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1 Installation

Optimization MT 2.0 requires GAUSS 16 or later. In GAUSS 16+ there is an Applications
Installation Wizard available to install your application.

From within GAUSS, go to Tools -> Install Applications and follow the prompts to install
GAUSS Applications from the downloaded .zip file.

1.1 Difference Between the Linux/Mac and
Windows Versions:
If the functions can be controlled during execution by entering keystrokes from the keyboard, it
may be necessary to press ENTER after the keystroke in the Linux/Mac version.
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2 Getting Started

The OPTMTmodule contains a set of procedures for the solution of the optimization
problem.

GAUSS version 16+ is required to use these routines.

The Optimization MT 2.0 version number is stored in a global variable:

_optmt_ver 3 1 matrix, the first element contains
the major version number, the second
element the minor version number,
and the third element the revision
number.

If you contact technical support, you may be asked for the version of your Optimization
MT license.

2.1 README Files
If there is a README.optmt file, it contains any last minute information on the
Optimization MT 2.0 procedures. Please read it before using them.
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2.2 Setup
In order to use the procedures in Optimization MT or OPTMTmodule, the OPTMT
library must be active. This is done by including 'optmt' in the library statement at the top
of your program or command file:

library optmt;

This enables GAUSS to find the OPTMT procedures.
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3 Special Features in Optimization
MT

The following sections describe the special features found in Optimization MT

3.1 Structures
3.1.1 modelResults structure

In OPTMT the objective function will also be used to compute the analytical derivatives
when they are provided. Its return argument is amodelResults structure with three
members:

modelResults structure

function Scalar, value of the objective function.

gradient Optional, Kx1 vector of first derivatives.

Hessian Optional, KxK matrix of second derivatives.

//Example objective function
proc (1) = myobjective(parms, ind);

struct modelResults mm;
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//Perform any calculations common to
//objective function, gradient and Hessian

//If the first element of 'ind' is
//non-zero, calculate objective function
if ind[1];

mm.Function = //Calculate objective func
endif;

//If the second element of 'ind' is
//non-zero, calculate gradient
if ind[2];

mm.gradient = //Calculate gradient
endif;

//If the third element of 'ind' is
//non-zero, calculate Hessian
if ind[3];

mm.Hessian = //Calculate Hessian
endif;

//Return modelResults structure
retp(mm);

endp;

The derivatives are optional, or even partially optional. For example, you can compute a
subset of the derivatives if you like and the remaining will be computed numerically. The
procedure to compute the objective function has an additional input argument that tells
the function whether to compute the log-likelihood (or objective), the first derivatives, the
second derivatives, or all three. This means that calculations in common won’t have to be
repeated.
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3.1.2 Parameter Vector (PV) Structure

OPTMT allows you to use the PV structure from the standard GAUSS Run-Time Library,
to pass parameters to the objective function. The PV structure makes it easy to store your
model parameters as vectors, matrices or n-dimensional arrays. For cases in which your
parameters are simply a vector,OPTMT allows you to pass in your parameter vector
directly without the use of the PV structure.

//Add symmetric matrix of starting
//values to 'PV' structure
omega_strt = { 1 0.8 -0.4,

0.8 1 0.6,
-0.4 0.6 1 };

p = pvPackS(pvCreate(), omega_strt, "omega");

proc (1) = myobjective(struct PV parms, ind);
local omega;

//Retrieve updated symmetric matrix
//inside of objective function
omega = pvUnpack(parms, "omega");

//Perform calcuations and return

Nomore do you have to struggle to get the parameter vector into matrices for calculating
the function and its derivatives, trying to remember or figure out which parameter is
where in the vector. If your log-likelihood uses matrices or arrays, you can store them
directly into the PV structure, and remove them as matrices or arrays with the parameters
already plugged into them. The PV structure can even efficiently handle symmetric
matrices, where parameters below the diagonal are repeated above the diagonal.
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The functions pvPackM and pvPackMI, allow you to specify some elements inside your
PV structure as fixed values and others as free parameters. It remembers the fixed values
and only updates the values of the free parameters.

3.1.3 Optional Dynamic Arguments

Any inputs that your procedure needs, other than the parameters of the model, can be
passed intoOPTMT as optional, dynamic arguments. These optional arguments will be
passed directly, and untouched, to your objective function.

//Inputs to objective function for
//OPTMT version 1.0
proc (1) = myobjective(struct PV parms, struct DS d, ind);

//Inputs to objective function for
//OPTMT current version, that requires no
//data other than model parameters.
//And the parameters are simply a vector.
proc (1) = myobjective(x, ind);

//Inputs to objective function for
//OPTMT current version, that requires no
//data other than model parameters
//And the parameters are packed in a PV struct.
proc (1) = myobjective(struct PV parms, ind);

//Inputs to objective function for
//OPTMT current version, that requires
//2 extra matrices, 'theta' and 'gamma'
//Place extra inputs between the parameter vector and 'ind'
proc (1) = myobjective(x, theta, gamma, ind);

//Inputs to objective function for
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3-5

//OPTMT current version, that requires
//2 extra matrices, 'theta' and 'gamma'
//and using the PV structure for parameters
//Place extra inputs between 'PV' struct and 'ind'
proc (1) = myobjective(struct PV parms, theta, gamma, ind);

Previous versions of OPTMT, required the use of the DS structure for this purpose. The
current version is backwards compatible with version 1.0, so programs written using the
DS structure will continue to work.

