
Discrete Choice
Analysis Tools 2.0

for GAUSS™ Mathematical
and Statistical System

The Discrete Choice Analysis Tools 2.0 Module provides an adaptable environment for estimating and
evaluating discrete choice models. Model specificity is accommodated with tools for incorporating
parameter bounds, linear or nonlinear constraints, default or user specified starting values, and user
specified Gradient and Hessian procedures.

Supported models include:

l Adjacent categories multinomial logit
l Logit and probit regression
l Conditional logit
l Multinomial logit
l Nested binomial regression
l Ordered logit and probit regression
l Poisson regression
l Stereotype multinomial logit
l Logistic regression
l Support vector regression

Information in this document is subject to change without notice and does not represent a commitment on
the part of Aptech Systems, Inc. The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or copied only in accordance with the
terms of the agreement. The purchaser may make one copy of the software for backup purposes. No part
of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose other than the purchaser’s personal use without
the written permission of Aptech Systems, Inc.

© Copyright 1997-2016

Aptech Systems, Inc.
Chandler, AZ USA
All Rights Reserved Worldwide

11/21/2016

1

Table of Contents

1 Installation 1-1

2 Getting Started 2-1

2.1 README Files 2-1

2.2 Setup 2-1

3 Estimation 3-1

3.1 SupportedModels 3-1

3.2 Declaring dcControl Structure 3-2

3.3 Data Setup 3-3

3.3.1 Data Setup Using aGAUSS Data Set 3-3

3.3.2 Data Setup Using A DataMatrix 3-4

3.4 Declaring A dcOut Structure 3-5

3.5 Calling theModeling Procedure 3-7

4 Optimization 4-1

4.1 Constraints 4-3

4.1.1 Linear Equality Constraints 4-3

4.1.2 Linear Inequality Constraints 4-3

4.1.3 Nonlinear Equality 4-4

Contents

4.1.4 Nonlinear Inequality 4-4

4.1.5 Bounds 4-4

4.1.6 Imposing Constraints in Discrete ChoiceModels 4-5

4.2 Direction 4-8

4.2.1 Line SearchMethods 4-8

4.3 Line Search 4-9

4.4 ManagingOptimization 4-9

4.4.1 Scaling 4-10

4.4.2 Condition 4-10

4.4.3 Starting Point 4-10

5 Discrete Choice 5-1

5.1 PoissonModel 5-1

5.1.1 PoissonOver-dispersion 5-2

5.1.2 Example 5-2

5.2 Negative Binomial Model 5-4

5.3 Truncation and Censoring 5-5

5.4 Zero-InflatedModels 5-6

5.4.1 Testing Zero-Inflated Regime Assumptions 5-6

5.5 Multinomial Logit Model 5-7

5.5.1 Adjacent CategoriesMultinomial Logit 5-7

5.5.2 Example 5-8

2

Discrete Choice Analysis Tools 2.0

3

5.6 StereotypeMultinomial Logit 5-9

5.6.1 Example 5-9

5.7 Ordered Logit/Probit 5-11

5.7.1 Example 5-12

5.8 Conditional Logit 5-13

5.8.1 Example 5-13

5.9 Nested Logit 5-15

5.9.1 Example 5-15

5.10 Summary Statistics 5-18

6 Linear Classification 6-1

6.1 Estimation 6-2

6.1.1 Model Selection 6-2

6.1.2 Model Parameters 6-2

6.1.3 Cross-validation 6-2

6.1.4 The lrControl Structure 6-3

6.1.5 The lrOut Structure 6-5

6.2 The logisticRegress procedure 6-5

6.3 Linear Classification Example 6-7

6.4 References 6-8

Contents

7 Discrete Choice Reference 7-1

adjacentCategories 7-1

binaryLogit 7-8

binaryProbit 7-14

conditionalLogit 7-20

dcAdjacentCategories 7-27

dcAssignLogitNests 7-34

dcBinaryLogit 7-35

dcBinaryProbit 7-41

dcConditionalLogit 7-47

dcMakeLogitNests 7-55

dcMultinomialLogit 7-57

dcNegativeBinomial 7-63

dcNestedLogit 7-70

dcOrderedLogit 7-81

dcOrderedProbit 7-87

dcPoisson 7-93

dcprt 7-100

dcScale 7-101

dcSetAttributeLabels 7-102

dcSetAttributeVars 7-103

4

Discrete Choice Analysis Tools 2.0

5

dcSetCategoryVar 7-104

dcSetConstant 7-105

dcSetDataset 7-106

dcSetLogitNestAttributes 7-107

dcSetLogitNestCategories 7-109

dcSetReferenceCategory 7-111

dcSetTimeLabel 7-112

dcSetTimeVar 7-113

dcSetWeightLabels 7-114

dcSetXLabels 7-115

dcSetXVars 7-117

dcSetYCategoryLabels 7-118

dcSetYLabel 7-119

dcSetYVar 7-120

dcStereo 7-121

logisticRegress 7-127

multinomialLogit 7-131

negativeBinomial 7-137

nestedLogit 7-144

Contents

orderedLogit 7-152

orderedProbit 7-158

poissonCount 7-165

printDCOut 7-171

stereoLogit 7-172

8.1 References 8-1

6

Discrete Choice Analysis Tools 2.0

1-1

1 Installation

Discrete Choice Analysis Tools 2.0 requires GAUSS 14 or later. In GAUSS 14+ there is an
Applications Installation Wizard available to install your application.

Go to Tools -> Install Applications and follow the prompts to install GAUSS Applications from the
CD or downloaded .zip file.

Difference Between the Linux/Mac and Windows Versions:

If the functions can be controlled during execution by entering keystrokes from the keyboard, it may be
necessary to press ENTER after the keystroke in the Linux/Mac version.

This page intentionally left blank to ensure new
chapters start on right (odd number) pages.

2-1

2 Getting Started

GAUSS version 14+ is required to use these routines.

The Discrete Choice Analysis Tools 2.0 version number is stored in a global variable:

_dc_ver 3 1 matrix, the first element contains the major version number, the
second element the minor version number, and the third element the
revision number.

If you contact technical support, you may be asked for the version of your Discrete Choice license.

2.1 README Files

If there is a README.dc file, it contains any last minute information on the Discrete Choice Analysis
Tools 2.0 procedures. Please read it before using them.

2.2 Setup

In order to use the procedures in Discrete Choice or DC module, the DC library must be active. This is
done by including 'dc' in the library statement at the top of your program or command file:

library dc;

This enables GAUSS to find the DC procedures.

This page intentionally left blank to ensure new
chapters start on right (odd number) pages.

3-1

3 Estimation

The DC application includes pre-programmed modeling tools that allow you to move quickly from
discrete and categorical data to results. Most procedures use a consistent function call requiring one
input: a dcControl structure. The dcControl structure is used to control optimization, estimation
parameters, and data input. In most cases, the elements optimization and estimation parameters in this
structure will NOT need to be changed from the defaults.

Model setup in Discrete Choice Analysis Tools 2.0 follows four easy steps:

1. Declare a dcControl structure
2. Model specific data setup and descriptions
3. Declare dcOut structure
4. Call modeling procedure

The section provides general information regarding the model setup, while specific examples for
supported models are provided in Section 5.

3.1 Supported Models

Model selection and estimation in Discrete Choice Analysis Tools 2.0, with the exception of the
logisticRegress procedure, requires a procedure call of the general form:

dcOut = modelName(dcCt);

Discrete Choice Analysis Tools 2.0 includes tools for modeling binary choice, in which the individual
faces one choice, multinomial choice, in which the individual chooses between multiple options, ordered
choice models, in which the individual demonstrates preferential strength from an outcome, and event
count models. Each model supported in Discrete Choice Analysis Tools 2.0 is discussed in this manual
and demonstrated in an example.

General Overview:
The supported binary models include:

l Binary Logit
l Binary Probit

Supported Multinomial Models:

l Conditional Logit
o Explanatory variables include attributes of choice alternatives and characteristics of

decision makers.
l Nested (hierarchical) logit

o Considers "trees" made up of model levels of decisions.
o Useful for cases of sequential decision making.

l Ordered logit
o Dependent variable has more than one category.
o Categories have meaningful sequential order.

l Adjacent category logit
o Ordinal logit model.
o Coefficients from adjacent categories are assumed equal.

l Stereotype logit
o Restricts coefficients to vary by scale factors.
o Coefficients are linearly related.

Supported Event Count Models

l Negative binomial regression
l Poisson regression

3.2 Declaring dcControl Structure

The dcControl structure is the user tool for controlling optimization, estimation parameters and
data input. The first step in setting up any Discrete Choice Analysis Tools 2.0 model is to declare
the dcControl structure using:

//Declare dcControl struct
struct dcControl dcCt;

Once declared, the dcControl structure must be initialized using the dcControlCreate
procedure

//Initialize dcControl struct
dcCt = dcControlCreate();

3-2

Discrete Choice Analysis Tools 2.0
3.
2
 D
ec
la
ri
ng

dc
C
on
tr
ol
S
tr
uc
tu
re

3.3 Data Setup

3.3.1 Data Setup Using a GAUSS Data Set

Creating GAUSS Data Sets

GAUSS data sets are the preferred method of storing data contained in a single matrix for use within
GAUSS. GAUSS data sets are arranged as matrices and are organized in terms of rows and columns.
Columns within the data set may be assigned variable names, which are stored for later reference. Any
data matrix may be saved as a GAUSS data set using saved procedure. For example, consider the
matrix myopia, containing an indicator for myopia, along with independent data measuring the hours
individuals spend playing sports, reading, on the computer, and studying, along with indicators for
myopia in the individuals mother and fathers. The saved command is used to save this matrix, along
with variable names, in a GAUSS data set named myopia:

//Load data matrix
loadm myopia;

//Extract desired columns from imported data
dataMat = myopia[.,3 11:15 17 18];

//Create variable list
vnames = "MYOPIC,SPORTHR,READHR,COMPHR,STUDYHR,TVHR,MOMMY,DADMY";
vnames = strsplit(vnames, ",");

//Name dataset
datasetName = "myopia";

//Save dataset
y = saved(dataMat, datasetName, vnames);

Loading Data Sets For DC Analysis

All DC procedures are designed to read data from GAUSS data sets. Specifying the usage of a GAUSS
data set in DC procedures is done using the dcSetDataSet procedure. This procedure requires two
inputs, a pointer to a dcControl structure and a string indicating the dataset name. For example, if
you wish to use myopia, the data set created in the previous example:

//Declare dcControl struct
struct dcControl dcCt;

//Initialize dcControl struct
dcCt = dcControlCreate();

3 Estimation

3-3

3.3
 D
ata

S
etup

//Set data set
dcSetDataSet(&dcCt,"myopia");

Data setup and description

If a GAUSS data set is specified for usage, model variables must be set using the DC application
variable setting utility tools. These procedures are easy to implement and make output easier to
interpret. The majority of the functions have the general prefix dcSet and require two inputs: a
pointer to a previously declared dcControl structure, and a string of comma separated names. As
an example, suppose the independent variables stored is the data set being used are exper, educ,
and white and the dependent variable is mode. The variable names are passed into the DC
modeling environment using the dcSetXLabels procedure and the dcSetYLabel procedure,
respectively:

dcSetXLabels(&dcCt,"exper,educ,white");
dcSetYLabel(&dcCt,"mode");

where &dcCt, is a pointer to a dcControl structure named dcCt.

3.3.2 Data Setup Using A Data Matrix

Loading Data Matrices For DC Analysis

All DC procedures are designed to read data directly from GAUSS matrices. Using data stored in a
matrix for DC procedures is done using the general dcSet procedures to set variable specific data.
These procedures require two inputs, a pointer to dcControl structure and a matrix of data. This
implies that prior to using dcSetDataSet dcControl structure must be declared. For example,
consider using the first column of data stored in the matrix dataMat as the dependent variable in a
model and the second, third, and fourth column as the dependent variables. This is done using
dcSetYVar and the dcSetXVars procedures:

//Declare dcControl struct
struct dcControl dcCt;

//Initialize dcControl struct
dcCt = dcControlCreate();

//Set Y Variable
dcSetYVar(&dcCt,dataMat[.,1]);

//Set X Variables
dcSetXVars(&dcCt,dataMat[.,2:4]);

3-4

Discrete Choice Analysis Tools 2.0
3.
3
 D
at
a
S
et
up

Data setup and description

Note that when using a data matrix data labels are not required and default names will be generated if
none are specified. However, data labels can be easily added using the dcSet procedures. As an
example, suppose the independent variables specified above are labeled exper, educ, and white and
the dependent variable, is labeled mode. The variable labels are passed into the DC modeling
environment using the dcSetXLabels procedure and the dcSetYLabel procedure, respectively:

dcSetXLabels(&dcCt,"exper,educ,white");
dcSetYLabel(&dcCt,"mode");

where &dcCt is a pointer to a dcControl structure named dcCt.

3.4 Declaring A dcOut Structure

All DC models send output to a dcOut structure. Prior to calling the modeling procedure, the dcOut
structure must be declared:

struct dcOut out;

A given instance of the dcOut structure names out contains the following elements:

out.par instance of PV structure containing estimates.

b0 1 L×1 matrix, constants in regression.

b 2 L×K matrix, regression coefficients (if any).
Coefficients associated with reference category
are fixed to zeros.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvGetParNames(out.par);

3 Estimation

3-5

3.4
 D
eclaring

A
dcO

utS
tructure

if model does not contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix of coefficient
estimates.

out.yDist L×1 vector, percentages of dependent variable by category.

out.xData K×4 matrix, the means, standard deviations, minimums, and
maximums of independent variables.

out.marginEffects L×1×K array, marginal effects of independent variables by category
of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal effects of
independent variables by category of dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted model (all slope
coefficients equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-Squared.

7 Madalla's Pseudo R-Squared.

8 Cragg and Uhler's normed likelihood ratios
statistics.

9 Akaike information criterion (AIC).

10 Bayesian information criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-Squared.

3-6

Discrete Choice Analysis Tools 2.0
3.
4
 D
ec
la
ri
ng

A
dc
O
ut
S
tr
uc
tu
re

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's Adjusted R-square

3.5 Calling the Modeling Procedure

The final step to performing modeling using Discrete Choice Analysis Tools 2.0 is to call a specific
modeling procedure. For example, to model a binary logit model:

out = binaryLogit(dcCt);

3 Estimation

3-7

3.5
 C
alling

the
M
odeling

P
rocedure

This page intentionally left blank to ensure new
chapters start on right (odd number) pages.

4-1

4 Optimization

A general constrained maximum likelihood estimation problem is:

where N is the number of observations, is the probability of given , and , a vector
of parameters subject to linear constraints, nonlinear constraints, and bounds constraints.

The linear constraints are:

The nonlinear constraints are:

The bounds constraints are:

and are functions provided by the user and must be differentiable at least once with
respect to .

Under sqpSolvemt, parameters are updated in a series of iterations beginning with starting values
provided by the user. Let be the current parameter values. Successive values are

where is a K×1 direction vector, and a scalar step length.

sqpSolvemt finds values for the parameters in such that L is maximized (the actual procedure is to
minimize -L).

Numerous user controllable variables affect the sqpSolvemt, optimization. These are put into a
dcControl structure instance. Suppose this instance has the name dc1, i.e.

struct dcControl cont;
cont = dcControlCreate();

The following are the members of the dcControl structure relevant to the management of the
optimization:

cont.A M×K matrix, linear equality constraint coefficients: cont.A
* p = cont.B where p is a vector of the parameters.

cont.B M×1 vector, linear equality constraint constants: cont.A *
p = cont.B} where p is a vector of the parameters.

cont.C M×K matrix, linear inequality constraint coefficients: cont.C
* p >= cont.D where p is a vector of the parameters.

cont.D M×1 vector, linear inequality constraint constants: cont.C *
p >= cont.D where p is a vector of the parameters.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter structure
and a DS data structure, and one output argument, a vector of
computed equality constraints. For more details see Remarks
below. Default = ., i.e., no equality procedure.

cont.inEqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter structure
and a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see Remarks
below. Default = ., i.e., no inequality procedure.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = -1e256 1e256.

cont.maxIters scalar, maximum number of iterations. Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has been
satisfied sqpSolvemt exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined outside
inequality boundaries, then this test can be turned off. Default
= 1.

cont.randRadius scalar, If zero, no random search is attempted. If nonzero, it is
the radius of the random search. Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust region
not applied. The trust sets a maximum amount of the direction
at each iteration. Default = 0.001.

4-2

Discrete Choice Analysis Tools 2.0

cont.output scalar, if nonzero, optimization results are printed. Default = 0.

cont.printIters scalar, if nonzero, prints iteration information. Default = 0.

4.1 Constraints

The c1.A, dc1.B, dc1.C, dc1.D, dc1.eqProc, dc1.inEqProc, and dc1.bounds matrix
structure members control constraints in the Discrete Choice Analysis Tools procedures. Each row in
one of these matrices is associated with a single constraint.

For computational convenience, nonlinear equality constraints and nonlinear inequality constraints are
divided into five types: linear equality, linear inequality, nonlinear equality, nonlinear inequality, and
bounds constraints.

4.1.1 Linear Equality Constraints

Linear constraints are of the form:

where A is an matrix of known constants, B an vector of known constants, and the
vector of parameters.

To specify linear equality constraints, assign the A and B matrices to the dc1.A and dc1.B structure
members. To constrain the first of four parameters to equal the third,

dc1.A = { 1 0 -1 0 };
dc1.B = { 0 };

4.1.2 Linear Inequality Constraints

Linear constraints are of the form:

where C is an matrix of known constants, D an vector of known constants, and the
vector of parameters.

To specify linear inequality constraints, assign the C and D matrices to the dc1.C and dc1.D structure
members. To constrain the first of four parameters to be greater than the third, and the second plus the
fourth to be greater than 10:

dc1.C = { 1 0 -1 0,
0 1 0 1 };

4 Optimization

4-3

4.1
 C
onstraints

dc1.D = { 0,
10 };

4.1.3 Nonlinear Equality

Nonlinear equality constraints are of the form:

where is the vector of parameters and is an arbitrary, user-supplied function.

To specify nonlinear equality constraints, assign the pointer to the user-supplied constraint function to
the dc1.eqProc member. To constrain the norm of the parameters to equal 1:

proc eqp(b);
retp(b'b - 1);

endp;
dc1.eqProc = &eqp;

4.1.4 Nonlinear Inequality

Nonlinear constraints are of the form:

where is the vector of parameters and is an arbitrary, user-supplied function.

To specify nonlinear inequality constraints, assign the pointer to the user-supplied constraint function
to the structure member dc1.inEqProc. To constrain a covariance matrix to be positive definite,
the lower left non-redundant portion of which is stored in elements r : r + s of the parameter vector:

proc ineqp(b);
local v;
v = xpnd(r[r:r+s]); // r and s defined elsewhere
retp(minc(eigh(v)) - 1e-5);

endp;
dc1.inEqProc = &ineqp;

This constrains the minimum eigenvalue of the covariance matrix to be greater than a small number
(1e-5), guaranteeing that the covariance matrix is positive definite.

4.1.5 Bounds

Bounds are a type of linear inequality constraint. For computational convenience they are specified
separately from the other inequality constraints.

4-4

Discrete Choice Analysis Tools 2.0
4.
1
 C
on
st
ra
in
ts

To specify bounds constraints, enter the lower and upper bounds respectively in the first and second
columns of a matrix that has the same number of rows as the parameter vector. Assign this matrix to the
structure member dc1.bounds Only the first row is necessary if the bounds are the same for all of the
parameters. To bound four parameters:

dc1.bounds = { -10 10,
-10 0,

1 10,
0 1 };

To bound all the parameters between -50 and +50:

dc1.bounds = { -50 50 };

4.1.6 Imposing Constraints in Discrete Choice Models

To impose constraints in Discrete Choice models, you will need to know the order of parameters in the
parameter vector. The simplest way to do this is to first run the model unconstrained and inspect the
parameter vector upon output. For example, run your command file adding a call to pvGetParNames:

new;
cls;
library dc;

//Load Data
loadm y = gssocc_mat;

//Step One: dcControl structure
//Declare dcControl structure
struct dcControl dcCt;

//Initialize dcControl structure
dcCt = dcControlCreate();

//Step Two: Describe data
//Set dependent variable
dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt, "occatt");

//Dependent variable categories
dcSetYCategoryLabels(&dcCt,"Menial,BC,Craft,WC,Pro");

//Independent variables
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"exper,educ,white");

4 Optimization

4-5

4.1
 C
onstraints

struct dcOut dcOut1;
dcOut1 = multinomialLogit(dcCt);

print (ftostrC(seqa(1,1,pvLength(dcOut1.par)), "%1.0lf")
$~ pvGetParNames(dcOut1.par));

The above code produces the following output:

1 b0[1,2]
2 b0[1,3]
3 b0[1,4]
4 b0[1,5]
5 b[1,2]
6 b[1,3]
7 b[1,4]
8 b[1,5]
9 b[2,2]

10 b[2,3]
11 b[2,4]
12 b[2,5]
13 b[3,2]
14 b[3,3]
15 b[3,4]
16 b[3,5]

Now suppose you want to constrain columns two and three of b to be equal to each other (the first
column is the reference column fixed to zeros), the last two columns to be equal to each other (a type
of adjacent categories model), i.e., b[1,3] = b[1,2], b[2,3] = b[2,2], etc., and b[1,5] = b[1,4], b[2,5] =
b[2,4], etc., and as well, b[1,4] >= b[1,2], b[2,4] >= b[2,2], etc.

To accomplish this we set up the following constraint matrices:

// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
c0.A = { 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0,

0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0,
0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 };

c0.B = { 0,
0,
0,
0,

4-6

Discrete Choice Analysis Tools 2.0
4.
1
 C
on
st
ra
in
ts

0,
0 };

Now suppose we wish to constrain the second column to be equal to the square of the third column, i.e.,
, etc. For nonlinear constraints we must provide a procedure

for computing the constraint. Our command file now looks like this:

new;
cls;
library dc;

//Load Data
loadm y = gssocc_mat;

//Step One: dcControl structure
//Declare dcControl structure
struct dcControl dcCt;

//Initialize dcControl structure
dcCt = dcControlCreate();

//Step Two: Describe data
//Set dependent variable
dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt, "occatt");

//Dependent variable categories
dcSetYCategoryLabels(&dcCt,"Menial,BC,Craft,WC,Pro");

//Independent variables
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"exper,educ,white");

proc eqp(struct PV par, struct DS d);
local p,r;
p = pvGetParVector(par);

r = zeros(3,1);
r[1] = p[5] - p[6]^2;
r[2] = p[9] - p[10]^2;
r[3] = p[13] - p[14]^2;
retp(r);

endp;

dcCt.eqProc = &eqp;

4 Optimization

4-7

4.1
 C
onstraints

struct dcOut dcOut1;
dcOut1 = multinomialLogit(dcCt);
call printDCOut(dcOut1);

Equality constraints are not required to be feasible. Inequality constraints however must be feasible.
If you are imposing inequality constraints, start values computed by the procedures may not be
feasible and the optimization will fail. In that case you will have to supply feasible start values.

4.2 Direction

Define the likelihood function's gradient and Hessian:

and the Jacobians

For the purposes of this exposition and without loss of generality, assume that the linear constraints
and bounds have been incorporated into G and H.

In practice, linear constraints are specified separately from the G and H because their Jacobians are
known and easy to compute. The bounds are more easily handled separately from the linear
inequality constraints.

The direction, , solves the quadratic program

This solution requires that be positive semi-definite.

4.2.1 Line Search Methods

Given a direction vector d, the updated estimate of the parameters is computed

4-8

Discrete Choice Analysis Tools 2.0
4.
2
 D
ir
ec
tio
n

where is a constant, usually called the step length, that increases the descent of the function given the
direction. The value of the function to be minimized as a function of is

Given and d, this is a function of a single variable . The STEPBT polynomial line fitting/line search
method attempts to find a value for that decreases m.

STEPBT is an implementation of a similarly named algorithm described in Dennis and Schnabel (1983).

It first attempts to fit a quadratic function to , computing a that minimizes the quadratic.
If that fails it attempts to fit a cubic function. The cubic function is more costly to compute.

If dc1.randRadius is greater than zero, a random search is tried if STEPBT fails. The random
search uses the radius specified by dc1.randRadius.

4.3 Line Search

Define the merit function

where is the j-th row of G, is the -th row of H, is the vector of Lagrangian coefficients of the
equality constraints, and the Lagrangian coefficients of the inequality constraints.

