svds

sylvester

Purpose

Computes the solution to the Sylvester matrix equation, AX + XB = C.

Format

X = sylvester(A, B, C);

Input

A MxM real or complex matrix.
B NxN real or complex matrix.
C MxN real or complex matrix.

Output

X MxN matrix, solution to the equation AX + XB = C.

Examples

Example 1: Real input

35-1804

sylvester

s

35-1805

//Create a 3 x 3 real matrix
A = { 0.9069 -0.3150 -0.9732,

0.6023 0.6848 0.4925,
-0.8555 -0.7430 0.6521 };

//Create a 2 x 2 real matrix
B = { -0.9876 0.4503 ,

-0.3043 0.9807 };

//Create a 3 x 2 real matrix
C = { -0.8625 0.5247,

0.6331 -0.3334,
0.7912 0.0711 };

//Solve the Sylvester matrix equation
X = sylvester(A, B, C);

After the code above, X will equal the 3 x 2 matrix:

X = -0.4279 0.3246
-1.0525 -0.0013
1.1609 -0.1071

Example 2: Complex input

//Create a 3 x 3 complex matrix
A = { 7 + 7i 4 + 10i 2 + 8i,

10 - 3i -7 - 5i -10 - 7i,
3 + 5i -10 - 2i 2 - 4i };

//Create a 2 x 2 complex matrix
B = { 5 + 1i -5 - 8i,

8 - 10i 8 - 1i };

//Create a 3 x 2 complex matrix

sylvester

s

C = { -9 - 3i -1 - 1i,
9 - 8i -5 + 8i,

-1 - 2i -5 + 5i };

//Solve the Sylvester matrix equation
X = sylvester(A, B, C);

After the code above, X will equal the 3 x 2 complex matrix:

X = 0.1697 - 0.2242i -0.5923 + 0.2221i
-0.5684 + 0.4562i 0.3670 - 0.7153i
-0.7502 + 0.2470i -0.0636 - 0.4208i

Remarks

The equation AX + XB = C will not have a unique solution if the eigenvalues of the
matrices A and -B are equal. In this case an error will be returned.

See Also

hess, schur

sysstate

Purpose

Gets or sets general system parameters.

Format

{ rets... } = sysstate(case, y);

Remarks

The available cases are as follows:

35-1806

sysstate

s

35-1807

Case 1 Version Information Returns the
currentGAUSS version
information in an 8-element
numeric vector.

Cases 2-7 GAUSS System Paths Gets or
sets GAUSS system path.

Case 8 Complex Number Toggle
Controls automatic generation of
complex numbers in sqrt, ln,
and log for negative arguments.

Case 9 Complex Trailing Character
Gets or sets trailing character for
the imaginary part of a complex
number.

Case 10 Printer Width Gets or sets
lprint width.

Case 11 Auxiliary Output Width Gets or
sets the auxiliary output width.

Case 13 LU Tolerance Gets or sets
singularity tolerance for LU
decomposition in current thread.

Case 14 Cholesky Tolerance Gets or sets
singularity tolerance for Cholesky
decomposition in current thread.

Case 15 Screen State Gets or sets window
state as controlled by screen
command.

Case 18 Auxiliary Output Gets auxiliary
output parameters.

sysstate

s

Case 19 Get/Set Format Gets or sets
format parameters.

Case 21 Imaginary Tolerance Gets or sets
imaginary tolerance in current
thread.

Case 22 Source Path Gets or sets the path
the compiler will search for source
files.

Case 24 Dynamic Library Directory Gets
or sets the path for the default
dynamic library directory.

Case 25 Temporary File Path Gets or sets
the path GAUSS will use for
temporary files.

Case 26 Interface Mode Returns the
current interface mode.

Case 28 Random Number Generator
Parameters Gets or sets
parameters used by the random
number generation commands.

Case 30 Base Year Toggle Specifies
whether year value returned by
date is to include base year
(1900) or not.

Case 32 Global LU Tolerance Gets or sets
global singularity tolerance for LU
decomposition.

Case 33 Global Cholesky Tolerance Gets
or sets global singularity tolerance
for Cholesky decomposition.

35-1808

sysstate

s

35-1809

Case 34 Global Imaginary Tolerance
Gets or sets global imaginary
tolerance.

Case 1: Version Information

Purpose

Returns the current GAUSS version information in an 8-element numeric vector.

Format

vi = sysstate(1,0);

Output

vi 8x1 numeric vector containing version information:
[1] Major version number.
[2] Minor version number.
[3] Revision.
[4] Machine type.
[5] Operating system.
[6] Runtime module.
[7] Light version.
[8] Always 0.
vi[4] indicates the type of machine on which GAUSS is
running:

1 Intel x86
2 Sun SPARC
4 HP 9000

sysstate

s

7 Mac 32-bit PowerPC
vi[5] indicates the operating system on which GAUSS is

running:
3 Solaris
5 HP-UX
9 Windows
10 Linux
12 Mac OS

Cases 2-7: GAUSS System Paths

Purpose

Gets or sets GAUSS system path.

Format

oldpath = sysstate(case, path);

Input

case scalar 2-7, path to set.
2 .exe file location.
3 loadexe path.
4 save path.
5 load, loadm path.
6 loadf, loadp path.
7 loads path.

path scalar 0 to get path, or string containing the new path.

35-1810

sysstate

s

35-1811

Output

oldpath string, original path.

Remarks

If path is of type matrix, the path will be returned but not modified.

Case 8: Complex Number Toggle

Purpose

Controls automatic generation of complex numbers in sqrt, ln and log for neg-
ative arguments.

Format

oldstate = sysstate(8, state);

Input

state scalar, 1, 0, or -1

Output

oldstate scalar, the original state.

Remarks

If state = 1, log, ln, and sqrt will return complex numbers for negative argu-
ments. If state = 0, the program will terminate with an error message when negative
numbers are passed to log, ln, and sqrt. If state = -1, the current state is
returned and left unchanged. The default state is 1.

Case 9: Complex Trailing Character

sysstate

s

Purpose

Gets or sets trailing character for the imaginary part of a complex number.

Format

oldtrail = sysstate(9, trail);

Input

trail scalar 0 to get character, or string containing the new
trailing character.

Output

oldtrail string, the original trailing character.

Remarks

The default character is ''i''.

Case 10: Printer Width

Purpose

Gets or sets lprint width.

Format

oldwidth = sysstate(10, width);

Input

width scalar, new printer width.

35-1812

sysstate

s

35-1813

Output

oldwidth scalar, the current original width.

Remarks

If width is 0, the printer width will not be changed.

Case 11: Auxiliary Output Width

Purpose

Gets or sets the auxiliary output width.

Format

oldwidth = sysstate(11, width);

Input

width scalar, new output width.

Output

oldwidth scalar, the original output width.

Remarks

If width is 0 then the output width will not be changed.

This may also be set with the outwidth command.

See Also

outwidth

sysstate

s

Case 13: LU Tolerance

Purpose

Gets or sets singularity tolerance for LU decomposition in current thread.

Format

oldtol = sysstate(13, tol);

Input

tol scalar, new tolerance.

Output

oldtol scalar, the original tolerance.

Remarks

The tolerance must be ≥0. If tol is negative, the tolerance is returned and left
unchanged.

This tolerance is thread-safe. It must be set in the same thread in which it is to be ref-
erenced. To set the global singularity tolerance for LU decomposition, use case 32.

See Also

croutp, inv

Case 14: Cholesky Tolerance

Purpose

Gets or sets singularity tolerance for Cholesky decomposition in current thread.

35-1814

sysstate

s

35-1815

Format

oldtol = sysstate(14, tol);

Input

tol scalar, new tolerance.

Output

oldtol scalar, the original tolerance.

Remarks

The tolerance must be 0. If tol is negative, the tolerance is returned and left
unchanged.

This tolerance is thread-safe. It must be set in the same thread in which it is to be ref-
erenced. To set the global singularity tolerance for Cholesky decomposition, use case
33.

This affects the following functions:

solpd
invpd for matrices 12x12

See Also

chol, invpd, solpd

Case 15: Screen State

Purpose

Gets or sets window state as controlled by screen command.

sysstate

s

Format

oldstate = sysstate(15, state);

Input

state scalar, new window state.

Output

oldstate scalar, the original window state.

Remarks

If state = 1, window output is turned on. If state = 0, window output is turned off.
If state = -1, the state is returned unchanged.

See Also

screen

Case 18: Auxiliary Output

Purpose

Gets auxiliary output parameters.

Format

{ state, name } = sysstate(18,0);

Output

state scalar, auxiliary output state, 1 - on, 0 - off.
name string, auxiliary output filename.

35-1816

sysstate

s

35-1817

See Also

output

Case 19: Get/Set Format

Purpose

Gets or sets format parameters.

Format

oldfmt = sysstate(19, fmt);

Input

fmt scalar or 11x1 column vector containing the new
formatparameters. Usually this will have come from a
previous sysstate(19,0) call. See Output for
description of matrix.

Output

oldfmt 11x1 vector containing the current format parameters.
The characters in quotes are components of the format
string that gets passed through to the C library
sprintf function:
[1] format conversion type:

0 string format (''s'')
1 compact format (''g'').
2 auto format (''#g'').
3 scientific format (''e'').
4 decimal format (''f'').

sysstate

s

5 compact format, upper case (''G'').

6 auto format, upper case (''#G'').
7 scientific format, upper case

(''E'').
[2] justification:

0 right justification.
1 left justification (''-'').

[3] sign:
0 sign used only for negative

numbers.
1 sign always used (''+'').

[4] leading zero:
0 no leading zero.
1 leading zero (''0'').

[5] trailing character:
0 no trailing character.
1 trailing space ('''').
2 trailing comma ('','').
3 trailing tab (''\t'').

[6] row delimiter:
0 no row delimiter.
1 one newline between rows (''\n'').
2 two newlines between rows

(''\n\n'').
3 print ''Row 1, Row 2, ...'' before

each row (''\nRow %u\n'',
where ''%u'' is the row number).

35-1818

sysstate

s

35-1819

[7] carriage line feed position:
0 newline row delimiters positioned

before rows.
1 newline row delimiters positioned

after rows.
[8] automatic line feed for row vectors.

0 newline row delimiters occur
between rows of a matrix only if
that matrix has more than one
row.

1 newline row delimiters occur
between rows of a matrix,
regardless of number of rows.

[9] field width.
[10] precision.
[11] formatted flag.

0 formatting disabled.
1 formatting enabled.

Remarks

If fmt is scalar 0, then the format parameters will be left unchanged.

See the format and print commands for more information on the formatting para-
meters.

See Also

format, print

Case 21: Imaginary Tolerance

sysstate

s

Purpose

Gets or sets imaginary tolerance in current thread.

Format

oldtol = sysstate(21, tol);

Input

tol scalar, the new tolerance.

Output

oldtol scalar, the original tolerance.

Remarks

The imaginary tolerance is used to test whether the imaginary part of a complex matrix
can be treated as zero or not. Functions that are not defined for complex matrices
check the imaginary part to see if it can be ignored. The default tolerance is 2.23e-16,
or machine epsilon.

If tol<0, the current tolerance is returned.

This tolerance is thread-safe. It must be set in the same thread in which it is to be ref-
erenced. To set the global imaginary tolerance, use case 34.

See Also

hasimag

Case 22: Source Path

Purpose

Gets or sets the path the compiler will search for source files.

35-1820

sysstate

s

35-1821

Format

oldpath = sysstate(22, path);

Input

path scalar 0 to get path, or string containing the new path.

Output

oldpath string, original path.

Remarks

If path is a matrix, the current source path is returned.

This resets the src_path configuration variable. src_path is initially defined in
the GAUSS configuration file, gauss.cfg.

path can list a sequence of directories, separated by semicolons.

Resetting src_path affects the path used for subsequent run and compile state-
ments.

Case 24: Dynamic Library Directory

Purpose

Gets or sets the path for the default dynamic library directory.

Format

oldpath = sysstate(24, path);

sysstate

s

Input

path scalar 0 to get path, or string containing the new path.

Output

oldpath string, original path.

Remarks

If path is a matrix, the current path is returned.

path should list a single directory, not a sequence of directories.

Changing the dynamic library path does not affect the state of any DLL's currently
linked to GAUSS. Rather, it determines the directory that will be searched the next
time dlibrary is called.

UNIX

Changing the path has no effect on GAUSS's default DLL, libgauss.so.
libgauss.so must always be located in the GAUSSHOME directory.

Windows

Changing the path has no effect on GAUSS's default DLL, gauss.dll.
gauss.dll must always be located in the GAUSSHOME directory.

See Also

dlibrary, dllcall

Case 25: Temporary File Path

Purpose

Gets or sets the path GAUSS will use for temporary files.

35-1822

sysstate

s

35-1823

Format

oldpath = sysstate(25, path);

Input

path scalar 0 to get path, or string containing the new path.

Output

oldpath string, original path.

Remarks

If path is of type matrix, the path will be returned but not modified.

Case 26: Interface Mode

Purpose

Returns the current interface mode.

Format

mode = sysstate(26,0);

Output

mode scalar, interface mode flag
0 non-X mode
1 terminal (-v) mode
2 X Windows mode

sysstate

s

Remarks

A mode of 0 indicates that you're running a non-X version of GAUSS; i.e., a version
that has no X Windows capabilities. A mode of 1 indicates that you're running an X
Windows version of GAUSS, but in terminal mode; i.e., you started GAUSS with the -
v flag. A mode of 2 indicates that you're running GAUSS in X Windows mode.

Case 28: Random Number Generator Parameters

Purpose

Gets or sets the random number generator (RNG) parameters.

Format

oldprms = sysstate(28, prms);

Input

prms scalar 0 to get parameters, or 3x1 matrix of new
parameters.
[1] seed, 0<seed<232

[2]
multiplier,

0<mult<232

[3]
constant,

0<=const<232

Output

oldprms 3x1 vector, the original parameters.

Remarks

If prms is a scalar 0, the current parameters will be returned without being changed.

35-1824

sysstate

s

35-1825

The modulus of the RNG cannot be changed; it is fixed at 232.

See Also

rndcon, rndmult, rndseed, rndn, rndu

Case 30: Base Year Toggle

Purpose

Specifies whether year value returned by date is to include base year (1900) or
not.

Format

oldstate = sysstate(30, state);

Input

state scalar, 1, 0, or missing value.

Output

oldstate scalar, the original state.

Remarks

Internally, date acquires the number of years since 1900. sysstate case 30 spe-
cifies whether date should add the base year to that value or not. If state = 1,
date adds 1900, returning a fully-qualified 4-digit year.

If state = 0, date returns the number of years since 1900. If state is a missing
value, the current state is returned. The default state is 1.

sysstate

s

Case 32: Global LU Tolerance

Purpose

Gets or sets global singularity tolerance for LU decomposition.

Format

oldtol = sysstate(32, tol);

Input

tol scalar, new tolerance.

Output

oldtol scalar, the original tolerance.

Remarks

The tolerance must be 0. If tol is negative, the tolerance is returned and left
unchanged.

This is a global tolerance and therefore not thread-safe. To set the singularity tolerance
for LU decomposition in the current thread, use case 13.

See Also

croutp, inv

Case 33: Global Cholesky Tolerance

Purpose

Gets or sets global singularity tolerance for Cholesky decomposition.

35-1826

sysstate

s

35-1827

Format

oldtol = sysstate(33, tol);

Input

tol scalar, new tolerance.

Output

oldtol scalar, the original tolerance.

Remarks

The tolerance must be 0. If tol is negative, the tolerance is returned and left
unchanged.

This is a global tolerance and therefore not thread-safe. To set the singularity tolerance
for Cholesky decomposition in the current thread, use case 14.

This affects the following functions:

solpd
invpd for matrices 12x12

See Also

chol, invpd, solpd

Case 34: Global Imaginary Tolerance

Purpose

Gets or sets the global imaginary tolerance.

sysstate

s

Format

oldtol = sysstate(34, tol);

Input

tol scalar, the new tolerance.

Output

oldtol scalar, the original tolerance.

Remarks

The imaginary tolerance is used to test whether the imaginary part of a complex matrix
can be treated as zero or not. Functions that are not defined for complex matrices
check the imaginary part to see if it can be ignored. The default tolerance is 2.23e-16,
or machine epsilon.

If tol<0, the current tolerance is returned.

This is a global tolerance and therefore not thread-safe. To set the imaginary tolerance
in the current thread, use case 21.

See Also

hasimag

system

Purpose

Quits GAUSS and returns to the operating system.

35-1828

system

s

35-1829

Format

system;
system c;

Input

c scalar, an optional exit code that can be recovered by
the program that invoked GAUSS. The default is 0.
Valid arguments are 0-255.

Remarks

The system command always returns an exit code to the operating system or invok-
ing program. If you don't supply one, it returns 0. This is usually interpreted as indic-
ating success.

See Also

exec

system

s

t

tab

Purpose

Tabs the cursor to a specified text column.

Format

tab(col);
print expr1 expr2 tab(col1) expr3 tab(col2) expr4 ...;

Input

col scalar, the column position to tab to.

Remarks

col specifies an absolute column position. If col is not an integer, it will be trun-
cated.

tab can be called alone or embedded in a print statement. You cannot embed it
within a parenthesized expression in a print statement, though. For example:

print (tab(20) c + d * e);

will not give the results you expect. If you have to use parenthesized expressions,
write it like this instead:

print tab(20) (c + d * e);

35-1830

tab

t

35-1831

tan

Purpose

Returns the tangent of its argument.

Format

y = tan(x);

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array.

Remarks

For real matrices, x should contain angles measured in radians.

To convert degrees to radians, multiply the degrees by π/180.

Example

//Create an additive sequence 0.1, 0.2, 0.3...0.9
x = seqa(0.1, 0.1, 9);

y = tan(x);

The above code produces:

tan

t

0.1003346
0.2027100
0.3093362
0.4227932

y = 0.5463024
0.6841368
0.8422883
1.0296386
1.2601582

See Also

atan, pi

tanh

Purpose

Computes the hyperbolic tangent.

Format

y = tanh(x);

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array containing the
hyperbolic tangents of the elements of x.

35-1832

tanh

t

35-1833

Example

//Create a sequence starting at -0.5 and increasing by
//0.25, i.e. -0.5, -0.25, 0, 0.25...1
x = seqa(-0.5, 0.25, 7);
x = x * pi;
y = tanh(x);

After the above code, y is equal to:

-0.46211716
-0.24491866
0.00000000
0.24491866
0.46211716
0.63514895
0.76159416

Source

trig.src

tempname

Purpose

Creates a temporary file with a unique name.

Format

tname = tempname(path, pre, suf);

tempname

t

Input

path string, path where the file will reside.
pre string, a prefix to begin the file name with.
suf string, a suffix to end the file name with.

Output

tname string, unique temporary file name of the form
path/preXXXXnnnnnsuf, where XXXX are 4
letters, and nnnnn is the process id of the calling
process.

Remarks

Any or all of the inputs may be a null string or 0. If path is not specified, the current
working directory is used.

If unable to create a unique file name of the form requested, tempname returns a null
string.

WARNING: GAUSS does not remove temporary files created by tempname. It is
left to the user to remove them when they are no longer needed.

ThreadBegin

Purpose

Marks the beginning of a multi-line block of code to be executed as a thread.

Format

ThreadBegin;

35-1834

ThreadBegin

t

35-1835

Example

ThreadBegin;
m = n*p;
n = calcA(m);

ThreadEnd;

Notice that the writer-must-isolate rule (see MULTI-THREADED PROGRAMMING IN
GAUSS, CHAPTER 1) does not apply within the bounds of the
ThreadBegin/ThreadEnd pair, as there is no risk of simultaneous access to a
symbol. The rule only applies between the threads in a given set (and their children).

See ThreadJoin for an example of a fully-defined thread set.

See Also

ThreadEnd, ThreadJoin, ThreadStat

ThreadEnd

Purpose

Marks the end of a multi-line block of code to be executed as a thread.

Format

ThreadEnd;

Example

ThreadBegin;
m = n*p;
n = calcA(m);

ThreadEnd;

ThreadEnd

t

Notice that the writer-must-isolate rule (see MULTI-THREADED PROGRAMMING IN
GAUSS, CHAPTER 1) does not apply within the bounds of the
ThreadBegin/ThreadEnd pair, as there is no risk of simultaneous access to a
symbol. The rule only applies between the threads in a given set (and their children).

See ThreadJoin for an example of a fully-defined thread set.

See Also

ThreadBegin, ThreadJoin, ThreadStat

threadfor, threadendfor

Purpose

Begins a parallel for loop.

Format

threadfor i (start, stop, step);
 .
 .
 .
threadendfor;

Input

i literal, the name of the counter variable.
start scalar expression, the initial value of the counter.
stop scalar expression, the final value of the counter.
step scalar expression, the increment value.

35-1836

threadfor, threadendfor

t

35-1837

Remarks

1. The iterations of a threadfor loop may execute in any order.
2. Indexed assignments to global variables that use the loop counter behave the

same as in a standard for loop.
3. Non-indexed assignments will create a temporary variable that persists only

through the remainder of the current loop iteration. For example:

a = 34.7;
threadfor i(1, 2, 1);

a = rndu(1,1);
print a;

threadEndfor;

print a;

will produce output similar to the following:

0.90560157
0.52594285
34.700000

4. threadfor loops may not be nested

Examples

Example 1

//A basic 'threadfor' loop
threadfor i (1, 4, 1);

print i;
threadendfor;

The code above, will print out:

1.000
2.000

threadfor, threadendfor

t

3.000
4.000

Example 2: Simple bootstrap of the mean of one variable

//Create fully pathed name of dataset
dataset = getGAUSSHome() $+ "examples/fueleconomy.dat";

//Load all contents of dataset
x = loadd(dataset);

//Extract 2nd column
engine_disp = x[.,2];

iters = 500;
nobs = rows(engine_disp);

//Pre-allocate vector to hold sample means
sample_means = zeros(iters, 1);

threadFor i(1, iters, 1);
//Create tmp variable 'idx',
//containing random integers from 1-nobs
//'idx' exists ONLY during the loop
idx = ceil(nobs * rndu(nobs, 1));

//Extract random sample into tmp variable,
//'sample'. Only exists during loop
sample = engine_disp[idx];

//Calculate mean of sample
//and assign using loop counter
//'sample_means' will persist after loop
sample_means[i] = meanc(sample);

threadEndFor;

35-1838

threadfor, threadendfor

t

35-1839

See Also

Performance considerations

ThreadJoin

Purpose

Completes the definition of a set of threads to be executed simultaneously.

Format

ThreadJoin;

Remarks

Each thread in the set must adhere to the writer-must-isolate rule (see MULTI-
THREADED PROGRAMMING IN GAUSS, CHAPTER 1). Because the threads in a set
execute simultaneously, there is no way of knowing in one thread the current "state" of
a symbol in another, and thus no way of safely or meaningfully accessing it.

Example

ThreadBegin; //Thread 1--isolates y,z
y = x'x;
z = y'y;

ThreadEnd;
ThreadBegin; //Thread 2--isolates q,r

q = r'r;
r = q'q;

ThreadEnd;
ThreadStat n = m'm; //Thread 3--isolates n
ThreadStat p = o'o; //Thread 4--isolates p
ThreadJoin; //Joins threads 1-4

ThreadJoin

t

b = z + r + n'p; //y,z,q,r,n,p available again,
// can be read and written

Note how threads 1-4 isolate the various symbols they assign to--no other thread ref-
erences the written symbols at all. Once the threads are joined, however, the symbols
are again available for use, and can be both read and assigned to.

See Also

ThreadBegin, ThreadEnd, ThreadStat

ThreadStat

Purpose

Marks a single line of code to be executed as a thread.

Format

ThreadStat statement;

Example

ThreadStat m = n*p;

See ThreadJoin for an example of a fully-defined thread set.

See Also

ThreadBegin, ThreadEnd, ThreadJoin

35-1840

ThreadStat

t

35-1841

time

Purpose

Returns the current system time.

Format

y = time;

Output

y 4x1 numeric vector, the current time in the order: hours,
minutes, seconds, and hundredths of a second.

Example

print time;

7.000000
31.000000
46.000000
33.000000

See Also

date, datestr, datestring, datestrymd, hsec, timestr

timedt

Purpose

Returns system date and time in DT scalar format.

time

t

Format

dt = timedt;

Output

dt scalar, system date and time in DT scalar format.

Remarks

The DT scalar format is a double precision representation of the date and time. In the
DT scalar format, the number:

20100306071511

represents:

07:15:11 or 7:15:11 AM on March 6, 2010.

Source

time.src

See Also

todaydt, timeutc, dtdate

timestr

Purpose

Formats a time in a vector to a string.

Format

ts = timestr(t);

35-1842

timestr

t

35-1843

Input

t 4x1 vector from the time function, or a zero. If the
input is 0, the time function will be called to return
the current system time.

Output

ts 8 character string containing current time in the format:
hr:mn:sc

Example

t = { 7, 31, 46, 33 };
ts = timestr(t);
print ts;

produces:

7:31:46

Source

time.src

See Also

date, datestr, datestring, datestrymd, ethsec, etstr, time

timeutc

Purpose

Returns the number of seconds since January 1, 1970 Greenwich Mean Time.

timeutc

t

Format

tc = timeutc;

Output

tc scalar, number of seconds since January 1, 1970
Greenwich Mean Time.

Example

//Retrieve seconds since January 1, 1970 GMT
tc = timeutc;

//Convert to a date time vector
utv = utctodtv(tc);

After the code above, tc and utv are equal to:

tc = 1340080112

utv = 2012 06 18 21 28 32 1 169

See Also

dtvnormal, utctodtv

title

Purpose

Sets the title for the graph. NOTE: This function is for the deprecated PQG graph-
ics. Use plotSetTitle instead.

35-1844

title

t

35-1845

Library

pgraph

Format

title(str);

Input

str string, the title to display above the graph.

Remarks

Up to three lines of title may be produced by embedding a line feed character ("\L") in
the title string.

Example

title("First title line\LSecond title line\L"\
"Third title line");

Fonts may be specified in the title string. For instructions on using fonts, see Selecting
Fonts, Section 1.0.1.

Source

pgraph.src

See Also

xlabel, ylabel, fonts

title

t

tkf2eps

Purpose

Converts a .tkf file to an Encapsulated PostScript file. NOTE: This function is
deprecated and does not work for the new .plot graphics files. Use
plotSave to convert .plot files to EPS format.

Library

pgraph

Format

ret = tkf2eps(tekfile, epsfile);

Input

tekfile string, name of .tkf file.
epsfile string, name of Encapsulated PostScript file.

Output

ret scalar, 0 if successful

Remarks

The conversion is done using the global parameters in peps.dec. You can modify
these globally by editing the .dec file, or locally by setting them in your program
before calling tkf2eps.

See the header of the output Encapsulated PostScript file and a PostScript manual if
you want to modify these parameters.

35-1846

tkf2eps

t

35-1847

tkf2ps

Purpose

Converts a .tkf file to a PostScript file. NOTE: This function is deprecated and
does not work for the new .plot graphics files. Use plotSave to convert
.plot files to PS format.

Library

pgraph

Format

ret = tkf2ps(tekfile, psfile);

Input

tekfile string, name of .tkf file.
psfile string, name of PostScript file.

Output

ret scalar, 0 if successful.

Remarks

The conversion is done using the global parameters in peps.dec. You can modify
these globally by editing the .dec file, or locally by setting them in your program
before calling tkf2ps.

See the header of the output PostScript file and a PostScript manual if you want to
modify these parameters.

tkf2ps

t

tocart

Purpose

Converts from polar to Cartesian coordinates.

Format

xy = tocart(r, theta);

Input

r NxK real matrix, radius.
theta LxM real matrix, ExE conformable with r, angle in

radians.

Output

xy max(N,L) by max(K,M) complex matrix containing the
x coordinate in the real part and the y coordinate in the
imaginary part.

Source

coord.src

todaydt

Purpose

Returns system date in DT scalar format. The time returned is always midnight
(00:00:00), the beginning of the returned day.

35-1848

tocart

t

35-1849

Format

dt = todaydt;

Output

dt scalar, system date in DT scalar format.

Remarks

The DT scalar format is a double precision representation of the date and time. In the
DT scalar format, the number:

20120906130525

represents 13:05:25 or 1:05:25 PM on September 6, 2012.

Source

time.src

See Also

timedt, timeutc, dtdate

toeplitz

Purpose

Creates a Toeplitz matrix from a column vector.

Format

t = toeplitz(x);

toeplitz

t

Input

x Kx1 vector.

Output

t KxK Toeplitz matrix.

Example

//Create the sequence 1, 2, 3, 4, 5 and assign it to 'x'
x = seqa(1,1,5);

//Create a diagonal-constant or Toeplitz matrix
y = toeplitz(x);

After the code above, y is equal to:

1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
5 4 2 2 3

Source

toeplitz.src

token

Purpose

Extracts the leading token from a string.

35-1850

token

t

35-1851

Format

{ token, str_left } = token(str);

Input

str string, the string to parse.

Output

token string, the first token in str.
str_left string, str minus token.

Remarks

str can be delimited with commas or spaces.

The advantage of token over parse is that parse is limited to tokens of 8 char-
acters or less; token can extract tokens of any length.

Example

Here is a keyword that uses token to parse its string parameter:

//Create a keyword called 'add' that takes the input
//'s' and executes all of the code from the 'keyword
//add(s)' line until the 'endp' statement each time
//it is called
keyword add(s);

local tok,sum;
sum = 0;

//Continue loop until 's' equals an empty string

token

t

do until s $== "";

//Remove the first token from 's' and return
//it in 'tok'
{ tok, s } = token(s);

//Convert the string in 'tok' to a floating
//point number and add it to 'sum'
sum = sum + stof(tok);

endo;

//Set the formatting for print statements to
//create 1 space between numbers and
//to print 2 digits after the decimal point
format /rd 1,2;
print "Sum is: " sum;

endp;

If you type:

//Since it is a 'keyword' and not a 'proc', 'add'
//will take everything between 'add' and the
//semi-colon as a string input and refer to it
//internally as the 's' variable
add 1 2 3 4 5 6;

add will respond:

Sum is: 15.00

Source

token.src

See Also

parse

35-1852

token

t

35-1853

topolar

Purpose

Converts from Cartesian to polar coordinates.

Format

{ r, theta } = topolar(xy);

Input

xy NxK complex matrix containing the x coordinate in the
real part and the y coordinate in the imaginary part.

Output

r NxK real matrix, radius.
theta NxK real matrix, angle in radians.

Source

coord.src

trace

Purpose

Allows the user to trace program execution for debugging purposes.

topolar

t

Format

trace new;
trace new, mask;

Input

new scalar, new value for trace flag.
mask scalar, optional mask to allow leaving some bits of the

trace flag unchanged.

Remarks

The trace command has no effect unless you are running your program under
GAUSS's source level debugger. Setting the trace flag will not generate any debug-
ging output during normal execution of a program.

The argument is converted to a binary integer with the following meanings:

bit decimal meaning
ones 1 trace calls/returns
twos 2 trace line numbers
fours 4 unused
eights 8 output to window
sixteens 16 output to print
thirty-twos 32 output to auxiliary output
sixty-fours 64 output to error log

You must set one or more of the output bits to get any output from trace. If you set
trace to 2, you'll be doing a line number trace of your program, but the output will
not be displayed anywhere.

The trace output as a program executes will be as follows:

35-1854

trace

t

35-1855

(+GRAD) calling function or procedure GRAD
(-GRAD) returning from GRAD
[47] executing line 47

Note that the line number trace will only produce output if the program was compiled
with line number records.

To set a single bit use two arguments:

trace 16,16; turn on output to printer
trace 0,16; turn off output to printer

Example

trace 1+8; //trace fn/proc calls/returns to standard
//output

trace 2+8; //trace line numbers to standard output
trace 1+2+8; //trace line numbers and fn/proc calls/

//returns to standard output
trace 1+16; //trace fn/proc calls/returns to printer
trace 2+16; //trace line numbers to printer
trace 1+2+16; //trace line numbers and fn/proc calls/

//returns to printer

See Also

lineson

trap

Purpose

Sets the trap flag to enable or disable trapping of numerical errors.

trap

t

Format

trap val;
trap val, mask;

Input

val scalar, new trap value.
mask scalar, optional mask to allow leaving some bits of the

trap flag unchanged.

Examples

Example 1

First we will create some code that will return an error, stopping the program. Then
we will show how to trap and handle the error:

//Create a singular matrix
x = { 1 1 1,

1 1 1,
1 1 1 };

//Attempt to calculate inverse, but error
//'matrix singular' stops program
x_inv = inv(x);

In some cases, we would like our program to be able to detect certain errors and
recover from them. The next section of code will be the same as above, with the excep-
tion of setting the trap flag. We will see that it will not cause an error.

//Create a singular matrix
x = { 1 1 1,

1 1 1,
1 1 1 };

35-1856

trap

t

35-1857

//Set the trap flag, to supress the error
trap 1;

//Attempt to calculate inverse
x_inv = inv(x);

If you run the above code, you will notice that an error was not returned. With the trap
set to 1, instead of stopping the program with an error message, GAUSS will set the
variable x_inv equal to a scalar error code. A scalar error code is a missing value
that contains an integer which can be used to identify the error. For more information
on error codes, see scalerr and error. In this example, however, our main con-
cern is with determining whether or not the return value is a scalar error code. We can
do this with the GAUSS function, scalmiss.