3.1.4 Control Structures

The functions in this library also use control structures, rather than global variables, to set
optimization options. This means, in addition to thread safety, that it will be
straightforward to nest calls to OPTMT inside of a call to OPTMT, or other multi-threaded
GAUSS functions..

3.2 Threading
You can enable GAUSS level threads inside of OPTMT by setting the useThreads
member of the optmtControl instance:

//Declare c0 to be an instance of an optmtControl structure
struct optmtControl c0;

//Fill 'c0' with default values
c0 = optmtControlCreate();

//Turn on internal threading
c0.useThreads = 1;

An important advantage of threading occurs in computing numerical derivatives. If the
derivatives are computed numerically, threading will significantly decrease the time of
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computation. Note that the useThreads structure member controls the high-level
threading of sections of the OPTMT source code, but does not control the low-level
threads that are internal to the GAUSS intrinsic functions.
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4 The Objective Function

The procedure OPTMT finds values for the parameters in such that F( ) is minimized. OPTMT
has been designed to make the specification of the function and the handling of the data
convenient. The user supplies a procedure that computes F given the parameters in .

4-1

T
he

O
bjective

F
unction





5 Algorithm

OPTMT includes four descent methods, BFGS, DFP, Newton and steepest descent. In these
methods the parameters are updated in a series of iterations beginning with starting values that
you provide. Let be the current parameter values. Then the succeeding values are

where is a vector and a scalar step length.

Direction

Define

The direction, is the solution to

This solution requires that be positive semi-definite.
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Line Search

Define the merit function

is the -th constraint and the Lagrangean coefficient of the -th bounds.

The line search finds a value of that minimizes or decreases .

5.1 The Secant Algorithms
The Hessian may be very expensive to compute at every iteration, and poor start values
may produce an ill-conditioned Hessian. For these reasons alternative algorithms are
provided in OPTMT for updating the Hessian rather than computing it directly at each
iteration. These algorithms, as well as step length methods, may be modified during the
execution of OPTMT.

Beginning with an initial estimate of the Hessian, or a conformable identity matrix, an
update is calculated. The update at each iteration adds more "information" to the estimate
of the Hessian, improving its ability to project the direction of the descent. Thus, after
several iterations the secant algorithm should do nearly as well as Newton iteration with
much less computation.

There are two basic types of secant methods, the BFGS (Broyden, Fletcher, Goldfarb, and
Shanno), and the DFP (Davidon, Fletcher, and Powell). They are both rank two updates,
that is, they are analogous to adding two rows of new data to a previously computed
moment matrix. The Cholesky factorization of the estimate of the Hessian is updated using
the functions CHOLUP and CHOLDN.

5-2
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5.1.1 Secant Methods (BFGS and DFP)

The BFGS and DFP methods are complementary methods which, like the Newton Method, use
both the first and second derivative information. However, in DFP and BFGS the Hessian is
approximated, reducing considerably the computational requirements. Because they do not
explicitly calculate the second derivatives they are sometimes called quasi-Newtonmethods.
While these methods take more iterations than the Newton method, they converge in less overall
time (unless analytical second derivatives are available in which case it be a toss-up).

The secant methods are commonly implemented as updates of the inverse of the Hessian. This is
not the best method numerically for the BFGS algorithm (Gill and Murray, 1972). This version of
OPTMT, following Gill and Murray (1972), updates the Cholesky factorization of the Hessian
instead, using the functions CHOLUP and CHOLDN for BFGS. The new direction is then
computed using CHOLSOL, a Cholesky solve, as applied to the updated Cholesky factorization
of the Hessian and the gradient.

5.2 Line Search Methods
Given a direction vector δ, the updated estimate of the parameters is computed

where is a constant, usually called the step length, that increases the descent of the function
given the direction.OPTMT includes a variety of methods for computing . The value of the
function to be minimized as a function of is

Given and , this is a function of a single variable . Line search methods attempt to find a
value for that decreases m. STEPBT is a polynomial fitting method, BRENT and HALF are
iterative search methods. A fourth method called ONE forces a step length of 1. The default line
search method is STEPBT. If this or any selected method fails, then BRENT is tried. If BRENT fails,
then HALF is tried. If all of the line search methods fail, then a random search is tried provided the
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member of the optmtControl instance is greater than zero. The default setting for
randRadius is greater than zero by default.

5.2.1 STEPBT

STEPBT is an implementation of a similarly named algorithm described in Dennis and

Schnabel (1983). It first attempts to fit a quadratic function to and computes

a that minimizes the quadratic. If that fails, it attempts to fit a cubic function. The cubic
function more accurately portrays the F which is not likely to be very quadratic but is,
however, more costly to compute. STEPBT is the default line search method because it
generally produces the best results for the least cost in computational resources.