The line search finds a value of that minimizes or decreases .

4.4 Managing Optimization

The critical elements in optimization are scaling, the starting point, and the condition of the model. When
the data are scaled, the starting point is reasonably close to the solution, and the data and model go
together well, the iterations converge quickly and without difficulty.

When the optimization is not proceeding well, it is sometimes useful to examine the function, the
gradient , the direction , the Hessian , the parameters , or the step length , during the
iterations.
-

The sqpSolvemt procedure calculates the gradient and Hessian numerically, using gradmt and
hessmt. They have the same input arguments as sqpSolvemt, a PV instance containing the
parameters and a DS instance containing the data.

4 Optimization

4-9

4.3
 Line

S
earch

4.4.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be roughly equal. If some
diagonal elements contain numbers that are very large and/or very small with respect to the others,
sqpSolvemt has difficulty converging. It is not always obvious how to scale the diagonal elements
of the Hessian. One rule-of-thumb is that the data be of roughly the same magnitude.

4.4.2 Condition

The specification of the model may be measured by the condition of the Hessian, the ratio of the
Hessian's largest to smallest eigenvalues.

The optimization solution is found by searching for parameter values for which the gradient is zero. It
is difficult to determine a parameter's optimal value when the gradient of the function with respect to
a parameter is nearly flat. When this occurs, elements of the Hessian associated with the parameter
are very small and the inverse of the Hessian contains very large numbers. The search direction gets
buried in the large numbers. In this case it is necessary to respecify the model to exclude the
parameter.

Poor condition can be caused by bad scaling. It can also be caused by a poor specification of the
model or by bad data. A poorly specified model and bad data are two sides of the same coin.

If the problem is highly nonlinear, it is important that data be available to describe the features of the
curve described by each of the parameters. For example, one of the parameters of the Weibull
function describes the shape of the curve as it approaches the upper asymptote. This parameter is
poorly estimated if data are not available for that portion of the curve.

4.4.3 Starting Point

When the model is not particularly well-defined, the starting point can be critical. Try different
starting points when the optimization does not seem to be working. A closed form solution may exist
for a simpler problem with the same parameters. For example, ordinary least squares estimates may
be used for nonlinear least squares problems or nonlinear regressions like probit or logit. There are no
general methods for computing starting values. It may also be necessary to attempt the estimation
from a variety of starting points.

The starting values for optimization are stored within the dcControl structure in the member
cont.startvalues. This member is an instance of the PV structure containing starting values. If
these values are not provided by the user, they are automatically computed internally. However, to
set the starting values manually, the starting values needed to be "packed" into the PV structure. As
an example, consider putting a starting intercept, b0, and starting coefficients, b, in
cont.startvalues. This is done using the pvPackmi procedure. This procedure requires five
inputs: the PV structure name (cont.startValues) , the corresponding matrix of starting values,
the name of the variable as a string (b0 or b), a mask matrix indicating which variables to include in
the estimated parameter vector, and an index number within the PV structure.

There are a few tips to remember when setting up user defined start values:

4-10

Discrete Choice Analysis Tools 2.0
4.
4
 M
an
ag
in
g
O
pt
im
iz
at
io
n

1. Intercepts are stored in the b0 matrix of the cont.startValues PV structure. This is the first element
in the cont.startValues structure and should have dimensions equal to 1 x L, where L equals the
number of dependent variable categories.

2. Coefficients are stored in the b matrix of the cont.startValues PV structure. This is the second ele-
ment in the cont.startValues structure and should have dimensions equal to K x L, where K equals
the number of independent regressors.

3. In each of the above matrices, all members in the column corresponding to the reference category
should be set equal to zero.

4. GAUSS must be told to exclude the reference category start values from the parameter vector it
estimates. This is done using the mask matrix. The mask is a matrix that should include only zeros
or ones. Elements with zeros will NOT be included in the estimated parameter vector while ele-
ments with one will be. For example if I have the matrix:

b = { 0 1 1,
2 .3 4};

mask = {0 1 1,
1 0 1};

and use

struct PV startValues;
startValues = pvPackmi(startValues, b ,"b", mask, 2);

GAUSS will pack the elements in b into the PV structure startValues and will assume that the elements
{1,1} and {2,2} will be held constant through any estimation at 0 and .3, respectively.

For example, to set user-defined start values for a the intercepts and coefficients in a binary logit model:

//Declare control structure

struct dcControl cont;
cont = dcControlCreate();

//Set parameter start values
//Set b0, dimensions must be equal to one
//by the number of Y categories
b0 = {0 1};

//Set b, dimensions must be equal to K
//by the number of Y categories
b = {0 .1};

//Set mask which controls which variables
//go into the parameter vector

//This must be used to
//remove reference category start values

4 Optimization

4-11

4.4
 M
anaging

O
ptim

ization

//from parameter vector
mask = {0 1};

//Pack parameter values
cont.startValues = pvPackmi(cont.startValues, b0 ,"b0", mask, 1);
cont.startValues = pvPackmi(cont.startValues , b ,"b", mask, 2);

4-12

Discrete Choice Analysis Tools 2.0
4.
4
 M
an
ag
in
g
O
pt
im
iz
at
io
n

5-1

5 Discrete Choice

The Discrete Choice Analysis Tools 2.0 estimation uses the sqpsolvemt procedure, a sequential
quadratic programming method that solves general nonlinear programming problems.

All model procedures from version 1.0 have been redesigned and renamed in Discrete Choice Analysis
Tools 2.0. As an example, the same estimation performed in dcNestedLogit in version 1.0 is now
performed using nestedLogit in Discrete Choice Analysis Tools 2.0. However, Discrete Choice
Analysis Tools 2.0 is completely backwards compatible and all previous procedure calls are still
functional.

The discrete choice estimation procedures, with the exception of the logisticRegress procedure,
require one input, a dcControl structure instance. All output arguments are housed within the dcOut
structure instance and can be printed directly to the input/output screen using the dcPrintOut
procedure.

5.1 Poisson Model

Given independent variables for an observation with count , the Poisson density function is

where

is the number of events expected to occur per unit time (or space).

The Poisson regression model log likelihood function is:

The Poisson distribution function is

5.1.1 Poisson Over-dispersion

The printDCOut procedure shows three tests for over-dispersion when a Poisson model is
estimated.

Following Cameron and Trivedi's (1998, p62) notation, let be the conditional
variance of . Two possible variance functions are the NB1 and NB2 functions:

Tests of in both cases are conducted using axillary regressions. Over-dispersion of the

NB1 form is indicated by a significant t statistic for in the regression .
Over-dispersion of the NB2 form is indicated by a significant t statistic for in the regression

. In both cases is an i.i.d. disturbance term. The printDCOut
procedure reports the t statistics for both cases and their probability values, against a two sided
alternative hypothesis.

A Lagrange Multiplier test for over-dispersion is presented by Greene (2000, pp. 885-886). The

Poisson model is a restriction on the Negative Binomial model. The LM statistic has a
distribution under the null hypothesis that the mean equals the variance.

where e is an N×1 vector of residuals and the N×1 vector of fitted values. The printDCOut
procedure reports this statistic and its probability value.

5.1.2 Example

The included poissonCount example uses count data stored in the greenedata_mat matrix
included with the DC examples. The first step to performing analysis is to load the data,

new;
cls;
library dc;

//Load Data
y = loadd("greenedata");

5-2

Discrete Choice Analysis Tools 2.0
5.
1
 P
oi
ss
on

M
od
el

Once data is loaded, estimation features are specified using the dcControl structure. This structure
must be declared then initialized using the dcControlCreate procedure:

//Step One: dcControl structure

//Declare dcControl structure
struct dcControl dcCt;

//Initialize dcControl structure
dcCt = dcControlCreate();

Prior to estimation, the dcSet procedures may be used to specify variables. For the Poisson model we
begin by describing the dependent count data using dcSetYVar and dcSetYLabel:

//Step Two: Describe data

//Set dependent variable
dcSetYVar(&dcCt, y[.,14]);
dcSetYLabel(&dcCt, "ACC");

Similarly, we set the independent variables using the dcSetXVars and dcSetXLabels:

//Independent variables
dcSetXVars(&dcCt,y[.,3:6]~y[.,8:10]~y[.,11]);
dcSetXLabels(&dcCt,"TB,TC,TD,TE,T6569,T7074,T7579,O7579");

Finally the time variable is set using dcSetTimeVar and dcSetTimeLabel:

//Name of time variable
dcSetTimeVar(&dcCt, y[.,13]);
dcSetTimeLabel(&dcCt, "Months");

Next, the dcOut structure is declared:

//Step Three: Declare dcOut structure
struct dcOut dcOut1;

Finally, calling the poissonCount procedure estimates the model and results are reported using the
printDCOut procedure:

5 Discrete Choice

5-3

5.1
 P
oisson

M
odel

//Step Four: Call poissonCount
dcOut1 = poissonCount(dcCt);

//Print Results
call printDCOut(dcOut1);

5.2 Negative Binomial Model

The Poisson model assumes that the conditional variance always equal the conditional mean.
Consistent but inefficient Poisson model estimates and downward biased standard errors result if this
assumption is not true (Gourieroux et al., 1984, Cameron and Trivedi, 1986, p. 31).

The negative binomial regression model lets the conditional variance exceed the conditional mean.
Let the conditional mean,

where is random and uncorrelated with x. Rewrite Negative Binomial Model in terms of the
Poisson mean to get

Assume that has a gamma distribution with parameter (this sets , identifying the

model, and) and integrate over the unknown to get the
negative binomial density function:

with distribution function

The conditional variance is

which is greater than the conditional variance of the Poisson distribution.

5-4

Discrete Choice Analysis Tools 2.0
5.
2
 N
eg
at
iv
e
B
in
om

ia
lM

od
el

5.3 Truncation and Censoring

This discussion of truncated and censored models closely follows Hayashi (2000) and Long (1997). It

assumes that is i.i.d.

is truncated if observations above or below given levels are not in the sample. A double truncation
rule is that is observable if it is greater than or less than . The density function is

where F is the cumulative distribution function of y. The corresponding log conditional likelihood
function is

where represents all parameters of the distribution.

A censored model is defined by

with observed values:

where and are known. All observations are in the sample, though the observable values, , for

which and are set equal to and respectively.

The density of is

where

5 Discrete Choice

5-5

5.3
 T
runcation

and
C
ensoring

with the corresponding conditional log likelihood

5.4 Zero-Inflated Models

A zero-inflated (sometimes called zero-altered) model allows for the possibility that count outcomes
equal to zero are generated by two regimes: a regime where the outcome is always zero and either a
Poisson or Negative Binomial model with zero as one of the outcomes.

Suppose when regime 1 generates outcome i (equaling zero) and when regime two
generates outcome i (possibly equaling zero).

is determined by a logit or probit model and is given by a Poisson
probability density function.

Greene (2000, p. 890) summarizes these ideas, citing works by Mullahey (1986), Heilbron (1989),
Lambert (1992), Johnson and Kotz (1970), and Greene (1994):

5.4.1 Testing Zero-Inflated Regime Assumptions

Vuong (1989) proposes a method that can be used to test whether two regimes likely generate the
data. The statistic compares the probabilities of counts occurring under two regimes. Following

Greene's (2000, p. 891) notation, let be the predicted probability that is observed
assuming the data are sampled from distribution j, j=1,2. Compare these values with

Vuong's statistic is:

5-6

Discrete Choice Analysis Tools 2.0
5.
4
 Z
er
o-
In
fla
te
d
M
od
el
s

which converges in distribution to a standard normal distribution. Large values of suggest that model 1
more likely generates the data while small values of suggest that model 2 more likely generates the
data.

5.5 Multinomial Logit Model

The multinomialLogit procedure estimates a multinomial logit model.

For the probability of observing we have

By default the set of coefficients for the first category, , is set to a zero vector as a "reference"
category. This can be modified by the user to any of the categories.

Estimates are found by minimizing

5.5.1 Adjacent Categories Multinomial Logit

The adjacent categories model is a special case of multinomial logit (Long, 1997, p. 146). It specifies
that the log odds of one category versus the next higher category is linear in the cut points and
explanatory variables, i.e.,

This implies

adjacentCategories first estimates the standard multinomial logit model, transforms the

parameters to the parameters, and computes the covariance matrix of the parameters by the delta
method.

5 Discrete Choice

5-7

5.5
 M
ultinom

ialLogitM
odel

5.5.2 Example

The included adjacentCategories example uses General Social Survey occupational outcomes
data stored in the gssocc_mat data mat included with the DC examples. The independent data,
occatt, for this analysis is stored in the first column and the dependent variables, exper, educ,
and white are stored in column two through four. The first step to performing analysis is to load the
data:

new;
cls;
library dc;

//Load Data
loadm y = gssocc_mat;

Once data is loaded, estimation features are specified using the dcControl structure. This
structure must be declared then initialized using the dcControlCreate procedure:

//Step One: dcControl structure
//Declare dcControl structure
struct dcControl dcCt;

//Initialize dcControl structure
dcCt = dcControlCreate();

Prior to estimation, the dcSet procedures may be used to specify variable names for reference and
results reports. For the adjacent categories model we begin by describing the dependent data and the
categories of responses allowed, using dcSetYVar, dcSetYLabel, and
dcSetYCategoryLabels:

//Step Two: Describe data names
//Dependent variable
dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt,"occatt");

The independent data names are set using dcSetXVars and dcSetXLabels:

//Independent variable
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"exper,educ,white");

5-8

Discrete Choice Analysis Tools 2.0
5.
5
 M
ul
tin
om

ia
lL
og
it
M
od
el

In addition, dcSetReferenceCategory procedure must be used to specify a reference category for
estimation:

//Reference category excluded from regression
dcSetReferenceCategory(&dcCt,1);

Next, the dcOut structure is declared:

//Step Three: Declare dcOut structure
struct dcOut dcOut1;

Finally, calling the adjacentCategories procedure estimates the model and results are reported
using the printDCOut procedure:

//Step Four: Call adjacentCategories
dcOut1 = adjacentCategories(dcCt);

//Print Results
call printDCOut(dcOut1);

5.6 Stereotype Multinomial Logit

For the stereotype model, regression vectors across categories are constrained to a linear function of

each other. For we have

where is a distance coefficient. This model requires two reference categories, one with the distance

set to zero, and another which is set to one. By default and . The remaining
distances are constrained to be between zero and one.

5.6.1 Example

The included stereoLogit example uses data stored in the aldnel_mat data mat included with
the DC examples. The independent data, ABC, measures student grades and is stored in the first column
of the data matrix. The dependent variables, GPA, TUCE, and PSI are stored in column two through
four. The first step to performing analysis is to load the data:

5 Discrete Choice

5-9

5.6
 S
tereotype

M
ultinom

ialLogit

new;
cls;
library dc;

//Load Data
loadm y = aldnel_mat;

Once data is loaded, estimation features are specified using the dcControl structure. This
structure must be declared then initialized using the dcControlCreate procedure:

//Step One: dcControl structure
//Declare dcControl structure
struct dcControl dcCt;

//Initialize dcControl structure
dcCt = dcControlCreate();

Prior to estimation, the dcSet procedures may be used to specify variable names for reference and
results reports. For the adjacent categories model we begin by describing the dependent data and the
categories of responses allowed, using dcSetYVar, dcSetYLabel, and
dcSetYNameCategory:

//Step Two: Describe data names
//Dependent variable
dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt,"ABC");

//Dependent variable categories
dcSetYCategoryLabels(&dcCt,"A,B,C");

The independent data names are set using dcSetXVars and dcSetXLabels:

//Independent variable
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"GPA,TUCE,PSI");

Next, the dcOut structure is declared:

//Step Three: Declare dcOut structure
struct dcOut dcOut1;

5-10

Discrete Choice Analysis Tools 2.0
5.
6
 S
te
re
ot
yp
e
M
ul
tin
om

ia
lL
og
it

Finally, calling the stereoLogit procedure estimates the model and results are reported using the
printDCOut procedure:

//Step Four: Call stereoLogit
dcOut1 = stereoLogit(dcCt);

//Print Results
call printDCOut(dcOut1);

5.7 Ordered Logit/Probit

Suppose is an unobserved latent variable where is 1xK, is Kx1, and is i.i.d.

logistic with zero mean and variance . There are J ordinal categories. The model is identified by
excluding the constant term. (See Long, 1997, p. 124 for discussion of alternate parameterizations.)

The observed y for an individual depends on the intensity of y* relative to cut point parameters
, defined by

where and

. F is a logit cumulative distribution
function.

The cumulative log odds in the ordered logit model is linear in the cut points and explanatory variables,
i.e.,

The ordered log likelihood is:

For the ordered logit model, F is the cdf of the logistic distribution and for the ordered probit model, F is
the Normal cdf.

5 Discrete Choice

5-11

5.7
 O
rdered

Logit/P
robit

5.7.1 Example

The included orderedLogit example uses data stored in the aldnel_mat data mat included
with the DC examples. The independent data, ABC, measures student grades and is stored in the first
column of the data matrix. The dependent variables, GPA, TUCE, and PSI are stored in columns two
through four. The first step to performing analysis is to load the data:

new;
cls;
library dc;

//Load Data
loadm y = aldnel_mat;

Once data is loaded, estimation features are specified using the dcControl structure. This
structure must be declared then initialized using the dcControlCreate procedure:

//Step One: dcControl structure
//Declare dcControl structure
struct dcControl dcCt;

//Initialize dcControl structure
dcCt = dcControlCreate();

Prior to estimation, the dcSet procedures may be used to specify variable names for reference and
results reports. For the adjacent categories model we begin by describing the dependent data and the
categories of responses allowed, using dcSetYVar, dcSetYLabel, and
dcSetYCategoryLabels:

//Step Two: Describe data names
//Dependent variable
dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt,"ABC");

//Dependent variable categories
dcSetYCategoryLabels(&dcCt,"A,B,C");

The independent data names are set using dcSetXVars and dcSetXLabels:

//Independent variable
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"GPA,TUCE,PSI");

5-12

Discrete Choice Analysis Tools 2.0
5.
7
 O
rd
er
ed

Lo
gi
t/P

ro
bi
t

Next, the dcOut structure is declared:

//Step Three: Declare dcOut structure
struct dcOut dcOut1;

Finally, calling the orderedLogit procedure estimates the model and results are reported using the
printDCOut procedure:

//Step Four: Call orderedLogit
dcOut1 = orderedLogit(dcCt);

//Print Results
call printDCOut(dcOut1);

5.8 Conditional Logit

In the conditional logit model, variables that measure the attributes of the categories are added to the
model.

5.8.1 Example

The included conditionalLogit example uses Powers and Xie (2000) categorical data stored in
the powersxie_mat data matrix included with the DC examples. The independent data, mode,
measures mode of transportation choice, train, bus, or car, and is stored in the second column of the data
matrix. The attributes of these categories, terminal waiting time (ttme), in vehicle choice (invc), in
vehicle time (invt), and generalized cost (GC), are stored in columns three through six. Finally, the
category variable for the dependent data is stored in column one. The first step to performing analysis is
to load the data:

new;
cls;
library dc;

//Load Data
loadm y = powersxie_mat;

5 Discrete Choice

5-13

5.8
 C
onditionalLogit

Once data is loaded, estimation features are specified using the dcControl structure. This
structure must be declared then initialized using the dcControlCreate procedure:

//Step One: dcControl structure
//Declare dcControl structure
struct dcControl dcCt;

//Initialize dcControl structure
dcCt = dcControlCreate();

Prior to estimation, the dcSet procedures may be used to specify variable names for reference and
results reports. For the adjacent categories model we begin by describing the dependent data and the
categories of responses allowed, using dcSetYVar, dcSetYLabel, and
dcSetYCategoryLabels:

//Step Two: Describe data names
//Dependent variable
dcSetYVar(&dcCt,y[.,2]);
dcSetYLabel(&dcCt,"mode");
dcSetCategoryVarLabels(&dcCt,"choiceno");

//Category Labels
dcSetCategoryVar(&dcCt,y[.,1]);
dcSetYCategoryLabels(&dcCt,"train,bus,car");

The independent data names are set using dcSetAttributeVars and
dcSetAttributeLabels:

//Attribute variables
dcSetAttributeVars(&dcCt,y[.,3:6]);
dcSetAttributeLabels(&dcCt,"ttme,invc,invt,GC");

//Turn off constant
dcSetConstant(&dcCt,"off");

Next, the dcOut structure is declared:

//Step Three: Declare dcOut structure
struct dcOut dcOut1;

Finally, calling the conditionalLogit procedure estimates the model and results are reported
using the printDCOut procedure:

5-14

Discrete Choice Analysis Tools 2.0
5.
8
 C
on
di
tio
na
lL
og
it

//Step Four: Call conditionalLogit
dcOut1 = conditionalLogit(dcCt);

//Print Results
call printDCOut(dcOut1);

5.9 Nested Logit

nestedLogit is a generalization of the conditional logit model in which categories are grouped into
subcategories. Define the probability of an observation being in the m-th category given being in the j-th
subcategory:

Now let

where

can be interpreted as an approximate subcategory correlation (Maddala, 1983).

Then, the joint probability of category and subcategory is

and maximum likelihood estimates are produced by minimizing

This model can be generalized to any number of levels of subcategories (Maddala, 1983; Greene, 2000).

5.9.1 Example

The included nestedLogit example uses categorical data stored in the hensher_mat data matrix
included with the DC examples. The dependent data, mode, measures mode of transportation choice,

5 Discrete Choice

5-15

5.9
 N
ested

Logit

train, bus, or car, and is stored in the second column of the data matrix. The attributes of these
categories, terminal waiting time (ttme), in vehicle choice (invc), in vehicle time (invt), and
generalized cost (GC), are stored in columns three through six. Finally, the category variable for the
dependent data is stored in column one. The first step to performing analysis is to load the data:

new;
cls;
library dc;

//Load Data
loadm y = hensher_mat;

Once data is loaded, estimation features are specified using the dcControl structure. This
structure must be declared then initialized using the dcControlCreate procedure:

//Step One: dcControl structure
//Declare dcControl structure
struct dcControl dcCt;

//Initialize dcControl structure
dcCt = dcControlCreate();

Prior to estimation, the dcSet procedures may be used to specify variables for reference and results
reports. For the nested logit model we begin by describing the dependent data and the categories of
responses allowed, using dcSetYVar, dcSetYLabel, and dcSetYCategoryLabels:

//Step Two: Describe data names
//Dependent variable
dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt,"mode");
dcSetYCategoryLabels(&dcCt,"Air,Train,Bus,Car");

The independent attribute data is set using dcSetAttributeVars and
dcSetAttributeLabels:

//Attribute variables
dcSetAttributeVars(&dcCt,y[.,2]~y[.,5]~y[.,8]);
dcSetAttributeLabels(&dcCt,"TTME,GC,AIRHINC");

5-16

Discrete Choice Analysis Tools 2.0
5.
9
 N
es
te
d
Lo
gi
t

Unique to the nestedLogit is the required step of setting up nests. First, the number of nests is set
using dcMakeLogitNests. This procedure requires two inputs: a pointer to the dcControl
structure and the number of nests to create:

dcMakeLogitNests(&dcCt,2);

Next, attributes and attribute categories are added to specific nests using
dcSetLogitNestAttributes and dcSetLogitNestCategories. Both of these function
require three inputs: a pointer to a dcControl, a scalar nest number to add attributes/categories to,
and a string of variables names.

//Set attributes and categories for lower nest (Nest One)
dcSetLogitNestAttributes(&dcCt,1,"TTME,GC");
dcSetLogitNestCategories(&dcCt,1,"Air,Train,Bus,Car");

//Set attributes and categories for lower nest (Nest Two);
dcSetLogitNestAttributes(&dcCt,2,"AIRHINC");
dcSetLogitNestCategories(&dcCt,2,"Fly,Ground");

The final step to setting up nests is to assign attributes to categories in upper level nests. Attributes must
always be assigned to categories in the immediate proceeding nest:

//Make nest assignments
dcAssignLogitNests(&dcCt,1,"Air,Train,Bus,Car",

"Fly,Ground,Ground,Ground");

Next, the dcOut structure is declared:

//Step Three: Declare dcOut structure
struct dcOut dcOut1;

Finally, calling the nestedLogit procedure estimates the model and results are reported using the
printDCOut procedure:

//Step Four: Call nestedLogit
dcOut1 = nestedLogit(dcCt);

//Print Results
call printDCOut(dcOut1);

5 Discrete Choice

5-17

5.9
 N
ested

Logit

5.10 Summary Statistics

Several goodness-of-fit measures are printed by mnlprt. Suppose the dependent variable is y; there
are N observations and K+1 explanatory variables (including a constant term); the fitted values are

; L(r) is the restricted likelihood of the model with only an intercept and no other explanatory
variables and L(u) is the unrestricted likelihood, the model estimated with an intercept and all
explanatory variables.