//Create a singular matrix
x = { 1 1 1,

1 1 1,
1 1 1 };

//Set the trap flag, to supress the error
trap 1;

//Attempt to calculate inverse
x_inv = inv(x);

//Check to see if 'x_inv', contains a scalar error code
if scalmiss(x_inv);

print "matrix was singular";
endif;

Example 2

This example will built from the concepts in the example above to do something more
useful.

trap

t

//Create a coefficient matrix with linear dependencies
x = { 1 1 0.8,

1 1 1.5,
1 1 0.6 };

//Create a dependent variable
y = { -0.36,

-1.55,
-0.02 };

//Set the trap flag, to supress the error
trap 1;

//Attempt to compute the inverse of the moment matrix
mmi = inv(x'x);

//Check to see if 'mmi', contains a scalar error code
if scalmiss(mmi);

//Compute the pseudo-inverse of the moment matrix
mmi = pinv(x'x);

endif;

//Solve the linear equations
b_hat = mmi * x'y;

After the above code, b_hat is equal to:

0.5
0.5

-1.7

Remarks

The trap flag is examined by some functions to control error handling. There are 16
bits in the trap flag, but most GAUSS functions will examine only the lowest order bit:

35-1858

trap

t

35-1859

trap 1; turn trapping on
trap 0; turn trapping off

If we extend the use of the trap flag, we will use the lower order bits of the trap flag.
It would be wise for you to use the highest 8 bits of the trap flag if you create some
sort of user-defined trap mechanism for use in your programs. (See the function
trapchk for detailed instructions on testing the state of the trap flag; see error for
generating user-defined error codes.)

To set only one bit and leave the others unchanged, use two arguments:

trap 1,1; set the ones bit
trap 0,1; clear the ones bit

See Also

scalerr, trapchk, error

trapchk

Purpose

Tests the value of the trap flag.

Format

y = trapchk(m);

Input

m scalar mask value.

trapchk

t

Output

y scalar which is the result of the bitwise logical AND of
the trap flag and the mask value.

Remarks

To check the various bits in the trap flag, add the decimal values for the bits you wish
to check according to the chart below and pass the sum in as the argument to the
trapchk function:

bit decimal value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

35-1860

trapchk

t

35-1861

If you want to test if either bit 0 or bit 8 is set, then pass an argument of 1+256 or 257
to trapchk. The following table demonstrates values that will be returned for:

y = trapchk(257);

0 1 value of bit 0 in trap flag
0 0 1
1 256 257

value of bit 8 in trap flag

GAUSS functions that test the trap flag currently test only bits 0 and 1.

See Also

scalerr, trap, error

trigamma

Purpose

Computes trigamma function.

Format

y = trigamma(x);

Input

x MxN matrix or N-dimensional array.

trigamma

t

Output

y MxN matrix or N-dimensional array, trigamma.

Remarks

The trigamma function is the second derivative of the log of the gamma function with
respect to its argument.

trimr

Purpose

Trims rows from the top and/or bottom of a matrix.

Format

y = trimr(x, t, b);

Input

x NxK matrix from which rows are to be trimmed.
t scalar containing the number of rows which are to be

removed from the top of x.
b scalar containing the number of rows which are to be

removed from the bottom of x.

Output

y RxK matrix where R=N-(t + b), containing the rows
left after the trim.

35-1862

trimr

t

35-1863

Remarks

If either t or b is zero, then no rows will be trimmed from that end of the matrix.

Example

//Create a 5x3 matrix of random uniform numbers
x = rndu(5,3);

//Remove the top 2 rows of x and the bottom row
y = trimr(x,2,1);

If x is equal to:

0.780 0.922 0.864
0.151 0.687 0.947
0.271 0.014 0.060
0.054 0.084 0.526
0.880 0.278 0.199

then y will equal:

0.271 0.014 0.060
0.054 0.084 0.526

See Also

submat, rotater, shiftr

trunc

Purpose

Converts numbers to integers by truncating the fractional portion.

trunc

t

Format

y = trunc(x);

Input

x NxK matrix or N-dimensional array.

Output

y NxK matrix or N-dimensional array containing the
truncated elements of x.

Example

x = 100*rndn(2,2);
y = trunc(x);

If x equals:

-153.373 -1.972
109.412 127.732

then, y will equal:

-153.000 -1.000
109.000 127.000

See Also

ceil, floor, round

35-1864

trunc

t

35-1865

type

Purpose

Returns the symbol table type (matrix, string, etc) of its input argument.

Format

t = type(x);

Input

x local or global symbol, can be an expression.

Output

t scalar, argument type.
6 matrix
13 string
15 string array
17 structure
21 array
23 structure pointer
23 sparse matrix

Example

Example 1

//Create a matrix
x = { 1 2,

type

t

3 4 };

//Find type of 'x'
x_type = type(x);

After the above code, x_type will equal: 6, indicating that x is a matrix.

Example 2

//Create a string
x = "myfile.dat";

//Find type of 'x'
x_type = type(x);

After the above code, x_type will equal: 13, indicating that x is a string.

Remarks

type is often used to verify that inputs to a user defined procedure are valued. For
example, if an input is a file name, then it must be a string:

proc (1) = myProc(fname);
if type(fname) != 13;

errorlog "Input 'fname' must be a string";
end;

endif;
endp;

type returns the type of a single symbol. The related function typecv will take a
character vector of symbol names and return a vector of either their types or the miss-
ing value code for any that are undefined. type works for the symbol types listed
above; typecv works for user-defined procedures, keywords and functions as well.
type works for global or local symbols; typecv works only for global symbols.

35-1866

type

t

35-1867

See Also

typecv, typef

typecv

Purpose

Returns the symbol table type of objects whose names are given as a string or as
elements of a character vector or string array.

Format

y = typecv(x);

Input

x string, or Nx1 character vector or string array which
contains the names of variables whose type is to be
determined.

Output

y scalar or Nx1 vector containing the types of the
respective symbols in x.

Remarks

The values returned by typecv for the various variable types are as follows:

5 keyword (keyword)

typecv

t

6 matrix (numeric, character, or mixed)
8 procedure (proc)
9 function (fn)
13 string
15 string array
17 structure
21 array
23 structure pointer

typecv will return the GAUSS missing value code if the symbol is not found, so it
may be used to determine if a symbol is defined or not.

Example

xvar = sqrt(5);
yvar = "betahat";
fn area(r) = pi*r*r;
let names = xvar yvar area;
y = typecv(names);

This code assigns the following to y:

6 //6 for type matrix
y = 13 //13 for string

9 //9 for function

See Also

type, typef, varput, varget

35-1868

typecv

t

35-1869

typef

Purpose

Returns the type of data (the number of bytes per element) in a GAUSS data set.

Format

y = typef(fp);

Input

fp scalar, file handle of an open file.

Output

y scalar, type of data in GAUSS data set.

Remarks

If fp is a valid GAUSS file handle, then y will be set to the type of the data in the file
as follows:

 2 2-byte signed integer
 4 4-byte IEEE floating point
 8 8-byte IEEE floating point

Example

//Assign a variable to represent each of our file names
infile = "dat1";

typef

t

outfile = "dat2";

//Open the file "dat1" for reading.
//Note: The ^ before 'infile' tells GAUSS to use the value
//of the string variable 'infile' (which is 'dat1' in this
//case) rather than name of the variable.
open fin = ^infile;

//Get the names of the variables that are saved in the
//dataset
names = getname(infile);

//Create a new data set file using the same variable names
//as 'dat1', with 1 column per data element and using the
//same size data, i.e. the number of bytes per element, as
//the data in 'dat1'
create fout = ^outfile with ^names, 0, typef(fin);

In this example, a file dat2.dat is created which has the same variables and vari-
able type as the input file, dat1.dat. typef is used to return the type of the input
file data for the create statement.

See Also

colsf, rowsf

35-1870

typef

t

35-1871

u

union

Purpose

Returns the union of two vectors with duplicates removed.

Format

y = union(v1, v2, flag);

Input

v1 Nx1 vector.
v2 Mx1 vector.
flag scalar, 1 if numeric data, 0 if character.

Output

y Lx1 vector containing all unique values that are in v1
and v2, sorted in ascending order.

Remarks

The combined elements of v1 and v2 must fit into a single vector.

Example

//Create two column vectors with character data

union

u

let v1 = mary jane linda john;
let v2 = mary sally;

x = union(v1,v2,0);

//The '$' in front of 'x' tells GAUSS to print 'x' as
//character data
print $x;

The above code will produce the following results:

JANE
JOHN

LINDA
MARY

SALLY

unionsa

Purpose

Returns the union of two string vectors with duplicates removed.

Format

y = unionsa(sv1, sv2);

Input

sv1 Nx1 or 1xN string vector.
sv2 Mx1 or 1xM string vector.

35-1872

unionsa

u

35-1873

Output

y Lx1 vector containing all unique values that are in
sv1 and sv2, sorted in ascending order.

Example

string sv1 = { "mary", "jane", "linda", "john" };
string sv2 = { "mary", "sally" };
y = unionsa(sv1,sv2);
print y;

The above code produces the following output:

jane
john

linda
mary

sally

Source

unionsa.src

See Also

union

uniqindx

Purpose

Computes the sorted index of x, leaving out duplicate elements.

uniqindx

u

Format

index = uniqindx(x, flag);

Input

x Nx1 or 1xN vector.
flag scalar, 1 if numeric data, 0 if character.

Output

index Mx1 vector, indices corresponding to the elements of x
sorted in ascending order with duplicates removed.

Remarks

Among sets of duplicates it is unpredictable which elements will be indexed.

Example

let x = 5 4 4 3 3 2 1;

//Create a sorted index of all the unique elements in 'x'
ind = uniqindx(x,1);

//Use the index 'ind' to return all of the unique elements
//of 'x' in ascending order
y = x[ind];

After running the above code, ind and y are equal to:

7.0000000 1.0000000
6.0000000 2.0000000

ind = 4.0000000 y = 3.0000000

35-1874

uniqindx

u

35-1875

3.0000000 4.0000000
1.0000000 5.0000000

See Also

unique, uniqindxsa

uniqindxsa

Purpose

Computes the sorted index of a string vector, omitting duplicate elements.

Format

ind = uniqindxsa(sv);

Input

sv Nx1 or 1xN string vector.

Output

ind Mx1 vector, indices corresponding to the elements of
sv sorted in ascending order with duplicates removed.

Remarks

Among sets of duplicates it is unpredictable which elements will be indexed.

Example

string sv = {"mary", "linda", "linda", "jane",

uniqindxsa

u

"jane", "cindy", "betty"};
ind = uniqindxsa(sv);
y = sv[ind];

The above code assigns the variables ind and y as follows:

7 betty
6 cindy

ind = 4 y = jane
2 linda
1 mary

Source

uniquesa.src

See Also

unique, uniquesa, uniqindx

unique

Purpose

Sorts and removes duplicate elements from a vector.

Format

y = unique(x);
y = unique(x, flag);

Input

x NxM numeric matrix, NxM character data, or NxM
string array.

35-1876

unique

u

35-1877

flag Optional input, scalar, 1 if numeric data, 0 if character
data. Default is 1. String array does not need a flag.

Output

y Mx1 vector, sorted x with the duplicates removed.

Example

Example 1: Numeric

//Create a column vector with duplicate elements
years = { 1632,

2012,
1709,
1812,
1709,
1989,
1830,
1875,
1912,
1912,
1924,
1960 };

//Sort 'years' and remove any duplicate elements
years_unique = unique(years);

After the code above, the variables years and years_unique are assigned as
follows:

1632
2012 1632

unique

u

1709 1709
1812 1812
1709 1830

years = 1989 years_unique = 1875
1830 1912
1875 1924
1912 1960
1912 1989
1924 2012
1960

Example 2: Numeric Matrix

//Create a numeric matrix with duplicate elements
years = { 1632 2012,

1709 1812,
1709 1989,
1830 1875,
1912 1912,
1924 1960 };

//Sort 'years' and remove any duplicate elements
years_unique = unique(years);
print "years: " years;
print;
print "years_unique:" years_unique;

After the code above, the variables years and years_unique are assigned as
follows:

years:
1632.0000 2012.0000
1709.0000 1812.0000
1709.0000 1989.0000

35-1878

unique

u

35-1879

1830.0000 1875.0000
1912.0000 1912.0000
1924.0000 1960.0000

years_unique:
1632.0000
1709.0000
1812.0000
1830.0000
1875.0000
1912.0000
1924.0000
1960.0000
1989.0000
2012.0000

Example 3: Character data

//Create column character vector, by using
//numeric concatenation operator
levels = "high" | "medium" | "medium" | "low" |

"high" | "medium" | "medium";

//Set flag to indicate data is character data
flag = 0;

//Sort 'levels' alphabetically and
//remove any duplicate elements
levels_unique = unique(levels, flag);

//Note the $ used before the variable which

unique

u

//tells GAUSS to print as characters
print $levels_unique;

The code above will produce the following output:

high
low

medium

You can reorder these levels with an indexing operation, for example:

levels = levels_unique[2 3 1];
print levels;

will produce the following output:

low
medium

high

Example 4 : String array vector

//Create column string array
string levels = { "high", "medium", "medium" , "low" ,

"high" , "medium" , "medium"};

//Sort 'levels' alphabetically and
//remove any duplicate elements
levels_unique = unique(levels);

print levels_unique;

The code above will produce the following output:

35-1880

unique

u

35-1881

high
low

medium

Example 5 : String array matrix

//Create 3x2 string array

string levels = { "apple" "watermelon",
"banana" "banana",
"watermelon" "apple" };

//Sort 'levels' alphabetically and
//remove any duplicate elements
levels_unique = unique(levels);

print"levels: " levels;
print;
print"levels_unique:" levels_unique;

The code above will produce the following output:

levels:
apple watermelon
banana banana
watermelon apple

levels_unique:
apple
banana
watermelon

See Also

sortc, uniquesa, uniqindx

unique

u

uniquesa

Purpose

Removes duplicate elements from a string vector. NOTE: uniquesa is deprec-
ated. Instances of this function should be replaced by unique.

Format

y = uniquesa(sv);

Input

sv Nx1 or 1xN string vector.

Output

y sorted Mx1 string vector containing all unique elements
found in sv.

Example

//Create a 8x1 string array
string comTrades = { "corn", "gold", "soybeans", "silver",
"coffee",

"oil", "silver", "soybeans" };

//Return an alphabetized string array containing the
//unique elements from 'comTrades'
commodity = uniquesa(comTrades);

After the code above, the variables comTrades and commodity will be equal to:

35-1882

uniquesa

u

35-1883

corn
gold coffee

soybeans corn
comTrades = silver commodity = gold

coffee oil
oil silver

silver soybeans
soybeans

Remarks

It is important to note that the return from uniquesa will always be a column vector,
even if the input string array is a row vector.

Source

uniquesa.src

See Also

unique, uniqindxsa, uniqindx

upmat, upmat1

Purpose

Returns the upper portion of a matrix. upmat returns the main diagonal and every
element above. upmat1 is the same except it replaces the main diagonal with
ones.

Format

u = upmat(x);
u = upmat1(x);

upmat, upmat1

u

Input

x NxK matrix.

Output

u NxK matrix containing the upper elements of x. The
lower elements are replaced with zeros. upmat returns
the main diagonal intact. upmat1 replaces the main
diagonal with ones.

Example

x = { 7 2 -1,
2 3 -2,
4 -2 8 };

u = upmat(x);
u1 = upmat1(x);

The resulting matrices are:

7 2 -1 1 2 -1
u = 0 3 -2 u1 = 0 1 -2

0 0 8 0 0 1

Source

diag.src

See Also

lowmat, lowmat1, diag, diagrv, crout

35-1884

upmat, upmat1

u

35-1885

upper

Purpose

Converts a string, matrix of character data, or string array to uppercase.

Format

y = upper(x);

Input

x string, or NxK matrix, or string array containing the
character data to be converted to uppercase.

Output

y string, or NxK matrix, or string array containing the
uppercase equivalent of the data in x.

Remarks

If x is a numeric matrix, y will contain garbage. No error message will be generated
since GAUSS does not distinguish between numeric and character data in matrices.

Example

//Create a lowercase string
x = "uppercase";

//Convert the string to upper case
y = upper(x);

//Adding the '$' tells GAUSS to treat the data as character

upper

u

//data
print $y;

This code produces:

UPPERCASE

See Also

lower

use

Purpose

Loads a compiled file at the beginning of the compilation of a source program.

Format

use fname;

Input

fname literal or ^string, the name of a compiled file created
using the compile or the saveall command.

Remarks

The use command can be used ONCE at the TOP of a program to load in a compiled
file which the rest of the program will be added to. In other words, if xy.e had the fol-
lowing lines:

35-1886

use

u

35-1887

library pgraph;
external proc xy;
x = seqa(0.1,0.1,100);

it could be compiled to xy.gcg. Then the following program could be run:

use xy;
xy(x, sin(x));

which would be equivalent to:

new;
library pgraph;
x = seqa(0.1,0.1,100);
xy(x, sin(x));

The use command can be used at the top of files that are to be compiled with the com-
pile command. This can greatly shorten compile time for a set of closely related pro-
grams. For example:

library pgraph;
external proc xy,logx,logy,loglog,hist;
saveall pgraph;

This would create a file called pgraph.gcg containing all the procedures, strings
and matrices needed to run PQG programs. Other programs could be compiled very
quickly with the following statement at the top of each:

use pgraph;

or the same statement could be executed once, for instance from the command prompt,
to instantly load all the procedures for PQG.

When the compiled file is loaded with use, all previous symbols and procedures are
deleted before the program is loaded. It is therefore unnecessary to execute a new
before use'ing a compiled file.

use

u

use can appear only ONCE at the TOP of a program.

See Also

compile, run, saveall

utctodt

Purpose

Converts UTC scalar format to DT scalar format.

Format

dt = utctodt(utc);

Input

utc Nx1 vector, UTC scalar format.

Output

dt Nx1 vector, DT scalar format.

Remarks

A UTC scalar gives the number of seconds since or before January 1, 1970 Greenwich
Mean Time. In DT scalar format, 08:35:52 on June 11, 2005 is 20050611083552.

Example

tc = 1346290409;
print "tc = " tc;

35-1888

utctodt

u

35-1889

dt = utctodt(tc);
print "dt = " dt;

produces:

tc = 1346290409
dt = 20120829183329

Source

time.src

See Also

dtvnormal, timeutc, utctodtv, dttodtv, dtvtodt, dttoutc, dtvtodt, strtodt, dttostr

utctodtv

Purpose

Converts UTC scalar format to DTV vector format.

Format

dtv = utctodtv(utc);

Input

utc Nx1 vector, UTC scalar format.

Output

dtv Nx8 matrix, DTV vector format.

utctodtv

u

Remarks

A UTC scalar gives the number of seconds since or before January 1, 1970 Greenwich
Mean Time.

Each row of dtv, in DTV vector format, contains:

[N,1] Year, four digit integer.
[N,2] Month in Year, 1-12.
[N,3] Day of month, 1-31.
[N,4] Hours since midnight, 0-23.
[N,5] Minutes, 0-59.
[N,6] Seconds, 0-59.
[N,7] Day of week, 0-6, 0=Sunday.
[N,8] Days since Jan 1 of current year, 0-365.

Example

//Set 'tc' equal to the number of seconds since January 1,
//1970
tc = timeutc;
print "tc = " tc;

dtv = utctodtv(tc);
print "dtv = " dtv;

produces:

tc = 1340315529
dtv = 2012 6 21 14 52 9 4 172

See Also

dtvnormal, timeutc, utctodt, dttodtv, dttoutc, dtvtodt, dtvtoutc, strtodt, dttostr

35-1890

utctodtv

u

35-1891

utrisol

Purpose

Computes the solution of Ux = b where U is an upper triangular matrix.

Format

x = utrisol(b, U);

Input

b PxK matrix.
U PxP upper triangular matrix.

Output

x PxK matrix, solution of Ux = b.

Remarks

utrisol applies a back solve to Ux = b to solve for x. If b has more than one
column, each column is solved for separately, i.e., utrisol applies a back solve to
U * x[.,i] = b[.,i].

utrisol

u

v

vals

Purpose

Converts a string into a matrix of its ASCII values.

Format

y = vals(s);

Input

s string of length N where N > 0.

Output

y Nx1 matrix containing the ASCII values of the
characters in the string s.

Remarks

If the string is null, the function will fail and an error message will be given.

Example

//Initialize 'k' so it will be 0 for the first iteration of
//the 'do while' loop
k = 0;

35-1892

vals

v

35-1893

//Prompt the user for input
print"Continue Program? [Y/N]";

//Continually check for keyboard input and exit the loop on
//keyboard input
do while (k == 0);

k = key;
endo;

//Follow a different code branch depending upon which key
//the user entered
if k == vals("Y") or k == vals("y");

print "You chose to continue";
else;

print "Exiting program now";
endif;

In this example the key function is used to read keyboard input. When key returns a
nonzero value, meaning a key has been pressed, the ASCII value it returns is tested to
see if it is an uppercase or lowercase 'Y'. If it is, the program will follow the first
branch and print:

You chose to continue

otherwise, it will follow the second branch and print:

Exiting program now

See Also

chrs, ftos, stof

vals

v

varCovM, varCovX

Purpose

Computes the population variance-covariance matrix.

Format

vc = varCovM(mm);
vc = varCovX(x);

Input

mm KxK moment (x'x) matrix. A constant term MUST
have been the first variable when the moment matrix
was computed.

x NxK matrix of data.

Output

vc KxK variance-covariance matrix.

Example

//Set rndseed for repeatable random numbers
rndseed 7234242;

//Create three randomly generated independent variables
x = rndn(500, 3);

//Create the population variance-covariance matrix from
data matrix 'x'
var_x = varCovX(x);

35-1894

varCovM, varCovX

v

35-1895

After the code above, var_x will be equal to:

1.0941806 0.0040829 -0.0024871
0.0040829 1.0606611 0.0493555

-0.0024871 0.0493555 0.8729622

where the diagonal elements in the matrix represent the population variance of the
each column, while the off-diagonal elements represent the population covariance
between the data columns.

The population variance can also be calculated using the moment matrix, x’x and the
GAUSS function varCovM. A constant term must be included in the data matrix x
when computing the moment equation. Consider the following data matrix x1, con-
sisting of the original data matrix x and a column of ones:

//Set rndseed so 'rndn' will return the same numbers as
above
rndseed 7234242;

//Note: the ~ operator performs horizontal concatenation
x1 = ones(500,1)~rndn(500,3);

//Create moment matrix
x2 = x1'x1;

//Calculate variance-covariance matrix using the moment mat-
rix
var_xm = varCovM(x2);

After the code above, var_xm will be equal to:

1.0941806 0.0040829 -0.0024871
0.0040829 1.0606611 0.0493555

-0.0024871 0.0493555 0.8729622

varCovM, varCovX

v

Remarks

The variance covariance matrix is that of the population data matrix. It is computed as
the moment matrix of deviations about the mean divided by the number of observations
N. For a sample covariance matrix which uses N - 1 rather than N see varCovMS
or varCovXS.

Source

corrs.src

See Also

momentd, corrms, corrxs, corrm, corrvc, corrx

varCovMS, varCovXS

Purpose

Computes a sample variance-covariance matrix.

Format

vc = varCovMS(mm);
vc = varCovXS(x);

Input

mm KxK moment (x'x) matrix. A constant term MUST
have been the first variable when the moment matrix
was computed.

x NxK matrix of data.

35-1896

varCovMS, varCovXS

v

35-1897

Output

vc KxK variance-covariance matrix.

Example

//Set rndseed for repeatable random numbers
rndseed 7234242;

//Create three randomly generated independent variables
x = rndn(500, 3);

//Create the sample variance-covariance matrix from data
matrix 'x'
var_x = varCovXS(x);

After the code above, var_x will be equal to:

1.0963733 0.0040911 -0.0024921
0.0040911 1.0627867 0.0494544

-0.0024921 0.0494544 0.8747116

where the diagonal elements in the matrix represent the sample variance of the each
column, while the off-diagonal elements represent the sample covariance between the
data columns.

The sample variance can also be calculated using the moment matrix, x’x and the
GAUSS function varCovMS. A constant term must be included in the data matrix x
when computing the moment equation. Consider the following data matrix x1, con-
sisting of the original data matrix x and a column of ones:

//Set rndseed so 'rndn' will return the same numbers as
above
rndseed 7234242;

//Note: the ~ operator performs horizontal concatenation

varCovMS, varCovXS

v

x1 = ones(500,1)~rndn(500,3);

//Create moment matrix
x2 = x1'x1;

//Calculate variance-covariance matrix using the moment mat-
rix
var_xm = varCovMS(x2);

After the code above, var_xm will be equal to:

1.0963733 0.0040911 -0.0024921
0.0040911 1.0627867 0.0494544

-0.0024921 0.0494544 0.8747116

Remarks

The variance covariance matrix is that of the sample data matrix. It is computed as the
moment matrix of deviations about the mean divided by the number of observations
minus one, N - 1. For a population covariance matrix which uses N rather than N -
1 see varCovM or varCovX.

Source

corrs.src

See Also

momentd, corrms, corrxs, corrm, corrvc, corrx

varget

Purpose

Accesses a global variable whose name is given as a string argument.

35-1898

varget

v

35-1899

Format

y = varget(s);

Input

s string containing the name of the global symbol you
wish to access.

Output

y contents of the variable whose name is in s.

Remarks

This function searches the global symbol table for the symbol whose name is in s and
returns the contents of the variable if it exists. If the symbol does not exist, the function
will terminate with an Undefined symbol error message. If you want to check to see if
a variable exists before using this function, use typecv.

Example

alpha = 1;
beta = 2;
letter = "alpha";

//Check to see if a variable named alpha exists
if typecv(letter) == miss(0,0);

print letter " does NOT exist";
else;

//Assign the value of the variable named alpha to 'tmp'
tmp = varget(letter);
print "the value of " letter " is: " tmp;

endif;

varget

v

The code above produces the following output:

the value of alpha is: 1

vargetl

Purpose

Accesses a local variable whose name is given as a string argument.

Format

y = vargetl(s);

Input

s string containing the name of the local symbol you wish
to access.

Output

y contents of the variable whose name is in s.

Remarks

This function searches the local symbol list for the symbol whose name is in s and
returns the contents of the variable if it exists. If the symbol does not exist, the function
will terminate with an Undefined symbol error message.

Example

proc rndNormEx(r, c, loc, std, ptVar);
local rnd1, rnd2, rnd3;

35-1900

vargetl

v

35-1901

//Create random normal numbers with mean 0 and standard
//deviation 1
rnd1 = rndn(r, c);

//Change the mean to 'loc'
rnd2 = rnd1 + loc;

//Change the standard deviation to 'std'
rnd3 = std * rnd2;

//Set the contents of tmp to be equal to the contents of
//the local variable with the same name as the string
//passed in as 'ptVar'
tmp = vargetl(ptVar);

print ptVar " is equal to: " tmp;

retp(rnd3);
endp;

//Set the rng seed for repeatable results
rndseed 54223423;

//Passing in the final variable as the string rnd1, will
//cause the proc rndNormEx to print the contents of rnd1
r = rndNormEx(2, 2, 0, 3, "rnd1");

The code above will produce the following output:

rnd1 is equal to:
0.5240627925408163 1.4904799236486497

-1.1716182730350617 -0.0519353312479753

See Also

varputl

vargetl

v

varmall

Purpose

Computes log-likelihood of a Vector ARMA model.

Format

ll = varmall(w, phi, theta, vc);

Input

w NxK matrix, time series.
phi (K*P)xK matrix, AR coefficient matrices.
theta (K*Q)xK matrix, MA coefficient matrices.
vc KxK matrix, covariance matrix.

Output

ll scalar, log-likelihood. If the calculation fails ll is set
to missing value with error code:
Error
Code

Reason for Failure

1 M < 1
2 N < 1
3 P < 0
4 Q < 0
5 P = 0 and Q = 0
7 floating point work space too small
8 integer work space too small

35-1902

varmall

v

35-1903

9 vc is not positive definite
10 AR parameters too close to stationarity

boundary
11 model not stationary
12 model not invertible
13 I+M'H'HM not positive definite

Remarks

varmall is adapted from code developed by Jose Alberto Mauricio of the Univer-
sidad Complutense de Madrid. It was published as Algorithm AS311 in Applied Stat-
istics. Also described in ''Exact Maximum Likelihood Estimation of Stationary Vector
ARMA Models,'' JASA, 90:282-264.

varmares

Purpose

Computes residuals of a Vector ARMA model.

Format

res = varmares(w, phi, theta);

Input

w NxK matrix, time series.
phi (K*P)xK matrix, AR coefficient matrices.
theta (K*Q)xK matrix, MA coefficient matrices.

varmares

v

Output

res NxK matrix, residuals. If the calculation fails res is
set to missing value with error code:
Error
Code

Reason for Failure

1 M < 1
2 N < 1
3 P < 0
4 Q < 0
5 P = 0 and Q = 0
7 floating point work space too small
8 integer work space too small
10 AR parameters too close to stationarity

boundary
11 model not stationary
12 model not invertible
13 I+M'H'HM not positive definite

Remarks

varmares is adapted from code developed by Jose Alberto Mauricio of the Univer-
sidad Complutense de Madrid. It was published as Algorithm AS311 in Applied Stat-
istics. Also described in ''Exact Maximum Likelihood Estimation of Stationary Vector
ARMA Models,'' JASA, 90:282-264.

35-1904

varmares

v

35-1905

varput

Purpose

Allows a matrix, array, string, or string array to be assigned to a global symbol
whose name is given as a string argument.

Format

y = varput(x, n);

Input

x matrix, array, string, or string array which is to be
assigned to the target variable.

n string containing the name of the global symbol which
will be the target variable.

Output

y scalar, 1 if the operation is successful and 0 if the
operation fails.

Remarks

x and n may be global or local. The variable, whose name is in n, that x is
assigned to is always a global.

If the function fails, it will be because the global symbol table is full.

This function is useful for returning values generated in local variables within a pro-
cedure to the global symbol table.

varput

v

Example

source = rndn(2,2);
targname = "target";

if not varput(source,targname);
print "Symbol table full";
end;

endif;

See Also

varget, typecv

varputl

Purpose

Allows a matrix, array, string, or string array to be assigned to a local symbol
given as a string argument.

Format

y = varputl(x, n);

Input

x matrix, array, string, or string array which is to be
assigned to the target variable.

n string containing the name of the local symbol which
will be the target variable.

35-1906

varputl

v

35-1907

Output

y scalar, 1 if the operation is successful and 0 if the
operation fails.

Remarks

x and n may be global or local. The variable, whose name is in n, that x is
assigned to is always a local.

Example

proc myProc(x);
local a,b,c,d,e,vars,putvar;

a=1;b=2;c=3;d=5;e=7;
vars = { a b c d e };
putvar = 0;

//Keep looping until the user enters a letter
//a-e or A-E
do while putvar $/= vars;

//Two semi-colons at the end of a print statement,
//prevents a 'new line' from being printed
print "Assign x (" $vars "): ";;
putvar = upper(cons);
print;

endo;

//Assign the variable whose letter/name was entered by
//the user to be the value passed into 'myProc'
call varputl(x,putvar);
retp(a+b*c-d/e);

endp;

//Format printing of numbers to allow 2 spaces between them

varputl

v

//and 1 digit after the decimal place
format /rds 2,1;

z = myProc(17);
print " z is " z;

produces (Note: this program will ask for user input at the GAUSS command prompt):

Assign x (A B C D E): a

z is 22.3

See Also

vargetl

vartypef

Purpose

Returns a vector of ones and zeros that indicate whether variables in a data set
are character or numeric.

Format

y = vartypef(f);

Input

f file handle of an open file.

Output

y Nx1 vector of ones and zeros, 1 if variable is numeric,

35-1908

vartypef

v

35-1909

0 if character.

Remarks

This function should be used in place of older functions that are based on the case of
the variable names. You should also use the v96 data set format.

vcm, vcx

Purpose

Computes an unbiased estimate a variance-covariance matrix.

NOTE: vcm and vcx have been replaced with functions varCovXS and
varCovMS whose descriptions use more standard statistical nomenclature. vcx
and vcm will continue to be available for backwards compatibility.

Format

vc = vcm(m);
vc = vcx(x);

Input

m KxK moment (x'x) matrix. A constant term MUST
have been the first variable when the moment matrix
was computed.

x NxK matrix of data.

Output

vc KxK variance-covariance matrix.

vcm, vcx

v

Remarks

The variance-covariance matrix is computed as an unbiased estimator of the population
variance-covariance. It is computed as the moment matrix of deviations about the
mean divided by the number of observations minus one, N - 1. For an observed vari-
ance-covariance matrix which uses N rather than N - 1 see vcms or vcxs.

Source

corr.src

See Also

momentd

vcms, vcxs

Purpose

Computes the observed variance-covariance matrix.

NOTE: vcms and vcxs have been replaced with functions varCovX and
varCovM whose descriptions use more standard statistical nomenclature. vcxs
and vcms will continue to be available for backwards compatibility.

Format

vc = vcms(m);
vc = vcxs(x);

Input

m KxK moment (x'x) matrix. A constant term MUST
have been the first variable when the moment matrix
was computed.

35-1910

vcms, vcxs

v

35-1911

x NxK matrix of data.

Output

vc KxK variance-covariance matrix.