5.2.2 BRENT

This method is a variation on the golden sectionmethod due to Brent (1972). In this
method, the function is evaluated at a sequence of test values for . These test values are
determined by extrapolation and interpolation using the constant,

This constant is the inverse of the so-called "golden ratio"

and is why the method is called a golden section method. This method is generally more
efficient than STEPBT but requires significantly more function evaluations.

5.2.3 HALF

This method first computes , i.e., sets . 1. If then the

step length is set to 1. If not, then it tries . The attempted step length is divided

by one half each time the function fails to decrease and exits with the current value when
it does decrease. This method usually requires the fewest function evaluations (it often
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only requires one), but it is the least efficient in that it is not very likely to find the step length that
decreases m the most.

5.2.4 WOLFE

The Strong Wolfe condition we have

where .

The first condition ensures that decreases sufficiently and the second condition ensures that
the slope has been reduced sufficiently.
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6 Bounds

To specify bounds, the lower and upper bounds respectively are entered in the first and second
columns of a matrix that has the same number of rows as the parameter vector. This matrix is
assigned to the Boundsmember of an instance of a optmtControl structure.

If the bounds are the same for all of the parameters, only the first row is necessary.

To bound four parameters:

//Declare 'ctl' to be an optmtControl struct
struct optmtControl ctl;

//Fill 'ctl' with default settings
ctl = optmtControlCreate();

//Set lower and upper bounds for 4 parameters
ctl.bounds = { -10 10,

-10 0,
1 10,
0 1 };

Suppose all of the parameters are to be bounded between -50 and +50, then,
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ctl.bounds = { -50 50 };

is all that is necessary.
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7 The OPTMT Procedure

7.1 First Input Argument: Pointer to
Procedure
The first input argument is the pointer to the procedure computing the log-likelihood
function and optionally the gradient and/or Hessian. See Section 8 for details.

7.2 Second Input Argument: Model
Parameters
OPTMT allows you to pass the model parameters as either a Px1 matrix, where P is the
number of parameters in the model, or inside a PV structure, containing the model
parameters.

7.2.1 PV parameter Instance

The GAUSS Run-Time Library contains special functions that work with the PV structure.
They are prefixed by "pv" and defined in pv.src. These functions store matrices and arrays
with parameters in the structure and retrieve the original matrices and arrays along with
various kinds of information about the parameters and parameter vector from it.

The advantage of the PV structure is that it permits you to retrieve the parameters in the
form of matrices and/or arrays ready for use in calculating your log-likelihood. The
matrices and arrays are defined in your command file when the start values are set up. It
isn’t necessary that a matrix or array be completely free parameters to be estimated. There
are pvPack functions that take mask arguments defining what is a parameter versus what
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is a fixed value. There are also functions for handling symmetric matrices where the
parameters below the diagonal are duplicated above the diagonal.

For example, a PV structure is created in your command file:

//Declare 'p' to be a PV struct
struct PV p;

//Set PV defaults (required)
p = pvCreate();

//Create 3x1 vector
garch = { .1, .1, .1 };

//Add 3x1 vector, 'garch' to 'p' with name "garch"
p = pvPack(p,garch,"garch");

7.2.2 Fixed Parameters

A matrix or array in the model may contain a mixture of fixed values along with
parameters to be estimated. In most cases it is simplest to assign some parameters as
fixed by using the active member of the optmtControl structure.

You can also specify some parameters as fixed by 'packing' them into the PV structure
using the function pvPackM. pvPackM has an additional argument, called a "mask,"
strictly element-by-element conformable to the input matrix or array indicating which
elements are fixed (the corresponding element in the mask is zero) or being estimated
(the corresponding element in the mask is nonzero). For example,

//Declare 'p' to be a 'PV' structure
struct PV p;

//Initialize 'PV' structure

7-2
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p = pvCreate();

//Create parameter matrix
b = { 1.0 0.0 0.0,

0.5 1.0 0.2,
0.3 0.0 1.0 };

//Create mask with 1 for each
//free parameter to be estimated,
//or a 0 for fixed parameters
b_mask = { 0 0 0,

1 0 1,
1 0 1 };

p = pvPackM(p,b,"beta",b_mask);

In this case there are four free parameters to be estimated, b21, b23, b31, and b33. While b11
and b22 are fixed to 1.0, and b12, b13, and b32 are fixed to 0.0.

7.2.3 PV Structures with Symmetric Matrices

pvPackS "packs" a symmetric matrix into the PV structure in which only the lower left
portion of the matrix contains independent parameters while the upper left is duplicated
from the lower left. The following packed matrix contains three nonredundant parameters.
When this matrix is unpacked, it will contain the upper nonredundant portion of the matrix
equal to the lower portion.