These include

1. The likelihood ratio statistic is:

is the number of events expected to occur per unit time (or space).

2. McFadden's (1973) pseudo R-square is:

3. Ben-Akiva and Lerman (1985) revise McFadden's measure to compensate for the effect of
additional variables on a regression's explanatory power. Their measure, analogous to adjusted

, is

4. Greene (2000, p. 882) presents an measure based on standardized residuals.

5. As noted in Greene (2000, p. 883), Cameron and Windmeijer (1993) present an measure

based on the deviances of individual observations,

5-18

Discrete Choice Analysis Tools 2.0
5.
10

 S
um

m
ar
y
S
ta
tis
tic
s

6. Cragg and Uhler (1970) propose a normed likelihood ratio, based on Maddala's (1983) showing

that the maximum of is

7. The count is the proportion of correct predictions, i.e.

where is the number of correct predictions for outcome j.

8. The adjusted count uses the highest marginal frequency to adjust for the "spurious" successes
that result by predicting that an outcome will fall in the category with the greatest percentage of
observed successes. It is the proportion of successful categorizations occurring above what would
occur by simply choosing the category with the greatest prior chance of success.

where is the maximum of the contingency table row marginals, the "number of cases in the
outcome with the most observations" (Long, 1997, p. 108).

9. The average Akaike information criterion (AIC) is

10. The average Bayesian (Schwarz) information criterion (BIC) is

11. The average Hannan-Quinn criterion is

5 Discrete Choice

5-19

5.10
 S
um

m
ary

S
tatistics

This page intentionally left blank to ensure new
chapters start on right (odd number) pages.

6-1

6 Linear Classification

The GAUSS logisticRegress procedure solves large-scale, binary classification problems. It
includes a suite of tools for scaling and recoding data, estimating attribute weights, model cross-
validation, and prediction. These classification tools are split into two categories, logistic regression
models [LR] and linear support vector machines [SVM]. These tools are built on the LIBLINEAR
library from Fan, et al. (2014). Both methodologies, logistic regression and linear support vector
machines, provide predictions and data relationships derived from the general optimization problem,

where C > 0 is a penalty parameter and ξ(w;xi;yi) is a loss function. The LR and SVM methodologies
differ in the specified loss function. The LR loss function uses a probabilistic model loss function given
by

Within the SVM family there are two common loss functions. The L1-SVM loss function is

The L2-SVM loss function is

The logisticRegress procedure's L1-SVM and L2-SVM methods use the coordinate descent
method for optimization. A trust region Newton method is used for LR and is available as an option for
L2-SVM.

In addition to estimation tools, the DC package includes tools for pre-estimation data preparation and
post-estimation prediction and analysis. The implementation of logisticRegress is intuitive and
requires three inputs, the lrControl structure, a y data vector, and an x matrix of attributes.

6.1 Estimation

6.1.1 Model Selection

Model selection from the classifiers implemented in the logisticRegress procedure should be
based in part on theoretical background and data characteristics. In most cases the models will give
similar results. However, some general starting guidelines will make selection easier and may
enhance performance. First, it is recommended to try utilizing the dual-based solvers before the
primal-based solvers. Secondly, L1-regularization tends to yield higher accuracy rates than L2-
regularization. For this reason, users may prefer using L1-regularization and switching to L2-
regularization if the L1 training is slow (Fan, et al. 2008).

6.1.2 Model Parameters

The primary user-controlled parameter of the logisticRegress procedure is C, the loss function
penalty parameter. Fan, et al.(2008) note that this algorithm is relatively insensitive to C, and larger C
values are generally less computationally efficient. Hence, the default C value is recommended as a
starting point. Parameter sensitivity can be tested by slightly increasing C and comparing the outcome
to default results.

6.1.3 Cross-validation

Cross-validation using the logisticRegress procedure is controlled by the lrControl
structure member crossValidation. This structure member should be set to equal the desired
number of folds, k, for performing k-fold cross-validation. The default value is 0; commonly
employed values are 5 or 10.

The logisticRegress procedure can also use cross-validation to assist with solver type or
penalty parameter selection. To perform cross-validation selection of solverType or C, set the
corresponding lrControl structure member to a vector of parameter candidates. The
logisticRegress procedure will then run iterative cross-validation across the parameter
candidates and select the highest cross-validation accuracy parameter for prediction. It should be
noted that the logisticRegress procedure will only perform cross-validation on one parameter
at a time, either solverType or C. As an example, selection of solver type 1, 2, or 3 using 5-fold
cross-validation can be performed using the code below:

struct lrControl lctl;
lctl = lrGetDefaults();

//Solver type vector
lctl.solverType = { 1, 2, 3 };

//Turn on cross-validation

6-2

Discrete Choice Analysis Tools 2.0
6.
1
 E
st
im
at
io
n

lctl.crossValidation = 5;

//Turn on prediction
lctl.predict = 1;

6.1.4 The lrControl Structure

The lrControl structure allows users to specify the necessary parameters used in the linear
classification LR or SVM tools. An instance of the lrControl structure named lctl contains the
members

lctl.solverType Matrix, scalar indicator of classification problem. If non-scalar,
crossValidation must be non-zero and is used to pick highest
cross-validation accuracy solver:

0 L2-regularized logistic regression,

1 L2-regularized logistic regression, L2 loss SVC dual,

2 L2-regularized logistic regression, L2 loss SVC,

3 L2-regularized logistic regression, L1 loss SVC dual,

4 MCSVM CS,

5 L1R, L2 loss SVC,

6 L1R, logistic regression,

7 L2R, logistic regression dual,

11 L2R, L2 loss SVR regression model,

12 L2 loss SVR regression model,

13 L2R, L1 loss SVR dual

lctl.eps Scalar, the stopping condition for KKT approximation algorithm.

lctl.C Matrix, loss function penalty parameter. If non-scalar,
crossValidation must be non-zero and the highest cross-validation
accuracy is used to select optimal C. Values of C<0 are not permissible.
Default=1.

lctl.p Scalar, loss function tolerance.

lctl.bias Scalar, 0 or 1. If set to 1, a bias feature will be added to the end of the
incoming 'x' matrix. This bias feature will be a vector of ones.
Default=1.

lctl.crossValidationScalar, specifies number of folds for k-fold cross-validation. If equal to 0

6 Linear Classification

6-3

6.1
 E
stim

ation

no cross-validation.

lctl.predict Scalar, indicator variable to conduct post-estimation prediction.
Default=0.

lctl.plotPredict Scalar, indicator variable to plot post-estimation predictions. Default=0.

lctl.printOutput Scalar, indicator variable to print output to screen. Default=1.

lctl.scaleX Scalar, indicator parameter for pre-estimation data scaling method.
Default=2.

0 No scaling.

1 Z-Score normalization.

2 [0,1] Min/Max normalization. [Default]

3 Scale by 1/sqrt(k) where k=number features.

4 Center data.

5 Sigmoidal scale.

Using the lrControl structure requires two steps, declaring an instance of the structure, and
initializing the members in the structure using the lrGetDefaults procedure:

struct lrControl lctl;
lctl = lrGetDefaults();

Calling lrGetDefaults assigns all members in lctl to the default values. Changing parameters
to match individual needs is done using GAUSS “.” referencing for structure members. As an
example, consider changing the solver type to the L2-regularized logistic regression, L1 loss SVC
dual method:

lctl.solverType = 3;

Similary, the model can be set to perform cross-validation to select C from a vector of possible
values and the predict y using the selected C:

lctl.C = {1,2,3,4,5};
lctl.crossValidation = 10;
lctl.predict = 1;

6-4

Discrete Choice Analysis Tools 2.0
6.
1
 E
st
im
at
io
n

6.1.5 The lrOut Structure

All output from the logisticRegress procedure is stored in the lrOut structure. All members
within this structure are easily accessible, allowing use results for further computation. An instance of
the lrOut structure named lOut contains the members:

lrOut.weights Matrix, estimated weights for specified independent variables.

lrOut.yPredict Matrix, predicted observations using estimated weights and data
matrix.

lrOut.probability Matrix, probabilities from logistic regression used to for
determining predicted y classifications.

lrOut.cvAccuracy Matrix, cross-validation prediction accuracy.

lrOut.predictionAccuracyScalar, full sample prediction accuracy.

lrOut.optimalC Scalar, optimal C based on highest cross-validation accuracy.

lrOut.optimalSolver Scalar, optimal solver based on highest cross-validation accuracy.

6.2 The logisticRegress procedure

The GAUSS logisticRegress procedure solves large scale classification problems and provides
tools for estimating attribute weights, model cross-validation, and prediction. Implementation of
logisticRegress requires three inputs, the lrControl structure, a y data vector, and a x matrix
of attributes. The lrControl structure facilitates model selection and estimation parameters. Usage
of the lrControl structure is previously described and requires two steps, declaring the structure and
initializing the structure:

struct lrControl lctl;
lctl = lrGetDefaults();

Data Coding

The y-matrix input of the logisticRegress procedure must house a discrete, dichotomous
dependent variable matrix with values {0,1}. Any binary data vector can be reclassified to a {0,1} data
vector using the reclassify procedure. This procedure can restructure categorical numerical or
string data into a vector of numerical, sequential categorical data. As an example, consider the vector y,
containing string data coded as Yes or No. To reclassify as {0,1} data

6 Linear Classification

6-5

6.2
 T
he

logisticR
egress

procedure

from = "No" $| "Yes";
to = { 0, 1 };
y_new = reclassify(y, from, to);

The output, y_new, from reclassify will be a vector of binary data coded as {0,1}.

The final input is a matrix containing continuous or discrete independent attributes. This data must be
numerical and any categorical, string data should be recoded before passing to the
logisticRegress procedure.

Data Scaling

In addition, the logisticRegress procedure generally performs best with scaled attributes and
the lrControl structure element scaleX can be used to set scaling methods. By default,
logisticRegress scales all features on a [0,1] scale prior to estimation. However, five scaling
methods are allowed:

1. Z-score normalization
2. [0,1] min-max scaling
3. Quantity of feature scaling
4. Demeaning
5. Sigmoidal normalization

To rescale the features data matrix, x, using sigmoidal normalization:

//Scale data using sigmodial normalization
lctl.scaleX = 5;

Model Execution

Once the control structure is declared and initialized and all data is properly formatted, calling the
logisticRegress procedure performs estimation of attribute weights, along with cross-
validation if specified.

struct lrOut outLR;
outLR = logisticRegress(lctl, y, x);

6-6

Discrete Choice Analysis Tools 2.0
6.
2
 T
he

lo
gi
st
ic
R
eg
re
ss

pr
oc
ed
ur
e

6.3 Linear Classification Example

The first step to using the logisticRegress procedure is insuring that data is in the proper format
and scaled appropriately.The y-matrix input of the logisticRegress procedure must house a
discrete, dichotomous dependent variable matrix with values {0,1}. Independent attributes used in
logisticRegress may be continuous or discrete. However, all data must be numerical, and any
categorical, string data should be recoded before passing to the logisticRegress procedure.

GAUSS includes the reclassify procedure for easy data setup. This procedure can be used to
reclassify binary data to {0,1} data, and to convert categorical string data to categorical numeric data.
The reclassify procedure requires three inputs: a N x 1 data vector to be reclassified, from: the
categories or levels of the first input, and to: a vector, containing the new values for each category. As
an example, consider the vector y, containing string data coded as Yes or No. To reclassify as {0,1}
data:

from = "No" $| "Yes";
to = { 0, 1 };
y_new = reclassify(y,from, to);

The output from reclassify, y_new, will be a vector of binary data coded as {0,1}.

Following data set-up, the next step to implementing model specifics is to declare and initialize the
lrControl structure:

struct lrControl lctl;
lctl = lrGetDefaults();

Next, change the solver type to the L2-regularized logistic regression, L1 loss SVC dual method:

lctl.solverType = 3;

In addition, we will specify both post-estimation prediction and prediction plotting using the
lctl.predict and lctl.predictPlot elements:

lctl.predict = 1;
lctl.predictPlot = 1;

Finally, calling the logisticRegress procedure performs estimation of attribute weights, along with
cross-validation if specified.

struct lrOut outLR;
outLR = logisticRegress(lctl, y, x);

6 Linear Classification

6-7

6.3
 Linear

C
lassification

E
xam

ple

6.4 References

1. R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. 2008. LIBLINEAR: A
library for large linear classification, Journal of Machine Learning Research. 9
(2008).1871-1874.

2. R.-E. Hsu, C.-W. Chang, C.-C. and C.-J. Lin. 2010. A Practical Guide to Support Vector
Classification, Machine Learning. 46(1-3).219-314.

3. Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine,
CA: University of California, School of Information and Computer Science.

6-8

Discrete Choice Analysis Tools 2.0
6.
4
 R
ef
er
en
ce
s

7-1

7 Discrete Choice Reference

The Discrete Choice Reference chapter describes each of the commands, procedures and functions
available in Discrete Choice.

adjacentCategories

Purpose

Estimates the Adjacent Categories Multinomial Logit model.

Library

dc

Format

out = adjacentCategories(cont);

Input

cont an instance of a dcControl structure.

cont.myData an instance of a dcData structure containing the
elements:

cont.myData.yData Matrix, binary choice
variable with a {0,1}
value.

cont.myData.xData Matrix, continuous or discrete
independent variables used in
regression. This matrix holds
all data which can be classified
as characteristics of the
individual decision makers.
This data does no vary with

outcomes but rather with
individuals.

cont.myData.categoryDataMatrix, discrete
categorical data.

cont.myData.attributes Matrix, continuous or
discrete independent
variables which are
features of the choice
variable. This matrix
houses data that is
choice specific and is
used only in
conditional logit and
nested logit models.

cont.myData.wgtVariablesMatrix, houses
weight variable.

cont.startValues instance of PV structure containing starting values; if not
provided, adjacentCategories computes start
values.

b0 1 L matrix, constants
in regression.

b 2 K×L matrix,
regression
coefficients (if any).
Coefficients
associated with
reference category
are fixed to zeros.

For example:

struct dcControl cont;
cont = dcControlCreate;

//Intercept must be L by 1
b0 = { 0 1 1 1 1};

7-2

Discrete Choice Analysis Tools 2.0
ad
ja
ce
nt
C
at
eg
or
ie
s

//Coefficients must be K by L
b = { 0 .1 .1 .1 .1,

0 .1 .1 .1 .1,
0 .1 .1 .1 .1};

//Mask must be K by L
mask = { 0 1 1 1 1,

0 1 1 1 1,
0 1 1 1 1};

cont.startValues =
pvPackmi(cont.startValues,
b0 , "b0" , mask[1,.] , 1);

cont.startValues =
pvPackmi(cont.startValues,
b , "b" , mask, 2);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of the
parameters. For more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a vector of the
parameters.[[For more details see Section 4.1.6.]]

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed equality
constraints. For more details see Remarks below.
Default = {.}, i.e., no equality procedure. For more
details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a procedure
has been provided, it has two input arguments, a PV

7 Discrete Choice Reference

7-3

adjacentC
ategories

parameter structure and a DS data structure, and one
output argument, a vector of computed inequality
constraints. For more details see Remarks below.
Default = {.}, i.e., no inequality procedure. For more
details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256
1e256 }. For more details see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has
been satisfied, sqpSolvemt exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is
defined outside inequality boundaries, then this test can
be turned off. Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default =
0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount of
the direction at each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are printed.
Default = 0.

cont.printIters scalar, if nonzero, prints iteration information. Default =
0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

b0 1 L×1 matrix, constants in
regression.

b 2 L×K matrix, regression

7-4

Discrete Choice Analysis Tools 2.0
ad
ja
ce
nt
C
at
eg
or
ie
s

coefficients (if any).
Coefficients associated
with reference category
are fixed to zeros.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a
single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par
can be described by

b = pvGetParNames(out.par);

if model does not contain a parameter,
pvUnpack returns a scalar missing value with
error code = 99.

out.vc NPARM×NPARM variance-covariance matrix
of coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of
marginal effects of independent variables by
category of dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

7 Discrete Choice Reference

7-5

adjacentC
ategories

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full
model.

2 Log-Likelihood, restricted
model (all slope
coefficients equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-
Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information
criterion (AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-
Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

7-6

Discrete Choice Analysis Tools 2.0
ad
ja
ce
nt
C
at
eg
or
ie
s

Example

new;
cls;
library dc;

//Load Data
loadm y = gssocc_mat;

//Step One: dcControl structure
//Declare dcControl structure
struct dccontrol dcCt;

//Initialize dcControl structure
dcCt = dcControlCreate();

//Step Two: Describe data names
//Dependent variable
dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt,"occatt");

//Dependent variable categories
dcSetYCategoryLabels(&dcCt,"Menial,BC,Craft,WC,Pro");

//Independent variable
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"exper,educ,white");

//Reference category excluded from regression
dcSetReferenceCategory(&dcCt,1);

//Step Three: Call adjacentCategories
//Declare dcOut Structure
struct dcOut dcOut1;
dcOut1 = adjacentCategories(dcCt);

//Print Results
call printDCOut(dcOut1);

Remarks

The adjacent category model is a special case of the multinomial logit model where the
coefficients of succeeding categories are constrained to be greater than their preceding
counterparts.

7 Discrete Choice Reference

7-7

adjacentC
ategories

Source

dcaclogit.src

binaryLogit

Purpose

Estimates a logit regression model.

Library

dc

Format

out = binaryLogit(cont);

Input

cont an instance of a dcControl structure.

cont.myData an instance of a dcData structure containing the elements:

cont.myData.yData Matrix, binary choice
variable with a {0,1} value.

cont.myData.xData Matrix, continuous or
discrete independent
variables used in regression.
This matrix holds all data
which can be classified as
characteristics of the
individual decision makers.
This data does no vary with
outcomes but rather with
individuals.

cont.myData.categoryDataMatrix, discrete categorical
data.

7-8

Discrete Choice Analysis Tools 2.0
bi
na
ry
Lo
gi
t

cont.myData.attributes Matrix, continuous or
discrete independent
variables which are features
of the choice variable. This
matrix houses data that is
choice specific and is used
only in conditional logit and
nested logit models.

cont.myData.wgtVariablesMatrix, houses weight
variable.

cont.startValues instance of PV structure containing starting values; if not
provided, binaryLogit computes start values.

b0 1 L matrix, constants in
regression.

b 2 K×L matrix, regression
coefficients (if any).
Coefficients associated with
reference category are fixed
to zeros.

For example:

struct dcControl cont;
cont = dcControlCreate();

//Set start values

//First category is set as
//reference category
//Intercept must be 1 x L
b0 = { 0 1 };

//Coefficient must be K x L
b = { .1 .2 };

//Mask must be K x L
mask = { 0 1 };

cont.startValues = pvPackmi
(cont.startValues,
b0 , "b0", mask, 1);

cont.startValues = pvPackmi

7 Discrete Choice Reference

7-9

binaryLogit

(cont.startValues,
b, "b" , mask, 2);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of the
parameters. For more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants: cont.A
* p = cont.B where p is a vector of the parameters.
For more details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of the
parameters. For more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants: cont.C
* p >= cont.D where p is a vector of the parameters.
For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter
structure and a DS data structure, and one output argument,
a vector of computed equality constraints. For more details
see Remarks below. Default = {.}, i.e., no equality
procedure. For more details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter
structure and a DS data structure, and one output argument,
a vector of computed inequality constraints. For more details
see Remarks below. Default = {.}, i.e., no inequality
procedure. For more details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256 1e256 }.
For more details see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has been
satisfied, sqpSolvemt exits the iterations.

7-10

Discrete Choice Analysis Tools 2.0
bi
na
ry
Lo
gi
t

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned
off. Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If nonzero, it
is the radius of the random search. Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are printed. Default =
0.

cont.printIters scalar, if nonzero, prints iteration information. Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

b0 1 constant in regression.

b 2 regression coefficients (if
any).

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

7 Discrete Choice Reference

7-11

binaryLogit

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix of
coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients
equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

7-12

Discrete Choice Analysis Tools 2.0
bi
na
ry
Lo
gi
t

13 Adjusted Count R-Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

//Step One: Declare dc control structure
struct dcControl dcCt;

//Initialize dc control structure
dcCt = dcControlCreate();

//Load data
loadm y = aldnel_mat;

//Step Two: Describe data names
//Name of dependent variable
dcSetYVar(&dcCt,y[.,5]);
dcSetYLabel(&dcCt,"A");

//Name of independent variable
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"GPA,TUCE,PSI");

//Step Three: Declare dcOut struct
struct dcOut dcOut1;

//Step Four: Call binaryLogit
dcOut1 = binaryLogit(dcCt);

call printDCOut(dcOut1);

Source

dcbin.src

7 Discrete Choice Reference

7-13

binaryLogit

binaryProbit

Purpose

Estimates a probit regression model.

Library

dc

Format

out = binaryProbit(cont);

Input

co
nt

an instance of a dcControl structure.

cont.myData an instance of a dcData structure containing the elements:

cont.myData.yData Matrix, binary choice variable
with a {0,1} value.

cont.myData.xData Matrix, continuous or discrete
independent variables used in
regression. This matrix holds all data
which can be classified as
characteristics of the individual
decision makers. This data does no
vary with outcomes but rather with
individuals.

cont.myData.categoryDa
ta

Matrix, discrete categorical
data.

cont.myData.attributes Matrix, continuous or discrete
independent variables which are
features of the choice variable.
This matrix houses data that is
choice specific and is used only
in conditional logit and nested

7-14

Discrete Choice Analysis Tools 2.0
bi
na
ry
P
ro
bi
t

logit models.

cont.myData.wgtVariabl
es

Matrix, houses weight variable.

cont.startVa
lues

instance of PV structure containing starting values; if not
provided, binaryProbit computes start values.

b0 1 L matrix, constants in
regression.

b 2 K×L matrix, regression
coefficients (if any).
Coefficients associated with
reference category are fixed to
zeros.

For example:

struct dcControl cont;
cont = dcControlCreate();

//Set start values
//First category is set
//as reference category
//Intercept must be 1 x L
b0 = { 0 1 };

//Coefficient must be K x L
b = { .1 .2 };

//Mask must be K x L
mask = { 0 1 };

//Pack variable starting values
cont.startValues = pvPackmi(cont.startValues,
b0 , "b0", mask, 1);
cont.startValues = pvPackmi(cont.startValues,
b, "b" , mask, 2);

cont.A M×K matrix, linear equality constraint coefficients: cont.A *
p = cont.B where p is a vector of the parameters. For more
details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants: cont.A * p
= cont.B where p is a vector of the parameters. For more
details see Section 4.1.6.

7 Discrete Choice Reference

7-15

binaryP
robit

cont.C M×K matrix, linear inequality constraint coefficients: cont.C
* p >= cont.D where p is a vector of the parameters. For
more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants: cont.C *
p >= cont.D where p is a vector of the parameters. For
more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided,
it has two input arguments, a PV parameter structure and a DS
data structure, and one output argument, a vector of computed
equality constraints. For more details see Remarks below.
Default = {.}, i.e., no equality procedure. For more details see
Section 4.1.6.

cont.inEqPro
c

scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter structure
and a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see Remarks
below. Default = {.}, i.e., no inequality procedure. For more
details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all parameters
have same bounds. Default = { -1e256 1e256 }. For more details
see Section 4.1.6.

cont.maxIter
s

scalar, maximum number of iterations. Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has been
satisfied, sqpSolvemt exits the iterations.

cont.feasibl
eTest

scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined outside
inequality boundaries, then this test can be turned off. Default =
1.

cont.randRad
ius

scalar, if zero, no random search is attempted. If nonzero, it is the
radius of the random search. Default = 0.001.

cont.trustRa
dius

scalar, radius of the trust region. If scalar missing, trust region
not applied. The trust sets a maximum amount of the direction at

7-16

Discrete Choice Analysis Tools 2.0
bi
na
ry
P
ro
bi
t

each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are printed. Default = 0.

cont.printIt
ers

scalar, if nonzero, prints iteration information. Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

b0 1 constant in regression.

b 2 regression coefficients (if
any).

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix of
coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent

7 Discrete Choice Reference

7-17

binaryP
robit

variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients
equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-Squared.