Remarks

The variance covariance matrix is that of the input data matrix. It is computed as the
moment matrix of deviations about the mean divided by the number of observations N.
For an unbiased estimator covariance matrix which uses N - 1 rather than N see
vcm or vcx.

Source

corrs.src

See Also

momentd, corrms, corrxs

vec, vecr

Purpose

Creates a column vector by appending the columns/rows of a matrix to each
other.

Format

yc = vec(x);
yr = vecr(x);

vec, vecr

v

Input

x NxK matrix.

Output

yc (N*K)x1 vector, the columns of x appended to each
other.

yr (N*K)x1 vector, the rows of x appended to each other
and the result transposed.

Remarks

vecr is much faster.

Example

x = { 1 2,
3 4 };

yc = vec(x);
yr = vecr(x);

The code above assigns the variables yc and yr:

1 1
yc = 3 yr = 2

2 3
4 4

35-1912

vec, vecr

v

35-1913

vech

Purpose

Vectorizes a symmetric matrix by retaining only the lower triangular portion of
the matrix.

Format

v = vech(x);

Input

x NxN symmetric matrix.

Output

v (N*(N+1)/2)x1 vector, the lower triangular portion of
the matrix x.

Remarks

As you can see from the example below, vech will not check to see if x is sym-
metric. It just packs the lower trangular portion of the matrix into a column vector in
row-wise order.

Example

//Add a 3x1 column vector containing 10, 20, 30 to a 1x3
//row vector containing 1, 2, 3, to create a 3x3 matrix
x = seqa(10,10,3) + seqa(1,1,3)';

//Turn the lower triangular portion of 'x' into a column

vech

v

//vector in 'v'
v = vech(x);

//Expand the vector 'v' into a symmetric matrix in 'sx'
sx = xpnd(v);

After the code above:

11
11 12 13 21 11 21 31

x = 21 22 23 v = 22 sx = 21 22 32
31 32 33 31 31 32 33

32
33

See Also

xpnd

vector (dataloop)

Purpose

Specifies the creation of a new variable within a data loop.

Format

vector # numvar = numeric_expression;
vector $ charvar = character_expression;

Remarks

A numeric_expression is any valid expression returning a numeric value. A
character_expression is any valid expression returning a character value. If

35-1914

vector (dataloop)

v

35-1915

neither '$' nor '#' is specified, '#' is assumed.

vector is used in place of make when the expression returns a scalar rather than a
vector. vector forces the result of such an expression to a vector of the correct
length. vector could actually be used anywhere that make is used, but would gen-
erate slower code for expressions that already return vectors.

Any variables referenced must already exist, either as elements of the source data set,
as extern's, or as the result of a previous make, vector, or code statement.

Example

vector const = 1;

See Also

make (dataloop)

vget

Purpose

Extracts a matrix or string from a data buffer constructed with vput.

Format

{ x, dbufnew } = vget(dbuf, name);

Input

dbuf Nx1 vector, a data buffer containing various strings and
matrices.

name string, the name of the string or matrix to extract from
dbuf.

vget

v

Output

x LxM matrix or string, the item extracted from dbuf.
dbufnew Kx1 vector, the remainder of dbuf after x has been

extracted.

Source

pack.src

See Also

vlist, vput, vread

view

Purpose

Sets the position of the observer in workbox units for 3-D plots. NOTE: This func-
tion is for the deprecated PQG graphics.

Library

pgraph

Format

view(x, y, z);

Input

x scalar, the X position in workbox units.
y scalar, the Y position in workbox units.
z scalar, the Z position in workbox units.

35-1916

view

v

35-1917

Remarks

The size of the workbox is set with volume. The viewer MUST be outside of the
workbox. The closer the position of the observer, the more perspective distortion there
will be. If x = y = z, the projection will be isometric.

If view is not called, a default position will be calculated.

Use viewxyz to locate the observer in plot coordinates.

Source

pgraph.src

See Also

volume, viewxyz

viewxyz

Purpose

To set the position of the observer in plot coordinates for 3-D plots. NOTE: This
function is for the deprecated PQG graphics.

Library

pgraph

Format

viewxyz(x, y, z);

Input

x scalar, the X position in plot coordinates.

viewxyz

v

y scalar, the Y position in plot coordinates.
z scalar, the Z position in plot coordinates.

Remarks

The viewer MUST be outside of the workbox. The closer the observer, the more per-
spective distortion there will be.

If viewxyz is not called, a default position will be calculated.

Use view to locate the observer in workbox units.

Source

pgraph.src

See Also

volume, view

vlist

Purpose

Lists the contents of a data buffer constructed with vput.

Format

vlist(dbuf);

Input

dbuf Nx1 vector, a data buffer containing various strings and
matrices.

35-1918

vlist

v

35-1919

Remarks

vlist lists the names of all the strings and matrices stored in dbuf.

Source

vpack.src

See Also

vget, vput, vread

vnamecv

Purpose

Returns the names of the elements of a data buffer constructed with vput.

Format

cv = vnamecv(dbuf);

Input

dbuf Nx1 vector, a data buffer containing various strings and
matrices.

Output

cv Kx1 character vector containing the names of the
elements of dbuf.

See Also

vget, vput, vread, vtypecv

vnamecv

v

volume

Purpose

Sets the length, width, and height ratios of the 3-D workbox. NOTE: This function
is for the deprecated PQG graphics.

Library

pgraph

Format

volume(x, y, z);

Input

x scalar, the X length of the 3-D workbox.
y scalar, the Y length of the 3-D workbox.
z scalar, the Z length of the 3-D workbox.

Remarks

The ratio between these values is what is important. If volume is not called, a default
workbox will be calculated.

Source

pgraph.src

See Also

view

35-1920

volume

v

35-1921

vput

Purpose

Inserts a matrix or string into a data buffer.

Format

dbufnew = vput(dbuf, x, xname);

Input

dbuf Nx1 vector, a data buffer containing various strings and
matrices. If dbuf is a scalar 0, a new data buffer will
be created.

x LxM matrix or string, item to be inserted into dbuf.
xname string, the name of x, will be inserted with x into

dbuf.

Output

dbufnew Kx1 vector, the data buffer after x and xname have
been inserted.

Remarks

If dbuf already contains x, the new value of x will replace the old one.

Source

vpack.src

See Also

vget, vlist, vread

vput

v

vread

Purpose

Reads a string or matrix from a data buffer constructed with vput.

Format

x = vread(dbuf, xname);

Input

dbuf Nx1 vector, a data buffer containing various strings and
matrices.

xname string, the name of the matrix or string to read from
dbuf.

Output

x LxM matrix or string, the item read from dbuf.

Remarks

vread, unlike vget, does not change the contents of dbuf. Reading x from dbuf
does not remove it from dbuf.

Source

vpack.src

See Also

vget, vlist, vput

35-1922

vread

v

35-1923

vtypecv

Purpose

Returns the types of the elements of a data buffer constructed with vput.

Format

cv = vtypecv(dbuf);

Input

dbuf Nx1 vector, a data buffer containing various strings and
matrices.

Output

cv Kx1 character vector containing the types of the
elements of dbuf.

See Also

vget, vput, vread, vnamecv

vtypecv

v

w

wait, waitc

Purpose

Waits until any key is pressed.

Format

wait;
waitc;

Remarks

If you are working in terminal mode, these commands do not "see" any keystrokes until
ENTER is pressed. waitc clears any pending keystrokes before waiting until another
key is pressed.

Source

wait.src, waitc.src

See Also

pause

walkindex

Purpose

Walks the index of an array forward or backward through a specified dimension.

35-1924

wait, waitc

w

35-1925

Format

ni = walkindex(i, o, dim);

Input

i Mx1 vector of indices into an array, where M <= N.
o Nx1 vector of orders of an N-dimensional array.
dim scalar [1-to-M], index into the vector of indices i,

corresponding to the dimension to walk through,
positive to walk the index forward, or negative to walk
backward.

Output

ni Mx1 vector of indices, the new index.

Remarks

walkindex will return a scalar error code if the index cannot walk further in the spe-
cified dimension and direction.

Example

orders =(3,4,5,6,7);

//Create a 3x4x5x6x7 dimensional array with each element
//equal to 1
a = arrayinit(orders,1);

ind = { 2,3,3 };
ind = walkindex(ind,orders,-2);

walkindex

w

2
ind = 2

3

This example decrements the second value of the index vector ind.

ind = walkindex(ind,orders,3);

2
ind = 2

4

Using the orders from the example above and the ind that was returned, this
example increments the third value of the index vector ind.

See Also

nextindex, previousindex, loopnextindex

window

Purpose

Partitions the window into tiled regions (graphic panels) of equal size. NOTE:
This function is for the deprecated PQG graphics.

Library

pgraph

Format

window(row, col, typ);

35-1926

window

w

35-1927

Input

row scalar, number of rows of graphic panels.
col scalar, number of columns of graphic panels.
typ scalar, graphic panel attribute type. If 1, the graphic

panels will be transparent, if 0, the graphic panels will
be nontransparent (blanked).

Remarks

The graphic panels will be numbered from 1 to (row) x (col) starting from the left
topmost graphic panel and moving right.

See makewind for creating graphic panels of a specific size and position. (For more
information, see Graphic Panels, Section 1.1.

Source

pwindow.src

See Also

endwind, begwind, setwind, nextwind, getwind, makewind

writer

Purpose

Writes a matrix to a GAUSS data set.

Format

y = writer(fh, x);

writer

w

Input

fh handle of the file that data is to be written to.
x NxK matrix.

Output

y scalar specifying the number of rows of data actually
written to the data set.

Remarks

The file must have been opened with create, open for append, or open for
update.

The data in x will be written to the data set whose handle is fh starting at the current
pointer position in the file. The pointer position in the file will be updated, so the next
call to writer will put the next block of data after the first block. (See open and
create for the initial pointer positions in the file for reading and writing.)

x must have the same number of columns as the data set. colsf returns the number
of columns in a data set.

writer returns the number of rows actually written to the data set. If y does not
equal rows(x), the disk is probably full.

If the data set is not double precision, the data will be rounded as it is written out.

If the data contain character elements, the file must be double precision or the char-
acter information will be lost.

If the file being written to is the 2-byte integer data type, then missing values will be
written out as -32768. These will not automatically be converted to missings on input.
They can be converted with the miss function:

x = miss(x,-32768);

35-1928

writer

w

35-1929

Trying to write complex data to a data set that was originally created to store real data
will cause a program to abort with an error message. (See create for details on cre-
ating a complex data set.)

Example

create fp = data with x,10,8;

if fp == -1;
errorlog "Can't create output file";
end;

endif;

c = 0;
do until c >= 10000;

y = rndn(100,10);
k = writer(fp,y);

if k /= rows(y);
errorlog "Disk Full";
fp = close(fp);
end;

endif;

c = c+k;
endo;

fp = close(fp);

In this example, a 10000x10 data set of Normal random numbers is written to a data
set called data.dat. The variable names are X01 - X10.

See Also

open, close, create, readr, saved, seekr

writer

w

x

xlabel

Purpose

Sets a label for the X axis. NOTE: This function is for use with the deprecated
PQG graphics, use plotSetXLabel for equivalent functionality.

Library

pgraph

Format

xlabel(str);

Input

str string, the label for the X axis.

Source

pgraph.src

See Also

title, ylabel, zlabel

35-1930

xlabel

x

35-1931

xlsGetSheetCount

Purpose

Gets the number of sheets in an Excel® spreadsheet.

Format

nsheets = xlsGetSheetCount(file);

Input

file string, name of .xls or .xlsx file.

Output

nsheets scalar, sheet count or an error code.

Portability

Windows, Linux andMac

Remarks

If xlsGetSheetCount fails, it will either terminate with an error message or
return a scalar error code, which can be decoded with scalerr, depending on the
lowest order bit of the trap flag.

trap 0 Print error message and terminate program.
trap 1 Return scalar error code 10.

Example

Example 1

xlsGetSheetCount x

If you had an Excel file named 'yarn.xlsx' in the GAUSS home directory, then you
could determine the number of sheets in the file with the following code:

// File name with full path
fname= getGAUSShome() $+ "examples/yarn.xlsx";
nsheets = xlsGetSheetCount(fname);

Example 2

If you do not want your program to terminate in the case of an error in this function,
you can set the trap state as in the example below.

//Turn on trap
trap 1;

nsheets = xlsGetSheetCount(fname);

//Check to see if xlsGetSheetCount returned an error code
if scalmiss(nsheets);
//Code to execute in error case here
endif;

See Also

xlsGetSheetSize, xlsGetSheetTypes, xlsMakeRange

xlsGetSheetSize

Purpose

Gets the size (rows and columns) of a specified sheet in an Excel® spreadsheet.

35-1932

xlsGetSheetSize

x

35-1933

Format

{ r, c } = xlsGetSheetSize(file);
{ r, c } = xlsGetSheetSize(file, sheet);

Input

file string, name of .xls or .xlsx file.
sheet scalar, sheet index (1-based). Default = 1.

Output

r scalar, number of rows.
c scalar, number of columns.

Portability

Windows, Linux andMac

Remarks

If xlsGetSheetSize fails, it will either terminate and print an error message or
return a scalar error code, which can be decoded with scalerr, depending on the
state of the trap flag.

trap 0 Print error message and terminate program.
trap 1 Return scalar error code 10.

If a scalar error code is returned, both return values will be set with the error code.

xlsGetSheetSize x

Examples

Example 1

If you had an Excel file named 'yarn.xlsx' in the GAUSS home directory , then you
could determine the number of rows and columns in the first sheet of this file with the
following code:

// File name with full path
fname= getGAUSShome() $+ "examples/yarn.xlsx";
sheetNum = 1;

// call xlsGetSheetSize function
{ r, c } = xlsGetSheetSize(fname, sheetNum);

Example 2

If you do not want your program to terminate in the case of an error in this function,
you can set the trap state as in the example below.

sheetNum = 1;

//Retain the old trap value so it can
//be reset to its previous state
oldtrap = trapchk(1);

//Set trap
trap 1;

{ r, c } = xlsGetSheetSize(fname, sheetNum);

//Check to see if return value is an error code
if scalmiss(r);

//User error handling code here
endif;

35-1934

xlsGetSheetSize

x

35-1935

See Also

xlsGetSheetCount, xlsGetSheetTypes, xlsMakeRange

xlsGetSheetTypes

Purpose

Gets the cell format types of a row in an Excel® spreadsheet.

Format

nsheets = xlsGetSheetTypes(file, sheet, row);

Input

file string, name of .xls or .xlsx file.
sheet scalar, sheet index (1-based).
row scalar, the row of cells to be scanned.

Output

types 1xK vector of predefined data types representing the
format of each cell in the specified row.

The possible types are:
0 Text
1 Numeric
2 Date

Portability

Windows, Linux andMac

xlsGetSheetTypes x

Example

For example, let us suppose that a file named 'yarn.xlsx' exists in the GAUSS home dir-
ectory. Le us further suppose that the 'A1' element is a string and the 'B1:C1' elements
are numbers. The first row has no other elements. Then the code:

// File name with full path
fname= getGAUSShome() $+ "examples/yarn.xlsx";
sheetNum = 1;
rowNum = 2;
ctypes = xlsGetSheetTypes(fname, sheetNum, rowNum);

//Do not print any values after the decimal point
format /rd 6,0;
print ctypes;

would produce the following output:

0 0 0 1

Remarks

K is the number of columns found in the spreadsheet.

If xlsGetSheetTypes fails, it will either terminate and print an error message or
return a scalar error code, which can be decoded with scalerr, depending on the
state of the trap flag.

trap 0 Print error message and terminate program.
trap 1 Return scalar error code 10.

See Also

xlsGetSheetCount, xlsGetSheetSize, xlsMakeRange

35-1936

xlsGetSheetTypes

x

35-1937

xlsMakeRange

Purpose

Builds an Excel® range string from a row/column pair.

Format

range = xlsMakeRange(row, col);

Input

row scalar or 2x1 vector.
col scalar or 2x1 vector.

Output

range string, an Excel®-formatted range specifier.

Portability

Available onWindows, Linux andMac.

Remarks

If row is a 2x1 vector, it is interpreted as follows

row[1] starting row
row[2] ending row

If col is a 2x1 vector, it is interpreted as follows:

col[1] starting column
col[2] ending column

xlsMakeRange x

If xlsMakeRange fails, it will either terminate and print an error message or return
a scalar error code, which can be decoded with scalerr, depending on the state of
the trap flag.

trap 0 Print error message and terminate program.
trap 1 Return scalar error code 10.

Example

//Scalar inputs
r = 3;
c = 6;
range = xlsMakeRange(r, c);
print range;

produces:

F3

//2x1 vector inputs
r = { 2, 37 };
c = { 3, 19 };
range = xlsMakeRange(r, c);
print range;

produces:

C2:S37

See Also

xlsGetSheetCount, xlsGetSheetSize, xlsGetSheetTypes

35-1938

xlsMakeRange

x

35-1939

xlsReadM

Purpose

Reads from an Excel® spreadsheet into a GAUSS matrix.

Format

mat = xlsReadM(file);
mat = xlsReadM(file, range);
mat = xlsReadM(file, range, sheet);
mat = xlsReadM(file, range, sheet, vls);

Input

file string, name of .xls or .xlsx file.
range string, range to read, e.g. "A2:B20", or the starting

point of the read, e.g. "A2". Default = "A1.
sheet scalar, sheet number to read from. Default = 1.
vls null string or 9x1 matrix, specifies the conversion of

Excel® empty cells and special types into GAUSS (see
Remarks). A null string results in all empty cells and
special types being converted to GAUSS missing
values.

Output

mat matrix or a scalar error code.

xlsReadM x

Examples

Example 1: Basic Example

//Create file name with full path
file = getGAUSSHome() $+ "examples/tbill_3mo.xlsx";

//Read in all data below header line
x = xlsReadM(file, "A2");

After the code above, the first 10 rows of x should be equal to:

19820101000000 12.92
19820201000000 14.28
19820301000000 13.31
19820401000000 13.34
19820501000000 12.71
19820601000000 13.08
19820701000000 11.86
19820801000000 9
19820901000000 8.19
19821001000000 7.97

Example 2: Read From a Range

//Create file name with full path
file = getGAUSSHome() $+ "examples/yarn.xlsx";

//Read in data from rows 2-9 of column 'D'
x = xlsReadM(file, "D2:D9");

After the code above, x should be equal to:

674
370

35-1940

xlsReadM

x

35-1941

292
338
266
210
170
118

Example 3: Reading dates

//Create file name with full path
file = getGAUSSHome() $+ "examples/tbill_3mo.xlsx";

//Read the first element below the header from the first
column
date_1 = xlsReadM(file, "A2:A2");

If the Excel file has marked a cell as a date, GAUSS will read it in DT scalar format.
After the code above, date_1 will be equal to:

19820101000000

Dates in DT scalar format can be passed in directly to plotTS to create time series
plots, and also handled by other GAUSS date handling functions. For example, we can
convert date_1 to a string with the function dttostr (date to string) like this:

date_str = dttostr(date_1, "MO-DD-YYYY");

After which, date_str will be equal to:

"01-01-1982"

Example 4: Specify Sheet Number

//Using the 'file' variable created in the previous example
//Pass in '1' as the third input, to specify the first

xlsReadM x

sheet
x = xlsReadM(file, "A2:A10", 1);

Remarks

1. If range is a null string, then by default the read will begin at cell "A1".

2. If xlsReadM fails, it will either terminate and print an error message or return
a scalar error code, which can be decoded with scalerr, depending on the
state of the trap flag.

trap 0 Print error message and terminate program.
trap 1 Return scalar error code.

2.1 An error message example

//Will end the program and print an error message
x = xlsReadM("nonexistent_file.xlsx");

2.2 Turn off error message

//Turn error trapping on
trap 1;
x = xlsReadM("nonexistent_file.xlsx");

//Check to see if 'x' is a scalar error code
if scalmiss(x);

//Code to handle error case here
endif;

//Turn error trapping off
trap 0;

35-1942

xlsReadM

x

35-1943

3. By default, empty cells are imported as GAUSS missing values. The vls
argument lets users control the import of Excel® empty cells and special types,
according to the following table:

Row Number Excel® Cell
1 empty cell
2 #N/A
3 #VALUE!
4 #DIV/0!
5 #NAME?
6 #REF!
7 #NUM!
8 #NULL!
9 #ERR

Use the following to convert all occurrences of #DIV/0! to +Infinity, and all
other empty cells and special types to GAUSS missing values:

//Create a 9x1 vector of missing values
vls = reshape(miss(0,0),9,1);

//Set the 4th element of 'vls' to +Infinity so that
//Excel #DIV/0! cells will be imported as +Infinity
vls[4] = __INFP;

x = xlsReadM("myfile.xlsx", "A1", 1, vls);

Portability

Windows, Linux andMac

xlsReadM x

The vls input is currently ignored on Mac and Linux. Missing values will be returned
for all cells that are empty or contain errors.

See Also

xlsReadSA, xlsWrite, xlsWriteM, xlsWriteSA, xlsGetSheetCount, xlsGetSheetSize,
xlsGetSheetTypes, xlsMakeRange

xlsReadSA

Purpose

Reads from an Excel® spreadsheet into a GAUSS string array or string.

Format

s = xlsReadSA(file);
s = xlsReadSA(file, range);
s = xlsReadSA(file, range, sheet);
s = xlsReadSA(file, range, sheet, vls);

Input

file string, name of .xls or .xlsx file.
range string, range to read, e.g. "A2:B20" or the starting point

of the read, e.g. "A2". Default = "A1".
sheet scalar, sheet number. Default = 1.
vls null string or 9x1 string array, specifies the conversion

of Excel® empty cells and special types into GAUSS
(see Remarks). A null string results in all empty cells
and special types being converted to null strings.
Default = null string.

35-1944

xlsReadSA

x

35-1945

Output

s string, string array or a scalar error code.

Examples

Example 1: Basic Example with Specify Path and Sheet Number

Read all contents from the file "yarn.xlsx" located in GAUSS home working directory
as a string array.

//Create file name with full path
file = getGAUSSHome() $+ "examples/yarn.xlsx";
//"A1" means start from A1
//1 = sheet number
//Call xlsReadSA function
s = xlsReadSA(file, "A1", 1);

Example 2: Read From a Range

data = xlsReadSA(file, "A2:D28");

Example 3: Read your own data

Read all contents from the file myfile.xlsx located in your current GAUSS work-
ing directory as a string array.

s = xlsReadSA("myfile.xlsx");

Remarks

1. If range is a null string, then by default the read will begin at cell "A1".

2. If xlsReadSA fails, it will either terminate and print an error message or

xlsReadSA x

return a scalar error code, which can be decoded with scalerr, depending on
the state of the trap flag.

trap 0 Print error message and terminate program.
trap 1 Return scalar error code.

//Will end the program and print an error message
x = xlsReadSA("nonexistent_file.xlsx");

//Turn error trapping on
trap 1;
x = xlsReadSA("nonexistent_file.xlsx");

//Check to see if 'x' is a scalar error code
if scalmiss(x);

//Code to handle error case here
endif;

//Turn error trapping off
trap 0;

3. By default, empty cells are imported as empty strings. The vls argument lets
users control the import of Excel® empty cells and special types, according to
the following table:

Row Number Excel® Cell
1 empty cell
2 #N/A
3 #VALUE!
4 #DIV/0!

35-1946

xlsReadSA

x

35-1947

5 #NAME?
6 #REF!
7 #NUM!
8 #NULL!
9 #ERR

Use the following to convert all occurrences of #NULL! and empty cells to the
string 'NULL', and all other and special types to empty strings:

//Create a 9x1 vector of empty strings
vls = reshape("",9,1);

//Set the 1st and 8th element of 'vls' to the string
'NULL' so that
//Excel #NULL! and empty cells will be imported as the
string 'NULL'
vls[1] = "NULL;
vls[8] = "NULL";

x = xlsReadSA("myfile.xlsx", "A1", 1, vls);

Portability

Windows, Linux andMac

The vls input is currently ignored on Mac and Linux. Missing values will be returned
for all cells that are empty or contain errors.

See Also

xlsReadM, xlsWrite, xlsWriteM, xlsWriteSA, xlsGetSheetCount, xlsGetSheetSize,
xlsGetSheetTypes, xlsMakeRange

xlsReadSA x

xlsWrite

Purpose

Writes a GAUSS matrix, string, or string array to an Excel® spreadsheet.

Format

ret = xlsWrite(data, file);
ret = xlsWrite(data, file, range);
ret = xlsWrite(data, file, range, sheet);
ret = xlsWrite(data, file, range, sheet, vls);

Input

data matrix, string, or string array.
file string, name of .xls or .xlsx file.
range string, the starting point of the write, e.g. "A2". Default

= "A1".
sheet scalar, sheet number. Default = 1.
vls null string or 9x1 matrix or string array, specifies the

conversion ofGAUSS values or characters into Excel®
empty cells and special types (see Remarks). A null
string results in allGAUSS missing values and null
strings being converted to empty cells. Default = null
string.

Output

ret scalar, 0 if success or a scalar error code.

35-1948

xlsWrite

x

35-1949

Examples

Example 1: Basic Example

x = { 0 1,
1 2,
3 5 };

//Write contents of 'x' to 'myfile.xlsx'
//from cell 'A1' to 'B3'
ret = xlsWrite(x, "myfile.xlsx");

'myfile.xlsx'is saved in your current working directory. You can find your current work-
ing directory in the main tool bar (in the top of GAUSS).

Example 2: Write To a Range

//Create a 1x4 string array of variable names
head = "Real GDP" $~ "Unemployment" $~ "CPI" $~ "PPI";

//Write the variable names to the cells 'C1:F1'
ret = xlsWrite(head, "myfile.xlsx", "C1");

Example 3: Specify Path and Sheet Number

//Create a 10x3 matrix of Bernoulli random variables
x = rndBernoulli(10, 3, 0.6);

//Write the data from 'x' to cells 'B4:D13' on sheet 2 of
'myfile.xlsx'
ret = xlsWrite(x, "C:\\mydata\\myfile.xlsx", "B4", 2);

xlsWrite x

Remarks

1. If xlsWrite fails, it will either terminate and print an error message or return
a scalar error code, which can be detected with scalmiss, depending on the
state of the trap flag.

trap 0 Print error message and terminate program.
trap 1 Return scalar error code.

1.1 An error message example

//If this fails, it will end the program and print an
error message
x = xlsWrite("myfile.xlsx");

1.2 Turn off error message

//Turn error trapping on
trap 1;
x = xlsWrite("myfile.xlsx");

//Check to see if 'x' is a scalar error code
if scalmiss(x);

//Code to handle error case here
endif;

//Turn error trapping off
trap 0;

2. The vls argument lets users control the export to Excel® empty cells and spe-
cial types, according to the following table:

35-1950

xlsWrite

x

35-1951

Row
Number

Excel® Cell

1 empty cell
2 #N/A
3 #VALUE!
4 #DIV/0!
5 #NAME?
6 #REF!
7 #NUM!
8 #NULL!
9 #ERR

Use the following to convert all occurrences of 9999.99 to #DIV/0! in Excel®
and convert all GAUSS missing values to empty cells in Excel®:

vls = reshape(error(0),9,1);
vls[4] = 9999.99;

Portability

Windows, Linux andMac

The vls input is currently ignored on Mac and Linux. Missing values will be returned
for all cells that are empty or contain errors.

See Also

xlsReadSA, xlsReadM, xlsWriteM, xlsWriteSA, xlsGetSheetCount, xlsGetSheetSize,
xlsGetSheetTypes, xlsMakeRange

xlsWrite x

xlsWriteM

Purpose

Writes a GAUSS matrix to an Excel® spreadsheet.

Format

ret = xlsWriteM(data, file);
ret = xlsWriteM(data, file, range);
ret = xlsWriteM(data, file, range, sheet);
ret = xlsWriteM(data, file, range, sheet, vls);

Input

data matrix.
file string, name of .xls or .xlsx file.
range string, the starting point of the write, e.g. "a2". Default

= "a1"
sheet scalar, sheet number. Default = 1.
vls null string or 9x1 matrix, specifies the conversion of

GAUSS values into Excel® empty cells and special
types (see Remarks). A null string results in allGAUSS
missing values being converted to empty cells. Default
= null string.

Output

ret scalar, 0 if success or a scalar error code.

Examples

Example 1: Basic Example

35-1952

xlsWriteM

x

35-1953

x = { 0 1,
1 2,
3 5 };

//Write contents of 'x' to 'myfile.xlsx'
//from cell 'A1' to 'B3'
ret = xlsWriteM(x, "myfile.xlsx");

'myfile.xlsx'is saved in your current working directory. You can find your current work-
ing directory in the main tool bar (in the top of GAUSS).

Example 2: Write To a Range

//Write 'x' from the previous example to the cells 'C2:D4'
ret = xlsWriteM(x, "myfile.xlsx", "C2");

Example 3: Specify Path and Sheet Number

//Create a 10x3 matrix of Bernoulli random variables
x = rndBernoulli(10, 3, 0.6);

//Write the data from 'x' to cells 'B4:D13' on sheet 2 of
'myfile.xlsx'
ret = xlsWriteM(x, "C:\\mydata\\myfile.xlsx", "B4", 2);

Remarks

1.

The vls argument lets users control the export to Excel® empty cells and spe-
cial types, according to the following table:

xlsWriteM x

Row Number Excel® Cell
1 empty cell
2 #N/A
3 #VALUE!
4 #DIV/0!
5 #NAME?
6 #REF!
7 #NUM!
8 #NULL!
9 #ERR

Use the following to convert all occurrences of 9999.99 to #DIV/0! in Excel®
and convert all GAUSS missing values to empty cells in Excel®:

vls = reshape(error(0),9,1);
vls[4] = 9999.99;

2. If xlsWriteM fails, it will either terminate and print an error message or
return a scalar error code, which can be decoded with scalerr, depending on
the state of the trap flag.

trap 0 Print error message and terminate program.
trap 1 Return scalar error code 10.

Portability

Windows, Linux andMac

The vls input is currently ignored on Mac and Linux. Missing values will be returned
for all cells that are empty or contain errors.

35-1954

xlsWriteM

x

35-1955

See Also

xlsReadSA, xlsReadM, xlsWrite, xlsWriteSA, xlsGetSheetCount, xlsGetSheetSize,
xlsGetSheetTypes, xlsMakeRange

xlsWriteSA

Purpose

Writes a GAUSS string or string array to an Excel® spreadsheet.

Format

ret = xlsWriteSA(data, file);
ret = xlsWriteSA(data, file, range);
ret = xlsWriteSA(data, file, range, sheet);
ret = xlsWriteSA(data, file, range, sheet, vls);

Input

data string or string array.
file string, name of .xls file.
range string, the starting point of the write, e.g. "a2". Default

= "a1".
sheet scalar, sheet number. Default = 1.
vls null string or 9x1 string array, specifies the conversion

ofGAUSS characters into Excel® empty cells and
special types (see Remarks). A null string results in all
null strings being converted to empty cells. Default =
null string.

xlsWriteSA x

Output

ret scalar, 0 if success or a scalar error code.

Examples

Example 1: Basic Example

//Create a 1x3 string array of variable names
var_names = "Date" $~ "Price" $~ "Volume";

//Write contents of 'var_names' to 'myfile.xlsx'
//from cell 'A1' to 'C1'
ret = xlsWriteSA(var_names, "myfile.xlsx");

'myfile.xlsx'is saved in your current working directory. You can find your current work-
ing directory in the main tool bar (in the top of GAUSS).

Example 2: Write To a Range

//Create a 1x4 string array of variable names
head = "Real GDP" $~ "Unemployment" $~ "CPI" $~ "PPI";

//Write the variable names to the cells 'C1:F1'
ret = xlsWriteSA(head, "myfile.xlsx", "C1");

Example 3: Specify Path and Sheet Number

//Create a 3x1 string array
labels = "Normotensive" $| "Hypertensive" $|
"Hypotensive";

//Write the data from 'labels' to cells 'D7:D9' on sheet 2

35-1956

xlsWriteSA

x

35-1957

of 'myfile.xlsx'
ret = xlsWriteSA(labels, "C:/mydata/myfile.xlsx", "D7", 2);

Remarks

1. The vls argument lets users control the export to Excel® empty cells and spe-
cial types, according to the following table:

Row Number Excel® Cell
1 empty cell
2 #N/A
3 #VALUE!
4 #DIV/0!
5 #NAME?
6 #REF!
7 #NUM!
8 #NULL!
9 #ERR

Use the following to convert all occurrences of "Division by Zero" to #DIV/0!,
and all null strings to empty cells:

vls = reshape("",9,1);
vls[4] = "Division by Zero";

2. If xlsWriteSA fails, it will either terminate and print an error message or
return a scalar error code, which can be decoded with scalerr, depending on
the state of the trap flag.

trap 0 Print error message and terminate program.
trap 1 Return scalar error code 10.

xlsWriteSA x

Portability

Windows, Linux andMac

The vls input is currently ignored on Mac and Linux. Missing values will be returned
for all cells that are empty or contain errors.

See Also

xlsReadM, xlsWrite, xlsWriteM, xlsReadSA, xlsGetSheetCount, xlsGetSheetSize,
xlsGetSheetTypes, xlsMakeRange

xpnd

Purpose

Expands a column vector into a symmetric matrix.

Format

x = xpnd(v);

Input

v Kx1 vector, to be expanded into a symmetric matrix.

Output

x MxM matrix, the results of taking v and filling in a
symmetric matrix with its elements.