//Create symmetric matrix
vc = { 1.2 0.4,

0.4 2.1 };

The OPTMT Procedure
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//Pack symmetric matrix, using 'pvPackS'
p = pvPackS(p,vc,"phi");

Suppose that you wish to specify a correlation matrix in which only the correlations are
free parameters. You would then use pvPackSM.

//Create starting correlation matrix
cor = { 1.0 0.2,

0.2 1.0 };

//Fix the diagonal elements at their starting value
msk = { 0 1,

1 0 };

p = pvPackSM(p,cor,"R",msk);

7.2.4 Unpack PV Structures by Index

Some computation speedup can be achieved by packing and unpacking by number rather
than name. Each packing function has a version with an i suffix that packs by number.
Then pvUnpack can be used with that number:

garch = { .1, .1, .1 };
p = pvPacki(p,garch,"garch",1);

which is unpacked using its number

g0 = pvUnpack(p,1);

7-4
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7.2.5 Optional Input Argument: Instance of an
optmtControl Structure

The members of the optmtControl structure instance set the options for the optimization.
For example, suppose you wantOPTMT to stop after 100 iterations:

//Declare 'c0' to be an optmtControl structure
struct optmtControl c0;

//Fill 'c0' with default values
c0 = optmtControlCreate();

//Set the 'maxIters' member to 100
c0.maxIters = 100;

The optmtControlCreate procedure sets all of the defaults. The default values for all the
members of an optmtControl instance can be found in that procedure, located at the top of
optmtutil.src in the GAUSS src subdirectory.

7.3 Optional Extra Input Arguments
Any data that your objective procedure needs, other than the model parameters, can be
passed in as optional arguments to optmt. These optional input arguments can be any
GAUSS type such as, matrices, strings, arrays, structures, etc. You will pass these
arguments to optmt, between the parameter vector and the control structure. optmt will
pass them, untouched, to your objective procedure.

For a simple example, suppose that you have a least squares problem for which you need
to supply the X matrix and y vector.

//Objective procedure with extra data arguments 'y' and 'X'
proc (1) = myObjective(b_hat, y, X, ind);
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local res;
struct modelResults mm;
if ind[1];

res = y - X * b_hat;
mm.function = res’res;

endif;
retp(mm);

endp;

X = //code to load or create ‘X’
y = //code to load or create ‘y’

//Starting parameter values
b_start = { 1, 1, 1 };

struct optmtResults out;
out = optmt(&myObjective, b_start, y, X);

Since this example does not pass in a control structure, the extra data arguments, y and X
are the final inputs to optmt.

7-6
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8 The Objective Procedure

OPTMT requires that you write a procedure computing the value of the objective function.
The output from this procedure is amodelResults structure containing the value and
optionally the first and second derivatives of the objective function with respect to the
parameters. There are three input arguments to this procedure

1. The model parameters either as a Px1 matrix, or an instance of a PV structure con-
taining parameter values

2. Optional arguments; extra data matrices or arrays (other than the model
parameters) used by the objective procedure.

3. Indicator vector

and one return argument

1. An instance of amodelResults structure containing computational results.

8.1 First Input Argument: The Model
Parameters
This argument contains either a Px1 matrix, or a PV structure, containing the parameter
matrices and arrays that you need for computing the log-likelihood and (optionally)
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derivatives. If the parameters are packed in a PV struct, the pvUnpack function retrieves
them from the PV structure.

Px1 Matrix case

Below is part of a simple example in which the parameter vector contains two values. The
first element will be beta_ and the second will be gamma_.

proc lpr(p, ind);
local beta_, gamma_;
beta_ = p[1];
gamma_ = p[2];
.
.
.

endp;

PV struct case

Next is the same as the example above, but using a PV structure.

proc lpr(struct PV p, ind);
local beta_, gamma_;
beta_ = pvUnpack(p, "beta");
gamma_ = pvUnpack(p, "gamma");
.
.
.

endp;

If you are using a PV struct, you may have decided to speed the program up a bit by
packing the matrices or arrays using the "i" pack functions, pvPacki, pvPackmi, pvPacksi,
etc., You can then unpack the matrices and arrays with the integers used in packing them:

8-2
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proc lpr(struct PV p, ind);
local beta_, gamma_;
beta_ = pvUnpacki(p, 1);
gamma_ = pvUnpacki(p, 2);
.
.
.

endp;

where it has been assumed that they’ve been packed accordingly:

struct PV p;
p = pvCreate();

//Pack vector by index
b = { 1, 0.1 };
p = pvPacki(p,b,"beta",1);

//Pack symmetric matrix by index
g = { 1 0,

0 1 };
p = pvPacksi(p,g,"gamma",2);

8.2 Optional Arguments
You may pass in data that your objective function procedure needs, other than the
parameter vector, as extra optional arguments. These arguments will be passed untouched
to your objective function, and will be passed in between the PV structure and the
indicator variable.