14 Agresti's G squared.

7-18

Discrete Choice Analysis Tools 2.0
bi
na
ry
P
ro
bi
t

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

//Step One: Declare dc control structure
struct dcControl dcCt;
//Initialize dc control structure
dcCt = dcControlCreate();

//Load data
loadm y = aldnel_mat;

//Step Two: Describe data names
//Name of dependent variable
dcSetYVar(&dcCt,y[.,5]);
dcSetYLabel(&dcCt,"A");

//Name of independent variable
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"GPA,TUCE,PSI");

//Step Three: Declare dcOut struct
struct dcOut dcOut1;

//Step Four: Call binaryProbit
dcOut1 = binaryProbit(dcCt);

call printDCOut(dcOut1);

Source

dcbin.src

7 Discrete Choice Reference

7-19

binaryP
robit

conditionalLogit

Purpose

Estimates the Conditional Logit model.

Library

dc

Format

out = conditionalLogit(cont);

Input

con
t

an instance of a dcControl structure.

cont.myData an instance of a dcData structure containing the elements:

cont.myData.yData Matrix, binary choice variable
with a {0,1} value.

cont.myData.xData Matrix, continuous or discrete
independent variables used in
regression. This matrix holds all
data which can be classified as
characteristics of the individual
decision makers. This data does no
vary with outcomes but rather with
individuals.

cont.myData.category
Data

Matrix, discrete categorical
data.

cont.myData.attribut
es

Matrix, continuous or discrete
independent variables which
are features of the choice
variable. This matrix houses
data that is choice specific
and is used only in

7-20

Discrete Choice Analysis Tools 2.0
co
nd
iti
on
al
Lo
gi
t

conditional logit and nested
logit models.

cont.myData.wgtVaria
bles

Matrix, houses weight
variable.

cont.startValu
es

instance of PV structure containing starting values; if not
provided, conditionalLogit computes start values.

b0 1 1×Lvector, constant in
regression.

b 2 K×L matrix, regression
coefficients (if any).
Coefficients associated with
reference category are fixed
to zero.

g1 3 vector,
coefficients of attribute
variables for first level.

For example:

struct dcControl cont;
cont = dcControlCreate();

//Set starting values
// No b0 because no constant
// No b because no x vars

//Set starting values for attributes
//Stores attributes on first level
//should be R x 1,
//where R is # of attributes on level
g1 = { .1 , .1 , .1 , .1};

mask = { 1 , 1 , 1 , 1 };

cont.startValues =
pvPackmi(cont.startValues,
g1, "g1" , mask, 3);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of the

7 Discrete Choice Reference

7-21

conditionalLogit

parameters. For more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants: cont.A
* p = cont.B where p is a vector of the parameters.
For more details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of the
parameters. For more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants: cont.C
* p >= cont.D where p is a vector of the parameters.
For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter
structure and a DS data structure, and one output argument,
a vector of computed equality constraints. For more details
see Remarks below. Default = {.}, i.e., no equality
procedure. For more details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter
structure and a DS data structure, and one output argument,
a vector of computed inequality constraints. For more details
see Remarks below. Default = {.}, i.e., no inequality
procedure. For more details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256 1e256 }.
For more details see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has been
satisfied, sqpSolvemt exits the iterations.

cont.feasibleT
est

scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned
off. Default = 1.

7-22

Discrete Choice Analysis Tools 2.0
co
nd
iti
on
al
Lo
gi
t

cont.randRadiu
s

scalar, if zero, no random search is attempted. If nonzero, it
is the radius of the random search. Default = 0.001.

cont.trustRadi
us

scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are printed. Default =
0.

cont.printIter
s

scalar, if nonzero, prints iteration information. Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing
estimates.

b0 1 L×1 matrix,
constant in
regression.

b 2 L×K matrix,
regression
coefficients (if
any). Coefficients
associated with
reference category
are fixed to zeros.

gm 3 M×1 vector,
coefficients of
attribute variables

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as

7 Discrete Choice Reference

7-23

conditionalLogit

a single parameter vector:

b = pvGetParVector
(out.par);

The location of the coefficients in
out.par can be described by

b = pvGetParNames
(out.par);

if model does not contain a parameter,
pvUnpack returns a scalar missing
value with error code = 99.

out.vc NPARM×NPARM variance-
covariance matrix of coefficient
estimates.

out.yDist L×1 vector, percentages of dependent
variable by category.

out.xData K×4 matrix, the means, standard
deviations, minimums, and maximums
of independent variables.

out.marginEffects L×1×K array, marginal effects of
independent variables by category of
dependent variable.

out.marginVC L×K×K array, covariance matrices of
marginal effects of independent
variables by category of dependent
variable.

out.atmargineffects L×L×1×R array, marginal effects by
category of attribute variables by
category of dependent variable.

out.atmarginvc L×L×R×R array, covariance matrices
of marginal effects by category of
attribute variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted)
counts.

7-24

Discrete Choice Analysis Tools 2.0
co
nd
iti
on
al
Lo
gi
t

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit
measures.

1 Log-Likelihood,
full model.

2 Log-Likelihood,
restricted model (all
slope coefficients
equal zero.

3 Degrees of
freedom.

4 Chi-square statistic.

5 Number of
Parameters.

6 McFadden's
Pseudo R-Squared.

7 Madalla's Pseudo
R-Squared.

8 Cragg and Uhler's
normed likelihood
ratios statistics.

9 Akaike information
criterion (AIC).

10 Bayesian
information
criterion (BIC).

11 Hannon-Quinn
Criterion.

12 Count R-Squared.

13 Adjusted Count R-
Squared.

7 Discrete Choice Reference

7-25

conditionalLogit

14 Agresti's G
squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and
Lerman's Adjusted
R-square

Example

new;
cls;
library dc;

//Step One: Declare dc control structure
struct dcControl dcCt;

//Initialize dc control structure
dcCt = dcControlCreate();

//Load data
loadm y = powersxie_mat;

//Step Two: Describe data names
//Dependent variable
dcSetYVar(&dcCt,y[.,2]);
dcSetYLabel(&dcCt,"mode");
dcSetCategoryVarLabels(&dcCt,"choiceno");

//Category Labels
dcSetCategoryVar(&dcCt,y[.,1]);
dcSetYCategoryLabels(&dcCt,"train,bus,car");

//Attributes
dcSetAttributeVars(&dcCt,y[.,3:6]);
dcSetAttributeLabels(&dcCt,"ttme,invc,invt,GC");

//Turn off constant
dcSetConstant(&dcCt,"off");

//Step Three: Declare dcOut struct
struct dcOut dcOut1;

7-26

Discrete Choice Analysis Tools 2.0
co
nd
iti
on
al
Lo
gi
t

//Step Four: Call conditionalLogit
dcOut1 = conditionalLogit(dcCt);

call printDCOut(dcOut1);

Source

dcclogit.src

dcAdjacentCategories

Purpose

Estimates the Adjacent Categories Multinomial Logit model.

Library

dc

Format

out = dcAdjacentCategories(data, desc, cont);

Input

data string or N×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc an instance of a dcDesc structure.

desc.yname name of dependent variable.

desc.yvar scalar, index of dependent variable. If data is
name of GAUSS dataset, either desc.yname or
desc.yvar may be specified. If data is matrix
of data, desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable,
otherwise 1 if numeric. Default = 1.

desc.xnames K×1 string vector, names of the independent

7 Discrete Choice Reference

7-27

dcA
djacentC

ategories

variable(s).

desc.xvars K×1 vector, indices of the independent variable
(s). If data is name of GAUSS dataset, either
desc.xnames or desc.xvars may be
specified. If data is matrix of data,
desc.xvars must be specified.

desc.catnames L×1 string vector, names of categories.

desc.refcat reference category. If desc.refcatName is
specified, desc.refcat is optional. Default =
1.

desc.refcatName string, reference category name. If
desc.refcat has been specified,
desc.refcatName is optional. Default =
desc.catnames[1].

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with
respect to independent variables; 0 - partial
probability with respect to mean x. Default = 0.

desc.wgtname string, name of weight variable. If
desc.wgtvar is specified, the specification of
desc.wgtname is optional. Default = "".

desc.wgtvar scalar, index of weight variable. If
desc.wgtname is specified, the specification
of desc.wgtvar is optional. Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting
values; if not provided,
dcAdjacentCategories computes start
values.

b0 1 L matrix, constants in
regression.

b 2 K×L matrix, regression
coefficients (if any).
Coefficients associated with

7-28

Discrete Choice Analysis Tools 2.0
dc
A
dj
ac
en
tC
at
eg
or
ie
s

reference category are fixed
to zeros.

For example:

struct dcControl cont;
cont = dcControlCreate();

b0 = { 0 1 1 };

b = { 0 .1 .1,
0 .1 .1 };

mask = { 0 1 1,
0 1 1,
0 1 1 };

cont.startValues =
pvPackmi(cont.startValues,
b0,"b0",mask[1,.],1);

cont.startValues =
pvPackmi(cont.startValues,
b,"b",mask[2:3,.],2);

cont.A M×K matrix, linear equality constraint
coefficients: cont.A * p = cont.B
where p is a vector of the parameters. For more
details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a
vector of the parameters. For more details see
Section 4.1.6.

cont.C M×K matrix, linear inequality constraint
coefficients: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint
constants: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a

7 Discrete Choice Reference

7-29

dcA
djacentC

ategories

procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a
vector of computed equality constraints. For
more details see Remarks below. Default = {.},
i.e., no equality procedure. For more details see
Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a
vector of computed inequality constraints. For
more details see Remarks below. Default = {.},
i.e., no inequality procedure. For more details
see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If
1×2 all parameters have same bounds. Default =
{ -1e256 1e256 }. For more details see Section
4.1.6.

cont.maxIters scalar, maximum number of iterations. Default =
1e+5.

cont.dirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When
this criterion has been satisfied, sqpSolvemt
exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for
feasibility before computing function in line
search. If function is defined outside inequality
boundaries, then this test can be turned off.
Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search.
Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar
missing, trust region not applied. The trust sets a
maximum amount of the direction at each

7-30

Discrete Choice Analysis Tools 2.0
dc
A
dj
ac
en
tC
at
eg
or
ie
s

iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are
printed. Default = 0.

cont.printIters scalar, if nonzero, prints iteration information.
Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

b0 1 L×1 matrix, constants in
regression.

b 2 L×K matrix, regression
coefficients (if any).
Coefficients associated with
reference category are fixed
to zeros.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix
of coefficient estimates.

7 Discrete Choice Reference

7-31

dcA
djacentC

ategories

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients
equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-
Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

7-32

Discrete Choice Analysis Tools 2.0
dc
A
dj
ac
en
tC
at
eg
or
ie
s

12 Count R-Squared.

13 Adjusted Count R-Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

struct dcDesc d1;
d1 = dcDescCreate();

d1.yname = "occatt";
d1.xnames = "exper" $| "educ" $| "white";
d1.catnames = "Menial" $| "BC" $| "Craft" $| "WC" $| "Pro";

struct dcOut dcOut1;

dcOut1 = dcAdjacentCategories("gssocc",d1,dcControlCreate());

call dcprt(dcOut1);

Remarks

The adjacent category model is a special case of the multinomial logit model where the
coefficients of succeeding categories are constrained to be greater than their preceding
counterparts.

Source

dcaclogit.src

7 Discrete Choice Reference

7-33

dcA
djacentC

ategories

dcAssignLogitNests

Purpose

Assigns listed outcome categories to categories within previously created nests.

Library

dc

Format

dcAssignLogitNests(&cont, nestNumber, outcomeList, categoryList);

Input

&cont Pointer to an instance of a dcControl structure.

nestNumber Scalar, nest level of outcomes listed in outcomeList.

outcomeList String Array, M x 1, list of outcomes to be assigned to nest categories.

categoryList String Array, M x 1, list of category assignments for outcomes in
outcomeList.

Example

library dc;

//Load data
loadm y = hensher_mat;

//Step One: Declare dc control structure
struct dcControl cont;
//Initialize dc control structure
cont = dcControlCreate();

//Step Two: Describe data
//Name of dependent variable
dcSetYVar(&cont,y[.,1]);
dcSetYLabel(&cont, "Mode");

7-34

Discrete Choice Analysis Tools 2.0
dc
A
ss
ig
nL
og
itN

es
ts

//Y Category Labels
dcSetYCategoryLabels(&cont,"Air,Train,Bus,Car");
//Specify reference category (excluded)
dcSetReferenceCategory(&cont, "Car");

//Name of independent variable
varlist = "TTME,GC,AIRHINC";
dcSetAttributeVars(&cont,y[.,2]~y[.,5]~y[.,8]);
dcSetAttributeLabels(&cont,"TTME,GC,AIRHINC");

//Set-up nested levels
dcMakeLogitNests(&cont,2);

//Set attributes and categories for lower nest (Nest One)
dcSetLogitNestAttributes(&cont,1,"TTME,GC");
dcSetLogitNestCategories(&cont,1,"Air,Train,Bus,Car");

//Set attributes and categories for lower nest (Nest Two)
dcSetLogitNestAttributes(&cont,2,"AIRHINC");
dcSetLogitNestCategories(&cont,2,"Fly,Ground");

//Make nest assignments
dcAssignLogitNests(&cont,1,"Air,Train,Bus,Car",
"Fly,Ground,Ground,Ground");

Remark

Prior to using dcAssignLogitNests the dependent variable category names must be set using
dcSetYCategoryLabels.

Source

setnests.src

dcBinaryLogit

Purpose

Estimates a logit regression model.

7 Discrete Choice Reference

7-35

dcB
inaryLogit

Library

dc

Format

out = dcBinaryLogit(data, desc, cont);

Input

data string or N×K matrix, if string, the name of a GAUSS data set or if matrix, matrix of
data.

desc an instance of a dcDesc structure.

desc.yname name of dependent variable.

desc.yvar scalar, index of dependent variable. If data is name of
GAUSS dataset, either desc.yname or desc.yvar may
be specified. If data is matrix of data, desc.yvar must be
specified.

desc.ytype scalar, 0 if desc.yvar character variable, otherwise 1 if
numeric. Default = 1.

desc.xnames K×1 string vector, names of the independent variable(s).

desc.xvars K×1 vector, indices of the independent variable(s). If data is
name of GAUSS dataset, either desc.xnames or
desc.xvars may be specified. If data is matrix of data,
desc.xvars must be specified.

desc.catnames L×1 string vector, names of categories.

desc.refcat reference category. If desc.refcatName is specified,
desc.refcat is optional. Default = 1.

desc.refcatName string, reference category name. If desc.refcat has been
specified, desc.refcatName is optional. Default =
desc.catnames[1].

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional.
Default = "".

desc.wgtvar scalar, index of weight variable. If desc.wgtname is

7-36

Discrete Choice Analysis Tools 2.0
dc
B
in
ar
yL
og
it

specified, the specification of desc.wgtvar is optional.
Default = 0.

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with respect to
independent variables; 0 - partial probability with respect to
mean x. Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values; if not
provided, dcBinaryLogit computes start values.

b0 1 constant in regression.

b 2 regression coefficients (if
any).

For example:

struct dcControl cont;
cont = dcControlCreate();

//Set start values
//First category is set
//as reference category
//Intercept must be 1 x L
b0 = { 0 1 };

//Coefficient must be K x L
b = { .1 .2 };

//Mask must be K x L
mask = { 0 1 };

cont.startValues = pvPackmi
(cont.startValues,
b0 , "b0", mask, 1);

cont.startValues = pvPackmi
(cont.startValues,
b, "b", mask,2);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of the
parameters. For more details. see Section 4.1.6.

7 Discrete Choice Reference

7-37

dcB
inaryLogit

cont.B M×1 vector, linear equality constraint constants: cont.A
* p = cont.B where p is a vector of the parameters.
For more details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of the
parameters. For more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants: cont.C
* p >= cont.D where p is a vector of the parameters.
For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter
structure and a DS data structure, and one output argument, a
vector of computed equality constraints. For more details see
Remarks below. Default = {.}, i.e., no equality procedure.
For more details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter
structure and a DS data structure, and one output argument, a
vector of computed inequality constraints. For more details
see Remarks below. Default = {.}, i.e., no inequality
procedure. For more details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256 1e256 }.
For more details see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has been
satisfied, sqpSolvemt exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned
off. Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If nonzero, it
is the radius of the random search. Default = 0.001.

7-38

Discrete Choice Analysis Tools 2.0
dc
B
in
ar
yL
og
it

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are printed. Default =
0.

cont.printIters scalar, if nonzero, prints iteration information. Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

b0 1 constant in regression.

b 2 regression coefficients (if
any).

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix of
coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

7 Discrete Choice Reference

7-39

dcB
inaryLogit

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients
equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

7-40

Discrete Choice Analysis Tools 2.0
dc
B
in
ar
yL
og
it

13 Adjusted Count R-Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

struct dcDesc d1;
d1 = dcDescCreate();

d1.yname = "A";
d1.xnames = "GPA" $| "TUCE" $| "PSI";

struct dcOut dcOut1;

dcOut1 = dcBinaryLogit("aldnel", d1, dcControlCreate());

call dcprt(dcOut1);

Source

dcbin.src

dcBinaryProbit

Purpose

Estimates a probit regression model.

Library

dc

7 Discrete Choice Reference

7-41

dcB
inaryP

robit

Format

out = dcBinaryProbit(data, desc, cont);

Input

data string or N×K matrix, if string, the name of a GAUSS data set or if matrix, matrix of
data.

desc an instance of a dcDesc structure.

desc.yname name of dependent variable.

desc.yvar scalar, index of dependent variable. If data is name of
GAUSS dataset, either desc.yname or desc.yvar may
be specified. If data is matrix of data, desc.yvar must be
specified.

desc.ytype scalar, 0 if desc.yvar character variable, otherwise 1 if
numeric. Default = 1.

desc.xnames K×1 string vector, names of the independent variable(s).

desc.xvars K×1 vector, indices of the independent variable(s). If data is
name of GAUSS dataset, either desc.xnames or
desc.xvars may be specified. If data is matrix of data,
desc.xvars must be specified.

desc.catnames L×1 string vector, names of categories.

desc.refcat reference category. If desc.refcatName is specified,
desc.refcat is optional. Default = 1.

desc.refcatName string, reference category name. If desc.refcat has been
specified, desc.refcatName is optional. Default =
desc.catnames[1].

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional.
Default = "".

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional.
Default = 0.

7-42

Discrete Choice Analysis Tools 2.0
dc
B
in
ar
yP

ro
bi
t

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with respect to
independent variables; 0 - partial probability with respect to
mean x. Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values; if not
provided, dcBinaryProbit computes start values.

b0 1 constant in regression.

b 2 regression coefficients (if
any).

For example:

struct dcControl cont;
cont = dcControlCreate();

//Set start values
//First category is set
//as reference category
//Intercept must be 1 x L
b0 = { 0 1 };

//Coefficient must be K x L
b = { .1 .2 };

//Mask must be K x L
mask = { 0 1 };

cont.startValues = pvPackmi
(cont.startValues,

b0 , "b0", mask, 1);
cont.startValues = pvPackmi
(cont.startValues,

b, "b", mask,2);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of the
parameters. For more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants: cont.A
* p = cont.B where p is a vector of the parameters.
For more details see Section 4.1.6.

7 Discrete Choice Reference

7-43

dcB
inaryP

robit

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of the
parameters. For more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants: cont.C
* p >= cont.D where p is a vector of the parameters.
For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter
structure and a DS data structure, and one output argument, a
vector of computed equality constraints. For more details see
Remarks below. Default = {.}, i.e., no equality procedure.
For more details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter
structure and a DS data structure, and one output argument, a
vector of computed inequality constraints. For more details
see Remarks below. Default = {.}, i.e., no inequality
procedure. For more details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256 1e256 }.
For more details see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has been
satisfied, sqpSolvemt exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned
off. Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If nonzero, it
is the radius of the random search. Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = 0.001.

7-44

Discrete Choice Analysis Tools 2.0
dc
B
in
ar
yP

ro
bi
t

cont.output scalar, if nonzero, optimization results are printed. Default =
0.

cont.printIters scalar, if nonzero, prints iteration information. Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

b0 1 constant in regression.

b 2 regression coefficients (if
any).

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix of
coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

7 Discrete Choice Reference

7-45

dcB
inaryP

robit

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients
equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-Squared.

14 Agresti's G squared.

15 Success.

7-46

Discrete Choice Analysis Tools 2.0
dc
B
in
ar
yP

ro
bi
t

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new ;
cls ;
library dc;

struct dcDesc d1;
d1 = dcDescCreate();

d1.yname = "A";
d1.xnames = "GPA" $| "TUCE" $| "PSI";

struct dcOut dcOut1;

dcOut1 = dcBinaryProbit("aldnel",d1,dcControlCreate());

call dcprt(dcOut1);

Source

dcbin.src

dcConditionalLogit

Purpose

Estimates the Conditional Logit model.

Library

dc

Format

out = dcConditionalLogit(data, desc, cont);

7 Discrete Choice Reference

7-47

dcC
onditionalLogit

Input

data string or N×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data.

desc an instance of a dcDesc structure.

desc.dataType scalar, if 1, the dataset contains a single row
for each observation and attribute variables
are stored in separate columns in that row. If
0, category data are stored by row within
observation and attribute data are stored in
single columns.

desc.yname name of dependent variable.

desc.yvar scalar, index of dependent variable. If data is
name of GAUSS dataset, either desc.yname
or desc.yvar may be specified. If data is
matrix of data, desc.yvar must be
specified.

desc.ytype scalar, 0 if desc.yvar character variable,
otherwise 1 if numeric. Default = 1.

desc.xnames K×1 string vector, names of the independent
variable(s).

desc.xvars K×1 vector, indices of the independent
variable(s). If data is name of GAUSS dataset,
either desc.xnames or desc.xvars may
be specified. If data is matrix of data,
desc.xvars must be specified.

desc.catnames L×1 string vector, names of categories.

desc.refcat reference category. If desc.refcatName is
specified, desc.refcat is optional. Default
= 1.

desc.refcatName string, reference category name. If
desc.refcat has been specified,
desc.refcatName is optional. Default =
desc.catnames[1].

desc.atNames P×1 string vector, names of the attribute

7-48

Discrete Choice Analysis Tools 2.0
dc
C
on
di
tio
na
lL
og
it

variable(s).

desc.atVars P×1 numeric vector, indices of the attribute
variable(s).

desc.atCatNames P×L string array, names of the categories of
attribute variable(s). Required if
desc.datatype = 1 and
desc.atCatVars not specified.

desc.atCatVars P×L numeric vector, indices of the categories
of attribute variable(s). Required if
desc.datatype = 1 and
desc.atCatNames not specified.

desc.wgtname string, name of weight variable. If
desc.wgtvar is specified, the specification
of desc.wgtname is optional. Default = "".

desc.wgtvar scalar, index of weight variable. If
desc.wgtname is specified, the
specification of desc.wgtvar is optional.
Default = 0.

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with
respect to independent variables; 0 - partial
probability with respect to mean x. Default =
0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting
values; if not provided,
dcConditionalLogit computes start
values.

b0 1 1×Lvector, constant in
regression.

b 2 K×L matrix, regression
coefficients (if any).
Coefficients associated
with reference category are

7 Discrete Choice Reference

7-49

dcC
onditionalLogit

fixed to zero.

gm 3 M×1 vector, coefficients
of attribute variables.

For example:

struct dcControl cont;
cont = dcControlCreate;

b0 = { 0 1 1 };

b = { 0 .1 .1,
0 .1 .1 };

gm = { .1,
.1 };

mask = { 0 1 1,
0 1 1,
0 1 1 };

cont.startValues =
pvPackmi(cont.startValues,
b0,"b0",mask[1,.],1);

cont.startValues =
pvPackmi(cont.startValues,
b,"b",mask[2:3,.],2);

cont.startValues =
pvPackmi(cont.startValues,
gm,"gm",mask[1:2,2],3);

cont.A M×K matrix, linear equality constraint
coefficients: cont.A * p = cont.B
where p is a vector of the parameters. For
more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint
constants: cont.A * p = cont.B
where p is a vector of the parameters. For
more details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint
coefficients: cont.C * p >= cont.D
where p is a vector of the parameters. For
more details see Section 4.1.6.