M =((-1 + sqrt(1 + 8 * K))/2)

35-1958

xpnd

x

35-1959

Remarks

If v does not contain the right number of elements, (that is, if sqrt(1 + 8 * K) is not
integral), then an error message is generated.

This function is particularly useful for hard-coding symmetric matrices, because only
about half of the matrix needs to be entered.

Example

x = { 1,
2, 3,
4, 5, 6,
7, 8, 9, 10 };

y = xpnd(x);

After the code above, the variables x and y are equal to:

1
2
3
4 1 2 4 7

x = 5 y = 2 3 5 8
6 4 5 6 9
7 7 8 9 10
8
9

10

See Also

vech

xpnd x

xtics

Purpose

Sets and fixes scaling, axes numbering and tick marks for the X axis. NOTE:
This function is for the deprecated PQG graphics.

Library

pgraph

Format

xtics(min, max, step, minordiv);

Input

min scalar, the minimum value.
max scalar, the maximum value.
step scalar, the value between major tick marks.
minordiv scalar, the number of minor subdivisions.

Remarks

This routine fixes the scaling for all subsequent graphs until graphset is called.

This gives you direct control over the axes endpoints and tick marks. If xtics is
called after a call to scale, it will override scale.

X and Y axes numbering may be reversed for xy, logx, logy, and loglog graphs.
This may be accomplished by using a negative step value in the xtics and ytics
functions.

Source

pscale.src

35-1960

xtics

x

35-1961

See Also

scale, ytics, ztics

xy

Purpose

Graphs X vs. Y using Cartesian coordinates. NOTE: This function is for the
deprecated PQG graphics.

Library

pgraph

Format

xy(x, y);

Input

x Nx1 or NxM matrix. Each column contains the X
values for a particular line.

y Nx1 or NxM matrix. Each column contains the Y
values for a particular line.

Remarks

Missing values are ignored when plotting symbols. If missing values are encountered
while plotting a curve, the curve will end and a new curve will begin plotting at the
next non-missing value.

Source

pxy.src

xy x

See Also

xyz, logx, logy, loglog

xyz

Purpose

Graphs X vs. Y vs. Z using Cartesian coordinates. NOTE: This function is for the
deprecated PQG graphics.

Library

pgraph

Format

xyz(x, y, z);

Input

x Nx1 or NxK matrix. Each column contains the X
values for a particular line.

y Nx1 or NxK matrix. Each column contains the Y
values for a particular line.

z Nx1 or NxK matrix. Each column contains the Z
values for a particular line.

Remarks

Missing values are ignored when plotting symbols. If missing values are encountered
while plotting a curve, the curve will end and a new curve will begin plotting at the
next non-missing value.

35-1962

xyz

x

35-1963

Source

pxyz.src

xyz x

y

ylabel

Purpose

Sets a label for the Y axis. NOTE: This function is for the deprecated PQG graph-
ics.

Library

pgraph

Format

ylabel(str);

Input

str string, the label for the Y axis.

Source

pgraph.src

See Also

title, xlabel, zlabel

35-1964

ylabel

y

35-1965

ytics

Purpose

Sets and fixes scaling, axes numbering and tick marks for the Y axis. NOTE:
This function is for the deprecated PQG graphics.

Library

pgraph

Format

ytics(min, max, step, minordiv);

Input

min scalar, the minimum value.
max scalar, the maximum value.
step scalar, the value between major tick marks.
minordiv scalar, the number of minor subdivisions.

Remarks

This routine fixes the scaling for all subsequent graphs until graphset is called.

This gives you direct control over the axes endpoints and tick marks. If ytics is
called after a call to scale, it will override scale.

X and Y axes numbering may be reversed for xy, logx, logy and loglog graphs.
This may be accomplished by using a negative step value in the xtics and ytics
functions.

Source

pscale.src

ytics

y

See Also

scale, xtics, ztics

35-1966

ytics

y

35-1967

z

zeros

Purpose

Creates a matrix of zeros.

Format

y = zeros(r, c);

Input

r scalar, the number of rows.
c scalar, the number of columns.

Output

y r x c matrix of zeros.

Remarks

This is faster than ones.

Noninteger arguments will be truncated to an integer.

zeros

z

Example

y = zeros(3,2);
print y;

The code above produces the following output:

0.000 0.000
0.000 0.000
0.000 0.000

See Also

ones, eye

zeta

Purpose

Computes the Riemann Zeta function.

Format

f = zeta(z);

Input

z NxK matrix; z may be complex.

Output

f NxK matrix.

35-1968

zeta

z

35-1969

Remarks

Euler MacLaurin series.

References

1. Jon Breslaw, 2009

zlabel

Purpose

Sets a label for the Z axis. NOTE: This function is for the deprecated PQG graph-
ics.

Library

pgraph

Format

zlabel(str);

Input

str string, the label for the Z axis.

Source

pgraph.src

See Also

title, xlabel, ylabel

zlabel

z

ztics

Purpose

Sets and fixes scaling, axes numbering and tick marks for the Z axis. NOTE: This
function is for the deprecated PQG graphics.

Library

pgraph

Format

ztics(min, max, step, minordiv);

Input

min scalar, the minimum value.
max scalar, the maximum value.
step scalar, the value between major tick marks.
minordiv scalar, the number of minor subdivisions. If this

function is used with contour, contour labels will be
placed every minordiv levels. If 0, there will be no
labels.

Remarks

This routine fixes the scaling for all subsequent graphs until graphset is called.

This gives you direct control over the axes endpoints and tick marks. If ztics is
called after a call to scale3d, it will override scale3d.

Source

pscale.src

35-1970

ztics

z

35-1971

See Also

scale3d, xtics, ytics, contour

ztics

z

36 Miscellaneous Topics

36.1 Change Log

The following is a list of changes from the previous version of GAUSS. This version is
completely backwards compatible with the previous major version, 16.

17.0.2

1. (Windows) Added GUI license management utility for floating network licenses,
rlmservice.exe.

2. Bug fix: Fixed possible folder duplication in Source Browser.
3. Bug fix for program files not saving on run, in specific cases.
4. Bug fix for possible underflow in cdftnc
5. Added ability to remove tgauss dependency on Qt libraries.
6. Other minor documentation enhancements and bug fixes.

17.0.1

1. Up to 2-5x speed increase for least squares estimation, using the slash operator '/'
for non-square coefficient matrices with few columns (approximately 1-15) and
few rows (approximately 2-100).

2. Bug fix: File import dialog now supports empty sheet names for Excel files.
3. Added support for pasting data to the matrix editor from applications that use the

legacy carriage return only line ending on Mac.

36-1

M
iscellaneous
T
opics

17.0.0

1. Increased scalability of threadFor and threadBegin.
2. GAUSS commands that process datasets can now also process .fmt, and .h5

files as well as .dat.
3. New support for HDF5 datasets, allows unlimited sized datasets.
4. Added support for an initial subset of Wilkinson-Rogers formula notation for func-

tions such as dstat, dstatmt, glm, momentd, ols, olsmt and more.
5. CSV and Excel (.xls, .xlsx) files can be used as datasets for functions

quantiled, dstatmt, glm, momentd, ols, olsmt and more.
6. New function cdfEmpirical for computing the empirical cumulative dis-

tribution function, and plotcdfEmpirical to graph it.
7. New function plotAddErrorBar adds error bars to 2-D plots.
8. New function plotAddSurface adds additional surfaces to an existing sur-

face plot.
9. New function plotSetLegendFont to control the font family, size and color

used in the legend.
10. New function plotSetZLevels: user control for the height of levels, rather

than just the number of contour levels.
11. New function plotSetContourLabels: controls whether numeric label con-

taining contour level height is drawn, as well as the format of the numeric label.
12. New color maps for surface and contour plots.
13. Added option to specify the units and dpi of graphs saved with plotSave.
14. Added control for the range of the X and Y axes to the graphics editor.
15. Added option to control units of graph size and DPI to plotSave.
16. Added control for viewing angle, lighting, zoom and toggling appearance of the

wireframe for surface plots to the graphics editor.
17. New function sylvester to compute the solution, X, to the equation AX + XB

= C.
18. schur can now, optionally, return the real or complex Schur form.
19. New function dot to compute the dot product of a column or the columns of a

matrix.
20. New function powerM to raise a matrix to a specified power.
21. getdims will now return the number of dimensions of a matrix, string or string

array.

36-2

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-3

22. getorders will now return the number of rows and columns for matrices,
strings or string arrays.

23. Greatly improved speed and decreased memory usage for reclassify.
24. Greatly improved performance of unique and uniquesa for string arrays.
25. Greatly improved performance of sortc for column vectors.
26. Greatly improved performance of linear solve using the slash operator (/) for

small matrices and X'X matrix multiplication for large matrices.
27. Greatly improved performance of kronecker product operator (.*.) when one of

the matrices is a column vector.
28. Improved performance of cdffc when the d1 parameter is equal to one, by 10-

1000x.
29. Improved performance of crossprd for the case with fewer than 500 vectors.
30. Added support for complex inputs to hess and significant speed up for real mat-

rix inputs larger than approximately 30x30.
31. tgauss and the GAUSS Engine can now create new 'plot' graphics.
32. New function rndWishartInv for taking draws from the Inverse Wishart dis-

tribution.
33. New function pdfWishartInv computes the probability density function of the

Inverse Wishart distribution.
34. New function ldl computes the LDL decomposition of a positive semi-definite

matrix and returns separate L and D factors.
35. Added support for generalized linear model function, glm for inverse-Gaussian

distribution and model without an intercept.
36. New function strtrim to remove white space from left and right side of ele-

ments of a string array.
37. Added support for multi-character delimiters to strsplit.
38. New function strjoin to combine string array elements into a string separated

by a specified delimiter. This function does NOT add a delimiter after the final
element as in strcombine.

39. Editor now grays out code that is inactive due to a #define.
40. Application Install Wizard can install multiple GAUSS application modules at

once.
41. Performance improvement: The "forward only" flag (dbQuerySetForwardOnly)

now defaults to true.
42. Bug fix for find-and-replace with UTF-8 multibyte characters.

Miscellaneous Topics

M
iscellaneous
T
opics

43. Bug fix: added support for strings to selif and delif and fixed memory bug in
delif.

44. Bug fix: crash when all points sent to plotLogX, plotLogY or plotLogLog
were between 10^n and 10^n+1.

45. Bug fix: errorlog and errorlogat now accept 1x1 string arrays as well as
strings.

46. Bug fix: intsimp would fail with an error when attempting to integrate a func-
tion that returned only zeros.

47. Bug fix: ability to scroll to right end in program input/output window with long
lines.

48. New example files: dstatmth5.e, glmnormalh5.e, plotadddsurf1.e,
plotadderrorbar1.e, plotadderrorbar2.e, plotarea_ci_latex.e,
plotcontour2.e and plotxy_latex1.e.

16.0.5

1. Bug fixes

16.0.4

1. Data Import Wizard now supports GAUSS Data sets (*.dat, *.fmt, *.fst)
2. Debugger now supports loading previous stack frames and viewing frame-specific

symbols
3. Improved breakpoint/bookmark behavior
4. Improved file opening behavior from finder on OSX
5. Bug fix: Fix various memory leaks
6. Bug fix: Support plotAddArea/plotAddBar to existing time-series plots
7. Bug fix: Fix following symlinks for file paths.
8. Bug fix: Fix 'Find Usages' for struct members.
9. Bug fix: Support debug tooltips for struct members
10. Bug fix: Fix 3D preview, title rendering and exporting for OSX Retina devices
11. Bug fix: Fix previous document shortcut not activating for Windows/Linux
12. Bug fix: Remove 'Delete' option from context menu for undeleteable items in

graphics page
13. Bug fix: Improve autocomplete for structs and struct reference arguments in procs

36-4

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-5

16.0.3

1. New function csvWriteM writes data to a delimited text file from a GAUSS
matrix.

2. Added ability to toggle bolding of functions in source page.
3. Bug fix: plotPolar now supports line symbols.
4. Bug fix: plotAddAnnotation did not maintain correct z-order for added

annotations.
5. Bug fix: Fix 3D graph export dialog starting size constraints.
6. Bug fix: Fix 'Properties' context menu item on graphics page not coming to top.
7. Bug fix: Fix semi-colons in strings, causing Format Text (code formatting) option

to add line break inside string.
8. Bug fix: Fix starting indent keywords in source page being case-sensitive.
9. Bug fix: Properly display long error messages that wrap.
10. Added internal check for, and removal of, completely zero imaginary portion of a

complex matrix on input to function lu.
11. Bug fix: Add complex support for function lu on Mac (already supported on Win-

dows and Linux).
12. Bug fix: Fix memory leak in function 'threadfor' in some specific situations.

16.0.2

1. Added ability for csvReadM/csvReadSA to read data from the standard input
stream (stdin). Pass __STDIN as the filename argument to
csvReadM/csvReadSA.

2. Added ability for fgets/fgetsa/fgetsat/fgetst to read from the standard
input stream (stdin) . Pass __STDIN as the file handle to fgets/fgetsa/fget-
sat/fgetst.

3. Added ability for fputs/fputst to send data to the standard error stream
(stderr) and the standard output stream (stdout). Pass __STDERR or __STDOUT
as the file handle to fputs/fputst.

4. Changed R-squared calculation in ols for regression through the origin to pre-
vent possibility of negative R-squared.

5. Bug fix: GAUSS source path was not searched when a file name was passed to
GAUSS on the command line at start up.

6. Bug fix: csvReadM and csvReadSA skipped final line in CSV file if the initial

Miscellaneous Topics

M
iscellaneous
T
opics

line was blank and csvRead was told to skip lines.
7. Bug fix: cons would continue to return the final buffer data after hitting EOF.

16.0.1

1. Added Data Import Wizard
2. New functions csvReadM and csvReadSA read data from a delimited text file

into a GAUSS matrix or string array.
3. New function glm calculates the generalized linear model.
4. New function rescale provides for scaling columns of a matrix.
5. New function sampleData takes samples with or without replacement from a

GAUSS matrix.
6. New function qz computes the sorted complex QZ decomposition.
7. New function plotSetAxesPen sets the color and line thickness of the axes

line.
8. New functions added for data recoding/reclassification: reclassify and

reclassifyCuts.
9. Added the following new statistical distribution functions: pdfBinomial,

pdfPoisson, cdfHyperGeo, pdfHyperGeo and rndHyperGeo.
10. New function integrate1d uses adaptive quadrature to integrate a user-

defined function over a specified range.
11. Added new compiler command #ifmac to designate code blocks to be compiled

and run only on a Mac.
12. Added additional, optional argument to rndi to specify the range of random

integers produced.
13. Added option to pass additional data to integration functions intquad1,

intquad2 and intquad3.
14. Added additional, optional input to lapgschur to specify sorting of the eigen-

values.
15. Add additional, optional argument to strsplit to specify delimiter.
16. Significant speed up to svd, svd1, svd2, svds, svdcusv and svdusv.
17. Significant speed up to indnv.
18. Added ability to pass a variable number of arguments to GAUSS procedures.
19. Removed requirement to use a DS structure, added option to directly pass a vari-

able number of matrices and made control structure optional for eqsolvemt,
qnewtonmt, and sqpsolvemt.

36-6

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-7

20. Removed requirement to use DS structure and added option to directly pass
matrices to all gradient and hessian functions (gradMT, gradMTm, gradMTT,
hessMT, hessMTm, hessMTg, hessMTgw, hessMTT, etc).

21. Removed requirement to pass control structure to dstatmt.
22. Made inputs other than file name optional for xlsReadM, xlsReadSA,

xlsWrite, xlsWriteM, xlsWriteSA, xlsGetSheetSize.
spreadSheetReadM, spreadSheetReadSA, and spreadSheetWrite.

23. F4 hot-key will now run the current statement and then skip to the next in addition
to running highlighted text.

24. Improved integration of source editor and debugger. Project view window, 'find
usages', editing source and other source editor features are available on debug
page.

25. Added multiple new preference options to Tools->Preferences->Debug page to
control opening and closing of temporary files and other debug page behavior.

26. New preference option added to activate autocomplete only manually on Source
Page (with CTRL+Space).

27. Added autocomplete and tooltips to program input/output window.
28. Added preference to Tools->Preferences->Command to activate autocomplete

only manually (with CTRL+Space).
29. Added bolding and separate color control syntax highlighting for all GAUSS and

user defined procedures (Tools->Preferences->Source Page->Functions).
30. Added support for CTRL+E to open a symbol selected in the program input/output

window into a floating symbol editor.
31. Added support for F4 to run highlighted text in program input/output window.
32. Added sysstate cases to assess variable arguments passed in to a GAUSS pro-

cedure as '...'.
33. Symbol editors remember format preferences until closed instead of using default

preferences whenever refreshed.
34. Speed up for load time of GAUSS when very large folders are open in project

view window.
35. Improved behavior of file associations on Mac.
36. Autocomplete no longer pops up when deleting characters or in the middle of a

word.
37. Bug fix for display of gaps between bars of a histogram when using plotAd-

dHistP in some cases.

Miscellaneous Topics

M
iscellaneous
T
opics

38. Bug fix for situation in which a message box could be hidden and unreachable
behind a floating symbol editor.

39. Bug fix: autocomplete pop-up window no longer stays visible when page loses
focus.

40. Bug fix: 'find usages' did not find instances of variables that were index assigns
(i.e. x[5] = 7;).

41. Bug fix: Dock widgets incorrectly reset to minimum width in some instances of
page change and restart GAUSS.

42. New example programs: glmbinomial1.e, glmbinomial2.e, glmbi-
nomial3.e, glmgamma1.e, glmgamma2.e, glmgamma3.e, glmnor-
mal1.e, glmnormal2.e, glmpoisson1.e, glmpoisson2.e,
qnewtonmt2.e, qnewtonmt3.e, qnewtonmt4.e, sqpsolvemt1.e,
sqpsolvemt_nlls.e, sqpsolvemt_frontier.

36.2 Common Errors

The following is a list of the some common GAUSS programming errors, with a descrip-
tion of their cause and resolution:

1. G0064 Operand missing

An operand is what an operator such as *, +, / acts upon. For example in the state-
ment:

x = 2 / 3;

both 2 and 3 are operands. “Operand missing”, means that there is an operator
that does not have all the of “operands” that it needs to do its job. The statement:

x = / 3;

will cause the error operand missing, because the slash operator (“/“) needs two
operands upon which to operate.

36-8

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-9

This error commonly occurs with print statements or “implicit print” statements.
The GAUSS keyword print, takes as input a space separated list of items to
print. For example:

//Print three separate items 3, 4 and 5
print 3 4 5;

gives the print keyword the list (3 4 5) as its input. So the statement:

//Print three separate items 2, / and 3
print 2 / 3;

also gives the print statement a space separated list with 3 items (2, /, 3). print
can be successful with the first item, the number 2, but when it tries to print the
second item in the list "/", it fails. In this case, "/" is an operator without any oper-
ands. You can fix this error by changing:

//Returns error 'operand missing' when trying to print
//the operator, '/', as a separate token
print 2 / 3;

to either one of the following:

//Surround statement with parentheses
print (2 / 3);

//Reduce to one statement by removing spaces
print 2/3;

Note that you CAN use spaces in assignments. For example:

x = 2 / 3;

is valid. It is only the print keyword that takes a space separated list of items.

Miscellaneous Topics

M
iscellaneous
T
opics

2. G0156: Illegal redefinition of procedure 'a'

As GAUSS is compiling a file, which converts the text in the file into byte code
that the can be executed, if it sees a symbol that has not been defined, it assumes
that this symbol is a matrix. It makes this assumption because procedures can be
defined after they are referenced. For example, this code is perfectly fine in
GAUSS:

//Define variables
a = 3;
b = 4;

//Call procedure
c = hypotenuse(a, b);

//Legally define procedure after it is called
proc (1) = hypotenuse(a, b);
retp(sqrt(a.^2 + b.^2));
endp;

The code below, however, is not:

//Clear all variables from GAUSS workspace
new;

//Call procedure with undefined variables
c = hypotenuse(a, b);

//Define variables after they are used,
//causing an error
a = 3;
b = 4;

proc (1) = hypotenuse(a, b);
retp(sqrt(a.^2 + b.^2));
endp;

36-10

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-11

This is because variables, ‘a’ and ‘b’ in this case, must be defined before they are
referenced. The error means that some symbol is being referenced before it is
used.

3. G0159: Wrong number of parameters

In this case, parameters refer to the inputs (also called arguments) to a GAUSS
procedure. For example, if we try to pass 3 inputs to hypotenuse procedure
defined above, like this:

//Call procedure with too many parameters
c = hypotenuse(3, 4, 5);

we will get the error ‘wrong number of parameters’, because we have passed
three inputs to a procedure that only takes two inputs.

4. G0527: Fewer returns than targets

The returns from a GAUSS procedure or function are called ‘targets’. In the
code:

x = ones(2,2);

the variable x is the target. The ones function provides one return, a matrix of
ones, which matches our one target. However, if we change the code to:

{ x, y } = ones(2,2);

we now have two targets (x and y), but ones still provides only one return. This
will cause the error ‘fewer returns than targets’ .

Miscellaneous Topics

M
iscellaneous
T
opics

5. G0181 : Illegal assignment - type mismatch

Most types in GAUSS, such as matrices and strings, are weakly typed. This
means that you can change a matrix to a string or a string to a matrix with a
simple reassignment like this:

//Define 'x' to be a 1x1 matrix
x = 5;

//Legally redefine 'x' to be a string
x = "my string";

However, sparse matrices and structures are strongly typed. This means that once
a variable is declared to be a sparse matrix or a specific structure it may not be
reassigned to a different type. For example:

//Declare 'a' to be a sparse matrix
sparse matrix a;

//Illegally attempt to define 'a' to be a
//dense matrix with an assignment statement
a = { 1 2,
3 4 };

will return the error “Illegal assignment - type mismatch” as will the code below:

//Declare 'myPlot' to be a plotControl structure
struct plotControl myPlot;

//Illegally attempt to redefine 'myPlot'
//a matrix with an assignment statement
myPlot = 5;

To resolve this error, you can: use the new command to clear out all variables,
delete just that particular variable, or rename the variable. Often times, a variable

36-12

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-13

declared to be strucure or sparse matrix in a previously run program will cause
this conflict in a later program. Simply adding a new statement to the top of your
program will prevent this problem.

36.3 Error Messages

The following is a list of error messages intrinsic to the GAUSS programming language.
Error messages generated by library functions are not included here.

G0002 File too large

G0003 Indexing a matrix as a vector

A single index can be used only on vectors. Vectors have only one row or only one
column.

G0004 Compiler stack overflow - too complex

An expression is too complex. Break it into smaller pieces. Notify Aptech Systems.

G0005 File is already compiled

G0006 Statement too long

Statement longer than 4000 characters.

G0007 End of file encountered

G0008 Syntax error

Compiler Unrecognizable or incorrect syntax. Semicolon
missing on previous statement.

create Unrecognizable statement in command file, or
numvar or outvar statement error.

Miscellaneous Topics

M
iscellaneous
T
opics

G0009 Compiler pass out of memory

Compiler pass has run out of memory. Notify Aptech Systems.

G0010 Can't open output file

G0011 Compiled file must have correct extension

GAUSS requires a .gcg extension.

G0012 Invalid drive specifier

G0013 Invalid filename

G0014 File not found

G0015 Directory full

G0016 Too many #include's

#include'd files are nested too deep.

G0017 WARNING: local outside of procedure

A local statement has been found outside a procedure definition. The local
statement will be ignored.

G0018 Read error in program file

G0019 Can't edit .gcg file

G0020 Not implemented yet

Command not supported in this implementation.

G0021 use must be at the beginning of a program

G0022 User keyword cannot be used in expression

36-14

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-15

G0023 Illegal attempt to redefine symbol to an index vari-
able

G0024 Invalid use of ->, probably should be .

G0025 Undefined symbol

A symbol has been referenced that has not been given a definition.

G0026 Too many symbols

The global symbol table is full. (To set the limit, see new in the GAUSS LANGUAGE
REFERENCE.)

G0027 Invalid directory

G0028 Can't open configuration file

GAUSS cannot find the configuration file.

G0029 Missing left parenthesis

G0030 Insufficient workspace memory

The space used to store and manipulate matrices and strings is not large enough for
the operations attempted. (To make the main program space smaller and reclaim
enough space to continue, see new in the GAUSS LANGUAGEREFERENCE.)

G0031 Execution stack too deep - expression too complex

An expression is too complex. Break it into smaller pieces. Notify Aptech Systems.

G0032 fn function too large

G0033 Missing right index bracket

G0034 Missing arguments

G0035 Argument too large

Miscellaneous Topics

M
iscellaneous
T
opics

G0036 Matrices are not conformable

For a description of the function or operator being used and conformability rules,
see Matrix Operators, Section 1.1, or the GAUSS LANGUAGEREFERENCE
MANUAL.

G0037 Result too large

The size of the result of an expression is greater than the limit for a single matrix.

G0038 Not all the eigenvalues can be computed

G0039 Matrix must be square to invert

G0040 Not all the singular values can be computed

G0041 Argument must be scalar

A matrix argument was passed to a function that requires a scalar.

G0042 Matrix must be square to compute determinant

G0043 Not implemented for complex matrices

G0044 Matrix must be real

G0045 Attempt to write complex data to real data set

Data sets, unlike matrices, cannot change from real to complex after they are cre-
ated. Use create complex to create a complex data set.

G0046 Columns don't match

The matrices must have the same number of columns.

G0047 Rows don't match

The matrices must have the same number of rows.

G0048 Matrix singular

36-16

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-17

The matrix is singular using the current tolerance.

G0049 Target matrix not complex

G0050 Out of memory for program

The main program area is full. (To increase the main program space, see new in
the GAUSS LANGUAGEREFERENCE.)

G0051 Program too large

The main program area is full. (To increase the main program space, see new in
the GAUSS LANGUAGEREFERENCE.)

G0052 No square root - negative element

G0053 Illegal index

An illegal value has been passed in as a matrix index.

G0054 Index overflow

An illegal value has been passed in as a matrix index.

G0055 retp outside of procedure

A retp statement has been encountered outside a procedure definition.

G0056 Too many active locals

The execution stack is full. There are too many local variables active. Restructure
your program. Notify Aptech Systems.

G0057 Procedure stack overflow - expression too complex

The execution stack is full. There are too many nested levels of procedure calls.
Restructure your program. Notify Aptech Systems.

G0058 Index out of range

Miscellaneous Topics

M
iscellaneous
T
opics

You have referenced a matrix element that is out of bounds for the matrix being ref-
erenced.

G0059 exec command string too long

G0060 Nonscalar index

G0061 Cholesky downdate failed

G0062 Zero pivot encountered

crout The Crout algorithm has encountered a diagonal element equal to
0. Use croutp instead.

G0063 Operator missing

An expression contains two consecutive operands with no intervening operator.

G0064 Operand missing

An expression contains two consecutive operators with no intervening operand.

G0065 Division by zero!

G0066 Must be recompiled under current version

You are attempting to use compiled code from a previous version of GAUSS.
Recompile the source code under the current version.

G0068 Program compiled under GAUSS-386 real version

G0069 Program compiled under GAUSS-386i complex ver-
sion

G0070 Procedure calls too deep

You may have a runaway recursive procedure.

G0071 Type mismatch

36-18

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-19

You are using an argument of the wrong data type (e.g., inputting a matrix when a
string is called for).

G0072 Too many files open

The limit on simultaneously open files is 10.

G0073 Redefinition of

declare An attempt has been made to initialize a variable that
is already initialized. This is an error when
declare := is used. declare != or
declare ?= may be a better choice for your
application.

declare An attempt has been made to redefine a string as a
matrix or procedure, or vice versa. delete the symbol
and try again. If this happens in the context of a
single program, you have a programming error. If
this is a conflict between different programs, use a
new statement before running the second program.

let A string is being forced to type matrix. Use an
external matrix symbol; statement
before the let statement.

G0074 Can't run program compiled under GAUSS Light

G0075 gscroll input vector the wrong size

G0076 Call Aptech Systems Technical Support

G0077 New size cannot be zero

You cannot reshape a matrix to a size of zero.

G0078 vargetl outside of procedure

Miscellaneous Topics

M
iscellaneous
T
opics

G0079 varputl outside of procedure

G0080 File handle must be an integer

G0081 Error renaming file

G0082 Error reading file

G0083 Error creating temporary file

G0084 Too many locals

A procedure has too many local variables.

G0085 Invalid file type

You cannot use this kind of file in this way.

G0086 Error deleting file

G0087 Couldn't open

The auxiliary output file could not be opened. Check the file name and make sure
there is room on the disk.

G0088 Not enough memory to convert the whole string

G0089 WARNING: duplicate definition of local

G0090 Label undefined

Label referenced has no definition.

G0091 Symbol too long

Symbols can be no longer than 32 characters.

G0092 Open comment

A comment was never closed.

36-20

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-21

G0093 Locate off screen

G0094 Argument out of range

G0095 Seed out of range

G0096 Error parsing string

parse encountered a token that was too long.

G0097 String not closed

A string must have double quotes at both ends.

G0098 Invalid character for imaginary part of complex num-
ber

G0099 Illegal redefinition of user keyword

G0100 Internal E R R O R ###

Notify Aptech Systems.

G0101 Argument cannot be zero

The argument to ln or log cannot be zero.

G0102 Subroutine calls too deep

Too many levels of gosub. Restructure your program.

G0103 return without gosub

You have encountered a subroutine without executing a gosub.

G0104 Argument must be positive

G0105 Bad expression or missing arguments

Check the expression in question, or you forgot an argument.

Miscellaneous Topics

M
iscellaneous
T
opics

G0106 Factorial overflow

G0107 Nesting too deep

Break the expression into smaller statements.

G0108 Missing left bracket [

G0109 Not enough data items

You omitted data in a let statement.

G0110 Found) expected] -

G0111 Found] expected) -

G0112 Matrix multiplication overflow

G0113 Unclosed (

G0114 Unclosed [

G0115 Illegal redefinition of function

You are attempting to turn a function into a matrix or string. If this is a name con-
flict, delete the function.

G0116 sysstate: invalid case

G0117 Invalid argument

G0118 Argument must be integer

File handles must be integral.

G0120 Illegal type for save

G0121 Matrix not positive definite

The matrix is either not positive definite, or singular using the current tolerance.

36-22

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-23

G0122 Bad file handle

The file handle does not refer to an open file or is not in the valid range for file
handles.

G0123 File handle not open

The file handle does not refer to an open file.

G0124 readr call too large

You are attempting to read too much in one call.

G0125 Read past end of file

You have already reached the end of the file.

G0126 Error closing file

G0127 File not open for write

G0128 File already open

G0129 File not open for read

G0130 No output variables specified

G0131 Can't create file, too many variables

G0132 Can't write, disk probably full

G0133 Function too long

G0134 Can't seekr in this type of file

G0135 Can't seek to negative row

G0136 Too many arguments or misplaced assignment oper-
ator

Miscellaneous Topics

M
iscellaneous
T
opics

You have an assignment operator (=) where you want a comparison operator (==),
or you have too many arguments.

G0137 Negative argument - erf or erfc

G0138 User keyword must have one argument

G0139 Negative parameter - Incomplete Beta

G0140 Invalid second parameter - Incomplete Beta

G0141 Invalid third parameter - Incomplete Beta

G0142 Nonpositive parameter - gamma

G0143 NaN or missing value - cdfchic

G0144 Negative parameter - cdfchic

G0145 Second parameter < 1.0 - cdfchic

G0146 Parameter too large - Incomplete Beta

G0147 Bad argument to trig function

G0148 Angle too large to trig function

G0149 Matrices not conformable

For a description of the function or operator being used and conformability rules,
see Matrix Operators, Section 1.1, or the GAUSS LANGUAGEREFERENCE.

G0150 Matrix not square

G0151 Sort failure

G0152 Variable not initialized

You have referenced a variable that has not been initialized to any value.

36-24

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-25

G0153 Unsuccessful close on auxiliary output

The disk may be full.

G0154 Illegal redefinition of string

G0155 Nested procedure definition

A proc statement was encountered inside a procedure definition.

G0156 Illegal redefinition of procedure

You are attempting to turn a procedure into a matrix or string. If this is a name con-
flict, delete the procedure.

G0157 Illegal redefinition of matrix

G0158 endp without proc

You are attempting to end a procedure that you never started.

G0159 Wrong number of parameters

You called a procedure with the wrong number of arguments.

G0160 Expected string variable

G0161 User keywords return nothing

G0162 Can't save proc/keyword/fn with global references

Remove the global references or leave this in source code form for the autoloader
to handle. (See library in the GAUSS LANGUAGEREFERENCE.)

G0163 Wrong size format matrix

G0164 Bad mask matrix

G0165 Type mismatch or missing arguments

G0166 Character element too long

Miscellaneous Topics

M
iscellaneous
T
opics

The maximum length for character elements is 8 characters.

G0167 Argument must be column vector

G0168 Wrong number of returns

The procedure was defined to return a different number of items.

G0169 Invalid pointer

You are attempting to call a local procedure using an invalid procedure pointer.

G0170 Invalid use of ampersand

G0171 Called symbol is wrong type

You are attempting to call a local procedure using a pointer to something else.

G0172 Can't resize temporary file

G0173 varindx failed during open

The global symbol table is full.

G0174 ''.'' and '' '' operators must be inside [] brackets

These operators are for indexing matrices.