For example, for an objective function with a dependent variable vector and a matrix of
independent variables, we have:

The Objective Procedure
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//Optional arguments 'y' and 'x' are passed in
//between the 'PV' struct and the indicator variable
proc fct(struct PV p, y, x, ind);

struct modelResults mm;
local dev, b;

b = pvUnpack(p,"B");
dev = y - b[1] - b[2] * exp(-b[3] * x);

if ind[1];
mm.function = dev'dev;

endif;
retp(mm);

endp;

8.3 Final Input Argument: Indicator Vector
The final argument is a vector with three elements set to zero or one, indicating whether
or not the function, first derivatives, or second derivatives are to be computed. Note that
this argument is created and passed to your objective function when it is called by optmt.
Your program does not need to declare or initialize the indicator vector.

1st element if nonzero, the function is to be computed.

2nd element if nonzero, the first derivatives are to be computed.

3rd element if nonzero, the second derivatives are to be computed.

The second and third elements associated with the first and second derivatives are
optional.

For example,

8-4
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proc myobjective(b, y, x, ind);
local y,x;

struct modelResults mm;

// compute objective function
if ind[1];

mm.function = ....
endif;

// compute optional first derivatives
if ind[2];

mm.gradient = ....
endif;

// compute optional
// second derivatives
if ind[3];

mm.Hessian = ....
endif;
retp(mm);

endp;

If mm.gradient andmm.Hessian are not set, they will be computed numerically by
OPTMT.

8.4 Output Argument: modelResults
Structure
The return argument for your log-likelihood procedure is an instance of a modelResults
structure. The members of this structure are
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modelResults structure

function scalar log-likelihood

gradient Kx1 vector of first derivatives (optional)

Hessian K×K matrix of second derivatives (optional)

8.5 Examples

Example 1

A procedure that takes one extra data argument, a matrix omega, and calculates the
gradient and Hessian as well as the scalar objective function.

proc fct(x, omega, ind);

//Declare 'mm' to be a modelResults struct
//that is local to this procedure
struct modelResults mm;

//Calculate objective function
if ind[1];

mm.Function = 100*(x[2]-x[1]^2)^2 + (1-x[1])^2 + 90*
(x[4]-x[3]^2)^2 + (1-x[3])^2 + 10.1*((x[2]-1)^2 +
(x[4]-1)^2) + 19.8*(x[2]-1)*(x[4]-1);

endif;

//Calculate gradient
if ind[2];

local a,b;
a = x[2] - x[1]^2;
b = x[4] - x[3]^2;
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mm.gradient = zeros(4,1);
mm.gradient[1] = -2*(200*x[1]*a + 1 - x[1]);
mm.gradient[2] = 2*(100*a + 10.1*(x[2]-1) +

9.9*(x[4]-1));
mm.gradient[3] = -2*(180*x[3]*b + 1 - x[3]);
mm.gradient[4] = 2*(90*b + 10.1*(x[4]-1) +

9.9*(x[2]-1));
endif;

//Calculate Hessian
if ind[3];

mm.Hessian = omega;
mm.Hessian[1,1] = -2*(200*(x[2]-x[1]^2) -

400*x[1]^2 - 1);
mm.Hessian[1,2] = -400*x[1];
mm.Hessian[2,1] = mm.Hessian[1,2];
mm.Hessian[3,3] = -2*(180*(x[4]-x[3]^2) -

360*x[3]^2 - 1);
mm.Hessian[4,3] = -360*x[3];
mm.Hessian[3,4] = mm.Hessian[4,3];

endif;

//Return modelResults structure
retp(mm);

endp;

Example 2

A procedure that takes two extra data arguments, q and b, and calculates only the scalar
objective function.
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proc qfct(x, q, b, ind);

//Declare 'mm' to be a modelResults struct
//that is local to this procedure
struct modelResults mm;

if ind[1];
//Calculate objective function
mm.Function = .5*x'*q*x - x'b;

endif;

//Return modelResults structure
retp(mm);

endp;
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9 Managing Optimization

The critical elements in optimization are scaling, starting point, and the condition of the model.
When the data are scaled, the starting point is reasonably close to the solution, and the data and
model go together well, the iterations converge quickly and without difficulty.

For best results therefore, you want to prepare the problem so that model is well-specified, the
data scaled, and that a good starting point is available.

The tradeoff among algorithms and step length methods is between speed and demands on the
starting point and condition of the model. The less demanding methods are generally time
consuming and computationally intensive, whereas the quicker methods (either in terms of time
or number of iterations to convergence) are more sensitive to conditioning and quality of starting
point.

9.1 Scaling
For best performance, the diagonal elements of the Hessian matrix should be roughly equal. If
some diagonal elements contain numbers that are very large and/or very small with respect to
the others,OPTMT has difficulty converging. How to scale the diagonal elements of the Hessian
may not be obvious, but it may suffice to ensure that the constants (or "data") used in the model
are about the same magnitude.
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9.2 Condition
The specification of the model can be measured by the condition of the Hessian. The solution of
the problem is found by searching for parameter values for which the gradient is zero. If,
however, the Jacobian of the gradient (i.e., the Hessian) is very small for a particular parameter,
then OPTMT has difficulty determining the optimal values since a large region of the function
appears virtually flat to OPTMT. When the Hessian has very small elements, the inverse of the
Hessian has very large elements and the search direction gets buried in the large numbers.