7-50

Discrete Choice Analysis Tools 2.0
dc
C
on
di
tio
na
lL
og
it

cont.D M×1 vector, linear inequality constraint
constants: cont.C * p >= cont.D
where p is a vector of the parameters. For
more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes
the nonlinear equality constraints. When such
a procedure has been provided, it has two
input arguments, a PV parameter structure and
a DS data structure, and one output argument,
a vector of computed equality constraints. For
more details see Remarks below. Default =
{.}, i.e., no equality procedure. For more
details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes
the nonlinear inequality constraints. When
such a procedure has been provided, it has
two input arguments, a PV parameter structure
and a DS data structure, and one output
argument, a vector of computed inequality
constraints. For more details see Remarks
below. Default = {.}, i.e., no inequality
procedure. For more details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If
1×2 all parameters have same bounds. Default
= { -1e256 1e256 }. For more details see
Section 4.1.6.

cont.maxIters scalar, maximum number of iterations.
Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When
this criterion has been satisfied, sqpSolvemt
exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for
feasibility before computing function in line
search. If function is defined outside
inequality boundaries, then this test can be
turned off. Default = 1.

7 Discrete Choice Reference

7-51

dcC
onditionalLogit

cont.randRadius scalar, if zero, no random search is attempted.
If nonzero, it is the radius of the random
search. Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar
missing, trust region not applied. The trust
sets a maximum amount of the direction at
each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are
printed. Default = 0.

cont.printIters scalar, if nonzero, prints iteration information.
Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing
estimates.

b0 1 L×1 matrix, constant
in regression.

b 2 L×K matrix,
regression coefficients
(if any). Coefficients
associated with
reference category are
fixed to zeros.

gm 3 M×1 vector,
coefficients of attribute
variables

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a

7-52

Discrete Choice Analysis Tools 2.0
dc
C
on
di
tio
na
lL
og
it

single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par
can be described by

b = pvGetParNames(out.par);

if model does not contain a parameter,
pvUnpack returns a scalar missing value
with error code = 99.

out.vc NPARM×NPARM variance-covariance
matrix of coefficient estimates.

out.yDist L×1 vector, percentages of dependent
variable by category.

out.xData K×4 matrix, the means, standard
deviations, minimums, and maximums of
independent variables.

out.marginEffects L×1×K array, marginal effects of
independent variables by category of
dependent variable.

out.marginVC L×K×K array, covariance matrices of
marginal effects of independent variables
by category of dependent variable.

out.atmargineffects L×L×1×R array, marginal effects by
category of attribute variables by category
of dependent variable.

out.atmarginvc L×L×R×R array, covariance matrices of
marginal effects by category of attribute
variables by category of dependent
variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full

7 Discrete Choice Reference

7-53

dcC
onditionalLogit

model.

2 Log-Likelihood,
restricted model (all
slope coefficients equal
zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-
Squared.

8 Cragg and Uhler's
normed likelihood ratios
statistics.

9 Akaike information
criterion (AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn
Criterion.

12 Count R-Squared.

13 Adjusted Count R-
Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and
Lerman's Adjusted R-
square

7-54

Discrete Choice Analysis Tools 2.0
dc
C
on
di
tio
na
lL
og
it

Example

new;
cls;
library dc;

struct dcDesc d1;
d1 = dcDescCreate();

d1.yname = "Mode";
d1.catvarname = "choiceno";
d1.catNames = "train"$|"bus"$|"car";
d1.atnames = "ttme" $| "invc" $| "GC";

d1.noconstant = 1;

struct dcOut dcOut1;

dcOut1 = dcConditionalLogit("powersxie",d1,dcControlCreate());
call dcprt(dcOut1);

Source

dcclogit.src

dcMakeLogitNests

Purpose

Creates nests for nested logit regression.

Library

dc

Format

dcMakeLogitNests(&cont, numberNests);

7 Discrete Choice Reference

7-55

dcM
akeLogitN

ests

Input

&cont Pointer to an instance of a dcControl structure.

numberNests Scalar, number of nests to create.

Example

new;
cls;
library dc;

//Load data
loadm y=hensher_mat;

//Declare control structure
struct dcControl cont;

//Initialize dc control structure
cont = dcControlCreate();

//Step Two: Describe data
//Name of dependent variable
dcSetYVar(&cont,y[.,1]);
dcSetYLabel(&cont,"Mode");

//Y Category Labels
dcSetYCategoryLabels(&cont,"Air,Train,Bus,Car");

//Specify reference category (excluded)
dcSetReferenceCategory(&cont, "Car");

//Set-up nested levels
dcMakeLogitNests(&cont,2);

Source

setnests.src

7-56

Discrete Choice Analysis Tools 2.0
dc
M
ak
eL
og
itN

es
ts

dcMultinomialLogit

Purpose

Estimates the Multinomial Logit model.

Library

dc

Format

out = dcMultinomialLogit(data, desc, cont);

Input

data string or N×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data.

desc an instance of a dcDesc structure.

desc.yname name of dependent variable.

desc.yvar scalar, index of dependent variable. If data is
name of GAUSS dataset, either desc.yname or
desc.yvar may be specified. If data is matrix
of data, desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable,
otherwise 1 if numeric. Default = 1.

desc.xnames K×1 string vector, names of the independent
variable(s).

desc.xvars K×1 vector, indices of the independent variable
(s). If data is name of GAUSS dataset, either
desc.xnames or desc.xvars may be
specified. If data is matrix of data,
desc.xvars must be specified.

desc.catnames L×1 string vector, names of categories.

desc.refcat reference category. If desc.refcatName is
specified, desc.refcat is optional. Default =

7 Discrete Choice Reference

7-57

dcM
ultinom

ialLogit

1.

desc.refcatName string, reference category name. If
desc.refcat has been specified,
desc.refcatName is optional. Default =
desc.catnames[1].

desc.wgtname string, name of weight variable. If
desc.wgtvar is specified, the specification of
desc.wgtname is optional. Default = "".

desc.wgtvar scalar, index of weight variable. If
desc.wgtname is specified, the specification
of desc.wgtvar is optional. Default = 0.

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with
respect to independent variables; 0 - partial
probability with respect to mean x. Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting
values; if not provided,
dcMultinomialLogit computes start values.

b0 1 1×Lconstant in regression.

b 2 K×L regression coefficients
(if any). Coefficients
associated with reference
category are fixed to zeros.

For example:

struct dcControl cont;
cont = dcControlCreate;

b0 = { 0 1 1 };

b = { 0 .1 .1,
0 .1 .1 };

mask = { 0 1 1,

7-58

Discrete Choice Analysis Tools 2.0
dc
M
ul
tin
om

ia
lL
og
it

0 1 1,
0 1 1 };

cont.startValues =
pvPackmi(cont.startValues,
b0,"b0", mask[1,.], 1);

cont.startValues =
pvPackmi(cont.startValues,
b,"b", mask[2:3,.], 2);

cont.A M×K matrix, linear equality constraint
coefficients: cont.A * p = cont.B
where p is a vector of the parameters. For more
details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a
vector of the parameters. For more details see
Section 4.1.6.

cont.C M×K matrix, linear inequality constraint
coefficients: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint
constants: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a
vector of computed equality constraints. For
more details see Remarks below. Default = {.},
i.e., no equality procedure. For more details see
Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a

7 Discrete Choice Reference

7-59

dcM
ultinom

ialLogit

vector of computed inequality constraints. For
more details see Remarks below. Default = {.},
i.e., no inequality procedure. For more details
see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If
1×2 all parameters have same bounds. Default =
{ -1e256 1e256 }. For more details see Section
4.1.6.

cont.maxIters scalar, maximum number of iterations. Default =
1e+5.

cont.dirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When
this criterion has been satisfied, sqpSolvemt
exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for
feasibility before computing function in line
search. If function is defined outside inequality
boundaries, then this test can be turned off.
Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search.
Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar
missing, trust region not applied. The trust sets a
maximum amount of the direction at each
iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are
printed. Default = 0.

cont.printIters scalar, if nonzero, prints iteration information.
Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

7-60

Discrete Choice Analysis Tools 2.0
dc
M
ul
tin
om

ia
lL
og
it

b0 1 L×1 matrix, constant in
regression.

b 2 L×K matrix, regression
coefficients (if any).
Coefficients associated
with reference category
are fixed to zeros.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a
single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par
can be described by

b = pvGetParNames(out.par);

if model does not contain a parameter,
pvUnpack returns a scalar missing value with
error code = 99.

out.vc NPARM×NPARM variance-covariance matrix
of coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of
marginal effects of independent variables by
category of dependent variable.

7 Discrete Choice Reference

7-61

dcM
ultinom

ialLogit

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full
model.

2 Log-Likelihood, restricted
model (all slope
coefficients equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-
Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information
criterion (AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-
Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

7-62

Discrete Choice Analysis Tools 2.0
dc
M
ul
tin
om

ia
lL
og
it

Example

library dc;

struct dcDesc d1;
d1 = dcDescCreate();

d1.yname = "occatt";
d1.xnames = "exper" $| "educ" $| "white";
d1.catnames = "Menial" $| "BC" $| "craft" $| "WC" $| "Pro";

struct dcOut dcOut1;

dcOut1 = dcMultinomialLogit("gssocc",d1,dcControlCreate());

call dcprt(dcOut1);

Source

dcmnlogit.src

dcNegativeBinomial

Purpose

Estimates a negative binomial regression model.

Library

dc

Format

out = dcNegativeBinomial(data, desc, cont);

Input

data string or N×K matrix, if string, the name of a GAUSS data set or if matrix, matrix of data.

desc an instance of a dcDesc structure.

7 Discrete Choice Reference

7-63

dcN
egativeB

inom
ial

desc.yname name of dependent variable.

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified.
If data is matrix of data, desc.yvar must be specified.

desc.xnames K×1 string vector, names of the independent variable(s).

desc.xvars K×1 vector, indices of the independent variable(s). If data is
name of GAUSS dataset, either desc.xnames or
desc.xvars may be specified. If data is matrix of data,
desc.xvars must be specified.

desc.znames L×1 string vector, names of the exogenous variable(s), if any, for
zero-inflated model.

desc.zvars K×1 vector, indices of the exogenous variable(s), if any, for
zero-inflated model. If data is name of GAUSS dataset, either
desc.znames or desc.zvars may be specified. If data is
matrix of data, desc.zvars must be specified.

desc.timeName string, name of variable for inclusion as a fixed exogenous log-
variable. If desc.timeVar is specified, desc.timeName
is optional.

desc.timeVar reference category. If desc.refcatName is specified,
desc.refcat is optional. Default = 1.

desc.wgtname string, name of weight variable. If desc.wgtvar is specified,
the specification of desc.wgtname is optional. Default = "".

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional.
Default = 0.

desc.limited scalar, 0 - no censoring or truncation, 1 - truncated model, 2 -
censored model.

desc.lh scalar, value of left side truncation or censoring If the data are
truncated on the left, all values must be greater than or equal to
desc.lh (i.e. specify desc.lh = 1 if there are no zeros in
the dependent variable).

If the data are censored on the left, all values must be greater
than or equal to desc.lh.

desc.rh scalar value of right side truncation or censoring.

If the data are truncated on the right, all values must be less than
or equal to desc.rh.

7-64

Discrete Choice Analysis Tools 2.0
dc
N
eg
at
iv
eB

in
om

ia
l

If the data are censored on the left, all values must be less than
or equal to desc.rh.

desc.zeroInflated scalar, if nonzero a zero-inflated model is estimated. Mixture
probability can be a function of exogenous variables as specified
in desc.zvars.

desc.marginType scalar, 1 - average partial probability with respect to independent
variables; 0 - partial probability with respect to mean x. Default
= 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values; if not
provided, dcNegativeBinomial computes start values.

b0 1 constant in regression.

b 2 regression coefficients (if any).

alpha 3 dispersion parameter.

p0 4 constant in zero-inflated model.

p 5 coefficients in zero-inflated
model (if any

For example:

struct dcControl cont;
cont = dcControlCreate;

//Set parameter starting value matrices
b0 = .5;
b = { .1, .1, .1 };
a = .01;

//Pack parameter starting value matrices
cont.startValues =
pvPacki(cont.startValues,
b0,"b0",1);

cont.startValues =
pvPacki(cont.startValues,
b,"b",2);

cont.startValues =
pvPacki(cont.startValues,
a,"alpha",3);

cont.A M×K matrix, linear equality constraint coefficients: cont.A *
p = cont.B where p is a vector of the parameters. For more

7 Discrete Choice Reference

7-65

dcN
egativeB

inom
ial

details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants: cont.A * p
= cont.B where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint coefficients: cont.C
* p >= cont.D where p is a vector of the parameters. For
more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants: cont.C *
p >= cont.D where p is a vector of the parameters. For
more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided,
it has two input arguments, a PV parameter structure and a DS
data structure, and one output argument, a vector of computed
equality constraints. For more details see Remarks below.
Default = {.}, i.e., no equality procedure. For more details see
Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been
provided, it has two input arguments, a PV parameter structure
and a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see Remarks
below. Default = {.}, i.e., no inequality procedure. For more
details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all parameters
have same bounds. Default = { -1e256 1e256 }. For more details
see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has been
satisfied, sqpSolvemt exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined outside
inequality boundaries, then this test can be turned off. Default =
1.

cont.randRadius scalar, if zero, no random search is attempted. If nonzero, it is
the radius of the random search. Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust region

7-66

Discrete Choice Analysis Tools 2.0
dc
N
eg
at
iv
eB

in
om

ia
l

not applied. The trust sets a maximum amount of the direction at
each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are printed. Default = 0.

cont.printIters scalar, if nonzero, prints iteration information. Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

b0 1 constant in regression.

b 2 regression coefficients (if
any).

alpha 3 dispersion parameter.

p0 4 constant in zero-inflated
model.

p 5 coefficients in zero-inflated
model (if any

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix of

7 Discrete Choice Reference

7-67

dcN
egativeB

inom
ial

coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients
equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

7-68

Discrete Choice Analysis Tools 2.0
dc
N
eg
at
iv
eB

in
om

ia
l

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

struct dcDesc d1;
d1 = dcDescCreate();

d1.yname = "ACC";
d1.xnames = "TB" $| "TC" $| "TD" $| "TE" $|

"T6569" $| "T7074" $| "T7579" $| "O7579";
d1.timeName = "months";

struct dcOut dcOut1;

dcOut1 = dcNegativeBinomial("greenedata",d1,dcControlCreate());

call dcprt(dcOut1);

Source

dcnbin.src

7 Discrete Choice Reference

7-69

dcN
egativeB

inom
ial

dcNestedLogit

Purpose

Estimates the Conditional Logit model.

Library

dc

Format

out = dcNestedLogit(data, desc, cont);

Input

data string or N×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data.

desc an instance of a dcDesc structure.

desc.dataType scalar, if 1, the dataset contains a single row for
each observation and attribute variables are
stored in separate columns in that row. If 0,
category data are stored by row within
observation and attribute data are stored in
single columns.

desc.yname name of dependent variable.

desc.yvar scalar, index of dependent variable. If data is
name of GAUSS dataset, either desc.yname
or desc.yvar may be specified. If data is
matrix of data, desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable,
otherwise 1 if numeric. Default = 1.

desc.xnames K×1 string vector, names of the independent
variable(s).

desc.xvars K×1 vector, indices of the independent variable
(s). If data is name of GAUSS dataset, either

7-70

Discrete Choice Analysis Tools 2.0
dc
N
es
te
dL
og
it

desc.xnames or desc.xvars may be
specified. If data is matrix of data,
desc.xvars must be specified.

desc.catnames L×1 string vector, names of categories.

desc.refcat reference category. If desc.refcatName is
specified, desc.refcat is optional. Default
= 1.

desc.refcatName string, reference category name. If
desc.refcat has been specified,
desc.refcatName is optional. Default =
desc.catnames[1].

desc.level M×1 vector of instances of a dcLevel structure,
one for each level of the model.

desc.level
[m].catnames

string array,
names of categories.

desc.level
[m].atNames

if desc.datatype = 0,
string vector,

names of the attribute
variable(s). If
desc.level
[m].atVars is specified,
the specification of
desc.level
[m].atNames is
optional.

desc.level
[m].atVars

if desc.datatype = 0,
numeric vector,

indices of the attribute
variable(s). If
desc.level
[m].atNames is
specified, the specification
of desc.level
[m].atVars is optional.

desc.level
[m].nests

vector, category
number in the next higher

7 Discrete Choice Reference

7-71

dcN
estedLogit

level of each category at
this level. The highest
category does not contain
one.

desc.level
[m].atCatnames

string array,
names of categories in

GAUSS dataset of
attribute variables in level
m. Required only if
desc.datayype = 1. If
desc.level
[m].atCatnames is
specified, the specification
of desc.level
[m].atCatvars is
optional.

desc.wgtname string, name of weight variable. If
desc.wgtvar is specified, the specification
of desc.wgtname is optional. Default = "".

desc.wgtvar scalar, index of weight variable. If
desc.wgtname is specified, the specification
of desc.wgtvar is optional. Default = 0.

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with
respect to independent variables; 0 - partial
probability with respect to mean x. Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting
values; if not provided, dcNestedLogit
computes start values.

b0 1 1×Lvector, constant in
regression.

b 2 K×L matrix, regression
coefficients (if any).

7-72

Discrete Choice Analysis Tools 2.0
dc
N
es
te
dL
og
it

Coefficients associated
with reference category
are fixed to zero.

g1 3 vector,
coefficients of attribute
variables for first level.

g2 4 vector,
coefficients of attribute
variables for second level.
. . .

gM 2+M vector,
coefficients of attribute
variables for M-th level.

t2 3+M vector,
proportionality coefficients
for second level (first level
does not have these
coefficients).

t3 4+M vector,
proportionality coefficients
for third level (first level
does not have these
coefficients).
. . .

tM 2M+1 vector,
proportionality coefficients
for M-th level (first level
does not have these
coefficients).

For example:

struct dcControl cont;
cont = dcControlCreate();

//Set fourth category

7 Discrete Choice Reference

7-73

dcN
estedLogit

//as reference category
mask = { 1 1 1 0,

1 1 1 0,
1 1 1 0};

//Intercepts for four
//categories at first level
b0 = { 1 1 1 0};
cont.startValues =
pvPackmi(cont.startValues,
b0,"b0",mask[1,.],1);

//Two attribute variables
//at first level
g1 = { .1,

.1 };
cont.startValues =
pvPackmi(cont.startValues,
g1,"g1",mask[1:2,2],3);

//One attribute variable
//at second level
g2 = { .1 };
cont.startValues =
pvPackmi(cont.startValues,
g2,"g2",mask[1,3],4);

//Two category interaction
//terms
t2 = { .1,

.1 };
cont.startValues =
pvPackmi(cont.startValues,
t2,"t2",mask[1:2,2],5);

cont.A M×K matrix, linear equality constraint
coefficients: cont.A * p = cont.B
where p is a vector of the parameters. For more
details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint
constants: cont.A * p = cont.B where
p is a vector of the parameters. For more details
see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint

7-74

Discrete Choice Analysis Tools 2.0
dc
N
es
te
dL
og
it

coefficients: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint
constants: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a
vector of computed equality constraints. For
more details see Remarks below. Default = {.},
i.e., no equality procedure. For more details see
Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a
vector of computed inequality constraints. For
more details see Remarks below. Default = {.},
i.e., no inequality procedure. For more details
see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If
1×2 all parameters have same bounds. Default
= { -1e256 1e256 }. For more details see
Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default
= 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When
this criterion has been satisfied, sqpSolvemt
exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for
feasibility before computing function in line

7 Discrete Choice Reference

7-75

dcN
estedLogit

search. If function is defined outside inequality
boundaries, then this test can be turned off.
Default = 1.

cont.randRadius scalar, if zero, no random search is attempted.
If nonzero, it is the radius of the random
search. Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar
missing, trust region not applied. The trust sets
a maximum amount of the direction at each
iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are
printed. Default = 0.

cont.printIters scalar, if nonzero, prints iteration information.
Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing
estimates.

b0 1 1×Lvector,
constant in
regression.

b 2 K×L matrix,
regression
coefficients (if
any). Coefficients
associated with
reference category
are fixed to zero.

g1 3 vector,
coefficients of
attribute variables
for first level.

7-76

Discrete Choice Analysis Tools 2.0
dc
N
es
te
dL
og
it

g2 4 vector,
coefficients of
attribute variables
for second level.
. . .

gM 2+M
vector, coefficients
of attribute
variables for M-th
level.

t2 3+M
vector,
proportionality
coefficients for
second level (first
level does not
have these
coefficients).

t3 4+M
vector,
proportionality
coefficients for
third level (first
level does not
have these
coefficients).
. . .

tM 2M+1
vector,
proportionality
coefficients for M-
th level (first level
does not have
these coefficients).

To retrieve, e.g., regression
coefficients:

7 Discrete Choice Reference

7-77

dcN
estedLogit

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved
as a single parameter vector:

b = pvGetParVector
(out.par);

The location of the coefficients in
out.par can be described by

b = pvGetParNames
(out.par);

if model does not contain a parameter,
pvUnpack returns a scalar missing
value with error code = 99.

out.vc NPARM×NPARM variance-
covariance matrix of coefficient
estimates.

out.yDist L×1 vector, percentages of dependent
variable by category.

out.xData K×4 matrix, the means, standard
deviations, minimums, and
maximums of independent variables.

out.marginEffects L×1×K array, marginal effects of
independent variables by category of
dependent variable.

out.marginVC L×K×K array, covariance matrices of
marginal effects of independent
variables by category of dependent
variable.

out.atmargineffectsM×1 DS structure containing
arrays,

marginal effects by category of
attribute variables by categories at the

7-78

Discrete Choice Analysis Tools 2.0
dc
N
es
te
dL
og
it

m-th level.

out.atmarginvc M×1 DS structure containing
arrays,

covariance matrices of marginal
effects by category of attribute
variables by category of the m-th
level.

out.fittedVals N×1 matrix of predicted (fitted)
counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit
measures.

1 Log-Likelihood,
full model.

2 Log-Likelihood,
restricted model
(all slope
coefficients equal
zero.

3 Degrees of
freedom.

4 Chi-square
statistic.

5 Number of
Parameters.

6 McFadden's
Pseudo R-
Squared.

7 Madalla's Pseudo
R-Squared.

8 Cragg and Uhler's
normed likelihood
ratios statistics.

7 Discrete Choice Reference

7-79

dcN
estedLogit

9 Akaike
information
criterion (AIC).

10 Bayesian
information
criterion (BIC).

11 Hannon-Quinn
Criterion.

12 Count R-Squared.

13 Adjusted Count
R-Squared.

14 Agresti's G
squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and
Lerman's Adjusted
R-square

Example

new;
cls;
library dc;

struct dcDesc d1;
d1 = dcDescCreate();

d1.level = reshape(d1.level,2,1);

d1.yname = "Mode";
d1.catnames = "Air"$|"Train"$|"Bus"$|"Car";
d1.refcatName = "Car";

d1.level[1].atNames = "TTME"$|"GC";
d1.level[1].nests = { 1, 2, 2, 2 };

7-80

Discrete Choice Analysis Tools 2.0
dc
N
es
te
dL
og
it

d1.level[2].catNames = "Fly"$|"Ground";
d1.level[2].atNames = "airhinc";

struct dcout dcout1;

dcOut1 = dcNestedLogit("hensher",d1,dcControlCreate());
call dcprt(dcOut1);

Source

dcnlogit.src

dcOrderedLogit

Purpose

Estimates an ordered logit regression model.

Library

dc

Format

out = dcOrderedLogit(data, desc, cont);

Input

data string or N×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data.

desc an instance of a dcDesc structure.

desc.dataType scalar, if 1, the dataset contains a single row for
each observation and attribute variables are
stored in separate columns in that row. If 0,
category data are stored by row within
observation and attribute data are stored in
single columns.

desc.yname name of dependent variable.

7 Discrete Choice Reference

7-81

dcO
rderedLogit

desc.yvar scalar, index of dependent variable. If data is
name of GAUSS dataset, either desc.yname or
desc.yvar may be specified. If data is matrix
of data, desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable,
otherwise 1 if numeric. Default = 1.

desc.xnames K×1 string vector, names of the independent
variable(s).

desc.xvars K×1 vector, indices of the independent variable
(s). If data is name of GAUSS dataset, either
desc.xnames or desc.xvars may be
specified. If data is matrix of data,
desc.xvars must be specified.

desc.wgtname string, name of weight variable. If
desc.wgtvar is specified, the specification of
desc.wgtname is optional. Default = "".

desc.wgtvar scalar, index of weight variable. If
desc.wgtname is specified, the specification
of desc.wgtvar is optional. Default = 0.

desc.catnames L×1 string vector, names of categories.

desc.marginType scalar, 1 - average partial probability with
respect to independent variables; 0 - partial
probability with respect to mean x. Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting
values; if not provided, dcOrderedLogit
computes start values.

tau 1 thresholds.

b 2 regression coefficients (if
any).