G0175 String too long to compare

G0176 Argument out of range

G0177 Invalid format string

G0178 Invalid mode for getf

G0179 Insufficient heap space

G0180 Trim too much

You are attempting to trim more rows than the matrix has.

36-26

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-27

G0181 Illegal assignment - type mismatch

G0182 2nd and 3rd arguments different order

G0274 Invalid parameter for conv

G0275 Parameter is NaN (Not A Number)

The argument is a NaN (see Special Data Types, Section 1.0.1).

G0276 Illegal use of reserved word

G0277 Null string illegal here

G0278 proc without endp

You must terminate a procedure definition with an endp statement.

G0286 Multiple assign out of memory

G0287 Seed not updated

The seed argument to rndns and rndus must be a simple local or global variable
reference. It cannot be an expression or constant. These functions are obsolete,
please use rndlcn and rndlcu

G0288 Found break not in do loop

G0289 Found continue not in do loop

G0290 Library not found

The specified library cannot be found on the lib_path path. Make sure install-
ation was correct.

G0291 Compiler pass out of memory

Notify Aptech Systems.

G0292 File listed in library not found

Miscellaneous Topics

M
iscellaneous
T
opics

A file listed in a library could not be opened.

G0293 Procedure has no definition

The procedure was not initialized. Define it.

G0294 Error opening temporary file

One of the temporary files could not be opened. The directory may be full.

G0295 Error writing temporary file

One of the temporary files could not be written to. The disk may be full.

G0296 Can't raise negative number to nonintegral power

G0300 File handle must be a scalar

G0301 Syntax error in library

G0302 File has been truncated or corrupted

getname File header cannot be read.
load Cannot read input file, or file header cannot be read.
open File size does not match header specifications, or file

header cannot be read.

G0317 Can't open temp file

G0336 Disk full

G0339 Can't debug compiled program

G0341 File too big

G0347 Can't allocate that many globals

G0351 Warning: Not reinitializing : declare ?=

The symbol is already initialized. It will be left as is.

36-28

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-29

G0352 Warning: Reinitializing : declare !=

The symbol is already initialized. It will be reset.

G0355 Wrong size line matrix

G0360 Write error

G0364 Paging error

G0365 Unsupported executable file type

G0368 Unable to allocate translation space

G0369 Unable to allocate buffer

G0370 Syntax Error in code statement

G0371 Syntax Error in recode statement

G0372 Token verify error

Notify Aptech Systems.

G0373 Procedure definition not allowed

A procedure name appears on the left side of an assignment operator.

G0374 Invalid make statement

G0375 make Variable is a Number

G0376 make Variable is Procedure

G0377 Cannot make Existing Variable

G0378 Cannot make External Variable

G0379 Cannot make String Constant

G0380 Invalid vector statement

Miscellaneous Topics

M
iscellaneous
T
opics

G0381 vector Variable is a Number

G0382 vector Variable is Procedure

G0383 Cannot vector Existing Variable

G0384 Cannot vector External Variable

G0385 Cannot vector String Constant

G0386 Invalid extern statement

G0387 Cannot extern number

G0388 Procedures always external

A procedure name has been declared in an extern statement. This is a warning
only.

G0389 extern variable already local

A variable declared in an extern statement has already been assigned local
status.

G0390 String constant cannot be external

G0391 Invalid code statement

G0392 code Variable is a Number

G0393 code Variable is Procedure

G0394 Cannot code Existing Variable

G0395 Cannot code External Variable

G0396 Cannot code String Constant

G0397 Invalid recode statement

36-30

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-31

G0398 recode Variable is a Number

G0399 recode Variable is Procedure

G0400 Cannot recode External Variable

G0401 Cannot recode String Constant

G0402 Invalid keep statement

G0403 Invalid drop statement

G0404 Cannot define Number

G0405 Cannot define String

G0406 Invalid select statement

G0407 Invalid delete statement

G0408 Invalid outtyp statement

G0409 outtyp already defaulted to 8

Character data has been found in the output data set before an outtyp 2 or
outtyp 4 statement. This is a warning only.

G0410 outtyp must equal 2, 4, or 8

G0411 outtyp override...precision set to 8

Character data has been found in the output data set after an outtyp 2 or
outtyp 4 statement. This is a warning only.

G0412 default not allowed in recode statement

default allowed only in code statement.

G0413 Missing file name in dataloop statement

Miscellaneous Topics

M
iscellaneous
T
opics

G0414 Invalid listwise statement

G0415 Invalid lag statement

G0416 lag variable is a number

G0417 lag variable is a procedure

G0418 Cannot lag External Variable

G0419 Cannot lag String Constant

G0421 Command not supported in Run-Time Module

G0428 Cannot use debug command inside program

G0429 Invalid number of subdiagonals

G0431 Error closing dynamic library

G0432 Error opening dynamic library

G0433 Cannot find DLL function

G0434 Error opening default dynamic library

G0435 Invalid mode

G0436 Matrix is empty

G0437 loadexe not supported; use dlibrary instead

G0438 callexe not supported; use dllcall instead

G0439 File has wrong bit order

G0440 File has wrong byte order

G0441 Type vector malloc failed

36-32

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-33

G0442 No type vector in gfblock

G0445 Illegal left-hand side reference in procedure

G0446 Argument is the wrong size

G0447 vfor called with illegal loop level

G0454 Failure opening printer for output

G0456 Failure buffering output for printer

G0457 Cannot take log of a negative number

G0458 Attempt to index proc/fn/keyword as a matrix

G0459 Missing right brace

G0460 Unexpected end of statement

G0461 Too many data items

G0462 Negative trim value

G0463 Failure generating graph

G0465 Redefinition of structure, number of elements

G0466 Redefinition of structure, type mismatch

G0467 Redefinition of structure, unrecognized member

G0468 Structure definition inside procedure definition

G0469 Cannot create translator temp file

G0470 Symbol not found

G0472 Invalid name

Miscellaneous Topics

M
iscellaneous
T
opics

G0473 String not terminated with null byte

G0477 FOR loops nested too deep

G0486 Character argument too long

G0487 License expired

G0490 License manager initialization error

G0491 License manager error

G0492 Licensing failure

G0497 Missing right parenthesis

G0500 Cannot create temporary filename

G0503 Cannot assign matrix to scalar member

G0504 Invalid structure member

G0505 Invalid structure redefinition

G0506 Structure assignment mismatch

G0507 Undefined structure

G0508 Structure argument mismatch

G0509 Too many structure members

G0510 Duplicate name for structure member

G0514 Not supported for structures

G0515 Too many values in locator

G0516 Too many dimensions in result

36-34

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-35

G0517 Too many dimensions in argument

G0518 Not implemented for complex

G0519 Illegal dereference of structure array

G0520 Arguments not conformable

G0521 Argument must be real

G0522 Illegal indexing of dereferenced structure

G0523 Numeric argument must be integer

G0524 Found comma, expecting index

G0525 Argument contains NaNs

G0526 Argument must be compact format

G0529 Array orders must be >= 1

G0531 Two trailing dimensions of argument must be the
same size

G0532 Both dimensions of argument must be the same size

G0533 1-dimensional argument must contain only 1 element

G0534 Cannot create file

G0538 Zero illegal in for loop increment

G0541 Illegal assignment to FOR loop counter

G0542 Object too large for 32-bit version

G0543 Array has too many dimensions for matrix assign

G0547 Array not conformable for indexing

Miscellaneous Topics

M
iscellaneous
T
opics

G0548 Array not conformable for boolean operation

G0549 Global structure pointer cannot point to local struc-
ture

G0550 Invalid use of *

G0551 Feature not authorized

G0553 Path too long

G0554 Unable to create sparse matrix

G0555 Cannot index uninitialized structure

G0556 #IF nesting limit exceeded

G0557 #ELSE without #IF

G0558 #ENDIF without #IF

G0559 Symbol not #DEFINE'd

G0560 Too many #DEFINE's

G0561 Duplicate #DEFINE

G0562 Open /* */comment

G0563 Open @ @ comment

G0564 Illegal redefinition of sparse matrix

G0565 Initializer too large, increase maxdeclet in config
(.cfg) file

G0566 Can't create profiler data file

G0567 Sparse matrix uninitialized

36-36

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-37

G0568 Operation not defined for triangular, symmetric, or
Hermitian sparse matrix

G0569 Argument must be complex

G0570 Diagonal must be real

G0571 Diagonal must not contain zeros

G0572 Argument must be triangular

G0573 Argument must be symmetric

G0574 Sparse type mismatch

G0575 Unable to load variable

G0576 Threading error

G0577 Expected THREADSTAT, THREADBEGIN, or
THREADJOIN

G0578 A THREADJOIN failed

G0579 Cannot call RUN from inside thread

G0580 Unable to converge in allowed number of iterations

G0581 Incorrect Argument: Number of eigenvalues must be
positive

G0582 Incorrect Argument: Number of column vectors must
be >= number of eigenvalues +2 and < rows of input matrix

G0583 Could not apply shift during an Arnoldi iteration cycle.
Try increasing size of ncv

Miscellaneous Topics

M
iscellaneous
T
opics

G0584 Invalid Input: 'which' must be 'LM' 'SM' 'LR' 'LI' 'SR'
or 'SI' and type string

G0585 Error Return from LAPACK eigenvalue calculation

G0586 dneupd error 1: contact Aptech Systems

G0587 Input matrix must be sparse

G0588 Incorrect Input: Number of eigenvalues must be
scalar

G0589 Incorrect Input: Tolerance must be scalar

G0590 No eigenvalues found to specified tolerance in
allowed iterations

G0591 Incorrect Input: Max iterations must be scalar

G0592 Incorrect Input: Number of column vectors must be
scalar

G0593 Incorrect Input: Third input, probability, must be > 0
and < 1

G0594 Incorrect Input: Number of successes (input 1) must
be less than number of trials (input 2)

G0595 Incorrect Input: State vector cannot have more than
1 column

G0596 Incorrect Input: Inputs 1 and 2 (cols and rows) must
be scalar or 1x1 matrix

G0597 Incorrect Input: Input must be dense matrix

G0598 Incorrect Input: First input may have 1 column only

36-38

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-39

G0599 Incorrect Input: Input 2 may not have more columns
that input 1 has rows

G0600 Incorrect Input: Input 1 must be square

G0601 Incorrect Input: Input 2 must be square

G0602 Incorrect Input: 1 <= il < iu and iu <= rows of x

G0603 Failure to converge

36.4 GAUSS Graphics Colors

The following is a chart and list of colors available for use in GAUSS graphics with
both the name and RGB value listed.

Miscellaneous Topics

M
iscellaneous
T
opics

36-40

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-41

Miscellaneous Topics

M
iscellaneous
T
opics

36.5 Obsolete Commands

The following commands will no longer be supported and therefore should not be used
when creating new programs.

color

coreleft

csrtype

denseSubmat

dfree

disable

editm

eigcg

eigcg2

eigch

eigch2

eigrg

eigrg2

eigrs

eigrs2

enable

export

exportf

files

36-42

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-43

font

FontLoad

FontUnload

FontUnloadAll

graph

import

importf

isSparse

line

lpos

lprint

lprint on/off

lpwidth

lshow

medit

nametype

ndpchk

ndpclex

ndpcntrl

plot

plotsym

Miscellaneous Topics

M
iscellaneous
T
opics

prcsn

print on/off

rndns

rndus

scroll

setvmode

sparseCols

sparseEye

sparseFD

sparseFP

sparseHConcat

sparseNZE

sparseOnes

sparseRows

sparseScale

sparseSet

sparseSolve

sparseSubmat

sparseTD

sparseTranspose

sparseTrTD

36-44

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-45

sparseTScalar

sparseVConcat

spline1d

spline2d

vartype

WinClear

WinClearArea

WinClearTTYlog

WinClose

WinCloseAll

WinGetActive

WinGetAttributes

WinGetColorCells

WinGetCursor

WinMove

WinOpenPQG

WinOpenText

WinOpenTTY

WinPan

WinPrint

WinPrintPQG

Miscellaneous Topics

M
iscellaneous
T
opics

WinRefresh

WinRefreshArea

WinResize

WinSetActive

WinSetBackground

WinSetColorCells

WinSetColormap

WinSetCursor

WinSetForeground

WinSetRefresh

WinSetTextWrap

WinZoomPQG

36.6 Quick Reference

36.6.1 Basic functions

new remove all
variables
from your
GAUSS
workspace.

cls clear
program
output from
the GAUSS

36-46

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-47

Program
Input/Output
Window.

f = filesa(file_pattern); returns a
string array
containing
all files that
match 'file_
pattern'.

chdir new_directory; sets your
GAUSS
current
working
directory to
'new_
directory'.

cwd = cdir(0); returns your
GAUSS
current
working
directory.

d = getGAUSSHome(); returns the
location of
your
GAUSS
installation.

36.6.2 Matrix creation

x = { 1 2, 3 4 }; create a

Miscellaneous Topics

M
iscellaneous
T
opics

2x2
matrix.

x = seqa(start, step, count); creates a
sequence
of 'count'
numbers
starting at
'start' and
increasing
by 'step'.

x = seqm(start, mult, count); creates a
sequence
of 'count'
numbers
starting at
'start' and
increasing
by a
multiple
of 'mult'.

x = zeros(m, n); creates an
'm' by 'n'
matrix
with all
elements
set to 0.

x = ones(m, n); creates an
'm' by 'n'
matrix
with all
elements

36-48

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-49

set to 1.
x = rndn(m, n); creates an

'm' by 'n'
matrix of
random
normal
numbers.

x = rndu(m, n); creates an
'm' by 'n'
matrix of
uniformly
distributed
random
numbers.

36.6.3 Matrix manipulation

a = x[row,col]; extract the
element of
'x' located
at 'row:col'.

a = x[.,col]; extract all
rows of the
specified
column(s)
of 'x'.

a = x[row,.]; extract all
columns of
the
specified

Miscellaneous Topics

M
iscellaneous
T
opics

row(s) of
'x'.

a = x[r_start:r_end,.]; extract all
columns
from the
row range
'row_start'
to 'row_
end'.

a = x[a b c, col]; extract the
elements
from rows
'a', 'b', and
'c' in
column
'col'.

a = x ~ y; horizontally
concatenate
'x' and 'y'.

a = x | y; vertically
concatenate
'x' and 'y'.

a = reshape(x, m, n); reshape 'x'
to be an 'm'
by 'n'
matrix.

a = delrows(x, idx); returns all
rows of 'x'
except
those listed
in 'idx'.

36-50

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-51

a = delif(x, logical); returns all
rows of 'x'
except the
rows that
match a
logical
expression.

a = selif(x, logical); returns all
rows of 'x'
that match
a logical
expression.

36.6.4 Operators

Element-by-element (ExE)
operators

z = x .* y; Element-by-element multiply.

z = x ./ y; Element-by-element divide.

z = x .^ y; Element-by-element
exponentiation.

z = x + y; Element-by-element addition.

z = x - y; Element-by-element
subtraction.

Matrix operators
z = x * y; Matrix

multiply.
b = y / x; Solve a

Miscellaneous Topics

M
iscellaneous
T
opics

Matrix operators
system of
linear
equations.

z = x .*. y; Kronecker
product.

z = x *~ y; Horizontal
direct
product.

z = x'; Matrix
transpose.

Scalar logical operators
z = x and y; Scalar

logical
AND.

z = x or y; Scalar
logical
OR.

Element-by-element (ExE) logical
operators

z = x .and y; Element-
by-
element
logical
AND.

z = x .or y; Element-
by-
element
logical

36-52

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-53

Element-by-element (ExE) logical
operators

OR.
z = x .> y; Element-

by-
element
greater
than.

z = x .< y; Element-
by-
element
less than.

z = x .== y; Element-
by-
element
equality
test.

z = x .!= y; Element-
by-
element
inequality
test.

Matrix logical
operators

z = x > y; is every element in 'x' greater than its
corresponding element in 'y'.

z = x < y; is every element in 'x' less than its
corresponding element in 'y'

z = x == y; does every element of 'x' equal its
corresponding element in 'y'.

Miscellaneous Topics

M
iscellaneous
T
opics

Matrix logical
operators

z = x != y; is every element in 'x' different than its
corresponding element in 'y'.

36.6.5 String creation

s = "this is a string"; create string containing
'this is a string'.

s = "this is " $+ "a string"; combine strings.

string sa = { "cpi" "ppi", "m1"
"m2" };

create 2x2 string array.

s = ntos(n); convert numeric 'n' to
a string.

36.6.6 String array manipulation

s = sa[r, c]; extract the r, c element of 'sa'.

s = sa[., c]; extract all rows of the, 'c'th
column of 'sa'.

s = sa[r, .]; extract 'r'th row of 'sa'.

sa = "producer" $~
"prices";

horizontal concatenation of
strings.

sa = "County" $| "State"; vertical concatenation of strings.

idx = indsav(what,
where);

returns the location of the strings
from 'what' in the string array
'where'.

36-54

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-55

su = intrsectsa(s_1, s_
2);

returns the intersection of the
string arrays 's_1' and 's_2'.

36.6.7 Loading and saving data

x = xlsReadM(file, range, sheet); reads the
specified
data into
a
GAUSS
matrix.

sa = xlsReadSA(file, range, sheet); reads the
specified
data into
a
GAUSS
string
array.

ret = xlsWrite(x, file, range,
sheet);

writes
the data
from the
GAUSS
matrix or
string
array 'x'
into the
specified
Excel®
file.

x = loadd(dataset); loads the

Miscellaneous Topics

M
iscellaneous
T
opics

data
from a
GAUSS
dataset
into a
GAUSS
matrix.

ret = saved(x, dataset, v_names); saves the
data
from 'x'
to a
GAUSS
dataset.

x = csvReadM(file, row_range, col_
range);

reads
data
from a
text
delimited
file, such
as CSV,
to a
GAUSS
matrix.

x = csvReadSA(file, row_range, col_
range);

reads
data
from a
text
delimited
file, such
as CSV,
to a

36-56

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-57

GAUSS
string
array.

36.7 Reserved Words

The following words are used for GAUSS functions. You cannot use these names for
variables or procedures in your programs:

A

abs

acf

aconcat

acos

aeye

amax

amean

AmericanBinomCall

AmericanBinomCall_Greeks

AmericanBinomCall_ImpVol

AmericanBinomPut

AmericanBinomPut_Greeks

AmericanBinomPut_ImpVol

AmericanBSCall

AmericanBSCall_Greeks

Miscellaneous Topics

M
iscellaneous
T
opics

AmericanBSCall_ImpVol

AmericanBSPut

AmericanBSPut_Greeks

AmericanBSPut_ImpVol

amin

amult

and

annotationGetDefaults

annotationSetBkd

annotationSetFont

annotationSetLineColor

annotationSetLineStyle

annotationSetLineThickness

annualTradingDays

arccos

arcsin

arctan

arctan2

areshape

arrayalloc

arrayindex

36-58

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-59

arrayinit

arraytomat

asciiload

asclabel

asin

astd

astds

asum

atan

atan2

atranspose

axmargin

B

balance

band

bandchol

bandcholsol

bandltsol

bandrv

bandsolpd

bar

base10

Miscellaneous Topics

M
iscellaneous
T
opics

begwind

besselj

beta

box

boxcox

break

C

calcbox

call

callexe

cdfBeta

cdfBetaInv

cdfBinomial

cdfBinomialInv

cdfBvn

cdfBvn2

cdfBvn2e

cdfCauchy

cdfCauchyInv

cdfChic

cdfChii

cdfChinc

36-60

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-61

cdfEmpirical

cdfExp

cdfExpInv

cdfFc

cdfFnc

cdfFncInv

cdfGam

cdfGenPareto

cdfHyperGeo

cdfLaplace

cdfLaplaceInv

cdfLogistic

cdfLogisticInv

cdfMvn

cdfMvn2e

cdfMvnce

cdfMvne

cdfMvt2e

cdfMvtce

cdfMvte

cdfn

Miscellaneous Topics

M
iscellaneous
T
opics

cdfN2

cdfNc

cdfNcd

cdfNegBinomial

cdfNegBinomialInv

cdfNi

cdfPoisson

cdfPoissonInv

cdfRayleigh

cdfRayleighInv

cdfTc

cdfTci

cdfTnc

cdfTvn

cdfWeibull

cdfWeibullInv

cdir

ceil

cfft

cffti

ChangeDir

36-62

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-63

chdir

checkinterrupt

chiBarSquare

chol

choldn

cholsol

cholup

chrs

cint

clear

clearg

close

closeall

cls

cmsplit

cmsplit2

code

color

cols

colsf

combinate

Miscellaneous Topics

M
iscellaneous
T
opics

combinated

comlog

commandeerm

commandeersa

compile

complex

con

cond

conformed

conj

cons

conscore

continue

contour

conv

convertsatostr

convertstrtosa

coreleft

corrm

corrms

corrvc

36-64

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-65

corrx

corrxs

cos

cosh

counts

countwts

create

crossprd

crout

croutp

csrcol

csrlin

csrtype

csvReadM

csvReadSA

cumprodc

cumsumc

curve

cvtos

cvtosa

D

Miscellaneous Topics

M
iscellaneous
T
opics

datacreate

datacreatecomplex

datalist

dataload

dataloop

dataopen

datasave

date

datestr

datestring

datestrymd

dayinyr

dayOfWeek

dbAddDatabase

dbClose

dbCommit

dbCreateQuery

dbExecQuery

dbGetConnectOptions

dbGetDatabseName

dbGetDriverName

36-66

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-67

dbGetDrivers

dbGetHostName

dbGetLastErrorNum

dbGetLastErrorText

dbGetNumericalPrecPolicy

dbGetPassword

dbGetPort

dbGetPrimaryIndex

dbGetTableHeaders

dbGetTables

dbGetUserName

dbHasFeature

dbIsDriverAvailable

dbIsOpen

dbIsOpenError

dbNumericalPrecPolicy

>dbOpen

dbQueryBindValue

dbQueryClear

dbQueryCols

dbQueryExecPrepared

Miscellaneous Topics

M
iscellaneous
T
opics

dbQueryFetchAllM

dbQueryFetchAllSA

dbQueryFetchNextM

dbQueryFetchNextSA

dbQueryFinish

dbQueryGetBoundValue

dbQueryGetBoundValues

dbQueryGetField

dbQueryGetLastErrorNum

dbQueryGetLastErrorText

dbQueryGetLastInsertID

dbQueryGetLastQuery

dbQueryGetPosition

dbQueryIsActive

dbQueryIsForwardOnly

dbQueryIsNull

dbQueryIsSelect

dbQueryIsValid

dbQueryPrepare

dbQueryRows

dbQuerySeek

36-68

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-69

dbQuerySeekFirst

dbQuerySeekLast

dbQuerySeekNext

dbQuerySeekPrevious

dbQuerySetForwardOnly

dbRemoveDatabase

dbRollback

dbSetConnectOptions

dbSetDatabaseName

dbSetHostName

dbSetPassword

dbSetPort

dbSetUserName

dbTransaction

debug

declare

delete

deleteFile

delif

delrows

denseSubmat

Miscellaneous Topics

M
iscellaneous
T
opics

denseToSp

denseToSpRE

denseToZero

design

det

detl

dfft

dffti

dfree

diag

diagrv

digamma

disable

dlibrary

dllcall

do

dos

doswin

DOSWinCloseall

DOSWinOpen

dot

36-70

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-71

dotfeq

dotfeqmt

dotfge

dotfgemt

dotfgt

dotfgtmt

dotfle

dotflemt

dotflt

dotfltmt

dotfne

dotfnemt

draw

dsCreate

dstat

dstatmt

dstatmtControlCreate

dtdate

dtday

dttime

dttodtv

Miscellaneous Topics

M
iscellaneous
T
opics

dttostr

dttoutc

dtvnormal

dtvtodt

dtvtoutc

dummy

dummybr

dummydn

E

ed

edit

editm

eig

eigcg

eigcg2

eigch

eigch2

eigh

eighv

eigrg

eigrg2

eigrs

36-72

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-73

eigrs2

eigv

elapsedTradingDays

else

elseif

enable

end

endfor

endif

endo

endp

endwind

envget

eof

eq

eqSolve

eqSolvemt

eqSolvemtControlCreate

eqSolvemtOutCreate

eqSolveSet

eqv

Miscellaneous Topics

M
iscellaneous
T
opics

erf

erfc

erfcplx

erfccplx

erfCInv

erfInv

error

errorlog

errorlogat

etdays

ethsec

etstr

EuropeanBinomCall

EuropeanBinomCall_Greeks

EuropeanBinomCall_ImpVol

EuropeanBinomPut

EuropeanBinomPut_Greeks

EuropeanBinomPut_ImpVol

EuropeanBSCall

EuropeanBSCall_Greeks

EuropeanBSCall_ImpVol

36-74

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-75

EuropeanBSPut

EuropeanBSPut_Greeks

EuropeanBSPut_ImpVol

exctsmpl

exec

execbg

exp

expr

extern

external

eye

F

fcheckerr

fclearerr

feq

feqmt

fflush

fft

ffti

fftm

fftmi

fftn

Miscellaneous Topics

M
iscellaneous
T
opics

fge

fgemt

fgets

fgetsa

fgetsat

fgetst

fgt

fgtmt

fileinfo

files

filesa

fix

fle

flemt

floor

flt

fltmt

fmod

fn

fne

fnemt

36-76

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-77

font

fontload

fonts

fontunload

fontunloadall

fopen

for

format

formatcv

formatnv

fputs

fputst

fseek

fstrerror

ftell

ftocv

ftos

ftostrc

G

gamma

gammacplx

gammaii

Miscellaneous Topics

M
iscellaneous
T
opics

gausset

gdaAppend

gdaCreate

gdaDStat

gdaDStatMat

gdaGetIndex

gdaGetName

gdaGetNames

gdaGetOrders

gdaGetType

gdaGetTypes

gdaGetVarInfo

gdaIsCplx

gdaLoad

gdaPack

gdaRead

gdaReadByIndex

gdaReadSome

gdaReadSparse

gdaReadStruct

gdaReportVarInfo

36-78

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-79

gdaSave

gdaUpdate

gdaUpdateAndPack

gdaWrite

gdaWriteSome

gdtfastcat

ge

getarray

getdims

getf

getmatrix

getmatrix4D

getname

getnamef

getNextTradingDay

getNextWeekDay

getnr

getnrmt

getorders

getpath

getPreviousTradingDay

Miscellaneous Topics

M
iscellaneous
T
opics

getPreviousWeekDay

getRow

getscalar3D

getscalar4D

getTrRow

getwind

glm

gosub

goto

gradMT

gradMTm

gradMTTm

gradMTT

gradp

gradpcplx

graph

graphgpg

graphinit

graphprt

graphset

graphsev3

36-80

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-81

gt

H

h5create

h5open

h5read

h5readAttribute

h5write

h5writeAttribute

hardcopy

hasimag

header

headermt

hess

hessMT

hessMTg

hessMTgw

hessMTm

hessMTmw

hessMTw

hessMTT

hessMTg

hessMTTgw

Miscellaneous Topics

M
iscellaneous
T
opics

hessMTTm

hessMTTmw

hessMTTw

hesscplx

hessp

hist

histf

histp

hsec

I

if

imag

include

indcv

indexcat

indices

indices2

indicesf

indicesfn

indnv

indsav

int

36-82

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-83

intgrat2

intgrat3

inthp

inthp1

inthp2

inthp3

inthp4

inthpControlCreate

intquad1

intquad2

intquad3

intrleav

intrleavsa

intrsect

intrsectsa

intsimp

inv

invpd

invswp

iscplx

iscplxf

Miscellaneous Topics

M
iscellaneous
T
opics

isinfnanmiss

ismiss

isSparse

itos

K

key

keyav

keymatchmc

keyw

keyword

L

lag

lag1

lagn

lapeighb

lapeighi

lapeighvb

lapeighvi

lapgeig

lapgeigh

lapgeighv

lapgeigv

36-84

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-85

lapgschur

lapgsvdcst

lapgsvds

lapgsvdst

lapsvdcusv

lapsvds

lapsvdusv

ldl

ldlp

ldlsol

le

let

lib

library

license_id

line

linsolve

ln

lncdfbvn

lncdfbvn2

lncdfmvn

Miscellaneous Topics

M
iscellaneous
T
opics

lncdfn

lncdfn2

lncdfnc

lnfact

lngamma

lngammacplx

lnpdfmvn

lnpdfmvt

lnpdfn

lnpdft

load

loadarray

loadd

loadexe

loadf

loadk

loadm

loadp

loads

loadstruct

loadwind

36-86

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-87

local

locate

loess

loessmt

loessmtControlCreate

log

loglog

logx

logy

loopnextindex

lower

lowmat

lowmat1

lpos

lprint

lpwidth

lshow

lt

ltrisol

lu

lusol

M

Miscellaneous Topics

M
iscellaneous
T
opics

machEpsilon

makevars

makewind

margin

matalloc

matinit

matrix

mattoarray

maxbytes

maxc

maxindc

maxv

maxvec

mbesselei

mbesselei0

mbesselei1

mbesseli

mbesseli0

mbesseli1

meanc

median

36-88

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-89

mergeby

mergebysa

mergevar

minc

minindc

minv

miss

missex

missrv

moment

momentd

movingave

movingaveExpwgt

movingaveWgt

msym

N

nametype

ndpchk

ndpclex

ndpcntrl

ne

new

Miscellaneous Topics

M
iscellaneous
T
opics

nextindex

nextn

nextnevn

nextwind

not

null

null1

numCombinations

O

oldfft

oldffti

ols

olsmt

olsmtControlCreate

olsqr

olsqr2

olsqrmt

ones

open

openpqg

optn

optnevn

36-90

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-91

or

orth

output

outwidth

P

pacf

packedToSp

packr

parse

pause

pdfBinomial

pdfCauchy

pdfexp

pdfGenPareto

pdfHyperGeo

pdfLaplace

pdfLogistic

pdfn

pdfPoisson

pdfRayleigh

pdfWeibull

pdfWishartInv

Miscellaneous Topics

M
iscellaneous
T
opics

pi

pinv

pinvmt

plot

plotAddBar

plotAddErrorBar

plotAddSurface

plotAddHist

plotAddHistF

plotAddHistP

plotAddScatter

plotAddTS

plotAddXY

plotAddArrow

plotAddArea

plotAddShape

plotAddTextbox

plotArea

plotBar

plotBox

plotCDFEmpirical

36-92

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-93

plotClearLayout

plotContour

plotCustomLayout

plotGetDefaults

plotHist

plotHistF

plotHistP

plotLayout

plotLogLog

plotLogX

plotLogY

plotOpenWindow

plotPolar

plotSave

plotScatter

plotSetBar

plotSetBkdColor

plotSetColorMap

plotSetContourLabels

plotSetFill

plotSetGrid

Miscellaneous Topics

M
iscellaneous
T
opics

plotSetLegend

plotSetLineColor

plotSetLineStyle

plotSetLineSymbol

plotSetLineThickness

plotSetNewWindow

plotSetTextInterpreter

plotSetTitle

plotSetWhichYAxis

plotSetXLabel

plotSetXRange

plotSetXTicCount

plotSetXTicInterval

plotSetXTicLabel

plotSetYLabel

plotSetYRange

plotSetYTicCount

plotSetZLabel

plotSetZLevels

plotSurface

plotsym

36-94

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-95

plotTS

plotXY

polar

polychar

polyeval

polygamma

polyint

polymake

polymat

polymroot

polymult

polyroot

pop

powerM

pqgwin

prcsn

previousindex

princomp

print

printdos

printfm

Miscellaneous Topics

M
iscellaneous
T
opics

printfmt

proc

prodc

psi

push

putarray

putf

putvals

pvCreate

pvGetIndex

pvGetParnames

pvGetParVector

pvLength

pvList

pvnumoffsets

pvoffsets

pvPack

pvPacki

pvPackm

pvPackmi

pvPacks

36-96

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-97

pvPacksi

pvPacksm

pvPacksmi

pvPutParVector

pvTest

pvUnpack

Q

QNewton

QNewtonmt

QNewtonmtControlCreate

QNewtonmtOutCreate

QNewtonSet

QProg

QProgmt

QProgmtInCreate

qqr

qqre

qqrep

qr

qre

qrep

qrsol

Miscellaneous Topics

M
iscellaneous
T
opics

qrtsol

qtyr

qtyre

qtyrep

quantile

quantiled

quantilem

quantilemd

qyr

qyre

qyrep

R

rank

rankindx

readr

real

reclassify

reclassifyCuts

recode

recserar

recsercp

recserrc

36-98

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-99

register_off

register_on

register_reset

register_show

renamefile

replay

rerun

rescale

reshape

retp

return

rev

rfft

rffti

rfftip

rfftn

rfftnp

rfftp

rndBernoulli

rndBeta

rndCauchy

Miscellaneous Topics

M
iscellaneous
T
opics

rndChiSquare

rndcon

rndbeta

rndCreateState

rndExp

rndgam

rndGamma

rndGeo

rndGumbel

rndHyperGeo

rndi

rndKMbeta

rndKMgam

rndKMi

rndKMn

rndKMnb

rndKMp

rndKMu

rndKMvm

rndLaplace

rndLCbeta

36-100

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-101

rndLCgam

rndLCi

rndLCn

rndLCnb

rndLCp

rndLCu

rndLCvm

rndLogNorm

rndmod

rndmult

rndMVn

rndMVt

rndn

rndnb

rndNegBinomial

rndns

rndp

rndpPoisson

rndseed

rndStateSkip

rndu

Miscellaneous Topics

M
iscellaneous
T
opics

rndus

rndvm

rndWeibull

rndWishart

rndWishartInv

rotater

round

rows

rowsf

rref

run

S

sampleData
satocv

satostrC

save

saveall

saved

savestruct

savewind

scale

scale3d

36-102

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-103

scalerr

scalinfnanmiss

scalmiss

schtoc

schur

screen

scroll

searchsourcepath

seekr

selif

seqa

seqm

setarray

setcnvrt

setdif

setdifsa

setvars

setvmode

setvwrmode

setwind

shell

Miscellaneous Topics

M
iscellaneous
T
opics

shiftr

show

showpqg

sin

singleindex

sinh

sleep

solpd

sortc

sortcc

sortd

sorthc

sorthcc

sortind

sortindc

sortindmc

sortmc

sortr

sortrc

sparseCols

sparseEye

36-104

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-105

sparseFD

sparseFP

sparseHConcat

sparseNZE

sparseOnes

sparseRows

sparseScale

sparseSet

sparseSolve

sparseSubmat

sparseTD

sparseTranspose

sparseTrTD

sparseTscalar

sparseVConcat

spChol

spConjGradSol

spCreate

spDenseSubmat

spDiagRvMat

spEigv

Miscellaneous Topics

M
iscellaneous
T
opics

spEye

spGetNZE

spLDL

spline

spline1D

spline2D

spLU

spNumNZE

spOnes

SpreadsheetReadM

SpreadsheetReadSA

SpreadsheetWrite

spScale

spSubmat

spToDense

spTrTDense

spTScalar

spZeroes

sqpmt_feasible

sqpmt_meritFunct

sqpSolve

36-106

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-107

sqpSolveMT

sqpSolveMTcontrolCreate

sqpSolveMTlagrangeCreate

sqpSolveMToutCreate

sqpSolveset

sqrt

stdc

stdsc

stocv

stof

stop

strcombine

strindx

strjoin

string

strlen

strput

strrindx

strsect

strsplit

strsplitPad

Miscellaneous Topics

M
iscellaneous
T
opics

strtodt

strtodtd

strtof

strtofcplx

strtrim

strtriml

strtrimr

strtrunc

strtruncl

strtruncpad

strtruncr

struct

submat

subscat

substute

subvec

sumc

sumr

surface

svd

svd1

36-108

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-109

svd2

svdcusv

svds

svdusv

sylvester

sysstate

system

T

tab

tan

tanh

tempname

ThreadBegin

ThreadEnd

threadfor

threadendfor

ThreadJoin

ThreadStat

time

timedt

timestr

timeutc

Miscellaneous Topics

M
iscellaneous
T
opics

title

tkf2eps

tkf2ps

tkf2ps_margin

tocart

todaydt

toeplitz

token

topolar

trace

trap

trapchk

trigamma

trim

trimr

trunc

type

typecv

typef

U

union

unionsa

36-110

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-111

uniqindmc

uniqindx

uniqindxsa

unique

uniquemc

uniquesa

until

upmat

upmat1

upper

use

utctodt

utctodtv

utrisol

V

vals

varCovM

varCovMS

varCovX

varCovXS

varget

vargetl

Miscellaneous Topics

M
iscellaneous
T
opics

varmall

varmares

varput

varputl

vartype

vartypef

vcm

vcms

vcx

vcxs

vec

vech

vecr

vfor

vget

view

viewxyz

vlist

vnamecv

volume

vput

36-112

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-113

vread

vtypecv

W

wait

waitc

walkindex

while

winclear

wincleararea

winclearttylog

winclose

wincloseall

winconvertpqg

window

wingetactive

wingetattributes

wingetcolorcells

wingetcursor

winmove

winopenpqg

winopentext

winopentty

Miscellaneous Topics

M
iscellaneous
T
opics

winpan

winprint

winprintpqg

winrefresh

winrefresharea

winresize

winsetactive

winsetbackground

winsetcolor

winsetcolorcells

winsetcolormap

winsetcursor

winsetforeground

winsetrefresh

winsettextwrap

winwrite

winzoompqg

writer

X

x_indcv

xlsGetSheetCount

xlsGetSheetSize

36-114

Miscellaneous Topics

M
is
ce
lla
ne
ou
s

T
op
ic
s

36-115

xlsMakeRanget

xlsReadM

xlsReadSA

xlsWrite

xlsWriteM

xlsWriteSA

xlabel

xor

xpnd

xtics

xy

xyz

Y

ylabel

ytics

Z

zeros

zeta

zlabel

ztics

Miscellaneous Topics

M
iscellaneous
T
opics

Index

Index-1

#define 34-61, 34-62

#definecs 34-61

#else 34-61

#endif 34-61

#iflight 34-62

#ifndef 34-62

#include 34-62, 34-68, 35-878

#linesoff 34-62, 34-71, 35-1009

#lineson 34-62, 34-71, 35-1009

#srcfile 34-62

#srcline 34-62

#undef 34-62

__altnam 35-572

__output 35-572, 35-1043, 35-1720

__title 35-572

__Tol 35-572

__vpad 35-572

_eqs_IterInfo 35-572

_eqs_JacobianProc 35-571

_eqs_MaxIters 35-571

_eqs_StepTol 35-572

_eqs_TypicalF 35-572

_eqs_TypicalX 35-572

_loess_Degree 35-1043

_loess_NumEval 35-1043

_loess_Span 35-1043

_loess_WgtType 35-1043

_pageshf 34-88

_pagesiz 34-88

_parrow 34-88

_parrow3 34-88

_paxes 34-86

_paxht 34-87

_pbox 34-90

_pboxctl 34-87

_pboxlim 34-87

_pcolor 34-87

_pcrop 34-90

_pcross 34-86

_pdate 34-87

_perrbar 34-88

_pframe 34-90

_pgrid 34-86

_plctrl 34-87

_plegctl 34-87

_plegstr 34-87

_pline 34-88

_pline3d 34-88

_plotshf 34-88, 34-89

_plotsiz 34-88, 34-89

_pltype 34-88

_plwidth 34-88

_pmcolor 34-90

_pmsgctl 34-87

_pmsgstr 34-87

_pnum 34-87

_pnumht 34-87

_protate 34-88

_pscreen 34-89

_psilent 34-89

_pstype 34-88

_psym 34-88

_psym3d 34-88

_psymsiz 34-88

_ptek 34-89

_pticout 34-86

_ptitlht 34-87

_pxpmax 34-86

_pxsci 34-86

_pypmax 34-86

_pysci 34-86

_pzclr 34-88

_pzoom 34-89

_pzpmax 34-86

_pzsci 34-86

_sqp_A 35-1716

_sqp_B 35-1716

_sqp_Bounds 35-1718

_sqp_C 35-1717

_sqp_D 35-1717

_sqp_DirTol 35-1719

_sqp_EqProc 35-1717

_sqp_FeasibleTest 35-1720

_sqp_GradProc 35-1718

_sqp_HessProc 35-1719

_sqp_IneqProc 35-1717

_sqp_MaxIters 35-1719

_sqp_ParNames 35-1719

Index-2

Index

Index-3

_sqp_PrintIters 35-1720

_sqp_RandRadius 35-1720

abs 34-4, 35-52

absolute value 35-52

acf 34-19, 35-53

aconcat 34-40, 34-41, 35-58

additive sequence 35-1639

aeye 34-40, 35-61

algebra, linear 34-8

amax 34-40, 35-63

amean 34-42, 35-65

AmericanBinomCall 34-30, 35-67

AmericanBinomCall_Greeks 34-30, 35-
69

AmericanBinomCall_ImpVol 34-30, 35-
71

AmericanBinomPut 34-30, 35-73

AmericanBinomPut_Greeks 34-30, 35-
75

AmericanBinomPut_ImpVol 34-31, 35-
77

AmericanBSCall 34-31, 35-79

AmericanBSCall_Greeks 34-31, 35-80

AmericanBSCall_ImpVol 34-31, 35-82

AmericanBSPut 34-31, 35-84

AmericanBSPut_Greeks 34-31, 35-85

AmericanBSPut_ImpVol 34-31, 35-87

amin 34-40, 35-89

amult 34-42, 35-92

annotationGetDefaults 34-84, 35-94

annotationSetBkd 34-84, 35-95

annotationSetFont 34-84, 35-97

annotationSetLineColor 34-84, 35-99

annotationSetLineStyle 34-84, 35-101

annotationSetLineThickness 34-84, 35-
103

annualTradingDays 34-31, 35-104

arcos 34-4, 35-106

arcsin 34-4, 35-107

arctangent 35-126

area plot 34-80, 35-1200

areshape 34-40, 34-41, 35-108, 35-124

arrayalloc 34-40, 35-110

arrayindex 34-42, 35-112

arrayinit 34-40, 35-114

Index

arrays 34-40

arraytomat 34-41, 35-115

ASCII files 34-56, 34-79, 35-116, 35-
751

ASCII files, reading 35-1030

asciiload 35-116

asclabel 34-87, 35-118

astd 34-19, 35-120

astds 34-19, 35-122

asum 34-40, 35-124

atan 34-4, 35-126

atan2 34-4, 35-128

ATOG 34-56, 35-622, 35-623

atranspose 34-42, 35-130

autocorrelations 35-53

auxiliary output 35-1156

auxiliary output, width 35-1160

axes 34-86

axes numbering 34-86

axes, reversed 35-1960, 35-1965

axmargin 34-88, 34-89, 35-132

balance 34-8, 35-135

band 34-8

bandchol 34-8, 35-138

bandcholsol 34-8, 35-140

bandltsol 34-8, 35-141

bandrv 34-8, 35-143

bandsolpd 34-9, 35-145

bar 34-81, 34-85, 34-85, 35-146

bar plot 34-80, 35-1234

base10 34-30, 35-148

begwind 34-88, 35-149

Bessel 34-4, 34-4, 35-150, 35-151, 35-
1077

besselj 34-4, 35-150

bessely 34-4, 35-151

beta 34-4, 35-153

beta function 34-4, 35-153

beta function, incomplete 35-160

binary file, loading 35-751

bivariate Normal 34-28, 35-167, 35-169,
35-171

box 34-85, 34-85, 35-154

box plot 34-80, 34-81, 35-1236

boxcox 34-5, 35-156

Index-4

Index

Index-5

branching 34-64

break 34-65, 35-157

call 34-64, 34-67, 35-159

Cartesian coordinates 34-86, 35-1331,
35-1848, 35-1853, 35-1961, 35-
1962

Cauchy 35-173, 35-174, 35-1181, 35-
1519

cdfBeta 34-25, 35-160

cdfBetaInv 34-25, 35-162

cdfBinomial 34-25, 35-164

cdfBinomialInv 34-25, 35-165

cdfBvn 34-25, 35-167

cdfBvn2 34-25, 35-169

cdfBvn2e 34-25, 35-171

cdfCauchy 34-25, 35-173

cdfCauchyInv 34-25, 35-174

cdfChic 34-25, 35-175

cdfChii 34-25, 35-177

cdfChinc 34-25, 35-179

cdfChincInv 35-180

cdfEmpirical 34-25, 35-182

cdfExp 34-26, 35-185

cdfExpInv 34-26, 35-186

cdfFc 34-26, 35-186

cdfFnc 34-26, 35-189

cdfFncInv 34-26, 35-190

cdfGam 34-26, 35-192

cdfGenPareto 34-26, 35-194

cdfHyperGeo 34-26, 35-196

cdfLaplace 34-26, 35-198

cdfLaplaceInv 34-26, 35-199

cdfLogistic 35-199

cdfLogisticInv 35-201

cdfm.src 35-209, 35-215, 35-220, 35-
226, 35-232, 35-239

cdfMvn 34-26, 35-201

cdfMvn2e 34-26, 35-215

cdfMvnce 34-26, 35-205

cdfMvne 34-26, 35-210

cdfMvt2e 34-27, 35-233

cdfMvtce 34-26, 35-221

cdfMvte 34-27, 35-227

cdfN 34-27, 35-239

cdfN2 34-27, 35-246

Index

cdfNc 34-27, 35-239

cdfNegBinomial 34-27, 35-243

cdfNegBinomialInv 34-27, 35-245

cdfNi 34-27, 35-248

cdfPoisson 34-27, 35-250

cdfPoissonInv 34-27, 35-251

cdfRayleigh 34-27, 35-252

cdfRayleighInv 34-27, 35-254

cdfTc 34-27, 35-255

cdfTci 34-27, 35-257

cdfTnc 34-28, 35-258

cdfTvn 34-28, 35-261

cdfWeibull 34-28, 35-263

cdfWeibullInv 34-28, 35-265

cdir 34-69, 35-266

ceil 34-30, 34-30, 35-267

change log 36-1

change working directory 35-269, 35-
269

changeDir 34-69, 35-269

characteristic polynomial 35-1333

chdir 34-69, 35-269

chi-bar square 35-270

chi-square 35-175, 35-177

chi-square, noncentral 35-179, 35-180

chiBarSquare 34-19, 35-270

chol 34-9, 34-13, 35-272

choldn 34-9, 35-274

Cholesky decomposition 34-8, 34-8, 34-
9, 34-13, 35-138, 35-140, 35-272,
35-1677

cholsol 34-9, 34-13, 35-276

cholup 34-9, 35-278

chrs 34-71, 34-79, 35-279

clear 34-70, 34-70, 35-281

clear global symbols 35-282

clear program input/output window 35-
289

clearg 34-70, 35-282

close 34-55, 34-56, 35-283

closeall 34-55, 34-56, 35-286

cls 34-78, 35-289

code 34-57, 34-59, 35-290

code (dataloop) 34-57, 35-293

coefficient of determination 35-1124,

Index-6

Index

Index-7

35-1135

coefficients 35-1042, 35-1044, 35-1142

coefficients, standardized 35-1124, 35-
1134

cols 34-34, 34-35, 35-295

colsf 34-34, 34-34, 34-35, 35-296

columns in a matrix 34-34

columns in a matrix 35-295, 35-296

combinate 34-19, 35-297

combinated 34-19, 35-299

comlog 34-78, 35-302

common errors 36-8

comparison functions 35-509, 35-511,
35-631, 35-633

compile 34-67, 34-68, 35-303

compiler control 34-61

compiling 34-67

compiling files 35-303

complex 34-35, 35-305

complex constants 35-460, 35-998, 35-
1741

complex modulus 35-52

con 34-77, 34-78, 35-306

concatenation, matrix 35-58, 35-1084

cond 34-9, 34-13, 35-309

condition number 35-309

conj 35-310

cons 34-77, 34-78, 35-311

conScore 34-19

ConScore 35-312

console 34-77

constants, complex 35-460, 35-998, 35-
1741

continue 34-65, 35-316

contour 34-85, 34-85, 34-88, 35-318

contour plot 34-80

conv 34-14, 34-19, 35-319

conversion, array to type matrix 35-115

conversion, character to ASCII
value 35-1892

conversion, character vector to
string 35-365, 35-366

conversion, float to ASCII 35-685, 35-
686

conversion, matrix to string array 35-
690

conversion, string array to string 35-320

Index

conversion, string to floating point 34-72

conversion, string to string array 35-321

convertsatostr 34-71, 35-320

convertstrtosa 34-71, 35-321

convolution 35-319

correlation matrix 34-19, 34-19, 34-20,
34-20, 34-20, 35-322, 35-322, 35-
324

corrm 34-19

corrms 34-19, 35-324

corrvc 34-20, 35-322

corrx 34-20, 35-322

corrxs 34-20, 35-324

cos 34-5, 35-327

cosh 34-5, 35-328

cosine 34-5, 34-5, 35-327

cosine, inverse 34-4, 35-106

counts 34-34, 35-329

countwts 34-34, 35-331

create 34-55, 35-333

cross-product 34-20, 35-340, 35-1095

crossprd 34-20, 35-340

crout 34-9, 34-13, 35-341

Crout decomposition 34-9, 34-9, 34-13,
35-341, 35-343

croutp 34-9, 34-13, 35-343

csrcol 34-78, 35-345

csrlin 34-78, 35-345

CSV files 34-33

csvReadM 34-33, 34-45, 35-346

csvReadSA 34-45, 35-352

cumprodc 34-34, 35-360

cumsumc 34-34, 35-362

cumulative distribution function 35-182,
35-185, 35-186, 35-186, 35-189,
35-190, 35-194, 35-198, 35-199,
35-199, 35-201, 35-201, 35-205,
35-210, 35-215, 35-227, 35-233,
35-239, 35-243, 35-245, 35-246,
35-250, 35-251, 35-252, 35-254,
35-255, 35-257, 35-261, 35-263,
35-265, 35-1238

cumulative products 35-360

cumulative sums 35-362

cursor 34-78, 34-79, 35-345, 35-1041

curve 34-5, 35-363

cvtos 34-71, 35-365

cvtosa 34-71, 35-366

Index-8

Index

Index-9

data coding 34-57

data file reading 34-44

data file writing 34-44

data loop 35-293, 35-466, 35-515, 35-
625, 35-950, 35-1061, 35-1159, 35-
1486, 35-1636, 35-1914

data sets 34-55, 34-56, 34-56, 34-61, 35-
333, 35-368, 35-370, 35-373, 35-
377

database 34-46

database connect 34-49

database errors 34-48

database information 34-48

database properties 34-47

database setup 34-46

database transaction 34-49

datacreate 34-55, 35-368

datacreatecomplex 34-55, 35-370

datalist 34-55, 35-373

dataload 34-33, 35-374

dataloop (dataloop) 34-57, 35-376

dataopen 34-55, 35-377

datasave 34-33, 34-33, 35-381

date 34-75, 35-382, 35-383, 35-384, 35-
385

datestr 34-75, 35-383

datestring 34-75, 35-384

datestrymd 34-75, 35-385

dayinyr 34-75, 35-386

dayofweek 34-75, 35-387

dbAddDatabase 34-46

dbClose 34-49

dbCommit 34-49

dbCreateQuery 34-49

dbExecQuery 34-49

dbGetConnectOptions 34-47

dbGetDatabaseName 34-47

dbGetDriverName 34-47

dbGetDrivers 34-47

dbGetHostName 34-47

dbGetLastErrorNum 34-48

dbGetLastErrorText 34-49

dbGetNumericalPrecPolicy 34-47

dbGetPassword 34-47

dbGetPort 34-47

Index

dbGetPrimaryIndex 34-48

dbGetTableHeaders 34-48

dbGetTables 34-48

dbHasFeature 34-48

dbIsDriverAvailable 34-47

dbIsOpen 34-47

dbIsOpenError 34-49

dbIsValid 34-47

dbOpen 34-49

dbQueryBindValue 34-50

dbQueryClear 34-50

dbQueryCols 34-50

dbQueryExecPrepared 34-50

dbQueryFetchAllM 34-52

dbQueryFetchAllSA 34-52

dbQueryFetchOneM 34-52

dbQueryFetchOneSA 34-52

dbQueryFinish 34-50

dbQueryGetBoundValue 34-50

dbQueryGetBoundValues 34-50

dbQueryGetField 34-53

dbQueryGetLastErrorNum 34-49

dbQueryGetLastErrorText 34-49

dbQueryGetLastInsertID 34-50

dbQueryGetLastQuery 34-51

dbQueryGetNumRowsAffected 34-51

dbQueryGetPosition 34-52

dbQueryIsActive 34-51

dbQueryIsForwardOnly 34-51

dbQueryIsNull 34-51

dbQueryIsSelect 34-51

dbQueryIsValid 34-51

dbQueryPrepare 34-50

dbQueryRows 34-51

dbQuerySeek 34-52

dbQuerySeekFirst 34-52

dbQuerySeekLast 34-52

dbQuerySeekNext 34-52

dbQuerySeekPrevious 34-52

dbQuerySetForwardOnly 34-51

dbRemoveDatabase 34-47

dbRollback 34-49

dbSetConnectOptions 34-48

dbSetDatabaseName 34-48

Index-10

Index

Index-11

dbSetHostName 34-48

dbSetNumericalPrecPolicy 34-48

dbSetPassword 34-48

dbSetPort 34-48

dbTransaction 34-50

debug 34-70, 35-458

debugger 34-70, 35-458

debugging 34-70

declare 34-67, 35-458

delete 34-70, 35-464

delete (dataloop) 34-57, 35-466

deleteFile 34-69, 35-467

deletion 35-468, 35-473

delif 34-35, 34-38, 34-38, 35-468

delrows 34-35, 35-473

denseToSp 34-38, 35-475

denseToSpRE 34-38, 35-476

denToZero 35-478

derivatives 35-820

derivatives, second partial 35-869

descriptive statistics 35-516, 35-523

design 34-20, 35-480

design matrix 34-20, 35-480

det 34-9, 34-13, 35-482

determinant 35-482, 35-484

detl 34-9, 34-13, 35-484

dfft 34-14, 35-485

dffti 34-14, 35-486

diag 34-35, 35-487

diagonal 35-487, 35-490

diagrv 34-35, 35-490

differentiation 34-6

digamma 34-5, 35-492

directory 35-266

dlibrary 34-69, 35-492

dllcall 34-69, 35-495

do loop 34-65, 34-65, 35-157, 35-316,
35-497

do until 34-65

do while 34-65, 35-497, 35-497

dos 34-69, 35-500

doswin 34-79, 35-503

DOSWinCloseall 34-79, 35-503

DOSWinOpen 34-79, 35-504

Index

dot 34-17, 34-20, 35-507

dotfeq 34-17, 35-509

dotfeqmt 34-17, 35-511

dotfge 34-17, 35-509

dotfgemt 34-18, 35-511

dotfgt 34-18, 35-509

dotfgtmt 34-18, 35-511

dotfle 34-18, 35-509

dotflemt 34-18, 35-511

dotflt 34-18, 35-509

dotfltmt 34-18, 35-511

dotfne 34-18, 35-509

dotfnemt 34-18, 35-511

draw 34-85, 35-513

drop (dataloop) 34-57, 35-515

DS structure 35-515

dsCreate 34-42, 35-515

dstat 34-67, 35-516

dstatmt 34-20, 35-523

dstatmtControlCreate 34-20, 35-531

dtdate 34-75, 35-532

dtday 34-75, 35-534

dttime 34-75, 35-535

dttodtv 34-75, 35-536

dttostr 34-75, 35-537

dttoutc 34-75, 35-540

dtv vector 35-542, 35-545

dtvnormal 34-75, 35-542

dtvtodt 34-75, 35-543

dtvtoutc 34-76, 35-545

dummy 34-57, 34-59, 35-546

dummy variables 35-546, 35-548, 35-
550

dummybr 34-57, 34-59, 35-548

dummydn 34-57, 34-59, 35-550

Durbin-Watson statistic 35-1123, 35-
1135

dynamic libraries 34-69, 34-69

ed 34-78, 35-553

edit 34-78, 35-554

editor 35-554

editor, alternate 35-553

eig 34-13, 34-13, 35-556

eigenvalues 34-13, 34-13, 34-13, 35-
556, 35-558, 35-960, 35-962, 35-

Index-12

Index

Index-13

968, 35-969

eigenvalues and eigenvectors 34-9, 34-
10, 34-10, 34-13, 34-13, 34-39, 35-
560, 35-561, 35-964, 35-966, 35-
971, 35-973, 35-1687

eigh 34-13, 34-13, 35-558

eighv 34-13, 34-13, 35-560

eigv 34-13, 34-13, 35-561

elapsedTradingDays 34-31, 35-563

else 35-876

elseif 35-876

empty matrix 35-296, 35-999, 35-1030,
35-1601, 35-1624

end 34-64, 35-565

end of file 34-55, 34-56, 35-569

endfor 34-65

endif 34-64

endo 34-65, 34-65, 34-65

endp 34-66, 34-67, 35-566

endwind 34-88, 35-567

envget 34-69, 35-568

environment, search 35-568

eof 34-55, 34-56, 35-569

eqSolve 34-23, 35-571

eqSolvemt 34-23, 35-576

EqSolvemtControlCreate 34-23, 35-584

eqSolvemtOutCreate 34-23, 35-585

eqSolveSet 34-23, 35-587

erf 34-28, 35-587

erfc 34-28, 35-587

erfccplx 34-28, 35-589

erfCInv 35-555

erfcplx 34-28, 35-589

erfInv 35-555

error 34-71, 34-71, 35-590

error bar 34-81

error code 35-590

error function 35-555, 35-587, 35-589

error handling 34-70

error messages 36-13

error trapping 35-1855

errorlog 34-71, 35-593

errorlogat 35-593

etdays 34-76, 35-594

ethsec 34-76, 35-595

Index

etstr 34-76, 35-597

EuropeanBinomCall 34-31, 35-598

EuropeanBinomCall_Greeks 34-31, 35-
600

EuropeanBinomCall_ImpVol 34-31, 35-
602

EuropeanBinomPut 34-31, 35-604

EuropeanBinomPut_Greeks 34-31, 35-
605

EuropeanBinomPut_ImpVol 34-31, 35-
608

EuropeanBSCall 34-31, 35-609

EuropeanBSCall_Greeks 34-32, 35-611

EuropeanBSCall_ImpVol 34-32, 35-613

EuropeanBSPut 34-32, 35-614

EuropeanBSPut_Greeks 34-32, 35-616

EuropeanBSPut_ImpVol 34-32, 35-618

Excel files 34-34

exctsmpl 34-35, 35-619

exec 34-69, 35-621

execbg 34-69, 35-622

execution control 34-64

exp 34-5, 35-623

exponential 35-185, 35-186, 35-1182

exponential function 35-623

extern (dataloop) 34-57, 35-625

external 34-67, 35-626

eye 34-32, 35-627

F distribution 35-186

fcheckerr 34-45, 35-629

fclearerr 34-45, 35-630

feq 34-18, 35-631

feqmt 34-18, 35-633

fflush 34-45, 35-635

fft 34-14, 35-635

ffti 34-14, 35-636

fftm 34-14, 35-637

fftmi 34-14, 35-640

fftn 34-14, 35-643

fge 34-18, 35-631

fgemt 34-18, 35-633

fgets 34-45, 35-645

fgetsa 34-45, 35-646

fgetsat 34-45, 35-647

fgetst 34-46, 35-648

Index-14

Index

Index-15

fgt 34-18, 35-631

fgtmt 34-18, 35-633

file handle 35-283, 35-337, 35-1149

file management 34-69

fileinfo 34-69, 35-649

filesa 34-69, 35-651

finance functions 34-30

fle 34-18, 35-631

flemt 34-18, 35-633

floor 34-30, 35-652

flt 34-18, 35-631

fltmt 34-19, 35-633

fmod 34-5, 35-654

fn 34-66, 35-656

fne 34-19, 35-631

fnemt 34-19, 35-633

fonts 34-87, 35-657

fopen 34-46, 35-658

for 34-65, 35-660

for loop 34-65, 34-65, 35-157, 35-316,
35-660

format 34-78, 35-663

formatcv 34-78, 34-79, 35-673

formatnv 34-78, 34-79, 35-674

Fourier transform 35-635, 35-636, 35-
1506, 35-1507

Fourier transform, discrete 35-485, 35-
486

Fourier transforms 34-14

fputs 34-46, 35-675

fputst 34-46, 35-678

fseek 34-46, 35-681

fstrerror 34-46, 35-683

ftell 34-46, 35-684

ftocv 34-71, 34-75, 35-685

ftos 34-72, 34-74, 35-686

ftostrC 34-72, 35-690

functions 34-66

fuzzy comparison functions 35-509, 35-
511, 35-631, 35-633

fuzzy conditional functions 34-17

gamma 34-5, 35-693

gamma function 35-693, 35-694, 35-695,
35-1023

gamma, incomplete 35-192

Index

gamma, log 35-1021

gammacplx 34-5, 35-694

gammaii 34-5, 35-695

Gauss-Legendre quadrature 35-919, 35-
922, 35-926

gauss colors 36-39

GAUSS Data Archives 34-53, 34-54,
34-54, 34-54, 34-54, 35-697, 35-
699, 35-700, 35-704, 35-709, 35-
710, 35-711, 35-712, 35-714, 35-
715, 35-717, 35-719, 35-720, 35-
724, 35-726, 35-727, 35-728, 35-
731, 35-732, 35-734, 35-735, 35-
738, 35-740, 35-742, 35-743, 35-
744, 35-746

GAUSS Graphics Colors 36-39

gausset 33-7, 34-68, 35-696

gdaAppend 34-53, 35-697

gdaCreate 34-53, 35-699

gdaDStat 34-20, 34-53, 35-700

gdaDStatMat 34-20, 34-53, 35-704

gdaGetIndex 34-53, 35-709

gdaGetName 34-53, 35-710

gdaGetNames 34-53, 34-53, 35-711

gdaGetOrders 35-712

gdaGetType 34-53, 35-714

gdaGetTypes 34-53, 35-715

gdaGetVarInfo 34-53, 35-717

gdaIsCplx 34-53, 35-719

gdaLoad 34-53, 35-720

gdaPack 34-54, 35-724

gdaRead 34-54, 35-726

gdaReadByIndex 34-54, 35-727

gdaReadSome 34-54, 35-728

gdaReadSparse 34-54, 35-731

gdaReadStruct 34-54, 35-732

gdaReportVarInfo 34-54, 35-734

gdaSave 34-54, 35-735

gdaUpdate 34-54, 35-738

gdaUpdateAndPack 34-54, 35-740

gdaVars 35-742

gdaWrite 34-54, 35-743

gdaWrite32 34-54, 35-744

gdaWriteSome 34-54, 35-746

generalized inverse 35-1197, 35-1199

Generalized Pareto 34-26, 34-29, 35-
194, 35-1183

Index-16

Index

Index-17

getarray 34-41, 35-749

getdims 34-41, 35-750

getf 34-72, 35-751

getGAUSSHome 34-69, 35-754

getmatrix 34-41, 35-755

getmatrix4D 34-41, 35-757

getname 34-56, 35-759

getnamef 34-56, 34-57, 35-760

getNextTradingDay 34-32, 35-762

getNextWeekDay 34-32, 35-763

getnr 34-55, 35-764

getnrmt 34-55, 35-765

getorders 34-41, 35-766

getpath 34-69, 35-767

getPreviousTradingDay 34-32, 35-769

getPreviousWeekDay 34-32, 35-770

getRow 35-770

getscalar3D 34-41, 35-772

getscalar4D 34-41, 35-773

getTrRow 35-775

getwind 34-89, 35-776

glm 34-20, 35-777

global control variables 35-696

global variable 35-458

Goertzel algorithm 35-486, 35-487

gosub 34-66, 34-66, 34-66, 35-807

goto 34-64, 34-64, 35-810

gradcplx 34-6, 34-6, 35-818

gradient 35-818

gradMT 34-6, 35-811

gradMTm 34-6, 35-813

gradMTT 34-6, 35-815

gradMTTm 34-6, 35-817

gradp 34-6, 34-8, 35-818

graphic panels 35-1064, 35-1066, 35-
1112

Graphics 34-80, 34-80, 34-85

graphprt 34-89, 35-820

graphs, saving 35-1257

graphset 34-90, 35-824

h5create 34-46, 35-825

h5open 34-46, 35-828

h5read 34-46, 35-831

h5readAttribute 34-46, 35-838

Index

h5write 34-46, 35-840

h5writeAttribute 34-46, 35-842

hasimag 34-70, 35-845

HDF 5 files 34-46

header 34-78, 35-846

headermt 34-78, 35-847

help facility 35-1007

Hermitian matrix 34-9, 34-9, 34-9, 34-9,
34-10, 34-10, 34-13, 34-13, 35-
560, 35-960, 35-962, 35-964, 35-
966, 35-969, 35-971

hess 34-9, 35-849

hesscplx 34-7, 34-7, 35-868

Hessian 34-6, 34-6, 34-6, 34-6, 34-6,
34-6, 34-7, 34-7, 34-7, 34-7, 35-
850, 35-852, 35-854, 35-855, 35-
857, 35-859, 35-861, 35-863, 35-
864, 35-866, 35-868

hessMT 34-6, 35-850

hessMTg 34-6, 35-852

hessMTgw 34-6, 35-854

hessMTm 34-6, 35-855

hessMTmw 34-6, 35-857

hessMTT 34-6, 35-859

hessMTTg 34-7, 35-861

hessMTTgw 34-7, 35-863

hessMTTm 34-7, 35-864

hessMTw 34-7, 35-866

hessp 34-7, 34-8, 35-868

hist 34-85, 35-870

histf 34-85, 35-872

histogram 34-80, 34-80, 34-80, 34-81,
34-81, 34-81, 34-85, 34-85, 34-85,
35-870, 35-872, 35-873, 35-1216,
35-1217, 35-1218, 35-1249, 35-
1250, 35-1250