Poor condition can be caused by bad scaling. It can also be caused by a poor specification of the
model or by bad data. Bad models and bad data are two sides of the same coin. If the problem is
highly nonlinear, it is important that data be available to describe the features of the curve
described by each of the parameters. For example, one of the parameters of the Weibull function
describes the shape of the curve as it approaches the upper asymptote. If data are not available
on that portion of the curve, then that parameter is poorly estimated. The gradient of the function
with respect to that parameter is very flat, elements of the Hessian associated with that
parameter is very small, and the inverse of the Hessian contains very large numbers. In this case
it is necessary to respecify the model in a way that excludes that parameter.

9.3 Starting Point
When the model is not particularly well-defined, the starting point can be critical. When the
optimization doesn’t seem to be working, try different starting points. A closed form solution
may exist for a simpler problem with the same parameters. For example, ordinary least squares
estimates may be used as starting values for nonlinear least squares problems or nonlinear
regressions like probit or logit. There are no general methods for computing start values and it
may be necessary to attempt the estimation from a variety of starting points.

9.4 Example
//Activate OPTMT library
library optmt;
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//Create extra data needed by objective function
Q = { 0.78 -0.02 -0.12 -0.14,

-0.02 0.86 -0.04 0.06,
-0.12 -0.04 0.72 -0.08,
-0.14 0.06 -0.08 0.74 };

b = { 0.76, 0.08, 1.12, 0.68 };

//Create a 4x1 matrix of 1's to be the starting values
x0 = ones(4, 1);

//Declare 'c0' to be an 'optmtControl' struct
struct optmtControl c0;

//Fill 'c0' with default values
c0 = optmtControlCreate();

//Set lower and upper bounds
//for each of the 4 parameters
c0.bounds = { 0 1,

0 1,
1 2,
1 2 };

//Procedure to be minimized
proc qfct(x, Q, b, ind);

//Declare 'mm' to be a 'modelResults'
//local to this procedure, 'qfct'
struct modelResults mm;
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if ind[1];

//Calculate the scalar objective
mm.Function = .5*x'*Q*x - x'b;

endif;

//Return the 'modelResults' struct
retp(mm);

endp;

//Send all printed output to new file 'optmt1.out'
output file = optmt1.out reset;

//Declare 'out' to be an 'optmtResults' struct
//to hold the results of the optimization.
struct optmtResults out;

//Minimize 'qfct'
out = optmt(&qfct,x0,Q,b,c0);

//Print report of optmization results
call optmtPrt(out);

//Stop sending printed output to 'optmt1.out'
output off;

and the output looks like this:

=====================================
Optmt Version 2.0.0

=====================================
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return code = 0
function -2.07055
normal convergence

Parameters Estimates Gradient
-------------------------------------

x[1,1] 1.0000 -0.3892
x[2,1] 0.1126 0.0000
x[3,1] 1.8731 0.0000
x[4,1] 1.3015 0.0000

Number of iterations 9
Minutes to convergence 0.00118

Lagraneans

0.0000000 0.389223
0.0000000 0.000000
0.0000000 0.000000
0.0000000 0.000000

If the Lagrangeans are "empty" matrices, the associated constraints are not active. If they are
zeros but not "empty" matrices, then they are still inactive at the solution but were active at some
point during the iterations.
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10 Run-Time Switches

If the user presses H during the iterations, a help table is printed to the screen which describes
the run-time switches. By this method, important control structure member variables may be
modified during the iterations. The case may also be ignored, that is, either upper or lower case
letters suffice.

A Change Algorithm

C Force Exit

G ToggleGradMethod

H Help Table

O Set PrintIters

S Set line search method

V Set Tol

Keyboard polling can be turned off completely by setting the disableKeymember of the
optmtControl instance to a nonzero value.
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11 OPTMT Structures

11.1 optmtControl
matrix bounds

matrix algorithm

matrix switch

matrix lineSearch

matrix active

matrix maxTries

matrix maxIters

matrix maxTime

matrix tol

matrix feasibleTest

matrix randRadius

matrix gradMethod

matrix hessMethod
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matrix gradStep

matrix gradCheck

matrix state

string title

scalar printIters

matrix disableKey

11.2 optmtResults
struct PV par

scalar fct

struct lagrangeans

scalar retcode

string returnDescription

matrix Hessian

matrix gradient

matrix numIterations

matrix elapsedTime

string title

11.3 modelResults
modelResults structure

matrix function

matrix gradient

matrix Hessian
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12 Error Handling

12.1 Return Codes
The Retcodemember of an instance of a optmtResults structure, which is returned by
OPTMT, contains a scalar number that contains information about the status of the
iterations upon exitingOPTMT. The following table describes their meanings:

0 normal convergence

1 forced exit

2 maximum iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 function cannot be evaluated at initial parameter values