For example:

struct dcControl cont;
cont = dcControlCreate;

7-82

Discrete Choice Analysis Tools 2.0
dc
O
rd
er
ed
Lo
gi
t

tau = { -5, -2 };
b = { .1, .1, .1 };
cont.startValues =
pvPacki(cont.startValues,
tau,"tau",1);

cont.startValues =
pvPacki(cont.startValues,
b,"b",2);

cont.A M×K matrix, linear equality constraint
coefficients: cont.A * p = cont.B
where p is a vector of the parameters. For more
details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a
vector of the parameters. For more details see
Section 4.1.6.

cont.C M×K matrix, linear inequality constraint
coefficients: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint
constants: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a
vector of computed equality constraints. For
more details see Remarks below. Default = {.},
i.e., no equality procedure. For more details see
Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS

7 Discrete Choice Reference

7-83

dcO
rderedLogit

data structure, and one output argument, a
vector of computed inequality constraints. For
more details see Remarks below. Default = {.},
i.e., no inequality procedure. For more details
see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If
1×2 all parameters have same bounds. Default =
{ -1e256 1e256 }. For more details see Section
4.1.6.

cont.maxIters scalar, maximum number of iterations. Default =
1e+5.

cont.dirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When
this criterion has been satisfied, sqpSolvemt
exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for
feasibility before computing function in line
search. If function is defined outside inequality
boundaries, then this test can be turned off.
Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search.
Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar
missing, trust region not applied. The trust sets a
maximum amount of the direction at each
iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are
printed. Default = 0.

cont.printIters scalar, if nonzero, prints iteration information.
Default = 0.

Output

out an instance of a dcOut structure

7-84

Discrete Choice Analysis Tools 2.0
dc
O
rd
er
ed
Lo
gi
t

out.par instance of PV structure containing estimates.

tau 1 thresholds.

b 2 regression coefficients (if
any).

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a
single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter,
pvUnpack returns a scalar missing value with
error code = 99.

out.vc NPARM×NPARM variance-covariance matrix
of coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

7 Discrete Choice Reference

7-85

dcO
rderedLogit

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full
model.

2 Log-Likelihood, restricted
model (all slope
coefficients equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-
Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information
criterion (AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-
Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

7-86

Discrete Choice Analysis Tools 2.0
dc
O
rd
er
ed
Lo
gi
t

Example

new;
cls;
library dc;

struct dcDesc d1;
d1 = dcDescCreate();

d1.yname = "ABC";
d1.xnames = "GPA"$|"TUCE"$|"PSI";

struct dcOut dcOut1;

dcOut1 = dcOrderedLogit("aldnel",d1,dcControlCreate());

call dcprt(dcOut1);

Source

dcord.src

dcOrderedProbit

Purpose

Estimates an ordered probit regression model.

Library

dc

Format

out = dcOrderedProbit(data, desc, cont);

Input

data string or N×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data.

7 Discrete Choice Reference

7-87

dcO
rderedP

robit

desc an instance of a dcDesc structure.

desc.yname name of dependent variable.

desc.yvar scalar, index of dependent variable. If data is
name of GAUSS dataset, either desc.yname or
desc.yvar may be specified. If data is matrix
of data, desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable,
otherwise 1 if numeric. Default = 1.

desc.xnames K×1 string vector, names of the independent
variable(s).

desc.xvars K×1 vector, indices of the independent variable
(s). If data is name of GAUSS dataset, either
desc.xnames or desc.xvars may be
specified. If data is matrix of data,
desc.xvars must be specified.

desc.catnames L×1 string vector, names of categories.

desc.wgtname string, name of weight variable. If
desc.wgtvar is specified, the specification of
desc.wgtname is optional. Default = "".

desc.wgtvar scalar, index of weight variable. If
desc.wgtname is specified, the specification
of desc.wgtvar is optional. Default = 0.

desc.marginType scalar, 1 - average partial probability with
respect to independent variables; 0 - partial
probability with respect to mean x. Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting
values; if not provided, dcOrderedProbit
computes start values.

tau 1 thresholds.

b 2 regression coefficients (if
any).

For example:

7-88

Discrete Choice Analysis Tools 2.0
dc
O
rd
er
ed
P
ro
bi
t

struct dcControl cont;
cont = dcControlCreate();
tau = { -5, -2 };
b = { .1, .1, .1 };
cont.startValues =
pvPacki(cont.startValues,
tau,"tau",1);

cont.startValues =
pvPacki(cont.startValues,
b,"b",2);

cont.A M×K matrix, linear equality constraint
coefficients: cont.A * p = cont.B
where p is a vector of the parameters. For more
details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a
vector of the parameters. For more details see
Section 4.1.6.

cont.C M×K matrix, linear inequality constraint
coefficients: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint
constants: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a
vector of computed equality constraints. For
more details see Remarks below. Default = {.},
i.e., no equality procedure. For more details see
Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a
procedure has been provided, it has two input

7 Discrete Choice Reference

7-89

dcO
rderedP

robit

arguments, a PV parameter structure and a DS
data structure, and one output argument, a
vector of computed inequality constraints. For
more details see Remarks below. Default = {.},
i.e., no inequality procedure. For more details
see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If
1×2 all parameters have same bounds. Default =
{ -1e256 1e256 }. For more details see Section
4.1.6.

cont.maxIters scalar, maximum number of iterations. Default =
1e+5.

cont.dirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When
this criterion has been satisfied, sqpSolvemt
exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for
feasibility before computing function in line
search. If function is defined outside inequality
boundaries, then this test can be turned off.
Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search.
Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar
missing, trust region not applied. The trust sets a
maximum amount of the direction at each
iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are
printed. Default = 0.

cont.printIters scalar, if nonzero, prints iteration information.
Default = 0.

7-90

Discrete Choice Analysis Tools 2.0
dc
O
rd
er
ed
P
ro
bi
t

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

tau 1 thresholds.

b 2 regression coefficients (if
any).

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix of
coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

7 Discrete Choice Reference

7-91

dcO
rderedP

robit

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients
equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

7-92

Discrete Choice Analysis Tools 2.0
dc
O
rd
er
ed
P
ro
bi
t

Example

new;
cls;
library dc;

struct dcDesc d1;
d1 = dcDescCreate();

d1.yname = "ABC";
d1.xnames = "GPA" $| "TUCE" $| "PSI";

struct dcOut dcOut1;

dcOut1 = dcOrderedProbit("aldnel",d1,dcControlCreate());

call dcprt(dcOut1);

Source

dcord.src

dcPoisson

Purpose

Estimates a Poisson regression model.

Library

dc

Format

out = dcPoisson(data, desc, cont);

Input

data string or N×K matrix, if string, the name of a GAUSS data set or if matrix,
matrix of data.

7 Discrete Choice Reference

7-93

dcP
oisson

desc an instance of a dcDesc structure.

desc.yname name of dependent variable.

desc.yvar scalar, index of dependent variable. If data is
name of GAUSS dataset, either desc.yname or
desc.yvar may be specified. If data is matrix
of data, desc.yvar must be specified.

desc.xnames K×1 string vector, names of the independent
variable(s).

desc.xvars K×1 vector, indices of the independent variable
(s). If data is name of GAUSS dataset, either
desc.xnames or desc.xvars may be
specified. If data is matrix of data,
desc.xvars must be specified.

desc.znames L×1 string vector, names of the exogenous
variable(s), if any, for zero-inflated model.

desc.zvars K×1 vector, indices of the exogenous variable
(s), if any, for zero-inflated model. If data is
name of GAUSS dataset, either desc.znames
or desc.zvars may be specified. If data is
matrix of data, desc.zvars must be specified.

desc.timeName string, name of variable for inclusion as a fixed
exogenous log-variable. If desc.timeVar is
specified, desc.timeName is optional.

desc.timeVar string, index of variable for inclusion as a fixed
exogenous log-variable. If desc.timeName is
specified, desc.timeVar is optional.

desc.wgtname string, name of weight variable. If
desc.wgtvar is specified, the specification of
desc.wgtname is optional. Default = "".

desc.wgtvar scalar, index of weight variable. If
desc.wgtname is specified, the specification
of desc.wgtvar is optional. Default = 0.

desc.limited scalar, 0 - no censoring or truncation, 1 -
truncated model, 2 - censored model.

7-94

Discrete Choice Analysis Tools 2.0
dc
P
oi
ss
on

desc.lh scalar, value of left side truncation or censoring. If
the data are truncated on the left, all values must
be greater than or equal to desc.lh (i.e., specify
desc.lh = 1 if there are no zeros in the
dependent variable).

If the data are censored on the left, all values must
be greater than or equal to desc.lh.

desc.rh scalar value of right side truncation or censoring. If
the data are truncated on the right, all values must
be greater than or equal to desc.rh (i.e., specify
desc.rh = 1 if there are no zeros in the
dependent variable).

If the data are censored on the right, all values
must be greater than or equal to desc.rh.

desc.zeroInflated scalar, if nonzero a zero-inflated model is
estimated. Mixture probability can be a function
of exogenous variables as specified in

desc.marginType scalar, 1 - average partial probability with
respect to independent variables; 0 - partial
probability with respect to mean x. Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting
values; if not provided, dcPoisson computes
start values.

b0 1 constant in regression.

b 2 regression coefficients (if
any).

p0 3 constant in zero-inflated
model.

p 4 coefficients in zero-inflated
model.

For example:

struct dcControl cont;
cont = dcControlCreate;
b0 = { .5 };

7 Discrete Choice Reference

7-95

dcP
oisson

b = { .1, .1, .1 };
cont.startValues =
pvPacki(cont.startValues,
b0,"b0",1);

cont.startValues =
pvPacki(cont.startValues,
b,"b",2);

cont.A M×K matrix, linear equality constraint
coefficients: cont.A * p = cont.B
where p is a vector of the parameters. For more
details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a
vector of the parameters. For more details see
Section 4.1.6.

cont.C M×K matrix, linear inequality constraint
coefficients: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint
constants: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a
vector of computed equality constraints. For
more details see Remarks below. Default = {.},
i.e., no equality procedure. For more details see
Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a
vector of computed inequality constraints. For

7-96

Discrete Choice Analysis Tools 2.0
dc
P
oi
ss
on

more details see Remarks below. Default = {.},
i.e., no inequality procedure. For more details
see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If
1×2 all parameters have same bounds. Default =
{ -1e256 1e256 }. For more details see Section
4.1.6.

cont.maxIters scalar, maximum number of iterations. Default =
1e+5.

cont.dirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When
this criterion has been satisfied, sqpSolvemt
exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for
feasibility before computing function in line
search. If function is defined outside inequality
boundaries, then this test can be turned off.
Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search.
Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar
missing, trust region not applied. The trust sets a
maximum amount of the direction at each
iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are
printed. Default = 0.

cont.printIters scalar, if nonzero, prints iteration information.
Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

7 Discrete Choice Reference

7-97

dcP
oisson

b0 1 constant in regression.

b 2 regression coefficients (if
any).

p0 3 constant in zero-inflated
model.

p 4 coefficients in zero-inflated
model.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix of
coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

7-98

Discrete Choice Analysis Tools 2.0
dc
P
oi
ss
on

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients
equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

7 Discrete Choice Reference

7-99

dcP
oisson

Example

new;
cls;
library dc;

struct dcDesc d1;
d1 = dcDescCreate();

d1.yname = "ACC";
d1.xnames = "TB" $| "TC" $| "TD" $| "TE" $| "T6569" $| "T7074" $|
"T7579" $| "O7579";
d1.timeName = "months";

struct dcOut dcOut1;

dcOut1 = dcPoisson("greenedata",d1,dcControlCreate());

call dcprt(dcOut1);

Source

dcpsn.src

dcprt

Purpose

Prints output from Discrete Choice Analysis Tools 2.0 procedures.

Library

dc

Format

out = dcprt(out);

7-100

Discrete Choice Analysis Tools 2.0
dc
pr
t

Input

out an instance of a dcOut structure.

Output

out an instance of a dcOut structure.

Remarks

The input argument is returned unchanged.

Source

dc.src

dcScale

Purpose

Used for data pre-scaling

Library

dc

Format

x_scaled = dcScale(data, method);

Input

data Matrix, data to be rescaled

method Scalar, indicator of scaling method to be implemented: [1] Z-Score
Normalization [2] [0,1] Min/Max Normalization [3] Scale by 1/sqrt(k)
where k=number features [4] Center data [5] Sigmoidal scale

7 Discrete Choice Reference

7-101

dcS
cale

Output

x_scaled Matrix, scaled data

Example

new;
cls;
library dc;
x = rndn(10,5);
x_scaled = dcScale(x,1);

print "x : " x ;
print ;
print "x_scaled : " x_scaled;

Source

logisticRegress.src

dcSetAttributeLabels

Purpose

Used to load labels for attributes variables for use in DC modeling procedures.

Library

dc

Format

dcSetAttributeLabels(&cont, atLabels);

Input

&cont Pointer to an instance of a dcControl structure.

7-102

Discrete Choice Analysis Tools 2.0
dc
S
et
A
ttr
ib
ut
eL
ab
el
s

atLabels String array, labels or GAUSS data set name of attribute variables.

Example

new;
cls;
library dc;

//Load data
loadm y = powersxie_mat;

//Declare control structure
struct dcControl cont;

//Load attribute label
dcSetAttributeLabels(&cont,"ttme,invc,invt,GC");

Remarks

The dcSetAttributeLabels procedure can be used to load data if a GAUSS data set has
been loaded for use.

Source

setdesc.src

dcSetAttributeVars

Purpose

Used to load a matrix of attribute variables for use in DC modeling procedures.

Library

dc

Format

dcSetAttributeVars(&cont, atVars);

7 Discrete Choice Reference

7-103

dcS
etA

ttributeV
ars

Input

&cont Pointer to an instance of a dcControl structure.

atVars Matrix, N x K observations of attribute data.

Example

new;
cls;
library dc;

//Load data
loadm y = powersxie_mat;

//Declare control structure
struct dcControl cont;

//Load attributes variable
dcSetAttributeVars(&cont,y[.,3:6]);

Remarks

The dcSetAttributeVars procedure must be used to load attribute data if working
directly from a data matrix. It is not required if a GAUSS data set has been loaded for use.

Source

setdesc.src

dcSetCategoryVar

Purpose

Used to load category data for analysis if category data is stored separately from
dependent data.

7-104

Discrete Choice Analysis Tools 2.0
dc
S
et
C
at
eg
or
yV

ar

Library

dc

Format

dcSetCategoryVar(&cont, categoryVar);

Input

&cont Pointer to an instance of a dcControl structure.

categoryVar Matrix, data matrix to be used as category variable.

Example

new;
cls;
library dc;

//Load data
loadm y = powersxie_mat;

//Declare control structure
struct dcControl cont;

//Load dependent categories label
dcSetCategoryVar(&cont,y[.,1]);

Source

setdesc.src

dcSetConstant

Purpose

Used to turn constant on or off for DC modeling procedures. Default on.

7 Discrete Choice Reference

7-105

dcS
etC

onstant

Library

dc

Format

dcSetConstant(&cont, setConstant);

Input

&cont Pointer to an instance of a dcControl structure.

setConstant String, constant setting either on or off.

Example

new;
cls;
library dc;

//Load data
loadm y = greenedata_mat;

//Declare control structure
struct dcControl cont;

//Load independent label
dcSetConstant(&cont,"off");

Source

setdesc.src

dcSetDataset

Purpose

Used to set GAUSS dataset name for use in modeling.

7-106

Discrete Choice Analysis Tools 2.0
dc
S
et
D
at
as
et

Library

dc

Format

dcSetDataset(&cont, datasetName);

Input

&cont Pointer to an instance of a dcControl structure.

datasetName String, GAUSS data set name.

Example

new;
cls;
library dc;
struct dcControl cont;
dcSetDataSet(&cont,"aldnel");

Source

setdesc.src

dcSetLogitNestAttributes

Purpose

Used to sort attributes into previously created nests for nested logit model.

Library

dc

7 Discrete Choice Reference

7-107

dcS
etLogitN

estA
ttributes

Format

dcSetLogitNestAttributes(&cont, nestNumber, attributeList);

Input

&cont Pointer to an instance of a dcControl structure.

nestNumber Scalar, nest level.

attributeList String Array, M x 1, list of nest specific attributes.

Example

new;
cls;
library dc;

//Load data
loadm y = hensher_mat;

//Step One: Declare dc control structure
struct dcControl cont;
//Initialize dc control structure
cont = dcControlCreate();

//Step Two: Describe data
//Name of dependent variable
dcSetYVar(&cont,y[.,1]);
dcSetYLabel(&cont,"Mode");

//Y Category Labels
dcSetYCategoryLabels(&cont,"Air,Train,Bus,Car");
//Specify reference category (excluded)
dcSetReferenceCategory(&cont, "Car");

//Name of independent variable
varlist = "TTME,GC,AIRHINC";
dcSetAttributeVars(&cont,y[.,2]~y[.,5]~y[.,8]);
dcSetAttributeLabels(&cont,"TTME,GC,AIRHINC");

//Set-up nested levels
dcMakeLogitNests(&cont,2);

7-108

Discrete Choice Analysis Tools 2.0
dc
S
et
Lo
gi
tN
es
tA
ttr
ib
ut
es

//Set attributes and categories for lower nest (Nest One)
dcSetLogitNestAttributes(&cont,1,"TTME,GC");
dcSetLogitNestCategories(&cont,1,"Air,Train,Bus,Car");

//Set attributes and categories for lower nest (Nest Two)
dcSetLogitNestAttributes(&cont,2,"AIRHINC");
dcSetLogitNestCategories(&cont,2,"Fly,Ground");

Remark

Prior to using dcSetLogitNestAttributes nests must be created using
dcMakeLogitNests.

Source

setnests.src

dcSetLogitNestCategories

Purpose

Used to specify outcome categories within a nest.

Library

dc

Format

dcSetLogitNestCategories(&cont, nestNumber, attributeList);

Input

&cont Pointer to an instance of a dcControl structure.

nestNumber Scalar, nest level.

categories String Array, M x 1, list of categorical outcomes of dependent data
within a specified nest.

7 Discrete Choice Reference

7-109

dcS
etLogitN

estC
ategories

Example

new;
cls;
library dc;

//Load data
loadm y=hensher_mat;

//Step One: Declare dc control structure
struct dcControl cont;
//Initialize dc control structure
cont = dcControlCreate();

//Step Two: Describe data
//Name of dependent variable
dcSetYVar(&cont,y[.,1]);
dcSetYLabel(&cont,"Mode");

//Y Category Labels
dcSetYCategoryLabels(&cont,"Air,Train,Bus,Car");
//Specify reference category (excluded)
dcSetReferenceCategory(&cont, "Car");

//Name of independent variable
varlist = "TTME,GC,AIRHINC";
dcSetAttributeVars(&cont,y[.,2]~y[.,5]~y[.,8]);
dcSetAttributeLabels(&cont,"TTME,GC,AIRHINC");

//Set-up nested levels
dcMakeLogitNests(&cont,2);

//Set attributes and categories for lower nest (Nest One)
dcSetLogitNestAttributes(&cont,1,"TTME,GC");
dcSetLogitNestCategories(&cont,1,"Air,Train,Bus,Car");

//Set attributes and categories for lower nest (Nest Two)
dcSetLogitNestAttributes(&cont,2,"AIRHINC");
dcSetLogitNestCategories(&cont,2,"Fly,Ground");

Remark

Prior to using dcSetLogitNestCategories, nests must be created using
dcMakeLogitNests and attributes must be placed in nests using

7-110

Discrete Choice Analysis Tools 2.0
dc
S
et
Lo
gi
tN
es
tC
at
eg
or
ie
s

dcSetLogitNestAttributes.

Source

setnests.src

dcSetReferenceCategory

Purpose

Sets dependent variable category to be omitted from estimation as a reference category.

Library

dc

Format

dcSetReferenceCategory(&cont, refCategory);

Input

&cont Pointer to an instance of a dcControl structure.

refCategory String or matrix index, either variable label or index.

Example

new;
cls;
library dc;

//Load data
loadm y = gssocc_mat;

//Declare control structure
struct dcControl cont;

//Dependent variable categories
dcSetYCategoryLabels(&cont,"Menial,BC,Craft,WC,Pro");

7 Discrete Choice Reference

7-111

dcS
etR

eferenceC
ategory

//Set reference label
dcSetReferenceCategory(&cont,"Menial");

Remark

Prior to using dcSetReferenceCategory the dependent variable category names must be
set using dcSetYCategoryLabels.

Source

setdesc.src

dcSetTimeLabel

Purpose

Used to load labels for independent variables for use in DC modeling procedures.

Library

dc

Format

dcSetTimeLabel(&cont, tLabel);

Input

&cont Pointer to an instance of a dcControl structure.

tLabel String, label or GAUSS data set name of time variable.

Example

new;
cls;
library dc;

7-112

Discrete Choice Analysis Tools 2.0
dc
S
et
T
im
eL
ab
el

//Load data
loadm y = greenedata_mat;

//Declare control structure
struct dcControl cont;

//Load independent label
dcSetTimeLabel(&cont,"month");

Remarks

The dcSetTimeLabel procedure can be used to load data if a GAUSS data set has been loaded
for use.

Source

setdesc.src

dcSetTimeVar

Purpose

Used to load time variable for use in DC count modeling procedures.

Library

dc

Format

dcSetTimeVar(&cont, tVar);

Input

&cont Pointer to an instance of a dcControl structure.

tVar Matrix, N x 1 observations of time variable.

7 Discrete Choice Reference

7-113

dcS
etT

im
eV

ar

Example

new;
cls;
library dc;

//Load data
loadm y = gssocc_mat;

//Declare control structure
struct dcControl cont;

//Load time variable
dcSetTimeVar(&cont,y[.,8]);

Remarks

The dcSetTimeVar procedure must be used to load data if working directly from a data
matrix. It is not required if a GAUSS data set has been loaded for use.

Source

setdesc.src

dcSetWeightLabels

Purpose

Sets which independent variables, if any, to be weighted during analysis.

Library

dc

Format

dcSetWeightLabels(&cont, wLabels);

7-114

Discrete Choice Analysis Tools 2.0
dc
S
et
W
ei
gh
tL
ab
el
s

Input

&cont Pointer to an instance of a dcControl structure.

wLabels String, variable labels.

Example

new;
cls;
library dc;

//Load data
loadm y = hensher_mat;

//Declare control structure
struct dcControl cont;

//Name of independent variable
dcSetAttributeVars(&cont,y[.,2]~y[.,5]~y[.,8]);
dcSetAttributeLabels(&cont,"TTME,GC,AIRHINC");

//Set weighted variables
dcSetWeightLabels(&cont,"TTME");

Remarks

Note that the independent variable labels must be set prior to setting weight variables.

Source

setdesc.src

dcSetXLabels

Purpose

Used to load labels for independent variables for use in DC modeling procedures.

7 Discrete Choice Reference

7-115

dcS
etX

Labels

Library

dc

Format

dcSetXLabels(&cont, xLabels);

Input

&cont Pointer to an instance of a dcControl structure.

xLabels String array, labels or GAUSS data set name of independent variable.

Example

new;
cls;
library dc;

//Load data
loadm y = gssocc_mat;

//Declare control structure
struct dcControl cont;

//Load independent label
dcSetXLabels(&cont,"TUCE,GPA,PSI");

Remarks

The dcSetXLabels procedure can be used to load data if a GAUSS data set has been loaded
for use.

Source

setdesc.src

7-116

Discrete Choice Analysis Tools 2.0
dc
S
et
X
La
be
ls

dcSetXVars

Purpose

Used to load a matrix of independent variables for use in DC modeling procedures.

Library

dc

Format

dcSetXVars(&cont, x);

Input

&cont Pointer to an instance of a dcControl structure.

x Matrix, N x K matrix of observations of independent variables.

Example

new;
cls;
library dc;

//Load data
loadm y = gssocc_mat;

//Declare control structure
struct dcControl cont;

//Load dependent variable
dcSetXVars(&cont,y[.,2:4]);

Remarks

The dcSetXVars procedure must be used to load data if working directly from a data matrix. It
is not required if a GAUSS data set has been loaded for use.

7 Discrete Choice Reference

7-117

dcS
etX

V
ars

Source

setdesc.src

dcSetYCategoryLabels

Purpose

Used to load category labels for dependent variable for use in DC modeling procedures.

Library

dc

Format

dcSetYCategoryLabels(&cont, yCategoryLabel);

Input

&cont Pointer to an instance of a dcControl structure.

yCategoryLabel String array, category labels of dependent variable.