histp 34-85, 35-873

hsec 34-76, 34-76, 35-874

hyperbolic cosine 35-328

hyperbolic sine 35-1659

hyperbolic tangent 35-1832

identity matrix 35-627, 35-1690

if 34-64, 35-876

imag 34-35, 35-877

imaginary matrix 35-877

incomplete beta function 35-160

incomplete gamma function 35-192

indcv 34-36, 35-880

Index-18

Index

Index-19

index variables 35-1147

indexcat 34-34, 35-882

indices 34-56, 34-57, 35-883

indices2 34-56, 34-57, 35-885

indicesf 34-56, 35-886

indicesfn 34-56, 35-888

indnv 34-36, 35-889

indsav 34-72, 35-891

infinity 35-945, 35-1626

input, console 35-306

input, keyboard 35-306

integrate1d 34-7, 35-892

integration 34-6

intersection 35-933

intgrat2 34-7, 34-8, 35-897

intgrat3 34-7, 34-8, 35-899

inthp1 34-7, 35-902

inthp2 34-7, 35-906

inthp3 34-7, 35-910

inthp4 34-7, 35-914

inthpControlCreate 34-7, 35-918

intquad1 34-7, 34-8, 34-8, 35-919

intquad2 34-8, 34-8, 35-922

intquad3 34-8, 34-8, 35-926

intrleav 34-60, 34-61, 35-930

intrleavsa 34-60, 35-932

intrsect 34-36, 34-72, 35-933

intrsectsa 35-936

intsimp 34-8, 34-8, 35-938

inv 34-9, 34-13, 35-939

inverse cosine 35-106

inverse sine 35-107

inverse, generalized 35-1197, 35-1199

inverse, matrix 35-939

inverse, sweep 35-941

invpd 34-9, 34-13, 35-939

invswp 34-9, 35-941

iscplx 34-55, 34-70, 35-942

iscplxf 35-943

isden 35-944

isinfnanmiss 34-58, 35-945

ismiss 35-946

itos 35-948

Jacobian 35-818

Index

keep (dataloop) 34-58, 35-950

key 34-77, 34-77, 34-77, 35-951

keyav 34-77, 35-952

keyboard input 35-306, 35-311

keyboard, reading 35-951

keyw 34-77, 34-78, 35-953

keyword 34-66, 35-953

keyword procedure 35-953

keywords 34-66

lag (dataloop) 34-58

lag1 34-58, 35-957

lagn 34-58, 35-958

lambda 35-179

lapeighb 34-9, 35-960

lapeighi 34-9, 35-962

lapeighvi 34-9, 35-966

lapeigvb 34-9, 35-964

lapgeig 34-10, 35-968

lapgeigh 34-10, 35-969

lapgeighv 34-10, 35-971

lapgeigv 34-10, 35-973

lapgschur 34-10

lapgsvdcst 34-10, 35-974

lapgsvds 34-10, 35-977

lapgsvdst 34-10, 35-979

Laplace 34-26, 34-26, 34-29, 35-198,
35-199, 35-1187

lapsvdcusv 34-10, 35-987

lapsvds 34-10, 35-989

lapsvdusv 34-10, 35-990

ldl 34-10, 35-992

LDL decomposition 34-10, 34-10, 34-11

ldlp 34-10, 35-994

ldlsol 34-11, 34-23, 35-996

least squares regression 35-1120, 35-
1129

legend 34-82, 35-1276

let 35-997

lib 35-1001

libraries 34-67

libraries, active 34-67, 35-1005

libraries, shared 35-492

library 34-67, 35-1001, 35-1005

line numbers 35-1009

line plot 34-80, 34-80, 34-80, 34-81

Index-20

Index

Index-21

line thickness 35-1285

line type 35-1281

linear algebra 34-8

linear equation 35-1661, 35-1678

linsolve 34-23, 35-1010

listwise (dataloop) 34-58, 35-1012

ln 34-5, 35-1012

lncdfbvn 34-28, 35-1013

lncdfbvn2 34-28, 35-1014

lncdfmvn 34-28, 35-1016

lncdfn 34-28, 35-1017

lncdfn.src 35-1014, 35-1017, 35-1018,
35-1020, 35-1021

lncdfn2 34-28, 35-1018

lncdfnc 34-28, 35-1020

lnfact 34-5, 35-1021

lngammacplx 34-5, 35-1023

lnpdfmvn 34-28, 35-1024

lnpdfmvt 34-28, 35-1025

lnpdfn 34-29, 35-1026

lnpdft 34-29, 35-1027

load 34-33, 34-33, 35-1028

loadarray 35-1033

loadd 34-33, 34-33, 34-55, 35-1035

loadf 34-33, 34-33, 35-1028

loadk 34-33, 34-33, 35-1028

loadm 34-33, 34-33, 35-1028

loadp 34-68, 34-68, 35-1028

loads 34-72, 35-1028

loadstruct 34-42, 35-1039

loadwind 34-89, 35-1040

local 34-66, 34-67, 35-1041

local variable declaration 35-1041

locate 34-78, 35-1041

loess 34-20, 35-1042

loessmt 34-20, 35-1044

loessmtControlCreate 34-20, 35-1046

log 34-5, 35-1047

log coordinates 35-1048, 35-1253

log factorial 35-1021

log gamma 35-1021

log, base 10 35-1047

log, natural 35-1012

logging commands 35-302

Index

logistic 35-199, 35-201

loglog 34-85, 35-1048

logx 34-85, 35-1049

logy 34-85, 35-1050

looping 34-65

loopnextindex 34-42, 35-1051

lower 34-72, 35-1054

lower triangular matrix 35-1057, 35-
1060

lowmat 34-36, 34-38, 35-1056

lowmat1 34-36, 34-38, 35-1056

ltrisol 34-23, 35-1057

lu 34-11, 35-1058

LU decomposition 34-11, 34-11, 34-39,
35-1058

lusol 34-11, 34-23, 35-1060

machEpsilon 34-30, 35-1061

machine epsilon 35-1061

make (dataloop) 34-58, 35-1061

makevars 34-56, 34-57, 35-1062

makewind 34-89, 35-1064

margin 34-89, 35-1066

matalloc 34-32, 35-1067

matinit 34-32, 34-33, 35-1068

matrix manipulation 34-32

matrix, creation 35-997

matrix, empty 35-296, 35-999, 35-1030,
35-1601, 35-1624

matrix, ones 35-1145

matrix, zeros 35-1967

mattoarray 34-40, 35-1069

maxbytes 34-70, 35-1076

maxc 34-34, 35-1070

maximum element 35-1070

maximum element index 35-1071

maxindc 34-34, 35-1071

maxv 35-1073

maxvec 34-70, 35-1075

mbesseli 34-5, 35-1077

mean 34-20

meanc 34-20, 35-1080

median 34-20, 34-20, 35-1081

memory, clear all 35-1107

mergeby 34-60, 34-61, 35-1083

mergevar 34-60, 35-1084

Index-22

Index

Index-23

merging 34-60, 35-1083

minc 34-34, 35-1086

minimum element 35-1086

minimum element index 35-1087

minindc 34-34, 35-1087

minv 35-1089

miscellaneous topics 36-1

miss 34-58, 34-59, 35-1090

missex 34-58, 34-59, 35-1093

missing character 35-1104

missing values 34-58, 35-518, 35-524,
35-945, 35-1090, 35-1093, 35-
1104, 35-1173, 35-1626, 35-1627

missrv 34-58, 34-59, 35-1090

moment 34-21, 35-1095

moment matrix 34-21, 34-21, 35-1097

momentd 34-21, 35-1097

Moore-Penrose pseudo-inverse 34-11,
34-11, 35-1197, 35-1199

movingave 34-21, 35-1101

movingaveExpwgt 34-21, 35-1102

movingaveWgt 34-21, 35-1103

msym 34-58, 35-1104

multi-threading 34-63, 35-1834, 35-
1835, 35-1839, 35-1840

multiplicative sequence 35-1639

N-dimensional arrays 34-36, 34-40, 35-
61, 35-63, 35-65, 35-89, 35-92, 35-
110, 35-112, 35-114, 35-120, 35-
122, 35-124, 35-130

NaN 35-945, 35-1626

new 34-70, 35-1107

nextindex 34-42, 35-1108

nextn 34-5, 35-1110

nextnevn 34-5, 35-1110

nextwind 34-89, 35-1112

nonlinear equations 34-23, 34-23, 35-
571, 35-576

Normal distribution 34-27, 34-27, 35-
248, 35-1017, 35-1018, 35-1020

Normal distribution, bivariate 35-1013,
35-1014

Normal distribution, multivariate 35-
1016

Normal distribution, trivariate 35-261

ntos 35-1112

null 34-11, 34-13, 35-1115

null space 35-1115, 35-1117

Index

null1 34-11, 34-13, 35-1117

numCombinations 34-21, 35-1118

obsolete commands 36-42

ols 34-21, 34-67, 35-1120

olsmt 34-21, 35-1129

olsmtControlCreate 34-21, 35-1140

olsqr 34-21, 35-1141

olsqr2 34-21, 35-1142

olsqrmt 34-21, 35-1143

ones 34-32, 34-33, 35-1145

open 34-55, 34-56, 35-1146

optimization 34-23

optn 34-5, 35-1152

optnevn 34-5, 35-1152

orth 34-11, 34-13, 35-1154

orthogonal complement 35-1116

orthonormal 34-11, 34-11, 34-11, 35-
1115, 35-1117, 35-1154

OS functions 34-69

output 34-78, 34-78, 34-79, 35-1156

output functions 34-78

outtyp (dataloop) 34-58, 35-1159

outwidth 34-78, 35-1160

pacf 34-21, 35-1162

packedToSp 34-38, 35-1171

packr 34-58, 35-1173

pairwise deletion 35-518, 35-524, 35-
1096

parse 34-72, 35-1175

pause 34-64, 35-1179

pdfBinomial 34-29, 35-1179

pdfCauchy 34-29, 35-1181

pdfexp 34-29, 35-1182

pdfGenPareto 34-29, 35-1183

pdfHyperGeo 34-29, 35-1185

pdfLaplace 34-29, 35-1187

pdflogistic 34-29, 35-1188

pdfn 34-29, 35-1189

pdfPoisson 34-29, 35-1190

pdfRayleigh 34-29, 35-1192

pdfWeibull 34-29, 35-1193

pdfWishartInv 34-29, 35-1194

pi 34-5, 35-1196

pinv 34-11, 35-1197

Index-24

Index

Index-25

pinvmt 34-11, 35-1199

plot customization 35-1246

plotAddArea 34-81, 35-1200

plotAddArrow 35-1204

plotAddBar 34-81, 34-81, 35-1206

plotAddBox 34-81, 35-1207

plotAddErrorBar 35-1208

plotAddHist 34-81, 35-1216

plotAddHistF 34-81, 35-1217

plotAddHistP 34-81, 35-1218

plotAddPolar 34-81, 35-1219

plotAddScatter 34-81, 35-1220

plotAddShape 35-1221

plotAddSurface 34-81, 35-1223

plotAddTextbox 35-1228

plotAddTS 34-81, 35-1231

plotAddXY 34-81, 35-1232

plotArea 34-80, 35-1233

plotBar 34-80, 35-1234

plotBox 34-80, 35-1236

plotCDFEmpirical 34-80, 35-1238

plotClearLayout 34-82, 35-1241

plotContour 34-80, 35-1243

plotCustomLayout 34-82, 35-1246

plotGetDefaults 34-82, 35-1247

plotHist 34-80, 35-1249

plotHistF 34-80, 35-1250

plotHistP 34-80, 35-1250

plotLayout 34-82, 35-1251

plotLogLog 34-80, 35-1253

plotLogX 34-80, 35-1253

plotLogY 34-80, 35-1254

plotOpenWindow 34-82, 35-1255

plotPolar 34-80, 35-1256

plotSave 34-82, 35-1257

plotScatter 34-80, 35-1260

plotSetAxesPen 34-82, 35-1261

plotSetBar 34-82, 35-1262

plotSetBkdColor 34-82, 35-1265

plotSetColorMap 34-82, 35-1267

plotSetContourLabels 34-82, 35-1270

plotSetFill 34-82, 35-1273

plotSetGrid 34-82, 35-1275

plotSetLegend 34-82, 35-1276

Index

plotSetLegendFont 34-82, 35-1278

plotSetLineColor 34-82, 35-1280

plotSetLineStyle 34-83, 35-1281

plotSetLineSymbol 34-83, 35-1282

plotSetLineThickness 34-83, 35-1285

plotSetNewWindow 34-83, 35-1286

plotSetTextInterpreter 34-83, 35-1287

plotSetTitle 34-83, 35-1292

plotSetWhichYAxis 34-83, 35-1295

plotSetXLabel 34-83, 35-1296

plotSetXRange 34-83, 35-1299

plotSetXTicCount 34-83, 35-1300

plotSetXTicInterval 34-83, 35-1303

plotSetXTicLabel 34-83, 35-1306

plotSetYLabel 34-83, 35-1311

plotSetYRange 34-83, 35-1314

plotSetYTicCount 34-83, 35-1315

plotSetZLabel 34-84, 35-1319

plotSetZLevels 34-84, 35-1321

plotSurface 34-80, 35-1325

plotTS 34-81, 35-1327

plotXY 34-81, 35-1331

pointer 35-1041

Poisson 35-250, 35-251, 35-1190, 35-
1585, 35-1587

polar 34-5, 35-1332, 35-1848, 35-1853

polar plot 34-80, 34-81, 35-1219, 35-
1256

polychar 34-13, 35-1333

polyeval 34-13, 35-1334

polygamma 34-5, 35-1336

polyint 34-13, 35-1339

polymake 34-14, 35-1340

polymat 34-14, 35-1342

polymroot 35-1343

polymult 34-14, 35-1345

polynomial 34-13, 34-13, 34-14, 34-14,
34-14

polynomial interpolation 34-13, 35-1339

polynomial operations 34-13

polynomial regression 35-1343

polynomial, characteristic 35-1333

polynomial, evaluation 35-1334

polynomial, roots 35-1340, 35-1347

polyroot 34-14, 35-1347

Index-26

Index

Index-27

pop 34-64, 34-66, 35-1348

powerM 34-11, 35-1349

PQG fonts 35-657

pqgwin 34-89, 35-1351

precision control 34-30

predicted values 35-1142

previousindex 34-42, 35-1352

princomp 34-21, 35-1353

print 34-78, 34-78, 34-79, 35-1355

printdos 34-78, 35-1366

printfm 34-79, 35-1367

printfmt 34-78, 34-78, 34-79, 35-1370

probability density function, Normal 34-
29

probabilty mass function 35-1190

proc 34-66, 35-1373

procedure 34-66, 35-1373

procedures 34-66

prodc 34-34, 35-1375

products 35-1375

program control 34-64

program space 35-1654

program, run 35-1605

pseudo-inverse 35-1197, 35-1199

psi 34-5, 35-1376

Publication Quality Graphics 35-513,
35-567, 35-1620, 35-1621, 35-1622

putarray 34-41, 35-1377

putf 34-72, 35-1379

putvals 34-36, 35-1380

PV structure 35-1382, 35-1383, 35-1383,
35-1385, 35-1387, 35-1388, 35-
1389, 35-1390, 35-1392, 35-1394,
35-1396, 35-1398, 35-1400, 35-
1402, 35-1405, 35-1407, 35-1407

pvCreate 34-43, 35-1382

pvGetIndex 34-43, 35-1383

pvGetParNames 34-43, 35-1383

pvGetParVector 34-43, 35-1385

pvLength 34-43, 35-1387

pvList 34-43, 35-1388

pvPack 34-43, 35-1389

pvPacki 34-43, 35-1390

pvPackm 34-43, 35-1392

pvPackmi 34-43, 35-1394

pvPacks 34-43, 35-1396

Index

pvPacksi 34-43, 35-1398

pvPacksm 34-43, 35-1400

pvPacksmi 34-44, 35-1402

pvPutParVector 34-44, 35-1405

pvTest 34-44, 35-1407

pvUnpack 34-44, 35-1407

QNewton 34-24, 35-1409

QNewtonmt 34-24, 35-1412

QNewtonmtControlCreate 34-24, 35-
1418

QNewtonmtOutCreate 34-24, 35-1419

QNewtonSet 35-1420

QProg 34-24, 35-1420

QProgmt 34-24, 35-1422

QProgmtInCreate 34-24, 35-1425

qqr 34-11, 34-13, 35-1426

qqre 34-11, 35-1428

qqrep 34-11, 35-1431

qr 34-11, 35-1433

QR decomposition 34-11, 34-11, 34-11,
34-11, 34-11, 34-11, 34-11, 34-11,
34-11, 34-11, 34-12, 34-12, 34-12,
34-12, 34-13, 34-21, 34-21, 34-21,

35-1141, 35-1142, 35-1143, 35-
1426, 35-1428, 35-1431, 35-1433,
35-1435, 35-1438, 35-1443, 35-
1446, 35-1449, 35-1458, 35-1460,
35-1462

qre 34-11, 35-1435

qrep 34-11, 35-1438

qrsol 34-11, 34-13, 35-1440

qrtsol 34-11, 35-1441

qtyr 34-11, 35-1443

qtyre 34-11, 35-1446

qtyrep 34-12, 35-1449

quadrature 35-919, 35-922, 35-926

quantile 34-21, 35-162, 35-165, 35-1451

quantiled 34-22, 35-1454

query building 34-50

query data retrieval 34-52

query information 34-50

query iteration 34-52

query manipulation 34-50

qyr 34-12, 35-1458

qyre 34-12, 35-1460

qyrep 34-12, 34-13, 35-1462

Index-28

Index

Index-29

qz 34-12

random numbers 34-14, 34-16, 34-16,
34-16, 34-16, 34-16, 34-16, 34-16,
34-16, 34-16, 34-16, 34-16, 34-16,
34-17, 34-17, 34-17, 34-22, 35-
1520, 35-1522, 35-1524, 35-1527,
35-1529, 35-1530, 35-1532, 35-
1534, 35-1541, 35-1543, 35-1544,
35-1546, 35-1548, 35-1550, 35-
1551, 35-1553, 35-1555, 35-1574,
35-1575, 35-1577, 35-1579, 35-
1581, 35-1583, 35-1585, 35-1587,
35-1590, 35-1593, 35-1594

rank 34-12, 34-13, 35-1470

rankindx 34-34, 35-1471

Rayleigh 35-252, 35-254, 35-1192

readr 34-55, 34-56, 35-1472

real 34-36, 35-1474

reclassify 34-58, 35-1475

reclassifyCuts 34-59, 35-1478

recode 34-59, 34-59, 34-59, 35-1483

recode (dataloop) 34-59, 35-1486

recode) 34-59

recserar 34-30, 35-1488

recsercp 34-14, 34-30, 35-1490

recserrc 34-14, 34-30, 35-1492

reduced row echelon form 35-1603

regression 35-1042, 35-1044

relative error 35-240, 35-247, 35-256

renamefile 35-1494

rerun 34-90, 35-1495

rescale 35-1495

reserved words 36-57

reshape 34-36, 35-1501

residuals 35-1123, 35-1135, 35-1142

retp 35-1503

return 34-66, 34-66, 35-1503

rev 34-36, 35-1504

rfft 34-14, 35-1506

rffti 34-14, 35-1507

rfftip 34-14, 35-1507

rfftn 34-14, 35-1509

rfftnp 34-14, 35-1511

rfftp 34-14, 35-1513

rndBernoulli 34-14, 35-1514, 35-1516

rndBeta 34-14, 34-15

rndCauchy 34-15, 35-1519

rndChiSquare 35-1520

Index

rndcon 35-1522

rndCreateState 34-15, 35-1524

rndExp 34-15, 35-1527

rndgam 35-1529

rndGamma 34-15, 35-1530

rndGeo 34-15, 35-1532

rndGumbel 34-15, 35-1534

rndHyperGeo 34-15, 35-1535

rndi 34-15, 35-1538

rndKMbeta 34-15, 35-1541

rndKMgam 34-15, 35-1543

rndKMi 34-15, 35-1544

rndKMn 34-15, 35-1546

rndKMnb 34-16, 35-1548

rndKMp 34-16, 35-1550

rndKMu 34-16, 35-1551

rndKMvm 34-16, 35-1553

rndLaplace 34-16, 35-1555

rndLCbeta 35-1557

rndLCgam 35-1559

rndLCi 35-1560

rndLCn 35-1563

rndLCnb 35-1565

rndLCp 35-1567

rndLCu 35-1569

rndLCvm 35-1572

rndLogNorm 34-16, 35-1574

rndmult 35-1522

rndMVn 34-16, 35-1575

rndMVt 34-16, 35-1577

rndn 34-16, 35-1579

rndnb 35-1581

rndNegBinomial 34-16, 35-1583

rndp 35-1585

rndPoisson 34-16, 35-1587

rndseed 34-16, 34-17, 35-1522

rndStateSkip 34-16, 35-1588

rndu 34-16, 35-1590

rndvm 34-22, 35-1593

rndWeibull 34-17, 35-1594

rndWishart 34-17, 35-1595

rndWishartInv 34-17, 35-1597

rotater 34-36, 35-1598

round 34-30, 34-30, 35-1600

Index-30

Index

Index-31

round down 35-652

round up 35-267

rows 34-35, 34-35, 35-1601

rowsf 34-35, 34-35, 35-1602

rref 34-12, 34-13, 35-1603

run 34-64, 35-1605

sampleData 35-1608

satostrC 34-79, 35-1610

save 34-33, 34-68, 34-68, 35-1613

saveall 34-68, 35-1616

saved 34-33, 34-55, 35-1617

savestruct 34-44, 35-1619

savewind 34-89, 35-1620

scalar error code 34-71

scalar expression 35-876

scale 34-86, 35-1621

scale3d 34-86, 35-1622

scalerr 34-71, 35-1623

scalinfnanmiss 34-59, 35-1626

scaling 35-1621, 35-1622

scalmiss 34-58, 34-59, 35-1627

scatter plot 34-80, 35-1220, 35-1260

schtoc 34-12, 35-1628

schur 34-10, 34-12, 35-1630

Schur 34-12, 35-1628, 35-1630

scientific functions 34-4

screen 34-79, 35-1633

searchsourcepath 34-69, 35-1634

seekr 34-55, 34-56, 35-1635

select (dataloop) 34-59, 35-1636

selif 34-36, 34-38, 34-38, 35-1637

seqa 34-30, 35-1639

seqm 34-30, 35-1639

sequence function 35-1639

sequence functions 34-29

series functions 34-29

set difference function 35-1642

setarray 34-41, 35-1640

setdif 34-36, 35-1642

setdifsa 35-1645

setvars 34-57, 34-57, 35-1646

setvwrmode 34-89, 35-1647

setwind 34-89, 35-1648

shell 34-70, 35-1649

Index

shiftr 34-36, 35-1651

show 34-70, 35-1653

Simpson's method 35-938

sin 34-5, 35-1656

sine, inverse 34-4, 35-107

singleindex 34-42, 35-1657

singular value decomposition 34-12, 34-
12, 35-309, 35-1470, 35-1790, 35-
1792, 35-1795, 35-1801

singular values 34-12, 35-1788, 35-1798

sinh 34-5, 35-1659

sleep 34-64, 35-1660

solpd 34-12, 34-13, 35-1661

sort data file 35-1666

sort index 35-1669

sort, heap sort 35-1667

sort, multiple columns 34-60, 35-1670

sort, quicksort 35-1664

sortc 34-60, 34-61, 35-1664

sortcc 34-60, 34-61, 34-61, 35-1664

sortd 34-60, 34-61, 34-61, 35-1666

sorthc 34-60, 34-61, 35-1667

sorthcc 34-60, 35-1667

sortind 34-60, 34-61, 35-1669

sortindc 34-60, 34-61, 35-1669

sorting 34-60

sortmc 34-60, 34-61, 35-1670

sortr 34-61, 35-1672

sortrc 34-61, 35-1672

sparse matrices 34-38, 35-1674, 35-
1677, 35-1678, 35-1681, 35-1682,
35-1684, 35-1687, 35-1690, 35-
1691, 35-1694, 35-1695, 35-1697,
35-1698, 35-1707, 35-1709, 35-
1711, 35-1712, 35-1713, 35-1714

spBiconjGradSol 34-38, 35-1674

spChol 34-38, 35-1677

spConjGradSol 34-38, 35-1678

spCreate 35-1681

spCreatee 34-38

spDenseSubmat 34-39, 35-1682

spDiagRvMat 34-39, 35-1684

spEigv 34-39, 35-1687

spEye 34-39, 35-1690

spGetNumNZE 34-39, 35-1691

spGetNZE 34-39

spLDL 34-39, 35-1694

Index-32

Index

Index-33

spline 34-5, 35-1693

spLU 34-39

spNumNZE 35-1697

spOnes 34-39, 35-1698

spreadSheetReadM 34-44, 35-1700

spreadSheetReadSA 35-1702

SpreadsheetReadSA 34-44

spreadsheets 34-44, 34-45, 35-1700, 35-
1702, 35-1704, 35-1931, 35-1932,
35-1935, 35-1937, 35-1939, 35-
1944, 35-1948, 35-1952, 35-1955

spreadSheetWrite 34-44, 35-1704

spScale 35-1707

spSubmat 34-39, 35-1709

spToDense 34-39, 35-1711

spTrTDense 34-39, 35-1712

spTScalar 34-39, 35-1713

spZeros 34-39, 35-1714

sqpSolve 34-24, 35-1716

sqpSolveMT 34-24, 35-1723

sqpSolveMTControl structure 34-24, 35-
1731

sqpSolveMTControlCreate 35-1731

sqpSolveMTlagrangeCreate 34-24, 35-
1732

sqpSolveMToutCreate 34-24, 35-1733

sqpSolveSet 34-25, 35-1734

sqrt 34-6, 35-1735

square root 35-1735

standard deviation 35-120, 35-122, 35-
522, 35-525, 35-1736, 35-1738

standard deviation of residual 35-1124,
35-1134

standard errors 35-1124, 35-1134

statistical distributions 34-25

statistical functions 34-19

statistics, descriptive 35-516, 35-523

stdc 34-22, 35-1736

stdsc 34-22, 35-1738

Stirling's formula 35-1022

stocv 34-72, 35-1739

stof 34-72, 35-1740

stop 34-64, 35-1741

stop program 35-1741

strcombine 34-72, 35-1742

strindx 34-72, 34-74, 35-1744

Index

string arrays 35-1760, 35-1762

string handling 34-71

string index 35-1744, 35-1748

string length 35-1745

string, substring 35-1751

strjoin 34-72, 35-1749

strlen 34-73, 34-74

strput 34-73, 35-1746

strrindx 34-73, 34-74, 35-1748

strsect 34-73, 34-74, 35-1751

strsplit 34-73, 35-1753

strsplitPad 34-73, 35-1757

strtodt 34-76, 35-1758

strtof 34-73, 35-1760

strtofcplx 34-73, 35-1762

strtrim 34-73, 35-1763

strtriml 34-73, 35-1765

strtrimr 34-73, 35-1766

strtrunc 34-73, 35-1767

strtruncl 34-74, 35-1768

strtruncpad 34-74, 35-1769

strtruncr 34-74, 35-1770

structure, DS 34-42

structure, PV 34-43, 34-43, 34-43, 34-
43, 34-43, 34-43, 34-43, 34-44, 34-
44, 34-44

structures 34-42

structures, matrices of 35-1619

submat 34-37, 35-1770

submatrix 35-1684, 35-1709, 35-1770

subroutine 35-1503

subroutines 34-66

subsample 35-619

subscat 34-59, 34-59, 35-1772

substitution 35-1776

substute 34-59, 34-59, 35-1776

subvec 34-37, 35-1779

sum 35-1781, 35-1783

sumc 35-1781

sumr 34-35, 35-1783

sunc 34-35

surface 34-85, 34-88, 35-1785

surface plot 34-80

svd 34-12, 34-13, 35-1788

svd1 34-12, 35-1790

Index-34

Index

Index-35

svd2 34-12, 35-1792

svdcusv 34-12, 35-1795

svds 34-12, 35-1798

svdusv 34-12, 34-13, 35-1801

sweep inverse 35-941

sylvester 34-12, 35-1804

Sylvester 35-1804

symbol table 35-1107

symbol table type 35-1865, 35-1867

symbols, allocate maximum number 35-
1107

sysstate 34-68, 35-1806

system 34-64, 35-1806, 35-1828

t distribution, Student's 34-29, 35-221,
35-227, 35-233, 35-255, 35-257,
35-258, 35-1577

tab 34-79, 35-1830

tan 34-6, 35-1831

tanh 34-6, 35-1832

tempname 34-55, 35-1833

text files 34-45

thickness, line 35-1285

threadBegin 34-63, 34-63

ThreadBegin 35-1834

threadEnd 34-63, 34-63

ThreadEnd 35-1835

threadEndFor 34-63

threadfor 35-1836

threadFor 34-63

threadfor loop 35-1836

threadJoin 34-63, 34-63

ThreadJoin 35-1839

threads 34-63, 35-1834, 35-1835, 35-
1839, 35-1840

threadStat 34-63, 34-63, 34-63

ThreadStat 35-1840

time 34-76, 35-1841

time and date functions 34-75

time series 35-1231

time, elapsed 35-594, 35-595, 35-597

timedt 34-76, 35-1841

timestr 34-76, 35-1842

timeutc 34-76, 35-1843

timing functions 35-874

title 34-87, 35-1844

Index

tkf2eps 34-89, 35-1846

tkf2ps 34-90, 35-1847

tocart 34-6, 35-1848

todaydt 34-76, 35-1848

toeplitz 34-22, 34-22, 35-1849

Toeplitz matrix 35-1849

token 34-74, 35-1850

topolar 34-6, 35-1853

trace 34-71, 34-71, 35-1853

trace program execution 35-1853

transpose 35-130

trap 34-71, 35-1855

trap flag 35-1855, 35-1859

trap state 35-1625

trapchk 34-71, 35-1859

triangular matrix, lower 35-1057, 35-
1060

triangular matrix, upper 35-274, 35-278,
35-1060, 35-1440, 35-1441

trigamma 34-6, 35-1861

trimr 34-37, 35-1862

trivariate Normal 35-261

trunc 34-30, 34-30, 35-1863

truncating 35-1767, 35-1768, 35-1769,
35-1770, 35-1863

type 34-70, 35-1865

typecv 34-70, 35-1867

typef 34-55, 35-1869

underdetermined 35-1124, 35-1134

union 34-37, 35-1871

unionsa 35-1872

uniqindx 34-61, 34-61, 35-1873

uniqindxsa 34-61, 35-1875

unique 34-61, 34-61, 35-1876

uniquesa 34-61, 35-1882

until 34-65, 35-497

upmat 34-37, 34-38, 35-1883

upmat1 34-37, 34-38, 35-1883

upper 34-74, 35-1885

upper triangular matrix 35-1060, 35-
1440, 35-1441

use 34-68, 35-1886

user-defined function 35-953, 35-1373

utctodt 34-76, 35-1888

utctodtv 34-76, 35-1889

utrisol 34-25, 35-1891

Index-36

Index

Index-37

vals 34-74, 35-1892

varCovM 34-22, 35-1894

varCovMS 34-22, 35-1896

varCovX 34-22, 35-1894

varCovXS 34-22, 35-1896

varget 34-74, 35-1898, 35-1900

vargetl 34-74

variable names 34-56, 35-1646

variance 35-518, 35-525

variance-covariance matrix 34-22, 34-
22, 34-22, 34-22, 34-22, 34-22, 34-
23, 34-23, 35-1894, 35-1896, 35-
1909, 35-1910

varindxi 35-1146

varmall 34-22, 35-1902

varmares 34-22, 35-1903

varput 34-74, 35-1905

varputl 34-74, 35-1906

vartypef 34-57, 34-57, 35-1908

vcm 34-22, 35-1909

vcms 34-22, 35-1910

vcx 34-23, 35-1909

vcxs 34-23, 35-1910

vec 34-37, 35-1911

vech 34-37, 34-38, 35-1913

vecr 34-37, 35-1911

vector (dataloop) 34-59, 35-1914

vectors 34-32

vget 34-37, 35-1915

view 34-90, 35-1916

viewxyz 34-90, 35-1917

vlist 34-37, 35-1918

vnamecv 34-37, 35-1919

volume 34-90, 35-1920

vput 34-37, 34-37, 35-1921

vread 34-37, 35-1922

vtypecv 34-37, 35-1923

wait 34-77, 34-78, 35-1924

waitc 34-77, 34-78, 35-1924

walkindex 34-42, 35-1924

Weibull 35-263, 35-265, 35-1193, 35-
1594

weighted count 35-331

while 34-65, 35-497

window 34-89, 35-1926

Index

window, clear 35-289

workbox 35-1916, 35-1918

workspace 34-70

writer 34-56, 35-1927

X-axis 35-1303, 35-1306

xlabel 34-87, 35-1930

xlsGetSheetCount 34-44, 35-1931

xlsGetSheetSize 34-44, 35-1932

xlsGetSheetTypes 34-44, 35-1935

xlsMakeRange 34-45, 35-1937

xlsReadM 34-34, 34-45, 35-1939

xlsReadSA 34-45, 35-1944

xlsWrite 34-45, 35-1948

xlsWriteM 34-45, 35-1952

xlsWriteSA 34-45, 35-1955

xpnd 34-38, 34-38, 34-38, 35-1958

xtics 34-86, 35-1960

xy 34-86, 35-1232, 35-1961

xyz 35-1962

ylabel 34-87, 35-1964

ytics 34-86, 35-1965

zeroes 34-32, 35-1967

zeros 34-33

zeta 34-6, 35-1968

zlabel 34-87, 35-1969

ztics 34-86, 35-1970

Index-38

Index

	 33 Command Reference Introduction
	33.1 Documentation Conventions
	33.2 Command Components
	33.3 Using This Manual
	33.4 Global Control Variables
	33.4.1 Changing the Default Values
	33.4.2 The Procedure gausset

	 34 Commands by Category
	34.1 Mathematical Functions
	34.1.1 Scientific Functions
	34.1.2 Differentiation and Integration
	34.1.3 Linear Algebra
	34.1.4 Eigenvalues
	34.1.5 Polynomial Operations
	34.1.6 Fourier Transforms
	34.1.7 Random Numbers
	34.1.8 Fuzzy Conditional Functions
	34.1.9 Statistical Functions
	34.1.10 Optimization and Solution
	34.1.11 Statistical Distributions
	34.1.12 Series and Sequence Functions
	34.1.13 Precision Control