8 error with gradient

10 secant update failed

11 maximum time exceeded

12 error with weights

16 function evaluated as complex

20 Hessian failed to invert
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34 data set could not be opened

12.2 Error Trapping
Setting the printItersmember of an instance of a optmtControl structure to zero turns off
all printing to the screen. Error codes, however, still are printed to the screen unless error
trapping is also turned on. Setting the trap flag to 4 causes OPTMT not to send the
messages to the screen:

trap 4;

Whatever the setting of the trap flag,OPTMT discontinues computations and returns with
an error code. The trap flag in this case only affects whether messages are printed to the
screen or not. This is an issue when the OPTMT function is embedded in a larger program,
and you want the larger program to handle the errors.
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14 Command Reference

The Command Reference chapter describes each of the commands, procedures and functions
available in OPTMT.

optmt
Purpose

Computes estimates of parameters of an objective function.

Library

optmt

Format

out = optmt(&fct, p);
out = optmt(&fct, p, ...);
out = optmt(&fct, p, ..., ctl);
out = optmt(&fct, p, ctl);
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Input

&fct a pointer to a procedure that returns the value of the objective function.
p Either a Px1 matrix, or an instance of a PV structure containing start values for the

parameters constructed using the pvPack functions.

... Optional extra arguments. These arguments are passed untouched to the user-
provided objective function, by optmt. You must use the same inputs that were
passed into the call to optmt that produced the out structure.

ctl Optional input, an instance of an optmtControl structure. Normally an instance is
initialized by calling optmtCreate and members of this instance can be set to
other values by the user. For an instance named ctl, the members are:

ctl.bounds 1×2 or K×2 matrix, bounds on parameters. If 1×2 all
parameters have same bounds. Default = { -1e256 1e256 }.

ctl.algorithm scalar, descent algorithm.

1 BFGS (default).

2 DFP.

3 Newton.

4 Steepest Descent.

ctl.switch 4×2 vector, controls algorithm switching between algorithm
in column 1 and column 2.

ctl.switch
[1,1:2]

algorithm numbers to switch between.

ctl.switch
[2,1:2]

optmt switches if function changes less
than this amount.

ctl.switch
[3,1:2]

optmt switches if this number of iterations
is exceeded.

ctl.switch
[4,1:2]

optmt switches if line search step changes
less than this amount.

Default = { 1   3,
1e-4 1e-4,
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10 10,
1e-4 1e-4 };

ctl.lineSearch scalar, sets line search method.

1 STEPBT (quadratic and cubic curve fit)
(default).

2 Brent’s method.

3 half.

4 Strong Wolfe’s condition.

ctl.active K×1 vector, set K-th element to zero to fix it to start value. If
using a PV struct, use the GAUSS function pvGetIndex to
determine where parameters in the PV structure are in the
vector of parameters. Default = {.}, all parameters are active.

ctl.maxIters scalar, maximum number of iterations. Default = 10000.

ctl.tol scalar, convergence tolerance. Iterations cease when all
elements of the direction vector are less than this value.
Default = 1e-5.

ctl.feasibleTest scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned off.
Default = 1.

ctl.maxTries scalar, maximum number of attempts in random search.
Default = 100.

ctl.randRadius scalar, If zero, no random search attempted. If nonzero, it is
the radius of the random search. Default = 0.001.

ctl.gradMethod scalar, method for computing numerical gradient.

0 central difference.

1 forward difference (default).

2 backward difference.

ctl.hessMethod scalar, method for computing numerical Hessian.
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0 central difference.

1 forward difference (default).

2 backward difference.

ctl.gradStep scalar or K×1, increment size for computing numerical
derivatives. If scalar, stepsize will be value times parameter
estimates for the numerical gradient or Hessian. If K×1,
gradStep will be the elements of the vector, i.e., it will not be
multiplied times the parameters.

ctl.gradCheck scalar, if nonzero and if analytical gradients and/or Hessian
have been provided, numerical gradients and/or Hessian are
computed and compared against the analytical versions.

ctl.state scalar, seed for random number generator.

ctl.title string, title of run.

ctl.printIters scalar, if nonzero, prints iteration information. Default = 0.

ctl.maxTime scalar, maximum number of minutes to convergence.

ctl.disableKey scalar, if nonzero, keyboard input disabled.

Output

out instance of an optmtResults structure. For an instance named out, the members
are:

out.par instance of a PV structure containing the parameter
estimates. Use pvUnpack to retrieve matrices and arrays
or pvGetParvector to get the parameter vector.

out.fct scalar, function evaluated at parameters in out.par.

out.returnDescription string, description of return values.

out.hessian K×K matrix, Hessian evaluated at parameters in out.par.

out.gradient K×1 vector, gradient evaluated at the parameters in
out.par.

out.numIterations scalar, number of iterations.
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out.elapsedTime scalar, elapsed time of iterations.

out.title string, title of run.

out.lagrangeans K×2 matrix, Lagrangeans for the bounds constraints.
Whenever a constraint is active, its associated
Lagrangean will be nonzero. For any constraint that is
inactive throughout the iterations as well as at
convergence, the corresponding Lagrangean matrix will
be set to a scalar missing value.

out.retcode return code:

0 normal convergence.