Example

new;
cls;
library dc;

//Load data
loadm y = gssocc_mat;

//Declare control structure
struct dcControl cont;

//Load dependent categories label
dcSetYCategoryLabels(&cont,"occ");

7-118

Discrete Choice Analysis Tools 2.0
dc
S
et
Y
C
at
eg
or
yL
ab
el
s

Source

setdesc.src

dcSetYLabel

Purpose

Used to load label for dependent variable for use in DC modeling procedures.

Library

dc

Format

dcSetYLabel(&cont, yLabel);

Input

&cont Pointer to an instance of a dcControl structure.

yLabel String, label or GAUSS data set name of dependent variable.

Example

new;
cls;
library dc;

//Load data
loadm y = gssocc_mat;

//Declare control structure
struct dcControl cont;

//Load dependent label
dcSetYLabel(&cont,"mode");

7 Discrete Choice Reference

7-119

dcS
etY

Label

Remarks

The dcSetYLabel procedure can be used to load data if a GAUSS data set has been loaded
for use.

Source

setdesc.src

dcSetYVar

Purpose

Used to load a vector of dependent variables for use in DC modeling procedures.

Library

dc

Format

dcSetYVar(&cont, y);

Input

&cont Pointer to an instance of a dcControl structure.

y Matrix, N x 1 vector of observations of dependent variable.

Example

new;
cls;
library dc;

//Load data
loadm y = gssocc_mat;

//Declare control structure

7-120

Discrete Choice Analysis Tools 2.0
dc
S
et
Y
V
ar

struct dcControl cont;

//Load dependent variable
dcSetYVar(&cont,y[.,1]);

Remarks

The dcSetYVar procedure must be used to load data if working directly from a data matrix. It is
not required if a GAUSS data set has been loaded for use.

Source

setdesc.src

dcStereo

Purpose

Estimates the Stereotype Multinomial Logit model.

Library

dc

Format

out = dcStereo(data, desc, cont);

Input

data string or N×K matrix, if string, the name of a GAUSS data set or if matrix,
matrix of data.

desc an instance of a dcDesc structure.

desc.yname name of dependent variable.

desc.yvar scalar, index of dependent variable. If data is
name of GAUSS dataset, either desc.yname or
desc.yvar may be specified. If data is matrix

7 Discrete Choice Reference

7-121

dcS
tereo

of data, desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable,
otherwise 1 if numeric. Default = 1.

desc.xnames K×1 string vector, names of the independent
variable(s).

desc.xvars K×1 vector, indices of the independent variable
(s). If data is name of GAUSS dataset, either
desc.xnames or desc.xvars may be
specified. If data is matrix of data,
desc.xvars must be specified.

desc.catnames L×1 string vector, names of categories.

desc.refcat reference category. If desc.refcatName is
specified, desc.refcat is optional. Default =
1.

desc.refcatName string, reference category name. If
desc.refcat has been specified,
desc.refcatName is optional. Default =
desc.catnames[1]

desc.wgtname string, name of weight variable. If
desc.wgtvar is specified, the specification of
desc.wgtname is optional. Default = "".

desc.wgtvar scalar, index of weight variable. If
desc.wgtname is specified, the specification
of desc.wgtvar is optional. Default = 0.

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with
respect to independent variables; 0 - partial
probability with respect to mean x. Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting
values; if not provided, dcStereo computes
start values.

b0 1 1×L vector, constants in
regression.

7-122

Discrete Choice Analysis Tools 2.0
dc
S
te
re
o

b 2 K×1 vector, regression
coefficients.

For example:

struct dcControl cont;
cont = dcControlCreate;
b0 = 1;
b = { .1, .2 };
d = .01;
cont.startValues =
pvPacki(cont.startValues,
b0,"b0",1);

cont.startValues =
pvPacki(cont.startValues,
b,"b",2);

cont.startValues =
pvPacki(cont.startValues,
d,"distance",3);

cont.A M×K matrix, linear equality constraint
coefficients: cont.A * p = cont.B
where p is a vector of the parameters. For more
details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a
vector of the parameters. For more details see
Section 4.1.6.

cont.C M×K matrix, linear inequality constraint
coefficients: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint
constants: cont.C * p >= cont.D
where p is a vector of the parameters. For more
details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a

7 Discrete Choice Reference

7-123

dcS
tereo

vector of computed equality constraints. For
more details see Remarks below. Default = {.},
i.e., no equality procedure. For more details see
Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS
data structure, and one output argument, a
vector of computed inequality constraints. For
more details see Remarks below. Default = {.},
i.e., no inequality procedure. For more details
see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If
1×2 all parameters have same bounds. Default =
{ -1e256 1e256 }. For more details see Section
4.1.6.

cont.maxIters scalar, maximum number of iterations. Default =
1e+5.

cont.dirTol scalar, convergence tolerance for gradient of
estimated coefficients. Default = 1e-5. When
this criterion has been satisfied, resolvent
exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for
feasibility before computing function in line
search. If function is defined outside inequality
boundaries, then this test can be turned off.
Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search.
Default = 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar
missing, trust region not applied. The trust sets a
maximum amount of the direction at each
iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are

7-124

Discrete Choice Analysis Tools 2.0
dc
S
te
re
o

printed. Default = 0.

cont.printIters scalar, if nonzero, prints iteration information.
Default = 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

b0 1 constant in regression.

b 2 regression coefficients.

distance 3 distance coefficients.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix of
coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

7 Discrete Choice Reference

7-125

dcS
tereo

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients
equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-Squared.

14 Agresti's G squared.

15 Success.

7-126

Discrete Choice Analysis Tools 2.0
dc
S
te
re
o

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

struct dcDesc d1;
d1 = dcDescCreate();

d1.yVar = 1;
d1.xVars = { 2,3,4 };

struct dcOut dcOut1;

dcOut1 = dcStereo("aldnel",d1,dcControlCreate());

call dcprt(dcOut1);

Source

dcstereo.src

logisticRegress

Purpose

Perform linear classification using logistic regression.

Library

dc

Format

out = logisticRegress(lCtl, y, x);

7 Discrete Choice Reference

7-127

logisticR
egress

Input

lCtl an instance of a lrControl structure:

lctl.solverType Matrix, scalar indicator of classification
problem. If non-scalar, crossValidation
must be non-zero and will select the highest cv-
accuracy solver:

0 L2-regularized logistic regression,

1 L2-regularized logistic regression,
L2 loss SVC dual,

2 L2-regularized logistic regression,
L2 loss SVC,

3 L2-regularized logistic regression,
L1 loss SVC dual,

4 MCSVM CS,

5 L1R, L2 loss SVC,

6 L1R, logistic regression,

7 L2R, logistic regression dual,

11 L2R, L2 loss SVR regression model,

12 L2 loss SVR regression model,

13 L2R, L1 loss SVR dual

lctl.eps Scalar, the stopping condition for
KKT approximation algorithm.

lctl.C Matrix, loss function penalty
parameter. If non-scalar,
crossValidation must be non-
zero and the highest cross-validation
accuracy is used to select optimal C.
Values of C<0 are not permissible.
Default=1.

lctl.p Scalar, loss function tolerance.

lctl.bias Scalar, 0 or 1. If set to 1, a bias

7-128

Discrete Choice Analysis Tools 2.0
lo
gi
st
ic
R
eg
re
ss

feature will be added to the end of
the incoming 'x' matrix. This bias
feature will be a vector of ones.
Default=1.

lctl.crossValidation Scalar, specifies number of folds for
k-fold cross-validation. If equal to 0
no cross-validation.

lctl.predict Scalar, indicator variable to conduct
post-estimation prediction.
Default=0.

lctl.plotPredict Scalar, indicator variable to plot post-
estimation predictions. Default=0.

lctl.printOutput Scalar, indicator variable to print
output to screen. Default=1.

lctl.scaleX Scalar, indicator parameter for pre-
estimation data scaling method.
Default=2.

0 No scaling,

1 Z-Score normalization,

2 [0,1] Min/Max normalization.
[Default]

3 Scale by 1/sqrt(k) where k=number
features.

4 Center data.

5 Sigmoidal scale.

Output

lrOut.weights Matrix, estimated weights for specified independent variables.

lrOut.yPredict Matrix, predicted observations using estimated weights and data
matrix.

lrOut.probability Matrix, probabilities from logistic regression used to for
determining predicted y classifications.

7 Discrete Choice Reference

7-129

logisticR
egress

lrOut.cvAccuracy Matrix, cross-validation prediction accuracy.

lrOut.predictionAccuracyScalar, full sample prediction accuracy.

lrOut.optimalC Scalar, optimal C based on highest cross-validation accuracy.

lrOut.optimalSolver Scalar, optimal solver based on highest cross-validation accuracy.

Example

new;
cls;
library dc;

load diabetes = "diabetes.fmt";
y = diabetes[.,9];
x = diabetes[.,1:8];

//Declare and lrControl structure
struct lrControl lCtl;

//Initialize lrControl structure
lCtl = lrGetDefaults();

//Set solver to the L2R_L2LOSS_SVC_DUAL
lctl.solverType = 3;

//Set cross-validation to zero folds
lctl.crossValidation = 0;

//Turn on prediction
lctl.predict = 1;

//Turn on prediction plot
lctl.plotPredict = 1;

//Step Three: Declare lrOut structure
struct lrOut lOut;

//Step Four: Call logisticRegress
lOut = logisticRegress(lctl, y, x);

7-130

Discrete Choice Analysis Tools 2.0
lo
gi
st
ic
R
eg
re
ss

Source

logisticRegress.src

multinomialLogit

Purpose

Estimates the Multinomial Logit model.

Library

dc

Format

out = multinomialLogit(cont);

Input

cont an instance of a dcControl structure.

cont.myData an instance of a dcData structure containing the
elements:

cont.myData.yData Matrix, binary
choice variable with
a {0,1} value.

cont.myData.xData Matrix, continuous or
discrete independent
variables used in regression.
This matrix holds all data
which can be classified as
characteristics of the
individual decision makers.
This data does no vary with
outcomes but rather with
individuals.

cont.myData.categoryDataMatrix, discrete
categorical data.

7 Discrete Choice Reference

7-131

m
ultinom

ialLogit

cont.myData.attributes Matrix, continuous
or discrete
independent
variables which are
features of the choice
variable. This matrix
houses data that is
choice specific and is
used only in
conditional logit and
nested logit models.

cont.myData.wgtVariablesMatrix, houses
weight variable.

cont.startValues instance of PV structure containing starting values; if not
provided, adjacentCategories computes start
values.

b0 1 L matrix, constants
in regression.

b 2 K×L matrix,
regression
coefficients (if any).
Coefficients
associated with
reference category
are fixed to zeros.

For example:

struct dcControl cont;
cont = dcControlCreate();

b0 = { 0 1 1 };

b = { 0 .1 .1,
0 .1 .1 };

mask = { 0 1 1,
0 1 1,
0 1 1 };

cont.startValues =

7-132

Discrete Choice Analysis Tools 2.0
m
ul
tin
om

ia
lL
og
it

pvPackmi(cont.startValues,
b0,"b0",mask[1,.],1);

cont.startValues =
pvPackmi(cont.startValues,
b,"b",mask[1:2,.],2);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of
the parameters. For more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed equality
constraints. For more details see Remarks below.
Default = {.}, i.e., no equality procedure. For more
details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed inequality
constraints. For more details see Remarks below.
Default = {.}, i.e., no inequality procedure. For more
details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256
1e256 }. For more details see Section 4.1.6.

7 Discrete Choice Reference

7-133

m
ultinom

ialLogit

cont.maxIters scalar, maximum number of iterations. Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has
been satisfied, resolvent exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is
defined outside inequality boundaries, then this test can
be turned off. Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default =
0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount of
the direction at each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are printed.
Default = 0.

cont.printIters scalar, if nonzero, prints iteration information. Default =
0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

b0 1 L×1 matrix, constant in
regression.

b 2 L×K matrix, regression
coefficients (if any).
Coefficients associated
with reference category
are fixed to zeros.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

7-134

Discrete Choice Analysis Tools 2.0
m
ul
tin
om

ia
lL
og
it

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a
single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par
can be described by

b = pvGetParNames(out.par);

if model does not contain a parameter,
pvUnpack returns a scalar missing value with
error code = 99.

out.vc NPARM×NPARM variance-covariance matrix
of coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of
marginal effects of independent variables by
category of dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full
model.

2 Log-Likelihood, restricted
model (all slope
coefficients equal zero.

3 Degrees of freedom.

7 Discrete Choice Reference

7-135

m
ultinom

ialLogit

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-
Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information
criterion (AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-
Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

//Step One: Declare dc control structure
struct dcControl dcCt;

//Initialize dc control structure
dcCt = dcControlCreate();

7-136

Discrete Choice Analysis Tools 2.0
m
ul
tin
om

ia
lL
og
it

//Load data
loadm y = gssocc_mat;

//Step Two: Describe data names
//Name of dependent variable

dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt,"occatt");
dcSetYCategoryLabels(&dcCt,"Menial,BC,Craft,WC,Pro");

//Reference category excluded from regression
dcSetReferenceCategory(&dcCt,"Menial");

//Name of independent variable
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"exper,educ,white");

//Step Three: Declare dcOut struct
struct dcOut dcOut1;

//Step Four: Call multinomialLogit
dcOut1 = multinomialLogit(dcCt);

call printDCOut(dcOut1);

Source

dcmnlogit.src

negativeBinomial

Purpose

Estimates a negative binomial regression model.

Library

dc

Format

out = negativeBinomial(cont);

7 Discrete Choice Reference

7-137

negativeB
inom

ial

Input

cont an instance of a dcControl structure.

cont.myData an instance of a dcData structure containing the
elements:

cont.myData.yData Matrix, binary
choice variable
with a {0,1} value.

cont.myData.xData Matrix, continuous or
discrete independent
variables used in
regression. This matrix
holds all data which can be
classified as characteristics
of the individual decision
makers. This data does no
vary with outcomes but
rather with individuals.

cont.myData.categoryDataMatrix, discrete
categorical data.

cont.myData.attributes Matrix, continuous
or discrete
independent
variables which are
features of the
choice variable.
This matrix houses
data that is choice
specific and is used
only in conditional
logit and nested
logit models.

cont.myData.wgtVariablesMatrix, houses
weight variable.

cont.startValues instance of PV structure containing starting values; if
not provided, negativeBinomial computes start
values.

7-138

Discrete Choice Analysis Tools 2.0
ne
ga
tiv
eB

in
om

ia
l

b0 1 L matrix,
constants in
regression.

b 2 K×L matrix,
regression
coefficients (if
any). Coefficients
associated with
reference category
are fixed to zeros.

For example:

struct dcControl cont;
cont = dcControlCreate();

b0 = { 0 1 1 };

b = { 0 .1 .1,
0 .1 .1 };

mask = { 0 1 1,
0 1 1,
0 1 1 };

cont.startValues =
pvPackmi(cont.startValues,
b0,"b0",mask[1,.],1);

cont.startValues =
pvPackmi(cont.startValues,
b,"b",mask[1:2,.],2);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of
the parameters. For more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants:

7 Discrete Choice Reference

7-139

negativeB
inom

ial

cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed equality
constraints. For more details see Remarks below.
Default = {.}, i.e., no equality procedure. For more
details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of
computed inequality constraints. For more details see
Remarks below. Default = {.}, i.e., no inequality
procedure. For more details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256
1e256 }. For more details see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default =
1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has
been satisfied, resolvent exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is
defined outside inequality boundaries, then this test
can be turned off. Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default
= 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount
of the direction at each iteration. Default = 0.001.

7-140

Discrete Choice Analysis Tools 2.0
ne
ga
tiv
eB

in
om

ia
l

cont.output scalar, if nonzero, optimization results are printed.
Default = 0.

cont.printIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

b0 1 L×1 matrix, constant in
regression.

b 2 L×K matrix, regression
coefficients (if any).
Coefficients associated with
reference category are fixed
to zeros.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix
of coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable

7 Discrete Choice Reference

7-141

negativeB
inom

ial

by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients
equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-
Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

7-142

Discrete Choice Analysis Tools 2.0
ne
ga
tiv
eB

in
om

ia
l

12 Count R-Squared.

13 Adjusted Count R-Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

//Step One: Declare dc control structure
struct dcControl dcCt;

//Initialize dc control structure
dcCt = dcControlCreate();

//Specify GAUSS data set
dcSetDataSet(&dcCt,"couart");

//Step Two: Describe data names
//Dependent count data
dcSetYLabel(&dcCt,"ART");

//Independent data
dcSetXLabels(&dcCt,"FEM,MENT,PHD,MAR,KID5");

//Step Three: Declare dcOut struct
struct dcOut dcOut1;

//Step Four: Call negativeBinomial
dcOut1 = negativeBinomial(dcCt);

call printDCOut(dcOut1);

Source

dcnbin.src

7 Discrete Choice Reference

7-143

negativeB
inom

ial

nestedLogit

Purpose

Estimates the Conditional Logit model.

Library

dc

Format

out = nestedLogit(cont);

Input

con
t

an instance of a dcControl structure.

cont.myData an instance of a dcData structure containing the
elements:

cont.myData.yData Matrix, binary choice
variable with a {0,1}
value.

cont.myData.xData Matrix, continuous or
discrete independent
variables used in regression.
This matrix holds all data
which can be classified as
characteristics of the
individual decision makers.
This data does no vary with
outcomes but rather with
individuals.

cont.myData.categoryDat
a

Matrix, discrete
categorical data.

cont.myData.attributes Matrix, continuous or
discrete independent

7-144

Discrete Choice Analysis Tools 2.0
ne
st
ed
Lo
gi
t

variables which are
features of the choice
variable. This matrix
houses data that is
choice specific and is
used only in
conditional logit and
nested logit models.

cont.myData.wgtVariable
s

Matrix, houses weight
variable.

cont.startValues instance of PV structure containing starting values; if not
provided, nestedLogit computes start values.

b0 1 L matrix, constants
in regression.

b 2 K×L matrix,
regression coefficients
(if any). Coefficients
associated with
reference category are
fixed to zeros.

For example:

struct dcControl cont;
cont = dcControlCreate();

//Set fourth category
//as reference category
mask = { 1 1 1 0,

1 1 1 0,
1 1 1 0};

//Intercepts for four categories
//at first level
b0 = { 1 1 1 0};
cont.startValues =
pvPackmi(cont.startValues,
b0,"b0",mask[1,.], 1);

//Two attribute variables

7 Discrete Choice Reference

7-145

nestedLogit

//at first level
g1 = { .1,

.1 };
cont.startValues =
pvPackmi(cont.startValues,
g1,"g1",mask[1:2,2], 3);

//One attribute variable
//at second level
g2 = { .1 };
cont.startValues =
pvPackmi(cont.startValues,
g2,"g2",mask[1,3], 4);

//Two category interaction terms
t2 = { .1,

.1 };
cont.startValues =
pvPackmi(cont.startValues,
t2,"t2",mask[1:2,2], 5);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of the
parameters. For more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a vector of the
parameters. For more details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed equality
constraints. For more details see Remarks below.
Default = {.}, i.e., no equality procedure. For more
details see Section 4.1.6.

7-146

Discrete Choice Analysis Tools 2.0
ne
st
ed
Lo
gi
t

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed inequality
constraints. For more details see Remarks below.
Default = {.}, i.e., no inequality procedure. For more
details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256
1e256 }. For more details see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has
been satisfied, resolvent exits the iterations.

cont.feasibleTes
t

scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is
defined outside inequality boundaries, then this test can
be turned off. Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default =
0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount of
the direction at each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are printed.
Default = 0.

cont.printIters scalar, if nonzero, prints iteration information. Default =
0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

7 Discrete Choice Reference

7-147

nestedLogit

b0 1 1×Lvector, constant in
regression.

b 2 K×L matrix, regression
coefficients (if any).
Coefficients associated
with reference category
are fixed to zero.

g1 3 vector,
coefficients of attribute
variables for first level.

g2 4 vector,
coefficients of attribute
variables for second level.

. . .

gM 2+M vector,
coefficients of attribute
variables for M-th level.

t2 3+M vector,
proportionality
coefficients for second
level (first level does not
have these coefficients).

t3 4+M vector,
proportionality
coefficients for third level
(first level does not have
these coefficients).
. . .

tM 2M+1 vector,
proportionality
coefficients for M-th level
(first level does not have
these coefficients).

To retrieve, e.g., regression coefficients:

7-148

Discrete Choice Analysis Tools 2.0
ne
st
ed
Lo
gi
t

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a
single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par
can be described by

b = pvGetParNames(out.par);

if model does not contain a parameter,
pvUnpack returns a scalar missing value with
error code = 99.

out.vc NPARM×NPARM variance-covariance
matrix of coefficient estimates.

out.yDist L×1 vector, percentages of dependent
variable by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of
marginal effects of independent variables by
category of dependent variable.

out.atmargineffectsM×1 DS structure containing
arrays, marginal

effects by category of attribute variables by
categories at the m-th level.

out.atmarginvc M×1 DS structure containing
arrays,

covariance matrices of marginal effects by
category of attribute variables by category of

7 Discrete Choice Reference

7-149

nestedLogit

the m-th level.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full
model.

2 Log-Likelihood, restricted
model (all slope
coefficients equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-
Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information
criterion (AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-
Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's

7-150

Discrete Choice Analysis Tools 2.0
ne
st
ed
Lo
gi
t

Adjusted R-square

Example

new;
cls;
library dc;

//Step One: Declare dc control structure
struct dcControl dcCt;
//Initialize dc control structure
dcCt = dcControlCreate();

//Load data
loadm y = hensher_mat;

//Step Two: Describe data names
//Name of dependent variable
dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt,"mode");
dcSetYCategoryLabels(&dcCt,"Air,Train,Bus,Car");

//Reference category excluded from regression
dcSetReferenceCategory(&dcCt,"Car");

//Name of attributes
dcSetAttributeVars(&dcCt,y[.,2]~y[.,5]~y[.,8]);
dcSetAttributeLabels(&dcCt,"TTME,GC,AIRHINC");

//Step Three: Set-up nested levels
dcMakeLogitNests(&dcCt,2);

//Set attributes and categories for lower nest (Nest One)
dcSetLogitNestAttributes(&dcCt,1,"TTME,GC");
dcSetLogitNestCategories(&dcCt,1,"Air,Train,Bus,Car");

//Set attributes and categories for lower nest (Nest Two)
dcSetLogitNestAttributes(&dcCt,2,"AIRHINC");
dcSetLogitNestCategories(&dcCt,2,"Fly,Ground");

//Make nest assignments
dcAssignLogitNests(&dcCt,1,"Air,Train,Bus,Car",

"Fly,Ground,Ground,Ground");

//Declare dcOut struct

7 Discrete Choice Reference

7-151

nestedLogit

struct dcOut dcOut1;

//Step Four: Call nested logit procedure
dcOut1 = nestedLogit(dcCt);

call printDCOut(dcOut1);

Source

dcnlogit.src

orderedLogit

Purpose

Estimates an ordered logit regression model.

Library

dc

Format

out = orderedLogit(cont);

Input

cont an instance of a dcControl structure.

cont.myData an instance of a dcData structure containing the
elements:

cont.myData.yData Matrix, binary
choice variable
with a {0,1} value.

cont.myData.xData Matrix, continuous or
discrete independent
variables used in
regression. This matrix

7-152

Discrete Choice Analysis Tools 2.0
or
de
re
dL
og
it

holds all data which can be
classified as characteristics
of the individual decision
makers. This data does no
vary with outcomes but
rather with individuals.

cont.myData.categoryDataMatrix, discrete
categorical data.

cont.myData.attributes Matrix, continuous
or discrete
independent
variables which are
features of the
choice variable.
This matrix houses
data that is choice
specific and is used
only in conditional
logit and nested
logit models.

cont.myData.wgtVariablesMatrix, houses
weight variable.

cont.startValues instance of PV structure containing starting values; if
not provided, orderedLogit computes start values.

b0 1 L matrix,
constants in
regression.

b 2 K×L matrix,
regression
coefficients (if
any). Coefficients
associated with
reference category
are fixed to zeros.