	34.2 Finance Functions
	34.3 Matrix Manipulation
	34.3.1 Creating Vectors and Matrices
	34.3.2 Loading and Storing Matrices
	34.3.3 Size, Ranking, and Range
	34.3.4 Miscellaneous Matrix Manipulation

	34.4 Sparse Matrix Handling
	34.5 N-Dimensional Array Handling
	34.5.1 Creating Arrays
	34.5.2 Size, Ranking and Range
	34.5.3 Setting and Retrieving Data in an Array
	34.5.4 Miscellaneous Array Functions

	34.6 Structures
	34.7 Data File Reading/Writing
	34.7.1 Spreadsheets
	34.7.2 CSV Files
	34.7.3 Text Files
	34.7.4 HDF 5 Files
	34.7.5 Database

	34.8 Compiler Control
	34.9 Multi-Threading
	34.10 Program Control
	34.10.1 Execution Control
	34.10.2 Branching
	34.10.3 Looping
	34.10.4 Subroutines
	34.10.5 Procedures, Keywords, and Functions
	34.10.6 Libraries
	34.10.7 Compiling
	34.10.8 Miscellaneous Program Control

	34.11 OS Functions and File Management
	34.12 Workspace Management
	34.13 Error Handling and Debugging
	34.14 String Handling
	34.15 Time and Date Functions
	34.16 Console I/O
	34.17 Output Functions
	34.17.1 Text Output
	34.17.2 DOS Compatibility Windows

	34.18 GAUSS Graphics
	34.18.1 Graph Types
	34.18.2 Adding Data to Existing Graphs
	34.18.3 Plot Control
	34.18.4 Annotation Control

	34.19 PQG Graphics
	34.19.1 Graph Types
	34.19.2 Axes Control and Scaling
	34.19.3 Text, Labels, Titles, and Fonts
	34.19.4 Main Curve Lines and Symbols
	34.19.5 Extra Lines and Symbols
	34.19.6 Graphic Panel, Page, and Plot Control
	34.19.7 Output Options
	34.19.8 Miscellaneous

	 35 Command Reference
	a
	abs
	acf
	aconcat
	aeye
	amax
	amean
	AmericanBinomCall
	AmericanBinomCall_Greeks
	AmericanBinomCall_ImpVol
	AmericanBinomPut
	AmericanBinomPut_Greeks
	AmericanBinomPut_ImpVol
	AmericanBSCall
	AmericanBSCall_Greeks
	AmericanBSCall_ImpVol
	AmericanBSPut
	AmericanBSPut_Greeks
	AmericanBSPut_ImpVol
	amin
	amult
	annotationGetDefaults
	annotationSetBkd
	annotationSetFont
	annotationSetLineColor
	annotationSetLineStyle
	annotationSetLineThickness
	annualTradingDays
	arccos
	arcsin
	areshape
	arrayalloc
	arrayindex
	arrayinit
	arraytomat
	asciiload
	asclabel
	astd
	astds
	asum
	atan
	atan2
	atranspose
	axmargin

	b
	balance
	band
	bandchol
	bandcholsol
	bandltsol
	bandrv
	bandsolpd
	bar
	base10
	begwind
	besselj
	bessely
	beta
	box
	boxcox
	break

	c
	call
	cdfBeta
	cdfBetaInv
	cdfBinomial
	cdfBinomialInv
	cdfBvn
	cdfBvn2
	cdfBvn2e
	cdfCauchy
	cdfCauchyInv
	cdfChic
	cdfChii
	cdfChinc
	cdfChincInv
	cdfEmpirical
	cdfExp
	cdfExpInv
	cdfFc
	cdfFnc
	cdfFncInv
	cdfGam
	cdfGenPareto
	cdfHyperGeo
	cdfLaplace
	cdfLaplaceInv
	cdfLogistic
	cdfLogisticInv
	cdfMvn
	cdfMvnce
	cdfMvne
	cdfMvn2e
	cdfMvtce
	cdfMvte
	cdfMvt2e
	cdfN, cdfNc
	cdfNegBinomial
	cdfNegBinomialInv
	cdfN2
	cdfNi
	cdfPoisson
	cdfPoissonInv
	cdfRayleigh
	cdfRayleighInv
	cdfTc
	cdfTci
	cdfTnc
	cdfTvn
	cdfWeibull
	cdfWeibullInv
	cdir
	ceil
	changeDir
	chdir
	chiBarSquare
	chol
	choldn
	cholsol
	cholup
	chrs
	clear
	clearg
	close
	closeall
	cls
	code
	code (dataloop)
	cols
	colsf
	combinate
	combinated
	comlog
	compile
	complex
	con
	cond
	conj
	cons
	ConScore
	continue
	contour
	conv
	convertsatostr
	convertstrtosa
	corrm,corrvc,corrx
	corrms,corrxs
	cos
	cosh
	counts
	countwts
	create
	crossprd
	crout
	croutp
	csrcol,csrlin
	csvReadM
	csvReadSA
	csvWriteM
	cumprodc
	cumsumc
	curve
	cvtos
	cvtosa

	d
	datacreate
	datacreatecomplex
	datalist
	dataload
	dataloop (dataloop)
	dataopen
	datasave
	date
	datestr
	datestring
	datestrymd
	dayinyr
	dayofweek
	dbAddDatabase
	dbClose
	dbCommit
	dbCreateQuery
	dbExecQuery
	dbGetConnectOptions
	dbGetDatabaseName
	dbGetDriverName
	dbGetDrivers();
	dbGetHostName
	dbGetLastErrorNum
	dbGetLastErrorText
	dbGetNumericalPrecPolicy
	dbGetPassword
	dbGetPort
	dbGetPrimaryIndex
	dbGetTableHeaders
	dbGetTables
	dbGetUserName
	dbHasFeature
	dbIsDriverAvailable
	dbIsOpen
	dbIsOpenError
	dbIsValid
	dbNumericalPrecPolicy
	dbOpen
	dbQueryBindValue
	dbQueryClear
	dbQueryCols
	dbQueryExecPrepared
	dbQueryFetchAllM
	dbQueryFetchAllSA
	dbQueryFetchOneM
	dbQueryFetchOneSA
	dbQueryFinish
	dbQueryGetBoundValue
	dbQueryGetBoundValues
	dbQueryGetField
	dbQueryGetLastErrorNum
	dbQueryGetLastErrorText
	dbQueryGetLastInsertID
	dbQueryGetLastQuery
	dbQueryGetNumRowsAffected
	dbQueryGetPosition
	dbQueryIsActive
	dbQueryIsForwardOnly
	dbQueryIsNull
	dbQueryIsSelect
	dbQueryIsValid
	dbQueryPrepare
	dbQueryRows
	dbQuerySeek
	dbQuerySeekFirst
	dbQuerySeekLast
	dbQuerySeekNext
	dbQuerySeekPrevious
	dbQuerySetForwardOnly
	dbQuerySetNumericalPrecisionPolicy
	dbRemoveDatabase
	dbRollback
	dbSetConnectOptions
	dbSetDatabaseName
	dbSetHostName
	dbSetPassword
	dbSetPort
	dbSetUserName
	dbTransaction
	debug
	declare
	delete
	delete (dataloop)
	deleteFile
	delif
	delrows
	denseToSp
	denseToSpRE
	denToZero
	design
	det
	detl
	dfft
	dffti
	diag
	diagrv
	digamma
	dlibrary
	dllcall
	do while,do until
	dos
	doswin
	DOSWinCloseall
	DOSWinOpen
	dot
	dotfeq,dotfge, dotfgt,dotfle,dotflt,dotfne
	dotfeqmt,dotfgemt,dotfgtmt,dotflemt,dotfltmt,dotfnemt
	draw
	drop (dataloop)
	dsCreate
	dstat
	dstatmt
	dstatmtControlCreate
	dtdate
	dtday
	dttime
	dttodtv
	dttostr
	dttoutc
	dtvnormal
	dtvtodt
	dtvtoutc
	dummy
	dummybr
	dummydn

	e
	ed
	edit
	erfInv,erfCInv
	eig
	eigh
	eighv
	eigv
	elapsedTradingDays
	end
	endp
	endwind
	envget
	eof
	eqSolve
	eqSolvemt
	eqSolvemtControlCreate
	eqSolvemtOutCreate
	eqSolveSet
	erf,erfc
	erfcplx,erfccplx
	error
	errorlog
	errorlogat
	etdays
	ethsec
	etstr
	EuropeanBinomCall
	EuropeanBinomCall_Greeks
	EuropeanBinomCall_ImpVol
	EuropeanBinomPut
	EuropeanBinomPut_Greeks
	EuropeanBinomPut_ImpVol
	EuropeanBSCall
	EuropeanBSCall_Greeks
	EuropeanBSCall_ImpVol
	EuropeanBSPut
	EuropeanBSPut_Greeks
	EuropeanBSPut_ImpVol
	exctsmpl
	exec
	execbg
	exp
	extern (dataloop)
	external
	eye

	f
	fcheckerr
	fclearerr
	feq,fge,fgt,fle,flt,fne
	feqmt,fgemt,fgtmt,flemt,fltmt,fnemt
	fflush
	fft
	ffti
	fftm
	fftmi
	fftn
	fgets
	fgetsa
	fgetsat
	fgetst
	fileinfo
	filesa
	floor
	fmod
	fn
	fonts
	fopen
	for
	format
	formatcv
	formatnv
	fputs
	fputst
	fseek
	fstrerror
	ftell
	ftocv
	ftos
	ftostrC

	g
	gamma
	gammacplx
	gammaii
	gausset
	gdaAppend
	gdaCreate
	gdaDStat
	gdaDStatMat
	gdaGetIndex
	gdaGetName
	gdaGetNames
	gdaGetOrders
	gdaGetType
	gdaGetTypes
	gdaGetVarInfo
	gdaIsCplx
	gdaLoad
	gdaPack
	gdaRead
	gdaReadByIndex
	gdaReadSome
	gdaReadSparse
	gdaReadStruct
	gdaReportVarInfo
	gdaSave
	gdaUpdate
	gdaUpdateAndPack
	gdaVars
	gdaWrite
	gdaWrite32
	gdaWriteSome
	getarray
	getdims
	getf
	getGAUSSHome
	getmatrix
	getmatrix4D
	getname
	getnamef
	getNextTradingDay
	getNextWeekDay
	getnr
	getnrmt
	getorders
	getpath
	getPreviousTradingDay
	getPreviousWeekDay
	getRow
	getscalar3D
	getscalar4D
	getTrRow
	getwind
	glm
	gosub
	goto
	gradMT
	gradMTm
	gradMTT
	gradMTTm
	gradp, gradcplx
	graphprt
	graphset

	h
	h5create
	h5open
	h5read
	h5readAttribute
	h5write
	h5writeAttribute
	hasimag
	header
	headermt
	hess
	hessMT
	hessMTg
	hessMTgw
	hessMTm
	hessMTmw
	hessMTT
	hessMTTg
	hessMTTgw
	hessMTTm
	hessMTw
	hessp, hesscplx
	hist
	histf
	histp
	hsec

	i
	if, else, elseif
	imag
	#include
	indcv
	indexcat
	indices
	indices2
	indicesf
	indicesfn
	indnv
	indsav
	integrate1d
	intgrat2
	intgrat3
	inthp1
	inthp2
	inthp3
	inthp4
	inthpControlCreate
	intquad1
	intquad2
	intquad3
	intrleav
	intrleavsa
	intrsect
	intrsectsa
	intsimp
	inv, invpd
	invswp
	iscplx
	iscplxf
	isden
	isinfnanmiss
	ismiss
	itos

	k
	keep (dataloop)
	key
	keyav
	keyw
	keyword

	l
	lag (dataloop)
	lag1
	lagn
	lapeighb
	lapeighi
	lapeighvb
	lapeighvi
	lapgeig
	lapgeigh
	lapgeighv
	lapgeigv
	lapgsvdcst
	lapgsvds
	lapgsvdst
	lapgschur
	lapsvdcusv
	lapsvds
	lapsvdusv
	ldl
	ldlp
	ldlsol
	let
	lib
	library
	#lineson, #linesoff
	linsolve
	listwise (dataloop)
	ln
	lncdfbvn
	lncdfbvn2
	lncdfmvn
	lncdfn
	lncdfn2
	lncdfnc
	lnfact
	lngammacplx
	lnpdfmvn
	lnpdfmvt
	lnpdfn
	lnpdft
	load, loadf, loadk, loadm, loadp, loads
	loadarray
	loadd
	loadstruct
	loadwind
	local
	locate
	loess
	loessmt
	loessmtControlCreate
	log
	loglog
	logx
	logy
	loopnextindex
	lower
	lowmat, lowmat1
	ltrisol
	lu
	lusol

	m
	machEpsilon
	make (dataloop)
	makevars
	makewind
	margin
	matalloc
	matinit
	mattoarray
	maxc
	maxindc
	maxv
	maxvec
	maxbytes
	mbesseli
	meanc
	median
	mergeby
	mergevar
	minc
	minindc
	minv
	miss, missrv
	missex
	moment
	momentd
	movingave
	movingaveExpwgt
	movingaveWgt
	msym

	n
	new
	nextindex
	nextn, nextnevn
	nextwind
	ntos
	null
	null1
	numCombinations

	o
	ols
	olsmt
	olsmtControlCreate
	olsqr
	olsqr2
	olsqrmt
	ones
	open
	optn, optnevn
	orth
	output
	outtyp (dataloop)
	outwidth

	p
	pacf
	packedToSp
	packr
	parse
	pause
	pdfBinomial
	pdfCauchy
	pdfexp
	pdfGenPareto
	pdfHyperGeo
	pdfLaplace
	pdflogistic
	pdfn
	pdfPoisson
	pdfRayleigh
	pdfWeibull
	pdfWishartInv
	pi
	pinv
	pinvmt
	plotAddArea
	plotAddArrow
	plotAddBar
	plotAddBox
	plotAddErrorBar
	plotAddHist
	plotAddHistF
	plotAddHistP
	plotAddPolar
	plotAddScatter
	plotAddShape
	plotAddSurface
	plotAddTextbox
	plotAddTS
	plotAddXY
	plotArea
	plotBar
	plotBox
	plotCDFEmpirical
	plotClearLayout
	plotContour
	plotCustomLayout
	plotGetDefaults
	plotHist
	plotHistF
	plotHistP
	plotLayout
	plotLogLog
	plotLogX
	plotLogY
	plotOpenWindow
	plotPolar
	plotSave
	plotScatter
	plotSetAxesPen
	plotSetBar
	plotSetBkdColor
	plotSetColorMap
	plotSetContourLabels
	plotSetFill
	plotSetGrid
	plotSetLegend
	plotSetLegendFont
	plotSetLineColor
	plotSetLineStyle
	plotSetLineSymbol
	plotSetLineThickness
	plotSetNewWindow
	plotSetTextInterpreter
	plotSetTitle
	plotSetWhichYAxis
	plotSetXLabel
	plotSetXRange
	plotSetXTicCount
	plotSetXTicInterval
	plotSetXTicLabel
	plotSetYLabel
	plotSetYRange
	plotSetYTicCount
	plotSetZLabel
	plotSetZLevels
	plotSurface
	plotTS
	plotXY
	polar
	polychar
	polyeval
	polygamma
	polyint
	polymake
	polymat
	polymroot
	polymult
	polyroot
	pop
	powerM
	pqgwin
	previousindex
	princomp
	print
	printdos
	printfm
	printfmt
	proc
	prodc
	psi
	putarray
	putf
	putvals
	pvCreate
	pvGetIndex
	pvGetParNames
	pvGetParVector
	pvLength
	pvList
	pvPack
	pvPacki
	pvPackm
	pvPackmi
	pvPacks
	pvPacksi
	pvPacksm
	pvPacksmi
	pvPutParVector
	pvTest
	pvUnpack

	q
	QNewton
	QNewtonmt
	QNewtonmtControlCreate
	QNewtonmtOutCreate
	QNewtonSet
	QProg
	QProgmt
	QProgmtInCreate
	qqr
	qqre
	qqrep
	qr
	qre
	qrep
	qrsol
	qrtsol
	qtyr
	qtyre
	qtyrep
	quantile
	quantiled
	qyr
	qyre
	qyrep
	qz

	r
	rank
	rankindx
	readr
	real
	reclassify
	reclassifyCuts
	recode
	recode (dataloop)
	recserar
	recsercp
	recserrc
	renamefile
	rerun
	rescale
	reshape
	retp
	return
	rev
	rfft
	rffti
	rfftip
	rfftn
	rfftnp
	rfftp
	rndBernoulli
	rndBeta
	rndCauchy
	rndChiSquare
	rndcon, rndmult, rndseed
	rndCreateState
	rndExp
	rndgam
	rndGamma
	rndGeo
	rndGumbel
	rndHyperGeo
	rndi
	rndKMbeta
	rndKMgam
	rndKMi
	rndKMn
	rndKMnb
	rndKMp
	rndKMu
	rndKMvm
	rndLaplace
	rndLCbeta
	rndLCgam
	rndLCi
	rndLCn
	rndLCnb
	rndLCp
	rndLCu
	rndLCvm
	rndLogNorm
	rndMVn
	rndMVt
	rndn
	rndnb
	rndNegBinomial
	rndp
	rndPoisson
	rndStateSkip
	rndu
	rndvm
	rndWeibull
	rndWishart
	rndWishartInv
	rotater
	round
	rows
	rowsf
	rref
	run

	s
	sampleData
	satostrC
	save
	saveall
	saved
	savestruct
	savewind
	scale
	scale3d
	scalerr
	scalinfnanmiss
	scalmiss
	schtoc
	schur
	screen
	searchsourcepath
	seekr
	select (dataloop)
	selif
	seqa, seqm
	setarray
	setdif
	setdifsa
	setvars
	setvwrmode
	setwind
	shell
	shiftr
	show
	sin
	singleindex
	sinh
	sleep
	solpd
	sortc, sortcc
	sortd
	sorthc, sorthcc
	sortind, sortindc
	sortmc
	sortr, sortrc
	spBiconjGradSol
	spChol
	spConjGradSol
	spCreate
	spDenseSubmat
	spDiagRvMat
	spEigv
	spEye
	spGetNZE
	spline
	spLDL
	spLU
	spNumNZE
	spOnes
	spreadSheetReadM
	spreadSheetReadSA
	spreadSheetWrite
	spScale
	spSubmat
	spToDense
	spTrTDense
	spTScalar
	spZeros
	sqpSolve
	sqpSolveMT
	sqpSolveMTControlCreate
	sqpSolveMTlagrangeCreate
	sqpSolveMToutCreate
	sqpSolveSet
	sqrt
	stdc
	stdsc
	stocv
	stof
	stop
	strcombine
	strindx
	strlen
	strput
	strrindx
	strjoin
	strsect
	strsplit
	strsplitPad
	strtodt
	strtof
	strtofcplx
	strtrim
	strtriml
	strtrimr
	strtrunc
	strtruncl
	strtruncpad
	strtruncr
	submat
	subscat
	substute
	subvec
	sumc
	sumr
	surface
	svd
	 svd1
	svd2
	svdcusv
	svds
	svdusv
	sylvester
	sysstate
	system

	t
	tab
	tan
	tanh
	tempname
	ThreadBegin
	ThreadEnd
	threadfor, threadendfor
	ThreadJoin
	ThreadStat
	time
	timedt
	timestr
	timeutc
	title
	tkf2eps
	tkf2ps
	tocart
	todaydt
	toeplitz
	token
	topolar
	trace
	trap
	trapchk
	trigamma
	trimr
	trunc
	type
	typecv
	typef

	u
	union
	unionsa
	uniqindx
	uniqindxsa
	unique
	uniquesa
	upmat, upmat1
	upper
	use
	utctodt
	utctodtv
	utrisol

	v
	vals
	varCovM, varCovX
	varCovMS, varCovXS
	varget
	vargetl
	varmall
	varmares
	varput
	varputl
	vartypef
	vcm, vcx
	vcms, vcxs
	vec, vecr
	vech
	vector (dataloop)
	vget
	view
	viewxyz
	vlist
	vnamecv
	volume
	vput
	vread
	vtypecv

	w
	wait, waitc
	walkindex
	window
	writer

	x
	xlabel
	xlsGetSheetCount
	xlsGetSheetSize
	xlsGetSheetTypes
	xlsMakeRange
	xlsReadM
	xlsReadSA
	xlsWrite
	xlsWriteM
	xlsWriteSA
	xpnd
	xtics
	xy
	xyz

	y
	ylabel
	ytics

	z
	zeros
	zeta
	zlabel
	ztics

	 36 Miscellaneous Topics
	36.1 Change Log
	36.2 Common Errors
	36.3 Error Messages
	36.4 GAUSS Graphics Colors
	36.5 Obsolete Commands
	36.6 Quick Reference
	36.6.1 Basic functions
	36.6.2 Matrix creation
	36.6.3 Matrix manipulation
	36.6.4 Operators
	36.6.5 String creation
	36.6.6 String array manipulation
	36.6.7 Loading and saving data

	36.7 Reserved Words

	Bookmarks
	aconcat
	amax
	amean
	AmericanBinomCall
	AmericanBinomCall_Greeks
	AmericanBinomCall_ImpVol
	AmericanBinomPut
	AmericanBinomPut_Greeks
	AmericanBinomPut_ImpVol
	AmericanBSCall
	AmericanBSCall_Greeks
	AmericanBSCall_ImpVol
	AmericanBSPut_Greeks
	AmericanBSPut_ImpVol
	amin
	annotationGetDefaults
	arccos
	arcsin
	areshape
	arrayalloc
	arrayindex
	arrayinit
	arraytomat
	asclabel
	astd
	astds
	asum
	atan
	atan2
	axmargin
	band
	bandchol
	bandcholsol
	bandltsol
	bandrv
	bandsolpd
	bar
	begwind
	besselj
	bessely
	break
	call
	cdfBeta
	cdfBinomial
	cdfBinomialInv
	cdfBvn
	cdfBvn2
	cdfBvn2e
	cdfCauchy
	cdfChic
	cdfChinc
	cdfEmpirical
	cdfExp
	cdfFc
	cdfFnc
	cdfGenPareto
	cdfLaplace
	cdfLaplaceInv
	cdfLogistic
	cdfMvn
	cdfMvnce
	cdfMvne
	cdfMvn2e
	cdfMvtce
	cdfMvte
	cdfMvt2e
	cdfN
	cdfNc
	cdfNegBinomial
	cdfNegBinomialInv
	cdfN2
	cdfNi
	cdfPoisson
	cdfPoissonInv
	cdfRayleigh
	cdfRayleighInv
	cdfTc
	cdfTci
	cdfTnc
	cdfTvn
	cdfWeibull
	cdfWeibullInv
	cdir
	ceil
	changeDir
	chdir
	chol
	choldn
	cholsol
	cholup
	chrs
	clear
	clearg
	close
	closeall
	cls
	code
	code__dataloop_
	cols
	colsf
	combinate
	combinated
	compile
	complex
	con
	cons
	continue
	contour
	convertsatostr
	convertstrtosa
	corrm
	corrvc
	corrx
	corrms
	corrxs
	cos
	counts
	create
	crossprd
	crout
	croutp
	csrcol
	csrlin
	csvReadM
	csvReadSA
	cumprodc
	cumsumc
	cvtos
	datacreate
	datacreatecomplex
	dataload
	dataopen
	datasave
	date
	datestr
	datestring
	datestrymd
	dayinyr
	dayofweek
	dbCommit
	dbGetDatabaseName
	dbGetPassword
	dbGetPort
	dbGetTables
	dbGetTables
	dbGetUserName
	dbHasFeature
	dbQueryBindValue
	dbQueryFetchAllM
	dbQueryFetchAllSA
	dbQueryFetchOneM
	dbQueryFetchOneSA
	dbQueryGetField
	dbQueryGetLastErrorNum
	dbQueryGetLastErrorText
	dbQueryGetPosition
	dbQueryIsActive
	dbQueryIsForwardOnly
	dbQueryIsValid
	dbQueryRows
	dbQuerySeek
	dbQuerySeekFirst
	dbQuerySeekLast
	dbQuerySeekNext
	dbQuerySeekPrevious
	dbQuerySetForwardOnly
	dbRollback
	dbSetConnectOptions
	dbSetUserName
	declare
	delete
	delete__dataloop_
	delif
	denseToSp
	denToZero
	det
	detl
	dffti
	diag
	diagrv
	dlibrary
	dllcall
	drop__dataloop_
	dstatmt
	dstatmtControlCreate
	dtdate
	dtday
	dttime
	dttodtv
	dttostr
	dttoutc
	dtvnormal
	dtvtodt
	dtvtoutc
	dummy
	dummybr
	dummydn
	eig
	eigh
	eighv
	eigv
	elapsedTradingDays
	end
	endp
	endwind
	eof
	eqSolvemt
	eqSolvemtControlCreate
	eqSolvemtOutCreate
	erf
	erfc
	error
	errorlog
	errorlogat
	ethsec
	etstr
	EuropeanBinomCall
	EuropeanBinomCall_Greeks
	EuropeanBinomPut
	EuropeanBinomPut_Greeks
	EuropeanBinomPut_ImpVol
	EuropeanBSCall
	EuropeanBSCall_Greeks
	EuropeanBSCall_ImpVol
	EuropeanBSPut
	EuropeanBSPut_Greeks
	EuropeanBSPut_ImpVol
	exec
	external
	eye
	fft
	ffti
	fftm
	fftmi
	fftn
	fgets
	fgetsa
	fgetsat
	fgetst
	fileinfo
	filesa
	floor
	fonts
	fopen
	for
	format
	formatcv
	formatnv
	fputs
	fputst
	fseek
	ftell
	ftocv
	ftos
	ftostrC
	gamma
	gammacplx
	gammaii
	gdaCreate
	gdaDStat
	gdaDStatMat
	gdaGetIndex
	gdaGetName
	gdaGetNames
	gdaGetOrders
	gdaGetTypes
	gdaGetVarInfo
	gdaLoad
	gdaPack
	gdaRead
	gdaReadByIndex
	gdaReadSome
	gdaReadSparse
	gdaReadStruct
	gdaReportVarInfo
	gdaSave
	gdaUpdateAndPack
	gdaWrite
	gdaWrite32
	gdaWriteSome
	getarray
	getdims
	getf
	getmatrix
	getmatrix4D
	getname
	getnamef
	getNextTradingDay
	getNextWeekDay
	getorders
	getPreviousTradingDay
	getPreviousWeekDay
	getRow
	getscalar3D
	getscalar4D
	getwind
	gosub
	goto
	gradp
	gradcplx
	h5create
	h5read
	h5readAttribute
	h5write
	h5writeAttribute
	hasimag
	hess
	hessp
	hesscplx
	hist
	histf
	histp
	hsec
	if
	imag
	include
	indcv
	indices
	indicesf
	indicesfn
	indnv
	indsav
	intgrat2
	intgrat3
	inthp1
	inthp2
	inthp3
	inthp4
	inthpControlCreate
	intquad1
	intquad2
	intquad3
	intrleav
	intrleavsa
	intrsect
	intrsectsa
	intsimp
	inv
	invpd
	iscplx
	iscplxf
	isinfnanmiss
	ismiss
	keep__dataloop_
	key
	keyw
	keyword
	lag1
	lagn
	lapeighb
	lapeighvb
	lapeighvi
	lapgeig
	lapgeigh
	lapgeighv
	lapgsvdcst
	lapgsvds
	lapgsvdst
	lapsvdcusv
	lapsvds
	lapsvdusv
	ldlp
	ldlsol
	let
	lib
	library
	lineson
	ln
	lncdfbvn
	lncdfbvn2
	lncdfmvn
	lncdfn2
	lnfact
	lnpdfmvt
	lnpdft
	load
	loadm
	loadd
	loadwind
	local
	locate
	loessmt
	loessmtControlCreate
	log
	loglog
	logx
	logy
	lower
	lowmat
	lowmat1
	lu
	lusol
	make__dataloop_
	makevars
	makewind
	matalloc
	matinit
	mattoarray
	maxc
	maxindc
	maxv
	mbesseli
	meanc
	mergevar
	minc
	minindc
	minv
	miss
	missrv
	missex
	moment
	momentd
	movingave
	movingaveExpwgt
	movingaveWgt
	new
	nextindex
	nextn
	nextnevn
	nextwind
	numCombinations
	ols
	olsmt
	olsmtControlCreate
	olsqr
	olsqr2
	olsqrmt
	ones
	open
	optn
	optnevn
	orth
	output
	outwidth
	packedToSp
	packr
	parse
	pause
	pdfBinomial
	pdfCauchy
	pdfexp
	pdfGenPareto
	pdflogistic
	pdfPoisson
	pdfRayleigh
	pdfWeibull
	pi
	plotAddArrow
	plotAddBar
	plotAddHist
	plotAddHistF
	plotAddHistP
	plotAddPolar
	plotAddScatter
	plotAddShape
	plotAddTextbox
	plotAddXY
	plotBar
	plotBox
	plotCDFEmpirical
	plotClearLayout
	plotContour
	plotCustomLayout
	plotGetDefaults
	plotHist
	plotHistF
	plotHistP
	plotLayout
	plotLogLog
	plotLogX
	plotLogY
	plotOpenWindow
	plotSave
	plotSetBar
	plotSetBkdColor
	plotSetColorMap
	plotSetContourLabels
	plotSetGrid
	plotSetLegend
	plotSetLineColor
	plotSetLineSymbol
	plotSetNewWindow
	plotSetTitle
	plotSetXLabel
	plotSetXTicInterval
	plotSetXTicLabel
	plotSetYLabel
	plotSetZLabel
	plotSetZLevels
	plotSurface
	plotTS
	polychar
	polyeval
	polymake
	polymult
	polyroot
	pop
	pqgwin
	previousindex
	print
	printdos
	printfm
	printfmt
	proc
	putarray
	pvPack
	pvPackm
	pvPacks
	pvPacksm
	pvUnpack
	QNewtonmt
	QNewtonmtControlCreate
	QNewtonmtOutCreate
	QProgmt
	QProgmtInCreate
	qqr
	qqrep
	qr
	qre
	qrep
	qrsol
	qrtsol
	qtyr
	qtyre
	qtyrep
	qyr
	qyre
	qyrep
	readr
	real
	reclassify
	reclassifyCuts
	recode
	recode__dataloop_
	recserar
	recsercp
	recserrc
	rescale
	reshape
	retp
	return
	rev
	rfft
	rffti
	rfftip
	rfftn
	rfftnp
	rfftp
	rndBeta
	rndcon
	rndmult
	rndseed
	rndCreateState
	rndGamma
	rndi
	rndKMi
	rndKMn
	rndKMu
	rndLCi
	rndLCn
	rndLCu
	rndMVn
	rndStateSkip
	rndWishart
	rndWishartInv
	rotater
	round
	rows
	rowsf
	run
	satostrC
	save
	saveall
	saved
	savewind
	scale
	scale3d
	scalerr
	scalinfnanmiss
	scalmiss
	schur
	screen
	seekr
	selif
	setarray
	setdif
	setdifsa
	setvars
	setvwrmode
	setwind
	shell
	shiftr
	show
	sin
	singleindex
	sinh
	solpd
	sortc
	sortcc
	sortd
	sorthc
	sorthcc
	sortmc
	spBiconjGradSol
	spConjGradSol
	spCreate
	spDenseSubmat
	spEye
	spGetNZE
	spLDL
	spLU
	spNumNZE
	spOnes
	spreadSheetReadM
	SpreadsheetReadSA
	SpreadsheetWrite
	spSubmat
	spToDense
	spTrTDense
	spTScalar
	spZeros
	sqpSolve
	sqpSolveMTControlCreate
	sqpSolveMTlagrangeCreate
	stdc
	stdsc
	stocv
	stof
	stop
	strcombine
	strindx
	strlen
	strput
	strrindx
	strjoin
	strsect
	strsplit
	strsplitPad
	strtodt
	strtof
	strtofcplx
	strtriml
	strtrimr
	strtrunc
	strtruncl
	strtruncpad
	strtruncr
	submat
	substute
	sumc
	surface
	svd
	svd1
	svd2
	svdcusv
	svds
	svdusv
	sysstate
	sysstate-case_24
	tan
	ThreadBegin
	ThreadEnd
	ThreadJoin
	ThreadStat
	time
	timedt
	timestr
	timeutc
	title
	todaydt
	token
	trace
	trap
	trapchk
	trunc
	type
	typecv
	typef
	union
	uniqindx
	uniqindxsa
	unique
	uniquesa
	upmat
	upmat1
	upper
	use
	utctodt
	utctodtv
	vals
	varCovM
	varCovX
	varget
	vargetl
	varput
	varputl
	vartypef
	vec
	vech
	vector__dataloop_
	vget
	view
	viewxyz
	vlist
	vnamecv
	volume
	vput
	vread
	vtypecv
	wait
	walkindex
	window
	writer
	xlabel
	xlsGetSheetCount
	xlsGetSheetSize
	xlsGetSheetTypes
	xlsMakeRange
	xlsReadM
	xlsReadSA
	xlsWrite
	xlsWriteM
	xlsWriteSA
	xpnd
	xtics
	xy
	xyz
	ylabel
	ytics
	zeros
	zeta
	zlabel
	ztics