1 forced exit.

2 maximum number of iterations exceeded.

3 function calculation failed.

4 gradient calculation failed.

5 Hessian calculation failed.

6 line search failed.

7 functional evaluation failed.

8 error with initial gradient.

10 secant update failed.

11 maximum time exceeded.

12 error with weights.

16 function evaluated as complex.

20 Hessian failed to invert.

34 data set could not be opened.

Remarks

Writing the Objective Function
optmt requires a user-provided procedure to compute the objective function. In the objective
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function, you have the option to also compute first and/or second derivatives.

The main objective procedure has two required arguments, the model parameters, and a final
argument that is a vector of zeros and ones indicating which of the results, the function, first
derivatives, or second derivatives, are to be computed. Between the model parameters and the
indicator vector is where you pass in any extra data arguments needed by your objective
function. Full examples are below.

Examples

Example 1: Basic Usage

The following is a complete example. The code can be found in the

GAUSSHOME/examples/optmt directory, named optmt_basic.e.

library optmt;

//Objective function
proc fct(x, ind);

//Declare 'mm' to be a modelResults
//struct, local to this procedure
struct modelResults mm;

//If the first element of the indicator vector
//is non-zero, calculate the objective function
if ind[1];

//Assign the value of the objective function to the
//'function' member of the 'modelResults' struct
mm.function = 4 * x[1].^2 - 4 * x[1] * x[2]

+ 3 * x[2]^2 + x[1];
endif;
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//Return the modelResults structure
retp(mm);

endp;

// Starting values
x0 = { 1, 1 };

//Declare 'out' to be an optmtResults struct
//to hold the optimization results
struct optmtResults out;

//Minimize objective function
out = optmt(&fct,x0);

//Print optimtization results
call optmtPrt(out);

The above code will print output similar to the following:

======================================
Optmt

======================================

Return code = 0
Function value = -0.09375
Convergence : normal convergence

Parameters Estimates Gradient
--------------------------------------
x[1,1] -0.1875 0.0000
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x[2,1] -0.1250 0.0000

Number of iterations 6
Minutes to convergence 0.00008

Lagraneans
{}

Example 2: Use 'optmtControl' structure and optional inputs.

The following is a complete example. The code can be found in the

GAUSSHOME/examples/optmt directory, named optmt_spring.e.

library optmt;

//Objective function
proc fct(x, k, F, ind);

//Declare 'mm' to be a modelResults
//struct, local to this procedure
struct modelResults mm;

//If the first element of the indicator vector
//is non-zero, calculate the objective function
if ind[1];

//Assign the value of the objective function to the
//'function' member of the 'modelResults' struct
mm.function = k[1] * (sqrt(x[1]^2 + (x[2] + 1)^2) - 1)^2

+ k[2] * (sqrt(x[1]^2 + (x[2] - 1)^2) - 1)^2
- (F'x);

endif;
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//Return the modelResults structure
retp(mm);

endp;

// Starting values
x0 = { 1, 1 };

//Extra data needed by function
k = { 100, 90 };
F = { 20, 40 };

//Declare 'out' to be an optmtResults struct
//to hold the optimization results
struct optmtResults out;

//Declare 'ctl' to be an optmtControl structure
struct optmtControl ctl;

//Fill 'ctl' with default options
ctl = optmtControlCreate();

//Print report on every 5th iteration
ctl.printIters = 5;

//Use Newton Algorithm
ctl.algorithm = 3;

//Use Strong Wolfe Conditions
ctl.lineSearch = 4;
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//Minimize objective function
//Pass in extra data needed by objective function
//between PV struct and control structure
out = optmt(&fct, x0, k, F, ctl);

//Print optimization results
call optmtPrt(out);

The above code will print output similar to the following report:

======================================
Optmt

======================================

Return code = 0
Function value = -9.65623
Convergence : normal convergence

Parameters Estimates Gradient
--------------------------------------
x[1,1] 0.5044 0.0000
x[2,1] 0.1219 0.0000

Number of iterations 6
Minutes to convergence 0.00181

Lagraneans
{}
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Source

optmt.src

optmtControlCreate
Purpose

Fills a structure of type optmtControlCreate with default settings.

Library

optmt

Format

ctl = optmtControlCreate();

Output

ctl instance of a optmtControl structure filled in with default values.

Examples

//Declare 'ctl' to be an optmtControl struct
struct optmtControl ctl;

//Fill 'ctl' with default settings
ctl = optmtControlCreate();

Source

optmtutil.src
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optmtPrt
Purpose

Formats and prints the output from a call to optmt.

Library

optmt

Format

out = optmtPrt(out);

Input

out instance of a optmtResults structure generated by a call to optmt.

Output

out the input instance of the optmtResults structure unchanged.

Remarks

The call to optmt can be nested in the call to optmtPrt.

Source

optmtutil.src
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