For example:

7 Discrete Choice Reference

7-153

orderedLogit

struct dcControl cont;
cont = dcControlCreate();

b0 = { 0 1 1 };

b = { 0 .1 .1,
0 .1 .1 };

mask = { 0 1 1,
0 1 1,
0 1 1 };

cont.startValues =
pvPackmi(cont.startValues,
b0,"b0",mask[1,.],1);

cont.startValues =
pvPackmi(cont.startValues,
b,"b",mask[2:3,.],2);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of
the parameters. For more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed equality
constraints. For more details see Remarks below.
Default = {.}, i.e., no equality procedure. For more
details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the

7-154

Discrete Choice Analysis Tools 2.0
or
de
re
dL
og
it

nonlinear inequality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of
computed inequality constraints. For more details see
Remarks below. Default = {.}, i.e., no inequality
procedure. For more details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256
1e256 }. For more details see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default =
1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has
been satisfied, resolvent exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is
defined outside inequality boundaries, then this test
can be turned off. Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default
= 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount
of the direction at each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are printed.
Default = 0.

cont.printIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

7 Discrete Choice Reference

7-155

orderedLogit

tau 1 thresholds.

b 2 regression coefficients (if
any).

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix of
coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

7-156

Discrete Choice Analysis Tools 2.0
or
de
re
dL
og
it

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients
equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

7 Discrete Choice Reference

7-157

orderedLogit

//Step One: Declare dc control structure
struct dcControl dcCt;
//Initialize dc control structure
dcCt = dcControlCreate();

//Load data
loadm y = aldnel_mat;

//Step Two: Describe data names
//Name of dependent variable

dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt,"ABC");
dcSetYCategoryLabels(&dcCt,"A,B,C");

//Name of independent variable
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"GPA,TUCE,PSI");

//Step Three: Declare dcOut struct
struct dcOut dcOut1;

//Step Four: Call ordered logit procedure
dcOut1 = orderedLogit(dcCt);

call printDCOut(dcOut1);

Source

dcord.src

orderedProbit

Purpose

Estimates an ordered probit regression model.

Library

dc

7-158

Discrete Choice Analysis Tools 2.0
or
de
re
dP

ro
bi
t

Format

out = orderedProbit(cont);

Input

cont an instance of a dcControl structure.

cont.myData an instance of a dcData structure containing the
elements:

cont.myData.yData Matrix, binary
choice variable with
a {0,1} value.

cont.myData.xData Matrix, continuous or
discrete independent
variables used in regression.
This matrix holds all data
which can be classified as
characteristics of the
individual decision makers.
This data does no vary with
outcomes but rather with
individuals.

cont.myData.categoryDataMatrix, discrete
categorical data.

cont.myData.attributes Matrix, continuous
or discrete
independent
variables which are
features of the choice
variable. This matrix
houses data that is
choice specific and is
used only in
conditional logit and
nested logit models.

cont.myData.wgtVariablesMatrix, houses
weight variable.

7 Discrete Choice Reference

7-159

orderedP
robit

cont.startValues instance of PV structure containing starting values; if not
provided, orderedProbit computes start values.

b0 1 L matrix, constants
in regression.

b 2 K×L matrix,
regression
coefficients (if any).
Coefficients
associated with
reference category
are fixed to zeros.

For example:

struct dcControl cont;
cont = dcControlCreate();

b0 = { 0 1 1 };

b = { 0 .1 .1,
0 .1 .1 };

mask = { 0 1 1,
0 1 1,
0 1 1 };

cont.startValues =
pvPackmi(cont.startValues,
b0,"b0",mask[1,.],1);

cont.startValues =
pvPackmi(cont.startValues,
b,"b",mask[2:3,.],2);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of
the parameters. For more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

7-160

Discrete Choice Analysis Tools 2.0
or
de
re
dP

ro
bi
t

cont.D M×1 vector, linear inequality constraint constants:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed equality
constraints. For more details see Remarks below.
Default = {.}, i.e., no equality procedure. For more
details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed inequality
constraints. For more details see Remarks below.
Default = {.}, i.e., no inequality procedure. For more
details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256
1e256 }. For more details see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default = 1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has
been satisfied, resolvent exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is
defined outside inequality boundaries, then this test can
be turned off. Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default =
0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount of
the direction at each iteration. Default = 0.001.

7 Discrete Choice Reference

7-161

orderedP
robit

cont.output scalar, if nonzero, optimization results are printed.
Default = 0.

cont.printIters scalar, if nonzero, prints iteration information. Default =
0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

tau 1 thresholds.

b 2 regression coefficients (if
any).

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a
single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter,
pvUnpack returns a scalar missing value with
error code = 99.

out.vc NPARM×NPARM variance-covariance matrix
of coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,

7-162

Discrete Choice Analysis Tools 2.0
or
de
re
dP

ro
bi
t

minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full
model.

2 Log-Likelihood, restricted
model (all slope
coefficients equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-
Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information
criterion (AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-

7 Discrete Choice Reference

7-163

orderedP
robit

Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

//Step One: Declare dc control structure
struct dcControl dcCt;

//Initialize dc control structure
dcCt = dcControlCreate();

//Load data
loadm y = aldnel_mat;

//Step Two: Describe data names
//Name of dependent variable

dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt,"ABC");
dcSetYCategoryLabels(&dcCt,"A,B,C");

//Name of independent variable
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"GPA,TUCE,PSI");

//Step Three: Call orderedProbit
//Declare dcOut struct
struct dcOut dcOut1;

//Call ordered probit procedure
dcOut1 = orderedProbit(dcCt);

call printDCOut(dcOut1);

7-164

Discrete Choice Analysis Tools 2.0
or
de
re
dP

ro
bi
t

Source

dcord.src

poissonCount

Purpose

Estimates a poissonCount regression model for count data.

Library

dc

Format

out = poissonCount(cont);

Input

cont an instance of a dcControl structure.

cont.myData an instance of a dcData structure containing the
elements:

cont.myData.yData Matrix, binary
choice variable with
a {0,1} value.

cont.myData.xData Matrix, continuous or
discrete independent
variables used in regression.
This matrix holds all data
which can be classified as
characteristics of the
individual decision makers.
This data does no vary with
outcomes but rather with
individuals.

cont.myData.categoryDataMatrix, discrete
categorical data.

7 Discrete Choice Reference

7-165

poissonC
ount

cont.myData.attributes Matrix, continuous
or discrete
independent
variables which are
features of the choice
variable. This matrix
houses data that is
choice specific and is
used only in
conditional logit and
nested logit models.

cont.myData.wgtVariablesMatrix, houses
weight variable.

cont.startValues instance of PV structure containing starting values; if not
provided, poissonCount computes start values.

b0 1 L matrix, constants
in regression.

b 2 K×L matrix,
regression
coefficients (if any).
Coefficients
associated with
reference category
are fixed to zeros.

For example:

struct dcControl cont;
cont = dcControlCreate;

b0 = { 0 1 1 };

b = { 0 .1 .1,
0 .1 .1 };

mask = { 0 1 1,
0 1 1,
0 1 1 };

cont.startValues =
pvPackmi(cont.startValues,

7-166

Discrete Choice Analysis Tools 2.0
po
is
so
nC

ou
nt

b0,"b0",mask[1,.],1);
cont.startValues =
pvPackmi(cont.startValues,
b,"b",mask[2:3,.],2);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of
the parameters. For more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed equality
constraints. For more details see Remarks below.
Default = {.}, i.e., no equality procedure. For more
details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed inequality
constraints. For more details see Remarks below.
Default = {.}, i.e., no inequality procedure. For more
details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256
1e256 }. For more details see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default = 1e+5.

7 Discrete Choice Reference

7-167

poissonC
ount

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has
been satisfied, resolvent exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is
defined outside inequality boundaries, then this test can
be turned off. Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default =
0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount of
the direction at each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are printed.
Default = 0.

cont.printIters scalar, if nonzero, prints iteration information. Default =
0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

b0 1 constant in regression.

b 2 regression coefficients (if
any).

p0 3 constant in zero-inflated
model.

p 4 coefficients in zero-
inflated model.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

7-168

Discrete Choice Analysis Tools 2.0
po
is
so
nC

ou
nt

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a
single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvGetParNames(out.par);

if model does not contain a parameter,
pvUnpack returns a scalar missing value with
error code = 99.

out.vc NPARM×NPARM variance-covariance matrix
of coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full
model.

2 Log-Likelihood, restricted
model (all slope
coefficients equal zero.

3 Degrees of freedom.

7 Discrete Choice Reference

7-169

poissonC
ount

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-
Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information
criterion (AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-
Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

//Step One: Declare dc control structure
struct dcControl dcCt;

//Initialize dc control structure
dcCt = dcControlCreate();

7-170

Discrete Choice Analysis Tools 2.0
po
is
so
nC

ou
nt

//Load GAUSS data set
loadm y = greenedata_mat;

//Step Two: Describe data names
//Dependent count data
dcSetYVar(&dcCt,y[.,14]);
dcSetYLabel(&dcCt,"ACC");

//Independent data
dcSetXVars(&dcCt,y[.,3:6]~y[.,8:10]~y[.,11]);
dcSetXLabels(&dcCt,"TB,TC,TD,TE,T6569,T7074,T7579,O7579");

//Step Three: Call poissonCount
//Declare dcOut struct
struct dcOut dcOut1;

dcOut1 = poissonCount(dcCt);

call printdcOut(dcOut1);

Source

dcpsn.src

printDCOut

Purpose

Prints output from Discrete Choice procedures to screen.

Library

dc

Format

out = printDCOut(out);

7 Discrete Choice Reference

7-171

printD
C
O
ut

Input

out an instance of a dcOut structure.

Source

dc.src

stereoLogit

Purpose

Estimates the Stereotype Multinomial Logit model.

Library

dc

Format

out = stereoLogit(cont);

Input

cont an instance of a dcControl structure.

cont.myData an instance of a dcData structure containing the
elements:

cont.myData.yData Matrix, binary
choice variable
with a {0,1} value.

cont.myData.xData Matrix, continuous or
discrete independent
variables used in
regression. This matrix
holds all data which can be
classified as characteristics
of the individual decision

7-172

Discrete Choice Analysis Tools 2.0
st
er
eo
Lo
gi
t

makers. This data does no
vary with outcomes but
rather with individuals.

cont.myData.categoryDataMatrix, discrete
categorical data.

cont.myData.attributes Matrix, continuous
or discrete
independent
variables which are
features of the
choice variable.
This matrix houses
data that is choice
specific and is used
only in conditional
logit and nested
logit models.

cont.myData.wgtVariablesMatrix, houses
weight variable.

cont.startValues instance of PV structure containing starting values; if
not provided, stereoLogit computes start values.

b0 1 L matrix,
constants in
regression.

b 2 K×L matrix,
regression
coefficients (if
any). Coefficients
associated with
reference category
are fixed to zeros.

For example:

struct dcControl cont;
cont = dcControlCreate();

b0 = { 0 1 1 };

7 Discrete Choice Reference

7-173

stereoLogit

b = { 0 .1 .1,
0 .1 .1 };

mask = { 0 1 1,
0 1 1,
0 1 1 };

cont.startValues =
pvPackmi(cont.startValues,
b0,"b0",mask[1,.],1);

cont.startValues =
pvPackmi(cont.startValues,
b,"b",mask[2:3,.],2);

cont.A M×K matrix, linear equality constraint coefficients:
cont.A * p = cont.B where p is a vector of
the parameters. For more details. see Section 4.1.6.

cont.B M×1 vector, linear equality constraint constants:
cont.A * p = cont.B where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.C M×K matrix, linear inequality constraint coefficients:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.D M×1 vector, linear inequality constraint constants:
cont.C * p >= cont.D where p is a vector of
the parameters. For more details see Section 4.1.6.

cont.eqProc scalar, pointer to a procedure that computes the
nonlinear equality constraints. When such a procedure
has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one
output argument, a vector of computed equality
constraints. For more details see Remarks below.
Default = {.}, i.e., no equality procedure. For more
details see Section 4.1.6.

cont.inEqProc scalar, pointer to a procedure that computes the
nonlinear inequality constraints. When such a
procedure has been provided, it has two input
arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of

7-174

Discrete Choice Analysis Tools 2.0
st
er
eo
Lo
gi
t

computed inequality constraints. For more details see
Remarks below. Default = {.}, i.e., no inequality
procedure. For more details see Section 4.1.6.

cont.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256
1e256 }. For more details see Section 4.1.6.

cont.maxIters scalar, maximum number of iterations. Default =
1e+5.

cont.dirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e-5. When this criterion has
been satisfied, resolvent exits the iterations.

cont.feasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is
defined outside inequality boundaries, then this test
can be turned off. Default = 1.

cont.randRadius scalar, if zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default
= 0.001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust
region not applied. The trust sets a maximum amount
of the direction at each iteration. Default = 0.001.

cont.output scalar, if nonzero, optimization results are printed.
Default = 0.

cont.printIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out an instance of a dcOut structure

out.par instance of PV structure containing estimates.

tau 1 thresholds.

b 2 regression coefficients (if
any).

7 Discrete Choice Reference

7-175

stereoLogit

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single
parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can
be described by

b = pvgetParNames(out.par);

if model does not contain a parameter, pvUnpack
returns a scalar missing value with error code = 99.

out.vc NPARM×NPARM variance-covariance matrix of
coefficient estimates.

out.yDist L×1 vector, percentages of dependent variable
by category.

out.xData K×4 matrix, the means, standard deviations,
minimums, and maximums of independent
variables.

out.marginEffects L×1×K array, marginal effects of independent
variables by category of dependent variable.

out.marginVC L×K×K array, covariance matrices of marginal
effects of independent variables by category of
dependent variable.

out.fittedVals N×1 matrix of predicted (fitted) counts.

out.resids N×1 matrix of residuals.

out.summaryStats 17×1 matrix of goodness-of-fit measures.

1 Log-Likelihood, full model.

2 Log-Likelihood, restricted
model (all slope coefficients

7-176

Discrete Choice Analysis Tools 2.0
st
er
eo
Lo
gi
t

equal zero.

3 Degrees of freedom.

4 Chi-square statistic.

5 Number of Parameters.

6 McFadden's Pseudo R-
Squared.

7 Madalla's Pseudo R-Squared.

8 Cragg and Uhler's normed
likelihood ratios statistics.

9 Akaike information criterion
(AIC).

10 Bayesian information
criterion (BIC).

11 Hannon-Quinn Criterion.

12 Count R-Squared.

13 Adjusted Count R-Squared.

14 Agresti's G squared.

15 Success.

16 Adjusted success.

17 Ben-Akiva and Lerman's
Adjusted R-square

Example

new;
cls;
library dc;

//Step One: Declare dc control structure
struct dcControl dcCt;

//Initialize dc control structure

7 Discrete Choice Reference

7-177

stereoLogit

dcCt = dcControlCreate();

//Load data
loadm y = aldnel_mat;

//Step Two: Describe data names
//Name of dependent variable

dcSetYVar(&dcCt,y[.,1]);
dcSetYLabel(&dcCt,"ABC");
dcSetYCategoryLabels(&dcCt,"A,B,C");

//Name of independent variable
dcSetXVars(&dcCt,y[.,2:4]);
dcSetXLabels(&dcCt,"GPA,TUCE,PSI");

//Step Three: Call stereoLogit
//Declare dcOut struct
struct dcOut dcOut1;

//Call ordered logit procedure
dcOut1 = stereoLogit(dcCt);

call printDCOut(dcOut1);

Source

dcStereo.src

7-178

Discrete Choice Analysis Tools 2.0
st
er
eo
Lo
gi
t

8-1

8.1 References

1. Ben-Akiva, M. and Lerman. S.R. 1985. Discrete Choice Analysis: Theory and Application to
Travel Demand, Cambridge, MA: MIT Press.

2. Cameron, A. Colin and Trivedi, P.K. Regression Analysis of Count Data, Cambridge, UK:
Cambridge University Press.

3. Cragg, J.G. and Uhler, R., 1970. "The Demand for Automobiles", Canadian Journal of
Economics, 3:386-406.

4. Dennis, Jr., J.E., and Schnabel, R.B., 1983. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall.

5. Greene, W.H., 2000. Econometric Analysis, 4th ed, Prentice Hall, NJ.
6. Greene, W.H., 1994. "Accounting for Excess Zeros and Sample Selection in Poisson and

Negative Binomial Regression Models," Working Paper No. 94-10, New York: Stern School of
Business, New York University, Department of Economics.

7. Hayashi, F. 2000. Econometrics, Princeton University Press, NJ.
8. Heilbron, D. 1989. "Generalized Linear Models for Altered Zero Probabilities and over-

dispersion in Count Data," Technical Report, Department of Epidemiology and Biostatistics,
University of California, San Francisco.

9. Greene, W. and D. Hensher, 1997, "Multinomial Logit and Discrete Choice Models," in Greene,
W., LIMDEP, Version 7.0 User's Manual, Revised, Plainview NY: Econometric Software,
Inc.

10. Johnson, N.L. and Kotz, S., and Balakrishnan, N. 1994., Continuous Univariate Distributions,
vol 1 (2nd ed.) New York: John Wiley.

11. Lambert, D. 1992. Zero-inflated Poisson Regression with an Application to Manufacturing.
Technometrics, 34:1-14.

12. Long, J.S. 1997. Regression Models for Categorical and Limited Dependent Variables, Sage
Publications.

13. Maddala, G. 1983. Limited Dependent and Qualitative Variables in Econometrics, New
York: Cambridge University Press.

14. McFadden, D. 1974. "Conditional Logit Analysis of Qualitative Choice Behavior," in P.
Zarembka (ed.), Frontiers in Econometrics, New York: Academic Press.

15. McKelvey, R.D. and Zavoina, W. 1975. "A Statistical Model for the Analysis of Ordinal Level
Dependent Variables," Journal of Mathematical Sociology, 4:103-120.

16. Mullahey, J. 1986. "Specification and Testing of Some Modified Count Models," Journal of
Econometrics, 33:341-365.

This page intentionally left blank to ensure new
chapters start on right (odd number) pages.

Index-1

Index

A

adjacent categories 5-7, 5-8

adjacentCategories 7-1

B

binaryLogit 7-8

binaryProbit 7-14

bounds 4-4, 4-5

C

censoring 5-5

condition of Hessian 4-10

Conditional logit 5-13

conditional logit model 5-13

conditionalLogit 7-20

constraints 4-3, 4-8

cross-validation 6-2

D

Data Setup 3-3

dc.src 7-101, 7-172

dc1.A 4-3

dc1.B 4-3

dc1.bounds 4-5

dc1.C 4-3

dc1.D 4-3

dc1.inEqProc 4-4

dcaclogit.src 7-8, 7-19, 7-33, 7-47

dcAdjacentCategories 7-27

dcAssignLogitNests 7-34

dcbin.src 7-13, 7-41, 7-69, 7-143

dcBinaryLogit 7-35

dcBinaryProbit 7-41

dcclogit.src 7-27, 7-55

dcConditionalLogit 7-47

dcMakeLogitNests 7-55

dcmnlogit.src 7-63, 7-137

dcMultinomialLogit 7-57

dcNegativeBinomial 7-63

dcNestedLogit 7-70

Index

dcnlogit.src 7-81, 7-152

dcord.src 7-87, 7-93, 7-158, 7-165

dcOrderedLogit 7-81

dcOrderedProbit 7-87

dcPoisson 7-93

dcprt 7-100

dcpsn.src 7-100, 7-171

dcScale 7-101

dcSetAttributeLabels 7-102

dcSetAttributeVars 7-103

dcSetCategoryVar 7-104

dcSetConstant 7-105

dcSetDataset 7-106

dcSetLogitNestAttributes 7-107

dcSetLogitNestCategories 7-109

dcSetReferenceCategory 7-111

dcSetTimeLabel 7-112

dcSetTimeVar 7-113

dcSetWeightLabels 7-114

dcSetXLabels 7-115

dcSetXVars 7-117

dcSetYCategoryLabels 7-118

dcSetYLabel 7-119

dcSetYVar 7-120

dcStereo 7-121

dcstereo.src 7-127

E

eqProc 4-4

equality constraints 4-3, 4-4

G

GAUSS data set 3-3, 3-3, 3-3, 3-4,
3-4, 3-5

H

Hessian 4-10

I

inequality constraints 4-3, 4-4, 4-4,
4-5

L

line search 4-8

linear constraints 4-3, 4-3

Index-2

Index

Index-3

logistic regression 6-2, 6-2, 6-3, 6-5

logisticRegress.src 7-102, 7-131

lrcontrol structure 6-3

lrOut structure 6-5

M

model parameters 6-2, 6-2

multinomial logit model 5-7

multinomialLogit 7-127, 7-131

N

negative binomial model 5-4

negativeBinomial 7-137

Nested logit 5-15

nested logit model 5-15

nestedLogit 7-144

nonlinear constraints 4-4, 4-4

O

Ordered logit 5-12

ordered logit model 5-11

ordered probit model 5-11

orderedLogit 7-152

orderedProbit 7-158

P

Poisson logit 5-2

Poisson Model 5-1

poissonCount 7-165

printDCOut 7-171

R

randRadius 4-9

S

scaling 4-10

setdesc.src 7-103, 7-104, 7-105, 7-
106, 7-107, 7-112, 7-113, 7-
114, 7-115, 7-116, 7-118, 7-
119, 7-120, 7-121

setnests.src 7-35, 7-56, 7-109, 7-111

setup 2-1

starting point 4-10

step length 4-8

Stereo logit 5-9

stereoLogit 7-172

Index

stereoLogit.src 7-178

stereotype logit model 5-9

summary statistics 5-18

T

truncation 5-5

Z

Zero-Inflated model 5-6

Index-4

Index

	 1 Installation
	 2 Getting Started
	2.1 README Files
	2.2 Setup

	 3 Estimation
	3.1 Supported Models
	3.2 Declaring dcControl Structure
	3.3 Data Setup
	3.3.1 Data Setup Using a GAUSS Data Set
	3.3.2 Data Setup Using A Data Matrix

	3.4 Declaring A dcOut Structure
	3.5 Calling the Modeling Procedure

	 4 Optimization
	4.1 Constraints
	4.1.1 Linear Equality Constraints
	4.1.2 Linear Inequality Constraints
	4.1.3 Nonlinear Equality
	4.1.4 Nonlinear Inequality
	4.1.5 Bounds
	4.1.6 Imposing Constraints in Discrete Choice Models

	4.2 Direction
	4.2.1 Line Search Methods

	4.3 Line Search
	4.4 Managing Optimization
	4.4.1 Scaling
	4.4.2 Condition
	4.4.3 Starting Point

	 5 Discrete Choice
	5.1 Poisson Model
	5.1.1 Poisson Over-dispersion
	5.1.2 Example

	5.2 Negative Binomial Model
	5.3 Truncation and Censoring
	5.4 Zero-Inflated Models
	5.4.1 Testing Zero-Inflated Regime Assumptions

	5.5 Multinomial Logit Model
	5.5.1 Adjacent Categories Multinomial Logit
	5.5.2 Example

	5.6 Stereotype Multinomial Logit
	5.6.1 Example

	5.7 Ordered Logit/Probit
	5.7.1 Example

	5.8 Conditional Logit
	5.8.1 Example

	5.9 Nested Logit
	5.9.1 Example

	5.10 Summary Statistics

	 6 Linear Classification
	6.1 Estimation
	6.1.1 Model Selection
	6.1.2 Model Parameters
	6.1.3 Cross-validation
	6.1.4 The lrControl Structure
	6.1.5 The lrOut Structure

	6.2 The logisticRegress procedure
	6.3 Linear Classification Example
	6.4 References

	 7 Discrete Choice Reference
	 adjacentCategories
	 binaryLogit
	 binaryProbit
	 conditionalLogit
	 dcAdjacentCategories
	 dcAssignLogitNests
	 dcBinaryLogit
	 dcBinaryProbit
	 dcConditionalLogit
	 dcMakeLogitNests
	 dcMultinomialLogit
	 dcNegativeBinomial
	 dcNestedLogit
	 dcOrderedLogit
	 dcOrderedProbit
	 dcPoisson
	 dcprt
	 dcScale
	 dcSetAttributeLabels
	 dcSetAttributeVars
	 dcSetCategoryVar
	 dcSetConstant
	 dcSetDataset
	 dcSetLogitNestAttributes
	 dcSetLogitNestCategories
	 dcSetReferenceCategory
	 dcSetTimeLabel
	 dcSetTimeVar
	 dcSetWeightLabels
	 dcSetXLabels
	 dcSetXVars
	 dcSetYCategoryLabels
	 dcSetYLabel
	 dcSetYVar
	 dcStereo
	 logisticRegress
	 multinomialLogit
	 negativeBinomial
	 nestedLogit
	 orderedLogit
	 orderedProbit
	 poissonCount
	 printDCOut
	 stereoLogit
	8.1 References

